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Mete Soner, ETH Zürich, Zürich, Switzerland; Swiss Finance Institute, Zürich,
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Preface

Feedback control of dynamical systems has benefited from recent development of

sensing and actuation nodes with strong local computation capabilities and from the

use of digital communication networks for system interconnections. With all these

advancements, the detailed analysis of feedback control systems remains an impor-

tant part of the complex networked control applications. System uncertainties have

always been a central issue in control systems. It is critical to address uncertainty

effects on the stability and performance of control systems when it is not possible to

obtain continuous feedback measurements. Such is the case in Networked Control

Systems (NCS) where the communication channel is of limited bandwidth and it is

also shared by different subsystems.

This book presents a specific framework, the Model-Based Networked Control

Systems (MB-NCS) framework, for design and analysis of NCS. This approach

places special emphasis on model uncertainties. Detailed development of the basic

results is provided and a number of important extensions are addressed; multiple

examples are given as well. Using the model-based approach we introduce several

types of architectures and control strategies that aim at improving performance in

NCS. The overall performance of NCS considers the appropriate use of network

resources, network bandwidth in particular, in addition to the desired response of

the system being controlled. The plant model is used at the controller/actuator side

to approximate the plant behavior so that the sensor is able to send data at lower

rates, since the model can provide information to generate appropriate control

inputs while the system is running in open-loop mode.

It is assumed that readers are familiar with the basics concerning Linear Sys-

tems. This book is intended for graduate students, researchers, and practitioners

with interest in the study of control over networks, distributed systems, and control

with communication constraints. These readers typically have the background or

have completed a graduate-level course on Linear Systems.

In this book we take the MB-NCS framework, from its initial configuration and

apply it to many complex applications. Different basic problems in control theory

are studied in the context of NCS using the model-based approach. The general idea

is that, in the absence of continuous feedback, the available knowledge about the
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system dynamics provides a useful tool for designing and implementing simple, yet

robust controllers that provide good performance in the presence of multiple

communication constraints. The problems and scenarios studied in this book

provide examples of a large number of potential applications in which the

MB-NCS framework brings an innovative advantageous perspective in the analysis

and design of control systems.

This book is divided in two parts. Part I focuses on the stability aspects of

MB-NCS while considering systems with different types of dynamics: linear,

nonlinear, continuous-time, and discrete-time systems. Different network con-

straints are also considered in Chaps. 2–8 of Part I such as limited bandwidth,

network delays, and signal quantization.

Part II, Chaps. 9–14, deals mainly with the performance of MB-NCS. In the

following we introduce the main topics covered in each chapter of this book.

Description of Chapter Contents

Chapter 1 introduces Networked Control Systems and several approaches used for

analysis of this type of control systems. Detailed literature review of prior and

relevant work is addressed in this chapter. Particular approaches are emphasized in

Chap. 1: model-based frameworks and event-triggered control.

Part I: Chaps. 2–9

Chapter 2 presents and explains with great detail the MB-NCS framework. The

contents of this chapter are fundamental in being able to follow the material in the

remaining chapters. Once the main contents of Chap. 2 have been studied there is no

strict order for the rest of this book. Besides presenting the MB-NCS framework,

Chap. 2 offers the first main results related to this approach which are built on one

of the most basic cases we study in the book: state feedback with periodic commu-

nication. This chapter considers both continuous-time and discrete-time systems.

Recent additional results are provided at the end of the chapter.

In Chap. 3 two important problems are studied: output feedback and network

induced delays. Both continuous-time and discrete-time systems are considered.

One of the main important lessons of this chapter is that the MB-NCS framework

can be applied to many different control problems; the problems in this chapter are

two of the main extensions when considering networked systems in general. In the

output feedback problem, we introduce a state observer and the overall system

now contains three subsystems: plant, model, and observer. A similar approach

is used for the network induced delay problem; a third subsystem is introduced

that helps in obtaining a current estimate of the system state based on delayed

measurements.
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The contents of Chap. 4 analyze the stability and the selection of update periods

and other network parameters when intermittent feedback is used along with the

model-based architecture previously introduced. Two intermittent feedback

approaches are described in this chapter. In the first approach the networked system

operates in two different modes: closed-loop and open-loop mode. The closed-loop

mode of operation requires a strong assumption concerning the ability of transmis-

sion of continuous signals over the network. To relax this assumption, we describe a

second intermittent feedback approach that operates using two different update

rates. The faster update rate now takes the place of the closed-loop mode of

operation. Stability results are provided for continuous-time and discrete-time

systems and for the state and output feedback cases.

An important aspect present in many networked systems is considered in

Chap. 5, namely, time-varying transmission intervals. In many implementations

access to the communication channel may be random and strict periodic transmis-

sion of information may not be possible. This chapter provides different stability

results first when no statistical information about the update periods is known and

then when the update periods follow a prescribed statistical distribution.

Chapter 6 also presents an approach for updating the model using time-varying

intervals under event-triggered control. The main difference with respect to Chap. 5

is that in event-triggered control the main purpose in using nonperiodic transmis-

sion intervals is to adapt the update instants according to the current conditions

of the system. Chapter 6 provides details on how to implement event-triggered

techniques in the MB-NCS framework. It also describes different strategies that

provide different results and varying performance. This approach is also used for

systems subject to network induced delays.

The MB-NCS framework is used in Chap. 7 to consider nonlinear systems.

Continuous-time systems are considered first and the focus is on finding stability

conditions under periodic transmissions. This chapter also considers discrete-time

systems using models described by input–output representations; event-triggered

control techniques are used in this case.

The work in Chap. 8 addresses another important constraint in NCS, namely,

signal quantization. Since measurements need to be transmitted over digital com-

munication networks, they need to be quantized in order to be represented in digital

form. This chapter provides a thorough analysis of MB-NCS with quantization of

measurements. Different types of quantizers are discussed and the corresponding

results provide the design parameters needed in this case which are the quantization

parameters and the update intervals. The joint effect of quantization and network

delays is also studied and similar results are provided.

Part II: Chaps. 9–14

Two main topics with respect to the optimal performance of MB-NCS are discussed

in Chap. 9. The first one is related to the implementation of event-triggered control
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techniques for systems that operate optimally assuming continuous feedback.

The second topic is concerned with the optimal design (nonperiodic in general) of

transmission instants. In the latter case we consider finite-horizon optimal control

problems and use Dynamic Programming in order to find optimal decisions

concerning transmission of state updates based on the current behavior of the system.

Chapter 10 provides a detailed analysis of the performance of continuous-time

MB-NCS. Two different performance metrics are used to quantify the performance

of model-based control systems with periodic updates. Design of optimal control-

lers is also addressed in this chapter, under the assumption of periodic transmission.

Reference input tracking with limited feedback and using the model-based

approach is analyzed in Chap. 11. This chapter deals with continuous-time systems

using periodic updates and conditions on the update period are given in order to

provide a bound on the tracking error. In this chapter we also consider linear

discrete-time systems described by input–output representations. Dynamic control-

lers are considered in this case. One of the advantages of using this type of system

representation is that common types of uncertainties such as additive and multipli-

cative uncertainties can be considered. This implies that knowledge of the system

dimension is not assumed and available models with different dimensions than the

real system can be used for both controller design and for implementation in the

MB-NCS framework.

In Chap. 12 the model of the system is not considered to be fixed. Parameter

estimation algorithms are described in the context of networked systems and used to

upgrade the model. In other words, by measuring the current response of the system

it is possible to find new parameters that better approximate the real values than the

initial model parameters. Systems with measurement noise in addition to parameter

uncertainties are considered as well. Different types of applications are described

where the algorithms for estimation of parameters described in this chapter are of

great use. These applications include switched systems, fault identification, and

systems with input disturbances.

Chapter 13 studies multirate systems. Several problems are discussed. The first

one corresponds to the case where multiple sensors are used to measure the state of

an uncertain system. These sensors represent different nodes in an NCS attempting

to send their measurements to a centralized controller. The problem considered is to

find transmission periods, not necessarily the same for all nodes, which guarantee

stability of the networked system. The second problem considers a two-channel

networked system where the connection from controller to actuator is implemented

using the communication network.

Distributed systems are studied in Chap. 14. Two approaches are considered.

First we consider periodic updates for discrete-time systems and discuss both the

single-rate and the multirate implementations. Then we consider continuous-time

systems using event-based updates. For this problem, we study both centralized and

decentralized controller design and implementation.

The Appendix collects different results concerning vector and matrix norms,

Jordan canonical forms, similarity transformations, and other linear algebra concepts.

It also contains basic control theory definitions and other results about linear systems.
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Finally, the appendix provides a summary of definitions and theorems broadly used

in Lyapunov analysis.
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Chapter 1

Introduction

The last two decades have seen a rapidly increasing use of common-bus network

architectures for implementation of control systems. A digital communication

network is used to transfer information among the components of a control system:

sensors, controllers, actuators, and the systems to be controlled. Such a control

system implemented over a network is called a Networked Control System (NCS).

NCSs offer a large number of advantages compared to traditional point-to-point

configurations where control systems are interconnected using dedicated wires. In

fact, one of the main advantages is that NCSs reduce the volume of wiring; this is of

prime importance for instance, in the automobile industry and in the design of

efficient aircrafts. NCS can also help to improve efficiency, flexibility, and reliabil-

ity of the network interconnected system, reducing reconfiguration and mainte-

nance time and costs.

1.1 Networked Control Systems

Figure 1.1 shows multiple systems interconnected with their respective controllers;

note that a single controller node may operate on more than one system, that is,

NCSs offer a variety of implementations. For instance, a single embedded processor

may contain multiple controllers for multiple plants, these controllers may belong

to the same node and the network protocol is in charge of matching sensor and

actuator nodes with their corresponding controller within a node.

There are many examples where using a network to interconnect control appli-

cations is convenient. A typical example is the case of aircraft control. In this case,

different sensors and control surfaces among other control components are distrib-

uted over the aircraft. Another example is the case of manufacturing in factories,

where it is common practice to implement data acquisition systems along the

process path. Dozens of sensors are deployed over critical points to make important

information about the process available to quality control engineers. Most of the

time, these sensors will transmit the collected information to a central computer
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using an industrial network. More than often, new control loops need to be added as

quality or industrial engineers analyze the data retrieved by the acquisition network.

In this case, it seems natural to attach the controllers and actuators to the already

existing network and share the data already provided by the deployed sensors. In

general, use of a network in a control system is desirable when there is a large

number of distributed sensors and actuators.

The complexity of NCS arises from the hybrid nature of the system. That is the

continuous plant dynamics interacting with the discrete hardware and software of

the network. The hybrid connection to NCS has been explored by Bushnell

et al. [33]. Furthermore, tools for analyzing hybrid systems are utilized by Lin

et al. [155] to characterize the robust stability of NCS under packet dropouts and

network access delays.

One of the main problems to be addressed when considering an NCS is the

limited bandwidth of the network. In point-to-point control systems, it is possible to

send continuous measurements and control inputs. Bandwidth and dynamic

response of a plant are closely related. The faster the dynamics of the plant, the

larger is its bandwidth. This usually translates to large frequency content on the

controlling signal and a continuous exchange of information between the plant and

the controller. In the case of discrete-time plants, the controller acts at spaced

instants of time and transmission of continuous signals is not required. However,

some discrete-time systems may have a fast internal sampling which results in large

bandwidth requirements in terms of the network characteristics.

In NCS, data has to be sampled, quantized, encoded, and sent through the network.

An important problem arises when many nodes attempt to broadcast messages in a

short interval of time. As the rate of transmission increases and approaches the

network bandwidth limit, the presence of packet dropouts becomes more frequent

and time delays are longer; therefore, reduction of the transmission of information

over the network is of considerable importance for the stability and performance of

NCS. This can be addressed by two methods: the first method is to minimize the

transfer of information between the sensor and the controller/actuator; the second

method is to compress or reduce the size of the data transferred at each transaction.

System 2System 1 System 3

NETWORK

Controller 1 Controllers 2,3

A A AS S S

Fig. 1.1 Multiple control systems interconnected using a communication network
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Popular networks in industry actually deployed include CAN bus, PROFIBUS,

Fieldbus Foundation, and Ethernet among others. Each of these protocols and

standards has very different characteristics such as network contention resolution

or scheduling schemes, and transmission media. Among the shared characteristics

are the small transport time and big overhead (network control information

included in the packet). This means that data compression by reducing the size of

the data transmitted has negligible effects over the overall system performance. So,

in general, reducing the number of packets transmitted brings better benefits than

data compression when using communication protocols with significant packet

overhead. The reduction of the number of packets transmitted through the network

can translate into larger minimal transfer times between the components. It is also

to be noted that any delay in an information transaction is usually due to network

access contention. This translates into what has been already noted by Walsh and

Ye [259] (see also [100]); namely that the sensor with a fast sampling rate can send

through the network the latest data available resulting in a negligible information

transfer delay. But there will still be contention in the network so that, even though

the delay is small, the sensor data would not be available at all times to the

controller/actuator. This brings us again to the approach of reducing the data

transfer rate as much as possible. In this manner more bandwidth will be available

to allocate more resources without sacrificing stability and ultimately performance

of the overall system.

In this book, we consider the problem of having sensors that are connected to the

actuators/controllers by a network; that is, the feedback path is over a network.

However, data networks typically have limited bandwidth and transfer information

in a discrete-time framework, and this makes the task of designing a control system

rather challenging. This book concentrates in the use of the knowledge about the

plant to overcome some of the most relevant challenges. This type of NCS is called

Model-Based Networked Control System or MB-NCS [186–191].

Extensive work has been done to overcome the shortcomings of NCSs and to

understand the implications of the use of a network on the feedback path. Some of

the research areas in NCS fall into the following groups: Finite Alphabet Systems,

Scheduling Strategies, Discrete Plants with Packet Loss or Delay, and Packetized

Control. This work is discussed in the remaining of this section while Sects. 1.2 and

1.3 provide an introduction into the ideas that will be seen later in this book.

1.1.1 Control over Networks Using a Finite Alphabet System

Finite alphabet systems attempt to reduce the bandwidth of the system by sending

through the network a symbol from a finite set of symbols or finite alphabet. By

doing this the number of bits required to send each symbol through the network can

be reduced dramatically. This can be seen as a coding scheme or data compression.

Many times the accurate reproduction of the signal sampled by the sensor is not

necessary.

1.1 Networked Control Systems 3



In [199, 200] Nair and Evans study the case of an infinite dimensional

time-varying discrete plant with unknown initial condition. The plant is being

controlled using a network on the feedback path. The only constraint on the network

is that a finite set of symbols can be used to send the information from the sensor to

the controller/actuator. The sensor then implements a coder that transmits the

information to the controller/actuator at each sampling time. The information

takes negligible time to get to its destination and the data corruption probability

is assumed to be zero. The result is that, under certain technical conditions on the

probability density function of the initial condition, the plant is stabilizable asymp-

totically in themth output moment and in the infinite horizon if and only if the coder

and controller comply with certain characteristics that depend on the alphabet size

and some dynamical constants. The special case in which the plant is unstable and

LTI the condition is reduced to R> log2|λ| where R is the transmission rate in bits

per second and λ is the unstable open-loop pole with largest magnitude. These

results are extended in [201] to include NCS with Markov jump parameters. In the

same spirit, Liberzon et al. also consider the stabilization of linear and nonlinear

systems with quantized signals in [150–153].

Elia and Mitter [65] propose the design of a quantized controller and state

estimator for an LTI discrete system. The result is an optimized controller and

state estimator that operate in discrete periodic times with quantized values for the

state. It is obvious that the coarser the discretization, the less the bandwidth required

for the system to work. This work follows the same line as the one in [199–201]. It

is shown that the coarsest or least dense quantizer that quadratically stabilizes the

plant is logarithmic and can be computed by solving a special LQR problem. The

theory is then extended to continuous LTI plants using constant sampling time

intervals. It is shown that the optimal sampling interval time (using the proposed

quantizers) is only a function of the sum of the unstable eigenvalues of the system.

Ishii and Francis further explore the idea to prevent chattering in the system

in [124].

Together with the optimization of the sampling period and quantizer some effort

has been made in optimizing the sampling times and control law. This can be

viewed as type of scheduling. Several approaches have been proposed. Rehbinder

and Sanfrison [215] prove the intuitive idea that the plant with the fastest dynamics

should be given more network bandwidth resources. In the same spirit, Xiao

et al. [272] study the optimization of the word length, the output scaling, and the

controller or estimator gain. Various communication schemes are presented and

analyzed.

In [123] Ishii and Francis, extend their Dwell Time Controller [124] for systems

with output feedback. In the dwell time controller setup the plant’s output is fed to a

state observer. The estimated state is then quantized using a logarithmic partition of

the state space. The quantized value is sent through the network to the controller/

actuator. After decoding the message, the controller will apply a constant input to

the plant that corresponds to the received value of the quantized state. The loga-

rithmic partition is coarser as the state’s distance to the origin is bigger, and it is

finer when the state is closer to the origin. This seems to be reasonable since fine
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steering of the state is more useful when the state is close to the origin. The

logarithmic partitions are made overlapping so that the system can tolerate some

noise generated by the sensors. Also a dwell time is specified to reduce fast

chattering produced by the controller when switching control inputs. To do so,

the time interval between switching control inputs is enforced to be bigger or equal

than the dwell time. This can be done by timing the messages sent to the controller.

In our approach we will use the natural choice of having a state observer at the

sensor side of the network.

In [209] Petersen and Savkin present an algorithm for the stabilization of a

multi-input/multi-output discrete-time linear system via a limited capacity channel.

The approach taken is a deterministic multirate state-space approach that leads to a

nonlinear dynamic feedback controller. The network channel is assumed to be

noiseless and with time delays associated with transmissions. An important feature

of the approach is that it is a multirate approach in which symbols are transmitted

across the channel at a slower rate that the control inputs are applied to the discrete-

time plant. It is also shown how the results can be extended to the general output

feedback case by using a form of deadbeat observer. Both coder and decoder are

dynamic systems that are “synchronized” by an evolving state that is known at both

sides. The state space is partitioned dynamically as the system approaches its steady

state, in this way asymptotic behavior is proved achievable. The actuator (or sensor)

can use the state synchronization proposed here to predict the behavior of the sensor

(or actuator) in the intervals where there is no communication.

The work in [202] offers a framework that applies to nonlinear systems subject

to quantization. In addition, network scheduling is considered using periodic

updates in terms of the maximal allowable transfer interval, MATI (see below).

Copies of the plant dynamics are used at both ends of the communication channel.

Model uncertainties are not considered, the only difference between the plant and

the copies being that the copies operate using the quantized variables instead of the

real ones. The transmission of quantized measurements at times dictated by event-

based strategies has been considered by several authors. The references [17, 182]

discuss this approach when considering the most convenient times to sample a

signal. The authors of [140] also consider event-triggered transmission for stabili-

zation of systems that communicate using a limited-bandwidth network and using a

similar model-based approach as the one discussed in this book. Event-triggered

control techniques will be used in many chapters of this book and details and

literature review concerning these techniques will be provided in Sect. 1.3 of this

chapter.

1.1.2 Control over Networks Using Scheduling Strategies

Another important problem associated with control over networks is deciding about

scheduling strategies. One of the main purposes for using a network is that many

control and data acquisition systems can share its resources. Since many nodes will

1.1 Networked Control Systems 5



be transmitting information over the network, it is natural to determine when is the

best time for these nodes to transmit in order to avoid congestion, collisions, and

achieve the control goal.

In [260], Walsh et al. presents a protocol that uses dynamic scheduling and a

zero-order-hold at the controller input. The notion of maximal allowable transfer

interval, MATI, is introduced to place an upper bound on the time between transfers

of information from the sensor to the controller. In this case the controller is

designed without taking the network into account, a desirable feature. However,

serious behavior degradation can result if the MATI is too large and the network

slow. Also a dynamic scheduling scheme is introduced: Try-Once-Discard or TOD

protocol. In TOD each sensor has a transmission priority that is proportional to the

error between the last data sent and the actual measured value. The sensor with

biggest error is given maximum priority to transmit. Additionally, if a sensor is

denied access to the network by contention, it will discard the packet and construct

a new one with fresh data before trying again to transmit. These results are extended

to nonlinear plants in [257]. Tolerance of these systems under different types of

noise is studied on [20].

The effects of different scheduling schemes for the TOD protocol are studied in

[258]. It is implied that the plant performance is improved if an appropriate

scheduling scheme is used. Scheduling is of utmost importance when there are a

number of sensors, actuators and controllers competing for network resources. It

determines the nature of the delays, transmission rates, etc. A deterministic sched-

uling scheme is presented by Hristu-Varsakelis in [117]. Deterministic communi-

cation sequences are easier to analyze and sometimes can have a superior

performance than non-deterministic scheduling schemes but can also be difficult

to enforce.

In [21] Beldiman et al. extend the results in [260] to include a state predictor, for

LTI systems, to estimate the state in between updates. Two types of state predictors

are defined. The first one is the so-called open-loop predictor, which is basically a

plant model that is updated with an invertible transformation of the state vector

available at the plant output. The model assumes complete knowledge of the plant.

In other words, there is no uncertainty in the model dynamics and they match

perfectly with the plant dynamics. Once the model’s state has been updated, it can

provide the controller with an estimate of the plant state vector. The second

predictor, called closed-loop predictor, has the same structure as a standard linear

state observer. It receives the output of the plant and tries to recreate the plant

output in between transmissions. This predicted output is then fed to the controller.

This closed observer needs the network to be very fast in order for the observer to

converge. Sufficient conditions are given for the stability of this NCS setup.

The optimization of switching times and state estimation through a network is

covered by A.S. Matveev and Savkin in [173]. In [173] a linear discrete-time

partially observed system perturbed by a white noise is studied. The observations

are transmitted to the controller via communication channels with irregular trans-

mission times. Various measurements signals may incur independent delays or

arrive at the estimator out of order. The estimator can dynamically control which
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sensors it will connect to. The minimum variance state estimate and the optimal

sensor switching strategy are obtained. Basically a Kalman-like state estimator that

is able to connect to its inputs a limited array of the plant output sensors and deal

with a variable delay to optimally estimate the plant state.

Branicky et al. study in [30] the design of a scheduling policy based on the Rate

Monotonic Scheduling. Here a number of independent plants are allowed to close

their feedback loops through a shared network. Each system is given a constant

transmission time where contention is solved via the Rate Monotonic Scheduling.

The problem is posed as an optimization problem in which optimal transmission

times are obtained based on traditional cost functions and schedulability con-

straints. Extensive simulations of the obtained results are shown in [28].

A model-based approach was used in [66] and in [242, 243] in order to schedule

updates for the problem of distributed systems that broadcast information using a

digital communication network. In this problem, there are a finite number of sub-

systems and each one of them is coupled to a subset of those systems. Each

subsystem broadcasts its state at some time instants in order for the coupled systems

to use that information for self-control. In these references the model-based

approach is used to schedule the updates using a preassigned single update rate in

a sequential manner, i.e., a single rate approach in which the agents send updates at

different time instants.

1.1.3 Control over Networks Using Discrete Plants
with Packet Losses or Delays

Due to the discrete nature of the network, the analysis of discrete plants with packet

loss or delays is greatly simplified. Some natural questions arising in this area deal

with stability or performance of the NCS under stochastically described packet

delays, bounded packet delays, Markov chain-driven packet loss models, etc.

Bauer et al. analyze the problem on a network with random delays in [19]. The

paper proposes the use of a Smith predictor in a discrete framework to eliminate the

delay induced by the network. The Smith predictor is placed in front of the

controller and uses knowledge about the plant to propagate forward the delayed

information from the sensor and make it accessible to the controller. We will use the

intuitive idea that knowledge about the plant dynamics can help to relax the

network quality of service requirements without sacrificing the performance of

the NCS.

In [174] Matveev and Savkin present an NCS with an estimator/central control-

ler, and several semi-independent subsystems. The central controller receives

information from the different subsystems about the uncontrollable dynamics. It

compresses and processes the data and sends it to the different subsystems. The data

arrives to the local controllers at each subsystem. The local controller selects the

right information from the central controller message. This message contains
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propagated versions of the estimated state and a time stamp so that the local

controller can choose the right propagated version. This is done since the central

controller does not know the value of the transmission delay. The local controller

estimates the control-induced part of the controllable states of the subsystem and

computes the state of the controllable state by adding the term corresponding to the

uncontrollable dynamics that was received from the central controller. The problem

is solved in a quadratic optimization framework.

In [156] Ling and Lemmon study the performance of a discrete system in which

the sensor sends the output of the plant to the controller/actuator at each sampling

time. The packets sent from the sensor can be dropped with a certain probability; it

is also assumed that there is no delay associated with the packet transmission. The

packet dropout process is assumed to be identically and independently distributed.

The controller/actuator is assumed to hold the last received sensor data until the

next packet arrival. Conditions for mean square stability are first stated. Ergodicity

and wide sense stationarity conditions are then derived. Finally, the power spectral

density of the output is computed as a measure of the control system’s performance.

These results are then extended to the case of Markov chain-driven dropouts in

[157, 158] and used to calculate optimal dropout policies.

Azimi-Sadjadi in [13] studies the stability of NCS in the presence of packet

losses. In this setup the controller receives information from the sensors through the

network, calculates the control signal, and sends through the network the control

signal to the actuators. Multiple numbers of actuators and sensors are allowed. The

packets are sent simultaneously from all the sensors and to all the actuators. The

packets are delivered with identical and independent probability distribution. An

“uncertainty threshold” is calculated based on the system dynamics and the statis-

tical properties of the network under which the system is no longer stable.

The work in [172] presents a configuration that stabilizes an NCS with large

constant delays using passivity and the scattering transformation. The results

presented in [46, 113] derive general models of NCSs that consider time-varying

sampling intervals and delays.

The excellent survey papers [112, 227] describe typical problems and

approaches concerning packet losses and time delays in NCS.

1.1.4 Control over Networks Using Packetized Control

A different approach to reducing transmission rates over a network is based on

transmitting large amounts of information in single packets. Georgiev and Tilbury

[100] use more efficiently the packet structure, that is, reduction on communication

is obtained by sending packets of information using all data bits available (exclud-

ing overhead) in the structure of the packet. For the sequence of sensor data

received, the controller needs to find a control sequence instead of a single control

value. Packet size is a new feature in NCS compared to point-to-point architectures

and it is a variable that depends on the protocol or type of network being
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implemented. For example, the minimum effective load in an Ethernet packet is

46 bytes and, if 2 bytes are used to represent a sensed quantity, which is good

enough for most applications since those 16 bits can encode 216¼ 65536 different

levels of sensed signals, then we can send at least 23 sensed signals in such a packet.

Other networks that specialize in control applications require a considerably

smaller minimum size packet. For instance, the CAN protocol is optimized for

small messages. With an overhead of 47 bits (minimum packet size), and a

maximum data load of 8 bytes encourages designers to use all bits available to

send different input elements of a computed input sequence. Quevedo et al. [212]

follow a similar approach; they focus on large data packets like the ones used in

Ethernet-based protocols and, employing a predictive controller, they are able to

encapsulate a sequence of input values in a single packet. The work in [293]

presents a strategy that reduces data transmission in both the sensor to controller

and the controller to actuator channels of an NCS. The sensing strategy is based in a

“sensor transmission rule” (STR) which broadcasts a sensed measurement if there is

significant change in the output of the system. The control action consists of a

sequence of control inputs that are sent in one packet; the control inputs are based

on a time-varying controller found by solving a series of Linear Matrix Inequalities

(LMI).

1.2 Model-Based Frameworks

A particular approach for the design of controllers in NCS that has been gaining

attention in the NCS research community is called Model-Based Networked

Control Systems (MB-NCS) and it was introduced in [186–191]. In this framework

a nominal, usually inexact, model of the physical system or plant is used to generate

a control input for the actuator allowing the system to run in open loop for a finite

interval of time without need for feedback in this period. The state of the model is

then updated when a measurement arrives from the sensor. When we update the

model state, we reset any possible mismatch or difference between the model and

the plant states that is produced by allowing the plant to operate in open-loop mode

for a time interval. It has been shown [188] that using this framework it is possible

to stabilize a system by sending sporadic measurements to the controller, consid-

erably reducing the number of information packets broadcasted through the net-

work. In this way we are able to reduce time delays and the number of packet

dropouts in the network.

Figure 1.2 shows a basic MB-NCS configuration, where the network exists only

on the sensor-controller side while the controller is connected directly to the

actuator and the plant, where u ¼ Kx̂ , and the matrices Â , B̂ represent the available

model of the system matrices A, B.
In [188] necessary and sufficient conditions for stability were provided when the

updates from the system are periodic (h is constant) and with negligible delay for
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linear continuous and discrete time-invariant systems and for two cases: state

feedback and output feedback.

In the case of output feedback, a Luenberger observer is implemented in the

sensor node. The sensor contains a copy of the model and controller parameters to

generate the input u at the sensor node and along with continuous measurements of

the plant outputs; it is capable of generating an estimate of the plant state and

sending it periodically to the controller node where it is used to update the state of

the model. Similar results were also obtained when the plant and its model are

described using discrete-time systems [188]. The same authors also considered the

situation when the state measurement arrives at the controller node with a consid-

erable time delay. A propagation unit is implemented in this case to find an estimate

of the current plant state based on the delayed measurement. An important exten-

sion of this work considered time-varying updates [189]. In that case, two stochastic

scenarios were studied; in the first, the assumption is that transmission times are

identically independent distributed, in the second, transmission times are driven by

a finite Markov chain. In both cases, conditions were derived for almost sure

(probability 1) and mean square stability.

In all the work described above, it was assumed that the measurements sent from

the sensor to the controller contained data representing infinite precision. This is not

the case when using a digital communication network as a medium to broadcast

information since measurements have to be sensed, quantized, and encoded and the

exact value of the sensed variables cannot be recovered at the receiving node but

only an approximation of it. The precision of this approximation depends mainly on

the number of bits used for quantization and the encoding algorithm that is being

used. The practical assumption that was made before is based on the fact that many

industrial networks use a large number of bits to represent data, neglecting the

quantization error, i.e., the difference between the real variable and the quantized

variable is of a very small order. Different quantization methods were proposed and

its implementation in MB-NCS was studied in [191].

Nonlinear systems have also been considered using the MB-NCS configuration.

Different authors have provided stability conditions and stabilizing update rates for

Plant Sensor

Network

update
Model

Controller

u

x

h

x̂

Fig. 1.2 The Model-Based Networked Control System (MB-NCS) architecture
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nonlinear MB-NCS with and without uncertainties and for nonlinear MB-NCS with

time delays [160, 185, 210].

Estrada and Antsaklis introduced the notion of intermittent MB-NCS [67–71]. In

this case the measurement updates are not only given for a time instant, but they last

for a period of time making the system to operate in closed-loop mode for a finite

interval τ< h. The authors show that the maximum allowable value for h in a

particular problem can be increased as a function of τ and they also developed

similar approaches to the original MB-NCS with instantaneous feedback for the

cases of output feedback, network induced delays, and when the interval updates

are time varying with different probabilistic distributions. Some preliminary

performance-related results when the system is driven by a reference input signal

are presented in [67] and they will be discussed in more detail in Chap. 11.

The concept of intermittent control in MB-NCS has also been modeled in the

framework of switched systems [295]. This type of systems provides a natural and

simple way of representing the behavior of intermittent MB-NCS. In this case the

switched system contains two modes corresponding to the open-loop and closed-

loop responses. Stability analysis follows from slow switching theory by restricting

the time that the system remains in open loop and by choosing an average dwell

time sufficiently large.

Different authors have dealt with similar problems in different types of applica-

tions. Motivated by activities that involve human operators, the authors of [80, 126]

point out that in general a human operator scans information intermittently and

operates the controlled system continuously; the intermittent characteristic in this

case refers to the same situation presented in [188], that is, a single measurement is

used to update the internal model and generate the control input. For a skillful

operator, the information is scanned less frequently. Between update intervals the

control input is generated the same way as in MB-NCS, that is, an imperfect model

of the system is used to generate an estimate of the state and periodic measurements

are used to update the state of this model. In the output feedback case, a stochastic

estimator is implemented with the assumption that the statistical properties of the

measurement noise are known. In both cases the authors provide conditions for

stability based on the length of the sampling interval.

Chaillet and Bicchi [41] also use a model that produces the input for the plant

(possibly nonlinear) and considers a network in both sides of the plant. The actuator

is assumed to have an embedded computer that decodes and resynchronizes the

large packets sent from the controller that contain the predicted control input

obtained by the model. It also considers delays and partial updates of the state

and access to the network is based on error size. The authors consider two

situations: first, the actuator has computation capabilities to generate an input

sequence based on the estimate of the controller and second, the actuator can

only receive, decode, and resynchronize an input sequence. It is clear that the

actuator capabilities in the first case make it possible to implement model and

controller computations; therefore a controller node is not necessary and the result

can be seen as the MB-NCS configuration of Fig. 2.1. The second case also requires

some computational capabilities in the actuator but supposing these are limited and
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do not allow the implementation of the model and controller, then the performance

depends, especially for continuous-time systems, on the size of the packet. The

result is a bounded output in contrast to the asymptotic stability property of the first

case and the allowable delays and transfer intervals depend directly on the size of

the packet.

In [111] Hespanha et al. uses differential pulse code modulation techniques

together with a model of the plant dynamics to reduce the amount of bandwidth

needed to stabilize the plant. Both sensor and controller/actuator have a model of

the plant (assumed to be exact). Both models are run simultaneously, this is

assuming that the sensor node can reproduce the control signal applied by the

controller/actuator to the plant. The sensor node then calculates the difference

between the actual state of the plant and the plant model’s state. This difference

is then quantized and sent over to controller/actuator node to update its state. It is

assumed that the same procedure will be done locally with the sensor node’s plant

model so to have both sensor and controller/actuator nodes synchronized. The

controller/actuator node uses its model to generate the control signal to be applied

to the real plant. It is assumed, at first, that the sensor can measure directly all states.

In the cases where this is not possible, an observer is proposed. This observer can be

placed at the sensor side node. It is not clear whether this will guarantee the stability

of the plant, since the observer will need some time to converge to the actual plant

state. Plant noise and disturbances can prevent the observer from obtaining the

correct plant state estimate. The effects of these practical issues need to be looked at

more closely.

Zhivoglyadov and Middleton in [294] study an NCS where a plant model is used

in the controller. The discrete plant transmits the plant state to the controller every

sampling time. If the communication is interrupted or if a packet is dropped then the

model is used to predict the actual plant state. State estimation is also addressed

when the sensor transmits a number of the past outputs in a packet. The approach in

this book is similar but it also addresses the stability of the system in the presence of

plant-model mismatch obtaining necessary and sufficient conditions by explicitly

computing the time response of the system.

Yook et al. [278] also approach the problem of reducing the bandwidth utiliza-

tion by making use of a plant model; here the update of the model is event driven as

opposed to time driven. The model is updated when any of the states differ from the

computed value for more than a certain threshold. Some stability and performance

conditions are derived as functions of the plant, threshold, and magnitude of the

plant-model mismatch.

There exist also intrinsic relations between the MB-NCS approach and the well-

known area of Model Predictive Control (MPC) [81, 192]. In the MPC approach, an

explicit model of the system is used to predict the future output behavior; a tracking

error is defined using this prediction and the desired reference and the control action

are computed online. The purpose of the control action is to drive the state of the

system to a reference position in an optimal fashion while satisfying the existing

constraints. The authors of [98, 99, 219] introduced intermittent control in the

context of MPC to take account of the open-loop inter-sample behavior of an
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underlying continuous-time system. Recent work on NCS has been reported where

model predictive controllers have been successfully applied to deal with the usual

input and output constraints, but also consider the bandwidth limitations of the

network. The additional constraint aims to reduce the traffic in the communication

network by using the explicit model to generate the appropriate input in the absence

of continuous feedback. The formulation proposed by Bernardini and Bemporad

[24] reduces communication rate in the network using MPC techniques; a similar

idea is also presented by Zhang et al. [288]. This problem was motivated by the

implementation of wireless sensors that are supposed to consume much more

energy in broadcasting the information than other tasks such computing and data

reception. The solution can be applied to a more general class of networked systems

for which a reduction of communication rate is desired. Varutti et al. [255] apply

MPC based on events to stabilize a nonlinear continuous-time system; they

extended their approach to compensate for time delays and packet losses when

the system and the model predictive controller are implemented using a communi-

cation network. A common feature in the last few approaches [24, 255, 288] is that a

mismatch between the available model and the real dynamics of the plant is not

considered; their work is developed assuming the model and the plant dynamics are

the same. In traditional MPC this may not be an important problem since we can

continuously access the real state, but in NCS due to delays, packet dropouts, and

bandwidth limitations we need to consider in one way or another the always present

uncertainty in the model that, in the above cases, may produce significant error in

the predictions.

Another control technique known as Internal Model Control (IMC) [193] uses a

plant model to subtract the effect of the manipulated variables from the plant

output. That is, assuming the plant is stable, the model is used to obtain a measure

of the disturbances affecting the system and the inaccuracies of the model. This

signal is then used to feed the IMC controller. For unstable plants this approach

leads to serious problems, limiting their use in many applications.

Lately, the MB-NCS framework introduced in [188] has been used for stabili-

zation of coupled subsystems using periodic updates [66] and also using event-

triggered control techniques [241].

A similar model-based approach has been developed by Lunze and Lehman

[165]. In their approach, the model is assumed to match the dynamics of the system

exactly; however, the system is subject to unknown input disturbances. The main

idea of the approach in [165] is the same as in the ideas of this book, that is, to use

the nominal model to generate estimates of the current state of the system. Since the

system is subject to unknown disturbances and the model is executed with zero

input disturbance, then a difference between the states is expected and the sensor

updates transmitted over a digital communication network are used to reset this

difference between the states of the plant and of the model. The same authors have

extended this approach to consider the output feedback, quantization, and network

delay cases.
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1.3 Event-Triggered Control

Event-triggered control represents a new method for sampling of signals that has

gained substantial popularity in the control systems community. In event-triggered

broadcasting [10, 11, 246, 247, 261, 262, 264, 265] a subsystem sends its local state

to the network only when it is necessary, that is, when a measure of the local

subsystem state error is above a specified threshold. Event-triggered control

schemes offer a new point of view, with respect to conventional time-driven

strategies, on how information could be sampled for control purposes.

One of the works that laid the foundations for this type of sampling is [11]; it

provided an interesting comparison between conventional time-driven (Riemann)

sampling and the new event-driven (Lebesgue) sampling, emphasizing the practical

advantages of the latter. It also provided preliminary analysis of simple systems

controlled using this technique. Tabuada [247] showed, more formally, the stabi-

lizing properties of the event-triggered control strategy. He presented a triggering

condition based on the norms of the state and the state error e¼ x(ti)� x(t), that is,
the last measured state minus the current state of the system. This means that the

measurement received in the controller node is held constant until a new measure-

ment arrives; when this happens, the error is reset to zero and starts growing until it

triggers a new execution or measurement update. In the case that delays are not

negligible, the control task should be executed before the regular (no delay) exe-

cution condition takes place in order to account for those time delays, but the

control task should not be executed too soon and provoke accumulation points. This

work also provided lower bounds on inter-execution time intervals avoiding such

situation. Accumulation points, also called Zeno behavior [290] due to the hybrid

nature of a networked system having plants and controllers with continuous-time

dynamics and discrete-time updates, represent a fundamental problem in event-

triggered control. Zeno behavior in event-triggered control specifically refers to

possible case in which the sensor attempts to transmit an infinite number of updates

to the controller in a finite period of time. For any event-triggered control approach

that involves continuous-time systems, it is essential to guarantee that such behav-

ior will never occur. Event-triggered strategies for discrete-time systems have also

been studied; in this situation the triggering conditions are evaluated only once per

system transition then the minimum inter-execution time interval is given by the

underlying discrete-time period of the system.

The stability conditions provided in [247] are only sufficient and, in many cases,

conservative execution intervals are obtained. Wang and Lemmon [264] presented

a different method to design stabilizing controllers based on the event-triggered

control strategy by noting that the closed-loop system Lyapunov function V needs

not to be monotonically decreasing for all time but an appropriate subsequence of

V needs to be. In this case the triggering condition is based on the Lyapunov

function and not in error norms. Longer inter-execution intervals are obtained

using this event-driven controller.

14 1 Introduction



The papers [58, 59] discussed extensions involving event-triggered control to

systems with output feedback and implementing decentralized controllers. The

authors use an impulsive system approach to model the system, controller, and

event-based communication scheme. Stability and performance were analyzed

using LMIs.

Considering distributed systems, Yook et al. [278] proposed a framework in

which all nodes in a distributed system have identical estimators of states of all

remote nodes and an estimator for their own state. The estimated values of the

remote outputs are used for control and each node compares its actual state value to

its estimate. If the error is greater than an established threshold, the node needs to

broadcast the true value of its state to the rest of the nodes.

In [102, 104, 261] the authors offered communication protocols based on events

that stabilize the coupled systems in the presence of network delays and packet

losses. Other references discussing decentralized implementations of event-

triggered control [177, 178, 262, 265].

Event-triggered control and passivity techniques have been used for control of

systems with output feedback and subject to time-varying network induced delays

[280]. Combinations of periodic sampling and event-triggered control have also

been studied. In [105–107] the conditions that trigger events of continuous-time

systems do not need to be verified continuously but only at discrete and periodic

time instants.

Recent work has applied event-triggered control strategies in cooperative

control. The references [52–54, 95, 96, 228, 281] considered the event-triggered

consensus problem. Consensus problems have been widely studied assuming con-

tinuous communication between agents and its neighbors [127, 194, 216] and using

sampled-data implementations [35, 36]. Although the sampled-data implementa-

tion does not require continuous communication between agents, it does require

synchronization in order for all agents to broadcast their measurements at the same

sampling instants. The event-triggered control techniques described in [95, 96, 228,

281] offer a higher level of decentralization since the agents are permitted to select,

independently from one another, their own broadcasting instants. The work in [95]

considered agents described by continuous-time single integrator dynamics and

extended to the case of measurement quantization. The paper [228] considered

both, single and double integrator dynamics. The case of event-triggered synchro-

nization of multi-agent systems with general linear dynamics was addressed in [96].

In a similar topic [281] provided conditions for output synchronization of

multiple systems described by more general passive dynamics. In an extension,

quantization of measurements was considered as well and similar conditions for

output synchronization were derived.

A closely related approach to event-triggered control is self-triggered control

[1, 2, 9, 175, 176, 205, 263]. This technique also implements non-periodic mea-

surement of the state and computation of the control law. The main difference with

respect to event-triggered control is that a measure of the state is not being

compared constantly against a predefined threshold. Instead, the current state

measurement is used to determine its next deadline, i.e., the next time that the
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sensor is required to send a measurement to the controller. A trade-off between

increased complex computations and hardware that is necessary for continuously

sensing and comparing is made in the sensor and controller nodes by applying this

new control strategy. That is, the sensor does not need to continuously measure the

state, compute the error, and compare this error against the threshold. Now, it only

has to measure the state at some specific times. In the other side of the network, the

controller now has to perform more intense computations every time that a mea-

surement arrives in order to obtain the next time that a measurement is needed.

Accurate models of the system and disturbances are needed in order to obtain good

performance concerning the computation of the inter-sampling intervals.
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Chapter 2

Model-Based Control Systems: Stability

In this book we study networked control systems that make explicit use of existing

knowledge of the plant dynamics, encapsulated in the mathematical model of the

plant, to enhance the performance of the system. This class of networked systems is

called Model-Based Networked Control Systems (MB-NCS). The performance of a

networked control system depends on the performance of the communication

network in addition to traditional control systems performance measures. The

bandwidth of the communication network used by the control system is of major

concern, since other control and data acquisition systems will typically be sharing

the same digital communication network.

It turns out that stability margins, controller robustness, and other stability and

performance measures may be significantly improved when knowledge of the plant

dynamics is explicitly used to predict plant behavior. Note that the plant model is

always used to design controllers in standard control design. The difference here is

that the plant model is used explicitly in the controller implementation to great

advantage. This is possible today because existing inexpensive computation power

allows the simulation of the model of the plant in real time.

In this chapter we lay the foundations for the type of networked architecture that

we call MB-NCS. We also provide a thorough analysis of the behavior of the

system. The focus of the chapter is in obtaining conditions that result in a stable

networked system. Stabilization depends on the chosen control gain, the accuracy

of the model, and the update interval. We derive necessary and sufficient stabilizing

conditions for both continuous and discrete-time linear time-invariant systems. In

the following chapters we significantly extend these results to consider different

scenarios, for instance, we include the more general case when only a linear

combination of the states (system output) is available for measurement and we

also consider the effect of network induced delays when state feedback is possible.

The contents of this chapter are as follows: In Sect. 2.1 the Model-Based Control

architecture is introduced. In Sect. 2.2 the continuous-time case with state feedback

is considered and in Sect. 2.3 the discrete-time case is addressed. Alternative

stability conditions are offered in Sect. 2.4. Notes and references are in Sect. 2.5.

E. Garcia et al., Model-Based Control of Networked Systems, Systems & Control:

Foundations & Applications, DOI 10.1007/978-3-319-07803-8_2,
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2.1 Fundamentals: Model-Based Control Architecture

We consider here the control of a linear time-invariant dynamical system where the

state sensors are connected to controllers/actuators via a network; more complex

models are considered in later chapters. The main goal is to reduce the network

usage using knowledge of the plant dynamics. Specifically, the controller uses an

explicit model of the plant that approximates the plant dynamics and makes

possible the stabilization of the plant even under slow network conditions.

Although in principle, we can use the same framework to study the problem of

packet dropouts in NCS, the aim here is to purposely avoid frequent broadcasting of

unnecessary sensor measurements so to reduce traffic in the network as much as

possible, which in turn reduces the presence of the problems associated with high

network load such as packet collisions and network induced delays.

We will concentrate on characterizing the time interval between successive

transmissions of data from the sensor to the controller/actuator (update intervals

of the state of the model); Transmission of data from sensor to controller and from

controller to actuator is considered later in the book.Our goal in this chapter will be
to identify the maximum update intervals that can be used to transmit measurement
updates between the sensor and the actuator while keeping the system stable. This
will reduce the bandwidth required from the network and will free it for other tasks

such as other control loops using the network and/or non-control information

exchange. In order to increase the update time we will use the knowledge we

have of the plant dynamics. The plant model is used at the controller/actuator

side to approximate the plant behavior. The sensor is able to reduce the rate at

which it transmits data, since the model can provide information to generate

appropriate control inputs while the systems is running open loop. Note that in
standard digital control a zero-order-hold keeps the input constant in between
samples. Here the input between samples is calculated based on the plant model
and it is reasonable to assume that it will be better suited than the constant input.

The main idea is to update the state of the model using the actual state of the

plant provided by the sensor. The rest of the time the control action is based on a

plant model that is incorporated in the controller/actuator and is running open loop

for a period of h seconds. The control architecture is shown in Fig. 2.1.

In our control architecture having knowledge of the plant at the actuator side

enables us to run the plant in open loop, while the update of the model state provides

the closed-loop information needed to overcome model uncertainties and plant

disturbances. In the remaining of this chapter we assume that all states can be

measured and these measurements can be transmitted through the network to

update the model of the system in the controller node. The more general case

when only a linear combination of the states can be sensed is studied in the

following chapter together with the network induced delays case. In this chapter

we provide necessary and sufficient conditions for stability that result in a maxi-

mum update time, which depends mainly on the model inaccuracies but also on the

designed control gain.
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2.2 Continuous-Time LTI Systems: State Feedback

In this section, we introduce the foundations of our Model-Based approach. We

consider multi-input, multi-output linear time-invariant continuous-time systems

and their state variable representations, and we assume a constant linear state

feedback control law. Necessary and sufficient conditions are derived for the

stability of the compensated system in Theorem 2.3, the main result of the section.

Illustrative examples are also included. Discrete-time systems are considered in the

next section and output feedback in the next chapter.

If all the states are available for measurement, then the sensors can send this

information through the network to update the model’s vector state. We will assume

that the compensated model is stable, which is typical in control systems, and that the

transportation delay is negligible,which is completely justifiable inmost of the popular

network standards like CAN bus or Ethernet. We will assume that the frequency at

which the network updates the state in the controller is constant. The goal is to find the

largest constant update period at which the network must update the model state in the

controller for stability, that is, we are seeking an upper bound for h the update time.

Usual assumptions in the literature include requiring a stable plant or in the case of a

discrete controller, a smaller update time than the sampling time. Here we do not make

any of these assumptions. The original plant may be open-loop unstable.

Consider the control system of Fig. 2.1 where the plant, the plant model and the

controller are described by:

Plant : _x ¼ Axþ Bu,

Plant model : _̂x ¼ Â x̂ þ B̂ u, ð2:1Þ
Controller : u ¼ Kx̂ :

Since the sensor has the full state vector available, its function will be to send the

state information through the network every h seconds. The state error is defined as:

State Error : e ¼ x� x̂ , ð2:2Þ

Plant Sensor

Network

update
Model

Controller

u

x

h

x̂

Fig. 2.1 The model-based networked control system (MB-NCS) architecture
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and represents the difference between the plant state and the model state. The

modeling error matrices: eA ¼ A� Â and eB ¼ B� B̂ represent the difference

between the plant and the model. The periodic update time instants are denoted

by tk, where

tk � tk�1 ¼ h for k ¼ 1, 2, . . . ð2:3Þ

(here, h is a constant). The choice of h, being a constant, is simple to implement and

also results in a simple analysis procedure as shown below. Update intervals that are

not constant will be considered as well; in Chap. 5, we address time-varying update

intervals and in Chap. 6 we study event (error)-based update intervals.

Since the model state is updated every tk s,

e tkð Þ ¼ 0 for k ¼ 1, 2, . . . , : ð2:4Þ

This resetting of the state error at every update time instant is a key characteristic

of our control system. Now for t ∈ [tk, tk+ 1), we have that: u ¼ Kx̂ so the overall

system is described by

_x
_̂x

� �
¼ A BK

0 Â þ B̂ K

� �
x
x̂

� �
ð2:5Þ

with initial conditions x̂ tkð Þ ¼ x tkð Þ.
Introducing the error e tð Þ ¼ x tð Þ � x̂ tð Þ, it is easy to see that the dynamics of the

overall system for t ∈ [tk, tk+ 1) can be described by

_x tð Þ
_e tð Þ

� �
¼ Aþ BK �BKeA þ eBK Â � eBK
� � x tð Þ

e tð Þ

" #
x tkð Þ
e tkð Þ

� �
¼ x t�k

� �
0

� �
,

8t∈ �tk, tkþ1

�
, with tkþ1 � tk ¼ h:

ð2:6Þ

Define the augmented state vector z(t) and the open-loop augmented statematrixΛ:

z tð Þ ¼ x tð Þ
e tð Þ
� �

ð2:7Þ

Λ ¼ Aþ BK �BKeA þ eBK Â � eBK
� �

ð2:8Þ

so that (2.6) can be rewritten as

_z ¼ Λz for t∈
�
tk, tkþ1

�
: ð2:9Þ
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We will now express z(t) in terms of the initial condition x(t0). Then we will

show under what conditions the system will be stable.

Proposition 2.1 The system described by (2.6) with initial conditions

z t0ð Þ ¼ x t0ð Þ
0

� �
¼ z0 has the following response:

z tð Þ ¼ eΛ t�tkð Þ I 0

0 0

� �
eΛh

I 0

0 0

� �� �k

z0

t∈
�
tk, tkþ1

�
, with tkþ1 � tk ¼ h:

ð2:10Þ

Proof On the interval t ∈ [tk, tk+ 1), the system response is:

z tð Þ ¼ x tð Þ
e tð Þ
� �

¼ eΛ t�tkð Þ x tkð Þ
0

� �
¼ eΛ t�tkð Þz tkð Þ: ð2:11Þ

Now, note that at times tk, z tkð Þ ¼ x tkð Þ
0

� �
, that is, the error is reset to 0, that is,

e(tk)¼ 0 for k¼ 1,2,. . .,. We can represent this by

z tkð Þ ¼ I 0

0 0

� �
z t�k
� �

: ð2:12Þ

Using (2.11) to calculate z(t�k ) we obtain

z tkð Þ ¼ I 0

0 0

� �
eΛhz tk�1ð Þ: ð2:13Þ

In view of (2.11) we have that if at time t¼ t0, z t0ð Þ ¼ z0 ¼ x0
0

� �
is the initial

condition, then:

z tð Þ ¼ eΛ t�tkð Þz
�
tk
�

¼ eΛ t�tkð Þ I 0

0 0

� �
eΛhz tk�1ð Þ

¼ eΛ t�tkð Þ I 0

0 0

� �
eΛh

I 0

0 0

� �
eΛhz tk�2ð Þ

¼ eΛ t�tkð Þ I 0

0 0

� �
eΛh

� �k

z0

ð2:14Þ
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Now we know that
I 0

0 0

� �
eΛh is of the form

M N
0 0

� �
and so

I 0

0 0

� �
eΛh

� �k
has the form

MK P
0 0

� �
. Additionally we note the special form of the initial

condition z t0ð Þ ¼ z0 ¼ x0
0

� �
so that:

I 0

0 0

� �
eΛh

� �k
x0
0

� �
¼ Mkx0 0

0 0

� �
¼ I 0

0 0

� �
eΛh

I 0

0 0

� �� �k
x0
0

� �
: ð2:15Þ

In view of (2.15) it is clear that we can represent the system response as in (2.10):

z tð Þ ¼ eΛ t�tkð Þ I 0

0 0

" #
eΛh

I 0

0 0

" # !k

z0

t∈
�
tk, tkþ1

�
, with tkþ1 � tk ¼ h:

♦

A necessary and sufficient condition for stability of the networked system will

now be presented. For this, the following definition for global exponential stability

[5] is needed.

Definition 2.2 The equilibrium z¼ 0 of a system described by _z ¼ f t; zð Þwith
initial condition z(t0)¼ z0 is exponentially stable at large (or globally) if there exists
α> 0 and for any β> 0, there exists k(β)> 0 such that the solution

ϕ t; t0; z0ð Þk k � k βð Þ z0k ke�α t�t0ð Þ, 8t � t0 ð2:16Þ

whenever kz0k< β.

With this definition of stability we state the following theorem characterizing the

necessary and sufficient conditions for the system described by (2.6) to have global

exponential stability around the solution z¼ 0. The norm used here is the 2-norm

but any other consistent norm can also be used.

Theorem 2.3 The system described by (2.6) is globally exponentially stable

around the solution z ¼ x
e

� �
¼ 0

0

� �
if and only if the eigenvalues of

I 0

0 0

� �
eΛh

I 0

0 0

� �
are strictly inside the unit circle.

Proof Sufficiency. Taking the norm of the solution described in (2.10),

(in Proposition 2.1):
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z tð Þk k ¼ eΛ t�tkð Þ I 0

0 0

� �
eΛh

I 0

0 0

� �� �k

z0

					
					

� eΛ t�tkð Þ		 		 � I 0

0 0

� �
eΛh

I 0

0 0

� �� �k
					

					 � z0k k: ð2:17Þ

Now let us analyze the first term on the right-hand side of (2.17):

eΛ t�tkð Þ		 		 � 1þ t� tkð Þσ Λð Þ þ t� tkð Þ2
2!

σ Λð Þ2 . . . ¼ eσ Λð Þ t�tkð Þ � eσ Λð Þh

¼ K1 ð2:18Þ

where σ Λð Þ is the largest singular value of Λ. In general this term can always be

bounded since the time difference t� tk is always smaller than h. In other words

even when Λ has eigenvalues with positive real part, eΛ t�tkð Þ		 		 can only grow a

certain amount. This growth is completely independent of k.

We now study the term
I 0

0 0

� �
eΛh

I 0

0 0

� �� �k
					

					. It is clear that this term will

be bounded if and only if the eigenvalues of
I 0

0 0

� �
eΛh

I 0

0 0

� �
lie inside the unit

circle:

I 0

0 0

� �
eΛh

I 0

0 0

� �� �k
					

					 � K2e
�α1k ð2:19Þ

with K2, α1> 0. Since k is a function of time, we can bound the right term of (2.19)

in terms of t:

K2e
�α1k < K2e

�α1 t�1
h ¼ K2e

α1
h e�

α1
h t ¼ K3e

�αt ð2:20Þ

with K3, α> 0. So from (2.17) using (2.18) and (2.20) we can conclude:

z tð Þk k ¼ eΛ t�tkð Þ I 0

0 0

� �
eΛh

I 0

0 0

� �� �k

z0

					
					 � K1 � K3e

�αt � z0k k: ð2:21Þ

Necessity. We will now prove the necessity part of the theorem by contradiction.

Assume the state feedback MB-NCS is stable and that
I 0

0 0

� �
eΛh

I 0

0 0

� �
has at

least one eigenvalue outside the unit circle. Since the system is stable, the sequence

of periodic samples of the response should converge to 0 with time. We will take the

sample at times t�kþ 1, that is, just before the update. We will concentrate on a
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specific term: the state of the plant x(t�kþ 1), which is the first element of z(t�kþ 1). We

will call x(t�kþ 1), ξ(k).
Now assume eΛτ has the following form:

eΛτ ¼ W τð Þ X τð Þ
Y τð Þ Z τð Þ

� �
: ð2:22Þ

In view of (2.11) we can express the response z(t) as:

eΛ t�tkð Þ I 0

0 0

� �
eΛh

I 0

0 0

� �� �k

z0

¼ W t� tkð Þ X t� tkð Þ
Y t� tkð Þ Z t� tkð Þ

� �
W hð Þð Þk 0

0 0

� �
z0

¼ W t� tkð Þ W hð Þð Þk 0

Y t� tkð Þ W hð Þð Þk 0

� �
z0:

ð2:23Þ

Now the values of the response at times t�kþ 1, that is just before the update, are

z t�kþ1

� � ¼ W hð Þ W hð Þð Þk 0

Y hð Þ W hð Þð Þk 0

� �
z0 ¼ W hð Þð Þkþ1

0

Y hð Þ W hð Þð Þk 0

� �
z0: ð2:24Þ

We also know that
I 0

0 0

� �
eΛh

I 0

0 0

� �
has at least one eigenvalue outside the

unit circle, which means that those unstable eigenvalues must be in W(h). This
implies that the first element of z(t�kþ 1), which we call ξ(k), will in general grow

with k. In other words we cannot ensure ξ(k) will converge to 0 for general initial

condition x0. That is

x t�kþ1

� �		 		 ¼ ξ kð Þk k ¼ W hð Þð Þkþ1x0

			 			! 1 as k ! 1 ð2:25Þ

which implies that the system cannot be stable, and thus we have a contradiction. ♦

Example 2.1 Consider the following unstable system (plant) dynamics:

A ¼ 0:14 1:25
0 0:08

� �
, B ¼ 0

1:07

� �
: ð2:26Þ

The exact parameters of the plant are unknown. In general, a model containing

nominal parameters of the real parameters is available. Assume that (2.26) is

modeled using the following nominal parameters
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Â ¼ 0 1

0 0

� �
, B̂ ¼ 0

1

� �
: ð2:27Þ

We will use the state feedback controller with control gain given by K¼
[�0.2 � 0.9]. We now search for the largest h such that

I 0

0 0

� �
eΛh

I 0

0 0

� �
has

its eigenvalues inside the unit circle. Figure 2.2 shows the eigenvalue withmaximum

magnitude of this matrix. From this search we can use values of h< 12.96 s in order

to design a stable networked system using the model-based approach. Figure 2.3

shows the response for different values of h and the same initial conditions

x0¼ [1 � 1]T, while the model initial conditions are set equal to 0. Note that the

time scale is different for the responses shown in the second column in order to show

that the response is stable for h¼ 12.9 s and unstable for h¼ 13 s, as expected.

In order to draw a comparison with other approaches commonly used in

networked control, we now use a model of the system equivalent to a zero-order-

hold (ZOH) model. This is also the same type of implementation used in traditional

sampled-data control systems. Here, the ZOH holds the value of the most recent

measurement constant until a new measurement arrives to update the controller. We

can use the results of this section to find the largest possible value of the update

period under this scenario since the ZOH is just a special case of our approach that

can be easily modeled using the following:

Â ¼ 0 0

0 0

� �
, B̂ ¼ 0

0

� �
: ð2:28Þ

From Fig. 2.4 we can see that the admissible values of the update period that

preserve stability are h< 2.13. Figure 2.5 shows the response for two choices

h¼ 1.5 (stable) and h¼ 2.15 (unstable). The initial conditions are the same in

both cases. We can see in this example that there is a significant difference in the

range of values for the update periods when using the ZOH model (2.28) and using
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Fig. 2.2 Maximum eigenvalue magnitude of the test matrix M vs. the update time h
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the nominal model (2.27). Even though the nominal model does not represent the

exact dynamics of the system, it provides a more accurate estimation of the real

state between updates that allows for an implementation of the networked system

with longer update periods. This is a clear benefit of the model-based approach in

reducing the necessary bandwidth for stability.

Example 2.2 Applicability of State Feedback MB-NCS Results. Regarding

applicability to real world cases, we see that, as stated in Theorem 2.3, the stability

properties of a networked control system can be determined by studying the

eigenvalues of the matrix:

M ¼ I 0

0 0

� �
eΛh

I 0

0 0

� �
, where Λ ¼ Aþ BK � BKeA þ eBK Â � eBK

" #
: ð2:29Þ

The matrix Λ can also be expressed in terms of the model and the errors only:

Λ ¼
Â þ eA þ B̂ þ eB
 �

K � B̂ þ eB
 �
K

eA þ eBK Â � eBK
264

375: ð2:30Þ

In real applications the state-space model is usually obtained by studying the

structure and behavior of the plant. The uncertainties can frequently be expressed as
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Fig. 2.3 System response for different values of h. For h¼ 1, h¼ 5, and h¼ 12.9 s

the system is stable. For h¼ 13 s the system is unstable
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tolerances over the different measured parameter values of the plant. This can be

mapped into structured or parametric uncertainties on the state-space matrices. The

following is an example that provides insight on how the theorem can be applied if

two entries on the A matrix of the model can vary within a certain interval.

model : Â ¼ 0 1

0 0

� �
, B̂ ¼ 0

1

� �
;

plant : A ¼ 0 1þ ea12
0þ ea21 0

� �
,B ¼ 0

1

� �
;

with ea12 ¼ �0:5, 0:5½ �,ea21 ¼ �0:5, 0:5½ �
controller : K ¼ �1, � 2½ �:

ð2:31Þ
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Fig. 2.4 Maximumeigenvaluemagnitude of the testmatrixM vs. the update time h for theZOHmodel
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Fig. 2.5 System response for different values of h using a ZOH model. For h¼ 1.5 s

the system is stable. For h¼ 2.15 s the system is unstable
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The system will now be tested for an update time of h¼ 2.5 time units. Figure 2.6

represents a contour plot where the contour of height equal to 1 separates the stable

and unstable regions. In Fig. 2.7 we have plotted the surface representing the

maximum eigenvalue magnitude for the test matrix M as a function of the (1,2)

and (2,1) entries and for a given selection of values of those entries.

It is easy to isolate the stable and unstable regions in the uncertainty parameter

plane. The stable region is between the lines labeled as 1 in Fig. 2.6. The same

procedure can be used in real applications to verify the stability of a networked

control system with a certain model and update time. The procedure can be repeated

for different values of uncertainties on as many elements of A as needed and for

different update intervals as well.

Example 2.3 In this example we consider the instrument servo (dc motor driving an

inertial load) dynamics from Example 6A in [77]

_e
_ω

� �
¼ 0 1

0 �α

� �
e
ω

� �
þ 0

β

� �
u ð2:32Þ

where e¼ θ� θr represents the error between the current angular position θ and the
desired position θr, where the desired position is assumed to be constant, ω is the

angular velocity, and u is the applied voltage. The parameters α and β represent

constants that depend on the physical parameters of the motor and load.

Fig. 2.6 Contour plot maximum eigenvalue. Magnitude vs. model error
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The nominal parameters are α̂ ¼ 1, β̂ ¼ 3. The real parameters are given by

α¼ 0.75, β¼ 2.58. The model parameters are used for controller design: K¼
[�0.1667 � 0.1667]. According to the eigenvalue search described in this section,

the networked system is stable for any value h> 0; however the transient response

will significantly differ for different choices of the update period. Figure 2.8 shows

the response for two different update periods where we can see that the networked

system converges more rapidly for h¼ 1 s than for h¼ 10 s.

Remark Models in which uncertainty is represented in terms of norms as a ball

around the model can also be derived, but the conditions for stability would only be

sufficient. The results in this section then offer a less conservative approach that can

be readily applied to real applications as well. The conditions in Theorem 2.3

assume that noiseless measurements are transmitted at the update instants tk. In
Chap. 12 we consider noisy measurements within the MB-NCS framework.

Remark Optimization problem. The design of optimal controllers for MB-NCS

represents an interesting research problem. In addition to optimizing the response of

the control systems and penalizing the excessive use of control effort, we should

also weight the use of network resources. The overall problem requires not only the

design of the optimal control law but also the design of the optimal scheduling law.

Fig. 2.7 Maximum eigenvalue magnitude vs. model error
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The scheduling law can, in general, be a time-varying transmission policy.

Chapter 9 addresses this type of problem by using the following cost function:

min
u, β

J ¼ 1

2
xT Tð ÞGx Tð Þ þ

ðT
0

1

2
xT tð ÞQx tð Þ þ uT tð ÞRu tð Þ� �

dt

þ cost of transmission:

ð2:33Þ

Note that this problem considers the uncertain nature of the model parameters

with respect to the real parameters of the system which significantly increases the

complexity.

Remark It is of interest to study the eigenvalues of the networked control system

matrixM ¼ I 0

0 0

� �
eΛh

I 0

0 0

� �
and express them, if possible, in terms of h and the

error in the plant model eA and eB. To do so, we first apply a transformation to the

matrix Λ to obtain a diagonal matrix that will facilitate the computation of the

exponential part.

We choose the transformation P ¼ I 0

I �I

� �
with inverse P�1 ¼ I 0

I �I

� �
.

Applying this transformation on Λ we obtain:

Λ ¼ PΛP�1 ¼ I 0

I �I

� �
Aþ BK �BKeA þ eBK Â � eBK

" #
I 0

I �I

� �
¼ A BK

0 Â þ B̂ K

" #

Using this transformation we obtain:

M ¼ I 0

0 0

� �
eΛh

I 0

0 0

� �
¼ I 0

0 0

� �
P�1eΛhP

I 0

0 0

� �
¼ I 0

0 0

� �
eΛh

I 0

I 0

� �
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Fig. 2.8 Plant and model states. Left: h¼ 1 s. Right: h¼ 10 s
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The matrix exponential eΛh may be found directly or by considering a Laplace

transform-based approach. For the latter approach, we will change the variable h to t.

L Mf g ¼ L
I 0

0 0

� �
eΛt

I 0

I 0

� �� 
¼ I 0

0 0

� �
L eΛt
n o

I 0

I 0

� �
¼ I 0

0 0

� �
sI � Að Þ�1 sI � Að Þ�1BK sI � Â þ B̂ K

� �� ��1

0 sI � Â þ B̂ K
� �� ��1

" #
I 0

I 0

� �

¼ sI � Að Þ�1 þ �sI � A
��1BK sI � Â þ B̂ K

� �� ��1
0

0 0

� �
Note that only the upper left block contains the critical eigenvalues. Using the

inverse Laplace transform:

L�1
�
sI � Að Þ�1 þ �sI � A

��1BK sI � Â þ B̂ K
� �� ��1�

¼ L�1
�
sI � Að Þ�1

�
I þ BK

�
sI � Â � B̂ K

��1
��

¼ L�1
�
sI � Að Þ�1

�
sI � Â � B̂ K þ BK

��
sI � Â � B̂ K

��1
�

¼ L�1
�
sI � Að Þ�1

�
sI � Aþ eA þ eBK��sI � Â � B̂ K

��1
�

¼ L�1
��

I þ sI � Að Þ�1
�eA þ eBK���sI � Â � B̂ K

��1
�

¼ L�1
�

sI � Â � B̂ K
� ��1 þ �sI � A

��1
�eA þ eBK��sI � Â � B̂ K

��1
�

¼ e ÂþB̂ Kð Þt þ eAt
ð t
0

e�Aτ eA þ eBK
 �
e ÂþB̂ Kð Þτdτ

That is the eigenvalues in question are exactly the eigenvalues of:

N ¼ e ÂþB̂ Kð Þh þ eAh
ð h
0

e�Aτ eA þ eBK
 �
e ÂþB̂ Kð Þτdτ

Then the eigenvalues ofM ¼ I 0

0 0

� �
eΛh

I 0

0 0

� �
are inside the unit circle if and

only if the eigenvalues of N are inside the unit circle. One can gain a better insight

of the system by observing the structure of N. To start with, we observe that the

eigenvalues of the compensated model appear in the first term of N. In that sense we

can see the term Δ ¼ eAh
ð h
0

e�Aτ eA þ eBK
 �
e ÂþB̂ Kð Þτdτ as a perturbation over the

desired eigenvalues. The important variables in the perturbation term Δ are the

uncertainties and the update intervals. In general, for unstable open-loop systems,

the perturbation Δ increases as either the update intervals or the model uncertainties

increase. On the other hand, even if the eigenvalues of the original plant were

unstable the perturbationΔ can be made small enough by having eA þ eBK small and

thus minimizing their impact over the eigenvalues of the compensated plant.
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Remark An important discussion concerning the control of continuous-time

systems using the MB-NCS framework is the following. When the update interval

h is getting small and approaches 0, then according to the analysis just described in

this section, the model/controller tries to update its internal state very fast or in other

words it tries to switch infinitely many times in finite intervals of time without

letting the model to execute and estimate the plant state. If we compute the

eigenvalues of the matrix given in Theorem 2.3 (or the eigenvalues of N in the

previous remark) for h¼ 0 we obtain eigenvalues equal to one which represent this

behavior of attempting to update the same value over and over again. However, in a

physical continuous-time system we cannot update the controller infinitely fast in

real time (compare to a typical sampled-data system in the same situation) and

undesired system response may occur. The case when h¼ 0 may also be considered

in a different way. The case when h¼ 0 corresponds to the controller receiving

continuous feedback measurements from the sensor; and instead of updating the

model many times we can use directly the plant measurements to control the

system. We may also consider the networked system as operating in two modes:

In closed-loop mode, that is, when the controller receives continuous feedback from

the sensor (h¼ 0), the model is unnecessary and the feedback information is

immediately used by the controller to compute the control input. In open-loop

mode, the model is now used to estimate the state of the plant using the last received

feedback value of the real state as the initial condition. We will study this case in

more detail in Chap. 4.

2.3 Discrete-Time LTI Systems: State Feedback

In this section, we present results for the discrete-time case. They are analogous

to the continuous-time results of the previous section. We consider multi-input,

multi-output linear time-invariant discrete-time systems and their state variable

representations, and we assume constant linear feedback control law. Necessary

and sufficient conditions are derived for the stability of the compensated systems in

Theorem 2.6, the main result of the section. Illustrative examples are included.

Output feedback is considered in the next chapter.

So far we have studied continuous-time plants. We will extend our results to

discrete-time plants of the form:

x nþ 1ð Þ ¼ Ax nð Þ þ Bu nð Þ ð2:34Þ

with model

x̂ nþ 1ð Þ ¼ Â x̂ nð Þ þ B̂ u nð Þ ð2:35Þ
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where n¼ 0,1,2,. . . The control input and the state error are defined, respectively,

by:

u nð Þ ¼ Kx̂
�
n
�

e nð Þ ¼ x
�
n
�� x̂

�
n
�
:

ð2:36Þ

There are some assumptions we need to make before we carry our results over to

the discrete-time domain. First, in order to have consistency in updates from the

sensor side to the actuator side, we must ensure that both the sensor and the

actuator/controller are synchronized in the sense that both will carry out their

respective tasks at the same sampling time. Moreover state updates will occur

only at some of these sampling times. This implies that the update interval h will

be an integer number, representing the number of time units between updates of the

actuator’s model. For example, if h¼ 4, see Fig. 2.9, then the sensor will send

measurement updates every 4 time units as indexed by n.
A slightly different way to explain these ideas is by considering two sampling

periods. One of them occurs at time instants indexed by n and corresponds to the

sampling period of the original plant (2.34). The other one occurs at time instants

indexed by hn (for positive integer h) and corresponds to the selected update period
at which the sensor sends information to the controller in order to update the state of

the model. When the update intervals are constant the networked system can be

seen as a linear periodic system. When h¼ 1 the controller is updated at each time

index n of the system’s clock, i.e., the discrete-time system will operate in closed-

loop mode. In Sect. 2.4 we pursue this idea further, but for the moment we will

focus on the first explanation provided on the previous paragraph.

The approach that we are going to follow to determine the stability of the

networked system is analogous to the one used for continuous plants. The dynamics

of the overall system for n ∈ [nk, nk+ 1) can be described by:

x nþ 1ð Þ
e nþ 1ð Þ
� �

¼ Aþ BK � BKeA þ eBK Â � eBK
" #

x nð Þ
e nð Þ
� �

,

for n∈
�
nk, nkþ1

�
, nkþ1 � nk ¼ h, and e nkþ1ð Þ ¼ 0:

ð2:37Þ

Time (n)

h

2 3 4 5 6 ...10

k=1k=0

Fig. 2.9 Representation of the state updates for the discrete-time case
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We also use the definitions (2.7) and (2.8) to express (2.37) in compact form as

follows:

z nþ 1ð Þ ¼ ΛDz nð Þ for n∈ �nk, nkþ1

�
, and z nkþ1ð Þ ¼ x nkþ1ð Þ

0

� �
: ð2:38Þ

where

z nð Þ ¼ x nð Þ
e nð Þ
� �

ΛD ¼
Aþ BK � BKeA þ eBK Â � eBK
" #

Proposition 2.4 The system described by (2.38) with initial condition z n0ð Þ ¼
x n0ð Þ
0

� �
¼ z0, has the response:

z nð Þ ¼ ΛD
n�nk

I 0

0 0

" #
ΛD

h
I 0

0 0

" # !k

z0,

for n∈
�
nk, nkþ1

�
, nk � nkþ1 ¼ h:

ð2:39Þ

Proof On the interval n ∈ [nk, nk+ 1), the system response is

z nð Þ ¼ x nð Þ
e nð Þ
� �

¼ ΛD
n�nk x nkð Þ

0

� �
¼ ΛD

n�nk z nkð Þ: ð2:40Þ

Now, note that at times nk, z nkð Þ ¼ x nkð Þ
0

� �
, that is, the error e(n) is reset to

0. We can represent this by

z nkð Þ ¼ I 0

0 0

� �
z
^

nkð Þ: ð2:41Þ

Here z
^

nkð Þ is the value assumed by z(n) when n¼ nk using (2.40) for the interval

n ∈ [nk� 1, nk). Using this value of z
^

nkð Þ we obtain:

z nkð Þ ¼ I 0

0 0

� �
ΛD

hz nk�1ð Þ: ð2:42Þ
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In view of (2.40) we have that if at time n¼ n0, z n0ð Þ ¼ z0 ¼ x0
0

� �
is the initial

condition then

z nð Þ ¼ ΛD
n�nk z

�
nk
�

¼ ΛD
n�nk I 0

0 0

� �
ΛD

hz nk�1ð Þ

¼ ΛD
n�nk I 0

0 0

� �
ΛD

h I 0

0 0

� �
ΛD

hz nk�2ð Þ
. . .

¼ ΛD
n�nk I 0

0 0

� �
ΛD

h

� �k

z0:

ð2:43Þ

Now we know that
I 0

0 0

� �
Λh
D is of the form

M N
0 0

� �
and so

I 0

0 0

� �
ΛD

h

� �k
has the form

MK P
0 0

� �
. Additionally we note the special form of the initial

condition z n0ð Þ ¼ z0 ¼ x0
0

� �
so that

I 0

0 0

� �
ΛD

h

� �k
x0
0

� �
¼ Mkx0 0

0 0

� �
¼ Mk 0

0 0

� �
x0
0

� �

¼ I 0

0 0

� �
ΛD

h I 0

0 0

� �� �k
x0
0

� �
:

ð2:44Þ

In view of (2.44) it is clear that the system response as in (2.39) may be

written as:

z nð Þ ¼ ΛD
n�nk

I 0

0 0

" #
ΛD

h
I 0

0 0

" # !k

z0,

for n∈
�
nk, nkþ1

�
, nk � nkþ1 ¼ h:

♦

Note that the main difference between this theorem and the continuous version

in Proposition 2.1 is in the state transition matrix used for the dynamics of the

system in between updates (ΛD
n�nk instead of eΛ t�tkð Þ ). We now introduce an

exponential global stability definition for the case of discrete plants [131].

Definition 2.5 The equilibrium z¼ 0 of a discrete time system described by

z(n+ 1)¼ f(n, z) with initial condition z(n0)¼ z0 is globally exponentially stable if

there exists α> 0 and 0< γ< 1 such that the solution
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z nð Þk k � α z0k kγn, 8n � 0:

With this definition of stability we can now state the necessary and sufficient

conditions for the exponential global stability of the system described by (2.38).

Theorem 2.6 below for the discrete case is the corresponding result to Theorem 2.3

of the previous section for the continuous case. Again the norm used here is the

2-norm but any other consistent norm can also be used.

Theorem 2.6 The system described by (2.38) is globally exponentially stable

around the solution z ¼ x
e

� �
¼ 0

0

� �
if and only if the eigenvalues of

MD ¼ I 0

0 0

� �
ΛD

h I 0

0 0

� �
are inside the unit circle.

Proof Sufficiency. Taking the norm of the solution described as in Proposition 2.4:

z nð Þk k ¼ ΛD
n�nk I 0

0 0

� �
ΛD

h I 0

0 0

� �� �k

z0

					
					

� ΛD
n�nkk k � I 0

0 0

� �
ΛD

h I 0

0 0

� �� �k
					

					 � z0k k:
ð2:45Þ

Now, the first term on the right-hand side of (2.45) satisfies:

ΛD
n�nkk k � σ ΛDð Þð Þn�nk � σ ΛDð Þð Þh ¼ K1 ð2:46Þ

where σ ΛDð Þ is the largest singular value of ΛD. In general, this term can always be

bounded since the time difference n� nk is always smaller than h. In other words

even when ΛD has eigenvalues with magnitude greater than one, ΛD
n�nkk k can only

grow a certain amount. This growth is completely independent of k.

We now study the term
I 0

0 0

� �
ΛD

h I 0

0 0

� �� �k
					

					. It is clear that this term will

be bounded if and only if the eigenvalues of
I 0

0 0

� �
ΛD

h I 0

0 0

� �
lie inside the unit

circle:

I 0

0 0

� �
ΛD

h I 0

0 0

� �� �k
					

					 � K2γ1
k ð2:47Þ

with K2> 0, 0< γ1< 1.

Also note that k is a function of time so we can express the right term of (2.47) in

terms of n:

K2γ
k
1 ¼ K2γ

n=h
1 ¼ K2 γ1=h1


 �n
¼ K2γ

n ð2:48Þ
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where 0< γ< 1 since h� 1.

So from (2.45) using (2.46) and (2.48) we can conclude:

z nð Þk k ¼ ΛD
n�nk I 0

0 0

� �
ΛD

h I 0

0 0

� �� �k

z0

					
					 � K1 � K2γ

n � z0k k: ð2:49Þ

Necessity. We will now prove the necessity part of the theorem by contradiction.

