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Preface

Feedback control of dynamical systems has benefited from recent development of
sensing and actuation nodes with strong local computation capabilities and from the
use of digital communication networks for system interconnections. With all these
advancements, the detailed analysis of feedback control systems remains an impor-
tant part of the complex networked control applications. System uncertainties have
always been a central issue in control systems. It is critical to address uncertainty
effects on the stability and performance of control systems when it is not possible to
obtain continuous feedback measurements. Such is the case in Networked Control
Systems (NCS) where the communication channel is of limited bandwidth and it is
also shared by different subsystems.

This book presents a specific framework, the Model-Based Networked Control
Systems (MB-NCS) framework, for design and analysis of NCS. This approach
places special emphasis on model uncertainties. Detailed development of the basic
results is provided and a number of important extensions are addressed; multiple
examples are given as well. Using the model-based approach we introduce several
types of architectures and control strategies that aim at improving performance in
NCS. The overall performance of NCS considers the appropriate use of network
resources, network bandwidth in particular, in addition to the desired response of
the system being controlled. The plant model is used at the controller/actuator side
to approximate the plant behavior so that the sensor is able to send data at lower
rates, since the model can provide information to generate appropriate control
inputs while the system is running in open-loop mode.

It is assumed that readers are familiar with the basics concerning Linear Sys-
tems. This book is intended for graduate students, researchers, and practitioners
with interest in the study of control over networks, distributed systems, and control
with communication constraints. These readers typically have the background or
have completed a graduate-level course on Linear Systems.

In this book we take the MB-NCS framework, from its initial configuration and
apply it to many complex applications. Different basic problems in control theory
are studied in the context of NCS using the model-based approach. The general idea
is that, in the absence of continuous feedback, the available knowledge about the

vii
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system dynamics provides a useful tool for designing and implementing simple, yet
robust controllers that provide good performance in the presence of multiple
communication constraints. The problems and scenarios studied in this book
provide examples of a large number of potential applications in which the
MB-NCS framework brings an innovative advantageous perspective in the analysis
and design of control systems.

This book is divided in two parts. Part I focuses on the stability aspects of
MB-NCS while considering systems with different types of dynamics: linear,
nonlinear, continuous-time, and discrete-time systems. Different network con-
straints are also considered in Chaps. 2-8 of Part I such as limited bandwidth,
network delays, and signal quantization.

Part II, Chaps. 9-14, deals mainly with the performance of MB-NCS. In the
following we introduce the main topics covered in each chapter of this book.

Description of Chapter Contents

Chapter 1 introduces Networked Control Systems and several approaches used for
analysis of this type of control systems. Detailed literature review of prior and
relevant work is addressed in this chapter. Particular approaches are emphasized in
Chap. 1: model-based frameworks and event-triggered control.

Part I: Chaps. 2-9

Chapter 2 presents and explains with great detail the MB-NCS framework. The
contents of this chapter are fundamental in being able to follow the material in the
remaining chapters. Once the main contents of Chap. 2 have been studied there is no
strict order for the rest of this book. Besides presenting the MB-NCS framework,
Chap. 2 offers the first main results related to this approach which are built on one
of the most basic cases we study in the book: state feedback with periodic commu-
nication. This chapter considers both continuous-time and discrete-time systems.
Recent additional results are provided at the end of the chapter.

In Chap. 3 two important problems are studied: output feedback and network
induced delays. Both continuous-time and discrete-time systems are considered.
One of the main important lessons of this chapter is that the MB-NCS framework
can be applied to many different control problems; the problems in this chapter are
two of the main extensions when considering networked systems in general. In the
output feedback problem, we introduce a state observer and the overall system
now contains three subsystems: plant, model, and observer. A similar approach
is used for the network induced delay problem; a third subsystem is introduced
that helps in obtaining a current estimate of the system state based on delayed
measurements.
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The contents of Chap. 4 analyze the stability and the selection of update periods
and other network parameters when intermittent feedback is used along with the
model-based architecture previously introduced. Two intermittent feedback
approaches are described in this chapter. In the first approach the networked system
operates in two different modes: closed-loop and open-loop mode. The closed-loop
mode of operation requires a strong assumption concerning the ability of transmis-
sion of continuous signals over the network. To relax this assumption, we describe a
second intermittent feedback approach that operates using two different update
rates. The faster update rate now takes the place of the closed-loop mode of
operation. Stability results are provided for continuous-time and discrete-time
systems and for the state and output feedback cases.

An important aspect present in many networked systems is considered in
Chap. 5, namely, time-varying transmission intervals. In many implementations
access to the communication channel may be random and strict periodic transmis-
sion of information may not be possible. This chapter provides different stability
results first when no statistical information about the update periods is known and
then when the update periods follow a prescribed statistical distribution.

Chapter 6 also presents an approach for updating the model using time-varying
intervals under event-triggered control. The main difference with respect to Chap. 5
is that in event-triggered control the main purpose in using nonperiodic transmis-
sion intervals is to adapt the update instants according to the current conditions
of the system. Chapter 6 provides details on how to implement event-triggered
techniques in the MB-NCS framework. It also describes different strategies that
provide different results and varying performance. This approach is also used for
systems subject to network induced delays.

The MB-NCS framework is used in Chap. 7 to consider nonlinear systems.
Continuous-time systems are considered first and the focus is on finding stability
conditions under periodic transmissions. This chapter also considers discrete-time
systems using models described by input—output representations; event-triggered
control techniques are used in this case.

The work in Chap. 8 addresses another important constraint in NCS, namely,
signal quantization. Since measurements need to be transmitted over digital com-
munication networks, they need to be quantized in order to be represented in digital
form. This chapter provides a thorough analysis of MB-NCS with quantization of
measurements. Different types of quantizers are discussed and the corresponding
results provide the design parameters needed in this case which are the quantization
parameters and the update intervals. The joint effect of quantization and network
delays is also studied and similar results are provided.

Part II: Chaps. 9-14

Two main topics with respect to the optimal performance of MB-NCS are discussed
in Chap. 9. The first one is related to the implementation of event-triggered control
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techniques for systems that operate optimally assuming continuous feedback.
The second topic is concerned with the optimal design (nonperiodic in general) of
transmission instants. In the latter case we consider finite-horizon optimal control
problems and use Dynamic Programming in order to find optimal decisions
concerning transmission of state updates based on the current behavior of the system.

Chapter 10 provides a detailed analysis of the performance of continuous-time
MB-NCS. Two different performance metrics are used to quantify the performance
of model-based control systems with periodic updates. Design of optimal control-
lers is also addressed in this chapter, under the assumption of periodic transmission.

Reference input tracking with limited feedback and using the model-based
approach is analyzed in Chap. 11. This chapter deals with continuous-time systems
using periodic updates and conditions on the update period are given in order to
provide a bound on the tracking error. In this chapter we also consider linear
discrete-time systems described by input—output representations. Dynamic control-
lers are considered in this case. One of the advantages of using this type of system
representation is that common types of uncertainties such as additive and multipli-
cative uncertainties can be considered. This implies that knowledge of the system
dimension is not assumed and available models with different dimensions than the
real system can be used for both controller design and for implementation in the
MB-NCS framework.

In Chap. 12 the model of the system is not considered to be fixed. Parameter
estimation algorithms are described in the context of networked systems and used to
upgrade the model. In other words, by measuring the current response of the system
it is possible to find new parameters that better approximate the real values than the
initial model parameters. Systems with measurement noise in addition to parameter
uncertainties are considered as well. Different types of applications are described
where the algorithms for estimation of parameters described in this chapter are of
great use. These applications include switched systems, fault identification, and
systems with input disturbances.

Chapter 13 studies multirate systems. Several problems are discussed. The first
one corresponds to the case where multiple sensors are used to measure the state of
an uncertain system. These sensors represent different nodes in an NCS attempting
to send their measurements to a centralized controller. The problem considered is to
find transmission periods, not necessarily the same for all nodes, which guarantee
stability of the networked system. The second problem considers a two-channel
networked system where the connection from controller to actuator is implemented
using the communication network.

Distributed systems are studied in Chap. 14. Two approaches are considered.
First we consider periodic updates for discrete-time systems and discuss both the
single-rate and the multirate implementations. Then we consider continuous-time
systems using event-based updates. For this problem, we study both centralized and
decentralized controller design and implementation.

The Appendix collects different results concerning vector and matrix norms,
Jordan canonical forms, similarity transformations, and other linear algebra concepts.
It also contains basic control theory definitions and other results about linear systems.
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Finally, the appendix provides a summary of definitions and theorems broadly used
in Lyapunov analysis.

In the development of the material and in the writing of this book we benefited
from comments and suggestions of many colleagues at conferences and during
academic visits and presentations. We would also like to acknowledge the help we
received from several Ph.D. students at the University of Notre Dame during the
past 10 years. We would like to single out and acknowledge the contributions of
Tomas Estrada especially in the area of intermittent feedback. We also acknowl-
edge the useful discussions, comments, and suggestions of Michael McCourt and
Han (Cherry) Yu.

Dayton, OH, USA E. Garcia
Notre Dame, IN, USA Panos J. Antsaklis
South Bend, IN, USA Luis A. Montestruque
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Chapter 1
Introduction

The last two decades have seen a rapidly increasing use of common-bus network
architectures for implementation of control systems. A digital communication
network is used to transfer information among the components of a control system:
sensors, controllers, actuators, and the systems to be controlled. Such a control
system implemented over a network is called a Networked Control System (NCS).

NCSs offer a large number of advantages compared to traditional point-to-point
configurations where control systems are interconnected using dedicated wires. In
fact, one of the main advantages is that NCSs reduce the volume of wiring; this is of
prime importance for instance, in the automobile industry and in the design of
efficient aircrafts. NCS can also help to improve efficiency, flexibility, and reliabil-
ity of the network interconnected system, reducing reconfiguration and mainte-
nance time and costs.

1.1 Networked Control Systems

Figure 1.1 shows multiple systems interconnected with their respective controllers;
note that a single controller node may operate on more than one system, that is,
NCSs offer a variety of implementations. For instance, a single embedded processor
may contain multiple controllers for multiple plants, these controllers may belong
to the same node and the network protocol is in charge of matching sensor and
actuator nodes with their corresponding controller within a node.

There are many examples where using a network to interconnect control appli-
cations is convenient. A typical example is the case of aircraft control. In this case,
different sensors and control surfaces among other control components are distrib-
uted over the aircraft. Another example is the case of manufacturing in factories,
where it is common practice to implement data acquisition systems along the
process path. Dozens of sensors are deployed over critical points to make important
information about the process available to quality control engineers. Most of the
time, these sensors will transmit the collected information to a central computer

E. Garcia et al., Model-Based Control of Networked Systems, Systems & Control: 1
Foundations & Applications, DOI 10.1007/978-3-319-07803-8_1,
© Springer International Publishing Switzerland 2014



2 1 Introduction

System 1 System 2 System 3

NETWORK

Controller 1 Controllers 2,3

Fig. 1.1 Multiple control systems interconnected using a communication network

using an industrial network. More than often, new control loops need to be added as
quality or industrial engineers analyze the data retrieved by the acquisition network.
In this case, it seems natural to attach the controllers and actuators to the already
existing network and share the data already provided by the deployed sensors. In
general, use of a network in a control system is desirable when there is a large
number of distributed sensors and actuators.

The complexity of NCS arises from the hybrid nature of the system. That is the
continuous plant dynamics interacting with the discrete hardware and software of
the network. The hybrid connection to NCS has been explored by Bushnell
et al. [33]. Furthermore, tools for analyzing hybrid systems are utilized by Lin
et al. [155] to characterize the robust stability of NCS under packet dropouts and
network access delays.

One of the main problems to be addressed when considering an NCS is the
limited bandwidth of the network. In point-to-point control systems, it is possible to
send continuous measurements and control inputs. Bandwidth and dynamic
response of a plant are closely related. The faster the dynamics of the plant, the
larger is its bandwidth. This usually translates to large frequency content on the
controlling signal and a continuous exchange of information between the plant and
the controller. In the case of discrete-time plants, the controller acts at spaced
instants of time and transmission of continuous signals is not required. However,
some discrete-time systems may have a fast internal sampling which results in large
bandwidth requirements in terms of the network characteristics.

In NCS, data has to be sampled, quantized, encoded, and sent through the network.
An important problem arises when many nodes attempt to broadcast messages in a
short interval of time. As the rate of transmission increases and approaches the
network bandwidth limit, the presence of packet dropouts becomes more frequent
and time delays are longer; therefore, reduction of the transmission of information
over the network is of considerable importance for the stability and performance of
NCS. This can be addressed by two methods: the first method is to minimize the
transfer of information between the sensor and the controller/actuator; the second
method is to compress or reduce the size of the data transferred at each transaction.
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Popular networks in industry actually deployed include CAN bus, PROFIBUS,
Fieldbus Foundation, and Ethernet among others. Each of these protocols and
standards has very different characteristics such as network contention resolution
or scheduling schemes, and transmission media. Among the shared characteristics
are the small transport time and big overhead (network control information
included in the packet). This means that data compression by reducing the size of
the data transmitted has negligible effects over the overall system performance. So,
in general, reducing the number of packets transmitted brings better benefits than
data compression when using communication protocols with significant packet
overhead. The reduction of the number of packets transmitted through the network
can translate into larger minimal transfer times between the components. It is also
to be noted that any delay in an information transaction is usually due to network
access contention. This translates into what has been already noted by Walsh and
Ye [259] (see also [100]); namely that the sensor with a fast sampling rate can send
through the network the latest data available resulting in a negligible information
transfer delay. But there will still be contention in the network so that, even though
the delay is small, the sensor data would not be available at all times to the
controller/actuator. This brings us again to the approach of reducing the data
transfer rate as much as possible. In this manner more bandwidth will be available
to allocate more resources without sacrificing stability and ultimately performance
of the overall system.

In this book, we consider the problem of having sensors that are connected to the
actuators/controllers by a network; that is, the feedback path is over a network.
However, data networks typically have limited bandwidth and transfer information
in a discrete-time framework, and this makes the task of designing a control system
rather challenging. This book concentrates in the use of the knowledge about the
plant to overcome some of the most relevant challenges. This type of NCS is called
Model-Based Networked Control System or MB-NCS [186—191].

Extensive work has been done to overcome the shortcomings of NCSs and to
understand the implications of the use of a network on the feedback path. Some of
the research areas in NCS fall into the following groups: Finite Alphabet Systems,
Scheduling Strategies, Discrete Plants with Packet Loss or Delay, and Packetized
Control. This work is discussed in the remaining of this section while Sects. 1.2 and
1.3 provide an introduction into the ideas that will be seen later in this book.

1.1.1 Control over Networks Using a Finite Alphabet System

Finite alphabet systems attempt to reduce the bandwidth of the system by sending
through the network a symbol from a finite set of symbols or finite alphabet. By
doing this the number of bits required to send each symbol through the network can
be reduced dramatically. This can be seen as a coding scheme or data compression.
Many times the accurate reproduction of the signal sampled by the sensor is not
necessary.
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In [199, 200] Nair and Evans study the case of an infinite dimensional
time-varying discrete plant with unknown initial condition. The plant is being
controlled using a network on the feedback path. The only constraint on the network
is that a finite set of symbols can be used to send the information from the sensor to
the controller/actuator. The sensor then implements a coder that transmits the
information to the controller/actuator at each sampling time. The information
takes negligible time to get to its destination and the data corruption probability
is assumed to be zero. The result is that, under certain technical conditions on the
probability density function of the initial condition, the plant is stabilizable asymp-
totically in the mth output moment and in the infinite horizon if and only if the coder
and controller comply with certain characteristics that depend on the alphabet size
and some dynamical constants. The special case in which the plant is unstable and
LTT the condition is reduced to R > log,lAl where R is the transmission rate in bits
per second and A is the unstable open-loop pole with largest magnitude. These
results are extended in [201] to include NCS with Markov jump parameters. In the
same spirit, Liberzon et al. also consider the stabilization of linear and nonlinear
systems with quantized signals in [150-153].

Elia and Mitter [65] propose the design of a quantized controller and state
estimator for an LTI discrete system. The result is an optimized controller and
state estimator that operate in discrete periodic times with quantized values for the
state. It is obvious that the coarser the discretization, the less the bandwidth required
for the system to work. This work follows the same line as the one in [199-201]. It
is shown that the coarsest or least dense quantizer that quadratically stabilizes the
plant is logarithmic and can be computed by solving a special LQR problem. The
theory is then extended to continuous LTI plants using constant sampling time
intervals. It is shown that the optimal sampling interval time (using the proposed
quantizers) is only a function of the sum of the unstable eigenvalues of the system.
Ishii and Francis further explore the idea to prevent chattering in the system
in [124].

Together with the optimization of the sampling period and quantizer some effort
has been made in optimizing the sampling times and control law. This can be
viewed as type of scheduling. Several approaches have been proposed. Rehbinder
and Sanfrison [215] prove the intuitive idea that the plant with the fastest dynamics
should be given more network bandwidth resources. In the same spirit, Xiao
et al. [272] study the optimization of the word length, the output scaling, and the
controller or estimator gain. Various communication schemes are presented and
analyzed.

In [123] Ishii and Francis, extend their Dwell Time Controller [124] for systems
with output feedback. In the dwell time controller setup the plant’s output is fed to a
state observer. The estimated state is then quantized using a logarithmic partition of
the state space. The quantized value is sent through the network to the controller/
actuator. After decoding the message, the controller will apply a constant input to
the plant that corresponds to the received value of the quantized state. The loga-
rithmic partition is coarser as the state’s distance to the origin is bigger, and it is
finer when the state is closer to the origin. This seems to be reasonable since fine
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steering of the state is more useful when the state is close to the origin. The
logarithmic partitions are made overlapping so that the system can tolerate some
noise generated by the sensors. Also a dwell time is specified to reduce fast
chattering produced by the controller when switching control inputs. To do so,
the time interval between switching control inputs is enforced to be bigger or equal
than the dwell time. This can be done by timing the messages sent to the controller.
In our approach we will use the natural choice of having a state observer at the
sensor side of the network.

In [209] Petersen and Savkin present an algorithm for the stabilization of a
multi-input/multi-output discrete-time linear system via a limited capacity channel.
The approach taken is a deterministic multirate state-space approach that leads to a
nonlinear dynamic feedback controller. The network channel is assumed to be
noiseless and with time delays associated with transmissions. An important feature
of the approach is that it is a multirate approach in which symbols are transmitted
across the channel at a slower rate that the control inputs are applied to the discrete-
time plant. It is also shown how the results can be extended to the general output
feedback case by using a form of deadbeat observer. Both coder and decoder are
dynamic systems that are “synchronized” by an evolving state that is known at both
sides. The state space is partitioned dynamically as the system approaches its steady
state, in this way asymptotic behavior is proved achievable. The actuator (or sensor)
can use the state synchronization proposed here to predict the behavior of the sensor
(or actuator) in the intervals where there is no communication.

The work in [202] offers a framework that applies to nonlinear systems subject
to quantization. In addition, network scheduling is considered using periodic
updates in terms of the maximal allowable transfer interval, MATI (see below).
Copies of the plant dynamics are used at both ends of the communication channel.
Model uncertainties are not considered, the only difference between the plant and
the copies being that the copies operate using the quantized variables instead of the
real ones. The transmission of quantized measurements at times dictated by event-
based strategies has been considered by several authors. The references [17, 182]
discuss this approach when considering the most convenient times to sample a
signal. The authors of [140] also consider event-triggered transmission for stabili-
zation of systems that communicate using a limited-bandwidth network and using a
similar model-based approach as the one discussed in this book. Event-triggered
control techniques will be used in many chapters of this book and details and
literature review concerning these techniques will be provided in Sect. 1.3 of this
chapter.

1.1.2 Control over Networks Using Scheduling Strategies

Another important problem associated with control over networks is deciding about
scheduling strategies. One of the main purposes for using a network is that many
control and data acquisition systems can share its resources. Since many nodes will
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be transmitting information over the network, it is natural to determine when is the
best time for these nodes to transmit in order to avoid congestion, collisions, and
achieve the control goal.

In [260], Walsh et al. presents a protocol that uses dynamic scheduling and a
zero-order-hold at the controller input. The notion of maximal allowable transfer
interval, MATI, is introduced to place an upper bound on the time between transfers
of information from the sensor to the controller. In this case the controller is
designed without taking the network into account, a desirable feature. However,
serious behavior degradation can result if the MATI is too large and the network
slow. Also a dynamic scheduling scheme is introduced: Try-Once-Discard or TOD
protocol. In TOD each sensor has a transmission priority that is proportional to the
error between the last data sent and the actual measured value. The sensor with
biggest error is given maximum priority to transmit. Additionally, if a sensor is
denied access to the network by contention, it will discard the packet and construct
anew one with fresh data before trying again to transmit. These results are extended
to nonlinear plants in [257]. Tolerance of these systems under different types of
noise is studied on [20].

The effects of different scheduling schemes for the TOD protocol are studied in
[258]. It is implied that the plant performance is improved if an appropriate
scheduling scheme is used. Scheduling is of utmost importance when there are a
number of sensors, actuators and controllers competing for network resources. It
determines the nature of the delays, transmission rates, etc. A deterministic sched-
uling scheme is presented by Hristu-Varsakelis in [117]. Deterministic communi-
cation sequences are easier to analyze and sometimes can have a superior
performance than non-deterministic scheduling schemes but can also be difficult
to enforce.

In [21] Beldiman et al. extend the results in [260] to include a state predictor, for
LTI systems, to estimate the state in between updates. Two types of state predictors
are defined. The first one is the so-called open-loop predictor, which is basically a
plant model that is updated with an invertible transformation of the state vector
available at the plant output. The model assumes complete knowledge of the plant.
In other words, there is no uncertainty in the model dynamics and they match
perfectly with the plant dynamics. Once the model’s state has been updated, it can
provide the controller with an estimate of the plant state vector. The second
predictor, called closed-loop predictor, has the same structure as a standard linear
state observer. It receives the output of the plant and tries to recreate the plant
output in between transmissions. This predicted output is then fed to the controller.
This closed observer needs the network to be very fast in order for the observer to
converge. Sufficient conditions are given for the stability of this NCS setup.

The optimization of switching times and state estimation through a network is
covered by A.S. Matveev and Savkin in [173]. In [173] a linear discrete-time
partially observed system perturbed by a white noise is studied. The observations
are transmitted to the controller via communication channels with irregular trans-
mission times. Various measurements signals may incur independent delays or
arrive at the estimator out of order. The estimator can dynamically control which
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sensors it will connect to. The minimum variance state estimate and the optimal
sensor switching strategy are obtained. Basically a Kalman-like state estimator that
is able to connect to its inputs a limited array of the plant output sensors and deal
with a variable delay to optimally estimate the plant state.

Branicky et al. study in [30] the design of a scheduling policy based on the Rate
Monotonic Scheduling. Here a number of independent plants are allowed to close
their feedback loops through a shared network. Each system is given a constant
transmission time where contention is solved via the Rate Monotonic Scheduling.
The problem is posed as an optimization problem in which optimal transmission
times are obtained based on traditional cost functions and schedulability con-
straints. Extensive simulations of the obtained results are shown in [28].

A model-based approach was used in [66] and in [242, 243] in order to schedule
updates for the problem of distributed systems that broadcast information using a
digital communication network. In this problem, there are a finite number of sub-
systems and each one of them is coupled to a subset of those systems. Each
subsystem broadcasts its state at some time instants in order for the coupled systems
to use that information for self-control. In these references the model-based
approach is used to schedule the updates using a preassigned single update rate in
a sequential manner, i.e., a single rate approach in which the agents send updates at
different time instants.

1.1.3 Control over Networks Using Discrete Plants
with Packet Losses or Delays

Due to the discrete nature of the network, the analysis of discrete plants with packet
loss or delays is greatly simplified. Some natural questions arising in this area deal
with stability or performance of the NCS under stochastically described packet
delays, bounded packet delays, Markov chain-driven packet loss models, etc.

Bauer et al. analyze the problem on a network with random delays in [19]. The
paper proposes the use of a Smith predictor in a discrete framework to eliminate the
delay induced by the network. The Smith predictor is placed in front of the
controller and uses knowledge about the plant to propagate forward the delayed
information from the sensor and make it accessible to the controller. We will use the
intuitive idea that knowledge about the plant dynamics can help to relax the
network quality of service requirements without sacrificing the performance of
the NCS.

In [174] Matveev and Savkin present an NCS with an estimator/central control-
ler, and several semi-independent subsystems. The central controller receives
information from the different subsystems about the uncontrollable dynamics. It
compresses and processes the data and sends it to the different subsystems. The data
arrives to the local controllers at each subsystem. The local controller selects the
right information from the central controller message. This message contains
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propagated versions of the estimated state and a time stamp so that the local
controller can choose the right propagated version. This is done since the central
controller does not know the value of the transmission delay. The local controller
estimates the control-induced part of the controllable states of the subsystem and
computes the state of the controllable state by adding the term corresponding to the
uncontrollable dynamics that was received from the central controller. The problem
is solved in a quadratic optimization framework.

In [156] Ling and Lemmon study the performance of a discrete system in which
the sensor sends the output of the plant to the controller/actuator at each sampling
time. The packets sent from the sensor can be dropped with a certain probability; it
is also assumed that there is no delay associated with the packet transmission. The
packet dropout process is assumed to be identically and independently distributed.
The controller/actuator is assumed to hold the last received sensor data until the
next packet arrival. Conditions for mean square stability are first stated. Ergodicity
and wide sense stationarity conditions are then derived. Finally, the power spectral
density of the output is computed as a measure of the control system’s performance.
These results are then extended to the case of Markov chain-driven dropouts in
[157, 158] and used to calculate optimal dropout policies.

Azimi-Sadjadi in [13] studies the stability of NCS in the presence of packet
losses. In this setup the controller receives information from the sensors through the
network, calculates the control signal, and sends through the network the control
signal to the actuators. Multiple numbers of actuators and sensors are allowed. The
packets are sent simultaneously from all the sensors and to all the actuators. The
packets are delivered with identical and independent probability distribution. An
“uncertainty threshold” is calculated based on the system dynamics and the statis-
tical properties of the network under which the system is no longer stable.

The work in [172] presents a configuration that stabilizes an NCS with large
constant delays using passivity and the scattering transformation. The results
presented in [46, 113] derive general models of NCSs that consider time-varying
sampling intervals and delays.

The excellent survey papers [112, 227] describe typical problems and
approaches concerning packet losses and time delays in NCS.

1.1.4 Control over Networks Using Packetized Control

A different approach to reducing transmission rates over a network is based on
transmitting large amounts of information in single packets. Georgiev and Tilbury
[100] use more efficiently the packet structure, that is, reduction on communication
is obtained by sending packets of information using all data bits available (exclud-
ing overhead) in the structure of the packet. For the sequence of sensor data
received, the controller needs to find a control sequence instead of a single control
value. Packet size is a new feature in NCS compared to point-to-point architectures
and it is a variable that depends on the protocol or type of network being
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implemented. For example, the minimum effective load in an Ethernet packet is
46 bytes and, if 2 bytes are used to represent a sensed quantity, which is good
enough for most applications since those 16 bits can encode 2'® = 65536 different
levels of sensed signals, then we can send at least 23 sensed signals in such a packet.
Other networks that specialize in control applications require a considerably
smaller minimum size packet. For instance, the CAN protocol is optimized for
small messages. With an overhead of 47 bits (minimum packet size), and a
maximum data load of 8 bytes encourages designers to use all bits available to
send different input elements of a computed input sequence. Quevedo et al. [212]
follow a similar approach; they focus on large data packets like the ones used in
Ethernet-based protocols and, employing a predictive controller, they are able to
encapsulate a sequence of input values in a single packet. The work in [293]
presents a strategy that reduces data transmission in both the sensor to controller
and the controller to actuator channels of an NCS. The sensing strategy is based in a
“sensor transmission rule” (STR) which broadcasts a sensed measurement if there is
significant change in the output of the system. The control action consists of a
sequence of control inputs that are sent in one packet; the control inputs are based
on a time-varying controller found by solving a series of Linear Matrix Inequalities
(LMI).

1.2 Model-Based Frameworks

A particular approach for the design of controllers in NCS that has been gaining
attention in the NCS research community is called Model-Based Networked
Control Systems (MB-NCS) and it was introduced in [186—191]. In this framework
anominal, usually inexact, model of the physical system or plant is used to generate
a control input for the actuator allowing the system to run in open loop for a finite
interval of time without need for feedback in this period. The state of the model is
then updated when a measurement arrives from the sensor. When we update the
model state, we reset any possible mismatch or difference between the model and
the plant states that is produced by allowing the plant to operate in open-loop mode
for a time interval. It has been shown [188] that using this framework it is possible
to stabilize a system by sending sporadic measurements to the controller, consid-
erably reducing the number of information packets broadcasted through the net-
work. In this way we are able to reduce time delays and the number of packet
dropouts in the network.

Figure 1.2 shows a basic MB-NCS configuration, where the network exists only
on the sensor-controller side while the controller is connected directly to the
actuator and the plant, where u = KX, and the matrices A ,1§ represent the available
model of the system matrices A, B.

In [188] necessary and sufficient conditions for stability were provided when the
updates from the system are periodic (4 is constant) and with negligible delay for
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Fig. 1.2 The Model-Based Networked Control System (MB-NCS) architecture

linear continuous and discrete time-invariant systems and for two cases: state
feedback and output feedback.

In the case of output feedback, a Luenberger observer is implemented in the
sensor node. The sensor contains a copy of the model and controller parameters to
generate the input u at the sensor node and along with continuous measurements of
the plant outputs; it is capable of generating an estimate of the plant state and
sending it periodically to the controller node where it is used to update the state of
the model. Similar results were also obtained when the plant and its model are
described using discrete-time systems [188]. The same authors also considered the
situation when the state measurement arrives at the controller node with a consid-
erable time delay. A propagation unit is implemented in this case to find an estimate
of the current plant state based on the delayed measurement. An important exten-
sion of this work considered time-varying updates [189]. In that case, two stochastic
scenarios were studied; in the first, the assumption is that transmission times are
identically independent distributed, in the second, transmission times are driven by
a finite Markov chain. In both cases, conditions were derived for almost sure
(probability 1) and mean square stability.

In all the work described above, it was assumed that the measurements sent from
the sensor to the controller contained data representing infinite precision. This is not
the case when using a digital communication network as a medium to broadcast
information since measurements have to be sensed, quantized, and encoded and the
exact value of the sensed variables cannot be recovered at the receiving node but
only an approximation of it. The precision of this approximation depends mainly on
the number of bits used for quantization and the encoding algorithm that is being
used. The practical assumption that was made before is based on the fact that many
industrial networks use a large number of bits to represent data, neglecting the
quantization error, i.e., the difference between the real variable and the quantized
variable is of a very small order. Different quantization methods were proposed and
its implementation in MB-NCS was studied in [191].

Nonlinear systems have also been considered using the MB-NCS configuration.
Different authors have provided stability conditions and stabilizing update rates for
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nonlinear MB-NCS with and without uncertainties and for nonlinear MB-NCS with
time delays [160, 185, 210].

Estrada and Antsaklis introduced the notion of intermittent MB-NCS [67-71]. In
this case the measurement updates are not only given for a time instant, but they last
for a period of time making the system to operate in closed-loop mode for a finite
interval 7 < h. The authors show that the maximum allowable value for / in a
particular problem can be increased as a function of 7z and they also developed
similar approaches to the original MB-NCS with instantaneous feedback for the
cases of output feedback, network induced delays, and when the interval updates
are time varying with different probabilistic distributions. Some preliminary
performance-related results when the system is driven by a reference input signal
are presented in [67] and they will be discussed in more detail in Chap. 11.

The concept of intermittent control in MB-NCS has also been modeled in the
framework of switched systems [295]. This type of systems provides a natural and
simple way of representing the behavior of intermittent MB-NCS. In this case the
switched system contains two modes corresponding to the open-loop and closed-
loop responses. Stability analysis follows from slow switching theory by restricting
the time that the system remains in open loop and by choosing an average dwell
time sufficiently large.

Different authors have dealt with similar problems in different types of applica-
tions. Motivated by activities that involve human operators, the authors of [80, 126]
point out that in general a human operator scans information intermittently and
operates the controlled system continuously; the intermittent characteristic in this
case refers to the same situation presented in [188], that is, a single measurement is
used to update the internal model and generate the control input. For a skillful
operator, the information is scanned less frequently. Between update intervals the
control input is generated the same way as in MB-NCS, that is, an imperfect model
of the system is used to generate an estimate of the state and periodic measurements
are used to update the state of this model. In the output feedback case, a stochastic
estimator is implemented with the assumption that the statistical properties of the
measurement noise are known. In both cases the authors provide conditions for
stability based on the length of the sampling interval.

Chaillet and Bicchi [41] also use a model that produces the input for the plant
(possibly nonlinear) and considers a network in both sides of the plant. The actuator
is assumed to have an embedded computer that decodes and resynchronizes the
large packets sent from the controller that contain the predicted control input
obtained by the model. It also considers delays and partial updates of the state
and access to the network is based on error size. The authors consider two
situations: first, the actuator has computation capabilities to generate an input
sequence based on the estimate of the controller and second, the actuator can
only receive, decode, and resynchronize an input sequence. It is clear that the
actuator capabilities in the first case make it possible to implement model and
controller computations; therefore a controller node is not necessary and the result
can be seen as the MB-NCS configuration of Fig. 2.1. The second case also requires
some computational capabilities in the actuator but supposing these are limited and
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do not allow the implementation of the model and controller, then the performance
depends, especially for continuous-time systems, on the size of the packet. The
result is a bounded output in contrast to the asymptotic stability property of the first
case and the allowable delays and transfer intervals depend directly on the size of
the packet.

In [111] Hespanha et al. uses differential pulse code modulation techniques
together with a model of the plant dynamics to reduce the amount of bandwidth
needed to stabilize the plant. Both sensor and controller/actuator have a model of
the plant (assumed to be exact). Both models are run simultaneously, this is
assuming that the sensor node can reproduce the control signal applied by the
controller/actuator to the plant. The sensor node then calculates the difference
between the actual state of the plant and the plant model’s state. This difference
is then quantized and sent over to controller/actuator node to update its state. It is
assumed that the same procedure will be done locally with the sensor node’s plant
model so to have both sensor and controller/actuator nodes synchronized. The
controller/actuator node uses its model to generate the control signal to be applied
to the real plant. It is assumed, at first, that the sensor can measure directly all states.
In the cases where this is not possible, an observer is proposed. This observer can be
placed at the sensor side node. It is not clear whether this will guarantee the stability
of the plant, since the observer will need some time to converge to the actual plant
state. Plant noise and disturbances can prevent the observer from obtaining the
correct plant state estimate. The effects of these practical issues need to be looked at
more closely.

Zhivoglyadov and Middleton in [294] study an NCS where a plant model is used
in the controller. The discrete plant transmits the plant state to the controller every
sampling time. If the communication is interrupted or if a packet is dropped then the
model is used to predict the actual plant state. State estimation is also addressed
when the sensor transmits a number of the past outputs in a packet. The approach in
this book is similar but it also addresses the stability of the system in the presence of
plant-model mismatch obtaining necessary and sufficient conditions by explicitly
computing the time response of the system.

Yook et al. [278] also approach the problem of reducing the bandwidth utiliza-
tion by making use of a plant model; here the update of the model is event driven as
opposed to time driven. The model is updated when any of the states differ from the
computed value for more than a certain threshold. Some stability and performance
conditions are derived as functions of the plant, threshold, and magnitude of the
plant-model mismatch.

There exist also intrinsic relations between the MB-NCS approach and the well-
known area of Model Predictive Control (MPC) [81, 192]. In the MPC approach, an
explicit model of the system is used to predict the future output behavior; a tracking
error is defined using this prediction and the desired reference and the control action
are computed online. The purpose of the control action is to drive the state of the
system to a reference position in an optimal fashion while satisfying the existing
constraints. The authors of [98, 99, 219] introduced intermittent control in the
context of MPC to take account of the open-loop inter-sample behavior of an
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underlying continuous-time system. Recent work on NCS has been reported where
model predictive controllers have been successfully applied to deal with the usual
input and output constraints, but also consider the bandwidth limitations of the
network. The additional constraint aims to reduce the traffic in the communication
network by using the explicit model to generate the appropriate input in the absence
of continuous feedback. The formulation proposed by Bernardini and Bemporad
[24] reduces communication rate in the network using MPC techniques; a similar
idea is also presented by Zhang et al. [288]. This problem was motivated by the
implementation of wireless sensors that are supposed to consume much more
energy in broadcasting the information than other tasks such computing and data
reception. The solution can be applied to a more general class of networked systems
for which a reduction of communication rate is desired. Varutti et al. [255] apply
MPC based on events to stabilize a nonlinear continuous-time system; they
extended their approach to compensate for time delays and packet losses when
the system and the model predictive controller are implemented using a communi-
cation network. A common feature in the last few approaches [24, 255, 288] is that a
mismatch between the available model and the real dynamics of the plant is not
considered; their work is developed assuming the model and the plant dynamics are
the same. In traditional MPC this may not be an important problem since we can
continuously access the real state, but in NCS due to delays, packet dropouts, and
bandwidth limitations we need to consider in one way or another the always present
uncertainty in the model that, in the above cases, may produce significant error in
the predictions.

Another control technique known as Internal Model Control (IMC) [193] uses a
plant model to subtract the effect of the manipulated variables from the plant
output. That is, assuming the plant is stable, the model is used to obtain a measure
of the disturbances affecting the system and the inaccuracies of the model. This
signal is then used to feed the IMC controller. For unstable plants this approach
leads to serious problems, limiting their use in many applications.

Lately, the MB-NCS framework introduced in [188] has been used for stabili-
zation of coupled subsystems using periodic updates [66] and also using event-
triggered control techniques [241].

A similar model-based approach has been developed by Lunze and Lehman
[165]. In their approach, the model is assumed to match the dynamics of the system
exactly; however, the system is subject to unknown input disturbances. The main
idea of the approach in [165] is the same as in the ideas of this book, that is, to use
the nominal model to generate estimates of the current state of the system. Since the
system is subject to unknown disturbances and the model is executed with zero
input disturbance, then a difference between the states is expected and the sensor
updates transmitted over a digital communication network are used to reset this
difference between the states of the plant and of the model. The same authors have
extended this approach to consider the output feedback, quantization, and network
delay cases.
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1.3 Event-Triggered Control

Event-triggered control represents a new method for sampling of signals that has
gained substantial popularity in the control systems community. In event-triggered
broadcasting [10, 11, 246, 247,261, 262, 264, 265] a subsystem sends its local state
to the network only when it is necessary, that is, when a measure of the local
subsystem state error is above a specified threshold. Event-triggered control
schemes offer a new point of view, with respect to conventional time-driven
strategies, on how information could be sampled for control purposes.

One of the works that laid the foundations for this type of sampling is [11]; it
provided an interesting comparison between conventional time-driven (Riemann)
sampling and the new event-driven (Lebesgue) sampling, emphasizing the practical
advantages of the latter. It also provided preliminary analysis of simple systems
controlled using this technique. Tabuada [247] showed, more formally, the stabi-
lizing properties of the event-triggered control strategy. He presented a triggering
condition based on the norms of the state and the state error ¢ = x(;) — x(¢), that is,
the last measured state minus the current state of the system. This means that the
measurement received in the controller node is held constant until a new measure-
ment arrives; when this happens, the error is reset to zero and starts growing until it
triggers a new execution or measurement update. In the case that delays are not
negligible, the control task should be executed before the regular (no delay) exe-
cution condition takes place in order to account for those time delays, but the
control task should not be executed too soon and provoke accumulation points. This
work also provided lower bounds on inter-execution time intervals avoiding such
situation. Accumulation points, also called Zeno behavior [290] due to the hybrid
nature of a networked system having plants and controllers with continuous-time
dynamics and discrete-time updates, represent a fundamental problem in event-
triggered control. Zeno behavior in event-triggered control specifically refers to
possible case in which the sensor attempts to transmit an infinite number of updates
to the controller in a finite period of time. For any event-triggered control approach
that involves continuous-time systems, it is essential to guarantee that such behav-
ior will never occur. Event-triggered strategies for discrete-time systems have also
been studied; in this situation the triggering conditions are evaluated only once per
system transition then the minimum inter-execution time interval is given by the
underlying discrete-time period of the system.

The stability conditions provided in [247] are only sufficient and, in many cases,
conservative execution intervals are obtained. Wang and Lemmon [264] presented
a different method to design stabilizing controllers based on the event-triggered
control strategy by noting that the closed-loop system Lyapunov function V needs
not to be monotonically decreasing for all time but an appropriate subsequence of
V needs to be. In this case the triggering condition is based on the Lyapunov
function and not in error norms. Longer inter-execution intervals are obtained
using this event-driven controller.
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The papers [58, 59] discussed extensions involving event-triggered control to
systems with output feedback and implementing decentralized controllers. The
authors use an impulsive system approach to model the system, controller, and
event-based communication scheme. Stability and performance were analyzed
using LMIs.

Considering distributed systems, Yook et al. [278] proposed a framework in
which all nodes in a distributed system have identical estimators of states of all
remote nodes and an estimator for their own state. The estimated values of the
remote outputs are used for control and each node compares its actual state value to
its estimate. If the error is greater than an established threshold, the node needs to
broadcast the true value of its state to the rest of the nodes.

In [102, 104, 261] the authors offered communication protocols based on events
that stabilize the coupled systems in the presence of network delays and packet
losses. Other references discussing decentralized implementations of event-
triggered control [177, 178, 262, 265].

Event-triggered control and passivity techniques have been used for control of
systems with output feedback and subject to time-varying network induced delays
[280]. Combinations of periodic sampling and event-triggered control have also
been studied. In [105-107] the conditions that trigger events of continuous-time
systems do not need to be verified continuously but only at discrete and periodic
time instants.

Recent work has applied event-triggered control strategies in cooperative
control. The references [52-54, 95, 96, 228, 281] considered the event-triggered
consensus problem. Consensus problems have been widely studied assuming con-
tinuous communication between agents and its neighbors [127, 194, 216] and using
sampled-data implementations [35, 36]. Although the sampled-data implementa-
tion does not require continuous communication between agents, it does require
synchronization in order for all agents to broadcast their measurements at the same
sampling instants. The event-triggered control techniques described in [95, 96, 228,
281] offer a higher level of decentralization since the agents are permitted to select,
independently from one another, their own broadcasting instants. The work in [95]
considered agents described by continuous-time single integrator dynamics and
extended to the case of measurement quantization. The paper [228] considered
both, single and double integrator dynamics. The case of event-triggered synchro-
nization of multi-agent systems with general linear dynamics was addressed in [96].

In a similar topic [281] provided conditions for output synchronization of
multiple systems described by more general passive dynamics. In an extension,
quantization of measurements was considered as well and similar conditions for
output synchronization were derived.

A closely related approach to event-triggered control is self-triggered control
[1, 2,9, 175, 176, 205, 263]. This technique also implements non-periodic mea-
surement of the state and computation of the control law. The main difference with
respect to event-triggered control is that a measure of the state is not being
compared constantly against a predefined threshold. Instead, the current state
measurement is used to determine its next deadline, i.e., the next time that the
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sensor is required to send a measurement to the controller. A trade-off between
increased complex computations and hardware that is necessary for continuously
sensing and comparing is made in the sensor and controller nodes by applying this
new control strategy. That is, the sensor does not need to continuously measure the
state, compute the error, and compare this error against the threshold. Now, it only
has to measure the state at some specific times. In the other side of the network, the
controller now has to perform more intense computations every time that a mea-
surement arrives in order to obtain the next time that a measurement is needed.
Accurate models of the system and disturbances are needed in order to obtain good
performance concerning the computation of the inter-sampling intervals.
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Chapter 2
Model-Based Control Systems: Stability

In this book we study networked control systems that make explicit use of existing
knowledge of the plant dynamics, encapsulated in the mathematical model of the
plant, to enhance the performance of the system. This class of networked systems is
called Model-Based Networked Control Systems (MB-NCS). The performance of a
networked control system depends on the performance of the communication
network in addition to traditional control systems performance measures. The
bandwidth of the communication network used by the control system is of major
concern, since other control and data acquisition systems will typically be sharing
the same digital communication network.

It turns out that stability margins, controller robustness, and other stability and
performance measures may be significantly improved when knowledge of the plant
dynamics is explicitly used to predict plant behavior. Note that the plant model is
always used to design controllers in standard control design. The difference here is
that the plant model is used explicitly in the controller implementation to great
advantage. This is possible today because existing inexpensive computation power
allows the simulation of the model of the plant in real time.

In this chapter we lay the foundations for the type of networked architecture that
we call MB-NCS. We also provide a thorough analysis of the behavior of the
system. The focus of the chapter is in obtaining conditions that result in a stable
networked system. Stabilization depends on the chosen control gain, the accuracy
of the model, and the update interval. We derive necessary and sufficient stabilizing
conditions for both continuous and discrete-time linear time-invariant systems. In
the following chapters we significantly extend these results to consider different
scenarios, for instance, we include the more general case when only a linear
combination of the states (system output) is available for measurement and we
also consider the effect of network induced delays when state feedback is possible.

The contents of this chapter are as follows: In Sect. 2.1 the Model-Based Control
architecture is introduced. In Sect. 2.2 the continuous-time case with state feedback
is considered and in Sect. 2.3 the discrete-time case is addressed. Alternative
stability conditions are offered in Sect. 2.4. Notes and references are in Sect. 2.5.

E. Garcia et al., Model-Based Control of Networked Systems, Systems & Control: 19
Foundations & Applications, DOI 10.1007/978-3-319-07803-8_2,
© Springer International Publishing Switzerland 2014
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2.1 Fundamentals: Model-Based Control Architecture

We consider here the control of a linear time-invariant dynamical system where the
state sensors are connected to controllers/actuators via a network; more complex
models are considered in later chapters. The main goal is to reduce the network
usage using knowledge of the plant dynamics. Specifically, the controller uses an
explicit model of the plant that approximates the plant dynamics and makes
possible the stabilization of the plant even under slow network conditions.
Although in principle, we can use the same framework to study the problem of
packet dropouts in NCS, the aim here is to purposely avoid frequent broadcasting of
unnecessary sensor measurements so to reduce traffic in the network as much as
possible, which in turn reduces the presence of the problems associated with high
network load such as packet collisions and network induced delays.

We will concentrate on characterizing the time interval between successive
transmissions of data from the sensor to the controller/actuator (update intervals
of the state of the model); Transmission of data from sensor to controller and from
controller to actuator is considered later in the book. Our goal in this chapter will be
to identify the maximum update intervals that can be used to transmit measurement
updates between the sensor and the actuator while keeping the system stable. This
will reduce the bandwidth required from the network and will free it for other tasks
such as other control loops using the network and/or non-control information
exchange. In order to increase the update time we will use the knowledge we
have of the plant dynamics. The plant model is used at the controller/actuator
side to approximate the plant behavior. The sensor is able to reduce the rate at
which it transmits data, since the model can provide information to generate
appropriate control inputs while the systems is running open loop. Note that in
standard digital control a zero-order-hold keeps the input constant in between
samples. Here the input between samples is calculated based on the plant model
and it is reasonable to assume that it will be better suited than the constant input.

The main idea is to update the state of the model using the actual state of the
plant provided by the sensor. The rest of the time the control action is based on a
plant model that is incorporated in the controller/actuator and is running open loop
for a period of & seconds. The control architecture is shown in Fig. 2.1.

In our control architecture having knowledge of the plant at the actuator side
enables us to run the plant in open loop, while the update of the model state provides
the closed-loop information needed to overcome model uncertainties and plant
disturbances. In the remaining of this chapter we assume that all states can be
measured and these measurements can be transmitted through the network to
update the model of the system in the controller node. The more general case
when only a linear combination of the states can be sensed is studied in the
following chapter together with the network induced delays case. In this chapter
we provide necessary and sufficient conditions for stability that result in a maxi-
mum update time, which depends mainly on the model inaccuracies but also on the
designed control gain.
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Fig. 2.1 The model-based networked control system (MB-NCS) architecture

2.2 Continuous-Time LTI Systems: State Feedback

In this section, we introduce the foundations of our Model-Based approach. We
consider multi-input, multi-output linear time-invariant continuous-time systems
and their state variable representations, and we assume a constant linear state
feedback control law. Necessary and sufficient conditions are derived for the
stability of the compensated system in Theorem 2.3, the main result of the section.
Ilustrative examples are also included. Discrete-time systems are considered in the
next section and output feedback in the next chapter.

If all the states are available for measurement, then the sensors can send this
information through the network to update the model’s vector state. We will assume
that the compensated model is stable, which is typical in control systems, and that the
transportation delay is negligible, which is completely justifiable in most of the popular
network standards like CAN bus or Ethernet. We will assume that the frequency at
which the network updates the state in the controller is constant. The goal is to find the
largest constant update period at which the network must update the model state in the
controller for stability, that is, we are seeking an upper bound for 4 the update time.
Usual assumptions in the literature include requiring a stable plant or in the case of a
discrete controller, a smaller update time than the sampling time. Here we do not make
any of these assumptions. The original plant may be open-loop unstable.

Consider the control system of Fig. 2.1 where the plant, the plant model and the
controller are described by:

Plant : X = Ax + Bu,
Plant model : % =A% + Bu, (2.1)
Controller : u=Kx.

Since the sensor has the full state vector available, its function will be to send the
state information through the network every / seconds. The state error is defined as:

State Error: e =x—x, (2.2)
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and represents the difference between the plant state and the model state. The

modeling error matrices: A=A—-A and B=B-B represent the difference
between the plant and the model. The periodic update time instants are denoted
by t;, where

th —ther=h for k=1,2, ... (23)

(here, A is a constant). The choice of 4, being a constant, is simple to implement and
also results in a simple analysis procedure as shown below. Update intervals that are
not constant will be considered as well; in Chap. 5, we address time-varying update
intervals and in Chap. 6 we study event (error)-based update intervals.

Since the model state is updated every #; s,

e(ty) =0 for k=12, ...,. (2.4)

This resetting of the state error at every update time instant is a key characteristic
of our control system. Now for t € [#, #;, 1), we have that: u = KX so the overall

system is described by
X A BK X
HEtWwHIH @9

with initial conditions X (#;) = x(#).
Introducing the error e(¢) = x(z) — % (¢), it is easy to see that the dynamics of the
overall system for ¢t € [#, ;. 1) can be described by
A+BK —BK 1[x()
- e(t)

[fc(t) _[A+B

é(r) A+BK A -BK
(

(

) o)]

Ve [l‘k, l‘k+1), with ftpy —tr = h.

=

Define the augmented state vector z(f) and the open-loop augmented state matrix A:
_ [ x(@)

z(t) = [e(t)] (2.7)

(2.8)

so that (2.6) can be rewritten as

t=Az for 1€ [t lii1). (2.9)


http://dx.doi.org/10.1007/978-3-319-07803-8_5
http://dx.doi.org/10.1007/978-3-319-07803-8_6
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We will now express z(f) in terms of the initial condition x(#y). Then we will
show under what conditions the system will be stable.

Proposition 2.1 The system described by (2.6) with initial conditions

z(ty) = [x(zo)} = zq has the following response:

0
()

1€ [t trsr),  with  frq — 1 = h

Proof On the interval ¢t € [, ;. 1), the system response is:

_ x(t) _ LA (t—t) x(tk) _ A(t—t)
1) = 20| = x| = ez, @11)
Now, note that at times #;, z(f;) = [g(tk) } , that is, the error is reset to 0, that is,

e(ty)=0for k=1,2,...,. We can represent this by
I 0 _
z(ty) = [0 O:|Z(tk). (2.12)
Using (2.11) to calculate z(,") we obtain

(1) = [ ; 8} Mz (t)). (2.13)

In view of (2.11) we have that if at time =1y, z(ty) = zp = {go} is the initial

condition, then:

= M=) {(I) 8} eMz(n_y)
I 0 1 0 (2.14)
— LA(t—1) Ah Ah
ek {0 O}e [0 O}e 2(tr—2)
k
_ e/\(t—rk) < |:é 8] eAh> Zo
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k
I 0| A M N I 0] A4
Now we know that [O O}e is of the form {O O] and so ([0 O}e

K
has the form ](;/[ g} Additionally we note the special form of the initial

condition z(ty) = zg = [)60} so that:

(G5 8l To]= Lo 1= 8l ls STl e

In view of (2.15) it is clear that we can represent the system response as in (2.10):

I 0 1 0]\*
0 0 0 0

te [lk,l‘k+1), with  f ) —t = h.

¢

A necessary and sufficient condition for stability of the networked system will
now be presented. For this, the following definition for global exponential stability
[5] is needed.

Definition 2.2 The equilibrium z=0 of a system described by z = f(¢,z) with
initial condition z(#y) = 2, is exponentially stable at large (or globally) if there exists
a >0 and for any f > 0, there exists k() > 0 such that the solution

(2,10, 20) || < k(B)llzolle ), Vit >t (2.16)

whenever ||zo|| <.

With this definition of stability we state the following theorem characterizing the
necessary and sufficient conditions for the system described by (2.6) to have global
exponential stability around the solution z=0. The norm used here is the 2-norm
but any other consistent norm can also be used.

Theorem 2.3 The system described by (2.6) is globally exponentially stable

I o]eAh

around the solution z = [i] = [8] if and only if the eigenvalues of [O 0

V) 8] are strictly inside the unit circle.

Proof Sufficiency. Taking the norm of the solution described in (2.10),
(in Proposition 2.1):
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k

A(t—t) I 0| am|l O
¢ ({o o}e [0 0l) 7
I 0 I o\*
<o) (3 S)[s 8))

Now let us analyze the first term on the right-hand side of (2.17):

1z =

zoll- (2.17)

2
r—t _ _
|| < 1+ (£ — 5)a(A) +( 2"‘) G(A)? ... = W) < QTN

=K (2.18)

where G(A) is the largest singular value of A. In general this term can always be
bounded since the time difference t — #; is always smaller than 4. In other words

even when A has eigenvalues with positive real part,

|eA(H">H can only grow a
certain amount. This growth is completely independent of k.

(o &[5 3])

be bounded if and only if the eigenvalues of [1 0] eM [1 0] lie inside the unit

We now study the term . It is clear that this term will

0 0 0 0

(Bl

with K,, a; > 0. Since £ is a function of time, we can bound the right term of (2.19)
in terms of ¢:

circle:

< Kye ™k (2.19)

—ank —a =L a4 —
Kse ark < Kje ar, = Kyete 7! = Kj3e at (220)

with K3, a> 0. So from (2.17) using (2.18) and (2.20) we can conclude:

k
M-y (|1 O an|l O
¢ <[0 o}e [0 ol) %

Necessity. We will now prove the necessity part of the theorem by contradiction.

20| = <Ky Kze ™ |z].  (2.21)

Assume the state feedback MB-NCS is stable and that {(I) 8} M [([) 8} has at

least one eigenvalue outside the unit circle. Since the system is stable, the sequence
of periodic samples of the response should converge to 0 with time. We will take the
sample at times 7, |, that is, just before the update. We will concentrate on a
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specific term: the state of the plant x(¢;_, ,), which is the first element of z(#; ;). We
will call x(r ), &(k).
Now assume ¢* has the following form:

A [W(f) }z((f)} (2.22)

In view of (2.11) we can express the response z(f) as:

k
(s 3 -

r— zkg] [(W(h))k O]ZO (2.23)

Now the values of the response at times 7, , that is just before the update, are

_ L [wmywmnt ool [ wm) o
2(teyr) = {Y(h)(W(h))k O]ZO— {Y(h)(W(h))" 0:|Z(). (2.24)

0 0 0 0
unit circle, which means that those unstable eigenvalues must be in W(h). This
implies that the first element of z(7; ), which we call £(k), will in general grow
with £. In other words we cannot ensure £(k) will converge to O for general initial
condition xg. That is

We also know that [1 0} e [1 0] has at least one eigenvalue outside the

el = Ie@l = | W) x| =00 s k=00 (225)

which implies that the system cannot be stable, and thus we have a contradiction. ¢
Example 2.1 Consider the following unstable system (plant) dynamics:

0.14 125 0
A‘[ 0 0.08]’ b= {1.07} (2.26)

The exact parameters of the plant are unknown. In general, a model containing
nominal parameters of the real parameters is available. Assume that (2.26) is
modeled using the following nominal parameters
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Fig. 2.2 Maximum eigenvalue magnitude of the test matrix M vs. the update time &
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We will use the state feedback controller with control gain given by K=
[-0.2 —0.9]. We now search for the largest & such that [(]) 8] eM [(]) 8] has
its eigenvalues inside the unit circle. Figure 2.2 shows the eigenvalue with maximum
magnitude of this matrix. From this search we can use values of # < 12.96 s in order
to design a stable networked system using the model-based approach. Figure 2.3
shows the response for different values of /4 and the same initial conditions
xo=1[1 — l]T, while the model initial conditions are set equal to 0. Note that the
time scale is different for the responses shown in the second column in order to show
that the response is stable for 7 =12.9 s and unstable for 7 =13 s, as expected.