Assume the system is stable and that
I 0

0 0

� �
ΛD

h I 0

0 0

� �
has at least one eigen-

value outside the unit circle. Since the system is stable, a periodic sample of the

response should be stable as well. In other words the sequence product of a periodic

sample of the response should converge to 0 with time. We will take the sample at

times nk+ 1, in other words, just at the update. Even further we will concentrate on a
specific term: the state of the plant x(nk+ 1), which is the first element of z(nk+ 1).
We will call x(nk+ 1), ξ(k+ 1).

Now assume ΛD
j has the following form:

ΛD
j ¼ W jð Þ X jð Þ

Y jð Þ Z jð Þ
� �

: ð2:50Þ

Then we can express the solution z(nk+ 1) as:

ΛD
n�nk

I 0

0 0

� �
ΛD

h
I 0

0 0

� �� �k

z0

¼ W n� nkð Þ X n� nkð Þ
Y n� nkð Þ Z n� nkð Þ

� �
W hð Þð Þk 0

0 0

" #
z0

¼ W n� nkð Þ W hð Þð Þk 0

Y n� nkð Þ W hð Þð Þk 0

" #
z0

8n∈ �nk, nkþ1

�
:

ð2:51Þ

Now let us check the values of the solution at times nk+ 1, that is the update time.

We know that because of the update at this time the error is 0, and therefore:

z nkþ1ð Þ ¼ I 0

0 0

� �
W hð Þ W hð Þð Þk 0

Y hð Þ W hð Þð Þk 0

� �
I 0

0 0

� �
z0 ¼ W hð Þð Þkþ1

0

0 0

� �
z0: ð2:52Þ

We also know that
I 0

0 0

� �
ΛD

h I 0

0 0

� �
has at least one eigenvalue outside

the unit circle, which means that those unstable eigenvalues must be in W(h).

2.3 Discrete-Time LTI Systems: State Feedback 39



This means that the first element of z(nk+ 1), which we call ξ(k+ 1), will in general

grow with k. In other words we can’t ensure ξ(k+ 1) will converge to 0 for general

initial condition x0. That is,

x nkþ1ð Þk k ¼ ξ k þ 1ð Þk k ¼ W hð Þð Þkþ1x0

			 			! 1 as k ! 1: ð2:53Þ

This clearly means that the system cannot be stable, and thus we have a

contradiction. ♦

Example 2.4 Consider an example of the full state feedback setup using a discrete-

time plant with parameters:

A ¼ 0:89 1:23
0:08 0:98

� �
, B ¼ �0:04

1:19

� �
ð2:54Þ

The exact parameters of the plant are unknown. In general, a model containing

nominal parameters of the real parameters is available. Assume that (2.54) is

modeled using the following nominal parameters

Â ¼ 1 1

0 1

� �
, B̂ ¼ 0

1

� �
ð2:55Þ

We will use the state feedback controller with control gain given by K¼
[�0.12 � 0.7]. We now search for the largest h such that

MD ¼ I 0

0 0

� �
ΛD

h I 0

0 0

� �
has its eigenvalues inside the unit circle. Figure 2.10

shows the eigenvalue with maximum magnitude of this matrix. Recall that in the

discrete-time case we only search for integer values of the update period equal or

greater than 1. In this example we are able to use h� 11 in order to design a stable

networked system using the model-based approach. Figure 2.11 shows the response

for h¼ 8 and h¼ 12 and using the same initial conditions x0¼ [�1 0.2]T and

the model initial conditions are equal to 0. Linear interpolation is used when

plotting the response of the systems. For each choice of h this figure shows the

response of the plant and the model as well.

Example 2.5 Consider a discretized version of the instrument servo shown in

Example 2.3. The nominal parameters are α̂ ¼ 1, β̂ ¼ 3. The real parameters

are given by α¼�0.75, β¼ 2.58. The discretization period is T¼ 0.01 s.

The resulting discrete-time model parameters are used to design the controller:

K¼ [�30.1502 � 5.8807]. The same discrete-time model parameters are also used

to implement the model in our discrete-time MB-NCS setup. Similar to the

continuous-time implementation, stability is obtained for any integer value h� 1.

The difference between implementing longer values of h is given by the transient

response as it can be seen in Fig. 2.12 where the plant states converge in signifi-

cantly longer time for h¼ 50 than for h¼ 10.
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Remark Optimization problem. A similar optimization problem to the continuous-

time case can also be considered in the discrete-time case. The problem is to find the

optimal control input in the presence of model uncertainties and in the absence of

feedback measurements for extended periods of time. Reducing network commu-

nication is also important when regulating the states of the system and minimizing

the control effort.
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Fig. 2.10 Maximum eigenvalue magnitude of the test matrix M vs. the update time h
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Fig. 2.11 Response of plant and model states. Left: h¼ 8. Right: h¼ 12
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Mathematically, we try to solve the following problem:

min
u, β

xTT QTxT þ
XT�1

n¼0

xTn Qxn þ uT
n Run þ Sβn ð2:56Þ

where Q andQT are real, symmetric, and positive semi-definite matrices; R is a real,

symmetric, and positive definite matrix; S is a positive weighting factor that

penalizes network communication; xT is the terminal state; and βn is constrained
to take on only two different values:

βn ¼ 1 measurement xn is sent
0 measurement xn isnot sent

�
ð2:57Þ

The optimal sequence of un and βn, n¼ 0,1,2,. . .,T-1, are of interest. This cost

criterion can be applied to a discrete-time system or to a discretized version of

continuous-time systems. The objective is to find the optimal control input and the

optimal scheduling decisions (2.57). Solving this problem is the topic of Chap. 9.

2.4 Alternative Conditions for Stability of MB-NCS

In this section the stability of discrete-time MB-NCS is studied using a lifting

approach. The stability of continuous-time systems is also considered using norms

and a Lyapunov-based approach.

0 20 40 60 80 100 120 140 160 180 200
-1

-0.5

0

0.5
P

la
nt

 S
ta

te
s

0 20 40 60 80 100 120 140 160 180 200
-0.8

-0.6

-0.4

-0.2

0

0.2

M
od

el
 S

ta
te

s

Time (k)

0 20 40 60 80 100 120 140 160 180 200
-0.6

-0.4

-0.2

0

0.2

0.4

P
la

nt
 S

ta
te

s

0 20 40 60 80 100 120 140 160 180 200
-0.6

-0.4

-0.2

0

0.2

M
od

el
 S

ta
te

s

Time (k)

Fig. 2.12 Response of plant and model states. Left: h¼ 10. Right: h¼ 50
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2.4.1 A Lifting Approach for Stability of Discrete-Time
MB-NCS

In this section the traditional configuration for discrete-time MB-NCS will be

studied using lifting techniques. In the lifting process, the input and output spaces

are extended appropriately in order to obtain a Linear Time-Invariant (LTI) system

description for sampled-data, multi-rate, or linear time-varying periodic systems.

Since the lifted system is an LTI system, the available tools and results for LTI

systems are applicable to the lifted system as well.

Applying the lifting approach to the traditional setup in MB-NCS, the stability

problem is reformulated and necessary and sufficient conditions for discrete-time

systems are derived which are the same conditions given in Sect. 2.3 derived using

another approach. The main advantage of lifting here is that this strategy can be

extended to the case when a communication network exists on both sides of the

control loop, from sensor to controller and from controller to actuator. This topic

will be covered in later chapters.

Lifting discrete-time signals and systems. This section provides a brief discussion

on lifting discrete-time signals and systems based on [42]. Suppose there exist two

periods h and hs in a discrete-time setup and they are related by hs¼ h/r, where r is
some positive integer. For a discrete-time signal v(k) referred to the sub-period h/r,
that is, v(0) occurs at time t¼ 0, v(1) at t¼ h/r, v(2) at t¼ 2 h/r, and so on, the lifted
signal v is defined as follows:

If v¼ {v(0), v(1), v(2), . . .}, then

v ¼

8>><>>:
v 0ð Þ
v 1ð Þ
:
v r � 1ð Þ

2664
3775,

v rð Þ
v r þ 1ð Þ
:
v 2r � 1ð Þ

2664
3775, . . .

9>>=>>;: ð2:58Þ

The dimension of the lifted signal v nð Þ is r times the dimension of the original

signal v(n) and is regarded to the base period, i.e., v nð Þ occurs at time t¼ nh.
The lifting operator L is defined to be the map v ! v. The inverse operator L� 1

exists and is defined as follows:

If

ψ ¼

8>><>>:
ψ1 0ð Þ
ψ2 0ð Þ
:
ψn 0ð Þ

2664
3775,

ψ1 1ð Þ
ψ2 1ð Þ
:
ψn 1ð Þ

2664
3775, . . .

9>>=>>; ð2:59Þ

and v¼ L�1ψ , then v¼ {ψ1(0),ψ2(0),....,ψn(0),ψ1(1),ψ2(1),....,ψn(1), . . .}.
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A relevant feature of lifting is that it preserves inner products and norms. Let us

see this for the case of l2-norms. The norm of a signal v ∈ l2(ℤ+,ℝ
m) is given by:

vk k22 ¼ v 0ð ÞTv 0ð Þ þ v 1ð ÞTv 1ð Þ þ :::: ð2:60Þ

and the norm of its lifted version v∈ l2 ℤþ;ℝrmð Þ is:

v
		 		2

2
¼ v 0ð ÞTv 0ð Þ þ v 1ð ÞTv 1ð Þ þ ::::

¼
v 0ð Þ
:

v r � 1ð Þ

264
375
T v 0ð Þ

:

v r � 1ð Þ

264
375þ

v rð Þ
:

v 2r � 1ð Þ

264
375
T v rð Þ

:

v 2r � 1ð Þ

264
375þ ::::

¼ v 0ð ÞTv�0�þ v
�
1
�
Tv
�
1
�þ ::::

¼ vk k22:

ð2:61Þ

Now, let us consider a discrete-time finite dimensional LTI system Gd with

underlying period h/r. Lifting the input and output signals so that the lifted signals

correspond to the base period h results in the lifted system: Gd ¼ LGdL
�1.

Assuming the state-space representation of the original system Gd is known and

given by:

x nþ 1ð Þ ¼ Ax
�
n
�þ Bu

�
n
�

y nð Þ ¼ Cx
�
n
�þ Du

�
n
�
:

ð2:62Þ

Then the state-space representation for the lifted system G
d
is given by:

x
�
nþ 1ð Þh� ¼ Arx

�
nh
�þ Ar�1B Ar�2B . . . B

� �
u
�
nh
�

y nhð Þ ¼
C
CA
:
CAr�1

2664
3775x�nh�þ

D 0 . . . 0

CB D . . . 0

:

CAr�2B CAr�3B . . . D

2664
3775u�nh�: ð2:63Þ

Lifting discrete-time MB-NCS.As it was described in Sect. 2.1, MB-NCS makes use

of an explicit model of the plant which is added to the controller node to compute

the control input based on the state of the model rather than on the plant state.

The dynamics of a discrete-time plant and model are given respectively by:

x nþ 1ð Þ ¼ Ax nð Þ þ Bu nð Þ ð2:64Þ
x̂ nþ 1ð Þ ¼ Â x̂ nð Þ þ B̂ u nð Þ ð2:65Þ

where x is the state of the plant, x̂ is the state of the model, and the matrices Â , B̂
represent the available model of the system matrices A,B.
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It will be advantageous to define the input u as:

u nð Þ ¼ Kx nð Þ n ¼ ih
Kx̂ nð Þ n ¼ ihþ j

�
ð2:66Þ

for i¼ 0, 1, 2.... and 0< j< h ( j is also an integer), that is, the input is a function of

the state of the plant at the time instant when we update the model, and a function of

the state of the model otherwise.

A state feedback discrete-time MB-NCS can be seen as a linear time-varying

periodic system as shown in (Fig. 2.13a) by considering an output y that is equal to
x̂ when the loop is open and equal to x when we have an update (closed loop). The

system after applying lifting is represented in part b) of the same figure and is

regarded as an LTI system with higher dimension input and output.

Note that the original period of the system is denoted by T and the period of the

network by hT. Then, using the definition at the beginning of this section, we have

that for this case r¼ h since hT/h¼ T. The input u for the lifted system P and its

output y are given by the following equations:

u nhð Þ ¼
u nhð Þ
u nhþ 1ð Þ
:
u
�
nhþ h� 1ð Þ

2664
3775 ¼

Kx nhð Þ
Kx̂ nhþ 1ð Þ
:
Kx̂
�
nhþ h� 1ð Þ

2664
3775 ð2:67Þ

a

b
Plant

T

u

Model

K

u

K

P

y

y

x

x̂

hT

Fig. 2.13 Equivalent systems to MB-NCS. (a) Linear time-varying periodic system.

(b) Lifted system
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y nhð Þ ¼

I
Â
Â 2

:
Â h�1

266664
377775x nhð Þ þ

0 0 : :: 0

B̂ 0 :: : 0

Â B̂ B̂ . . . 0

: :

Â h�2B̂ Â h�3B̂ . . . 0

266664
377775u nhð Þ: ð2:68Þ

The dimension of the state is preserved and the state equation expressed in terms

of the lifted input is given by:

x nþ 1ð Þhð Þ ¼ Ahx nhð Þ þ Ah�1B Ah�2B . . . B
� �

u nhð Þ: ð2:69Þ

The new controller is of the form:K ¼
K 0 0 ::
0 K 0

0 0 K
:

2664
3775where each zero block

has the same dimensions as K.

Definition 2.7 [5] Asymptotic stability of discrete-time LTI system. The equilib-

rium x¼ 0 of a system described by x(n + 1)¼Ax(n) is asymptotically stable if

and only if all eigenvalues of A are within the unit circle of the complex plane

(i.e., if λ1,...., λn denote the eigenvalues of A, then jλij< 1, i¼ 1,...., n). In this case

we say that the matrix A is Schur stable or simply, the matrix A is stable.

Theorem 2.8 The lifted system is asymptotically stable if only if the eigenvalues of

N ¼ Ah þ
Xh�1

j¼0

Ah�1�jBK Â þ B̂ K
� �j ð2:70Þ

lie strictly inside the unit circle.

Proof To prove this theorem, we note that (2.69) is the same as the state equation

that characterizes the autonomous LTI system:

x nþ 1ð Þhð Þ ¼
 
Ah þ

Xh�1

j¼0

Ah�1�jBK Â þ B̂ K
� �j!

x nhð Þ: ð2:71Þ

Equation (2.71) can be obtained by directly substituting (2.67) in (2.69), and

then substituting the value of each individual output by its equivalent in terms of the

state x(kh), i.e.,

x̂ nhþ 1ð Þ ¼ Â x
�
nh
�þ B̂ u

�
nh
� ¼ �Â þ B̂ K

�
x
�
nh
�

x̂ nhþ 2ð Þ ¼ �Â þ B̂ K
�
2x
�
nh
�

:

ð2:72Þ
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The resulting equation can be simply expressed as (2.71) which characterizes a

discrete-time LTI system of the form given in Definition 2.7, then the networked

system is asymptotically stable if only if the eigenvalues of (2.70) lie inside the unit

circle. ♦

2.4.2 Relation to Previous Results

The results presented in the previous section using a lifting approach are directly

related to the stability conditions in Sect. 2.3. Since both results present necessary

and sufficient conditions for stability of the discrete-time MB-NCS, we should be

able to demonstrate that the conditions are the same. This is shown below.

From Theorem 2.6 a necessary and sufficient condition for stability of an

MB-NCS with instantaneous feedback is given if the eigenvalues of

MD hð Þ ¼ I 0

0 0

� �
Λ h
D

I 0

0 0

� �
ð2:73Þ

lie inside the unit circle, where

ΛD ¼
Aþ BK �BKeA þ eBK Â � eBK

 !
:

In order to establish the relation between the two theorems consider the

transformation:

Λ ¼ PΛDP
�1 ¼ A BK

0 Â þ B̂ K

� �
ð2:74Þ

where

P ¼ I 0

I �I

� �
, P�1 ¼ I 0

I �I

� �
ð2:75Þ

and find the Z-transform of MD(n), n¼ 0,1,2,. . .

Z MD nð Þf g ¼ I 0

0 0

� �
Z Λn

D

� � I 0

0 0

� �
:

The Z-transform of Λn
D can be obtained according to:

Z Λn
D

� � ¼ zI � ΛDð Þ�1z ¼ zI � P�1ΛP
� ��1

z ¼ P�1 zI � Λ
� ��1

Pz: ð2:76Þ
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Substituting the last equation in the Z-transform of MD(n) we obtain:

Z MD kð Þf g ¼ I 0

0 0

� �
zI � Λ
� ��1 I 0

I 0

� �
z

¼ zI � Að Þ�1 þ �zI � A
��1BK zI � Â þ B̂ K

� �� ��1
0

0 0

� �
z:

We now proceed to obtain the inverse Z-transform of the upper left sub-matrix

which contains the eigenvalues of interest:

Z�1 zI � Að Þ�1zþ zI � Að Þ�1BK zI � Â þ B̂ K
� �� ��1

z
n o

¼

An þ
Xn�1

j¼0

An�1�jBK Â þ B̂ K
� �j

:
ð2:77Þ

Let n¼ h in the above equation to obtain:

Ah þ
Xh�1

j¼0

Ah�1�jBK Â þ B̂ K
� �j ð2:78Þ

which is exactly the same result obtained in Theorem 2.8, i.e., the eigenvalues of the

first term of MD(h) correspond to the eigenvalues of (2.70). The other eigenvalues

of MD(h) are not necessary in the analysis since they are always equal to 0 (they

always lie inside the unit circle).

2.4.3 Additional Approaches for Stability of MB-NCS

We end this section by describing two additional approaches that provide

conditions for stability of continuous-time MB-NCS that do not require exact

knowledge of the plant parameters. These results can be used directly to compute

the admissible range for h based only on certain bounds on the norms of the

uncertainties. It is also important to clarify that the next conditions are sufficient

only and, in general, very conservative, that is, the admissible update intervals

h computed here are typically shorter than those obtained in Sect. 2.2.

Approach based on the norm of the state. In the first approach we set the require-

ment that the norm of the state of the plant should decrease at every sampling

instant, that is, kx(tk+ 1)k< kx(tk)k, for all k¼ 0,1,. . . and h¼ tk+ 1� tk. The plant

and the model dynamics are given by (2.1) withu ¼ Kx̂ . The state error was defined
in (2.2) and the error uncertainty matrices are expressed as follows.
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eA ¼ A� Â , eB ¼ B� B̂ : ð2:79Þ

By finding a control gainK that asymptotically stabilizes the model, i.e., Â þ B̂ K
is Hurwitz, we can use the following bound:

e ÂþB̂ Kð Þt			 			 � αe�βt, α, β > 0: ð2:80Þ

Theorem 2.9 Assume that the pair Â; B̂
� �

is stabilizable. The model-based

networked system described by (2.1) is asymptotically stable if:

1� α e�βh þ
eK

β þ β2
eβ2h � e�βh
� � !

> 0 ð2:81Þ

where Ak k � Â
		 		þ eA			 			 � β2, eA þ eBK			 			 � eK , h¼ tk+ 1� tk.

Proof From (2.2) we can obtain the next expression for the state error:

_e ¼ _x � _̂x ¼ Aeþ eA þ eBK
 �
x̂ : ð2:82Þ

The response of the state error at any given time as a function of the last received

measurement is:

e tð Þ ¼ eA t�tkð Þe
�
tk
�� ð t

tk

eA t�τð Þ eA þ eBK
 �
x̂ τ � tkð Þdτ

¼ �
ð t
tk

eA t�τð Þ eA þ eBK
 �
e ÂþB̂ Kð Þ τ�tkð Þdτ � x tkð Þ:

ð2:83Þ

then, a bound for the norm of the state error is:

e tð Þk k � αeK x tkð Þk k
β þ β2

eβ2 t�tkð Þ � e�β t�tkð Þ

 �

: ð2:84Þ

It is also clear from (2.2) that the norm of the state satisfies:

x tð Þk k < x̂ tð Þk k þ e tð Þk k: ð2:85Þ

Substituting (2.84) in (2.85) we have, using again the bound (2.80):

x tð Þk k � αe�β t�tkð Þ x tkð Þk k þ αeK x tkð Þk k
β þ β2

eβ2 t�tkð Þ � e�β t�tkð Þ

 �

: ð2:86Þ
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In order to satisfy the initial condition on the norm of the state we require that:

x tkð Þk k � x tkð Þk k αe�βh þ αeK
β þ β2

eβ2h � e�βh
� � !

> 0 ð2:87Þ

which is equivalent to (2.81). ♦

Approach based on Lyapunov functions. In the second approach we set the require-
ment that the discrete-time Lyapunov function along the trajectories of the system

decreases at every sampling instant, i.e., V(x(tk+ 1))�V(x(tk))< 0, for k¼ 0,1,. . .

Theorem 2.10 Assume that the pair Â; B̂
� �

is stabilizable. The model-based

networked system described by (2.1) is asymptotically stable if:

2σ Fð ÞGh þ G2
h <

q

σ Pð Þ ð2:88Þ

where F ¼ e ÂþB̂ Kð Þh, Gh ¼ αeK
βþβ2

eβ2h � e�βh
� � � σ Δ hð Þð Þ, Δ hð Þ ¼

ð h
0

eA h�τð Þ

eA þ eBK
 �
e ÂþB̂ Kð Þτdτ, Ak k � Â

		 		þ eA			 			 � β2, α and β are given by (2.80).

Proof Using (2.2) and (2.83), the state of the plant can be expressed by:

x tkþ1ð Þ ¼ �e ÂþB̂ Kð Þh þ
ð h
0

eA h�τð Þ eA þ eBK
 �
e ÂþB̂ Kð Þτdτ� � x tkð Þ

¼ Fþ Δ hð Þð Þx tkð Þ: ð2:89Þ

Next we define a quadratic Lyapunov function V¼ xTPx, that is evaluated at the
update instants as follows:

V x tkþ1ð Þð Þ � V x tkð Þð Þ ¼ x tkð ÞT Fþ Δ hð Þð ÞTP Fþ Δ hð Þð Þ � P
h i

x tkð Þ: ð2:90Þ

Note that a stabilizing controller for the model can be found. F is a stable

discrete-time matrix that satisfies:

FTPF� P ¼ �Q ð2:91Þ

for symmetric, positive definite matrices P and Q. Then a sufficient condition for

stability of the system is given in terms of the perturbation Δ(h), as follows

Fþ Δ hð Þð ÞTP�Fþ Δ hð Þ�� P

¼ �Qþ Δ hð ÞTPFþ FTPΔ
�
h
�þ Δ

�
h
�
TPΔ

�
h
�

� �σ Qð Þ þ σ
�
Δ
�
h
�
TPFþ FTPΔ

�
h
�þ Δ

�
h
�
TPΔ

�
h
��

� �qþ 2σ PFð ÞGh þ σ
�
P
�
G2

h < 0

ð2:92Þ
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where q ¼ σ Qð Þ represents the smallest singular value of Q and σ Pð Þ represents the
largest singular value of P. If (2.88) holds, then (2.92) is satisfied. ♦

Recall that the application of the results in Sect. 2.2 to real world problems

involves a repeated computation of eigenvalues for different values of parameters

uncertainties as explained in Example 2.2. The results in this subsection can be used

in a direct way based on a priori information about uncertainty bounds. The

disadvantage is that these conditions are sufficient only and may be conservative

in general, resulting in smaller update intervals h.

2.5 Notes and References

In this chapter we introduced the basic MB-NCS architecture that will be used

throughout this book. This framework uses the available knowledge of the real

plant dynamics encapsulated in the plant model to perform an open-loop estimation

of the real plant state that is used to compute the control input for the intervals of

time that the controller does not receive any measured feedback information. The

main results of this chapter were presented in Theorem 2.3 and Theorem 2.6.

Theorem 2.3 provides necessary and sufficient conditions for exponential stability

of the networked system as a function of the update intervals which are assumed to

be periodic. Theorem 2.6 provides the corresponding conditions for discrete-time

systems. In both cases, it is assumed that the sensor is able to measure the entire

state of the system. Alternative stability conditions were given in Sect. 2.4. In

subsequent chapters, different extensions, alternative sampling methodologies, and

architectures will be explored. Additionally, different common problems in control

theory will be discussed from the model-based networked perspective.

The MB-NCS architecture shown in Sect. 2.1 was first proposed by

Montestruque and Antsaklis [186, 187] and the results shown in Sects. 2.2 and

2.3 are primarily based on work published in those two references and also in

[188]. The lifting approach for MB-NCS discussed in Sect. 2.4 was first published

by Garcia and Antsaklis, [82]. The lifting methods used in that section are based on

common lifting techniques presented in [42]. See also [16, 26, 130] for additional

discussion of lifting techniques.

The alternative stability conditions for continuous-time systems of Sect. 2.4

represent original work presented in this book and is an adaptation of the work by

Montestruque [185] on nonlinear systems.

The MB-NCS framework has been followed by different authors to consider

specific problems in NCS. Orihuela et al. [207] have derived conditions for stability

of MB-NCS with parametric uncertainties based on the theory of interval matrices.

The authors of [197] compare different control decisions for a nonlinear NCS

subject to sensor losses. The options include zero control, last available control,

and open-loop control; the last one corresponds to using the nominal nonlinear

model of the plant. It is proved in that paper that under certain conditions the use of
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the model exceeds in performance the other two choices to decide the control input

in the absence of feedback information. The MB-NCS structure is used by Yu

et al. [283] to study singularly perturbed systems where the sensor is connected to

the controller/actuator node using a communication network. Singularly perturbed

systems refer to the two-time scale systems that appear due to the presence of small

parasitic parameters multiplying the time derivatives of some states of the system.

It is difficult, in general, to control this type of systems since the controller has to

react simultaneously to both the slow and fast modes of the system. Mu et al. [196]

provided a different analysis of MB-NCS with output feedback and constant

network delays where the model is updated using directly the received output

y(tk)¼Cx(tk).
Recent work has been produced independently and it shares many characteristics

of the MB-NCS framework, indicating the fundamental advantages of using the

model dynamics when operating and controlling dynamical systems in the absence

of continuous feedback information. Motivated by human operations, the authors of

[80] and [126] point out that in general a human operator scans information

intermittently and operates continuously the controlled system; the intermittent

characteristic in this case refers to the same situation presented in this chapter,

that is, a single measurement is used to update the internal model and generate the

control input. For a skillful operator, the information is scanned less frequently.

Between update intervals the control input is generated the same way as it was

shown in the MB-NCS framework, that is, an imperfect model of the system is used

to generate an estimate of the state and periodic measurements are used to update

the state of this model. In the output feedback case a stochastic estimator is

implemented with the assumption that the statistical properties of the measurement

noise are known. In both cases the authors provide conditions for stability based on

the length of the sampling interval.

In the networked framework shown in [140–142, 165], the model is assumed to

match the dynamics of the system exactly; however, the system is subject to

unknown input disturbances. The main idea of the approach in those papers is the

same as the one described in this chapter, that is, to use the nominal model to

generate estimates of the current state of the system. Since the system is subject to

unknown disturbances and the model is executed with zero input disturbance, then a

difference between the states is expected and the sensor updates transmitted over a

digital communication network are used to reset this difference between the states

of the plant and of the model at the update time instants.

There exist similarities and significant differences between the MB-NCS

approach and the developed and mature Model Predictive Control (MPC) approach.

MPC also uses model of the system for control; specifically, the model is used to

predict the future output behavior; a tracking error is defined using this prediction

and the desired reference and the control action are computed online. The purpose

of the control action is to drive the state of the system to a reference position in an

optimal fashion while satisfying the existing constraints. MPC relies in frequent

feedback measurements in order to update the predicted control sequences. Mean-

while, in MB-NCS the main constraint is imposed in the form of reducing

52 2 Model-Based Control Systems: Stability



measurement update rates. Recent work related to NCS [24, 255, 288] has been

reported where model predictive controllers have been successfully applied to deal

with the usual input and output constraints, but also consider the bandwidth

limitations of the network. The additional constraint aims to reduce the traffic in

the communication network by using the explicit model to generate the appropriate

input in the absence of continuous feedback.
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Chapter 3

Model-Based Control Systems: Output

Feedback and Delays

In the previous chapter, Chap. 2, we considered the case when the full state vector

is available for measurement. We now extend our approach to include continuous

and discrete time systems, where the state is not directly measurable. Here, state

observers are used to obtain an estimate of the state vector. It is assumed that the

state observer is collocated with the sensor.

The use of state observers is not the only approach that is used in this book when

dealing with the output feedback case. The output feedback problem is studied

again in Chap. 11 where the output measurements are used directly to update the

model without need of state observers.

Another problem discussed in this chapter is the control under network induced

delays. In this problem, the MB-NCS framework provides the double advantage of

using the model parameters for estimating the state of the system during the open-

loop intervals, as it was shown previously, and also for estimating the current state

of system at the update time instants based on delayed measurements.

The contents of the present Chapter are as follows: Output feedback using state

observers is studied in Sect. 3.1 for continuous time systems. Section 3.2 presents

similar results for output feedback discrete time systems. Network delays are

addressed in Sects. 3.3 and 3.4. Notes and references are presented in Sect. 3.5.

3.1 Output Feedback Using State Observers

for Continuous Time Systems

We use the plant model parameters Â; B̂; Ĉ; D̂
� �

in (3.1) to design the state observer.

See Fig. 3.1. The observer has as inputs the output and input of the plant. In the

implementation, in order to acquire the input of the plant, which is at the other side

of the communication link, the observer should also include a version of the model

and controller, and also knowledge of the update time h. In this way, the output of

the controller, that is the input to the plant, can be simultaneously and continuously

E. Garcia et al., Model-Based Control of Networked Systems, Systems & Control:

Foundations & Applications, DOI 10.1007/978-3-319-07803-8_3,

© Springer International Publishing Switzerland 2014
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generated at both ends of the feedback path with the only requirement being that the

observer makes sure that the model has been updated. This last requirement ensures

that both the controller and the observer are synchronized. Handshaking protocols

provided by most networks can be used.

The observer has the form of a standard asymptotic state estimator, a Luenberger

observer, with gain L. It makes use of the plant model parameters.

In summary, the system dynamic equations are:

Plant : _x ¼ Axþ Bu, y ¼ Cxþ Du

Model : _̂x ¼ Â x̂ þ B̂ u, ŷ ¼ Ĉ x̂ þ D̂ u

Controller : u ¼ Kx̂

Observer : _x ¼ Â � LĈ
� �

xþ B̂ � LD̂ L
� � u

y

" #
,

for t∈
�
tk, tkþ1

�
ð3:1Þ

We now proceed in a similar way as in the previous case of full feedback.

Namely, there will be an update interval h, after which the observer updates the

controller’s model state x̂ with its estimate x. We will also define an error e that will
be the difference between the controller’s model state and the observer’s estimate:

e ¼ x� x̂ .
It is clear that at times tk, where tk� tk� 1¼ h, the error ewill be equal to 0, since

the update x̂ tkð Þ ¼ x tkð Þ takes place.

e tð Þ ¼ x tð Þ � x̂
�
t
�

t∈
�
tk, tkþ1

�
0 t ¼ tk

� �
ð3:2Þ

Also we will define the modeling error matrices in the same way as before

(Chap. 2): eA ¼ A� Â , eB ¼ B� B̂ , eC ¼ C� Ĉ , eD ¼ D� D̂ .

Plant

u

Controller

Model

y

x

update

network

Sate Observed

h

x̂

Fig. 3.1 Proposed configuration of an output feedback networked control system
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Now for t ∈ [tk, tk+ 1), u ¼ Kx̂ , so we have:

_x ¼ Axþ BKx̂

_̂x ¼ Â þ B̂ K
� �

x̂

_x ¼ Â � LĈ
� �

xþ B̂ � LD̂ L
� � Kx̂

Cxþ DKx̂

" #

¼ LC B̂K þ LeDK Â � LĈ
� � x

x̂

x

264
375

ð3:3Þ

with initial conditions x̂ tkð Þ ¼ x tkð Þ. Using the same approach as before, we express

the system dynamics in terms of the states that will not change at the update times.

Then the dynamics of the overall system for t ∈ [tk, tk+ 1) can be described by

_x

_x

_e

264
375 ¼

A BK �BK
LC Â � LĈ þ B̂ K þ LeDK �B̂ K � LeDK

LC LeDK � LĈ Â � LeDK

2664
3775

x

x

e

264
375 and

x tkð Þ
x tkð Þ
e tkð Þ

264
375 ¼ x t�k

� �
x t�k
� �
0

264
375:

t∈
�
tk, tkþ1

�
, with tkþ1 � tk ¼ h

ð3:4Þ

Define z ¼
x

x

e

24 35, and Λo ¼
A BK �BK
LC Â � LĈ þ B̂ K þ LeDK �B̂ K � LeDK
LC LeDK � LĈ Â � LeDK

24 35
so that (3.4) can be represented by:

_z ¼ Λoz for t∈
�
tk, tkþ1

�
and z

�
tk
� ¼ x t�k

� �
x t�k
� �
0

264
375 ð3:5Þ

Proposition 3.1 The system with dynamics described by (3.5) with initial condi-

tions z t0ð Þ ¼
x t0ð Þ
x t0ð Þ
0

24 35 ¼ z0, t0 ¼ 0, has the following response:

z tð Þ ¼ eΛo t�tkð Þ
I 0 0

0 I 0

0 0 0

24 35eΛoh
I 0 0

0 I 0

0 0 0

24 350@ 1Akz0,
for t∈

�
tk, tkþ1

�
, with tkþ1 � tk ¼ h

ð3:6Þ

3.1 Output Feedback Using State Observers for Continuous Time Systems 57



Proof On the interval t ∈ [tk, tk+ 1), the system response is

z tð Þ ¼
x tð Þ
x tð Þ
e tð Þ

24 35 ¼ eΛo t�tkð Þ
x tkð Þ
x tkð Þ
0

24 35 ¼ eΛo t�tkð Þz tkð Þ: ð3:7Þ

Now, note that at times tk, z tkð Þ ¼
x tkð Þ
x tkð Þ
0

24 35, that is, the error e tð Þ is reset to 0.

We can represent this by

z tkð Þ ¼
I 0 0

0 I 0

0 0 0

24 35z t�k
� �

: ð3:8Þ

Using (3.7) to calculate z(t�k ) we obtain

z tkð Þ ¼
I 0 0

0 I 0

0 0 0

24 35eΛohz tk�1ð Þ: ð3:9Þ

In view of (3.7) we have that if at time t¼ t0, z t0ð Þ ¼ z0 ¼
x0
x0
0

24 35 is the initial

condition then

z tð Þ ¼ eΛo t�tkð Þz
�
tk
�

¼ eΛo t�tkð Þ
I 0 0

0 I 0

0 0 0

264
375eΛohz tk�1ð Þ

¼ eΛo t�tkð Þ
I 0 0

0 I 0

0 0 0

264
375eΛoh

I 0 0

0 I 0

0 0 0

264
375eΛohz tk�2ð Þ

. . .

¼ eΛo t�tkð Þ
I 0 0

0 I 0

0 0 0

264
375eΛoh

0B@
1CA

k

z0:

ð3:10Þ

Now we know that

I 0 0

0 I 0

0 0 0

24 35eΛoh is of the form

M1 M2 N1

M3 M4 N2

0 0 0

24 35 and so
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I 0 0

0 I 0

0 0 0

24 35eΛoh

0@ 1Ak

has the form
M1 M2

M3 M4

� 	k
P1

P2

� 	
0 0½ � 0

24 35. Additionally we note
the special form of the initial condition z t0ð Þ ¼ z0 ¼

x0
x0
0

24 35 so that

I 0 0

0 I 0

0 0 0

264
375eΛoh

0B@
1CA

k x0

x0

0

264
375 ¼ M1 M2

M3 M4

" #k
x0

x0

" #
0

0

" #
0 0½ � 0

2664
3775

¼
M1 M2

M3 M4

" #k
0

0

" #
0 0½ � 0

2664
3775

x0

x0

0

264
375

¼
I 0 0

0 I 0

0 0 0

264
375eΛoh

I 0 0

0 I 0

0 0 0

264
375

0B@
1CA

k x0

x0

0

264
375:
ð3:11Þ

In view (3.11) it is clear that we can represent the system response as in (3.6),

that is:

z tð Þ ¼ eΛo t�tkð Þ
I 0 0

0 I 0

0 0 0

264
375eΛoh

I 0 0

0 I 0

0 0 0

264
375

0B@
1CA

k

z0

t∈
�
tk, tkþ1

�
, with tkþ1 � tk ¼ h:

♦

We will present now the necessary and sufficient conditions for this system to be

exponentially stable at large (or globally). For the definition of stability please refer

to Definition 2.2 in Sect. 2.2.

Theorem 3.2 The system described by (3.5) is globally exponentially stable

around the solution z ¼
x

x

e

24 35 ¼ 0

0

0

24 35 if and only if the eigenvalues of

Mo ¼
I 0 0

0 I 0

0 0 0

24 35eΛoh
I 0 0

0 I 0

0 0 0

24 35 are strictly inside the unit circle.
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Proof Sufficiency. Taking the norm of the solution described as in Proposition 3.1:

z tð Þk k ¼ eΛo t�tkð Þ
I 0 0

0 I 0

0 0 0

264
375eΛoh

I 0 0

0 I 0

0 0 0

264
375

0B@
1CA

k

z0


















� eΛo t�tkð Þ

 

 � I 0 0

0 I 0

0 0 0

264
375eΛoh

I 0 0

0 I 0

0 0 0

264
375

0B@
1CA

k














 � z0k k:

ð3:12Þ
Now let us analyze the first term on the right hand side of (3.12):

eΛo t�tkð Þ

 

 � 1þ t� tkð Þσ Λoð Þ þ t� tkð Þ2
2!

σ Λoð Þ2 . . . ¼ eσ Λoð Þ t�tkð Þ � eσ Λoð Þh ¼ K1

ð3:13Þ

where σ Λoð Þ is the largest singular value of Λo. In general this term can always be

bounded since the time difference t� tk is always smaller than h. In other words,

even when Λo has eigenvalues with positive real part, eΛo t�tkð Þ

 

 can only grow a

certain finite amount. This growth is completely independent of k.

We now study the term

I 0 0

0 I 0

0 0 0

24 35eΛoh
I 0 0

0 I 0

0 0 0

24 350@ 1Ak












. It is clear that this

term will be bounded if and only if the eigenvalues of

I 0 0

0 I 0

0 0 0

24 35eΛoh
I 0 0

0 I 0

0 0 0

24 35
lie inside the unit circle:

I 0 0

0 I 0

0 0 0

24 35eΛoh
I 0 0

0 I 0

0 0 0

24 350@ 1Ak












 � K2e

�α1k ð3:14Þ

with K2, α1> 0.

Since k is a function of time we can bound the right term of (3.14) in terms of t:

K2e
�α1k < K2e

�α1 t�1h ¼ K2e
α1
h e�

α1
h t ¼ K3e

�αt ð3:15Þ
with K3, α> 0.

So from (3.12) using (3.13) and (3.15) we can conclude:

z tð Þk k ¼ eΛo t�tkð Þ
I 0 0

0 I 0

0 0 0

24 35eΛoh
I 0 0

0 I 0

0 0 0

24 350@ 1Ak

z0














 � K1 � K3e

�αt � z0k k:
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Necessity. We will now prove the necessity part of the theorem by contradiction.

Assume the system is stable and that

I 0 0

0 I 0

0 0 0

264
375eΛoh

I 0 0

0 I 0

0 0 0

264
375 has at least one

eigenvalue outside the unit circle. Since the system is stable, a periodic sample of

the response should be bounded and converging to 0 with time. We will take the

sample at times t�kþ 1, just before the update. Even further we will concentrate on the

combined state of the plant x(t�kþ 1) and observer x t�kþ1
� �

, which are the first two

elements of z(t�kþ 1). We will call
x t�kþ1
� �
x t�kþ1
� �" #

, ξ(k). Now assume eΛoτ has the

following form:

eΛoτ ¼
W1 τð Þ W2 τð Þ X1 τð Þ
W3 τð Þ W4 τð Þ X2 τð Þ
Y1 τð Þ Y2 τð Þ Z τð Þ

264
375 ð3:16Þ

For simplicity, let us define:

W τð Þ ¼ W1 τð Þ W2 τð Þ
W3 τð Þ W4 τð Þ

" #
, X τð Þ ¼ X1 τð Þ

X2 τð Þ

" #
, Y τð Þ ¼ Y1 τð Þ Y2 τð Þ½ � ð3:17Þ

Then we can express the solution z(t) as:

eΛo t�tkð Þ
I 0 0

0 I 0

0 0 0

264
375eΛoh

I 0 0

0 I 0

0 0 0

264
375

0B@
1CA

k

z0

¼ W t� tkð Þ X t� tkð Þ
Y t� tkð Þ Z t� tkð Þ

" #
W hð Þð Þk 0

0

" #
0 0½ � 0

2664
3775z0

¼
W t� tkð Þ W hð Þð Þk 0

0

" #
Y t� tkð Þ W hð Þð Þk 0

2664
3775z0

ð3:18Þ

Now let us check the values of the solution at times t�kþ 1, or just before the update:

z t�kþ1
� � ¼ W hð Þ W hð Þð Þk 0

0

� 	
Y hð Þ W hð Þð Þk 0

24 35z0 ¼ W hð Þð Þkþ1 0

0

� 	
Y hð Þ W hð Þð Þk 0

24 35z0: ð3:19Þ
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We also know that

I 0 0

0 I 0

0 0 0

24 35eΛoh
I 0 0

0 I 0

0 0 0

24 35 has at least one eigenvalue

outside the unit circle, which means that those unstable eigenvalues must be in

W(h). This means that the first two elements of z(t�kþ 1), which we call ξ(k), will in
general grow with k. In other words, we cannot ensure ξ(k) will converge to 0 for

general initial conditions x0, x0, that is, in this case

x t�kþ1
� �
x t�kþ1
� �� 	



 



 ¼ ξ kð Þk k ¼ W hð Þð Þkþ1 x0

x0

� 	



 



!1 as k!1: ð3:20Þ

This clearly means the system cannot be stable, and thus we have a contradiction. ♦

Remark The state observer can also be implemented at the controller node. In this

case the sensor sends measurements of the output y(tk) every h time units. At the

controller node, this measurement is used by the state observer to obtain an estimate

of the state of the plant and use that estimate to update the state of the model. Since

the observer does not receive continuous measurements of the plant output, it does

not provide accurate estimations of the state x(t) when h is large. In this case,

conditions for stability require a very short update interval which means that

communication rate is not significantly reduced compared to the case when the

observer is collocated with the sensor.

3.1.1 Separation Principle

The conditions for stability depend on several factors including the choice of update

interval, the model uncertainties, the control gain, and (for the output feedback

case) the observer gain as well. The results in Proposition 3.1 and Theorem 3.2 are

more complex than the usual observer based output feedback closed loop design

that follows the Separation Principle. The complexity is due, of course, to the

communication limitations, but is also due to the consideration of model uncer-

tainties. The Separation Principle [76] widely used in the design of closed-loop

control systems does not apply to the case when there exists model mismatch.

Consider again the plant and observer dynamics, where the observer uses the

nominal parameters, which are different from the real plant parameters:

Plant : _x ¼ Axþ Bu y ¼ Cxþ Du

Observer : _x ¼ Â � LĈ
� �

xþ B̂ � LD̂
� �

uþ Ly

Error matrices : eA ¼ A� Â eB ¼ B� B̂ eC ¼ C� Ĉ eD ¼ D� D̂

Estimation error ε ¼ x� x

62 3 Model-Based Control Systems: Output Feedback and Delays



Assume that the plant and model parameters are the same, that is, the error

matrices are all equal to 0. Then the separation principle follows by finding the

dynamic equation of the estimation error

_ε ¼ _x � _x ¼ Axþ Bu� Â � LĈ
� �

x� B̂ � LD̂
� �

u� Ly ¼ A� LCð Þε: ð3:21Þ

The control input is based on the observer state u ¼ Kx. Then the augmented

vector containing the state of the plant and the estimation error is given by:

_x

_ε

" #
¼ Aþ BK � BK

0 A� LC

" #
x

ε

" #
: ð3:22Þ

Since this matrix is triangular, its eigenvalues are the eigenvalues of A +BK and

A-LC. Then the stability of the observer and the closed loop plant are independent.

Clearly in this case each gain (observer and controller gains) can be designed

separately, thus simplifying the design.

In a more general situation, as is the case in MB-NCS, if we analyze the

estimation error dynamics by explicitly taking into account the difference between

the plant and model parameters, then it is simple to show that the error dynamics are

described by the next equation:

_ε ¼ _x � _x ¼ Â � LĈ
� �

εþ eB � LeD� �
uþ eA � LeC� �

x: ð3:23Þ

This equation shows that in order to obtain asymptotic estimates of the system

states using imperfect parameters of that system, we need a zero reference input

(u does not have external component) and a state x that tends asymptotically to zero

as time tends to infinity.

The augmented state that contains the state of the closed-loop plant and the

estimation error is now given by:

_x

_ε

" #
¼ Aþ BK � BKeA � LeC þ eBK � LeDK Â � LĈ � eBK þ LeDK

" #
x

ε

" #
: ð3:24Þ

We can see that the stability of the closed loop plant and the observer are not

obtained just by separate designs of the gains K and L, but the eigenvalues of the

whole matrix in (3.24) have to be considered. Note that (3.22) is a special case of

(3.24), when the model parameters exactly match those of the plant and the

uncertainty matrices are all equal to 0.

Example 3.1 Consider the instrument servo example described in Example 2.3 in

Sect. 2.2. We now consider the case where only the angular position error can be

measured, that is, the output matrices are given byC ¼ 1 0½ � and D¼ 0. The state

equations have the same form as (2.32) in Chap. 2. Here, we use the nominal
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parameters α̂ ¼ 1, β̂ ¼ 3. The real parameters are α¼ 0.89, β¼ 2.79. We will use

the state feedback controller K¼ [�0.1667 � 0.1667] and the state estimator gain

L¼ [2 0]T.

According to the eigenvalue search using the results of Theorem 3.2, the

networked system is stable for any value h> 0; however, the transient response

will be significantly different for different choices of the update period. Figure 3.2

shows the response for h¼ 1 s. This figure shows the states of the plant, the model,

and the observer. Figure 3.3 shows the same states for the case h¼ 10 s. In both

cases only the first state of the plant can be measured and used by the state observer

but in the figures we plot both of them in order to compare the response for different

update intervals.

Example 3.2 In this example we use the inverted pendulum on a moving cart

dynamics (linearized dynamics) described in Example 2E in [77].

The linearized dynamics can be expressed using the state vector

x ¼ y θ _y _θ
� �T

, where y represents the displacement of the cart with respect to

some reference point and θ represents the angle that the pendulum rod makes with

respect to the vertical. The matrices corresponding to the state space representation

(3.1) are given by
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Fig. 3.2 States of the networked instrument servo system for h¼ 1 s
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A ¼

0 0 1 0

0 0 0 1

0 �mg=M 0 0

0 M þ mð Þ=Ml 0 0

266664
377775, B ¼

0

0

1=M

�1=Ml

266664
377775, C ¼ 1 0 0 0

0 1 0 0

" #
, D ¼ 0

0

" #

ð3:25Þ

where the nominal parameters of the model are given by: m̂ ¼ 0:1, M̂ ¼ 1, l̂ ¼ 1:
The real parameters represent values close to the nominal parameters, but not

exactly the same due to uncertainties in the measurements and specification of

these parameters. The physical parameter values are given by: m¼ 0.1023,

M¼ 0.9965, l¼ 1.0061. We have that ĝ ¼ g ¼ 9:8. The input u represents the

external force applied to the cart. The open-loop plant and model dynamics are

unstable. In this example we use the following gains

K ¼ 0:3673 23:0473 1:1020 6:8020½ �, L ¼
12:5 0

0 10:5
39 �0:98
0 32:28

2664
3775:
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Fig. 3.3 States of the networked instrument servo system for h¼ 10 s
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Figure 3.4 shows the eigenvalue with maximummagnitude ofMo ¼
I 0 0

0 I 0

0 0 0

24 35
eΛoh

I 0 0

0 I 0

0 0 0

24 35 for different values of h. Figures 3.5 and 3.6 show the response of

the system for h¼ 0.5 s. Figure 3.5 shows the states of the plant, the model, and the

observer corresponding to the positions y and θ. Figure 3.6 shows the velocities _y, _θ
corresponding to the same subsystems.

Example 3.3 Consider the distillation column example shown in Example 2G in [77].

The process describes an extractive column used for separation of isopropanol from a

mixture of water. A controlled amount of heating steam, denoted asΔu1, is introduced
near the bottom of the column and the amount of vapor side stream, ΔS, can also

be controlled. The objective is to stabilize two key vertical positions subject to changes

in the feed composition, ΔxFA1, and the flow rate, ΔFA, disturbances. The positions

z1, z2 represent interphase changes between the substances in the column. A sharp

temperature gradient is associated with each one of the positions. These positions can

be determined by measuring corresponding temperature changes ΔT1¼ c13Δz1 and

ΔT2¼ c24Δz2 where Δz1, Δz2 represent changes in the corresponding positions.
The state vector is given by x¼ [ΔQl ΔVl Δz1 Δz2]T, where ΔQl represents heat

flow to reboiler and ΔVl represents the vapor flow rate. u¼ [Δu1 ΔS]T,
x0¼ [ΔxFA1 ΔFA]

T, and y¼ [ΔT1 ΔT2]T represent the control input, the input distur-
bance, and the measureable output, respectively. The system dynamics are given by:

_x ¼ Axþ Buþ Ex0, y ¼ Cx

with
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Fig. 3.4 Eigenvalue with maximum magnitude for inverted pendulum on moving cart example
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Fig. 3.5 Inverted pendulum on a moving cart. Positions. h¼ 0.5 s
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Fig. 3.6 Inverted pendulum on a moving cart. Velocities. h¼ 0.5 s



A ¼

a11 0 0 0

a21 a22 0 0

0 a32 0 0

0 a42 0 0

266664
377775, B ¼

b11 0

0 0

0 b32

0 b42

266664
377775, E ¼

0 0

0 0

f 31 f 32

0 f 42

266664
377775, C ¼ 0 0 c13 0

0 0 0 c24

" #

ð3:26Þ

where time is measured in hours and temperature in degrees Celsius. The nominal

model parameters are as follows:

a11 ¼ �30:3 b11 ¼ 6:15� 105 f 31 ¼ 62:2
a21 ¼ 1:2� 10�4 b32 ¼ 3:04 f 32 ¼ 5:76
a22 ¼ �6:02 b42 ¼ 0:052 f 42 ¼ 5:12
a32 ¼ �3:77 c13 ¼ �7:3
a42 ¼ �2:8 c24 ¼ �25

Note that when implementing the model in the controller node we have x̂ 0 ¼ 0

since the disturbance cannot be measured. The real parameters represent values

within �2 % of the nominal parameters. The system is open loop stable, but it does

not reject the disturbances. The following controller and observer gains are chosen:

K ¼ 2:5704� 105 1:4590� 108 �3:2105� 108 0

0 53:8462 0 �9:6154

" #

L ¼

2:6526� 105 1:2404� 105

�28:0331 27:1634

�2:0983 �3:1061
1:9248 �3:5914

266664
377775:

Figure 3.7 shows the output of the system subject to a pulse disturbance that

occurs at time 0.5 h and lasts for 0.05 h. The figure shows three different instances

of the problem. First, it shows the response of the open-loop system where clearly

the system is not able to reject the disturbance effect. Second, we implement a

model-based networked system with h¼ 1 h and the system can be stabilized and

disturbances are rejected. Finally, with h¼ 5 h we can obtain similar results except

that the transient response has deteriorated.
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3.2 Output Feedback Using State Observers

for Discrete Time Systems

We will now present the corresponding results for discrete time systems with state

observers. The translation from continuous-time to discrete-time domain involves

the same practical aspects described in Sect. 2.3. The proofs for Proposition 3.3 and

Theorem 3.4 below follow directly from the results provided in the current and

previous sections and are, therefore, omitted.

Let us consider the following equations:

Plant : x nþ 1ð Þ ¼ Ax
�
n
�þ Bu

�
n
�
, y
�
n
� ¼ Cx

�
n
�þ Du

�
n
�

Model : x̂ nþ 1ð Þ ¼ Â x̂
�
n
�þ B̂ u

�
n
�
, y
�
n
� ¼ Ĉ x̂

�
n
�þ D̂ u

�
n
�

Controller : u nð Þ ¼ Kx̂
�
n
�

Observer : x nþ 1ð Þ ¼ �
Â � LĈ

�
x
�
n
�þ B̂ � LD̂ L

� � u nð Þ
y nð Þ

" #
for n∈

�
nk, nkþ1

�
, with nkþ1 � nk ¼ h

ð3:27Þ
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Fig. 3.7 Response (output) of distillation column to a disturbance occurring at time 0.5 h and for

three cases: open-loop, model-based networked system with h¼ 1 h, and model-based networked

system with h¼ 5 h
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As with the continuous plant case, we use the same model-based framework to

include a standard state observer at the output of the plant. This observer will

provide estimates of the state of the plant at every time step n since it has access to

the measurements at every sampling period n¼ 0,1,2,. . .; but it will send the state

estimate to the controller every h sampling periods, where h� 1 is an integer. The

dynamics of the overall system for n ∈ [nk, nk+ 1) can be described by:

x nþ 1ð Þ
x nþ 1ð Þ
e nþ 1ð Þ

264
375 ¼ A BK �BK

LC Â � LĈ þ B̂ K þ LeDK �B̂ K � LeDK

LC LeDK � LĈ Â � LeDK

264
375 x nð Þ

x nð Þ
e nð Þ

264
375,

for n∈
�
nk, nkþ1

�
, with nkþ1 � nk ¼ h, and e nkþ1ð Þ ¼ 0:

ð3:28Þ

Define z¼ x x e½ �T , andΛF ¼
A BK �BK
LC Â � LĈ þ B̂Kþ LeDK �B̂K� LeDK

LC LeDK� LĈ Â � LeDK

264
375

so that (3.28) can be written as:

z nþ 1ð Þ ¼ ΛFz nð Þ for n∈
�
nk, nkþ1

�
and z nkð Þ ¼

x n�k
� �
x n�k
� �
0

264
375 ð3:29Þ

Proposition 3.3 The system with dynamics described by (3.29) with initial condi-

tions z n0ð Þ ¼
x n0ð Þ
x n0ð Þ
0

264
375 ¼ z0, has the following response:

z nð Þ ¼ ΛF
n�nk

I 0 0

0 I 0

0 0 0

264
375ΛF

h

I 0 0

0 I 0

0 0 0

264
375

0B@
1CA

k

z0,

for n∈
�
nk, nkþ1

�
,with nkþ1 � nk ¼ h

ð3:30Þ

♦

The following theorem presents necessary and sufficient conditions for system

(3.29) to be exponentially stable at large (or globally). For the definition of stability

refer to Definition 2.5 in Sect. 2.3.
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Theorem 3.4 The system described by (3.29) is globally exponentially stable

around the solution z ¼
x
x
e

24 35 ¼ 0

0

0

24 35 if and only if the eigenvalues of

MF ¼
I 0 0

0 I 0

0 0 0

24 35ΛF
h

I 0 0

0 I 0

0 0 0

24 35 are strictly inside the unit circle. ♦

Proofs of Proposition 3.3 and Theorem 3.4 are similar to the continuous time

counterparts and have been omitted.

3.3 Network Induced Delays: Small Delay Case

Previously we assumed that the network delays were negligible. This is usually true

for plants with slow dynamics relative to the network bandwidth. When this is not

the case the network delay cannot be neglected. In this section, we introduce an

approach where appropriate state estimates for the controller are generated based on

delayed information and using the plant model. Theorem 3.6, which is the main

result, presents necessary and sufficient conditions for stability. The results are

illustrated by an example.

There are three important network delay sources: Processing time, Media access

contention, Propagation and Transmission time. The first one, processing time,

occurs at both ends of the communication channel. On the transmitter side, the

processing time is the time elapsed from the time the transmitting process makes the

request to the operating system to transmit a message, to the time the message is

actually ready to be sent. On the receiver side this is the time interval that occurs

from the time the last bit of the message is received by the receiver, to the time the

message is delivered by the operating system to the receiver process. The media

access contention time is the time the transmitter has to wait until the communica-

tion channel is not busy. This is usually the case when several transmitters have to

share the same media.

The propagation and transmission time is the time the message takes to be

streamed out by the sender on the network media and to travel through the network

to reach the receiver. In local area networks the time the message takes to travel or

propagate through the media is small in comparison to wide area networks or

internetworks like the Internet. The time the message takes to be placed on the

network depends on the size of the message and the baud rate.

If the control network is a local area network, as is common practice in industry,

the propagation and transmission time can be established forehand with good

accuracy. Similar observations can be made regarding the processing time. If real

time operating systems are used, the processing time can be accurately calculated.

Finally, media access contention delay can be fixed with the use of a communication

protocol with scheduling. Fast data communication networks like Token Ring,
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Token Bus, and ArcNet fall into this category. Industry oriented control networks

like Foundation Fieldbus also implement a scheduler through its LAS or Link Active

Scheduler. Even the inherently non-deterministic Ethernet has addressed the prob-

lem of not having a specified contention time with the so-called Switched Ethernet.

In view of the above, the delay of a message from the sender to the receiver on a

local area network can be at least bounded if standard scheduling techniques are

used on the operating system of the nodes and for network contention resolution.

3.3.1 Continuous Time Systems with Delays

In the following, we present the MB-NCS setup that also includes the presence of

transmission delays. We will assume that the update time h is larger than the delay

time τ. We call this particular case: “small delay.” In Sect. 3.4 we consider the more

general case in which the delay τ is greater than the update intervals h and we called
this scenario “large delay” case.

As before we will assume that the update time h is constant. We will also assume

at this time that the delay τ is constant. Time-varying delays will be discussed in

Chap. 6. We will present here the case of full state feedback systems.

So, at times kh-τ the sensor transmits the state data to the controller/actuator.

This data will arrive τ seconds later. So, at times kh the controller/actuator will

receive the state vector value x(kh-τ). The main idea is to use the plant model in the

controller/actuator to calculate the present value of the state. Then, the obtained

state approximation can be used to update the controller’s model as in previous

setups. The system is depicted in Fig. 3.8.

Plant

Model

Controller
Memory

Propagation
Unit

update

network

x(kh)

x(kh-t)

h

Delay
τ

u(t)

x(t)

x̂

Fig. 3.8 Proposed configuration of a state feedback networked control system in the presence of

network delays
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The Propagation Unit uses the plant model and the past values of the control

input u(t) to calculate an estimate of actual state x
^

khð Þ from the received data

x(kh�τ). This estimate is then used to update the model that with the controller will

generate the control signal for the plant.

The system is described by the following equations:

Plant : _x ¼ Axþ Bu

Model : _̂x ¼ Â x̂ þ B̂ u

Controller : u ¼ Kx̂ , t∈
�
tk, tkþ1

�
Propagation Unit :

_
x
^ ¼ Â x

^ þ B̂ u, t∈ tkþ1 � τ, tkþ1½ �

Update law :
x
^  x, t ¼ tkþ1 � τ

x̂  x
^
, t ¼ tkþ1

( )
:

ð3:31Þ

To ease the analysis, we initialize the propagation unit at time tk+1�τ with the

state vector that the sensor obtains. We then run the plant, model, and propagation

unit together until tk+1. At this time, the model is updated with the propagation unit

state vector, as described in the update law of (3.31). This is equivalent to having

the propagation unit receive the state vector x(tk+1�τ) at tk+1 and propagate it

instantaneously to tk+1.

We define the errors ê ¼ x
^ � x̂ and e

^ ¼ x� x
^
. We also make the following

definitions:

ΛT ¼
Aþ BK �BK �BKeA þ eBK Â � eBK �eBK
0 0 Â

264
375, z ¼ x

e
^

ê

264
375 ð3:32Þ

where eA ¼ A� Â , eB ¼ B� B̂ represent the modeling error matrices. The dynamics

of the overall system (3.31) for t ∈ [tk, tk+ 1) can be described by:

_z tð Þ ¼ ΛTz
�
t
�
,

with state reset equations : z tkð Þ ¼
x t�k
� �
e
^

t�k
� �
0

2664
3775,

and z tkþ1 � τð Þ ¼
x
�
tkþ1 � τð Þ��
0

e
^�

tkþ1 � τð Þ��þ ê
��
tkþ1 � τ

���
2664

3775
ð3:33Þ

where tk+ 1� tk¼ h, 0< τ< h.
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Proposition 3.5 The system with dynamics described by (3.33) with initial

conditions z t0ð Þ ¼
x0

e
^

0

ê 0

264
375 ¼ z0, t0 ¼ 0, has the following response:

z tð Þ ¼
x tð Þ
e
^

tð Þ
ê tð Þ

2664
3775 ¼ eΛT t�tkð Þ

I 0 0

0 I 0

0 0 0

264
375eΛTτ

I 0 0

0 0 0

0 I I

264
375eΛT h�τð Þ

0B@
1CA

k x0

e
^

0

ê 0

264
375

for t∈
�
tk, tkþ1 � τ

�
z tð Þ ¼

x tð Þ
e
^

tð Þ
ê tð Þ

2664
3775 ¼ eΛT t�tkþ1þτð Þ

I 0 0

0 0 0

0 I I

264
375eΛT h�τð Þ

I 0 0

0 I 0

0 0 0

264
375eΛTτ

I 0 0

0 0 0

0 I I

264
375eΛT h�τð Þ

0B@
1CA

k x0

e
^

0

ê 0

264
375

for t∈
�
tkþ1 � τ, tkþ1

�
:

ð3:34Þ

with tk+1� tk¼ h, τ< h.

Proof Assume the system starts at time t0 with initial conditions z t0ð Þ ¼
x0
e
^

0

ê 0

24 35.
On the interval t ∈ [t0, t1� τ), the system response is:

z tð Þ ¼
x tð Þ
e
^

tð Þ
ê tð Þ

2664
3775 ¼ eΛT t�t0ð Þ

x0

e
^

0

ê 0

264
375: ð3:35Þ

At t¼ (t1� τ)�:

z t1 � τð Þ�ð Þ ¼
x
�
t1 � τð Þ��

e
^�

t1 � τð Þ��
ê
�
t1 � τð Þ��

2664
3775 ¼ eΛT h�τð Þ

x0

e
^

0

ê 0

264
375: ð3:36Þ

According to the update law, at t¼ t1� τ, e
^  0 and ê  x� x̂ ¼ e

^ þ ê , so:
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z t1 � τð Þ ¼
x t1 � τð Þ
e
^

t1 � τð Þ
ê t1 � τð Þ

2664
3775 ¼

I 0 0

0 0 0

0 I I

264
375eΛT h�τð Þ

x0

e
^

0

ê 0

264
375: ð3:37Þ

Continuing with the interval t ∈ [t1� τ, t1)

z tð Þ ¼
x tð Þ
e
^

tð Þ
ê tð Þ

2664
3775 ¼ eΛT t�t1þτð Þ

I 0 0

0 0 0

0 I I

264
375eΛT h�τð Þ

x0

e
^

0

ê 0

264
375 ð3:38Þ

At t¼ t1
�:

z t1
�ð Þ ¼

x t1
�ð Þ

e
^

t1
�ð Þ

ê t1
�ð Þ

2664
3775 ¼ eΛTτ

I 0 0

0 0 0

0 I I

264
375eΛT h�τð Þ

x0

e
^

0

ê 0

264
375: ð3:39Þ

Now, according to the update law, at t¼ t1, ê  0, so:

z t1ð Þ ¼
x t1ð Þ
e
^

t1ð Þ
ê t1ð Þ

2664
3775 ¼

I 0 0

0 I 0

0 0 0

264
375eΛTτ

I 0 0

0 0 0

0 I I

264
375eΛT h�τð Þ

x0

e
^

0

ê 0

264
375 ð3:40Þ

It is easy to see that the response is given by (3.34):

z tð Þ ¼
x tð Þ
e
^

tð Þ
ê tð Þ

264
375 ¼ eΛT t�tkð Þ

I 0 0

0 I 0

0 0 0

264
375eΛTτ

I 0 0

0 0 0

0 I I

264
375eΛT h�τð Þ

0B@
1CA

k x0

e
^

0

ê 0

264
375

for t∈
�
tk, tkþ1 � τ

�
z tð Þ ¼

x tð Þ
e
^

tð Þ
ê tð Þ

264
375 ¼ eΛT t�tkþ1þτð Þ

I 0 0

0 0 0

0 I I

264
375eΛT h�τð Þ

I 0 0

0 I 0

0 0 0

264
375eΛTτ

I 0 0

0 0 0

0 I I

264
375eΛT h�τð Þ

0B@
1CA

k x0

e
^

0

ê 0

264
375

for t∈
�
tkþ1 � τ, tkþ1

�
:

♦
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We will present now the necessary and sufficient conditions for this system to be

exponentially stable at large (or globally).

Theorem 3.6 The system described by (3.33) is globally exponentially

stable around the solution z ¼
x
e
^

ê

24 35 ¼ 0

0

0

24 35 if and only if the eigenvalues of

MT ¼
I 0 0

0 I 0

0 0 0

24 35eΛTτ
I 0 0

0 0 0

0 I I

24 35eΛT h�τð Þ are inside the unit circle.

Proof Sufficiency. Taking the norm of the solutions described in (3.34):

z tð Þk k ¼ eΛT t�tkð Þ
I 0 0

0 I 0

0 0 0

2664
3775eΛTτ

I 0 0

0 0 0

0 I I

2664
3775eΛT h�τð Þ

0BB@
1CCA

k

z0




















� eΛT t�tkð Þ

 

 � I 0 0

0 I 0

0 0 0

2664
3775eΛTτ

I 0 0

0 0 0

0 I I

2664
3775eΛT h�τð Þ

0BB@
1CCA

k
















 � z0k k

for t∈
�
tk, tkþ1 � τ

�
z tð Þk k ¼ eΛT t�tkþ1þτð Þ

I 0 0

0 0 0

0 I I

2664
3775eΛT h�τð Þ

I 0 0

0 I 0

0 0 0

2664
3775eΛTτ

I 0 0

0 0 0

0 I I

2664
3775eΛT h�τð Þ

0BB@
1CCA

k

z0






















� eΛT t�tkþ1þτð Þ

I 0 0

0 0 0

0 I I

2664
3775eΛT h�τð Þ


















 �

I 0 0

0 I 0

0 0 0

2664
3775eΛTτ

I 0 0

0 0 0

0 I I

2664
3775eΛT h�τð Þ

0BB@
1CCA

k




















 � z0k k

for t∈
�
tkþ1 � τ, tkþ1

�
:

ð3:41Þ

Now lets analyze the first terms on the right hand side of the inequalities in

(3.41), we obtain:

eΛT t�tkð Þ

 

 � 1þ t� tkð Þσ ΛTð Þ þ t� tkð Þ2
2!

σ ΛTð Þ2 . . . ¼ eσ ΛTð Þ t�tkð Þ � eσ ΛTð Þh ¼ Ka

ð3:42Þ
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and

eΛT t�tkþ1þτð Þ

I 0 0

0 0 0

0 I I

2664
3775eΛT h�τð Þ


















 � eΛT t�tkþ1þτð Þ

 

 � eΛT h�τð Þ

 

 ¼ eΛT t�tkþ1þτð Þ

 

 �C

� 1þ t� tk þ τð Þσ ΛTð Þ þ t� tk þ τð Þ2
2!

σ ΛTð Þ2 . . .
0@ 1A �C

¼ eσ ΛTð Þ t�tkþ1þτð Þ �C � eσ ΛTð Þτ �C ¼ Kb

ð3:43Þ

where σ ΛTð Þ is the largest singular value of ΛT. We define a new constant K1¼max

(Ka,Kb).

We now study the term

I 0 0

0 I 0

0 0 0

24 35eΛTτ
I 0 0

0 0 0

0 I I

24 35eΛT h�τð Þ

0@ 1Ak












. It is

clear that this term will be bounded if and only if the eigenvalues of

M ¼
I 0 0

0 I 0

0 0 0

24 35eΛTτ
I 0 0

0 0 0

0 I I

24 35eΛT h�τð Þ lie inside the unit circle:

I 0 0

0 I 0

0 0 0

24 35eΛTτ
I 0 0

0 0 0

0 I I

24 35eΛT h�τð Þ

0@ 1Ak












 � K2e

�α1k ð3:44Þ

with K2, α1> 0.

Since k is a function of time we can bound the right term of (3.44) in terms of t:

K2e
�α1k < K2e

�α1 t�1h ¼ K2e
α1
h e�

α1
h t ¼ K3e

�αt ð3:45Þ

with K3, α> 0.

So from (3.41) using (3.42), (3.43), and (3.45) we can conclude:

z tð Þk k � K1 � K3e
�αt � z0k k: ð3:46Þ

Necessity. We will now prove the necessity part of the theorem by contradiction.

Assume the system is stable and that M ¼
I 0 0

0 I 0

0 0 0

24 35eΛTτ
I 0 0

0 0 0

0 I I

24 35eΛT h�τð Þ

has at least one eigenvalue outside the unit circle. Since the system is stable, a

periodic sample of the response should be bounded. In other words, the sequence of
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a periodic sample of the response should converge to zero with time. We will take

the sample at times t�kþ 1. We can express the solution z(t�kþ 1) as:

z t�kþ1
� � ¼ ξ kð Þ

¼ eΛT τð Þ
I 0 0

0 0 0

0 I I

264
375eΛT h�τð Þ

I 0 0

0 I 0

0 0 0

264
375eΛTτ

I 0 0

0 0 0

0 I I

264
375eΛT h�τð Þ

0B@
1CA

k

z0

¼ eΛT τð Þ
I 0 0

0 0 0

0 I I

264
375eΛT h�τð ÞMkz0:

ð3:47Þ

We also know that M has at least one eigenvalue outside the unit circle. This

means that z(t�kþ 1) will in general grow with k. In other words, we cannot ensure

z(t�kþ 1), and x(k), will converge to zero for general initial condition z0.

z t�kþ1
� �

 

 ¼ ξ kð Þk k ! 1 as k!1 ð3:48Þ

this clearly means the system cannot be stable, and thus we have a contradiction. ♦

It is interesting to note that the results in Proposition 3.5 and Theorem 3.6 can be

seen as a generalization of Proposition 2.1 and Theorem 2.3. The networked system

(2.6) can be seen as a special case of (3.32) when τ¼ 0. For this particular value of

τ the error ê ¼ x
^ � x̂ is always equal to 0 and the error e

^
can be expressed as

e
^ ¼ x� x̂ ; consequently (3.32) reduces to (2.6).

Example 3.4 We present a numerical example using the linearized dynamics of the

inverted pendulum on a moving cart shown in Example 3.2. Assume in this case

that the whole state can be measured and transmitted to the controller node.

In this example we consider a constant delay equal to 0.3 s. By using the results

in Theorem 3.6 we find that the networked system is stable for values

of 0.3< h< 1.98. Figure 3.9 shows the response of the plant and the model

for h¼ 1 s.

3.3.2 Discrete Time Systems with Delays

In this section we consider multi-input, multi-output linear time-invariant discrete-

time systems and models that are also subject to network delays. In this case the

updates will occur at some of the discrete time instants indexed by n that correspond
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to the operation and sampling of the plant. This implies that the update interval

h will be an integer number, representing the number of plant discrete instants

between two consecutive measurements that the sensor broadcasts.

Note that in this section the delay can be greater than the sampling time of the

system indexed by n but smaller than the update interval h at which the sensor

decides to send information. For discrete-time systems we assume that the update

time h is constant and an integer number. We also assume the delay τ is constant
and an integer number; it represents the number of system sampling instants that the

information is delayed. We will present here the case of full state feedback systems.

For this case we have that at times nk� τ the sensor transmits the state data to the

controller/actuator. This packet will arrive τ plant samplings later. So, at times kh
the controller/actuator receives the state vector value x(nk� τ). The main idea is to

use the plant model in the controller/actuator to estimate the present value of the

state. After this, the estimated state is used to update the controller’s model.

The Propagation Unit uses the plant model and the past values of the control

input u(n) to calculate an estimate x
^

nkð Þ of the current state x(nk) from the received

data x(nk� τ). This estimate is then used to update the model that with the controller

will generate the control signal for the plant.
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Fig. 3.9 Response of system in Example 3.4 for h¼ 1 s, τ¼ 0.3 s
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The system is described by the following equations:

Plant : x nþ 1ð Þ ¼ Ax
�
n
�þ Bu

�
n
�

Model : x̂ nþ 1ð Þ ¼ Â x̂
�
n
�þ B̂ u

�
n
�
, n∈

�
nk, nkþ1

�
Controller : u nð Þ ¼ Kx̂

�
n
�

Propagation

Unit : x
^

nþ 1ð Þ ¼ Â x
^�

n
�þ B̂ u

�
n
�
, n∈

�
nk � τ, nk

�
ð3:49Þ

Update law :
x! x

^
, n ¼ nk � τ

x
^ ! x̂ , n ¼ nk

( )
:

To ease the analysis, we initialize the propagation unit at time nk-τ with the state
vector that the sensor obtains. We then run the plant, model, and propagation unit

together until nk. At this time, the model is updated with the propagation unit state

vector, as described in the update law of (3.49). This is equivalent to having the

propagation unit receive the state vector x(nk�τ) at nk and to instantaneously

compute an estimate x
^

nkð Þ of the current state x(nk).
We define the errors ê nð Þ ¼ x

^
nð Þ � x̂ nð Þ and e

^
nð Þ ¼ x nð Þ � x

^
nð Þ. It can be

shown that the dynamics of the state and the errors can be represented by:

x nþ 1ð Þ ¼ �
Aþ BK

�
x
�
n
�� BK e

^�
n
�� BKê

�
n
�

e
^

nþ 1ð Þ ¼ �eA þ eBK�x�n�þ �
Â � eBK� e^�

n
�� eBKê �n�

ê nþ 1ð Þ ¼ Â ê
�
n
�
:

ð3:50Þ

Define the augmented state vector z ¼ xT e
^ T

ê T
h iT

then the augmented system

can be represented in compact form as:

z nþ 1ð Þ ¼ Λz nð Þ, ð3:51Þ

where Λ ¼
Aþ BK �BK �BKeA þ eBK Â � eBK �eBK

0 0 Â

264
375:

According to the update laws in (3.49) we have the augmented state reset

equations:

z nk � τð Þ ¼
x
�
nk � τð Þ��

0

e
^�

nk � τð Þ��þ ê
��
nk � τ

���
264

375,

z nkð Þ ¼
x n�k
� �
e
^

n�k
� �
0

2664
3775

ð3:52Þ
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where nk+1� nk¼ h, 0< τ< h. The dynamics of the overall system for n ∈ [nk, nk+1)
can be described as shown next.

Proposition 3.7 The system with dynamics described by (3.49) with initial condi-

tions z n0ð Þ ¼ xT0 e
^ T

0 ê T
0

h iT
¼ z0, n0¼ 0, has the following response:

z nð Þ ¼
x nð Þ
e
^

nð Þ
ê nð Þ

264
375 ¼ Λ n�nkð ÞΣkz0

for n∈
�
nk, nkþ1 � τ

� ð3:53Þ

z nð Þ ¼
x nð Þ
e
^

nð Þ
ê nð Þ

264
375 ¼ Λ n�nkþ1þτð Þ

I 0 0

0 0 0

0 I I

24 35Λ h�τð ÞΣkz0

for n∈
�
nkþ1 � τ, nkþ1

�
:

where Σ ¼
I 0 0

0 I 0

0 0 0

264
375Λτ

I 0 0

0 0 0

0 I I

264
375Λ h�τð Þ

0B@
1CA.

Theorem 3.8 The networked system described by (3.49) with constant updates h
and constant delays τ< h is globally exponentially stable around the solution z0¼ 0

if and only if the eigenvalues of

Σ ¼
I 0 0

0 I 0

0 0 0

24 35Λτ

I 0 0

0 0 0

0 I I

24 35Λ h�τð Þ ð3:54Þ

are within the unit circle in the complex plane.

Remark The analysis presented above for discrete-time systems offers an important

advantage compared to its continuous-time counterpart discussed in the previous

section. In order to compute the propagated state based on the delayed measurements

we need to store the previous values of the control inputs that were used over the

interval [nk� τ, nk). For discrete-time systems the control input history over [nk� τ, nk)
can be represented by a finite number of values but for continuous-time systems it is not

possible to store in digital memory an infinite number of values that characterize the

input u(t). In this case we need to sample sufficiently fast in order to obtain a good

approximation of the continuous control input u(t).
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3.4 Network Induced Delays: Large Delay Case

In this section we extend the approach discussed in previous sections to consider the

case when τ> h, that is, the delay τ is larger than the update interval h. We consider

both continuous and discrete-time systems. The aim is to obtain conditions for

stability in the presence of delays, when the delays are larger than the periodic

update intervals. The solution to this problem is obtained by considering an

increased number of propagation state variables which, in turn, requires the state

vector z to be augmented to include additional error variables.

3.4.1 Continuous Time Systems

For continuous time systems h and τ can be real numbers, they are not restricted to

be integers. For simplicity we consider first the case when h< τ< 2 h. The general
case ah< τ< (a+ 1)h for any positive integer a can be solved using the same

approach but adding more error variables.

We consider two propagation state variables x
^

1 and x
^

2. We update the state x
^

2

at time tk� τ using the real state x(tk� τ). At time tk we perform two updates in

sequential manner. First, we update the state of the model x̂ tkð Þ using the value

x
^

1 tkð Þ and then we update x
^

1 tkð Þ using the value x
^

2 tkð Þ. The overall setup for

continuous-time systems can be described as follows:

Plant : _x tð Þ ¼ Ax tð Þ þ Bu tð Þ
Model : _̂x tð Þ ¼ Â x̂

�
t
�þ B̂ u

�
t
�
, t∈

�
tk, tkþ1

�
Controller : u tð Þ ¼ Kx̂

�
t
�

Propagation
_
x
^

i tð Þ ¼ Â x
^

i

�
t
�þ B̂ u

�
t
�
, t∈

�
tk � τ, tk

�
, for i ¼ 1, 2

Unit :

ð3:55Þ

Update law : x! x
^

2, t ¼ tk � τ
x
^

1 ! x̂ , then x
^

2 ! x
^

1, t ¼ tk

� �
:

Using this representation we ensure that the model of the system that generates

the state x̂ tð Þ is updated at time tk with the propagated variable that is computed

based on the measurement that was sent by the sensor at time tk� τ, see Fig. 3.10.
In this figure we can see that at time tk the plant model in the controller is updated

with information generated at time tk� τ. Even though a new measurement has

been sent by the senor node at time tk+ 1� τ, this new information has not arrived

yet to the controller node due to large delay τ> h.

Remark Note that in the actual implementation we only need one propagation unit

(and only one propagation state variable) that receives the delayed measurement
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and propagates it instantaneously to time tk using the previous control input u(t)
stored over the interval [tk� τ, tk].

Define the errors e
^

tð Þ ¼ x tð Þ � x
^

2 tð Þ, ê tð Þ ¼ x
^

1 tð Þ � x̂ tð Þ and e
_

tð Þ ¼
x
^

2 tð Þ � x
^

1 tð Þ. It can be shown that the dynamics of the state and the errors can

be written as:

_x tð Þ ¼ �
Aþ BK

�
x
�
t
�� BK e

^�
t
�� BKê

�
t
�� BK e

_�
t
�

_
e
^

tð Þ ¼ �eA þ eBK�x�t�þ �
Â � eBK� e^�

t
�� eBKê �t�� eBK e

_�
t
�

_̂e tð Þ ¼ Â ê
�
t
�

_
e
_

tð Þ ¼ Â e
_�

t
�
:

ð3:56Þ

Define the augmented state vector z ¼ xT e
^ T

ê T e
_T

h iT
then the augmented

system can be described by:

_z tð Þ ¼ Λz tð Þ, ð3:57Þ

whereΛ ¼

Aþ BK �BK �BK �BKeA þ eBK Â � eBK �eBK �eBK
0 0 Â 0

0 0 0 Â

266664
377775: From the update laws (3.55) we

obtain the augmented state reset equations:

z tk � τð Þ ¼

x
�
tk � τð Þ��
0

ê
�
tk � τð Þ��

e
^�

tk � τð Þ��þ e
_��

tk � τ
���

2666664

3777775, z tkð Þ ¼

x t�k
� �
e
^

t�k
� �

e
_

t�k
� �
0

2666664

3777775 ð3:58Þ

where tkþ1 � tk ¼ h, h < τ < 2h:

Sensor

Controller

··· ···

Time (t)

tk-τ

tk-1 tk+1 tk+2 tk+3 tk+4tk

tk+1-τ tk+2-τ tk+3-τ tk+4-τ

Fig. 3.10 Representation of update intervals in the presence of delays h< τ <2 h
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Proposition 3.9 The system with dynamics described by (3.55) with initial condi-

tions z t0ð Þ ¼ xT0 e
^ T

0 ê T
0 e

_T
0

h iT
¼ z0, t0¼ 0, has the following response:

z tð Þ ¼

x tð Þ
e
^

tð Þ
ê tð Þ
e
_

tð Þ

2666664

3777775 ¼ eΛ t�tkð ÞΣkz0

for t∈
�
tk, tkþ1 � τ0

�
ð3:59Þ

z tð Þ ¼

x tð Þ
e
^

tð Þ
ê tð Þ
e
_

tð Þ

2666664

3777775 ¼ eΛ t�tkþ1þτ0ð Þ

I 0 0 0

0 0 0 0

0 0 I 0

0 I 0 I

266664
377775eΛ h�τ0ð ÞΣkz0

for t∈
�
tkþ1 � τ0, tkþ1

�

where Σ ¼

I 0 0 0

0 I 0 0

0 0 0 I

0 0 0 0

266664
377775eΛτ0

I 0 0 0

0 0 0 0

0 0 I 0

0 I 0 I

266664
377775eΛ h�τ0ð Þ, and τ 0 ¼ τ� h.

Theorem 3.10 The networked system described by (3.55) with constant updates h
and constant delays h< τ< 2 h is globally exponentially stable around the solution
z0¼ 0 if and only if the eigenvalues of

Σ ¼

I 0 0 0

0 I 0 0

0 0 0 I

0 0 0 0

266664
377775eΛτ0

I 0 0 0

0 0 0 0

0 0 I 0

0 I 0 I

266664
377775eΛ h�τ0ð Þ ð3:60Þ

are within the unit circle of the complex plane.

Remark The most important advantage of the results presented in this section

compared to the special case when the delays are restricted to be smaller than the

update interval can be better appreciated in the next scenario: for a given plant,

model, controller, and network delay τ there may not be an update interval h> τ
that stabilizes the system (as shown in Example 3.3 below), but using the results in

this section, we can find some smaller interval h< τ that results in a stable system.
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We can extend the previous results in order to establish necessary and sufficient

conditions for stability for the general case when ah< τ< (a+ 1)h by adding

a additional propagation (where a is a positive integer) state variables with respect

to the small delay case described in Sect. 3.3. For instance, in the previous section

we had that h< τ< 2 h so a¼ 1; there we added one additional propagation variable

with respect to the small delay case and we had a total of two propagation variables.

Theorem 3.11 The networked system described by (3.55) with constant
updates h, constant delays ah< τ< (a+ 1)h, and with augmented state

z ¼ xT e
^T

ê T e
_T
1 . . . e

_T
a

h iT
is globally exponentially stable around the solution

z0¼ 0 if and only if the eigenvalues of

Σ ¼

I 0 0 0 . . . 0 0

0 I 0 0 . . . 0 0

0 0 0 I . . . 0 0

⋮ ⋱ ⋮

0 0 0 0 . . . I 0

0 0 0 0 . . . 0 I

0 0 0 0 . . . 0 0

266666666666664

377777777777775
eΛτ

0

I 0 0 0 . . . 0 0

0 0 0 0 . . . 0 0

0 0 I 0 . . . 0 0

0 0 0 I . . . 0 0

⋮ ⋱ ⋮

0 0 0 0 . . . I 0

0 I 0 0 . . . 0 I

266666666666664

377777777777775
eΛ h�τ0ð Þ

ð3:61Þ

are inside the unit circle, where τ 0 ¼ τ� ah, e
^

tð Þ ¼ x tð Þ � x
^

aþ1 tð Þ, ê tð Þ ¼ x
^

1 tð Þ
�x̂ tð Þ, e_i tð Þ ¼ x

^
iþ1 tð Þ � x

^
i tð Þ, for i¼ 1,2. . .a, and the (a+ 3)� (a+ 3) matrix Λ is

given by:

Λ ¼

Aþ BK �BK �BK �BK . . . �BKeA þ eBK Â � eBK �eBK �eBK . . . �eBK
0 0 Â 0 . . . 0

0 0 0 Â . . . 0

⋮ ⋱ ⋮

0 0 0 0 . . . Â

266666666664

377777777775
: ð3:62Þ

Example 3.5 Consider the following unstable continuous-time plant, model, and

controller gain:

A ¼ �0:349 0:65

�0:316 0:787

" #
, B ¼ 0

1

" #
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Â ¼ �0:5 1

0 0:6

" #
, B̂ ¼ �0:008

1

" #
ð3:63Þ

K ¼ �5:4621 �11:1658½ �:

Suppose that the networked induced delay is constant and equal to 1.6 s. For this

delay there is no update interval h> τ that provides stability as shown in the top part
of Fig. 3.11. If we decrease the update interval, there exist values of h as shown in

the bottom part of Fig. 3.11, for which the system is stable. An example of a stable

response of the system for τ¼ 1.6 time units is shown in Fig. 3.13a using h¼ 1.2

time units.

Suppose now that the delay is larger, τ¼ 1.85 s. Figure 3.12 shows that stabi-

lizing values of h exist for the range for 2 h< τ<3 h (c), but not for h< τ<2 h (b) or
for τ< h (a). The response of the system for τ¼ 1.85 s and using h¼ 0.73 s is shown

in Fig. 3.13b.

3.4.2 Discrete-Time Systems

The results of the previous section can be easily extended to consider discrete time

system with large delays. Keep in mind that the update intervals h and the delays τ
are constrained to be integers. The following theorem provides necessary and
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Fig. 3.11 τ¼ 1.6 s. Eigenvalue of Σ with largest magnitude for τ< h (top) and for h< τ<2 h
(bottom)
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sufficient conditions for stability of discrete time networked control systems with

delays. The proof follows directly from the results in Sects. 3.3.2 and 3.4.1.

Theorem 3.12 The networked system described by (3.49) with constant
updates h, constant delays ah< τ< (a+ 1)h, and with augmented state

z ¼ xT e
^T

ê T e
_T
1 . . . e

_T
a

h iT
is globally exponentially stable around the solution

z0¼ 0 if and only if the eigenvalues of

Σ ¼

I 0 0 0 . . . 0 0

0 I 0 0 . . . 0 0

0 0 0 I . . . 0 0

⋮ ⋱ ⋮

0 0 0 0 . . . I 0

0 0 0 0 . . . 0 I

0 0 0 0 . . . 0 0

266666666666664

377777777777775
Λτ0

I 0 0 0 . . . 0 0

0 0 0 0 . . . 0 0

0 0 I 0 . . . 0 0

0 0 0 I . . . 0 0

⋮ ⋱ ⋮

0 0 0 0 . . . I 0

0 I 0 0 . . . 0 I

266666666666664

377777777777775
Λ h�τ0ð Þ

ð3:64Þ

are within the unit circle of the complex plane, where τ 0 ¼ τ� ah, e
^

nð Þ ¼ x nð Þ
� x

^
aþ1 nð Þ, ê nð Þ ¼ x

^
1 nð Þ � x̂ nð Þ, e_i nð Þ ¼ x

^
iþ1 nð Þ � x

^
i nð Þ, for i¼ 1,2. . .a, and the

(a+ 3)� (a+ 3) matrix Λ is given by (3.62).

3.5 Notes and References

This chapter extended the initial results on MB-NCS to control systems where it is

only possible to measure the output of the plant but not the entire state.

The approach described in Sect. 3.1 uses a traditional Luenberger observer [76]

and studies the associated convergence and stability results when the observed

states are used to update the model of the system at the controller node. A similar

analysis was presented in Sect. 3.2 for discrete time systems. In both cases we

design the controller and observer gains and then analyze the stability of the system

given these gains and the uncertainties of the system. It was shown that more

complex expression than the simple, separate design of the controller and observer

gains needs to be followed due to the system uncertainties and the absence of

feedback for intervals of time to be determined.

The MB-NCS framework was also extended to consider a particular problem in

NCS, namely, network induced delays. One of the main advantages using the

model-based approach in comparison to typical methods in NCS is that the delayed

measurements are propagated in order to obtain a more accurate estimation of the

current states.
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The work in Sects. 3.1 and 3.2 was first published in [187] and [188]. The work

in Sect. 3.3 appeared first in [188]. The extensions to consider large delays using

multiple propagation units are based on [86].

For the case in which the observer is implemented in the sensor node, the

computational load of an observer in the sensor is justified by the fact that, typically

sensors which can be connected to a network have an embedded processor inside.

Ishii and Francis [124] give a similar justification. In their approach an observer is

placed at the output of the plant to reconstruct the state vector. The result is then

quantized and sent over the network to the controller.

Chapter 11 revisits the output feedback problem when considering tracking of

reference inputs. Different system representation and controller designs are used

and state observers are not required.

Many different approaches exist for output feedback stabilization of networked

systems. For instance, [292] presented a method based on linear matrix inequalities.

The paper [225] discussed the detectability and output feedback stabilizability

problems for NCS of nonlinear systems using algebraic Riccati equations. In

[229] the output feedback system is modeled as a Markov chain and a two-mode

controller is designed.

Similarly, interest in NCS with time delays has increased in the recent years.

Assumptions about network induced delays vary from constant delays to time-

varying deterministic delays and also time-varying stochastic delays that may

follow one of many different probability distributions. The authors of [291]

explored different problems related to NCS including time delays and offer solu-

tions using hybrid systems techniques. Other techniques that consider network

induced delays in NCS are given in [132] and [230]. In more recent work such as

[276] the authors use linear matrix inequalities for controller design in the presence

of stochastic delays from the sensor to the controller and from the controller to the

system that follow a Bernoulli distribution. The work in [46] provides general

models of NCSs that consider time-varying sampling intervals and delays. In [45]

the authors use the Jordan canonical form of the continuous-time plant in order to

derive stability conditions considering uncertain, time varying delays that can be

smaller or larger than the sampling interval of the network.
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Chapter 4

Model-Based Control Systems

with Intermittent Feedback

The general idea using the intermittent feedback approach is to operate a control

system in open-loop mode for as long as possible in order to reduce the use of

resources (communication resources when applied to NCS) and to change the

mode of operation to closed-loopmode in order to recover some desired performance

by applying a continuous feedback control action. The present chapter develops this

idea in the context ofMB-NCS. The overall networked architecture and approach are

similar to those presented before in Chaps. 2 and 3. The main difference is that the

update strategy in previous chapters uses instantaneous feedback, that is, a single set

of measurements is sent from the sensor node to the controller node once every h time

units. In contrast, the intermittent approach establishes a closed-loop operation mode

in which multiple measurements are transmitted starting at every h time units.

Intermittent feedback is a very natural way of controlling the response of a system.

A simple example can be found in human learning. When a person is performing

certain operation or action repeatedly, s/he first pays special attention to learn it and

eventually the same person can perform the same action with “closed eyes” which in

this case it means open loop or lack of visual feedback. If the operation or process that

the person is controlling changes or if at some moment it is easily perceived that the

outcome is significantly different from the desired one then it is necessary to obtain

visual feedback to discern how his actions (control) affect the results and make all

corrections and adjustments as needed (to compute a different control input).

The implications and characteristics of the use of intermittent feedback in

automatic control as explained here have not been fully studied. Specifically, the

potential of intermittent feedback in NCS is of great interest. The central idea in this

chapter is to take advantage of the preexisting work in model-based networked

control systems and of the concept of intermittent feedback to develop new results

and ideas that can lead us to a more complete and comprehensive understanding of

analysis and design of networked control systems. In addition to what we have said

in the previous paragraph about intermittent feedback, the difference between

closed-loop and open-loop dynamics suggests a hybrid nature for the system

(switching between two modes), and since networked control systems display

characteristics of hybrid systems as well, the application of the intermittent

E. Garcia et al., Model-Based Control of Networked Systems, Systems & Control:

Foundations & Applications, DOI 10.1007/978-3-319-07803-8_4,

© Springer International Publishing Switzerland 2014

91

http://dx.doi.org/10.1007/978-3-319-07803-8_2
http://dx.doi.org/10.1007/978-3-319-07803-8_3


feedback concept to networked control systems seems especially intuitive. Also,

since, under an intermittent feedback scenario we have entire intervals of time when

the system is running closed loop, it makes it far more natural to relate dynamics in

networked control systems to results in classical, continuous-time control theory.

In this chapter we extend the key results of Chaps. 2 and 3 in order to consider

the intermittent behavior that may be encountered in several types of networks.

Proofs for most theorems are similar to the corresponding proofs in the previous

chapters and, therefore, have been omitted. The present chapter is organized

as follows: In Sect. 4.1 we present the Model-Based Control with intermittent

feedback architecture and provide stability results for continuous-time systems. In

Sect. 4.2 we introduce a different approach for intermittent feedback that relaxes

the use of continuous feedback during the closed-loop times. Discrete-time systems

are studied in Sect. 4.3. In Sect. 4.4 an alternative lifting approach is used to study

stability of discrete-time systems. Notes and references are in Sect. 4.5.

4.1 Continuous-Time Systems with State Feedback

and Closed-Loop Mode

In this section the architecture of MB-NCS with intermittent feedback is first

discussed. Then conditions for stability are presented based on the two modes of

operation: open loop and closed loop. It is assumed in this section that when the

networked system operates in closed-loop the controller receives continuous feed-

back from the sensor. This is a restrictive assumption since the network has limited

bandwidth. This assumption will be relaxed later in Sect. 4.2. Nevertheless, the ideas

presented in this section provide a clear idea about the behavior of this type of system.

4.1.1 Model-Based Control with Intermittent
Feedback Architecture

We consider a similar architecture to the one we used for MB-NCS in Chap. 2.

A nominal model of the plant that approximates the dynamics of the real plant is

implemented in the controller node in order to generate an estimate x̂ of the plant

state x during the open-loop intervals. The main difference with respect to the

traditional MB-NCS setup, as it can be seen in Fig. 4.1, is that when the networked

system operates in closed-loop mode the control input is a function of the real plant

state x(t) and x̂ tð Þ ¼ x tð Þ during the whole closed-loop interval.

In dealing with intermittent feedback, we have two key time parameters: how

frequently we want to close the loop, which we shall denote by h; and how long we

wish the loop to remain closed, which we shall denote by τ, see Fig. 4.2. Naturally,
in the more general cases both h and τ can be time-varying. For the purposes on this

chapter, however, we will deal only with the case where both h and τ are fixed.
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We consider then a system such that the loop is closed periodically, every

h seconds, and where each time the loop closes, it remains so for a time of τ seconds.
The loop is closed at times tk for k¼ 1, 2, . . .. Thus, there are two very clear modes of

operation: closed loop and open loop. The system will be operating in closed-loop
mode for the intervals [tk, tk + τ) and in open loop for the intervals [tk + τ, tk+ 1).
Intuitively, we should be able to achieve much better results the longer the loop is

closed. Since the level of degradation of the information increases the longer the

system is running open loop, it is expected that intermittent feedback should yield

better results than those for traditional MB-NCS with the same period h. This is
indeed the case. The remaining sections summarize the corresponding results

described in Chaps. 2 and 3 but now using the intermittent feedback approach.

4.1.2 Stability of Continuous-Time MB-NCS
with Intermittent Feedback

In this section we consider uncertain linear time invariant systems that are

interconnected as shown in Fig. 4.1. The uncertain plant and the nominal plant

model are represented by:

Plant

Model

K

Network

Sensor

u

x

x̂

Fig. 4.1 MB-NCS with intermittent feedback (basic architecture)

h (full period)

Open loopτ (closed loop)

Fig. 4.2 Intermittent feedback. Open and closed-loop periods
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Plant _x ¼ Axþ Bu

Model _̂x ¼ Â x̂ þ B̂ u
ð4:1Þ

and the controller is given by

u ¼ Kx for t∈
�
tk, tk þ τ

�
Kx̂ for t∈

�
tk þ τ, tkþ1

�
:

(
ð4:2Þ

The state error is defined as

e tð Þ ¼ x tð Þ � x̂ tð Þ ð4:3Þ

and represents the difference between the plant state and the model state. The

modeling error matrices eA ¼ A� Â and eB ¼ B� B̂ represent the difference

between the plant and the model. We also define the augmented state vector

z tð Þ ¼ x tð Þ
e tð Þ

" #
.

Proposition 4.1 The system described by (4.1) with input (4.2) and initial

conditions z t0ð Þ ¼ x t0ð Þ
0

� �
¼ z0, has the following response:

z tð Þ ¼
eΛc t�tkð Þ I 0

0 0

" #
Σ

I 0

0 0

" # !k

z0, t∈
�
tk, tk þ τ

�

eΛo t� tkþτð Þð ÞeΛc τð Þ I 0

0 0

" #
Σ

I 0

0 0

" # !k

z0, t∈
�
tk þ τ, tkþ1

�

8>>>>>><>>>>>>:
ð4:4Þ

where Σ ¼ eΛo h�τð ÞeΛc τð Þ, Λc ¼
Aþ BK �BK

0 0

" #
, Λo ¼

Aþ BK �BKeA þ eBK Â � eBK
" #

,

and tk+ 1� tk¼ h.

Proof We will now proceed to derive the response of the MB-NCS with intermit-

tent feedback to prove this proposition in a direct way. To this effect, let us

separately investigate the state response when the system is operating under closed

and open-loop conditions, respectively.

During the open-loop case, that is, when t ∈ [tk + τ, tk+ 1), according to (4.2) we

have that u ¼ Kx̂ so

_x

_̂x

" #
¼ A BK

0 Â þ B̂ K

" #
x

x̂

" #
ð4:5Þ

with initial conditions x̂ tk þ τð Þ ¼ x tk þ τð Þ.
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Rewriting in terms of x and e, that is, of the vector z:

_z tð Þ ¼
_x tð Þ

_e tð Þ

" #
¼

Aþ BK �BK

eA þ eBK Â � eBK
" #

x tð Þ

e tð Þ

" #

z tk þ τð Þ ¼
x tk þ τð Þ

e tk þ τð Þ

" #
¼

x t�k þ τ
� �

0

24 35,
8t∈ �tk þ τ, tkþ1

�
:

ð4:6Þ

Thus, we have

_z ¼ Λoz, where Λo ¼
Aþ BK �BKeA þ eBK Â � eBK

" #
for t∈

�
tk þ τ, tkþ1

�
: ð4:7Þ

The closed-loop case is a simplified version of the case above, as the difference

resides in the fact that the state error is always zero. Thus, for t ∈ [tk, tk+ τ) we have

_z ¼ Λcz, where Λc ¼
Aþ BK �BK

0 0

" #
for t∈

�
tk, tk þ τ

�
: ð4:8Þ

This should be clear in that the error is always zero, while the state progresses

in the same way as before. From the analysis above, given an initial condition

z(t¼ 0)¼ z0, and assuming without loss of generality that we start the cycle in

closed loop then after a certain time t ∈ [0, τ) the solution of the trajectory of the

vector is given by

z tð Þ ¼ eΛc tð Þz0, t∈
�
0, τ
�
: ð4:9Þ

In particular, at time τ, z τð Þ ¼ eΛc τð Þz0.
Once the loop is opened, the open-loop behavior takes over, so that

z tð Þ ¼ eΛ0 t�τð Þz τð Þ ¼ eΛo t�τð ÞeΛc τð Þz0, t∈
�
τ, t1
�
: ð4:10Þ

In particular, when the time comes to close the loop again, that is, after time

h; then

z t�1
� � ¼ eΛo h�τð ÞeΛc τð Þz0: ð4:11Þ

Now, note that at times tk, z tkð Þ ¼ x tkð Þ
0

� �
, that is, the error e(t) is reset to zero. We

can represent this by pre-multiplying by
I 0

0 0

� �
before we analyze the closed-loop
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trajectory for the next cycle; because we wish to always start with an error that is set to

zero, we should actually multiply by
I 0

0 0

� �
at the beginning of the cycle as well.

Then, after k cycles, going through this analysis yields a solution.

z tkð Þ ¼ I 0

0 0

� �
eΛo h�τð ÞeΛc τð Þ I 0

0 0

� �� �k

z0 ¼ I 0

0 0

� �
Σ I 0

0 0

� �� �k

z0 ð4:12Þ

where Σ ¼ eΛo h�τð ÞeΛc τð Þ.
The final step is to consider the last (partial) cycle that the system goes through.

If the system is in closed loop, that is, t ∈ [tk, tk+ τ) then the solution can be

achieved merely by pre-multiplying z(tk) by eΛc t�tkð Þ. In the case when the system

is in open loop, that is, t ∈ [tk+ τ, tk+ 1) then clearly we must pre-multiply by

eΛo t� tkþτð Þð ÞeΛc τð Þ. ♦

A necessary and sufficient condition for stability of the networked system will

now be presented. For the definition of stability please refer to Definition 2.2 in

Sect. 2.2.

Theorem 4.2 The system described by (4.1) with input (4.2) is globally exponen-

tially stable around the solution z ¼ x
e

� �
¼ 0

0

� �
if and only if the eigenvalues of

I 0

0 0

� �
Σ I 0

0 0

� �
are strictly inside the unit circle, where Σ ¼ eΛo h�τð ÞeΛc τð Þ.

Proof Sufficiency. Taking the norm of the solution described as in Proposition 4.1:

z tð Þk k ¼ eΛc t�tkð Þ I 0

0 0

" #
eΛo h�τð ÞeΛc τð Þ I 0

0 0

" # !k

z0

						
						

� eΛc t�tkð Þ		 		 � I 0

0 0

" #
eΛo h�τð ÞeΛc τð Þ I 0

0 0

" # !k
						

						 � z0k k
ð4:13Þ

Notice that here we only consider the case t ∈ [tk, tk+ τ), however the process is
exactly the same for the intervals where t ∈ [tk + τ, tk+ 1). Now let’s analyze the first

factor of the right hand side of (4.13):

eΛc t�tkð Þ		 		 � 1þ t� tkð Þσ Λcð Þ þ t� tkð Þ2
2!

σ Λcð Þ2 . . . ¼ eσ Λcð Þ t�tkð Þ � eσ Λcð Þτ ¼ K1
ð4:14Þ

where σ Λcð Þ is the largest singular value of Λc. In general this term can always be

bounded since the time difference t� tk is always smaller than τ. In other words

even when Λc has eigenvalues with positive real part, eΛc t�tkð Þ		 		 can only grow a

certain amount. This growth is completely independent of k.
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We now study the factor
I 0

0 0

" #
eΛo h�τð ÞeΛc τð Þ I 0

0 0

" # !k
						

						. It is clear that it
will be bounded if and only if the eigenvalues of

I 0

0 0

� �
eΛo h�τð ÞeΛc τð Þ I 0

0 0

� �
lie

inside the unit circle:

I 0

0 0

" #
eΛo h�τð ÞeΛc τð Þ I 0

0 0

" # !k
						

						 � K2e
�α1k ð4:15Þ

with K2, α1> 0.

Since k is a function of time we can bound the right hand side of (4.15) in terms

of t:

K2e
�α1k < K2e

�α1 t�1
h ¼ K2e

α1
h e�

α1
h t ¼ K3e

�αt ð4:16Þ

with K3, α> 0.

So from (4.13) using (4.14) and (4.16) we can conclude that:

z tð Þk k ¼ eΛ t�tkð Þ I 0

0 0

" #
eΛo h�τð ÞeΛc τð Þ I 0

0 0

" # !k

z0

						
						 � K1 � K3e

�αt � z0k k:

ð4:17Þ

Necessity. We will now prove the necessity part of the theorem by contradiction.

Assume the state feedback MB-NCS is stable and that
I 0

0 0

� �
eΛo h�τð ÞeΛc τð Þ

I 0

0 0

� �
has at least one eigenvalue outside the unit circle. Let us define

Σ hð Þ ¼ eΛo h�τð ÞeΛc τð Þ. Since the system is stable, a periodic sample of the response

should be stable as well. In other words the sequence product of a periodic sample

of the response should converge to zero with time. We will take the sample at times

t�kþ 1, that is, just before the update. We will concentrate on a specific term: the state

of the plant x(t�kþ 1), which is the first element of z(t�kþ 1). We will call x(t�kþ 1), ξ(k).
Now assume Σ(η) has the following form:

Σ ηð Þ ¼ W ηð Þ X ηð Þ
Y ηð Þ Z ηð Þ

" #
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Then we can express the solution z(t) as:

eΛc t�tkð Þ
I 0

0 0

" #
Σ hð Þ

I 0

0 0

" # !k

z0

¼
W t� tkð Þ X t� tkð Þ
Y t� tkð Þ Z t� tkð Þ

" #
W hð Þð Þk 0

0 0

" #
z0

¼
W t� tkð Þ W hð Þð Þk 0

Y t� tkð Þ W hð Þð Þk 0

24 35z0
ð4:18Þ

Now the values of the solution at times t�kþ 1, that is just before the update, are

z t�kþ1

� � ¼ W hð Þ W hð Þð Þk 0

Y hð Þ W hð Þð Þk 0

" #
z0 ¼

W hð Þð Þkþ1
0

Y hð Þ W hð Þð Þk 0

" #
z0

We also know that
I 0

0 0

� �
eΛo h�τð ÞeΛc τð Þ I 0

0 0

� �
has at least one eigenvalue

outside the unit circle, which means that those unstable eigenvalues must be in W
(h). This means that the first element of z(t�kþ 1), which we call ξ(k), will in general

grow with k. In other words we can’t ensure ξ(k) will converge to zero for general

initial condition x0. In general,

x t�kþ1

� �		 		 ¼ ξ kð Þk k ¼ W hð Þð Þkþ1x0

			 			! 1 as k ! 1 ð4:19Þ

which means that the system cannot be stable, and thus we have a contradiction.♦

4.2 A Different Approach: Fast-Slow Update Rates

In practice when considering continuous-time systems we are not really capable of

implementing a closed-loop mode of operation, since it requires continuous feed-

back from the sensor to the controller using a limited-bandwidth digital network as

a communication medium.

A more realistic way of implementing intermittent feedback for continuous-time

systems is to consider fast and slow update rates. The difference of the approach in

this section compared to one in the previous section is that when the closed-loop

mode turns on the controller does not receive continuous measurements from the

sensor; instead the sensor sends measurements at discrete points of time which are

more frequent than when the open-loop mode was used.

Open loop. No measurements are received.

Closed loop. Updates are received at higher rate but continuous feedback is

not assumed.
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4.2.1 State Feedback

There are several parameters that are used for the analysis of this type of intermit-

tent feedback MB-NCS (Fig. 4.3).

h: represents the duration of the entire cycle.

τ: represents the interval of time when the controller is receiving updates at higher

frequency; this corresponds to the closed-loop duration of the cycle.

f: is the time interval between successive fast updates.

τf ¼ τ
f: represents the number of fast updates during the closed-loop duration of the

cycle and it is assumed to be an integer.

Consider the plant, control input, and state error defined in (4.1)–(4.3). The

response of the MB-NCS with fast and slow update rates is given in the following

proposition.

Proposition 4.3 The system described by (4.1) and input (4.2) with initial condi-

tions z t0ð Þ ¼ x t0ð Þ
0

" #
¼ z0, has the following response:

z tkð Þ ¼ I 0

0 0

" #
eΛ h�τð Þ I 0

0 0

" #
e fΛ

 !tf !k

z0 ð4:20Þ

where Λ ¼ Aþ BK �BKeA þ eBK Â � eBK
" #

, z tð Þ ¼ x tð Þ
e tð Þ

" #
, and tk + 1� tk¼ h.

tk tk+f tk+2f tk+1 Time (t)
tk+t

t

h

Fig. 4.3 Representation of parameters involved in the model-based approach

with intermittent feedback
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Proof The times tk k¼ 0,1,. . . represent the beginning of a new cycle, that is,

they represent the first time instant that updates are received after an open-loop

period. Let z(tk) represents the augmented state after the first update takes place.

It follows that:

z tð Þ ¼ eΛ t�tkð Þz tkð Þ, t∈
�
tk, tk þ f

�
: ð4:21Þ

In particular, at time tk+ f we have z tk þ fð Þ ¼ I 0

0 0

" #
e fΛz tkð Þ because of the

second update. The response of the augmented system during the following period

can be expressed in a similar way.

z tð Þ ¼ eΛ t� tkþfð Þð Þz tk þ fð Þ, t∈
�
tk þ f , tk þ 2f

�
: ð4:22Þ

At time tk + 2f we obtain z tk þ 2fð Þ ¼ I 0

0 0

" #
e fΛ

 !2

z tkð Þ. The response of the

system at every update is of similar form including the last update of the cycle

which takes place at time tk+ τ and it is given by (in terms of z(tk)):

z tk þ τð Þ ¼ I 0

0 0

" #
e fΛ

 !τf

z tkð Þ: ð4:23Þ

The second part of the cycle corresponds to the open-loop mode when no update

is transmitted for the time interval t ∈ [tk+ τ, tk+ 1); the response of the augmented

system can be represented by:

z tk þ τð Þ ¼ eΛ t� tkþτð Þð Þz tk þ τð Þ, t∈
�
tk þ τ, tkþ1

�
: ð4:24Þ

At time tk+ 1 we begin a new cycle and the first update of that cycle takes place

at that same instant. The response of the system, including the first update, in terms

of z(tk) can be written as follows:

z tkþ1ð Þ ¼ I 0

0 0

" #
eΛ h�τð Þ I 0

0 0

" #
efΛ

 !τf

z tkð Þ: ð4:25Þ

Due to the periodicity of the open loop and closed loop as defined in this section

and the periodic fast updates during the closed-loop periods, the response of the

augmented system to initial conditions z t0ð Þ ¼ x t0ð Þ
0

" #
¼ z0 is given by:
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z tkð Þ ¼ I 0

0 0

� �
eΛ h�τð Þ I 0

0 0

� �
efΛ

� �tf� �k

z0:

The last expression provides the state of the system at time instants tk, k¼ 0,1,. . .
The response at any time t ∈ (tk, tk+ 1) can be obtained by pre-multiplying (4.20) by

the corresponding partial response. ♦

A necessary and sufficient condition for stability of the networked system will

now be presented. For the definition of stability please refer to Definition 2.2 in

Sect. 2.2.

Theorem 4.4 The system described by (4.1) with input (4.2) and with fast-slow
intermittent update rates is globally exponentially stable around the solution

z ¼ x
e

� �
¼ 0

0

� �
if and only if the eigenvalues of

I 0

0 0

� �
eΛ h�τð Þ I 0

0 0

� �
efΛ

� �tf

are strictly inside the unit circle.

The proof is similar to the one for Theorem 4.2 and it is omitted.

Example 4.1 Consider the following open-loop unstable continuous-time system:

A ¼ �0:76 2:23
1:87 �2:56

� �
, B ¼ 1:14

0

� �
:

Let the nominal model dynamics be given by:

Â ¼ 1 2

2 �3

� �
, B̂ ¼ 1

0

� �
:

Let the control gain, selected based on the available model parameters, be:

K ¼ �5:4621 �11:1658½ �:

We choose τ¼ 0.4 s and f¼ 0.1 s. We want to find the range of values for h that

result in stability. Using the results in Theorem 4.4 we can find that stability is

obtained for choices of h (greater than 0.4 s) to about 1.83 s. Figure 4.4 shows the

response of the system and model for h¼ 1 s.

Example 4.2 Theorem 4.4 offers necessary and sufficient conditions for stability in

terms of different parameters including the parameters of the system which are

unknown. In this example we use the same results to estimate the admissible

uncertainties for given model parameters, i.e., those uncertainties that result in a

stable model-based control system.

This example considers a first order system for simplicity but the same type of

search can be followed for systems of higher order by searching over an increased

number of scalar parameters corresponding to the elements of the real system

matrices. Let the model parameters be given by: Â ¼ 1, B̂ ¼ 1, and K¼�2.
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Let us fix the network parameters: h¼ 2 s, τ¼ 0.5 s, f¼ 0.1 s. Figure 4.5 shows the

eigenvalue of the matrix
I 0

0 0

� �
eΛ h�τð Þ I 0

0 0

� �
efΛ

� �tf

with maximum magnitude

for different values of A and B, the real parameters. The figure shows which

combinations of plant parameters result in a stable control system for the given

selection of model and network parameters. For instance, we can see that values

close to the model parameters result in a stable model-based system, as expected.

4.2.2 Output Feedback

In the previous section we considered plants where the full vector of the state was

available at the output. When the state is not directly measurable, one can imple-

ment a state observer as in Sect. 3.1. When the networked system operates in closed

loop the control input is now based on the state of the observer, i.e., u ¼ Kx. In the

open-loop mode we use the state of the model as before, that is, u ¼ Kx̂ . In this

section we extend our results to this situation. As in the architecture used in Sect.

3.1 for instantaneous model-based feedback, we assume that the state observer is

collocated with the sensor. We use the plant model to design the state observer and

the configuration is similar as the one shown in Fig. 4.1.
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Fig. 4.4 Response of system and model for h¼ 1 s
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We consider systems of the form

_x ¼ Axþ Bu

y ¼ Cxþ Du:
ð4:26Þ

Let the nominal model corresponding to system (4.26) be given by:

_̂x ¼ Â x̂ þ B̂ u

ŷ ¼ Ĉ x̂ þ D̂ u:
ð4:27Þ

The approach we follow in this section is to implement a state observer at the

sensor node. The observer is given by:

_x ¼ Â � LĈ
� �

xþ B̂ � LD̂ L
� 
 u

y

� �
: ð4:28Þ

The parameters used by the observer are the available model parameters and it is

assumed that the observer has continuous access to the output of the system since it

is implemented at the sensor node. In order for the observer to obtain access to the

system’s input, a copy of the model is also implemented at the sensor node and

the state of that model is updated at the same updated instants as the model in the

controller node.
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Fig. 4.5 Maximum eigenvalue of matrix in Theorem 4.4 for different values of A and B
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The state of the model is now updated using the observer state. Define the

observer-model state error

e ¼ x� x̂ ð4:29Þ

and the error matrices eA ¼ A� Â , eB ¼ B� B̂ , eC ¼ C� Ĉ , eD ¼ D� D̂ .

Proposition 4.5 The system described by (4.26)–(4.28) with control input u ¼ Kx̂

and initial conditions z t0ð Þ ¼
x t0ð Þ
x t0ð Þ
e t0ð Þ

24 35 ¼ z0, t0 ¼ 0, has the following response:

z tkð Þ ¼
I 0 0

0 I 0

0 0 0

24 35eΛo h�τð Þ
I 0 0

0 I 0

0 0 0

24 35efΛo

0@ 1Atf0@ 1Ak

z0 ð4:30Þ

where Λo ¼
A BK �BK
LC Â � LĈ þ B̂ K þ LeDK �B̂ K � LeDK
LC LeDK � LĈ Â � LeDK

24 35 z tð Þ ¼
x tð Þ
x tð Þ
e tð Þ

24 35 and

h¼ tk+ 1� tk. ♦

The proof follows the steps of Proposition 4.3 and considering the augmented

system state.

Theorem 4.6 The system described by (4.26)–(4.28) with control input u ¼ Kx̂
and with fast-slow intermittent update rates is globally exponentially stable around

the solution z ¼
x
x
e

24 35 ¼
0

0

0

24 35 if and only if the eigenvalues of

I 0 0

0 I 0

0 0 0

24 35eΛo h�τð Þ
I 0 0

0 I 0

0 0 0

24 35efΛo

0@ 1Atf

ð4:31Þ

are within the unit circle of the complex plane. ♦

The proof is similar to the one for Theorem 4.2 and it is omitted.

Example 4.2 Consider the inverted pendulum on a moving cart example described

in Example 3.2 in Sect. 3.1. The nominal parameters, real parameters, controller

gain, and observer gain are the same as in Example 3.2. Let us consider the case

where τ¼ 0.3 s and f¼ 0.1 s.

Figure 4.6 shows the eigenvalue with maximum magnitude of matrix (4.31)

corresponding to this example. The networked system remains stable for values of

h between 0.3 s and about 2.45 s. Figure 4.7 shows the states corresponding to the

positions of the plant, the model, and the observer for the choice of h¼ 1 s and

Fig. 4.8 shows the corresponding velocities of the same subsystems.
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Fig. 4.7 Positions of inverted pendulum on a moving cart with intermittent feedback and h¼ 1 s
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4.3 Discrete-Time Systems with Intermittent Feedback

The architecture for discrete-time MB-NCS with intermittent feedback is essen-

tially the same as that for continuous time, see Fig. 4.1. We make here similar

assumptions to the ones in Sect. 2.3 for the instantaneous feedback case, where both

the sensor and actuator sides are synchronized and updates occur at the same

instants of time. The two key parameters in the implementation of MB-NCS with

intermittent feedback h and τ, are now restricted to be integers, as they represent the

number of ticks of the clock in the corresponding interval.

The treatment in this section is similar to Sect. 4.1 when we considered

two modes of operation: open- and closed-loop modes. Although it is possible

to consider fast and slow rates as in Sect. 4.2 the case of discrete-time systems

allows, for reasonable sampling rates of the underlying plant, for the implemen-

tation of a closed-loop mode since for discrete-time systems only a finite

number of measurements needs to be transmitted for the duration of the closed-

loop cycle.
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Fig. 4.8 Velocities of inverted pendulum on a moving cart with intermittent feedback and h¼ 1 s
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4.3.1 State Feedback

We consider a discrete-time system where the loop is closed periodically, every

h ticks of the clock, and where each time the loop is closed, it remains closed for a

time of τ ticks of the clock. The loop is closed at times nk for k¼ 1, 2, . . .. The
system will be operating in closed-loop mode for the intervals [nk, nk+ τ) and in

open loop for the intervals [nk+ τ, nk+ 1) with nk+ 1� nk¼ h. When the loop is

closed, the control decision is based directly on the information of the state of the

plant, but we will keep track of the error nonetheless.

Let the discrete-time plant and its nominal model be given by:

Plant : x nþ 1ð Þ ¼ Ax nð Þ þ Bu nð Þ
Model : x̂ nþ 1ð Þ ¼ Â x̂ nð Þ þ B̂ u nð Þ: ð4:32Þ

The control input can be represented by the following:

u nð Þ ¼ Kx̂ nð Þ for n∈
�
nk þ τ, nkþ1

�
Kx nð Þ for n∈

�
nk, nk þ τ

�(
ð4:33Þ

and the state error is given by:

e nð Þ ¼ x nð Þ � x̂ nð Þ: ð4:34Þ

We also define the augmented vector z nð Þ ¼ x nð Þ
e nð Þ
� �

.

Proposition 4.7 The system described by (4.32) with input (4.33) and initial

conditions z n0ð Þ ¼ x n0ð Þ
0

� �
¼ z0, has the following response:

z nð Þ ¼
Λ n�nkð Þ
Dc

I 0

0 0

� �
Σ

I 0

0 0

� �� �k

z0, n∈
�
nk, nk þ τ

�
Λ n� nkþτð Þð Þ
Do Λ τ

Dc

I 0

0 0

� �
Σ

I 0

0 0

� �� �k

z0, n∈
�
nk þ τ, nkþ1

�
8>>>><>>>>: ð4:35Þ

where Σ¼Λðh� τÞ
Do Λτ

Dc, ΛDo ¼ Aþ BK �BKeA þ eBK Â � eBK
� �

, ΛDc ¼ Aþ BK �BK
0 0

� �
and nk+ 1� nk¼ h.

Proof We will derive the response of the augmented system. The approach is

similar to the one used in the previous section for the continuous-time case. To

this effect, let us separately investigate the partial response of the system under each

mode, closed loop and open loop.
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During the open-loop case, that is, for n ∈ [nk+ τ,nk+1),we have thatu nð Þ ¼ Kx̂ nð Þ
so we have that

z nþ 1ð Þ ¼ x nþ 1ð Þ
e nþ 1ð Þ

" #
¼ Aþ BK �BKeA þ eBK Â � eBK
" #

x nð Þ
e nð Þ

" #

z nk þ τð Þ ¼ x nk þ τð Þ
e nk þ τð Þ

" #
¼ x nk þ τ�ð Þ

0

" # ð4:36Þ

for n ∈ [nk+ τ, nk+ 1). Thus we have that

z nþ 1ð Þ ¼ ΛDoz nð Þ ð4:37Þ

for n ∈ [nk+ τ, nk+ 1), where ΛDo ¼ Aþ BK �BKeA þ eBK Â � eBK
� �

.

The closed-loop case is a simplified version of the case above, as the difference

resides in the fact that the error is always zero. Thus, for n ∈ [nk, nk+ τ) we have

z nþ 1ð Þ ¼ ΛDcz nð Þ, ð4:38Þ

for n ∈ [nk, nk + τ), where ΛDc ¼ Aþ BK �BK
0 0

� �
.

Given an initial condition z(0)¼ z0 and assuming without loss of generality that

we start the cycle in closed-loop mode, then after a certain time n ∈ [0, τ) the
solution of the trajectory of the vector is given by

z nð Þ ¼ Λn
Dcz0 ð4:39Þ

for n ∈ [0, τ). In particular, at time τ, z(τ)¼Λτ
Dcz0.

Once the loop is opened, the open-loop mode takes over, so that

z nð Þ ¼ Λ n�τð Þ
Do z τð Þ ¼ Λ n�τð Þ

Do Λ τ
Dcz0, ð4:40Þ

for n ∈ [τ, n1). In particular, when the time comes to close the loop again, that is,

after time h; then z(n1)¼Λðh� τÞ
Do Λτ

Dcz0.
Notice, however, that at this instant the error is reset to zero. We can represent

this by pre-multiplying by
I 0

0 0

� �
before we analyze the closed-loop trajectory for

the next cycle. Because we wish to always start with an error that is set to zero, we

should actually multiply by
I 0

0 0

� �
at the beginning of the cycle as well.
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So, after k cycles, the response

z nkð Þ ¼ I 0

0 0

� �
Λ h�τð Þ
Do Λ τ

Dc

I 0

0 0

� �� �k

z0 ¼ I 0

0 0

� �
Σ I 0

0 0

� �� �k

z0 ð4:41Þ

is obtained, where Σ¼Λðh� τÞ
Do Λτ

Dc.

The final step is to consider the last (partial) cycle that the system goes through.

If the system is in closed loop, that is, n ∈ [nk, nk + τ) then the solution can be

achieved merely by pre-multiplying z(nk) byΛ
n�nkð Þ
Dc . In the case of the system being

in open loop, that is, n ∈ [nk + τ, nk+ 1) then clearly we must pre-multiply by

Λ n� nkþτð Þð Þ
Do Λ τ

Dc. ♦

A necessary and sufficient condition for stability of the networked system

will now be presented. For the definition of stability please refer to Definition 2.5

in Sect. 2.3.

Theorem 4.8 The system described by (4.32) with input (4.33) is globally expo-

nentially stable around the solution z ¼ x
e

� �
¼ 0

0

� �
if and only if the eigenvalues

of
I 0

0 0

� �
Σ I 0

0 0

� �
are strictly inside the unit circle, where Σ¼Λðh� τÞ

Do Λτ
Dc.

The proof for Theorem 4.8 follows directly from the results provided in the

previous section on intermittent feedback for continuous-time systems and

the results in Sect. 2.3, therefore, the proof has been omitted.

4.3.2 Discrete-Time Systems with Output Feedback

A similar analysis to the one in the previous section can be performed to obtain the

response and stability conditions for discrete-time LTI systems using state observer

and intermittent feedback.

Let us consider the following equations:

Plant : x nþ 1ð Þ ¼ Ax
�
n
�þ Bu

�
n
�
, y
�
n
� ¼ Cx

�
n
�þ Du

�
n
�

Model : x̂ nþ 1ð Þ ¼ Â x̂
�
n
�þ B̂ u

�
n
�
, ŷ
�
n
� ¼ Ĉ x̂

�
n
�þ D̂ u

�
n
�

Controller : u nð Þ ¼ Kx̂ nð Þ for n∈
�
nk þ τ, nkþ1

�
Kx nð Þ for n∈

�
nk, nk þ τ

�(

Observer : x nþ 1ð Þ ¼ �Â � LĈ
�
x
�
n
�þ B̂ � LD̂ L

� 
 u nð Þ
y nð Þ

" #
:

ð4:42Þ

We also have that nk+ 1� nk¼ h, τ< h and both h and τ are integers.
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Define the augmented state vector as follows: z ¼
x
x
e

24 35. The following

proposition specifies the state response of the system.

Proposition 4.9 The system described in (4.42) with initial conditions

z n0ð Þ ¼
x n0ð Þ
x n0ð Þ
0

24 35 ¼ z0, has the following response

z nð Þ ¼ Λ n�nkð Þ
Fc Σkz0, n∈

�
nk, nk þ τ

�
Λ n� nkþτð Þð Þ
Fo Λ τ

FcΣ
kz0, n∈

�
nk þ τ, nkþ1

�
8<: ð4:43Þ

where Σ ¼
I 0 0

0 I 0

0 0 0

24 35Λ h�τð Þ
Fo Λ τ

Fc

I 0 0

0 I 0

0 0 0

24 35,

ΛFo ¼
A BK �BK

LC Â � LĈ þ B̂ K þ LeDK �B̂ K � LeDK

LC LeDK � LĈ Â � LeDK

264
375,

ΛFc ¼
A BK �BK
LC Â � LĈ þ B̂ K þ LeDK �B̂ K � LeDK
0 0 0

24 35:
Theorem 4.10 The system described by (4.42) is globally exponentially stable

around the solution z ¼
x
x
e

24 35 ¼ 0 if and only if the eigenvalues of

Σ ¼
I 0 0

0 I 0

0 0 0

24 35Λ h�τð Þ
Fo Λ τ

Fc

I 0 0

0 I 0

0 0 0

24 35
are strictly inside the unit circle, where ΛFo,ΛFc are as described above.

Proofs for the last proposition and theorem are similar to their continuous-time

counterparts.

4.4 Alternative Conditions for Stability of MB-NCS

with Intermittent Feedback

In this section we extend the analysis using the Lifting procedure that was shown in

Sect. 2.4.3. In the case of intermittent feedback the input u of theMB-NCS is defined as
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u nð Þ ¼ Kx nð Þ hl � n � hl þ τl

Kx̂ nð Þ hl þ τl < n < hlþ1

�
ð4:44Þ

In this section we consider intermittent feedback with constant updates and

constant closed-loop times, that is, hl+ 1� hl¼ h, which represents how often we

close the loop between the sensor and the controller, and τl¼ τ< h, which repre-

sents the constant number of clock ticks that the loop remains closed; h and τ are
positive integer numbers.

Theorem 4.11 The discrete-time MB-NCS with intermittent feedback (4.32) and
control input (4.44) is asymptotically stable if only if the eigenvalues of:

Ah�τ þ
Xh�τ�1

j¼0

Ah�τ�1�jBK Â þ B̂ K
� �j !

Aþ BKð Þτ ð4:45Þ

lie inside the unit circle.

Proof We rewrite the state equation of the lifted LTI system in terms of only the

state. To do this, we consider closed-loop and open-loop behaviors. For the interval

h� n� h+ τ the response of the system at time nh+ τ is given by (closed-loop

response):

x nhþ τð Þ ¼ Aþ BKð Þτx nhð Þ: ð4:46Þ

The response of the system at time nh+ h in terms of the state at time nh+ τ can
be shown by following the procedure in Theorem 2.8 in Sect. 2.4.3,

x nhþ hð Þ ¼ Ah�τ þ
Xh�τ�1

j¼0

Ah�τ�1�jBK Â þ B̂ K
� �j !

x nhþ τð Þ: ð4:47Þ

Then, the response of the system at time (n+ 1)h in terms of only the state at time

nh is given by:

x nþ 1ð Þhð Þ ¼ Ah�τ þ
Xh�τ�1

j¼0

Ah�τ�1�jBK Â þ B̂ K
� �j !

Aþ BKð Þτx nhð Þ: ð4:48Þ

The resulting system is a LTI system and it is stable when the eigenvalues

of (4.45) lie inside the unit circle. ♦

4.4.1 Relation to Previous Results

For the intermittent case, in Sect. 4.3 a necessary and sufficient condition for

stability of a discrete-time system is that the eigenvalues of
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MDI hð Þ ¼ I 0

0 0

� �
Λ h�τð Þ
Do Λ τ

Dc

I 0

0 0

� �
ð4:49Þ

must lie inside the unit circle, where ΛDo ¼ Aþ BK �BKeA þ eBK Â � eBK
� �

,

ΛDc ¼ Aþ BK �BK
0 0

� �
: We consider the similarity transformation:

ΛDo ¼ PΛDoP
�1 ¼ A BK

0 Â þ B̂ K

� �
: ð4:50Þ

We assume a fixed value for the closed-loop interval τ, and find the Z-transform

of MDI(n), n¼ 0, 1, 2, . . ., namely

Z MDI nð Þf g ¼ I 0

0 0

� �
Z Λn

Do

� 
Λ n
Dc

I 0

0 0

� �
: ð4:51Þ

Notice that:

Λ τ
Dc ¼ Aþ BKð Þτ � Aþ BKð Þτ�1BK

0 0

� �
: ð4:52Þ

Then we obtain the following:

Z MD nð Þf g ¼ I 0

0 0

� �
P�1 zI � ΛDo

� ��1
P

Aþ BKð Þτ 0

0 0

� �
z

¼
�
zI � Að Þ�1 þ �zI � A

��1BK zI � Â þ B̂ K
� �� ��1��

Aþ BK
�
τ 0

0 0

 !
z:

ð4:53Þ

We obtain the inverse Z-transform of the upper left sub-matrix which contains the

eigenvalues of interest:

Z�1 zI � Að Þ�1zþ zI � Að Þ�1BK zI � Â þ B̂ K
� �� ��1

z
� �

Aþ BKð Þτ
n o

¼ An þ
Xn�1

j¼0

An�1�jBK Â þ B̂ K
� �j !�

Aþ BK
�
τ:

ð4:54Þ

Substitute n¼ h-τ in the above equation to obtain:

Ah�τ þ
Xh�τ�1

j¼0

Ah�τ�1�jBK Â þ B̂ K
� �j !

Aþ BKð Þτ: ð4:55Þ
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Equation (4.55) is exactly the same condition as (4.45) obtained in Theorem 4.11,

i.e., the nontrivial eigenvalues (those different than zero) of MDI(h) correspond to

the eigenvalues of (4.45).

4.5 Notes and References

The work presented in Sect. 4.1 and Sect. 4.3 appeared first in [68–70]. Results

obtained in Sect. 4.2 were first published in [91]. The first part of Sect. 4.4 was first

published in [82] and Sect. 4.4.1 represents complementary results.

The notion of intermittent feedback in MB-NCS can be extended to consider

more complex scenarios such as network induced delays, plants with nonlinear

dynamics, and time-varying update intervals. The case of network delays was

considered in [67]. Nonlinear systems were addressed in [70]. Linear systems

with time-varying feedback update intervals were investigated in [70] as well.

The concept of intermittent feedback has been applied in other areas of study.

For example, in applications to chemical engineering processes, in intermittent

feedback is rather prominent. See, for example [133], where intermittent feedback

is used to address turbulence.

Oldroyd [206] addresses the issue of “intermittent distillation,” using intermit-

tent feedback to address product removal. Most of the articles in this area are very

application-oriented and focus on processes such as manufacturing.

In the field of psychology, the use of intermittent feedback is widespread. The

corresponding term often used in psychology papers is “intermittent reinforcement”

and often arises in the literature regarding education, learning, and child-rearing.

The main idea is that human behavior, in itself, follows this intermittent nature.

This does not just apply to physical processes such as motor control, but to

psychological pulls to practices, such as work and gambling [235]. The learning

process is another area where intermittent feedback arises very naturally, and where

methods based on it have proven to be very effective [38]. Intermittent feedback is

also used in regards to motor control, such as controlling seizures, epilepsy, etc.

[218, 223]. The main idea in terms of psychological aspects of motion control is that

while, initially, continuous control is applied, as the human being learns, and there

is growth in cognitive and associative skills, there is a shift to intermittent feedback

and a more automatic nature of motion control.

Intermittent feedback has also been used to some extent in robotics and mechan-

ical engineering. This makes sense due to the fact that the visual component of

robots is often designed to follow a biologically inspired analogous process. Thus,

intermittent feedback arises naturally. For example, in [98, 219, 220] the authors use

intermittent feedback to address a conceptual, and practical difficulty in robotics: by

replacing the continuously moving horizon by an intermittently moving horizon,

they solve a continuous-time generalized predictive controller. The work in [134]
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also address intermittent visual feedback in robotics and study how to compensate

for the effects of delays, while Leonard and Krishnaprasad [144] use intermittent

feedback in dealing with motion control of robots, leading to nonlinear control with

fewer state variables. Also, because the concept of “learning” in robots is closely tied

in with the learning process in human beings, the application of intermittent feed-

back here makes sense as well, as has been dealt with in [171, 221].
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Chapter 5

Time-Varying and Stochastic

Feedback Updates

In this chapter we are interested in the stochastic stability properties of MB-NCS

when the update time intervals h are time-varying. The statistical properties of

h may or may not be known. We will concentrate primarily on the stochastic

stability of the networked system when the packet exchange time intervals are

time-varying and have some known probability distribution. Conditions are derived

for almost sure and mean square stability for independent, identically distributed

exchange or update time intervals and for Markov chain-driven update time inter-

vals. However, we will also treat the case of time-varying h when additional

properties are available.

We focus our analysis on the Model-Based Networked Control System that was

introduced in Chap. 2, specifically the case where the plant is continuous and the

states are available (full state feedback). Other MB-NCS (e.g., output feedback,

discrete plants) can be analyzed in a similar fashion.

The state feedback model-based networked control system architecture was

shown in Fig. 2.1. This control architecture has as main objective the reduction of

the data packets transmitted over the network by a networked control system.

The packets transmitted by the sensor contain the measured value of the plant

state and are used to update the plant model on the actuator/controller node. These

packets are transmitted at times tk. We define the update time intervals h(k) as
the time intervals between transmissions or model updates: h(k)¼ tk+1-tk. We have

assumed in previous chapters that the update time intervals h(k) are constant. This
might not always be the case in many applications. The transmission times of data

packets from the plant output to the controller/actuator might not be completely

periodic due to network contention and the usual non-deterministic nature of the

transmitter task execution scheduler. Soft real time constraints provide a way to

enforce the execution of tasks in the transmitter microprocessor. This allows the

task of periodically transmitting the plant information to the controller/actuator to

be executed at times tk that can vary according to certain probability distribution

function. This translates into an update time interval h(k) that can acquire a certain

value according to a probability distribution function. The system designer
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can determine this probability distribution function by analyzing the transmitter

microprocessor scheduler structure, the timing of the possible tasks that can be

posted to this scheduler, the network contention scheme, and the network behavior.

We will present different stability criteria that can be applied when the update

time intervals h(k) vary with time. The first case is when the probability distribution

of h is unknown. The only information available about the update time intervals h(k)
will be its maximum and minimum values, and the actual update time intervals

observed may jitter on the range [hmin, hmax]. This criterion may be used to provide a

first result on the stability properties of a system perhaps for comparison purposes.

We will try to calculate the values for hmin and hmax. This is the strongest and most

conservative stability criterion. This stability type is based on the classical

Lyapunov function approach and is presented in Sect. 5.1.

Next, two types of stochastic stability are discussed, namely Almost Sure or

Probability-1 Asymptotic Stability in Sect. 5.2 and Mean Square or Quadratic

Asymptotic Stability in Sect. 5.3. The first one is the one that mostly resembles

deterministic stability [136]. Mean square stability is attractive since it is related to

optimal control problems such as the LQR.

Two different types of time-varying transmission times are considered for each

case. The first assumes that the transmission times are independent identically

distributed with probability distribution function that may have support for infinite

update time intervals. The second type of stochastic update time interval assumes

that the transmission times are driven by a finite Markov chain. Both models are

common ways of representing the behavior of network transmission and scheduler

execution times.

5.1 Lyapunov Analysis of MB-NCS

The dynamics of the system shown in Fig. 2.1 are given by:

_x tð Þ
_e tð Þ

" #
¼ Aþ BK �BKeA þ eBK Â � eBK
" #

x tð Þ
e tð Þ

" #
;

x tkð Þ
e tkð Þ

" #
¼ x t�k

� �
0

" #
,

8t∈ �tk, tkþ1

�
, with tkþ1 � tk ¼ h kð Þ

ð5:1Þ

where e tð Þ ¼ x tð Þ � x̂ tð Þ represents the state error between the plant state and

the plant model state, A and B are the matrices of the actual plant state-space

representation, Â and B̂ are the matrices of the model state-space representation,

while eA ¼ A� Â and eB ¼ B� B̂ represent the modeling error matrices. Define

z tð Þ ¼ x tð Þ e tð Þ½ �T , and Λ ¼ Aþ BK �BKeA þ eBK Â � eBK
� �

so that (5.1) can be rewritten

as _z ¼ Λz for t ∈ [tk, tk + 1).
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Proposition 5.1 The system described by (5.1) with initial conditions

z t0ð Þ ¼ x t0ð Þ 0½ �T ¼ z0, has the following response:

z tð Þ ¼ eΛ t�tkð Þ Yk
j¼1

M jð Þ
 !

z0 ð5:2Þ

for t ∈ [tk, tk+ 1), tk+ 1� tk¼ h(k), where M jð Þ ¼ I 0

0 0

� �
eΛh jð Þ I 0

0 0

� �
:

Proof The proof is similar to the corresponding proof for constant h in Chap. 2 and
it is included here for completeness. On the interval t ∈ [tk, tk+ 1), the system

response is:

z tð Þ ¼ x tð Þ
e tð Þ

" #
¼ eΛ t�tkð Þ x tkð Þ

0

" #
¼ eΛ t�tkð Þz tkð Þ: ð5:3Þ

Now, note that at times tk, z tkð Þ ¼ x tkð Þ
0

� �
, that is, the error e(t) is reset to 0.

We can represent this by:

z tkð Þ ¼ I 0

0 0

� �
z t�k
� �

: ð5:4Þ

Using (5.3) we can calculate z(t�k ):

z tkð Þ ¼ I 0

0 0

� �
eΛh kð Þz tk�1ð Þ: ð5:5Þ

In view of (5.3) we have that if at time t¼ t0, z t0ð Þ ¼ z0 ¼ x0
0

� �
is the initial

condition then

z tð Þ ¼ eΛ t�tkð Þz
�
tk
�

¼ eΛ t�tkð Þ I 0

0 0

" #
eΛh kð Þz tk�1ð Þ

¼ eΛ t�tkð Þ I 0

0 0

" #
eΛh kð Þ I 0

0 0

" #
eΛh k�1ð Þz tk�2ð Þ

¼ eΛ t�tkð Þ Yk
j¼1

I 0

0 0

" #
eΛh jð Þ

 !
z0:

ð5:6Þ
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Now we know that
I 0

0 0

� �
eΛh jð Þ is of the form

Sj Pj

0 0

� �
and so

Yk
j¼1

I 0

0 0

� �
eΛh jð Þ

 !
has the form

Yk
j¼1

Sj

 !
:

0 0

264
375:

Additionally we note the special form of the initial condition z t0ð Þ ¼ z0 ¼ x0
0

� �
so that

Yk
j¼1

I 0

0 0

� �
eΛh jð Þ

 !
x0
0

� �
¼

Yk
j¼1

Sj

 !
x0 0

0 0

264
375

¼
Yk
j¼1

I 0

0 0

� �
eΛh jð Þ I 0

0 0

� � !
x0
0

� �
:

ð5:7Þ

In view of (5.7) it is clear that we can represent the system response as in (5.2). ♦

Note that in (5.2) the response is given by a product of matrices that share similar

structure but are in general different. All M( j) are the same in the case where the

update time intervals h(k) are equal. The special case when h is constant was studied
in Chap. 2 where necessary and sufficient conditions for stability were derived in

terms of the eigenvalues of a matrix. Note that in the present case of varying h(k),
stability cannot be guaranteed even if all matrices in the product have their

eigenvalues inside the unit circle.

5.1.1 Lyapunov Stability

Let the update time interval be h(k), which is time-varying. The stability criterion

derived in this section is the strongest and most conservative stability criterion. It is

based on the well-known Lyapunov second method for determining the stability of

a system. We will assume that the properties of h(k) are unknown but h(k) is

contained within some interval. This stability condition is not stochastic but pro-

vides a first approach to stability for time-varying transmission times NCS.

Definition 5.2 The equilibrium z¼ 0 of a system described by _z ¼ f t; zð Þ with

initial condition z(t0)¼ z0 is Lyapunov asymptotically stable at large (or globally) if

for any ε> 0 there exists β> 0 such that the solution of _z ¼ f t; zð Þ satisfies

z t; z0; t0ð Þk k < ε,8t > t0 and lim
t!1 z t; z0; t0ð Þk k ¼ 0 ð5:8Þ

whenever kz0k< β.
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Theorem 5.3 The system described by (5.1) is Lyapunov Asymptotically Stable for
h ∈ [hmin, hmax] if there exists a symmetric positive definite matrix X such that
Q¼X�MXMT is positive definite for all h ∈ [hmin, hmax], where

M ¼ I 0

0 0

� �
eΛh

I 0

0 0

� �
: ð5:9Þ

Proof Note that the output norm can be bounded by

eΛ t�tkð Þ Yk
j¼1

M jð Þ
 !

z0

�����
����� � eΛ t�tkð Þ�� �� � Yk

j¼1

M jð Þ
�����

����� � z0k k

� eσ Λð Þhmax �
Yk
j¼1

M jð Þ
�����

����� � z0k k:
ð5:10Þ

That is, since eΛ t�tkð Þ has finite growth rate and will grow until hmax at most. Then

convergence of the product of matricesM( j) to 0 ensures the stability of the system.

Such convergence to 0 is guaranteed by the existence of a symmetric positive

definite matrix X in the Lyapunov equation. ♦

Theorem 5.3 may be used to derive an interval [hmin, hmax] for h for which

stability is guaranteed. It is clear that the range for h, that is the interval [hmin, hmax],

will vary with the choice of X. Another observation is that the interval obtained

this way will always be contained in the set of constant update time intervals for

which the system is stable (as derived using Theorem 2.3). That is, a constant

update time h interval contained in [hmin, hmax] will always be a stable constant

update time interval.

Severalways of obtaining the values for hmin and hmax can be used. One is to first fix

the value of Q, obtain the solution X of the Lyapunov equation in Theorem 5.3 for a

value of h known to be stable. Then, using this value of X, the expression X�MXMT

can be evaluated for positive definiteness. This can be repeated for all the values of

h known to stabilize the system to obtain the widest interval [hmin, hmax].

Example 5.1 We use an unstable plant with dynamics given by

A ¼ 0:22 1:31

�0:07 0:16

� �
, B ¼ 0:04

0:87

� �
:

Let our plant model be:

_̂x ¼ Â x̂ þ B̂ u, Â ¼ 0 1

0 0

� �
, B̂ ¼ 0

1

� �
,

which behaves as a double integrator. Let our feedback law be given byu ¼ Kx̂ with
K ¼ �0:776 �1:765½ �. When the update time intervals are constant, stability can
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be guaranteed if and only if the eigenvalues of the test matrixM in (5.9) are inside of

the unit circle. Using this condition, it is possible to verify that, for stability, the

constant update time intervals can take values between 0 and 4.97 s. We now

use Theorem 5.3 to find an interval of time-varying update time intervals for

which the NCS will remain stable. Note that the update time intervals can vary

along this interval. We will set a nominal update time interval of 1 s and set Q to be

the identity matrix; then by solving the Lyapunov equation given in Theorem 5.3 we

can find a positive definite nominal X. We then obtain the stability interval by

searching for update time intervals around 1 s, for which the Q in the Lyapunov

equation obtained with the nominal X is positive definite.

Figure 5.1 shows the plot of the minimum eigenvalue of Q as a function of the

update time intervals, from which it can be seen that the stability interval is now

[hmin, hmax]¼ [0, 2.63]. Note that for constant h the system remains stable for any

h< 4.97. Then, it is possible that by using a different nominal update time interval

and different nominal Q’s less conservative results may be obtained.

5.2 Almost Sure Asymptotic Stability

We will use the definition of almost sure asymptotic stability [136] that provides

a stability criterion based on the sample path. This stability definition resembles

more the deterministic stability definition [170], and is of practical importance.

0 0.5 1 1.5 2 2.5 3
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

h

M
in

im
um

 e
ig

en
va

lu
e 

of
 Q

Fig. 5.1 Minimum eigenvalue of Q as a function of the update time interval h
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Since the stability condition has been relaxed, we expect to see less conservative

results than those obtained using the Lyapunov stability considered in the previous

section. We now define Almost Sure or Probability-1 Asymptotic stability.

Definition 5.4 The equilibrium z¼ 0 of a system described by _z ¼ f t; zð Þ with

initial condition z(t0)¼ z0 is almost sure (or with probability-1) asymptotically

stable at large (or globally) if for any β> 0 and ε> 0 the solution of _z ¼ f t; zð Þ
satisfies

lim
δ!1

P sup
t�δ

z t; z0; t0ð Þk k > ε

� 	
¼ 0 whenever z0k k < β: ð5:11Þ

This definition is similar to the one presented for deterministic systems in

Definition 5.2. We will examine the conditions under which the full state feedback

continuous networked system is Almost Sure stable for two cases: The case when

the update time intervals are independent identically distributed and the case when

the update time intervals are driven by a Markov chain.

5.2.1 MB-NCS with Independent Identically Distributed
Transmission Times

Here we will assume that the update time intervals h(k) are independent identically
distributed (i.i.d.) with probability distribution function F(h). We now present the

conditions under which the system described by (5.1) with i.i.d. update time

intervals is asymptotically stable with probability-1. We will use a technique

similar to lifting [42] to obtain a discrete linear time invariant representation of

the system. Lifting techniques were also used in Chaps. 2 and 4 for similar

purposes. It can be observed that the system will be described by:

ξkþ1 ¼ Ωkξk, with ξk ∈ L2e and ξk ¼ z tþ tkð Þ, t∈ �0, hk�: ð5:12Þ

Here L2e stands for the extended L2. It is easy to obtain from (5.1) and (5.12)

the operator Ωk as:

Ωkνð Þ tð Þ ¼ eΛt
I 0

0 0

� � ðh kð Þ

0

δ τ � h kð Þð Þν τð Þdτ: ð5:13Þ

Now we can restate the definition on almost sure stability or probability-1

stability given in Definition 5.4 to better fit the equivalent system

representation (5.12).

Definition 5.5 The system represented by (5.1) is almost sure stable or stable

with probability-1 if for any β> 0 and ε> 0 if the solution of ξk+ 1¼Ωkξk satisfies:
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limeδ!1
P sup

k�eδ ξk t0; z0ð Þk k2, 0;tk½ � > ε

8<:
9=; ¼ 0 ð5:14Þ

whenever kz0k< β. The norm k • k2,[0,h(k)] is given by

ξkk k2, 0,h kð Þ½ � ¼
ðh kð Þ

0

ξk τð Þk k2dτ

0B@
1CA
1=2

: ð5:15Þ

This definition allows us to study almost sure stability of systems such as (5.12)

when the probability distribution function for update time intervals h(k) has infinite
support. Based on this definition the following result can now be shown.

Theorem 5.6 The system described by (5.1), with update time intervals h( j)
independent identically distributed random variable with probability distribution
F(h) is globally almost sure (or with probability-1) asymptotically stable around

the solution z ¼ x
e

� �
¼ 0

0

� �
if

N ¼ E e2σ Λð Þh � 1

 �1=2� �

< 1 ð5:16Þ

and the expected value of the maximum singular value of the test matrix M,

E Mk k½ � ¼ E σM½ � < 1, ð5:17Þ

where M ¼ I 0

0 0

� �
eΛh

I 0

0 0

� �
:

Proof Assume that the supremum of the norm bracketed is achieved at k� � eδ, that
is sup

k>eδ ξkk k ¼ ξk�k k. So now we can use the Chebyshev bound for positive random

variables [189] to bound the probability in our definition:

P sup

k�eδ ξkk k > ε

8<:
9=; ¼ P ξk�k k > εf g � E ξk�k k½ �

ε
: ð5:18Þ

Using (5.2) and basic norm properties, we proceed to bound the expectation on

the right hand side
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E

ðh k�ð Þ

0

ξk� τð Þk k2dτ

0B@
1CA

1=2264
375

� E

ðh k�ð Þ

0

eΛτ
�� ��2 Yk��1
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The last equation follows from the independence of the update time intervals

h( j). Analyzing the first term on the last equality we see that is bounded for the

trivial case where Λ¼ 0. When Λ 6¼ 0, the integral can be solved, and it can be

shown to be equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2σ Λð Þ E
q

e2σ Λð Þh k�ð Þ � 1
� �1=2h i

which by assumption is

bounded. The second term can also be bounded by using the independency property

of the update time intervals h( j).

E
Yk��1

j¼1

M jð Þ
�����

�����
" #

� E
Yk��1

j¼1

M jð Þk k
" #

¼ E Mk k½ �ð Þk��1: ð5:20Þ

We can now evaluate the limit over the obtained expression.

limeδ!1
P sup

k�eδ ξkk k > ε

8<:
9=; � limeδ!1

E ξk�k k½ �
ε

� limeδ!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2σ Λð ÞE
s

e2σ Λð Þh k�ð Þ � 1
� �1=2h i

E Mk k½ �ð Þk��1 z0k k

ε
:

ð5:21Þ

It is obvious that the right hand side of the expression will be identically 0 (note

that k� � eδ) if the averaged maximum singular value E σM½ � ¼ E Mk k½ � < 1. ♦

Note that the condition may give conservative results if applied directly over the

test matrix. To avoid this problem and make the condition tighter we may apply a

similarity transformation over the test matrix M.
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The condition on the matrix N ensures that the probability distribution function

for the update time intervals F(h) assigns smaller occurrence probabilities to

increasingly long update time intervals, that is F(h) decays rapidly. In particular

we observe that N can always be bounded if there exists hm such that F(h)¼ 0 for

h larger than hm. We can also bound the expression inside the expectation to obtain

E[(e2σ(Λ)h� 1)1/2]<E[eσ(Λ)h] and formulate the following corollary.

Corollary 5.7 The system described by (5.1), with update time intervals h( j)
that are independent identically distributed random variable with probability
distribution F(h) is globally almost sure (or with probability-1) asymptotically

stable around the solution z ¼ x e½ �T ¼ 0 0½ �T if

T ¼ E eσ Λð Þh
h i

< 1 ð5:22Þ

and the expected value of the maximum singular value of the test matrix M,

E Mk k½ � ¼ E σM½ �, is strictly less than one, where M ¼ I 0

0 0

� �
eΛh

I 0

0 0

� �
:

Note that condition T¼E[eσ(Λ)h]<1 is automatically satisfied if the probability

distribution function F(h) does not have infinite support. It otherwise indicates that
F(h) should roll off fast enough as to counteract the growth of M’s maximum

singular value as h increases.

Example 5.2 Consider the following unstable plant dynamics

A ¼ 0:21 1:04
0:63 �0:46

� �
, B ¼ �0:52

0:98

� �
:

Let our plant model be:

_̂x ¼ Â x̂ þ B̂ u, Â ¼ 0:3 1

0:5 �0:5

� �
, B̂ ¼ �0:5

1

� �
:

Let our feedback law be given by u ¼ Kx̂ with K ¼ �2:1105 �1:5053½ �. The
initial conditions of the system are x0¼ [1 � 1]T while the model is initialized at

0. We now assume that h(k) is a random variable with a uniform probability

distribution function U[1, hmax]. The plot of the expected maximum singular value

of a similarity transformation of the original test matrixM is shown in Fig. 5.2. The

similarity transformation used here was one that diagonalizes the matrixM for h¼ 1.

Figure 5.3 shows a simulation example using the plant and the model dynamics

shown in this example where the update intervals are time-varying and have a

probability distribution U[1, hmax] where hmax¼ 2.5 s. This figure shows the states

of the system and it also shows the realization of the time update instants for this

particular run, where it can be seen that the update time intervals (the difference

between any two consecutive update time instants) are time-varying and take values

between 1 and 2.5.
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Fig. 5.2 Average maximum singular value for σM ¼ E Mk k½ � for h ~U[1,hmax]
as a function of hmax
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Fig. 5.3 Top: Response of system for h ~U[0.5,hmax]. Bottom: Time-varying update instants with

uniform probability distribution
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5.2.2 MB-NCS with Markov Chain-Driven
Transmission Times

In certain cases it is appropriate to represent the dynamics of the update time

intervals as driven by a Markov chain. A good example of this is when the network

experiences traffic congestion or has queues for message forwarding. We now

present a stability criterion for the model-based control system in which the

update time intervals h(k) are driven by a finite state Markov chain. Assume that

the update time intervals can take a value from a finite set:

hi 6¼ 1, 8i∈ 1;N½ �: ð5:23Þ

Let us represent the Markov chain process by {ωk} with state space {1, 2, . . .,N}
and transition probability matrix Γ, an N�N matrix with elements pi,j and initial

state probability distribution Π0 ¼ π1 π2 . . . πN½ �T . The transition probability
matrix entries are defined as pi,j¼ Ρ{ωk+ 1¼ jjωk¼ i}. We can now represent the

update time intervals more appropriately as h kð Þ ¼ hωk
.

A sufficient condition for the almost sure stability of the system under Markov-

ian jumps is given in the following theorem.

Theorem 5.8 The system described by (5.1), with update time intervals h kð Þ ¼ hωk

6¼ 1 driven by a finite state Markov chain {ωk} with state space {1, 2, . . .,N} and
transition probability matrix Γ with elements pi,j and initial state probability

distribution Π0 ¼ π1 π2 . . . πN½ �T is globally almost sure asymptotically

stable around the solution z ¼ x e½ �T ¼ 0 0½ �T if the matrix T has all its
eigenvalues inside of the unit circle, where:

T ¼
M

h¼h1

�� �� 0 0 0

0 M

h¼h2

�� �� 0 0

0 0 :: 0

0 0 0 M

h¼hN

�� ��

26664
37775ΓT and

M

h¼hi ¼

I 0

0 0

� �
eΛhi

I 0

0 0

� �
:

ð5:24Þ

Proof It is clear that since the Markov chain has a finite number of states, the

update time intervals are bounded. Then using the same argument in Theorem 5.3

we can bound the output by:

eΛ t�tkð Þ Yk
j¼1

M jð Þ
 !

z0

�����
����� � eΛ t�tkð Þ�� �� � Yk

j¼1

M jð Þ
�����

����� � z0k k

� eσ Λð Þhmax �
Yk
j¼1

M jð Þ
�����

����� � z0k k:
ð5:25Þ

126 5 Time-Varying and Stochastic Feedback Updates



Therefore we can ensure stability by studying stability of the term
Yk
j¼1

M jð Þ
�����

�����.
We can now use a similar procedure as the one used for Theorem 5.6. For almost

sure stability we will require that:

limeδ!1
P sup

k�eδ
Yk
j¼1

M jð Þ
�����

����� > ε

8<:
9=; ¼ 0: ð5:26Þ

We will assume that the supremum of the norm bracketed is achieved at k� � eδ.
Using the Chevyshev inequality we obtain.

P sup

k�eδ
Yk
j¼1

M jð Þ
�����

����� > ε

8<:
9=; ¼ P

Yk�
j¼1

M jð Þ
�����

����� > ε

( )

�
E

Yk�
j¼1

M jð Þ
�����

�����
" #

ε
�

E
Yk�
j¼1

M jð Þk k
" #

ε
:

ð5:27Þ

Evaluating the expectation yields:

E
Yk�
j¼1

M jð Þk k
" #

¼
X

8 i0;i1;::;ik��1½ �

Yk�
j¼1

M jð Þk k
 !(

� P ω0 ¼ i0,ω1 ¼ i1, ::,ωk��1 ¼ ik��1½ �
( ))

¼
X

8 i0;i1;::;ik��1½ �

Yk�
j¼2

M jð Þk kpij�1, ij�2

 !
M 1ð Þk kπi0

¼ 1; 1; . . . ; 1½ �
M

h¼h1

�� �� 0 0 0

0 M

h¼h2

�� �� 0 0

0 0 :: 0

0 0 0 M

h¼hN

�� ��
2664

3775ΓT

0BB@
1CCA

k��1

�
M

h¼h1

�� ��π1
M

h¼h2

�� ��π1
. . .

M

h¼hN

�� ��π1
2664

3775
ð5:28Þ

where each in ∈ {1, 2,..,N}. Therefore the right hand side part of (5.27) will

converge to 0 if T has all its eigenvalues inside the unit circle where:

T ¼
M

h¼h1

�� �� 0 0 0

0 M

h¼h2

�� �� 0 0

0 0 :: 0

0 0 0 M

h¼hN

�� ��
2664

3775ΓT ð5:29Þ

If Γ is irreducible it follows that, since kMk is non-negative, T is also irreducible.

Then it can be shown using the Perron-Frobenius theorem as in [42], that
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T’s maximum magnitude eigenvalue is real; it is sometimes referred to as the

Perron-Frobenius eigenvalue.

Example 5.3 Consider the same plant, model, and controller as in Example 5.2.

Now the update time intervals take values from a finite set h¼ {1,2,3}.

The transition probabilities are given by:

Γ ¼
0:6 0:3 0:1
0:4 0:5 0:1
0:7 0:2 0:1

24 35:
The eigenvalues of T in (5.24) lie inside the unit circle, where a similarity

transformation is used to diagonalized M. Figure 5.4 shows a simulation example

using the plant and the model dynamics shown in this example where the update

intervals are time-varying and follow the transition probabilities given by Γ above.

This figure shows the states of the system and it also shows the realization of the time

update instants for this particular run. Now, it can be seen that the update

time intervals (the difference between any two consecutive update time instants)

are time-varying and take the specific values 1, 2, or 3.
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Fig. 5.4 Top: Response of system for time-varying h given by a Markov chain.