In order to draw a comparison with other approaches commonly used in
networked control, we now use a model of the system equivalent to a zero-order-
hold (ZOH) model. This is also the same type of implementation used in traditional
sampled-data control systems. Here, the ZOH holds the value of the most recent
measurement constant until a new measurement arrives to update the controller. We
can use the results of this section to find the largest possible value of the update
period under this scenario since the ZOH is just a special case of our approach that
can be easily modeled using the following:

A= {8 8}, B = [8]. (2.28)

From Fig. 2.4 we can see that the admissible values of the update period that
preserve stability are /4 <2.13. Figure 2.5 shows the response for two choices
h=1.5 (stable) and 7=2.15 (unstable). The initial conditions are the same in
both cases. We can see in this example that there is a significant difference in the
range of values for the update periods when using the ZOH model (2.28) and using
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Fig. 2.3 System response for different values of 4. For h=1, h=5,and h=129 s
the system is stable. For # =13 s the system is unstable

the nominal model (2.27). Even though the nominal model does not represent the
exact dynamics of the system, it provides a more accurate estimation of the real
state between updates that allows for an implementation of the networked system
with longer update periods. This is a clear benefit of the model-based approach in
reducing the necessary bandwidth for stability.

Example 2.2 Applicability of State Feedback MB-NCS Results. Regarding
applicability to real world cases, we see that, as stated in Theorem 2.3, the stability
properties of a networked control system can be determined by studying the
eigenvalues of the matrix:

L 0 Al O .
M—{O O]e {0 0], where A =

A+BK —-BK

G (2.29)
A+BK A -BK

The matrix A can also be expressed in terms of the model and the errors only:

A+A+ (B +E)K —(B +E>K 0

A +BK A —BK

In real applications the state-space model is usually obtained by studying the
structure and behavior of the plant. The uncertainties can frequently be expressed as



2.2 Continuous-Time LTI Systems: State Feedback 29

26 1 1 1 1 1
o 2.4f - R [ [ SR R
° : | : : :
_é' 22F----- [ r----- T---~- T---—- T-""77
e e S
€ 18f----- Fm---- Fm——— Fomm—- L 1o
S 16 : : : : ;
E R ]
E 1,4 ------ Fe-———- - - t-—-m—ft - ==
fo) 1 1 1 1 1
2 1.2f----- S SrEEtl EEEEREEEPARS BEREEE
Q) 1 1 1 1 1
5 e Pt A Pt Yk H.
€ 0.8f----° e L LR
0 0.5 1 1.5 2 2.5 3

> -

h=1.5

h=2.15
o

'
w
T
'
h
'
'
'
I R
'
'
'
'
'
'
e - =TS
'
'
'
'
'
[
'
'
'
'
'
'
'
'
'
'

0 10 20 30 40 50
Time (seconds) Time (seconds)

Fig. 2.5 System response for different values of / using a ZOH model. For h=1.5s
the system is stable. For 1 =2.15 s the system is unstable

tolerances over the different measured parameter values of the plant. This can be
mapped into structured or parametric uncertainties on the state-space matrices. The
following is an example that provides insight on how the theorem can be applied if
two entries on the A matrix of the model can vary within a certain interval.

- 0 1] 4 0
model : A_[O 0},3—[1]7

. _ 0 1+apn _ 0 .
plant : A‘[0+521 0 }’B_{l}’ (2.31)

withap, = [—0.5,0.5},521 = [—05,05}
controller : K = [—1, — 2].
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Fig. 2.6 Contour plot maximum eigenvalue. Magnitude vs. model error

The system will now be tested for an update time of 7 = 2.5 time units. Figure 2.6
represents a contour plot where the contour of height equal to 1 separates the stable
and unstable regions. In Fig. 2.7 we have plotted the surface representing the
maximum eigenvalue magnitude for the test matrix M as a function of the (1,2)
and (2,1) entries and for a given selection of values of those entries.

It is easy to isolate the stable and unstable regions in the uncertainty parameter
plane. The stable region is between the lines labeled as 1 in Fig. 2.6. The same
procedure can be used in real applications to verify the stability of a networked
control system with a certain model and update time. The procedure can be repeated
for different values of uncertainties on as many elements of A as needed and for
different update intervals as well.

Example 2.3 In this example we consider the instrument servo (dc motor driving an
inertial load) dynamics from Example 6A in [77]

e 0 1 e 0
5= LJ[o)+ ol
where e = 6 — 0, represents the error between the current angular position 6 and the
desired position 6,, where the desired position is assumed to be constant, @ is the

angular velocity, and u is the applied voltage. The parameters a and f represent
constants that depend on the physical parameters of the motor and load.

(2.32)
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Fig. 2.7 Maximum eigenvalue magnitude vs. model error

The nominal parameters are a = 1, J = 3. The real parameters are given by
a=0.75, p=2.58. The model parameters are used for controller design: K=
[-0.1667 —0.1667]. According to the eigenvalue search described in this section,
the networked system is stable for any value 4 > 0; however the transient response
will significantly differ for different choices of the update period. Figure 2.8 shows
the response for two different update periods where we can see that the networked
system converges more rapidly for 2=1 s than for /=10 s.

Remark Models in which uncertainty is represented in terms of norms as a ball
around the model can also be derived, but the conditions for stability would only be
sufficient. The results in this section then offer a less conservative approach that can
be readily applied to real applications as well. The conditions in Theorem 2.3
assume that noiseless measurements are transmitted at the update instants 7. In
Chap. 12 we consider noisy measurements within the MB-NCS framework.

Remark Optimization problem. The design of optimal controllers for MB-NCS
represents an interesting research problem. In addition to optimizing the response of
the control systems and penalizing the excessive use of control effort, we should
also weight the use of network resources. The overall problem requires not only the
design of the optimal control law but also the design of the optimal scheduling law.
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Fig. 2.8 Plant and model states. Left: h=1s. Right: h=10 s

The scheduling law can, in general, be a time-varying transmission policy.
Chapter 9 addresses this type of problem by using the following cost function:

minJ = %XT(T)GX(T) + E (" ()0x(t) + " (1)Ru(r))dr (2.33)

M?/}
0. .
+ cost of transmission.

Note that this problem considers the uncertain nature of the model parameters
with respect to the real parameters of the system which significantly increases the
complexity.

Remark 1t is of interest to study the eigenvalues of the networked control system

matrix M = [(I) 8} eM L]) 8] and express them, if possible, in terms of 4 and the

error in the plant model A and B. To do so, we first apply a transformation to the
matrix A to obtain a diagonal matrix that will facilitate the computation of the
exponential part.

We choose the transformation P = {] 0 } with inverse P! = [1 0 ]

I - I —I
I 0]
I —I|
Using this transformation we obtain:

Applying this transformation on A we obtain:

A+BK —BK
L0 AT O T O, A O {1 Of &l O

M‘[o o}e [0 0}_{0 O}Pepoo “lo o]° |1 o0

K:PAP‘lz[I 0} o .
A+BK A —BK

I —I
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The matrix exponential M may be found directly or by considering a Laplace
transform-based approach. For the latter approach, we will change the variable / to 7.

L{M}L{[(I) 8}9’“ 8”{{) 8]L{e&}“ 8]
00 0 (sI — (A +BK))

_ [(SI—A)_I + (sI—A)’(‘)BK(s]— (4 +BK))" 8}

i3

Note that only the upper left block contains the critical eigenvalues. Using the
inverse Laplace transform:

LY (sT —A) "+ (s — A)~'BK(sI — (A + BK)) '}
=L '(sI—A) (I +BK(sI —A —BK)™")}
=L7"{(sT — A)~ 1(sl—A —~BK+BK)(sI—A —B
=L {(sT—A) (I —A+A+BK)(sl —A —BK)~
=L {1+ (sI—A)"(A+BK))(sl —A —BK)™"!
—L ' {(sT— A - BK)_1+(sI A)"'(A +BK) (sl — A —BK)™'}

(A+BK) +eAt ~At (3 L BK e(A+BK)1dT
e (A-+EK)

~—~
|
——

That is the eigenvalues in question are exactly the eigenvalues of:
N = o(ABK)h | eAhJ —Ar (Z n EK)e(A +BK)T

I 0
0 0
only if the eigenvalues of N are inside the unit circle. One can gain a better insight
of the system by observing the structure of N. To start with, we observe that the
eigenvalues of the compensated model appear in the first term of N. In that sense we

Then the eigenvalues of M = [ } [0 %] are inside the unit circle if and

h JEA
can see the term A = eAhJ e (A + BK )e(A BE)T G as a perturbation over the
0

desired eigenvalues. The important variables in the perturbation term A are the
uncertainties and the update intervals. In general, for unstable open-loop systems,
the perturbation A increases as either the update intervals or the model uncertainties
increase. On the other hand, even if the eigenvalues of the original plant were
unstable the perturbation A can be made small enough by having A + BK small and
thus minimizing their impact over the eigenvalues of the compensated plant.
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Remark An important discussion concerning the control of continuous-time
systems using the MB-NCS framework is the following. When the update interval
h is getting small and approaches 0, then according to the analysis just described in
this section, the model/controller tries to update its internal state very fast or in other
words it tries to switch infinitely many times in finite intervals of time without
letting the model to execute and estimate the plant state. If we compute the
eigenvalues of the matrix given in Theorem 2.3 (or the eigenvalues of N in the
previous remark) for # =0 we obtain eigenvalues equal to one which represent this
behavior of attempting to update the same value over and over again. However, in a
physical continuous-time system we cannot update the controller infinitely fast in
real time (compare to a typical sampled-data system in the same situation) and
undesired system response may occur. The case when /# =0 may also be considered
in a different way. The case when # =0 corresponds to the controller receiving
continuous feedback measurements from the sensor; and instead of updating the
model many times we can use directly the plant measurements to control the
system. We may also consider the networked system as operating in two modes:
In closed-loop mode, that is, when the controller receives continuous feedback from
the sensor (h=0), the model is unnecessary and the feedback information is
immediately used by the controller to compute the control input. In open-loop
mode, the model is now used to estimate the state of the plant using the last received
feedback value of the real state as the initial condition. We will study this case in
more detail in Chap. 4.

2.3 Discrete-Time LTI Systems: State Feedback

In this section, we present results for the discrete-time case. They are analogous
to the continuous-time results of the previous section. We consider multi-input,
multi-output linear time-invariant discrete-time systems and their state variable
representations, and we assume constant linear feedback control law. Necessary
and sufficient conditions are derived for the stability of the compensated systems in
Theorem 2.6, the main result of the section. Illustrative examples are included.
Output feedback is considered in the next chapter.

So far we have studied continuous-time plants. We will extend our results to
discrete-time plants of the form:

x(n+ 1) = Ax(n) + Bu(n) (2.34)

with model

%(n+1)=A%(n) + Bu(n) (2.35)
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Fig. 2.9 Representation of the state updates for the discrete-time case

where n=0,1,2,. .. The control input and the state error are defined, respectively,
by:

(2.36)

There are some assumptions we need to make before we carry our results over to
the discrete-time domain. First, in order to have consistency in updates from the
sensor side to the actuator side, we must ensure that both the sensor and the
actuator/controller are synchronized in the sense that both will carry out their
respective tasks at the same sampling time. Moreover state updates will occur
only at some of these sampling times. This implies that the update interval z will
be an integer number, representing the number of time units between updates of the
actuator’s model. For example, if 7 =4, see Fig. 2.9, then the sensor will send
measurement updates every 4 time units as indexed by n.

A slightly different way to explain these ideas is by considering two sampling
periods. One of them occurs at time instants indexed by n and corresponds to the
sampling period of the original plant (2.34). The other one occurs at time instants
indexed by /n (for positive integer /) and corresponds to the selected update period
at which the sensor sends information to the controller in order to update the state of
the model. When the update intervals are constant the networked system can be
seen as a linear periodic system. When /2 =1 the controller is updated at each time
index 7 of the system’s clock, i.e., the discrete-time system will operate in closed-
loop mode. In Sect. 2.4 we pursue this idea further, but for the moment we will
focus on the first explanation provided on the previous paragraph.

The approach that we are going to follow to determine the stability of the
networked system is analogous to the one used for continuous plants. The dynamics
of the overall system for n € [ny, n; . 1) can be described by:

[x(n—&—l)} _ |A+BK —BK {x(n)}
e(n+1) A+BK A —BK|le()] (2.37)
forne [nk,nkﬂ), Nyl — N = ]’l, and e(nkH) =0.
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We also use the definitions (2.7) and (2.8) to express (2.37) in compact form as
follows:

z(n+ 1) = Apz(n) for n € [mg,my1),  and  z(mpy) = [x(ngﬂ)} . (2.38)

where

A+BK —-BK

Ap=|_. _ .
A+BK A —BK

Proposition 2.4 The system described by (2.38) with initial condition z(ny) =

{X(no)

0 ] = 29, has the response:

o 107 [I0 k
7(n) = Aannk 20,
0 0 0 0 (2.39)

for n € [ng, mg1),  me — ngsr = h.

Ap

Proof On the interval n € [ny, ny, 1), the system response is
() = {x(”)] = Ay {g(”k)] = Ap""z(ne). (2.40)

x(ne)

Now, note that at times ny, z(n;) = [0

}, that is, the error e(n) is reset to

0. We can represent this by
z (ng). (2.41)

Here z (ng) is the value assumed by z(n) when n = n; using (2.40) for the interval
n € [ny_ 1, n). Using this value of z (1) we obtain:

(m) = H) %} Ap"z(mr). (2.42)
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Xo

In view of (2.40) we have that if at time n=ny, z(ng) = zop = [O

] is the initial
condition then

z(n) = Ap" "™z (nk)

nen [T 0
:AD k[O 0:|ADhZ(nk1)

) I 0 ,
— k[o O}ADI{O O}ADhZ("“) 4

k
Now we know that {g 8}/\5 is of the form {](;4 ]g] and so <[ O}AD”)

MK P

has the f
aseorm[0 0

}. Additionally we note the special form of the initial

condition z(ng) = zo = {)(;0} so that

(6 Spr) o] = )-8 S]]
~([o awfo S 7]

In view of (2.44) it is clear that the system response as in (2.39) may be

written as:
10 1 01\*
z(n) = Ap" ™™ " Zo,
0 0 0 0

for n € [, miy1),  mk — mgy = h.

(2.44)

Ap

¢

Note that the main difference between this theorem and the continuous version
in Proposition 2.1 is in the state transition matrix used for the dynamics of the
system in between updates (Ap”" ™ instead of ¢A(~%)). We now introduce an
exponential global stability definition for the case of discrete plants [131].

Definition 2.5 The equilibrium z=0 of a discrete time system described by
z(n+ 1) =f(n,z) with initial condition z(ng) =z, is globally exponentially stable if
there exists @ >0 and 0 <y < 1 such that the solution
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lz(m)|| < allzolly",  Yn=o0.

With this definition of stability we can now state the necessary and sufficient
conditions for the exponential global stability of the system described by (2.38).
Theorem 2.6 below for the discrete case is the corresponding result to Theorem 2.3
of the previous section for the continuous case. Again the norm used here is the
2-norm but any other consistent norm can also be used.

Theorem 2.6 The system described by (2.38) is globally exponentially stable

around the solution z= {ﬂ = {8} if and only if the eigenvalues of

Mp = [1 0 }ADh [6 %} are inside the unit circle.
Proof Sufficiency. Taking the norm of the solution described as in Proposition 2.4:

k
(1 0 I 0
v (lo ol o o]) =

llz(m)l =

‘ (2.45)
I 0 I 0
n—ng|| . h .
<tno 1| (|5 o]a'|o o)) |t
Now, the first term on the right-hand side of (2.45) satisfies:
IAD" ]| < ((Ap))"™ < (8(Ap))" = Ki (2.46)

where 5(Ap) is the largest singular value of Ap. In general, this term can always be
bounded since the time difference n — n; is always smaller than 4. In other words
even when Ap has eigenvalues with magnitude greater than one, ||Ap"~"|| can only
grow a certain amount. This growth is completely independent of k.

(X))

be bounded if and only if the eigenvalues of [6 %} Ap" [{) %} lie inside the unit

101,11 01\
Ap
0 0 00
with K5, >0, 0<y; < 1.

Also note that £ is a function of time so we can express the right term of (2.47) in
terms of n:

We now study the term . It is clear that this term will

circle:

< Koyt (2.47)

Kot =K"= K> (7}”1) = Koy" (2.48)
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where 0 <y < 1 since h > 1.
So from (2.45) using (2.46) and (2.48) we can conclude:

k
(1 0 1 0
v ([ ool of) @

Necessity. We will now prove the necessity part of the theorem by contradiction.

lz(m)] = <Ky -Koy" -zl (2.49)

Assume the system is stable and that H) %] Ap" g %] has at least one eigen-

value outside the unit circle. Since the system is stable, a periodic sample of the
response should be stable as well. In other words the sequence product of a periodic
sample of the response should converge to 0 with time. We will take the sample at
times 7y, 1, in other words, just at the update. Even further we will concentrate on a
specific term: the state of the plant x(n; . ;), which is the first element of z(n;, ).
We will call x(ny, 1), E(k+1).

Now assume Ay’ has the following form:

i [WO) X0
s =[5 %) 230

Then we can express the solution z(n; . ;) as:

e ([T 0T a[F O]
Z|
b o 0o/"”lo o])"

B [W(n —m) X(n— nk)] [(W(h))" 0] %

L Y(—m) Z(n—ng) (2.51)

Vne [nk, nk+1).

Now let us check the values of the solution at times 7y, 1, that is the update time.
We know that because of the update at this time the error is 0, and therefore:

=4 [t ][5 o[ e o

We also know that [{) %}ADh {(I) %] has at least one eigenvalue outside

the unit circle, which means that those unstable eigenvalues must be in W(h).
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This means that the first element of z(n; , ), which we call £(k+ 1), will in general
grow with k. In other words we can’t ensure £(k+ 1) will converge to O for general
initial condition x,. That is,

)l = 6k + DIl = | W) o[ = o0 as koo (253)

This clearly means that the system cannot be stable, and thus we have a
contradiction. *

Example 2.4 Consider an example of the full state feedback setup using a discrete-
time plant with parameters:

0.89 123 —0.04
A= {0.08 0.98}’ B= [ 1.19 ] (2:54)

The exact parameters of the plant are unknown. In general, a model containing
nominal parameters of the real parameters is available. Assume that (2.54) is
modeled using the following nominal parameters

A[é ” ém (2.55)

We will use the state feedback controller with control gain given by K=
[-0.12 —0.71. We now search for the largest A& such that

0 0 0

shows the eigenvalue with maximum magnitude of this matrix. Recall that in the
discrete-time case we only search for integer values of the update period equal or
greater than 1. In this example we are able to use 2 < 11 in order to design a stable
networked system using the model-based approach. Figure 2.11 shows the response
for h=8 and h=12 and using the same initial conditions xo=[—1 0.2]7 and
the model initial conditions are equal to 0. Linear interpolation is used when
plotting the response of the systems. For each choice of 4 this figure shows the
response of the plant and the model as well.

Mp = [1 0 }AD}‘ [1 %} has its eigenvalues inside the unit circle. Figure 2.10

Example 2.5 Consider a discretized version of the instrument servo shown in

Example 2.3. The nominal parameters are @ = 1, f = 3. The real parameters
are given by a=-0.75, #=2.58. The discretization period is T=0.01 s.
The resulting discrete-time model parameters are used to design the controller:
K=[-30.1502 — 5.8807]. The same discrete-time model parameters are also used
to implement the model in our discrete-time MB-NCS setup. Similar to the
continuous-time implementation, stability is obtained for any integer value 7 > 1.
The difference between implementing longer values of /4 is given by the transient
response as it can be seen in Fig. 2.12 where the plant states converge in signifi-
cantly longer time for 4 =50 than for & = 10.



41

2.3 Discrete-Time LTI Systems: State Feedback

*
Lo _L__-_y

I I

I I
L
I
I
I

I
I
L Y

09P---d4---L-—--L___

apnuubew anjeausbio

w

12

1

1

Fig. 2.10 Maximum eigenvalue magnitude of the test matrix M vs. the update time /
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Fig. 2.11 Response of plant and model states. Left: h

Remark Optimization problem. A similar optimization problem to the continuous-

time case can also be considered in the discrete-time case. The problem is to find the
optimal control input in the presence of model uncertainties and in the absence of
feedback measurements for extended periods of time. Reducing network commu-

nication is also important when regulating the states of the system and minimizing

the control effort.
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Fig. 2.12 Response of plant and model states. Left: h=10. Right: h=50

Mathematically, we try to solve the following problem:

T-1
mi/gleTQTxT + anTan + uRu, + Sp, (2.56)
u, n=0

where Q and Q7 are real, symmetric, and positive semi-definite matrices; R is a real,

symmetric, and positive definite matrix; S is a positive weighting factor that

penalizes network communication; x7 is the terminal state; and S, is constrained
to take on only two different values:

1  measurement x, issent

Pn = {O measurement X, isnotsent (2.57)

The optimal sequence of u, and f,, n=0,1,2,...,T-1, are of interest. This cost
criterion can be applied to a discrete-time system or to a discretized version of
continuous-time systems. The objective is to find the optimal control input and the
optimal scheduling decisions (2.57). Solving this problem is the topic of Chap. 9.

2.4 Alternative Conditions for Stability of MB-NCS

In this section the stability of discrete-time MB-NCS is studied using a lifting
approach. The stability of continuous-time systems is also considered using norms
and a Lyapunov-based approach.
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2.4.1 A Lifting Approach for Stability of Discrete-Time
MB-NCS

In this section the traditional configuration for discrete-time MB-NCS will be
studied using lifting techniques. In the lifting process, the input and output spaces
are extended appropriately in order to obtain a Linear Time-Invariant (LTI) system
description for sampled-data, multi-rate, or linear time-varying periodic systems.
Since the lifted system is an LTI system, the available tools and results for LTI
systems are applicable to the lifted system as well.

Applying the lifting approach to the traditional setup in MB-NCS, the stability
problem is reformulated and necessary and sufficient conditions for discrete-time
systems are derived which are the same conditions given in Sect. 2.3 derived using
another approach. The main advantage of lifting here is that this strategy can be
extended to the case when a communication network exists on both sides of the
control loop, from sensor to controller and from controller to actuator. This topic
will be covered in later chapters.

Lifting discrete-time signals and systems. This section provides a brief discussion
on lifting discrete-time signals and systems based on [42]. Suppose there exist two
periods % and A, in a discrete-time setup and they are related by s = h/r, where r is
some positive integer. For a discrete-time signal v(k) referred to the sub-period A/r,
that is, v(0) occurs at time t =0, v(1) at t = h/r, v(2) at t =2 h/r, and so on, the lifted
signal v is defined as follows:

If v={v(0),v(1),v(2), ...}, then

v(0) v(r)
y=d [P s (2.58)
v(ir—1) v(2r — 1)
The dimension of the lifted signal v(n) is r times the dimension of the original
signal v(n) and is regarded to the base period, i.e., v(n) occurs at time ¢ = nh.

The lifting operator L is defined to be the map v — v. The inverse operator L™ !
exists and is defined as follows:

If
V/l(o) wi(1)
p={ | O () (2.59)
w,(0) ] L, (1)

and v=_L"y, then v = {y1(0), w2(0),...., ,(0), w1 (1), wo(D),....w,(1), ...}
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A relevant feature of lifting is that it preserves inner products and norms. Let us
see this for the case of ,-norms. The norm of a signal v € I,(Z,,R™) is given by:

|5 = v(0)"v(0) + v(1) v(1) + .... (2.60)

and the norm of its lifted version v € ,(Z,R™) is:

[v]13 = v(©0)v(0) + ¥(1)" (1) +
v(0) 17 [v(0) i) 1)
T ' s ' T 26
vir—1) ] [v(r—1) vr—1)] |v@r—1)
= v(O)Tv(O) +v(1)Tv(1) + ...
= |Iv|3

Now, let us consider a discrete-time finite dimensional LTI system G, with
underlying period //r. Lifting the input and output signals so that the lifted signals
correspond to the base period 4 results in the lifted system: G, = LG4L™".

Assuming the state-space representation of the original system G, is known and
given by:

x(n+ 1) = Ax(n) + Bu(n)

(2.62)
y(n) = Cx(n) + Du(n).
Then the state-space representation for the lifted system G, is given by:
x((n+1)h) = A’x(nh) + [A"™'B A™2B ... B |u(nh)
C D 0 ... 0
2.63
() = CA |y | B D 0 (). (2.63)
cA™! CA™?B CA™B ... D

Lifting discrete-time MB-NCS. As it was described in Sect. 2.1, MB-NCS makes use

of an explicit model of the plant which is added to the controller node to compute

the control input based on the state of the model rather than on the plant state.
The dynamics of a discrete-time plant and model are given respectively by:

x(n+ 1) = Ax(n) 4+ Bu(n) (2.64)

£(n+1)=Az%(n) + Bu(n) (2.65)

where x is the state of the plant, X is the state of the model, and the matrices A ,B’
represent the available model of the system matrices A,B.
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Fig. 2.13 Equivalent systems to MB-NCS. (a) Linear time-varying periodic system.
(b) Lifted system

It will be advantageous to define the input u as:

_ [ Kx(n) n=ih
u(n) = {Kx (n) n=ih+j (266)

fori=0,1,2....and 0 <j < h (j is also an integer), that is, the input is a function of
the state of the plant at the time instant when we update the model, and a function of
the state of the model otherwise.

A state feedback discrete-time MB-NCS can be seen as a linear time-varying
periodic system as shown in (Fig. 2.13a) by considering an output y that is equal to
X when the loop is open and equal to x when we have an update (closed loop). The
system after applying lifting is represented in part b) of the same figure and is
regarded as an LTI system with higher dimension input and output.

Note that the original period of the system is denoted by T and the period of the
network by AT. Then, using the definition at the beginning of this section, we have
that for this case =/ since hT/h =T. The input u for the lifted system P and its
output y are given by the following equations:

u(nh) Kx(nh)

u(nh+1) _ K% (nh+1)

u(nh) = (2.67)

w((h+h—1)| | K& ((h+h—1)
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1 0 0 .. 0
A B 0 .. 0

y(nh) = | A% |x(nh)+ | AB B 0 |u(nh). (2.68)
Ah AhfZB Ahf,?é 0

The dimension of the state is preserved and the state equation expressed in terms
of the lifted input is given by:

x((n+ 1)h) = A"x(nh) + [A""'B A" 2B ... B]lu(nh). (2.69)
K 0O
. 0 K O
The new controller is of the form: K = 00 K where each zero block

has the same dimensions as K.

Definition 2.7 [5] Asymptotic stability of discrete-time LTI system. The equilib-
rium x =0 of a system described by x(n+ 1) =Ax(n) is asymptotically stable if
and only if all eigenvalues of A are within the unit circle of the complex plane
(i.e., if Ay,...., 4, denote the eigenvalues of A, then |4;| < 1, i=I.....,n). In this case
we say that the matrix A is Schur stable or simply, the matrix A is stable.

Theorem 2.8 The lifted system is asymptotically stable if only if the eigenvalues of

h-1 ,
N =A"+> A"'"IBK(A + BK)' (2.70)
=0
lie strictly inside the unit circle.

Proof To prove this theorem, we note that (2.69) is the same as the state equation
that characterizes the autonomous LTI system:

x((n+ 1)h) = (Ah +§Ah*1<fBK(A +1§’K)j>x(nh). (2.71)

J=0

Equation (2.71) can be obtained by directly substituting (2.67) in (2.69), and
then substituting the value of each individual output by its equivalent in terms of the
state x(kh), i.e.,

% (nh+1) = Ax(nh) +Bu(nh) = (A +1§K)x(nh)
X(nh+2)= ( +BK K)*x(nh) (2.72)
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The resulting equation can be simply expressed as (2.71) which characterizes a
discrete-time LTI system of the form given in Definition 2.7, then the networked
system is asymptotically stable if only if the eigenvalues of (2.70) lie inside the unit
circle. ¢

2.4.2 Relation to Previous Results

The results presented in the previous section using a lifting approach are directly
related to the stability conditions in Sect. 2.3. Since both results present necessary
and sufficient conditions for stability of the discrete-time MB-NCS, we should be
able to demonstrate that the conditions are the same. This is shown below.

From Theorem 2.6 a necessary and sufficient condition for stability of an
MB-NCS with instantaneous feedback is given if the eigenvalues of

MD(h):((I) 8)1\3(6 8) (2.73)

lie inside the unit circle, where

A+ BK —BK
Ap=1| . _ . .
A+BK A -BK

In order to establish the relation between the two theorems consider the
transformation:

(2.74)
where

(0 0) m=(10) a1

and find the Z-transform of Mp(n), n=20,1,2,. ..

2o = ( 0)2088} (o ¢ ):

The Z-transform of AJ, can be obtained according to:

Z{ARY = (G = Ap) ‘2= (A =P 'AP) 'z =P ' (I =A) 'Pz.  (2.76)
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Substituting the last equation in the Z-transform of Mp(n) we obtain:

2t} = (5 0 )-8} §):

(2 —A) "+ (1 — A)'BK (d — (A +BK))™' 0
0 0

Z.

We now proceed to obtain the inverse Z-transform of the upper left sub-matrix
which contains the eigenvalues of interest:

2l = A) "2 (ol = A BK (- (A + BK)) 2} =
Y (2.77)
A"+ A"'BK(A +BK)".
=0

Let n=h in the above equation to obtain:
h—1 ] . R .
A"+ AMIBK (A + BK) (2.78)
=0

which is exactly the same result obtained in Theorem 2.8, i.e., the eigenvalues of the
first term of Mp(h) correspond to the eigenvalues of (2.70). The other eigenvalues
of Mp(h) are not necessary in the analysis since they are always equal to O (they
always lie inside the unit circle).

2.4.3 Additional Approaches for Stability of MB-NCS

We end this section by describing two additional approaches that provide
conditions for stability of continuous-time MB-NCS that do not require exact
knowledge of the plant parameters. These results can be used directly to compute
the admissible range for /4 based only on certain bounds on the norms of the
uncertainties. It is also important to clarify that the next conditions are sufficient
only and, in general, very conservative, that is, the admissible update intervals
h computed here are typically shorter than those obtained in Sect. 2.2.

Approach based on the norm of the state. In the first approach we set the require-
ment that the norm of the state of the plant should decrease at every sampling
instant, that is, ||x(#x41)|| < |[x(%)]], for all k=0,1,... and h=1t;, — #. The plant
and the model dynamics are given by (2.1) withu = Kx. The state error was defined
in (2.2) and the error uncertainty matrices are expressed as follows.
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A=A—-A, B=B-B. (2.79)

By finding a control gain K that asymptotically stabilizes the model, ie.,A +BK
is Hurwitz, we can use the following bound:

He(A +BK)t < ae a,p > 0. (2.80)

Theorem 2.9 Assume that the pair (A,B) is stabilizable. The model-based
networked system described by (2.1) is asymptotically stable if:

1- a<eﬂ" +ﬂ%ﬁ2 (e — eﬂh)> >0 (2.81)

where ||A]| < ||A H + HZH < p,, HA —|—§KH <K, h=tr.1— 1t
Proof From (2.2) we can obtain the next expression for the state error:
é:)'c—)é:Ae—i—(Z—&—EK))Z. (2.82)
The response of the state error at any given time as a function of the last received

measurement is:

t

e(t) = eX"We (1) — J A (Z + EK))E (z — t)dz

p f o (2.83)
= —J A (A + EK) e(A+BK) (=10 g x(t).
t
then, a bound for the norm of the state error is:
aK ()| ( gy e
e(n| < (652(’ W _ el ’”). 2.84
et < =55 (284)
It is also clear from (2.2) that the norm of the state satisfies:
@O < 1% @1 + lle()]l- (2.85)
Substituting (2.84) in (2.85) we have, using again the bound (2.80):
K ||x(z,
)] < ae ()| + BN (o o) (286
B+ b
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In order to satisfy the initial condition on the norm of the state we require that:

(el = e (aef”” (e e””)) >0 (28)

which is equivalent to (2.81). ¢

Approach based on Lyapunov functions. In the second approach we set the require-
ment that the discrete-time Lyapunov function along the trajectories of the system
decreases at every sampling instant, i.e., V(x(#; 1)) — V(x(#;)) <0, for k=0,1,. ..

Theorem 2.10 Assume that the pair (A,B) is stabilizable. The model-based
networked system described by (2.1) is asymptotically stable if:
q

26(F)G), + G < (P (2.88)

~ h

whae £ = e Gy — (& - ) 2 (A, AGh) = | 0

0
(X +§K)6(A+BK)TdT, 1Al < ||A | + HXH < f,, & and f are given by (2.80).

Proof Using (2.2) and (2.83), the state of the plant can be expressed by:

Mt = (e(A +BK)h n Jh A=) (Z —I—EK)E’(A +éK)sz) x(1)

0
= (F + A(h))x(t). (2.89)

Next we define a quadratic Lyapunov function V = xPx, that is evaluated at the
update instants as follows:

Vx(tesr)) — Vx(t) = x(10)" [(F + AR P(F + A(h)) — P]x(zk). (2.90)

Note that a stabilizing controller for the model can be found. F is a stable
discrete-time matrix that satisfies:

F'PF—-P=-Q (2.91)

for symmetric, positive definite matrices P and Q. Then a sufficient condition for
stability of the system is given in terms of the perturbation A(4), as follows

(F + A()"P(F + A(R)) —

:—Q+A( )'PF + FTPA(h) + A(h)TPA(h
< -o [A( )TPFJrF(‘T)PA(h)(J)FA(hgT)PA(h)] (2.92)
é—q+2a( F)G +5(P)Gi <0
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where ¢ = o(Q) represents the smallest singular value of Q and 5(P) represents the
largest singular value of P. If (2.88) holds, then (2.92) is satisfied. ¢

Recall that the application of the results in Sect. 2.2 to real world problems
involves a repeated computation of eigenvalues for different values of parameters
uncertainties as explained in Example 2.2. The results in this subsection can be used
in a direct way based on a priori information about uncertainty bounds. The
disadvantage is that these conditions are sufficient only and may be conservative
in general, resulting in smaller update intervals 4.

2.5 Notes and References

In this chapter we introduced the basic MB-NCS architecture that will be used
throughout this book. This framework uses the available knowledge of the real
plant dynamics encapsulated in the plant model to perform an open-loop estimation
of the real plant state that is used to compute the control input for the intervals of
time that the controller does not receive any measured feedback information. The
main results of this chapter were presented in Theorem 2.3 and Theorem 2.6.
Theorem 2.3 provides necessary and sufficient conditions for exponential stability
of the networked system as a function of the update intervals which are assumed to
be periodic. Theorem 2.6 provides the corresponding conditions for discrete-time
systems. In both cases, it is assumed that the sensor is able to measure the entire
state of the system. Alternative stability conditions were given in Sect. 2.4. In
subsequent chapters, different extensions, alternative sampling methodologies, and
architectures will be explored. Additionally, different common problems in control
theory will be discussed from the model-based networked perspective.

The MB-NCS architecture shown in Sect. 2.1 was first proposed by
Montestruque and Antsaklis [186, 187] and the results shown in Sects. 2.2 and
2.3 are primarily based on work published in those two references and also in
[188]. The lifting approach for MB-NCS discussed in Sect. 2.4 was first published
by Garcia and Antsaklis, [82]. The lifting methods used in that section are based on
common lifting techniques presented in [42]. See also [16, 26, 130] for additional
discussion of lifting techniques.

The alternative stability conditions for continuous-time systems of Sect. 2.4
represent original work presented in this book and is an adaptation of the work by
Montestruque [185] on nonlinear systems.

The MB-NCS framework has been followed by different authors to consider
specific problems in NCS. Orihuela et al. [207] have derived conditions for stability
of MB-NCS with parametric uncertainties based on the theory of interval matrices.
The authors of [197] compare different control decisions for a nonlinear NCS
subject to sensor losses. The options include zero control, last available control,
and open-loop control; the last one corresponds to using the nominal nonlinear
model of the plant. It is proved in that paper that under certain conditions the use of
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the model exceeds in performance the other two choices to decide the control input
in the absence of feedback information. The MB-NCS structure is used by Yu
et al. [283] to study singularly perturbed systems where the sensor is connected to
the controller/actuator node using a communication network. Singularly perturbed
systems refer to the two-time scale systems that appear due to the presence of small
parasitic parameters multiplying the time derivatives of some states of the system.
It is difficult, in general, to control this type of systems since the controller has to
react simultaneously to both the slow and fast modes of the system. Mu et al. [196]
provided a different analysis of MB-NCS with output feedback and constant
network delays where the model is updated using directly the received output
() = Cx(tp).

Recent work has been produced independently and it shares many characteristics
of the MB-NCS framework, indicating the fundamental advantages of using the
model dynamics when operating and controlling dynamical systems in the absence
of continuous feedback information. Motivated by human operations, the authors of
[80] and [126] point out that in general a human operator scans information
intermittently and operates continuously the controlled system; the intermittent
characteristic in this case refers to the same situation presented in this chapter,
that is, a single measurement is used to update the internal model and generate the
control input. For a skillful operator, the information is scanned less frequently.
Between update intervals the control input is generated the same way as it was
shown in the MB-NCS framework, that is, an imperfect model of the system is used
to generate an estimate of the state and periodic measurements are used to update
the state of this model. In the output feedback case a stochastic estimator is
implemented with the assumption that the statistical properties of the measurement
noise are known. In both cases the authors provide conditions for stability based on
the length of the sampling interval.

In the networked framework shown in [140-142, 165], the model is assumed to
match the dynamics of the system exactly; however, the system is subject to
unknown input disturbances. The main idea of the approach in those papers is the
same as the one described in this chapter, that is, to use the nominal model to
generate estimates of the current state of the system. Since the system is subject to
unknown disturbances and the model is executed with zero input disturbance, then a
difference between the states is expected and the sensor updates transmitted over a
digital communication network are used to reset this difference between the states
of the plant and of the model at the update time instants.

There exist similarities and significant differences between the MB-NCS
approach and the developed and mature Model Predictive Control (MPC) approach.
MPC also uses model of the system for control; specifically, the model is used to
predict the future output behavior; a tracking error is defined using this prediction
and the desired reference and the control action are computed online. The purpose
of the control action is to drive the state of the system to a reference position in an
optimal fashion while satisfying the existing constraints. MPC relies in frequent
feedback measurements in order to update the predicted control sequences. Mean-
while, in MB-NCS the main constraint is imposed in the form of reducing
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measurement update rates. Recent work related to NCS [24, 255, 288] has been
reported where model predictive controllers have been successfully applied to deal
with the usual input and output constraints, but also consider the bandwidth
limitations of the network. The additional constraint aims to reduce the traffic in
the communication network by using the explicit model to generate the appropriate
input in the absence of continuous feedback.



Chapter 3
Model-Based Control Systems: Output
Feedback and Delays

In the previous chapter, Chap. 2, we considered the case when the full state vector
is available for measurement. We now extend our approach to include continuous
and discrete time systems, where the state is not directly measurable. Here, state
observers are used to obtain an estimate of the state vector. It is assumed that the
state observer is collocated with the sensor.

The use of state observers is not the only approach that is used in this book when
dealing with the output feedback case. The output feedback problem is studied
again in Chap. 11 where the output measurements are used directly to update the
model without need of state observers.

Another problem discussed in this chapter is the control under network induced
delays. In this problem, the MB-NCS framework provides the double advantage of
using the model parameters for estimating the state of the system during the open-
loop intervals, as it was shown previously, and also for estimating the current state
of system at the update time instants based on delayed measurements.

The contents of the present Chapter are as follows: Output feedback using state
observers is studied in Sect. 3.1 for continuous time systems. Section 3.2 presents
similar results for output feedback discrete time systems. Network delays are
addressed in Sects. 3.3 and 3.4. Notes and references are presented in Sect. 3.5.

3.1 Output Feedback Using State Observers
for Continuous Time Systems

We use the plant model parameters (2\ , E, C , D) in (3.1) to design the state observer.
See Fig. 3.1. The observer has as inputs the output and input of the plant. In the
implementation, in order to acquire the input of the plant, which is at the other side
of the communication link, the observer should also include a version of the model
and controller, and also knowledge of the update time 4. In this way, the output of
the controller, that is the input to the plant, can be simultaneously and continuously
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—> Plant Y » Sate Observed
X
u
> Model -
update
X
Y
Controller

Fig. 3.1 Proposed configuration of an output feedback networked control system

generated at both ends of the feedback path with the only requirement being that the
observer makes sure that the model has been updated. This last requirement ensures
that both the controller and the observer are synchronized. Handshaking protocols
provided by most networks can be used.

The observer has the form of a standard asymptotic state estimator, a Luenberger
observer, with gain L. It makes use of the plant model parameters.

In summary, the system dynamic equations are:

Plant : X

Ax+Bu, y =Cx+ Du
Model : f =A% +Bu, y=Ci+Du
Controller : u = Kx

u] (3.1)

Observer: X = (A —LC’)X—i— [é — LD L} [
y

fortre [lk, l‘k+])

We now proceed in a similar way as in the previous case of full feedback.
Namely, there will be an update interval A, after which the observer updates the
controller’s model state X with its estimate X. We will also define an error e that will
be the difference between the controller’s model state and the observer’s estimate:
e=X—X.

It is clear that at times #;, where #, — f, _ | = h, the error e will be equal to 0, since
the update % (7;) = X(#) takes place.

2(1) = {x(z) —% (1) 1€ (te,tir1) } (32)

0 t=1;

Also we will define the modeling error matrices in the same way as before
(Chap.2):A=A—-A,B=B—-B,C=C-C,D=D-D.
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Now for t € [t;,t;41), u = KX, so we have:

& = Ax + BKx
X =(A+BK)x
P K
Xx=(A-LC)X+ B -LD L] Cr+ DK (3.3)
X
=[LC BK+LDK A —LC]|*
X

with initial conditions X (#;) = X(# ). Using the same approach as before, we express
the system dynamics in terms of the states that will not change at the update times.
Then the dynamics of the overall system for ¢t & [#, ;1) can be described by

X A BK —BK X x(ty x(f)
X|=|LC A—-LC+BK+LDK —BK—LDK||¥| and |¥()| = |%(5)
e LC LDK — LC A -LDKk |le (%) 0
1E [tk tis), with =t =h
(3.4)
x A BK ~BK
Define z= (x|, and A, = |LC A — LC~—|—BK :l—LDK —Ié’K —éDK
e LC LDK — LC A — LDK

so that (3.4) can be represented by:
£ =N,z for 1€ |1, 1041) and z() = | %(ry) (3.5)

Proposition 3.1 The system with dynamics described by (3.5) with initial condi-
x(to)
tions z(ty) = | X(to) | =20, to =0, has the following response:
0

I 0 0 I 0 0]\
() =eM 10 T 0™ |0 I 0] |z,
00 0 00 0 (3.6)

forte [fk, l‘k+]), with tiy—ty=nh
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Proof On the interval t € [t;, 1), the system response is

x(1) x(t
2(t) = | %) | = M| x(h) | = M Wz(gy). (3.7)
e(r) 0
X(Ik)
Now, note that at times f;, z(f;) = | X(#) |, that is, the error &(¢) is reset to 0.
0

We can represent this by

I 0 0
2()=10 I O z(t;). (3.3)
0 0 0
Using (3.7) to calculate z(t; ) we obtain
I 0 0
2() =10 I 0[eMz(t ). (3.9)
0 0 O
X0
In view of (3.7) we have that if at time t =1, z(fy) = zo = | Xo | is the initial
0
condition then
(1) :eA"(“’")Z(lk)
7 0 0
=Ml | 0 ] €A”hZ(l‘k,1)
LO 0 O
7 0 07 I 0 0
:eAg(t—tk) 011 0 eA“h 071 0 eA"hZ([k,z) (310)
L0 0 O] 0 0 O
1 00 k
= eMolt=t) 0 I 0fet] z.
0 0 O
I 00 M; M; N,
Now we know that |0 I 0 |e™" is of the form | M3 M4 N, | and so
0 0 O 0 0 O
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I 0 O k M, M, K P,
0 I 0|eM | hastheform | |M; M, P, | |- Additionally we note
0 00 [0 0] 0
X0
the special form of the initial condition z(#y) = zp = | X | so that
0
I 0 0 - X0 __Ml Mg_k X0 0
0 I 0]eM Xo| = | |M; Mi] |Xo 0
0 0 O 0 i [0 0] 0
[ _Ml Mz— 0 X0
= _M3 M4_ 0 Xo
[0 0] 0 0
1 00 I 0 07\ rx
= 01 OfeM|0 I 0 X0
0 00 0 00 0
(3.11)

In view (3.11) it is clear that we can represent the system response as in (3.6),
that is:

1 00 I 0 07\F
Z([):eAO(t*[k) 0 I Ole™|0 I 0 )
0 00 000

te [l‘k, lk+1), with lir1 — e = h.

¢

We will present now the necessary and sufficient conditions for this system to be
exponentially stable at large (or globally). For the definition of stability please refer
to Definition 2.2 in Sect. 2.2.

Theorem 3.2 The system described by (3.5) is globally exponentially stable

X 0
around the solution z= |Xx| =10 if and only if the eigenvalues of
z 0
I 00 I 00
M,= |0 I 0|0 I 0] are strictly inside the unit circle.
0 0 0 0 00
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Proof Sufficiency. Taking the norm of the solution described as in Proposition 3.1:

k

I 00 I 00
Iz = |le® ] {0 1 ofer o 1 0] z
0 00 0 00
I 00 10 o]\"
<feres)- [ o 1 oferslo 1 of | |-l
0 00 000
(3.12)
Now let us analyze the first term on the right hand side of (3.12):
Aolt=h) G (t=n)’ F(A)1=t1) « BN
||€ ’ H < 1+ (l— tk)G(A()) + 21 O'(Aa) L.=e v < eV :Kl
(3.13)

where (A, ) is the largest singular value of A,. In general this term can always be
bounded since the time difference ¢ — #; is always smaller than 4. In other words,
even when A, has eigenvalues with positive real part, {e’\"(’ —t) || can only grow a

certain finite amount. This growth is completely independent of k.
k

I 00 I 00
We now study the term 0 I OleM|0 1 0 . It is clear that this
0 0 0 0 0 O
I 00 I 00
term will be bounded if and only if the eigenvaluesof |0 7 0 [e™ |0 I 0
0 00 0 0 0
lie inside the unit circle:
I 00 I o o]\"
0 I OoleM|0 1 0 < Kye ik (3.14)
0 0 0 0 00

with Kz, ay > 0.
Since £ is a function of time we can bound the right term of (3.14) in terms of #:

Kye ™ < Kye T = Kyere 1 = Kze ™ (3.15)

with K3, a> 0.
So from (3.12) using (3.13) and (3.15) we can conclude:

k

I 0 0 I 0 0
||Z(f)|| = €A°<t7tk) 07 O eA"h 07 0 70|| < K 'K3€7m : HZ()H
0 00 0 0 0
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Necessity. We will now prove the necessity part of the theorem by contradiction.

I 00 I 0 0
Assume the system is stable and that [0 [ 0 [e™"|0 [ 0 | has at least one
0 00 0 00

eigenvalue outside the unit circle. Since the system is stable, a periodic sample of
the response should be bounded and converging to 0 with time. We will take the
sample at times #;_, |, just before the update. Even further we will concentrate on the

combined state of the plant x(#;, ;) and observer X(t;. ), which are the first two
x(ti41)

elements of z(#;, ;). We will call [_ "
(1)

], £(k). Now assume e™7 has the

following form:

w
N = | Wi(r) Walr) Xa(r) (3.16)

For simplicity, let us define:

|:W1(T) WQ(T):| X(T)

VO =) W

Then we can express the solution z(¢) as:

erlo I 0 Z0

I 0
Mo T
0 0 0 0 0

S o O

(3.18)

Wt — 1) (W ()" m
20

LY (e — ) (W(h)

=)

Now let us check the values of the solution at times 7, |, or just before the update:

W (h) (W (h))* m Y (W (h))<! {8

Y(h)(W(h)* 0 Y()(W(Rh)* 0

(1) = ]ZO~ (3.19)
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I 00 I 00
We also know that [0 I O |e™" |0 I 0| has at least one eigenvalue
0 0 0 0 0 0

outside the unit circle, which means that those unstable eigenvalues must be in
W(h). This means that the first two elements of z(z_, ), which we call {(k), will in
general grow with k. In other words, we cannot ensure £(k) will converge to O for
general initial conditions xy, Xy, that is, in this case

4] <oz

R U Xo

Remark The state observer can also be implemented at the controller node. In this
case the sensor sends measurements of the output y(#;) every h time units. At the
controller node, this measurement is used by the state observer to obtain an estimate
of the state of the plant and use that estimate to update the state of the model. Since
the observer does not receive continuous measurements of the plant output, it does
not provide accurate estimations of the state x(f) when £ is large. In this case,
conditions for stability require a very short update interval which means that
communication rate is not significantly reduced compared to the case when the
observer is collocated with the sensor.

’ — 00 as k— oo. (3.20)

This clearly means the system cannot be stable, and thus we have a contradiction. 4

3.1.1 Separation Principle

The conditions for stability depend on several factors including the choice of update
interval, the model uncertainties, the control gain, and (for the output feedback
case) the observer gain as well. The results in Proposition 3.1 and Theorem 3.2 are
more complex than the usual observer based output feedback closed loop design
that follows the Separation Principle. The complexity is due, of course, to the
communication limitations, but is also due to the consideration of model uncer-
tainties. The Separation Principle [76] widely used in the design of closed-loop
control systems does not apply to the case when there exists model mismatch.

Consider again the plant and observer dynamics, where the observer uses the
nominal parameters, which are different from the real plant parameters:

Plant : X=Ax+Bu y=Cx+Du
Observer : )_'c:(A—LCA’)X—i-(é—LA)u—&-Ly
Error matrices : A=A—-A B=B-B C=C-C D=D-D

Estimation error e=x—2X
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Assume that the plant and model parameters are the same, that is, the error
matrices are all equal to 0. Then the separation principle follows by finding the
dynamic equation of the estimation error

é=i—-X=Ax+Bu— (A —LC)x— (B —LD)u—Ly=(A—LC)e. (3.21)

The control input is based on the observer state # = KX. Then the augmented
vector containing the state of the plant and the estimation error is given by:

X
€
Since this matrix is triangular, its eigenvalues are the eigenvalues of A + BK and
A-LC. Then the stability of the observer and the closed loop plant are independent.
Clearly in this case each gain (observer and controller gains) can be designed
separately, thus simplifying the design.
In a more general situation, as is the case in MB-NCS, if we analyze the
estimation error dynamics by explicitly taking into account the difference between

the plant and model parameters, then it is simple to show that the error dynamics are
described by the next equation:

A+BK —BK
0 A-LC

X

(3.22)

&

e=i-%=(A-1C)e+ (B-LD)u+ (A-LC)x (3.23)

This equation shows that in order to obtain asymptotic estimates of the system
states using imperfect parameters of that system, we need a zero reference input
(u does not have external component) and a state x that tends asymptotically to zero
as time tends to infinity.

The augmented state that contains the state of the closed-loop plant and the
estimation error is now given by:

X
é
We can see that the stability of the closed loop plant and the observer are not
obtained just by separate designs of the gains K and L, but the eigenvalues of the
whole matrix in (3.24) have to be considered. Note that (3.22) is a special case of

(3.24), when the model parameters exactly match those of the plant and the
uncertainty matrices are all equal to O.

A+ BK —BK
A—LC+BK—-LDK A —LC —BK+LDK

(3.24)

£

Example 3.1 Consider the instrument servo example described in Example 2.3 in
Sect. 2.2. We now consider the case where only the angular position error can be
measured, that is, the output matrices are givenby C = [1 0] and D =0. The state
equations have the same form as (2.32) in Chap. 2. Here, we use the nominal
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Plant states

okF--F--
ofF--F--
-
o

Model states

Observer states

Time (seconds)

Fig. 3.2 States of the networked instrument servo system for A=1s

parameters @ = 1, ﬁ = 3. The real parameters are a =0.89, f=2.79. We will use
the state feedback controller K =[—0.1667 — 0.1667] and the state estimator gain
L=[20]".

According to the eigenvalue search using the results of Theorem 3.2, the
networked system is stable for any value # > 0; however, the transient response
will be significantly different for different choices of the update period. Figure 3.2
shows the response for 4 =1 s. This figure shows the states of the plant, the model,
and the observer. Figure 3.3 shows the same states for the case 2= 10 s. In both
cases only the first state of the plant can be measured and used by the state observer
but in the figures we plot both of them in order to compare the response for different
update intervals.

Example 3.2 In this example we use the inverted pendulum on a moving cart
dynamics (linearized dynamics) described in Example 2E in [77].
The linearized dynamics can be expressed using the state vector

X = [y 0y é]T, where y represents the displacement of the cart with respect to
some reference point and @ represents the angle that the pendulum rod makes with
respect to the vertical. The matrices corresponding to the state space representation
(3.1) are given by
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Plant states

Model states

Observer states

Time (seconds)

Fig. 3.3 States of the networked instrument servo system for 7= 10 s

0 0 10 0
0 0 0 1 0 1000 0
A= , B= , C= , D=
0 -—mg/M 0 0 /M [0 10 0} M
0 (M+m)/M 0 0 —1/Mi

(3.25)

where the nominal parameters of the model are givenby:/m = 0.1, M =1, [ = 1.
The real parameters represent values close to the nominal parameters, but not
exactly the same due to uncertainties in the measurements and specification of
these parameters. The physical parameter values are given by: m=0.1023,
M =0.9965, [=1.0061. We have that ¢ = ¢ =9.8. The input u represents the
external force applied to the cart. The open-loop plant and model dynamics are
unstable. In this example we use the following gains

12.5 0
0 10.5
K =[0.3673 23.0473 1.1020 6.8020], L= 39 098

0 32.28
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Fig. 3.4 Eigenvalue with maximum magnitude for inverted pendulum on moving cart example

I 00
Figure 3.4 shows the eigenvalue with maximum magnitude of M, = |0 [ 0
0 0 0
I 0 0
M |0 I 0] for different values of 4. Figures 3.5 and 3.6 show the response of
0 0O

the system for 2 = 0.5 s. Figure 3.5 shows the states of the plant, the model, and the

observer corresponding to the positions y and . Figure 3.6 shows the velocities y, 8
corresponding to the same subsystems.

Example 3.3 Consider the distillation column example shown in Example 2G in [77].
The process describes an extractive column used for separation of isopropanol from a
mixture of water. A controlled amount of heating steam, denoted as Au;, is introduced
near the bottom of the column and the amount of vapor side stream, AS, can also
be controlled. The objective is to stabilize two key vertical positions subject to changes
in the feed composition, Ax4;, and the flow rate, AF 4, disturbances. The positions
71, zp represent interphase changes between the substances in the column. A sharp
temperature gradient is associated with each one of the positions. These positions can
be determined by measuring corresponding temperature changes AT} = cy3Az; and
AT, = cp4Az, where Azy, Az, represent changes in the corresponding positions.

The state vector is given by x =[AQ,; AV, Az, Azz]T, where AQ, represents heat
flow to reboiler and AV, represents the vapor flow rate. u=[Au, AST,
Xo=[Axpa; AF4]", and y =[AT, AT,]" represent the control input, the input distur-
bance, and the measureable output, respectively. The system dynamics are given by:

X =Ax+Bu+ Exg, y=Cx

with
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aiy 0 0 0 b11 0 0
dy; dx 0 0 0 0 0 0 0 0 C13 0
A= , B= ,E= C =
0 asn 0 0 0 b32 f31 f32 0 0 0 Co4
0 [27%) 0 0 b42 0 f42
(3.26)

where time is measured in hours and temperature in degrees Celsius. The nominal
model parameters are as follows:

ay = —30.3 by =6.15x 10° f5, =62.2
ay =1.2x 107 by =3.04 fn =576
ayy = —6.02 b42 =0.052 f42 =512
azy = —3.77 C13 = -7.3
agy = -2.8 Crqy = -25

Note that when implementing the model in the controller node we have £y = 0
since the disturbance cannot be measured. The real parameters represent values
within +2 % of the nominal parameters. The system is open loop stable, but it does
not reject the disturbances. The following controller and observer gains are chosen:

o 2.5704 x 10° 1.4590 x 108 —3.2105x 10® 0
0 53.8462 0 —9.6154
2.6526 x 10° 1.2404 x 10°
—28.0331 27.1634
—2.0983 —3.1061
1.9248 —3.5914

Figure 3.7 shows the output of the system subject to a pulse disturbance that
occurs at time 0.5 h and lasts for 0.05 h. The figure shows three different instances
of the problem. First, it shows the response of the open-loop system where clearly
the system is not able to reject the disturbance effect. Second, we implement a
model-based networked system with 7 =1 h and the system can be stabilized and
disturbances are rejected. Finally, with # =35 h we can obtain similar results except
that the transient response has deteriorated.
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Fig. 3.7 Response (output) of distillation column to a disturbance occurring at time 0.5 h

and for

three cases: open-loop, model-based networked system with h =1 h, and model-based networked

system withh=5h

3.2 Output Feedback Using State Observers
for Discrete Time Systems

We will now present the corresponding results for discrete time systems wit

h state

observers. The translation from continuous-time to discrete-time domain involves
the same practical aspects described in Sect. 2.3. The proofs for Proposition 3.3 and
Theorem 3.4 below follow directly from the results provided in the current and

previous sections and are, therefore, omitted.
Let us consider the following equations:

Plant : x(n+1) = Ax(n) + Bu(n),y(n) = Cx(n) + Du(n)
Model : % (n+ 1) AX(n)+B€u(n),y(n):C')E(n)+Du(n)
Controller : u(n) = K% (n)

Observer : X(n + 1) = (A —LC)®(n) + [B —LD L] [u(n)l

forne [nk,nk+1), with my —np =h
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As with the continuous plant case, we use the same model-based framework to
include a standard state observer at the output of the plant. This observer will
provide estimates of the state of the plant at every time step n since it has access to
the measurements at every sampling period n=0,1,2,. . .; but it will send the state
estimate to the controller every 4 sampling periods, where # > 1 is an integer. The
dynamics of the overall system for n € [ny, n;, ;) can be described by:

x(n+1) A BK —BK x(n)
X(n+1)| = |LC A —LC +BK+LDK —BK—LDK | |x(n) |,
e(n+1) LC LDK — LC A —LDK e(n)

forne [l’lk, I’lk+1), with ng; — ny = h,and E(nk+1) =0.