Bottom: Time-varying update instants that follow a Markov chain
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5.3 Mean Square Asymptotic Stability

We now define a different type of stability, namely Mean Square Asymptotic

Stability.

Definition 5.9 The equilibrium z¼ 0 of a system described by _z ¼ f (t, z)
with initial condition z(t0)¼ z0 is mean square asymptotically stable at large (or

globally) if the solution of _z ¼ f (t, z) satisfies

lim
t!1E z t; z0; t0ð Þk k2

h i
¼ 0: ð5:30Þ

A system that is mean square stable will have the expectation of system states

converging to 0 with time in the mean square sense. This definition of stability is

attractive since many optimal control problems use the squared norm in their

formulations. We will study the two cases studied in the previous section under

this new stability criterion.

5.3.1 MB-NCS with Independent Identically Distributed
Transmission Times

We present the conditions under which the networked control system described in

(5.1) is mean square stable. We also discuss how these conditions relate to the ones

for probability-1 stability.

Theorem 5.10 The system described by (5.1), with update time intervals h( j)
independent identically distributed random variable with probability distribution
F(h) is globally mean square asymptotically stable around the solution

z ¼ 0 0½ �T if

K ¼ E eσ Λð Þh

 �2� �

< 1 ð5:31Þ

and the maximum singular value of the expected value of MTM,

E MTM
� ��� �� ¼ σ E MTM

� �� �
< 1 ð5:32Þ

where M ¼ I 0

0 0

� �
eΛh

I 0

0 0

� �
:

Proof Let us start by evaluating the expectation of the squared norm of the output

of the system described by (5.1).
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" #
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 �
z0

T
Yk
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 !T Yk

j¼1

M jð Þ
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z0

" #
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z0

T
Yk
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M jð Þ
 !T Yk

j¼1

M jð Þ
 !

z0

" #
:

ð5:33Þ

Now that the expectation is all in terms of the update time intervals, we can use

the independently identically distributed property of the update time intervals and

the assumption that K is bounded:

E eσ Λð Þh kþ1ð Þ� �2
z0

T
Yk
j¼1

M jð Þ
 !T Yk

j¼1

M jð Þ
 !

z0

" #

¼ K � z0TE
Yk�1

j¼1

M jð Þ
 !T

M kð ÞTM kð Þ
Yk�1

j¼1

M jð Þ
 !" #

z0

¼ K � z0TE
Yk�1

j¼1

M jð Þ
 !T

E MTM
� � Yk�1

j¼1

M jð Þ
 !" #

z0

� K � σ E MTM
� �� �

z0
TE

Yk�1

j¼1

M jð Þ
 !T Yk�1

j¼1

M jð Þ
 !" #

z0: ð5:34Þ

We can repeat the last three steps recursively to finally obtain

E eΛ t�tkð Þ Yk
j¼1

M jð Þ
 !

z0

�����
�����
2

24 35
� K σ E MTM

� �� �� �k
z0

Tz0:

ð5:35Þ

So now it is easy to see that if E MTM
� ��� �� ¼ σ E MTM

� �� �
< 1 then the limit of

the expectation as time approaches infinity is 0, which concludes the proof. ♦

Note the similarity between the conditions given by Theorems 5.6 and 5.10. In

Theorem 5.6 we require the expectation of the maximum singular value of the test

matrix to be less than 1. For the stability in Theorem 5.10 the maximum singular

value of the expectation of MTM should be less than 1.
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5.3.2 MB-NCS with Markov Chain-Driven
Transmission Times

We now present a sufficient condition for the mean square stability of the MB-NCS

with Markov chain-driven update time intervals.

Theorem 5.11 The system described by (5.1), with update time intervals h kð Þ
¼ hωk

6¼ 1 driven by a finite state Markov chain {ωk}with state space {1, 2, . . .,N}
and transition probability matrix Γ with elements pi,j is globally mean square

asymptotically stable around the solution z ¼ x e½ �T ¼ 0 0½ �T if there exists
positive definite matrices P(1), P(2), . . ., P(N) such that

XN
j¼1

pi, j H ið ÞTP jð ÞH ið Þ

 �

� P ið Þ
 !

< 0 ð5:36Þ

8 i, j¼ 1, . . .,N with H ið Þ ¼ eΛhi
I 0

0 0

� �
.

Proof Using the same argument used in Theorem 5.8, since the update time

intervals are bounded, we can analyze the system’s stability by sampling it at a

certain time between each update time interval. For this, we evaluate the response

of the system described by (5.1) at times t�k :

z t�kþ1

� � ¼ eΛhkþ1
I 0

0 0

� �
z t�k
� �

: ð5:37Þ

Let us define ς(k)¼ z(t�k� 1) and H ωkð Þ ¼ eΛhωk
I 0

0 0

� �
. Now we can represent

the sampled networked control system as:

ς k þ 1ð Þ ¼ H ωkð Þς kð Þ: ð5:38Þ

To ensure mean square stability we will make use of a Lyapunov function of

quadratic form and analyze the expected value of its difference between two

consecutive samples. We will use the following Lyapunov function:

V ς kð Þ,ωkð Þ ¼ ς kð ÞTP ωkð Þς kð Þ: ð5:39Þ

The expected value of the difference is:
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E ΔV
ς, i� �

¼ E V ς k þ 1ð Þ,ωkþ1ð Þ � V ς kð Þ,ωkð Þς kð Þ ¼ ς,ωk ¼ i
� �

¼ E ς k þ 1ð ÞTP ωkþ1ð Þς k þ 1ð Þς kð Þ ¼ ς,ωk ¼ i
h i

� ςTP ið Þς

¼ E ςTH ωkð ÞTP ωkþ1ð ÞH ωkð Þςωk ¼ i
h i

� ςTP ið Þς

¼
XN
j¼1

pi, j ςTH ið ÞTP jð ÞH ið Þς

 �

� ςTP ið Þς

¼ ςT
XN
j¼1

pi, j H ið ÞTP jð ÞH ið Þ

 �

� P ið Þ
 !

ς:

ð5:40Þ

From this last equality is it obvious that to ensure mean square stability we

need to have:

XN
j¼1

pi, j H ið ÞTP jð ÞH ið Þ

 �

� P ið Þ
 !

< 0: ð5:41Þ

♦

Remark This type of stability criteria depends on our ability to find appropriate P(i)
matrices. Several other results in jump system stability [49, 201] can be extended to

obtain other conditions on stability of networked control systems. Note though,

that most of the results available in the literature deal with similar but not identical

type of systems.

5.4 Notes and References

Most work on networked control systems assumes deterministic communication

rates [117, 124]. Several authors have addressed time-varying rates [37, 60, 109,

174, 180, 198, 222, 245, 260, 286]. Most of these papers focus on characterizing the

Maximum Allowable Transfer Interval (MATI) for stability. Other authors have

concentrated on characterizing stability or performance on a networked control

system under time-varying, stochastic communication (see [6, 7, 13, 156, 157]).

Additionally, there exist a large number of event-triggered and self-triggered

approaches for networked control systems where the transmission intervals are not

periodic but defined by the occurrence of certain events related to the current

response of the system; see Chap. 6 for related references.

In previous chapters we considered the MB-NCS framework using periodic com-

munication. The results in this chapter extend the MB-NCS framework to consider
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time-varying update intervals with and without statistical information about the

update intervals. This work appeared first in [189]. In Chap. 6 event-triggered control

techniques will be implemented within the MB-NCS architecture. Event-triggered

strategies provide a different alternative to control networked systems using

time-varying transmission intervals while also reducing the frequency at which

measurement updates need to be sent from sensor to controller.
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Chapter 6

Event-Triggered Feedback Updates

In Chaps. 2–4 it has been assumed that the update interval h is constant. In Chap. 5,
extensions have considered time-varying update intervals that reflect characteristics

of the underlying digital network. The main goal in the present chapter is to adjust

the update interval based on the current state of the plant. This new way of updating

the state of the model is based on a simple idea, namely, to send a measurement

update only when it is necessary to do so according to some criterion. The main

question in this regard is how to determine when the sensor must send a measure-

ment to update the model state in the MB-NCS setup.

One possible answer to this question is to implement an event-triggered strategy

in which the controller updates are triggered by the size of the state error. In typical

event-triggered control schemes the controller generates a piecewise input by

holding the received measurements constant. The error is defined as e(t)¼ x(ti)�
x(t), that is, the difference between the last measurement that was used to update the

controller and the current state of the system.

In the case of MB-NCS the approach is very similar but the state error that will

determine the update instants is the one that we have been using in previous

chapters, the difference between the state of the model and the state of the plant.

The application of event-triggered control to MB-NCS produces many advantages

compared to the periodic implementation studied in previous chapters. For instance,

nonlinearities and inaccuracies that affect the system and are difficult or impossible

to model and may change over time or under different physical characteristics

(temperature, different load in a motor, etc) may be handled more efficiently by

tracking the state error than by updating the state at a constant rate. Also, the

method presented here is robust under random packet loss. If the sensor sends data

but the model state is not updated because of a packet dropout, the state error will

grow rapidly above the threshold and the sensor will transmit once again the current

information needed to update the model. However, under a fixed transmission rate,

if a packet is lost the model will need to wait until the next update time to receive

the feedback data, thus compromising the stability of the system.

The implementation of an event-based rule in MB-NCS represents a very intu-

itive way of saving network resources. It also considers the performance of the

E. Garcia et al., Model-Based Control of Networked Systems, Systems & Control:

Foundations & Applications, DOI 10.1007/978-3-319-07803-8_6,

© Springer International Publishing Switzerland 2014
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closed loop real system. The implementation of the model to generate an estimate of

the plant state and using that estimate to control the plant, results in significant

savings in bandwidth as we saw in previous chapters. It is also clear that the accuracy

of the estimate depends on factors, such as the size of themodel uncertainties. One of

the results in the present chapter is that these error based updates provide more

independence from model uncertainties when performing this estimation. When the

error is small, whichmeans that the state of themodel is an accurate estimation of the

real state, then we save energy, effort, and bandwidth by electing not to send

measurements for all the time intervals in which the error remains small.

The combinedModel-Based Event-Triggered (MB-ET) framework can be seen as

a way of providing “virtual feedback” to control the physical system when no real

measurements can be obtained at the controller node due to communication con-

straints or, more precisely, due to the strategies that we follow in order to reduce

network communication. The idea of “virtual feedback” can be realized by using the

nominalmodel of the system to generate an estimate of the real state in joint operation

with an event-triggering strategy in the sensor node that determines the communica-

tion instants based on the size of the state error. When a measurement of the real state

is received at the controller node, it is used to update the state of the model in order to

reset the accumulated state error over the previous time interval since the last

measurement update took place. The combination of the nominal model at the

controller and the event-triggering strategy provides a “virtual feedback” by gener-

ating an estimate of the state that is kept close to the real state by maintaining a small

state error. In order to obtain the samemodel state x̂ at the sensor node we implement

a second identical model at the sensor node that is updated using the measurements

x(tk) only at those instants that a measurement is sent through the network.

Due to the advantages it provides, event-triggered control will be used in several

sections of this book. In Sect. 7.2, control of dissipative nonlinear systems is studied

using a fixed threshold event-based approach. Section 8.2 follows the same

approach of Sect. 6.3 in this chapter to consider systems with quantization and

delays. Tracking of reference inputs using event-triggered control is discussed in

Sect. 11.3. Event-triggered control will be used to deal with different problems in

Chaps. 9, 12, and 14; these problems include: adaptive stabilization, design of

optimal controllers and schedulers, and stabilization of distributed systems.

The present chapter is organized as follows. In Sect. 6.1 the MB-ET control

architecture is presented in addition to initial approaches and strategies. In Sect. 6.2

we present more formal stabilizing event-triggered strategies. In Sect. 6.3 network

delays are considered and notes and references are given in Sect. 6.4.

6.1 Model-Based Event-Triggered Architecture

In event-triggered broadcasting [10, 11, 246, 247], a subsystem sends information

about its local state to the network only when it is necessary, that is, only when a

measure of the local subsystem state error is above a specified threshold. Event-
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triggered control schemes offer a new point of view, with respect to conventional

time-driven strategies, on how information could be sampled for control purposes.

The author of [247] showed the stabilizing properties of the event-triggered control

strategy; a triggering condition was presented based on the norms of the state and

the state error (the error is obtained by subtracting the current state of the system

from the last state that was used to update the controller). This means that the

measurement received at the controller node is held constant until a new measure-

ment arrives. When this happens, the error is set equal to 0 and starts growing until

it triggers a new execution or measurement update. In the case that delays are not

negligible the control task should be executed before the regular (no delay) execu-

tion condition takes place in order to account for those time delays, but the control

task should not be executed too soon and provoke accumulation points, i.e., the

generation of infinite number of events during a finite period of time.

In previous work on event-triggered control it is assumed that the parameters of

the system and/or subsystems are known exactly. Our combined MB-ET control

framework offers two important advantages with respect to previous work in event-

triggered control that uses only a ZOH model, that is, the updates remain constant

between update intervals. The implementation of this strategy using MB-NCS

accounts for the unavoidable existence of model uncertainties in the stability

analysis and it affects directly the estimated threshold values that aim to ensure

stability of the system. The model-based implementation also generalizes the ZOH

one by using the model dynamics to generate an estimate of the real plant state

between measurement updates.

The architecture that we use in the present chapter is presented in Fig. 6.1 and it

is similar to the one presented in Chap. 2 where periodic updates were used. The

difference is that a copy of the model is implemented at the sensor node to obtain

the state of the model at the right side of the control loop which is used to compute

the state error and decide the appropriate time instants to send measurements.

This implementation is very similar to the one in Sect. 3.1, which studies state

observers, where a copy of the model and a copy of the controller are also needed at

Plant

Model

u

K

Network

Sensor
(model

and event
detector)

x

x̂

Fig. 6.1 MB-ET architecture
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the sensor node. The difference in that case is that the copies of the model and

the control gain were needed to generate the control input u in order to feed the state
observer, while the updates take place in a periodic fashion. Here, the model at the

sensor location is used to generate the state of the model and evaluate the state error.

6.1.1 A Preliminary Update Approach

The general idea in this chapter is to find implementable strategies that can be used

to readjust the update intervals h in MB-NCS according to the current operating

conditions of the networked system. The simple approach described next illustrates

this idea and it is based only on the computation of the state error which is obtained

by measuring the states of the plant and the model.

Let us consider a continuous time plant and its model interconnected as in

Fig. 6.1 with dynamics given by:

_x tð Þ ¼ Ax tð Þ þ Bu tð Þ ð6:1Þ

and

_̂x tð Þ ¼ Â x̂ tð Þ þ B̂ u tð Þ ð6:2Þ

respectively. Let u ¼ Kx̂ . In this setup, every time the controller node receives an

update, it sends an acknowledgment message to the sensor indicating when it should

send the next state measurement; that is, the controller readjusts the value of the

update interval h. h is time-varying and depends on its own previous value and the

current response of the system. In order to find the next appropriate value for h we

apply the following conditions on the current and the previous measured error:

h tiþ1ð Þ ¼ a tið Þh tið Þ ð6:3Þ

where the integer index i� 1 represents the update instants, i.e., the ith time that an

update is sent through the network and the adjustment factor a(ti) is obtained

according to the following rules:

a tið Þ < 1 if e tið Þj j > e ti�1ð Þj jf g&�
e tið Þj j > ε

�
a tið Þ¼ 1 if e tið Þj j > e ti�1ð Þj jf g&�

e tið Þj j < ε
�

a tið Þ ¼ 1 if
�
e tið Þj j < e ti�1ð Þ�&�

e tið Þj j > ε
�

a tið Þ > 1 if e tið Þj j < e ti�1ð Þj jf g&�
e tið Þj j < ε

�
ð6:4Þ
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where ε is a small error threshold value. The state error is defined as follows

e tð Þ ¼ x̂ tð Þ � x tð Þ: ð6:5Þ

To simplify the implementation for this case, the last measurement sent to the

controller can be used instead of the state of the model in order to compute (6.5),

which means that for this particular rule we do not necessarily need to implement a

copy of the model in the sensor node.

This simple computational approach describes an intuitive idea: if the networked

system is behaving well according to our imposed standard, ε, we keep the same

update interval (second and third lines). If the system is behaving very well then we

can wait a longer interval of time without updating the model. We do this by

increasing the update interval by some a> 1 (fourth line). But, if the networked

system is not performing as desired (first line), then we should update at a higher

rate by decreasing the update interval by some a< 1. This simple approach is

illustrated through an example.

Example 6.1 Consider the system, model, and controller described by:

A ¼ 0:8 0:3
�0:2 1:9

� �
B ¼ 1

1

� �

Â ¼ 0:6981 0:4379
�0:1078 1:7031

� �
B̂ ¼ 1

1

� �
K ¼ 11:5358 �17:5158ð Þ

Figure 6.2 shows the response of the plant and the model for initial conditions:

x 0ð Þ ¼ 0:2 0:5½ �T , x̂ 0ð Þ ¼ 0 0½ �T :
The initial update interval is h(0)¼ 0.1 s. Figure 6.3 shows the state error and

the communication in the network due to the updates from the sensor to the

controller and it illustrates how the update interval varies with time and according

to the state error.

Unfortunately, it is hard to state something concrete about the stability properties

of this type of implementation. By limiting ourselves to study this problem based

only on information about the measured error we obtained a simple computational

strategy but its theoretical justification is challenging.

In order to show the stability properties of the framework used in this chapter we

will make use of the configuration shown in Fig. 6.1 but we are going to include

different features in the sensor node that will provide a policy on how to update

the state of the model. In this scheme the sensor has different functions to perform.

The sensor contains a copy of the model and the controller gain so it can have

access to the model state. It continuously measures the actual state and computes

the model-plant state error (6.5). The sensor also compares the norm of the error to a

predefined threshold, and it broadcasts the plant state to update the model state if the

error is greater than the threshold.
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The purpose of the following sections is to develop a more formal approach

based on previous work on event-triggered control keeping a fixed threshold value

for the state error that guarantees bounded stability. The use of time-varying

thresholds is also analyzed and asymptotic stability is shown. The use of time-

varying thresholds for systems subject to network induced delays enhances the

results presented in this chapter.

6.2 Event-Triggered Control Strategies

The main advantage the event-triggered feedback strategy offers compared with the

common periodic-update implementation, is that the time interval between updates

can be considerably increased, especially when the state of the system is close to its

equilibrium point, thus releasing the communication network for other tasks. We

will assume in this section that the communication delay is negligible. Instead of

adjusting the update intervals explicitly as in Example 6.1 the approach in this

section is to compute the norm of the state error and compare it to a positive

threshold in order to decide if an update of the state of the model is needed. When

the model is updated the error is equal to 0; when it becomes greater than the

threshold the next update is sent.

Two distinct types of thresholds are considered in this section: fixed or constant

thresholds and relative or time-varying thresholds. Let us start by considering a

simple constant threshold with the update rule that the sensor sends the current state

value when the norm of the state error (6.5) is greater than a fixed threshold that is

denoted by α.

6.2.1 Fixed Threshold Strategy

While jej � α no update is sent and the plant is operating in open loop mode based

on the input generated by the model state x̂ . After substituting the input u ¼ Kx̂ in

(6.1) and using the definition of the error we can write:

_x ¼ Aþ BKð Þxþ BKe: ð6:6Þ

In the case of the model, after substituting the input u we have a state space

description of the form:

_̂x ¼ Â þ B̂ K
� �

x̂ , for ti � t < tiþ1: ð6:7Þ

At the update times ti, i ∈ Z+, the state of the model is updated with the

measurement obtained from the plant. The update intervals are non-periodic in

general and are triggered by the size of the state error.
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Let us first make use of a fixed threshold α, that is, an update is sent only when

jej> α. By using this simple choice the state of the system can be bounded as shown

in next theorem.

Theorem 6.1 For x 0ð Þj j � β1 , 0 < β1 < 1 the system described by (6.6) with
state feedback based on error events is bounded-input bounded-state stable with
respect to the measurement error if the eigenvalues of the closed loop matrix A+BK
have negative real parts.

Proof The response of the plant (6.6) with t(0)¼ 0 and Hurwitz matrix A+BK
at any given time t� 0 is given by:

x tð Þ ¼ e AþBKð Þtx 0ð Þ þ
ðt
0

e AþBKð Þ t�τð ÞBKe τð Þdτ ð6:8Þ

where e(t) is a piecewise continuous input bounded by jej � α. We can show that the

state of the plant is bounded by evaluating its norm which is done next:

x tð Þj j ¼ e AþBKð Þtx 0ð Þ þ
ðt
0

e AþBKð Þ t�τð ÞBKe τð Þdτ
������

������
� e AþBKð Þt�� �� x 0ð Þj j þ

ðt
0

e AþBKð Þ t�τð Þ�� �� BKj j e τð Þj jdτ:

ð6:9Þ

By the assumption on the initial condition and the triggering condition, and using

the bound je(A+BK)tj � k1e
� λt, for k1, λ> 0, we can write:

x tð Þj j � β1k1e
�λt þ αk1 BKj j

ðt
0

e�λ t�τð Þdτ

¼ β1k1 �
αk1 BKj j

λ

0@ 1Ae�λt þ αk1 BKj j
λ

:

ð6:10Þ

Also note that:

lim
t!1 x tð Þj j � αk1 BKj j

λ
:

Using a stabilizing controller K, since the closed loop plant poles are in the left

hand side of the complex plane, ensures that the first term in the right hand side of

(6.10) decreases exponentially with time and the second term is bounded for all

time t> 0.

142 6 Event-Triggered Feedback Updates



Note also that by considering y¼ x, then (y,e) is BIBO stable when A+BK is

asymptotically stable. If (A,B) is controllable then the relation is if and only if. Then
we need to ensure that the error is bounded by updating the model when jej � α is

not satisfied. ♦

Next, we show that the transmission intervals, which are time-varying, never

become too close to each other i.e., we find a positive number that represents a

lower bound on the update intervals. This is an important feature that every event-

based control strategy should posses in order to avoid accumulation points, that is,

the sensor should never attempt to send an infinite number of measurements during

a finite period of time.

Theorem 6.2 The model state update intervals for the MB-ET framework using a
fixed threshold strategy are lower bounded by tα> 0 where tα is the minimum time
t> 0 such that the following holds:

ðtα
0

e Â�eA� �
tα�τð Þ eA þ eBK	 


e ÂþB̂ Kð Þτdτ
������

������ x tið Þj j ¼ α ð6:11Þ

for i¼ 0,1,2,. . .

Proof First, we express the dynamics of the state error (6.5) in the following form:

_e ¼ Â � eA	 

eþ eA þ eBK	 


x̂ ð6:12Þ

where eA ¼ A� Â , eB ¼ B� B̂ .

Next, we find the response, for t> ti, of the error with initial time ti, at the time of

the model update with initial conditions e(ti)¼ 0. The error at time ti is equal to
0 since at that time an update event has taken place and the model state is made

equal to the plant state.

e tð Þ ¼
ðt
ti

e Â�eA� �
t�ti�τð Þ eA þ eBK	 


x̂ τð Þdτ: ð6:13Þ

Consider,without lossofgenerality, ti¼ 0andevaluate thenormof (6.13) as follows:

e tð Þj j ¼
ðt
0

e Â�eA� �
t�τð Þ eA þ eBK	 


e ÂþB̂ Kð Þτdτ � x0

������
������

�
ðt
0

e Â�eA� �
t�τð Þ eA þ eBK	 


e ÂþB̂ Kð Þτdτ
������

������ x0j j
ð6:14Þ
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where x̂ tð Þ ¼ e ÂþB̂ Kð Þtx0 was used and the quantity x0¼ x(t0) is the state of

the system at the time of the latest update instant. By making the right-hand term

in (6.14) equal to α we ensure that jej � α. It is clear that for any positive threshold

α the minimum time t such that the right-hand term in (6.14) is equal to α is

positive, i.e., the time elapsed between successive update intervals is always greater

than 0. ♦

Remark In general we can see from (6.11) that for large uncertainties and large

values of the plant state at the measurement update instants the model update

intervals are very small. This can be better shown trough the following example.

Example 6.2 Consider the following model of a second order system:

Â ¼ 1 1:3
0:7 0:5

� �
B̂ ¼ 1

1

� �
For simplicity, let us consider a system that contains uncertainty only in the first

element of the state matrix A as follows:

A ¼ 1þ ea11 1:3
0:7 0:5

� �
The controller and the fixed threshold are given by:

K ¼ �1:6455 � 1:3545½ �, α ¼ 0:1

Figure 6.4 shows the lower bound on the transmission intervals for different

values of |x(ti)| and ea11. We can see that the transmission intervals are longer for

smaller values of the measurements and the uncertainties and vice versa.

Figure 6.5 shows the response of the system for ea11 ¼ 0:1 and the initial

conditions x(0)¼ [1 � 0.5]T. It can be seen in this figure that the transmission

intervals get longer as the norm of the state gets smaller.

Remark From Example 6.2 one can ask the following questions: what would

happen if the initial state is very large? Can we still guarantee that the model

state update intervals are lower bounded by a positive number?

The short answer for the second question is “Yes”; from (6.11) we can see that tα
is always greater than 0 for any finite initial condition.

With respect to the first question, it is clear that the lower bound on the inter-

event times will become smaller if the initial state is larger. From (6.11) we can see

that the inter-event times will never become 0 but they could dangerously approach

0 for a large initial state compared to the size of the threshold α. A simple solution

to avoid very small inter-event times is to, precisely, increase the value of the

threshold. The drawback is that the ultimate bound for the plant state will be large

as well. A much better approach is to start with a large threshold value which can be

later reduced in order to reduce the norm of the state. This is one of the motivations

to implement a time-varying threshold which is discussed in the next section.
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6.2.2 Relative Threshold Strategy

In many different applications it is desirable to stabilize a system asymptotically.

Equation (6.11) relates to the intuitive idea that by varying the magnitude of the

threshold value we can obtain longer update intervals or a smaller output size. This

type of tradeoff leads us to consider a time-varying or relative threshold that becomes

large when |x(ti)| is large and small when |x(ti)| is small. Furthermore, by making the

threshold to be a function of the current norm of the plant state we are also in the

position to achieve asymptotic stability and not only boundedness of the plant state.

The work in [247] follows this approach by comparing the norm of the state error

to a function of the norm of the state of the plant; in this way, the threshold value is

not fixed anymore, and, in particular, it can be reduced as we approach the

equilibrium point of the system, assuming that the zero state is the equilibrium of

the system. Traditional event-triggered control techniques [246, 247, 261, 262]

consider systems controlled by static gains that generate piecewise constant inputs

due to the fact that the update is held constant in the controller. The main difference

in this section is that we use a Model-Based controller i.e., a model of the system

and a static gain; the model provides an estimate of the state between updates and

the model/gain controller provides a control input for the plant that does not remain

constant between measurement updates.

Consider again the plant and model described by (6.1) and (6.2). Using the

control input u ¼ Kx̂ we obtain the description (6.6) for the plant. Assume that the

control input u renders the model (6.2) Input-to-State Stable (ISS) with respect to

the measurement error e. For the definition of ISS we use the following [2].

Definition 6.3 A smooth function V :ℝn!ℝþ
0 is said to be an ISS Lyapunov

function for the dynamical system _x ¼ f x; uð Þ, x(t) ∈ ℝn, u(t) ∈ ℝm, t ∈ ℝþ
0 if

there exist class K1 functions α1, α2, α3 and γ satisfying:

α1 xj jð Þ � V xð Þ � α2 xj jð Þ ð6:15Þ
∂V
∂x

f x; uð Þ � �α3 xj jð Þ þ γ uj jð Þ: ð6:16Þ

The system _x ¼ f x; uð Þ is said to be ISS with respect to the input u if and only if
there exists an ISS Lyapunov function for that system.

In our case, we choose a control law u ¼ Kx̂ that renders the closed loop model
(6.7) globally asymptotically stable. Any such K also renders the closed loop model

ISS with respect to the measurement errors. We proceed to choose a quadratic ISS

Lyapunov function, V¼ xTPx where P is symmetric positive definite and is the

solution of the closed loop model Lyapunov equation:

Â þ B̂ K
� �T

Pþ P Â þ B̂ K
� � ¼ �Q ð6:17Þ

where Q is a symmetric positive definite matrix.
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Let us first analyze the case when B̂ ¼ B for simplicity and define the uncertaintyeA ¼ A� Â ; also assume that the next bound on the uncertainty eATPþ PeA��� ��� � Δ < q

holds where q ¼ σ Qð Þ, the smallest singular value of Q in the model Lyapunov

equation (6.17). This bound can be seen as a measure of how close A and Â should be.

It can be seen from (6.17) that the solution P depends on the choice of Q. One way

to obtain a small P and large q is to make Q ¼ � Â þ B̂ K
� �

and design K such that

this closed loop model matrix has eigenvalues with large negative real part. Unfortu-

nately, the predefined location of the eigenvalues of Â þ B̂ K does not ensure, in

general, a particular selection of the singular values. A particular casewhen this can be

easily achieved is when the number of inputs is equal or greater than the number of

states. In such a case, we can obtain a closed loop model matrix that is diagonal with

desired eigenvalues, andwith the previous choice ofQ, the solution of (6.17) is always

P¼ 0.5 * In� n. Since Â þ B̂ K is diagonal its singular values are equal to the absolute

value of its eigenvalues. Therefore, we can easily manipulate q while P remains

the same.

The next theorem provides conditions on the error and its threshold value so the

networked system is asymptotically stable. The error threshold is defined as a

function of the norm of the state and Δ which is a bound on the uncertainty in the

state matrix A. Similarly, the occurrence of an error event leads the sensor to send

the current measurement of the state of the plant that is used in the controller to

update the state of the model.

Theorem 6.4 Consider system (6.1) with input u ¼ Kx̂ . Let the feedback be based
on error events, and the relation:

ej j > σ q� Δð Þ
b

xj j ð6:18Þ

where b ¼ KTB̂ TPþ PB̂ K
�� ��, 0< σ< 1, eATPþ PeA��� ��� � Δ < q, and q ¼ σðQÞ. Let

the model be updated when (6.18) is first satisfied. Then the system is globally
asymptotically stable.

Proof In order to prove this theorem we will set a bound on the derivative of

V¼ xTPx along the trajectories of the system (6.6) which is equal to (6.1) when the

input u ¼ Kx̂ has already been substituted and expressed in terms of the state error,

then we can easily show that this bound can be appropriately tuned by the choice of

the threshold on the error.

_V ¼ xT

Aþ BKð ÞTPþ P

�
Aþ BK

��
xþ eTKTBTPxþ xTPBKe

¼ xT


Â þ eA þ B̂ K
	 
T

Pþ P
�
Â þ eA þ B̂ K

��
xþ eTKTB̂ TPxþ xTPB̂ Ke

¼ �xTQxþ xT eATPþ PeA	 

xþ eTKTB̂ TPxþ xTPB̂ Ke:
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We have just expressed _V in terms of the model parameters and the uncertainty

of the state matrix A. We now proceed to evaluate the contributions of each, the

model, the uncertainty, and the error.

_V � �q xj j2 þ eATPþ PeA��� ��� xj j2 þ KTB̂ TPþ PB̂ K
�� �� ej j xj j

� �qþ Δð Þ xj j2 þ b ej j xj j:

By updating the model when (6.18) is first satisfied we reset the error and we also

have that |e|� σ(q�Δ)|x|/b holds. Then we can finally write:

_V � σ � 1ð Þ q� Δð Þ xj j2: ð6:19Þ

Then V is guaranteed to decrease for any σ such 0< σ< 1 and updating the state

of the model every time the error satisfies the condition imposed in (6.18). ♦

Remark In comparison to usual strategies in MB-NCS, an important advantage of

this approach is that we define the controller only in terms of the model parameters.

The stabilizing threshold is designed using the model parameters Â; B̂
� �

and some

bounds on the uncertainty eA, quantities that are known a priori.

The extension to the case of Â 6¼ A and B̂ 6¼ B is straightforward by assuming

that the next bounds on the uncertainty matrices hold:

eA þ eBK	 
T
Pþ P eA þ eBK	 
���� ���� � Δ < q ð6:20Þ

eB�� �� � β ð6:21Þ

where eB ¼ B� B̂ . In order to obtain the bound (6.19) the error is set to satisfy

(triggering an update otherwise):

ej j � σ q� Δð Þ
b

xj j ð6:22Þ

where b ¼ 2 PB̂K
�� ��þ 2β PKj j. We consider the same Lyapunov function as in

Theorem 6.4. In this case the derivative of the Lyapunov function along the

trajectories of the system can be expressed by:

_V ¼ �xTQxþ xT
 eA þ eBK	 
T

Pþ P
�eA þ eBK��xþ 2xTP

�
B̂ þ eB�Ke:

� �q xj j2 þ eA þ eBK	 
T
Pþ P eA þ eBK	 
���� ���� xj j2 þ 2 PB̂K

�� ��þ PeBK�� ��	 

ej j xj j

� �qþ Δð Þ xj j2 þ b ej j xj j:
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By updating the model according to (6.22) we ensure that the error becomes 0 at

the update instant and it satisfies ej j � σ q� Δð Þ xj j=b until a new update is

generated and _V satisfies the inequality (6.19).

Example 6.3 Consider the inverted pendulum on a moving cart dynamics described

in Example 3.2. In this case the nominal parameters are given by: m̂ ¼ 0:1, M̂ ¼ 1,

l̂ ¼ 1: The values of the real parameters are given by: m¼ 0.09978, M¼ 1.0016,

l¼ 0.9994. We also have that ĝ ¼ g ¼ 9:8. In this case we use the following

control gain:

K ¼ 0:5379 25:0942 1:4200 7:4812½ �:

Figure 6.6 shows the response of the system; it also shows the norm of

the system and the norm of the error. It can be seen that the error is reset at the

update instants.
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Fig. 6.6 Response of the system using relative threshold. Top: positions. Middle: velocities.

Bottom: |e(t)| (piecewise continuous) and σ q�Δð Þ
b x tð Þj j (continuous)
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6.3 Systems with Network Induced Delays

Although the MB-NCS framework may help reduce network induced delays by

limiting the number of packets that attempt to use the network to reach their

destination, we should be prepared for situations in which peak conditions on the

network produce considerable time delays between nodes. These conditions may

be due to a high network load, i.e., many systems and nodes have been added to

the network or, in the case of many systems being controlled by event-triggered

strategies, due to several of them operating in a region that requires a higher

communication rate. The solutions provided in previous sections assumed negli-

gible time delays but it can be shown that the event-triggered control strategy is

able to compensate for delays: if some delay characteristics are known (a bound or

even the exact time delay when using time-stamped messages) the next update

should be scheduled before the regular one (the update when no delay is present)

in such a way that stability is never compromised. In this section we take this

approach in order to determine the best time to update in the presence of time

delays. Two advantages are obtained by using the MB-NCS framework and event-

triggered controller. The first one is the known property of generating an estimate

of the state when operating in open loop mode to get longer update intervals.

The second advantage is that the model is able to produce almost instantaneously

an estimate of the current plant state based on the delayed measurement. We can

use this estimate instead of using the delayed measurement to update the model in

the controller.

Next theorem provides conditions for asymptotic stability in the presence of

network induced delays. In the case of delays it is also important to guarantee that

the inter-execution update times never become too close to each other causing a

model update in the controller when the previous execution has not been finished

due to time delays or even resulting in a Zeno behavior. To show that this will never

occur is a nontrivial task, since the execution time intervals are only implicitly

defined by (6.18); and this is also shown in the next theorem.

Theorem 6.5 Let (6.1) be a control system with control input based on the state of
the nominal model u ¼ Kx̂ and assume that: there exists a symmetric positive

definite solution P for the model Lyapunov equation (6.17), B ¼ B̂ , and the next

bounds are satisfied: eA��� ��� � ΔA and eATPþ PeA��� ��� � Δ < q. Then there exists an

ε> 0 such that for all network delays τN ∈ [0, ε] the system is asymptotically
stable. Furthermore, there exists a time τ > 0 such that for any initial condition
the inter-execution times {ti+ 1� ti} implicitly defined by (6.18) with σ< 1 are
lower bounded by τ, i.e., ti+ 1� ti� τ 8 i ∈ Z+.

Proof In order to show asymptotic stability for the nonzero network delay case

and to bound the inter-execution times let us look at the dynamics of jej/jxj:
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d

dt

ej j
xj j ¼

d

dt

eTeð Þ1=2
xTxð Þ1=2

¼ xTxð Þ1=2 eTeð Þ�1=2
eT _e � eTeð Þ1=2 xTxð Þ�1=2

xT _x

xTx

¼ eT _e

xTxð Þ1=2 eTeð Þ1=2
� eTeð Þ1=2xT _x

xTxð Þ3=2

¼
eT Â e� eAx	 


xj j ej j �
xT Â þ eA þ BK

	 

xþ BKe

h i
xj j xj j

ej j
xj j

� eA��� ���þ Â
�� �� ej j

xj j þ Â þ eA þ BK
��� ��� ej j

xj j þ BKj j ej j
xj j

� �2

� ΔA þ ΔA þ 2Â þ BK
�� ��� � ej j

xj j þ BKj j ej j
xj j

� �2

: ð6:23Þ

Let us denote the term |e|/|x| by θ so we have the estimate:

_θ � ΔA þ ΔA þ 2Â þ BK
�� ��� �

θ þ BKj jθ2

� ΔA þ 2Â
�� ��þ ΔA þ 2Â

�� ��þ BKj j� �
θ þ BKj jθ2

ð6:24Þ

and consider the differential equation:

_ϕ ¼ ΔA þ 2Â
�� ��þ ΔA þ 2Â

�� ��þ BKj j� �
ϕþ BKj jϕ2 ð6:25Þ

then we can conclude that θ(t)�ϕ(t,ϕ0), where ϕ(t,ϕ0) is the solution of (6.25)

satisfying ϕ(0,ϕ0)¼ϕ0.

For the case when τN¼ 0, the inter-execution times are bounded by the time it

takes for ϕ to evolve from 0 to σ(q�Δ)/b, i.e., the solution τ ∈ ℝ+ of ϕ(τ, 0)¼ σ
(q�Δ)/b. An estimate of that time can be obtained by solving (6.25). Such solution

is given by:

ϕ t; 0ð Þ ¼ �edt c�1ð Þ þ 1

edt c�1ð Þ=c� 1
ð6:26Þ

for c 6¼ 1. Let y¼ σ(q�Δ)/b¼ϕ(τ, 0), then

τ ¼ ln yþ 1ð Þ � ln
y

c
þ 1

	 
	 
 1

d c� 1ð Þ ð6:27Þ

where d¼ jBKj and c ¼ ΔA þ 2Â
�� ��� �

=d. In the analysis if we have the case c¼ 1

we can easily avoid it by increasing the bound on the uncertainty by a very small

amount. It can also be verified that τ> 0 for any y> 0. The last statement can be

shown by analyzing directly the two factors in (6.27). Note that c and d are
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nonnegative and we consider two cases and avoiding the case c¼ 1 as we discussed

previously. First, for c> 1 the second factor in (6.27) is positive, then, in order to

obtain τ> 0, we need the condition:

c yþ 1ð Þ
yþ cð Þ > 1

which is equivalent to the condition y> 0. For the case 0< c< 1 the second term is

negative and we need the first factor to be negative in order to obtain a strictly

positive value for τ. We can ensure that the first factor is negative by satisfying the

following condition:

c yþ 1ð Þ
yþ cð Þ < 1

which is equivalent to y> 0.

In addition we can find the range of values for τ for any positive value of the

threshold y is given by τ ∈ (0, τm), where:

τm ¼ lim
y!1 τ ¼ ln cð Þ

d c� 1ð Þ : ð6:28Þ

For τN> 0, we choose some σ ’ such that the next is satisfied σ< σ ’< 1, and let

0< ε1< τm satisfy the solutionϕ(ε1, y)¼ y ’¼ σ ’ (q�Δ)/b, such that ε1 always exists
since ϕ is continuous in the range τ ∈ [0, τm) that covers all positive thresholds 0< y,

y ’<1, also _ϕ > 0 and y< y ’ since σ< σ ’. Then, by sending the state measurement

at time ti in order to update the model in the controller, this execution is released by

the condition jej ¼ yjxj, we guarantee that for t ∈ [ti, ti+ ε1] we have jej � y ’ jxj,
and since σ ’< 1 asymptotic stability is still guaranteed. The inter-execution times

are now bounded by τN+ τ, where τ is the time it takes ϕ to evolve from je(ti+ τN)j/jx
(ti+ τN)j ¼ x̂ ti þ τNð Þ � x ti þ τNð Þj j= x ti þ τNð Þj j to y, then the admissible delays τN
need to satisfy je(ti+ τN)j/jx(ti+ τN)j< y since _ϕ > 0. From continuity of

x̂ ti þ τNð Þ � x ti þ τNð Þj j=x(ti+ τN) with respect of τN there exists an ε2> 0 such that

for any 0� τN� ε2 we have x̂ ti þ τNð Þ � x ti þ τNð Þj j= x ti þ τNð Þj j < y. The term

x̂ ti þ τNð Þ � x ti þ τNð Þj j= x ti þ τNð Þj j is continuous due to the fact that jx(ti+ τN)j
is never 0 since the closed loop system is asymptotically stable and never reaches 0 in

finite time. We complete the proof by defining ε¼min{ε1, ε2}. ♦

6.3.1 Updating the Model State Using Delayed
Measurements

The stability and performance of the networked system is affected by the use of

delayed measurements for control since the difference between the delayed mea-

surement and the current state of the system produces a large state error when the
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delayed data is used to update the model. A smaller state error can be obtained by

estimating the current plant state based on the old measurements. This procedure

represents another advantage compared to traditional ZOH event-triggered

implementations. By computing a quantity that reflects more accurately the current

state of the plant than the delayed measurement does, it is possible to execute a

better control action over the next open loop interval, that is, the next event will be

triggered later in time than by using the old data directly.

Constant delays. Since we need to implement the model of the plant in both the

controller and the sensor node, in order to compute the control input and compute

the state error respectively, we have to use the delayed information received by the

controller effectively so a good estimate of the current plant state is obtained to

update the model in the controller and compute a better control input for the plant.

In the case that the network delays are constant we can implement the next strategy:

the sensor decides to send a feedback measurement to the controller at time ti so it

updates its own state but keeps using the old input, i.e., the input generated by the

same model in the case that no update has taken place, similar to the plant being fed

by the model/controller that has not been updated yet. Notice that if the sensor

knows the magnitude of the constant network delay τN then it will switch to closed

loop mode at the end of the known delay. By using this strategy we need to

implement a second model in the sensor node, but this is physically possible

since we are considering operations performed by a single processor; that is, if

we are able to implement the computations needed to measure and compute

the state error and threshold comparisons then, in general, we could be able to

implement a second closed loop model that only works for short intervals

[ti, ti+ τN]. When the controller receives the measurement x(ti) at time ti + τN it

uses this measurement to immediately estimate the state of the model in the sensor

by computing the next:

x̂ c ti þ τNð Þ ¼ eÂ τNx tið Þ þ
ðτ
0

eÂ τ�sð ÞBuc sð Þds ð6:29Þ

which can be made arbitrarily accurate by storing the sequence of inputs over the

previous delay interval, i.e., [ti, ti + τN] in the controller node and since the param-

eters in both models are exactly the same. The subscript c indicates the quantities
belonging to or available at the controller node. The result of the operation in (6.29)

is used to update the state of the model in the controller.

Time-varying bounded delays. A more general situation in many networked systems

is that the network induced delays are time-varying (and bounded) as discussed in

the previous section. In this case the sensor does not know the current value of

the delay, but by time-stamping the measurement sent over the network the control-

ler node does know the size of the delay for every packet containing a feedback

measurement. A simple strategy in this case is to let the model in the sensor remain

working in closed loop after measuring and updating its state. When the controller
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receives the delayed measurement it simply computes the following, which is used

to update the model in the controller node.

x̂ c ti þ τNð Þ ¼ e ÂþBKð ÞτN x tið Þ ð6:30Þ

A slightly different strategy can be implemented in this case that, in general,

results in better performance, i.e., longer broadcast intervals, by realizing that the

states of both models do not need to be the same, as long as the model in the

controller produces a smaller state error than the model in the sensor. This is

basically a combination of the two strategies above. The sensor updates its state

and continues working in closed loop mode but the controller uses the quantity

obtained by (6.29) in order to obtain a better estimate of the current plant state not of

the current sensor model state based on the delayed measurement.

Example 6.4 Consider the following networked system implemented as in Fig. 6.1,

where the system to be controlled is unstable and is represented by the parameters:

A ¼ 0:55 �0:4
0:3 �0:7

� �
B ¼ 1

1

� �
:

Let the model be obtained by altering the physical parameters by 10 %,

Â ¼ 0:495 �0:360
0:270 �0:630

� �
B̂ ¼ 1

1

� �
:

Let the controller, found using the model parameters, be given by:

K ¼ �1:3268 0:4618½ �

and the uncertainty bounds are given by: Δ¼ 1.05, ΔA¼ 0.1. By choosing the

following parameters: q¼ 5 and σ¼ 0.5 we can find the threshold y¼ 0.1382, then,

by using the results of previous section we get ε¼ 0.065 s. Results of simulations

are shown in Figs. 6.7 and 6.8. Figure 6.7 shows the response of the norm of the

state of the plant and the norm of the error for a constant delay of 0.06 s. The

discrete variations on the error correspond to the events generated at the sensor

node i.e., when the sensor decides to transmit the current measurement and updates

its internal model, resetting the error as measured by the sensor. Similarly, Fig. 6.8

shows the response of the norms of the state of the plant and the error for time-

varying delays bounded by 0.06 s.

In both cases we are able to asymptotically stabilize the system in the presence of

delays and using feedback measurements sent through the network at well sepa-

rated instants of time, i.e., significantly reducing the traffic in the network.

In order to draw a comparison to the case when a ZOH model is used in the

controller node, that is, the received measurement is held constant until a new

measurement arrives we execute similar simulations using the same parameters,

controller gains, and time delays that were used in the executions shown in Figs. 6.7
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and 6.8 but now the measurements are held constant. Figures 6.9 and 6.10 show the

simulation results. It can be seen that error events are triggered more frequently in

both cases, when the delays are constant in Fig. 6.9, and when the delays are time-

varying and bounded in Fig. 6.10.
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Fig. 6.7 Response of |e(t)| and y|x(t)| for constant delays τN¼ 0.06 S
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Fig. 6.8 Response of |e(t)| and y|x(t)| for the case of time-varying delays bounded by ε¼ 0.06 S
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Fig. 6.9 Response of |e(t)| and y|x(t)| for the ZOH model case and constant delay
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Fig. 6.10 Response of |e(t)| and y|x(t)| for the ZOH model case and time-varying bounded delays
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6.4 Notes and References

The work presented in this chapter is an extended version of [84]. Parts of this

chapter were also published in [87].

Event-triggered control techniques are commonly used in control systems [9, 10,

40, 58, 59, 99, 105, 108, 140–142, 146, 176–178, 246, 247, 250, 261, 262, 264, 265,

280]. All these references point out the advantage in reducing sampling rate by

allowing the sensor to transmit measurements according to the current response of

the system. A traditional approach followed by many authors is to implement a

Zero-Order-Hold (ZOH) approach which means that the measurements received at

the controller node are held constant until a new measurement arrives. The event-

triggered control approach is also more robust to unknown disturbances than

periodic approaches. Disturbances that affect the system can be compensated faster

since the event-detectors will update the controller as soon as an erratic behavior is

measured.

The use of event-triggered control techniques requires constant measurement of

the state, calculation of the state errors, and comparison to the designed threshold.

These requirements impose harder computations than typical periodic schemes.

The use of event-triggered control in NCS is valuable from the point of view of

communication savings, that is, communication costs are usually higher than

computation costs.

In order to reduce the continuous sensing requirement imposed by event-

triggered control techniques several authors have developed self-triggered control

strategies [1, 2, 175, 176, 205, 263, 282]. In this case, the system dynamics and the

last measurement transmitted are used to estimate the next time that the sensor has

to measure the state of the system and transmit this measurement.

A similar model-based approach to the one presented in this chapter has been

developed by Lunze and Lehman [165]. In their approach, the model is assumed to

match the dynamics of the system exactly; however, the system is subject to

unknown input disturbances. The main idea of the approach in [165] is the same

as in the ideas of this book, that is, to use the nominal model to generate estimates of

the current state of the system. Since the system is subject to unknown disturbances

and the model is executed with zero input disturbance, then a difference between

the states is expected and the sensor updates transmitted over a digital communi-

cation network are used to reset this difference between the states of the plant and of

the model. The same authors have extended this approach to consider the output

feedback, quantization, and network delay cases.

Event-triggered control strategies, in combination to the MB-NCS framework,

will be used frequently in subsequent chapters. These techniques will be of great

advantage to address different problems and control architectures that appear very

often in networked systems.
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Chapter 7

Model-Based Nonlinear Control Systems

The use of linear models in the MB-NCS framework not only provides a simple

approach for controller and update intervals design, but the overall setup can also be

used for nonlinear systems as well. By considering robustness to model uncer-

tainties in the MB-NCS framework with linear systems, it is clear that we can

implement a linearized model of the system to control a nonlinear plant. This is a

very common approach, namely, controller design based on linearization. The

difference with respect to linearization control techniques is that in the MB-NCS

approach, the linearized model is not only used to design the control gain but it is

also implemented in the actuator/controller node in order to obtain an estimate of

the real state between measurement updates.

We expect the mismatch between the nonlinear plant and the linearized model to

grow as the state leaves the linearization region. The result is that, in general, we

expect only local stability of the model-based network interconnected system

compared to the global stability property that can be obtained in the case the plant

is linear as it was discussed in previous chapters. In the case of linear time-invariant

(LTI) plants andmodels we saw that themodel uncertainties were constant nomatter

the operating region of the plant state.

In this chapter we provide a more formal analysis of nonlinear MB-NCS using

nonlinear models. In Sect. 7.1 we focus on the case when the measurement update

intervals are constant, that is, we update the state of the model using the measured

state of the system in a periodic fashion. In Sect. 7.2 we study nonlinear dissipative

systems using output feedback and event-based updates. Notes and references are

provided in Sect. 7.3.

E. Garcia et al., Model-Based Control of Networked Systems, Systems & Control:

Foundations & Applications, DOI 10.1007/978-3-319-07803-8_7,

© Springer International Publishing Switzerland 2014
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7.1 Constant Update Time Intervals

In this section we present results for two common classes of nonlinear MB-NCS.

The sufficient conditions obtained below relate the stability of the nonlinear

MB-NCS to the value of a function that depends on the Lipschitz constants of

the plant and model as well as the stability properties of the compensated

non-networked model. The results are obtained by studying the worst-case behavior

of the norm of the plant state and the error. Each subsection is augmented with an

example where the results are illustrated.

7.1.1 Stability of a Class of Nonlinear MB-NCS

In this section we consider systems that can be represented by the following

equations:

_x ¼ f xð Þ þ g uð Þ: ð7:1Þ

A nominal nonlinear model of the system will be used in the actuator side to

estimate the actual state of the plant. The controller will be assumed to be a

nonlinear state feedback controller. The plant model state will be used together

with the controller to generate the control signal u. The plant state sensor will send
the real value of the plant state through the network in order to update the model

every h seconds. Upon arrival of the sensor information, the model state is updated

or reset to the actual value of the state of the plant. The dynamics of the nominal

model are given by:

_̂x ¼ f̂ x̂ð Þ þ ĝ uð Þ ð7:2Þ

and the controller has the following form:

u ¼ ĥ x̂ð Þ: ð7:3Þ

Also define e ¼ x� x̂ as the error between the plant state and the nominal model

state. Combining (7.1) and (7.2) with (7.3) we obtain:

_x ¼ f xð Þ þ g ĥ x̂ð Þ� � ¼ f
�
x
�þ m

�
x̂
�

_̂x ¼ f̂ x̂ð Þ þ ĝ ĥ x̂ð Þ� � ¼ f̂
�
x̂
�þ m̂

�
x̂
�
:

ð7:4Þ
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We will also assume that the plant model dynamics differ from the actual plant

dynamics in an additive fashion:

f̂ ςð Þ ¼ f
�
ς
�þ δf

�
ς
�

m̂ ςð Þ ¼ m
�
ς
�þ δm

�
ς
�
:

ð7:5Þ

So we can rewrite (7.4) as:

_x ¼ f xð Þ þ m
�
x̂
�

_̂x ¼ f x̂ð Þ þ m
�
x̂
�þ δf

�
x̂
�þ δm

�
x̂
� ¼ f

�
x̂
�þ m

�
x̂
�þ δ

�
x̂
�
: ð7:6Þ

We will now assume that f and δ satisfy the following local Lipschitz conditions
for x, y ∈ BL with BL a ball centered on the origin:

f xð Þ � f yð Þk k � Kf x� yk k
δ xð Þ � δ yð Þk k � Kδ x� yk k:

ð7:7Þ

At this point it is to be noted that if the plant model is accurate the Lipschitz

constant Kδ will be small.

We will assume that the non-networked compensated plant model is exponen-

tially stable (see Definition 2.2), that is, the controller (7.3) is designed based on the

available information as provided by the nominal model dynamics and it is also

designed in such a way that the closed-loop nominal model, second equation in

(7.4), is exponentially stable when x̂ t0ð Þ∈BS, with x̂ tð Þ∈Bh for t ∈ [t0, t0 + h) with
BS and Bh balls centered on the origin.

x̂ tð Þk k � α x̂ t0ð Þk ke�β t�t0ð Þ, with α, β > 0: ð7:8Þ

Theorem 7.1 The nonlinear MB-NCS with dynamics described by (7.1), (7.2), and
(7.3) that satisfies the Lipschitz conditions described by (7.7) and with exponen-
tially stable compensated plant model satisfying (7.8) is asymptotically stable if:

1� α e�βh þ eKf h � e�βh
� � Kδ

Kf þ β

� �� �� �
> 0: ð7:9Þ

Proof We will now analyze the behavior of the plant state norm in between

updates. The stability of the system can be guaranteed if kx(t)k decreases such

that kx(tk)k> kx(t�kþ 1)k, where tk and tk+1 are update times with tk+ 1� tk¼ h.

Figure 7.1 recreates two possible scenarios. In both of them it is assumed that the

closed-loop model is exponentially stable. The difference is that for larger trans-

mission intervals we expect, in general, a growth on the norm of the state that could

lead to an unstable response as shown in Fig. 7.1b. Although the closed-loop model
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is stable the measurement updates make the model unstable when it is used in the

MB-NCS setup due to the long time intervals that the system operates without

sending measurements to update the model. For a given model, system, and

uncertainty parameters, which in this case take the form of the closed-loop model

parameters α and β and the system and uncertainty Lipschitz constants Kf and Kδ,

we aim to find an estimate of the range of h that results in a stable model-based

network interconnected system.

In general we see that in any period of time [tk, tk+1) the following relations hold:

xk k ¼ x̂ þ ek k � x̂k k þ ek k,
e tkð Þk k ¼ 0,

x tkð Þk k ¼ x̂ tkð Þk k:
ð7:10Þ

So we can guarantee that the norm of the plant state kxk will decrease over the

period [tk,tk+1) if x̂k k þ ek k decrease. We will now establish bounds over the norm

of the error as a function of the update time h. We know that:

_e ¼ _x � _̂x ¼ f xð Þ � f x̂ð Þ � δ x̂ð Þ: ð7:11Þ

Therefore:

e tð Þ ¼ e
�
tk
�þ ð t

tk

f x sð Þð Þ � f x̂ sð Þð Þ � δ x̂ sð Þð Þð Þds

¼
ð t

tk

f x sð Þð Þ � f x̂ sð Þð Þ � δ x̂ sð Þð Þð Þds, 8t∈ �
tk, tkþ1

�
:

ð7:12Þ

The last equality holds since at tk the plant model state is updated and the error is

zeroed. We will now use the Lipschitz condition of the functions involved in (7.12)

to place a bound on the norm of the error.

a b

x

e

tk tktk+1 tk+1

x
x

x

x̂ x̂ x̂

x̂

e

Fig. 7.1 Two different MB-NCS responses according to different update intervals h. (a) A plant

model stable response. (b) A plant model unstable response
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e tð Þk k �
ð t

tk

f x sð Þð Þ � f̂ x̂ sð Þð Þ�� ��þ δ x̂ sð Þð Þk k� �
ds

�
ð t

tk

Kf x sð Þ � x̂ sð Þk k þ Kδ x̂ sð Þk k� �
ds

¼ Kf

ð t

tk

x sð Þ � x̂ sð Þk kdsþ Kδ

ð t

tk

x̂ sð Þk kds

¼ Kf

ð t

tk

e sð Þk kdsþ Kδ

ð t

tk

x̂ sð Þk kds, 8t∈ �
tk, tkþ1

�
:

ð7:13Þ

From (7.8) we have that:

e tð Þk k � Kf

ð t

tk

e sð Þk kdsþ Kδ

ð t

tk

x̂ sð Þk kds

¼ Kδ

ð t

tk

α x̂ tkð Þk ke�β s�tkð ÞdsþKf

ð t

tk

e sð Þk kds

¼ Kδ
α

β
x̂ tkð Þk k 1� e�β t�tkð Þ

� 	
þ Kf

ð t

tk

e sð Þk kds, 8t∈ �
tk, tkþ1

�
:

ð7:14Þ

The Gronwall-Bellman Inequality [131] states that if a continuous real-valued

function y(t) satisfies: y(t)� λ(t) +
Ð
t
aμ(s)y(s)ds with λ(t) and μ(t) continuous

real-valued functions and μ(t) non-negative for t ∈ [a, b], then:

y tð Þ � λ tð Þ þ
ð t

a

λ sð Þμ sð Þe

ð t

s

μ τð Þdτ
ds over the same interval. So by assigning

y(t)¼ke(t)k, λ tð Þ ¼ Kδ
α
β x̂ tkð Þk k 1� e�β t�tkð Þ� �

, and μ(t)¼Kf we obtain:

e tð Þk k � Kδ
α

β
x̂ tkð Þk k 1� e�β t�tkð Þ

� 	
þ
ð t

tk

Kδ
α

β
x̂ tkð Þk k 1� e�β s�tkð Þ

� 	
Kf e

Kf t�sð Þds

¼ Kδ
α

β
x̂ tkð Þk k 1� e�β t�tkð Þ þ

ð t

tk

1� e�β s�tkð Þ
� 	

Kf e
Kf t�sð Þds

� �
¼ Kδ

α

β
x̂ tkð Þk k 1� e�β t�tkð Þ þ Kf

ð t

tk

eKf t�sð Þ � eKf t�sð Þe�β s�tkð Þ
� 	

ds

� �
¼ Kδ

α

β
x̂ tkð Þk k 1� e�β t�tkð Þ þ Kf

ð t

tk

eKf t�sð Þ � eKf t�Kf s�βsþβtk
� 	

ds

� �

¼ Kδ
α

β
x̂ tkð Þk k 1� e�β t�tkð Þ þ Kf

�1

Kf
1� eKf t�tkð Þ

� 	
þ 1

Kf þ β
e�β t�tkð Þ � eKf t�tkð Þ

� 	0@ 1A0@ 1A
¼ Kδ

α

β
x̂ tkð Þk k 1� e�β t�tkð Þ � 1þ eKf t�tkð Þ þ Kf

Kf þ β
e�β t�tkð Þ � eKf t�tkð Þ

� 	0@ 1A
¼ Kδ

α

β
x̂ tkð Þk k eKf t�tkð Þ � e�β t�tkð Þ

� 	
1� Kf

Kf þ β

0@ 1A
¼ Kδ x̂ tkð Þk k eKf t�tkð Þ � e�β t�tkð Þ� � α

Kf þ β

0@ 1A, 8t∈ �
tk, tkþ1

�
:

ð7:15Þ
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From (7.15) we note that the error signal will be 0 if the update time h¼ tk+1-tk is
0 and also if the plant model and the plant dynamics are the same. With this bound

over the system’s error signal we can proceed to calculate the bound over the plant

state.

x tð Þk k � x̂ tð Þk k þ e tð Þk k

� α x̂ tkð Þk ke�β t�tkð Þ þ Kδ x̂ tkð Þk k eKf t�tkð Þ � e�β t�tkð Þ� � α

Kf þ β

0@ 1A
¼ α x̂ tkð Þk k e�β t�tkð Þ þ eKf t�tkð Þ � e�β t�tkð Þ� � Kδ

Kf þ β

0@ 1A0@ 1A, 8t∈ �
tk, tkþ1

�
:

ð7:16Þ

In order to ensure stability of the system we need that kx(tk)k> kx(t�kþ 1)k,
therefore we require:

x tkð Þk k � α x̂ tkð Þk k e�βh þ eKf h � e�βh
� � Kδ

Kf þ β

0@ 1A0@ 1A > 0

x tkð Þk k 1� α e�βh þ eKf h � e�βh
� � Kδ

Kf þ β

0@ 1A0@ 1A0@ 1A > 0

1� α e�βh þ eKf h � e�βh
� � Kδ

Kf þ β

0@ 1A0@ 1A0@ 1A > 0:

ð7:17Þ

♦

Example 7.1 We now present an example of an inverted pendulum in Fig. 7.2. The

inverted pendulum has length L, mass m, friction coefficient k, and is driven by a

torque τ.
The state-space dynamics for the inverted pendulum are:

_x1

_x2

" #
¼

�x2

� g

L
sin x1ð Þ � k

m
x2

264
375þ

0

1

mL2

264
375τ: ð7:18Þ

The controller is a gain state feedback found by linearizing the model around the

equilibriumpoint x1¼ 0 andx2¼ 0,where x1 is the pendulumangle andx2 is the angular
velocity. The parameters for the plant are given by:

g¼ 10, L¼ 9.98, k¼ 0.099, m¼ 1.03. The available model parameters are ĝ ¼ 10,

L̂ ¼ 10, k̂ ¼ 0:1, m̂ ¼ 1. The controller is given by

τ ¼ Kx̂ , with K ¼ 316 �316½ �: ð7:19Þ
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To satisfy the conditions on the plant, on the error, and on the exponential

stability of the controlled model we use the following parameters: Kf¼ 1.0502,

Kδ¼ 0.1382, α¼ 1.1, and β¼ 0.5. In Fig. 7.3 we plot the condition given by (7.9) as

a function of the update time.

Note that the system stability can be guaranteed for update times approximately

between 0.29 and 1.66 s which has been highlighted in Fig. 7.3. Figure 7.4 shows

plots of the pendulum and model angle for some update times. The plant is

initialized at x1¼ 0.025, x2¼ 0 while the model is initialized to 0.

7.1.2 Stability for a More General Class of Nonlinear
MB-NCS

In this subsection we extend our results to consider MB-NCS with nonlinear

systems that are represented as follows:

_x ¼ f xð Þ þ g x; uð Þ: ð7:20Þ

The nonlinear model and the controller are given by:

_̂x ¼ f̂ x̂ð Þ þ ĝ x̂; uð Þ
u ¼ k x̂ð Þ: ð7:21Þ

Inserting the controller into the plant and model equations we get:

_x ¼ f xð Þ þ g x, k x̂ð Þð Þ ¼ f xð Þ þ m x; x̂ð Þ
_̂x ¼ f̂ x̂ð Þ þ ĝ x̂ , k x̂ð Þð Þ ¼ f̂ x̂ð Þ þ m̂ x̂; x̂ð Þ: ð7:22Þ

x1

k
L

mg

τ

Fig. 7.2 Inverted pendulum
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Fig. 7.4 Plant and model state for different update times

166 7 Model-Based Nonlinear Control Systems



We again assume that the uncertainty between the model and the plant is given in

an additive fashion as shown below:

f̂ ςð Þ ¼ f ςð Þ þ δf ςð Þ
m̂ ς; ςð Þ ¼ m ς; ςð Þ þ δm ςð Þ:

ð7:23Þ

Then the error dynamics between the plant and the model can be expressed as:

_e ¼ f xð Þ � f x̂ð Þ � δf x̂ð Þ þ m x; x̂ð Þ � m x̂; x̂ð Þ � δm x̂ð Þ ð7:24Þ

and we assume that the following Lipschitz conditions hold:

f xð Þ � f yð Þk k � Kf x� yk k
m x; sð Þ � m y; sð Þk k � Km sð Þ x� yk k
δf xð Þ � δf yð Þ�� �� � Kδf x� yk k
δm xð Þ � δm yð Þk k � Kδm x� yk k:

ð7:25Þ

Define also Km,max ¼ maxs∈BS
Km sð Þð Þ for BS a ball centered in the origin.

Finally assume that the compensated system is exponentially stable when

x̂ t0ð Þ∈BS, with x̂ tð Þ∈Bh for t ∈ [t0, t0 + h) with BS and Bh balls centered on the

origin.

x̂ tð Þk k � α x̂ t0ð Þk ke�β t�t0ð Þ, with α, β > 0: ð7:26Þ

We now state a sufficient condition for stability:

Theorem 7.2 The nonlinear MB-NCS with dynamics described by (7.20), and
(7.21) that satisfies the Lipschitz conditions described by (7.25) and with exponen-
tially stable compensated plant model satisfying (7.26) is asymptotically stable if:

1� α e�βh þ e KfþKm,maxð Þh � e�βh
� 	 Kδf þ Kδm

Kf þ Km,max þ β

� �� �� �
> 0: ð7:27Þ

Proof Note the error can be bounded as follows:

e tð Þk k �
ð t

tk

Kf þ Km,max

� �
x sð Þ � x̂ sð Þk k þ Kδf þ Kδm

� �
x̂ sð Þk k� �

ds, 8t∈ �
tk, tkþ1

�
:

ð7:28Þ

The rest of the proof is along the same lines as the proof of Theorem 7.1. ♦

Note that this theorem may yield similarly conservative results as those obtained

with Theorem 7.1.
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Example 7.2 We now consider the control of a satellite orbiting a planet [19]. The

satellite has unit mass and the gravitational force is inversely proportional to the

square of the distance between the planet and the satellite. The gravitational force

constant is g. The satellite can thrust in the radial and tangential directions with

thrusts u1 and u2, respectively. See Fig. 7.5.
The equations that govern this system are given by:

€r ¼ _r _θ
2 � g

r2
þ u1

€θ ¼ �2 _θ _r

r
þ 1

r
u2:

ð7:29Þ

If we let x1¼ r, x2 ¼ _r , x3¼ θ, and x4 ¼ _θ, then the motion equations (7.29)

become:

_x1 ¼ x2
_x2 ¼ x1x

2
4 �

g

x21
þ u1

_x3 ¼ x4

_x4 ¼ � 2x2x4
x1

þ u2
x1

:

ð7:30Þ

It is desired that the satellite orbit around the planet at a radius requ¼ 1. The

satellite will orbit at this radius with u1¼ u2¼ 0 if _θ ¼ ωequ ¼ g=r3equ

� 	1=2
.

To obtain a suitable controller we first linearize equation (7.30) about the

solution:

x ¼ requ 0 ωequtþ θ0 ωequ½ �T , u ¼ 0 ð7:31Þ

Fig. 7.5 Satellite orbiting planet
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to obtain:

_z ¼

0 1 0 0

3ω2
equ 0 0 2requωequ

0 0 0 1

0
�2ωequ

requ
0 0

266664
377775zþ

0 0

1 0

0 0

0
1

requ

266664
377775v: ð7:32Þ

We obtain a controller by solving a linear quadratic regulator problem with the

linearized plant (7.32), state penalty matrix Q¼ diag(10, 1, 1, 10), and control

penalty matrix R¼ I. The obtained linear state feedback controller is given by:

K ¼ 6:1618 3:4648 �0:6884 0:3063
3:0005 0:3063 0:7254 3:5471


 �
: ð7:33Þ

The plant model considers uncertainties in the gravitational constant. We will

study the stability of the satellite control system with different values of gravita-

tional constant. We first transform the plant model dynamics (7.30) so to have the

desired equilibrium at the origin. We obtain:

_y1 ¼ y2
_y2 ¼ y1 þ requ

� �
y4 þ ωequ

� �2 � g

y1 þ requ
� �2 þ w1

_y3 ¼ y4

_y4 ¼ � 2y2 y4 þ ωequ

� �
y1 þ requ
� � þ w2

y1 þ requ
� � :

ð7:34Þ

The Lipschitz constants are found over a linear transformation of (7.34) given

by:

y ¼
0 4 �1:5 �1:5
0 0 �1:5 1:5
�6 0 1:5 �1:5
0 �6 3 3

2664
3775s: ð7:35Þ

This linear transformation was found by making the A matrix of equation (7.32)

block diagonal, thus reducing the values of Kf and α. The resulting parameters

found for a small neighborhood around the origin kyk� 0.0001 are the following:

Kf ¼ 3:6503 α ¼ 1:5

Kδf ¼ 0:3155 β ¼ 0:9

Km,max ¼ 0:0010

Kδm ¼ 0

ð7:36Þ
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Figure 7.6 shows the plot of the stability condition in Theorem 7.2 for different

values of gravitational force constants, namely we considered g¼ 1.001, g¼ 1.01,

and g¼ 1.1.

We note that the MB-NCS for the orbiting satellite is stable for g¼ 1.001 for

update times up to 1.75 time units. For g¼ 1.01, stability is guaranteed for update

times up to 1 s, while for g¼ 1.1 no stability is guaranteed at all. As a matter of fact

the satellite control system with g¼ 1.1 is stable for h¼ 1 but is unstable for h¼ 2

as shown in Figs. 7.7 and 7.8.

7.2 Dissipative Nonlinear Discrete-Time Systems

In contrast to previous work in MB-NCS, the work in this section does not assume

that the entire state vector is available for measurement but only the output of the

system. Instead of implementing a state estimator using uncertain parameters as in

Sect. 3.1 we use a model of the input-output dynamics of the system which can be

updated using the plant output measurements directly.

In this section we consider Single-Input Single-Output (SISO) uncertain and

possibly unstable nonlinear discrete-time systems that can be described by:

Fig. 7.6 Stability condition for satellite with MB-NCS under different gravitational force

constants
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Fig. 7.7 Satellite trajectory with MB-NCS with g¼ 1.1 and update time of 1 s

Fig. 7.8 Satellite trajectory with MB-NCS with g¼ 1.1 and update time of 2 s
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y kð Þ ¼ fio y k � 1ð Þ, . . . , y k � nð Þ, u kð Þ, . . . , u k � mð Þð Þ: ð7:37Þ

The dynamics of the model are given by:

ŷ kð Þ ¼ f̂io ŷ k � 1ð Þ, . . . , ŷ k � nð Þ, u kð Þ, . . . , u k � mð Þð Þ ð7:38Þ

where the nonlinear function f̂io �ð Þ represents the available model of the system

function fio(�).
The aim using this configuration is to operate in open-loop mode for as long as

possible while maintaining desirable boundedness properties. This is done by using

the estimated outputs ŷ kð Þ, . . . , ŷ k � nð Þ provided by the model to generate the

control input u. The system output measurements are used directly to update the

current and past output variables of the model without need of implementing a state

observer.

The work in this section discards the periodicity assumption for updating the

model. Instead, a non-periodic approach is used that is based on events as in Chap. 6.

The estimate of the output given by the model of the plant is compared with the

actual output. The sensor then transmits the current output of the plant and previous

n output measurements in a single packet if the error is above some predefined

tolerance. These measurements are used to update the internal variables of the model

in the controller. At the same time the sensor uses exactly the samemeasurements to

update its own copy of the model. The sensor contains a copy of the model and the

controller so it can have access to the model output. It continuously measures the

actual output and computes the model-plant output error, defined by:

e kð Þ ¼ ŷ kð Þ � y kð Þ: ð7:39Þ

The sensor also compares the norm of the error to a predefined threshold α, and it
broadcasts the plant output to update the model state if the error is greater than the

threshold. It is clear that while kek� α the plant is operating in open-loop mode

based on the model outputs.

7.2.1 Dissipative System Theory

The approach for nonlinear MB-NCS used in this section relies on dissipativity

theory. Dissipativity is an energy-based property of dynamical systems. This

property relates energy stored in a system to the energy supplied to the system.

Dissipativity can be seen as an extension of Lyapunov stability theory to systems

with an input-output representation. The energy stored in the system is defined by

a positive definite energy storage function. The energy supplied to the system is a

function of the system input u and output y. A system can be considered dissipative

if it only stores and dissipates energy with respect to the specific energy supply

rate and does not generate energy on its own. Let us consider nonlinear discrete-

time systems represented by:
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x k þ 1ð Þ ¼ f
�
x
�
k
�
, u
�
k
��

y kð Þ ¼ h
�
x
�
k
�
, u
�
k
��
:

ð7:40Þ

Definition 7.3 Consider a nonlinear discrete-time system in the form (7.40). This

system is dissipative with respect to the energy supply rate ω(y,u) if there exists a
positive definite energy storage function V(x) such that the following inequality

holds, for all times k1 and k2 such that k1� k2,

Xk2
k¼k1

ω y; uð Þ � V x k2ð Þð Þ � V x k1ð Þð Þ: ð7:41Þ

It is useful to restrict the supply rate to be quadratic. This is the case in QSR

dissipativity.

Definition 7.4 A nonlinear discrete-time system (7.40) is QSR dissipative if it is

dissipative with respect to the supply rate

ω y; uð Þ ¼ y
u


 �T
Q S
ST R


 �
y
u


 �
ð7:42Þ

where Q¼QT and R¼RT.

The QSR dissipative framework generalizes many well-known areas of

nonlinear systems analysis. The property of passivity can be captured when

Q¼R¼ 0 and S¼ 1/2I, where I is the identity matrix. Systems that are finite-gain

l2 stable can be represented by S¼ 0, Q¼ 1/γI, and R¼ γI where γ is the gain of the
system. The following theorems give stability results for single QSR dissipative

systems as well as feedback interconnections of dissipative systems.

Theorem 7.5 A discrete-time system is finite-gain l2 stable if it is QSR dissipative
with Q< 0.

Theorem 7.6 Consider the feedback interconnection of two QSR dissipative
nonlinear systems. System G1 is dissipative with respect to Q1, S1, R1 and system
G2 is dissipative with respect to Q2, S2, R2. The feedback interconnection of these
two systems is l2 stable if there exists a positive constant a such that the following
matrix is negative definite,

Q1 þ aR2 aS2
T � S1

aS2 � S1
T R1 þ aQ2

" #
< 0: ð7:43Þ

While this section considers dissipativity for general nonlinear systems, the LTI

case is important in many applications. Let a discrete-time LTI system be given by

x k þ 1ð Þ ¼ Ax
�
k
�þ Bx

�
k
�

y kð Þ ¼ Cx
�
k
�þ Dx

�
k
�
:

ð7:44Þ
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An LTI system is dissipative if and only if there exists a quadratic storage

function,

V xð Þ ¼ xTPx ð7:45Þ

where P¼PT> 0, to satisfy the dissipativity inequality. The matrix P can be found

computationally using linear matrix inequality (LMI) methods. An optimization

problem can be formulated to find a positive definite matrix P. The problem is

feasible when P can be found to satisfy the following matrix inequality,

ATPA� P� CTQC ATPB� CTQD� CTS

BTPA� DTQC� STC BTPB� DTQD� DTS� STD� R

" #
� 0: ð7:46Þ

For general nonlinear systems, there does not exist a computational method of

finding storage functions or proving dissipativity.

7.2.2 Bounded Stability of Output Feedback
Dissipative Systems

The first goal in this section is to reconcile the two models discussed up to this

point. The models used are the nonlinear input-output representation of a system

and the nonlinear state-space model. Then the notion of boundedness is discussed

and used; boundedness is also proved under appropriate assumptions.

Proposed Equivalent Representation of a MB-NCS. The type of nonlinear systems

represented by (7.37) can also be described by the state representation (7.40).

A straightforward way to obtain a state-space representation of the input-output

system (7.37) is as follows:

Define the state-space variables:

x1 kð Þ ¼ y
�
k � 1

�
x2 kð Þ ¼ y

�
k � 2

�
⋮

xn kð Þ ¼ y
�
k � n

�
xnþ1 kð Þ ¼ u

�
k � 1

�
xnþ2 kð Þ ¼ u

�
k � 2

�
⋮

xnþm kð Þ ¼ u
�
k � m

�

ð7:47Þ

and the state-space vector
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x kð Þ ¼ x1 kð Þ x2 kð Þ . . . xnþm kð Þ½ �T : ð7:48Þ

Then a system of the form (7.37) can be represented as a state-space dynamical

system as follows:

x k þ 1ð Þ ¼

x1 k þ 1ð Þ
x2 k þ 1ð Þ
⋮

xn k þ 1ð Þ
xnþ1 k þ 1ð Þ
xnþ2 k þ 1ð Þ
⋮

xnþm k þ 1ð Þ

266666666666666664

377777777777777775
¼

f io
�
x1 kð Þ, . . . , xn

�
k
�
, u
�
k
�
, xnþ1

�
k
�
. . . , xnþm

�
k
��

x1 kð Þ
⋮

xn�1 kð Þ
u kð Þ
xnþ1 kð Þ
⋮

xnþm�1 kð Þ

266666666666666664

377777777777777775
¼ f x kð Þ, u kð Þð Þ

y kð Þ ¼ f io x1 kð Þ, . . . , xn kð Þ, u kð Þ, xnþ1 kð Þ . . . , xnþm kð Þð Þ ¼ h x kð Þ, u kð Þð Þ: ð7:49Þ

Following a similar procedure a state-space representation of the model is:

x̂ k þ 1ð Þ ¼ f̂
�
x̂
�
k
�
, u
�
k
��

ŷ kð Þ ¼ ĥ
�
x̂
�
k
�
, u
�
k
��
:

ð7:50Þ

The structure of the state-space model is the same as that of the real plant. The

uncertainty in the plant is only due to the output equation and to the first term in the

state equation of (7.49), which is repeated in the output equation as well; those

expressions contain the nonlinear uncertain dynamics given by (7.37) with respect

to the nominal model (7.38).

By using the model parameters in (7.50) it is possible to use the QSR dissipative

analysis described in the previous section in order to design QSR dissipative and

stabilizing controllers.

Now, the Model-Based Event-Triggered (MB-ET) architecture described in

Chap. 6 can be represented in the negative feedback interconnection suitable for

dissipativity analysis that was shown in Fig. 7.9.

Figure 7.10 shows an equivalent representation of a MB-ET control system in

which the updates of the state of the model are implicit in the model/controller

block. From (7.39) it is clear that

ŷ kð Þ ¼ y kð Þ þ e kð Þ: ð7:51Þ

The input to the controller is the output of the model ŷ kð Þ ; this can be easily

represented by (7.51) as in Fig. 7.10 where the output of the model is the result of

the contribution of two terms: the output of the system and the output error. Although
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the actual implementation of the control system is not in this form, this form is useful

for the analysis and design of stabilizing controllers using dissipative techniques.

By using the MB-ET implementation the output error can be bounded by the

appropriate design of a stabilizing threshold. The error (7.39) can be seen as piece-

wise bounded external disturbance and at the communication update instants ki, we
have that e(ki)¼ 0 because the model and plant output variables are equal.

Stabilization of networked discrete-time systems using output feedback event-trig-
gered measurements. This section considers discrete-time nonlinear systems and

models of the form (7.37) and (7.38) that are interconnected using a model-based

implementation as described above. The analysis and design of the stabilizing

controller can be performed as shown in the previous section using the equivalent

representation (7.49) and (7.50). Since it is only possible to measure the output of

the system and not the whole state it is not possible to implement a state-space

representation of the model directly. Instead, the model in both the controller and

the sensor nodes is implemented as an equivalent nonlinear difference equation

which represents the same input-output behavior as the state-space model. When

the sensor decides that a measurement update needs to be sent according to the

current output error, then it sends the current and n past output measurements which

are used to update the model in the controller. At the same time the sensor uses

exactly the same measurements to update its own copy of the model.

G1O

O

+

+

+
G2

Fig. 7.9 The negative feedback interconnection of two nonlinear systems G1 and G2

Plant

Model/
Controller

u
y

O

O

w

eŷ

Fig. 7.10 Equivalent feedback loop for the model-based event-triggered control system

used for analysis
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In order to make a decision as to whether or not it is necessary to send a

measurement to update the model, the absolute value of the output error (7.39) is

compared to a fixed positive threshold α. When the relation ke(k)k> α holds, the

sensor transmits a measurement update. Assuming negligible delay the model is

updated using the current and past n system output values at the same update instant

ki. At this point, the output error (7.39) is set to 0, since the model output is made

equal to the real output of the system at time k. Therefore, the output error is

bounded by:

e kð Þk k � α: ð7:52Þ

Before the main results are presented, the notion of stability must be clarified.

For uncertain systems that are perturbed by an external disturbance and operate

open loop for some time periods, the notion of stability must be relaxed. While

asymptotic stability is appealing, it simply is not attainable. When the system runs

open loop, the state may diverge due to unstable dynamics that are not known

exactly. A more reasonable notion of stability is in a form of boundedness such as

uniform ultimate boundedness [131]. For systems that are ultimately bounded, as

time goes to infinity the state is bounded by a known constant.

Instead of internal state stability, input-output stability is considered in this

section. For input-output stability, a notion such as l2 stability must be relaxed to

a bound on the output as time goes to infinity. In general, a uniform bound on the

output may not be tight. The output can be a function of the internal states and the

system input. Since the input may not be predictable, a uniform bound on the output

may be quite large. Instead a tighter bound on the average output amplitude may be

found. In this work the notion of average output squared boundedness is

considered.

Definition 7.7 A nonlinear system is average output squared bounded if there exist

a time k and a constant b such that the following bound on the output holds for all

times k1 and k2 such that k � k1 � k2,

1

k2 � k1ð Þ
Xk2�1

k¼k1

yT kð Þy kð Þ � b: ð7:53Þ

This form of boundedness is a practical form of stability on the system output.

While the output does not necessarily converge to 0, it is bounded on average with a

known bound as time goes to infinity. Although this concept may not be useful

for an arbitrarily large bound b, the concept is very informative for a small bound.

The notion should be restricted to being used in the case when the bound is

constructive and preferably when the bound can be made arbitrarily small by

adjusting system parameters.

For the following theorem, assume that the plant and the model of the plant are

QSR dissipative with respect to parameters Qp, Sp, and Rp. Although the plant
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dynamics are not known exactly, experimental testing can be done to verify that the

dissipative rate is at least a bound on the actual dissipative behavior of the system.

The data taken to verify that the parameters hold to a specified level of certainty is

similar data taken to identify system parameters. It is also assumed that a model-

stabilizing dissipative controller has been designed such (7.43) is satisfied with Qc,

Sc, and Rc representing the QSR parameters of the controller. Next, we provide

conditions under which we are able to stabilize uncertain unstable systems with

limited feedback.

Theorem 7.8 Consider the networked system (7.37) with uncertain dynamics,
event-triggered updates, and model-based output error (7.39). This feedback sys-
tem, from external disturbance w to output y, is average output bounded stable if

there exists a positive constant a such that the following matrix eQ is negative
definite,

eQ ¼
Qp þ aRc aSc

T � Sp

aSc � Sp
T Rp þ aQc

" #
< 0: ð7:54Þ

Proof The plant being QSR dissipative implies the existence of a positive definite

storage function Vp, bounded above and below by class-K functions,

αp xp
�� ��� � � Vp xp

� � � αp xp
�� ��� � ð7:55Þ

such that the following inequality holds,

ΔVp xp
� � � y

u


 �T Qp Sp
Sp
T Rp


 �
y
u


 �
: ð7:56Þ

The same applies for the controller being QSR dissipative, i.e.,

αc xcj jð Þ � Vc xcð Þ � αc xcj jð Þ ð7:57Þ

and

ΔVc xcð Þ � uc
ŷ


 �T
Qc Sc
Sc

T Rc


 �
uc
ŷ


 �
: ð7:58Þ

A total energy storage function can be defined, V(x)¼Vp(xp) + aVc(xc), where

x¼ xp
xc


 �
: The total energy storage function has the dissipative property,

178 7 Model-Based Nonlinear Control Systems



ΔV xð Þ �

y

uc

w

e

266664
377775
T

eQ eSeST eR
" # y

uc

w

e

266664
377775: ð7:59Þ

where

eQ ¼
Qp þ aRc aSc

T � Sp

aSc � Sp
T Rp þ aQc

" #
,eS ¼

Sp aRc

�Rp aSc

" #
, eR ¼ Rp 0

0 aRc

" #
: ð7:60Þ

By assumption, eQ is negative definite and can be bounded above by a constant q,eQ � �qI. The other two matrices can be bounded from above, eS � sI and eR � rI.
This yields the following bound on ΔV

ΔV xð Þ � �q yTyþ uc
Tuc

� þ 2s yTwþ uc
Te

� þ r wTwþ eTe
� 

: ð7:61Þ

A completing the square approach can be applied to remove the cross term

leaving the following bound

ΔV xð Þ � � q

2
yTyþ uc

Tuc
� þ 4s2 þ 2qrð Þ

2q
wTwþ eTe
� 

: ð7:62Þ

Summing this inequality over a time interval from k1 to k2 yields the following
evolution of the storage function.

V x k2ð Þð Þ � V x k1ð Þð Þ � q

2

Xk2�1

k¼k1

yTyþ uc
Tuc

� �þ 4s2 þ 2qrð Þ
2q

Xk2�1

k¼k1

wTwþ eTe
� �

:

ð7:63Þ

The effect of the continuous l2 disturbance w can be bounded by some value

εw> 0 after some time k, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4s2 þ 2qr

2q

s
w kð Þj j � εw: ð7:64Þ

Using the previous two equations, the following bound on the squared output can

be found

Xk2�1

k¼k1

yTy � 2

q
V x k1ð Þð Þ þ ε2w
� þ 4s2 þ 2qrð Þ

q2

Xk2�1

k¼k1

eTe: ð7:65Þ
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This bound is made up of two quantities that are constant and the final summa-

tion that may increase with time.

The rest of this proof is done by studying two cases. Fixing the time k1 � k for

each time k2, one of the following is true.

First, in the time range of k1 to k2 and for δ in the range 0< δ< 1, the squared

output is on average bounded by the following expression,

1

k2 � k1ð Þ
Xk2�1

k¼k1

yTy � 4s2 þ 2qrð Þα2
q2 1� δð Þ : ð7:66Þ

Second, if the previous bound does not hold, the following holds:

1

k2 � k1ð Þ
Xk2�1

k¼k1

yTy >
4s2 þ 2qrð Þα2
q2 1� δð Þ : ð7:67Þ

This quantity can be used to bound the squared error accumulated over time. It

can be shown that the following bound on the squared output holds.

Xk2�1

k¼k1

yTy � 2

δq
ε2w þ V x k1ð Þð Þ� 

: ð7:68Þ

With this bound on the total of the output squared, it is clear that the average

value of the squared output is bounded. Since this bound is independent of time, it is

fixed for arbitrarily large k2 and any δ. This means that this bound would imply that

the average of the output squared goes to 0 as k2 goes to infinity.

For either of the above cases, the squared output is bounded on average by a

constant bound that is independent of time. Since both bounds hold, the maximum

of the two is always at least a loose bound on the average of the squared output.

Since the second average bound goes to 0 over time, the first bound is the more

relevant one on the infinite time horizon. ♦

Remark One important aspect of the proof is that the average squared output is

bounded by a constructive bound. These bounds can be made smaller by adjusting

the values of control parameters. The bounds depend on q, s, and r which involve

parameters of the plant that cannot be changed and parameters of the controller

which may change. The first bound, the more relevant one, depends on the value of

the state error threshold α. The output squared bound can be made arbitrarily small

by making the error threshold smaller. Lastly, the bounds depend on δ and εw,
which are constructed to analyze the behavior of the disturbance after time k. The

bounds can be made tighter by considering larger k. Additionally, the parameter δ
may be changed to adjust the relative magnitude of the two bounds. By picking an

appropriate δ for each time k2 the bounds may be chosen to be tighter.
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Remark The selection of the constant threshold α is made by considering the

following tradeoff. A small threshold results in a smaller bound on the system’s

average output but, in general, increases the communication rate by sending

measurement updates more frequently. A reduction on network usage can be

achieved by increasing the threshold at the cost of a larger average output of the

system.

In the case of linear systems it is possible to estimate the set of admissible

uncertain plants that can be stabilized given a model and a controller. Using the

same QSR parameters Qp, Sp, and Rp that were used for the model and assuming

that the real parameters contain additive uncertainties with respect to the nominal

model parameters, i.e., A ¼ Â þ ΔA, B ¼ B̂ þ ΔB, C ¼ Ĉ þ ΔC, D ¼ D̂ þ ΔD,

the following problem

X W
WT Y


 �
� 0 ð7:69Þ

where X ¼ Â þ ΔA

� �
TP Â þ ΔA

� �� P� Ĉ þ ΔC

� �T
Q Ĉ þ ΔC

� �
,

Y ¼ B̂ þ ΔB

� �T
P B̂ þ ΔB

� �� D̂ þ ΔD

� �T
Q D̂ þ ΔD

� �� D̂ þ ΔD

� �T
S

� ST D̂ þ ΔD

� �� R,

andW ¼ Â þ ΔA

� �T
P B̂ þ ΔB

� �� Ĉ þ ΔC

� �T
Q D̂ þ ΔD

� �� Ĉ þ ΔC

� �T
S can be

solved for P and using different values of ΔA, ΔB, ΔC, ΔD,

When the above problem is feasible for given choice of uncertainties ΔA, ΔB,

ΔC, ΔD then the uncertain system A, B, C, D is an element of the set of admissible

uncertain plants.

Example 7.3 Consider a model of an unstable system given by:

Â ¼ �0:81 0:37
0:88 0:21


 �
, B̂ ¼ 1

0


 �
, Ĉ ¼ 1 2½ �, D̂ ¼ 1: ð7:70Þ

It can be shown that the model is QSR dissipative with respect to QP¼ 0.5,

SP¼ 0.5, and RP¼ 0.1, by using the storage function:

V̂ x̂ð Þ ¼ x̂ T 0:8 0:87
0:87 1:28


 �
x̂ : ð7:71Þ

A stabilizing controller is given by

Ac ¼ 0:5, Bc ¼ 0:3, Cc ¼ 1, Dc ¼ 1: ð7:72Þ

This controller is passive and QSR dissipative with respect toQC¼�0.2, SC¼ 0.5,

and RC¼�0.6 which can be shown using the storage function Vc(xu)¼ 1.23x2u.
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The controller can be shown to stabilize the model by evaluating (7.43).

eQ ¼ �0:1 0

0 �0:1


 �
< 0: ð7:73Þ

For this example, an actual uncertain plant is given by:

A ¼ �0:71 0:55
0:95 0:35


 �
, B ¼ 1

0


 �
, C ¼ 0:75 2:3½ �, D ¼ 1:1: ð7:74Þ

The plant is also dissipative with respect to the same choice of QSR parameters

QP¼ 0.5, SP¼ 0.5, and RP¼ 0.1; this can be verified using the storage function

V xð Þ ¼ xT
1:21 1:13

1:13 1:78

" #
x: ð7:75Þ

Since the QSR parameters for the plant and the model are the same, the

controller (7.72) also stabilizes the plant and satisfies the inequality (7.43) with

(7.73). Simulations of the model-based networked system that is also affected by an

l2 external disturbance w(k) are shown in Fig. 7.11 using a threshold value α¼ 0.02.

The network communication signal nc(k) in Fig. 7.12 represents the time instants at

which output measurements are sent from the sensor node to the controller node.

The rest of the time the networked system operates in open-loop mode.

nc kð Þ ¼ 1 ifmeasurementsare sentat time k
0 ifmeasurementsarenot sent at time k

�
ð7:76Þ

Figure 7.11 shows that the outputs of the model-based networked uncertain

system are bounded, as expected. Although the parameters of the nominal model

differ significantly from those of the real plant, it is still possible to stabilize the

system. A larger reduction of network communication can be achieved by using a

more accurate model that is QSR dissipative using the same choice of QSR

parameters and that it also reflects more accurately the dynamics of the plant.

Example 7.4 Consider the same plant dynamics (7.74) and the following model

parameters:

Â ¼ �0:7 0:52
0:88 0:4


 �
, B̂ ¼ 1

0


 �
, Ĉ ¼ 0:73 2:2½ �, D̂ ¼ 1:2: ð7:77Þ

The results of simulations for the same external disturbance using the same

threshold and the new model are shown in Figs. 7.13 and 7.14.
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Fig. 7.11 Outputs of the plant (top) and the model (bottom) for example 1
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7.3 Notes and References

In this chapter, stability of networked nonlinear systems was addressed using the

MB-NCS framework that reduces the rate at which systems transmit information

through the network. Model uncertainties were considered as in the linear case. The

first important result of this chapter was given in Theorem 7.1 where a sufficient

condition for asymptotic stability of nonlinear continuous-time systems was

presented. Periodic updates were used in this case.

The second result in this chapter is contained in Theorem 7.8; it provides

sufficient conditions for bounded stability of nonlinear discrete-time dissipative

systems. In this case event-based updates were used and the stability conditions and

bounds depend mainly on the chosen error threshold instead of the update interval

values. Additionally, the work in Sect. 7.2 considered the output feedback scenario

and an input-output model of the system was used both for controller design and for

the implementation of the MB-NCS setup.
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Fig. 7.13 Outputs of the plant (top) and the model (bottom) for Example 7.4
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The results obtained in Sect. 7.1 represent the worst-case behavior of the norm of

the plant state and the error. This yields conservative results, but tighter conditions

can be obtained by performing linear transformations over the plant and model

dynamics. Even less conservative results can be obtained by using Lyapunov

functions and stability results over jump systems such as the ones outlined in

[277]. The procedure though follows closely the one presented, namely it considers

the Lyapunov function as norm instead of using the Euclidean norm used here.

In Sect. 7.2 it is important to note the reduction in network traffic by using the

MB-ET approach compared to the case in which a measurement of the current

output y(k) is sent at every sampling instant even in the case that n is large compared

to the inter-update intervals. This case requires the transmission of nmeasurements

of the output at every update instant, the current one and the past n-1 measurements.

It has been shown that packet-based control [100, 212] is able to significantly

reduce data transmission by more efficiently using the packet structure, that is,

reduction of communication is obtained by sending packets of information using all

data bits available (excluding overhead) in the structure of the packet. The work in

[100, 212] focuses in the transmission of control input sequences. In Sect. 7.2 a

similar approach is taken but it is applied to the transmission of output measure-

ments. Instead of sending a single output value in one data packet at every sampling
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Fig. 7.14 Output error (top) and network communication instants for Example 7.4

7.3 Notes and References 185



instant, the packet structure is used more efficiently in order to include past

measurements in the same packet as well. In general, it is possible to decrease

network traffic by reducing the number of packets sent by the sensor node since a

high percentage of bits transmitted over the network is related to the large number

of bits that are used as the packets overheads.

The results in Sect. 7.1 are based on the work byMontestruque [185]. Section 7.2

also appeared in [179]. The concept of dissipativity used in Sect. 7.2 was formalized

in [268, 269]. Specifically the notion of QSR dissipativity [114, 115] was used in

this chapter.

Related work considering model-based approaches for control of nonlinear

networked systems can be found in [48, 160, 210, 282]. Polushin et al. [210]

considered a sampled version of a nonlinear continuous-time-varying system con-

trolled by an approximate discrete-time model and proposed a communication

protocol that considers network induced communication constraints such as irreg-

ularity of transfer intervals, existence of time-varying communication delays, and

possibility of packet dropouts. Stability results were given that depend on the

integration step parameter; that is, it is assumed that the mismatch between plant

and model arises only from the approximate integration of the nonlinear dynamics

and by making the parameter small (close to 0) we can recover an exact model of

the system. The work by Liu [160] also provided stability results for continuous-

time nonlinear systems using the MB-NCS framework for a more general class of

nonlinear systems. With respect to the network properties, the author focuses on

local area control networks with high data rate and considers random but bounded

time delays. For vanishing perturbations this reference provides conditions for

exponential stability and conditions for uniformly ultimately boundedness in the

case of non-vanishing perturbations. In [282] a combined event-triggered and self-

triggered framework is presented for nonlinear systems using a model-based

approach. Updates from sensor to controller are generated using a self-triggered

technique and updates from the controller to the actuator are generated using an

event-triggered control strategy.
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Chapter 8

Quantization Analysis and Design

The results provided in previous chapters assumed that the network is capable of

transporting infinite precision data. For example, for the state feedback MB-NCS it

is assumed that the sensor sends the exact value of the state over the network to the

controller/actuator. This is of course not possible with digital networks since

the length of each data packet is finite and so many bits can be used to represent

the data. It was claimed that since a large portion of standard industrial networks

implement a large number of bits available to represent data, the error between the

quantized value and the actual value was negligible. Even when this is so, we want

to study the effect of these quantization errors on system stability.

In the present chapter stability conditions for MB-NCS under popular quantiza-

tion schemes are derived. The objective is to reduce the number of bits needed to

transmit feedback measurements to stabilize uncertain systems. When using peri-

odic updates within the MB-NCS framework, there are two main parameters that

affect the amount of data that is being transmitted. These are: the update interval

that dictates how often is necessary to update the state of the model and the

quantization parameter that defines the number of quantization levels and, conse-

quently, the number of bits needed to represent every measurement. In the present

chapter a quantization parameter refers to the scalar parameters that defines the

maximum quantization error, that is, the difference between the quantized (output

of quantizer) and the non-quantized (input to quantizer) variables.

It is desired to increase the update intervals, as studied in previous chapters, to

reduce the frequency at which we need to send feedback measurements to the

controller. It is also desired to increase the quantization parameter in order to use

fewer bits to represent each measurement. However, for the stability results

presented in this chapter, there is a tradeoff between these two parameters,

a small update interval allows us to increase the quantization parameter, and a

large update interval requires (for stability) a small quantization parameter.

E. Garcia et al., Model-Based Control of Networked Systems, Systems & Control:

Foundations & Applications, DOI 10.1007/978-3-319-07803-8_8,

© Springer International Publishing Switzerland 2014
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In the present chapter we also consider event-based updates. There are two

design parameters that affect stability as well: The quantization parameter and the

threshold value that is used to generate events. Similarly to the periodic update case,

there is a tradeoff between these two parameters. A large threshold requires, in

general, a small quantization parameter and vice versa.

The analysis method that we employ in this chapter is as follows: first a stable

MB-NCS is designed using the results previously outlined and then the effect of

quantization is assessed using the conditions in this section. In this way the designer

has a number of parameters to select which include the packet transmission times

and the number of bits used for each packet for the periodic update case, and the

threshold value when using event-triggered control.

The present chapter is organized as follows: Static Quantizers are discussed in

Sect. 8.1. Static quantizers have quantization schemes that do not vary with time,

that is the error between the quantized value and the real value does not depend on

time. Two quantizers of this type are considered: the Uniform Quantizer with a

constant maximum quantization error; and the Logarithmic Quantizer with

a maximum quantization error that is proportional to the norm of the quantized

value. In Sect. 8.2 we recall the Model-Based Event-Triggered (MB-ET) control

strategies from Chap. 6 to study the stabilization properties of model-based

networked systems subject to both, quantization and network induced delays; static

quantizers are used in this section as well. Finally Dynamic Quantizers are

discussed in Sect. 8.3; these quantizers dynamically adjust their quantization

regions to compensate for uncertainties while generating a quantization error that

shrinks with time.

8.1 Systems Using Static Quantizers

In this section we address the stability analysis of a state feedback MB-NCS using

a static quantizer. Static quantizers have defined quantization regions that do not

change with time. They are an important class of quantizers since they are simple

to implement in both hardware and software and are not computationally expen-

sive as their dynamic counterparts. Two types of quantizers are analyzed here,

namely uniform quantizers and logarithmic quantizers. Each quantizer is associ-

ated with two popular data representations. The uniform quantizer is associated

with the fixed-point data representation. Indeed, fixed-point numbers have a

constant maximum error regardless of how close is the actual number to the

origin. Logarithmic quantizers, on the other hand, are associated with floating-

point numbers; this type of quantizers allows the maximum error to decrease

when the actual number is close to the origin.
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8.1.1 Uniform Quantizers

We define the uniform quantizer as a function q :ℝn!ℝn with the following

property:

z� q zð Þk k � δ, z∈ℝn, δ > 0: ð8:1Þ

The following theorem provides bounded state stability using the quantizer (8.1)

and periodic updates.

Theorem 8.1 Assume that the networked system without quantization is stable and
there exists a symmetric and positive definite matrix P that solves

e ÂþB̂ Kð ÞTh þ Δ hð ÞT
� �

P e ÂþB̂ Kð Þh þ Δ hð Þ
� �

� P ¼ �QD ð8:2Þ

where QD is a symmetric and positive definite matrix and Δ hð Þ ¼ð h

0

eA h�τð Þ eA þ eBK� �
e ÂþB̂ Kð Þτdτ: Then when using the uniform quantizer defined

by (8.1), the state feedback MB-NCS plant state will enter and remain in the region
kxk�R where

R ¼ eσ ÂþB̂ Kð Þh þ Δmax hð Þ
� �

r þ eσ Að Þh þ Δmax hð Þ
� �

δ ð8:3Þ

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmax eAh�Δ hð Þð ÞTP eAh�Δ hð Þð Þð Þδ2

λmin QDð Þ

r
, Δmax hð Þ ¼

ð h

0

eσ Að Þ h�τð Þσ eA þ eBK� �
eσ ÂþB̂ Kð Þτdτ, and δ is the quantization parameter in (8.1).
Proof The response for the error is given now by:

e tð Þ ¼ eA t�tkð Þe tkð Þ þ Δ t� tkð Þx̂ tþk
� �

¼ eA t�tkð Þe tkð Þ þ Δ t� tkð Þ xk � e tkð Þð Þ
¼ eA t�tkð Þ � Δ t� tkð Þ� �

e tkð Þ þ Δ t� tkð Þxk
ð8:4Þ

where Δ t� tkð Þ ¼
ðt�tk

0

eA t�tk�τð Þ eA þ eBK� �
e ÂþB̂ Kð Þτdτ:

Note that the initial value for the error e(tk) is no longer zero as it was assumed

in previous sections. Moreover, the contribution to the error due to this initial
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value will grow exponentially with time and with a rate that corresponds to the

uncompensated plant dynamics. So at time t ∈ [tk, tk+ 1] the plant state is:

x tð Þ ¼ x̂ tð Þ þ e tð Þ
¼ e ÂþB̂ Kð Þ t�tkð Þxk þ eA t�tkð Þ � Δ t� tkð Þ� �

e tkð Þ þ Δ t� tkð Þxk:
ð8:5Þ

We can therefore evaluate the Lyapunov function along x(t) at any instant in

time t ∈ [tk, tk + 1]. Uniformly exponential stability is obtained if we can show that

the following is satisfied [277]:

1

h
V x tkþ1ð Þð Þ � V x tkð Þð Þð Þ � �c x tkð Þk k2

� �
, c∈ℝþ: ð8:6Þ

We are interested in its value at tk+ 1:

V x tkþ1ð Þð Þ ¼ x tkþ1ð ÞTPx tkþ1ð Þ
¼ e ÂþB̂ Kð Þhxk þ eAh � Δ hð Þ� �

ek þ Δ hð Þxk
� �T

P e ÂþB̂ Kð Þhxk þ eAh � Δ hð Þ� �
ek þ Δ hð Þxk

� �
¼ xk

T e ÂþB̂ Kð Þh þ Δ hð Þ
� �T

P e ÂþB̂ Kð Þh þ Δ hð Þ
� �

xk

þ ek
T eAh � Δ hð Þ� �T

P eAh � Δ hð Þ� �
ek

ð8:7Þ

where h ¼ hk ¼ tkþ1 � tk > 0, ek ¼ e tkð Þ:
So we obtain:

V x tkþ1ð Þð Þ � V x tkð Þð Þ
¼ xk

T e ÂþB̂ Kð Þh þ Δ hð Þ
� �T

P e ÂþB̂ Kð Þh þ Δ hð Þ
� �

xk

þ ek
T eAh � Δ hð Þ� �T

P eAh � Δ hð Þ� �
ek � xk

TPxk

¼ ek
T eAh � Δ hð Þ� �T

P eAh � Δ hð Þ� �
ek � xk

TQDxk:

ð8:8Þ

Note that we can compute eAh�Δ(h) as follows:

eAh � Δ hð Þ ¼ I 0½ � e
A eA þ eBK
0 Â þ B̂ K

� �
t�tkð Þ

	 

I
�I

� �
: ð8:9Þ

We can bound (8.8) by:
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ek
T eAh � Δ hð Þ� �T

P eAh � Δ hð Þ� �
ek � xk

TQDxk

� λmax eAh � Δ hð Þ� �T
P eAh � Δ hð Þ� �� �

δ2 � λmin QDð Þ xkk k2:
ð8:10Þ

The sampled value of the state of the plant at the update times will enter the

region kxk� r where:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmax eAh � Δ hð Þð ÞTP eAh � Δ hð Þð Þ

� �
δ2

λmin QDð Þ

vuut
: ð8:11Þ

The plant state vector might exit this region between samples; this is pictured in

Fig. 8.1. The maximum magnitude the state plant can reach between samples after

reaching the sphere kxk�R is given by:

x tð Þk k ¼ e ÂþB̂ Kð Þ t�tkð Þ þ Δ t� tkð Þ
� �

xk þ eA t�tkð Þ � Δ t� tkð Þ� �
ek

��� ���
� eσ ÂþB̂ Kð Þh þ Δmax hð Þ

� �
r þ eσ Að Þh þ Δmax hð Þ� �

δ

where Δmax hð Þ ¼
ð h

0

eσ Að Þ h�τð Þσ eA þ eBK� �
eσ ÂþB̂ Kð Þτdτ:

ð8:12Þ

Therefore the plant state will enter and remain in the region kxk�R defined

by (8.3):

Fig. 8.1 Plant state trajectory
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R ¼ eσ ÂþB̂ Kð Þh þ Δmax hð Þ
� �

r þ eσ Að Þh þ Δmax hð Þ
� �

δ

where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmax eAh � Δ hð Þð ÞTP eAh � Δ hð Þð Þ

� �
δ2

λmin QDð Þ

vuut
: ♦

Remark Note that (8.2) is always possible to satisfy when the MB-NCS is asymp-

totically stable and assuming infinite precision quantization, that is, when the system

is stable according to Theorem 2.3 in Chap. 2. The stability results in Theorem 8.1

suggest that a stabilizing update period h should be found first and then proceed to

find the greatest quantization parameter δ for a desired stability region.

8.1.2 Logarithmic Quantizers

We define the logarithmic quantizer as a function q :ℝn!ℝn with the following

property:

z� q zð Þk k � δ zk k, z∈ℝn, δ > 0: ð8:13Þ

Theorem 8.2 Assume that the networked system without quantization is stable and
there exists a symmetric and positive definite matrix P that solves

e ÂþB̂ Kð ÞTh þ Δ hð ÞT
� �

P e ÂþB̂ Kð Þh þ Δ hð Þ
� �

� P ¼ �QD ð8:14Þ

where QD is a symmetric and positive definite matrix and

Δ hð Þ ¼
ð h

0

eA h�τð Þ eA þ eBK� �
e ÂþB̂ Kð Þτdτ: Then when using the logarithmic quan-

tizer defined by (8.13), the state feedback MB-NCS is exponentially stable if:

δ <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmin QDð Þ

λmax eAh � Δ hð Þð ÞTP eAh � Δ hð Þð Þ
� �vuut :

Proof The difference between the values of the plant’s state Lyapunov function

at two consecutive update times is given by:

V x tkþ1ð Þð Þ � V x tkð Þð Þ ¼ ek
T eAh � Δ hð Þ� �T

P eAh � Δ hð Þ� �
ek � xk

TQDxk: ð8:15Þ
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We can now bound (8.15) using the quantizer property given in (8.13) by:

ek
T eAh � Δ hð Þ� �T

P eAh � Δ hð Þ� �
ek � xk

TQDxk

� λmax eAh � Δ hð Þ� �T
P eAh � Δ hð Þ� �� �

δ2 xkk k2 � λmin QDð Þ xkk k2:
ð8:16Þ

This allows us to ensure exponential stability as in (8.6) if:

λmax eAh � Δ hð Þ� �T
P eAh � Δ hð Þ� �� �

δ2 � λmin QDð Þ < 0 ð8:17Þ

or equivalently (assuming (eAh�Δ(h))TP(eAh�Δ(h)) 6¼ 0):

δ <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmin QDð Þ

λmax eAh � Δ hð Þð ÞTP eAh � Δ hð Þð Þ
� �vuut : ð8:18Þ

♦

Example 8.1 Consider the following unstable plant:

_x ¼ 1:2638 �0:5206

0:9164 �0:7470

" #
xþ 1:0012

�0:9967

" #
u: ð8:19Þ

Let the available model be

_̂x ¼ 1:2 �0:5
0:9 �0:8

� �
x̂ þ 1

�1

� �
u: ð8:20Þ

The controller, which is designed using the plant model, is:

u ¼ �2:3515 0:4985½ �x̂ : ð8:21Þ

We obtain a stable NCS without quantization for update time intervals less

than 5.3 s.

First we will study the effects of uniform quantization. The quantizer function

for one variable is depicted in Fig. 8.2. The maximum absolute error between the

real value of the state and the quantized values for the quantizer shown in Fig. 8.2 is

calculated to be δ¼ 0.25. By using an update time of h¼ 0.3 s and QD¼ 0.5I and
equation (8.2), we obtain a suitable P. We then proceed with (8.3) to obtain r and R.
The radius of r and R are calculated to be 1.0131 and 3.5251, respectively.

Figure 8.3 shows the regions defined by r and R and also the evolution of the

plant state when the system is started with an initial condition of [2 3.5]T. Figure 8.4

pictures the plant and model state as a function of time.
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We note that the actual region R is smaller than the calculated one; this shows

that the result is conservative.

We now use the same plant with a logarithmic quantizer and an update time of

h¼ 2 s. With this selection of update interval we obtain δ< 0.0875. The logarithmic

quantizer shown in Fig. 8.5 is implemented which has a quantization parameter

δ¼ 0.06. The response of the system and the model using the same initial condi-

tions and the logarithmic quantizer is shown in Fig. 8.6.

8.2 Static Quantization, Event-Triggered Control,

and Network Induced Delays

In this section we recall the event-triggered strategy that was studied in Chap. 6 and

we design stabilizing thresholds taking into account the availability not of the real

variables but only of quantized measurements. Additionally, we design stabilizing

thresholds using the model-based event-triggered framework for networked sys-

tems affected by both quantization and time delays.

As it was mentioned in the last section the measured variables have to be

quantized in order to be represented by a finite number of bits, so to be used in

processor operations and carried over a digital communication network. It becomes

necessary to study the effects of quantization error on networked systems and on any

computer implemented control application because of the reasons just mentioned.

In addition, we want to emphasize two important implications of quantization in

event-triggered control. First, an important step in event-triggered control strategies
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Fig. 8.4 Plant and model states using a uniform quantizer
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is that the model-plant state error is set to zero at the update instants. When using

quantization this is not the case any longer since we use the quantized measurement

of the plant state to update the state of the model and this measurement is not, in

general, the same as the real state of the plant. Second, in traditional even-triggered

control techniques, the updates are triggered by comparing the norm of the state,

which is not exactly available due to quantization errors, to the norm of the state

error, which is not exactly available since it is a function of the real state of the plant.

The problem in those approaches is that stability of the system is directly related to

non-quantized measurements that are assumed to be known with certainty.

The aim in this section is to find triggering conditions based on the available

quantized variables that also ensure asymptotic stability in the presence of quanti-

zation errors.

The type of quantizer that we are going to use in this section is the logarithmic

quantizer. It is associated with floating-point data representations. We also associ-

ate this quantizer to the relative threshold strategy described in Sect. 6.2 in order

to design stabilizing thresholds using the quantized measurements of the state of

the plant.

Using the logarithmic quantizer defined in (8.13) we have that at the update instants

ti, i ∈ Z+ the state of the model is updated using the quantized measurement:

q x tið Þð Þ ! x̂ tið Þ: ð8:22Þ

Define the quantized model-plant state error:

eq tð Þ ¼ x̂ tð Þ � q x tð Þð Þ ð8:23Þ

where q(x(t)) is the quantized value of x(t) at any time t� 0 using the logarithmic

quantizer (8.13). Note that q(x) and eq are the available variables that can be used to

compute the triggering condition.Alsonote that eq(ti)¼ 0, that is, the quantizedmodel-

plant state error is set to zero at the update instants according to the update (8.22).

Consider a stable closed loop nominal model and define the Lyapunov function

V¼ xTPx where P is a symmetric and positive definite matrix and is the solution of

the closed loop model Lyapunov equation:

Â þ B̂ K
� �T

Pþ P Â þ B̂ K
� � ¼ �Q ð8:24Þ

where Q is a symmetric and positive definite matrix. Also consider the following

bounds on the uncertainty matrices:

eA þ eBK� �T
Pþ P eA þ eBK� ����� ���� � Δ < q ð8:25Þ

eB�� �� � β ð8:26Þ

where q ¼ σ qð Þ, the smallest singular value of Q in (8.24).
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Theorem 8.3 Consider a linear MB-NCS with control input u ¼ Kx̂ based on the
nominal model. Assume that there exists a symmetric positive definite solution P for
the model Lyapunov equation (8.24) and that the bounds in (8.25) and (8.26) are
satisfied. Consider the relation

eq
�� �� > ση

δþ 1
q xð Þj j ð8:27Þ

where η ¼ q� Δ
� �

=b, 0< σ< σ0 < 1 and let the model be updated when (8.27)

holds. Then,

ej j � σ
0
η xj j ð8:28Þ

is always satisfied and the system is asymptotically stable when,

δ � σ
0 � σ

� �
η: ð8:29Þ

Proof First observe that for the logarithmic quantizer we have:

ej j ¼ x̂ � xþ q xð Þ � q xð Þj j � q xð Þ � xj j þ eq
�� ��

� δ xj j þ eq
�� ��: ð8:30Þ

Similarly,

q xð Þj j ¼ q xð Þ þ x� xj j � q xð Þ � xj j þ xj j
� δ xj j þ xj j

) q xð Þj j
δþ 1

� xj j: ð8:31Þ

From (8.31) and applying (8.29) we can see that:

ση
q xð Þj j
δþ 1

þ δ xj j � σηþ δð Þ xj j � σ
0
η xj j: ð8:32Þ

Now, from (8.30), (8.27), and (8.32) we obtain:

ej j � δ xj j þ eq
�� �� � ση

q xð Þj j
δþ 1

þ δ xj j � σ
0
η xj j ð8:33Þ

then the time derivative of the Lyapunov function is bounded by:

_V � σ
0 � 1

� �
q� Δ

� �
xj j2 ð8:34Þ
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and since σ0 < 1, the networked system with quantization and with updates based on

the error events triggered by (8.27) and using quantized feedback measurements to

update the model is asymptotically stable. ♦

Based on the results of Sect. 6.3 and of Theorem 8.3 in this section we now

introduce stability thresholds that consider quantization and time delays.

The quantized model-plant state error was defined in (8.23). Consider also the

non-quantized model-plant state error e tð Þ ¼ x̂ tð Þ � x tð Þ. At the update instants ti
we update the model in the sensor node using the quantized measurement of the

state. At this instant we have eq(ti)¼ 0, at the sensor node. When considering

network delays we can reset the quantized model-state error only at the sensor

node. The model-plant state error at the update instants is given by:

e tið Þ ¼ x̂ tið Þ � x tið Þ ¼ q x tið Þð Þ � x tið Þ: ð8:35Þ

It is clear that this error cannot be set to zero at the update instants as the

quantized model-plant state error, due to the existence of quantization errors

when measuring the state of the plant. Using the logarithmic quantizer (8.13) we

have that:

e tið Þj j ¼ q x tið Þð Þ � x tið Þj j � δ x tið Þj j: ð8:36Þ

The same conclusion can be reached by evaluating the expression in (8.30) at

time instants ti and by setting |eq(ti)|¼ 0.

The next theorem provides conditions for asymptotic stability of the control

system using quantization in the presence of network induced delays. In this case,

the admissible delays are also a function of the quantization parameter δ. That is, if
we are able to quantize more finely, the system is still stable in the presence of

longer delays.

Theorem 8.4 Consider a linear MB-NCS with control input based on the state x̂
of the model, u ¼ Kx̂ . The event-triggering condition is computed using quantized
data and using error events according to (8.27). The model is updated using
quantized measurements of the state of the plant. Assume that there exists a sym-
metric positive definite solution P for the model Lyapunov equation (8.24) and a

small enough δ, 0< δ< 1 such that 2δ/(1� δ)< ση/(δ+ 1). Assume also that B ¼ B̂

and the following bounds are satisfied: eA��� ��� � ΔA and eATPþ PeA��� ��� � Δ < q. Then

there exists an ε(δ)> 0 such that for all network delays τN ∈ [0, ε] the system is
asymptotically stable. Furthermore, there exists a time τ> 0 such that for any initial
condition the inter-execution times {ti + 1� ti} implicitly defined by (8.27) with σ< 1

are lower bounded by τ, i.e., ti+ 1� ti� τ 8 i ∈ Z+.

Proof Following the approach described in Sect. 6.3 for the non-zero delay case

without quantization, let us look at the dynamics of the term |eq|/|q(x)|, which
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contains the available variables for processing and broadcasting after quantization

has taken place. Let us first note that:

eq
�� �� ¼ x̂ � q xð Þ þ x� xj j � x� q xð Þj j þ x̂ � xj j

� δ xj j þ ej j: ð8:37Þ

In addition and, since 0< δ< 1, we have that:

xj j ¼ x� q xð Þ þ q xð Þj j � x� q xð Þj j þ q xð Þj j
� δ xj j þ q xð Þj j
) q xð Þj j � 1� δð Þ xj j: ð8:38Þ

The evolution of the term |eq|/|q(x)| can be bounded as follows:

eq
�� ��
q xð Þj j �

δ xj j þ ej j
q xð Þj j � δ xj j þ ej j

1� δð Þ xj j ¼
δ

1� δ
þ 1

1� δ

ej j
xj j : ð8:39Þ

Let us denote the term |e|/|x| by θ and, additionally, denote the term |eq|/|q(x)| by
ψ so we have the estimate:

ψ tð Þ � δ

1� δ
þ 1

1� δ
θ tð Þ � δ

1� δ
þ 1

1� δ
ϕ t; δð Þ ð8:40Þ

where ϕ(t, δ) is the solution of (6.25) in Sect. 6.3 satisfying ϕ(0, δ)¼ δ. The initial
condition in the solution of the differential equation (6.25) that we are using for

the quantization case is the worst case initial error in the term θ(t) given by (8.36).

The solution ϕ(t, δ) is given by:

ϕ t; δð Þ ¼ �c δþ 1ð Þedt c�1ð Þ= δþ cð Þ þ 1

δþ 1ð Þedt c�1ð Þ= δþ cð Þ � 1
ð8:41Þ

then the evolution of |eq|/|q(x)|¼ψ is bounded by the following expression:

ψ tð Þ � ξ tð Þ ¼ δ

1� δ
þ 1

1� δ

�c δþ 1ð Þedt c�1ð Þ= δþ cð Þ þ 1

δþ 1ð Þedt c�1ð Þ= δþ cð Þ � 1
: ð8:42Þ

For the case when τN¼ 0, the inter-execution times for the system with

quantization measurements are bounded by the time it takes for ξ to evolve from

ξ(0)¼ 2δ/(1� δ) to ση/(δ+ 1), i.e., the solution τ ∈ ℝ+ of ξ(τ)¼ ση/(δ+ 1). An
estimate of that time can be obtained in a two-step process using (8.41) and

(8.42) that also provides some insight into the tradeoff between the selection of

the quantization parameter δ and the admissible network delays τN.
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First, for a given y> δ, solve for the time variable t in (8.41), that is, find the

solution of ϕ(t, δ)¼ y. Such solution is given by:

τ ¼ ln yþ 1ð Þ � ln
δþ 1

δþ c
yþ cð Þ

	 
	 

1

d c� 1ð Þ : ð8:43Þ

For y> δ, we always have τ> 0, since ϕ is continuous in the range τ ∈ [0, τm)

that covers all thresholds y> δ and _ϕ > 0. The last statement can be shown by

analyzing directly the two factors in (8.43). We consider two cases avoiding the

case c¼ 1. First, for c> 1 the second factor in (8.43) is positive. Then, in order to

obtain τ> 0, we need the condition:

yþ 1ð Þ δþ cð Þ
yþ cð Þ δþ 1ð Þ > 1

which is equivalent to the condition y> δ. For the case 0< c< 1 the second term is

negative and we need the first factor to be negative in order to obtain a strictly

positive value for τ. We can ensure that the first factor is negative by satisfying the

following condition:

yþ 1ð Þ δþ cð Þ
yþ cð Þ δþ 1ð Þ < 1

which is equivalent to y> δ.
Note that (6.27) in Sect. 6.3 is a special case of (8.43), when δ¼0. Then τ >0 for

any y> 0. In this, more general case, the range of values for τ for any value of the

threshold y> δ is given by τ ∈ (0, τm), where

τm ¼ lim
y!1 τ ¼ 1

d c� 1ð Þ ln
δþ c

δþ 1

	 

: ð8:44Þ

Second, using the result in (8.43) we can obtain a solution τ ∈ ℝ+ of

ξ(τ)¼ ση/(δ+ 1), i.e., the solution τ ∈ ℝ+ of:

ξ τ;
2δ

1� δ

	 

¼ δ

1� δ
þ 1

1� δ
ϕ τ; δð Þ ¼ yq ð8:45Þ

where

yq ¼ ση= δþ 1ð Þ: ð8:46Þ
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The solution is given by (8.43) with

y ¼ 1� δð Þ yq �
δ

1� δ

	 

: ð8:47Þ

By assumption, we have that:

yq >
2δ

1� δ
ð8:48Þ

which results in y> δ being satisfied, which means that τ> 0. The inter-execution

times are bounded by τ and strictly away from zero.

Now, for the case τN> 0, choose σ, σ0, στ such that 0< σ< σ0 < στ< 1 is

satisfied. The last choice results in the following relation 0< yq< y0 < yτ, where yq
is defined in (8.46), y0 ¼ σ0η and yτ¼ στη.

Let an execution be triggered at time ti by the condition (8.27) that in turn enforces
(8.28) at time ti and let ε1, 0< ε1< τm satisfy the solution ξ(ε1, y0)¼ yτ such ε1 always
exists since ξ is continuous in the range τ ∈ [0, τm) that covers all thresholds

2δ/(1� δ)< y0, yτ<1; also _ξ > 0 and y0 < yτ by the previous choice of parameters.

Then, by sending the state measurement at time ti in order to update the model in the

controller, we guarantee that for t ∈ [ti, ti+ ε1] we have |e|� yτ|x|, and since στ< 1

asymptotic stability is still guaranteed, i.e., (8.34) is satisfied with στ< 1. The inter-

execution times are nowbounded by τN+ τ, where τ is the time it takes ξ to evolve from
eq ti þ τNð Þ�� ��= q x ti þ τNð Þð Þj j ¼ x̂ ti þ τNð Þ � q x ti þ τNð Þð Þj j= q x ti þ τNð Þð Þj j to yq¼
ση/(δ+1). Then the admissible delays τN need to satisfy |eq(ti+ τN)|/|q(x(ti+ τN))|< yq
since _ξ > 0. From continuity of ξ with respect of τN there exists an ε2> 0 such that

for any 0� τN� ε2

ξ τN;
2δ

1� δ

	 

< yq ð8:49Þ

since yq> 2δ/(1� δ). We complete the proof by defining ε¼min{ε1, ε2}. ♦

Remark Note that by selecting a smaller parameter δ, we increase the gap between the
initial value ξ(0)¼ 2δ/(1� δ) and the threshold yq. This selection allows for longer

admissible delays, i.e., a larger value for the solution (8.43)with ydefined in (8.47). This
corresponds to our intuition in a closed-loop system in the presence of quantization and

timedelays. Ifwequantizemorefinely,more accurate feedback information is available

which permits to admit longer time delays while preserving asymptotic stability.

Computation of the quantization parameter δ for a fixed admissible delay ε.
In developing the previous proof we first selected a quantization parameter δ
(by selecting σ and σ0) that ensures stability in the case of zero delay. By fixing δ
and for a given choice of στ we were able to estimate the longest admissible delay

for which stability is still guaranteed. Now, we would like to be able to estimate the

greatest quantization parameter δ for a fixed delay bound ε.
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In order to compute the quantization parameter based on the admissible delays

we first choose parameters σ and σ0 (corresponding to σ0 and στ in Theorem 8.4),

and associated thresholds y and y0, and find the admissible delay without quantiza-

tion, i.e., find ε in Theorem 6.5 in Sect. 6.3. Then select a new smaller delay bound

than the one just found, εn< ε. We select a smaller delay since we do not expect

a longer or equal admissible delay when using quantization. We proceed to search

for the greatest value of δ, 0< δ< 1 and a σ< σ0, such that the next two relations

are satisfied:

δ � σ
0 � σ

� �
η

yq >
2δ

1� δ
:

where,

yq ¼ ξ εn;
2δ

1� δ

	 


σ ¼ yq 1þ δð Þ
η

8.3 Dynamic Quantization: A Different Way

of Adapting to System Response

In this subsection we will consider the case of dynamic quantization, where the

quantized region and quantization error vary at each transmission time. It has been

shown that these types of quantizers can achieve the smallest bit count per packet

while maintaining stability [159, 199, 200]. This comes with the price of increased

quantizer complexity. While the static quantizers did require a relatively small

amount of computations, the dynamic quantizers need to compute new quantization

regions and detect the plant state presence within these regions. Yet, dynamic

quantizers are an attractive alternative when the number of bits available per

transmission is small. Our results extent those already available in the literature

extending the stability results to MB-NCS also considering model uncertainty.

It will be shown that our results converge to the standard ones when the model

uncertainty is zero.

Under a dynamic quantizer scheme an encoder measures the state of the plant at

each transmission time and sends a symbol to the decoder collocated with the plant

model. To do so, first the encoder and decoder assume that the plant state is

contained in a hyper parallelogram Rk. Next, the encoder uses the plant model

and plant-model uncertainties to determine the region where the plant state is at the

next transmission time. This calculated region will also be a hyper parallelogram
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denoted as R�
kþ 1. The encoder can also calculate R

�
kþ 1 since its calculation is based

in the plant model dynamics and known uncertainty bounds. Then, the encoder can

divide R�
kþ 1 in 2N smaller equal hyper parallelograms where N is an integer

representing the number of bits used to identify each smaller parallelogram. The

encoder then sends an N-bit symbol representing the smaller parallelogram Rk+ 1

within R�
kþ 1 that contain the plant state. The process then is repeated.

We will assume that the plant model matrix Â has distinct real unstable

eigenvalues. This assumption can be relaxed at the expense of more complex

notation and problem geometry. We will also assume that the compensated model

is stable. We will use a method that is similar to the Uncertain Set Evolution

Method presented in [159]. Namely, at transmission time tk the encoder partitions
the hyper parallelogram R�

k containing the plant state x(tk) into 2N smaller hyper

parallelograms and sends the decoder the symbol identifying the partition Rk that

contains the plant state. The controller then uses the center ck of Rk to update the

plant model and generates the control signal using the plant model until time t�kþ 1.

At this point, both encoder and decoder calculate a new hyper parallelogram R�
kþ 1

that should contain the plant state by evolving or propagating forward the initial

region Rk. The process is then repeated. Stability will be ensured if the radius and

center of the hyper parallelograms converge to zero with time. We will show now

how the hyper parallelogram R�
kþ 1 is obtained from Rk.

Assume the plant model matrix Â ∈ℝnxn has n distinct unstable eigenvalues

λ1, λ2, . . ., λn with n corresponding linearly independent normalized eigenvectors

v1, v2, . . ., vn ∈ ℝn. We will also assume that at t¼ 0 both encoder and decoder

agree in a hyper parallelogram R0 containing the initial state of the plant. Denote a

hyper parallelogram as the (n + 1)-tuple where c is the center of the hyper parallel-
ogram and ηi are the coordinates of its axis. In particular:

R c; η1; η2; . . . ; ηnð Þ ¼ x∈ℝn,
Xn
i¼1

αiηi ¼ x� c, where ηi ∈ℝn, αi ∈ �1, 1½ �, and c∈ℝn

( )
:

Let each hyper parallelogram Rk with center ck be defined as follows:

RK ¼ R ck; ηk, 1; ηk, 2; . . . ; ηk,n
� �

where ηk, i ¼ bk, ivi and bk, i ∈ℝ: ð8:50Þ

Therefore, it can be easily verified that according to the plant dynamics the

region Rk evolves into a hyper parallelogram Rp
kþ 1 defined by:

Rp
kþ1 ¼ R cpkþ1; η

p
kþ1,1; η

p
kþ1,2; . . . ; η

p
kþ1,n

� �
with ηp

kþ1, i ¼ eAhηk, i and c
p
kþ1 ¼ eAh þ

ð h

0

eA h�sð ÞBKe ÂþB̂ Kð Þsds
	 


ck:
ð8:51Þ

Correspondingly, according to the plant model dynamics the hyper parallelo-

gram Rk should evolve into a different hyper parallelogram Rm
kþ 1:

204 8 Quantization Analysis and Design



Rm
kþ1 ¼ R cmkþ1; η

m
kþ1,1; η

m
kþ1,2; . . . ; η

m
kþ1,n

� �
with ηm

kþ1, i ¼ eλihηk, i, and cmkþ1 ¼ e ÂþB̂ Kð Þhck:
ð8:52Þ

According to equation (8.52) the hyper parallelogram Rm
kþ 1 has edges that are

parallel to those of the original hyper parallelogram Rk but are longer by a factor of

eλih for each corresponding edge. Also the center of the parallelogram has shifted.

Note that the hyper parallelogram Rm
kþ 1 doesn’t necessarily contain the plant state.

We will now express Rp
kþ 1 in terms of the parameters of Rm

kþ 1. By replacing h by

t and using Laplace transforms the expressions in (8.51) can be easily manipulated:

eAh !L sI � Að Þ�1 ¼ sI � Að Þ�1 sI � Â
� �

sI � Â
� ��1

¼ I þ sI � Að Þ�1eA� �
sI � Â
� ��1

¼ sI � Â
� ��1 þ sI � Að Þ�1eA sI � Â

� ��1 !L�1

eÂ h þ
ð h

0

eA h�sð ÞeAeÂ sds

and

eAh þ
ð h

0

eA h�sð ÞBKe ÂþB̂ Kð Þsds!L sI � Að Þ�1 þ sI � Að Þ�1BK sI � Â þ B̂ K
� �� ��1

¼ sI � Að Þ�1 sI � Â þ eBK� �
sI � Â þ B̂ K

� �� ��1

¼ sI � Â þ B̂ K
� �� ��1 þ sI � Að Þ�1 eA þ eBK� �

sI � Â � B̂ K
� �� ��1

�!L
�1

e ÂþB̂ Kð Þh þ
ð h

0

eA h�sð Þ eA þ eBK� �
e ÂþB̂ Kð Þsds:

ð8:53Þ
Therefore, the parameters of Rp

kþ 1 can be expressed in terms of the parameters

of Rm
kþ 1:

ηp
kþ1, i ¼ eAhηk, i ¼ eÂ h þ

ð h

0

eA h�sð ÞeAeÂ sds

	 

ηk, i

¼ eÂ hbk, ivi þ
ð h

0

eA h�sð ÞeAeÂ sds

	 

ηk, i ¼ eλihηk, i þ Δη hð Þηk, i

¼ ηm
kþ1, i þ Δη hð Þηk, i

c pkþ1 ¼ eAh þ
ð h

0

eA h�sð ÞBKe ÂþB̂ Kð Þsds
	 


ck

¼ e ÂþB̂ Kð Þh þ
ð h

0

eA h�sð Þ eA þ eBK� �
e ÂþB̂ Kð Þsds

	 

ck

¼ e ÂþB̂ Kð Þhck þ
ð h

0

eA h�sð Þ eA þ eBK� �
e ÂþB̂ Kð Þsds

	 

ck ¼ cmkþ1 þ Δc hð Þck:

ð8:54Þ
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Note that the matrices Δc(h) and Δη(h) can be calculated as follows:

Δc hð Þ ¼ I 0½ �e
A eA þ eBK
0 Â þ B̂ K

� �
h

	 

0

I

� �

Δη hð Þ ¼ I 0½ �e
A eA
0 Â

� �
h

	 

0

I

� �
:

ð8:55Þ

Since the matrices Δc(h) and Δη(h) are unknown, the hyper parallelogram Rp
kþ 1

cannot be constructed. Instead we will use the expressions in equation (8.54) and

the bounds over the norms of Δc(h) and Δη(h) to construct a hyper parallelogram

that will contain Rp
kþ 1 the plant state. This is depicted in Fig. 8.7.

Note that

R�
kþ1 ¼ R c�kþ1; η

�
kþ1,1; η

�
kþ1,2; . . . ; η

�
kþ1,n

� �
with η�kþ1, i ¼ 1þ σ Δc hð Þð Þ ckk k κ

ηm
kþ1, i

�� ��þ σ Δη hð Þ� �
ηk, i

�� �� κ

ηm
kþ1, i

�� ��
0@ 1Aηm

kþ1, i

c�kþ1 ¼ cmkþ1 , where κ ¼ 1=det v1 v2 . . . vn½ �ð Þ, vik k ¼ 1:

ð8:56Þ
Bounds overσ Δc hð Þð Þ andσ Δη hð Þ� �

can be obtained based on the norms over the

error matrices eA and eB. Note also that R�
kþ 1 is a hyper parallelogram with edges

larger but parallel to those of Rm
kþ 1. At this time the encoder will divide R�

kþ 1 into

smaller parallelograms and transmits to the decoder the symbol that identifies the

(s−(Δc (h))||ck||+s−(Δh(h))||hk,i||)k

s−(Δc (h))||ck||+s−(Δh(h))||hk,i||

hk+1,1

hk+1,2

−

−

hk+1,1
m

hk+1,2
m

Fig. 8.7 Construction of hyper parallelogram R�
kþ 1 from Rm

kþ 1
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one that contains the plant state Rk+ 1. And the process repeats itself again. This

process is depicted below in (8.57), also see Fig. 8.8:

R�
k !encoder

Rk !plant
h seconds

R�
kþ1 !encoder

Rkþ1: ð8:57Þ

In Fig. 8.8 the term dk represents the displacement of the center of Rk+ 1 with

respect to the center of R�
kþ 1. We will now establish the relationship between the

evolution of the hyper parallelograms parameters and stability. Define the radius of

the hyper parallelogram Rk with center ck as:

λmax Rkð Þ ¼ supx∈Rk
x� ckk k: ð8:58Þ

It is clear that in order to ensure stability of the system we require that the center

and radius of the hyper parallelograms must converge to zero with time. As a matter

of fact for stability only the radius of the hyper parallelograms Rk is relevant. This is

stated in the next Theorem.

Theorem 8.5 Assume that a state feedback NCS without quantization is asymp-
totically stable. Then the NCS with dynamical quantization is asymptotically stable
if and only if:

lim
k!1

λmax Rkð Þ ¼ 0: ð8:59Þ

Proof Sufficiency. We know that limk!1 λmax Rkð Þ ¼ 0 implies that the quantiza-

tion error at each sampling time also converges to zero: limk!1 e tkð Þ ¼ 0. Also, it

can be proved, as in equation (8.5), that:

x tkþ1ð Þ ¼ x t�kþ1

� � ¼ e ÂþB̂ Kð Þh þ Δc hð Þ
� �

x tkð Þ þ eAh � Δc hð Þ� �
e tkð Þ

¼ Mx tkð Þ þ Ne tkð Þ
ð8:60Þ

η-
k

R-
k+1

R-
k

C-
k+1

C-
k

Ck

Rk

dk

Fig. 8.8 Evolution of quantized regions
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Since the NCS without quantization is stable the matrixM is Schur stable, therefore

it is clear that if the quantization error converges to zero then the sequence of states x
(tk) also converges to zero. Note that since the plant is an LTI plant, the fact that the
sequence x(tk) converges to zero ensures that plant state will also converge to zero.

Necessity. In order to ensure that there is no non-zero sequence of e(k) that can
drive the plant state to zero and keep it there, we just need to prove that the matrix

N has full rank. This is readily observed from the way N can be computed, namely:

N ¼ eAh � Δc hð Þ ¼ I 0½ �e
A eA þ eBK
0 Â þ B̂ K

" #
h I

I

� �
: ð8:61Þ

From equation (8.61) it can be observed that the left most matrix isolates the two

upper blocks of the exponential. Since the exponential matrix has rank 2n, the
isolated matrix (of size n� 2n) should have rank n. Therefore, any non-zero error

vector multiplied by N will yield a non-zero vector. ♦

We will now assume that in order to generate the hyper parallelograms Rk+1 each

edge of the hyper parallelogram R�
kþ 1 is divided in Qi equal parts. Note that all the Qi

must be powers of 2, that isQi ¼ 2bi where bi represent the number of bits assigned to

eachaxis.The resulting bit rate isBitRate¼ (∑n
i¼ 1bi)/h.Wecannowpresent a sufficient

condition for stability of MB-NCS under the described dynamic quantization.

Theorem 8.6 The state feedbackMB-NCS using the dynamic quantization described
in (8.57) is globally asymptotically stable if the following conditions are satisfied:

1. The non-quantized MB-NCS is stable.
2. The test matrix T has all its eigenvalues inside the unit circle, where

T ¼ T11a þ T11b T12

T21 T22

� �
with T11a ¼ diag

eλ1h þ σ Δη hð Þ� �
κ

Q1

0@ 1A; . . . ;
eλnh þ σ Δη hð Þ� �

κ

Qn

0@ 1A0@ 1A,

T11b ¼

Q1 � 1

Q1

0@ 1A . . .
Qn � 1

Qn

0@ 1A
: :

Q1 � 1

Q1

0@ 1A . . .
Qn � 1

Qn

0@ 1A

266666664

377777775
σ Δc hð Þð Þκ,

T12 ¼
σ Δc hð Þð Þκ

:
σ Δc hð Þð Þκ

24 35,
T21 ¼ Q1 � 1

Q1

0@ 1A . . .
Qn � 1

Qn

0@ 1A24 35σ e ÂþB̂ Kð Þh� �
,

T22 ¼ σ e ÂþB̂ Kð Þh� �

ð8:62Þ
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Proof In order to characterize the evolution of the hyper parallelograms it is

convenient to establish the relationship between the sizes of edges of R�
kþ 1 and

the edges of R�
k .

η�kþ1, i

�� �� ¼ eλih þ σ Δη hð Þ� �
κ

Qi

0@ 1A η�k, i
�� ��þ σ Δc hð Þð Þκ ckk k

� eλih þ σ Δη hð Þ� �
κ

Qi

0@ 1A η�k, i
�� ��þ σ Δc hð Þð Þκ c�k

�� ��þ σ Δc hð Þð Þκ dkk k:

ð8:63Þ

Equation (8.63) is a scalar discrete linear system. It is dependent on kc�k k.
The evolution of ck is given below.

c�kþ1 ¼ e ÂþB̂ Kð Þhck ¼ e ÂþB̂ Kð Þhc�k þ e ÂþB̂ Kð Þhdk: ð8:64Þ

The term kdkk is bounded by:

dkk k �
XN
i¼1

η�kþ1, i

�� �� Qi � 1

Qi

	 
	 

: ð8:65Þ

We will now bound kc�k k:

c�kþ1

�� �� � σ e ÂþB̂ Kð Þh� �
c�k

�� ��þ σ e ÂþB̂ Kð Þh� �XN
i¼1

η�kþ1, i

�� �� Qi � 1

Qi

	 
	 

: ð8:66Þ

From (8.63), (8.65), and (8.66) it is clear that stability is guaranteed if T has its

eigenvalues inside the unit circle. ♦

Note that if the plant model is exact, then we have that eA ¼ 0 and eB ¼ 0, Δc(h)¼
0 and Δη(h)¼ 0. This implies that if σ e ÂþB̂ Kð Þh� �

< 1 then stability is guaranteed if

maxi eλih=Qi

� �
< 1 which is a well-established result. In order to enforce the condition

that σ e ÂþB̂ Kð Þh� �
< 1 , it is convenient to apply a similarity transformation that

diagonalizes Â þ B̂ K.
The following example depicts the way a MB-NCS can be designed; first a

non-quantized MB-NCS is designed and then a suitable quantization scheme is

added and tested for stability.
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Example 8.2 Consider the plant represented by the following state space matrices:

A ¼ 0 1

a21 0:5

� �
B ¼ 0:1

0:2

� �
where a21 ∈ [�0.01, 0.01] represents the uncertainty in the matrix A. The plant

model is defined as the nominal plant, that is:

Â ¼ 0 1

0 0:5

� �
B̂ ¼ 0:1

0:2

� �
:

A feedback gainK ¼ �3:3333 �8:3333½ � is selected so to place the eigenvalues
of the plant model at (�0.5,� 1). An update time of h¼ 1 s is used. The following

similarity transformation that diagonalizes Â þ B̂ K is applied to the system:

xnew ¼ Px, where P ¼ 1:8856 0:4714

1:3744 1:3744

� �
:

Finally, the quantized levels are defined as n1¼ 1 bit and n2¼ 2 bits for

the eigenvectors corresponding to the eigenvalues at�0.5 and�1, respectively.

The bounds for the norms of uncertainty matrices are calculated in the transformed

space by searching along the parameter a21 and are as follows:

σ Δc hð Þð Þ � 0:1354, σ Δη hð Þ� � � 0:0961:

The maximum eigenvalue for the test matrix T is at 0.9531 indicating that the

quantized system is stable. Next a simulation of the system is presented. In this

simulation the parameter a21 is chosen randomly to be 0.0034, the starting region with

center 2 �3½ �T , edges with length 1, and the plant state randomly placed within this

region. The plots are in the non-transformed original space (Figs. 8.9, 8.10, and 8.11).

8.4 Notes and References

One of the main problems in NCS is the reduction of the needed bandwidth by

reducing the amount of information that is transmitted over the network while

preserving desired properties of the controlled system, such as stability. Reduction
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Fig. 8.9 Plant State

Fig. 8.10 Plant Model State
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of network traffic is desired in order not to overload the communication network

with unnecessary data, so a faster and more reliable service can be provided. The

reduction of network bandwidth also facilitates the inclusion of more control

systems that can share the same network. In this chapter bandwidth reduction

is considered in the MB-NCS framework. The MB-NCS framework using the

quantization approaches discussed in this chapter achieve such reduction in two

ways: first, by reducing the rate at which packets are sent and, second, by reducing

the number of necessary bits used to transmit in each packet. This allows the

designer to consider several parameters in a sequential fashion as it was shown

in this chapter.

The contents of Sects. 8.1 and 8.3 are based on the work presented in [191].

The event-triggered control approach described in Sect. 8.2 was published in [87].

Several results have been published regarding the issues involved with

quantization in NCS and sampled data problems [15, 65, 72, 79, 150–153]. Most

results attempt to characterize the stability properties of NCS while limiting the

number of bits used by each network packet.

The work in [202] offers a framework that applies to nonlinear systems subject

to quantization. In addition, network scheduling is considered using periodic

updates in terms of the maximal allowable transfer interval (MATI). Copies of

the plant dynamics are used at both ends of the communication channel. Model

uncertainties are not considered and the difference between the plant and the copies

being that the copies operate using the quantized variables instead of the real ones.

Fig. 8.11 Trajectories for Plant State and Plant Model State showing the evolution

of quantized regions
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The transmission of quantized measurements at times dictated by event-based

strategies has been considered by several authors. The authors of [17] and [182]

discuss this approach when considering the most convenient times to sample a

signal. The reference [140] also considers event-triggered transmission for stabili-

zation of systems that communicate using a limited bandwidth network and using a

similar model-based approach as the one discussed in this book. In [275] the authors

address the problem of output feedback control of networked systems subject to

quantization and packet dropouts. A similar problem was also discussed in [125].

Dynamic quantizers were used in [43] for stabilization of NCS with nonlinear

systems that are modeled using the T-S (Takagi-Sugeno) fuzzy model. Two quan-

tizers are implemented, one in the sensor-controller channel and the other one in the

controller-actuator channel. Other frameworks considering quantization issues in

NCS can be found in [213, 252, 266].

Similar results to Sect. 8.3 using dynamics quantizers can be found in [159]

where the authors calculate the minimum bit rate for NCS under network dropouts.

In [111], Hespanha, et al. consider the case of a NCS that incorporates an exact

model of the plant. The results in [111] yield the minimum bit rate for stabilizing

the NCS under bounded measurement noise and input disturbance.
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Part II

Performance



Chapter 9

Optimal Control of Model-Based

Event-Triggered Systems

The problems of control and estimation under communication constraints have

received increased attention in recent years motivated by the extensive use of

digital communication networks with limited bandwidth. The communication

channel is shared by different applications and in many instances only a reduced

number of nodes are able to send information through the network at some specified

time interval. It becomes essential to determine the conditions under which a

dynamical system will remain stable and achieve a desired performance in the

presence of model uncertainties, disturbances, and limited feedback information.

A common characteristic shared by the control methodologies studied in previ-

ous chapters is that they offer conditions for stability based on the design of

quantization parameters, transmission rates, or error event thresholds, given the

system and the controller. In this chapter we will use the Model-Based Event-

Triggered (MB-ET) framework shown in Chap. 6 to maximize the transmission

intervals, but here we will also consider the required control effort. In other words,

we consider the design of optimal control laws and optimal thresholds for commu-

nication in the presence of plant-model mismatch by appropriately weighting the

system performance, the control effort, and the communication cost. The approach

we follow is to optimize the performance of the nominal system, which can be

unstable in general, and to ensure robust stability for a given class of model

uncertainties and for lack of feedback for extended intervals of time.

Consider an uncertain discrete-time linear plant of the form:

x k þ 1ð Þ ¼ Ax kð Þ þ Bu kð Þ: ð9:1Þ

The available nominal model of the system is represented by:

x̂ k þ 1ð Þ ¼ Â x̂ kð Þ þ B̂ u kð Þ ð9:2Þ

where x, x̂ ∈ℝn. Define the state error as:

E. Garcia et al., Model-Based Control of Networked Systems, Systems & Control:

Foundations & Applications, DOI 10.1007/978-3-319-07803-8_9,

© Springer International Publishing Switzerland 2014

217

http://dx.doi.org/10.1007/978-3-319-07803-8_6


e kð Þ ¼ x̂ kð Þ � x kð Þ: ð9:3Þ

Note that the system and model can be stable or unstable. The aim is to design an

optimal controller for the nominal system (9.2) that is robust to model uncertainties

and to limited information. The later means that feedback measurements are not

always available for control. This is typical, for instance, in Networked Control

Systems (NCS), where the communication channel is shared by different users and

may not be available for a given system to communicate at every instant [195] or

due to the limited communication and processing capabilities at every node or agent

within the network [251]. In other applications, it may be desirable not to use

the communication channel even if it is available due to energy constraints

[8, 24]. Therefore, it becomes essential to establish a trade-off between the perfor-

mance of the control system and the information that can be transmitted. This trade-

off can be defined by solving the next optimization problem:

min
u, β

J ¼ xT Nð ÞQNx Nð Þ þ
XN�1

k¼0

xT kð ÞQx kð Þ þ uT kð ÞRu kð Þ þ Sβ kð Þ ð9:4Þ

where Q andQN are real, symmetric, and positive semi-definite matrices, R is a real,

symmetric, and positive definite matrix. βk ∈ {0, 1} is a binary decision variable

that dictates the communication pattern in the system as follows:

βk ¼ 1 measurement xk is sent
0 measurement xk isnot sent

�
ð9:5Þ

and S is a positive weighting factor that penalizes network communication.

In this chapter we follow the MB-ET framework that was studied in Chap. 6.

This configuration makes use of an explicit model of the plant which is added to the

controller node to compute the control input based on the state of the model rather

than on the plant state as represented in Fig. 9.1. The goal is to reduce the

communication between nodes by reducing the rate at which feedback information

is sent to the controller. The MB-ET framework has the advantage that it can

provide “virtual feedback” to control the physical system when no real measure-

ments can be obtained at the controller node due to communication constraints. The

idea of “virtual feedback” can be realized by using the nominal model of the system

to generate an estimate of the real state in joint operation with an event-triggering

strategy in the sensor node that determines the communication instants based on the

size of the state error (9.3). When a measurement of the real state is received at the

controller node, it is used to update the state of the model in order to reset the

accumulated state error over the previous time interval since the last measurement

update took place. The combination of the nominal model at the controller and the

event-triggering strategy provides a “virtual feedback” by generating an estimate

of the state that is kept close to the real state by maintaining a small state error. In

order to obtain the same model state x̂ at the sensor node we implement a second
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identical model at the sensor node that is updated using the measurements x(k)
only when βk¼ 1.

The idea of “virtual feedback” allows for an approximate solution to (9.4) which

considers the separation of problem (9.4) into two subproblems. The first one

requires the design of the optimal control for the nominal system for the case

when feedback measurements are always available to compute the control input.

Since we consider model uncertainties and communication constraints, the optimal

controller needs to be robust to both model mismatch and lack of real feedback for

intervals of time. Sections 9.1 and 9.2 address this problem for the case of infinite

horizon optimization problems. The second subproblem aims at minimizing the

state error by also considering the cost that needs to be paid every time we decide to

send a measurement to update the model and reset the state error. In Sect. 9.3 we use

the corresponding solution for the first subproblem for finite horizon optimization

problems along with a Dynamic Programming algorithm that provides the optimal

times to send updates. Notes and references are given in Sect. 9.4.

9.1 Continuous-Time Robust LQR

The robustness of the continuous-time LQR to model uncertainties has been

analyzed by different authors; see Sect. 9.4 at the end of this chapter. In the case

of matched uncertainties the LQR guarantees robust stability for any bounded

uncertainty of this type. In this section we extend the approach in [154] for

matched uncertainties in order to consider state feedback uncertainties as well.

The state uncertainty is characterized by the state error (9.8) and is the result of

limited communication between sensor and controller. We also make use of the

MB-ET approach in order to design error events that will prompt the sensor to send

the current measurement of the state of the system.

We consider network interconnected uncertain linear systems of the form:

_x tð Þ ¼ Ax tð Þ þ Bu tð Þ: ð9:6Þ

Controller

Model-Based
estimate of x

System Sensor

Scheduler
of events

Network

Fig. 9.1 Model-based event-triggered networked architecture
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The nominal model of the system is:

_̂x tð Þ ¼ Â x̂ tð Þ þ B̂ u tð Þ ð9:7Þ

where x, x̂ ∈ℝn. Define the state error for the continuous-time case as:

e tð Þ ¼ x̂ tð Þ � x tð Þ: ð9:8Þ

We also consider the following assumptions:

(a) The nominal system Â; B̂
� �

is stabilizable.

(b) B ¼ B̂
(c) We assume matched uncertainty, that is, the uncertainty is in the range of the

matrix B. Mathematically we have that there exists a m� n matrix ϕ such thateA ¼ A� Â ¼ Bϕ, and ϕ is bounded in the Euclidean sense.

Using the nominal system parameters (9.7) we design a feedback control law

u¼Kx that minimizes

J ¼
ð1
0

1

2

�
xT tð ÞFx tð Þ þ xT tð ÞQx tð Þ þ uT tð ÞRu tð Þ�dt ð9:9Þ

where F is defined as

F ¼ inf F0 : F0 � ϕTRϕ
� �

: ð9:10Þ

Q is a real, symmetric, and positive semi-definite matrix, and R is a real, symmetric,

and positive definite matrix.

Theorem 9.1 System (9.6) with a model-based input u ¼ Kx̂ and with model
updates based on error events is asymptotically stable for all matched uncertainties
satisfying (9.10) if the updates are triggered when

ej j �
σq

KTRK
		 		 xj j ð9:11Þ

where K is the feedback gain obtained by solving the Algebraic Riccati Equation
(ARE) using the nominal parameters, q ¼ σ Qð Þ, and 0< σ< 1/2.

Proof The solution of the optimal control problem that minimizes (9.9) is the LQR

which provides the feedback gain:

K ¼ �R�1BTP ð9:12Þ
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and the matrix P is the solution of the associated ARE:

Â TPþ PÂ � PBR�1BTPþ Fþ Q ¼ 0: ð9:13Þ

Define:

V x0ð Þ ¼ min
u∈L2

ð1
0

1

2

�
xT tð ÞFx tð Þ þ xT tð ÞQx tð Þ þ uT tð ÞRu tð Þ�dt ¼ J � x tð Þ, tð Þ: ð9:14Þ

V(x0) is the minimum cost of the optimal control of the nominal system from

some initial state x0.
The Hamiltonian is given by:

H ¼ 1

2
xTFxþ 1

2
xTQxþ 1

2
uTRuþ V T

x Â xþ Bu
� � ð9:15Þ

and the HJB equation for the nominal model is given by:

1

2
xTFxþ 1

2
xTQxþ 1

2
xTKTRKxþ VT

x Â xþ BKx
� � ¼ 0: ð9:16Þ

Additionally, the optimality condition results in:

xTKTRþ V T
x B ¼ 0: ð9:17Þ

Next, we will show that V(x) is a Lyapunov function for the real system (9.6)

affected by model uncertainties and state feedback errors which are caused by

the lack of communication from sensor to controller. System (9.6) can be

represented by:

_x ¼ Axþ Bu ¼ Â xþ BKxþ Bϕxþ BKe: ð9:18Þ

We can also see that:

V xð Þ > 0, x 6¼ 0

V xð Þ � 0, x ¼ 0:

Now we evaluate _V xð Þ along the trajectories of (9.18)
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_V xð Þ ¼ VT
x Â xþ BKxþ Bϕxþ BKe
� �

¼ �1

2
xTFx� 1

2
xTQx � 1

2
xTKTRKx� xTKTRϕx� xTKTRKeþ 1

2
xTϕTRϕx� 1

2
xTϕTRϕx

¼ �1

2
xT F� ϕTRϕ
� �

x� 1

2
xT
�
K þ ϕ

�
TR

�
K þ ϕ

�
x� 1

2
xTQx� xTKTRKe

� �1

2
xTQx� xTKTRKe � �1

2
q xj j2 þ KTRK

		 		 ej j xj j:
Using the threshold (9.11) we ensure that ej j � σq

KTRKj j xj j and then we have:

_V xð Þ � σ � 1

2


 �
q xj j2 < 0 ð9:19Þ

♦

9.2 Discrete-Time Robust LQR

The purpose of this section is to extend the results of the previous section to the

discrete-time domain. Following a similar analysis but using the discrete-time LQR

we arrive at a slightly different set of conditions and event thresholds. In this section

we consider the discrete-time system (9.1) with model (9.2) and the state error as

defined in (9.3). We also consider assumptions (a)–(c) in Sect. 9.1.

Using the nominal system parameters (9.2) we design a feedback control law

u¼Kx that minimizes

J ¼
X1
k¼0

xT kð ÞFx kð Þ þ xT kð ÞQx kð Þ þ uT kð ÞRu kð Þ ð9:20Þ

where F is defined as

F ¼ inf F0 : F0 � ϕT BTPBþ R
� �

ϕ
� �

: ð9:21Þ

Q is a real, symmetric, and positive semi-definite matrix, and R is a real, symmetric,

and positive definite matrix.

Theorem 9.2 System (9.1) with a model-based input u ¼ Kx̂ and with model
updates based on error events is asymptotically stable for all matched uncertainties
satisfying (9.21) if the updates are triggered when

ej j � α xj j ð9:22Þ
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where α¼min(α1, α2), α1 ¼ σq=2c1, α2 ¼ σq=2c2
h i1=2

, 0< σ< 1,

c1 ¼ 2 Â þ B K þ ϕ½ �� �T
PBK

			 			, and c2¼ |KTBTPBK|. The controller gain K is the

feedback gain obtained by solving the discrete-time ARE using the nominal param-
eters, and q ¼ σ Qð Þ.
Proof The solution of the optimal control problem that minimizes (9.20) is the

discrete-time LQR which provides the feedback gain:

K ¼ � BTPBþ R
� ��1

BTPÂ ð9:23Þ

and the matrix P is the solution of the associated discrete-time ARE:

Â TPÂ � Pþ Fþ Q� Â TPB BTPBþ R
� ��1

BTPÂ ¼ 0: ð9:24Þ

By using the following relationship:

�Â TPB BTPBþ R
� ��1

BTPÂ ¼ Â TPBK þ KTBTPÂ þ K BTPBþ R
� �

K ð9:25Þ

we can rewrite the discrete-time ARE as:

Â þ BK
� �T

P Â þ BK
� �þ Fþ Qþ KTRK � P ¼ 0: ð9:26Þ

Let us consider the candidate Lyapunov function V(x)¼ xTPx and we evaluate

the first forward difference of V(x) along the trajectories of the real system not of the

model but using the model control input u ¼ Kx̂

ΔV xð Þ ¼ V
�
x
�
k þ 1

��� V
�
x
�
k
��

¼ �
xT Â þ BK þ eAh iT

þ eTKTBT
�
P
��
Â þ BK þ eA�xþ BKe

�� xTPx

¼ xT Â þ BK þ eAh iT
P
�
Â þ BK þ eA�x

þ 2xT Â þ BK þ eAh iT
PBKeþ eTKTBTPBKe� xTPx

¼ �xTQx� xT
�
F� ϕT BTPBþ R

� �
ϕ
�
x� xT

�
K þ ϕ

�
TR

�
K þ ϕ

�
x

þ 2xT Â þ BK þ eAh iT
PBKe þ eTKTBTPBKe

� �xTQxþ 2xT Â þ BK þ eAh iT
PBKe þ eTKTBTPBKe

� �q xj j2 þ 2 Â þ B K þ ϕ½ �� �T
PBK

			 			 ej j xj j þ KTBTPBK
		 		 ej j2

� �q xj j2 þ c1 ej j xj j þ c2 ej j2:
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Now, by updating the model (the error is set to zero when we update) following

the condition in (9.22), we can bound the error using the term in the right hand side

of (9.22) and we can finally write:

V x k þ 1ð Þð Þ � V x kð Þð Þ � σ � 1½ �q xj j2: ð9:27Þ

Then V is guaranteed to decrease for any σ such 0< σ< 1 and updating the state

of the model using the threshold in Theorem 9.2. ♦

9.3 Finite Horizon Optimal Control

and Optimal Scheduling

Finite horizon optimal control problems correspond to more realistic

implementations to real problems. In most cases we are concerned with the oper-

ation of a physical system over a finite period of time in an optimal sense. The

consideration of infinite horizon problems results, in many cases, in simplified

controller design steps. This can be easily observed in the continuous and

discrete-time LQR. These simpler controllers can be used in practice, especially,

for long or unknown finite horizons. For shorter horizons, we need to formulate the

problem differently.