(3.28)
A BK —BK
Definez=[x x ¢|,andAr= |LC A —LC +BK+LDK —BK —LDK
LC LDK —LC A —LDK
so that (3.28) can be written as:
x(n,:
z(n+1) = Apz(n) for n€ [, myr) and z(ng) = | %(ny) (3.29)
0

Proposition 3.3 The system with dynamics described by (3.29) with initial condi-
X(n())

tions z(ny) = | X(no) | = zo, has the following response:

0
100 I 0 07\"

z(n) =A™ {0 T O|AS|O0 T 0| .

(n) = A F 0 (3.30)
0 00 0 00

forne [nk, nkﬂ),wilh Ny — N = h

¢

The following theorem presents necessary and sufficient conditions for system
(3.29) to be exponentially stable at large (or globally). For the definition of stability
refer to Definition 2.5 in Sect. 2.3.


http://dx.doi.org/10.1007/978-3-319-07803-8_2#Sec3
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Theorem 3.4 The system described by (3.29) is globally exponentially stable

X 0
around the solution z= x| = |0 if and only if the eigenvalues of
e 0
I 0 0 I 0 0
Mr=10 I O|AS |0 I 0] are strictly inside the unit circle. ¢
0 0O 0 0 0

Proofs of Proposition 3.3 and Theorem 3.4 are similar to the continuous time
counterparts and have been omitted.

3.3 Network Induced Delays: Small Delay Case

Previously we assumed that the network delays were negligible. This is usually true
for plants with slow dynamics relative to the network bandwidth. When this is not
the case the network delay cannot be neglected. In this section, we introduce an
approach where appropriate state estimates for the controller are generated based on
delayed information and using the plant model. Theorem 3.6, which is the main
result, presents necessary and sufficient conditions for stability. The results are
illustrated by an example.

There are three important network delay sources: Processing time, Media access
contention, Propagation and Transmission time. The first one, processing time,
occurs at both ends of the communication channel. On the transmitter side, the
processing time is the time elapsed from the time the transmitting process makes the
request to the operating system to transmit a message, to the time the message is
actually ready to be sent. On the receiver side this is the time interval that occurs
from the time the last bit of the message is received by the receiver, to the time the
message is delivered by the operating system to the receiver process. The media
access contention time is the time the transmitter has to wait until the communica-
tion channel is not busy. This is usually the case when several transmitters have to
share the same media.

The propagation and transmission time is the time the message takes to be
streamed out by the sender on the network media and to travel through the network
to reach the receiver. In local area networks the time the message takes to travel or
propagate through the media is small in comparison to wide area networks or
internetworks like the Internet. The time the message takes to be placed on the
network depends on the size of the message and the baud rate.

If the control network is a local area network, as is common practice in industry,
the propagation and transmission time can be established forehand with good
accuracy. Similar observations can be made regarding the processing time. If real
time operating systems are used, the processing time can be accurately calculated.
Finally, media access contention delay can be fixed with the use of a communication
protocol with scheduling. Fast data communication networks like Token Ring,
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x(t)

| Plant »| Delay
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network # h
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x(kh-7)
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x(kh)
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u(t) v

<1 Controller

Memory
?

Fig. 3.8 Proposed configuration of a state feedback networked control system in the presence of
network delays

Token Bus, and ArcNet fall into this category. Industry oriented control networks
like Foundation Fieldbus also implement a scheduler through its LAS or Link Active
Scheduler. Even the inherently non-deterministic Ethernet has addressed the prob-
lem of not having a specified contention time with the so-called Switched Ethernet.
In view of the above, the delay of a message from the sender to the receiver on a
local area network can be at least bounded if standard scheduling techniques are
used on the operating system of the nodes and for network contention resolution.

3.3.1 Continuous Time Systems with Delays

In the following, we present the MB-NCS setup that also includes the presence of
transmission delays. We will assume that the update time 4 is larger than the delay
time 7. We call this particular case: “small delay.” In Sect. 3.4 we consider the more
general case in which the delay 7 is greater than the update intervals /4 and we called
this scenario “large delay” case.

As before we will assume that the update time 4 is constant. We will also assume
at this time that the delay 7 is constant. Time-varying delays will be discussed in
Chap. 6. We will present here the case of full state feedback systems.

So, at times kh-7 the sensor transmits the state data to the controller/actuator.
This data will arrive 7 seconds later. So, at times k% the controller/actuator will
receive the state vector value x(kh-7). The main idea is to use the plant model in the
controller/actuator to calculate the present value of the state. Then, the obtained
state approximation can be used to update the controller’s model as in previous
setups. The system is depicted in Fig. 3.8.
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The Propagation Unit uses the plant model and the past values of the control

input u(r) to calculate an estimate of actual state x (kh) from the received data
x(kh—). This estimate is then used to update the model that with the controller will
generate the control signal for the plant.

The system is described by the following equations:

Plant : X =Ax+ Bu
Model : £ =A% +Bu
Controller : u=Kx,te [tk, t]{+1)

(3.31)

A\X/ —i—éu,te [l‘k+1 -, l‘k+1]

X — X, ttk+lT}

X «— x, =l

Propagation Unit : x

Update law : {

To ease the analysis, we initialize the propagation unit at time #;,;,—7 with the
state vector that the sensor obtains. We then run the plant, model, and propagation
unit together until 7, ;. At this time, the model is updated with the propagation unit
state vector, as described in the update law of (3.31). This is equivalent to having
the propagation unit receive the state vector x(;,;—7) at #,,; and propagate it
instantaneously to #, ;.

We define the errors ¢ = x — % and ¢ = x — x. We also make the following
definitions:

A+BK —BK —BK X
Ar=|A+BK A—-BK -BK|,z=|e (3.32)
0 0 A é

whereA =A —A,B=B—B represent the modeling error matrices. The dynamics
of the overall system (3.31) for ¢t € [#, #;, 1) can be described by:

(1) = Arz(t),

x(t)

with state reset equations : z(f;) = | ¢ (;k—) ,
0 (3.33)
x((fk+l - 7)7)
and Z(Z‘k+1 — T) = 0

e((tep1 =07 )+ e (kg1 —7)7)

where t; .1 —tr=h, 0<z<h.
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Proposition 3.5 The system with dynamics described by (3.33) with initial

X0
conditions z(t)) = | eq | = z0.to = 0, has the following response:
éo
I 00 I 00 T xo
Z(I)Z ~ Ar(t—t;) 01 0 e/\r‘f 00 0 e/\T(h—r) ?0
0 0 0 0o I I éo

fortE [fk,fk+1 —7)

x(1) I 00
() = | e(r) | = eMlhntD {0 0 0|eMth—o
é (1) 0 1 1
I 00 I 0 0 T xo
0 I 0|eM|0 0 0ferMU-o| | e
0 0 O 0o I I éo
for t€ [ty — 7,t141).
(3.34)
Withtk_'_]*tk:h, T <h.
Xo
Proof Assume the system starts at time 7y with initial conditions z(to) = | e
éo
On the interval t € [ty,#; — 7), the system response is:
x(1) Xo
()= | e(r) | =M | ¢y (3.35)
é (1) éo
At 1= (t, —7)
X((fl — T)i) X0
(n-07)=|e(n-07)| =" e (3.36)
¢ ((t—)) éo

According to the update law, at t=1; — 7, ¢ —0andé —x—%=¢ +¢,so:



3.3 Network Induced Delays: Small Delay Case 75

x(t — 1) I 0 0 Xo
(h—7)=|elti—7)| =10 0 0[NV | eq]. (3.37)
é(ll—‘[) 0o 1 I éo
Continuing with the interval t € [¢; — 7, ;)
x(1) I 00 Xo
)= |e(@)| =0 0 0[N ey (3.38)
é(t) 0o I I é()
Att=t;":
x(t17) I 00 X0
)= |e(n )| =eM|0 0 0[N ey . (3.39)
é([l_) 0 1 1 éo

Now, according to the update law, at t=1¢;, é < 0, so:

x(t) I 00 1 00 o
)= |e)| =10 I 0fer |0 0 0[N | e, (3.40)
é(t) 0 0O 01 1 éo
It is easy to see that the response is given by (3.34):
x(1) I 00 T xo
()= |e@)| =MW {0 T 0feM|0 0 0| | e
é (1) 0 00 éo

for t € [ty, tis1 — 7

)
x(1) I 00
z(t)= | e(r) | =Mt 10 0 0|t
Lé (1) L I 1
I 00 I 00 T xo
0 I 0|eM |0 0 0fert—o e
0 00 0 1 I éo

for 1 € (141 — 7, 141).
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We will present now the necessary and sufficient conditions for this system to be
exponentially stable at large (or globally).

Theorem 3.6 The system described by (3.33) is globally exponentially

X 0
stable around the solution z= | e | = | 0| if and only if the eigenvalues of
é 0
I 0 0 I 00
Mrp=10 I 0|eM |0 0 0|erM=9 are inside the unit circle.
0 0O 0 1 1

Proof Sufficiency. Taking the norm of the solutions described in (3.34):

1 00 1 00 g
lz(0)]| = |led@® [ {0 T 0]eM |0 0 0]eMto ]| z
0 0 O 0 I 1
I 00 I 0 0 k
SHeAr(t*u)H. ( 0 I 0ler*|o 0 | oAr(h—o) lzoll
0 0 0 0o I I
fort € [zk,tkﬂ — T)
1 00 I 00 I 00 k
[z(0)|| = ||+ 10 0 0|t |0 I 0fer |0 0 0t | 3
01 1 0 0 O 0 I I
I 00 I 00 I 00 k
< ettt oo 0 0 | Mt 0 1 0|eM |0 0 0]eMt | |-z
0 7 1 0 0 0 0 I I
for t € [t41 — 7, 1541).
(3.41)

Now lets analyze the first terms on the right hand side of the inequalities in
(3.41), we obtain:

(1= 1)’

M < 1+ (¢ — 1) (Ar) + o

E(AT)Z —— eE(AT)(f_IU < eE(AT)h - K,

(3.42)
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and
I 00
eMri—tnta) | g 0 0 |09 < || eAv,-(t—tHl-H')H ) H eA»,-(h—r)” _ H eA»,-(t—rk+1+1)|| .C
01 1

< (1 + (1=t +7)5(Ar) +w5(/\r)2 N ) C

= W)~ +7) . C < oM. C = K,
(3.43)
where 6(Ar) is the largest singular value of A7. We define a new constant K; = max

(Kaer)'
k

I 00 I 00
We now study the term 0 I 0feM™|0 0 0]ert-D It s
0 00 0 1 1
clear that this term will be bounded if and only if the eigenvalues of
I 0 0] I 00
M={0 1 0[eM |0 0 0|e" lie inside the unit circle:
0 0 0] 0 1 1
(1 0 0 I 00 ¢
0 1 0|0 0 0N || <Kok (3.44)
10 0 0 01 1

with Kz, ap > 0.
Since £ is a function of time we can bound the right term of (3.44) in terms of #:

a)

Kze_alk < Kze_al% = KzeTe_a]_llt = K3e_m (345>

with K3, a> 0.
So from (3.41) using (3.42), (3.43), and (3.45) we can conclude:

)] < Ky - Kse ™ - |1zl (3.46)

Necessity. We will now prove the necessity part of the theorem by contradiction.
I 0 0 I 0 0

Assume the system is stable and that M= |0 [ 0|eM* |0 0 0 |eMD
0 0 0 0 1 1

has at least one eigenvalue outside the unit circle. Since the system is stable, a
periodic sample of the response should be bounded. In other words, the sequence of
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a periodic sample of the response should converge to zero with time. We will take
the sample at times 7, ;. We can express the solution z(z;, ) as:

Z(I;H) = £(k)

k

Ar(h—1)

S O 0~
oS~ O

0
0leM™|0 0 0erMli-0 | 2
0

eM (hfr)MkZO )

~ O O ~ O O
~ O O ~ O O

(3.47)

We also know that M has at least one eigenvalue outside the unit circle. This
means that z(¢;,_ ;) will in general grow with k. In other words, we cannot ensure
2(t; 1), and x(k), will converge to zero for general initial condition z.

|z(t )| = 1R — 00 as &k — o0 (3.48)

this clearly means the system cannot be stable, and thus we have a contradiction. ¢

It is interesting to note that the results in Proposition 3.5 and Theorem 3.6 can be
seen as a generalization of Proposition 2.1 and Theorem 2.3. The networked system
(2.6) can be seen as a special case of (3.32) when 7 = 0. For this particular value of

7 the error é = x — & is always equal to 0 and the error e can be expressed as
e =x- X ; consequently (3.32) reduces to (2.6).

Example 3.4 We present a numerical example using the linearized dynamics of the
inverted pendulum on a moving cart shown in Example 3.2. Assume in this case
that the whole state can be measured and transmitted to the controller node.

In this example we consider a constant delay equal to 0.3 s. By using the results
in Theorem 3.6 we find that the networked system is stable for values
of 0.3 <h<1.98. Figure 3.9 shows the response of the plant and the model
for h=1s.

3.3.2 Discrete Time Systems with Delays

In this section we consider multi-input, multi-output linear time-invariant discrete-
time systems and models that are also subject to network delays. In this case the
updates will occur at some of the discrete time instants indexed by » that correspond
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Plant Positions
Plant Velocities

Model Positions
Model Velocities

Time (seconds) Time (seconds)

Fig. 3.9 Response of system in Example 3.4 for h=1s,7=03s

to the operation and sampling of the plant. This implies that the update interval
h will be an integer number, representing the number of plant discrete instants
between two consecutive measurements that the sensor broadcasts.

Note that in this section the delay can be greater than the sampling time of the
system indexed by n but smaller than the update interval /& at which the sensor
decides to send information. For discrete-time systems we assume that the update
time 4 is constant and an integer number. We also assume the delay 7 is constant
and an integer number; it represents the number of system sampling instants that the
information is delayed. We will present here the case of full state feedback systems.

For this case we have that at times 7, — 7 the sensor transmits the state data to the
controller/actuator. This packet will arrive 7 plant samplings later. So, at times kh
the controller/actuator receives the state vector value x(7; — 7). The main idea is to
use the plant model in the controller/actuator to estimate the present value of the
state. After this, the estimated state is used to update the controller’s model.

The Propagation Unit uses the plant model and the past values of the control
input u(n) to calculate an estimate X (nt) of the current state x(n;) from the received
data x(n, — 7). This estimate is then used to update the model that with the controller
will generate the control signal for the plant.
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The system is described by the following equations:

Plant:  x(n+1) = Ax(n)+ Bu(n)

Model : )E(n—&—l):fi)?(n)—i—éu(n), nE[nk,nkH)

Controller :  u(n) =K% (n) (3.49)
Propagation

Unit : }(n—i—l) :Ax(n)—i—éu(n), nE[nk—T,nk]

X — x,nznk—r}

N

X — X, n=m

Update law : {

To ease the analysis, we initialize the propagation unit at time ;-7 with the state
vector that the sensor obtains. We then run the plant, model, and propagation unit
together until ;. At this time, the model is updated with the propagation unit state
vector, as described in the update law of (3.49). This is equivalent to having the
propagation unit receive the state vector x(n;—7) at n; and to instantaneously

compute an estimate x (ng) of the current state x(;).
We define the errors é (n) = x (n) — x(n) and e (n) = x(n) — x (n). It can be
shown that the dynamics of the state and the errors can be represented by:
x(n+1) = (A+BK)x(n) — BK e (n) — BKé (n)
e(n+1)= (Z—FEK)x(n) + (A —gl();(n) — BKé (n) (3.50)
é(n+1) =Aé(n).
-T T
Define the augmented state vectorz = [xT e ¢ T} then the augmented system
can be represented in compact form as:
z(n+ 1) = Az(n), (3.51)
A+BK —-BK —BK
where A= |A+BK A —BK -BK

0 0 A
According to the update laws in (3.49) we have the augmented state reset
equations:

- (3.52)
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where 1y, | — n = h, 0 <7 < h. The dynamics of the overall system forn & [ny, 1,4 1)
can be described as shown next.

Proposition 3.7 The system with dynamics described by (3.49) with initial condi-

. -1 7 .
tions z(ng) = [xOT e, eOT} =z, ng =0, has the following response:

2(n) = | e(n) | = A"™xkz
é(n) (3.53)

x(n) I 00
z(n) = | e(n) = At g 0 0 |AlIEkg
é(n) 0 I I
for n€ [my — ,min).
I 00 I 0 0
whereS= 110 I O0|A"|0 0 0[|AVD
0 0 0 0 I I

Theorem 3.8 The networked system described by (3.49) with constant updates h
and constant delays T < h is globally exponentially stable around the solution zy =0
if and only if the eigenvalues of

I 0 0 I 00
=10 I 0[A"|0 0 0|A"™ (3.54)
000 0 1 1

are within the unit circle in the complex plane.

Remark The analysis presented above for discrete-time systems offers an important
advantage compared to its continuous-time counterpart discussed in the previous
section. In order to compute the propagated state based on the delayed measurements
we need to store the previous values of the control inputs that were used over the
interval [n; — 7, ny). For discrete-time systems the control input history over [n; — 7, 1)
can be represented by a finite number of values but for continuous-time systems it is not
possible to store in digital memory an infinite number of values that characterize the
input u(#). In this case we need to sample sufficiently fast in order to obtain a good
approximation of the continuous control input u().
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3.4 Network Induced Delays: Large Delay Case

In this section we extend the approach discussed in previous sections to consider the
case when 7 > £, that is, the delay 7 is larger than the update interval 2. We consider
both continuous and discrete-time systems. The aim is to obtain conditions for
stability in the presence of delays, when the delays are larger than the periodic
update intervals. The solution to this problem is obtained by considering an
increased number of propagation state variables which, in turn, requires the state
vector z to be augmented to include additional error variables.

3.4.1 Continuous Time Systems

For continuous time systems / and 7 can be real numbers, they are not restricted to
be integers. For simplicity we consider first the case when i <7 <2 h. The general
case ah <t <(a+1)h for any positive integer a can be solved using the same
approach but adding more error variables.

We consider two propagation state variables x | and x ,. We update the state x
at time f;, — 7 using the real state x(#; — 7). At time #;, we perform two updates in
sequential manner. First, we update the state of the model * () using the value
x1(#) and then we update x(f;) using the value x,(#;). The overall setup for
continuous-time systems can be described as follows:

Plant : x(t) = Ax(t) + Bu(t)

Model : () =A%) +Bu(l), t€ [tr.trn1)

) =Kk (1) (3.55)
Propagation v).c,-(t) :A}i(t) +1§u(t), te [tk -1, tk}, for i=1,2

Unit :

Update law : < _ XX =k T .
X1 — X, then x, — x1, t=1

Controller :  u(z

Using this representation we ensure that the model of the system that generates
the state % () is updated at time #; with the propagated variable that is computed
based on the measurement that was sent by the sensor at time ¢, — 7, see Fig. 3.10.
In this figure we can see that at time ¢, the plant model in the controller is updated
with information generated at time #; — 7. Even though a new measurement has
been sent by the senor node at time #, | — 7, this new information has not arrived
yet to the controller node due to large delay 7 > h.

Remark Note that in the actual implementation we only need one propagation unit
(and only one propagation state variable) that receives the delayed measurement
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ket Gatr e W bras
Controller i - - - -
Time (1)
| | | | | | | |
[ [ [ [ [ [ [ | >
e t et Go s tera

Fig. 3.10 Representation of update intervals in the presence of delays h <7 <2h

and propagates it instantaneously to time 7, using the previous control input u(¢)
stored over the interval [t; — 7, f;].

Define the errors e (f) = x(t) — x5(¢), é(t) = x,(t) —%(t) and e (¢) =

X2(f) — x1(f). Tt can be shown that the dynamics of the state and the errors can
be written as:

-T ~T
Define the augmented state vector z = [xT e éT eT} then the augmented

system can be described by:

2(t) = Az(1), (3.57)
A+BK —-BK —BK —BK]
A+BK A —-BK —-BK —-BK
where A = . . From the update laws (3.55) we
0 0 A 0
0 0 0 A ]
obtain the augmented state reset equations:
x((te—1)7) ] x(1y)
0 e(r)
Z(l‘k - ‘L') = R _ s Z(Ik) = (358)
¢((—2)) e (i)
z((lk—7)7)+/€\((lk—T)_)_ 0

where ty 1 —tr = h, h <t <2h
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Proposition 3.9 The system with dynamics described by (3.55) with initial condi-

oT
tions z(to) = |x3 e,

I 0
0 I
where ¥ =
0
00

o o O

0

)

0
0
1
0

e

_qT
eOT} = 29, to =0, has the following response:
x(1)
A1) = e (1) _ eA(r—zk)ZkZO
é(1) (3.59)
e (1)

for t€ [ty, trs1 — ')

I 0 0 O
:e/\(t*f/@r]“r‘tl) 000 eA(hfr’)ZkZO
0O 0 I O
0o I 0 I
for t€ [ty — 7, ti41)
I 0 0 O
1o o o0 o0 ,
AT A=) and t' =1 —h.
0O 0 I O
oI 0 I

Theorem 3.10 The networked system described by (3.55) with constant updates h
and constant delays h <t <2 h is globally exponentially stable around the solution
z0=0 if and only if the eigenvalues of

S O O 0~

S O ~ O

M) (3.60)

are within the unit circle of the complex plane.

Remark The most important advantage of the results presented in this section
compared to the special case when the delays are restricted to be smaller than the
update interval can be better appreciated in the next scenario: for a given plant,
model, controller, and network delay 7z there may not be an update interval & > 7
that stabilizes the system (as shown in Example 3.3 below), but using the results in
this section, we can find some smaller interval / < z that results in a stable system.
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We can extend the previous results in order to establish necessary and sufficient
conditions for stability for the general case when ah <7< (a+1)h by adding
a additional propagation (where a is a positive integer) state variables with respect
to the small delay case described in Sect. 3.3. For instance, in the previous section
we had that 7 < 7 < 2 h so a = 1; there we added one additional propagation variable
with respect to the small delay case and we had a total of two propagation variables.
Theorem 3.11 The networked system described by (3.55) with constant
updates h, constant delays ah<zt<(a+1)h, and with augmented state

-T ~ ~17
z=|xT e éT el... el| isglobally exponentially stable around the solution

z0=0 if and only if the eigenvalues of

000 ..0 I 00 0 0 0

0 0 000 0 0

0 00 /1 ... 0 0 0 01 0 0 0
r=| SleMlo 0 0 1 0 0 |er=7)

0 000 JA)

0 0 0 I 0

0 0 0 0 0 0] [0 1 00 0 I |
(3.61)

are inside the unit circle, where ' =7 —ah, e (t) = x(t) — x411(2), é (t) = x,(2)
(1), ei(t) = xi41(t) = xi(t), for i=12...a, and the (a+3) x (a+3) matrix A is
given by:

A+BK —-BK —-BK —-BK ... —BK]
A+BK A—-BK —-BK —-BK ... —-BK
0 0 A 0O ... 0
A= . . (3.62)
0 0 0 A ... 0
. 0 0 0 0 ... A |

Example 3.5 Consider the following unstable continuous-time plant, model, and

controller gain:
—0.349 0.65 0
A - N B =
—-0.316 0.787 1
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eig(Sigma)

eig(Sigma)

Fig. 3.11 7=1.6s. Eigenvalue of X with largest magnitude for 7 < & (fop) and for h <7 <2 h
(bottom)

0 06 1
K =[-54621 —11.1658].

-05 1] . lo.oos]
, B = (3.63)

Suppose that the networked induced delay is constant and equal to 1.6 s. For this
delay there is no update interval s > 7 that provides stability as shown in the top part
of Fig. 3.11. If we decrease the update interval, there exist values of 4 as shown in
the bottom part of Fig. 3.11, for which the system is stable. An example of a stable
response of the system for 7= 1.6 time units is shown in Fig. 3.13a using h=1.2
time units.

Suppose now that the delay is larger, 7= 1.85 s. Figure 3.12 shows that stabi-
lizing values of 4 exist for the range for 2 4 < 7 <3 h (c), but not for 2 < 7 <2 h (b) or
for 7 < h (a). The response of the system for 7= 1.85 s and using 2 = 0.73 s is shown
in Fig. 3.13b.

3.4.2 Discrete-Time Systems

The results of the previous section can be easily extended to consider discrete time
system with large delays. Keep in mind that the update intervals % and the delays =
are constrained to be integers. The following theorem provides necessary and
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sufficient conditions for stability of discrete time networked control systems with
delays. The proof follows directly from the results in Sects. 3.3.2 and 3.4.1.

Theorem 3.12 The networked system described by (3.49) with constant

updates h, constant delays ah<t<(a+1)h, and with augmented state
-T —~ ~T
z=|xT e éT el... el| isglobally exponentially stable around the solution

z0=0 if and only if the eigenvalues of

I 0 I 00 0 0 0
I 0 0 000 0 0
0 0 01 0 0 0
Y= A0 0 0 I 0 0 |Al)
0 0
0 000 0 I 0 000 I 0
0 0 0] Lo 0 I |
(3.64)

are within the unit circle of the complex plane, where ©' =t —ah, e (n) = x(n)

—Xap1(n),é(n) = x1(n) — % (n), ei(n) = xiy1(n) — xi(n), fori=12...a, and the
(a+3) x (a+3) matrix A is given by (3.62).

3.5 Notes and References

This chapter extended the initial results on MB-NCS to control systems where it is
only possible to measure the output of the plant but not the entire state.

The approach described in Sect. 3.1 uses a traditional Luenberger observer [76]
and studies the associated convergence and stability results when the observed
states are used to update the model of the system at the controller node. A similar
analysis was presented in Sect. 3.2 for discrete time systems. In both cases we
design the controller and observer gains and then analyze the stability of the system
given these gains and the uncertainties of the system. It was shown that more
complex expression than the simple, separate design of the controller and observer
gains needs to be followed due to the system uncertainties and the absence of
feedback for intervals of time to be determined.

The MB-NCS framework was also extended to consider a particular problem in
NCS, namely, network induced delays. One of the main advantages using the
model-based approach in comparison to typical methods in NCS is that the delayed
measurements are propagated in order to obtain a more accurate estimation of the
current states.
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The work in Sects. 3.1 and 3.2 was first published in [187] and [188]. The work
in Sect. 3.3 appeared first in [188]. The extensions to consider large delays using
multiple propagation units are based on [86].

For the case in which the observer is implemented in the sensor node, the
computational load of an observer in the sensor is justified by the fact that, typically
sensors which can be connected to a network have an embedded processor inside.
Ishii and Francis [124] give a similar justification. In their approach an observer is
placed at the output of the plant to reconstruct the state vector. The result is then
quantized and sent over the network to the controller.

Chapter 11 revisits the output feedback problem when considering tracking of
reference inputs. Different system representation and controller designs are used
and state observers are not required.

Many different approaches exist for output feedback stabilization of networked
systems. For instance, [292] presented a method based on linear matrix inequalities.
The paper [225] discussed the detectability and output feedback stabilizability
problems for NCS of nonlinear systems using algebraic Riccati equations. In
[229] the output feedback system is modeled as a Markov chain and a two-mode
controller is designed.

Similarly, interest in NCS with time delays has increased in the recent years.
Assumptions about network induced delays vary from constant delays to time-
varying deterministic delays and also time-varying stochastic delays that may
follow one of many different probability distributions. The authors of [291]
explored different problems related to NCS including time delays and offer solu-
tions using hybrid systems techniques. Other techniques that consider network
induced delays in NCS are given in [132] and [230]. In more recent work such as
[276] the authors use linear matrix inequalities for controller design in the presence
of stochastic delays from the sensor to the controller and from the controller to the
system that follow a Bernoulli distribution. The work in [46] provides general
models of NCSs that consider time-varying sampling intervals and delays. In [45]
the authors use the Jordan canonical form of the continuous-time plant in order to
derive stability conditions considering uncertain, time varying delays that can be
smaller or larger than the sampling interval of the network.
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Chapter 4
Model-Based Control Systems
with Intermittent Feedback

The general idea using the intermittent feedback approach is to operate a control
system in open-loop mode for as long as possible in order to reduce the use of
resources (communication resources when applied to NCS) and to change the
mode of operation to closed-loop mode in order to recover some desired performance
by applying a continuous feedback control action. The present chapter develops this
idea in the context of MB-NCS. The overall networked architecture and approach are
similar to those presented before in Chaps. 2 and 3. The main difference is that the
update strategy in previous chapters uses instantaneous feedback, that is, a single set
of measurements is sent from the sensor node to the controller node once every / time
units. In contrast, the intermittent approach establishes a closed-loop operation mode
in which multiple measurements are transmitted starting at every /4 time units.

Intermittent feedback is a very natural way of controlling the response of a system.
A simple example can be found in human learning. When a person is performing
certain operation or action repeatedly, s/he first pays special attention to learn it and
eventually the same person can perform the same action with “closed eyes” which in
this case it means open loop or lack of visual feedback. If the operation or process that
the person is controlling changes or if at some moment it is easily perceived that the
outcome is significantly different from the desired one then it is necessary to obtain
visual feedback to discern how his actions (control) affect the results and make all
corrections and adjustments as needed (to compute a different control input).

The implications and characteristics of the use of intermittent feedback in
automatic control as explained here have not been fully studied. Specifically, the
potential of intermittent feedback in NCS is of great interest. The central idea in this
chapter is to take advantage of the preexisting work in model-based networked
control systems and of the concept of intermittent feedback to develop new results
and ideas that can lead us to a more complete and comprehensive understanding of
analysis and design of networked control systems. In addition to what we have said
in the previous paragraph about intermittent feedback, the difference between
closed-loop and open-loop dynamics suggests a hybrid nature for the system
(switching between two modes), and since networked control systems display
characteristics of hybrid systems as well, the application of the intermittent

E. Garcia et al., Model-Based Control of Networked Systems, Systems & Control: 91
Foundations & Applications, DOI 10.1007/978-3-319-07803-8_4,
© Springer International Publishing Switzerland 2014
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feedback concept to networked control systems seems especially intuitive. Also,
since, under an intermittent feedback scenario we have entire intervals of time when
the system is running closed loop, it makes it far more natural to relate dynamics in
networked control systems to results in classical, continuous-time control theory.

In this chapter we extend the key results of Chaps. 2 and 3 in order to consider
the intermittent behavior that may be encountered in several types of networks.
Proofs for most theorems are similar to the corresponding proofs in the previous
chapters and, therefore, have been omitted. The present chapter is organized
as follows: In Sect. 4.1 we present the Model-Based Control with intermittent
feedback architecture and provide stability results for continuous-time systems. In
Sect. 4.2 we introduce a different approach for intermittent feedback that relaxes
the use of continuous feedback during the closed-loop times. Discrete-time systems
are studied in Sect. 4.3. In Sect. 4.4 an alternative lifting approach is used to study
stability of discrete-time systems. Notes and references are in Sect. 4.5.

4.1 Continuous-Time Systems with State Feedback
and Closed-Loop Mode

In this section the architecture of MB-NCS with intermittent feedback is first
discussed. Then conditions for stability are presented based on the two modes of
operation: open loop and closed loop. It is assumed in this section that when the
networked system operates in closed-loop the controller receives continuous feed-
back from the sensor. This is a restrictive assumption since the network has limited
bandwidth. This assumption will be relaxed later in Sect. 4.2. Nevertheless, the ideas
presented in this section provide a clear idea about the behavior of this type of system.

4.1.1 Model-Based Control with Intermittent
Feedback Architecture

We consider a similar architecture to the one we used for MB-NCS in Chap. 2.
A nominal model of the plant that approximates the dynamics of the real plant is
implemented in the controller node in order to generate an estimate X of the plant
state x during the open-loop intervals. The main difference with respect to the
traditional MB-NCS setup, as it can be seen in Fig. 4.1, is that when the networked
system operates in closed-loop mode the control input is a function of the real plant
state x(#) and X (f) = x(¢) during the whole closed-loop interval.

In dealing with intermittent feedback, we have two key time parameters: how
frequently we want to close the loop, which we shall denote by /; and how long we
wish the loop to remain closed, which we shall denote by 7, see Fig. 4.2. Naturally,
in the more general cases both / and 7 can be time-varying. For the purposes on this
chapter, however, we will deal only with the case where both 4 and 7 are fixed.
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P Plant ——p| Sensor

—P Model

Network |{—

K

Fig. 4.1 MB-NCS with intermittent feedback (basic architecture)

Open loop

T (closed loop)

h (full period)

Fig. 4.2 Intermittent feedback. Open and closed-loop periods

We consider then a system such that the loop is closed periodically, every
h seconds, and where each time the loop closes, it remains so for a time of 7 seconds.
The loop is closed at times 7, for k=1, 2, . . .. Thus, there are two very clear modes of
operation: closed loop and open loop. The system will be operating in closed-loop
mode for the intervals [ty t;+7) and in open loop for the intervals [t +7,t; 1)
Intuitively, we should be able to achieve much better results the longer the loop is
closed. Since the level of degradation of the information increases the longer the
system is running open loop, it is expected that intermittent feedback should yield
better results than those for traditional MB-NCS with the same period 4. This is
indeed the case. The remaining sections summarize the corresponding results
described in Chaps. 2 and 3 but now using the intermittent feedback approach.

4.1.2 Stability of Continuous-Time MB-NCS
with Intermittent Feedback

In this section we consider uncertain linear time invariant systems that are
interconnected as shown in Fig. 4.1. The uncertain plant and the nominal plant
model are represented by:
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Plant x = Ax + Bu

. N . (4.1)
Model X =AX +Bu
and the controller is given by
Kx for te ity +71
= J vt +7) (4.2)
K% for t€ [ty +7,441).
The state error is defined as
e(t) = x(t) — % (1) (4.3)

and represents the difference between the plant state and the model state. The

modeling error matrices A=A—A and B=B-B represent the difference
between the plant and the model. We also define the augmented state vector

)
z(t) = [e(l)]'

Proposition 4.1 The system described by (4.1) with input (4.2) and initial

conditions z(ty) = {300)} = z9, has the following response:
k
I 0 I 0
ehet=1) > zp, tE [tk, t + ‘L')
0 0 0 0
z(t) = . (4.4)
Ao (1= (:+7)) LA () o I o
e k e 0 0 > 0 0 z9, 1€ [tk + 1, tk-H)
A+BK —-BK A+ BK —BK
where T = eMoh=1)he(D) A = =|. _ P
0 0 A+BK A —BK

and ty 1 — ty=h.

Proof We will now proceed to derive the response of the MB-NCS with intermit-
tent feedback to prove this proposition in a direct way. To this effect, let us
separately investigate the state response when the system is operating under closed
and open-loop conditions, respectively.

During the open-loop case, that is, when ¢t € [#;+ 7, ;. 1), according to (4.2) we
have that u = KX so

A BK
0 A+BK

7| = i (4.5)

X

X

with initial conditions X (#; + 7) = x(f; + 7).
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xwl
e(t)

x(ty +71) (4.6)

Rewriting in terms of x and e, that is, of the vector z:

A+BK  —BK

A+BK A -BK
x(tk + T)

Z(tk + T) =
0

€(lk + T)

VIE [t + 7, 1k41).
Thus, we have

A+BK —BK

z=A,z, where A, = | . _ . for t€ [tk + 7, tk+1). (4.7)
A+BK A —BK

The closed-loop case is a simplified version of the case above, as the difference
resides in the fact that the state error is always zero. Thus, for t € [#;, ¢, +7) we have

A+BK —-BK
0

7 = Az, where A, = for tE€ [tk,tk + T). (4.8)

This should be clear in that the error is always zero, while the state progresses
in the same way as before. From the analysis above, given an initial condition
z(t=0) =z(, and assuming without loss of generality that we start the cycle in
closed loop then after a certain time ¢t € [0, 7) the solution of the trajectory of the
vector is given by

2(t) = M0z, 1€ [0,7). (4.9)

In particular, at time 7, z(z) = e(?z,.

Once the loop is opened, the open-loop behavior takes over, so that

Ao (t—17) Ao (t—7) A (T)

z2(t)=e () =e Mz, 1€ [1,n). (4.10)

In particular, when the time comes to close the loop again, that is, after time
h, then

(1) = Mol (@) 5 (4.11)

. x(¢ . .
Now, note that at times #;,z(#;) = { 0( ©) ] , that is, the error e(?) is reset to zero. We

can represent this by pre-multiplying by [1 before we analyze the closed-loop

0
0 0
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trajectory for the next cycle; because we wish to always start with an error that is set to

zero, we should actually multiply by {] at the beginning of the cycle as well.

0
0 0
Then, after k cycles, going through this analysis yields a solution.

= (s ooy (s 2 )

h=1) pAc(2)

where X = eMo(=7)eAe(®),

The final step is to consider the last (partial) cycle that the system goes through.
If the system is in closed loop, that is, ¢ € [#,;+7) then the solution can be
achieved merely by pre-multiplying z(z,) by e*<(~%)_In the case when the system
is in open loop, that is, t € [#,+7,# ) then clearly we must pre-multiply by
Mo (1= (7)) pAc(7) .

A necessary and sufficient condition for stability of the networked system will
now be presented. For the definition of stability please refer to Definition 2.2 in
Sect. 2.2.

Theorem 4.2 The system described by (4.1) with input (4.2) is globally exponen-
tially stable around the solution z = [;C] = [8] if and only if the eigenvalues of

{é 8] > {é 8} are strictly inside the unit circle, where ¥ = eho(h=1) gAc(7)

Proof Sufficiency. Taking the norm of the solution described as in Proposition 4.1:

k
I 0 I 0
zZ(H)]| = gAl (t—t) er(I"*T)eAr(T) 7z
2@l <[0 O] o ol
k
< He/\((tftk)H . H ( [I O‘| oo (h=1) A7) [1 O‘|> . ||ZO||
0 0 0 0

Notice that here we only consider the case t € [#, t; + 7), however the process is
exactly the same for the intervals where t € [t + 7, ;. 1). Now let’s analyze the first
factor of the right hand side of (4.13):

(t—0)_, FA) (=) — (AT 4.14
G(A)" ... = oI L\t = K (4.14)

U] < 1+ (£ — 0)F(AC) + 51

where G(A,) is the largest singular value of A.. In general this term can always be
bounded since the time difference ¢ — f; is always smaller than 7. In other words
even when A, has eigenvalues with positive real part, HeAL (t=1) || can only grow a
certain amount. This growth is completely independent of %.
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k
I 0 I 0
We now study the factor 0 0 eMolh=7) gAe(0) - . It is clear that it

will be bounded if and only if the eigenvalues of {([) 8} eMoh=7) oA (0) [(I) 8} lie

inside the unit circle:

k
I 0 I 0
eA,,(h*T)e/\[-(T) S Kzeialk (4 15)
0 0 00
with K5, a; > 0.

Since £ is a function of time we can bound the right hand side of (4.15) in terms
of t:

a)

Kre @k < Kye @' = Kyele 7 = Kye ™ (4.16)

with K53, a > 0.
So from (4.13) using (4.14) and (4.16) we can conclude that:

k
I 0 I 0
||Z([)H — ||eAt=10) <[0 O‘| oMo (h=7) gA(7) [0 0]) zo|| < K -K3e_af . ||ZO||

(4.17)

Necessity. We will now prove the necessity part of the theorem by contradiction.

Assume the state feedback MB-NCS is stable and that [(I) g]e’\”“’")e"((ﬂ

V) 8] has at least one eigenvalue outside the unit circle. Let us define

2(h) = eM =7 A7) Since the system is stable, a periodic sample of the response

should be stable as well. In other words the sequence product of a periodic sample

of the response should converge to zero with time. We will take the sample at times

ty 1, that s, just before the update. We will concentrate on a specific term: the state

of the plant x(z_, ), which is the first element of z(¢;, ;). We will call x(¢,, ), &(k).
Now assume Z(#) has the following form:
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Then we can express the solution z(f) as:

I 0 I 07\F
M=) =(h) 2
0 0 0 0

B [W(r—zk) X(t—tk)] l(W(h))"' 0]
Y(i—t) Z(it—1t) 0 0 ’

W(t— 1) (W(R) 0
20

(4.18)

Y(t - 1) (W(h)* 0

Now the values of the solution at times #;_, |, that is just before the update, are

o [wmwm)t ool [ wm)tt o

2(ti) = £ 20 = P 0
Y(h)(W(h))" O Y(h)(W(h))" 0

1

0 0
outside the unit circle, which means that those unstable eigenvalues must be in W
(h). This means that the first element of z(¢;_,_;), which we call £(k), will in general
grow with k. In other words we can’t ensure £(k) will converge to zero for general
initial condition x,. In general,

We also know that [(I) 8} eolh=7) g (1) { } has at least one eigenvalue

()l = 16 = | Wo) x| = o0 s k=00 (419)

which means that the system cannot be stable, and thus we have a contradiction.4

4.2 A Different Approach: Fast-Slow Update Rates

In practice when considering continuous-time systems we are not really capable of
implementing a closed-loop mode of operation, since it requires continuous feed-
back from the sensor to the controller using a limited-bandwidth digital network as
a communication medium.

A more realistic way of implementing intermittent feedback for continuous-time
systems is to consider fast and slow update rates. The difference of the approach in
this section compared to one in the previous section is that when the closed-loop
mode turns on the controller does not receive continuous measurements from the
sensor; instead the sensor sends measurements at discrete points of time which are
more frequent than when the open-loop mode was used.

Open loop. No measurements are received.

Closed loop. Updates are received at higher rate but continuous feedback is
not assumed.
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Fig. 4.3 Representation of parameters involved in the model-based approach
with intermittent feedback

4.2.1 State Feedback

There are several parameters that are used for the analysis of this type of intermit-
tent feedback MB-NCS (Fig. 4.3).

h: represents the duration of the entire cycle.

7: represents the interval of time when the controller is receiving updates at higher
frequency; this corresponds to the closed-loop duration of the cycle.

f: is the time interval between successive fast updates.

T = ]% represents the number of fast updates during the closed-loop duration of the

cycle and it is assumed to be an integer.

Consider the plant, control input, and state error defined in (4.1)—(4.3). The
response of the MB-NCS with fast and slow update rates is given in the following
proposition.

Proposition 4.3 The system described by (4.1) and input (4.2) with initial condi-

X( 7
tions z(ty) = [ (00) ] = z0, has the following response:

N\ K
R (R 2 )

A+BK  —-BK

where A= | - N~
A+BK A —BK

e(t

, Z([) = [X(t; ] . and [ *tk:h.
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Proof The times #;, k=0,1,... represent the beginning of a new cycle, that is,
they represent the first time instant that updates are received after an open-loop
period. Let z(#;) represents the augmented state after the first update takes place.
It follows that:

2(t) = eMVz(n), 1€ [t +f). (4.21)

0
In particular, at time #,+f we have z(t; +f) = [ 0] e/7z(1,) because of the

0

second update. The response of the augmented system during the following period
can be expressed in a similar way.

2(t) = M2t 4 f), 1€ [+ o0+ 2f). (4.22)

I 0
At time #; +2f we obtain z(; + 2f) = ([0 0

system at every update is of similar form including the last update of the cycle
which takes place at time #; + 7 and it is given by (in terms of z(#;)):

weo-([L )

2
1 efA> z(t;.). The response of the

The second part of the cycle corresponds to the open-loop mode when no update
is transmitted for the time interval ¢ € [, + 7, #;, 1); the response of the augmented
system can be represented by:

2(ty + 1) = eA(H["“))Z(tk +1), € [tk + T, lk+1)- (4.24)

At time #; .| we begin a new cycle and the first update of that cycle takes place
at that same instant. The response of the system, including the first update, in terms
of z(t;) can be written as follows:

2(tegr) = l(l) (O)]e"“”)([([) %ﬂ) 2(t). (4.25)

Due to the periodicity of the open loop and closed loop as defined in this section
and the periodic fast updates during the closed-loop periods, the response of the

x(to
augmented system to initial conditions z(#y) = [ (0 )] =z is given by:
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- Sr(fs 5

The last expression provides the state of the system at time instants #, k=0,1,. ..
The response at any time ¢t < (#, #;, 1) can be obtained by pre-multiplying (4.20) by
the corresponding partial response. ¢

A necessary and sufficient condition for stability of the networked system will
now be presented. For the definition of stability please refer to Definition 2.2 in
Sect. 2.2.

Theorem 4.4 The system described by (4.1) with input (4.2) and with fast-slow

intermittent update rates is globally exponentially stable around the solution
[x] _TJo]. . . I O] a1 0] )"

z= L} = {0} if and only if the eigenvalues of [O O]e 0 0 e

are strictly inside the unit circle.

The proof is similar to the one for Theorem 4.2 and it is omitted.

Example 4.1 Consider the following open-loop unstable continuous-time system:

~076  2.23 .14
A‘[ 1.87 —2.56}’ B‘[ 0 ]

Let the nominal model dynamics be given by:

[t 3} o]

Let the control gain, selected based on the available model parameters, be:

K =[-54621 —11.1658].

We choose 7=0.4 s and f=0.1 s. We want to find the range of values for / that
result in stability. Using the results in Theorem 4.4 we can find that stability is
obtained for choices of /4 (greater than 0.4 s) to about 1.83 s. Figure 4.4 shows the
response of the system and model for 7=1 s.

Example 4.2 Theorem 4.4 offers necessary and sufficient conditions for stability in
terms of different parameters including the parameters of the system which are
unknown. In this example we use the same results to estimate the admissible
uncertainties for given model parameters, i.e., those uncertainties that result in a
stable model-based control system.

This example considers a first order system for simplicity but the same type of
search can be followed for systems of higher order by searching over an increased
number of scalar parameters corresponding to the elements of the real system

matrices. Let the model parameters be given by: A=1B=1, and K=-2.


http://dx.doi.org/10.1007/978-3-319-07803-8_2#Sec2
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Fig. 4.4 Response of system and model for h=1s

Let us fix the network parameters: h=2s,7=0.5s, f=0.1 s. Figure 4.5 shows the
i

eigenvalue of the matrix {(]) g] M=) ( [(I) 8} e A) with maximum magnitude

for different values of A and B, the real parameters. The figure shows which

combinations of plant parameters result in a stable control system for the given

selection of model and network parameters. For instance, we can see that values

close to the model parameters result in a stable model-based system, as expected.

4.2.2 OQutput Feedback

In the previous section we considered plants where the full vector of the state was
available at the output. When the state is not directly measurable, one can imple-
ment a state observer as in Sect. 3.1. When the networked system operates in closed
loop the control input is now based on the state of the observer, i.e., u = KX. In the
open-loop mode we use the state of the model as before, that is, u = Kx. In this
section we extend our results to this situation. As in the architecture used in Sect.
3.1 for instantaneous model-based feedback, we assume that the state observer is
collocated with the sensor. We use the plant model to design the state observer and
the configuration is similar as the one shown in Fig. 4.1.
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Fig. 4.5 Maximum eigenvalue of matrix in Theorem 4.4 for different values of A and B

We consider systems of the form

X =Ax+ Bu
(4.26)
y=Cx+ Du.
Let the nominal model corresponding to system (4.26) be given by:
{ =Ai +B
Lo (4.27)
y=Cx+Du.

The approach we follow in this section is to implement a state observer at the
sensor node. The observer is given by:

¥=(A-LC)X+[B -LD L] B} (4.28)

The parameters used by the observer are the available model parameters and it is
assumed that the observer has continuous access to the output of the system since it
is implemented at the sensor node. In order for the observer to obtain access to the
system’s input, a copy of the model is also implemented at the sensor node and
the state of that model is updated at the same updated instants as the model in the
controller node.
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The state of the model is now updated using the observer state. Define the
observer-model state error

e=x—1 (4.29)

and the error matrices A :A—A,E :B—é,g’ :C—C‘,B =D-D.
Proposition 4.5 The system described by (4.26)—(4.28) with control input u = KX

x(to)
and initial conditions z(ty) = | X(to) | = z0, to = 0, has the following response:
e(to)
1 00 I 00 ¢
Z)=[10 1 ole™ (0 1 0o Z0 (4.30)
0 0 0 0O 0 O
A BK _ -BK_ x(1)
where A, = | LC A —LC +BK+LDK —BK—LDK | z(t)= |X(¢) | and
LC LDK — LC A — LDK ?(t)
h= tre1 — lr. L4

The proof follows the steps of Proposition 4.3 and considering the augmented
system state.

Theorem 4.6 The system described by (4.26)—(4.28) with control input u = KX
and with fast-slow intermittent update rates is globally exponentially stable around

X 0
the solution z = | x| = | O | if and only if the eigenvalues of
e 0
(1 0 0 1 0 0] \”
0 I 0feM =110 1 0fe™ (4.31)
10 0 0 0 0 0
are within the unit circle of the complex plane. *

The proof is similar to the one for Theorem 4.2 and it is omitted.

Example 4.2 Consider the inverted pendulum on a moving cart example described
in Example 3.2 in Sect. 3.1. The nominal parameters, real parameters, controller
gain, and observer gain are the same as in Example 3.2. Let us consider the case
where t=0.3 s and f=0.1 s.

Figure 4.6 shows the eigenvalue with maximum magnitude of matrix (4.31)
corresponding to this example. The networked system remains stable for values of
h between 0.3 s and about 2.45 s. Figure 4.7 shows the states corresponding to the
positions of the plant, the model, and the observer for the choice of =1 s and
Fig. 4.8 shows the corresponding velocities of the same subsystems.
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Fig. 4.6 Eigenvalue with maximum magnitude for Example 4.1
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Fig. 4.7 Positions of inverted pendulum on a moving cart with intermittent feedback and 7=1s
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Fig. 4.8 Velocities of inverted pendulum on a moving cart with intermittent feedback and h=1s

4.3 Discrete-Time Systems with Intermittent Feedback

The architecture for discrete-time MB-NCS with intermittent feedback is essen-
tially the same as that for continuous time, see Fig. 4.1. We make here similar
assumptions to the ones in Sect. 2.3 for the instantaneous feedback case, where both
the sensor and actuator sides are synchronized and updates occur at the same
instants of time. The two key parameters in the implementation of MB-NCS with
intermittent feedback 4 and r, are now restricted to be integers, as they represent the
number of ticks of the clock in the corresponding interval.

The treatment in this section is similar to Sect. 4.1 when we considered
two modes of operation: open- and closed-loop modes. Although it is possible
to consider fast and slow rates as in Sect. 4.2 the case of discrete-time systems
allows, for reasonable sampling rates of the underlying plant, for the implemen-
tation of a closed-loop mode since for discrete-time systems only a finite
number of measurements needs to be transmitted for the duration of the closed-
loop cycle.


http://dx.doi.org/10.1007/978-3-319-07803-8_2#Sec3
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4.3.1 State Feedback

We consider a discrete-time system where the loop is closed periodically, every
h ticks of the clock, and where each time the loop is closed, it remains closed for a
time of 7 ticks of the clock. The loop is closed at times n; for k=1, 2, .... The
system will be operating in closed-loop mode for the intervals [ny, n;,+7) and in
open loop for the intervals [n;+7,n,,) with ng,; —n,=h. When the loop is
closed, the control decision is based directly on the information of the state of the
plant, but we will keep track of the error nonetheless.
Let the discrete-time plant and its nominal model be given by:

Plant : x(n + 1 Ax(n
(1) = Ax(n) + Bu(n) )
Model : X (n+ 1) = Ax (n) + Bu(n).
The control input can be represented by the following:
Kx S ,
u(n) = £(n) for n [”k +7 nk+1) (433)
Kx(n) for n€ [n,n + 1)
and the state error is given by:
e(n) = x(n) — x(n). (4.34)

We also define the augmented vector z(n) = [

ol

Proposition 4.7 The system described by (4.32) with input (4.33) and initial

conditions z(ng) = {g(no)} = z9, has the following response:

I 0711 O7\*
Ag”_mqo 0}2{0 ODZO’ nE [mem+o)

n—(m+e 1 0111 o\
Ag(’(ﬁ))AZ’C({o 0}2[0 ODZO’ nS [t o)

2(n) = (4.35)

(h

where X = AD07 T)AZ)C’ ADO = |:A L B _BK :l ADC = |:A +BK _BK:|

A+BK A —BK 0 0
and ng 1 —ng=h.

Proof We will derive the response of the augmented system. The approach is
similar to the one used in the previous section for the continuous-time case. To
this effect, let us separately investigate the partial response of the system under each
mode, closed loop and open loop.
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During the open-loop case, that is, forn € [n; + 7, ni 4 1), we have thatu(n) = KX (n)
so we have that

x(n+1) A+BK —-BK x(n)
z(n+1) = =]~ =~ N~
e(n+1) A+BK A —BK||e(n)
(4.36)
x(ng +7) x(ng +177)
z(mg + 1) = =
e(ng +17) 0
for n € [ni+1,n;,1). Thus we have that
z(n+ 1) = Ap,z(n) (4.37)

for n € [+, n;4 1), where Ap, = {A +BK —BK }

A+BK A —-BK
The closed-loop case is a simplified version of the case above, as the difference
resides in the fact that the error is always zero. Thus, for n € [ny, n;,+7) we have

z(n+ 1) = Apez(n), (4.38)
for n € [my, ni+ 1), where Ap. = [A +OBK _gK} .
Given an initial condition z(0) =z and assuming without loss of generality that
we start the cycle in closed-loop mode, then after a certain time n € [0,7) the
solution of the trajectory of the vector is given by

z(n) = Ap.zo (4.39)

for n € [0, 7). In particular, at time 7, z(t) = A} 2.
Once the loop is opened, the open-loop mode takes over, so that

2(n) = Ay Vz(2) = Ay, I A0, (4.40)

for n € [z, n;). In particular, when the time comes to close the loop again, that is,
after time ; then z(ny) = Ay~ VA% zq.

Notice, however, that at this instant the error is reset to zero. We can represent

(I) 8} before we analyze the closed-loop trajectory for

the next cycle. Because we wish to always start with an error that is set to zero, we

(]) g] at the beginning of the cycle as well.

this by pre-multiplying by {

should actually multiply by {
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So, after k cycles, the response

([ sy o (5 St o) om

is obtained, where =AY "7A? |

The final step is to consider the last (partial) cycle that the system goes through.
If the system is in closed loop, that is, n € [ny, n,+7) then the solution can be

achieved merely by pre-multiplying z(n;) by Ag'(._""). In the case of the system being
in open loop, that is, n € [ny+7,n;, 1) then clearly we must pre-multiply by

Apy "N .

A necessary and sufficient condition for stability of the networked system
will now be presented. For the definition of stability please refer to Definition 2.5
in Sect. 2.3.

Theorem 4.8 The system described by (4.32) with input (4.33) is globally expo-
nentially stable around the solution z = [;C] = [8] if and only if the eigenvalues

of [(I) 8] z {0 8] are strictly inside the unit circle, where X :/\I()hg T)ABL..

The proof for Theorem 4.8 follows directly from the results provided in the
previous section on intermittent feedback for continuous-time systems and
the results in Sect. 2.3, therefore, the proof has been omitted.

4.3.2 Discrete-Time Systems with Output Feedback

A similar analysis to the one in the previous section can be performed to obtain the
response and stability conditions for discrete-time LTI systems using state observer
and intermittent feedback.

Let us consider the following equations:

Plant: x(n+1) =Ax(n)—|—Bu( ),¥(n) = Cx(n) + Du(n)

Model : t(n+1 =Ax —l—Bu()ﬁ() Cx()+Du(n)
e [ne +7,n,
Controller : (n) for n [nk ‘ nHl) (4.42)
X(n) for n€ [nk,nk +T)

Observer: X(n+1) = (A —Lé)i(n) +[B -LD L] lu(n)]

We also have that n; .| —n=h, T < h and both % and 7 are integers.


http://dx.doi.org/10.1007/978-3-319-07803-8_2#Sec3
http://dx.doi.org/10.1007/978-3-319-07803-8_2#Sec3
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Define the augmented state vector as follows: z = . The following

QN =l =

proposition specifies the state response of the system.