In this section, assuming N is known, we consider our original problem as stated

at the beginning of this chapter. The system and model are given by (9.1) and (9.2)

respectively and the cost to be minimized is given by the alternative expression of

(9.4) using the separate weights F and Q, i.e.,

min
u, β

J ¼ xT Nð ÞQNx Nð Þ

þ
XN�1

k¼0

xT kð ÞFx kð Þ þ xT kð ÞQx kð Þ þ uT kð ÞRu kð Þ þ Sβ kð Þ
ð9:28Þ

By following similar ideas as in previous sections we first design the optimal

controller for the nominal system assuming that feedback measurements are always

available. The optimal control input for this case is given by:

u � N � ið Þ ¼ � BTP i� 1ð ÞBþ R
� ��1

BTP i� 1ð ÞÂ x N � ið Þ ð9:29Þ

where P(i) is recursively computed using:

P ið Þ ¼ Â þ BK N � ið Þ� �T
P i� 1ð Þ Â þ BK N � ið Þ� �þ Fþ Q

þ KT N � ið ÞRK N � ið Þ:
ð9:30Þ
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Define the Lyapunov function V(x(k))¼ xT(k)P(k)x(k). Using a similar analysis as

in Sect. 9.2 we can show the following results.

Corollary 9.3 System (9.1) with input (9.29) is stable in the Lyapunov sense for all
matched uncertainties satisfying:

F ¼ inf F0 : F0 � ϕT BTP kð ÞBþ R
� �

ϕ
� � ð9:31Þ

for all k¼ 0,1,. . .N. ♦

Note that in order to obtain the optimal control law we need to solve offline the

discrete-time LQR, i.e., we need to find K(k) and P(k) before the execution of the

system, then it is possible (knowing a bound on the uncertainty) to check (9.31) in

advance. When (9.31) holds we know the system is stable and the optimal cost of

the form (9.20) with no communication penalty is finite when measurements are

available at every time k. Then we can proceed to select an appropriate weight on

the communication to restrict measurement updates from the sensor to the

controller.

We are now in the position to approach the second problem that was introduced

in the beginning of this chapter in a more formal way. In Sects. 9.1 and 9.2 we were

able to reduce the communication rate between sensor and controller while using

the optimal control law and the estimates generated by the model. However, the

communication pattern was not optimal in any sense. Next we use the error nominal

dynamics and the selected communication factor S in order to design the optimal

update events.

This approach to solve the optimal scheduling problem can be seen as the

minimization of the deviation of the system performance from the nominal perfor-

mance by also considering the cost that needs to be paid by updating the model and

resetting the state error.

The error dynamics are given by:

e k þ 1ð Þ ¼ x̂
�
k þ 1

�� x
�
k þ 1

� ¼ Â x̂
�
k
�þ Bu

�
k
�� Ax

�
k
�� Bu

�
k
�

¼ Â e kð Þ � eAx�k�: ð9:32Þ

Since the uncertainty eA is not known, we use the nominal error dynamics, i.e.,

e k þ 1ð Þ ¼ Â e kð Þ: ð9:33Þ

Furthermore, when the sensor decides to send a measurement update, which makes

βk¼ 1, we reset the error to zero. Then the complete nominal error dynamics can be

represented by the following equation:

e k þ 1ð Þ ¼ Â e kð Þ � βkÂ e kð Þ ¼ 1� βk½ �Â e kð Þ: ð9:34Þ

It is clear that, in the nominal case, once we update the model the state error is equal

to zero for the remaining time instants. However, in a real problem the state error
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dynamics are disturbed by the state of the real system which is propagated by means

of the model uncertainties as expressed in (9.32). Then, using the available model

dynamics we implement the optimal control input and the optimal scheduler that

results from the following optimization problem:

min
β

Je ¼ eT Nð ÞQNe Nð Þ þ
XN�1

k¼0

eT kð ÞQe kð Þ þ Sβk

subject to e k þ 1ð Þ ¼ �
1� βk

�
Â e

�
k
�

βk ∈ 0; 1f g: ð9:35Þ

In order to solve problem (9.35) we use Dynamic Programming in the form of look

up tables. The main reason for using Dynamic Programming is that, although the

error will be finely quantized, the decision variable βk only takes two possible

values, which reduces the amount of computations performed by the Dynamic

Programming algorithm. The sensor operations at time k are reduced to measure

the real state, compute and quantize the state error, and determine if the current

measurement needs to be transmitted by looking at the corresponding table entries

which are computed offline. The table size depends only on the horizon N and the

error quantization levels.

Example 9.1 Consider the nominal model of an unstable discrete-time second

order system given by:

Â ¼ 1:5 0:3
�0:6 �0:7


 �
, B ¼ 1 0

0 1


 �
:

The unknown dynamics of the unstable real system used in the next simulation

example are:

A ¼ 1:25 0:48
�0:73 �0:81


 �
:

The model-based controlled system is intended to operate over a finite period of

N¼ 30 stages. The parameters in the optimization problem are as follows:

Q¼R¼ I, S¼ 1, QN¼ 2I. The unknown initial conditions of the system are given

by x(0)¼ [1.9 � 1.4]T, since these initial conditions are unknown to the controller,

the model is initialized using x̂ 0ð Þ ¼ 0 0½ �T . The computation of the control gains

at every time instant and the solution of the Dynamic Programming optimization

problem are computed offline and stored accordingly in the controller and sensor

nodes. The results of the simulation are shown in Figs. 9.2, 9.3, and 9.4 using

linear interpolation to connect the consecutive values in the response of the system

and model.

Figure 9.2 shows both the states of the real system and the states of the model

that are used in the computation of the control input when feedback measurements
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Fig. 9.2 Response of the real uncertain system with limited feedback (top). States of the model

used to control the system (bottom)
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Fig. 9.3 State error used to determine the instants at which a feedback measurement has to be

transmitted (top). Communication pattern βk (bottom)
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are unavailable. The top portion of Fig. 9.3 shows the state error. For the different

combinations of the state error we find the corresponding entry on the table that

contains the solution of the Dynamic Programming optimization problem. At every

time instant the sensor decides to send or not the measurement of the state of the

system based on the values of the error, those decisions are represented at the

bottom of Fig. 9.3. An important difference with respect to the error threshold

designed in Sects. 9.1 and 9.2 is that the solution of problem (9.35) considers the

dynamics (nominal) of the error in the design of the transmission events. By

including a prediction of the behavior of the state error we are also able to predict

the consequences, as measured by the computation of the optimal cost, of updating

or not the model at a given time instant k. We can see, for instance, that some

combinations of state error values will result in different transmission decisions

depending at which of the N stages we are operating at that moment.

It is also important to note that in the absence of model uncertainties we obtain

the response of the nominal system as if measurements were always available.

Figure 9.4 shows the response of the nominal system when feedback measurements

are available at every time instant k. The behavior of the overall controlled system

which consists on the MB-ET framework with optimal control input and optimal

scheduler is comparable to that of the nominal system for which the optimal control

law is designed, and the difference is considerably reduced as the uncertainties

diminish.

Example 9.2 The approach in this section can also be applied to the case when the

real system is continuous. From the available nominal continuous-time model we

obtain a discretized nominal system at a low sampling rate. Measurements of the

real system are obtained at the same rate in order to compute the state error and to

take the decision of whether sending an update or not.
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Fig. 9.4 Response of the nominal system receiving feedback measurements at every time k
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Consider the unstable nominal continuous-time model given by:

Â ¼ 1 0:2
0:4 0:5


 �
, B ¼ 1 0

0 1


 �
:

The unknown dynamics of the unstable continuous-time real system used in the

next simulation example are:

A ¼ 0:88 0:32
0:15 0:34


 �
:

The parameters in the optimization problem are as follows: S¼ 0.1, QN¼ 10I,
Q¼ 5I, R¼ I. The unknown initial conditions of the system are given by x(0)¼
[0.3 � 0.4]T and the sampling rate used to determine the discretized nominal model

is Ts¼ 0.1 s. The results of the simulation are shown in Figs. 9.5, 9.6, and 9.7. The

discrete variables have been plotted using zero-order-hold interpolation in order to

clearly differentiate them from the continuous states of the system.
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Fig. 9.5 Response of the real continuous-time uncertain system with limited feedback (top).
States of the discretized model used to control the system (bottom)
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Fig. 9.6 State error used to determine the instants at which a feedback measurement has to be

transmitted (top). Communication pattern βk (bottom)
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9.4 Notes and References

The design of optimal controllers for unknown systems represents a challenging

task. An approach that has been studied in the literature is to design an optimal

controller for a nominal system and analyze its robustness to a range of uncer-

tainties. In this chapter we considered a more complex version of this problem in

which feedback information is limited and, in addition to designing an optimal

control input, we also addressed the problem of finding the optimal instants at

which we should transmit feedback measurements. The approach considered in this

chapter, which consists of model-based estimates of the state and of error events,

provides a practical and promising methodology that considers the overall perfor-

mance of the communication constrained system. Parts of this chapter can be found

in [94].

Similar ideas have been considered by different research groups. For instance,

Imer and Basar, [120, 121], considered separately the estimation and control

problems with limited information when the nominal system is affected by process

and measurement noise. In both cases the source node is able to send data through

the communication channel onlyM times of possible N (M<N ). The aim is to find

the optimal control law (minimize the average estimation error) by indirectly

penalizing channel uses. Molin and Hirche [184] also considered the trade-off

between control performance and resource utilization, i.e., the cost of updating

the controller node using current measurements. The authors study linear systems

affected by zero-mean Gaussian noise and they assume the system parameters and

statistics are known, that is, model uncertainties are not taken into account in their

work. The authors of [167, 274, 289] also address similar problems.

The robustness of the continuous-time LQR to model uncertainties has been

analyzed by different authors. Douglas and Athans [62] presented an LQR design

that is robust to real parametric uncertainty in the state matrix of linear time

invariant systems by wisely choosing the state weighting matrix. Misra [183]

discussed the LQR design with assignment of the closed loop eigenvalues. Lin

and Olbrot [154] showed a robust LQR design method for uncertain continuous-

time systems that apply to both matched and unmatched uncertainties.
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Chapter 10

Performance Analysis

Using Lifting Techniques

The performance characterization of Networked Control Systems under different

conditions represents an important and interesting problem. In previous chapters it

was shown that the stability of MB-NCS is, in general, a function of the update

times, the difference between the dynamics of the plant and the dynamics of the

plant model, and of the control law used. The performance of the MB-NCS can be

studied using several techniques and considering different scenarios. One promis-

ing technique is called Continuous Lifting.

Lifting techniques for discrete-time systems were employed in Chaps. 2 and 4.

Lifting represents a transformation of a periodic system to a discrete LTI system.

The periodic system could be a continuous-time or a discrete-time system. The

main advantage of this approach is that most of the results available for LTI systems

are readily applicable to the lifted system. The disadvantage is that the input and

output spaces grow in size if the underlying periodic system is a discrete time one,

and the input and output spaces become infinite dimensional when the underlying

periodic system is a continuous-time system. In the latter case the parameters of the

lifted system are operators and not matrices.

The results in this chapter are concerned with the performance analysis of

MB-NCS with continuous-time systems and with periodic updates. Corresponding

results can also be obtained for discrete-time systems with periodic updates fol-

lowing the similar approaches discussed in this chapter. Section 10.1 describes a

continuous-time lifting technique used in this chapter and it also discusses the

performance of MB-NCS using H2 norm characterizations. Section 10.2 addresses

the design of optimal controllers for MB-NCS. Notes and references are given in

Sect. 10.3.

E. Garcia et al., Model-Based Control of Networked Systems, Systems & Control:

Foundations & Applications, DOI 10.1007/978-3-319-07803-8_10,
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10.1 Performance Analysis of MB-NCS Using

Continuous-Time Lifting

In this section we introduce two performance measures related to the traditional H2

performance measure for LTI systems. The first H2 like performance measurement,

called the Extended H2 norm of the system, is based on the norm of the impulse

response of the NCS at time zero. The second performance measure, called the

Generalized H2 norm, it basically replaces the traditional trace norm by the Hilbert-

Schmidt norm that is more appropriate for infinite dimensional operators. The

Generalized H2 norm represents the average norm of the impulse response of the

NCS for impulse inputs applied at different times.

Before defining the performance measures previously described, a brief sum-

mary of the lifting technique is presented. As it was pointed out, lifting can

transform a periodic linear system such as a MB-NCS into a discrete linear time

invariant system with operator-valued parameters. These parameters are computed

for a class of MB-NCS and used throughout the section.

10.1.1 Continuous Lifting Technique

We will give a brief introduction of the Lifting technique for continuous-time

periodic systems. We need to define two Hilbert spaces, the first space is defined as:

L2
�
0, h
� ¼ u tð Þ=

ð h
0

uT tð Þu tð Þdt < 1
� �

: ð10:1Þ

The second Hilbert space of interest is formed by an infinite sequence of L2[0, h)
spaces and is defined as:

l2 ℤ,L2
�
0, h
�� � ¼ l2

¼ . . . ; u�2; u�1; u0; u1; u2; . . .½ �T=
Xþ1

�1

ð h
0

uj
T tð Þuj tð Þdt < 1

( )
:

ð10:2Þ

Now we can define the lifting operator L as a mapping from L2e (L2 extended) to l2:

L : L2e ! l2, Lu tð Þ ¼ . . . ; u�2; u�1; u0; u1; u2; . . .½ �T ð10:3Þ

where uk(τ)¼ u(τ + kh), τ ∈ [0, h). It can be shown that L preserves inner products

and thus is norm preserving [42]. Since L is surjective, it is an isomorphism

of Hilbert spaces. So, lifting basically transforms a continuous function into a

discrete function where each element of the sequence is a continuous function

restricted to [0, h).
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As an example of the application of this lifting technique we will compute the

lifted parameters of a MB-NCS with output feedback. A disturbance signal w and a

performance or objective signal z are included in the setup. We will use an observer

that will estimate the plant state. This estimate will then be send through a network

to the controller. The controller makes use of a plant model, which is updated with

the observer estimate, to reconstruct the actual plant state in between updates. The

model state is then used to generate the control signal. See Fig. 10.1. We will

assume that the plant model is updated at regular intervals h.
We will start by defining the system dynamics:

Plant Dynamics :

_x ¼ Axþ B1wþ B2u

z ¼ C1xþ D12u

y ¼ C2xþ D21wþ D22u

Observer Dynamics :

_x ¼ Â � LĈ 2

� �
xþ �B̂ 2 � LD̂ 22

�
uþ Ly

Model Dynamics :
_̂x ¼ Â x̂ þ B̂ 2u

Controller :

u ¼ Kx̂

ð10:4Þ

Plant

Model

K

x

Controller

State Observer

update Network

x̂

u

w z

y

h

−

Fig. 10.1 MB-NCS with disturbance input and objective signal output
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The model state x̂ is updated with the observer state x every h seconds. The

augmented state contains x x e½ �T . The augmented system dynamics are given by:

Gzw :

_x

_x

_e

2664
3775 ¼

A B2K �B2K

LC2 Â � LĈ 2 þ B̂ 2K þ LeD22K �B̂ 2K � LeD22K

LC2 LeD22K � LĈ 2 Â � LeD22K

2664
3775

x

x

e

2664
3775þ

B1

LD21

LD21

2664
3775w

z ¼ C1 D12K �D12K½ �
x

x

e

2664
3775

ð10:5Þ

for t ∈ [tk, tk+ 1). At the update times t¼ tk+ 1 we have e ¼ x� x̂ ¼ 0. We will also

use the following definitions:

φ tð Þ ¼
x tð Þ
x tð Þ
e tð Þ

2664
3775,Λ ¼

A B2K �B2K

LC2 Â � LĈ 2 þ B̂ 2K þ LeD22K �B̂ 2K � LeD22K

LC2 LeD22K � LĈ 2 Â � LeD22K

2664
3775

BN ¼
B1

LD21

LD21

2664
3775,CN ¼ C1 D12K �D12K½ �:

ð10:6Þ

System (10.5) is clearly h periodic, and therefore, after the lifting procedure, we

expect to obtain an LTI system of the form:

φ
_
kþ1 ¼ A

_
φ
_
k þ B

_
w
_
k, z

_
k ¼ C

_

φ
_
k þD

_
w
_
k: ð10:7Þ

To obtain the operators we “chop” the time response of the system described in

(10.6) and evaluate it at times kh:

φ hð Þ ¼
I 0 0

0 I 0

0 0 0

2664
3775eΛhφ 0ð Þ þ

ð h
0

I 0 0

0 I 0

0 0 0

2664
3775eΛ h�sð ÞBNw sð Þds,

φ 2hð Þ ¼
I 0 0

0 I 0

0 0 0

2664
3775eΛhφ hð Þ þ

ð2h
h

I 0 0

0 I 0

0 0 0

2664
3775eΛ 2h�sð ÞBNw sð Þds, . . .

ð10:8Þ
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Then the output response for each interval [kh,(k+1)h) is:

z tð Þ ¼ CNe
Λtφ 0ð Þ þ CN

ð t
0

eΛ t�sð ÞBNw sð Þds, t∈
�
0, h
�

z tð Þ ¼ CNe
Λ t�hð Þφ hð Þ þ CN

ð t
h

eΛ t�s�hð ÞBNw sð Þds, t∈
�
h, 2h

�
. . .

ð10:9Þ

We can now extract the lifted parameters:

A
_
¼

I 0 0

0 I 0

0 0 0

264
375eΛh, B

_
w
_ ¼

ð h
0

I 0 0

0 I 0

0 0 0

264
375eΛ h�sð ÞBN w

_
sð Þds

C
_

¼ CNe
Λτ, D

_
w
_ ¼ CN

ð τ
0

eΛ τ�sð ÞBN w
_

sð Þds:
ð10:10Þ

The new lifted system (10.10) is a LTI discrete system. Note the dimension of the

state space is left unchanged, but the input and output spaces are now infinite

dimensional. Nevertheless, the new representation allows extending the results

available for discrete LTI systems to the lifted domain. These tools have been

traditionally used to analyze and synthesize sample and hold devices, and digital

controllers. It is to be noted, though, that in this case the discrete part embedded in

the controller doesn’t operate in the same way a typical sampled system does. Here,

for instance, the controller gain operates over a continuous signal, as opposed to

over a discrete signal as it is customary in sampled data systems.

10.1.2 An H2 Norm Characterization of a MB-NCS

It is clear that, since the MB-NCS is h-periodic, there is no transfer function in the

normal sense whose H2 norm can be calculated [42]. For LTI systems the H2 norm

can be computed by obtaining the 2-norm of the impulse response of the system at

t¼ t0. We will extend this definition to specify an H2 norm, or more properly, to

define an H2-like performance index [42]. We will call this performance index

Extended H2 Norm. We will study the extended H2 norm of the MB-NCS with

output feedback studied in the previous section and shown in Fig. 10.1. The

Extended H2 Norm is defined as:

Gzwk kxh2 ¼
X
i

Gzwδ t0ð Þeik k22
 !1=2

: ð10:11Þ

The extended H2 norm is an approach to creating a framework for performance

analysis. The extended H2 norm is defined in (10.11) as the square root of the sum
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of the squares of the 2-norms of the impulse response of the system on each input. In

this case i represents the index for the inputs,Gzw represents the plant dynamics, δ is
the impulse operator, and ei is a vector on the input space with zeros except on the

ith input, where it has a 1.

Theorem 10.1 The Extended H2 Norm, kGkxh2, of the Output Feedback MB-NCS
described in (10.5) is given by kGkxh2¼ (trace(BN

TXBN))
1/2 where X is the solution

of the discrete Lyapunov equation M(h)TXM(h)�X+Wo(0, h)¼ 0 and Wo(0, h) is

the observability Gramian Wo 0; hð Þ ¼
ð h
0

eΛ
T tCN

TCNe
Λtdt.

Proof We will compute the extended H2 norm of the system by obtaining the

2-norm of the objective signal z to an impulse input w¼ δ(t� t0). It can be shown

that the response of the system to an input w¼ δ(t� t0) (assuming that the input

dimension is one) is:

z tð Þ ¼ C1 D12K �D12K½ �φ�t�,
φ tð Þ ¼ eΛ t�tkð Þ

I 0 0

0 I 0

0 0 0

24 35eΛh
0@ 1Ak

B1

LD21

LD21

24 35 ð10:12Þ

with

φ tð Þ ¼
x tð Þ
x tð Þ
e tð Þ

264
375,

Λ¼
A B2K �B2K

LC2 Â � LĈ 2 þ B̂ 2K þ LeD22K �B̂ 2K � LeD22K

LC2 LeD22K � LĈ 2 Â � LeD22K

2664
3775,

h¼ tkþ1 � tk

So we can compute the 2-norm of the output:

zk k22 ¼
ð1
t0

z tð ÞTz tð Þdt

¼
ð1
t0

BN
T M hð ÞT
� �k

eΛ
T t�tkð ÞCN

TCNe
Λ t�tkð Þ M hð Þð ÞkBNdt

ð10:13Þ

where M hð Þ ¼
I 0 0

0 I 0

0 0 0

24 35eΛh,BN ¼
B1

LD21

LD21

24 35,CN ¼ C1 D12K �D12K½ �.

It is easy to see that the norm of a system with more than one input can be

obtained by taking the norm of the integral shown in (10.13). So at this point we can
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drop our assumption of working with a one-dimensional input system. We will

concentrate now on the integral expression (10.13).

Σ hð Þ ¼
ð1
t0

BN
T M hð ÞT
� �k

eΛ
T t�tkð ÞCN

TCNe
Λ t�tkð Þ M hð Þð ÞkBNdt

¼ BN
T

ð1
t0

M hð ÞT
� �k

eΛ
T t�tkð ÞCN

TCNe
Λ t�tkð Þ M hð Þð Þkdt

	 

BN

¼ BN
T
X1
i¼0

ðtiþ1

ti

M hð ÞT
� �i

eΛ
T t�tið ÞCN

TCNe
Λ t�tið Þ M hð Þð Þidt

 !
BN

¼ BN
T
X1
i¼0

ð h
0

M hð ÞT
� �i

eΛ
T tCN

TCNe
Λt M hð Þð Þidt

 !
BN

¼ BN
T
X1
i¼0

M hð ÞT
� �i ð h

0

eΛ
T tCN

TCNe
Λtdt

	 

M hð Þð Þi

 !
BN

¼ BN
T
X1
i¼0

M hð ÞT
� �i

Wo 0; hð Þ M hð Þð Þi
 !

BN

ð10:14Þ

where

Wo 0; hð Þ ¼
ð h
0

eΛ
T tCN

TCNe
Λtdt: ð10:15Þ

Note that (10.15) has the form of the observability Gramian. Also note that the

summation resembles the solution of a discrete Lyapunov equation. This Lyapunov

equation can be expressed as:

M hð ÞTXM hð Þ � X þWo 0; hð Þ ¼ 0: ð10:16Þ

In this equation we note thatM(h) is a stable matrix if and only if the networked

system is stable. Also Wo(0, h) is a positive semi-definite matrix. Under these

conditions the solution X will be positive semi-definite. ♦

Note that the observability Gramian can be factorized as

Wo 0; hð Þ ¼ CT
auxCaux ¼

ð h
0

eΛ
T tCN

TCNe
Λtdt. This allows us to compute the norm

of the system as the norm of an equivalent discrete LTI system.

Corollary 10.2 Define CT
auxCaux ¼

ð h
0

eΛ
T tCN

TCNe
Λtdt and the auxiliary discrete

system Gaux with parameters: Aaux¼M(h), Baux¼Bn, Caux, and Daux¼ 0. Then the
following holds:

Gzwk kxh2 ¼ Gauxk k2 ð10:17Þ
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Example 10.1 Consider the output feedback instrument servo example presented in

Example 3.1. Consider the model parameters α̂ ¼ 1, β̂ ¼ 3and the real parameters

are given by α¼ 0.89, β¼ 2.79. In addition we have that D̂ 22 ¼ 0 and the plant

parameters associated with the disturbance input and the performance output are

given by

B1 ¼ 0:2371
0:1489

� �
; C1 ¼ 0:4312 �0:3156½ �; D12 ¼ 0:1452; D21 ¼ �0:1974; D22 ¼ 0:

We will use the state feedback controllerK ¼ �0:1667, �0:1667½ �. The state
estimator gain is L ¼ 2

0

� �
. In Fig. 10.2 we plot the extended H2 norm of the system

as a function of the update time intervals h.

10.1.3 A Generalized H2 Norm for MB-NCS

In the previous subsection the Extended H2 Norm was introduced to study the

performance of MB-NCS. This norm was defined as the norm of the output of the

system when a unit impulse at t¼ t0 is applied to the input. But since the MB-NCS

is a time-varying system it may seem inappropriate to apply this input only at t¼ t0.
By letting the input be δ(t� τ) applied at time t¼ τ we arrive to an alternate
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Fig. 10.2 Extended H2 norm of the instrument servo system as a function of the update time

intervals
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definition. Since the system is h periodic we only need to consider τ ∈ [t0, t0 + h).
We will call this norm the Generalized H2 Norm and we define it as:

Gzwk kgh2 ¼
1

h

ðt0þh

t0

X
i

Gzwδ t� τð Þeik k22
 !

dτ

 !1=2:

ð10:18Þ

A detailed study of this norm can be found in [42]. Note that this norm evaluates the

time average of the system response to the impulsive function applied at different

times. We will now show some relations concerning this norm.

Let a continuous-time linear transformationG :L2[0, h)! L2[0,1) be defined by:

Guð Þ tð Þ ¼
ð t
0

g t; τð Þu τð Þdτ: ð10:19Þ

where g(t, τ) is the impulse response of G. Let G be periodic and let its Hilbert-

Schmidt norm kGkHS be defined as:

Gk kHS ¼
ð h
0

ð1
0

trace g t; τð ÞTg t; τð Þ
h i

dtdτ

	 
1=2

: ð10:20Þ

Then it is clear that:

Gzwk kgh2 ¼
1ffiffiffi
h

p Gzwk kHS: ð10:21Þ

Note the slight abuse of notation: originally Gzw was considered a transformation

with domain L2[0,1) while the Hilbert-Schmidt norm in (10.20) is

defined for transformations with domain on L2[0, h). Now denote the lifted operator

G
_

zw ¼ LGzwL
�1 where the input-output relation is given by the convolution:

z
_
k ¼

Xk
l¼0

g
_
k�lw

_
l ð10:22Þ

where g
_
k : L2

�
0, h
�! L2

�
0, h
�
and g

_
ku

� �
tð Þ ¼

ð h
0

g tþ kh, τð Þu τð Þdτ. The Hilbert-
Schmidt operator for g

_
k is given by:

g
_
k

��� ���
HS

¼
ð h
0

ð h
0

trace g tþ kh, τð ÞTg tþ kh, τð Þ
h i

dtdτ

	 
1=2

: ð10:23Þ
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Then it is easy to show that:

Gzwk k2HS ¼
X1
k¼0

g
_
k

��� ���2
HS

¼ g
_
��� ���2

2
: ð10:24Þ

The last expression shows a relationship between the discrete lifted representation

of the system and the Generalized H2 Norm. Finally we will show the relationship

between the Generalized H2 Norm and the norm of an operator-valued transfer

function:

eg λð Þ ¼
X1
k¼0

g
_
kλ

k ð10:25Þ

By defining in a similar way the λ-transform for the input and output of the system

we obtain:

ez λð Þ ¼ eg λð Þew λð Þ: ð10:26Þ

Note that ew λð Þ and ez λð Þ, for every λ in their respective regions of convergence, are

functions on [0, h); eg λð Þ is a Hilbert-Schmidt operator. Define the Hardy space

H2(D,HS) with operator-valued functions that are analytic in the open unit disc,

boundary functions on ∂D, and with finite norm:

egk k2 ¼
1

2π

ð2π
0

eg ejθ
� ��� ��2

HS
dθ

� �1=2
: ð10:27Þ

Note the norm in H2(D,HS) is a generalization of the norm in H2(D) by replacing

the trace norm by the Hilbert-Schmidt norm. It can be shown that:

Gzwk k2HS ¼ g
_
��� ���2

2
¼ egk k22: ð10:28Þ

We will now show how to calculate the Generalized H2 Norm of the Output

Feedback MB-NCS in (10.5). Define the auxiliary discrete LTI system:

Gaux ¼S A
_

Caux

�����Baux

0

" #
ð10:29Þ
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where:

BauxB
T
aux ¼

ð h
0

I 0 0

0 I 0

0 0 0

2664
3775eΛτBNB

T
Ne

ΛTτ

I 0 0

0 I 0

0 0 0

2664
3775

0BB@
1CCAdτ

CT
auxCaux ¼

ð h
0

eΛ
TτCT

NCNe
Λτ

� �
dτ:

ð10:30Þ

Theorem 10.3 The Generalized H2 Norm, kGzwkgh2, of the Output Feedback

MB-NCS described in (10.5) is given by Gzwk kgh2 ¼ 1ffiffi
h

p D
_��� ���2

HS
þ Gauxk k22

	 
1=2

.

Proof The transfer function for Gzw can be written as:

eg λð Þ ¼ D
_þC

_ egt λð Þð ÞB_ ð10:31Þ

withegt λð Þ ¼ A
_ �� I

I j 0

� �
. Note thategt λð Þ is a matrix-valued function and thategt 0ð Þ ¼ 0.

Therefore the two functions on the right of (10.31) are orthogonal and:

h Gzwk k2gh2 ¼ eg λð Þk k22 ¼ D
_��� ���2

HS
þ C

_ egt λð Þð ÞB_
��� ���2

2
: ð10:32Þ

The second norm on the right can be calculated as:

C
_ egt λð Þð ÞB_
��� ���2

2
¼ 1

2π

ð2π
0

C
_ egt ejθ� �� �

B
_��� ���2

HS
dθ: ð10:33Þ

By fixing θ the integrand F ¼ C
_ egt ejθ� �� �

B
_
is a Hilbert-Schmidt operator with

impulse response:

f t; τð Þ ¼ CNe
Λtegt ejθ� � I 0 0

0 I 0

0 0 0

264
375eΛ h�τð ÞBN: ð10:34Þ
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Then:

Fk k2HS ¼ trace

ð h

0

ð h
0

f t; τð Þ�f t; τð Þdtdτ
� �

¼ trace

ð h
0

ð h

0

BT
Ne

ΛT h�τð Þ
I 0 0

0 I 0

0 0 0

2664
3775egt ejθ� ��

eΛ
T tCT

NCNe
Λtegt ejθ� � I 0 0

0 I 0

0 0 0

2664
3775eΛ h�τð ÞBNdtdτ

2664
3775

¼ trace

ð h
0

BT
Ne

ΛT h�τð Þ
I 0 0

0 I 0

0 0 0

2664
3775egt ejθ� ��

CT
auxCauxegt ejθ� � I 0 0

0 I 0

0 0 0

2664
3775eΛ h�τð ÞBNdτ

2664
3775

¼ trace

ð h
0

I 0 0

0 I 0

0 0 0

2664
3775eΛ h�τð ÞBNB

T
Ne

ΛT h�τð Þ
I 0 0

0 I 0

0 0 0

2664
3775

0BB@
1CCAdτ egt ejθ� ��

CT
auxCauxegt ejθ� �� �2664

3775
¼ trace BauxB

T
auxegt ejθ� ��

CT
auxCauxegt ejθ� �� � ¼ trace BT

auxegt ejθ� ��
CT
auxCauxegt ejθ� �

Baux

� �
:

ð10:35Þ

So (10.33) can be calculated as the H2 norm of Cauxegt ejθ� �
Baux which corre-

sponds to the H2 norm of Gaux. ♦

To determine the Generalized H2 Norm several calculations need to be done,

among these are:

D
_��� ���2

HS
¼ trace

ð h

0

ð t

0

BT
Ne

ΛTτCT
NCNe

ΛτBNdτdt

	 


BauxB
T
aux ¼

I 0 0

0 I 0

0 0 0

2664
3775PT

22P12

I 0 0

0 I 0

0 0 0

2664
3775, with P11 P12

0 P22

" #
¼ exp h

�Λ BNB
T
N

0 ΛT

" # !

CT
auxCaux ¼ MT

22M12, with
M11 M12

0 M22

" #
¼ exp h

�ΛT CT
NCN

0 Λ

" # !
:

ð10:36Þ

Note that in this particular case it was relatively easy to separate the infinite

dimensional components of the system from a finite dimensional core component.

This is not always possible. In particular one might be tempted to apply the previous

techniques to obtain a finite dimensional auxiliary discrete LTI that can be used to

solve an H2 optimal control problem. The described separation technique cannot be

carried out since the controller and observer gains operate over continuous signals.

Nevertheless it will be shown later how to address an H2 optimal control problem

using other techniques.
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Example 10.2 Consider the model and plant parameters used for the instrument

servo in Example 10.1. We also use the same controller and observer gains derived

for that example. The generalized H2 norm has been computed for different update

time intervals h. The results are shown in Fig. 10.3.

Since both performance measurements are defined in a different manner no real

comparison can be made between them. It seems though that the Generalized H2

Norm is more appropriate since it considers the application of the impulse input at

different times. Also its link with a well-defined operator-valued transfer function

makes it very attractive. The next subsection presents an alternate parameter

representation that overcomes the inconveniencies of dealing with infinite dimen-

sional operators.

10.2 Optimal Controller Design for MB-NCS

In this subsection we address the issue of designing optimal controllers for

MB-NCS. We saw previously that lifting can transform a periodic system such as

the MB-NCS into a discrete LTI system. Most results for the design of optimal

controllers for discrete systems directly apply to the lifted system. Since the

parameters of the lifted system are infinite dimensional, computations using the

integral representation given in (10.10) can be difficult. This is evident when one
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Fig. 10.3 Generalized H2 norm of the instrument servo system as a function of the update time

intervals
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considers operators such as I �D
_�D

_� ��1

, which appears for instance in sampled

data H1 problems.

To circumvent some of the problems associated with optimal control problems,

an auxiliary discrete LTI system is obtained so that its optimal controller also

optimizes the lifted system. The separation of the infinite dimensionality from the

problem is not always guaranteed. In particular we note that the controller for

the auxiliary system works in the discrete-time domain while the controller for the

lifted system representing the MB-NCS in (10.10) works in continuous time. This

means the controller has to be obtained using the lifted parameters directly.

In this subsection we start by giving a brief summary of an alternative represen-

tation of the lifted parameters proposed by Mirkin and Palmor [181]. This alterna-

tive representation allows performing complex computations using lifted

parameters directly. Results on the computation of an optimal sampler, hold, and

controller are shown and their equivalence with the components of the output

feedback MB-NCS is shown.

The representation of lifted parameters proposed in [181] considers the lifted

parameters as continuous LTI systems operating over a finite time interval. The

main advantage of such representation lies in the possibility of simplifying opera-

tions over the parameters to algebraic manipulations over LTI system with

two-point boundary conditions (STPBC). These manipulations can then be

performed using well-known state-space machinery.

Consider the following LTI STPBC:

G : _x tð Þ ¼ Ax tð Þ þ Bu tð Þ, Ωx 0ð Þ þϒx hð Þ ¼ 0

y tð Þ ¼ Cx tð Þ þ Du tð Þ ð10:37Þ

Here the square matrices Ω andϒ define the boundary conditions. It is said that the

boundary conditions are well posed if x(t)¼ 0 is the only solution to (10.37) when

u(t)¼ 0. It can be verified that the STPBC G has well-posed boundary conditions if

and only if the matrix:

ΞG ¼ ΩþϒeAh ð10:38Þ

is non-singular. If the STPBC G has well-posed boundary conditions, then its

response is uniquely determined by the input u(t) and is given by:

y tð Þ ¼ Du tð Þ þ
ð h
0

KG t; sð Þu sð Þds ð10:39Þ
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where the kernel KG(t, s) is given by:

KG t; sð Þ ¼
CeAtΞ�1

G Ωe�AsB if 0 � s � t � h

�CeAtΞ�1
G ϒeA h�sð ÞB if 0 � t � s � h

:

(
ð10:40Þ

We will use the following notation to represent (10.37):

G ¼ A

C

Ω Ð ϒ B

D

 !
: ð10:41Þ

The following is a list of manipulations that are used to perform operations over

STPBCs.

1. Adjoint System

G� ¼ �AT

�BT
eA

ThϒTΞT�1
G Ð ΩTΞT�1

G eA
Th CT

DT

 !
: ð10:42Þ

2. Similarity Transformation: (for T and S non-singular)

TGT�1 ¼ TAT�1

CT�1

SΩT�1 Ð SϒT�1 TB

D

 !
: ð10:43Þ

3. Addition

G1 þ G2 ¼
A1 0

0 A2

C1 C2

Ω1 0

0 Ω2

� �
Ð ϒ1 0

0 ϒ2

� � B1

B2

D1 þ D2

0BB@
1CCA: ð10:44Þ

4. Multiplication

G1G2 ¼
A1 B1C2

0 A2

C1 D1C2

Ω1 0

0 Ω2

� �
Ð ϒ1 0

0 ϒ2

� � B1D2

B2

D1D2

0BB@
1CCA: ð10:45Þ

5. Inversion (exists if and only if det(D) 6¼ 0 and det Ωþϒe A�BD�1Cð Þh� �
6¼ 0)

G�1 ¼ A� BD�1C

�D�1C

Ω Ð ϒ BD�1

D�1

 !
: ð10:46Þ
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This representation reduces the complexity of computing operators such as

I �D
_�D

_� ��1

. Using the integral representation of (10.10) one can get that

ξ ¼ ðI �D
_�D

_Þ�1ω if and only if:

ω tð Þ ¼ ξ tð Þ þ
ð h
t

BT
Ne

�ΛT t�sð ÞCT
NCN

ð s
0

eΛ s�τð ÞBNξ τð Þdτds ð10:47Þ

It is not clear how to solve this equation. On the other hand using the alternative

representation we note that:

D
_ ¼ Λ

CN

I Ð 0 BN

0

 !
: ð10:48Þ

Using the properties previously listed we obtain:

I �D
_�D

_� ��1

¼ I � Λ
CN

I Ð 0 BN

0

0@ 1A�
Λ
CN

I Ð 0 BN

0

0@ 1A0@ 1A�1

¼

�ΛT CT
NCN

�BNB
T
N Λ

�BT
N 0

0 0

0 I

" #
Ð

I 0

0 0

" # 0

BN

I

0BBB@
1CCCA:

ð10:49Þ

To be able to represent operators with finite dimension domains or ranges such as B
_

and C
_

two new operators are defined. Given a number θ ∈ [0, h], the impulse

operator Iθ transforms a vector η ∈ ℝn into a modulated impulse as follows:

ς ¼ Iθη iff ς tð Þ ¼ δ t� θð Þη: ð10:50Þ

Also define the sample operator I�θ, which transforms a continuous function

ς ∈ ℂn[0, h] into a vector η ∈ ℝn as follows:

η ¼ I�θς iff η ¼ ς θð Þ: ð10:51Þ

Note that the representation of I�θ is as the adjoint of Iθ, even when this is not strictly
true, it is easy to see that given an h� θ the following equality holds:
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ς, Iθηh i ¼
ð h
0

ς τð ÞT Iθηð Þ τð Þdτ ¼ ς θð ÞTη ¼ I�θς, η
� � ð10:52Þ

The following is a summary of technical results extracted from [181] that can be

used to address problems involving lifted parameters.

Lemma 10.4 The parameters of a lifted system G
_

¼ LGL�1 of a continuous LTI

system G ¼ A
C

�� B
D

� �
are given by:

A
_

B
_

C
_

D
_

" #
¼ I�h 0

0 I

� � A

I

C

������
I

0

0

B

0

0

24 35 I0 0

0 I

� �
ð10:53Þ

Lemma 10.5 Given an STPBC, G, on the interval [0, h] with D¼ 0 then

GIθð Þ� ¼ I�θG
� and I�θG

� �� ¼ G�Iθ ð10:54Þ

for any θ ∈ [0, h].

Lemma 10.6 Let G ¼ A

C

Ω Ð ϒ B

D

 !
, then:

I�hGI0 ¼ CeAh ΩþϒeAh
� ��1ΩB,

I�0GIh ¼ �C ΩþϒeAh
� ��1ϒB,

ð10:55Þ

and if in addition CB¼ 0, then

I�0GI0 ¼ C ΩþϒeAh
� ��1ΩB,

I�hGIh ¼ �CeAh ΩþϒeAh
� ��1ϒB:

ð10:56Þ

Lemma 10.7 Let

G1 ¼ A1

C1

Ω1 Ð ϒ1 B1

D1

0@ 1A, GC1 ¼ A1

C1

Ω1 Ð ϒ1 I

0

0@ 1A,

G2 ¼ A2

C2

Ω2 Ð ϒ2 B2

D2

0@ 1A, GB2 ¼ A2

I

Ω2 Ð ϒ2 B2

0

0@ 1A,

ð10:57Þ

and λ1, λ2, be either 0 or 1. Then for any appropriately dimensioned matrix M:
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G1G2 þ GC1Iλ1hMI�λ2hGB2

¼
A1 B1C2

0 A2

C1 D1C2

Ω1 1� λ2ð ÞM1

0 Ω2

� �
Ð ϒ1 λ2M1

0 ϒ2

� � B1D2

B2

D1D2

0BB@
1CCA ð10:58Þ

where M1¼ (λ1ϒ1� (1� λ2)Ω1)M.

The presented results allow us to make effective use of the impulse and sample

operator. Namely the last two lemmas show how to absorb the impulse operators

into an STPBC. Now let us present a result that links the solutions of the lifted

algebraic discrete Riccati equation and the algebraic continuous Riccati equation

for the continuous system for the H2 control problem.

Lemma 10.8 Let the lifted algebraic discrete Riccati equation for the lifted system

G
_

¼ LGL�1 be as follows:

A
_
T X
_
A
_

�X
_þC

_� C
_

� A
_
T X
_
B
_þC

_�D
_� �

D
_�D

_þB
_
T X
_
B
_� ��1

D
_� C

_

þB
_
T X
_
A
_� �

¼ 0

ð10:59Þ

and let the algebraic continuous Riccati equation for G be:

ATX þ XAþ CTC� XBþ CTD
� �

DTD
� ��1

DTCþ BTX
� � ¼ 0: ð10:60Þ

Then the conditions for existence of a unique stable solution for both Riccati

equations are equivalent. Moreover if they exist, then X
_ ¼ X.

This implies that in order to solve the optimal control problem we just need to

solve the regular continuous Riccati equation. We can for example obtain the

optimal H2 state feedback “gain” given by F
_ ¼ � D

_�D
_þB

_�X B
_� ��1

D
_� C

_

þB
_�X A

_� �
. It can be shown [181] that:

F
_ ¼ Aþ BF

F

I Ð 0 I

0

 !
: ð10:61Þ

Here F is the H2 optimal control gain for the continuous system. Note that the

expression in (10.61) exactly represents the dynamics of the actuator/controller for

the state feedback MB-NCS when the modeling errors are zero and the feedback

gain is the H2 optimal feedback gain. Finally, we present the following result that

obtains the H2 optimal sampler, hold and controller.
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Lemma 10.9 Given the standard assumptions, when the hold device is given by
(Hu)(kh+ τ)¼ϕH(τ)uk,8 τ ∈ [0, h] and the sample device is given by

(Sy)k¼
Ð
h
0ϕS(τ)y(kh� τ)dτ, the H2 optimal hold, sampler, and discrete controller

for the lifted system G
_

¼ LGL�1 with G ¼
A

C1

C2

������
B1

0

D21

B2

D12

0

24 35 are as follows:

Hold : ϕH τð Þ ¼ Fe AþB2Fð Þτ

Sampler : ϕS τð Þ ¼ �e AþLC2ð ÞτL

Controller : Kd ¼ Θ
I

������ I0
24 35

where : Θ ¼ e AþB2Fð Þh þ
ð h
0

e AþLC2ð Þ h�τð ÞLC2e
AþB2Fð Þτdτ

ð10:62Þ

Remark Note that the H2 optimization problem solved in [181] is related to the

Generalized H2 norm previously presented. That is, replacing the trace norm with

the Hilbert-Schmidt norm.

As it has been observed, there is a strong connection between the H2 optimal

hold of a sampled system and the H2 optimal controller of the non-sampled system.

As pointed out in [181] it is clear that the H2 optimal hold attempts to recreate the

optimal control signal that would have been generated by the H2 optimal controller

in the non-sampled case. That is, the H2 optimal hold calculated in [181] generates a

control signal identical to the one generated by the non-sampled H2 optimal

controller in the absence of noise and disturbances.

Another connection exists between the H2 optimal sampler, hold, and discrete

controller calculated in [181] and the output feedback MB-NCS. It can be readily

shown that, under certain conditions, the optimal hold has the same dynamics as the

controller/actuator in the output feedback MB-NCS. This is true when the modeling

errors are zero and the gain is the optimal H2 gain. The same equivalence can be

shown for the combination of the optimal sampler and discrete controller dynamics

and the output feedback MB-NCS observer.

The techniques shown here can be used to solve robust optimal control problems

that consider the modeling error. This is possible due to the alternative representa-

tion that allows the extension of traditional optimal control synthesis techniques to

be used with the infinite dimensional parameters that appear in the lifted domain.

10.3 Notes and References

Optimal performance and optimal controller design represent an important subject

in control systems. In Sect. 10.1 performance of the MBNCS framework using

periodic update intervals was analyzed based on lifting techniques. The results in
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Sect. 10.2 provided a technique to design optimal controllers for MB-NCS with

periodic updates. In many scenarios the decision on whether or not to transmit

certain measurements is also an important part of the overall performance of control

systems that send information through a limited bandwidth communication chan-

nel. In Chap. 9 we considered this situation. The main goal is to find the optimal

transmission instants which are not periodic in general. Section 10.2 also contains

discussion of the techniques described in [181] and their application to optimal

control synthesis problems. Specifically, here an alternative representation of the

lifted system parameters is introduced. This allows for efficient computation of the

optimal gains for the controller and observer.

The work described in this chapter can also be found in [185,

190]. Description and applications of lifting techniques in general can be found in

[16, 26, 42, 63, 130, 181].
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Chapter 11

Reference Input Tracking

Previous chapters of this book have mainly considered the stabilization problem

under different communication constraints. The focus of this chapter is the design

of model-based controllers for tracking of external reference inputs and the analysis

of performance of the Model-Based Networked Control System (MB-NCS) under

the main communication constraint studied in this book which is the absence of

feedback measurem/ents for extended periods of time. In general, the exact tracking

of a reference input in a Networked Control System (NCS) is a difficult problem

mainly because we can measure and use feedback only at discrete-time instants.

The difficulty is increased if there is uncertainty in the plant parameters since

control methodologies that achieve a zero steady-state error rely on the exact

knowledge of these parameters. In this chapter a controller is designed based on

the model of the plant. An MB-NCS configuration is used for the analysis of the

resulting NCS that includes the model, the controller, and the plant.

In this chapter, two different configurations are proposed for the tracking problem

over networks. The first one assumes the whole state can be measured and can be

used to update the model state. A periodic communication strategy is implemented

which permits the tracking of different types of reference signals. The second

configuration is intended for applications where state measurements cannot be

obtained and only a system’s output can be measured. The model in this case is

implemented in a very different form than previously seen. The state-space model

is changed to an input-output model of the system. This type of modeling provides

a great advantage with respect to the types of uncertainty we are able to deal with.

By using this configuration, we are able to control systemswith uncertain parameters

and also with unknown order dimension of the state space. In previous chapters it

was always assumed that the dimension of the system is known. In this chapter we

relax the known order constraint and use a model of the system that is not necessarily

of the same order as the real plant. Section 11.1 describes the reference input tracking

controller using state feedback and using the model-based approach. The analysis of

the resulting MB-NCS is presented in Sect. 11.2. Section 11.3 presents a model-

based configuration for tracking reference inputs using discrete-time systems and

E. Garcia et al., Model-Based Control of Networked Systems, Systems & Control:

Foundations & Applications, DOI 10.1007/978-3-319-07803-8_11,

© Springer International Publishing Switzerland 2014
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using input-output model representations of the system. This section also includes an

extension to consider network induced delays using the described model-based

configuration. Notes and references are provided in Sect. 11.4.

11.1 Reference Input Tracking Controller

In this section we consider linear time-invariant systems of the form:

_x ¼ Axþ Buþ Pw ð11:1Þ

where x ∈ ℝn is the state of the plant or physical system to be controlled, u ∈ ℝm is

the control input, and w ∈ ℝs is the reference input that the controlled system

attempts to track or follow. The matrices A, B, and P are of appropriate dimensions.

There is no restriction on the stability of the original system. The physical plant may

be unstable, i.e., one or more of the eigenvalues of matrix A may have positive real

parts. It is assumed that the exogenous signal w is the measurable output of the

autonomous linear time-invariant system:

_w ¼ Sw: ð11:2Þ

We consider the scenario where the state of the plant is measured by a sensor and

broadcasted to the controller through a communication network. This means that

the controller does not have access to the state x(t) at all times but only at some

instants or periods of time. For our purposes we assume that quantization and delay

effects are negligible. We propose an MB-NCS solution in which a model of the

physical system is used in the controller node. The model is represented by:

_̂x ¼ Â x̂ þ B̂ uþ P̂ w for t∈
�
tk, tkþ1

� ð11:3Þ

where x̂ ∈ℝn is the state of the model, and at the time instants tk we have

x̂ tkð Þ ¼ x tkð Þ. h¼ tk+ 1� tk represents the constant update period. The model

parameters Â , B̂ , P̂ represent the available model of the physical system. We

assume this model is known and we consider model uncertainties resulting from

errors in parameter estimation techniques or other possible inaccuracies. Â does not

have to be a stable matrix since it is an estimate of the system matrix A which may

be stable or unstable. The state of the model is used by the controller to generate the

control input u ¼ f x̂;wð Þ. The controller then has access to the state of the model at

all times and when a measurement of the state of the plant arrives at the controller,

this measurement is used to update the internal state of the model. A representation

of the interconnections within the actuator node in this case is shown in Fig. 11.1.

The dynamics of the model and the plant are similar to those of standard

MB-NCS schemes but now we include a reference signal w which is only available
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at the controller node. We follow the procedure in [39] in order to obtain a feedback

controller that ensures zero steady-state tracking error for the nominal closed-loop

model. Then we study the tracking properties of the networked uncertain system.

The control input is given by:

u ¼ Γwþ K x̂ � Πwð Þ: ð11:4Þ

Three control parameters are needed in (11.4). The control parameters Π and Γ
are obtained by solving the next equations that involve the parameters of the

nominal model:

ΠS ¼ ÂΠþ B̂Γþ P̂

0 ¼ ĈΠþ Q
ð11:5Þ

and the control parameter K is such that the closed-loop matrix Â þ B̂ K is Hurwitz.

The plant tracking error is defined, in general, by:

ε ¼ Cxþ Qw: ð11:6Þ

This definition allows reference input signals that may not necessarily have the

same dimension as the output. A particular case of (11.6) is when each element of

the state follows a corresponding element of the reference input. In this case both

the state and the reference input need to be of the same dimension.

Before we analyze the MB-NCS using the controller (11.4), let us briefly study

the properties of the closed-loop nominal model using the same controller. This is

the case in which we only consider the model with control input (11.4) with no

model updates taking place. Define the model tracking error:

ε̂ ¼ Ĉ x̂ þ Qw: ð11:7Þ

To System

u

Model

Controller

From Network

x̂

To System

w

Fig. 11.1 Model-based networked control system actuator/controller node for tracking

of a reference input
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This error characterizes the difference between the model response and the

reference input. It is easy to show that (11.4) guarantees zero steady-state model

tracking error. To see this we define the auxiliary model tracking error:

ε̂ ax ¼ x̂ � Πw: ð11:8Þ

Then, the time derivative of (11.8) is given by:

_̂ε ax ¼ _̂x � Π _w
¼ Â x̂ þ B̂ Γwþ Kx̂ � KΠwð Þ þ P̂ w� �ÂΠþ B̂Γþ P̂

�
w

¼ Â þ B̂ K
� �

ε̂ ax:
ð11:9Þ

Also note that ε̂ ¼ Cε̂ ax then the model tracking error is asymptotically stable

(zero steady-state error) since Â þ B̂ K is Hurwitz.

When we implement this controller in order to stabilize a networked uncertain

system and to make that system follow the reference input, we need to consider

model uncertainties and unavailability of the state of the plant. This is a more

complex problem and the tracking performance of the networked system consider-

ably deteriorates with respect to that of the nominal closed-loop system. The

MB-NCS architecture which uses an explicit model of the system to generate an

estimate of the state between network update intervals provides a simple approach to

improve such performance and to characterize the tracking error of the networked

uncertain system.

11.2 Discretized Input Tracking Analysis

In general, an exact model of the physical system is unavailable. The available

nominal model (11.3) is used instead to solve the controller equations (11.5).

Consider the model tracking error (11.7) and for the moment let C ¼ Ĉ ¼ I and

Q¼� I, this is the particular case in which each element of the state x has to track

or follow the corresponding element of the reference input w.

Since the controller is designed using the model parameters Â , B̂ , P̂ , the model

tracking error time derivative is given by (11.9) with ε̂ ¼ ε̂ ax since C¼ I.
The plant tracking error cannot be expressed directly in terms of itself only, but it

follows the more complex dynamics:

_ε ¼ _x � Π _w ¼ Axþ B Γwþ Kx̂ � KΠwð Þ þ Pw� ÂΠþ B̂Γþ P̂
� �

w: ð11:10Þ

As it can be seen in (11.10), the parameters of the plant and the model are

involved in the dynamics of the error. This is expected because the control input of

the plant is given in terms of the state of the model and the controller was designed
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using the model parameters. Let us define the error system parameters eA ¼ A� Â ,eB ¼ B� B̂ , eP ¼ P� P̂ and use them to express the tracking error dynamics in a

more compact way:

_ε ¼ Aεþ BKε̂ þ eAΠþ eBΓþ eP� �
w: ð11:11Þ

Equation (11.11) is a useful result that will give rise to a discrete-time equivalent

system as it is shown next.

The aim here is to obtain a discrete-time equivalent description of the dynamics

of the model tracking error ε̂ and especially, of the plant tracking error ε. This is
done by considering a periodic update interval h, that is, we measure the state of the

plant, send this value through the network and use it to update the state of the model

every h time units.

Theorem 11.1 For any bounded reference input the plant tracking error response
is bounded if the eigenvalues of F are inside the unit circle, where

F ¼ eAh þ
ðh
0

eA h�τð ÞBKe ÂþB̂ Kð Þτdτ: ð11:12Þ

Proof First, we find the response of the model tracking error in the interval

t ∈ [tk, tk + 1) with initial condition ε̂ tkð Þ:

ε̂ tð Þ ¼ e ÂþB̂ Kð Þ t�tkð Þε̂ tkð Þ ð11:13Þ

where tk+ 1� tk¼ h. Note that at times tk we update the model x̂ tkð Þ ¼ x tkð Þ which
makes ε̂ tkð Þ ¼ ε tkð Þ and (11.13) becomes

ε̂ tð Þ ¼ e ÂþB̂ Kð Þ t�tkð Þε tkð Þ: ð11:14Þ

Now, the response of the plant tracking error can be found as follows:

ε tð Þ ¼ eA t�tkð Þε tkð Þ þ
ðt
tk

eA t�τð ÞBKε̂ τð Þdτ þ
ðt
tk

eA t�τð Þ eAΠþ eBΓþ eP� �
eS τ�tkð Þdτ:

ð11:15Þ

Using (11.14) we can write (11.15) at time tk+ 1 in closed form:

ε tkþ1ð Þ ¼ Fε tkð Þ þ Gw tkð Þ ð11:16Þ
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where F is given in (11.12) and

G ¼
ðh
0

eA h�τð Þ eAΠþ eBΓþ eP� �
eSτdτ: ð11:17Þ

Equation (11.16) describes the plant tracking error dynamics at the time instants

when the state of the model is updated and it is a function of the values of the

tracking error and the bounded reference input at the previous update instant. Then,

we can conclude that the error dynamics are bounded for any bounded reference

input. By (11.6) we can write for this special case:

x tkð Þ ¼ ε tkð Þ þ w tkð Þ: ð11:18Þ

The state of the plant is the sum of two bounded signals; therefore it is also a

bounded signal. ♦

Example 11.1 The system and the model are described respectively by:

A ¼ 1:8634 0:8851

�0:1590 1:2174

 !
B ¼ 1 0

0 1

 !
P ¼ 1 0

0 1

 !

Â ¼ 2 1

0 1

� �
B̂ ¼ 1 0

0 1

� �
P̂ ¼ 1 0

0 1

� �
:

The reference input is a sinusoidal signal which is bounded in magnitude.

The reference input matrix is given by:

S ¼ 0 1

�1 0

� �
:

It is assumed that the state can be measured at a constant rate and that every

state element is set to follow the corresponding element of the reference input.

The constant update interval is given by h¼ 0.2 s.

The controller parameters are given by:

K ¼ �33:6815 �0:5318
�0:5318 �32:6509

� �
Γ ¼ �3 0

�1 �2

� �
:

The results from the simulations are shown in Figs. 11.2 and 11.3. Figure 11.2

shows the sinusoidal reference input and the response of the system. There is also

uncertainty in the initial conditions on the networked system. Before the system

starts operating there is no knowledge of the value of the reference input or the
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initial conditions of the plant. The initial conditions for the reference input and

the plant were given respectively by:

r0 ¼ 1 1½ �T , x0 ¼ �0:5 1:5½ �T

but, since the model does not have any of this information the model initial

conditions are set as:

x̂ 0 ¼ 0 0½ �T :

This uncertainty in the initial conditions is observed at the beginning of the

simulation. We can see in Fig. 11.3 that the tracking error has significantly larger

magnitude before the first few updates of the model take place than in its steady-

state response. After a few updates we can see in Fig. 11.2 that each state of the

plant follows the corresponding element of the reference input.

It is also worth mentioning that if in this example we employ a ZOH in the

controller node instead of the nominal model of the plant then the networked system

is unstable for the sampling interval used before, h¼ 0.2 s. According to simulations,

for this ZOH case we have to reduce the sampling interval to about h¼ 0.055 s, in

order to obtain a stable networked systems and a bounded tracking error.

11.2.1 Inter-Sample Behavior Analysis

Equation (11.16) establishes boundedness of the tracking error at the updating

instants as long as the sampled matrix F in (11.12) has all eigenvalues inside the

unit circle. The signal w is an external signal for which we have no control but it is

assumed bounded at all times. The response of the tracking error (11.16) was

simplified at the updating instants by realizing that at those instants ε̂ tkð Þ ¼ ε tkð Þ,
but between updates of the state of the model we have that the tracking error

is described by (11.11). In this section we will formally establish a bound for the

inter-sample response of the tracking error.

Theorem 11.2 Assume that eA			 			 � ΔA, eB		 		 � ΔB, and eAΠþ eBΓþ eP			 			 � Δ are

known bounds on the uncertainties; also assume that the sampled-data tracking error
is bounded as expressed in Theorem 11.1. Then the growth of the tracking error in the
inter-sample intervals t ∈ [tk, tk+1) with constant h¼ tk+1� tk is bounded:

ε hð Þj j �
�

ε tkð Þj j 1þ αb Kj j
aþ β

� �
þ Δw

a

�
eah

� αb Kj j
aþ β

ε tkð Þj je�βh � Δw
a

ð11:19Þ
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where a ¼ Â
		 		þ ΔA, b ¼ B̂

		 		þ ΔB, and wj j � w. The parameters α, β> 0 are

known constants that represent bounds on the response of the compensated model.

Proof In order to bound the inter-sample behavior let us look at the dynamics of |ε|:

d

dt
εj j � Aj j εj j þ BKj j ε̂j j þ eAΠþ eBΓþ eP			 			 wj j

� Aj j εj j þ BKj j e ÂþB̂ Kð Þ t�tkð Þ
			 			 ε tkð Þj j þ eAΠþ eBΓþ eP			 			w ð11:20Þ

for t ∈ [tk, tk+ 1). Without loss of generality let tk¼ 0 and using the bound

e ÂþB̂ Kð Þt			 			 � αe�βt we obtain:

d

dt
εj j � a εj j þ αb Kj je�βt ε0j j þ Δw: ð11:21Þ

Consider the differential equation:

_ϕ ¼ aϕþ αb Kj jϕ0e
�βt þ Δw ð11:22Þ

where ϕ0¼ |ε0|¼ |ε(tk)|. Equation (11.22) represents a bound on the rate of growth

of the norm of the tracking error between update instants. Then we can conclude

that |ε(t)|�ϕ(t,ϕ0), where ϕ(t,ϕ0) is the solution of (11.22) satisfying

ϕ(0,ϕ0)¼ϕ0. Such solution is given by:

ϕ tð Þ ¼ ϕ0 1þ αb Kj j
aþ β

� �
þ Δw

a

� �
eat � αb Kj j

aþ β
ϕ0e

�βt � Δw
a

: ð11:23Þ

Note that it is easy to show that ϕ(t)> 0 for ϕ0> 0, 8 t� 0, and the typical case in

which the compensated model is stable. Now we are able to establish a bound on the

growth of the tracking error between updates in the model state, that is, in the

intervals t ∈ [tk, tk+ 1) which is given by:

ε hð Þj j � ϕ hð Þ ¼ ϕ0 1þ αb Kj j
aþ β

� �
þ Δw

a

� �
eah � αb Kj j

aþ β
ϕ0e

�βh � Δw
a

: ð11:24Þ
♦

Remark The tracking error may grow by some amount between updates on the

state of the model. This variation in the tracking error depends on the uncertainties

and the open-loop response of the system and, especially, on the size of the updating

interval h. Intuitively we can reduce the increase of the tracking error between

updates by reducing h; this also can be shown by taking the limit of (11.24) as

h goes to 0, namely
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lim
h!0

ϕ hð Þ ¼ ϕ0 1þ αb Kj j
aþ β

� �
þ Δw

a
� αb Kj j

aþ β
ϕ0 �

Δw
a

¼ ϕ0 ð11:25Þ

and ϕ0¼ |ε(tk)| is bounded if F in (11.12) has all its eigenvalues inside the

unit circle.

11.2.2 Reference Input Tracking for General System Output

The discrete-time error model obtained in previous sections assuming thatC ¼ Ĉ ¼ I
and Q¼� I can be generalized to make the output of a system, which is a linear

combination of the states, track a linear combination of the reference input signals,

as expressed in (11.6) and in (11.7) for the model tracking error.

We can show from (11.7) that the model tracking error can be expressed as:

ε̂ o ¼ Ĉ x̂ þ Qw ¼ Ĉ x̂ � Πwð Þ ¼ Ĉ ε̂ : ð11:26Þ

Here, we distinguish between the output model tracking error ε̂ o and the model

tracking error ε̂ . More specifically, the former is a linear combination of the compo-

nents of the later. Since our purpose is to stabilize the error dynamics, the stabilization

of the model tracking error corresponds to the stabilization of the output model

tracking error. The same approach is considered for the plant tracking error. In view

of (11.6) we can express the output plant tracking error as:

εo ¼ Cxþ Qw ¼ Cx� ĈΠw ¼ C x� Πwð Þ þ eCΠw ¼ Cεþ eCΠw ð11:27Þ

where eC ¼ C� Ĉ . We obtain the discrete-time model for the plant tracking error

signal and for the reference signal. The first is given by (11.16) and the second by:

w tkþ1ð Þ ¼ eShw tkð Þ: ð11:28Þ

Then the discretized output plant tracking error is given by:

ε tkþ1ð Þ ¼ Fε
�
tk
�þ Gw

�
tk
�

εo tkð Þ ¼ Cε
�
tk
�þ eCΠw

�
tk
�
:

ð11:29Þ

Corollary 11.3 The plant tracking error response for the MB-NCS in Fig. 11.1
with general values of C and Q is bounded for any bounded reference input if
the eigenvalues of F lie inside the unit circle. ♦
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11.3 Output Feedback Tracking Using Different

Dimension Models

The work presented in previous chapters in relation to the MB-NCS framework

with model uncertainties assumes that the model is of the same order or dimension

as the real plant. The new MB-NCS architecture described in this section not only

generalizes to the case of output feedback but it also considers different types of

uncertainties, such as multiplicative and additive uncertainties that result in the real

system being of different dimension than the available model. The results in this

section consider Single-Input Single-Output (SISO) systems using output feedback

and dynamic controllers. The objective is to minimize the steady-state plant

tracking error for step reference inputs while also considering a reduction on

network communication.

In contrast to the previous results in this book, we do not assume that the entire

state vector is available for measurement but only a single output of the system.

In order to obtain a better tracking performance and to avoid the implementation

of state observers using uncertain parameters, we use a transfer function represen-

tation for the model and the system. We consider discrete-time systems which are

modeled by:

T̂ zð Þ ¼ Ŷ zð Þ
U zð Þ ¼

b0z
m þ b1z

m�1 þ b2z
m�2 . . .þ bm�1zþ bm

zn þ a1zn�1 þ a2zn�2 þ . . .þ an�1zþ an
ð11:30Þ

where z is the Z-transform variable and T(z) is the transfer function. We consider

strictly proper systems, i.e., n>m. The plant model may be unstable i.e., not all

poles of the transfer function T̂ zð Þ have magnitude less than 1. We consider

uncertain systems that can be described using stable and proper multiplicative or

additive uncertainties,

T zð Þ ¼ T̂ zð Þ � ΔTM zð Þ, T zð Þ ¼ T̂ zð Þ þ ΔTA zð Þ: ð11:31Þ

As a result, the model and the system are, in general, of different order. Let eT zð Þ
represent, in general, a multiplicative or an additive uncertainty. If a state-space

representation is to be used, we will find that the model and plant state vectors have

different dimensions and this type of uncertainty has not been considered yet in the

MB-NCS setup described in this book. In order to deal with this dimensionality

problem, we implement the discrete-time model as a simple difference equation

which represents the time-domain equivalent of (11.30). The output measurements

are used directly to update the model without need of implementing a state

observer.

In order to find the time instants that the sensor needs to send a measurement

to update the model in the controller node we implement an event-triggered
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strategy as in Sect. 6.2 of Chap. 6 instead of using periodic updates. The difference

in this case is that we are only able to measure the output of the system. The output

error is given by:

e kð Þ ¼ ŷ kð Þ � y kð Þ ð11:32Þ

where y(k) is the output of the system and ŷ kð Þ is the output of the model.

The actuator/controller and sensor node architectures for the set-point tracking

model-based problem are shown in Figs. 11.4 and 11.5. Figure 11.4 represents the

actuator/controller node and it contains the model of the system T̂ zð Þ, the controller
C(z), which is designed based on the available model, and the set-point detector.

The function of the set-point detector is to determine the time instants at which

the reference input, which is only available at the controller node, changes its

set-point value in order to transmit this information to the sensor node using the

Fig. 11.4 Model-based set-point tracking networked system: actuator/controller node

y

Scheduler
of events

Copies of Model
and Controller

ŷ

O

Hold

+

_

set-point update
(from network)

e

To network

From system

Fig. 11.5 Model-based set-point tracking networked system: sensor node
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communication network. Figure 11.5 represents the sensor node. The sensor needs

to compute the output error (11.32), and compare its absolute value to a fixed

threshold. When the error is greater than the threshold a measurement update is

triggered and the current and n-1 past measurements of the plant are sent to the

controller node. In order to calculate the output error, the sensor needs the current

value of the model output ŷ kð Þ in addition to the plant output measurements.

The exact copy of the output of the model can be easily obtained without sending

frequent information as follows: copies of the model and controller are

implemented in the sensor and at the time instants when the reference input changes

values the controller node only needs to transmit the new set-point value. When a

reference input value is received at the sensor node, it is held until a new value

arrives. In addition, when the event scheduler at the sensor node decides that a

measurement packet needs to be sent to update the model in the controller then it

also updates the model in the sensor node using the same measurements.

The overall approach can be used for tracking of different types of reference

input signals but it will be necessary to obtain an accurate estimation of the external

input in the sensor node or to increase the communication rate from the controller to

the sensor which is undesirable in networked implementations since other systems

and applications may need to communicate information. For this reason, we restrict

this framework to track piecewise constant signals which is general enough for

many applications [217, 249].

The output feedback problem in MB-NCS has been studied mostly through the

use of state observers as in Sects. 3.1 and 3.2. The implementation of a state

observer, of course, is obtained using the model parameters. For traditional

non-networked systems, that is when continuous feedback is available, and in the

absence of model uncertainties the design of observer and controller gains can be

done independently from each other, i.e., the separation principle holds. However,

in most real-life problems there exists a plant-model mismatch and we need to

design a controller that meets the specified requirements and that is also robust

to model uncertainties.

The design of a state observer for a non-networked uncertain system is a more

difficult task than for a system without uncertainties. Additionally, the results are less

satisfactory. In particular, the separation principle does not hold any longer and the state

observer error can be generally bounded but it does not asymptotically converge to 0.

Consider a sensor that provides output measurements continuously (not the

whole state) and the system is driven by a reference input signal u. The system

equations are represented by:

x k þ 1ð Þ ¼ Ax
�
k
�þ Bu

�
k
�
,

y kð Þ ¼ Cx
�
k
�þ Du

�
k
� ð11:33Þ

and the observer by:

x k þ 1ð Þ ¼ Â � LĈ
� �

x kð Þ þ B̂ � LD̂
� �

u kð Þ þ Ly kð Þ ð11:34Þ
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where Â , B̂ , Ĉ , D̂ are the available matrices representing the system dynamics.

Define the estimation error ε ¼ x� x and the error matrices: eA ¼ A� Â , eB ¼ B

�B̂ , eC ¼ C� Ĉ , and eD ¼ D� D̂ : In the presence of model uncertainties, because

of the plant-model mismatch, it is not possible to perform a perfect estimation of the

plant non-zero states as in the case when the observer parameters are the same as

those of the plant. In general, if we analyze the estimation error dynamics by

explicitly taking into account the difference between the plant andmodel parameters

we have, from (11.33) and (11.34), that the error dynamics are described by the

next equation:

ε k þ 1ð Þ ¼ x
�
k þ 1

�� x
�
k þ 1

�
¼ Â � LĈ
� �

ε
�
k
�þ �eB � LeD�u�k�þ �eA � LeC�x�k�: ð11:35Þ

Equation (11.35) shows that in order to obtain asymptotic estimates of a system

states using imperfect parameters of that system we need a zero reference input and

a state that tends asymptotically to zero as time tends to infinity. The implementa-

tion of this type of state observer in MB-NCS works for stabilization as it was used

in Chap. 3, but for the tracking problem the input u contains a non-zero component

that results in non-zero steady-state estimation error.

In this work the model in both the controller and the sensor nodes is

implemented as a difference equation which represents the time-domain equivalent

of the transfer function (11.30). The absolute value of the output error is compared

to a fixed positive threshold α. When the relation |e(k)|> α holds then the sensor

transmits a measurement update. At this point, the output error (11.32) is set to

0, since the model output is equal to the real output of the system. Therefore, the

output error is bounded by:

e kð Þj j � α: ð11:36Þ

When the sensor decides that a measurement update needs to be sent according

to the current output error, then it sends the current and n-1 past output measure-

ments which are used to update the model in the controller. At the same time the

sensor uses exactly the same measurements to update its own copy of the model.

Next, we provide conditions under which we are able to stabilize uncertain

unstable systems with limited feedback. Furthermore, by using the internal model

principle [61, 75] we are also able to bound the steady-state tracking error.

Theorem 11.4 The plant output tracking error is bounded for any bounded
reference step input if

(a) The term 1+T(z)C(z) has all its zeros inside the unit circle.
(b) The denominator of the controller C(z) contains the factor (z-1).

(c) The poles of eT zð Þ have magnitude less than one.
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Proof First, define the plant output tracking error

Et zð Þ ¼ R zð Þ � Y zð Þ ð11:37Þ

and the model output tracking error.

Ê t zð Þ ¼ R zð Þ � Ŷ zð Þ: ð11:38Þ

The output of the plant is given by:

Y zð Þ ¼ T zð ÞC zð ÞÊ t zð Þ ¼ T zð ÞC zð Þ R zð Þ � Ŷ zð Þ� 

and using (11.32) we obtain the following:

Y zð Þ ¼ Tcl zð ÞR zð Þ � Tcl zð ÞE zð Þ ð11:39Þ

where Tcl zð Þ ¼ T zð ÞC zð Þ
1þ T zð ÞC zð Þ.

The output tracking error is given by:

Et zð Þ ¼ 1

1þ T zð ÞC zð ÞR zð Þ þ Tcl zð ÞE zð Þ: ð11:40Þ

The reference input term in (11.40) is asymptotically stable for constant refer-

ence inputs r(k) since the zeros of 1+T(z)C(z) are inside the unit circle and at least

one of the poles of the controller is at +1. The second term in (11.40) contains the

stable closed-loop transfer function Tcl(z) but the output error E(z) is not constant.
However, the output error is bounded by updating the model (and resetting the

output error) every time the error’s absolute value is greater than some positive

threshold α.

Stability of the networked system can be obtained from Theorem 11.4.

Corollary 11.5 The networked system (2) with model (1) is bounded-input
bounded-output stable with respect to the error (3) if

(a) The term 1+T(z)C(z) has all its zeros inside the unit circle.

(b) The poles of eT zð Þ have magnitude less than one.

Proof In the presence of plant-model mismatch and for zero reference input, the

conditions (a) and (b) above are sufficient for stability of the networked system. In

this case the controller is not required to provide tracking performance and the

additional condition in Theorem 1 is not needed. The output of the system is given by

Y zð Þ ¼ �Tcl zð ÞE zð Þ ð11:41Þ

and the output error is bounded as before. ♦
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Remark The selection of the constant threshold α is made considering the

following trade-off. A small threshold results in a smaller bound on the steady-

state tracking error but, in general, it increases communication rate by sending

measurement updates more frequently. A reduction on network usage can be

achieved by increasing the threshold at the cost of a larger steady-state tracking

error.

Remark The controller C(z) is designed in such a way that the closed-loop model

is stable and with desired properties by selection of desired closed-loop poles in

addition to providing zero steady-state tracking error in the absence of model

uncertainties.

Example 11.2 Consider the transfer function representation of the model of an

unstable system:

T̂ zð Þ ¼ 1

z2 � 0:2z� 0:9
:

The controller is designed in order to stabilize T̂ zð Þ and to provide zero steady-

state model output tracking error to a step input and is given by:

C zð Þ ¼ 2:448z2 þ 0:3834z� 1:881

z3 þ 0:2z2 þ 0:89z� 2:09
:

The real system consists of the model dynamics and the following multiplicative

uncertainty:

ΔTM zð Þ ¼ zþ 0:61

zþ 0:55
:

Then, the dynamics of the real system are given by:

T zð Þ ¼ zþ 0:61

z3 þ 0:35z2 � 1:01z� 0:495
:

The reference input is shown at the top of Fig. 11.6 along with the output of the

real system. The bottom of Fig. 11.6 shows the output tracking error Et(z). The
output error E(z) is shown at the top of Fig. 11.7, where a constant threshold

α¼ 0.02 was used. The network communication signal nc(k) represents the time

instants at which output measurements are sent from the sensor node to the

controller node.

nc kð Þ ¼ 1 ifmeasurements are sent at time k

0 ifmeasurements arenot sent at time k

(
ð11:42Þ
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Fig. 11.6 System output and reference input for α¼ 0.02 (top). Output tracking error (bottom)
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Fig. 11.7 Output error for α¼ 0.02 (top). Network communication instants (bottom)
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11.3.1 Output Feedback Tracking with Delays

The results in the previous sections of this chapter assumed zero delay when

information is sent from the sensor to the controller node using the communication

network. By the nature of the event-triggered strategies, it may happen that several

systems attempt to access the network at the same time in order to update their

corresponding controller node. In this case only one node can gain access and the

rest need to wait until the network turns into an idle state.

An approach to consider network induced delays within the MB-NCS frame-

work is to propagate the delayed measurements received at the controller, i.e., to

estimate the current output of the system based on the delayed measurements using

the model parameters; refer to Sect. 3.3. In this section we introduce a different

approach for the single-channel networked system that provides better results in

terms of system performance and reduced network communication.

Assume that the measurement updates arrive at the controller/actuator node

d sampling times later, that is, when a measurement update is received at time k, it
corresponds to an event generated at time k-dwhich contains measurements y(k-d). . .
y(k-n-d). The advantage of using a transfer function representation in this case is

that the network induced delay can be represented by z� d. Assuming a constant delay,

we are able to jointly model the dynamics of the system and the delay induced by the

network as follows:

T̂ d zð Þ ¼ T̂ zð Þ � z�d: ð11:43Þ

The new controller, represented by Cd(z), is designed based on T̂ d zð Þ, that is, the
controller stabilizes T̂ d zð Þ and provides zero steady-state model output tracking

error. The model T̂ d zð Þ is updated using the delayed measurements directly.

Theorem 11.6 The plant output tracking error corresponding to the networked
system (11.31) with induced delays and with model (11.43) is bounded for any
bounded reference step input if

(a) The term 1 + Td(z)Cd(z) has all its zeros inside the unit circle, where Td(z)¼ T
(z) � z� d.

(b) The poles of eT zð Þ have magnitude less than one.
(c) The denominator of the controller Cd(z) contains the factor (z-1).

Proof Let Yd(z) and Ŷ d zð Þ represent, respectively, the outputs of the delayed

system and model Td(z) and T̂ d zð Þ. Define the errors Ed zð Þ ¼ Ŷ d zð Þ � Yd zð Þ,
Ed
t (z)¼R(z)� Yd(z), Ê

d
t zð Þ ¼ R zð Þ � Ŷ d zð Þ. It can be shown that the delayed

output tracking error is given by

Ed
t zð Þ ¼ 1

1þ Td zð ÞCd zð ÞR zð Þ þ T d
cl zð ÞEd zð Þ ð11:44Þ
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where T d
cl zð Þ ¼ Td zð ÞCd zð Þ

1þ Td zð ÞCd zð Þ : The error (11.44) is bounded by updating the

model using the real output of the system, that is, when the controller receives

delayed measurements it updates the model using those measurements directly, i.e.,

ŷ d kð Þ¼: y k � dð Þ ¼ yd kð Þ which makes ed(k)¼ 0,

Since Ed
t (z) represents the delayed version of Et(z) then the output tracking error

is bounded as well. ♦

Corollary 11.7 The networked system (11.31) with induced delays and with model
(11.43) is bounded-input bounded-output stable with respect to the error (11.32) if

(a) The term 1 + Td(z)Cd(z) has all its zeros inside the unit circle.

(b) The poles of eT zð Þ have magnitude less than one.

Proof For a constant delay d, we are able to design a stabilizing controller Cd(z)

for the delayed model T̂ d zð Þ and for zero reference input, the conditions (a) and

(b) above are sufficient for stability of the networked system. In this case the

controller is not required to provide tracking performance and the additional condi-

tion in Theorem 11.6 is not needed. The delayed output of the system is given by

Yd zð Þ ¼ �T d
cl zð ÞEd zð Þ ð11:45Þ

and the delayed output error is bounded as before. Since Yd(z) represents the

delayed version of Y(z), then the output of the system with no delay is bounded

as well. ♦

Remark One important aspect in the implementation of this approach for the case

of network delays is the computation of ed kð Þ ¼ ŷ d kð Þ � y k � dð Þ: This task needs

to be accomplished at every sampling time which requires the comparison of the

outputs of the real system with no delay (11.31) and the delayed model (11.43). One

way to compute this error is to use old system outputs, but since the current system

output is available at the sensor node, then it can be used to compute the output error

e(k) instead of computing ed(k). Therefore we compute e kð Þ ¼ ŷ d k þ dð Þ � y kð Þ
and the quantity ŷ d k þ dð Þ is obtained by executing the model in the sensor node

until time k+d in order to obtain an estimate of yd(k+ d)¼ y(k).

Remark Controller complexity. The cost to be paid by using the approach described

in this section compared to the usual prediction using the model with no delay is in

the form of a more complex controller. The order of the controller increases since

Cd(z) is designed to control the higher order model T̂ d zð Þ:
Example 11.3 (Uncertain system with delays). Consider the unstable model

T̂ d zð Þ ¼ zþ 1

z2 � 0:2z� 0:9
� 1
z3
:

which models the dynamics of the system and a constant delay z� 3 equivalent to a

3-sample delay.
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The controller is designed in order to stabilize T̂ d zð Þ and to provide zero

steady-state model output tracking error and is given by:

Cd zð Þ ¼ 2:638z5 � 1:102z4 � 1:061z3

z6 þ 0:2z5 þ 0:8895z4 þ 0:3579z3 þ 0:8726z2 � 2:141z� 1:179
:

As it was mentioned before, the complexity of the controller increases by

considering the model T̂ d zð Þ instead of T̂ zð Þ. The real system consists of the

model dynamics with zero delay and the following multiplicative uncertainty:

ΔTM zð Þ ¼ zþ 0:61

zþ 0:55

then, the dynamics of the real system are given by:

T zð Þ ¼ z2 þ 1:61zþ 0:61

z3 þ 0:35z2 � 1:01z� 0:495
:

Note that the real system contains no delay since the delays are induced by

the network when a feedback measurement is sent from the sensor node to the

controller/actuator node. Good performance and reduction of communication are

obtained as shown in the simulation results shown in Figs. 11.8 and 11.9. Note that

the output error grows for a few sampling instants after an update has been sent

since the model is not updated until d¼ 3 samplings later.
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Fig. 11.8 System output and reference input for α¼ 0.05 (top). Output tracking error (bottom)
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The performance of the system using the delayed model and controller is

considerably superior to the propagation approach used in Chap. 3. In order to

show the improved performance, we simulate the same system and model using

the same reference input, delay, and threshold. The difference is that we use the

propagation method and the controller is designed for the no-delay model T̂ zð Þ.
Results of simulation are shown in Fig. 11.10, which shows a poor tracking perfor-

mance of the system and a significant increase in network communication.

Example 11.4 Stabilization over an additive Gaussian channel. We consider the

unstable system:

T zð Þ ¼ 1

z2 � 0:2z� 0:9
:

The system is assumed to be known. The measurements are transmitted over an

additive Gaussian channel modeled by:

yg kð Þ ¼ Hgy kð Þ þ v kð Þ

where v(k) is zero-mean Gaussian noise with variance σv and yg(k) is the mea-

surement received at the controller node. The parameter Hg is assumed to be

unknown and it represents the uncertainty in our approach in addition to the

Gaussian noise. Figure 11.11 shows the results of simulation when an impulse
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external disturbance perturbs the system and using Hg¼ 0.8 and σv¼ 0.01.

The system is stable since the conditions in Corollary 11.5 are satisfied for this

channel uncertainty.

11.4 Notes and References

Preliminary results for the tracking problem using MB-NCS were discussed in [67,

71]. Two implementation cases were explained in [67] but they do not provide, in

general, small tracking errors. This motivates the search of improved architectures

that are able to achieve better, close to 0, steady-state tracking errors.

Section 11.1 and parts of Sect. 11.2 were presented in [93]. Section 11.3 was first

published in [89]. With respect to the work presented in Sect. 11.3 where output

measurements are sent directly instead of implementing state observers, similar to

the approach shown in Sect. 7.2, it is important to note the reduction in network

traffic by using this approach, as compared to the case in which a measurement of

the current output y(k) is sent at every sampling instant, even in the case when n is

large compared to the inter-update intervals. This improvement is due to packet

structure in NCS.

The problem of reference input tracking in NCS has been considered by different

authors. Gao and Chen [97] proposed a new model which is based on the original

plant and the model reference system. This new model considers a zero-order-hold

(ZOH) in the actuator node and is formulated following a sampled-data approach at

the updating instants of the ZOH. Although parameter uncertainties are considered

in the controller design step, the nominal model is not used between updates to

estimate the state of the plant. Goodwin et al. [101] presented different NCS

architectures and compared their properties for typical problems such as distur-

bance rejection and input tracking. One of these architectures considers a model of

the plant and a model of the network channel properties. The objective in [101] is to

model the whole NCS at the controller node and generate a nominal output of the

system that is compared to the real output and feed the controller using the resulting

error. It is shown that under some conditions, this architecture outperforms the basic

ones that do not use a model of the system in the control loop. In addition, the

authors only consider uncertainty in the model of the channel, i.e., they assume that

a perfect model of the physical plant is known. In [271] the authors consider

the tracking problem in NCS subject to time-varying sampling intervals and

delays. Two approaches for modeling the NCS are proposed and conditions for

input-to-state stability of the tracking error are provided. Other approaches to the

networked input tracking problem can be found in [44] and [287].
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Chapter 12

Adaptive Stabilization of Networked

Control Systems

The applicability of Model-Based Networked Control Systems (MB-NCS) is often

limited by the inexact knowledge of the dynamics of the system being controlled.

The main motivation in this chapter is that the model state updates that we perform

at the controller node should not be restricted only to the state, but we can also

update the nominal parameters of the model as well. The performance of a

MB-NCS depends mostly on the accuracy of the model that we use for both

controller design and for implementation in order to estimate the real state between

update intervals. In this chapter we focus on applying identification algorithms in

the MB-NCS context. The main idea is to estimate the current parameters of the real

system since in many problems the dynamics of the system may change over time

due to age, use, or nature of the physical plant. In many other situations the initial

given model is simply outdated or very inaccurate. A better knowledge of the plant

dynamics will provide an improvement in the control action over the network, i.e.,

we can achieve longer periods of time without need for feedback. At the same time,

we overcome a possibly restrictive assumption in MB-NCS; namely that the

controller is designed to stabilize the real system. This assumption may be restric-

tive since our knowledge of the plant dynamics is limited. As we will see, the

identification process allows us to update not only the model but the controller itself

so it can better respond to the dynamics of the real plant being controlled.

There exist two typical approaches for system identification namely, parametric

and nonparametric [76, 163]. A parametric model may take different forms, the

most common ones are transfer functions (expressed as a polynomial fraction or in

poles and zeros form), state-space representations, and differential equations. In

these forms there exist coefficients (parameters) that specify completely the model.

Nonparametric models result generally from the data obtained from frequency

response methods. In these cases the system is subject to a wide range of inputs

in order to find a characteristic curve. A frequency response is difficult to obtain

while the system is in normal operation, limiting the use of nonparametric

approaches for online identification.

The estimated parameters obtained by means of recursive parameter identification

are used to upgrade an explicit model of the plant. The state of this model is

E. Garcia et al., Model-Based Control of Networked Systems, Systems & Control:

Foundations & Applications, DOI 10.1007/978-3-319-07803-8_12,

© Springer International Publishing Switzerland 2014
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used for control when no feedback information from the real plant is available. An

explicit model implies that a parametric model is needed. In order to achieve

the described goals we will follow the parametric approach in what follows.

The upgradedmodel is also useful to redesign the controller using the new parameters

and stabilize the plant in a specific way, e.g., selected pole placement or optimal

regulation by choosing appropriate weights. In the examples that concern stabilization

of MB-NCS shown in this section we opt to determine a Linear Quadratic Regulator

(LQR) problem every time we update the model of the plant. The complete

process, identification of parameters and controller recalculation, can be seen as an

adaptive stabilization scheme but in contrast to common adaptive techniques we do

not redefine the controller at each time instant, but only when new estimated param-

eters are received in the controller node. The main reason is that we aim to use the

network, either for state or parameter updates, as little as possible.When the controller

node receives updated model parameters, an LQR controller is calculated solving a

discrete-time algebraic Riccati equation using the same weights and the new param-

eters that were just obtained.

The contents of this chapter are organized as follows. Section 12.1 considers

parameter estimation and adaptive stabilization of systems with noiseless measure-

ments. Section 12.2 presents similar results when the Gaussian noise is added to the

measurements of the state. Diverse applications are explored in Sect. 12.3 where

the adaptive stabilization of MB-NCS is implemented. A different approach based

on Luenberger observers and additional measurements is described in Sect. 12.4.

We conclude with notes and references in Sect. 12.5.

12.1 Adaptive Stabilization of Deterministic MB-NCS

To start this section we consider plant and model dynamics that are described,

respectively, by:

x k þ 1ð Þ ¼ Ax kð Þ þ Bu kð Þ ð12:1Þ

x̂ k þ 1ð Þ ¼ Â x̂ kð Þ þ B̂ u kð Þ fork∈
�
ki, kiþ1

� ð12:2Þ

wherex, x̂ ∈ℝn are the states of the plant and the model respectively,u kð Þ ¼ Kx̂ kð Þ,
ki represents the times at which the state of the model is updated using the current

state of the real system for i ∈ ℤ+. In addition to updating the state of the model at

times ki the parameters of the model may or may not be updated at the same time

instants depending on whether new estimated parameters are available. The matri-

ces Â ∈ℝn�n, B̂ ∈ℝn�m represent the parameters of the model that correspond to

the real system matrices A,B. The plant may be unstable i.e., not all eigenvalues of

A have magnitude less than 1.
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The model (12.2) represents a linear system but by introducing updates of its

state it can be seen as an impulsive system when the same parameters are used and

only the state is updated (state jump); this is a typical approach in previous chapters.

In the present chapter we update the state of the model and we update the

parameters of the model as well. So the model matrices switch when new parameter

estimates are obtained. Note that the real plant is a linear system and not a switched

one as the model (12.2). In contrast to the model, the plant always operates using the

same parameters and its state is never updated or reset.

12.1.1 Stability

In many applications it is convenient to drop the usual periodic update implemen-

tation in favor of one based on events, for example, the event that the plant-model

state error is equal to or greater than some predetermined threshold. This approach

was discussed in Chap. 6 for the case of continuous-time systems. A sensor node

within the network broadcasts its local state only when it is necessary, i.e., when a

measure of the local subsystem state error is above some predetermined threshold.

The error, in this case, is defined as the difference between the state of the model

and the state of the plant:

e kð Þ ¼ x̂ kð Þ � x kð Þ: ð12:3Þ

When we use an event-based strategy to update the model, both parameters and

state, we obtain the implicit advantage of extending the time intervals in which the

plant works in open loop. In this case a copy of the model is needed in the sensor

node to generate the model state and compute (12.3).

In view of the fact that we need to be able to identify a system in general state-

space representation, not necessarily in canonical form as discussed in the literature

[12, 138, 204] we will use the Kalman filter for identification of systems of the

form (12.1). For the case we receive noisy measurements of the state we will use the

extended Kalman filter (EKF), see Sect. 12.2.

The next theorem provides stability bounds of the discrete-time MB-NCS when

we update the model based on error events. In the sensor node we measure the state

of the plant and compare the norm of the error (12.3) to a predefined fixed threshold

α<1. The plant state is used to update the model state if the error is greater than

the threshold, i.e., when |e(k)|> α.

Theorem 12.1 Assume |x(0)|� β1, for 0< β1<1, then the networked system
described by (12.1) with state feedback updates triggered when |e(k)|> α has
a bounded state if the eigenvalues of A+BK are within the unit circle of the
complex plane.
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Proof System (12.1) can be described by:

x k þ 1ð Þ ¼ Aþ BKð Þx kð Þ þ BKe kð Þ ð12:4Þ

after (12.3) and the control input u ¼ Kx̂ have been used.

The response of the plant with initial time k0¼ 0 and stable matrix A+BK at any

given time k� 0 is given by:

x kð Þ ¼ Aþ BKð Þkx 0ð Þ þ
Xk�1

j¼0

Aþ BKð Þk� jþ1ð ÞBKe jð Þ ð12:5Þ

where e(k) is bounded by |e(k)|� α since when |e(k)|> α we send a measurement

update and the error becomes e(ki)¼ 0 at the update instant ki. We can show that the

state of the plant is bounded by evaluating its norm which is done next:

x kð Þj j ¼ Aþ BKð Þkx 0ð Þ þ
Xk�1

j¼0

Aþ BKð Þk� jþ1ð ÞBKe jð Þ
�����

�����
� Aþ BKð Þk
��� ��� x 0ð Þj j þ

Xk�1

j¼0

Aþ BKð Þk� jþ1ð Þ
��� ��� BKj j e jð Þj j:

By the assumption on the initial condition of the plant and the triggering

condition, and using the bound |(A +BK)k|� β2λ
k, λ ∈ (0, 1), β2> 0 we can write:

x kð Þj j � β1β2λ
k þ αβ2 BKj j

Xk�1

j¼0

λk� jþ1ð Þ

� β1β2λ
k þ αβ2 BKj j 1� λk�1

� �
1� λ

: ð12:6Þ

Note that: lim
k!1

x kð Þj j ¼ αβ2 BKj j
1� λ

. ♦

A choice of a stabilizing controller K, or in other words, the fact that the

eigenvalues of A+BK lie strictly inside the unit circle ensures that the first term in

the right hand side of (12.6) decreases exponentially with time and the second term

is bounded for all time k>0. ♦

Remark Note that the design of the stabilizing gain K requires a robust-type

controller since we only have the nominal parameters available. Note also that a

specific location of the closed-loop eigenvalues is not needed in Theorem 12.1; they

only need to have magnitude less than 1. The advantage of the framework in this

section is that we can obtain accurate models that significantly reduce the initial

uncertainty and stabilizing controllers can be easily obtained based on these

estimated parameters.
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The advantages of intermittent feedback as discussed in Chap. 4 can be used in

the event-triggered case as well. The following theorem extends the results in the

previous theorem to this case.

Theorem 12.2 Assume |x(0)|� β1, 0< β1<1, then the networked system (12.1)

with intermittent state feedback updates triggered when |e(k)|> α has a bounded
state if the eigenvalues of A+BK lie strictly inside the unit circle.

Proof The proof is similar to the one in Theorem 12.1 by noting that e kð Þ ¼ x̂ kð Þ
�x kð Þ ¼ 0, 8k∈ �ki, ki þ τ

�
i.e., in the closed-loop interval, then |e(k)|� α,8 k. ♦

For stability conditions of discrete-time MB-NCS using periodic updates refer

to Chap. 2.

Comparing the results in Theorem 12.1 to those in Sect. 2.3 in Chap. 2 in which

discrete-time systems with periodic updates are used, we can see that the event-

triggered approach only offers a bounded output compared to the asymptotic

properties when using periodic updates. This drawback can be addressed by

applying a time-varying threshold. It is intuitively clear that by varying the mag-

nitude of the threshold value in Theorem 12.1 we can obtain longer update intervals

or a smaller output size as measured by the norm of the state as in (12.6) in Theorem

12.1. The norm of the state can be reduced by using a smaller threshold α. In
particular, we opt to reduce the threshold value as we approach the equilibrium

point of the system. This is the same idea expressed in Sect. 6.2 where continuous-

time systems were considered. The following treatment represents an extension of

that approach in order to obtain similar conditions for discrete-time systems.

Consider again the plant and model described by (12.1) and (12.2) and the

control input u ¼ Kx̂ to obtain the description (12.4) for the plant. Assume that

the control input u renders the model (12.2) Input-to-State Stable (ISS) with respect

to the measurement error e. For the definition of ISS Lyapunov function for

nonlinear discrete-time systems we use the following [128]:

Definition 12.3 A continuous function V :ℝn!ℝþ
0 is called an ISS Lyapunov

function for the dynamical system x(k + 1)¼ f(x(k), u(k)), x(k) ∈ ℝn, u(k) ∈ ℝm,
k ∈ ℤ+ if there exist class K1 functions α1, α2, α3 and γ satisfying:

α1 xj jð Þ � V xð Þ � α2 xj jð Þ ð12:7Þ

V f x; uð Þð Þ � V xð Þ � �α3 xj jð Þ þ γ uj jð Þ: ð12:8Þ

The system x(k + 1)¼ f(x(k), u(k)) is said to be ISS with respect to the input u if and
only if there exists an ISS Lyapunov function for that system.

In this section we focus on linear systems and we choose a control law u ¼ Kx̂
that renders the closed-loop model (12.2) globally asymptotically stable. Any such

K also renders the closed-loop model ISS with respect to the measurement errors.
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We proceed to choose a quadratic ISS Lyapunov function, V¼ xTPx where P is

symmetric positive definite and is the solution of the closed-loop model discrete-

time Lyapunov equation:

Â þ B̂ K
� �T

P Â þ B̂ K
� �� P ¼ �Q ð12:9Þ

where Q is a symmetric positive definite matrix.

Let us first analyze the case when B̂ ¼ B for simplicity and define the uncertaintyeA ¼ A� Â ; also assume that the following bounds on the uncertainty hold:

eA��� ��� � ΔA

ΔA Pj j ΔA þ 2 Â þ BK
�� ��� � � Δ < q

ð12:10Þ

where q ¼ σ Qð Þ, the smallest singular value of Q in the Lyapunov equation (12.9).

The parameters Δ and ΔA represent given bounds on the norm of the uncertainty

matrices. The next theorem provides stability conditions based on the error and the

threshold value that is used to trigger a measurement update. The resulting Model-

Based Event-Triggered (MB-ET) networked system is asymptotically stable. The

error threshold is defined as a function of the norm of the state and the uncertainty

bounds Δ and ΔA. Similarly, the occurrence of an error event leads the sensor

to send the current measurement of the state of the plant that is used in the controller

to update the state of the model and at these update instants the error is equal to

0 since the model state is made equal to the real state.

Theorem 12.4 Assume that (12.10) holds, then system (12.1) with u ¼ Kx̂ and
feedback based on error events generated when the relation:

ej j > αr xj j, ð12:11Þ

is first satisfied, is globally asymptotically stable, where αr¼min(αr1, αr2),

αr1¼ σ(q�Δ)/2c1, αr2¼ (σ(q�Δ)/2c2)1/2, c1 ¼ 2 PBKj j ΔA þ Â þ BK
�� ��� �

,

c2¼ |KTBTPBK|, and 0< σ< 1.

Proof In order to prove this theorem we will set a bound on the first forward

difference of V¼ xTPx along the trajectories of the system (12.4) which is equal to

(12.1) when the input u ¼ Kx̂ has already been substituted and expressed in terms

of the state error. Then we can easily show that this bound can be appropriately

tuned by the choice of the threshold on the error.

V
�
x k þ 1ð Þ�� V

�
x
�
k
��

¼ �xT Aþ BKð ÞT þ eTKTBT
�
P
��
Aþ BK

�
xþ BKe

�� xTPx

¼ �xT Â þ eA þ BK
� �T

þ eTKTBT
�
P
��
Â þ eA þ BK

�
xþ BKe

�� xTPx

¼ �xTQxþ xT
�
Â þ BK
� �T

PeA þ eATP
�
Â þ BK

�þ eATPeA�x
þ 2xT

�
Â þ eA þ BK
� �T

PBK
�
eþ eTKTBTPBKe:
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We have just expressed V(x(k+ 1))�V(x(k)) in terms of the model parameters

and the uncertainty of the state matrix eA. We now proceed to evaluate the

contributions of each, the model, the uncertainty, and the error.

V
�
x k þ 1ð Þ�� V

�
x
�
k
��

� �q xj j2 þ Â þ BK
� �T

PeA þ eATP Â þ BK
� �þ eATPeA��� ��� xj j2

þ 2 Â þ eA þ BK
� �T

PBK

���� ���� ej j xj j þ KTB̂ TPB̂ K
�� �� ej j2

� �qþ Δð Þ xj j2 þ c1 ej j xj j þ c2 ej j2

where e(k) is bounded by |e|� αr|x|. Then

V x k þ 1ð Þð Þ � V x kð Þð Þ � σ � 1ð Þ q� Δð Þ xj j2 ð12:12Þ

which shows that V is guaranteed to decrease for any σ, 0< σ< 1. Here the state of

the model is updated every time the error satisfies the condition imposed in (12.11).♦

Remark Similarly to the stabilizing conditions for continuous-time systems

described in Sect. 6.2, an important advantage of this approach is that we define

the controller only in terms of the model parameters. The stabilizing threshold is

designed using the model parameters Â; B̂
� �

and some bounds on the uncertainty eA,
quantities that are known.

Remark Also note that an accurate estimate of the plant parameters results in small

values of ΔA and Δ. It follows that a larger value for the threshold αr can be

obtained and longer update intervals can be achieved which results in significant

reduction in network communication.

The conditions in Theorem 12.4 are only sufficient and conservative in general.

The main reason being that these conditions are based on bounds on the uncertainty

norms and not on the location of eigenvalues as the results shown in Chap. 2. By

using uncertainty bounds we can obtain more practical conditions but we need to

consider worst case scenarios.

12.1.2 Parameter Estimation

In this subsectionwewill focusonparameter estimationofdeterministic linear systems

of the form (12.1) with no particular form of the matrices A and B. This identification
problemcan be solvedusing a linearKalmanfilter; this implementation providesmuch

better convergence properties than the EKF, as it is shown in Sect. 12.3.

In the special case when the sensors provide noiseless measurements of the

state, it is possible to modify the model that will be used for the Kalman filter

equations in order to estimate the parameters A and B. In order to show this simple

idea let us focus on second order autonomous systems, (the idea can be easily
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extended to higher order systems with deterministic inputs) with unknown

time-invariant parameters aij:

x1 k þ 1ð Þ
x2 k þ 1ð Þ
	 


¼ a11 a12
a21 a22

� �
x1 kð Þ
x2 kð Þ
	 


: ð12:13Þ

We do not know the values of the parameters and we only receive measurements

of the states x(0) . . . x(k). At any given step due to the iterative nature of the Kalman

filter we only need x(k) and x(k�1). Now we rewrite (12.13) as:

x1 kð Þ
x2 kð Þ
	 


¼ x1 k � 1ð Þ x2 k � 1ð Þ 0 0

0 0 x1 k � 1ð Þ x2 k � 1ð Þ
	 
 â 11 kð Þ

â 12 kð Þ
â 21 kð Þ
â 22 kð Þ

2664
3775 ¼ Ĉ kð Þâ �k�

ð12:14aÞ

where â ij represent the estimated values of the real parameters aij and xi are the

estimates of the state based on the estimated parameters and on measurements of

the real plant state xi. Equation (12.14a) becomes the output equation of our filter.

The state equation is described by:

â 11 k þ 1ð Þ
â 12 k þ 1ð Þ
â 21 k þ 1ð Þ
â 22 k þ 1ð Þ

2664
3775 ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0BB@
1CCA

â 11 kð Þ
â 12 kð Þ
â 21 kð Þ
â 22 kð Þ

2664
3775 ¼ Af â kð Þ: ð12:14bÞ

The state matrix of our model Af is constant and the output matrix Ĉ kð Þ is time-

varying but the overall model is linear. Therefore we can use a linear filter to obtain

estimates of the parameters aij of the state matrix of the original system. Note that

we do not need any external input, only nonzero initial conditions on the state. We

can also estimate the elements of both matrices A and B if we receive measurements

of the state and the deterministic input u(k). Any common inputs such as steps and

sinusoidal inputs can be used for identification purposes; sinusoidal inputs do not

need to have any particular frequency i.e., there is no requirement of a persistently

exciting input which makes this approach a suitable tool for adaptive stabilization.

In this case we need to include estimates of the parameters of B in the state vector

of the filter model and the input values in Ĉ kð Þ. The output equation in this case is

given by (using a second order example with single input):

x1 kð Þ
x2 kð Þ
	 


¼ x1 k � 1ð Þ x2 k � 1ð Þ 0 0 u k � 1ð Þ 0

0 0 x1 k � 1ð Þ x2 k � 1ð Þ 0 u k � 1ð Þ
� � â 11 kð Þ

â 12 kð Þ
â 21 kð Þ
â 22 kð Þ
b̂ 1 kð Þ
b̂ 2 kð Þ

26666664

37777775:

ð12:15aÞ
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The filter state matrix is expanded according to the number of additional states,

â 11 k þ 1ð Þ
â 12 k þ 1ð Þ
â 21 k þ 1ð Þ
â 22 k þ 1ð Þ
b̂ 1 k þ 1ð Þ
b̂ 2 k þ 1ð Þ

26666664

37777775 ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0BBBBBB@

1CCCCCCA
â 11 kð Þ
â 12 kð Þ
â 21 kð Þ
â 22 kð Þ
b̂ 1 kð Þ
b̂ 2 kð Þ

26666664

37777775: ð12:15bÞ

Both filter models, (12.14a)–(12.14b) and (12.15a)–(12.15b), can be easily

applied to higher order systems by following the structures of (12.14) and

(12.15). A clear disadvantage is that the order of the filter is n2 where n is the

dimension of the state of the original system.

Song and Grizzle [236] have shown that the linear time-varying Kalman filter is

a global asymptotic observer for the underlying deterministic system. Consider the

deterministic system described by (12.14), and the associated noisy system:

â k þ 1ð Þ ¼ Af â
�
k
�þ Nwp

�
k
�

ŷ kð Þ ¼ Ĉ
�
k
�
â
�
k
�þMvp

�
k
�

ð12:16Þ

where the design parameters M, N are chosen to be positive definite matrices and

the artificial noise processes wp, vp are white, zero-mean, uncorrelated, and have

known covariance matrices Q and R respectively. The next theorem states the

convergence of the estimation error.

Theorem 12.5 [236] Consider the deterministic system (12.14) and theKalman filter
associated with (12.16). Suppose that the deterministic system is uniformly observable
and Af(k) is invertible for all k, and that |A| :¼ sup{|Af(k)| : k� 0} and |C| :¼ sup{|Ck| :

k� 0} are bounded. Then the Kalman filter for the noisy system (12.16) is a global,
uniform asymptotic observer for the deterministic system (12.14).

For the derivation of this theorem refer to [236]. We will now focus on the

details pertaining to our specific model. From (12.14b) we can see that Af (k)¼
Af¼ I is constant, bounded, and invertible for all k. The output matrix is built by

using the measurements of the deterministic system. For unstable systems it is

required that the initial condition of the system is finite. The matrices M, N are

simply chosen to be identity matrices of appropriate dimensions. The problem here

is that the pair Af , Ĉ kð Þ� �
is not observable. A simple solution is to increase the

number of measurements used in the output equation (12.14a) as shown in

Sect. 12.4, although this is not a necessary condition. A simulation-based discussion

on the convergence of the Kalman filter used as a parameter estimator when the

deterministic system is not observable is also presented in that section.

Remark Note that for systems of the form x(k+1)¼Ax(k), we do not need any

external input in order to successfully identify all elements of the state matrix A; we
only need nonzero initial conditions on the state. In MB-NCS we mainly focus on
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stabilization of systems of the form given by (12.1), and for this case we can

estimate the elements of both matrices A and B if we receive measurements of

the state and the deterministic input u(k). As it was expressed before, any common

inputs such as steps and sinusoidal inputs can be used for identification purposes.

Sinusoidal inputs do not need to include any particular frequency i.e., there is no

requirement of a persistently exciting input, which makes this approach a suitable

tool for adaptive stabilization. If we try to estimate the parameters online and at

the same time try to stabilize the system, then the same input that is used for

stabilization can be used for estimation purposes. This relaxation on the need of

a persistently exciting input represents a great advantage over traditional parameter

estimation methods and it can be intuitively explained by realizing that we are

estimating the states, not the parameters, of a modified linear system. In this case we

try to meet the conditions for state estimation such as those expressed in Theorem

12.5. In general, we try to find the best state estimate (the estimated parameters in

our case) that minimize the second order moment of the difference between the

output of the system x(k) and our predicted output x kð Þ. It is also important to note

that one particular case in which it is not possible to estimate the parameters is when

the initial state of the system is 0. Since the main objective is stabilization of

unstable linear systems then this scenario does not represent a problem. Now, if a

perturbation happens to move the state from its equilibrium point, then we are in a

position to estimate the parameters and to compute a stabilizing control input.

Remark Note that we are not performing closed-loop identification since most of

the time there is no communication between sensor and controller and the model

parameters are not updated until the sensor decides to broadcast a measurement,

thus the overall system operates in open-loop mode.

12.2 Adaptive Stabilization of Stochastic MB-NCS

In this section we study the case in which stochastic systems of the form:

x k þ 1ð Þ ¼ Ax
�
k
�þ Bu

�
k
�þ w

�
k
�

y kð Þ ¼ x
�
k
�þ v

�
k
� ð12:17Þ

are implemented using the configurations of Fig. 12.1. The noise processes w and

v are white, Gaussian, uncorrelated, zero-mean, and have known covariance matri-

ces Q and R respectively. The model of the system is still given by (12.2) and, since

we only measure y(k), the error is now given by:

e kð Þ ¼ x̂ kð Þ � y kð Þ: ð12:18Þ

Theorem 12.6 Assume x(0) is a random variable with Gaussian distribution
(μ0,Σ0). Then the state of the stochastic model-based networked system (12.17)
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with feedback based on error events |e(k)|> α, with e(k) given by (12.18) and fixed
threshold α, has finite mean and covariance for all k if the eigenvalues of A+BK are
within the unit circle of the complex plane.

Proof The state of equation (12.17) can be expressed using the linear system:

x k þ 1ð Þ ¼ Aþ BKð Þx kð Þ þ BKe kð Þ þ BKv kð Þ þ w kð Þ: ð12:19Þ

Note that the system is a linear system and not a switched one as the model

(12.2). In contrast to the model, the system always operates using the same

parameters and its state is never updated or reset. Its inputs are v(k), w(k), and e
(k). The last one is a bounded input that is set to 0 at the update times. Then we can

see that the state x(k) is a Gaussian random variable for all k with mean and

covariance given by:

μk ¼ Aþ BKð Þkμ0 þ
Xk�1

j¼0

Aþ BKð Þk� jþ1ð ÞBKe jð Þ ð12:20Þ

Σk ¼ Aþ BKð ÞΣk�1

�
Aþ BK

�
T þ �BKR�BK�T þ Q

�
¼ Aþ BKð ÞkΣ0

��
Aþ BK

�
k
�
T þ

Xk�1

j¼0

Aþ BKð Þj BKR BKð ÞT þ Q
� �

Aþ BKð Þj
� �T

:

ð12:21Þ

In Theorem 12.1 we showed that (12.20) is bounded if the eigenvalues of A+BK
lie strictly inside the unit circle. In order for the covariance Σk to converge we need

the series (12.21) to be summable as k!1 and this is obtained bymaking (A+BK)j
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Fig. 12.1 MB-NCS with filter implemented (a) in the sensor node, and (b) in the controller node
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to converge to 0, i.e., if A+BK is stable then the covariance converges to a finite

value. For a formal proof, we use the next theorem:

Theorem 12.7 [137] Suppose A+BK is stable. Then there is a positive semi-definite
matrix Σ1 such that limk!1 Σk ¼ Σ1. Moreover, Σ1 is the unique solution of the
linear equation:

Σ1 ¼ Aþ BKð ÞΣ1 Aþ BKð ÞT þ BKR BKð ÞT þ Q
� �

: ð12:22Þ

By using Theorem 12.7, the covariance Σk of the state x(k) in (12.17) is finite for
all k if the condition in Theorem 12.6 is satisfied. ♦

12.3 Applications of Parameter Estimation

and the Model-Based Approach

12.3.1 Examples and Implementation Cases

Whether a linear Kalman filter or an EKF is used we can implement the filter in the

MB-NCS framework using one of two approaches.

Filter collocated with sensor In the configuration shown in Fig. 12.1a the filter is

implemented in the sensor node. We assume that copies of the model and controller

gain are contained in the sensor to generate the state, which is compared to the

measured state, and the input, which is needed to construct the filter equations. The

parameters are estimated (and the state error is evaluated, in the event-triggered

case) in the sensor node at every sampling time of the system. At the update

instants, the sensor will transmit the measured state and the new value of the

estimated parameters, or it can send a smaller packet containing only the state of

the model if no significant variation has been detected in the parameter values.

Intermittent feedback (Chap. 4) is not necessary in this case.

Filter collocated with controller Due to several factors, especially computational

limitations in the sensor node, it may be necessary to implement the identification

algorithm in the controller node. In this configuration (shown in Fig. 12.1b) the filter in

the controller receives a set ofmeasurements (intermittent feedback is needed) that are

used for estimation of the parameters of interest. When the estimated variables pass a

convergence test, the model is updated with the new value of the parameters and the

state of the model is updated using the last measurement available. That is, we use

intermittent feedback for parameter identification and instantaneous feedback for

control. No model of the plant is needed in the sensor node when using periodic

updates. The filter updates directly the model in the controller immediately after its

estimates have converged since no network exists between filter and model. For the

case when we send the measurements based on checking the state error, we need a
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copy of the model in the sensor node in order to generate the model state. For this

scenario we require the controller node to send back to the sensor node the new

estimated parameters and the new calculated controller to update the model in the

sensor as it does with the model in the controller.

Comparison between Linear Time-Varying Kalman Filter (LTV-KF) and EKF for
parameter identification of deterministic systems The EKF can also be used as

parameter estimator of deterministic systems of the form (12.1). However, for

the special case when noiseless measurements of the state are available there is

a significant improvement in the quality of the estimated parameters given by

the LTV-KF compared with those obtained using the EKF, particularly for higher

order systems.

As explained at the end of this chapter, the EKF will diverge or provide biased

estimates due to many factors, especially if the initial estimates are not sufficiently

close to the real parameters we try to estimate. We present a comparison between

the linear time-varying Kalman filter model we proposed in this section and the

EKF, assuming similar conditions.

Example 12.1 A fourth order deterministic system is given by:

xkþ1 ¼ Axk

where,

A ¼

1:7209 �1:1484 �2:8700 �1:8609

0:9510 2:9805 2:3617 �0:3365

� 2:6334 � 2:4172 0:1133 2:6316

2:8223 0:5102 �2:1791 �2:7730

0BBBB@
1CCCCA

For both filters we assume we receive noiseless measurements of the state and

that the initial estimates of the elements of the matrix A lie somewhere in the range

[�3,3]. Results of multiple simulations are shown in Table 12.1. The main differ-

ence given by the simulations of the two filters with the same deterministic system

is that both converge to some constant value but the EKF tends to provide biased

estimates. The first and third row of Table 12.1 show the estimation error for

Table 12.1 Estimation error order results for the linear time-varying Kalman filter and the

extended Kalman filter

Filter

Random initial conditions

for filters

Estimation error order

in 200 simulations

Linear time-varying

Kalman filter

Uniform: [�3,3] 10� 7� 10� 4

aij(0)� α 10� 8� 10� 4

Extended Kalman filter Uniform: [�3,3] 101

aij(0)� α 10� 1� 101
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random initial conditions (uniform [�3,3]). The error is given by the difference

between the real parameters and their estimates. It can be seen that the error is of

several orders greater in the EKF than in the LTV-KF.

In the case we have more accurate previous knowledge of the a priori estimates

of the parameters then the results of the EKF show some improvement, emphasiz-

ing the dependence of the EKF to the initial estimates â 0ð Þ, where α is a random

variable with uniform distribution in [0, 0.1]. The error magnitude is shown in the

second and fourth rows of Table 12.1.

Adaptive stabilization examples In both implementation cases shown in Fig. 12.1,

sensor and controller implementation of the filter, when the controller node receives

or obtains new estimates of the parameters, a discrete-time algebraic Riccati

equation is solved using the same weights and the new parameters. Then, we are

able to obtain a new stabilizing control law K that reflects the new knowledge about

the plant.

Example 12.2 Consider the second order system described by (12.17) with time-

invariant but partially unknown parameters and time index T¼ 0.01 s; T is the

original time index of the physical system. B ¼ 1 1½ �T , the elements a12¼ 0.3,

a21¼� 1.05 are known constants, and a11, a22 are unknown constants. We imple-

ment an EKF in the controller node using intermittent feedback triggered by the

state error. Figure 12.2 shows the simulation results. The measured states are shown

in the top of the figure. The middle section of the figure shows the estimated values
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feedback based on events
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of the unknown parameters (for reference, the real values used for the unknown

parameters in this example were a11¼� 0.985, a22¼� 0.7). The update instants

are shown in the bottom of the figure. The initial model was inadequate and made

the real plant went unstable in the beginning of the execution until we updated the

model and recomputed the controller. Every time the controller receives a set of

measurements, the filter estimates again the parameters, the rest of the time the

system runs in open-loop mode.

Example 12.3 Asecond order systemof the form (12.1) (T¼ 0.01 s) is interconnected

to a model-based controller as shown in Fig. 12.1a. All of the elements of the matrices

A and B are unknown. The Kalman filter implemented in the sensor location provides

estimates of all parameters. We design the filter by using only one previous measure-

ment. When the state error is greater than a predefined threshold the sensor sends

the latest measured state to the controller. The most recent parameter estimates are

sent only if there is a significant variation with respect to the previous updated

parameters. For illustration purposes we construct the communication signal r(k) as:

r kð Þ ¼
0 if no packet is sent

1 if only the state is sent

2 if both, parameters and state are sent

8><>: ð12:23Þ

The initial model contained random estimates of the parameters and the control

input obtained from that model does not stabilize the real plant. This can be seen at

the beginning of the simulation in Fig. 12.3. After a few iterations the sensor is able
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Fig. 12.3 Stabilization of MB-NCS in Example 12.3
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to provide estimates of the parameters, redesign the controller based on the upgraded

model, and update the state of the model as well. Variations in the main diagonal

components of matrix A of the plant at t¼ 2 s were introduced and successfully

identified as shown in Fig. 12.4. The real values used in this example were:

a11 ¼ �1:231!t¼2 � 1:303 a12 ¼ 0:503

a21 ¼ �0:034 a22 ¼ 0:820!t¼21:086

b1 ¼ 1:8 b2 ¼ �1:4

In the absence of measurement noise we are able to identify all parameters of the

plant with great precision and if we use a linear filter there is no restriction on

the initial estimates compared to, for example, the EKF. In Sect. 12.4 we show

another practical algorithm that provides global estimates of the states or, in our

case, of the parameters of the system, by applying the same ideas of the present

section. Its implementation in the MB-NCS framework is also discussed.

12.3.2 Actuator Fault Detection and Reconfiguration

The first application in this section relates to the problem of fault detection and

redesign of stabilizing controllers. In the case that a stabilizing controller cannot be

found (the fault makes the system not stabilizable) then the control scheme shuts
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down the faulty configuration and turns on a healthy backup actuator in order to

continue with the operation of the system and maintain closed-loop stability.

Consider an unknown linear discrete-time system represented by:

x k þ 1ð Þ ¼ Ax kð Þ þ Bcu kð Þ ð12:24Þ

with unknown backup actuator matrices:

Bi ∈Bbp ð12:25Þ

where Bc represents the current actuator configuration and Bi represents an element

of the backup actuator set Bbp. We implement a linear time-varying Kalman filter as

in Sect. 12.1. In the case when we can obtain noise-free measurements of the state

we can estimate all parameters of the system but here we focus on the elements of

Bc. We also need to determine, after some change on the parameters of Bc has been

detected, if the system remains stabilizable. A new controller needs to be calculated

if the system can be stabilized under the partial fault detected; otherwise shut down

the faulty actuator for maintenance and activate and identify the parameters of the

new actuator in order to compute the corresponding controller.

Example 12.4 Consider the networked plant be given by:

A ¼
1:3 �0:04 0:5

�0:62 �0:7 0:37

0:3 0:86 �1:23

264
375, B1 ¼

1 0:5

1:5 1

1 1

264
375

and the backup actuator configurations given by

B2 ¼
1:3 1

1 0:6

�0:7 0:5

264
375, B3 ¼

0 1

2 0:4

0:1 1:5

264
375

with Ts¼ 0.01. Figure 12.5 shows the response of the system and the communi-

cation signal r(k) as defined in (12.23). A partial fault was detected at 1.5 s. Here

the remaining configuration could be stabilized and the new controller was

designed for this case. At time 3 s a fault was introduced and successfully detected

moments after. The configuration is not stabilizable and the backup configuration

B2 was activated, its parameters were successfully estimated, and the new con-

troller was computed. A similar situation happened at time 6 s and the backup

configuration B3 was activated. The estimated parameters corresponding to the

elements of the matrix Bc, that is, of the activated actuator configuration are

shown in Fig. 12.6.
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12.3.3 Identification and Rejection of Input Disturbances

A very interesting application of the modified Kalman filter that was discussed in

Sect. 12.1 is related to the joint estimation of parameters and exogenous distur-

bances. The aim in this section is to stabilize systems with uncertain parameters that

are affected by unknown piece-wise constant external disturbances and as shown in

Fig. 12.7. The presence of a communication network does not allow the use of

continuous feedback for control and the networked system must operate in open-

loop mode for possibly large intervals of time. Due to these communication

constraints we use the MB-NCS approach for stabilization and due to uncertainty

in the parameters and on the external disturbance we also implement a parameter

estimation algorithm in the sensor node.

Consider the following type of uncertain discrete-time system:

x k þ 1ð Þ ¼ Ax kð Þ þ B u kð Þ þ w kð Þð Þ ð12:26Þ

where x ∈ ℝn, u,w ∈ ℝm represent the state of the system, the control input, and the

unknown input disturbance, respectively. We consider the special case where B is

known in advance but the state matrix A and the input disturbance are unknown.

Additionally, we restrict this work to the case when the input disturbances are given

by piece-wise constant signals and this represents all the information available about

the external disturbance. The time instants at which the external disturbance changes

its value are also unknown. Those time instants must be detected by our estimation

algorithm.

Consider a second order system with single input for ease of exposition,

x1 k þ 1ð Þ
x2 k þ 1ð Þ
	 


¼ a11 a12
a21 a22

� �
x1 kð Þ
x2 kð Þ
	 


þ b1
b2

� �
u kð Þ þ w kð Þð Þ: ð12:27Þ

Controller
u

Model

Network

y

x̂

Plant

xe

update

O

w

Sensor

Fig. 12.7 Model-based networked system with external disturbance
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Note that as in Sect. 12.1 this approach can be easily generalized for any

dimensions n and m, as long as the system is of the form (12.26). We rewrite

(12.27) in the next form:

x1 kð Þ
x2 kð Þ

" #
¼ x1 k � 1ð Þ x2 k � 1ð Þ 0 0 b1

0 0 x1 k � 1ð Þ x2 k � 1ð Þ b2

 ! â 11 kð Þ
â 12 kð Þ
â 21 kð Þ
â 22 kð Þ
ŵ kð Þ

26666664

37777775þ b1

b2

 !
u kð Þ

¼ Ĉ kð Þâ �k�þ u
�
k
�
:

ð12:28Þ

Equation (12.28) represents the output equation for the filter. Since we consider LTI

systems and piece-wise constant input disturbances the state equation for the filter is

given by:

â 11 k þ 1ð Þ
â 12 k þ 1ð Þ
â 21 k þ 1ð Þ
â 22 k þ 1ð Þ
ŵ k þ 1ð Þ

26666664

37777775 ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0BBBBBB@

1CCCCCCA

â 11 kð Þ
â 12 kð Þ
â 21 kð Þ
â 22 kð Þ
ŵ kð Þ

26666664

37777775 ¼ Â â kð Þ ð12:29Þ

where the scalars â ij represent the estimates of the elements of the matrix A and ŵ
represents the estimate of the input disturbance.

The overall filter model is a linear time-varying system, similar to the filter

model used in Sect. 12.1, and the same convergence properties apply to (12.28)

and (12.29).

The control input is now given by

u kð Þ ¼ Kx̂ kð Þ � ŵ c kð Þ ð12:30Þ

where x̂ ∈ℝn represents the state of the model in both the sensor and the controller.

A copy of the model is implemented in the controller in order to compute the state

error and use an event-triggered control technique. The state of the model is also

needed at the sensor node to compute the control signal which in turn is needed by

the estimation algorithm. ŵ c kð Þ represents the value of the last disturbance estimate

update. Since the filter in the sensor node may be producing estimates at each instant

in order to check for a possible change in the parameters or in the value of the

disturbance, ŵ c kð Þ ¼ ŵ kð Þ holds only at the time of a parameter update while in

general they have slightly different values. A large difference between the current

estimated disturbance and the previous value that was sent to the controller will also

trigger an update event, and ŵ c kð Þhas to be updated using the current estimate ŵ kð Þ:
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Example 12.5 Consider an unstable and uncertain system given by (12.26) with

dimensions n¼ 3, m¼ 2. The goal is to stabilize the system around its equilibrium

point xe¼ [0 0 0]T in the presence of unknown input disturbances. The input matrix

is known and given by:

B ¼
1 0

0:5 0:2

0 1

0B@
1CA:

Figures 12.8, 12.9, and 12.10 show the results of the simulation. Figure 12.10

shows the estimated parameters of the state matrix A. These estimated parameters

are used to update the model parameters and to redesign the controller gain.

Figure 12.8 (bottom) shows the successful estimation of the input disturbance

which is used in (12.30) to reject the real input disturbance w(k). Figure 12.8 (top)

shows the response of the system. When the disturbance changes values there is an

undesirable effect in the system but after a few iterations we are able to estimate the

new value of the disturbances in order to counteract this response and stabilize the

system once again. Note that the individual value of the disturbances need not

change at the same instant in order to detect and estimate the new disturbance

value. At time about 1.7 s only w1(k) changes its value while w2(k) remains the

same. The state error and the communication instants are shown in Fig. 12.9.
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Fig. 12.8 States of the uncertain system (top) affected by an external disturbance. Estimates

of the external disturbance (bottom)
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Fig. 12.10 Estimated parameters of the state matrix A in Example 12.5

298 12 Adaptive Stabilization of Networked Control Systems



This example shows that this approach offers good disturbance attenuation

properties. In particular we are able to reject the disturbance effect on the system

a few iterations after the disturbance changes suddenly.

The overall approach discussed in the present chapter, Model-Based Event-

Triggered (MB-ET) control combined with Kalman filter-based parameter and

disturbance estimation, is able to react relatively fast to the presence of unknown

disturbances and to parameter uncertainties while reducing the number of feedback

measurements that need to be sent from sensor to controller.

12.3.4 Identification and Stabilization of Switched
Systems with State Jumps

The application presented in the present subsection considers the interesting problem

of identification and stabilization of switched systems with state jumps and unknown

switching sequences. The implementation of the Kalman filter for identification of the

parameters of each operating mode is straightforward, assuming we can obtain noise-

free measurements of the states. Consider a discrete-time switched system:

x k þ 1ð Þ ¼ Aix kð Þ þ Biu kð Þ ð12:31Þ

for each i ∈ N, N denotes the set {1, 2, . . .N} of N integers, where each

Ai ∈ ℝn� n, Bi ∈ ℝn�m are unknown and each Ai may be unstable. In addition

the switching sequence, denoted by times τij equal to the times k when the system

switches from mode i to mode j for i, j ∈ N, is also unknown. Finally, when the

system switches, the state is not restricted to keep the same values but it can be reset

to a different finite value, that is, x(τij)¼ f(τij). The state jumps are dictated, in

general, by a time-varying function which can be nonlinear, stochastic, or any other

function as long as f(τij)<1.

In order to identify the switching times we implement an event-error strategy. As

in Sect. 12.1, the event-based scheduler will trigger a state update if the state of the

system is different by a given amount with respect to the state of the model, that is,

it computes the norm of the state error (12.3) and compares it to a fixed threshold. In

addition, the sensor node also checks for the difference between the current

estimates of the system parameters with respect to the latest parameter updates

and it will send a parameter update if the current estimates are significantly

different, which corresponds, in general, to a switch in the parameters of the real

system. From time to time the sensor may send parameter updates even though the

real system has not switched yet, depending of the convergence threshold we

implement. This updates are basically refinements of the estimated parameters

that were sent previously. The application of the Kalman filter and an event-

triggered strategy for the identification and control of this type of switched systems

can be implemented for both networked and non-networked systems. In the case of
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non-networked systems the controller is able to receive feedback measurements at

all times and the identified parameters are used solely for the design of the

corresponding stabilizing controller. For the case of networked systems we imple-

ment the MB-NCS setup discussed in this and previous chapters.

Example 12.6 Consider a model-based networked switched system with state

jumps that operates using the next set of unstable (unknown) modes:

A1 ¼ 1:2 �0:3
0:6 �1:2

	 

, B1 ¼ 0:5

1

	 

A2 ¼ 0:5 �1:35

1:01 0:7

	 

, B2 ¼ 1

0:4

	 

A3 ¼ 0:24 �1:2

�1 0:13

	 

, B3 ¼ �0:7

1:5

	 

Figures 12.11 and 12.12 show the results of simulations. The sampling time of

the real system is Ts¼ 0.01 s. Figure 12.11 shows the estimated parameters as a

function of time; the figure shows the estimated elements of A and B as they switch

over time. Figure 12.12 shows the response of the switched system and the

communication signal r(k) as defined in (12.23). This example shows that the

switching parameters of the system can be successfully identified and the model

can be updated in order to obtain better estimates of the state between feedback

updates. Additionally, the switching sequence does not have to be known in
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Fig. 12.11 Estimated parameters of the switched system
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advance since the sensor is able to detect the switching times and adjust the

parameters of the new model. Similarly, a new control gain is designed in order

to stabilize the current operating mode of the switched system. The switching

sequence that was used here, starting with mode 1, is:

τ12 ¼ 2, τ23 ¼ 4, τ31 ¼ 6, τ12 ¼ 8:

One drawback of this control approach is that every time that the system

switches modes the controller node needs to wait until the new parameter estimates

converge within given bounds.

Using previous parameter values, an important extension can be made to this

control algorithm in order to allow the overall MB-NCS learn or remember past

modes of the switched system as follows. The estimated parameters are stored in the

sensor node and used for future switching times. When a state jump is detected

based on the state error the sensor uses past “learned” modes in order to predict the

next states. The sensor node uses the next predicted error in order to select a past

mode and send the corresponding parameters. The identification keeps executing as

a backup option or in order to refine the estimated parameters. This type of

implementation results, in general, in a better performance as shown in the next

example.

Example 12.7 Consider the same unknown system and switching sequence as in

Example 12.6. The response of the switched system and the communication signal

are shown in Fig. 12.13. Note that at switching times τ31¼ 6, and τ12¼ 8 the system
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Fig. 12.12 Norm of the states of the system and communication signal for Example 12.6
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switches to previously identified modes and therefore the sensor is able to update

the parameters of the model sooner than in the previous example and the system

performs better at those instants.

12.4 Parameter Identification Using

Additional Measurements

12.4.1 Parameter Identification Using Luenberger Observers

Following the ideas in Sect. 12.1 we present now a similar modification regarding

the model of the system and the implementation of the Luenberger observer that

will treat the unknown parameters of the system as the states to be observed. This

technique also provides global asymptotic estimates of the parameters i.e., we can

provide any initial conditions and the observer will converge to the real values of

the parameters. Further, the computations required by this algorithm are only those

related to the computation of the observer gain L(k). Similarly to the results in

Sect. 12.1, the modified model is linear time-varying.

Suppose we receive perfect measurements of the state of the system described

by (12.1) and also assume that we know exactly B and want to identify the unknown

elements of A.
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The output equation of our model is similar to (12.14a), but since the

computation of the observer gain is very sensitive to the observability condition

of the new model, we increase the number of measurements used in the model to

obtain, for example in the case of a second order system:

x1 kð Þ
x2 kð Þ
x1 k � 1ð Þ
x2 k � 1ð Þ

26664
37775 ¼

x1 k � 1ð Þ x2 k � 1ð Þ 0 0

0 0 x1 k � 1ð Þ x2 k � 1ð Þ
x1 k � 2ð Þ x2 k � 2ð Þ 0 0

0 0 x1 k � 2ð Þ x2 k � 2ð Þ

26664
37775

â 11 kð Þ
â 12 kð Þ
â 21 kð Þ
â 22 kð Þ

26664
37775

þ

b1 0

b2 0

0 b1

0 b2

26664
37775 u k � 1ð Þ

u k � 2ð Þ
	 


¼ Ĉ kð Þâ kð Þ þ D̂ u kð Þ u k � 1ð Þ½ �T : ð12:32Þ

The state equation for our model is given by (12.14b). The observer, in general,

is expressed by:

â k þ 1ð Þ ¼ �I � L
�
k
�
Ĉ
�
k
��
â
�
k
�þ L x kð Þ x k � 1ð Þ . . .½ �T

� LD̂ u kð Þ u k � 1ð Þ . . .½ �T ð12:33Þ

where â kð Þ ¼ â 11 kð Þ â 12 kð Þ â 21 kð Þ â 22 kð Þ½ �T is the state of the observer and

represents the estimation of the elements of A in system (12.1). The matrices in the

output equation and the inputs for the observer are increased with an additional

measurement for every single increase in the order of (12.1).

Theorem 12.8 The observer (12.33) with augmented measurements and the pair

I, Ĉ kð Þ� �
observable, converges globally to the real parameters of A in (12.1) if the

eigenvalues of I � L kð ÞĈ kð Þ are within the unit circle of the complex plane.

Proof Define the estimation error:

e kð Þ ¼ a kð Þ � â kð Þ ð12:34Þ

where a(k)¼ vec(aij) is a column vector that contains the true values of A in (12.1).

Now, we compute:

e k þ 1ð Þ ¼ Ia
�
k
�� �I � L

�
k
�
Ĉ
�
k
��
â
�
k
�

� L x kð Þ x k � 1ð Þ . . .½ �T þ LD̂ u kð Þ u k � 1ð Þ . . .½ �T
¼ Ie kð Þ þ L

�
k
�
Ĉ
�
k
�
â
�
k
�� L

�
k
�
Ĉ
�
k
�
a
�
k
�

� LD̂ u kð Þ u k � 1ð Þ . . .½ �T þ LD̂ u kð Þ u k � 1ð Þ . . .½ �T
¼ �I � L kð ÞĈ �k��e�k�,

where relation (12.32) was used involving the real parameters. ♦
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Remark Note that given the increased number of measurements available and the

form of the observer state matrix (identity matrix) we could simply find the inverse

of the built C matrix to obtain an estimation of the parameters. The advantage

therefore is in the freedom of choice of the desired pole locations in order to

compute the gain L(k) compared to the computation of a matrix inverse.

Example 12.8 Consider a second order unstable system described by (12.1) with

knownB ¼ 1 0:8ð ÞT and the unknown, time-varying values of the state matrix are

shown below. A state observer is implemented in the sensor node. The estimated

parameters are shown in Fig. 12.14. Variations in the parameters were introduced at

t¼ 4 s. The same figure shows that, after the model is updated, the states of the plant

are bounded and the plant operates in open loop for longer intervals of time.

Updates from the sensor to the controller take place when an error measure is

greater than some predefined fixed threshold. It can be seen that although the

parameters have been successfully identified after the variations the plant keeps

working in open loop until an error triggers an update. The real parameters used in

this example were:

a11 ¼ �0:6!t¼4 � 0:45 a12 ¼ 1:18

a21 ¼ �0:9 a22 ¼ �0:17!t¼4 � 0:27
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12.4.2 Convergence Properties of the LTV-KF Used
for Parameter Identification

The linear time-varying Kalman filter described in Sect. 12.1 has been used for

parameter identification of systems in general state-space form, but it also can be

seen as an estimator of the states of a modified system model. Typical conditions for

convergence of theKalmanfilter require the pair (A,C) to be observable [32, 137, 267].
In particular, [236] shows that the linear time-varying Kalman filter is a global

asymptotic observer for the underlying deterministic system. As noted in [231],

observability is not a necessary condition, i.e., there may be a solution for the

Kalman filter equations even if the observability condition does not hold. If the filter

is capable of retaining previous measurements (up to n of them) then we could use

the increased order model as in Sect. 12.4.1 to obtain the observable pair. This will

also increase the complexity of computations. Fortunately this is not required and the

measurement of the state at the previous instant k-1 only, such as in the examples

in this chapter, is able to provide enough information about the unknown parameters

of the plant and even for higher order systems as in Example 12.1. This is of

great advantage in order to keep a low order model and especially if the sensor is

not able to retain state measurements beyond the previous ones. Moreover,

the improvement obtained by using more measurements is minimal as shown in the

following example.

Example 12.9 Consider the third order system with random initial conditions

described by:

x k þ 1ð Þ ¼ Ax kð Þ

A ¼
1:1806 �0:7323 �1:8800

�1:2073 0:6673 2:0203

1:6078 �0:1910 �1:7223

0B@
1CA:

The elements of matrix A are assumed to be unknown but time-invariant.

Table 12.2 shows the order in the magnitude of the estimation error using a

single measurement to construct the output matrix of the filter model and also

using n previous measurements. Notice that an almost unnoticeable increase in the

precision of the estimates is gained by increasing the number of measurements.

Table 12.2 Estimation error order results for the linear time-varying

Kalman filter using a single measurement and using n¼ 3

measurements

Number of measurements

in LTV-KF

Estimation error order

in 200 simulations

1 10� 6� 10� 9

n 10� 6� 10� 10

12.4 Parameter Identification Using Additional Measurements 305



12.5 Notes and References

The present chapter discussed implementations of Kalman filters in order to

estimate the parameters of the real plant and upgrade the model parameters.

It has been shown that upgraded model implies better state estimates between

update time intervals and these intervals can be made longer as well. The results

presented in this chapter were published in [83] and [88] with the exception of the

work described in Sects. 12.3.2, 12.3.3, and 12.3.4, which represent original results

first presented in this book.

The EKF whether it is used for estimation of states of nonlinear systems or

combined estimation of states and parameters is prone to divergence. The EKF

lacks the robustness and the convergence properties of the linear Kalman filter.

Many of the causes for the estimates to be biased or divergent have been illustrated

and somewhat successful remedies have been proposed in many papers and books,

see for instance [204, 231, 236, 254]. A more rigorous analysis of the convergence

properties of the EKF used as a parameter estimator for linear systems may be

found in [162].

The most common causes of divergence in the EKF are related to the fact that the

EKF is based on linearization about the current estimate, if the a priori state

estimates are poor, or if later estimates should take the filter out of the linear region,

the estimates often diverge [204]. In general, the Taylor series expansion works

well only when the expansion is taken in the neighborhood of exk � xk (ex0 � x0),
then good initial estimates are needed. Also, if the system is highly nonlinear we

run the risk to be taken out of the linearization region. In [32] the authors compare

the EKF with the regular linearized Kalman filter; in particular, they address

the concern that the EKF is a riskier filter than the linearized version when the

initial uncertainty and measurement error are large.

Song and Grizzle [236] state that the EKF is a quasi-local observer i.e., the initial

condition should be close to the real parameter that we are trying to estimate. In that

paper, strong conditions for convergence of the EKF are postulated. These

conditions are related to the observability of the underlying nonlinear system.

A somewhat weaker observability rank condition leads to similar results but this

condition must be accompanied by a convergence period condition; in other words,

uniform asymptotic convergence of the observed error is achieved whenever the

nonlinear system satisfies an observability rank condition and the states stay within

a convex compact domain.

In practice, several approaches have been proposed to improve the convergence

characteristics of the EKF, for instance, if the gain Kk obtained from the linear

approximation is not good enough, then use a second, third, . . . order approxima-

tion. A known approach is the second order EKF, where a second order Taylor

series expansion of f(•) and h(•) is performed. Another computational solution is the

iterative EKF, in this version one refines the point at which the first order Taylor

series expansion of the measurement equation is performed.
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Ljung [162] provides a rigorous analysis of convergence of the estimates of the

EKF to the true values of the system for the special case when the EKF is used for

parameter identification of linear stochastic systems. In that paper, it is expressed

that bias estimates come from incorrect noise assumptions associated with the

model and not from the EKF-method. An adaptive Kalman filter is used to learn

the correct noise covariance, see [32, 168] for some details.

According to Ljung [162] divergence of the EKF as a parameter estimator can be

traced to the fact that effects of a change in the parameters on the Kalman gain are

not taken care of, i.e., the coupling between the Kalman gain and the parameters to

be estimated is not considered. Ljung is able to associate a differential equation

in order to analyze the convergence of a recursive, stochastic algorithm in this case

the EKF. The differential equation is defined in terms of the equations that charac-

terize the EKF, with a slight modification for the case when the parameter vector

to be estimated is kept constant. This differential equation provides insight into

convergence points of the estimate and the causes of divergence and biased

estimates, and for some examples, it is possible to obtain the domain of attraction

based on this differential equation see [162, section V.C]. For the cases when

the Kalman gain is independent of the parameter vector the convergence properties

are much better. One interesting example of this case is deterministic systems

where the covariance of the process noise is always 0. The main idea of this

paragraph is to establish a link between the Kalman gain and the vector of

parameters. The approach is to improve convergence in the general case

(non-deterministic systems, as specified above) by including a term that relates

the variations in the parameters to the Kalman gain. This leads to a modified

algorithm based on an innovation representation model that has much better

convergence properties.

12.5 Notes and References 307



Chapter 13

Multirate Systems

In many applications digital communication networks are used to interconnect

control elements corresponding to large scale uncertain systems with multiple

outputs and spatially distributed sensing implementation. In this type of implemen-

tation the sensors that measure different elements of the state vector can be located

at distant positions. A limited-bandwidth communication network is used to send

all sensor measurements to the controller. In order to schedule the sampling and

sharing of information and to increase the sampling intervals at each sensor node as

much as possible, in this chapter we implement a multirate sampling scheme. The

results presented provide a simple approach to address robustness to parameter

uncertainties using multirate sampling.

In addition, this chapter also considers a different architecture using a similar

multirate approach. A two-channel implementation is studied, where not only the

path from sensor to controller is implemented using a limited-bandwidth network,

but also the path from controller to actuator.

This chapter is organized as follows. In Sect. 13.1 we study the problem where

different sensors measure and transmit the states of the same system. In order to

reduce network traffic, we implement a multirate approach. Additional results are

provided considering a network constraint in the form of single access to the

network, that is, at every sampling instant corresponding to the plant transitions at

most one node can have access to the network to transmit its measurement. A strict

scheduling protocol is designed in order to satisfy this constraint. Two-channel

network configurations are discussed in Sect. 13.2. First, we present stabilization

results using a similar to Sect. 13.1 multirate approach. Secondly, we derive condi-

tions for bounded tracking error concerning the reference input problem and using

an event-triggered control strategy. Section 13.3 provides notes and references.

E. Garcia et al., Model-Based Control of Networked Systems, Systems & Control:

Foundations & Applications, DOI 10.1007/978-3-319-07803-8_13,

© Springer International Publishing Switzerland 2014
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13.1 Multirate State Updates Using a Centralized

Controller

In this section we use the MB-NCS approach and the lifting procedure to establish

stability conditions for discrete-time spatially distributed systems when the plant

states are sampled periodically but using different sampling rates. This multirate

approach provides good performance in terms of network resource utilization

especially when different sensors are used to measure different elements of the

system output, see Fig. 13.1.

13.1.1 Model-Based Multirate Approach

When the sensors use the same network to transmit their measurements to the

controller node, then the multirate approach brings important benefits to the oper-

ation of the overall networked system. By allowing the sensors to transmit their

measurements using different update periods, we avoid packet collisions and

networked induced delays compared to the case when all of the sensors need to

sample and transmit at the same instants. Additionally, we will show that in many

cases a further reduction in network communication can be obtained by using

different update rates for each sensor. Although the multirate sampling case requires

a more complex analysis, the same lifting approach as in Sect. 2.4 can be used in

order to find a system representation for the LTI equivalent (lifted) system.

Consider a multi-output system depicted in Fig. 13.1. In this case we do not

assume that sensors measure all states at the same time; instead we consider a

spatially distributed system for which different sensors measure different elements

of the state and send this information to the centralized controller at different rates.

The states of the model are partially updated according to the information that is

received at any given update instant.

Plant

u

Model

K

Sensor 1

Network

x1

x̂

Sensor n
xn

:
:

:
: o

Fig. 13.1 Networked control system with centralized controller and distributed multirate sensor

measurements
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In what follows we will provide details on how the states of the model are

partially updated and how to obtain the response of the corresponding lifted system.

The lifted system state equation directly provides necessary and sufficient condi-

tions for the stability of the multirate system.

We consider linear time-invariant systems and models with dynamics

described by:

x k þ 1ð Þ ¼ Ax
�
k
�þ Bu

�
k
�

x̂ k þ 1ð Þ ¼ Â x̂
�
k
�þ B̂ u

�
k
� ð13:1Þ

where u ¼ Kx̂ . In this section we approach the multirate problem by considering an

N-partition of the state of the system and, correspondingly, the model (13.1),

according to the number of sensors that are used to obtain measurements:

x ¼

x1

x2

⋮
xN

266664
377775, x̂ ¼

x̂ 1

x̂ 2

⋮
x̂ N

266664
377775 ð13:2Þ

where xi, x̂ i ∈ℝni,
XN
i¼1

ni ¼ n. The case when each scalar element of the state is

measured by a different sensor only represents a particular case of (13.2) so, in

general, elements of the state may be grouped into different subsets and, conse-

quently, each subset of the system state may have different dimensions. Let the

integer si represent the update period that sensor i uses to send measurements in

order to update the corresponding part of the model state x̂ i. Let s represent the
minimum common multiple of all si.

In order to obtain the response of the multirate system using the model-based

control input with partial updates we define all the update instants within a period

s by arranging the periods si and its multiples up to before s in increasing order

as follows:

s1, 2s1, . . . , r1 � 1ð Þs1
s2, 2s2, . . . , r2 � 1ð Þs2
⋮
sN , 2sN , . . . , rN � 1ð ÞsN

ð13:3Þ

where the integer ri ¼ s
si
for i¼ 1. . .N represents the relative update rate compared

to the update rate given by the period s. Let hi for i¼ 1. . .p�1 represent the update

instants in increasing order, where p is the total number of update instants within a

period s including the update at time s. Note that at any given instant one or more

sets of states x̂ i can be updated. This procedure can be better shown through a

simple example.
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Consider the state of a system that is partitioned into three subsets x1, x2, x3 with
corresponding periods s1¼ 3, s2¼ 4, s3¼ 6. Then we proceed to define all update

instants within a period s¼ 12, as follows:

h1 ¼ 3 ¼ s1

h2 ¼ 4 ¼ s2

h3 ¼ 6 ¼ 2s1 ¼ s3

h4 ¼ 8 ¼ 2s2

h5 ¼ 9 ¼ 3s1

ð13:4Þ

Note that at the time instant h3 we have two partial updates for this example.

Let us define, in general, the partial update matrices:

Ii ¼
0 0 0

0 Ini 0

0 0 0

24 35 ð13:5Þ

that is, the ith partial update matrix Ii ∈ ℝn� n contains an identity matrix of size ni
at the position corresponding to xi and zeros elsewhere. Define

Ihi ¼ Ii þ Ij þ Ik . . . ð13:6Þ

The matrices Ihi represent all updates that happen at time instant hi.

Theorem 13.1 The uncertain system with distributed sensors as shown in Fig. 13.1
with model-based control input and with partial multirate model updates is asymp-
totically stable for a given selection of update periods si if and only if the eigen-
values of

As þ
Xp
i¼1

Ahp�hiΞhi�hi�1
Uhi�1 ð13:7Þ

are within the unit circle of the complex plane, where

Ξhi�hi�1
¼

Xhi�hi�1�1

j¼0

Ahi�hi�1�1�jBK Â þ B̂ K
� �j

Uhi ¼ I � Ihið Þ�Â þ B̂ K
�
hi�hi�1Uhi�1 þ Ihi

�
Ahi þ

Xi
q¼1

Ahi�hqΞhq�hq�1
Uhq�1

�
ð13:8Þ

with h0 ¼ 0, Uh0 ¼ I, hp ¼ s.
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Proof Let us consider the beginning of a period s. At this time instant, all sensors

send measurements and we have that x̂ ksð Þ ¼ x ksð Þ. At the time of the first update

after time ks, that is, at time ks + h1 we have:

x ksþ h1ð Þ ¼
�
Ah1 þ

Xh1�1

j¼0

Ah1�1�jBK Â þ B̂ K
� �j�

x kð Þ ¼ Ah1 þ Ξh1

� �
x ksð Þ ð13:9Þ

and the model state after the update has taken place is given by:

x̂ ksþ h1ð Þ ¼ I � Ih1ð Þ Â þ B̂ K
� �h1 þ Ih1 Ah1 þ Ξh1

� �� �
x kð Þ ¼ Uh1x ksð Þ: ð13:10Þ

Following a similar analysis we can obtain the response of the system at time

ks + h2 as a function of x(ks + h1) and x̂ ksþ h1ð Þ:

x ksþ h2ð Þ ¼ Ah2�h1x ksþ h1ð Þ þ
Xh2�h1�1

j¼0

Ah2�h1�1�jBK Â þ B̂ K
� �j

x̂ ksþ h1ð Þ:

ð13:11Þ

Similarly, the response of the model at time ks + h2 as a function of x(ks + h1) and
x̂ ksþ h1ð Þ is given by:

x̂ ksþ h2ð Þ ¼ I � Ih2ð Þ Â þ B̂ K
� �h2�h1

x̂ ksþ h1ð Þ þ Ih2x ksþ h2ð Þ ð13:12Þ

but, since both x(ks + h1) and x̂ ksþ h1ð Þ can be expressed in terms of x(ks), we
obtain the following:

x ksþ h2ð Þ ¼ Ah2 þ Ah2�h1Ξh1 þ Ξh2�h1Uh1

� �
x ksð Þ ð13:13Þ

and the model response is now described by:

x̂ ksþ h2ð Þ ¼ I � Ih2ð Þ Â þ B̂ K
� �h2�h1

Uh1 þ Ih2 Ah2 þ Ah2�h1Ξh1 þ Ξh2�h1Uh1

� �� �
x ksð Þ

¼ Uh2x ksð Þ:

By following the same analysis for each update instant hi up to hp¼ s we obtain

x k þ 1ð Þsð Þ ¼ As þ
Xp
i¼1

Ahp�hiΞhi�hi�1
Uhi�1

 !
x ksð Þ: ð13:15Þ
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Since (13.15) represents a discrete-time LTI system with state matrix given by

(13.7), then the networked system is asymptotically stable when the eigenvalues of

(13.7) lie inside the unit circle. ♦

Example 13.1 Consider the fifth order unstable system given by:

A ¼

�1:05 0:35 0:02 0:35 0:24

0:35 1:1 0:1 0:035 0:035

0:03 0:32 0:21 �0:4 0:6

0:06 0:03 0:3 �0:7 0:55

0:035 0:03 0:6 0:3 0:2

26666664

37777775, B ¼

1 1

1 2

1 1

1 2

1 1

26666664

37777775
Its nominal model is given by:

Â ¼

�1 0:35 0:02 0:35 0:24

0:35 1 0:05 0:035 0:035

0:03 0:35 0:15 �0:45 0:6

0:06 0:035 0:34 �0:75 0:6

0:035 0:035 0:5 0:3 0:4

26666664

37777775, B̂ ¼

1 1

1 2

1 1

1 2

1 1

26666664

37777775
If it were possible to send periodic updates of all states, that is, to send all states

at the same time instants, then we could use previous results in order to search for

the range of stabilizing periods. For instance, we can use the results in Theorem 2.6

in Sect. 2.3 or the equivalent results in Theorem 2.8 in Sect. 2.4.1.

It can be shown that using a single-rate approach we would need to use a period

h< 10. Figure 13.2 shows the response of the system and the model for the initial

conditions shown below and using the update period h¼ 9, the largest stabilizing

single-rate period. Note that the entire state of the model is updated at the same time

instants. The initial conditions in this simulation are given by:

x0 ¼ 1 0:5 0:6 0:3 � 0:5½ �T :

Now suppose that each state of the system can be measured by a different sensor

node using a different update rate. By using the results in this section, it is possible

to show the existence of multirate stabilizing update periods. The number of

combinations of stabilizing periods is quite large including those that involve

lower sampling periods. In many cases it is possible to decrease a few of the

individual sampling periods while increasing the rest of them. For instance, if we

select the periods s1¼ 10, s2¼ 6, s3¼ 15, s4¼ 10, s5¼ 30, the eigenvalues of

(13.7) are all inside the unit circle, which means that the multirate networked

system is asymptotically stable.

Figure 13.3 shows the response of the plant and the model for this particular

selection and using the same initial conditions as in Fig. 13.2. It is important to note
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Fig. 13.3 Response of the multirate system for the following choice of update periods:

s1¼ 10, s2¼ 6, s3¼ 15, s4¼ 10, s5¼ 30
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that many update period combinations result in a stable system and the one selected

is one that provides for significant reduction of network communication compared

to the more conservative single-rate implementation in which all sensors would

need to use a sampling period h< 10.

13.1.2 Updates with Network Constraints

In the previous section we addressed distributed systems and interconnections.

We assumed that at certain time instants it is possible for more than one sensor to

have access to the network and to transmit a measurement. In this way, flexibility

is obtained when choosing different rates for each transmitting node. In many

cases this is not a strong assumption, especially if the sampling time of the system

is long enough to schedule several nodes to transmit within a sampling interval

(here, we can think on T-discretized versions of continuous-time systems, where

T is chosen according to specifications related to actuators, sensors, and the

communication network as well). However, in other cases, the sampling time

may be very small and the network will grant access only to one node at every

discrete time k.
In this section we derive similar stabilizing conditions for scheduling trans-

missions of feedback measurements considering network constraints in the form of

restricted access to the communication channel. We consider the architecture

shown in Fig. 13.1.

Consider an N-partition of the state of system and model (13.1) according to the

number of sensors that are used to obtain measurements. This partition is

represented as in (13.2).

Define the augmented state z kð Þ ¼ x kð Þ
x̂ kð Þ
� 	

. In this problem we consider two

time intervals, s and s1, representing the entire update cycle and the subinterval of

empty slots, respectively. The details are as follows: s1 represents the number of

discrete-time instants that other applications may use for communication over the

network and are called empty slots since they are not used by the system under

analysis. After s1 time instants the N sensors associated with our system transmit

their current measurements sequentially, that is, only one sensor transmits at each

one of the following N time slots. Clearly, all sensors use the same update period

but with strict scheduling to avoid overlapping. The update period is s¼ s1 +N.

Theorem 13.2 The uncertain system with distributed sensors as shown in Fig. 13.1
with model-based control input, with partial model state updates, and with sequen-
tial updates is asymptotically stable if and only if the eigenvalues of

V Nð ÞΓs1 ð13:16Þ
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are within the unit circle of the complex plane, where

Γ ¼ A BK

0 Â þ B̂ K

" #
: ð13:17Þ

V(N ) is of the form:

V Nð Þ ¼ I 0

IN I � IN

" #
. . . Γ

I 0

Ii I � Ii

" #
. . . Γ

I 0

I1 I � I1

" #
ð13:18Þ

with Ii defined in (13.5).

Proof During the interval k ∈ [ks, ks + s1), there are no updates of the state of the

model and the augmented system evolves according to:

z k þ 1ð Þ ¼ Γz kð Þ: ð13:19Þ

The response of the system at time ks + s1, at the time corresponding to the first

update of the current cycle, in terms of z(ks) is given by:

z ksþ s1ð Þ ¼ I 0

I1 I � I1

� 	
Γs1z ksð Þ: ð13:20Þ

The response at the time of the following scheduled update, that is, when the

second sensor transmits its measurement update, is given by:

z ksþ s1 þ 1ð Þ ¼ I 0

I2 I � I2

� 	
Γ I 0

I1 I � I1

� 	
Γs1z ksð Þ: ð13:21Þ

The response after the entire model state vector was sequentially updated can be

represented by:

z k þ 1ð Þsð Þ ¼ V Nð ÞΓs1z ksð Þ: ð13:22Þ

Since (13.22) represents an LTI system for a given number of nodes, then the

networked system is asymptotically stable when the eigenvalues of (13.16) are

within the unit circle of the complex plane. ♦

Remark The objective in this section is to find the range of possible update periods

s that can be used while maintaining stability. The number of empty slots s1 can
be used by other applications and for transmission of acknowledgement messages,

if desired.

Remark In Theorem 13.2, for simplicity, we choose to transmit the measurements

pertaining to a given system without empty slots between each other and leaving the
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time interval s1 for other applications to use. This approach can be easily extended

to the case in which we can select different update patterns but all states are updated

only once during a cycle of duration s. A further extension can combine this

approach and the ideas in previous sections in order to schedule several updates

of one or more particular sensors during each cycle. However, this represents a lack

of flexibility for selection of update rates since the rates have to be multiples of each

other in order to prevent the eventual overlap of schedules that would occur

otherwise.

Example 13.2 Consider the continuous-time model of a batch reactor.

Â ¼

1:3800 �0:2080 6:7150 �5:6760

�0:5810 �4:2900 0 0:6750

1:0670 4:2730 �6:6540 5:8930

0:0480 4:2730 1:3430 �2:1040

266664
377775, B̂ ¼

0 0

5:6790 0

1:1360 �3:1460

1:1360 0

266664
377775.

In this example we consider the case when each state can be measured by a

different sensor and we also consider model uncertainties described by A ¼ Â þ eA
where the elements in eA take values in the range eaij ∈ �0:01, 0:01½ �. The

continuous-time model and plant parameters are discretized using T¼ 0.01 s.

The largest value for the update period s is found to be s¼ 226, which corresponds

to 2.26 s considering the sampling period T. Figure 13.4 shows the response of the

model-based system with sequential updates for two choices of update period that

result in a stable networked system. The second option is the limit value and the

response is oscillatory and the system is stable with a slow convergence time.

13.2 Two-Channel NCS

We call two- or double-channel MB-NCS an NCS in which not only the path from

the sensor to the controller is implemented using a digital network but also the

path from the controller to the actuator as well. This configuration offers more

flexibility to the designer since there is no need to place the model/controller and

actuator/plant in the same node, or directly connect them using a dedicated wire.

Depending on the circumstances of the problem, it is many times preferable to use

the network to implement this controller to plant connection. The configuration is

shown in Fig. 1.1 in Chap. 1. The specific model-based implementation for a

system controller pair is shown in Fig. 13.5, where T is the sampling time of the

underlying system.
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13.2.1 Multirate Approach for Stability

Consider the plant and model dynamics (13.1) implemented as in Fig. 13.5, where

the entire state is transmitted from a single sensor node. Here the two switches are

closed at different constant rates, giving rise to the constant update intervals n andm.
Both n andm are integers and, whenmultiplied by the underlying sampling period of

the plant T, give rise to update periods that are multiples of the underlying sampling

period T. As a starting point we wish to find the bounding values of m and

n that preserve stability of a discrete-time MB-NCS using instantaneous feedback.

Note that in this case, between input updates, the input to the plant is held constant

in the actuator and it is equal to the last received value. We do not require any

special computation in the actuator it only needs to hold the most current update

from the controller.