Proposition 4.9 The system described in (4.42) with initial conditions

x(ng)
z(ng) = | X(no) | = zo, has the following response
0
(n—m) sk
Ap. 'Zz0, nE|m,n+rt
2(n) " ’ [reome +-2) (4.43)
AT EINE S, € [+ 1 m)
I 00 I 00
where2= [0 1 0[A" Az 10 1 0],
0 0 0 0 0 O
[ A BK -BK ]
Apo= |LC A —LC +BK+LDK —-BK—LDK |,
| LC LDK — LC A —LDK |
[ A ~ BK N -BK ]
Are= |LC A —LC +BK+LDK —BK —LDK
0 0 0

Theorem 4.10 The system described by (4.42) is globally exponentially stable

around the solution z = | X | = 0 if and only if the eigenvalues of

are strictly inside the unit circle, where Ag,,Ar. are as described above.

Proofs for the last proposition and theorem are similar to their continuous-time
counterparts.

4.4 Alternative Conditions for Stability of MB-NCS
with Intermittent Feedback

In this section we extend the analysis using the Lifting procedure that was shown in
Sect. 2.4.3. In the case of intermittent feedback the input u of the MB-NCS is defined as


http://dx.doi.org/10.1007/978-3-319-07803-8_2#Sec7
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u(n) = {K’f(n) s n st (4.44)
Kx(n) h 417 <n<hy
In this section we consider intermittent feedback with constant updates and
constant closed-loop times, that is, /;, ; — h;= h, which represents how often we
close the loop between the sensor and the controller, and 7, =7 < h, which repre-
sents the constant number of clock ticks that the loop remains closed; /# and 7 are
positive integer numbers.

Theorem 4.11 The discrete-time MB-NCS with intermittent feedback (4.32) and
control input (4.44) is asymptotically stable if only if the eigenvalues of:

h—1—1 ;
(Ah—r n Z Ah—r—l—jBK(A +1§K)f> (A + BK)* (4.45)
=0

lie inside the unit circle.

Proof We rewrite the state equation of the lifted LTI system in terms of only the
state. To do this, we consider closed-loop and open-loop behaviors. For the interval
h<n<h+7 the response of the system at time nh+7 is given by (closed-loop
response):

x(nh +7) = (A + BK) x(nh). (4.46)

The response of the system at time n/ + & in terms of the state at time n/ + 7 can
be shown by following the procedure in Theorem 2.8 in Sect. 2.4.3,

h—1—1 .
x(nh+ h) = (Ah" + > A"T'IBK(A +B K)-’>x(nh +7). (4.47)
j=0

Then, the response of the system at time (n + 1)/ in terms of only the state at time
nh is given by:
h—1—1 ) R . .
x((n+1)h) = A"+ Y A"UIBK(A + BK)' | (A+ BK)'x(nh). (4.48)

J=0

The resulting system is a LTI system and it is stable when the eigenvalues
of (4.45) lie inside the unit circle. ¢
4.4.1 Relation to Previous Results

For the intermittent case, in Sect. 4.3 a necessary and sufficient condition for
stability of a discrete-time system is that the eigenvalues of


http://dx.doi.org/10.1007/978-3-319-07803-8_2#Sec7
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I 0\, o, (1 O
MD1(h)=<0 O)Agn )ADC(O 0) (4.49)

. L _(A+BK —-BK
must lie inside the unit circle, where Ap, = ( A+BK A —BK)’

A+BK —-BK
Ape = (

= 0 0 ) . We consider the similarity transformation:

(4.50)

ADOPAD,,P1<A BK )

0 A+BK

We assume a fixed value for the closed-loop interval z, and find the Z-transform
of Mp,(n), n=0, 1, 2, ..., namely

Z{Mpy(n)} = (é 8)2{/\30}/\3,((’) g). (4.51)
Notice that:
Ape = <(A +OBK)T —(A+ BOK)T_IBK) (4.52)

Then we obtain the following:
Z{Mp(n)} = (é 8>P1(ZI —KD0)1P<(A +OBK)T g)z
_ (((z] —A)"' 4 (L = A)'BK (ol — (A +BK)) ') (A + BK)* 0)2.
0 0
(4.53)

We obtain the inverse Z-transform of the upper left sub-matrix which contains the
eigenvalues of interest:

Z_l{((zl —A) 'z 4 (z - A)'BK (2 — (A +é1<))“z) (A +BK)T}

n—1 .
= (A” + Y A"TIBK (A + BK)’) (A+BK)".
=0

(4.54)

Substitute n = h-7 in the above equation to obtain:

h—t—1 .
(A’” + > A"TUUBK(A + éK)’) (A+BK)". (4.55)
j=0
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Equation (4.55) is exactly the same condition as (4.45) obtained in Theorem 4.11,
i.e., the nontrivial eigenvalues (those different than zero) of Mp,(h) correspond to
the eigenvalues of (4.45).

4.5 Notes and References

The work presented in Sect. 4.1 and Sect. 4.3 appeared first in [68—70]. Results
obtained in Sect. 4.2 were first published in [91]. The first part of Sect. 4.4 was first
published in [82] and Sect. 4.4.1 represents complementary results.

The notion of intermittent feedback in MB-NCS can be extended to consider
more complex scenarios such as network induced delays, plants with nonlinear
dynamics, and time-varying update intervals. The case of network delays was
considered in [67]. Nonlinear systems were addressed in [70]. Linear systems
with time-varying feedback update intervals were investigated in [70] as well.

The concept of intermittent feedback has been applied in other areas of study.
For example, in applications to chemical engineering processes, in intermittent
feedback is rather prominent. See, for example [133], where intermittent feedback
is used to address turbulence.

Oldroyd [206] addresses the issue of “intermittent distillation,” using intermit-
tent feedback to address product removal. Most of the articles in this area are very
application-oriented and focus on processes such as manufacturing.

In the field of psychology, the use of intermittent feedback is widespread. The
corresponding term often used in psychology papers is “intermittent reinforcement”
and often arises in the literature regarding education, learning, and child-rearing.
The main idea is that human behavior, in itself, follows this intermittent nature.
This does not just apply to physical processes such as motor control, but to
psychological pulls to practices, such as work and gambling [235]. The learning
process is another area where intermittent feedback arises very naturally, and where
methods based on it have proven to be very effective [38]. Intermittent feedback is
also used in regards to motor control, such as controlling seizures, epilepsy, etc.
[218, 223]. The main idea in terms of psychological aspects of motion control is that
while, initially, continuous control is applied, as the human being learns, and there
is growth in cognitive and associative skills, there is a shift to intermittent feedback
and a more automatic nature of motion control.

Intermittent feedback has also been used to some extent in robotics and mechan-
ical engineering. This makes sense due to the fact that the visual component of
robots is often designed to follow a biologically inspired analogous process. Thus,
intermittent feedback arises naturally. For example, in [98, 219, 220] the authors use
intermittent feedback to address a conceptual, and practical difficulty in robotics: by
replacing the continuously moving horizon by an intermittently moving horizon,
they solve a continuous-time generalized predictive controller. The work in [134]
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also address intermittent visual feedback in robotics and study how to compensate
for the effects of delays, while Leonard and Krishnaprasad [144] use intermittent
feedback in dealing with motion control of robots, leading to nonlinear control with
fewer state variables. Also, because the concept of “learning” in robots is closely tied
in with the learning process in human beings, the application of intermittent feed-
back here makes sense as well, as has been dealt with in [171, 221].



Chapter 5

Time-Varying and Stochastic
Feedback Updates

In this chapter we are interested in the stochastic stability properties of MB-NCS
when the update time intervals / are time-varying. The statistical properties of
h may or may not be known. We will concentrate primarily on the stochastic
stability of the networked system when the packet exchange time intervals are
time-varying and have some known probability distribution. Conditions are derived
for almost sure and mean square stability for independent, identically distributed
exchange or update time intervals and for Markov chain-driven update time inter-
vals. However, we will also treat the case of time-varying & when additional
properties are available.

We focus our analysis on the Model-Based Networked Control System that was
introduced in Chap. 2, specifically the case where the plant is continuous and the
states are available (full state feedback). Other MB-NCS (e.g., output feedback,
discrete plants) can be analyzed in a similar fashion.

The state feedback model-based networked control system architecture was
shown in Fig. 2.1. This control architecture has as main objective the reduction of
the data packets transmitted over the network by a networked control system.

The packets transmitted by the sensor contain the measured value of the plant
state and are used to update the plant model on the actuator/controller node. These
packets are transmitted at times #,. We define the update time intervals h(k) as
the time intervals between transmissions or model updates: h(k) =t ;-t,. We have
assumed in previous chapters that the update time intervals A(k) are constant. This
might not always be the case in many applications. The transmission times of data
packets from the plant output to the controller/actuator might not be completely
periodic due to network contention and the usual non-deterministic nature of the
transmitter task execution scheduler. Soft real time constraints provide a way to
enforce the execution of tasks in the transmitter microprocessor. This allows the
task of periodically transmitting the plant information to the controller/actuator to
be executed at times #; that can vary according to certain probability distribution
function. This translates into an update time interval A(k) that can acquire a certain
value according to a probability distribution function. The system designer
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can determine this probability distribution function by analyzing the transmitter
microprocessor scheduler structure, the timing of the possible tasks that can be
posted to this scheduler, the network contention scheme, and the network behavior.

We will present different stability criteria that can be applied when the update
time intervals i(k) vary with time. The first case is when the probability distribution
of & is unknown. The only information available about the update time intervals (k)
will be its maximum and minimum values, and the actual update time intervals
observed may jitter on the range [/,,;,, Fnar]. This criterion may be used to provide a
first result on the stability properties of a system perhaps for comparison purposes.
We will try to calculate the values for 4,,;, and h,,,,. This is the strongest and most
conservative stability criterion. This stability type is based on the classical
Lyapunov function approach and is presented in Sect. 5.1.

Next, two types of stochastic stability are discussed, namely Almost Sure or
Probability-1 Asymptotic Stability in Sect. 5.2 and Mean Square or Quadratic
Asymptotic Stability in Sect. 5.3. The first one is the one that mostly resembles
deterministic stability [136]. Mean square stability is attractive since it is related to
optimal control problems such as the LQR.

Two different types of time-varying transmission times are considered for each
case. The first assumes that the transmission times are independent identically
distributed with probability distribution function that may have support for infinite
update time intervals. The second type of stochastic update time interval assumes
that the transmission times are driven by a finite Markov chain. Both models are
common ways of representing the behavior of network transmission and scheduler
execution times.

5.1 Lyapunov Analysis of MB-NCS

The dynamics of the system shown in Fig. 2.1 are given by:
A+BK —BK

(1) x(e) | | x(w) || ()
e(1) A+BK A—BK||e()| |etw)| | o | (5.1)

VIE [t trsr), with tip1 — tk = h(k)

where e(t) = x(f) — x (#) represents the state error between the plant state and
the plant model state, A and B are the matrices of the actual plant state-space

representation, A and B are the matrices of the model state-space representation,
while A =A — A

2(t) = [x(r) e(r)]",and A =

and B=B —B represent the modeling error matrices. Define
A+BK —-BK .
A+BK A -BK so that (5.1) can be rewritten

asz = Az fort € [t, ;4 1)-
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Proposition 5.1 The system described by (5.1) with initial conditions
2(to) = [x(t0) 0]" = zo, has the following response:

k
2(1) = M) (H M(j)) 20 (5.2)
j=1

. I 0 S0
Jfor t € [ty tes 1), tr o1 — tr = h(k), where M(j) = {O O]e/\hm[o O}

Proof The proof is similar to the corresponding proof for constant 4 in Chap. 2 and
it is included here for completeness. On the interval t € [f;, ¢, ), the system
response is:

(1) = [x(f;‘| — oMNt) l;(tk)] _ eA(t_t‘)Z(lk)~ (5.3)

. x(f . .
Now, note that at times #, z(f;) = {O( ) ], that is, the error e(?) is reset to 0.

We can represent this by:

I 0 _
z(ty) = [0 O:|Z(tk). (5.4)
Using (5.3) we can calculate z(f;):
() = [(’) 8} MO (1), (5.5)

X0

In view of (5.3) we have that if at time 1 =1y, z(ty) = zo = {O

] is the initial

condition then

0
. ,
Lo Lo (5.6)
— A1) oM(k) eMED (1 )
0
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Now we know that [0 eMU) is of the form S P and so
0 0 0 O
. k
<H {1 0] eAh(f)> has the form (HS/)
] 0 0 j=1
/=1 0 0
Additionally we note the special form of the initial condition z(fp) = zg = [)(;0}
so that
. k
H I 0 eAh(i) X0 _ <HS/> X0 0
p1 0 0 0 j=1

0 0 (5.7)
-(1tfs sJfa 3])[s]

In view of (5.7) it is clear that we can represent the system response as in (5.2). ¢

Note that in (5.2) the response is given by a product of matrices that share similar
structure but are in general different. All M(j) are the same in the case where the
update time intervals h(k) are equal. The special case when / is constant was studied
in Chap. 2 where necessary and sufficient conditions for stability were derived in
terms of the eigenvalues of a matrix. Note that in the present case of varying A(k),
stability cannot be guaranteed even if all matrices in the product have their
eigenvalues inside the unit circle.

5.1.1 Lyapunov Stability

Let the update time interval be A(k), which is time-varying. The stability criterion
derived in this section is the strongest and most conservative stability criterion. It is
based on the well-known Lyapunov second method for determining the stability of
a system. We will assume that the properties of h(k) are unknown but (k) is
contained within some interval. This stability condition is not stochastic but pro-
vides a first approach to stability for time-varying transmission times NCS.

Definition 5.2 The equilibrium z=0 of a system described by z = f(¢,z) with
initial condition z(¢y) = z( is Lyapunov asymptotically stable at large (or globally) if
for any & > 0 there exists > 0 such that the solution of z = f (¢, z) satisfies

||Z([, Z(),t())H < eVt >ty and [hm ||Z([7 Z(),to)H =0 (58)

whenever ||zo|| < /.
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Theorem 5.3 The system described by (5.1) is Lyapunov Asymptotically Stable for
h € [hnin, hmax] If there exists a symmetric positive definite matrix X such that
o0=X-— MXMT is positive definite for all h & [hmin, hmaxl, Where

M:[(I) g}eM[(I) g} (5.9)

Proof Note that the output norm can be bounded by

(b

k

H H Izl

j=1
k

H H 1zo]l-

< fere

(5.10)

A)hmax .

That is, since ¢~ has finite growth rate and will grow until /,,, at most. Then
convergence of the product of matrices M(j) to O ensures the stability of the system.
Such convergence to 0 is guaranteed by the existence of a symmetric positive
definite matrix X in the Lyapunov equation. ¢

Theorem 5.3 may be used to derive an interval [A,in, Amax] for 2 for which
stability is guaranteed. It is clear that the range for /, that is the interval [/, Amax],
will vary with the choice of X. Another observation is that the interval obtained
this way will always be contained in the set of constant update time intervals for
which the system is stable (as derived using Theorem 2.3). That is, a constant
update time / interval contained in [/, Amax] Will always be a stable constant
update time interval.

Several ways of obtaining the values for /,,,;, and A,,,,x can be used. One is to first fix
the value of Q, obtain the solution X of the Lyapunov equation in Theorem 5.3 for a
value of 4 known to be stable. Then, using this value of X, the expression X — MXMT
can be evaluated for positive definiteness. This can be repeated for all the values of
h known to stabilize the system to obtain the widest interval [Ayin, Amax]-

Example 5.1 We use an unstable plant with dynamics given by

~ [0.04
1087

[022 131
T =007 0.6

Let our plant model be:

L e A . 0 1 . 0
=AX+Bu, A= , B = ,
0 0 1

which behaves as a double integrator. Let our feedback law be given by u = KX with
=[—0.776 —1.765]. When the update time intervals are constant, stability can
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Minimum eigenvalue of Q

Fig. 5.1 Minimum eigenvalue of Q as a function of the update time interval /

be guaranteed if and only if the eigenvalues of the test matrix M in (5.9) are inside of
the unit circle. Using this condition, it is possible to verify that, for stability, the
constant update time intervals can take values between O and 4.97 s. We now
use Theorem 5.3 to find an interval of time-varying update time intervals for
which the NCS will remain stable. Note that the update time intervals can vary
along this interval. We will set a nominal update time interval of 1 s and set Q to be
the identity matrix; then by solving the Lyapunov equation given in Theorem 5.3 we
can find a positive definite nominal X. We then obtain the stability interval by
searching for update time intervals around 1 s, for which the Q in the Lyapunov
equation obtained with the nominal X is positive definite.

Figure 5.1 shows the plot of the minimum eigenvalue of Q as a function of the
update time intervals, from which it can be seen that the stability interval is now
[Amin, Amax] = [0,2.63]. Note that for constant 4 the system remains stable for any
h <4.97. Then, it is possible that by using a different nominal update time interval
and different nominal Q’s less conservative results may be obtained.

5.2 Almost Sure Asymptotic Stability

We will use the definition of almost sure asymptotic stability [136] that provides
a stability criterion based on the sample path. This stability definition resembles
more the deterministic stability definition [170], and is of practical importance.
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Since the stability condition has been relaxed, we expect to see less conservative
results than those obtained using the Lyapunov stability considered in the previous
section. We now define Almost Sure or Probability-1 Asymptotic stability.

Definition 5.4 The equilibrium z=0 of a system described by z = f(¢,z) with
initial condition z(#y) =z( is almost sure (or with probability-1) asymptotically
stable at large (or globally) if for any >0 and &> 0 the solution of z = f(z,z)
satisfies

lim P{sup lz(2, zo, 20)|| > 8} =0 whenever ||zo|| < f. (5.11)
t>6

5—00

This definition is similar to the one presented for deterministic systems in
Definition 5.2. We will examine the conditions under which the full state feedback
continuous networked system is Almost Sure stable for two cases: The case when
the update time intervals are independent identically distributed and the case when
the update time intervals are driven by a Markov chain.

5.2.1 MB-NCS with Independent Identically Distributed
Transmission Times

Here we will assume that the update time intervals /(k) are independent identically
distributed (i.i.d.) with probability distribution function F (/). We now present the
conditions under which the system described by (5.1) with i.i.d. update time
intervals is asymptotically stable with probability-1. We will use a technique
similar to lifting [42] to obtain a discrete linear time invariant representation of
the system. Lifting techniques were also used in Chaps. 2 and 4 for similar
purposes. It can be observed that the system will be described by:

§k+1 = Qkfk,With ék ELze and ék = Z(I+ fk),fe [O, hk) (512)

Here L,, stands for the extended L,. It is easy to obtain from (5.1) and (5.12)
the operator € as:
(k)

(Quw) (1) :eN[(’) 8} J 5(z — h(k))u(z)dx. (5.13)
0

Now we can restate the definition on almost sure stability or probability-1
stability given in Definition 5.4 to better fit the equivalent system
representation (5.12).

Definition 5.5 The system represented by (5.1) is almost sure stable or stable
with probability-1 if for any # > 0 and e > 0 if the solution of &, , | = £2,&, satisfies:
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dim P ¢ sup [[Ex(t0, 20) 5,10, > € ¢ =0 (5.14)
5—00 k>
whenever ||zo|| < 8. The norm || * ||, /0 41 18 given by

h(k) 12

el .0 = j I | . (5.15)
0

This definition allows us to study almost sure stability of systems such as (5.12)
when the probability distribution function for update time intervals /(k) has infinite
support. Based on this definition the following result can now be shown.

Theorem 5.6 The system described by (5.1), with update time intervals h(j)
independent identically distributed random variable with probability distribution
F(h) is globally almost sure (or with probability-1) asymptotically stable around

. X 0] .
the solution z = L} = {O} if

_ 1/2
N = E[(ng‘(A)h - 1) ] < 00 (5.16)

and the expected value of the maximum singular value of the test matrix M,

E[|M||] = E[eu] < 1, (5.17)
R IV A N VS IV ()
where M = [0 O]e [O O}
Proof Assume that the supremum of the norm bracketed is achieved at k* > 5, that
is sup ||&|| = ||€x+1]- So now we can use the Chebyshev bound for positive random
k>6

variables [189] to bound the probability in our definition:

[ e 1 e [Ilék 0y

k>6

(5.18)

Using (5.2) and basic norm properties, we proceed to bound the expectation on
the right hand side
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Ak 1/2
E & (o) *dz
0
/) o 12
) .
<E[| | lle™I7) TIMG)|| llzol*dz
0 =1
- (5.19)
- h(k*) 1/2 . -
_ 2 —
<E (™) ar | [ TIM0)|| ol
0 =1
[ (h) 172 . -
_ 2 k' —1
=E (eam)r) dr E[ HM(/‘)H llzo].
J = |

The last equation follows from the independence of the update time intervals
h(j). Analyzing the first term on the last equality we see that is bounded for the
trivial case where A =0. When A #£0, the integral can be solved, and it can be

shown to be equal to /ﬁE [(eza(A)h(k*> -1 1/2} which by assumption is
bounded. The second term can also be bounded by using the independency property
of the update time intervals A(j).

o 1)

We can now evaluate the limit over the obtained expression.

k=1

H IM(I')I] = (E[IMI)* " (5.20)

<E

tim P supllg| > e p < tim Z05 0]
5—00 kzg S—0o0
1 - . 1/2 o1 (5.21)
E{ (AR _ } ElllM
G )] e ol
< lim
5—00 €

It is obvious that the right hand side of the expression will be identically O (note
that k% > &) if the averaged maximum singular value E[6)] = E[||M||] < 1. ¢+
Note that the condition may give conservative results if applied directly over the

test matrix. To avoid this problem and make the condition tighter we may apply a
similarity transformation over the test matrix M.
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The condition on the matrix N ensures that the probability distribution function
for the update time intervals F(h) assigns smaller occurrence probabilities to
increasingly long update time intervals, that is F'(h) decays rapidly. In particular
we observe that N can always be bounded if there exists 4,, such that F(h) =0 for
h larger than h,,. We can also bound the expression inside the expectation to obtain
E[(**™" — 1)'2] < E[¢"“™"] and formulate the following corollary.

Corollary 5.7 The system described by (5.1), with update time intervals h(j)
that are independent identically distributed random variable with probability
distribution F(h) is globally almost sure (or with probability-1) asymptotically
stable around the solution z = [x e]" =0 0] if

T— E[e"(A)h} < 0 (5.22)

and the expected value of the maximum singular value of the test matrix M,
E[||M||] = E[ou], is strictly less than one, where M = [é 8] eM [(1) 8] .

Note that condition T = E[e ] < oo is automatically satisfied if the probability
distribution function F (/) does not have infinite support. It otherwise indicates that
F(h) should roll off fast enough as to counteract the growth of M’s maximum
singular value as / increases.

o(A)h

Example 5.2 Consider the following unstable plant dynamics

021  1.04 ~0.52
A= [0.63 —0.46]’ b= { 0.98 }

Let our plant model be:

i A p + 103 1 5 |05
x—Ax+Bu,A—{O‘5 _0.5], B—[ | }

Let our feedback law be given by u = KX with K = [—2.1105 —1.5053]. The
initial conditions of the system are xo=[1 — I]T while the model is initialized at
0. We now assume that /(k) is a random variable with a uniform probability
distribution function U[1, /,,«]. The plot of the expected maximum singular value
of a similarity transformation of the original test matrix M is shown in Fig. 5.2. The
similarity transformation used here was one that diagonalizes the matrix M for h = 1.

Figure 5.3 shows a simulation example using the plant and the model dynamics
shown in this example where the update intervals are time-varying and have a
probability distribution U[1, /,,<] Where h,.x =2.5 s. This figure shows the states
of the system and it also shows the realization of the time update instants for this
particular run, where it can be seen that the update time intervals (the difference
between any two consecutive update time instants) are time-varying and take values
between 1 and 2.5.
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Fig. 5.3 Top: Response of system for 4 ~U[0.5,h,,,,]. Bottom: Time-varying update instants with

uniform probability distribution
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5.2.2 MB-NCS with Markov Chain-Driven
Transmission Times

In certain cases it is appropriate to represent the dynamics of the update time
intervals as driven by a Markov chain. A good example of this is when the network
experiences traffic congestion or has queues for message forwarding. We now
present a stability criterion for the model-based control system in which the
update time intervals (k) are driven by a finite state Markov chain. Assume that
the update time intervals can take a value from a finite set:

hi # 00, ¥i € [1,N]. (5.23)

Let us represent the Markov chain process by {w;} with state space {1,2,...,N}
and transition probability matrix I', an N x N matrix with elements p;; and initial
state probability distribution Iy = [7; 7, ... my]'.The transition probability
matrix entries are defined as p; ;=P{wy 1 =j|lw,=i}. We can now represent the
update time intervals more appropriately as h(k) = &, .

A sufficient condition for the almost sure stability of the system under Markov-
ian jumps is given in the following theorem.

Theorem 5.8 The system described by (5.1), with update time intervals h(k) = hy,
= oo driven by a finite state Markov chain {w;} with state space {1,2,...,N} and
transition probability matrix I with elements p;; and initial state probability
distribution Ty = [m; 7 ... ﬂN]T is globally almost sure asymptotically
stable around the solution z =[x e]" =[0 0]" if the matrix T has all its
eigenvalues inside of the unit circle, where:

M| 000
T = 0 M| 0 0 I'" and
0 0 . 0 (5.24)
0 0 0 Ml

I 0 I 0
M|y = Ahi .

Proof 1t is clear that since the Markov chain has a finite number of states, the
update time intervals are bounded. Then using the same argument in Theorem 5.3
we can bound the output by:

M=) (ﬁM(/)>

<||e ttk

o] o
{0 1

(5.25)

hinax .
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k
[Tm0)
=1

We can now use a similar procedure as the one used for Theorem 5.6. For almost
sure stability we will require that:

Adim P4 sup
6—00 k>6

=0. (5.26)

[

We will assume that the supremum of the norm bracketed is achieved at k* > 5.
Using the Chevyshev inequality we obtain.
8 }

ks
>ep = P{
Jj=1

ke (5.27)
ELH”M"’”]
=1

& &

sup
k=5

[

Evaluating the expectation yields:
ks

E [HIM ) I}
=1

k.
= Z { (HHM(] ||> X P{[a)o = i(),(,()l = 1.1,..,61)1(’,1 = lk*l]}}
Vioyi1yesiks—1] Jj=1

ke
= <H|IM(/ ”pr/ll,)'M(l)'”io
]

Vioitsemite—1] \J=2
HM"’ | 0 0 0 e (M| 3=, || 71
|M|h:h H 0 0 T ”M’II:hg a1
o . o |F x
0 0 ||M]nn| (1M1 || 71
(5.28)

where each i, € {1,2,..,N}. Therefore the right hand side part of (5.27) will
converge to 0 if T has all its eigenvalues inside the unit circle where:

My 000
_| 0o M| 0 0 r
T= pall 7 o |7 (5.29)
0 0 0 [[Mn

If T is irreducible it follows that, since ||M|| is non-negative, 7 is also irreducible.
Then it can be shown using the Perron-Frobenius theorem as in [42], that
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Fig. 5.4 Top: Response of system for time-varying / given by a Markov chain.
Bottom: Time-varying update instants that follow a Markov chain

T’s maximum magnitude eigenvalue is real; it is sometimes referred to as the
Perron-Frobenius eigenvalue.

Example 5.3 Consider the same plant, model, and controller as in Example 5.2.
Now the update time intervals take values from a finite set h={1,2,3}.
The transition probabilities are given by:

0.6 03 0.1
r=104 05 0.1
0.7 02 0.1

The eigenvalues of T in (5.24) lie inside the unit circle, where a similarity
transformation is used to diagonalized M. Figure 5.4 shows a simulation example
using the plant and the model dynamics shown in this example where the update
intervals are time-varying and follow the transition probabilities given by I" above.
This figure shows the states of the system and it also shows the realization of the time
update instants for this particular run. Now, it can be seen that the update
time intervals (the difference between any two consecutive update time instants)
are time-varying and take the specific values 1, 2, or 3.
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5.3 Mean Square Asymptotic Stability

We now define a different type of stability, namely Mean Square Asymptotic
Stability.
Definition 5.9 The equilibrium z=0 of a system described by z=f (¢, z)

with initial condition z(#)) =z, is mean square asymptotically stable at large (or
globally) if the solution of z = f(t, z) satisfies

lim E[||z(z, %o, to)ﬂ —0. (5.30)

A system that is mean square stable will have the expectation of system states
converging to 0 with time in the mean square sense. This definition of stability is
attractive since many optimal control problems use the squared norm in their
formulations. We will study the two cases studied in the previous section under
this new stability criterion.

5.3.1 MB-NCS with Independent Identically Distributed
Transmission Times

We present the conditions under which the networked control system described in
(5.1) is mean square stable. We also discuss how these conditions relate to the ones
for probability-1 stability.

Theorem 5.10 The system described by (5.1), with update time intervals h(j)
independent identically distributed random variable with probability distribution
F(h) is globally mean square asymptotically stable around the solution

z=1[0 0] if

K=E [(e‘_’(/\)h)z} < 00 (5.31)

and the maximum singular value of the expected value of M'M,

|EM"™M]|| =5(E[M"™M]) <1 (5.32)
o |

Proof Let us start by evaluating the expectation of the squared norm of the output
of the system described by (5.1).
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(5.33)

Now that the expectation is all in terms of the update time intervals, we can use
the independently identically distributed property of the update time intervals and
the assumption that K is bounded:

T (HM@)) e (HMm) ] 2
e
(HMO ) (ﬁm)ﬂ T s

We can repeat the last three steps recursively to finally obtain

k
) (HMm) .

< K(e(E[M™M])) 20" z.

E

:K'Z()

<K-(E[M"M])z"E

2

(5.35)

So now it is easy to see that if [|E[M"M]|| = G(E[M"M]) < 1 then the limit of
the expectation as time approaches infinity is 0, which concludes the proof. *

Note the similarity between the conditions given by Theorems 5.6 and 5.10. In
Theorem 5.6 we require the expectation of the maximum singular value of the test
matrix to be less than 1. For the stability in Theorem 5.10 the maximum singular
value of the expectation of M”M should be less than 1.



5.3 Mean Square Asymptotic Stability 131

5.3.2 MB-NCS with Markov Chain-Driven
Transmission Times

We now present a sufficient condition for the mean square stability of the MB-NCS
with Markov chain-driven update time intervals.

Theorem 5.11 The system described by (5.1), with update time intervals h(k)
= hy, # oo driven by a finite state Markov chain { w,.} with state space {1,2, .. .,N}
and transition probability matrix I" with elements p;; is globally mean square
asymptotically stable around the solution z =[x e]" =[0 0]" if there exists
positive definite matrices P(1), P(2), ..., P(N) such that

N
(Z P (H@PGHG)) P(i)) <0 (5.36)

I 0
Lo . N Al
Vi,j=1,.. ,NwithH(i) =¢ {0 0].

Proof Using the same argument used in Theorem 5.8, since the update time
intervals are bounded, we can analyze the system’s stability by sampling it at a
certain time between each update time interval. For this, we evaluate the response
of the system described by (5.1) at times 7; :

() = M [ ! g}z(t,;). (5.37)

Let us define ¢(k) =z(#; _,) and H(wy) = ™ [([) 0} . Now we can represent

0
the sampled networked control system as:

¢k +1) = H(wx)s(k). (5.38)
To ensure mean square stability we will make use of a Lyapunov function of

quadratic form and analyze the expected value of its difference between two
consecutive samples. We will use the following Lyapunov function:

V(G(k)’wk) = C.-'(k)TP(wk)G(k)- (5-39)

The expected value of the difference is:
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E[AV

¢ 1]
= E[V(s(k + 1), 411) = V(s (k), o) |g(k) = ¢, = i]
= E[g(k + 1) P(ws1)slk + 1)]g(k) = g, an = i} — ¢TP(i)¢

= B[ H(on) Plox)H(o)elox = ] — TP(i)e (5.40)

N
= s (THE PGHGE) - PGS
j=1

= (ip (HO"PGH) ) P<z'>> 3

J=1

From this last equality is it obvious that to ensure mean square stability we
need to have:

(Z P (H(i)TP(j)H(i)) - P(i)) <o. (5.41)

¢

Remark This type of stability criteria depends on our ability to find appropriate P(i)
matrices. Several other results in jump system stability [49, 201] can be extended to
obtain other conditions on stability of networked control systems. Note though,
that most of the results available in the literature deal with similar but not identical
type of systems.

5.4 Notes and References

Most work on networked control systems assumes deterministic communication
rates [117, 124]. Several authors have addressed time-varying rates [37, 60, 109,
174, 180, 198, 222, 245, 260, 286]. Most of these papers focus on characterizing the
Maximum Allowable Transfer Interval (MATI) for stability. Other authors have
concentrated on characterizing stability or performance on a networked control
system under time-varying, stochastic communication (see [6, 7, 13, 156, 157]).

Additionally, there exist a large number of event-triggered and self-triggered
approaches for networked control systems where the transmission intervals are not
periodic but defined by the occurrence of certain events related to the current
response of the system; see Chap. 6 for related references.

In previous chapters we considered the MB-NCS framework using periodic com-
munication. The results in this chapter extend the MB-NCS framework to consider


http://dx.doi.org/10.1007/978-3-319-07803-8_6
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time-varying update intervals with and without statistical information about the
update intervals. This work appeared first in [189]. In Chap. 6 event-triggered control
techniques will be implemented within the MB-NCS architecture. Event-triggered
strategies provide a different alternative to control networked systems using
time-varying transmission intervals while also reducing the frequency at which
measurement updates need to be sent from sensor to controller.


http://dx.doi.org/10.1007/978-3-319-07803-8_6

Chapter 6
Event-Triggered Feedback Updates

In Chaps. 2—4 it has been assumed that the update interval /4 is constant. In Chap. 5,
extensions have considered time-varying update intervals that reflect characteristics
of the underlying digital network. The main goal in the present chapter is to adjust
the update interval based on the current state of the plant. This new way of updating
the state of the model is based on a simple idea, namely, to send a measurement
update only when it is necessary to do so according to some criterion. The main
question in this regard is how to determine when the sensor must send a measure-
ment to update the model state in the MB-NCS setup.

One possible answer to this question is to implement an event-triggered strategy
in which the controller updates are triggered by the size of the state error. In typical
event-triggered control schemes the controller generates a piecewise input by
holding the received measurements constant. The error is defined as e(f) = x(t;) —
x(1), that is, the difference between the last measurement that was used to update the
controller and the current state of the system.

In the case of MB-NCS the approach is very similar but the state error that will
determine the update instants is the one that we have been using in previous
chapters, the difference between the state of the model and the state of the plant.
The application of event-triggered control to MB-NCS produces many advantages
compared to the periodic implementation studied in previous chapters. For instance,
nonlinearities and inaccuracies that affect the system and are difficult or impossible
to model and may change over time or under different physical characteristics
(temperature, different load in a motor, etc) may be handled more efficiently by
tracking the state error than by updating the state at a constant rate. Also, the
method presented here is robust under random packet loss. If the sensor sends data
but the model state is not updated because of a packet dropout, the state error will
grow rapidly above the threshold and the sensor will transmit once again the current
information needed to update the model. However, under a fixed transmission rate,
if a packet is lost the model will need to wait until the next update time to receive
the feedback data, thus compromising the stability of the system.

The implementation of an event-based rule in MB-NCS represents a very intu-
itive way of saving network resources. It also considers the performance of the

E. Garcia et al., Model-Based Control of Networked Systems, Systems & Control: 135
Foundations & Applications, DOI 10.1007/978-3-319-07803-8_6,
© Springer International Publishing Switzerland 2014
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closed loop real system. The implementation of the model to generate an estimate of
the plant state and using that estimate to control the plant, results in significant
savings in bandwidth as we saw in previous chapters. It is also clear that the accuracy
of the estimate depends on factors, such as the size of the model uncertainties. One of
the results in the present chapter is that these error based updates provide more
independence from model uncertainties when performing this estimation. When the
error is small, which means that the state of the model is an accurate estimation of the
real state, then we save energy, effort, and bandwidth by electing not to send
measurements for all the time intervals in which the error remains small.

The combined Model-Based Event-Triggered (MB-ET) framework can be seen as
a way of providing “virtual feedback” to control the physical system when no real
measurements can be obtained at the controller node due to communication con-
straints or, more precisely, due to the strategies that we follow in order to reduce
network communication. The idea of “virtual feedback” can be realized by using the
nominal model of the system to generate an estimate of the real state in joint operation
with an event-triggering strategy in the sensor node that determines the communica-
tion instants based on the size of the state error. When a measurement of the real state
is received at the controller node, it is used to update the state of the model in order to
reset the accumulated state error over the previous time interval since the last
measurement update took place. The combination of the nominal model at the
controller and the event-triggering strategy provides a “virtual feedback” by gener-
ating an estimate of the state that is kept close to the real state by maintaining a small
state error. In order to obtain the same model state x at the sensor node we implement
a second identical model at the sensor node that is updated using the measurements
x(t;) only at those instants that a measurement is sent through the network.

Due to the advantages it provides, event-triggered control will be used in several
sections of this book. In Sect. 7.2, control of dissipative nonlinear systems is studied
using a fixed threshold event-based approach. Section 8.2 follows the same
approach of Sect. 6.3 in this chapter to consider systems with quantization and
delays. Tracking of reference inputs using event-triggered control is discussed in
Sect. 11.3. Event-triggered control will be used to deal with different problems in
Chaps. 9, 12, and 14; these problems include: adaptive stabilization, design of
optimal controllers and schedulers, and stabilization of distributed systems.

The present chapter is organized as follows. In Sect. 6.1 the MB-ET control
architecture is presented in addition to initial approaches and strategies. In Sect. 6.2
we present more formal stabilizing event-triggered strategies. In Sect. 6.3 network
delays are considered and notes and references are given in Sect. 6.4.

6.1 Model-Based Event-Triggered Architecture

In event-triggered broadcasting [10, 11, 246, 247], a subsystem sends information
about its local state to the network only when it is necessary, that is, only when a
measure of the local subsystem state error is above a specified threshold. Event-
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triggered control schemes offer a new point of view, with respect to conventional
time-driven strategies, on how information could be sampled for control purposes.
The author of [247] showed the stabilizing properties of the event-triggered control
strategy; a triggering condition was presented based on the norms of the state and
the state error (the error is obtained by subtracting the current state of the system
from the last state that was used to update the controller). This means that the
measurement received at the controller node is held constant until a new measure-
ment arrives. When this happens, the error is set equal to 0 and starts growing until
it triggers a new execution or measurement update. In the case that delays are not
negligible the control task should be executed before the regular (no delay) execu-
tion condition takes place in order to account for those time delays, but the control
task should not be executed too soon and provoke accumulation points, i.e., the
generation of infinite number of events during a finite period of time.

In previous work on event-triggered control it is assumed that the parameters of
the system and/or subsystems are known exactly. Our combined MB-ET control
framework offers two important advantages with respect to previous work in event-
triggered control that uses only a ZOH model, that is, the updates remain constant
between update intervals. The implementation of this strategy using MB-NCS
accounts for the unavoidable existence of model uncertainties in the stability
analysis and it affects directly the estimated threshold values that aim to ensure
stability of the system. The model-based implementation also generalizes the ZOH
one by using the model dynamics to generate an estimate of the real plant state
between measurement updates.

The architecture that we use in the present chapter is presented in Fig. 6.1 and it
is similar to the one presented in Chap. 2 where periodic updates were used. The
difference is that a copy of the model is implemented at the sensor node to obtain
the state of the model at the right side of the control loop which is used to compute
the state error and decide the appropriate time instants to send measurements.
This implementation is very similar to the one in Sect. 3.1, which studies state
observers, where a copy of the model and a copy of the controller are also needed at

Sensor
’ ’ (model

Plant and event

detector)

) Model 4—| Network

Fig. 6.1 MB-ET architecture
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the sensor node. The difference in that case is that the copies of the model and
the control gain were needed to generate the control input « in order to feed the state
observer, while the updates take place in a periodic fashion. Here, the model at the
sensor location is used to generate the state of the model and evaluate the state error.

6.1.1 A Preliminary Update Approach

The general idea in this chapter is to find implementable strategies that can be used
to readjust the update intervals 4 in MB-NCS according to the current operating
conditions of the networked system. The simple approach described next illustrates
this idea and it is based only on the computation of the state error which is obtained
by measuring the states of the plant and the model.

Let us consider a continuous time plant and its model interconnected as in
Fig. 6.1 with dynamics given by:

(1) = Ax(t) + Bu(r) (6.1)

and

() =A%) +Bu(r) (6.2)

respectively. Let u = KX . In this setup, every time the controller node receives an
update, it sends an acknowledgment message to the sensor indicating when it should
send the next state measurement; that is, the controller readjusts the value of the
update interval /4. & is time-varying and depends on its own previous value and the
current response of the system. In order to find the next appropriate value for & we
apply the following conditions on the current and the previous measured error:

h(tis1) = a(t;)h(t:;) (6.3)

where the integer index i > 1 represents the update instants, i.e., the ith time that an
update is sent through the network and the adjustment factor a(#;) is obtained
according to the following rules:

a(t) <1 if {le(t)| > le(ti1)[}&{|e(:)] > e}

) =1 if Ale(®)] > le(ti-1)[}&{le(n)| < €}
(t)=1 if {le()| <e(ti-1)}&{le(t;)| > €}

a(t) > 1 if {le(n)| < le(ti-n)|}&{le(n)] < e}

IS

(6.4)

I
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where ¢ is a small error threshold value. The state error is defined as follows
e(t) = x(t) — x(1). (6.5)

To simplify the implementation for this case, the last measurement sent to the
controller can be used instead of the state of the model in order to compute (6.5),
which means that for this particular rule we do not necessarily need to implement a
copy of the model in the sensor node.

This simple computational approach describes an intuitive idea: if the networked
system is behaving well according to our imposed standard, €, we keep the same
update interval (second and third lines). If the system is behaving very well then we
can wait a longer interval of time without updating the model. We do this by
increasing the update interval by some a > 1 (fourth line). But, if the networked
system is not performing as desired (first line), then we should update at a higher
rate by decreasing the update interval by some a < 1. This simple approach is
illustrated through an example.

Example 6.1 Consider the system, model, and controller described by:
0.8 03 1
A_<—O.2 1.9) B_(1>
- 0.6981 0.4379 A 1
A= (—0.1078 1.7031> B = <1>
K = (115358 —17.5158)

Figure 6.2 shows the response of the plant and the model for initial conditions:
x(0)=102 05]), x0)=[0 0]

The initial update interval is £(0) = 0.1 s. Figure 6.3 shows the state error and
the communication in the network due to the updates from the sensor to the
controller and it illustrates how the update interval varies with time and according
to the state error.

Unfortunately, it is hard to state something concrete about the stability properties
of this type of implementation. By limiting ourselves to study this problem based
only on information about the measured error we obtained a simple computational
strategy but its theoretical justification is challenging.

In order to show the stability properties of the framework used in this chapter we
will make use of the configuration shown in Fig. 6.1 but we are going to include
different features in the sensor node that will provide a policy on how to update
the state of the model. In this scheme the sensor has different functions to perform.
The sensor contains a copy of the model and the controller gain so it can have
access to the model state. It continuously measures the actual state and computes
the model-plant state error (6.5). The sensor also compares the norm of the error to a
predefined threshold, and it broadcasts the plant state to update the model state if the
error is greater than the threshold.
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The purpose of the following sections is to develop a more formal approach
based on previous work on event-triggered control keeping a fixed threshold value
for the state error that guarantees bounded stability. The use of time-varying
thresholds is also analyzed and asymptotic stability is shown. The use of time-
varying thresholds for systems subject to network induced delays enhances the
results presented in this chapter.

6.2 Event-Triggered Control Strategies

The main advantage the event-triggered feedback strategy offers compared with the
common periodic-update implementation, is that the time interval between updates
can be considerably increased, especially when the state of the system is close to its
equilibrium point, thus releasing the communication network for other tasks. We
will assume in this section that the communication delay is negligible. Instead of
adjusting the update intervals explicitly as in Example 6.1 the approach in this
section is to compute the norm of the state error and compare it to a positive
threshold in order to decide if an update of the state of the model is needed. When
the model is updated the error is equal to 0; when it becomes greater than the
threshold the next update is sent.

Two distinct types of thresholds are considered in this section: fixed or constant
thresholds and relative or time-varying thresholds. Let us start by considering a
simple constant threshold with the update rule that the sensor sends the current state
value when the norm of the state error (6.5) is greater than a fixed threshold that is
denoted by a.

6.2.1 Fixed Threshold Strategy

While |e| < a no update is sent and the plant is operating in open loop mode based
on the input generated by the model state X . After substituting the input # = KX in
(6.1) and using the definition of the error we can write:

i = (A + BK)x + BKe. (6.6)

In the case of the model, after substituting the input u# we have a state space
description of the form:

X=(A+BK)x, for t; <t<ty. (6.7)
At the update times t;, i € Z*, the state of the model is updated with the

measurement obtained from the plant. The update intervals are non-periodic in
general and are triggered by the size of the state error.
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Let us first make use of a fixed threshold a, that is, an update is sent only when
le| > a. By using this simple choice the state of the system can be bounded as shown
in next theorem.

Theorem 6.1 For |x(0)| < B, 0<p; < oo the system described by (6.6) with
state feedback based on error events is bounded-input bounded-state stable with
respect to the measurement error if the eigenvalues of the closed loop matrix A + BK
have negative real parts.

Proof The response of the plant (6.6) with #(0) =0 and Hurwitz matrix A+ BK
at any given time ¢ > 0 is given by:

t
x(r) = eWBRx(0) + Je<A+BK><f*f>BKe(T)dT (6.8)
0

where e(?) is a piecewise continuous input bounded by |e| < a. We can show that the
state of the plant is bounded by evaluating its norm which is done next:

t

lx(r)| = [e“ BRI x(0) + Je(AJrBK)(’_T)BKe(r)dT

0 (6.9)

IN

t
[ x(0)] + J [ |BK e (0)|dx.
0

By the assumption on the initial condition and the triggering condition, and using
the bound |e“* 55| < ke, for k;, 4> 0, we can write:

t

(1) < ke + ak, |BK|Je_’1<’_T>dT

(6.10)
aki|BK aki|BK
_ ﬂ]kl _ IL | e—/lt IL ‘ .
Also note that:
ki |BK
lim |x(1)| < %

Using a stabilizing controller K, since the closed loop plant poles are in the left
hand side of the complex plane, ensures that the first term in the right hand side of
(6.10) decreases exponentially with time and the second term is bounded for all
time 7> 0.
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Note also that by considering y = x, then (y,e) is BIBO stable when A + BK is
asymptotically stable. If (A,B) is controllable then the relation is if and only if. Then
we need to ensure that the error is bounded by updating the model when |e| <a is
not satisfied. *

Next, we show that the transmission intervals, which are time-varying, never
become too close to each other i.e., we find a positive number that represents a
lower bound on the update intervals. This is an important feature that every event-
based control strategy should posses in order to avoid accumulation points, that is,
the sensor should never attempt to send an infinite number of measurements during
a finite period of time.

Theorem 6.2 The model state update intervals for the MB-ET framework using a
fixed threshold strategy are lower bounded by t, > 0 where t, is the minimum time
t > 0 such that the following holds:

T e(i-1) @ (A +BK )5 8)dz1x(1y)| = (6.11)
0

fori=0,1.2,...

Proof First, we express the dynamics of the state error (6.5) in the following form:
= (A —Z)e+(Z+EK))2 (6.12)

where A :A—A, B=B—-B.

Next, we find the response, for ¢ > t;, of the error with initial time ¢;, at the time of
the model update with initial conditions e(z;) =0. The error at time ¢; is equal to
0 since at that time an update event has taken place and the model state is made
equal to the plant state.

e(r) = je(A ~A) (1) (Z + EK))? (7)dx. (6.13)

t

Consider, without loss of generality, #; = 0 and evaluate the norm of (6.13) as follows:

le(r)] = je(A 72) (t=2) (Z +§K)6(A +BK) gy . X0 o

t

< Je(Afz)(f*f) (Z"‘EK)C(A-'—éK)TdT |x0|

0
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where £ (f) = e(A +B K)’xo was used and the quantity xo=x(zy) is the state of
the system at the time of the latest update instant. By making the right-hand term
in (6.14) equal to a we ensure that |e| <a. It is clear that for any positive threshold
a the minimum time ¢ such that the right-hand term in (6.14) is equal to « is

positive, i.e., the time elapsed between successive update intervals is always greater
than 0. ¢

Remark In general we can see from (6.11) that for large uncertainties and large
values of the plant state at the measurement update instants the model update
intervals are very small. This can be better shown trough the following example.

Example 6.2 Consider the following model of a second order system:

] e[

For simplicity, let us consider a system that contains uncertainty only in the first
element of the state matrix A as follows:

~[t+an 13
A{ 0.7 0.5}

The controller and the fixed threshold are given by:
K =[-1.6455 —1.3545], a=0.1

Figure 6.4 shows the lower bound on the transmission intervals for different
values of lx(¢;)| and a;;. We can see that the transmission intervals are longer for
smaller values of the measurements and the uncertainties and vice versa.

Figure 6.5 shows the response of the system for a;; = 0.1 and the initial
conditions x(0)=[1 — 0.5]%. It can be seen in this figure that the transmission
intervals get longer as the norm of the state gets smaller.

Remark From Example 6.2 one can ask the following questions: what would
happen if the initial state is very large? Can we still guarantee that the model
state update intervals are lower bounded by a positive number?

The short answer for the second question is “Yes”; from (6.11) we can see that 7,
is always greater than O for any finite initial condition.

With respect to the first question, it is clear that the lower bound on the inter-
event times will become smaller if the initial state is larger. From (6.11) we can see
that the inter-event times will never become 0 but they could dangerously approach
0 for a large initial state compared to the size of the threshold a. A simple solution
to avoid very small inter-event times is to, precisely, increase the value of the
threshold. The drawback is that the ultimate bound for the plant state will be large
as well. A much better approach is to start with a large threshold value which can be
later reduced in order to reduce the norm of the state. This is one of the motivations
to implement a time-varying threshold which is discussed in the next section.
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6.2.2 Relative Threshold Strategy

In many different applications it is desirable to stabilize a system asymptotically.
Equation (6.11) relates to the intuitive idea that by varying the magnitude of the
threshold value we can obtain longer update intervals or a smaller output size. This
type of tradeoff leads us to consider a time-varying or relative threshold that becomes
large when Ix(#;)! is large and small when lx(#;)| is small. Furthermore, by making the
threshold to be a function of the current norm of the plant state we are also in the
position to achieve asymptotic stability and not only boundedness of the plant state.

The work in [247] follows this approach by comparing the norm of the state error
to a function of the norm of the state of the plant; in this way, the threshold value is
not fixed anymore, and, in particular, it can be reduced as we approach the
equilibrium point of the system, assuming that the zero state is the equilibrium of
the system. Traditional event-triggered control techniques [246, 247, 261, 262]
consider systems controlled by static gains that generate piecewise constant inputs
due to the fact that the update is held constant in the controller. The main difference
in this section is that we use a Model-Based controller i.e., a model of the system
and a static gain; the model provides an estimate of the state between updates and
the model/gain controller provides a control input for the plant that does not remain
constant between measurement updates.

Consider again the plant and model described by (6.1) and (6.2). Using the
control input # = KX we obtain the description (6.6) for the plant. Assume that the
control input # renders the model (6.2) Input-to-State Stable (ISS) with respect to
the measurement error e. For the definition of ISS we use the following [2].

Definition 6.3 A smooth function V:R" —RJ is said to be an ISS Lyapunov
function for the dynamical system X = f(x,u), x(t) € R",u(t) € R",t € R if
there exist class /o, functions a;, a», @3 and y satisfying:

(1) < V) < ) (6.15
& o) < ~as (i) + r(Jul). (6.16)

The system x = f(x, u) is said to be ISS with respect to the input u if and only if
there exists an ISS Lyapunov function for that system.

In our case, we choose a control law ¥ = Kx that renders the closed loop model
(6.7) globally asymptotically stable. Any such K also renders the closed loop model
ISS with respect to the measurement errors. We proceed to choose a quadratic ISS
Lyapunov function, V=x"Px where P is symmetric positive definite and is the
solution of the closed loop model Lyapunov equation:

(A +BK)'P+P(A +BK) =—0Q (6.17)

where Q is a symmetric positive definite matrix.
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Let us first analyze the case when B = B for simplicity and define the uncertainty
A=A—A ; also assume that the next bound on the uncertainty ‘ZTP + PK‘ <A<g

holds where g = 6(Q), the smallest singular value of Q in the model Lyapunov

equation (6.17). This bound can be seen as a measure of how close A and A should be.
It can be seen from (6.17) that the solution P depends on the choice of Q. One way
to obtain a small P and large ¢ is to make Q = — (A +BK ) and design K such that
this closed loop model matrix has eigenvalues with large negative real part. Unfortu-
nately, the predefined location of the eigenvalues of A +BK does not ensure, in
general, a particular selection of the singular values. A particular case when this can be
easily achieved is when the number of inputs is equal or greater than the number of
states. In such a case, we can obtain a closed loop model matrix that is diagonal with
desired eigenvalues, and with the previous choice of O, the solution of (6.17) is always
P=05%*1,,,. SinceA +BKis diagonal its singular values are equal to the absolute
value of its eigenvalues. Therefore, we can easily manipulate ¢ while P remains
the same.

The next theorem provides conditions on the error and its threshold value so the
networked system is asymptotically stable. The error threshold is defined as a
function of the norm of the state and A which is a bound on the uncertainty in the
state matrix A. Similarly, the occurrence of an error event leads the sensor to send
the current measurement of the state of the plant that is used in the controller to
update the state of the model.

Theorem 6.4 Consider system (6.1) with input u = KX . Let the feedback be based
on error events, and the relation:

o(g —A)

>

N (6.18)

where b = |KTI§’TP+P1§K ,0<o<1, ZTP—&—PK’ <A <gq,and g=0(Q). Let

the model be updated when (6.18) is first satisfied. Then the system is globally
asymptotically stable.

Proof In order to prove this theorem we will set a bound on the derivative of
V = x" Px along the trajectories of the system (6.6) which is equal to (6.1) when the
input u = KX has already been substituted and expressed in terms of the state error,
then we can easily show that this bound can be appropriately tuned by the choice of
the threshold on the error.

V =xT[(A+BK)"P+P(A + BK)|x + ¢"K"B" Px + x PBKe
:xT[(A +A +BK)TP +P(A +A+BK)|x+e"K"B"Px+x"PBKe

= —xTOx +xT (KTP + Pg)x + e"K"BTPx + x"PB Ke.
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We have just expressed V in terms of the model parameters and the uncertainty
of the state matrix A. We now proceed to evaluate the contributions of each, the
model, the uncertainty, and the error.

V < gl + AP + PA|x” + [KTBTP + PEK|le|lx
< (—q+ A)|)c|2 + ble||x].

By updating the model when (6.18) is first satisfied we reset the error and we also
have that lel < 6(q — A)lxl/b holds. Then we can finally write:

V< (o—1)(g— )k (6.19)

Then V is guaranteed to decrease for any ¢ such 0 < ¢ < 1 and updating the state
of the model every time the error satisfies the condition imposed in (6.18). .

Remark In comparison to usual strategies in MB-NCS, an important advantage of
this approach is that we define the controller only in terms of the model parameters.

The stabilizing threshold is designed using the model parameters (A,l?) and some

bounds on the uncertainty A, quantities that are known a priori.

The extension to the case of A # A and B # B is straightforward by assuming
that the next bounds on the uncertainty matrices hold:

‘(Z+§K)TP+P(X+§K)‘ <A<g (6.20)
B| < p (6.21)

where B = B — B. In order to obtain the bound (6.19) the error is set to satisfy
(triggering an update otherwise):

< 2By (6.22)

where b = 2|PBK| + 28|PK|. We consider the same Lyapunov function as in
Theorem 6.4. In this case the derivative of the Lyapunov function along the
trajectories of the system can be expressed by:

V=~ ox+7[(A +EK)TP +P(A +BK)]x+ 2P(B + B)Ke.

~ ~ T ~ ~ ~ ~
< —ghP+ |(A +BK) P+ P(A+BK) |Ixf” +2(|PBK]| + [PBK]| ) el x|

< (=g + A)|x]* + Ble||x]|.
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By updating the model according to (6.22) we ensure that the error becomes 0 at
the update instant and it satisfies |e| < o(q¢ — A)|x|/b until a new update is
generated and V satisfies the inequality (6.19).

Example 6.3 Consider the inverted pendulum on a moving cart dynamics described
in Example 3.2. In this case the nominal parameters are given by: m = 0.1, M =1,
I = 1. The values of the real parameters are given by: m =0.09978, M =1.0016,
[=0.9994. We also have that ¢ = ¢ = 9.8. In this case we use the following
control gain:

K =1[0.5379 25.0942 1.4200 7.4812].

Figure 6.6 shows the response of the system; it also shows the norm of
the system and the norm of the error. It can be seen that the error is reset at the
update instants.
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6.3 Systems with Network Induced Delays

Although the MB-NCS framework may help reduce network induced delays by
limiting the number of packets that attempt to use the network to reach their
destination, we should be prepared for situations in which peak conditions on the
network produce considerable time delays between nodes. These conditions may
be due to a high network load, i.e., many systems and nodes have been added to
the network or, in the case of many systems being controlled by event-triggered
strategies, due to several of them operating in a region that requires a higher
communication rate. The solutions provided in previous sections assumed negli-
gible time delays but it can be shown that the event-triggered control strategy is
able to compensate for delays: if some delay characteristics are known (a bound or
even the exact time delay when using time-stamped messages) the next update
should be scheduled before the regular one (the update when no delay is present)
in such a way that stability is never compromised. In this section we take this
approach in order to determine the best time to update in the presence of time
delays. Two advantages are obtained by using the MB-NCS framework and event-
triggered controller. The first one is the known property of generating an estimate
of the state when operating in open loop mode to get longer update intervals.
The second advantage is that the model is able to produce almost instantaneously
an estimate of the current plant state based on the delayed measurement. We can
use this estimate instead of using the delayed measurement to update the model in
the controller.

Next theorem provides conditions for asymptotic stability in the presence of
network induced delays. In the case of delays it is also important to guarantee that
the inter-execution update times never become too close to each other causing a
model update in the controller when the previous execution has not been finished
due to time delays or even resulting in a Zeno behavior. To show that this will never
occur is a nontrivial task, since the execution time intervals are only implicitly
defined by (6.18); and this is also shown in the next theorem.

Theorem 6.5 Let (6.1) be a control system with control input based on the state of
the nominal model u = KX and assume that: there exists a symmetric positive

definite solution P for the model Lyapunov equation (6.17), B = B, and the next
bounds are satisfied: ’K’ < Ay and ’XTP —&—PX’ < A < q. Then there exists an

€>0 such that for all network delays vy € [0, €] the system is asymptotically
stable. Furthermore, there exists a time T > 0 such that for any initial condition
the inter-execution times {t;, | —t;} implicitly defined by (6.18) with ¢ <1 are
lower bounded by t, i.e., t;, 1 —t;>1 Vi € Z".

Proof In order to show asymptotic stability for the nonzero network delay case
and to bound the inter-execution times let us look at the dynamics of |e|/|x|:
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dlel _d (eTe)1/2 B (xTx)l/z(eTe)fl/zeTe (e e)l/z( T )71/2xT)'c

dtlx]  dt ()12 xTx
ele (eTe)' *xTx
- (XTX)1/2(€T€)1/2 (XTX)3/2
eT(Ae—Zx) xT[(A +Z+BK)x+BKe} le]
Jelfe] e ] [
e[\
’A’+|A| +|d+24 +BK‘ +|BK|(| |>
e

<Ax+ (As+ 24 +BK|):— |BK|<I > (6.23)

Let us denote the term lel/lxl by 8 so we have the estimate:

0 < As+ (A4 +|2A +BK|)0 + |BK|6*

R . (6.24)
< Ap+[2A] + (A + |24 | + |BK|)O + |BK|6?
and consider the differential equation:
¢ =Ax+ 24|+ (Ax+ |2A] + |BK|)¢ + |BK |9 (6.25)

then we can conclude that 0(r) < ¢(z, o), where ¢(z, o) is the solution of (6.25)
satisfying ¢(0, ¢o) = ¢o.

For the case when 7y =0, the inter-execution times are bounded by the time it
takes for ¢ to evolve from 0 to 6(g — A)/b, i.e., the solution 7 € R* of ¢(r,0) =0
(¢ — A)/b. An estimate of that time can be obtained by solving (6.25). Such solution
is given by:

_edt((rfl) +1
for c# 1. Let y=0(q — A)/b = ¢p(z,0), then
_ n(® !
r= (ln(y—|—1) ln(c+l))d(c—1) (6.27)

where d=|BK| and ¢ = (A4 + |24 |)/d. In the analysis if we have the case ¢ =1
we can easily avoid it by increasing the bound on the uncertainty by a very small
amount. It can also be verified that z >0 for any y > 0. The last statement can be
shown by analyzing directly the two factors in (6.27). Note that ¢ and d are
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nonnegative and we consider two cases and avoiding the case ¢ = 1 as we discussed
previously. First, for ¢ > 1 the second factor in (6.27) is positive, then, in order to
obtain T > 0, we need the condition:

1
o+,

(y+¢)
which is equivalent to the condition y > 0. For the case 0 < ¢ < 1 the second term is
negative and we need the first factor to be negative in order to obtain a strictly
positive value for T. We can ensure that the first factor is negative by satisfying the
following condition:

: 1

co+1)

(y+c)
which is equivalent to y > 0.

In addition we can find the range of values for t for any positive value of the

threshold y is given by 7 € (0, 7,,,), where:

) In(c)
m =1 =—.
e T dle-)

(6.28)

For 7,y > 0, we choose some ¢’ such that the next is satisfied 6 <6’ < 1, and let
0 < & < 7, satisfy the solution ¢(e1,y) =y’ =0’ (¢ — A)/b, such that £, always exists
since ¢ is continuous in the range = € [0, 7,,,) that covers all positive thresholds 0 < y,
y’ <00, also ¢ > 0and y <y’ since o6 <o ’. Then, by sending the state measurement
at time #; in order to update the model in the controller, this execution is released by
the condition |e| =y|x|, we guarantee that for ¢ € [#;,7;+€;] we have |e| <y’ |x|,
and since ¢’ < 1 asymptotic stability is still guaranteed. The inter-execution times
are now bounded by 7y + 7, where 7 is the time it takes ¢ to evolve from |e(t; + 7)|/|x
t+Tn)| = % (t + ) — x(t; + )|/ |x(t; + 7v)| to y, then the admissible delays 7
need to satisfy |e(f;+zy)|/|x(ti+7y)| <y since ¢ >0. From continuity of
|% (t; + 7n) — x(t; + v )|/x(t; + T) with respect of z there exists an &, > 0 such that
for any 0 <7y <e, we have |i(4 +7y) — x(t; + 7v)|/|x(t; + 7v)| < y. The term
|%(t; +7n) — x(t; + ) |/|x(t; + 7n)| is continuous due to the fact that |x(#; +7n)|
is never O since the closed loop system is asymptotically stable and never reaches 0 in
finite time. We complete the proof by defining € = min{ey, &;}. ¢

6.3.1 Updating the Model State Using Delayed
Measurements

The stability and performance of the networked system is affected by the use of
delayed measurements for control since the difference between the delayed mea-
surement and the current state of the system produces a large state error when the
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delayed data is used to update the model. A smaller state error can be obtained by
estimating the current plant state based on the old measurements. This procedure
represents another advantage compared to traditional ZOH event-triggered
implementations. By computing a quantity that reflects more accurately the current
state of the plant than the delayed measurement does, it is possible to execute a
better control action over the next open loop interval, that is, the next event will be
triggered later in time than by using the old data directly.

Constant delays. Since we need to implement the model of the plant in both the
controller and the sensor node, in order to compute the control input and compute
the state error respectively, we have to use the delayed information received by the
controller effectively so a good estimate of the current plant state is obtained to
update the model in the controller and compute a better control input for the plant.
In the case that the network delays are constant we can implement the next strategy:
the sensor decides to send a feedback measurement to the controller at time ¢; so it
updates its own state but keeps using the old input, i.e., the input generated by the
same model in the case that no update has taken place, similar to the plant being fed
by the model/controller that has not been updated yet. Notice that if the sensor
knows the magnitude of the constant network delay 7, then it will switch to closed
loop mode at the end of the known delay. By using this strategy we need to
implement a second model in the sensor node, but this is physically possible
since we are considering operations performed by a single processor; that is, if
we are able to implement the computations needed to measure and compute
the state error and threshold comparisons then, in general, we could be able to
implement a second closed loop model that only works for short intervals
[t;, t;+7x]. When the controller receives the measurement x(z;) at time ¢;+ 7y it
uses this measurement to immediately estimate the state of the model in the sensor
by computing the next:

fe(ti +1y) = A x(t) + Jef‘ () Bu,(s)ds (6.29)
0

which can be made arbitrarily accurate by storing the sequence of inputs over the
previous delay interval, i.e., [#;, #;+ 7y] in the controller node and since the param-
eters in both models are exactly the same. The subscript ¢ indicates the quantities
belonging to or available at the controller node. The result of the operation in (6.29)
is used to update the state of the model in the controller.

Time-varying bounded delays. A more general situation in many networked systems
is that the network induced delays are time-varying (and bounded) as discussed in
the previous section. In this case the sensor does not know the current value of
the delay, but by time-stamping the measurement sent over the network the control-
ler node does know the size of the delay for every packet containing a feedback
measurement. A simple strategy in this case is to let the model in the sensor remain
working in closed loop after measuring and updating its state. When the controller
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receives the delayed measurement it simply computes the following, which is used
to update the model in the controller node.

felti + 1) = BB )my (1)) (6.30)

A slightly different strategy can be implemented in this case that, in general,
results in better performance, i.e., longer broadcast intervals, by realizing that the
states of both models do not need to be the same, as long as the model in the
controller produces a smaller state error than the model in the sensor. This is
basically a combination of the two strategies above. The sensor updates its state
and continues working in closed loop mode but the controller uses the quantity
obtained by (6.29) in order to obtain a better estimate of the current plant state not of
the current sensor model state based on the delayed measurement.

Example 6.4 Consider the following networked system implemented as in Fig. 6.1,
where the system to be controlled is unstable and is represented by the parameters:

055 —04 1
A‘{o.:& —0.7} B‘M'

Let the model be obtained by altering the physical parameters by 10 %,

. [0495 —0360] L _[1
A= {0.270 0.630] B= [1]

Let the controller, found using the model parameters, be given by:

K =[—13268 0.4618]

and the uncertainty bounds are given by: A=1.05, A, =0.1. By choosing the
following parameters: ¢ =5 and 6 = 0.5 we can find the threshold y =0.1382, then,
by using the results of previous section we get € =0.065 s. Results of simulations
are shown in Figs. 6.7 and 6.8. Figure 6.7 shows the response of the norm of the
state of the plant and the norm of the error for a constant delay of 0.06 s. The
discrete variations on the error correspond to the events generated at the sensor
node i.e., when the sensor decides to transmit the current measurement and updates
its internal model, resetting the error as measured by the sensor. Similarly, Fig. 6.8
shows the response of the norms of the state of the plant and the error for time-
varying delays bounded by 0.06 s.

In both cases we are able to asymptotically stabilize the system in the presence of
delays and using feedback measurements sent through the network at well sepa-
rated instants of time, i.e., significantly reducing the traffic in the network.

In order to draw a comparison to the case when a ZOH model is used in the
controller node, that is, the received measurement is held constant until a new
measurement arrives we execute similar simulations using the same parameters,
controller gains, and time delays that were used in the executions shown in Figs. 6.7
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and 6.8 but now the measurements are held constant. Figures 6.9 and 6.10 show the
simulation results. It can be seen that error events are triggered more frequently in

both cases, when the delays are constant in Fig. 6.9, and when the delays are time-

varying and bounded in Fig. 6.10.
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6.4 Notes and References

The work presented in this chapter is an extended version of [84]. Parts of this
chapter were also published in [87].

Event-triggered control techniques are commonly used in control systems [9, 10,
40, 58, 59, 99, 105, 108, 140-142, 146, 176-178, 246, 247, 250, 261, 262, 264, 265,
280]. All these references point out the advantage in reducing sampling rate by
allowing the sensor to transmit measurements according to the current response of
the system. A traditional approach followed by many authors is to implement a
Zero-Order-Hold (ZOH) approach which means that the measurements received at
the controller node are held constant until a new measurement arrives. The event-
triggered control approach is also more robust to unknown disturbances than
periodic approaches. Disturbances that affect the system can be compensated faster
since the event-detectors will update the controller as soon as an erratic behavior is
measured.

The use of event-triggered control techniques requires constant measurement of
the state, calculation of the state errors, and comparison to the designed threshold.
These requirements impose harder computations than typical periodic schemes.
The use of event-triggered control in NCS is valuable from the point of view of
communication savings, that is, communication costs are usually higher than
computation costs.

In order to reduce the continuous sensing requirement imposed by event-
triggered control techniques several authors have developed self-triggered control
strategies [1, 2, 175, 176, 205, 263, 282]. In this case, the system dynamics and the
last measurement transmitted are used to estimate the next time that the sensor has
to measure the state of the system and transmit this measurement.

A similar model-based approach to the one presented in this chapter has been
developed by Lunze and Lehman [165]. In their approach, the model is assumed to
match the dynamics of the system exactly; however, the system is subject to
unknown input disturbances. The main idea of the approach in [165] is the same
as in the ideas of this book, that is, to use the nominal model to generate estimates of
the current state of the system. Since the system is subject to unknown disturbances
and the model is executed with zero input disturbance, then a difference between
the states is expected and the sensor updates transmitted over a digital communi-
cation network are used to reset this difference between the states of the plant and of
the model. The same authors have extended this approach to consider the output
feedback, quantization, and network delay cases.

Event-triggered control strategies, in combination to the MB-NCS framework,
will be used frequently in subsequent chapters. These techniques will be of great
advantage to address different problems and control architectures that appear very
often in networked systems.



Chapter 7
Model-Based Nonlinear Control Systems

The use of linear models in the MB-NCS framework not only provides a simple
approach for controller and update intervals design, but the overall setup can also be
used for nonlinear systems as well. By considering robustness to model uncer-
tainties in the MB-NCS framework with linear systems, it is clear that we can
implement a linearized model of the system to control a nonlinear plant. This is a
very common approach, namely, controller design based on linearization. The
difference with respect to linearization control techniques is that in the MB-NCS
approach, the linearized model is not only used to design the control gain but it is
also implemented in the actuator/controller node in order to obtain an estimate of
the real state between measurement updates.

We expect the mismatch between the nonlinear plant and the linearized model to
grow as the state leaves the linearization region. The result is that, in general, we
expect only local stability of the model-based network interconnected system
compared to the global stability property that can be obtained in the case the plant
is linear as it was discussed in previous chapters. In the case of linear time-invariant
(LTTI) plants and models we saw that the model uncertainties were constant no matter
the operating region of the plant state.

In this chapter we provide a more formal analysis of nonlinear MB-NCS using
nonlinear models. In Sect. 7.1 we focus on the case when the measurement update
intervals are constant, that is, we update the state of the model using the measured
state of the system in a periodic fashion. In Sect. 7.2 we study nonlinear dissipative
systems using output feedback and event-based updates. Notes and references are
provided in Sect. 7.3.

E. Garcia et al., Model-Based Control of Networked Systems, Systems & Control: 159
Foundations & Applications, DOI 10.1007/978-3-319-07803-8_7,
© Springer International Publishing Switzerland 2014
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7.1 Constant Update Time Intervals

In this section we present results for two common classes of nonlinear MB-NCS.
The sufficient conditions obtained below relate the stability of the nonlinear
MB-NCS to the value of a function that depends on the Lipschitz constants of
the plant and model as well as the stability properties of the compensated
non-networked model. The results are obtained by studying the worst-case behavior
of the norm of the plant state and the error. Each subsection is augmented with an
example where the results are illustrated.

7.1.1 Stability of a Class of Nonlinear MB-NCS

In this section we consider systems that can be represented by the following
equations:

§ = F(2) + gu). (7.1)

A nominal nonlinear model of the system will be used in the actuator side to
estimate the actual state of the plant. The controller will be assumed to be a
nonlinear state feedback controller. The plant model state will be used together
with the controller to generate the control signal u. The plant state sensor will send
the real value of the plant state through the network in order to update the model
every h seconds. Upon arrival of the sensor information, the model state is updated
or reset to the actual value of the state of the plant. The dynamics of the nominal
model are given by:

F=f@) i (7.2)
and the controller has the following form:
=h(%). (7.3)

Also define e = x — X as the error between the plant state and the nominal model
state. Combining (7.1) and (7.2) with (7.3) we obtain:

=f(x) +g(
X=f(%)+¢

.><~

(7.4)
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We will also assume that the plant model dynamics differ from the actual plant
dynamics in an additive fashion:

f(e)=r(c) +(c)

7.5
i (¢) =m(c) + 6m(s). (7:3)

So we can rewrite (7.4) as:

m(&) + 8 (£) + 6u(%) =f(£) +m(%) +8(2).  (7.6)

We will now assume that f and ¢ satisfy the following local Lipschitz conditions
for x,y € B, with B; a ball centered on the origin:

1FCe) = < Ky llx =yl

(7.7)
16(x) = (W)l < Killx = y|.

At this point it is to be noted that if the plant model is accurate the Lipschitz
constant K5 will be small.

We will assume that the non-networked compensated plant model is exponen-
tially stable (see Definition 2.2), that is, the controller (7.3) is designed based on the
available information as provided by the nominal model dynamics and it is also
designed in such a way that the closed-loop nominal model, second equation in
(7.4), is exponentially stable when ¥ (ty) € Bg, withx (t) € B, fort € [t, 1o+ h) with
Bg and By, balls centered on the origin.

1% (1)|| < @] (10)]|e P, with a, § > 0. (7.8)

Theorem 7.1 The nonlinear MB-NCS with dynamics described by (7.1), (7.2), and
(7.3) that satisfies the Lipschitz conditions described by (7.7) and with exponen-
tially stable compensated plant model satisfying (7.8) is asymptotically stable if:

(1 - a(e—/fh + (" — ) (%) )) > 0. (7.9)

Proof We will now analyze the behavior of the plant state norm in between
updates. The stability of the system can be guaranteed if ||x(7)|| decreases such
that |[x(zo)|| > [|x(z;, ||, where #, and f;,; are update times with #,; —t,=h.
Figure 7.1 recreates two possible scenarios. In both of them it is assumed that the
closed-loop model is exponentially stable. The difference is that for larger trans-
mission intervals we expect, in general, a growth on the norm of the state that could
lead to an unstable response as shown in Fig. 7.1b. Although the closed-loop model
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Fig. 7.1 Two different MB-NCS responses according to different update intervals 4. (a) A plant
model stable response. (b) A plant model unstable response

is stable the measurement updates make the model unstable when it is used in the
MB-NCS setup due to the long time intervals that the system operates without
sending measurements to update the model. For a given model, system, and
uncertainty parameters, which in this case take the form of the closed-loop model
parameters a and f and the system and uncertainty Lipschitz constants Ky and K,
we aim to find an estimate of the range of /4 that results in a stable model-based
network interconnected system.

In general we see that in any period of time [#, #;,1) the following relations hold:

[l = 1% +ell < [I< 1] + [lell,
le(@)[l =0, (7.10)
()| = 11% (@)l

So we can guarantee that the norm of the plant state ||x|| will decrease over the
period [#;.te41) if [|X ]| + | e|| decrease. We will now establish bounds over the norm
of the error as a function of the update time 4. We know that:

e=x—i =f(x)—f(&)—8(x). (7.11)

Therefore:

i (7.12)

The last equality holds since at ¢, the plant model state is updated and the error is
zeroed. We will now use the Lipschitz condition of the functions involved in (7.12)
to place a bound on the norm of the error.
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ol <j (IFe(s)) = F G )] + 1865 () ) s

< [ (ilats) = 20 + Kol ()

k

t , (7.13)
— &y [ I~ 5 6) s+ K| i )as
174 1
t t
:Kfj le(s >||ds+1<5j 18 (5)lds. VI [tentisn)-
173 179
From (7.8) we have that:
t t
le(0)] SKfj ||e<s>||ds+1<aj 14 (5)ds
17 1
t t
=1<5j anf<rk>||e—/’<-‘—fk>ds+1<fj le(s) |ds (7.14)
173 173

a . . _
=K (1= ) 4 5 e 0 o).

The Gronwall-Bellman Inequality [131] states that if a continuous real-valued
function y(¢) satisfies: y(r) <A(f)+ ffl,u(s)y(s)ds with A(#) and u(f) continuous

real-valued functions and p(f) non-negative for € [a,b], then:
t

t J u(z)dr
y(t) < Ar) +J Als)u(s)eds ds over the same interval. So by assigning

y0) = [le@], 2(r) = K5 § [|% (1) [| (1 — e #¢=), and u(r) = K[ we obtain:
le()]| < K» % I @l (1= e + L K; % (Il (1= e 7671 ) Kb

Kb; Ol 1 - ’“)+ (1—13*/*(‘*’0 Kfe’(f“*“‘)ds)

I

= K&% Hx 1 H (1 e Pli=1) + K¢ ( Kp(t—s) _ eKr(f*S)e*ﬁ(S*'A))ds>

f
= K&ZHX w1 = e P (eK/’("S) - eK/"’K/’S’ﬁ”ﬂ’*>ds>

3
= K{sa Hx 1 H o Pl—1) + K¢ —1 (1 _ L)Kf(’*fﬂ) + 1 <e*ﬁ('*n) _ er(f*'A))
p Ky Ky +p

K
o Pl=1) 1+€K,(r ) + f (e—/i(/—rk) _ eK,(/—q))
Ki+p

Ky
Hv I H(er’ W =Ptk ) <1 - )
Ky +p

= Kol [2 (]| () — e#0-) (K < ,,), W [t01).
-

(7.15)



164 7 Model-Based Nonlinear Control Systems

From (7.15) we note that the error signal will be 0 if the update time h = t;,,-#; is
0 and also if the plant model and the plant dynamics are the same. With this bound
over the system’s error signal we can proceed to calculate the bound over the plant
state.

X1 < £ @1 + [le@)]

< alf ()l Kl o) (£ — e |
f

K;

= a||£ (1) | e P 4 (eKrl=) — =Al=1) o
f

B vie [Zk’ tk+l>'
(7.16)

s

In order to ensure stability of the system we need that ||x(zp)|| > [[x(f;, )
therefore we require:

Ks
x(t)|| — a||x (t, e Ph 4 (f5h — =Py | —2—
el = all ()l { "+ ( W& 17
)l 1—af e+ (@ - ey L) ) ) >0 (717)
Ky +p
K;
1 —af e+ (fih — e | —2— > 0.

Example 7.1 We now present an example of an inverted pendulum in Fig. 7.2. The
inverted pendulum has length L, mass m, friction coefficient k, and is driven by a
torque 7.

The state-space dynamics for the inverted pendulum are:

. X2 0
X1

- g . k +| 1]z 7.18
M mp st = | T 719

The controller is a gain state feedback found by linearizing the model around the
equilibrium pointx; = 0 and x, = 0, where x is the pendulum angle and x; is the angular
velocity. The parameters for the plant are given by:
g=10, L=9.98, k=0.099, m=1.03. The available model parameters are ¢ = 10,

L =10, k =0.1, i = 1. The controller is given by

r= K&, withK = [316 —316]. (7.19)
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Fig. 7.2 Inverted pendulum

To satisfy the conditions on the plant, on the error, and on the exponential
stability of the controlled model we use the following parameters: K= 1.0502,
Ks=0.1382,a=1.1, and # =0.5. In Fig. 7.3 we plot the condition given by (7.9) as
a function of the update time.

Note that the system stability can be guaranteed for update times approximately
between 0.29 and 1.66 s which has been highlighted in Fig. 7.3. Figure 7.4 shows
plots of the pendulum and model angle for some update times. The plant is
initialized at x; =0.025, x, = 0 while the model is initialized to O.

7.1.2  Stability for a More General Class of Nonlinear
MB-NCS

In this subsection we extend our results to consider MB-NCS with nonlinear
systems that are represented as follows:

x=f(x)+ glx,u). (7.20)

The nonlinear model and the controller are given by:

= =

=f(®)+8 (& u)
ey (7.21)

Inserting the controller into the plant and model equations we get:

(7.22)
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Fig. 7.3 Stability condition versus update time
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Fig. 7.4 Plant and model state for different update times



7.1 Constant Update Time Intervals 167

We again assume that the uncertainty between the model and the plant is given in
an additive fashion as shown below:

f () =f(c) +6(c)

(7.23)
1 (g, 6) = m(¢,6) + 6m(s)-

Then the error dynamics between the plant and the model can be expressed as:
e=f(x)—f(x) =6 () +mx,%) —m(x,x) — (%) (7.24)
and we assume that the following Lipschitz conditions hold:
F () =fWI < Kllx =y
[[m(x, ) = m(y,s)|| < Kn(s)|lx =yl

167 (x) = 8 ()] < Ko llx
[16m(x) = Sn W < K, [lx = y]I-

(7.25)

Define also K max = max,ep, (Kn(s)) for Bs a ball centered in the origin.
Finally assume that the compensated system is exponentially stable when
X (t) € Bg, with X (1) €By, for t € [to, to+ h) with Bg and By, balls centered on the
origin.

1% (1)|| < a||% (10)]|e P, with a, § > 0. (7.26)

We now state a sufficient condition for stability:

Theorem 7.2 The nonlinear MB-NCS with dynamics described by (7.20), and
(7.21) that satisfies the Lipschitz conditions described by (7.25) and with exponen-
tially stable compensated plant model satisfying (7.26) is asymptotically stable if:

K K
<1 — a(gﬂh + (e(Kf+Km,nlzlx)h _ €7ﬂh) (&))) > 0 (727)
Kf + Km,max +ﬂ

Proof Note the error can be bounded as follows:

t

le(®)]| < J ((Kf + Komax) [|X(s) = % (5) || + (K5, + Ks,)[1X(5)]|)ds, V2 E [t trs1)-

Tk
(7.28)
The rest of the proof is along the same lines as the proof of Theorem 7.1. *

Note that this theorem may yield similarly conservative results as those obtained
with Theorem 7.1.
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Fig. 7.5 Satellite orbiting planet

Example 7.2 'We now consider the control of a satellite orbiting a planet [19]. The
satellite has unit mass and the gravitational force is inversely proportional to the
square of the distance between the planet and the satellite. The gravitational force
constant is g. The satellite can thrust in the radial and tangential directions with
thrusts u; and u,, respectively. See Fig. 7.5.

The equations that govern this system are given by:

F=i0" =S b
I
(7.29)

. =20F 1
92 r—I——Mz.
-

If welet xy=r, x, =7, x3=6, and x4 = 9, then the motion equations (7.29)
become:

XIZXQ

. 8
X2 :xlxi ——2+u1
A

[ (7.30)

2X2)C4 175

Xq4 = — .
X1 X1
It is desired that the satellite orbit around the planet at a radius r,,, = 1. The
N . . . . o 1/2
satellite will orbit at this radius with u; =u, =0 if 0 = W,y = (g / rgqu> .
To obtain a suitable controller we first linearize equation (7.30) about the

solution:

X = [ré’qu 0 wequt + 90 wgqu ]T, u=>0 (731)
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to obtain:
0 1 0 0 0 0
3a)§qu 0 0 2reu®equ 1 0
5 — 0 0 0 1 0 0 . 7.32
z e z+ ] y ( )
— 0 0 0
Tequ Tequ

We obtain a controller by solving a linear quadratic regulator problem with the
linearized plant (7.32), state penalty matrix Q =diag(10,1,1,10), and control
penalty matrix R = /. The obtained linear state feedback controller is given by:

| 6.1618 3.4648 —0.6884 0.3063

k= 3.0005 0.3063 0.7254 3.5471 |

(7.33)

The plant model considers uncertainties in the gravitational constant. We will
study the stability of the satellite control system with different values of gravita-
tional constant. We first transform the plant model dynamics (7.30) so to have the
desired equilibrium at the origin. We obtain:

Yi=»

5= (1 regn) 0+ 00g)” = —5—
(y1 + requ)
V3 =4 (7.34)
. 2y2 (y4 + wequ) + wa

(1 + Tequ) (1 4 Tequ)”

V4=

The Lipschitz constants are found over a linear transformation of (7.34) given
by:

0 4 —15 —15
0 0 —15 15
=16 0 15 -15|% (7.35)

0 -6 3 3

This linear transformation was found by making the A matrix of equation (7.32)
block diagonal, thus reducing the values of K; and a. The resulting parameters
found for a small neighborhood around the origin ||y|| < 0.0001 are the following:

Ky =3.6503 a=1.5
Ks, = 03155 =09
K, max = 0.0010

Ks, =0

(7.36)
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Fig. 7.6 Stability condition for satellite with MB-NCS under different gravitational force
constants

Figure 7.6 shows the plot of the stability condition in Theorem 7.2 for different
values of gravitational force constants, namely we considered g =1.001, g=1.01,
and g=1.1.

We note that the MB-NCS for the orbiting satellite is stable for g =1.001 for
update times up to 1.75 time units. For g = 1.01, stability is guaranteed for update
times up to 1 s, while for g = 1.1 no stability is guaranteed at all. As a matter of fact
the satellite control system with g = 1.1 is stable for 7 =1 but is unstable for 7 =2
as shown in Figs. 7.7 and 7.8.

7.2 Dissipative Nonlinear Discrete-Time Systems

In contrast to previous work in MB-NCS, the work in this section does not assume
that the entire state vector is available for measurement but only the output of the
system. Instead of implementing a state estimator using uncertain parameters as in
Sect. 3.1 we use a model of the input-output dynamics of the system which can be
updated using the plant output measurements directly.

In this section we consider Single-Input Single-Output (SISO) uncertain and
possibly unstable nonlinear discrete-time systems that can be described by:


http://dx.doi.org/10.1007/978-3-319-07803-8_5#Sec1

7.2 Dissipative Nonlinear Discrete-Time Systems 171

15 T T T T T

05

-0.5

Y 05 0 05 1 15 2

Fig. 7.8 Satellite trajectory with MB-NCS with g = 1.1 and update time of 2 s
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y(k) =£,0k—=1), ...,y(k —n),ulk), ..., u(k —m)). (7.37)

The dynamics of the model are given by:
$ (k) =f,5 (k—=1), ...,y (k—n),u(k), ..., ulk —m)) (7.38)

where the nonlinear function fio(o) represents the available model of the system
function f;,(e).

The aim using this configuration is to operate in open-loop mode for as long as
possible while maintaining desirable boundedness properties. This is done by using
the estimated outputs y (k), ...,y (k — n) provided by the model to generate the
control input u. The system output measurements are used directly to update the
current and past output variables of the model without need of implementing a state
observer.

The work in this section discards the periodicity assumption for updating the
model. Instead, a non-periodic approach is used that is based on events as in Chap. 6.
The estimate of the output given by the model of the plant is compared with the
actual output. The sensor then transmits the current output of the plant and previous
n output measurements in a single packet if the error is above some predefined
tolerance. These measurements are used to update the internal variables of the model
in the controller. At the same time the sensor uses exactly the same measurements to
update its own copy of the model. The sensor contains a copy of the model and the
controller so it can have access to the model output. It continuously measures the
actual output and computes the model-plant output error, defined by:

e(k) =y (k) — y(k). (7.39)

The sensor also compares the norm of the error to a predefined threshold «, and it
broadcasts the plant output to update the model state if the error is greater than the
threshold. It is clear that while ||e|| < a the plant is operating in open-loop mode
based on the model outputs.

7.2.1 Dissipative System Theory

The approach for nonlinear MB-NCS used in this section relies on dissipativity
theory. Dissipativity is an energy-based property of dynamical systems. This
property relates energy stored in a system to the energy supplied to the system.
Dissipativity can be seen as an extension of Lyapunov stability theory to systems
with an input-output representation. The energy stored in the system is defined by
a positive definite energy storage function. The energy supplied to the system is a
function of the system input u# and output y. A system can be considered dissipative
if it only stores and dissipates energy with respect to the specific energy supply
rate and does not generate energy on its own. Let us consider nonlinear discrete-
time systems represented by:


http://dx.doi.org/10.1007/978-3-319-07803-8_6
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x(k+1) =f(x(k), u(k)) (7.40)
3(6) = h(x(8). u(k)).

Definition 7.3 Consider a nonlinear discrete-time system in the form (7.40). This
system is dissipative with respect to the energy supply rate w(y,u) if there exists a

positive definite energy storage function V(x) such that the following inequality
holds, for all times k; and k, such that k; <k,,

ka
> oly,u) > Vxtk)) = V(x(k))- (7.41)
k=k;

It is useful to restrict the supply rate to be quadratic. This is the case in QSR
dissipativity.

Definition 7.4 A nonlinear discrete-time system (7.40) is QSR dissipative if it is
dissipative with respect to the supply rate

o(y, u) = [i}T{SQT Ii] [ﬁ] (7.42)

where O = QT and R=R".

The QSR dissipative framework generalizes many well-known areas of
nonlinear systems analysis. The property of passivity can be captured when
Q=R =0 and S = 1/2I, where [ is the identity matrix. Systems that are finite-gain
[, stable can be represented by S =0, Q = 1/y/, and R =yI where y is the gain of the
system. The following theorems give stability results for single QSR dissipative
systems as well as feedback interconnections of dissipative systems.

Theorem 7.5 A discrete-time system is finite-gain I, stable if it is QSR dissipative
with Q <0.

Theorem 7.6 Consider the feedback interconnection of two QSR dissipative
nonlinear systems. System G, is dissipative with respect to Q;, S;, R; and system
G, is dissipative with respect to Q», S, R>. The feedback interconnection of these
two systems is l, stable if there exists a positive constant a such that the following
matrix is negative definite,

Q,+aR, aSi -,

<0. (7.43)
aS, — ST Ry + a0,

While this section considers dissipativity for general nonlinear systems, the LTI
case is important in many applications. Let a discrete-time LTI system be given by

x(k+1) = Ax(k) + Bx(k
y(k) = ngk; + Dx((k)). (7.44)
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An LTI system is dissipative if and only if there exists a quadratic storage
function,

V(x) = x"Px (7.45)

where P = P’ > 0, to satisfy the dissipativity inequality. The matrix P can be found
computationally using linear matrix inequality (LMI) methods. An optimization
problem can be formulated to find a positive definite matrix P. The problem is
feasible when P can be found to satisfy the following matrix inequality,

ATPA—P —-CTQC ATPB —CToD — TS
<0. (7.46)
B'PA —-D"0C —S"C B'PB—-D'QD —D'S—S"D —R

For general nonlinear systems, there does not exist a computational method of
finding storage functions or proving dissipativity.

7.2.2 Bounded Stability of Output Feedback
Dissipative Systems

The first goal in this section is to reconcile the two models discussed up to this
point. The models used are the nonlinear input-output representation of a system
and the nonlinear state-space model. Then the notion of boundedness is discussed
and used; boundedness is also proved under appropriate assumptions.

Proposed Equivalent Representation of a MB-NCS. The type of nonlinear systems
represented by (7.37) can also be described by the state representation (7.40).
A straightforward way to obtain a state-space representation of the input-output
system (7.37) is as follows:

Define the state-space variables:

(7.47)

Xy (k) = u(k —2)

Xnim(k) = u(k —m)

and the state-space vector
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x(k) = [x1 (k) x2(k) ... Xpam(K)]". (7.48)

Then a system of the form (7.37) can be represented as a state-space dynamical
system as follows:

xi(k+1) [ fio (a1 (k), - (k) ()1 (K) - X (K))
x(k+1) x1 (k)
X(k+]) _ )Cn(k+1) _ xnfl(k)
X1 (k+1) u(k)
Xn+2(k + 1) Xn+1(k)
_xn+m (k + 1) i L Xnt+m—1 (k) .

= f(x(k), u(k))
Y(k) = Fio 1 (k)s - o 2 (k) (k) Xy (K) -+ s X (K)) = h(x(k), u(k)).  (7.49)

Following a similar procedure a state-space representation of the model is:

(7.50)

The structure of the state-space model is the same as that of the real plant. The
uncertainty in the plant is only due to the output equation and to the first term in the
state equation of (7.49), which is repeated in the output equation as well; those
expressions contain the nonlinear uncertain dynamics given by (7.37) with respect
to the nominal model (7.38).

By using the model parameters in (7.50) it is possible to use the QSR dissipative
analysis described in the previous section in order to design QSR dissipative and
stabilizing controllers.

Now, the Model-Based Event-Triggered (MB-ET) architecture described in
Chap. 6 can be represented in the negative feedback interconnection suitable for
dissipativity analysis that was shown in Fig. 7.9.

Figure 7.10 shows an equivalent representation of a MB-ET control system in
which the updates of the state of the model are implicit in the model/controller
block. From (7.39) it is clear that

¥ (k) = y(k) + e(k). (7.51)
The input to the controller is the output of the model y (k); this can be easily

represented by (7.51) as in Fig. 7.10 where the output of the model is the result of
the contribution of two terms: the output of the system and the output error. Although
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Fig. 7.9 The negative feedback interconnection of two nonlinear systems G; and G,
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Fig. 7.10 Equivalent feedback loop for the model-based event-triggered control system
used for analysis

the actual implementation of the control system is not in this form, this form is useful
for the analysis and design of stabilizing controllers using dissipative techniques.

By using the MB-ET implementation the output error can be bounded by the
appropriate design of a stabilizing threshold. The error (7.39) can be seen as piece-
wise bounded external disturbance and at the communication update instants k;, we
have that e(k;) =0 because the model and plant output variables are equal.

Stabilization of networked discrete-time systems using output feedback event-trig-
gered measurements. This section considers discrete-time nonlinear systems and
models of the form (7.37) and (7.38) that are interconnected using a model-based
implementation as described above. The analysis and design of the stabilizing
controller can be performed as shown in the previous section using the equivalent
representation (7.49) and (7.50). Since it is only possible to measure the output of
the system and not the whole state it is not possible to implement a state-space
representation of the model directly. Instead, the model in both the controller and
the sensor nodes is implemented as an equivalent nonlinear difference equation
which represents the same input-output behavior as the state-space model. When
the sensor decides that a measurement update needs to be sent according to the
current output error, then it sends the current and » past output measurements which
are used to update the model in the controller. At the same time the sensor uses
exactly the same measurements to update its own copy of the model.
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In order to make a decision as to whether or not it is necessary to send a
measurement to update the model, the absolute value of the output error (7.39) is
compared to a fixed positive threshold a. When the relation ||e(k)|| > « holds, the
sensor transmits a measurement update. Assuming negligible delay the model is
updated using the current and past n system output values at the same update instant
k;. At this point, the output error (7.39) is set to 0, since the model output is made
equal to the real output of the system at time k. Therefore, the output error is
bounded by:

le(K)| < a. (7.52)

Before the main results are presented, the notion of stability must be clarified.
For uncertain systems that are perturbed by an external disturbance and operate
open loop for some time periods, the notion of stability must be relaxed. While
asymptotic stability is appealing, it simply is not attainable. When the system runs
open loop, the state may diverge due to unstable dynamics that are not known
exactly. A more reasonable notion of stability is in a form of boundedness such as
uniform ultimate boundedness [131]. For systems that are ultimately bounded, as
time goes to infinity the state is bounded by a known constant.

Instead of internal state stability, input-output stability is considered in this
section. For input-output stability, a notion such as /, stability must be relaxed to
a bound on the output as time goes to infinity. In general, a uniform bound on the
output may not be tight. The output can be a function of the internal states and the
system input. Since the input may not be predictable, a uniform bound on the output
may be quite large. Instead a tighter bound on the average output amplitude may be
found. In this work the notion of average output squared boundedness is
considered.

Definition 7.7 A nonlinear system is average output squared bounded if there exist
a time k and a constant b such that the following bound on the output holds for all
times k; and k, such that k < k; < ka,

—1
1k

mk:kl Y (k)y(k) < b. (7.53)

This form of boundedness is a practical form of stability on the system output.
While the output does not necessarily converge to 0, it is bounded on average with a
known bound as time goes to infinity. Although this concept may not be useful
for an arbitrarily large bound b, the concept is very informative for a small bound.
The notion should be restricted to being used in the case when the bound is
constructive and preferably when the bound can be made arbitrarily small by
adjusting system parameters.

For the following theorem, assume that the plant and the model of the plant are
QSR dissipative with respect to parameters O,, S,, and R,. Although the plant
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dynamics are not known exactly, experimental testing can be done to verify that the
dissipative rate is at least a bound on the actual dissipative behavior of the system.
The data taken to verify that the parameters hold to a specified level of certainty is
similar data taken to identify system parameters. It is also assumed that a model-
stabilizing dissipative controller has been designed such (7.43) is satisfied with O,
S., and R, representing the QSR parameters of the controller. Next, we provide
conditions under which we are able to stabilize uncertain unstable systems with
limited feedback.

Theorem 7.8 Consider the networked system (7.37) with uncertain dynamics,
event-triggered updates, and model-based output error (7.39). This feedback sys-
tem, from external disturbance w to output y, is average output bounded stable if

there exists a positive constant a such that the following matrix Q is negative
definite,

0, +akR. aST — S,
aS, — S,,T R, +aQ.

<0. (7.54)

Proof The plant being QSR dissipative implies the existence of a positive definite
storage function V),, bounded above and below by class-K functions,

Qp(|xp|) < V() < Ep(}xp|) (7.55)

such that the following inequality holds,

wors[][§ 2L o

The same applies for the controller being QSR dissipative, i.e.,

a(x|) < Velxe) < ac(lxe]) (7.57)
and
AV, (x) < B‘T[SQT ;] B‘] (7.58)

A total energy storage function can be defined, V(x) =V,(x,) +aV.(x.), where

xX= {x” } . The total energy storage function has the dissipative property,

X
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y y
U 0 S||u
AV(x) < lg 1 (7.59)
w ST R |w
e e

where

~ 0, +aR. aS." -5,
aSc —S," R, +aQ,

- S, aR.| - R, O
S = ,R = . (7.60)
-R, aS. 0 aR.
By assumption, Q is negative definite and can be bounded above by a constant g,

é < —ql. The other two matrices can be bounded from above, S < s/ and R <rl.
This yields the following bound on AV

AV(x) < =gy +ulu] + 2s[y'w + ule] +r[w'w+ele]. (7.61)

A completing the square approach can be applied to remove the cross term
leaving the following bound

(4s% + 2gr)

drr T
AV(x) < —= ¢ U
(x) < 2[yy+u ue] + 2

wWw+e'el. (7.62)

Summing this inequality over a time interval from k; to k, yields the following
evolution of the storage function.

2 -\ k2—1
(4s” +2qr) 3 (Ww +ee).

-1
q
VXkQ S = y+14 MC +
(x(k2)) 2; c S

(7.63)

The effect of the continuous /, disturbance w can be bounded by some value
g, > 0 after some time &,

———w(k)| < &y (7.64)

Using the previous two equations, the following bound on the squared output can
be found

s r) =
Z)’Ty < 2 [V(x(ki)) + €] + w ele. (7.65)

o 4q 4q s
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This bound is made up of two quantities that are constant and the final summa-
tion that may increase with time.

The rest of this proof is done by studying two cases. Fixing the time k; > k for
each time k,, one of the following is true.

First, in the time range of k; to k, and for ¢ in the range 0 < 6 < 1, the squared
output is on average bounded by the following expression,

1 kol T (4s% + 2qr)a?

T2 Y Vs (7.66)
(k2 _kl)k:kl q2(1 _5)
Second, if the previous bound does not hold, the following holds:
1 L, 45> 4 2qr)a’
> ( ) (7.67)

P y>—"—.
(k2 - kl)k:lq qZ(l - 5)

This quantity can be used to bound the squared error accumulated over time. It
can be shown that the following bound on the squared output holds.

k-1
STy < o[ Viath). (7.68)
=k

With this bound on the total of the output squared, it is clear that the average
value of the squared output is bounded. Since this bound is independent of time, it is
fixed for arbitrarily large k, and any 6. This means that this bound would imply that
the average of the output squared goes to 0 as k, goes to infinity.

For either of the above cases, the squared output is bounded on average by a
constant bound that is independent of time. Since both bounds hold, the maximum
of the two is always at least a loose bound on the average of the squared output.
Since the second average bound goes to 0 over time, the first bound is the more
relevant one on the infinite time horizon. *

Remark One important aspect of the proof is that the average squared output is
bounded by a constructive bound. These bounds can be made smaller by adjusting
the values of control parameters. The bounds depend on ¢, s, and r which involve
parameters of the plant that cannot be changed and parameters of the controller
which may change. The first bound, the more relevant one, depends on the value of
the state error threshold a. The output squared bound can be made arbitrarily small
by making the error threshold smaller. Lastly, the bounds depend on 6 and ¢,
which are constructed to analyze the behavior of the disturbance after time k. The
bounds can be made tighter by considering larger k. Additionally, the parameter &
may be changed to adjust the relative magnitude of the two bounds. By picking an
appropriate ¢ for each time k, the bounds may be chosen to be tighter.
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Remark The selection of the constant threshold a is made by considering the
following tradeoff. A small threshold results in a smaller bound on the system’s
average output but, in general, increases the communication rate by sending
measurement updates more frequently. A reduction on network usage can be
achieved by increasing the threshold at the cost of a larger average output of the
system.

In the case of linear systems it is possible to estimate the set of admissible
uncertain plants that can be stabilized given a model and a controller. Using the
same QSR parameters Q,, S, and R,, that were used for the model and assuming
that the real parameters contain additive uncertainties with respect to the nominal
model parameters, i.e., A = A+ Ay, B= B + Ag, C = C + Ac, D= D + Ap,
the following problem

WT VH <0 (7.69)

where X = (A + A4)TP(A +A4) = P — (C + Ac) Q(C + Ac),

Y= (B +A5) P(B +45) — (D +4p) 0D +Ap) — (D +Ap)'S
—S"(D +Ap) —R,

and W = (A + A4) P(B + Ap) — (C +Ac) Q(D + Ap) — (C + Ac)'S can be
solved for P and using different values of Ay, Ag, Ac, Ap,

When the above problem is feasible for given choice of uncertainties A4, Ag,
Ac, Ap then the uncertain system A, B, C, D is an element of the set of admissible
uncertain plants.

Example 7.3 Consider a model of an unstable system given by:

- [—081 0371 . [1] - .
A‘{o.ss 0.21]’ B—[ } Cc=[1 2], D=L (7.70)

It can be shown that the model is QSR dissipative with respect to Qp =0.5,
Sp=0.5, and Rp =0.1, by using the storage function:

»oov 7| 0.8 087].
V(x):xT[0.87 1.28}“' (7.71)

A stabilizing controller is given by
A, =05 B.=03, C.=1, D, =1 (7.72)

This controller is passive and QSR dissipative with respect to Q- = —0.2,S-=0.5,
and R-= —0.6 which can be shown using the storage function V (x,) = 1.23xzu.
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The controller can be shown to stabilize the model by evaluating (7.43).

~ [-01 0
Q:[ 0 _0.1} <0. (7.73)

For this example, an actual uncertain plant is given by:

—0.71 0.55 1

The plant is also dissipative with respect to the same choice of QSR parameters
0p=0.5,Sp=0.5, and Rp =0.1; this can be verified using the storage function

T 1.21 1.13
V(x)=x L3 178 X. (7.75)

Since the QSR parameters for the plant and the model are the same, the
controller (7.72) also stabilizes the plant and satisfies the inequality (7.43) with
(7.73). Simulations of the model-based networked system that is also affected by an
I, external disturbance w(k) are shown in Fig. 7.11 using a threshold value a = 0.02.
The network communication signal n.(k) in Fig. 7.12 represents the time instants at
which output measurements are sent from the sensor node to the controller node.
The rest of the time the networked system operates in open-loop mode.

ne(k) = { 1 %f measurements are sent attime‘k (7.76)
0 if measurementsare notsentattime k

Figure 7.11 shows that the outputs of the model-based networked uncertain
system are bounded, as expected. Although the parameters of the nominal model
differ significantly from those of the real plant, it is still possible to stabilize the
system. A larger reduction of network communication can be achieved by using a
more accurate model that is QSR dissipative using the same choice of QSR
parameters and that it also reflects more accurately the dynamics of the plant.

Example 7.4 Consider the same plant dynamics (7.74) and the following model
parameters:

A= B = {1} C=[073 22|, D=12 (1.77)

088 04

. —-0.7 0.52
’ 0

The results of simulations for the same external disturbance using the same
threshold and the new model are shown in Figs. 7.13 and 7.14.
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Fig. 7.12 Output error (top) and network communication instants for Example 7.3
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Fig. 7.13 Outputs of the plant (fop) and the model (bottom) for Example 7.4

7.3 Notes and References

In this chapter, stability of networked nonlinear systems was addressed using the
MB-NCS framework that reduces the rate at which systems transmit information
through the network. Model uncertainties were considered as in the linear case. The
first important result of this chapter was given in Theorem 7.1 where a sufficient
condition for asymptotic stability of nonlinear continuous-time systems was
presented. Periodic updates were used in this case.

The second result in this chapter is contained in Theorem 7.8; it provides
sufficient conditions for bounded stability of nonlinear discrete-time dissipative
systems. In this case event-based updates were used and the stability conditions and
bounds depend mainly on the chosen error threshold instead of the update interval
values. Additionally, the work in Sect. 7.2 considered the output feedback scenario
and an input-output model of the system was used both for controller design and for
the implementation of the MB-NCS setup.
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Fig. 7.14 Output error (top) and network communication instants for Example 7.4

The results obtained in Sect. 7.1 represent the worst-case behavior of the norm of
the plant state and the error. This yields conservative results, but tighter conditions
can be obtained by performing linear transformations over the plant and model
dynamics. Even less conservative results can be obtained by using Lyapunov
functions and stability results over jump systems such as the ones outlined in
[277]. The procedure though follows closely the one presented, namely it considers
the Lyapunov function as norm instead of using the Euclidean norm used here.

In Sect. 7.2 it is important to note the reduction in network traffic by using the
MB-ET approach compared to the case in which a measurement of the current
output y(k) is sent at every sampling instant even in the case that » is large compared
to the inter-update intervals. This case requires the transmission of n measurements
of the output at every update instant, the current one and the past n-1 measurements.
It has been shown that packet-based control [100, 212] is able to significantly
reduce data transmission by more efficiently using the packet structure, that is,
reduction of communication is obtained by sending packets of information using all
data bits available (excluding overhead) in the structure of the packet. The work in
[100, 212] focuses in the transmission of control input sequences. In Sect. 7.2 a
similar approach is taken but it is applied to the transmission of output measure-
ments. Instead of sending a single output value in one data packet at every sampling
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instant, the packet structure is used more efficiently in order to include past
measurements in the same packet as well. In general, it is possible to decrease
network traffic by reducing the number of packets sent by the sensor node since a
high percentage of bits transmitted over the network is related to the large number
of bits that are used as the packets overheads.

The results in Sect. 7.1 are based on the work by Montestruque [185]. Section 7.2
also appeared in [179]. The concept of dissipativity used in Sect. 7.2 was formalized
in [268, 269]. Specifically the notion of QSR dissipativity [114, 115] was used in
this chapter.

Related work considering model-based approaches for control of nonlinear
networked systems can be found in [48, 160, 210, 282]. Polushin et al. [210]
considered a sampled version of a nonlinear continuous-time-varying system con-
trolled by an approximate discrete-time model and proposed a communication
protocol that considers network induced communication constraints such as irreg-
ularity of transfer intervals, existence of time-varying communication delays, and
possibility of packet dropouts. Stability results were given that depend on the
integration step parameter; that is, it is assumed that the mismatch between plant
and model arises only from the approximate integration of the nonlinear dynamics
and by making the parameter small (close to 0) we can recover an exact model of
the system. The work by Liu [160] also provided stability results for continuous-
time nonlinear systems using the MB-NCS framework for a more general class of
nonlinear systems. With respect to the network properties, the author focuses on
local area control networks with high data rate and considers random but bounded
time delays. For vanishing perturbations this reference provides conditions for
exponential stability and conditions for uniformly ultimately boundedness in the
case of non-vanishing perturbations. In [282] a combined event-triggered and self-
triggered framework is presented for nonlinear systems using a model-based
approach. Updates from sensor to controller are generated using a self-triggered
technique and updates from the controller to the actuator are generated using an
event-triggered control strategy.



Chapter 8
Quantization Analysis and Design

The results provided in previous chapters assumed that the network is capable of
transporting infinite precision data. For example, for the state feedback MB-NCS it
is assumed that the sensor sends the exact value of the state over the network to the
controller/actuator. This is of course not possible with digital networks since
the length of each data packet is finite and so many bits can be used to represent
the data. It was claimed that since a large portion of standard industrial networks
implement a large number of bits available to represent data, the error between the
quantized value and the actual value was negligible. Even when this is so, we want
to study the effect of these quantization errors on system stability.

In the present chapter stability conditions for MB-NCS under popular quantiza-
tion schemes are derived. The objective is to reduce the number of bits needed to
transmit feedback measurements to stabilize uncertain systems. When using peri-
odic updates within the MB-NCS framework, there are two main parameters that
affect the amount of data that is being transmitted. These are: the update interval
that dictates how often is necessary to update the state of the model and the
quantization parameter that defines the number of quantization levels and, conse-
quently, the number of bits needed to represent every measurement. In the present
chapter a quantization parameter refers to the scalar parameters that defines the
maximum quantization error, that is, the difference between the quantized (output
of quantizer) and the non-quantized (input to quantizer) variables.

It is desired to increase the update intervals, as studied in previous chapters, to
reduce the frequency at which we need to send feedback measurements to the
controller. It is also desired to increase the quantization parameter in order to use
fewer bits to represent each measurement. However, for the stability results
presented in this chapter, there is a tradeoff between these two parameters,
a small update interval allows us to increase the quantization parameter, and a
large update interval requires (for stability) a small quantization parameter.

E. Garcia et al., Model-Based Control of Networked Systems, Systems & Control: 187
Foundations & Applications, DOI 10.1007/978-3-319-07803-8_8,
© Springer International Publishing Switzerland 2014
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In the present chapter we also consider event-based updates. There are two
design parameters that affect stability as well: The quantization parameter and the
threshold value that is used to generate events. Similarly to the periodic update case,
there is a tradeoff between these two parameters. A large threshold requires, in
general, a small quantization parameter and vice versa.

The analysis method that we employ in this chapter is as follows: first a stable
MB-NCS is designed using the results previously outlined and then the effect of
quantization is assessed using the conditions in this section. In this way the designer
has a number of parameters to select which include the packet transmission times
and the number of bits used for each packet for the periodic update case, and the
threshold value when using event-triggered control.

The present chapter is organized as follows: Static Quantizers are discussed in
Sect. 8.1. Static quantizers have quantization schemes that do not vary with time,
that is the error between the quantized value and the real value does not depend on
time. Two quantizers of this type are considered: the Uniform Quantizer with a
constant maximum quantization error; and the Logarithmic Quantizer with
a maximum quantization error that is proportional to the norm of the quantized
value. In Sect. 8.2 we recall the Model-Based Event-Triggered (MB-ET) control
strategies from Chap. 6 to study the stabilization properties of model-based
networked systems subject to both, quantization and network induced delays; static
quantizers are used in this section as well. Finally Dynamic Quantizers are
discussed in Sect. 8.3; these quantizers dynamically adjust their quantization
regions to compensate for uncertainties while generating a quantization error that
shrinks with time.

8.1 Systems Using Static Quantizers

In this section we address the stability analysis of a state feedback MB-NCS using
a static quantizer. Static quantizers have defined quantization regions that do not
change with time. They are an important class of quantizers since they are simple
to implement in both hardware and software and are not computationally expen-
sive as their dynamic counterparts. Two types of quantizers are analyzed here,
namely uniform quantizers and logarithmic quantizers. Each quantizer is associ-
ated with two popular data representations. The uniform quantizer is associated
with the fixed-point data representation. Indeed, fixed-point numbers have a
constant maximum error regardless of how close is the actual number to the
origin. Logarithmic quantizers, on the other hand, are associated with floating-
point numbers; this type of quantizers allows the maximum error to decrease
when the actual number is close to the origin.
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8.1.1 Uniform Quantizers

We define the uniform quantizer as a function ¢:R" — R" with the following
property:

lz—q()|| <6,2ER",6> 0. (8.1)
The following theorem provides bounded state stability using the quantizer (8.1)

and periodic updates.

Theorem 8.1 Assume that the networked system without quantization is stable and
there exists a symmetric and positive definite matrix P that solves

(2K A" )P (U ER) 4 A)) ~ P = ~0, (8.2)

where Qp is a symmetric and positive definite matrix and  A(h) =

h .
J Alh=1) (A + BK) (A+BK) 4z Then when using the uniform quantizer defined
0

by (8.1), the state feedback MB-NCS plant state will enter and remain in the region

lx]l <R where

R= (eE(A FBK) Amax(h))r + (eE<A)h + Amax(h))é (8.3)

h

— r h_ 2 — ~ ~
with r = \/max((eAh Aih_))(g[()e)m A(h)))5 s Amax(h) = J CG<A)(h71)E(A + BK)
min 0

e7(A+B K)fdr, and 6 is the quantization parameter in (8.1).