Assume that n�m (low measurement rate, which is typical in many

implementations of physical systems). Define p¼ n/m, and p is assumed to be

an integer.

Theorem 13.3 The lifted system corresponding to Fig. 13.5 is asymptotically
stable if only if the eigenvalues of:
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Fig. 13.4 Response of system in Example 13.2 for two different choices of stabilizing update

periods: (top) s¼ 2 s. (Bottom) s¼ 2.26 s
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An þ
Xp�1

i¼0

HiΓi ð13:23Þ

lie inside the unit circle, where

Hi ¼
Xm
j¼1

An�im�jBK ð13:24Þ

Γ ¼ Â þ B̂ K
� �m

: ð13:25Þ

Proof Since p¼ n/m is an integer the period of the equivalent (see Fig. 2.13 in

Chap. 2) linear time-varying periodic system is n. Taking a similar approach as in

Sect. 13.1 we obtain an LTI system. In order to find the state equations of the lifted

system, let us describe the response of the system as a function of the input updates

that take place every m clock ticks. Following a similar approach as in Sect. 2.4.1

we obtain:

x knþ nð Þ ¼ Anx
�
kn
�þ 


An�1þ An�2þ . . . þAn�m
�
Bu knð Þ

þ
An�m�1þ An�m�2þ . . . þAn�2m
�
Bu knþ mð Þ

þ
An�2m�1þ An�2m�2þ . . . þAn�3m
�
Bu knþ 2mð Þþ ::::

ð13:26Þ

The input u is a function of the state of the plant at times kn and a function of the
state of the model otherwise. The state of the model between sensor updates can be

expressed in terms of the state of the plant at times kn as follows:

Plant

Modelu

mT nTx

K

NETWORK

x̂

Fig. 13.5 Model-based networked control system with communication network between

sensor-controller and controller-actuator
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u knð Þ ¼ Kx
�
kn
�

u knþ mð Þ ¼ Kx̂
�
knþ m

� ¼ K
�
Â þ B̂ K

�
mx
�
kn
�

u knþ 2mð Þ ¼ Kx̂
�
knþ 2m

� ¼ K
�
Â þ B̂ K

�
2mx
�
kn
�

⋮

ð13:27Þ

Note that the model has access at all times to the input that it generates as it can

be deduced from Fig. 13.5. The network connection is between the controller and

the plant, and the model is part of the controller. Equation (13.26) becomes:

x
�
k þ 1ð Þn� ¼ �An þ H0Γ0 þ H1Γ1 þ H2Γ2 þ ::::þ Hp�1Γp�1

�
x
�
kn
�

¼
�
An þ

Xp�1

i¼0

HiΓi

�
x knð Þ ð13:28Þ

where Hi and Γ are given in (13.24) and (13.25). Equation (13.28) represents a

discrete-time LTI system, therefore stability is achieved when the eigenvalues of

(13.23) lie inside the unit circle. ♦

Example 13.3 Consider now the following plant and model implemented as in

Fig. 13.5 where the network is also used to connect the controller to the plant.

T¼ 1 s.

A ¼ 0:9 0:1

0 1:07

� �
B ¼ 0:01

0:01

� �

Â ¼
0:9117 0:1054

0:0360 1:0672

 !
B̂ ¼

0:0109

0:0117

 !
K ¼ �2:3294 �17:6266ð Þ:

In this case we have two variables, n and m, and, intuitively, we expect a

decrease in the necessary value of n as m increases. An appropriate way to

proceed here then is as follows: first find the largest value of n for m¼ 1, that is,

find the value of h in Theorem 2.8 in Sect. 2.4.1. Then select a value for n less than
the value of h that we just found and find the divisors of n. With this information

we can plot the eigenvalues of (13.23) as a function of m. For the example in hand,

the highest value of h, from Theorem 2.8, is 29, so for illustrative purposes we can

fix n¼ 24 (the choice of n is taken considering the existence of a large number of

divisors to get p¼ n/m an integer). For this case the eigenvalues of equation

(13.23) are shown in Fig. 13.6. Note that the horizontal axis contains those values

of m that result in p being an integer. The response of the plant is shown in

Fig. 13.7. The first plot represents the response of the system by choosing

parameters n,m according to Fig. 13.6 for which all eigenvalues of (13.23) have

magnitude less than one (inside the unit circle). In the second plot the selected

parameters result in an unstable system since not all eigenvalues of (13.23) lie

inside the unit circle.
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Fig. 13.7 Response of the plant for n¼ 24 and different values of m for which: (a) stability is still

preserved and (b) system becomes unstable
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Fig. 13.6 Absolute value of the eigenvalues of equation (13.23) with n¼ 24
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Figure 13.8 shows all admissible pairs (n,m) in the range n< 30, i.e., those pairs

that result in p having an integer value, it also shows which of those pairs provide

stability for the system in Example 13.3.

In the previous analysis it was assumed that the controller update is held constant

in the actuator node. Both actuator and sensor node functions are simplified and

most of the computations are performed in the controller node. The holding

operation is one that, in general, restricts the model-based control properties. By

assuming that the actuator is able to receive and synchronize a sequence of input

values, we obtain an improved performance in the sense that the controller only

needs to receive a measurement update every h time units and compute a sequence

of predicted input values and send them all in one larger packet to the actuator.

When the controller node receives a measurement update from the sensor at time

k¼ tk, it predicts the sequence of inputs u(k) for k¼ tk . . . tk + h, that is, the controller
computes, instantaneously, the same sequence of control inputs that it would

compute for the traditional, one-channel MB-NCS configuration, over the time

horizon [tk, tk + h] and sends this sequence of input values to the controller. Since

the sensor updates are periodic, the model is updated at time k¼ tk+ h and performs

the same computations again but using the new sensor measurements that was just

received. The input sequence is sent to the actuator node in a single and larger

packet. The actuator synchronizes the sequence by applying each input value at the

corresponding time instant. By using this approach the results in Sect. 2.4.1 apply

directly to the two-channel MB-NCS configuration where only two updates are

necessary every h time units. The update from sensor to controller, then the update

from controller to actuator after a sequence of control inputs is calculated.

0 5 10 15 20 25 30
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10

15

20

25

30

n
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Fig. 13.8 Sets of admissible values of n and m for Example 13.3. (Filled square) represent the
pairs (n,m) that result in a stable system. (Multiplication sign) represent the pairs (n,m) that result

in an unstable system, the rest are inadmissible rates
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13.2.2 Two-Channel Networked Systems and Input Tracking

In order to show corresponding results for the input tracking problem when using a

two-channel network, we recall the transfer function representation that was used in

Sect. 11.3. In that section both the model and the controller were represented using

discrete-time input–output models. Additionally, we will also use similar event-

based strategies to determine the non-periodic update instants.

With respect to Fig. 13.5, the controller node contains the model T̂ zð Þ and the

controller C(z). The controller has access to the reference input signal as well.

When the controller node receives a measurement update from the sensor, it pre-

dicts the sequence of inputs u(k) and the corresponding sequence of model outputs

ŷ kð Þ for k¼ tk . . . tk+N, where tk is the latest update instant. This input and output

prediction is made assuming that the reference signal remains constant during the

prediction horizon N. The input sequence is sent to the actuator node in a single and
larger packet. The actuator synchronizes the sequence by applying each input value

at the corresponding time instant. Similarly, the model output sequence is sent to

the sensor node in order to obtain the output error and apply the event policy.

If no error event update has been generated before or at time tk +N, then a time-

triggered update takes place and a new output measurement is sent to the controller

to compute new sequences in order to repeat the cycle again for k¼ tk+ 1 . . . tk+ 1 +N
with tk+ 1¼ tk +N. Note that the control process can be periodic but not necessarily,
since an error event can occur at time tk +M, forM<N, which makes tk+ 1¼ tk+M.

Finally, the controller also contains the set-point detector and it will send a

request for a measurement update to the sensor node if a change in the set-point

value occurs. This new event will initialize the prediction cycle no matter if error or

time events have not been generated yet.

The results in Sect. 11.3 can be extended to consider this type of implementation

and by following some mild assumptions.

Corollary 13.4 Assume that:

– All nodes (actuator, controller, and sensor) for a given networked system are
synchronized.

– There exists a time-triggered sensor event equivalent to the duration of the input
and model output sequences that are predicted by the controller.

Then the plant output tracking error is bounded for any bounded reference step
input if

(a) The term 1+ T(z)C(z) has all its zeros inside the unit circle.
(b) The poles of the controller C(z) contain the factor (z-1).

(c) The poles of eT zð Þ have magnitude less than one. ♦
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13.3 Notes and References

The contents of Sect. 13.1 were first published in [90]. Results presented in

Sect. 13.2 can also be found in [82] and in [89]. The lifting methods used in this

chapter are based on common lifting techniques presented in [42]. See also [16, 26,

130] for additional discussion on lifting techniques.

The analysis, development, and controller synthesis for networks of

interconnected distributed systems has attracted significant attention within the

control systems community. Examples of such systems can be found in a wide

variety of applications such as power networks, multi-agent robotic systems, and

coordination of autonomous vehicles, large chemical processes comprised several

subsystems interacting one with each other, and also in areas that consider eco-

nomic and/or social systems. In addition, the availability of cheap, fast, embedded

sensor, and controller subsystems that are able to communicate via a shared digital

network allow for the different subsystems to share their local information with

other (possibly all other) subsystems so to achieve a common objective in a more

efficient way [34, 64, 233].

Multirate sampling has been used mainly to reduce computation effort in

sampled data systems [285]. The work in [285] provides experimental results of a

Model Predictive Control (MPC) multirate controller in which a multivariable plant

is approximated by three single-output models which are modeled and sampled at

different rates. The main purpose in this work is to sample the output representing

the slow dynamics of the system at a lower rate in order to reduce the dimension and

complexity of the optimization problem at those sampling instants when only the

fast dynamics are sampled. Other references concerning the implementation of

multirate MPC algorithms are [139, 226].

The multirate implementation generalizes the dual-rate approach frequently

used in sampled-data and networked systems [55, 56, 145] where two different

rates are used in the control system. These two rates correspond to the actuator

(fast rate) and the sensor (slow rate). In the dual-rate approach, it is assumed that

the entire output vector is measured and sent through the network at the same

time instant.

Multirate systems have also been studied using different approaches.

Vadigepalli and Doyle [253] developed a multirate version of the Distributed and

Decentralized Estimation and Control (DDEC) for large scale process based on

model distribution and internodal communication. The model distribution provides

a definition of the states of interest to be estimated locally by each node using

measurements that are sampled periodically using different intervals at each node.

Communication between nodes is used in order to share information due to the

interactions between local subsystems resulting from the model decomposition

overlapping states.
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Chapter 14

Distributed Control Systems

Many control applications consider the interaction of different subsystems or

agents. The increased use of communication networks has made possible the

transmission of information among different subsystems in order to apply improved

control strategies using information from distant subsystem nodes.

In recent years there has been a strong interest in the analysis, development, and

controller synthesis for networks of interconnected systems. The importance and

challenges of networks comprised from several to many subsystems or agents have

been recognized early by the research community [224]. Examples of such systems

can be found in a wide variety of applications such as: power networks, multi-agent

robotic systems and coordination of autonomous vehicles, large chemical processes

comprised of several subsystems interacting one with each other, and also in areas

that consider economic and/or social systems. In addition, the availability of

inexpensive, fast, embedded sensor and controller subsystems that are capable to

communicate via a shared digital network allows for the different subsystems

to share their local information with other (possibly the rest of) subsystems so it

can be used to achieve a common objective in a more efficient way [233]. However,

digital communication networks have limited bandwidth and not all agents can

communicate at a given time instant. It becomes necessary to be able to schedule

the broadcast of information by the different nodes in such a way that bandwidth

constraints are not violated.

It is in this type of applications where the model-based architectures studied

throughout this book provide great advantages in the sense of reducing needed

network communication compared to other techniques where models of the systems

are not used in the operation of the overall networked system. In the control of

distributed coupled systems the improvement in the use of network resources is

obtained by implementing models of other subsystems within each local controller.

E. Garcia et al., Model-Based Control of Networked Systems, Systems & Control:

Foundations & Applications, DOI 10.1007/978-3-319-07803-8_14,

© Springer International Publishing Switzerland 2014
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A simple representation of the setup under consideration in this chapter is

presented in Fig. 14.1 where the measurements can be transmitted over the network

and the arrows represent the physical interconnections or coupling of the

subsystems.

The first part of this chapter focuses on distributed systems that transmit infor-

mation at periodic time intervals. Section 14.1 studies the single-rate implementa-

tion where all nodes transmit at the same instants. Section 14.2 investigates

multirate implementations where each node uses its own periodic update interval.

The second part of the chapter discusses event-triggered control strategies

in distributed systems. Section 14.3 offers a centralized triggering condition.

Section 14.4 provides a decentralized triggering condition. Notes and references

are given in Sect. 14.5.

14.1 Single-Rate Periodic Communication

Throughout this book we have studied different control and communication strat-

egies that have been implemented using the MB-NCS framework. In the present

chapter similar strategies are now applied to the stabilization of coupled unstable

subsystems.

To simplify the analysis and to clearly explain the model-based implemen-

tation we restrict our attention to the case when all subsystems send measure-

ments to update the models in other subsystems using the same sampling period.

Next section will generalize this approach to the multirate periodic

communication case.

In this section we consider a network of N interconnected agents or subsys-

tems as seen in Fig. 14.1. Each subsystem has a discrete-time state-space

representation:

System 2System 1 System N

NETWORK

LCU 1 LCU 2 LCU N

. . . .

Fig. 14.1 Model-based network interconnected systems
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x1 k þ 1ð Þ ¼ A1x1
�
k
�þ B1u1

�
k
�þXN

j¼2

A1jxj kð Þ

x2 k þ 1ð Þ ¼ A2x2
�
k
�þ B2u2

�
k
�þ XN

j¼1, j6¼2

A2jxj kð Þ

⋮

xi k þ 1ð Þ ¼ Aixi
�
k
�þ Biui

�
k
�þ XN

j¼1, j6¼i

Aijxj kð Þ

⋮

xN k þ 1ð Þ ¼ ANxN
�
k
�þ BNuN

�
k
�þXN�1

j¼1

ANjxj kð Þ:

ð14:1Þ

In this framework each Local Control Unit (LCU) contains copies of the models

of all subsystems including the model corresponding to its own local dynamics

in order to generate estimates of the states of all subsystems in the network. Each

LCU does not necessarily need models of all subsystems but only of those agents

whose states need to be estimated by that particular local controller. The states that

need to be estimated by a particular controller, say LCUi, fall in one of two

categories: (a) the states that directly affect the model dynamics of system i, and
(b) the states that directly or indirectly affect the model dynamics of the states in (a),
the first category.

The model of each subsystem is represented by:

x̂ i k þ 1ð Þ ¼ Â ix̂ i kð Þ þ B̂ iû i kð Þ þ
XN

j¼1, j 6¼i

Â ijx̂ j kð Þ ð14:2Þ

for each i ∈ N, N denotes the set {1, 2, . . .N} of N integers where xi, x̂ i ∈ℝni

represent respectively the real state of the ith unit and the state of the corresponding

model, ui, û i ∈ℝmi represent the local input for subsystem or plant i and the input

for model i, respectively. The matrices Ai,Aij,Bi, Â i, Â ij, B̂ i are of appropriate

dimensions. Note that the subsystems could have different dynamics and different

dimensions, the dimensions mi and ni could be all different in general. Note also

that each LCUi has access to its local state xi at all times which is used to compute

the local subsystem control input:

ui kð Þ ¼ Kixi kð Þ þ
XN

j¼1, j6¼i

Kijx̂ j kð Þ: ð14:3Þ

An important point in this model-based distributed approach is to guarantee that all

subsystems have identical values of the estimated states, i.e., of the model states

(14.2). For instance, if a subset of the LCUs, N1�N, needs to generate estimates of

state xi, i.e., to generate x̂ i, we want to ensure that x̂
j
i ¼ x̂ l

i for all j, l ∈ N1, where x̂
j
i is
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the estimate of xi at LCUj. From (14.2) we can see that this task can be

accomplished by using the same model parameters at each LCU and also by feeding

each model the same input û i, and by repeating this procedure for all models in each

control unit. The control inputs (14.3) are unsuitable for this task since they depend

on the states of the real subsystems. In order to obtain the same estimated states in

all necessary control units we define the model control inputs as

û i kð Þ ¼ Kix̂ i kð Þ þ
XN

j¼1, j 6¼i

Kijx̂ j kð Þ: ð14:4Þ

These control inputs are applied to all models in all LCUswhereas (14.3) is applied

to each local subsystem. It is clear now that although LCUi computes an estimate x̂ i of

xi, this estimated state is not used to control subsystem i since we have the real state
available. At LCUi we use x̂ i as input for the models ensuring that the same model

equations with the same model control inputs are implemented at all LCUs.

Define the augmented plant and model-state vectors:

x ¼ x1T x2T . . . xnT
� �T

x̂ ¼ x̂ 1T x̂ 2T . . . x̂ nT
� �T

:
ð14:5Þ

The equations in (14.5) represent the states of all systems and all corresponding

models. The dynamics of the overall system and model can be represented by:

x k þ 1ð Þ ¼ Ax kð Þ þ Bu kð Þ ð14:6Þ

x̂ k þ 1ð Þ ¼ Â x̂ kð Þ þ B̂ û kð Þ: ð14:7Þ

The form of the matrices A, Â ∈ℝn�n and B, B̂ ∈ℝn�m where n ¼
XN
i¼1

ni and

m ¼
XN
i¼1

mi are as follows:

A ¼

A1 A12 . . . A1n

A21 A2 . . . A2n

⋮ ⋱ ⋮

An1 An2 . . . An

266664
377775 B ¼

B1 0 � � � 0

0 B2 0

⋮ ⋱ ⋮

0 0 . . . Bn

266664
377775

Â ¼

Â 1 Â 12 . . . Â 1n

Â 21 Â 2 . . . Â 2n

⋮ ⋱ ⋮

Â n1 Â n2 . . . Â n

266664
377775 B̂ ¼

B̂ 1 0 � � � 0

0 B̂ 2 0

⋮ ⋱ ⋮

0 0 . . . B̂ n

266664
377775:

ð14:8Þ
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We can describe the dynamics of the overall system as given in the next

proposition.

Proposition 14.1 Assume ; Â; B̂
� �

is stabilizable. The dynamics of the overall

system are represented by:

x k þ 1ð Þ ¼ Aþ BKdiag

� �
xþ BKoff x̂ ð14:9Þ

where Koff¼K�Kdiag. Kdiag¼ diag(Ki) is a matrix containing the controller
gains Ki as main diagonal sub-matrices. The controller K is a stabilizing controller

for the overall model dynamics, i.e., Â þ B̂ K is Hurwitz.

Proof We rewrite (14.6) in the next form

x k þ 1ð Þ ¼ Axþ Bu ¼ Axþ B Kdiagx kð Þ þ K � Kdiag

� �
x̂ kð Þ� � ð14:10Þ

where u is the augmented vector containing each agent local subsystem control inputs

u ¼ u1
T u2

T . . . un
T

� �T
: ð14:11Þ

Equation (14.10) can be simple rewritten as (14.9). ♦

Theorem 14.2 System (14.6) with control input u kð Þ ¼ Kdiagx kð Þ þ Koff x̂ kð Þ and
single-rate periodic updates of the states of the models is asymptotically stable if
only if the eigenvalues of

Aþ BKdiag

� �h þXh�1

j¼0

Aþ BKdiag

� �h�1�j
BKoff Â þ B̂ K

� �j ð14:12Þ

lie strictly inside the unit circle, where h is the sampling period.

Proof By Proposition 14.1 we have that the state equation containing all sub-

systems is given by (14.9). Equation (14.9) is of the form (2.64) with state matrix

A+BKdiag, controller gain Koff, and single-rate updates. Then Theorem (2.8) in

Chap. 2 can be applied directly using these modified matrices. Similarly, the lifted

system (Chap. 2)

x k þ 1ð Þhð Þ ¼ Aþ BKdiag

� �h þXh�1

j¼0

Aþ BKdiag

� �h�1�j
BKoff Â þ B̂ K

� �j !
x khð Þ

is an LTI system and it is asymptotically stable if and only if the eigenvalues of

(14.12) lie strictly inside the unit circle. ♦
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Example 14.1 We consider a network of N¼ 6 subsystems represented by (14.1)

all with different dynamics. The dimensions of the systems vary from 1 to 3 as well.

The models for all different parameters represent an uncertainty as follows: 12 %

alteration in the Ai matrices, 10 % in Aij, and 6 % in Bi. Some of the systems are

unstable and every agent is coupled to all other agents including those with different

dimensions by corresponding coupling matrices Aij. The eigenvalues of (14.12) are

shown in Fig. 14.2 for different values of h, the single-rate update rate. It can

be seen that for h� 11 the overall networked system is asymptotically stable.

Figures 14.3 and 14.4 show the response of all subsystems for the largest stabilizing

rate h¼ 11 and for initial conditions:

x1 0ð Þ ¼ 1, x2 0ð Þ ¼ 0:5 x3 0ð Þ ¼ 0:6
0:3

� �
, x4 0ð Þ ¼ �0:5

�0:4

� �
x5 0ð Þ

¼
1

0:5
0:6

24 35, x6 0ð Þ ¼
0:3
�0:5
�0:4

24 35

14.2 Multirate Periodic Communication

In this section we consider the same problem and approach as in the previous

section, but we do not restrict all updates to take place at the same time instants.

Instead, we allow each subsystem to use a different sampling period. This approach

results in a better usage of network resources. By allowing the sensors to transmit

their measurements using different sampling periods we reduce the probability of
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Fig. 14.2 Maximum eigenvalue of (14.12) for different values of h
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Fig. 14.3 Response of the first order systems (top) and the second order systems (bottom)
for h¼ 11
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Fig. 14.4 Response of the third order system 1 (top) and third order system 2 (bottom) for h¼ 11
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packet collisions and the size of networked induced delays compared to the case

when all of the sensors need to sample and transmit at the same instants. Addition-

ally, we will show that in many cases a further reduction in network communication

can be obtained by using different updating rates for each sensor compared to the

single-rate case shown in previous section.

Consider a set of N subsystems or agents as represented in Fig. 14.1. Each

subsystem can be represented by:

xi k þ 1ð Þ ¼ Aixi kð Þ þ Biui kð Þ þ
XN

j¼1, j 6¼i

Aijxj kð Þ: ð14:13Þ

Consider also the models in (14.2),

x̂ i k þ 1ð Þ ¼ Â ix̂ i kð Þ þ B̂ iû i kð Þ þ
XN

j¼1, j 6¼i

Â ijx̂ j kð Þ

for each i ∈ N, N denotes the set {1, 2, . . .N} of N integers where xi, x̂ i ∈ℝni

represent respectively the real state of the ith unit and the state of the corresponding

model, ui, û i ∈ℝmi represent the local input for subsystem i and for model i,

respectively. The matrices Ai,Aij,Bi, Â i, Â ij, B̂ i are of appropriate dimensions.

Note that the subsystems could have different dynamics and different dimensions,

the dimensionsmi and ni could all be different in general.Note also that eachLCUi has
access to its local state xi at all times which is used to compute the local subsystem

control input. The system control inputs ui and the model control inputs û i are given

by (14.3) and (14.4), respectively. Likewise, the overall networked system can be

represented by (14.6) and (14.7), where A, Â ∈ℝn�n and B, B̂ ∈ℝn�m with

n ¼
XN
i¼1

ni and m ¼
XN
i¼1

mi. The system and model matrices are given by (14.8).

Let si represent the sampling period that sensor i uses to send measurements in

order to update the states of all models corresponding to subsystem i, that is, a
measurement xi to update all models x̂ i. Let s represent the minimum common

multiple of all si.
In order to obtain the response of the overall networked system with multirate

samplings and using the model-based control inputs we define all the update instants

within a period s by arranging the periods si and its multiples up to before s in

increasing order as follows:

s1, 2s1, . . . , r1 � 1ð Þs1
s2, 2s2, . . . , r2 � 1ð Þs2
⋮
sN , 2sN , . . . , rN � 1ð ÞsN
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where ri ¼ s
si

for i¼ 1. . .N represents the relative sampling rate compared to

the sampling rate given by the period s. Let hi for i¼ 1. . .p-1 represent the update

instants in increasing order, where p is the total number of update instants within

a period s including the update at time s. Note that at any given instant one or

more sets of states x̂ i can be updated. This procedure can be better shown trough a

simple example.

Consider a set of three subsystems x1, x2, x3 with corresponding periods s1¼ 2,

s2¼ 3, s3¼ 4. Then we proceed to define all update instants within a period s¼ 12,

as follows:

h1 ¼ 2 ¼ s1

h2 ¼ 3 ¼ s2

h3 ¼ 4 ¼ 2s1 ¼ s3

h4 ¼ 6 ¼ 3s1 ¼ 2s2

h5 ¼ 8 ¼ 4s1 ¼ 2s3

h6 ¼ 9 ¼ 3s2

h7 ¼ 10 ¼ 5s1

Note that at the time instants h3, h4, h5 we have more than one system broad-

casting information for this example.

Let us define, in general, the update matrix corresponding to subsystem i:

Ii ¼
0 0 0

0 Ini 0

0 0 0

264
375

that is, the ith update matrix Ii ∈ ℝn� n contains an identity matrix at the position

corresponding to xi and zeros elsewhere.

Define

Ihi ¼ Ii þ Ij þ Ik . . .

The matrices Ihi represent all updates that take place at time instant hi.

Theorem 14.3 The overall networked system (14.6) with model-based control
inputs and with multirate model updates is asymptotically stable for given inter-
sample periods si if and only if the eigenvalues of

Aþ BKdiag

� �s þXp
i¼1

Aþ BKdiag

� �hp�hiΞhi�hi�1
Uhi�1 ð14:14Þ

14.2 Multirate Periodic Communication 335



lie inside the unit circle, where

Ξhi�hi�1
¼

Xhi�hi�1�1

j¼0

Aþ BKdiag

� �hi�hi�1�1�j
BKoff Â þ B̂ K

� �j
Uhi ¼ I � Ihið Þ�Â þ B̂ K

�
hi�hi�1Uhi�1 þ Ihi

��
Aþ BKdiag

�
hi

þ
Xi
q¼1

Aþ BKdiag

� �hi�hqΞhq�hq�1
Uhq�1

�
with h0 ¼ 0, Uh0 ¼ I, hp ¼ s.

Proof Let us consider the beginning of a period s. At this time instant all sensors

send measurements and we have that x̂ ksð Þ ¼ x ksð Þ. At the time of the first update

after time ks, that is, at time ks + h1 we have:

x ksþ h1ð Þ ¼ ��Aþ BKdiag

�
h1 þ

Xh1�1

j¼0

Aþ BKdiag

� �h1�1�j
BKoff Â þ B̂ K

� �j�
x ksð Þ

¼ � Aþ BKdiag

� �h1 þ Ξh1

�
x
�
ks
�

and the model state after the update has taken place is given by:

x̂ ksþ h1ð Þ ¼ ��I � Ih1
��
Â þ B̂ K

�
h1 þ Ih1

��
Aþ BKdiag

�
h1 þ Ξh1

��
x
�
ks
�

¼ Uh1x kð Þ:

Following a similar analysis we can obtain the response of both the system and

the model at time ks + h2 as a function of x(ks + h1) and x̂ ksþ h1ð Þ:

x ksþ h2ð Þ ¼ Aþ BKdiag

� �h2�h1x ksþ h1ð Þ

þ
Xh2�h1�1

j¼0

Aþ BKdiag

� �h2�h1�1�j
BKoff Â þ B̂ K

� �j
x̂ ksþ h1ð Þ

x̂ ksþ h2ð Þ ¼ I � Ih2ð Þ Â þ B̂ K
� �h2�h1

x̂ ksþ h1ð Þ þ Ih2x ksþ h2ð Þ

but, since both x(ks + h1) and x̂ ksþ h1ð Þ can be expressed in terms of x(ks), we get:

x ksþ h2ð Þ ¼ Aþ BKdiag

� �h2 þ Aþ BKdiag

� �h2�h1Ξh1 þ Ξh2�h1Uh1

� 	
x ksð Þ

x̂ ksþ h2ð Þ ¼ ��I � Ih2
��
Â þ B̂ K

�
h2�h1Uh1

þ Ih2
�
Aþ BKdiag

� �h2 þ �Aþ BKdiag

�
h2�h1Ξh1 þ Ξh2�h1Uh1

��
x
�
ks
�

¼ Uh2x ksð Þ:
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By following the same analysis for each updating instant hi up to hp¼ s we

obtain the following

x k þ 1ð Þsð Þ ¼ Aþ BKdiag

� �s þXp
i¼1

Aþ BKdiag

� �hp�hiΞhi�hi�1
Uhi�1

 !
x ksð Þ

ð14:15Þ

Since (14.15) represents an LTI system then the overall networked system is

asymptotically stable when the eigenvalues of (14.14) lie inside the unit circle. ♦

Example 14.2 We use the same set of systems and models as in Example 14.1 with

the same initial conditions. By allowing the agents to broadcast their states using

different rates we are able to asymptotically stabilize the overall system and to

further reduce the communication between agents. There exist many combinations

of periods si that result in a stable system. The next selection that significantly

increases the sampling periods and reduces network traffic compared to h¼ 11 in

Example 14.1 was used in the simulation shown in Figs. 14.5 and 14.6,

s1 ¼ 60, s2 ¼ 15, s3 ¼ 10, s4 ¼ 10, s5 ¼ 30, s6 ¼ 12:
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Fig. 14.5 Response of the first order systems (top) and the second order systems (bottom)
for s1¼ 60, s2¼ 15, s3¼ 10, s4¼ 10
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This selection increases the update time intervals of subsystems 1,2,5, and 6 by

49, 6, 19, and 3 sampling instants of the plant, respectively, while reducing

the update time intervals of subsystems 3 and 4 by only one sampling interval

of the plant.

14.3 Centralized Model-Based Event-Triggered Control

A different way to schedule model updates using the model-based approach was

shown in Chap. 6. The Model-Based Event-Triggered (MB-ET) approach, in

contrast to the periodic implementation, adjusts the broadcasting intervals

according to the current state error. In this section we extend the MB-ET strategy

to consider multiple coupled subsystems. Each LCU is in charge of evaluating its

own local state error in order to decide the time instants in which the real state needs

to be broadcasted to the other agents so all LCUs that implement the model

corresponding to that particular control unit that has sent information update the

corresponding model state.
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Fig. 14.6 Response of the third order system 1 (top) and third order system 2 (bottom) for
s5¼ 30, s6¼ 12
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In this section we consider a network of N interconnected continuous-time

subsystems or agents. Each subsystem can be described by a state-space represen-

tation as follows:

_xi ¼ Aixi þ Biui þ
XN

j¼1, j 6¼i

Aijxj ð14:16Þ

for each i ∈ N, where N is the set {1, 2, . . .N} of N integers; xi ∈ ℝni represents the

state of the ith subsystem, ui ∈ ℝmi represents the local input for subsystem i.
Ai ∈ ℝni� ni,Aij ∈ ℝni� nj,Bi ∈ ℝni�mi represent respectively the state,

coupling, and input matrices for the ith subsystem.

In this framework each LCU contains copies of the models of all subsystems

including the model corresponding to its own local dynamics in order to generate

estimates of the states of all subsystems in the network. Each LCU does not

necessarily need models of all subsystems but only of those agents whose states

need to be estimated by that particular local controller as it was explained earlier in

this chapter.

The model of each subsystem is

_̂x i ¼ Â ix̂ i þ B̂ iû i þ
XN

j¼1, j 6¼i

Â ijx̂ j ð14:17Þ

where x̂ i ∈ℝni represents the state of the ith model, û i ∈ℝmi represents the local

input for model i. The matrices Â i ∈ℝni�ni, Â ij ∈ℝni�nj, B̂ i ∈ℝni�mi represent the

nominal parameters of the dynamics of the ith subsystem. Note that the subsystems

could have different dynamics and different dimensions, the dimensions mi and ni
could be all different in general. Note also that each LCUi has access to its local

state xi at all times which is used to compute the local subsystem control input:

ui ¼ Kixi þ
XN

j¼1, j 6¼i

Kijx̂ j ð14:18Þ

and the local model-state error which is defined as:

ei ¼ x̂ i � xi ð14:19Þ

where Ki and Kij are the stabilizing control gains to be designed.

By measuring its local error, each LCUi is able to decide the appropriate times at

which it should broadcast the current measured state xi to all other units so all

LCU’s can update the state of their local models x̂ i corresponding to xi. At the same

time the LCU that broadcasted its state needs to update its own local model

corresponding to xi and the error ei is set to 0. We assume that the communication

delay is negligible and the initial conditions of the plant are nonzero but finite.
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Note that when the LCUs update the state of the model corresponding to xi then
the error ei is set to 0 and therefore it is less than the positive threshold that is used to
determine the update instants.

Similar to previous sections in this chapter, we want to guarantee that the models

in all necessary LCUs of any given state xi produce the same estimated state. For the

MB-ET approach used in this section enforcing this step also guarantees that the

local error (14.19) is the same for all nodes as well.

Using this framework, we can see from (14.18) that the input ui for the agent i is
not an appropriate input for the corresponding model. The input for the local

subsystem is a function of the real state which is not always available to the other

agents. In order to make sure that every agent in the network computes the same

estimate of the states of all agents we need to use the same parameters for the model

equations (14.17) and we also need to implement control inputs for the models that

can be executed at every LCU. We define the model inputs

û i ¼ Kix̂ i þ
XN

j¼1, j 6¼i

Kijx̂ j: ð14:20Þ

These control inputs are applied to all models in all LCUs whereas (14.18) is

applied to each local subsystem. It is clear now that although LCUi computes an

estimate x̂ i of xi, this estimated state is not used to control subsystem i since we have
the real state available. At LCUi we use x̂ i as input for the models ensuring that the

same model equations with the same model control inputs are implemented at

all LCUs.

The first approach to compute the stabilizing controllers and thresholds is

presented in this section and it is based on the dynamics of the overall system and

model. The time instants at which each agent needs to send its information to the

network can be computed locally by each LCU.

Let us introduce the augmented vectors:

x ¼ x1
T x2

T . . . xn
T½ �T

x̂ ¼ x̂ 1
T x̂ 2

T . . . x̂ n
T

� �T
e ¼ e1

T e2
T . . . en

T½ �T :
ð14:21Þ

The dynamics of the overall system and model can be represented by:

_x ¼ Axþ Bu ð14:22Þ
_̂x ¼ Â x̂ þ B̂ û : ð14:23Þ

The form of the matrices A ∈ ℝn� n,B ∈ ℝn�m, where n ¼
XN
i¼1

ni and

m ¼
XN
i¼1

mi, are as follows:
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A ¼

A1 A12 . . . A1n

A21 A2 . . . A2n

⋮ ⋱ ⋮
An1 An2 . . . An

266664
377775

B ¼

B1 0 � � � 0

0 B2 0

⋮ ⋱ ⋮
0 0 . . . Bn

266664
377775

ð14:24Þ

and similarly for Â and B̂ : We describe the dynamics of the overall system in the

next proposition.

Proposition 14.4 Assume ; Â; B̂
� �

is stabilizable. The dynamics of the overall

system can be represented by:

_x ¼ Aþ BKð Þxþ BKoff e ð14:25Þ

where Koff¼K�Kdiag. Kdiag¼ diag(Ki) is a matrix containing the controller
gains Ki as main diagonal sub-matrices. The controller K is a stabilizing controller

for the overall model dynamics, i.e., the matrix Â þ B̂ K is Hurwitz.

Proof We rewrite (14.22) in the next form

_x ¼ Axþ Bu ¼ Axþ B Kdiagxþ K � Kdiag

� �
x̂

� �
where u is the augmented vector containing each agent local subsystem control

inputs

u ¼ u1T u2T . . . unT
� �T

: ð14:26Þ

From (14.21) we have that e ¼ x̂ � x and we can write

_x ¼ Axþ BK xþ eð Þ � BKdiage
¼ Aþ BKð Þxþ BKoff e: ♦

In order to asymptotically stabilize all agents from their finite initial conditions

we implement a similar strategy as in Chap. 6. The main idea is to reduce the

threshold value as we approach the equilibrium point of the system. This can be

achieved by comparing the norm of the error to a function of the norm of the state.

The norm used in the next results is the Euclidean norm.

Consider again the plant and model described by (14.22) and (14.23) and

by using the control input u ¼ Kdiagxþ Koff x̂ we obtain expression (14.25) for
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the plant with K rendering Â þ B̂ K Hurwitz, i.e., the closed-loop model is globally

asymptotically stable. Then we can always find a P which is symmetric positive

definite and is the solution of the closed-loop model Lyapunov equation:

Â þ B̂ K
� �T

Pþ P Â þ B̂ K
� � ¼ �Q ð14:27Þ

where Q is a symmetric positive definite matrix.

Let us first analyze the case when B̂ ¼ B for simplicity, and define the

uncertainty eA ¼ A� Â . Also assume that the next bound on the uncertaintyeATPþ PeA


 


 � Δ < q holds where q ¼ σ Qð Þ, the smallest singular value of Q in

the Lyapunov equation (14.27) and Δ is a bound on the norm of the uncertainty.

This bound can be seen as a measure of how close A and Â should be.

The next theorem provides conditions on the error and its threshold value so the

networked system is asymptotic stable. The error threshold is defined as a function

of the norm of the state and Δ. Additionally, the error events can be computed

locally, that is, once the thresholds have been designed each agent can decide when

to broadcast its current measurement to the rest of the agents based only on the

measurements of its own state and its own error.

Theorem 14.5 System (14.22) with u ¼ Kdiagxþ Koff x̂ and feedback based on

error events generated when the relation:

eij j > α xij j ð14:28Þ

is first satisfied, is globally asymptotically stable, where α¼ σ(q�Δ)/b, b ¼ 2

PB̂ Koff



 

 and 0< σ< 1.

Proof In order to prove this theorem we will set a bound on the derivative

of V¼ xTPx along the trajectories of the system (14.25) which is equal to (14.22)

when the input u ¼ Kdiagxþ Koff x̂ has already been substituted and expressed in

terms of the state error, then we can easily show that this bound can be appropriately

tuned by the choice of the threshold on the error.

_V ¼ xT
�
Aþ BKð ÞTPþ P

�
Aþ BK

��
xþ eTKoff

TBTPxþ xTPBKoff e

¼ xT
�

Â þ eA þ B̂ K
� 	T

Pþ P
�
Â þ eA þ B̂ K

��
xþ 2xTPB̂ Koff e

¼ �xTQxþ xT eATPþ PeA� 	
xþ 2xTPB̂ Koff e:

We have just expressed _V in terms of the model parameters and the uncertainty

of the state matrix A. We now proceed to evaluate the contributions of each, the

model, the uncertainty, and the error.
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_V � �q xj j2 þ eATPþ PeA


 


 xj j2 þ 2 PB̂Koff



 

 ej j xj j
� �qþ Δð Þ xj j2 þ b ej j xj j: ð14:29Þ

Now, by sending updates according to (14.28), which sets the error equal to 0 at

every update time, we can see first that

eij j2 � α2 xij j2

and

ej j2 ¼
XN
i¼1

eij j2 �
XN
i¼1

α2 xij j2 ¼ α2 xj j2:

Since α> 0 and the norms are always nonnegative then we have that

ej j � α xj j: ð14:30Þ

We can use (14.30) in (14.29) to obtain

_V � σ � 1ð Þ q� Δð Þ xj j2: ð14:31Þ

Then V is guaranteed to decrease for any σ such 0< σ< 1 and updating the

elements of the state of the models in all LCUs according to the events in (14.28).♦

The extension to consider the case of Â 6¼ A and B̂ 6¼ B is straightforward by

assuming that the next bounds on the uncertainty matrices hold:

eA þ eBK� 	T
Pþ P eA þ eBK� 	



 



 � Δ < q ð14:32Þ

eB

 

 � β ð14:33Þ

where eB ¼ B� B̂ . In order to obtain (14.31) the local errors are set to satisfy

(triggering an update otherwise):

eij j � σ q� Δð Þ
b

xij j ð14:34Þ

where b ¼ bþ 2β Kj j Pj j.
By following the approach described above each LCU is capable of determining

the time instants at which it should send its current measurement to the network. An

important drawback in Theorem 14.5 is that the controller is designed based on the
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model dynamics of the overall system and the threshold is calculated as a function

of the bounds on the uncertainty of the augmented system as well. In the next

section we offer a complete decentralized solution, that is, not only the LCUs

update their states based on local information but the local controllers and the

local thresholds, which are not necessarily the same for every agent as in Theorem

14.5, can also be designed based on local model dynamics and uncertainty bounds.

14.4 Decentralized Model-Based Event-Triggered Control

Consider the network of coupled subsystems represented by (14.16) with models

(14.17). We assume that every pair Âi; B̂i

� �
is stabilizable. We design controllers Ki

that render the matrices Â i þ B̂ iKi Hurwitz. Then for every agent i, i ∈ N, there

exists a symmetric and positive definite Pi which is the solution of the closed-loop

local decoupled model

Â i þ B̂ iKi

� �T
Pi þ Pi Â i þ B̂ iKi

� � ¼ �Qi ð14:35Þ

where Qi is a symmetric and positive definite matrix.

Theorem 14.6 Let (14.18) be the control input for each agent in the networked
system (14.16). Assume that the following bounds are satisfied

eAi þ eBiKi

� 	T
Pi þ Pi

eAi þ eBiKi

� 	



 



 � Δi < qi ð14:36Þ

XN
j¼1, j6¼i

Pj
eAji




 


2 � Wi � f 2i
8 N � 1ð Þ ð14:37Þ

where qi ¼ σ Qið Þ, fi¼ qi�Δi and eAji ¼ Aji � BjKji. Then the networked system
(14.16) is globally asymptotically stable when the local events are triggered by

eij j2 > χi
βi

xij j2 ð14:38Þ

where χi ¼ f i � 2 N � 1ð Þδi �Wi

δi
, βi ¼

XN
j¼1, j 6¼i

PjBjKji



 

2
δi

, and δi is such that

δi1 < δi < δi2 if δi1 > 0

0 < δi < δi2 if δi1 � 0

�
ð14:39Þ
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with

δi1 ¼ f i
N � 1

1

4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

16
� N � 1ð ÞWi

2f i
2

s !
ð14:40Þ

δi2 ¼ f i
N � 1

1

4
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

16
� N � 1ð ÞWi

2f i
2

s !
: ð14:41Þ

Proof We consider the candidate Lyapunov function

V xð Þ ¼
XN
i¼1

Vi xið Þ ð14:42Þ

and use the following proposition.

Proposition 14.7 The derivative of Vi¼ xi
TPixi along the trajectories of subsystem

i in (14.16) with control input (14.18) satisfies the inequality.

_Vi � ��f i � 2 N � 1ð Þδi
�
xij j2

þ
XN

j¼1, j 6¼i

Pi
eAij




 


2
δi

xj


 

2 þ XN

j¼1, j 6¼i

PiBiKij



 

2
δi

ej


 

2: ð14:43Þ

Proof of Proposition 14.7 Consider the local Lyapunov function Vi¼ xi
TPixi and

compute its derivative along the trajectories of subsystem i in (14.16) using the

local control input (14.18) to obtain

_Vi ¼ xi
T
�
Â i þ B̂ iKi

� �T
Pi þ Pi

�
Â i þ B̂ iKi

��
xi þ xi

T
��eAi þ eBiKi

�
TPi þ Pi

�eAi þ eBiKi

��
xi

þ xi
TPi

XN
j¼1j 6¼i

eAijxj þ
XN
j¼1j 6¼i

BiKijxj

 !
þ

XN
j¼1j 6¼i

eAijxj þ
XN
j¼1j 6¼i

BiKijxj

 !T

Pixi

ð14:44Þ

and consider the next inequality involving the vectors μ ∈ ℝn, ν ∈ ℝm

δμ� Πνj j2 � 0 ð14:45Þ

where Π ∈ ℝn�m and δ is any positive real constant. Equation (14.45) can be

expanded to yield

μTΠν � Πνj j2
2δ

þ δ μj j2
2

ð14:46Þ
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Applying (14.44) to (14.41) we obtain

_Vi � �qi xij j2 þ Δi xij j2 þ
XN

j¼1, j 6¼i

Pi
eAij




 


2
δi

xj


 

2 þ δi xij j2

0B@
1CA

þ
XN

j¼1, j 6¼i

PiBiKij



 

2
δi

ej


 

2 þ δi xij j2

0@ 1A
Finally, we write the terms involving |xi|

2 together and we obtain (14.43). ♦

Now, taking the derivative of the Lyapunov function V along the trajectories of

the state x¼ [x1
T x2

T . . . xn
T]T results in the next expression

_V xð Þ ¼
XN
i¼1

_Vi xið Þ

�
XN
i¼1

� f i � 2 N � 1ð Þδið Þ xij j2 þ
XN
i¼1

XN
j¼1, j 6¼i

Pi
eAij




 


2
δi

xj


 

2 þXN

i¼1

XN
j¼1, j 6¼i

PiBiKij



 

2
δi

ej


 

2:

We consider the case where all subsystems can receive measurement updates

from the rest of the agents in the network, although this is not a necessary condition

for the validity of the results in this theorem. It suffices for each agent i, i ∈ N to

establish a bidirectional communication to those agents for which exchange of

information is needed, that is, those agents that need to estimate the state xi in any of
their models and the agents for which agent i needs to estimate their state to use in

any of their models. Then we can use the symmetry property of this type of

interconnection to obtain

_V xð Þ �
XN
i¼1

� f i � 2 N � 1ð Þδið Þ xij j2 þ
XN
i¼1

XN
j¼1, j6¼i

Pj
eAji




 


2
δi

xij j2 þ
XN
i¼1

XN
j¼1, j6¼i

PjBjKji



 

2
δi

eij j2

� �
XN
i¼1

χi xij j2 �
XN
i¼1

βi eij j2
 !

:

ð14:47Þ

It is clear that coefficients βi are positive and, in order for condition (14.36) to be
a valid threshold we need the χi coefficients to be positive as well, which requires to
solve the following inequalities for the real parameter δi

χi ¼ f i � 2 N � 1ð Þδi �Wi

δi
> 0

δi > 0

ð14:48Þ
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It can be verified that the solution for the above inequalities is given by (14.39)

with δi1,i2 as in (14.40) and (14.41), moreover the solution is a real number by the

assumption on the bounds Wi. Since we showed that χi, βi> 0 then the Lyapunov

function is guaranteed to decrease by updating the models in all LCUs

corresponding to the state xi according to the threshold (14.38).

The parameters Δi represent given bounds on the norm of the uncertainty for

every agent and they can be seen as a measure of how close the model and system

dynamics are. The bound Wi represents a measure of how close we are able to

cancel the effects of other subsystems on system i using the control gains that are

designed based on the nominal models.

Example 14.3 Consider a network of N¼ 10 unstable subsystems represented as in

(14.16) all with different dynamics. The dimensions of the systems vary from 1 to

3 as well. The models for all different parameters represent an uncertainty as

follows: 12 % alteration in the Ai matrices, 10 % in Aij, and 6 % in Bi. Every

agent is coupled to all other agents including those with different dimensions by

corresponding coupling matrices Aij.

The unknown dynamics of the subsystems are given by:

A1 ¼ 0:4, B1 ¼ 1

A2 ¼ 0:5, B2 ¼ 1

A3 ¼ 0:2, B3 ¼ 1

A4 ¼ 1, B4 ¼ 1

A5 ¼
0:21 �0:4

0:3 �0:7

" #
, B5 ¼

1 0

0 1

" #

A6 ¼
0:3 2

0:6 �1:8

" #
, B6 ¼

1 0

0 1

" #

A7 ¼
0:05 0:003

0:0023 �0:7

" #
, B7 ¼

1 0

0 1

" #

A8 ¼
0:11 �0:41 0

0 0:3 �0:7

0 �0:3 �0:5

264
375, B8 ¼

1 0 0

0 1 0

0 0 1

264
375

A9 ¼
0:3 2 �0:07

0 0:09 �1

0:1 0 0:2

264
375, B9 ¼

1 0 0

0 1 0

0 0 1

264
375

A10 ¼
0:05 0:003 0:5

0 0:0023 �0:7

�0:3 0 �0:5

264
375, B10 ¼

1 0 0

0 1 0

0 0 1

264
375
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The nominal model parameters are given by:

Â 1 ¼ 0:352, B̂ 1 ¼ 0:95

Â 2 ¼ 0:44, B̂ 2 ¼ 0:95

Â 3 ¼ 0:176, B̂ 3 ¼ 0:95

Â 4 ¼ 0:88, B̂ 4 ¼ 0:95

Â 5 ¼
0:1848 �0:352

0:264 �0:616

" #
, B̂ 5 ¼

0:95 0

0 0:95

" #

Â 6 ¼
0:264 1:76

0:528 �1:584

" #
, B̂ 6 ¼

0:95 0

0 0:95

" #

Â 7 ¼
0:044 0:0026

0:002 �0:616

" #
, B̂ 7 ¼

0:95 0

0 0:95

" #

Â 8 ¼
0:0968 �0:3608 0

0 0:264 �0:616

0 �0:264 �0:44

264
375, B̂ 8 ¼

0:95 0 0

0 0:95 0

0 0 0:95

264
375

Â 9 ¼
0:264 1:76 �0:0616

0 0:0792 �0:88

0:88 0 0:176

264
375, B̂ 9 ¼

0:95 0 0

0 0:95 0

0 0 0:95

264
375

Â 10 ¼
0:044 0:0026 0:44

0 0:002 �0:616

�0:264 0 �0:44

264
375, B̂ 10 ¼

0:95 0 0

0 0:95 0

0 0 0:95

264
375

Every agent is coupled to all other agents including those with different dimen-

sions by corresponding coupling matrices Aij. The unknown coupling matrices are

given by:

Aij ¼ c1 for i ¼ 1, 2, 3, 4; j ¼ 1, 2, 3, 4; i 6¼ j:

Aij ¼ c1 c1½ � for i ¼ 1, 2, 3, 4; j ¼ 5, 6, 7:

Aij ¼ c2 c2 c2½ � for i ¼ 1, 2, 3, 4; j ¼ 8, 9, 10:

Aij ¼ c1 c1½ �T for i ¼ 5, 6, 7; j ¼ 1, 2, 3, 4:

Aij ¼ c2 0

0 c2

� �
for i ¼ 5, 6, 7; j ¼ 5, 6, 7; i 6¼ j:

Aij ¼ c3 0 c3
0 c3 0

� �
for i ¼ 5, 6, 7; j ¼ 8, 9, 10:

Aij ¼ c2 c2 c2½ �T for i ¼ 8, 9, 10; j ¼ 1, 2, 3, 4:
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Aij ¼
c3 0 c3

0 c3 0

" #T
for i ¼ 8, 9, 10; j ¼ 5, 6, 7:

Aij ¼
c3 0 0

0 c3 0

0 0 c3

264
375 for i ¼ 8, 9, 10; j ¼ 8, 9, 10; i 6¼ j:

for c1¼ 0.5, c2¼ 0.4, c3¼ 0.1. The nominal coupling matrices Â ij are of the same

form but with ĉ 1 ¼ 0:45, ĉ 2 ¼ 0:36, ĉ 3 ¼ 0:09:
The local controllers and thresholds are designed following the decentralized

approach in this section, where only the model parameters and the bounds on the

uncertainties are used. The results of simulations are shown in Figs. 14.7 and 14.8.

In the top portion of Fig. 14.7 it can be seen the norm of the augmented state, that is,

the response of all states of all subsystems. Figure 14.8 and the bottom portion of

Fig. 14.7 show the broadcasting periods for every agent in the networked system.

Figure 14.7 (bottom) represent the broadcasting periods for the four first order

systems, Fig. 14.8 (top) for the 3 s order systems, and Fig. 14.8 (bottom) for the

three third order systems.
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Fig. 14.7 The norm of the state of the overall system is shown in the top. The broadcasting period
for subsystems 1–4 is shown at the bottom
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Example 14.4 In this example we consider a collection of three coupled carts. The

physical coupling corresponds to the springs used to connect the carts to each other,

and assume that at the equilibrium of the system, all springs are not stretched.

The dynamics of each cart and its corresponding model can be described by (14.16)

and (14.17), respectively with

Ai ¼
0 1

�cik 0

" #
, Bi ¼

0

1

" #
, Aij ¼

0 0

dij 0

" #
,

Â i ¼
0 1

�cik̂ 0

" #
, B̂ i ¼

0

1

" #
, Â ij ¼

0 0

d̂ ij 0

" #
,

where c1¼ c3¼ 1, c2¼ 2, k¼ 5, d12¼ d32¼ d21¼ d23¼ 1, and d13¼ d31¼ 0. The

model parameters are k̂ ¼ 4:95, d̂ 13 ¼ d̂ 31 ¼ 0, and the remaining d̂ ij ¼ 1:01.

Results of simulations of this example are shown in Fig. 14.9. In this simulation, the

carts start with an initial condition that represents stretched springs and the purpose

is to control the carts motion to reach an equilibrium where the springs are not

stretched.
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Fig. 14.8 Broadcasting period for subsystems 5–7 (top) and 8–10 (bottom)
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14.5 Notes and References

In this chapter the MB-NCS approach that was introduced in Chap. 2 has been

extended to consider networks of coupled systems using periodic communication

and using multirate sampling for discrete-time systems and using event-triggered

control for continuous-time systems.

The work discussed in Sects. 14.1 and 14.2 appeared first in [90]. The work

discussed in Sects. 14.3 and 14.4 was first published in [85].

The event-triggered control has been extended to consider networked

interconnected systems in [50, 53, 54, 95, 102–104, 177, 178, 228, 265]. A common

characteristic in the previous work on event-triggered control is the use of a Zero-

Order-Hold (ZOH) model in the controller node and the assumption that the models

being used are the same as the plants they represent, i.e., no model uncertainties are

considered. Similar model-based approaches for stabilization of coupled systems and

for cooperation of multi-agent systems have been presented in [52, 96, 240–243].

In Chap. 6 the Model-Based Event-Triggered (MB-ET) control framework that

considered model uncertainties was presented. Here, we extended that approach to

consider multiple interconnected subsystems. This strategy represents considerable
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Fig. 14.9 The norm of the state of the overall system in example 14.4 is shown in the top.
The broadcasting period (in seconds) for each cart is shown at the bottom
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savings on network bandwidth compared to similar work in the literature that use

model-based implementations.

Similar model-based implementations to the one presented in this chapter that

consider systems with distributed sensors can be found in [66, 240–243]. In [240]

the authors study the stabilization of coupled continuous-time systems employing

the MB-NCS framework described in Chap. 2 of this book and using a single-rate

approach which forces all agents to send measurement updates through the network

all at the same time instants. That approach was extended in [66, 242, 243] to the

case when a schedule for the updates is pre-assigned but all subsystems still use the

same update rate, i.e., a single-rate approach in which the agents send updates at

different time instants.

In [241] the same problem is considered using event-triggered control tech-

niques but the proposed solution requires the opposite updating strategy as the one

we present in Sect. 14.4; all agents need to communicate or send their information

to agent i when the error ei grows large, that is, agent i needs to send a request for

updates to all other agents, then all agents need to respond and send their current

measurements to agent i all of them at the same time instant, which may produce

packet collisions and loss of information. In addition, since the update request is

based on the local error ei, we could be requesting all other agents to send their

information to agent i when it is not necessary, i.e., their local errors are small and

the growth of ei may be due to large local parameter uncertainty or due to only one

or very few errors from other agents.

The strategy proposed here avoids the unnecessary increase in communication

by simply making agent i to broadcast its state according to its local error. If all

agents including agent i have the same estimate x̂ i of xi then when the error ei is
large by an appropriate measure we know it is necessary for all agents to receive the

real state and update the state of the model x̂ i.

The decentralized method described in this section extends the results provided

by [261]. In [261] only a ZOHmodel is used, that is, the control input for each agent

remains constant between updates. With respect to previous work in event-triggered

control, the implementation of this strategy using MB-NCS accounts for the

unavoidable existence of model uncertainties in the stability analysis.
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Appendix A

This appendix contains a brief review of basic tools, concepts, and methods that

have been used in this book. Essential notions concerning linear algebra, control

theory, linear systems, and Lyapunov analysis are described in the following

sections.

Linear Algebra

Vector norms and matrix norms. Let V be a vector space over ℝ (the field of real

numbers) or ℂ (the field of complex numbers). A real valued scalar function k · k
defined on V is said to be a vector norm if it satisfies the following properties:

– kxk� 0.

– kxk¼ 0 if and only if x¼ 0.

– kαxk¼ |α|kxk, for any scalar α. |α| denotes the absolute value of α.
– kx+ yk�kxk+ kyk, also called triangle inequality property.

for any x, y ∈ V.

The norm generalizes the usual concept of length in lower dimensional

Euclidean spaces. The p-norm of vector x is defined as

xk kp ¼
Xn
i¼1

xij jp
 !1=p

ðA:1Þ

for 1� p�1. Particular cases of interest include p¼ 1, 2,1 and the

corresponding norms are defined as follows:

E. Garcia et al., Model-Based Control of Networked Systems, Systems & Control:

Foundations & Applications, DOI 10.1007/978-3-319-07803-8,

© Springer International Publishing Switzerland 2014
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xk k1 ¼
Xn
i¼1

xij j ðA:2Þ

xk k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

xij j2
s

ðA:3Þ

xk k1 ¼ max1�i�n xij j: ðA:4Þ

For a matrix A ∈ ℂm� n we can define the matrix norm induced by a vector p-
norm in the following way

Ak kp ¼ supx 6¼0

Axk kp
xk kp

: ðA:5Þ

From a system theoretic point of view the matrix induced norms can be seen as

input/output amplification gains. A particular case of this type of norm is given by

the induced 2-norm which can be computed as follows

Ak k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmax A�Að Þ

p
ðA:6Þ

where λmax(A*A) represents the largest eigenvalue of the symmetric matrix A*A,
where A* denotes the conjugate transpose matrix of A.

Eigenvalues and eigenvectors. The eigenvalues λi, i¼ 1,. . .,n of a square matrix

A ∈ ℂn� n are the n roots of its characteristic polynomial

p λð Þ ¼ det λI � Að Þ: ðA:7Þ

A right eigenvector of matrix A is a non-zero vector x ∈ ℂn that satisfies

Ax ¼ λx: ðA:8Þ

Note that if x is an eigenvector of A, then any αx, α 6¼ 0 scalar, is also an

eigenvector of A. Similarly, a left eigenvector of matrix A is a non-zero vector

y ∈ ℂn that satisfies the following

y�A ¼ λy� ðA:9Þ

where the notation y* represents the conjugate transpose of the vector y.
A matrix A ∈ ℝn� n that satisfies [aij]¼ [aji], where [aij] represents the entry of

matrix A in the ith row and jth column is called a real symmetric matrix.
The eigenvalues of a symmetric matrix are all real and they can be ordered in the

following way:
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λ1 Að Þ � λ2 Að Þ � . . . � λn Að Þ: ðA:10Þ

We define λmin(A)¼ λ1(A), the smallest eigenvalue of the real symmetric matrix

A, and λmax(A)¼ λn(A), the largest eigenvalue of the real symmetric matrix A.
A symmetric matrix A ∈ ℝn� n is called a positive definite (semi-definite)

matrix, represented as A> 0 (A� 0), if zTAz is positive (non-negative) for any

non-zero vector z ∈ ℝn.

The eigenvalues of a positive definite matrix A are all real and positive. Every

positive definite matrix is invertible and its inverse is also a positive definite matrix.

For A,B ∈ ℝn� n, the notation A>B (A�B) means that the matrix A�B is

positive definite (semi-definite).

Consider the dynamical system

_x ¼ Ax ðA:11Þ

and consider the change of variables x¼ Tx ’, where T is a constant, square, and

invertible matrix. By substituting x in (A.11) we have

T _x0 ¼ ATx0: ðA:12Þ

By multiplying on the left by T� 1 we obtain the following

_x0 ¼ T�1ATx0 ¼ A0x0 ðA:13Þ

where A ’¼ T� 1AT. The characteristic polynomials of A and A ’ are the same; this

can be shown as follows

det sI � A0ð Þ ¼ det
�
sI � T�1AT

�
¼ det sT�1T � T�1AT

� �
¼ det

�
T�1 sI � Að ÞT�

¼ detT�1det sI � Að ÞdetT
¼ det sI � Að Þ: ðA:14Þ

A and A ’ are called similar matrices and T is called a similarity transformation.
Now, assume that the matrix A has distinct eigenvalues λ1, . . ., λn. Then A has

n linearly independent eigenvectors {v1, . . ., vn}. Let AD¼P� 1AP where P¼
[v1, . . ., vn], are the right eigenvectors of matrix A. The n diagonal entries in AD

are the eigenvalues of A

AD ¼
λ1 0

λ2
⋱

0 λn

2664
3775: ðA:15Þ
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A and AD are matrix representations of the same abstract linear transformation;

A and AD are similar matrices and the similarity transformation is

P ¼ v1; . . . ; vn½ �: ðA:16Þ

When a matrix A has repeated eigenvalues, then it is not always possible to

diagonalize it. The Jordan canonical form is a useful representation of matrix

A when diagonalization is not possible. This transformation can be obtained by

means of generalized eigenvectors.

A vector v is called a generalized eigenvector of rank k of matrix A, associated
with an eigenvalue λ if and only if

A� λIð Þkv ¼ 0 and A� λIð Þk�1v 6¼ 0: ðA:17Þ

Note that for k¼ 1 the definition of a generalized eigenvector is the definition of

an eigenvector of A (A.8).

Define a chain of generalized eigenvectors {v1, . . ., vk} as follows:

vk ¼ v

vk�1 ¼ A� λIð Þv ¼ �A� λI
�
vk

vk�2 ¼ A� λIð Þ2v ¼ �A� λI
�
vk�1

⋮

v1 ¼ A� λIð Þk�1v ¼ �A� λI
�
v2: ðA:18Þ

For generalized eigenvectors we have the following results

– The generalized eigenvectors {v1, . . ., vk} defined in (A.18) are linearly

independent.

– The generalized eigenvectors of A associated with different eigenvalues are

linearly independent.

– If u and v are generalized eigenvectors of rank k and l, respectively, associated
with the same eigenvalue λ, and if ui and vj are defined by

ui ¼ A� λIð Þk�iu i ¼ 1, . . . , k,

vj ¼ A� λIð Þl�jv j ¼ 1, . . . , l,
ðA:19Þ

and if ui and vj are linearly independent, then the generalized eigenvectors {u1, . . ., uk}
and {v1, . . ., vl} are linearly independent.

The Jordan canonical form of a matrix A can be obtained by using a new basis of

the vector space constructed using the above results on the generalized eigenvec-

tors. A Jordan matrix J can be written as follows:
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J ¼
J0 0

J1
⋱

0 Js

2664
3775 ðA:20Þ

where J0 is a diagonal matrix with diagonal elements {λ1, . . ., λk} (not necessarily

distinct), and each Jp is an np� np matrix of the form

Jp ¼
λkþp 1 0 . . . 0

λkþp 1 ⋮
⋮ ⋮ ⋱ 1

0 0 . . . λkþp

2664
3775 ðA:21Þ

for p¼ 1,. . .,s, where λk+ p need not be different than λk + q for p 6¼ q and k+ n1 + . . .
+ ns¼ n. The blocks J0, J1, . . ., Js are called the Jordan blocks and the numbers

λi, i¼ 1, . . ., k + s are the eigenvalues of A. If λi is a simple non-repeated eigenvalue

of A, then it appears in the block J0.
Note that a matrix can be similar to a diagonal matrix without having distinct

eigenvalues; in fact, a n� nmatrix is similar to a diagonal matrix if and only if there

are n linearly independent eigenvectors. Also, it can be shown that any real

symmetric matrix is similar to a diagonal matrix.

Linear Systems and Control Theory

Control theory addresses the behavior of dynamical systems and the tools and

methods to influence this behavior in order to attain a desired response. Dynamical

systems can be classified as different types (e.g., lumped or distributed) and

described using different representations (e.g., ordinary or partial differential equa-

tions; integral equations). Consider the state space representation of a continuous-

time linear finite dimensional time-invariant (LTI) system

_x tð Þ ¼ Ax tð Þ þ Bu tð Þ ðA:22Þ
y tð Þ ¼ Cx tð Þ þ Du tð Þ ðA:23Þ

where x ∈ ℝn is the state of the system (n is the dimension), u ∈ ℝm represents the

input to the system, and y ∈ ℝp is the output of the system. The expression in

(A.22) is called the state equation and (A.23) is called the output equation. The
input u(t) is the available signal that can modify the behavior of the system and it is

referred to as the control input. When the control input is a function of the state of

the system, i.e., u(t)¼ f(x(t)), then a closed-loop control is applied to the system,

otherwise, an open-loop control is used. The solution to (A.22) given the initial

conditions x(t0) is
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x tð Þ ¼ eA t�t0ð Þx t0ð Þ þ
ðt
t0

eA t�τð ÞBu τð Þdτ ðA:24Þ

and the output response is given by

y tð Þ ¼ CeA t�t0ð Þx t0ð Þ þ C

ðt
t0

eA t�τð ÞBu τð Þdτ þ Du tð Þ: ðA:25Þ

Usually in LTI systems t0 is taken to be zero (t0¼ 0).

Definition A.1 Let A ∈ ℂn� n be a constant matrix. The exponential matrix eAt is
defined as follows:

eAt ¼ I þ
X1
k¼1

tk

k!
Ak ðA:26Þ

for any �1< t<1.

Similarly, a discrete-time linear time-invariant system can be described using

the following state space representation

x k þ 1ð Þ ¼ Ax kð Þ þ Bu kð Þ ðA:27Þ
y kð Þ ¼ Cx kð Þ þ Du kð Þ: ðA:28Þ

The solutions to the discrete-time state equation (A.27) and output equation
(A.28) are given, respectively, by the following expressions:

x kð Þ ¼ A k�k0ð Þx k0ð Þ þ
Xk�1

j¼k0

A k� jþ1ð Þð ÞBu jð Þ ðA:29Þ

y kð Þ ¼ CA k�k0ð Þx k0ð Þ þ
Xk�1

j¼k0

CA k� jþ1ð Þð ÞBu jð Þ þ Du kð Þ ðA:30Þ

for k> k0, where x(k0) is a given initial condition.

A state χ ∈ ℝn is called reachable if there exists an open- or closed-loop control

that transfers the state of the system x(t) from the zero state to the state χ in some

finite time T. A state ξ ∈ ℝn is called controllable if there exists an open- or closed-

loop control that transfers the state from ξ to the zero state in some finite time T.
A time-invariant system (A.22) or (A.27) is said to be reachable when all states

are reachable. This is true if and only if its controllability matrix given by

A Bj½ � ¼ B,AB, . . . ,An�1B
� �

∈ℝn�mn ðA:31Þ
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has full row rank n. Note that reachability implies controllability but the other way

around is not true in general in discrete-time systems. In continuous-time systems

reachability implies and is implied by controllability always.

A common tool for analysis and design in control systems is the Laplace

transform. The one-sided Laplace transform is a linear operator of a function f(t)

with a real argument t, t� 0, that transforms f(t) to a function f̂ sð Þ with complex

argument s. The Laplace transform, denoted as L[f(t)], is given by the integral

f̂ sð Þ ¼
ð1
0

f tð Þe�stdt: ðA:32Þ

If f(t)¼ [f1(t), . . ., fn(t)]
T, where fi(t) : [0,1)!ℝ, i¼ 1,. . .,n, and if each fi(t) is

Laplace transformable, then we define the Laplace transform of the vector

f component-wise: i.e., f̂ sð Þ ¼ f̂ 1 sð Þ, . . . , f̂ n sð Þ� �T
, where f̂ i sð Þ ¼ L f i tð Þ½ �.

Table A.1 shows the Laplace transform of common time signals. In Table A.2

important properties of the Laplace transform are summarized. Note that for all

functions in the table t� 0; for t< 0 the functions are zero

A transformation commonly used for discrete-time systems is the Z-transform.

The one-sided Z-transform of a discrete-time signal f(n), where n� 0 is an integer,

is defined as

f̂ zð Þ ¼ Z f nð Þ½ � ¼
X1

n¼0
f n½ �z�n ðA:33Þ

where z is a complex number in general.

Table A.1 Laplace

transforms
f(t), (t� 0) f̂ sð Þ ¼ L f tð Þ½ �
δ(t) 1

u(t) 1/s

tk/k ! 1/sk + 1

e� at 1/(s+ a)

tke� at k !/(s+ a)k + 1

e� at sin bt b/[(s+ a)2 + b2]

e� at cos bt (s + a)/[(s+ a)2 + b2]

Table A.2 Laplace transform properties

Time differentiation dkf(t)/dtk skf̂ sð Þ � sk�1f 0ð Þ þ . . .þ f k�1ð Þ 0ð Þ� �
Frequency shift e� atf(t) f̂ sþ að Þ
Time shift f(t� a)u(t� a), a> 0 e�asf̂ sð Þ
Scaling f(t/α), α> 0 αf̂ αsð Þ
Convolution

Ð
t
0f(τ)g(t� τ)dτ f̂ sð Þĝ sð Þ

Initial value limt!0þ f tð Þ lims!1sf̂ sð Þ{
Final value limt!1f(t) lims!0sf̂ sð Þe
{ If the limit exists
e If sf̂ sð Þ has no singularities on the imaginary axis or in the right half s plane
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Stability and Lyapunov Analysis

Consider the dynamical system described by the nonlinear first order ordinary

differential equation

_x ¼ f xð Þ, x t0ð Þ ¼ x0 ðA:34Þ

where x ∈ ℝn and x(t0) is the initial value, or initial condition, at time t0, and f :
D!ℝn is a locally Lipschitz map from a domain D�ℝn into ℝn

Definition A.2 A function f :ℝd!ℝm is called Lipschitz continuous if there exists

a constant Lx> 0 such that

f x1ð Þ � f x2ð Þk k � Lx x1 � x2k k: ðA:35Þ

If (A.35) is only valid on a subset D of ℝn, then the function f(x) is called locally
Lipschitz.

Assume that (A.34) possesses a unique solution ϕ(t, t0, x0) for all t� t0.

Definition A.3 A point xe ∈ ℝn is called an equilibrium point of (A.34), or simply

an equilibrium of (A.34), if

f xeð Þ ¼ 0: ðA:36Þ

We will assume that the equilibrium of interest is located at the origin of ℝn, i.e.,

f(0)¼ 0.

Several definitions of stability (called Lyapunov stability) can be associated with

an equilibrium of the homogeneous system (A.34).

Definition A.4 The equilibrium x¼ 0 of (A.34) is said to be stable if for every

ε> 0, there exists a δ(ε)> 0 such that

x0k k < δ εð Þ ) ϕ t; t0; x0ð Þk k < ε ðA:37Þ

for all t� t0. It is said to be unstable if it is not stable, and it is said to be

asymptotically stable if it is stable and

x0k k < δ εð Þ ) limt!1 ϕ t; t0; x0ð Þk k ¼ 0: ðA:38Þ

Definition A.5 The equilibrium x¼ 0 of (A.34) is said to be globally asymptoti-

cally stable if it is asymptotically stable when the system (A.34) is arbitrarily

initialized.

Stability of a given dynamical system can be established by means of candidate

Lyapunov functions.
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Let V :ℝn!ℝn be a continuously differentiable and positive definite function,

i.e., V(x)> 0 for all x 6¼ 0 and V(0)¼ 0. If V(x)!1 when kxk!1, then V is

called radially unbounded.

If system (A.34) admits a function V described in the previous paragraph and we

have _V xð Þ � 0 for all x along the trajectories of (A.34), then the system is stable.

Similarly, if _V xð Þ < 0, then the system is asymptotically stable. Furthermore, if

the Lyapunov function V is radially unbounded, then the system is globally asymp-
totically stable.

A notion of stability frequently used in this book concerning systems with

exogenous inputs is input-to-state stability (ISS). Consider the system with input

u described by

_x ¼ f t; x; uð Þ ðA:39Þ

where f : [0,1)�ℝn�ℝm!ℝn is piecewise continuous in t and locally Lipschitz

in x and u. The input u(t) is piecewise continuous and it is a bounded function of

t for all t� 0.

In order to provide a definition for ISS, let us first define the following types of

functions:

Definition A.6 A continuous function α : [0, a)! [0,1) is said to belong to class

K if it is strictly increasing and α(0)¼ 0. It is said to belong to class K1 if a¼1
and α(r)!1 as r!1.

Definition A.7 A continuous function β : [0, a)� [0,1)! [0,1) is said to belong

to classKL if for each fixed s, the mapping β(r, s) belongs to classKwith respect to

r and, for each fixed r, the mapping β(r, s) is decreasing with respect to s and

β(r, s)! 0 as s!1.

We now provide a definition for ISS using the comparison functions defined in

the previous two items.

Definition A.8 The system (A.39) is said to be input-to-state stable (ISS) if there

exists a classKL function β and a classK function γ such that for any initial state x
(t0) and any bounded input u(t), the solution x(t) exists for all t� t0 and satisfies

x tð Þk k � β x t0ð Þk k, t� t0ð Þ þ γ supt0�τ�t u τð Þk k� �
: ðA:40Þ

Lyapunov functions can also be used in this case in order to certify ISS of a given

nonlinear system with exogenous input.

Theorem A.9 Let V : [0,1)�ℝn!ℝ be a continuously differentiable function
such that

α1 xk kð Þ � V t; xð Þ � α2 xk kð Þ ðA:41Þ
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∂V
∂t

þ ∂V
∂x

f t; x; uð Þ � �W3 xð Þ for all xk k � ρ uk kð Þ > 0 ðA:42Þ

for all (t, x, u) ∈ [0,1)�ℝn�ℝm, where α1, α2 are class K1 functions, ρ is a
class K function, and W3(x) is a continuous positive definite function on ℝn. Then,

the system (A.39) is input-to-state stable with γ¼ α� 1
1 ∘ α2 ∘ ρ.

For the continuous-time linear time-invariant system described by (A.11) we

have that x¼ 0 is always an equilibrium of (A.11). Let x(t)¼ϕ(t, 0, x0) represent the
solution of (A.11) where t0¼ 0 without loss of generality.

Theorem A.10 The following statements are equivalent:

(a) The equilibrium x¼ 0 of (A.11) is asymptotically stable.
(b) The equilibrium x¼ 0 of (A.11) is globally asymptotically stable.
(c) limt!1kx(t)k¼ 0.

Theorem A.11 The equilibrium x¼ 0 of (A.11) is stable if and only if all eigen-
values of A have non-positive real parts, and every eigenvalue with zero real part
has an associated Jordan block of order one. The equilibrium x¼ 0 of (A.11) is
asymptotically stable if and only if all eigenvalues of A have negative real parts.

Stability of linear systems can also be analyzed using Lyapunov functions.

A typical choice of Lyapunov function for linear systems is a quadratic function

of the form:

V xð Þ ¼ xTPx ðA:43Þ

where P> 0. The derivative of (A.41) along the trajectories of the linear system

(A.11) is given by:

_V xð Þ ¼ _xTPxþ xTP _x
¼ xT ATPþ PA

� �
x: ðA:44Þ

Recall that if _V xð Þ < 0 then system (A.11) is globally asymptotically stable.

Therefore we wish to find a P> 0 such that the ATP+PA< 0. The following

theorem formalizes this discussion.

Theorem A.12 The equilibrium x¼ 0 of (A.11) is asymptotically stable if and only
if for any given positive definite symmetric matrix Q there exists a positive definite
symmetric matrix P that satisfies

ATPþ PA ¼ �Q: ðA:45Þ

Equation (A.45) is called the Lyapunov equation.
Discrete-time systems. Lyapunov stability concepts can also be used to

characterize and study discrete-time systems. Consider the following nonlinear

discrete-time system with dynamics given by:
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x k þ 1ð Þ ¼ f x kð Þð Þ, x k0ð Þ ¼ x0: ðA:46Þ

For the time-invariant system (A.46), assume without loss of generality that

k0¼ 0 and denote its solution by ϕ(k, x0).

Definition A.13 A point xe ∈ ℝn is called an equilibrium point of (A.46), or

simply an equilibrium of (A.46), if

f xeð Þ ¼ xe: ðA:47Þ

Definition A.14 The equilibrium x¼ 0 of (A.46) is said to be stable if for every

ε> 0, there exists a δ(ε)> 0 such that

x0k k < δ εð Þ ) ϕ k; x0ð Þk k < ε ðA:48Þ

for all k� 0. It is said to be unstable if it is not stable, and it is said to be

asymptotically stable if it is stable and

x0k k < δ εð Þ ) limk!1 ϕ k; x0ð Þk k ¼ 0: ðA:49Þ

Similarly, if the initial conditions x0 can be arbitrarily chosen, then the system is

said to be globally asymptotically stable.

The Lyapunov function characterization in the discrete-time case is similar to its

continuous-time counterpart. Instead of derivatives we consider the differences. Let

V(x)> 0 for all x 6¼ 0. If the following is satisfied

V x k þ 1ð Þð Þ � V x kð Þð Þ < 0 ðA:50Þ

for all x 6¼ 0, along the trajectories of the system, then the system is asymptotically

stable, furthermore, if V(x) is radially unbounded then the system is globally

asymptotically stable.

In the case of linear time-invariant discrete-time systems described by

x k þ 1ð Þ ¼ Ax kð Þ ðA:51Þ

we have that x¼ 0 is always an equilibrium of (A.51). Let x(k)¼ϕ(k, x0) represent
the solution of (A.51) where k0¼ 0 without loss of generality.

Theorem A.15 The following statements are equivalent:

(a) The equilibrium x¼ 0 of (A.51) is asymptotically stable.
(b) The equilibrium x¼ 0 of (A.51) is globally asymptotically stable.
(c) limk!1kAkk¼ 0.

Theorem A.16 The equilibrium x¼ 0 of (A.51) is asymptotically stable if and
only if all eigenvalues of A are within the unit circle of the complex plane, i.e.,
jλi(A)jj< 1, i¼ 1, . . ., n. In this case we say that the matrix A is Schur stable.
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The equilibrium x¼ 0 of (A.51) is stable if and only if |λi(A)|� 1, i¼ 1, . . ., n and
each eigenvalue with jλi(A)j ¼ 1 has associated Jordan block of order one.

Similar to the continuous-time case, a typical choice of Lyapunov function for

linear systems is a quadratic function of the form (A.43).

The time difference of (A.43) along the trajectories of the linear system (A.51) is

given by:

V
�
x k þ 1ð Þ�� V

�
x
�
k
�� ¼ x

�
k þ 1

�
TPx
�
k þ 1

�� x
�
k
�
TPx
�
k
�

¼ x kð ÞT�ATPA� P
�
x
�
k
� ðA:52Þ

which leads to the discrete-time Lyapunov equation shown next.

Theorem A.17 The equilibrium x¼ 0 of (A.51) is asymptotically stable if and only
if for any given positive definite symmetric matrix Q there exists a positive definite
symmetric matrix P that satisfies

ATPA� P ¼ �Q: ðA:53Þ

Equation (A.53) is called the discrete-time Lyapunov equation.

Notes and References

The contents of this section are based on several books on linear systems, control

engineering, and nonlinear systems [5, 61, 76, 77, 131].
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