Proof The response for the error is given now by:

e(r) = eA=We(ty) + At — )% (1)
= eMWe(n) + At — 1) (v — e(tr)) (8.4)
(eA (=) _ l - tk))e(tk) + A(t — tk)xk

t—1 - _ o
where A(r — 1) = J eAl—t—7) (A + BK>6(A +BK)T .
0

Note that the initial value for the error e(#;) is no longer zero as it was assumed
in previous sections. Moreover, the contribution to the error due to this initial
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value will grow exponentially with time and with a rate that corresponds to the
uncompensated plant dynamics. So at time ¢t € [#, #;, 1] the plant state is:

x(t) = %(1) + e(2)

A 8.5
_ e(A +BK)(t—tk)xk + (eA(I—l‘k) — A(l‘ — tk))e(tk) + A(I — tk)xk ( )

We can therefore evaluate the Lyapunov function along x(#) at any instant in
time t € [#, t;4+1]. Uniformly exponential stability is obtained if we can show that
the following is satisfied [277]:

(V(x(x1) = V(0) < (@)l ).c € R (8.6)

N

We are interested in its value at 7, ;:

V(x(tes1)) = x(tesr) Px(tesn)

e(ABK) e 4 (eAh — A(h))ey + A(h)xk)T
P<e(A BN 4 (M - A(R))ex+ A(h)x) (8.7)
o G A(h))TP (4580 1 A () )i
+ed (e — AMR) P — A(h))ex

where h = hy, = trv1 — e > 0,e, = e(tk).

So we obtain:

V(x(tir1)) = Vix(t))
:xkr<e(A+z§K)h +A(h))TP(e(A+BK)h +A(h))xk

+ e (eM — A(h))TP(eAh — A(h))ex — x"Pxy &5
= ¢ (e — A(h))TP (e — A(h))ex — xi" Opx.
Note that we can compute et — A(h) as follows:
M A(h) = [I o]<e[3 ﬁgﬂ“"“)[ ’I} (8.9)

We can bound (8.8) by:
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A

Fig. 8.1 Plant state trajectory

e’ (eM — A(h))TP (e — A(h))er — xi" Opxe

. ) (8.10)
< Amax ((eAh — An) P(eM — A(h)))52 — Aonin (Op) e

The sampled value of the state of the plant at the update times will enter the
region ||x|| <r where:

/Imax((eAh — A(h) P(erh — A(h)))éz
lmin(QD)

r =

(8.11)

The plant state vector might exit this region between samples; this is pictured in
Fig. 8.1. The maximum magnitude the state plant can reach between samples after
reaching the sphere ||x|| <R is given by:

(e = || (U4 HRV) - A= 1) Y+ (40 — At — 1)) e

< (eE(A HBK)h Amax(h))r + (D" + Apax(h))6 (8.12)

h

where Apax(h) = J

? W) (Z + EK) P (A+BK)rg,
0

Therefore the plant state will enter and remain in the region ||x|| <R defined
by (8.3):
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R= (eg(*i B | Amax(h))r + (eﬁwh + Amax(h))(s

*

J e (& = A(R) P (" — A(R)))
where r = .
Amin(QD)

Remark Note that (8.2) is always possible to satisfy when the MB-NCS is asymp-
totically stable and assuming infinite precision quantization, that is, when the system
is stable according to Theorem 2.3 in Chap. 2. The stability results in Theorem 8.1
suggest that a stabilizing update period / should be found first and then proceed to
find the greatest quantization parameter o for a desired stability region.

8.1.2 Logarithmic Quantizers
We define the logarithmic quantizer as a function ¢:R” — R" with the following
property:

Iz — ()| < élzl,.zER", 6 > 0. (8.13)

Theorem 8.2 Assume that the networked system without quantization is stable and
there exists a symmetric and positive definite matrix P that solves

T

(B A )P(eWBN p AM)) ~P= -0y (8.14)

where Qp is a symmetric and positive definite matrix and
h -

A(h) = J A=) (A —|—BK)e(A *BK) iz Then when using the logarithmic quan-

0
tizer defined by (8.13), the state feedback MB-NCS is exponentially stable if:

/1mir1 (QD)

5< = :
s (&4 = A() P — A()))

Proof The difference between the values of the plant’s state Lyapunov function
at two consecutive update times is given by:

V(x(te1)) = V(x(te)) = e (e — A(h))TP(eAh — A(h))er — x" Qpxr. (8.15)
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We can now bound (8.15) using the quantizer property given in (8.13) by:

e’ (et — A(h))TP(eAh — A(h))ex — xi" Qpxi

(8.16)
< s (& = A1) P (" = A1) )&l = in (@) ]
This allows us to ensure exponential stability as in (8.6) if:
zmax((e/*h — A(R)) P — A(h)))52 — Ain(Qp) < 0 (8.17)
. . Ah T Ah .
or equivalently (assuming (e — A(h))" P(e™" — A(h)) #0):
/1 .
5 < m‘“(g‘)) : (8.18)
(@ = (1) TP (A — A(R)))
*
Example 8.1 Consider the following unstable plant:
) 1.2638 —0.5206 1.0012
09164 —0.7470 —0.9967
Let the available model be
B 1.2 -05]. 1
X = {0.9 0'8]x—|— [Ju (8.20)
The controller, which is designed using the plant model, is:
u=[-2.3515 0.4985]x. (8.21)

We obtain a stable NCS without quantization for update time intervals less
than 5.3 s.

First we will study the effects of uniform quantization. The quantizer function
for one variable is depicted in Fig. 8.2. The maximum absolute error between the
real value of the state and the quantized values for the quantizer shown in Fig. 8.2 is
calculated to be 6 =0.25. By using an update time of #=0.3 s and Qp =0.5/ and
equation (8.2), we obtain a suitable P. We then proceed with (8.3) to obtain r and R.
The radius of r and R are calculated to be 1.0131 and 3.5251, respectively.
Figure 8.3 shows the regions defined by r and R and also the evolution of the
plant state when the system is started with an initial condition of [2 3.5]". Figure 8.4
pictures the plant and model state as a function of time.
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We note that the actual region R is smaller than the calculated one; this shows
that the result is conservative.

We now use the same plant with a logarithmic quantizer and an update time of
h=2s. With this selection of update interval we obtain § < 0.0875. The logarithmic
quantizer shown in Fig. 8.5 is implemented which has a quantization parameter
6=10.06. The response of the system and the model using the same initial condi-
tions and the logarithmic quantizer is shown in Fig. 8.6.

8.2 Static Quantization, Event-Triggered Control,
and Network Induced Delays

In this section we recall the event-triggered strategy that was studied in Chap. 6 and
we design stabilizing thresholds taking into account the availability not of the real
variables but only of quantized measurements. Additionally, we design stabilizing
thresholds using the model-based event-triggered framework for networked sys-
tems affected by both quantization and time delays.

As it was mentioned in the last section the measured variables have to be
quantized in order to be represented by a finite number of bits, so to be used in
processor operations and carried over a digital communication network. It becomes
necessary to study the effects of quantization error on networked systems and on any
computer implemented control application because of the reasons just mentioned.
In addition, we want to emphasize two important implications of quantization in
event-triggered control. First, an important step in event-triggered control strategies
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is that the model-plant state error is set to zero at the update instants. When using
quantization this is not the case any longer since we use the quantized measurement
of the plant state to update the state of the model and this measurement is not, in
general, the same as the real state of the plant. Second, in traditional even-triggered
control techniques, the updates are triggered by comparing the norm of the state,
which is not exactly available due to quantization errors, to the norm of the state
error, which is not exactly available since it is a function of the real state of the plant.
The problem in those approaches is that stability of the system is directly related to
non-quantized measurements that are assumed to be known with certainty.

The aim in this section is to find triggering conditions based on the available
quantized variables that also ensure asymptotic stability in the presence of quanti-
zation errors.

The type of quantizer that we are going to use in this section is the logarithmic
quantizer. It is associated with floating-point data representations. We also associ-
ate this quantizer to the relative threshold strategy described in Sect. 6.2 in order
to design stabilizing thresholds using the quantized measurements of the state of
the plant.

Using the logarithmic quantizer defined in (8.13) we have that at the update instants
t;, i € Z" the state of the model is updated using the quantized measurement:

q(x(t;)) — x(#). (8.22)
Define the quantized model-plant state error:
eq(t) = £ () — q(x(1)) (8.23)

where ¢(x(?)) is the quantized value of x(f) at any time ¢ > 0 using the logarithmic
quantizer (8.13). Note that g(x) and e, are the available variables that can be used to
compute the triggering condition. Also note that e (#;) = 0, that is, the quantized model-
plant state error is set to zero at the update instants according to the update (8.22).

Consider a stable closed loop nominal model and define the Lyapunov function
V = x"Px where P is a symmetric and positive definite matrix and is the solution of
the closed loop model Lyapunov equation:

(A +BK)'P+P(A +BK) =—0Q (8.24)

where Q is a symmetric and positive definite matrix. Also consider the following
bounds on the uncertainty matrices:

‘<Z+§K)TP+P(X+§K)‘§A<C_1 (8.25)

B| <p (8.26)

where ¢ = o(q), the smallest singular value of Q in (8.24).
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Theorem 8.3 Consider a linear MB-NCS with control input u = KX based on the
nominal model. Assume that there exists a symmetric positive definite solution P for
the model Lyapunov equation (8.24) and that the bounds in (8.25) and (8.26) are
satisfied. Consider the relation

el > =2 la(x)| (8.27)

where n = (c_] — A) /b, 0< 6 <d <1 and let the model be updated when (8.27)
holds. Then,

le] < dnlx] (8.28)

is always satisfied and the system is asymptotically stable when,
6 < (al — 6)17. (8.29)

Proof First observe that for the logarithmic quantizer we have:

le] = | —x 4+ q(x) — q(x)] < |g(x) — x| + |e,]

(8.30)
< &lx| + ‘eq|.
Similarly,
g ()] = lg(x) +x — x| < |g(x) — x| + |x]
< 8lx| + |x]
laW)l
= 8.31
From (8.31) and applying (8.29) we can see that:
n—" l9() + 8|x| < (on + 6)|x| < o'nx]. (8.32)
o+1
Now, from (8.30), (8.27), and (8.32) we obtain:
el < ol + Jeg| < o1 2 4 g1a) < o (5.33)

then the time derivative of the Lyapunov function is bounded by:

V< (6, - 1) (g - A) |x[? (8.34)
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and since ¢’ < 1, the networked system with quantization and with updates based on
the error events triggered by (8.27) and using quantized feedback measurements to
update the model is asymptotically stable. *

Based on the results of Sect. 6.3 and of Theorem 8.3 in this section we now
introduce stability thresholds that consider quantization and time delays.

The quantized model-plant state error was defined in (8.23). Consider also the
non-quantized model-plant state error e(¢) = £ (¢) — x(¢). At the update instants ¢;
we update the model in the sensor node using the quantized measurement of the
state. At this instant we have e,(f;) =0, at the sensor node. When considering
network delays we can reset the quantized model-state error only at the sensor
node. The model-plant state error at the update instants is given by:

e(l‘,‘) = )Z(l‘,') —X(li) = q(x(ti)) — X(l‘,‘). (835)

It is clear that this error cannot be set to zero at the update instants as the
quantized model-plant state error, due to the existence of quantization errors
when measuring the state of the plant. Using the logarithmic quantizer (8.13) we
have that:

le(20)| = lg(x(5:)) — x(u:)] < (). (8.36)

The same conclusion can be reached by evaluating the expression in (8.30) at
time instants #; and by setting le,(7;)| = 0.

The next theorem provides conditions for asymptotic stability of the control
system using quantization in the presence of network induced delays. In this case,
the admissible delays are also a function of the quantization parameter &. That is, if
we are able to quantize more finely, the system is still stable in the presence of
longer delays.

Theorem 8.4 Consider a linear MB-NCS with control input based on the state X
of the model, u = Kx . The event-triggering condition is computed using quantized
data and using error events according to (8.27). The model is updated using
quantized measurements of the state of the plant. Assume that there exists a sym-
metric positive definite solution P for the model Lyapunov equation (8.24) and a

small enough 6, 0 < 6 < 1 such that 26/(1 — 6) < on/(6+ 1). Assume also that B = B
and the following bounds are satisfied: ‘K‘ < Ay and ‘ZTP + PZ‘ < A < q.Then

there exists an €(8) >0 such that for all network delays =y € [0, €] the system is
asymptotically stable. Furthermore, there exists a time t© > 0 such that for any initial
condition the inter-execution times {t; . | — t;} implicitly defined by (8.27) with o < 1
are lower bounded by t,i.e..t;, 1 —t;>1 Vi € Z".

Proof Following the approach described in Sect. 6.3 for the non-zero delay case
without quantization, let us look at the dynamics of the term le,l/lg(x)l, which
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contains the available variables for processing and broadcasting after quantization
has taken place. Let us first note that:

}eQ|:l)%_‘I(x)‘FX_XIS|X_q(x)|+|)?_x| 837
< ol + |el. (8.37)

In addition and, since 0 < § < 1, we have that:

i = x = g(x) + g(0)] < |x — g(x)[ + |g(x)]
< dlx| + |g(x)]

= |q(x)| = (1 = 3)lx]. (8.38)
The evolution of the term le,l/lg(x)| can be bounded as follows:

Jea| _ Sl lel _ Sl +lel 5 1 el
gl = [ SO -o)h 15 1-6

(8.39)
Let us denote the term lel/Ix| by 8 and, additionally, denote the term le l/lg(x)! by
y so we have the estimate:

1) 1 o 1
w(t) < =t (1) <~ (1,0) (8.40)

where ¢(t, ) is the solution of (6.25) in Sect. 6.3 satisfying ¢(0, o) = 6. The initial
condition in the solution of the differential equation (6.25) that we are using for
the quantization case is the worst case initial error in the term 8(¢) given by (8.36).
The solution ¢(¢, 6) is given by:

—c(6+ eV /(5+c)+ 1

t,6) = 8.41
$(2:9) (64 1)ede=D /(§+¢) — 1 (8.41)
then the evolution of le,l/lg(x)| =1 is bounded by the following expression:
b 1 —c(8+1)e® /(5 +c)+1
() < &(1) 6+ 1) AR (8.42)

T1-6 1-56 B+ DedN/(5+c)—1

For the case when 7y=0, the inter-execution times for the system with
quantization measurements are bounded by the time it takes for £ to evolve from
£(0)=26/(1 —8) to on/(5+1), i.e., the solution 7 € R* of &(z) =on/(5+1). An
estimate of that time can be obtained in a two-step process using (8.41) and
(8.42) that also provides some insight into the tradeoff between the selection of
the quantization parameter 6 and the admissible network delays zy.
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First, for a given y > §, solve for the time variable ¢ in (8.41), that is, find the
solution of ¢(¢,5) =y. Such solution is given by:

- (ln(y+1) —ln(gil (y—i—c)))ﬁ. (8.43)

For y > 6, we always have 7 > 0, since ¢ is continuous in the range 7 € [0, 7,,,)
that covers all thresholds y > ¢ and ¢ > 0. The last statement can be shown by
analyzing directly the two factors in (8.43). We consider two cases avoiding the
case ¢ = 1. First, for ¢ > 1 the second factor in (8.43) is positive. Then, in order to
obtain 7 > 0, we need the condition:

y+1D)(6+c)
—>1

(y+c)(6+1)
which is equivalent to the condition y > ¢. For the case 0 < ¢ < 1 the second term is
negative and we need the first factor to be negative in order to obtain a strictly
positive value for 7. We can ensure that the first factor is negative by satisfying the
following condition:

which is equivalent to y > 6.

Note that (6.27) in Sect. 6.3 is a special case of (8.43), when 6 =0. Then 7 >0 for
any y > 0. In this, more general case, the range of values for 7 for any value of the
threshold y > ¢ is given by = € (0, 7,,,), where

1 o+c
= lim 7= 1 . 44
= T dle— ) n(5+1> (8.44)

Second, using the result in (8.43) we can obtain a solution 7 € R of
E(t)=on/(5+1), i.e., the solution 7 € R* of:

26 o 1
(r25) = st 0 =, (8.45)

where

¥, =on/(6+1). (8.46)
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The solution is given by (8.43) with
—(=o)(y, -2 (8.47)

By assumption, we have that:

20

which results in y > 6 being satisfied, which means that > 0. The inter-execution
times are bounded by 7 and strictly away from zero.

Now, for the case 7y >0, choose o, ¢/, ¢° such that 0<o< ¢ < 6°<1 is
satisfied. The last choice results in the following relation 0 <y, < ¥’ < y*, where y,
is defined in (8.46), y' = ¢’y and y* =6"7.

Let an execution be triggered at time ¢#; by the condition (8.27) that in turn enforces
(8.28) at time ; and let £, 0 < &, < t,, satisfy the solution £(g;,y") = y* such £, always
exists since £ is continuous in the range r € [0,7,,) that covers all thresholds
26/(1 —8) <y, y* <oo;also &> 0and y <y° by the previous choice of parameters.
Then, by sending the state measurement at time ¢; in order to update the model in the
controller, we guarantee that for t € [f;,¢;+&,] we have lel < y*lxl, and since ¢° < 1
asymptotic stability is still guaranteed, i.e., (8.34) is satisfied with ¢* < 1. The inter-
execution times are now bounded by 7 + 7, where 7 is the time it takes £ to evolve from
leq(ti +2v)| /g (xe(ti 4+ 7)) | = 1% (6 + 7v) — q(x(t + )| /|g(x(t; + 7v))| 10 y=
on/(6+1). Then the admissible delays 7y need to satisfy le,(#; + p)l/lg(x(t; + Tp)) <y,
since & > 0. From continuity of £ with respect of 7 there exists an &, > 0 such that
forany 0 <zy<ep

26
f(fmm) <y, (8.49)

since y, > 26/(1 — 5). We complete the proof by defining e =min{e;, &,}. 4

Remark Note that by selecting a smaller parameter §, we increase the gap between the
initial value £(0) = 26/(1 — 6) and the threshold y,. This selection allows for longer
admissible delays, i.e., a larger value for the solution (8.43) with y defined in (8.47). This
corresponds to our intuition in a closed-loop system in the presence of quantization and
time delays. If we quantize more finely, more accurate feedback information is available
which permits to admit longer time delays while preserving asymptotic stability.

Computation of the quantization parameter & for a fixed admissible delay e.
In developing the previous proof we first selected a quantization parameter &
(by selecting o and ¢’) that ensures stability in the case of zero delay. By fixing §
and for a given choice of 6° we were able to estimate the longest admissible delay
for which stability is still guaranteed. Now, we would like to be able to estimate the
greatest quantization parameter 6 for a fixed delay bound e.
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In order to compute the quantization parameter based on the admissible delays
we first choose parameters ¢ and ¢’ (corresponding to ¢’ and ¢° in Theorem 8.4),
and associated thresholds y and y', and find the admissible delay without quantiza-
tion, i.e., find € in Theorem 6.5 in Sect. 6.3. Then select a new smaller delay bound
than the one just found, ¢, < e. We select a smaller delay since we do not expect
a longer or equal admissible delay when using quantization. We proceed to search
for the greatest value of 5, 0 <5< 1 and a 6 < &/, such that the next two relations
are satisfied:

o< (6/—6)7’]

L2
Yoo 1 s

where,

26
Vg = 5(8;1, ﬁ)

y,(1+9)
n

o =

8.3 Dynamic Quantization: A Different Way
of Adapting to System Response

In this subsection we will consider the case of dynamic quantization, where the
quantized region and quantization error vary at each transmission time. It has been
shown that these types of quantizers can achieve the smallest bit count per packet
while maintaining stability [159, 199, 200]. This comes with the price of increased
quantizer complexity. While the static quantizers did require a relatively small
amount of computations, the dynamic quantizers need to compute new quantization
regions and detect the plant state presence within these regions. Yet, dynamic
quantizers are an attractive alternative when the number of bits available per
transmission is small. Our results extent those already available in the literature
extending the stability results to MB-NCS also considering model uncertainty.
It will be shown that our results converge to the standard ones when the model
uncertainty is zero.

Under a dynamic quantizer scheme an encoder measures the state of the plant at
each transmission time and sends a symbol to the decoder collocated with the plant
model. To do so, first the encoder and decoder assume that the plant state is
contained in a hyper parallelogram R,. Next, the encoder uses the plant model
and plant-model uncertainties to determine the region where the plant state is at the
next transmission time. This calculated region will also be a hyper parallelogram
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denoted as R, ;. The encoder can also calculate R, | since its calculation is based
in the plant model dynamics and known uncertainty bounds. Then, the encoder can
divide Ry, in 2V smaller equal hyper parallelograms where N is an integer
representing the number of bits used to identify each smaller parallelogram. The
encoder then sends an N-bit symbol representing the smaller parallelogram R, .
within R;”, | that contain the plant state. The process then is repeated.

We will assume that the plant model matrix A has distinct real unstable
eigenvalues. This assumption can be relaxed at the expense of more complex
notation and problem geometry. We will also assume that the compensated model
is stable. We will use a method that is similar to the Uncertain Set Evolution
Method presented in [159]. Namely, at transmission time #; the encoder partitions
the hyper parallelogram R, containing the plant state x(f;) into 2™ smaller hyper
parallelograms and sends the decoder the symbol identifying the partition R, that
contains the plant state. The controller then uses the center c; of R; to update the
plant model and generates the control signal using the plant model until time 7, ;.
At this point, both encoder and decoder calculate a new hyper parallelogram R, ;
that should contain the plant state by evolving or propagating forward the initial
region R;. The process is then repeated. Stability will be ensured if the radius and
center of the hyper parallelograms converge to zero with time. We will show now
how the hyper parallelogram R, | is obtained from R;.

Assume the plant model matrix A € R™ has n distinct unstable eigenvalues
A1, 22, ..., 4, with n corresponding linearly independent normalized eigenvectors
Vi,Va, ..., v, € R". We will also assume that at r=0 both encoder and decoder
agree in a hyper parallelogram R containing the initial state of the plant. Denote a
hyper parallelogram as the (n + 1)-tuple where c is the center of the hyper parallel-
ogram and #; are the coordinates of its axis. In particular:

n
R(c,ny 1, 1) = {XER”,Za,n,. =x—c,where n, ER",o; E[—1,1],and cER”}.
i=1

Let each hyper parallelogram R, with center ¢, be defined as follows:

Ry = R(ciy 15 Me2s -« + M) Where iy = by v and by, ; E R. (8.50)

Therefore, it can be easily verified that according to the plant dynamics the
region Ry evolves into a hyper parallelogram R} +1 defined by:

p _ P p P 4
Ri = R<Ck+17’7k+l,lv’7k+l,2’ e v’7k+1,n>

I o (8.51)
withnf,, ; = e*'y ;and ¢f | = (eAh + J A=) pRelA+B K)Sds> Cr.
0

Correspondingly, according to the plant model dynamics the hyper parallelo-
gram R; should evolve into a different hyper parallelogram R}’ ;:
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m J— m m m m
R *R(Ck+1v’7k+1,1a’7k+1,2’-'-”7k+1,n)

(A+BK)h (8.52)

with "y ;= e’l"hnk,,-, andcl | =e Ck.

According to equation (8.52) the hyper parallelogram R}, | has edges that are
parallel to those of the original hyper parallelogram R, but are longer by a factor of
" for each corresponding edge. Also the center of the parallelogram has shifted.
Note that the hyper parallelogram R}’, | doesn’t necessarily contain the plant state.
We will now express R} +1 in terms of the parameters of R}’, |. By replacing / by
t and using Laplace transforms the expressions in (8.51) can be easily manipulated:

AL (s =AY = (T —A) (ST —A) (s —A) 7

= (1+ (61 =) "A) (51 - A)

— ~ h ~ ~
= (sl —A)71 + (sT —A) A (sl —A)71§ el +J A9 A e ds
0
and

h PO ~ ~ _
M4 J A=K (A BK)sqs Ly (s — A) 4 (sT — A) 'BK (sI — (A + BK)) ™
0

= (51 = A)"" (st =& +BK) (s - (
= (o1 = (A +BK)) "+ (sl —4) " (A+BK) (s - (A - BK)) "

56(A+3K)h+J AN—s) (gH;K)e(mgK)xd&
0

(8.53)
Therefore, the parameters of R} , | can be expressed in terms of the parameters
of R, i

. h .
My, = My = <€Ah + J A A XdS) N, i
0

. h .
= hbk’m * (J SA Sds) M,i = ejihrlk,i +A'1(h)’7k,i
0

= ’71?3.1,,‘ + An(h)nk,i

h P
cpiy = (eAh +J A=) K (4 +BK)Sds) Ck
0
o h L o
_ (e(A+BK)h +J A=) (A +BK>8(A+BK)st>Ck
0

o h o o
— (A BK)c, 4 (J M) (A +BK)e(A +BK)sds) ek = ¢’y + Ac(h)er.
0

(8.54)
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Fig. 8.7 Construction of hyper parallelogram R, , | from R",

Note that the matrices A.(h) and A, (h) can be calculated as follows:

Ac(h) = [1 0]6({3 figﬂ’) {(1)}

A(h) = [1 O]qu ﬂh)[o}

Since the matrices A.(h) and A, (h) are unknown, the hyper parallelogram R’k’, 1
cannot be constructed. Instead we will use the expressions in equation (8.54) and
the bounds over the norms of A (k) and A,(h) to construct a hyper parallelogram
that will contain R} +1 the plant state. This is depicted in Fig. 8.7.

Note that

(8.55)

Rir = R(Ci Mo M- 7’71<_+1,n)

with 7y, = | 14+ 8(Ac(h)llexll ——

(8, (h)) ]|, +

H M,
[

I’ ,||

Cor = ¢ty »where k= 1/det([vivay...vy)]),

(8.56)

Bounds over&(A(h)) and (A, (h)) can be obtained based on the norms over the
error matrices A and B. Note also that Ry, is a hyper parallelogram with edges
larger but parallel to those of R}, ;. At this time the encoder will divide R, | into
smaller parallelograms and transmits to the decoder the symbol that identifies the
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Fig. 8.8 Evolution of quantized regions

one that contains the plant state R, . And the process repeats itself again. This
process is depicted below in (8.57), also see Fig. 8.8:

_ encoder plant _  encoder
R = "R, — R = Rii1. (857)
k k+1
h seconds

In Fig. 8.8 the term d, represents the displacement of the center of R, ; with
respect to the center of R, ;. We will now establish the relationship between the
evolution of the hyper parallelograms parameters and stability. Define the radius of
the hyper parallelogram R, with center ¢, as:

Amax (Ri) = sup e g, [lx — cil|. (8.58)

It is clear that in order to ensure stability of the system we require that the center
and radius of the hyper parallelograms must converge to zero with time. As a matter
of fact for stability only the radius of the hyper parallelograms R} is relevant. This is
stated in the next Theorem.

Theorem 8.5 Assume that a state feedback NCS without quantization is asymp-
totically stable. Then the NCS with dynamical quantization is asymptotically stable
if and only if:

lim Amax (Ri) = 0. (8.59)
k—o0
Proof Sufficiency. We know that limy_,» Amax(Rx) = 0 implies that the quantiza-

tion error at each sampling time also converges to zero: limy_., e(#;) = 0. Also, it
can be proved, as in equation (8.5), that:

xten) = x(gy) = (PR A () )a(n) + (& = Ac()e(n)

= Mx(t;) + Ne(ty,)

(8.60)
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Since the NCS without quantization is stable the matrix M is Schur stable, therefore
it is clear that if the quantization error converges to zero then the sequence of states x
(#p) also converges to zero. Note that since the plant is an LTI plant, the fact that the
sequence x(#;) converges to zero ensures that plant state will also converge to zero.

Necessity. In order to ensure that there is no non-zero sequence of e(k) that can
drive the plant state to zero and keep it there, we just need to prove that the matrix
N has full rank. This is readily observed from the way N can be computed, namely:

{A A +BK
N=e"—A.(h)=[I 0]el® ATBK

T e

From equation (8.61) it can be observed that the left most matrix isolates the two
upper blocks of the exponential. Since the exponential matrix has rank 2n, the
isolated matrix (of size n x 2n) should have rank n. Therefore, any non-zero error
vector multiplied by N will yield a non-zero vector. *

We will now assume that in order to generate the hyper parallelograms Ry, ; each
edge of the hyper parallelogram R, | is divided in Q; equal parts. Note that all the Q;

must be powers of 2, that is Q; = 2" where b; represent the number of bits assigned to
each axis. The resulting bitrate is BitRate = (3} _  b;)/h. We can now present a sufficient
condition for stability of MB-NCS under the described dynamic quantization.

Theorem 8.6 The state feedback MB-NCS using the dynamic quantization described
in (8.57) is globally asymptotically stable if the following conditions are satisfied:

1. The non-quantized MB-NCS is stable.
2. The test matrix T has all its eigenvalues inside the unit circle, where

Ty Ty

Ah & Ak | 5
Witthla—diag<<e+Q(lAﬂ(h))K>,..., (W)),
0, -1
0,

T— |:Tlla +T11p le}

Ty = : G(Ac(h))x,
0, -1 0,-1 (8.62)
( Ql ) ( Qn )
-G(Az'(h))K]
T = : ,
L 5(Ac(h))x

T21__(Q1QT1 (QHQ—:l)]3<€(AH§K)h)’
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Proof In order to characterize the evolution of the hyper parallelograms it is
convenient to establish the relationship between the sizes of edges of R, | and
the edges of R .

ﬂ,»h_’_— A, h B
L e e [ R T Y

Aih i K
% 01| + F(Ac )i || +T(Ac(h) x|l

IN

(8.63)

Equation (8.63) is a scalar discrete linear system. It is dependent on ||c ||.
The evolution of ¢, is given below.

iy = e(A +éK)hck _ e(A+Bk)hc; + e<A+éK)hdk. (8.64)

The term ||d|| is bounded by:

ldel] < Z (Hn;H,,-H (Q"Q_, 1)) (8.65)

1

We will now bound ||c; ||:

e || < 5<e(A+BK)h) llec ]| +6(e(“”)h)lz[v; <H’7k+1,iH (Q'Q_ll» (8.66)

From (8.63), (8.65), and (8.66) it is clear that stability is guaranteed if T has its
eigenvalues inside the unit circle. *
Note that if the plant model is exact, then we have that A=0andB =0, A(h)=
0 and A, (h)=0. This implies that if E(e(/i TBK)h ) < 1 then stability is guaranteed if
max; (e’l" hy Qi) < 1 which is a well-established result. In order to enforce the condition
that E(e(A +8 K)h) < 1, it is convenient to apply a similarity transformation that

diagonalizesA +BK.

The following example depicts the way a MB-NCS can be designed; first a
non-quantized MB-NCS is designed and then a suitable quantization scheme is
added and tested for stability.
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Example 8.2 Consider the plant represented by the following state space matrices:
0 1 0.1
A= |:a21 05:|B_ |:02:|

where a,; € [—0.01,0.01] represents the uncertainty in the matrix A. The plant
model is defined as the nominal plant, that is:

i=lo os)p=[o2)

A feedback gainK = [—3.3333 —8.3333]is selected so to place the eigenvalues
of the plant model at (—0.5, — 1). An update time of #=1 s is used. The following

similarity transformation that diagonalizes A +BK is applied to the system:

1.8856 0.4714
Xpew = Px, where P = .
1.3744 1.3744

Finally, the quantized levels are defined as n;=1 bit and n, =2 bits for
the eigenvectors corresponding to the eigenvalues at—0.5 and—1, respectively.
The bounds for the norms of uncertainty matrices are calculated in the transformed
space by searching along the parameter a,; and are as follows:

5(Ac(h)) <0.1354,5(A,(h)) < 0.0961.

The maximum eigenvalue for the test matrix 7 is at 0.9531 indicating that the
quantized system is stable. Next a simulation of the system is presented. In this
simulation the parameter a,, is chosen randomly to be 0.0034, the starting region with
center [2 -3 }T, edges with length 1, and the plant state randomly placed within this
region. The plots are in the non-transformed original space (Figs. 8.9, 8.10, and 8.11).

8.4 Notes and References

One of the main problems in NCS is the reduction of the needed bandwidth by
reducing the amount of information that is transmitted over the network while
preserving desired properties of the controlled system, such as stability. Reduction



8.4 Notes and References

At A

ot g

plant state

Fig. 8.9 Plant State

12

model state
Y
LN
™,

o]

Fig. 8.10 Plant Model State

12

211



212 8 Quantization Analysis and Design

0.5

Ak

R, /

15F Model Statgiump / B |

| Mode! State b1 |

35k 4

4k \ il

45 1 1 I I L 1
-0.5 0 0.5 1 1.5 2 2.5 3
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of network traffic is desired in order not to overload the communication network
with unnecessary data, so a faster and more reliable service can be provided. The
reduction of network bandwidth also facilitates the inclusion of more control
systems that can share the same network. In this chapter bandwidth reduction
is considered in the MB-NCS framework. The MB-NCS framework using the
quantization approaches discussed in this chapter achieve such reduction in two
ways: first, by reducing the rate at which packets are sent and, second, by reducing
the number of necessary bits used to transmit in each packet. This allows the
designer to consider several parameters in a sequential fashion as it was shown
in this chapter.

The contents of Sects. 8.1 and 8.3 are based on the work presented in [191].
The event-triggered control approach described in Sect. 8.2 was published in [87].

Several results have been published regarding the issues involved with
quantization in NCS and sampled data problems [15, 65, 72, 79, 150-153]. Most
results attempt to characterize the stability properties of NCS while limiting the
number of bits used by each network packet.

The work in [202] offers a framework that applies to nonlinear systems subject
to quantization. In addition, network scheduling is considered using periodic
updates in terms of the maximal allowable transfer interval (MATI). Copies of
the plant dynamics are used at both ends of the communication channel. Model
uncertainties are not considered and the difference between the plant and the copies
being that the copies operate using the quantized variables instead of the real ones.



8.4 Notes and References 213

The transmission of quantized measurements at times dictated by event-based
strategies has been considered by several authors. The authors of [17] and [182]
discuss this approach when considering the most convenient times to sample a
signal. The reference [140] also considers event-triggered transmission for stabili-
zation of systems that communicate using a limited bandwidth network and using a
similar model-based approach as the one discussed in this book. In [275] the authors
address the problem of output feedback control of networked systems subject to
quantization and packet dropouts. A similar problem was also discussed in [125].
Dynamic quantizers were used in [43] for stabilization of NCS with nonlinear
systems that are modeled using the T-S (Takagi-Sugeno) fuzzy model. Two quan-
tizers are implemented, one in the sensor-controller channel and the other one in the
controller-actuator channel. Other frameworks considering quantization issues in
NCS can be found in [213, 252, 266].

Similar results to Sect. 8.3 using dynamics quantizers can be found in [159]
where the authors calculate the minimum bit rate for NCS under network dropouts.
In [111], Hespanha, et al. consider the case of a NCS that incorporates an exact
model of the plant. The results in [111] yield the minimum bit rate for stabilizing
the NCS under bounded measurement noise and input disturbance.
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Chapter 9
Optimal Control of Model-Based
Event-Triggered Systems

The problems of control and estimation under communication constraints have
received increased attention in recent years motivated by the extensive use of
digital communication networks with limited bandwidth. The communication
channel is shared by different applications and in many instances only a reduced
number of nodes are able to send information through the network at some specified
time interval. It becomes essential to determine the conditions under which a
dynamical system will remain stable and achieve a desired performance in the
presence of model uncertainties, disturbances, and limited feedback information.

A common characteristic shared by the control methodologies studied in previ-
ous chapters is that they offer conditions for stability based on the design of
quantization parameters, transmission rates, or error event thresholds, given the
system and the controller. In this chapter we will use the Model-Based Event-
Triggered (MB-ET) framework shown in Chap. 6 to maximize the transmission
intervals, but here we will also consider the required control effort. In other words,
we consider the design of optimal control laws and optimal thresholds for commu-
nication in the presence of plant-model mismatch by appropriately weighting the
system performance, the control effort, and the communication cost. The approach
we follow is to optimize the performance of the nominal system, which can be
unstable in general, and to ensure robust stability for a given class of model
uncertainties and for lack of feedback for extended intervals of time.

Consider an uncertain discrete-time linear plant of the form:

x(k+ 1) = Ax(k) + Bu(k). (9.1)

The available nominal model of the system is represented by:

%(k+1) =A% (k) + Bu(k) (9.2)

where x, x € R”. Define the state error as:

E. Garcia et al., Model-Based Control of Networked Systems, Systems & Control: 217
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e(k) = % (k) — x(k). (9.3)

Note that the system and model can be stable or unstable. The aim is to design an
optimal controller for the nominal system (9.2) that is robust to model uncertainties
and to limited information. The later means that feedback measurements are not
always available for control. This is typical, for instance, in Networked Control
Systems (NCS), where the communication channel is shared by different users and
may not be available for a given system to communicate at every instant [195] or
due to the limited communication and processing capabilities at every node or agent
within the network [251]. In other applications, it may be desirable not to use
the communication channel even if it is available due to energy constraints
[8, 24]. Therefore, it becomes essential to establish a trade-off between the perfor-
mance of the control system and the information that can be transmitted. This trade-
off can be defined by solving the next optimization problem:

N—1
minJ = x' (N)Qyx(N) + > "« (k)Qx(k) + u” (k)Ru(k) + Sp(k) (9.4)
> k=0

where Q and Qy are real, symmetric, and positive semi-definite matrices, R is a real,

symmetric, and positive definite matrix. f, € {0, 1} is a binary decision variable

that dictates the communication pattern in the system as follows:
1  measurement xyissent

/))k = . . (95)

0 measurement Xy isnotsent

and S is a positive weighting factor that penalizes network communication.

In this chapter we follow the MB-ET framework that was studied in Chap. 6.
This configuration makes use of an explicit model of the plant which is added to the
controller node to compute the control input based on the state of the model rather
than on the plant state as represented in Fig. 9.1. The goal is to reduce the
communication between nodes by reducing the rate at which feedback information
is sent to the controller. The MB-ET framework has the advantage that it can
provide “virtual feedback™ to control the physical system when no real measure-
ments can be obtained at the controller node due to communication constraints. The
idea of “virtual feedback” can be realized by using the nominal model of the system
to generate an estimate of the real state in joint operation with an event-triggering
strategy in the sensor node that determines the communication instants based on the
size of the state error (9.3). When a measurement of the real state is received at the
controller node, it is used to update the state of the model in order to reset the
accumulated state error over the previous time interval since the last measurement
update took place. The combination of the nominal model at the controller and the
event-triggering strategy provides a “virtual feedback” by generating an estimate
of the state that is kept close to the real state by maintaining a small state error. In
order to obtain the same model state £ at the sensor node we implement a second
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Fig. 9.1 Model-based event-triggered networked architecture

identical model at the sensor node that is updated using the measurements x(k)
only when g, =1.

The idea of “virtual feedback” allows for an approximate solution to (9.4) which
considers the separation of problem (9.4) into two subproblems. The first one
requires the design of the optimal control for the nominal system for the case
when feedback measurements are always available to compute the control input.
Since we consider model uncertainties and communication constraints, the optimal
controller needs to be robust to both model mismatch and lack of real feedback for
intervals of time. Sections 9.1 and 9.2 address this problem for the case of infinite
horizon optimization problems. The second subproblem aims at minimizing the
state error by also considering the cost that needs to be paid every time we decide to
send a measurement to update the model and reset the state error. In Sect. 9.3 we use
the corresponding solution for the first subproblem for finite horizon optimization
problems along with a Dynamic Programming algorithm that provides the optimal
times to send updates. Notes and references are given in Sect. 9.4.

9.1 Continuous-Time Robust LQR

The robustness of the continuous-time LQR to model uncertainties has been
analyzed by different authors; see Sect. 9.4 at the end of this chapter. In the case
of matched uncertainties the LQR guarantees robust stability for any bounded
uncertainty of this type. In this section we extend the approach in [154] for
matched uncertainties in order to consider state feedback uncertainties as well.
The state uncertainty is characterized by the state error (9.8) and is the result of
limited communication between sensor and controller. We also make use of the
MB-ET approach in order to design error events that will prompt the sensor to send
the current measurement of the state of the system.
We consider network interconnected uncertain linear systems of the form:

x(t) = Ax(t) + Bu(t). (9.6)
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The nominal model of the system is:
$(t) =Ax (1) +Bu(r) (9.7)
where x, ¥ € R”". Define the state error for the continuous-time case as:
e(t) =x(t) — x(2). (9.3)

We also consider the following assumptions:

(a) The nominal system (A,E ) is stabilizable.

(b) B=B

(c) We assume matched uncertainty, that is, the uncertainty is in the range of the
matrix B. Mathematically we have that there exists a m X n matrix ¢ such that

A=A—A = B¢, and ¢ is bounded in the Euclidean sense.

Using the nominal system parameters (9.7) we design a feedback control law
u = Kx that minimizes

7= |
0

where F is defined as

(X" () Fx(t) + x" (1)0x(t) + u" (1)Ru(r)]dt (9.9)

N —

F=inf{F : F' > ¢"R¢}. (9.10)
Q is areal, symmetric, and positive semi-definite matrix, and R is a real, symmetric,
and positive definite matrix.

Theorem 9.1 System (9.6) with a model-based input u = KX and with model
updates based on error events is asymptotically stable for all matched uncertainties
satisfying (9.10) if the updates are triggered when

—=— x| (9.11)
where K is the feedback gain obtained by solving the Algebraic Riccati Equation

(ARE) using the nominal parameters, ¢ = 6(Q), and 0 <o < 1/2.

Proof The solution of the optimal control problem that minimizes (9.9) is the LQR
which provides the feedback gain:

K=-R'B'P (9.12)
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and the matrix P is the solution of the associated ARE:
ATP+PA —PBR'B'P+F+Q =0. (9.13)

Define:

ueslL?

V(xo) = min J% (X" () Fx(t) + x" (1)0x(t) + u" ()Ru(r)]dt = T = (x(t),1). (9.14)
0

V(xp) is the minimum cost of the optimal control of the nominal system from
some initial state x.
The Hamiltonian is given by:

1 1 1 A
H = 5x"Fx + 2x'Qx + Su' Ru + V[ [Ax + Bul (9.15)

and the HJB equation for the nominal model is given by:

1 1 1 A
X Fx 22 O+ DX KTRKx + VI [Ax + BKx] = 0. (9.16)

Additionally, the optimality condition results in:
AK'R+VIB=0. (9.17)
Next, we will show that V(x) is a Lyapunov function for the real system (9.6)
affected by model uncertainties and state feedback errors which are caused by

the lack of communication from sensor to controller. System (9.6) can be
represented by:

% = Ax + Bu = Ax + BKx + B¢x + BKe. (9.18)
We can also see that:

V(ix)>0, x#0
x=0

Now we evaluate V (x) along the trajectories of (9.18)
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V(x) = VI [Ax+ BKx + B¢x + BKe|

1 1 1 1 1
= —ExTFx - ixTQx — EXTKTRKX — xXTKTR¢px — x"KTRKe + Ede)TRqﬁx - ixT(ﬁTR(j)x

= ; T[F— ¢"Rp|x — Sx"[K + ¢]"RIK + ¢]x — lx TOx — x"K"RKe

1 1
< —ExTQx —xTKTRKe < ——q|x|2 + ’KTRKHeHxL

Using the threshold (9.11) we ensure that |e| < TKTRK] |x| and then we have:

Vi) < {a - ﬂg|x|2 <0 (9.19)

9.2 Discrete-Time Robust LQR

The purpose of this section is to extend the results of the previous section to the
discrete-time domain. Following a similar analysis but using the discrete-time LQR
we arrive at a slightly different set of conditions and event thresholds. In this section
we consider the discrete-time system (9.1) with model (9.2) and the state error as
defined in (9.3). We also consider assumptions (a)—(c) in Sect. 9.1.

Using the nominal system parameters (9.2) we design a feedback control law
u = Kx that minimizes

J= ixT(k)Fx(k) + 7 (k)Qx(k) + u” (k)Ru(k) (9.20)

where F is defined as
F=inf{F :F' > ¢"[B'PB +R|¢}. (9.21)
Q is areal, symmetric, and positive semi-definite matrix, and R is a real, symmetric,

and positive definite matrix.

Theorem 9.2 System (9.1) with a model-based input u = KX and with model
updates based on error events is asymptotically stable for all matched uncertainties
satisfying (9.21) if the updates are triggered when

le] > alx]| (9.22)



9.2 Discrete-Time Robust LQR 223

12
where  o=min(og, o), ay, = o6q/2cy, a = [aq/2c2} , O<o<l,

e = 2’ [A +BK + ¢]] TPBK’, and ¢, = [K"BTPBK/. The controller gain K is the

feedback gain obtained by solving the discrete-time ARE using the nominal param-
eters, and q = o(0Q).

Proof The solution of the optimal control problem that minimizes (9.20) is the
discrete-time LQR which provides the feedback gain:

K = —[B"PB+R] 'B'PA (9.23)
and the matrix P is the solution of the associated discrete-time ARE:
A"PA —P+F+Q—ATPB[B"PB+R] 'B'PA =0. (9.24)
By using the following relationship:
~ATPB[B"PB + R]'B"PA = ATPBK + K"B"PA + K[B"PB +R]K (9.25)
we can rewrite the discrete-time ARE as:
[A +BK)'P[A +BK| +F+Q+K'RK — P =0. (9.26)

Let us consider the candidate Lyapunov function V(x) =x"Px and we evaluate
the first forward difference of V(x) along the trajectories of the real system not of the
model but using the model control input u = Kx

AV(x) =V(x(k+1)) = V(x(k))
~ ~1T R ~

= [ [A + BK +A] +¢"KTBTP[[A + BK + A« + BKe] - x"Px
=4 +BK+Z}TP[A +BK +A]x

+24 [A + BK + 4] "PBKe + ¢'KTBPBKe — ' Px
= —x"Qx —x"[F — ¢" [B"PB + R]p]x — x" [K + ¢]"R[K + ¢]x

+ 2[4 + BK + 4] "PBKe + &' K"BTPBKe
< T Ox + 247 [A 4 BK + Z} "PBKe + " KTBTPBKe
<~ +2|[A +BIK + ¢ PBK le|x| + [KBTPBK] e’

< —gx® + cilel[x] + ealef.
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Now, by updating the model (the error is set to zero when we update) following
the condition in (9.22), we can bound the error using the term in the right hand side
of (9.22) and we can finally write:

Va(k+ 1) = V(x(k)) < [o = gl (9:27)

Then V is guaranteed to decrease for any o such 0 < ¢ < 1 and updating the state
of the model using the threshold in Theorem 9.2. ¢

9.3 Finite Horizon Optimal Control
and Optimal Scheduling

Finite horizon optimal control problems correspond to more realistic
implementations to real problems. In most cases we are concerned with the oper-
ation of a physical system over a finite period of time in an optimal sense. The
consideration of infinite horizon problems results, in many cases, in simplified
controller design steps. This can be easily observed in the continuous and
discrete-time LQR. These simpler controllers can be used in practice, especially,
for long or unknown finite horizons. For shorter horizons, we need to formulate the
problem differently.

In this section, assuming N is known, we consider our original problem as stated
at the beginning of this chapter. The system and model are given by (9.1) and (9.2)
respectively and the cost to be minimized is given by the alternative expression of
(9.4) using the separate weights F and Q, i.e.,

miﬁnJ = 1T (N)Qyx(N)

N—1 (9.28)
+ > T (k)Fx(k) + x" (k) Qx(k) + " (k)Ru(k) + SB(k)
k=0

By following similar ideas as in previous sections we first design the optimal

controller for the nominal system assuming that feedback measurements are always
available. The optimal control input for this case is given by:

ws (N—i)=—[B"P(i—1)B+R] 'B'P(i — NAx(N — i) (9.29)
where P(i) is recursively computed using:

P(i)=[A +BK(N —i)]'P(i— 1)[A + BK(N —i)] + F+ 0

(9.30)
+ K" (N — i)RK(N — i).
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Define the Lyapunov function V(x(k)) :xT(k)P(k)x(k). Using a similar analysis as
in Sect. 9.2 we can show the following results.

Corollary 9.3 System (9.1) with input (9.29) is stable in the Lyapunov sense for all
matched uncertainties satisfying:

F=inf{F :F' > ¢"[B"P(k)B +R|¢} (9.31)

forall k=0,1,.. .N. ¢

Note that in order to obtain the optimal control law we need to solve offline the
discrete-time LQR, i.e., we need to find K(k) and P(k) before the execution of the
system, then it is possible (knowing a bound on the uncertainty) to check (9.31) in
advance. When (9.31) holds we know the system is stable and the optimal cost of
the form (9.20) with no communication penalty is finite when measurements are
available at every time k. Then we can proceed to select an appropriate weight on
the communication to restrict measurement updates from the sensor to the
controller.

We are now in the position to approach the second problem that was introduced
in the beginning of this chapter in a more formal way. In Sects. 9.1 and 9.2 we were
able to reduce the communication rate between sensor and controller while using
the optimal control law and the estimates generated by the model. However, the
communication pattern was not optimal in any sense. Next we use the error nominal
dynamics and the selected communication factor § in order to design the optimal
update events.

This approach to solve the optimal scheduling problem can be seen as the
minimization of the deviation of the system performance from the nominal perfor-
mance by also considering the cost that needs to be paid by updating the model and
resetting the state error.

The error dynamics are given by:

ek+1)=x(k+ ) x(k+1) =A% (k) + Bu(k) — Ax(k) — Bu(k) 9.32)

=Ae(k) — Ax(k).

Since the uncertainty A is not known, we use the nominal error dynamics, i.e.,
e(k+ 1) = Ae(k). (9.33)

Furthermore, when the sensor decides to send a measurement update, which makes

Pr=1, we reset the error to zero. Then the complete nominal error dynamics can be
represented by the following equation:

elk+1)=Ae(k) — BAe(k) =[1 — BJAe(k). (9.34)

It is clear that, in the nominal case, once we update the model the state error is equal
to zero for the remaining time instants. However, in a real problem the state error



226 9 Optimal Control of Model-Based Event-Triggered Systems

dynamics are disturbed by the state of the real system which is propagated by means
of the model uncertainties as expressed in (9.32). Then, using the available model
dynamics we implement the optimal control input and the optimal scheduler that
results from the following optimization problem:

N-1

mﬂin]e = e (N)Qye(N) + kz:;eT(k)Qe(k) + Sp
subject to e(k+ 1) = [1 — B JAe(k)

5,101}, (9.35)

In order to solve problem (9.35) we use Dynamic Programming in the form of look
up tables. The main reason for using Dynamic Programming is that, although the
error will be finely quantized, the decision variable f; only takes two possible
values, which reduces the amount of computations performed by the Dynamic
Programming algorithm. The sensor operations at time k are reduced to measure
the real state, compute and quantize the state error, and determine if the current
measurement needs to be transmitted by looking at the corresponding table entries
which are computed offline. The table size depends only on the horizon N and the
error quantization levels.

Example 9.1 Consider the nominal model of an unstable discrete-time second
order system given by:

- 15 03 10
A‘[—o.é —0.7]’ B‘{o 1}'

The unknown dynamics of the unstable real system used in the next simulation
example are:

o[ 125 048
=073 —081]

The model-based controlled system is intended to operate over a finite period of
N =30 stages. The parameters in the optimization problem are as follows:
Q=R=1I, S=1, Oy=2I The unknown initial conditions of the system are given
by x(0) =[1.9 — 1.4]", since these initial conditions are unknown to the controller,
the model is initialized using £ (0) = [0 0]”. The computation of the control gains
at every time instant and the solution of the Dynamic Programming optimization
problem are computed offline and stored accordingly in the controller and sensor
nodes. The results of the simulation are shown in Figs. 9.2, 9.3, and 9.4 using
linear interpolation to connect the consecutive values in the response of the system
and model.

Figure 9.2 shows both the states of the real system and the states of the model
that are used in the computation of the control input when feedback measurements
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Fig. 9.4 Response of the nominal system receiving feedback measurements at every time k

are unavailable. The top portion of Fig. 9.3 shows the state error. For the different
combinations of the state error we find the corresponding entry on the table that
contains the solution of the Dynamic Programming optimization problem. At every
time instant the sensor decides to send or not the measurement of the state of the
system based on the values of the error, those decisions are represented at the
bottom of Fig. 9.3. An important difference with respect to the error threshold
designed in Sects. 9.1 and 9.2 is that the solution of problem (9.35) considers the
dynamics (nominal) of the error in the design of the transmission events. By
including a prediction of the behavior of the state error we are also able to predict
the consequences, as measured by the computation of the optimal cost, of updating
or not the model at a given time instant k. We can see, for instance, that some
combinations of state error values will result in different transmission decisions
depending at which of the N stages we are operating at that moment.

It is also important to note that in the absence of model uncertainties we obtain

the response of the nominal system as if measurements were always available.
Figure 9.4 shows the response of the nominal system when feedback measurements
are available at every time instant k. The behavior of the overall controlled system
which consists on the MB-ET framework with optimal control input and optimal
scheduler is comparable to that of the nominal system for which the optimal control
law is designed, and the difference is considerably reduced as the uncertainties
diminish.
Example 9.2 The approach in this section can also be applied to the case when the
real system is continuous. From the available nominal continuous-time model we
obtain a discretized nominal system at a low sampling rate. Measurements of the
real system are obtained at the same rate in order to compute the state error and to
take the decision of whether sending an update or not.
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Fig. 9.5 Response of the real continuous-time uncertain system with limited feedback (top).
States of the discretized model used to control the system (bottom)

Consider the unstable nominal continuous-time model given by:

. [1 02 10
A_[OA 0.5]’ B_{o 1]'

The unknown dynamics of the unstable continuous-time real system used in the
next simulation example are:

4 [088 0.32
~ 1015 034

The parameters in the optimization problem are as follows: S=0.1, Oy =101,
Q =51, R=1. The unknown initial conditions of the system are given by x(0) =
[0.3 —0.4]" and the sampling rate used to determine the discretized nominal model
is Ts =0.1 s. The results of the simulation are shown in Figs. 9.5, 9.6, and 9.7. The
discrete variables have been plotted using zero-order-hold interpolation in order to
clearly differentiate them from the continuous states of the system.
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9.4 Notes and References

The design of optimal controllers for unknown systems represents a challenging
task. An approach that has been studied in the literature is to design an optimal
controller for a nominal system and analyze its robustness to a range of uncer-
tainties. In this chapter we considered a more complex version of this problem in
which feedback information is limited and, in addition to designing an optimal
control input, we also addressed the problem of finding the optimal instants at
which we should transmit feedback measurements. The approach considered in this
chapter, which consists of model-based estimates of the state and of error events,
provides a practical and promising methodology that considers the overall perfor-
mance of the communication constrained system. Parts of this chapter can be found
in [94].

Similar ideas have been considered by different research groups. For instance,
Imer and Basar, [120, 121], considered separately the estimation and control
problems with limited information when the nominal system is affected by process
and measurement noise. In both cases the source node is able to send data through
the communication channel only M times of possible N (M < N). The aim is to find
the optimal control law (minimize the average estimation error) by indirectly
penalizing channel uses. Molin and Hirche [184] also considered the trade-off
between control performance and resource utilization, i.e., the cost of updating
the controller node using current measurements. The authors study linear systems
affected by zero-mean Gaussian noise and they assume the system parameters and
statistics are known, that is, model uncertainties are not taken into account in their
work. The authors of [167, 274, 289] also address similar problems.

The robustness of the continuous-time LQR to model uncertainties has been
analyzed by different authors. Douglas and Athans [62] presented an LQR design
that is robust to real parametric uncertainty in the state matrix of linear time
invariant systems by wisely choosing the state weighting matrix. Misra [183]
discussed the LQR design with assignment of the closed loop eigenvalues. Lin
and Olbrot [154] showed a robust LQR design method for uncertain continuous-
time systems that apply to both matched and unmatched uncertainties.



Chapter 10
Performance Analysis
Using Lifting Techniques

The performance characterization of Networked Control Systems under different
conditions represents an important and interesting problem. In previous chapters it
was shown that the stability of MB-NCS is, in general, a function of the update
times, the difference between the dynamics of the plant and the dynamics of the
plant model, and of the control law used. The performance of the MB-NCS can be
studied using several techniques and considering different scenarios. One promis-
ing technique is called Continuous Lifting.

Lifting techniques for discrete-time systems were employed in Chaps. 2 and 4.
Lifting represents a transformation of a periodic system to a discrete LTI system.
The periodic system could be a continuous-time or a discrete-time system. The
main advantage of this approach is that most of the results available for LTI systems
are readily applicable to the lifted system. The disadvantage is that the input and
output spaces grow in size if the underlying periodic system is a discrete time one,
and the input and output spaces become infinite dimensional when the underlying
periodic system is a continuous-time system. In the latter case the parameters of the
lifted system are operators and not matrices.

The results in this chapter are concerned with the performance analysis of
MB-NCS with continuous-time systems and with periodic updates. Corresponding
results can also be obtained for discrete-time systems with periodic updates fol-
lowing the similar approaches discussed in this chapter. Section 10.1 describes a
continuous-time lifting technique used in this chapter and it also discusses the
performance of MB-NCS using H, norm characterizations. Section 10.2 addresses
the design of optimal controllers for MB-NCS. Notes and references are given in
Sect. 10.3.

E. Garcia et al., Model-Based Control of Networked Systems, Systems & Control: 233
Foundations & Applications, DOI 10.1007/978-3-319-07803-8_10,
© Springer International Publishing Switzerland 2014
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10.1 Performance Analysis of MB-NCS Using
Continuous-Time Lifting

In this section we introduce two performance measures related to the traditional H,
performance measure for LTI systems. The first H, like performance measurement,
called the Extended H, norm of the system, is based on the norm of the impulse
response of the NCS at time zero. The second performance measure, called the
Generalized H, norm, it basically replaces the traditional trace norm by the Hilbert-
Schmidt norm that is more appropriate for infinite dimensional operators. The
Generalized H, norm represents the average norm of the impulse response of the
NCS for impulse inputs applied at different times.

Before defining the performance measures previously described, a brief sum-
mary of the lifting technique is presented. As it was pointed out, lifting can
transform a periodic linear system such as a MB-NCS into a discrete linear time
invariant system with operator-valued parameters. These parameters are computed
for a class of MB-NCS and used throughout the section.

10.1.1 Continuous Lifting Technique

We will give a brief introduction of the Lifting technique for continuous-time
periodic systems. We need to define two Hilbert spaces, the first space is defined as:
h

Lzﬁxh)::{u(o/J

ul (Hu(t)dt < oo}. (10.1)
0

The second Hilbert space of interest is formed by an infinite sequence of L,[0, &)
spaces and is defined as:
L(Z,L2[0,h)) =1
r +00 rh
AL w0y, ] /ZJ T (0 ($)de < o0 V.

= Jo

(10.2)

Now we can define the lifting operator L as a mapping from L,, (L, extended) to /,:

L:L, — I, Lu(t) = [ o, U_p U, Uy, UL, U, . .}T (103>

where u(7) = u(z +kh), = € [0, h). It can be shown that L preserves inner products
and thus is norm preserving [42]. Since L is surjective, it is an isomorphism
of Hilbert spaces. So, lifting basically transforms a continuous function into a
discrete function where each element of the sequence is a continuous function
restricted to [0, ).



10.1 Performance Analysis of MB-NCS Using Continuous-Time Lifting 235

w z
>
Plant
Y oy Y > State Observer
X
update
= Model P
X
Y
> K
Controller

Fig. 10.1 MB-NCS with disturbance input and objective signal output

As an example of the application of this lifting technique we will compute the
lifted parameters of a MB-NCS with output feedback. A disturbance signal w and a
performance or objective signal z are included in the setup. We will use an observer
that will estimate the plant state. This estimate will then be send through a network
to the controller. The controller makes use of a plant model, which is updated with
the observer estimate, to reconstruct the actual plant state in between updates. The
model state is then used to generate the control signal. See Fig. 10.1. We will
assume that the plant model is updated at regular intervals /.

We will start by defining the system dynamics:

Plant Dynamics :
X =Ax+ Byw+ Bou
z=Cix+Dpu
y = Cox + Dyiw + Dypu
Observer Dynamics :
X=(A—LCy)x+ (Bo—LDyn)u+Ly
Model Dynamics :
X =A% +Bou
Controller :

u=Kx

(10.4)
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The model state X is updated with the observer state X every h seconds. The
augmented state contains [x X e]T. The augmented system dynamics are given by:

G,y :
x A BK —BK X B
¥| =|LC, A—LC,+BoK+LDpK —B,K—LDpK | |X| + |LDy |w
é LC, LD»K —LC, A —LDyK e LDy,
X
z=[C, DK —DpKl|x

(10.5)

fort € [t t;+1). At the update times t =1, ,; we have e =X — X = 0. We will also
use the following definitions:

_X<I) A B>K —B>K
(p(l) = X(f) A= | LC, A — Léz —‘y—ézK +L522K —B K — L522K

Le(?) LC, LD»K — LC A — LDy»K
" B,

By = |LDy |.Cx =[Ci DuK —DuK].
| LD,

(10.6)

System (10.5) is clearly 4 periodic, and therefore, after the lifting procedure, we
expect to obtain an LTI system of the form:

i1 = A@e +Bwy, 7 = C g +Dwy. (10.7)

To obtain the operators we “chop” the time response of the system described in
(10.6) and evaluate it at times kh:

I 0 0] 1 00
h
ph)=10 1 0]eMpO)+| |0 1 0] IByw(s)ds,
0
L0 0 0] 000
L . (10.8)
I 00 I 00
2h
p(2h) = |0 I 0|eMp(h)+ 0 I 0| Byw(s)ds, ...
h
L0 0 0] 00 0
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Then the output response for each interval [kA,(k+1)h) is:

t
z(t) = CneM(0) + CNJ M) Byw(s)ds, t€[0,h)

O (10.9)
z(t) = Cye™Mg(h) + CNJ AMTIBw(s)ds, € [h,2h)
h

We can now extract the lifted parameters:

I 00 [ oo
A=1[0 I 0|eM, Bw= 0 I 0[M)Byw(s)ds
00 0 “lo o0 o (10.10)
E = Cyeé™v, Bv?z = CNJ eA(’_s)BNvAv(s)ds.
0

The new lifted system (10.10) is a LTI discrete system. Note the dimension of the
state space is left unchanged, but the input and output spaces are now infinite
dimensional. Nevertheless, the new representation allows extending the results
available for discrete LTI systems to the lifted domain. These tools have been
traditionally used to analyze and synthesize sample and hold devices, and digital
controllers. It is to be noted, though, that in this case the discrete part embedded in
the controller doesn’t operate in the same way a typical sampled system does. Here,
for instance, the controller gain operates over a continuous signal, as opposed to
over a discrete signal as it is customary in sampled data systems.

10.1.2 An H, Norm Characterization of a MB-NCS

It is clear that, since the MB-NCS is h-periodic, there is no transfer function in the
normal sense whose H, norm can be calculated [42]. For LTI systems the H, norm
can be computed by obtaining the 2-norm of the impulse response of the system at
t=1to. We will extend this definition to specify an H, norm, or more properly, to
define an H,-like performance index [42]. We will call this performance index
Extended H, Norm. We will study the extended H, norm of the MB-NCS with
output feedback studied in the previous section and shown in Fig. 10.1. The
Extended H, Norm is defined as:

G

1/2
‘xh2 = (Z ||sz5(lo)€i||§> . (1011)

The extended H, norm is an approach to creating a framework for performance
analysis. The extended H, norm is defined in (10.11) as the square root of the sum
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of the squares of the 2-norms of the impulse response of the system on each input. In
this case i represents the index for the inputs, G, represents the plant dynamics, d is
the impulse operator, and e; is a vector on the input space with zeros except on the
ith input, where it has a 1.

Theorem 10.1 The Extended H, Norm, ||G||2, of the Output Feedback MB-NCS
described in (10.5) is given by |G || 2 = (trace(By'XBy))"? where X is the solution
of the discrete Lyapunov equation M(h)TXM(h) —X+W,0,h)=0 and W,(0,h) is
hoo
the observability Gramian W, (0, h) = J M ey CyelMdt.
0

Proof We will compute the extended H, norm of the system by obtaining the
2-norm of the objective signal z to an impulse input w = (¢ — #y). It can be shown
that the response of the system to an input w = (¢ — ty) (assuming that the input
dimension is one) is:

z(t)=[C1 DK —DiK]p(1),
k
B,

I 0 O
(p(t):eA(”’k) 0 I 0feM LDy, (10.12)
0 0 O LDy,
with
[ x(r)
p(t)=|x(1) |,
Le(?)
[ A B>K —B)K

A= |LC, A —LC>+ByK+LD»K —ByK—LD»K |,

| LC, LDyK — LC, A —LDxnK
h=t1 —

So we can compute the 2-norm of the output:
J@o p (10.13)

I 00 B
where M(l’l) =10 I O eAh,BN = LD21 ,CN = [C] D]zK —DlzK].
0 0 0 LDy,

It is easy to see that the norm of a system with more than one input can be
obtained by taking the norm of the integral shown in (10.13). So at this point we can
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drop our assumption of working with a one-dimensional input system. We will
concentrate now on the integral expression (10.13).

00 k
BNT(M(h)T) N ) O T Oy (M (1)) Byt

S(h) = J

to

00 k
= ByT (J M(h)T) eAT(’"')CNTCNeA("k>(M(h))kdt>BN

:BNT <ijti+1 (M(h)r)ie/\T(t—r;)CNTCNe/\(z—z,-)(M(h))idt By
i=0 Yt
o i ;o _ 10.14
= ByT (Z;L (M(h)T) = 'CNTcNeN(M(h))’dt>BN (10.14)
_erlN N (" At~ T A i
— By (;(M(h) ) L NN Ce dt) (M(h)))BN
=By <Z(M<h>T)’wo<o, h)(M(h))")zeN
i=0
where
h
W, (0, ) :J Moy CyeMar. (10.15)
0

Note that (10.15) has the form of the observability Gramian. Also note that the
summation resembles the solution of a discrete Lyapunov equation. This Lyapunov
equation can be expressed as:

M(h)'XM(h) — X + W,(0, 1) = 0. (10.16)

In this equation we note that M(h) is a stable matrix if and only if the networked
system is stable. Also W,(0, %) is a positive semi-definite matrix. Under these
conditions the solution X will be positive semi-definite. *

Note that the observability Gramian can be factorized as

h
Wo(0,h) = CT Coue = J eN'CyTCye™dt. This allows us to compute the norm

aux
0

of the system as the norm of an equivalent discrete LTI system.

h
Corollary 10.2 Define C! Cuu = J NieyTCneMdt and the auxiliary discrete
0

system G, with parameters: A .= M(h), B, =B,, Cu, and D, =0. Then the

following holds:

|G

w2 = 1Gauxll (10.17)
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Fig. 10.2 Extended H, norm of the instrument servo system as a function of the update time
intervals

Example 10.1 Consider the output feedback instrument servo example presented in
Example 3.1. Consider the model parametersa = 1, ﬁ = 3 and the real parameters

are given by a=0.89, f=2.79. In addition we have that D, =0 and the plant
parameters associated with the disturbance input and the performance output are
given by

Blz[g'ﬁ;ﬂ; C; =1[04312 —03156]; Dj, =0.1452; Dy = —0.1974; Dy = 0.

We will use the state feedback controller K = [—0.1667, —0.1667]. The state

. o 2
estimator gainis L = 0

as a function of the update time intervals A.

} . In Fig. 10.2 we plot the extended H, norm of the system

10.1.3 A Generalized H, Norm for MB-NCS

In the previous subsection the Extended H, Norm was introduced to study the
performance of MB-NCS. This norm was defined as the norm of the output of the
system when a unit impulse at =t is applied to the input. But since the MB-NCS
is a time-varying system it may seem inappropriate to apply this input only at r = 7.
By letting the input be 6(r —7) applied at time =7 we arrive to an alternate
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definition. Since the system is / periodic we only need to consider © € [ty, fy + ).
We will call this norm the Generalized H, Norm and we define it as:

| foh i .
= 3] (S NGwste= a3 ) ar (10.18)

G

fo

A detailed study of this norm can be found in [42]. Note that this norm evaluates the
time average of the system response to the impulsive function applied at different
times. We will now show some relations concerning this norm.

Let a continuous-time linear transformation G : L,[0, &) — L,[0, co) be defined by:

t

(Gu)(1) = JO g(t, )u(z)dz. (10.19)

where g(#,7) is the impulse response of G. Let G be periodic and let its Hilbert-
Schmidt norm ||G||ys be defined as:

h poo 1/2
1G5 = (J J trace |g(t,7)" (s, T)}drdf) . (10.20)
0Jo
Then it is clear that:
1
Gzl g = 7 1Gawllgs- (10.21)

Note the slight abuse of notation: originally G,,, was considered a transformation
with domain [L,[0,00) while the Hilbert-Schmidt norm in (10.20) is
defined for transformations with domain on L,[0, /). Now denote the lifted operator

—~

G., = LG.,L~" where the input-output relation is given by the convolution:

k
=) g (10.22)
=0
_ _ h
where gy : L,[0,h) — L, [0,h) and (gw) (1) = J g(t + kh, t)u(t)dr. The Hilbert-
0

Schmidt operator for §k is given by:

hoph 1/2
Hgku - J J zrace[g(z+kh,1)Tg(z+kh,r)}drdr . (10.23)
HS 0 Jo
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Then it is easy to show that:
G 2,, = g al =g ’ 10.24
” WH s = HngHS HgHz (10.24)

The last expression shows a relationship between the discrete lifted representation
of the system and the Generalized H, Norm. Finally we will show the relationship
between the Generalized H, Norm and the norm of an operator-valued transfer
function:

g = i gl (10.25)
k=0

By defining in a similar way the A-transform for the input and output of the system
we obtain:

() = 2w (). (10.26)

Note that w(4) and Z(4), for every 4 in their respective regions of convergence, are
functions on [0, 4); g(4) is a Hilbert-Schmidt operator. Define the Hardy space
H,(D, HS) with operator-valued functions that are analytic in the open unit disc,
boundary functions on 0D, and with finite norm:

2 12
2 = |5 |, ) 0] (10.27)

Note the norm in H,(D, HS) is a generalization of the norm in H,(D) by replacing
the trace norm by the Hilbert-Schmidt norm. It can be shown that:

2 ~1? ~12
[Gevllis = | 2], = I15- (10.28)

We will now show how to calculate the Generalized H, Norm of the Output
Feedback MB-NCS in (10.5). Define the auxiliary discrete LTI system:

—~

A

Gaux = C
aux

0

BGMX
] (10.29)
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where:

I 00 I 00
h

BuuB? :J 0 I 0|eMByBLeM |0 1 0f |dr
0

aux

0 0 0 0 0O (10.30)

h
CT Coe = J (eATTC,gCNeM)dT.

aux
0

Theorem 10.3 The Generalized H, Norm,

|G.wllgn2, Of the Output Feedback

~12 172
MB-NCS described in (10.5) is given by |G| 4o = ﬁ (HDHHS + ||Gaux||§) -

Proof The transfer function for G.,, can be written as:

) =D+C(F,(1)B (10.31)
0
770

withg,(1) = [ } . Note that g, (1) is a matrix-valued function and thatg,(0) = 0.

Therefore the two functions on the right of (10.31) are orthogonal and:

WGl = EWE= B+ [c@ms[. (o)

The second norm on the right can be calculated as:

27~ —

C (3,(e")) BH;dH. (10.33)

Je@ans], =5

By fixing 6 the integrand F = c (2,(e?)) B is a Hilbert-Schmidt operator with
impulse response:

I 00
f(t,7) = Cne™g, () |0 1 0| By. (10.34)
000
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Then:

h ph
|Fll7s = trace Uo L f(t,2)'f(t,7)dtdr

I 00 100

= trace thJ.hBICEAT(hﬁ) 01710 §,(ej€)*eATtC§CNeAt§,(e/6) 0 I 0]|eM"9Bydrde
_0 ’ 000 000
I I 00 I 00

= trace JhB,ieA’(”*ﬂ 0 1 0|g()Cl Cung,(¢?)|0 1 0|er)Byde
_O 000 000
I 100 100

= trace Jh 0 1 0|M=9ByBTA =10 [ 0 d( () CL CanZ, (€ ))
_0 000 000

= trace[BusBL,3,(¢”) CL Cang,(¢’)] = trace[B, g, (¢%) C, .Caurg,(¢°)Bas].-
(10.35)

So (10.33) can be calculated as the H, norm of Cyy.g, (e’g)B,W which corre-
sponds to the H, norm of G, ¢

To determine the Generalized H, Norm several calculations need to be done,
among these are:

~112 hopt .
HDH — trace (J J BTN ’CAT,CNeATBNdrdt)
HS 0 Jo

I 0 0 1 00
Py P —A ByBY
BuxBE =10 1 0|PLP,|0 I 0, with =exp|h
0 Py AT
0 0 0 0 0 0
My My -AT CyCy
C! Cau = MLM 5, with =exp| & :
0 My 0 A
(10.36)

Note that in this particular case it was relatively easy to separate the infinite
dimensional components of the system from a finite dimensional core component.
This is not always possible. In particular one might be tempted to apply the previous
techniques to obtain a finite dimensional auxiliary discrete LTI that can be used to
solve an H; optimal control problem. The described separation technique cannot be
carried out since the controller and observer gains operate over continuous signals.
Nevertheless it will be shown later how to address an H, optimal control problem
using other techniques.
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Fig. 10.3 Generalized H, norm of the instrument servo system as a function of the update time
intervals

Example 10.2 Consider the model and plant parameters used for the instrument
servo in Example 10.1. We also use the same controller and observer gains derived
for that example. The generalized H, norm has been computed for different update
time intervals 4. The results are shown in Fig. 10.3.

Since both performance measurements are defined in a different manner no real
comparison can be made between them. It seems though that the Generalized H,
Norm is more appropriate since it considers the application of the impulse input at
different times. Also its link with a well-defined operator-valued transfer function
makes it very attractive. The next subsection presents an alternate parameter
representation that overcomes the inconveniencies of dealing with infinite dimen-
sional operators.

10.2 Optimal Controller Design for MB-NCS

In this subsection we address the issue of designing optimal controllers for
MB-NCS. We saw previously that lifting can transform a periodic system such as
the MB-NCS into a discrete LTI system. Most results for the design of optimal
controllers for discrete systems directly apply to the lifted system. Since the
parameters of the lifted system are infinite dimensional, computations using the
integral representation given in (10.10) can be difficult. This is evident when one
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~ -1
considers operators such as (I - D D) , which appears for instance in sampled

data H, problems.

To circumvent some of the problems associated with optimal control problems,
an auxiliary discrete LTI system is obtained so that its optimal controller also
optimizes the lifted system. The separation of the infinite dimensionality from the
problem is not always guaranteed. In particular we note that the controller for
the auxiliary system works in the discrete-time domain while the controller for the
lifted system representing the MB-NCS in (10.10) works in continuous time. This
means the controller has to be obtained using the lifted parameters directly.

In this subsection we start by giving a brief summary of an alternative represen-
tation of the lifted parameters proposed by Mirkin and Palmor [181]. This alterna-
tive representation allows performing complex computations using lifted
parameters directly. Results on the computation of an optimal sampler, hold, and
controller are shown and their equivalence with the components of the output
feedback MB-NCS is shown.

The representation of lifted parameters proposed in [181] considers the lifted
parameters as continuous LTI systems operating over a finite time interval. The
main advantage of such representation lies in the possibility of simplifying opera-
tions over the parameters to algebraic manipulations over LTI system with
two-point boundary conditions (STPBC). These manipulations can then be
performed using well-known state-space machinery.

Consider the following LTI STPBC:

G: x(t) =Ax(t) + Bu(t), Qx(0)+ Tx(h)=0
Cx(t) + Du(r) (10.37)

<

—

=
Il

Here the square matrices Q and T" define the boundary conditions. It is said that the
boundary conditions are well posed if x(#) =0 is the only solution to (10.37) when
u(t) =0. It can be verified that the STPBC G has well-posed boundary conditions if
and only if the matrix:

Ee = Q4 Tet (10.38)
is non-singular. If the STPBC G has well-posed boundary conditions, then its
response is uniquely determined by the input u(¢) and is given by:

h

3(6) = Du(t) + JO Ko (6, $)u(s)ds (10.39)
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where the kernel K5(2, s) is

CAEZQe™ B
Kc;(l, S) =
—CeMES TeA B

given by:
if0<s<

if0<r<

We will use the following notation to represent (10.37):

AlQ=T|B
G—<E 5)

t<h

s<h
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(10.40)

(10.41)

The following is a list of manipulations that are used to perform operations over

STPBCs.
1. Adjoint System

* _AT
o= <_—BT

ThanTeT—1 — oT=T—1,ATh
AR = QMEL e

2. Similarity Transformation: (for 7 and S non-singular)

ro7- - (TAT | sQr! = s777" |TB
cr™! D)
3. Addition
Al 0 Bl
0 Az |:Ql 0 :l N l:Tl 0 :| Bz
G +Gy, = —
I e 0 T2 b, D,
4. Multiplication
A B, B\D,
G | 0 A [Ql 0}:[% 0] B,
2T DG L0 @ 0 T2] |pD,

(10.42)

(10.43)

(10.44)

(10.45)

5. Tnversion (exists if and only if det(D) 0 and det (Q + Te(A—BD"C)h) £0)

o1 (ABDIC Q=17 |BD"!

-D7'c D!

).

(10.46)
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This representation reduces the complexity of computing operators such as

~ o~ 1
(1 - D D) . Using the integral representation of (10.10) one can get that
£ = (I — D" D) ' if and only if:
h s
w(1) = &) +J BJCe_AT“_S)C]CCNJ AMNOIBE(7)drds (10.47)
1 0

It is not clear how to solve this equation. On the other hand using the alternative
representation we note that:

~ AN|I=0 |By
D=|— — . 10.48

Using the properties previously listed we obtain:

o = I=0 I=0
(1_D*D) oA Bv) [ A By
Cy 0 Cy 0
_AT C}ch 0 (10.49)
00 I 0
— | -ByBl, A = By
_Blg 0 0 I 0 0] |1

To be able to represent operators with finite dimension domains or ranges such as B

and C two new operators are defined. Given a number 6 € [0, k], the impulse
operator Iy transforms a vector # € R” into a modulated impulse as follows:

¢ =gy iff ¢(r) =6(r — 9)n. (10.50)

Also define the sample operator I, which transforms a continuous function
¢ € C,[0, 1] into a vector n € R" as follows:

n =1l iff n=¢(0). (10.51)

Note that the representation of I is as the adjoint of Iy, even when this is not strictly
true, it is easy to see that given an /# > € the following equality holds:
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h
(e Ton) = [ o) (Ion)(e)dz = <(0)"n = (Tye, ) (10.52)

The following is a summary of technical results extracted from [181] that can be
used to address problems involving lifted parameters.

Lemma 10.4 The parameters of a lifted system G = LGL™" of a continuous LTI

system G = [é_| %} are given by:

A B

C D

I 0 i Iy O
— | 1100]]°
Eole]ae s

Lemma 10.5 Given an STPBC, G, on the interval [0, h] with D =0 then
(Gly)" =L;G* and ([;G) =G (10.54)

forany 0 € [0, h].

=

A —
Lemma 10.6 Let G = | — Q=T E , then:
C D

I;Gly = Ce* (Q + Te) ' QB,

Z 10.55
;G = —C(Q + Te) ' TB, (1053)
and if in addition CB =0, then
I:Gly = C(Q + Te') 'QB
iGlo = C(Q + Te™) 0B, (10.56)
I;Gl, = —Ce*"(Q+ Tet") ™ TB.
Lemma 10.7 Let
Al Ql:Tl Bl Al Ql:Tl I
G =|— —, Gc=|— — 1,
"l D, R Wal 0
(10.57)
A | Q=T | B2 Ay | Qy =Ty | B2
G,=|— — |, Gp=|—F —1,
SR 'oN D, B2 i 0

and A1, Ay, be either 0 or 1. Then for any appropriately dimensioned matrix M:
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G1Gy + Geily M1, Gpa

Ay BiC, B\D,
_lo 4 {91 (lﬂz>M1}ﬁ[T1 Ale} B, (10.58)
C] D]Cz 0 Q2 0 Tz DlD2

where M[ :(}\IT[ —(] —AZ)QI)M

The presented results allow us to make effective use of the impulse and sample
operator. Namely the last two lemmas show how to absorb the impulse operators
into an STPBC. Now let us present a result that links the solutions of the lifted
algebraic discrete Riccati equation and the algebraic continuous Riccati equation
for the continuous system for the H, control problem.

Lemma 10.8 Let the lifted algebraic discrete Riccati equation for the lifted system
G = LGL™! be as follows:

~ o~ ~ o~ ~ o~~~ g~ ~ A~

ATXA—X +C* E—(ATXB +E*B) (B*B+BTXB) (D* E+BTXA) —0
(10.59)

and let the algebraic continuous Riccati equation for G be:
ATX + XA +C'C — (XB+C"D)(D"D) " (D"C + B'X) = 0. (10.60)

Then the conditions for existence of a unique stable solution for both Riccati
equations are equivalent. Moreover if they exist, then X = X.

This implies that in order to solve the optimal control problem we just need to
solve the regular continuous Riccati equation. We can for example obtain the

~ ~ o~ o~
optimal H, state feedback “gain” given by F = —(D*D+B*X B)

(B* E—f—IE*XX) It can be shown [181] that:

~ A + BF = 1
F:(+ ! 0-). (10.61)

F 0

Here F is the H, optimal control gain for the continuous system. Note that the
expression in (10.61) exactly represents the dynamics of the actuator/controller for
the state feedback MB-NCS when the modeling errors are zero and the feedback
gain is the H, optimal feedback gain. Finally, we present the following result that
obtains the H, optimal sampler, hold and controller.
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Lemma 10.9 Given the standard assumptions, when the hold device is given by
(Hu)(kh+ 1) = ¢pp(t)ur, Vr € [0,h] and the sample device is given by
Sy = fg(,bs(r)y(kh — 17)dz, the H, optimal hold, sampler, and discrete controller

A | B, B,
for the lifted system G = LGL™' with G = | C1| 0 Dy, | are as follows:
Cy Dy O
Hold : ¢y (z) = FeWtBh)r
Sampler :  ¢g(7) = —eAHC)TL
0|7
Controller: K, = 7lo (10.62)

h
where : @ = A+B2E)h J ATLO) =0 [ 0, o(A+BF)7 g
0

Remark Note that the H, optimization problem solved in [181] is related to the
Generalized H, norm previously presented. That is, replacing the trace norm with
the Hilbert-Schmidt norm.

As it has been observed, there is a strong connection between the H, optimal
hold of a sampled system and the H, optimal controller of the non-sampled system.
As pointed out in [181] it is clear that the H, optimal hold attempts to recreate the
optimal control signal that would have been generated by the H, optimal controller
in the non-sampled case. That is, the H; optimal hold calculated in [181] generates a
control signal identical to the one generated by the non-sampled H, optimal
controller in the absence of noise and disturbances.

Another connection exists between the H, optimal sampler, hold, and discrete
controller calculated in [181] and the output feedback MB-NCS. It can be readily
shown that, under certain conditions, the optimal hold has the same dynamics as the
controller/actuator in the output feedback MB-NCS. This is true when the modeling
errors are zero and the gain is the optimal H, gain. The same equivalence can be
shown for the combination of the optimal sampler and discrete controller dynamics
and the output feedback MB-NCS observer.

The techniques shown here can be used to solve robust optimal control problems
that consider the modeling error. This is possible due to the alternative representa-
tion that allows the extension of traditional optimal control synthesis techniques to
be used with the infinite dimensional parameters that appear in the lifted domain.

10.3 Notes and References

Optimal performance and optimal controller design represent an important subject
in control systems. In Sect. 10.1 performance of the MBNCS framework using
periodic update intervals was analyzed based on lifting techniques. The results in
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Sect. 10.2 provided a technique to design optimal controllers for MB-NCS with
periodic updates. In many scenarios the decision on whether or not to transmit
certain measurements is also an important part of the overall performance of control
systems that send information through a limited bandwidth communication chan-
nel. In Chap. 9 we considered this situation. The main goal is to find the optimal
transmission instants which are not periodic in general. Section 10.2 also contains
discussion of the techniques described in [181] and their application to optimal
control synthesis problems. Specifically, here an alternative representation of the
lifted system parameters is introduced. This allows for efficient computation of the
optimal gains for the controller and observer.

The work described in this chapter can also be found in [185,
190]. Description and applications of lifting techniques in general can be found in
[16, 26, 42, 63, 130, 181].
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Chapter 11
Reference Input Tracking

Previous chapters of this book have mainly considered the stabilization problem
under different communication constraints. The focus of this chapter is the design
of model-based controllers for tracking of external reference inputs and the analysis
of performance of the Model-Based Networked Control System (MB-NCS) under
the main communication constraint studied in this book which is the absence of
feedback measurem/ents for extended periods of time. In general, the exact tracking
of a reference input in a Networked Control System (NCS) is a difficult problem
mainly because we can measure and use feedback only at discrete-time instants.
The difficulty is increased if there is uncertainty in the plant parameters since
control methodologies that achieve a zero steady-state error rely on the exact
knowledge of these parameters. In this chapter a controller is designed based on
the model of the plant. An MB-NCS configuration is used for the analysis of the
resulting NCS that includes the model, the controller, and the plant.

In this chapter, two different configurations are proposed for the tracking problem
over networks. The first one assumes the whole state can be measured and can be
used to update the model state. A periodic communication strategy is implemented
which permits the tracking of different types of reference signals. The second
configuration is intended for applications where state measurements cannot be
obtained and only a system’s output can be measured. The model in this case is
implemented in a very different form than previously seen. The state-space model
is changed to an input-output model of the system. This type of modeling provides
a great advantage with respect to the types of uncertainty we are able to deal with.
By using this configuration, we are able to control systems with uncertain parameters
and also with unknown order dimension of the state space. In previous chapters it
was always assumed that the dimension of the system is known. In this chapter we
relax the known order constraint and use a model of the system that is not necessarily
of the same order as the real plant. Section 11.1 describes the reference input tracking
controller using state feedback and using the model-based approach. The analysis of
the resulting MB-NCS is presented in Sect. 11.2. Section 11.3 presents a model-
based configuration for tracking reference inputs using discrete-time systems and

E. Garcia et al., Model-Based Control of Networked Systems, Systems & Control: 253
Foundations & Applications, DOI 10.1007/978-3-319-07803-8_11,
© Springer International Publishing Switzerland 2014
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using input-output model representations of the system. This section also includes an
extension to consider network induced delays using the described model-based
configuration. Notes and references are provided in Sect. 11.4.

11.1 Reference Input Tracking Controller

In this section we consider linear time-invariant systems of the form:
X =Ax+ Bu+ Pw (11.1)

where x € R” is the state of the plant or physical system to be controlled, u € R™ is
the control input, and w € R’ is the reference input that the controlled system
attempts to track or follow. The matrices A, B, and P are of appropriate dimensions.
There is no restriction on the stability of the original system. The physical plant may
be unstable, i.e., one or more of the eigenvalues of matrix A may have positive real
parts. It is assumed that the exogenous signal w is the measurable output of the
autonomous linear time-invariant system:

W= Sw. (11.2)

We consider the scenario where the state of the plant is measured by a sensor and
broadcasted to the controller through a communication network. This means that
the controller does not have access to the state x(¢) at all times but only at some
instants or periods of time. For our purposes we assume that quantization and delay
effects are negligible. We propose an MB-NCS solution in which a model of the
physical system is used in the controller node. The model is represented by:

X =AX +Bu+Pw for te I:[k,tk+1> (11.3)

where X €ER”" is the state of the model, and at the time instants 7, we have
X(ty) = x(tx). h=tyy1—t; represents the constant update period. The model
parameters A,B,P represent the available model of the physical system. We
assume this model is known and we consider model uncertainties resulting from
errors in parameter estimation techniques or other possible inaccuracies. A does not
have to be a stable matrix since it is an estimate of the system matrix A which may
be stable or unstable. The state of the model is used by the controller to generate the
control input u = f (&, w). The controller then has access to the state of the model at
all times and when a measurement of the state of the plant arrives at the controller,
this measurement is used to update the internal state of the model. A representation
of the interconnections within the actuator node in this case is shown in Fig. 11.1.

The dynamics of the model and the plant are similar to those of standard
MB-NCS schemes but now we include a reference signal w which is only available
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Fig. 11.1 Model-based networked control system actuator/controller node for tracking
of a reference input

at the controller node. We follow the procedure in [39] in order to obtain a feedback

controller that ensures zero steady-state tracking error for the nominal closed-loop

model. Then we study the tracking properties of the networked uncertain system.
The control input is given by:

u=Tw+K(x —Iw). (11.4)

Three control parameters are needed in (11.4). The control parameters IT and I
are obtained by solving the next equations that involve the parameters of the
nominal model:

NS =AMl +BT +P

. (11.5)
0=Ccli+0Q
and the control parameter K is such that the closed-loop matrix A + B K is Hurwitz.
The plant tracking error is defined, in general, by:

e =Cx+ Ow. (11.6)

This definition allows reference input signals that may not necessarily have the
same dimension as the output. A particular case of (11.6) is when each element of
the state follows a corresponding element of the reference input. In this case both
the state and the reference input need to be of the same dimension.

Before we analyze the MB-NCS using the controller (11.4), let us briefly study
the properties of the closed-loop nominal model using the same controller. This is
the case in which we only consider the model with control input (11.4) with no
model updates taking place. Define the model tracking error:

¢ =Cx +0w. (11.7)



256 11 Reference Input Tracking

This error characterizes the difference between the model response and the
reference input. It is easy to show that (11.4) guarantees zero steady-state model
tracking error. To see this we define the auxiliary model tracking error:

Eaqr =X — TIw. (11.8)

Then, the time derivative of (11.8) is given by:

ELL\'

Il
A~ 2 =

Iy )

£ +B(Tw+ Kt —KIw) + Pw — (ATI+ BT + P)w (119)

A +BK)é 4.

Also note that ¢ = Cé,, then the model tracking error is asymptotically stable
(zero steady-state error) since A + BK is Hurwitz.

When we implement this controller in order to stabilize a networked uncertain
system and to make that system follow the reference input, we need to consider
model uncertainties and unavailability of the state of the plant. This is a more
complex problem and the tracking performance of the networked system consider-
ably deteriorates with respect to that of the nominal closed-loop system. The
MB-NCS architecture which uses an explicit model of the system to generate an
estimate of the state between network update intervals provides a simple approach to
improve such performance and to characterize the tracking error of the networked
uncertain system.

11.2 Discretized Input Tracking Analysis

In general, an exact model of the physical system is unavailable. The available
nominal model (11.3) is used instead to solve the controller equations (11.5).
Consider the model tracking error (11.7) and for the moment let C = C =1 and
Q = — 1, this is the particular case in which each element of the state x has to track
or follow the corresponding element of the reference input w.

Since the controller is designed using the model parameters A ,B ,f’ , the model
tracking error time derivative is given by (11.9) with € = ¢ ,, since C =1.

The plant tracking error cannot be expressed directly in terms of itself only, but it
follows the more complex dynamics:

& =i —Iw=Ax+B(Tw+ K% — KIIw) + Pw — (ATI+ BT + P)w. (11.10)
As it can be seen in (11.10), the parameters of the plant and the model are

involved in the dynamics of the error. This is expected because the control input of
the plant is given in terms of the state of the model and the controller was designed
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usmg the model parameters. Let us define the error system parameters A=A—A,

B=B—B,P=P—P and use them to express the tracking error dynamics in a
more compact way:

:e:Ae+BKé+(KH+Er+ﬁ)w. (11.11)

Equation (11.11) is a useful result that will give rise to a discrete-time equivalent
system as it is shown next.

The aim here is to obtain a discrete-time equivalent description of the dynamics
of the model tracking error £ and especially, of the plant tracking error . This is
done by considering a periodic update interval #, that is, we measure the state of the
plant, send this value through the network and use it to update the state of the model
every h time units.

Theorem 11.1 For any bounded reference input the plant tracking error response
is bounded if the eigenvalues of F are inside the unit circle, where

h
F=ec"y JeA“l*’)BKe(A Ky (11.12)
0

Proof First, we find the response of the model tracking error in the interval
t € [, t; +1) with initial condition & (#):

é (1) = eAHBR) =104 (1) (11.13)

where #;, | — #; = h. Note that at times #; we update the model % (#;) = x(#;) which
makes & (#;) = &(f) and (11.13) becomes

& (1) = eAHBR) =t (g, (11.14)

Now, the response of the plant tracking error can be found as follows:

t 1
e(r) = A We(n) + JeAO”)BKé (7)dr + JeA<”T> (ZH + BT + ﬁ) Sz,

Ik Ik

(11.15)
Using (11.14) we can write (11.15) at time #;, ; in closed form:

e(ter1) = Fe(ty) + Gw(ty) (11.16)



258 11 Reference Input Tracking

where F is given in (11.12) and

h
G= Je/“h*f) (Kn+§r+ﬁ)esfdr. (11.17)

0

Equation (11.16) describes the plant tracking error dynamics at the time instants
when the state of the model is updated and it is a function of the values of the
tracking error and the bounded reference input at the previous update instant. Then,
we can conclude that the error dynamics are bounded for any bounded reference
input. By (11.6) we can write for this special case:

X(l‘k) = E(l‘k> + W(lk). (1 1.18>

The state of the plant is the sum of two bounded signals; therefore it is also a
bounded signal. *

Example 11.1 The system and the model are described respectively by:
1.8634  0.8851 1 0 1 0
—0.1590 1.2174 0 1 0 1
A 2 1 B 1 0 B 1 0
=G) o= loy) e )

The reference input is a sinusoidal signal which is bounded in magnitude.
The reference input matrix is given by:

0 1
S = .
-1 0
It is assumed that the state can be measured at a constant rate and that every
state element is set to follow the corresponding element of the reference input.

The constant update interval is given by 7=0.2 s.
The controller parameters are given by:

K — —33.6815 —0.5318 r— -3 0
~\ —0.5318 —32.6509 o -1 =2/
The results from the simulations are shown in Figs. 11.2 and 11.3. Figure 11.2
shows the sinusoidal reference input and the response of the system. There is also

uncertainty in the initial conditions on the networked system. Before the system
starts operating there is no knowledge of the value of the reference input or the
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initial conditions of the plant. The initial conditions for the reference input and
the plant were given respectively by:

ro=[ 1", x=[-05 15"

but, since the model does not have any of this information the model initial
conditions are set as:

fo=100 0],

This uncertainty in the initial conditions is observed at the beginning of the
simulation. We can see in Fig. 11.3 that the tracking error has significantly larger
magnitude before the first few updates of the model take place than in its steady-
state response. After a few updates we can see in Fig. 11.2 that each state of the
plant follows the corresponding element of the reference input.

It is also worth mentioning that if in this example we employ a ZOH in the
controller node instead of the nominal model of the plant then the networked system
is unstable for the sampling interval used before, 7 = 0.2 s. According to simulations,
for this ZOH case we have to reduce the sampling interval to about #=0.055 s, in
order to obtain a stable networked systems and a bounded tracking error.

11.2.1 Inter-Sample Behavior Analysis

Equation (11.16) establishes boundedness of the tracking error at the updating
instants as long as the sampled matrix F in (11.12) has all eigenvalues inside the
unit circle. The signal w is an external signal for which we have no control but it is
assumed bounded at all times. The response of the tracking error (11.16) was
simplified at the updating instants by realizing that at those instants € (z;) = &(),
but between updates of the state of the model we have that the tracking error
is described by (11.11). In this section we will formally establish a bound for the
inter-sample response of the tracking error.

Theorem 11.2 Assume that |A| < AA, |B| < AB, and |ATI+ BT +P| < A are

known bounds on the uncertainties; also assume that the sampled-data tracking error
is bounded as expressed in Theorem 11.1. Then the growth of the tracking error in the
inter-sample intervals t < [ty, t,, 1) with constant h=t;, | — t, is bounded:

le(h)| < <|8(tk)|(l +Zb+K/;|) . %)eah

ablK (11.19)

a+p

Aw
—ph

t PR —

‘8( k)|e a
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where a = |A | +AA, b= }B | + AB, and |w| < w. The parameters a, >0 are
known constants that represent bounds on the response of the compensated model.

Proof In order to bound the inter-sample behavior let us look at the dynamics of lel:

d e~ o
Zlel < JAlle| + |BK||é| + |ATI + BT + P| i
(11.20)
< JAle] + |BK|[e(# +88) 00

le(t)| + ’KH + Bl +P|w

for t € [t t;+1). Without loss of generality let #,=0 and using the bound

‘e(A +BK)r < ae~P" we obtain:

d
%|€| < ale| + ab|K|e " |eg| + AW. (11.21)

Consider the differential equation:
¢ = ap + ab|K|pge " + AW (11.22)

where ¢ = legl = le(#;)l. Equation (11.22) represents a bound on the rate of growth
of the norm of the tracking error between update instants. Then we can conclude
that le()l < p(t, po), where ¢(t,¢pg) is the solution of (11.22) satisfying
¢(0, o) = ¢o. Such solution is given by:

_ ab|K| ﬂ at ab|K| —pt @
P(1) = <¢0<1+a+ﬁ> +— )e a+ﬂ¢’°€ —. (11.23)

Note that it is easy to show that ¢(¢) > 0 for ¢po > 0, V¢ > 0, and the typical case in
which the compensated model is stable. Now we are able to establish a bound on the
growth of the tracking error between updates in the model state, that is, in the
intervals ¢t € [f;, ;+ 1) which is given by:

LK\ AW bIK A
le(h)| < p(h) = <¢0(1 +Z+ﬂ|> +7W>e"” —%ﬂl%e—/f" —TW. (11.24)
.

Remark The tracking error may grow by some amount between updates on the
state of the model. This variation in the tracking error depends on the uncertainties
and the open-loop response of the system and, especially, on the size of the updating
interval A. Intuitively we can reduce the increase of the tracking error between
updates by reducing #; this also can be shown by taking the limit of (11.24) as
h goes to 0, namely
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lim ¢(h) = ¢y

ab|K]| Aw  ab|K]| Aw
lim I+—— ] +—- -——=

11.25
o) e e e =t (1129)
and ¢o=Ile(#)! is bounded if F in (11.12) has all its eigenvalues inside the
unit circle.

11.2.2 Reference Input Tracking for General System QOutput

The discrete-time error model obtained in previous sections assuming that C = C=1I
and Q = — I can be generalized to make the output of a system, which is a linear
combination of the states, track a linear combination of the reference input signals,
as expressed in (11.6) and in (11.7) for the model tracking error.

We can show from (11.7) that the model tracking error can be expressed as:

fo=Ci+0w=C(x —Iw)=Cé. (11.26)

Here, we distinguish between the output model tracking error &, and the model
tracking error € . More specifically, the former is a linear combination of the compo-
nents of the later. Since our purpose is to stabilize the error dynamics, the stabilization
of the model tracking error corresponds to the stabilization of the output model
tracking error. The same approach is considered for the plant tracking error. In view
of (11.6) we can express the output plant tracking error as:

£, =Cx+Qw=Cx—CIlw=C(x —IIw) + Cllw = Ce + CTlw ~ (11.27)

where C = C — €. We obtain the discrete-time model for the plant tracking error
signal and for the reference signal. The first is given by (11.16) and the second by:

W(Ik+1) = eShW(lk). (1128)
Then the discretized output plant tracking error is given by:

S(Ik_H) = F&‘(Ik) + GW([k)

~ (11.29)

gu(tk) = C&‘(tk) + an([k).
Corollary 11.3 The plant tracking error response for the MB-NCS in Fig. 11.1
with general values of C and Q is bounded for any bounded reference input if
the eigenvalues of F lie inside the unit circle. *
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11.3 Output Feedback Tracking Using Different
Dimension Models

The work presented in previous chapters in relation to the MB-NCS framework
with model uncertainties assumes that the model is of the same order or dimension
as the real plant. The new MB-NCS architecture described in this section not only
generalizes to the case of output feedback but it also considers different types of
uncertainties, such as multiplicative and additive uncertainties that result in the real
system being of different dimension than the available model. The results in this
section consider Single-Input Single-Output (SISO) systems using output feedback
and dynamic controllers. The objective is to minimize the steady-state plant
tracking error for step reference inputs while also considering a reduction on
network communication.

In contrast to the previous results in this book, we do not assume that the entire
state vector is available for measurement but only a single output of the system.
In order to obtain a better tracking performance and to avoid the implementation
of state observers using uncertain parameters, we use a transfer function represen-
tation for the model and the system. We consider discrete-time systems which are
modeled by:

>
~

boz™ 4+ b2 + by 4 by b,
T(z) = (2) _ bo" + 12" + bz +Omo12 (11.30)
U(z) 2"+ az"7'+a"2+...4a,.1z+a,

where z is the Z-transform variable and 7(z) is the transfer function. We consider
strictly proper systems, i.e., n>m. The plant model may be unstable i.e., not all
poles of the transfer function f(z) have magnitude less than 1. We consider
uncertain systems that can be described using stable and proper multiplicative or
additive uncertainties,

T(z) =T (z) - ATy(z), T(z) =T (z) + AT(2). (11.31)

As a result, the model and the system are, in general, of different order. Let T(z)
represent, in general, a multiplicative or an additive uncertainty. If a state-space
representation is to be used, we will find that the model and plant state vectors have
different dimensions and this type of uncertainty has not been considered yet in the
MB-NCS setup described in this book. In order to deal with this dimensionality
problem, we implement the discrete-time model as a simple difference equation
which represents the time-domain equivalent of (11.30). The output measurements
are used directly to update the model without need of implementing a state
observer.

In order to find the time instants that the sensor needs to send a measurement
to update the model in the controller node we implement an event-triggered



264 11 Reference Input Tracking

To system
u
r Ct
T ’ Controller
y
Model <4—
Set-point
Detector measurement update
(from network)
* To network

Fig. 11.4 Model-based set-point tracking networked system: actuator/controller node

From system
y Y

Ve Scheduler
+ 0 ' of events

Copies of Model ‘
and Controller

set-point update To network
(from network) A 4

Fig. 11.5 Model-based set-point tracking networked system: sensor node

strategy as in Sect. 6.2 of Chap. 6 instead of using periodic updates. The difference

in this case is that we are only able to measure the output of the system. The output
error is given by:

e(k) = 3 (k) - y(k) (11.32)

where y(k) is the output of the system and y (k) is the output of the model.

The actuator/controller and sensor node architectures for the set-point tracking
model-based problem are shown in Figs. 11.4 and 11.5. Figure 11.4 represents the
actuator/controller node and it contains the model of the system T (z), the controller
C(z), which is designed based on the available model, and the set-point detector.
The function of the set-point detector is to determine the time instants at which
the reference input, which is only available at the controller node, changes its
set-point value in order to transmit this information to the sensor node using the
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communication network. Figure 11.5 represents the sensor node. The sensor needs
to compute the output error (11.32), and compare its absolute value to a fixed
threshold. When the error is greater than the threshold a measurement update is
triggered and the current and n-1 past measurements of the plant are sent to the
controller node. In order to calculate the output error, the sensor needs the current
value of the model output y (k) in addition to the plant output measurements.
The exact copy of the output of the model can be easily obtained without sending
frequent information as follows: copies of the model and controller are
implemented in the sensor and at the time instants when the reference input changes
values the controller node only needs to transmit the new set-point value. When a
reference input value is received at the sensor node, it is held until a new value
arrives. In addition, when the event scheduler at the sensor node decides that a
measurement packet needs to be sent to update the model in the controller then it
also updates the model in the sensor node using the same measurements.

The overall approach can be used for tracking of different types of reference
input signals but it will be necessary to obtain an accurate estimation of the external
input in the sensor node or to increase the communication rate from the controller to
the sensor which is undesirable in networked implementations since other systems
and applications may need to communicate information. For this reason, we restrict
this framework to track piecewise constant signals which is general enough for
many applications [217, 249].

The output feedback problem in MB-NCS has been studied mostly through the
use of state observers as in Sects. 3.1 and 3.2. The implementation of a state
observer, of course, is obtained using the model parameters. For traditional
non-networked systems, that is when continuous feedback is available, and in the
absence of model uncertainties the design of observer and controller gains can be
done independently from each other, i.e., the separation principle holds. However,
in most real-life problems there exists a plant-model mismatch and we need to
design a controller that meets the specified requirements and that is also robust
to model uncertainties.

The design of a state observer for a non-networked uncertain system is a more
difficult task than for a system without uncertainties. Additionally, the results are less
satisfactory. In particular, the separation principle does not hold any longer and the state
observer error can be generally bounded but it does not asymptotically converge to 0.

Consider a sensor that provides output measurements continuously (not the
whole state) and the system is driven by a reference input signal u. The system
equations are represented by:

x(k+1) :Ax(k) —|—Bu(k),

y(k) = Cx(k) + Du(k) (11.33)

and the observer by:

X(k+1) = (A —LC)X(k) + (B — LD )u(k) + Ly(k) (11.34)
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where A,B,C,D are the available matrices representing the system dynamlcs
Define the estimation error & = x — X and the error matrices: A=A — A, B =B

-B , cC=Cc-¢C R andD = D — D .Inthe presence of model uncertainties, because
of the plant-model mismatch, it is not possible to perform a perfect estimation of the
plant non-zero states as in the case when the observer parameters are the same as
those of the plant. In general, if we analyze the estimation error dynamics by
explicitly taking into account the difference between the plant and model parameters
we have, from (11.33) and (11.34), that the error dynamics are described by the
next equation:

e(k+1)=x(k+1) —x(k+1)

~ - ~ ~ 11.35
= (A —LC)e(k) + (B — LD)u(k) + (A — LC)x(k). (11.35)

Equation (11.35) shows that in order to obtain asymptotic estimates of a system
states using imperfect parameters of that system we need a zero reference input and
a state that tends asymptotically to zero as time tends to infinity. The implementa-
tion of this type of state observer in MB-NCS works for stabilization as it was used
in Chap. 3, but for the tracking problem the input u contains a non-zero component
that results in non-zero steady-state estimation error.

In this work the model in both the controller and the sensor nodes is
implemented as a difference equation which represents the time-domain equivalent
of the transfer function (11.30). The absolute value of the output error is compared
to a fixed positive threshold a. When the relation le(k)l > a holds then the sensor
transmits a measurement update. At this point, the output error (11.32) is set to
0, since the model output is equal to the real output of the system. Therefore, the
output error is bounded by:

le(k)| < a. (11.36)

When the sensor decides that a measurement update needs to be sent according
to the current output error, then it sends the current and n-1 past output measure-
ments which are used to update the model in the controller. At the same time the
sensor uses exactly the same measurements to update its own copy of the model.

Next, we provide conditions under which we are able to stabilize uncertain
unstable systems with limited feedback. Furthermore, by using the internal model
principle [61, 75] we are also able to bound the steady-state tracking error.

Theorem 11.4 The plant output tracking error is bounded for any bounded
reference step input if

(a) The term 1+T(z)C(z) has all its zeros inside the unit circle.
(b) The denominator of the controller C(z) contains the factor (z-1).
(¢) The poles of T(z) have magnitude less than one.
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Proof First, define the plant output tracking error

E(z) =R(z) — Y(2) (11.37)

E (z) =R(z) = Y (2). (11.38)
The output of the plant is given by:
Y(2) = TE)CRE (2) = T()CE)[RE) - 7 (2)]
and using (11.32) we obtain the following:

Y() = TuGRE) - Tu()EC) (11.39)

T(z)C(z)
where T(z) = T+ TG)C0)

The output tracking error is given by:

E/(z) R(z) + Ty(2)E(2). (11.40)

T 1+ T()C()

The reference input term in (11.40) is asymptotically stable for constant refer-
ence inputs r(k) since the zeros of 1+7(z)C(z) are inside the unit circle and at least
one of the poles of the controller is at +1. The second term in (11.40) contains the
stable closed-loop transfer function T,,(z) but the output error E(z) is not constant.
However, the output error is bounded by updating the model (and resetting the
output error) every time the error’s absolute value is greater than some positive
threshold a.

Stability of the networked system can be obtained from Theorem 11.4.

Corollary 11.5 The networked system (2) with model (1) is bounded-input
bounded-output stable with respect to the error (3) if

(@) The term 1+T(z)C(z) has all its zeros inside the unit circle.
(b) The poles of T (z) have magnitude less than one.

Proof In the presence of plant-model mismatch and for zero reference input, the
conditions (a) and (b) above are sufficient for stability of the networked system. In
this case the controller is not required to provide tracking performance and the
additional condition in Theorem 1 is not needed. The output of the system is given by

Y(z) = ~Tu(2)E(z) (11.41)

and the output error is bounded as before. *
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Remark The selection of the constant threshold @ is made considering the
following trade-off. A small threshold results in a smaller bound on the steady-
state tracking error but, in general, it increases communication rate by sending
measurement updates more frequently. A reduction on network usage can be
achieved by increasing the threshold at the cost of a larger steady-state tracking
error.

Remark The controller C(z) is designed in such a way that the closed-loop model
is stable and with desired properties by selection of desired closed-loop poles in
addition to providing zero steady-state tracking error in the absence of model
uncertainties.

Example 11.2 Consider the transfer function representation of the model of an
unstable system:

A 1
TP P —
() 2 -02z-09

The controller is designed in order to stabilize T (z) and to provide zero steady-
state model output tracking error to a step input and is given by:

@ 2.4487% + 0.3834z — 1.881
Z) = .
23 +0.222 +0.89z — 2.09

The real system consists of the model dynamics and the following multiplicative
uncertainty:

_z+0.61
24055

ATM (Z)

Then, the dynamics of the real system are given by:

z+0.61

T(z) = .
(2) = 370352 ~ 1.01s — 0,495

The reference input is shown at the top of Fig. 11.6 along with the output of the
real system. The bottom of Fig. 11.6 shows the output tracking error E,(z). The
output error E(z) is shown at the top of Fig. 11.7, where a constant threshold
a=0.02 was used. The network communication signal n.(k) represents the time
instants at which output measurements are sent from the sensor node to the
controller node.

1 if measurements are sentattime k

ne(k) = { (11.42)

0 if measurements are not sent at time k
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11.3.1 Output Feedback Tracking with Delays

The results in the previous sections of this chapter assumed zero delay when
information is sent from the sensor to the controller node using the communication
network. By the nature of the event-triggered strategies, it may happen that several
systems attempt to access the network at the same time in order to update their
corresponding controller node. In this case only one node can gain access and the
rest need to wait until the network turns into an idle state.

An approach to consider network induced delays within the MB-NCS frame-
work is to propagate the delayed measurements received at the controller, i.e., to
estimate the current output of the system based on the delayed measurements using
the model parameters; refer to Sect. 3.3. In this section we introduce a different
approach for the single-channel networked system that provides better results in
terms of system performance and reduced network communication.

Assume that the measurement updates arrive at the controller/actuator node
d sampling times later, that is, when a measurement update is received at time k, it
corresponds to an event generated at time k-d which contains measurements y(k-d). . .
y(k-n-d). The advantage of using a transfer function representation in this case is
that the network induced delay can be represented by z~ . Assuming a constant delay,
we are able to jointly model the dynamics of the system and the delay induced by the
network as follows:

Tuz) =T(z) % (11.43)

The new controller, represented by C4(z), is designed based on T 4(2), that is, the
controller stabilizes Td(z) and provides zero steady-state model output tracking
error. The model Td(z) is updated using the delayed measurements directly.

Theorem 11.6 The plant output tracking error corresponding to the networked
system (11.31) with induced delays and with model (11.43) is bounded for any
bounded reference step input if

(@) The term 1+ T (z)C4(z) has all its zeros inside the unit circle, where T (z) =T
(z)-z~ d

(b) The poles of T (z) have magnitude less than one.

(c) The denominator of the controller C(z) contains the factor (z-1).

Proof Let Y,(z) and Yd(z) represent, respectively, the outputs of the delayed
system and model T,(z) and T 4(z). Define the errors E;(z) =Y 4(z) — Y,(2),
El(z)=R(z) — Y4(2), E&(z) = R(z) — Y 4(z). It can be shown that the delayed
output tracking error is given by

1
El) = 1 4+ T4(2)Cy(z)

t

R(z) + T4(2)Ea(2) (11.44)
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where T4(z) = %. The error (11.44) is bounded by updating the
model using the real output of the system, that is, when the controller receives
delayed measurements it updates the model using those measurements directly, i.e.,
v (k)=y(k — d) = y,(k) which makes e (k) =0,

Since Etd(z) represents the delayed version of E,(z) then the output tracking error
is bounded as well. ¢

Corollary 11.7 The networked system (11.31) with induced delays and with model
(11.43) is bounded-input bounded-output stable with respect to the error (11.32) if

(@) The term 1 +T z)C,(z) has all its zeros inside the unit circle.
(b) The poles of T (z) have magnitude less than one.

Proof For a constant delay d, we are able to design a stabilizing controller C,(z)
for the delayed model 7 4(z) and for zero reference input, the conditions (a) and
(b) above are sufficient for stability of the networked system. In this case the
controller is not required to provide tracking performance and the additional condi-
tion in Theorem 11.6 is not needed. The delayed output of the system is given by

Ya(z) = —T(2)Ea(2) (11.45)

and the delayed output error is bounded as before. Since Y,(z) represents the
delayed version of Y(z), then the output of the system with no delay is bounded
as well. ¢

Remark One important aspect in the implementation of this approach for the case
of network delays is the computation of e, (k) = ¥ ;(k) — y(k — d). This task needs
to be accomplished at every sampling time which requires the comparison of the
outputs of the real system with no delay (11.31) and the delayed model (11.43). One
way to compute this error is to use old system outputs, but since the current system
output is available at the sensor node, then it can be used to compute the output error
e(k) instead of computing e,(k). Therefore we compute e(k) =y ,(k +d) — y(k)
and the quantity y ;(k + d) is obtained by executing the model in the sensor node
until time k+d in order to obtain an estimate of y,(k+d) = y(k).

Remark Controller complexity. The cost to be paid by using the approach described
in this section compared to the usual prediction using the model with no delay is in
the form of a more complex controller. The order of the controller increases since

C4(z) is designed to control the higher order model T a(2).

Example 11.3 (Uncertain system with delays). Consider the unstable model

. z+1 1
Ta®)= 530209 5

which models the dynamics of the system and a constant delay z~ > equivalent to a
3-sample delay.
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The controller is designed in order to stabilize T 4(z) and to provide zero
steady-state model output tracking error and is given by:

2.6382 — 1.1022* — 1.0612°

C = .
a(2) 26 4+ 0.225 + 0.8895z* + 0.357923 4 0.872622 — 2.141z — 1.179

As it was mentioned before, the complexity of the controller increases by
considering the model T 4(z) instead of 7 (z). The real system consists of the
model dynamics with zero delay and the following multiplicative uncertainty:

~ z+0.61

AT =—
u?) =370
then, the dynamics of the real system are given by:

7 224+ 1.61z40.61
23403522 - 1.01z—0.495°

T(z)

Note that the real system contains no delay since the delays are induced by
the network when a feedback measurement is sent from the sensor node to the
controller/actuator node. Good performance and reduction of communication are
obtained as shown in the simulation results shown in Figs. 11.8 and 11.9. Note that
the output error grows for a few sampling instants after an update has been sent
since the model is not updated until d =3 samplings later.
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Fig. 11.9 Output error for a =0.05 (top). Network communication instants (bottom)

The performance of the system using the delayed model and controller is
considerably superior to the propagation approach used in Chap. 3. In order to
show the improved performance, we simulate the same system and model using
the same reference input, delay, and threshold. The difference is that we use the
propagation method and the controller is designed for the no-delay model T (2).
Results of simulation are shown in Fig. 11.10, which shows a poor tracking perfor-
mance of the system and a significant increase in network communication.

Example 11.4 Stabilization over an additive Gaussian channel. We consider the
unstable system:

7(2) :
)=
72 -02z—-0.9

The system is assumed to be known. The measurements are transmitted over an
additive Gaussian channel modeled by:

Yo (k) = Hgy(k) + v(k)

where v(k) is zero-mean Gaussian noise with variance o, and y,(k) is the mea-
surement received at the controller node. The parameter H, is assumed to be
unknown and it represents the uncertainty in our approach in addition to the
Gaussian noise. Figure 11.11 shows the results of simulation when an impulse
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Fig. 11.11 Stabilization of system over an uncertain network. Output of the system for
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external disturbance perturbs the system and using H,=0.8 and ¢,=0.01.
The system is stable since the conditions in Corollary 11.5 are satisfied for this
channel uncertainty.

11.4 Notes and References

Preliminary results for the tracking problem using MB-NCS were discussed in [67,
71]. Two implementation cases were explained in [67] but they do not provide, in
general, small tracking errors. This motivates the search of improved architectures
that are able to achieve better, close to 0, steady-state tracking errors.

Section 11.1 and parts of Sect. 11.2 were presented in [93]. Section 11.3 was first
published in [89]. With respect to the work presented in Sect. 11.3 where output
measurements are sent directly instead of implementing state observers, similar to
the approach shown in Sect. 7.2, it is important to note the reduction in network
traffic by using this approach, as compared to the case in which a measurement of
the current output y(k) is sent at every sampling instant, even in the case when #n is
large compared to the inter-update intervals. This improvement is due to packet
structure in NCS.

The problem of reference input tracking in NCS has been considered by different
authors. Gao and Chen [97] proposed a new model which is based on the original
plant and the model reference system. This new model considers a zero-order-hold
(ZOH) in the actuator node and is formulated following a sampled-data approach at
the updating instants of the ZOH. Although parameter uncertainties are considered
in the controller design step, the nominal model is not used between updates to
estimate the state of the plant. Goodwin et al. [101] presented different NCS
architectures and compared their properties for typical problems such as distur-
bance rejection and input tracking. One of these architectures considers a model of
the plant and a model of the network channel properties. The objective in [101] is to
model the whole NCS at the controller node and generate a nominal output of the
system that is compared to the real output and feed the controller using the resulting
error. It is shown that under some conditions, this architecture outperforms the basic
ones that do not use a model of the system in the control loop. In addition, the
authors only consider uncertainty in the model of the channel, i.e., they assume that
a perfect model of the physical plant is known. In [271] the authors consider
the tracking problem in NCS subject to time-varying sampling intervals and
delays. Two approaches for modeling the NCS are proposed and conditions for
input-to-state stability of the tracking error are provided. Other approaches to the
networked input tracking problem can be found in [44] and [287].


http://dx.doi.org/10.1007/978-3-319-07803-8_7#%20Sec4

Chapter 12
Adaptive Stabilization of Networked
Control Systems

The applicability of Model-Based Networked Control Systems (MB-NCS) is often
limited by the inexact knowledge of the dynamics of the system being controlled.
The main motivation in this chapter is that the model state updates that we perform
at the controller node should not be restricted only to the state, but we can also
update the nominal parameters of the model as well. The performance of a
MB-NCS depends mostly on the accuracy of the model that we use for both
controller design and for implementation in order to estimate the real state between
update intervals. In this chapter we focus on applying identification algorithms in
the MB-NCS context. The main idea is to estimate the current parameters of the real
system since in many problems the dynamics of the system may change over time
due to age, use, or nature of the physical plant. In many other situations the initial
given model is simply outdated or very inaccurate. A better knowledge of the plant
dynamics will provide an improvement in the control action over the network, i.e.,
we can achieve longer periods of time without need for feedback. At the same time,
we overcome a possibly restrictive assumption in MB-NCS; namely that the
controller is designed to stabilize the real system. This assumption may be restric-
tive since our knowledge of the plant dynamics is limited. As we will see, the
identification process allows us to update not only the model but the controller itself
so it can better respond to the dynamics of the real plant being controlled.

There exist two typical approaches for system identification namely, parametric
and nonparametric [76, 163]. A parametric model may take different forms, the
most common ones are transfer functions (expressed as a polynomial fraction or in
poles and zeros form), state-space representations, and differential equations. In
these forms there exist coefficients (parameters) that specify completely the model.
Nonparametric models result generally from the data obtained from frequency
response methods. In these cases the system is subject to a wide range of inputs
in order to find a characteristic curve. A frequency response is difficult to obtain
while the system is in normal operation, limiting the use of nonparametric
approaches for online identification.

The estimated parameters obtained by means of recursive parameter identification
are used to upgrade an explicit model of the plant. The state of this model is

E. Garcia et al., Model-Based Control of Networked Systems, Systems & Control: 277
Foundations & Applications, DOI 10.1007/978-3-319-07803-8_12,
© Springer International Publishing Switzerland 2014
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used for control when no feedback information from the real plant is available. An
explicit model implies that a parametric model is needed. In order to achieve
the described goals we will follow the parametric approach in what follows.
The upgraded model is also useful to redesign the controller using the new parameters
and stabilize the plant in a specific way, e.g., selected pole placement or optimal
regulation by choosing appropriate weights. In the examples that concern stabilization
of MB-NCS shown in this section we opt to determine a Linear Quadratic Regulator
(LQR) problem every time we update the model of the plant. The complete
process, identification of parameters and controller recalculation, can be seen as an
adaptive stabilization scheme but in contrast to common adaptive techniques we do
not redefine the controller at each time instant, but only when new estimated param-
eters are received in the controller node. The main reason is that we aim to use the
network, either for state or parameter updates, as little as possible. When the controller
node receives updated model parameters, an LQR controller is calculated solving a
discrete-time algebraic Riccati equation using the same weights and the new param-
eters that were just obtained.

The contents of this chapter are organized as follows. Section 12.1 considers
parameter estimation and adaptive stabilization of systems with noiseless measure-
ments. Section 12.2 presents similar results when the Gaussian noise is added to the
measurements of the state. Diverse applications are explored in Sect. 12.3 where
the adaptive stabilization of MB-NCS is implemented. A different approach based
on Luenberger observers and additional measurements is described in Sect. 12.4.
We conclude with notes and references in Sect. 12.5.

12.1 Adaptive Stabilization of Deterministic MB-NCS

To start this section we consider plant and model dynamics that are described,
respectively, by:

x(k+1) = Ax(k) + Bu(k) (12.1)

2(k+1)=A%(k) +Bu(k) fork€ [kikis1) (12.2)

wherex, X € R" are the states of the plant and the model respectively,u(k) = KX (k),
k; represents the times at which the state of the model is updated using the current
state of the real system for i € Z*. In addition to updating the state of the model at
times k; the parameters of the model may or may not be updated at the same time
instants depending on whether new estimated parameters are available. The matri-
ces A ER™", B €R™" represent the parameters of the model that correspond to
the real system matrices A,B. The plant may be unstable i.e., not all eigenvalues of
A have magnitude less than 1.



12.1 Adaptive Stabilization of Deterministic MB-NCS 279

The model (12.2) represents a linear system but by introducing updates of its
state it can be seen as an impulsive system when the same parameters are used and
only the state is updated (state jump); this is a typical approach in previous chapters.
In the present chapter we update the state of the model and we update the
parameters of the model as well. So the model matrices switch when new parameter
estimates are obtained. Note that the real plant is a linear system and not a switched
one as the model (12.2). In contrast to the model, the plant always operates using the
same parameters and its state is never updated or reset.

12.1.1 Stability

In many applications it is convenient to drop the usual periodic update implemen-
tation in favor of one based on events, for example, the event that the plant-model
state error is equal to or greater than some predetermined threshold. This approach
was discussed in Chap. 6 for the case of continuous-time systems. A sensor node
within the network broadcasts its local state only when it is necessary, i.e., when a
measure of the local subsystem state error is above some predetermined threshold.
The error, in this case, is defined as the difference between the state of the model
and the state of the plant:

e(k) = % (k) — x(k). (12.3)

When we use an event-based strategy to update the model, both parameters and
state, we obtain the implicit advantage of extending the time intervals in which the
plant works in open loop. In this case a copy of the model is needed in the sensor
node to generate the model state and compute (12.3).

In view of the fact that we need to be able to identify a system in general state-
space representation, not necessarily in canonical form as discussed in the literature
[12, 138, 204] we will use the Kalman filter for identification of systems of the
form (12.1). For the case we receive noisy measurements of the state we will use the
extended Kalman filter (EKF), see Sect. 12.2.

The next theorem provides stability bounds of the discrete-time MB-NCS when
we update the model based on error events. In the sensor node we measure the state
of the plant and compare the norm of the error (12.3) to a predefined fixed threshold
a < co. The plant state is used to update the model state if the error is greater than
the threshold, i.e., when le(k)l > a.

Theorem 12.1 Assume 1x(0)l <, for 0 < f; < oo, then the networked system
described by (12.1) with state feedback updates triggered when le(k)l > a has
a bounded state if the eigenvalues of A+BK are within the unit circle of the
complex plane.


http://dx.doi.org/10.1007/978-3-319-07803-8_6
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Proof System (12.1) can be described by:
x(k+ 1) = (A+ BK)x(k) + BKe(k) (12.4)

after (12.3) and the control input u = KX have been used.
The response of the plant with initial time ky = 0 and stable matrix A+BK at any
given time k > 0 is given by:

~

x(k) = (A + BK)*x(0) + 3 (A + BK)"UtVBKe(j) (12.5)

Il
o

where e(k) is bounded by le(k)l < a since when le(k)l > a we send a measurement
update and the error becomes e(k;) = 0 at the update instant k;. We can show that the
state of the plant is bounded by evaluating its norm which is done next:

(A +BK)'x(0) + Y (A + BK) UV BKe())
J=0

k—

< |+ BK)! |lx(0)] + ;‘(A + BK) 0| BK e ().

(k)| =

k—1 ‘

By the assumption on the initial condition of the plant and the triggering
condition, and using the bound I(A +BK)"I gﬁzik,/l € (0,1), f>>0 we can write:

k-1
(k)| < 1o + ap, |BK|Z/1]€7(]H>
=0

aB,|BK|(1 — 27")

< BB + - (12.6)
BK
Note that: lim x(k)| = %_ .

A choice of a stabilizing controller K, or in other words, the fact that the
eigenvalues of A+BK lie strictly inside the unit circle ensures that the first term in
the right hand side of (12.6) decreases exponentially with time and the second term
is bounded for all time k>0. *

Remark Note that the design of the stabilizing gain K requires a robust-type
controller since we only have the nominal parameters available. Note also that a
specific location of the closed-loop eigenvalues is not needed in Theorem 12.1; they
only need to have magnitude less than 1. The advantage of the framework in this
section is that we can obtain accurate models that significantly reduce the initial
uncertainty and stabilizing controllers can be easily obtained based on these
estimated parameters.
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The advantages of intermittent feedback as discussed in Chap. 4 can be used in
the event-triggered case as well. The following theorem extends the results in the
previous theorem to this case.

Theorem 12.2 Assume Ix(0)l < 1, 0 < < oo, then the networked system (12.1)
with intermittent state feedback updates triggered when le(k)l > a has a bounded
state if the eigenvalues of A+BK lie strictly inside the unit circle.

Proof The proof is similar to the one in Theorem 12.1 by noting that e(k) = % (k)
—x(k) =0,VkE [ki, ki + T) i.e., in the closed-loop interval, then le(k)l < a,Vk. ¢

For stability conditions of discrete-time MB-NCS using periodic updates refer
to Chap. 2.

Comparing the results in Theorem 12.1 to those in Sect. 2.3 in Chap. 2 in which
discrete-time systems with periodic updates are used, we can see that the event-
triggered approach only offers a bounded output compared to the asymptotic
properties when using periodic updates. This drawback can be addressed by
applying a time-varying threshold. It is intuitively clear that by varying the mag-
nitude of the threshold value in Theorem 12.1 we can obtain longer update intervals
or a smaller output size as measured by the norm of the state as in (12.6) in Theorem
12.1. The norm of the state can be reduced by using a smaller threshold a. In
particular, we opt to reduce the threshold value as we approach the equilibrium
point of the system. This is the same idea expressed in Sect. 6.2 where continuous-
time systems were considered. The following treatment represents an extension of
that approach in order to obtain similar conditions for discrete-time systems.

Consider again the plant and model described by (12.1) and (12.2) and the
control input # = KX to obtain the description (12.4) for the plant. Assume that
the control input « renders the model (12.2) Input-to-State Stable (ISS) with respect
to the measurement error e. For the definition of ISS Lyapunov function for
nonlinear discrete-time systems we use the following [128]:

Definition 12.3 A continuous function V:R" —R{ is called an ISS Lyapunov
function for the dynamical system x(k + 1) =f{x(k), u(k)), x(k) € R",u(k) € R",
k € Z* if there exist class K., functions a;, a,, a3 and y satisfying:

ar () < V(x) < ax(lx) (12.7)

V(f(x,u)) = V() < —as(|x]) + r(Jul). (12.8)

The system x(k + 1) =f{x(k), u(k)) is said to be ISS with respect to the input u if and
only if there exists an ISS Lyapunov function for that system.

In this section we focus on linear systems and we choose a control law u = KX
that renders the closed-loop mode! (12.2) globally asymptotically stable. Any such
K also renders the closed-loop model ISS with respect to the measurement errors.


http://dx.doi.org/10.1007/978-3-319-07803-8_4
http://dx.doi.org/10.1007/978-3-319-07803-8_2
http://dx.doi.org/10.1007/978-3-319-07803-8_2#Sec3
http://dx.doi.org/10.1007/978-3-319-07803-8_2
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We proceed to choose a quadratic ISS Lyapunov function, V =x"Px where P is
symmetric positive definite and is the solution of the closed-loop model discrete-
time Lyapunov equation:

(A +BK) P(A+BK)—P=-0 (12.9)

where Q is a symmetric positive definite matrix.
Let us first analyze the case when B = B for simplicity and define the uncertainty
A = A — A; also assume that the following bounds on the uncertainty hold:

’A’AS A (12.10)
Ap|P| (A4 +2|A +BK|) <A<gq

where ¢ = 6(Q), the smallest singular value of Q in the Lyapunov equation (12.9).
The parameters A and A4 represent given bounds on the norm of the uncertainty
matrices. The next theorem provides stability conditions based on the error and the
threshold value that is used to trigger a measurement update. The resulting Model-
Based Event-Triggered (MB-ET) networked system is asymptotically stable. The
error threshold is defined as a function of the norm of the state and the uncertainty
bounds A and A,. Similarly, the occurrence of an error event leads the sensor
to send the current measurement of the state of the plant that is used in the controller
to update the state of the model and at these update instants the error is equal to
0 since the model state is made equal to the real state.

Theorem 12.4 Assume that (12.10) holds, then system (12.1) with u = KX and
feedback based on error events generated when the relation:

le| > ay|x]|, (12.11)

is first satisfied, is globally asymptotically stable, where a,=min(a,,a;,),
an=0(qg— N2, anp=(olg— D)2 1 =2|PBK|( );
¢, =IK"BTPBK|, and 0 <o < 1.

Proof In order to prove this theorem we will set a bound on the first forward
difference of V =x"Px along the trajectories of the system (12.4) which is equal to
(12.1) when the input u = KX has already been substituted and expressed in terms
of the state error. Then we can easily show that this bound can be appropriately
tuned by the choice of the threshold on the error.

V(x(k+1)) = V(x(k))
= [x"(A+ BK)" + ¢"K"B"|P[(A + BK)x + BKe| — x"Px
= [ (4 +4 +BK>T +¢"K"BT|P[(A + A + BK)x + BKe] — x"Px
— —TQx+xT[(A +BK) PA+A"P(A + BK) +A"PA|x
+ 2 (4 + 4 + BK) "PBK]e + ¢'KTBPBKe.
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We have just expressed V(x(k+ 1)) — V(x(k)) in terms of the model parameters

and the uncertainty of the state matrix A. We now proceed to evaluate the
contributions of each, the model, the uncertainty, and the error.

V(alk+ 1) — V(x(k))
< —glx” + ’(A +BK)'PA+A"P(A + BK) +KTPK‘|X|2
+2

" ~ T N ~
(A +A +BK) PBK|le|lx| + |[K"BTPBK||e|

< (=g + A + crlel[x] + ealel®
where e(k) is bounded by lel < a,lxl. Then
V(x(k+1)) = V(x(k)) < (6 = 1)(g — A)]x] (12.12)

which shows that V' is guaranteed to decrease for any o, 0 < ¢ < 1. Here the state of
the model is updated every time the error satisfies the condition imposed in (12.11).4

Remark Similarly to the stabilizing conditions for continuous-time systems
described in Sect. 6.2, an important advantage of this approach is that we define
the controller only in terms of the model parameters. The stabilizing threshold is

designed using the model parameters (A , I§) and some bounds on the uncertainty A,
quantities that are known.

Remark Also note that an accurate estimate of the plant parameters results in small
values of A, and A. It follows that a larger value for the threshold a, can be
obtained and longer update intervals can be achieved which results in significant
reduction in network communication.

The conditions in Theorem 12.4 are only sufficient and conservative in general.
The main reason being that these conditions are based on bounds on the uncertainty
norms and not on the location of eigenvalues as the results shown in Chap. 2. By
using uncertainty bounds we can obtain more practical conditions but we need to
consider worst case scenarios.

12.1.2 Parameter Estimation

In this subsection we will focus on parameter estimation of deterministic linear systems
of the form (12.1) with no particular form of the matrices A and B. This identification
problem can be solved using a linear Kalman filter; this implementation provides much
better convergence properties than the EKF, as it is shown in Sect. 12.3.

In the special case when the sensors provide noiseless measurements of the
state, it is possible to modify the model that will be used for the Kalman filter
equations in order to estimate the parameters A and B. In order to show this simple
idea let us focus on second order autonomous systems, (the idea can be easily


http://dx.doi.org/10.1007/978-3-319-07803-8_6#%20Sec3
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extended to higher order systems with deterministic inputs) with unknown
time-invariant parameters a;;:

me] -G m)le)l e

We do not know the values of the parameters and we only receive measurements
of the states x(0) . . . x(k). At any given step due to the iterative nature of the Kalman
filter we only need x(k) and x(k—1). Now we rewrite (12.13) as:

an(k)
xk) | k=1 xmk-1) 0 0 ank)| A
|:f2(k):| N l: 0 0 x(k— 1) Xz(k —1) } a:2183 = C(k)a (k)

(12.14a)

where d ; represent the estimated values of the real parameters a;; and X; are the
estimates of the state based on the estimated parameters and on measurements of
the real plant state x;. Equation (12.14a) becomes the output equation of our filter.
The state equation is described by:

an(k+1) 1 0 0 0\ [dan(k
ank+1)| 10 1 0 0]|ank| _, .

dr(k+1) 00 1 0|]|ank| =24 (12.14b)
an(k+1) 00 0 1) |ank

The state matrix of our model Ayis constant and the output matrix C (k) is time-
varying but the overall model is linear. Therefore we can use a linear filter to obtain
estimates of the parameters a;; of the state matrix of the original system. Note that
we do not need any external input, only nonzero initial conditions on the state. We
can also estimate the elements of both matrices A and B if we receive measurements
of the state and the deterministic input #(k). Any common inputs such as steps and
sinusoidal inputs can be used for identification purposes; sinusoidal inputs do not
need to have any particular frequency i.e., there is no requirement of a persistently
exciting input which makes this approach a suitable tool for adaptive stabilization.
In this case we need to include estimates of the parameters of B in the state vector

of the filter model and the input values in C (k). The output equation in this case is
given by (using a second order example with single input):

ayy (k)
a (k)
Fl(k)}:(xl(k—l) xnk-1) 0 0 uk—1) 0 ) an (k)
fz(k) 0 0 X[(k*l) Xz(k*]) 0 Lt(k*]) 6222(/{)
b (k)
b (k)
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The filter state matrix is expanded according to the number of additional states,

an(k+1) 1 00 0 00\ [ank
an(k+1) 01 0 0 0 0 |]|an®k
oy (k+1) 001 00 0 |]|ank
szz(k—f—l) 0O 0 0 1 0O 6222(/() (1215b)
bi(k+1) 000 0 1 0 [|bik)
ba(k+1) 00 0 0 0 1) |[byk

Both filter models, (12.14a)—(12.14b) and (12.15a)—(12.15b), can be easily
applied to higher order systems by following the structures of (12.14) and
(12.15). A clear disadvantage is that the order of the filter is n* where n is the
dimension of the state of the original system.

Song and Grizzle [236] have shown that the linear time-varying Kalman filter is
a global asymptotic observer for the underlying deterministic system. Consider the
deterministic system described by (12.14), and the associated noisy system:

d(k+1) Asa (k) + Nw, (k)
= C (k)a (k) +Mv, (k) (12.16)

where the design parameters M, N are chosen to be positive definite matrices and
the artificial noise processes w), v, are white, zero-mean, uncorrelated, and have
known covariance matrices Q and R respectively. The next theorem states the
convergence of the estimation error.

Theorem 12.5[236] Consider the deterministic system (12.14) and the Kalman filter
associated with (12.16). Suppose that the deterministic system is uniformly observable
and A(k) is invertible for all k, and that 1Al := sup{lA(k)|: k> 0} and IC!:= sup{ICyl:
k> 0} are bounded. Then the Kalman filter for the noisy system (12.16) is a global,
uniform asymptotic observer for the deterministic system (12.14).

For the derivation of this theorem refer to [236]. We will now focus on the
details pertaining to our specific model. From (12.14b) we can see that A, (k) =
Ag=1 is constant, bounded, and invertible for all k. The output matrix is built by
using the measurements of the deterministic system. For unstable systems it is
required that the initial condition of the system is finite. The matrices M, N are
simply chosen to be identity matrices of appropriate dimensions. The problem here
is that the pair (Af, c (k)) is not observable. A simple solution is to increase the
number of measurements used in the output equation (12.14a) as shown in
Sect. 12.4, although this is not a necessary condition. A simulation-based discussion
on the convergence of the Kalman filter used as a parameter estimator when the
deterministic system is not observable is also presented in that section.

Remark Note that for systems of the form x(k+1) = Ax(k), we do not need any
external input in order to successfully identify all elements of the state matrix A; we
only need nonzero initial conditions on the state. In MB-NCS we mainly focus on
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stabilization of systems of the form given by (12.1), and for this case we can
estimate the elements of both matrices A and B if we receive measurements of
the state and the deterministic input u(k). As it was expressed before, any common
inputs such as steps and sinusoidal inputs can be used for identification purposes.
Sinusoidal inputs do not need to include any particular frequency i.e., there is no
requirement of a persistently exciting input, which makes this approach a suitable
tool for adaptive stabilization. If we try to estimate the parameters online and at
the same time try to stabilize the system, then the same input that is used for
stabilization can be used for estimation purposes. This relaxation on the need of
a persistently exciting input represents a great advantage over traditional parameter
estimation methods and it can be intuitively explained by realizing that we are
estimating the states, not the parameters, of a modified linear system. In this case we
try to meet the conditions for state estimation such as those expressed in Theorem
12.5. In general, we try to find the best state estimate (the estimated parameters in
our case) that minimize the second order moment of the difference between the
output of the system x(k) and our predicted output X(k). It is also important to note
that one particular case in which it is not possible to estimate the parameters is when
the initial state of the system is 0. Since the main objective is stabilization of
unstable linear systems then this scenario does not represent a problem. Now, if a
perturbation happens to move the state from its equilibrium point, then we are in a
position to estimate the parameters and to compute a stabilizing control input.

Remark Note that we are not performing closed-loop identification since most of
the time there is no communication between sensor and controller and the model
parameters are not updated until the sensor decides to broadcast a measurement,
thus the overall system operates in open-loop mode.

12.2 Adaptive Stabilization of Stochastic MB-NCS

In this section we study the case in which stochastic systems of the form:

x(k+ 1) = Ax(k) + Bu(k) 4+ w(k)
y(k) = x(k) + v (k) (12.17)

are implemented using the configurations of Fig. 12.1. The noise processes w and
v are white, Gaussian, uncorrelated, zero-mean, and have known covariance matri-
ces Q and R respectively. The model of the system is still given by (12.2) and, since
we only measure y(k), the error is now given by:

e(k) = % (k) — y(k). (12.18)

Theorem 12.6 Assume x(0) is a random variable with Gaussian distribution
(1o, Zo). Then the state of the stochastic model-based networked system (12.17)
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Fig. 12.1 MB-NCS with filter implemented (a) in the sensor node, and (b) in the controller node

with feedback based on error events le(k)l > a, with e(k) given by (12.18) and fixed
threshold a, has finite mean and covariance for all k if the eigenvalues of A+BK are
within the unit circle of the complex plane.

Proof The state of equation (12.17) can be expressed using the linear system:
x(k+1) = (A + BK)x(k) + BKe(k) + BKv(k) + w(k). (12.19)

Note that the system is a linear system and not a switched one as the model
(12.2). In contrast to the model, the system always operates using the same
parameters and its state is never updated or reset. Its inputs are v(k), w(k), and e
(k). The last one is a bounded input that is set to O at the update times. Then we can
see that the state x(k) is a Gaussian random variable for all £ with mean and
covariance given by:

e = (A + BK) uo + kz_f (A + BK)* V"VBKe()) (12.20)
=0
% = (A+BK)Z—1 (A + BK)" + (BKR(BK)" + Q)
k—1 T
= (A+BK)'So((A+ BK)")T + (4 + BKY (BKR(BK)" +0) (A + BKY) .
=0
(12.21)

In Theorem 12.1 we showed that (12.20) is bounded if the eigenvalues of A+BK
lie strictly inside the unit circle. In order for the covariance %; to converge we need
the series (12.21) to be summable as k — oo and this is obtained by making (A + BKY
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to converge to 0, i.e., if A+BK is stable then the covariance converges to a finite
value. For a formal proof, we use the next theorem:

Theorem 12.7 [137] Suppose A+BK is stable. Then there is a positive semi-definite
matrix Lo, such that limy_,oo Ly = Xo. Moreover, L is the unique solution of the
linear equation:

S = (A +BK)Zo(A + BK) + (BKR(BK)T + Q). (12.22)

By using Theorem 12.7, the covariance X, of the state x(k) in (12.17) is finite for
all & if the condition in Theorem 12.6 is satisfied. *

12.3 Applications of Parameter Estimation
and the Model-Based Approach

12.3.1 Examples and Implementation Cases

Whether a linear Kalman filter or an EKF is used we can implement the filter in the
MB-NCS framework using one of two approaches.

Filter collocated with sensor In the configuration shown in Fig. 12.1a the filter is
implemented in the sensor node. We assume that copies of the model and controller
gain are contained in the sensor to generate the state, which is compared to the
measured state, and the input, which is needed to construct the filter equations. The
parameters are estimated (and the state error is evaluated, in the event-triggered
case) in the sensor node at every sampling time of the system. At the update
instants, the sensor will transmit the measured state and the new value of the
estimated parameters, or it can send a smaller packet containing only the state of
the model if no significant variation has been detected in the parameter values.
Intermittent feedback (Chap. 4) is not necessary in this case.

Filter collocated with controller Due to several factors, especially computational
limitations in the sensor node, it may be necessary to implement the identification
algorithm in the controller node. In this configuration (shown in Fig. 12.1b) the filter in
the controller receives a set of measurements (intermittent feedback is needed) that are
used for estimation of the parameters of interest. When the estimated variables pass a
convergence test, the model is updated with the new value of the parameters and the
state of the model is updated using the last measurement available. That is, we use
intermittent feedback for parameter identification and instantaneous feedback for
control. No model of the plant is needed in the sensor node when using periodic
updates. The filter updates directly the model in the controller immediately after its
estimates have converged since no network exists between filter and model. For the
case when we send the measurements based on checking the state error, we need a
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Table 12.1 Estimation error order results for the linear time-varying Kalman filter and the
extended Kalman filter

Random initial conditions Estimation error order
Filter for filters in 200 simulations
Linear time-varying Uniform: [—3,3] 1077-10"%
Kalman filter a;(0) ta 10°8—-10"*
Extended Kalman filter Uniform: [—3,3] 10"
a;(0)ta 107 ' =10

copy of the model in the sensor node in order to generate the model state. For this
scenario we require the controller node to send back to the sensor node the new
estimated parameters and the new calculated controller to update the model in the
sensor as it does with the model in the controller.

Comparison between Linear Time-Varying Kalman Filter (LTV-KF) and EKF for
parameter identification of deterministic systems The EKF can also be used as
parameter estimator of deterministic systems of the form (12.1). However, for
the special case when noiseless measurements of the state are available there is
a significant improvement in the quality of the estimated parameters given by
the LTV-KF compared with those obtained using the EKF, particularly for higher
order systems.

As explained at the end of this chapter, the EKF will diverge or provide biased
estimates due to many factors, especially if the initial estimates are not sufficiently
close to the real parameters we try to estimate. We present a comparison between
the linear time-varying Kalman filter model we proposed in this section and the
EKF, assuming similar conditions.

Example 12.1 A fourth order deterministic system is given by:
Xep1 = Axg
where,

1.7209 —1.1484 —-2.8700 —1.8609
0.9510 29805 2.3617 —0.3365
—2.6334 —2.4172 0.1133  2.6316
2.8223 0.5102 —-2.1791 —-2.7730

For both filters we assume we receive noiseless measurements of the state and
that the initial estimates of the elements of the matrix A lie somewhere in the range
[—3,3]. Results of multiple simulations are shown in Table 12.1. The main differ-
ence given by the simulations of the two filters with the same deterministic system
is that both converge to some constant value but the EKF tends to provide biased
estimates. The first and third row of Table 12.1 show the estimation error for
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Fig. 12.2 Estimation of two parameters and stabilization of stochastic MB-NCS with intermittent
feedback based on events

random initial conditions (uniform [—3,3]). The error is given by the difference
between the real parameters and their estimates. It can be seen that the error is of
several orders greater in the EKF than in the LTV-KF.

In the case we have more accurate previous knowledge of the a priori estimates
of the parameters then the results of the EKF show some improvement, emphasiz-
ing the dependence of the EKF to the initial estimates d (0), where a is a random
variable with uniform distribution in [0, 0.1]. The error magnitude is shown in the
second and fourth rows of Table 12.1.

Adaptive stabilization examples In both implementation cases shown in Fig. 12.1,
sensor and controller implementation of the filter, when the controller node receives
or obtains new estimates of the parameters, a discrete-time algebraic Riccati
equation is solved using the same weights and the new parameters. Then, we are
able to obtain a new stabilizing control law K that reflects the new knowledge about
the plant.

Example 12.2 Consider the second order system described by (12.17) with time-
invariant but partially unknown parameters and time index 7=0.01 s; T is the
original time index of the physical system. B =1 1 }T, the elements a;, =0.3,
ap; = — 1.05 are known constants, and a1, a,, are unknown constants. We imple-
ment an EKF in the controller node using intermittent feedback triggered by the
state error. Figure 12.2 shows the simulation results. The measured states are shown
in the top of the figure. The middle section of the figure shows the estimated values
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Fig. 12.3 Stabilization of MB-NCS in Example 12.3

of the unknown parameters (for reference, the real values used for the unknown
parameters in this example were a;; = — 0.985,a,, = — 0.7). The update instants
are shown in the bottom of the figure. The initial model was inadequate and made
the real plant went unstable in the beginning of the execution until we updated the
model and recomputed the controller. Every time the controller receives a set of
measurements, the filter estimates again the parameters, the rest of the time the
system runs in open-loop mode.

Example 12.3 A second order system of the form (12.1) (T = 0.01 s) is interconnected
to a model-based controller as shown in Fig. 12.1a. All of the elements of the matrices
A and B are unknown. The Kalman filter implemented in the sensor location provides
estimates of all parameters. We design the filter by using only one previous measure-
ment. When the state error is greater than a predefined threshold the sensor sends
the latest measured state to the controller. The most recent parameter estimates are
sent only if there is a significant variation with respect to the previous updated
parameters. For illustration purposes we construct the communication signal (k) as:

0 if no packet is sent

r(k) = ¢ 1if only the state is sent (12.23)

2 if both, parameters and state are sent

The initial model contained random estimates of the parameters and the control
input obtained from that model does not stabilize the real plant. This can be seen at
the beginning of the simulation in Fig. 12.3. After a few iterations the sensor is able
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Fig. 12.4 Identification of parameters A and B in Example 12.3

to provide estimates of the parameters, redesign the controller based on the upgraded
model, and update the state of the model as well. Variations in the main diagonal
components of matrix A of the plant at r=2 s were introduced and successfully
identified as shown in Fig. 12.4. The real values used in this example were:

ay =—1231—,,—-1303 a;; =0.503
ay = —0.034  ay =0.820—,-,1.086
by=18 by=-14

In the absence of measurement noise we are able to identify all parameters of the
plant with great precision and if we use a linear filter there is no restriction on
the initial estimates compared to, for example, the EKF. In Sect. 12.4 we show
another practical algorithm that provides global estimates of the states or, in our
case, of the parameters of the system, by applying the same ideas of the present
section. Its implementation in the MB-NCS framework is also discussed.

12.3.2 Actuator Fault Detection and Reconfiguration

The first application in this section relates to the problem of fault detection and
redesign of stabilizing controllers. In the case that a stabilizing controller cannot be
found (the fault makes the system not stabilizable) then the control scheme shuts
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down the faulty configuration and turns on a healthy backup actuator in order to
continue with the operation of the system and maintain closed-loop stability.
Consider an unknown linear discrete-time system represented by:

x(k+ 1) = Ax(k) + B.u(k) (12.24)
with unknown backup actuator matrices:
B; €B” (12.25)

where B,. represents the current actuator configuration and B, represents an element
of the backup actuator set B””. We implement a linear time-varying Kalman filter as
in Sect. 12.1. In the case when we can obtain noise-free measurements of the state
we can estimate all parameters of the system but here we focus on the elements of
B.. We also need to determine, after some change on the parameters of B, has been
detected, if the system remains stabilizable. A new controller needs to be calculated
if the system can be stabilized under the partial fault detected; otherwise shut down
the faulty actuator for maintenance and activate and identify the parameters of the
new actuator in order to compute the corresponding controller.

Example 12.4 Consider the networked plant be given by:

1.3 —-0.04 05 1 05
A=|-062 -07 037 |, Bi=|15 1
0.3 0.86 —1.23 1 1

and the backup actuator configurations given by

1.3 1 0 1
B, = 1 06|, B3i=|2 04
—-0.7 0.5 0.1 1.5

with Ty =0.01. Figure 12.5 shows the response of the system and the communi-
cation signal r(k) as defined in (12.23). A partial fault was detected at 1.5 s. Here
the remaining configuration could be stabilized and the new controller was
designed for this case. At time 3 s a fault was introduced and successfully detected
moments after. The configuration is not stabilizable and the backup configuration
B, was activated, its parameters were successfully estimated, and the new con-
troller was computed. A similar situation happened at time 6 s and the backup
configuration B3 was activated. The estimated parameters corresponding to the
elements of the matrix B,, that is, of the activated actuator configuration are
shown in Fig. 12.6.
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12.3.3 Identification and Rejection of Input Disturbances

A very interesting application of the modified Kalman filter that was discussed in
Sect. 12.1 is related to the joint estimation of parameters and exogenous distur-
bances. The aim in this section is to stabilize systems with uncertain parameters that
are affected by unknown piece-wise constant external disturbances and as shown in
Fig. 12.7. The presence of a communication network does not allow the use of
continuous feedback for control and the networked system must operate in open-
loop mode for possibly large intervals of time. Due to these communication
constraints we use the MB-NCS approach for stabilization and due to uncertainty
in the parameters and on the external disturbance we also implement a parameter
estimation algorithm in the sensor node.
Consider the following type of uncertain discrete-time system:

x(k + 1) = Ax(k) + B(u(k) + w(k)) (12.26)

where x € R”, u,w € R™ represent the state of the system, the control input, and the
unknown input disturbance, respectively. We consider the special case where B is
known in advance but the state matrix A and the input disturbance are unknown.
Additionally, we restrict this work to the case when the input disturbances are given
by piece-wise constant signals and this represents all the information available about
the external disturbance. The time instants at which the external disturbance changes
its value are also unknown. Those time instants must be detected by our estimation
algorithm.
Consider a second order system with single input for ease of exposition,

[ggi m - (Z; ZZ) B;Em + (Z;)(u(k) + w(k)). (12.27)
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Note that as in Sect. 12.1 this approach can be easily generalized for any
dimensions n and m, as long as the system is of the form (12.26). We rewrite
(12.27) in the next form:

an (k)
N I
X (k) B 0 0 xitk=1) xk=1) b ?21() + by u(k)

azz(k)

W (k)

(12.28)

Equation (12.28) represents the output equation for the filter. Since we consider LTI
systems and piece-wise constant input disturbances the state equation for the filter is
given by:

an(k+1) 1 0 0 0 0\ [ank)
ap(k+1) 01 0 0 0]|adn(k
ank+1) =10 0 1 0 0||ank) | =A4da(k) (12.29)
Gn(k+1) 0 00 1 0]f]an®k)
W (k4 1) 0000 1/ Lw(k

where the scalars d ;; represent the estimates of the elements of the matrix A and w
represents the estimate of the input disturbance.

The overall filter model is a linear time-varying system, similar to the filter
model used in Sect. 12.1, and the same convergence properties apply to (12.28)
and (12.29).

The control input is now given by

u(k) = Kz (k) — (k) (12.30)

where £ € R" represents the state of the model in both the sensor and the controller.
A copy of the model is implemented in the controller in order to compute the state
error and use an event-triggered control technique. The state of the model is also
needed at the sensor node to compute the control signal which in turn is needed by
the estimation algorithm. w . (k) represents the value of the last disturbance estimate
update. Since the filter in the sensor node may be producing estimates at each instant
in order to check for a possible change in the parameters or in the value of the
disturbance, w (k) = w (k) holds only at the time of a parameter update while in
general they have slightly different values. A large difference between the current
estimated disturbance and the previous value that was sent to the controller will also
trigger an update event, and w . (k) has to be updated using the current estimate w (k).
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Example 12.5 Consider an unstable and uncertain system given by (12.26) with
dimensions n =3, m =2. The goal is to stabilize the system around its equilibrium
point x, = [0 0 0]” in the presence of unknown input disturbances. The input matrix
is known and given by:

Figures 12.8, 12.9, and 12.10 show the results of the simulation. Figure 12.10
shows the estimated parameters of the state matrix A. These estimated parameters
are used to update the model parameters and to redesign the controller gain.
Figure 12.8 (bottom) shows the successful estimation of the input disturbance
which is used in (12.30) to reject the real input disturbance w(k). Figure 12.8 (top)
shows the response of the system. When the disturbance changes values there is an
undesirable effect in the system but after a few iterations we are able to estimate the
new value of the disturbances in order to counteract this response and stabilize the
system once again. Note that the individual value of the disturbances need not
change at the same instant in order to detect and estimate the new disturbance
value. At time about 1.7 s only w;(k) changes its value while w,(k) remains the
same. The state error and the communication instants are shown in Fig. 12.9.
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Fig. 12.10 Estimated parameters of the state matrix A in Example 12.5
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This example shows that this approach offers good disturbance attenuation
properties. In particular we are able to reject the disturbance effect on the system
a few iterations after the disturbance changes suddenly.

The overall approach discussed in the present chapter, Model-Based Event-
Triggered (MB-ET) control combined with Kalman filter-based parameter and
disturbance estimation, is able to react relatively fast to the presence of unknown
disturbances and to parameter uncertainties while reducing the number of feedback
measurements that need to be sent from sensor to controller.

12.3.4 Identification and Stabilization of Switched
Systems with State Jumps

The application presented in the present subsection considers the interesting problem
of identification and stabilization of switched systems with state jumps and unknown
switching sequences. The implementation of the Kalman filter for identification of the
parameters of each operating mode is straightforward, assuming we can obtain noise-
free measurements of the states. Consider a discrete-time switched system:

x(k+1) = Axe(k) + Biu(k) (12.31)

for each i € N, N denotes the set {1,2,...N} of N integers, where each
A; ER"" B; € R"*™ are unknown and each A; may be unstable. In addition
the switching sequence, denoted by times 7;; equal to the times k when the system
switches from mode i to mode j for i,j € N, is also unknown. Finally, when the
system switches, the state is not restricted to keep the same values but it can be reset
to a different finite value, that is, x(z;)) =f{(r;). The state jumps are dictated, in
general, by a time-varying function which can be nonlinear, stochastic, or any other
function as long as f(z;;) < co.

In order to identify the switching times we implement an event-error strategy. As
in Sect. 12.1, the event-based scheduler will trigger a state update if the state of the
system is different by a given amount with respect to the state of the model, that is,
it computes the norm of the state error (12.3) and compares it to a fixed threshold. In
addition, the sensor node also checks for the difference between the current
estimates of the system parameters with respect to the latest parameter updates
and it will send a parameter update if the current estimates are significantly
different, which corresponds, in general, to a switch in the parameters of the real
system. From time to time the sensor may send parameter updates even though the
real system has not switched yet, depending of the convergence threshold we
implement. This updates are basically refinements of the estimated parameters
that were sent previously. The application of the Kalman filter and an event-
triggered strategy for the identification and control of this type of switched systems
can be implemented for both networked and non-networked systems. In the case of
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Fig. 12.11 Estimated parameters of the switched system

non-networked systems the controller is able to receive feedback measurements at
all times and the identified parameters are used solely for the design of the
corresponding stabilizing controller. For the case of networked systems we imple-
ment the MB-NCS setup discussed in this and previous chapters.

Example 12.6 Consider a model-based networked switched system with state
jumps that operates using the next set of unstable (unknown) modes:

(12 -0.3 0.5
Ar= 10.6 —1.2]’ B = [1 ]

[05 —1.35 1
A= o1 o7 |0 BT {0.4}

(024 —1.2 —0.7
A3__—1 0.13]’ 33_{1.5 ]

Figures 12.11 and 12.12 show the results of simulations. The sampling time of
the real system is T, =0.01 s. Figure 12.11 shows the estimated parameters as a
function of time; the figure shows the estimated elements of A and B as they switch
over time. Figure 12.12 shows the response of the switched system and the
communication signal r(k) as defined in (12.23). This example shows that the
switching parameters of the system can be successfully identified and the model
can be updated in order to obtain better estimates of the state between feedback
updates. Additionally, the switching sequence does not have to be known in
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Fig. 12.12 Norm of the states of the system and communication signal for Example 12.6

advance since the sensor is able to detect the switching times and adjust the
parameters of the new model. Similarly, a new control gain is designed in order
to stabilize the current operating mode of the switched system. The switching
sequence that was used here, starting with mode 1, is:

T2=2, 13=4, 133 =6, 7)o =8.

One drawback of this control approach is that every time that the system
switches modes the controller node needs to wait until the new parameter estimates
converge within given bounds.

Using previous parameter values, an important extension can be made to this
control algorithm in order to allow the overall MB-NCS learn or remember past
modes of the switched system as follows. The estimated parameters are stored in the
sensor node and used for future switching times. When a state jump is detected
based on the state error the sensor uses past “learned” modes in order to predict the
next states. The sensor node uses the next predicted error in order to select a past
mode and send the corresponding parameters. The identification keeps executing as
a backup option or in order to refine the estimated parameters. This type of
implementation results, in general, in a better performance as shown in the next
example.

Example 12.7 Consider the same unknown system and switching sequence as in
Example 12.6. The response of the switched system and the communication signal
are shown in Fig. 12.13. Note that at switching times 73; = 6, and 7;, = 8§ the system
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Fig. 12.13 Norm of the states of the system and communication signal for the learning
control system

switches to previously identified modes and therefore the sensor is able to update
the parameters of the model sooner than in the previous example and the system
performs better at those instants.

12.4 Parameter Identification Using
Additional Measurements

12.4.1 Parameter Identification Using Luenberger Observers

Following the ideas in Sect. 12.1 we present now a similar modification regarding
the model of the system and the implementation of the Luenberger observer that
will treat the unknown parameters of the system as the states to be observed. This
technique also provides global asymptotic estimates of the parameters i.e., we can
provide any initial conditions and the observer will converge to the real values of
the parameters. Further, the computations required by this algorithm are only those
related to the computation of the observer gain L(k). Similarly to the results in
Sect. 12.1, the modified model is linear time-varying.

Suppose we receive perfect measurements of the state of the system described
by (12.1) and also assume that we know exactly B and want to identify the unknown
elements of A.
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The output equation of our model is similar to (12.14a), but since the
computation of the observer gain is very sensitive to the observability condition
of the new model, we increase the number of measurements used in the model to
obtain, for example in the case of a second order system:

fl(k) X1<k—l) xz(k—l) 0 0 d11<k)
)_(?2(]{) _ 0 0 Xl(k — 1) XQ(/C — 1) dlz(k)
)_Cl(kf 1) xl(k72) X2(k72) 0 0 ﬁzl(k)
)_Cz(kf 1) 0 0 xl(k72) Xz(k*Z) aAzz(k)
by 0
b, 0 bl(k — 1) oA . T
o L(k_z)] — C(R)ak)+D[uk) ulk—1)] (12.32)
0 b

The state equation for our model is given by (12.14b). The observer, in general,
is expressed by:

a(k+1)=(I—LKk)C (k))a (k) + =1 T g
— LD [u(k) u(k— )...]T

where d (k) = [a11(k) @12(k) @21 (k) @xn(k)]" is the state of the observer and
represents the estimation of the elements of A in system (12.1). The matrices in the
output equation and the inputs for the observer are increased with an additional
measurement for every single increase in the order of (12.1).

Theorem 12.8 The observer (12.33) with augmented measurements and the pair
(1 ,C (k)) observable, converges globally to the real parameters of A in (12.1) if the
eigenvalues of I — L(k)é (k) are within the unit circle of the complex plane.

Proof Define the estimation error:
e(k) =a(k) —a (k) (12.34)

where a(k) = vec(a;j) is a column vector that contains the true values of A in (12.1).
Now, we compute:

e(k+1) =1Ia(k) — (I = L(k)C (k))a (k)
)

—L[x(k) (k-1 ]T-I-I:A[M(k) u(k — 1) I
= le(k) + L(k)C (k)a (k) — L(k)C (k)a(k)
—LD[u(k) u(k—1) "+ LD [u(k) u(k—1) )"

= (I = LK)C (K))e (k).

where relation (12.32) was used involving the real parameters. *
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Fig. 12.14 Stabilization of MB-NCS in Example 12.8

Remark Note that given the increased number of measurements available and the
form of the observer state matrix (identity matrix) we could simply find the inverse
of the built C matrix to obtain an estimation of the parameters. The advantage
therefore is in the freedom of choice of the desired pole locations in order to
compute the gain L(k) compared to the computation of a matrix inverse.

Example 12.8 Consider a second order unstable system described by (12.1) with
knownB = (1 0.8 )T and the unknown, time-varying values of the state matrix are
shown below. A state observer is implemented in the sensor node. The estimated
parameters are shown in Fig. 12.14. Variations in the parameters were introduced at
t =4 s. The same figure shows that, after the model is updated, the states of the plant
are bounded and the plant operates in open loop for longer intervals of time.
Updates from the sensor to the controller take place when an error measure is
greater than some predefined fixed threshold. It can be seen that although the
parameters have been successfully identified after the variations the plant keeps
working in open loop until an error triggers an update. The real parameters used in
this example were:

ay = —0.6—>,:4 —0.45 app = 1.18
—-09 ap=-017—,4—-0.27

az
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12.4.2 Convergence Properties of the LTV-KF Used
for Parameter Identification

The linear time-varying Kalman filter described in Sect. 12.1 has been used for
parameter identification of systems in general state-space form, but it also can be
seen as an estimator of the states of a modified system model. Typical conditions for
convergence of the Kalman filter require the pair (A,C) to be observable [32, 137,267].
In particular, [236] shows that the linear time-varying Kalman filter is a global
asymptotic observer for the underlying deterministic system. As noted in [231],
observability is not a necessary condition, i.e., there may be a solution for the
Kalman filter equations even if the observability condition does not hold. If the filter
is capable of retaining previous measurements (up to »n of them) then we could use
the increased order model as in Sect. 12.4.1 to obtain the observable pair. This will
also increase the complexity of computations. Fortunately this is not required and the
measurement of the state at the previous instant k-1 only, such as in the examples
in this chapter, is able to provide enough information about the unknown parameters
of the plant and even for higher order systems as in Example 12.1. This is of
great advantage in order to keep a low order model and especially if the sensor is
not able to retain state measurements beyond the previous ones. Moreover,
the improvement obtained by using more measurements is minimal as shown in the
following example.

Example 12.9 Consider the third order system with random initial conditions
described by:

x(k+1) = Ax(k)
1.1806 —0.7323 —1.8800

A= —-12073 0.6673 2.0203
1.6078 —0.1910 —1.7223

The elements of matrix A are assumed to be unknown but time-invariant.
Table 12.2 shows the order in the magnitude of the estimation error using a
single measurement to construct the output matrix of the filter model and also
using n previous measurements. Notice that an almost unnoticeable increase in the
precision of the estimates is gained by increasing the number of measurements.

Table 12.2 Estimation error order results for the linear time-varying
Kalman filter using a single measurement and using n =3

measurements
Number of measurements Estimation error order
in LTV-KF in 200 simulations
1 107°-10"°

n 107¢—10"1
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12.5 Notes and References

The present chapter discussed implementations of Kalman filters in order to
estimate the parameters of the real plant and upgrade the model parameters.
It has been shown that upgraded model implies better state estimates between
update time intervals and these intervals can be made longer as well. The results
presented in this chapter were published in [83] and [88] with the exception of the
work described in Sects. 12.3.2, 12.3.3, and 12.3.4, which represent original results
first presented in this book.

The EKF whether it is used for estimation of states of nonlinear systems or
combined estimation of states and parameters is prone to divergence. The EKF
lacks the robustness and the convergence properties of the linear Kalman filter.
Many of the causes for the estimates to be biased or divergent have been illustrated
and somewhat successful remedies have been proposed in many papers and books,
see for instance [204, 231, 236, 254]. A more rigorous analysis of the convergence
properties of the EKF used as a parameter estimator for linear systems may be
found in [162].

The most common causes of divergence in the EKF are related to the fact that the
EKF is based on linearization about the current estimate, if the a priori state
estimates are poor, or if later estimates should take the filter out of the linear region,
the estimates often diverge [204]. In general, the Taylor series expansion works
well only when the expansion is taken in the neighborhood of X; ~ x; (Xo =~ xp),
then good initial estimates are needed. Also, if the system is highly nonlinear we
run the risk to be taken out of the linearization region. In [32] the authors compare
the EKF with the regular linearized Kalman filter; in particular, they address
the concern that the EKF is a riskier filter than the linearized version when the
initial uncertainty and measurement error are large.

Song and Grizzle [236] state that the EKF is a quasi-local observer i.e., the initial
condition should be close to the real parameter that we are trying to estimate. In that
paper, strong conditions for convergence of the EKF are postulated. These
conditions are related to the observability of the underlying nonlinear system.
A somewhat weaker observability rank condition leads to similar results but this
condition must be accompanied by a convergence period condition; in other words,
uniform asymptotic convergence of the observed error is achieved whenever the
nonlinear system satisfies an observability rank condition and the states stay within
a convex compact domain.

In practice, several approaches have been proposed to improve the convergence
characteristics of the EKF, for instance, if the gain K; obtained from the linear
approximation is not good enough, then use a second, third, ... order approxima-
tion. A known approach is the second order EKF, where a second order Taylor
series expansion of f{*) and /() is performed. Another computational solution is the
iterative EKF, in this version one refines the point at which the first order Taylor
series expansion of the measurement equation is performed.
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Ljung [162] provides a rigorous analysis of convergence of the estimates of the
EKEF to the true values of the system for the special case when the EKF is used for
parameter identification of linear stochastic systems. In that paper, it is expressed
that bias estimates come from incorrect noise assumptions associated with the
model and not from the EKF-method. An adaptive Kalman filter is used to learn
the correct noise covariance, see [32, 168] for some details.

According to Ljung [162] divergence of the EKF as a parameter estimator can be
traced to the fact that effects of a change in the parameters on the Kalman gain are
not taken care of, i.e., the coupling between the Kalman gain and the parameters to
be estimated is not considered. Ljung is able to associate a differential equation
in order to analyze the convergence of a recursive, stochastic algorithm in this case
the EKF. The differential equation is defined in terms of the equations that charac-
terize the EKF, with a slight modification for the case when the parameter vector
to be estimated is kept constant. This differential equation provides insight into
convergence points of the estimate and the causes of divergence and biased
estimates, and for some examples, it is possible to obtain the domain of attraction
based on this differential equation see [162, section V.C]. For the cases when
the Kalman gain is independent of the parameter vector the convergence properties
are much better. One interesting example of this case is deterministic systems
where the covariance of the process noise is always 0. The main idea of this
paragraph is to establish a link between the Kalman gain and the vector of
parameters. The approach is to improve convergence in the general case
(non-deterministic systems, as specified above) by including a term that relates
the variations in the parameters to the Kalman gain. This leads to a modified
algorithm based on an innovation representation model that has much better
convergence properties.



Chapter 13
Multirate Systems

In many applications digital communication networks are used to interconnect
control elements corresponding to large scale uncertain systems with multiple
outputs and spatially distributed sensing implementation. In this type of implemen-
tation the sensors that measure different elements of the state vector can be located
at distant positions. A limited-bandwidth communication network is used to send
all sensor measurements to the controller. In order to schedule the sampling and
sharing of information and to increase the sampling intervals at each sensor node as
much as possible, in this chapter we implement a multirate sampling scheme. The
results presented provide a simple approach to address robustness to parameter
uncertainties using multirate sampling.

In addition, this chapter also considers a different architecture using a similar
multirate approach. A two-channel implementation is studied, where not only the
path from sensor to controller is implemented using a limited-bandwidth network,
but also the path from controller to actuator.

This chapter is organized as follows. In Sect. 13.1 we study the problem where
different sensors measure and transmit the states of the same system. In order to
reduce network traffic, we implement a multirate approach. Additional results are
provided considering a network constraint in the form of single access to the
network, that is, at every sampling instant corresponding to the plant transitions at
most one node can have access to the network to transmit its measurement. A strict
scheduling protocol is designed in order to satisfy this constraint. Two-channel
network configurations are discussed in Sect. 13.2. First, we present stabilization
results using a similar to Sect. 13.1 multirate approach. Secondly, we derive condi-
tions for bounded tracking error concerning the reference input problem and using
an event-triggered control strategy. Section 13.3 provides notes and references.

E. Garcia et al., Model-Based Control of Networked Systems, Systems & Control: 309
Foundations & Applications, DOI 10.1007/978-3-319-07803-8_13,
© Springer International Publishing Switzerland 2014
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13.1 Multirate State Updates Using a Centralized
Controller

In this section we use the MB-NCS approach and the lifting procedure to establish
stability conditions for discrete-time spatially distributed systems when the plant
states are sampled periodically but using different sampling rates. This multirate
approach provides good performance in terms of network resource utilization
especially when different sensors are used to measure different elements of the
system output, see Fig. 13.1.

13.1.1 Model-Based Multirate Approach

When the sensors use the same network to transmit their measurements to the
controller node, then the multirate approach brings important benefits to the oper-
ation of the overall networked system. By allowing the sensors to transmit their
measurements using different update periods, we avoid packet collisions and
networked induced delays compared to the case when all of the sensors need to
sample and transmit at the same instants. Additionally, we will show that in many
cases a further reduction in network communication can be obtained by using
different update rates for each sensor. Although the multirate sampling case requires
a more complex analysis, the same lifting approach as in Sect. 2.4 can be used in
order to find a system representation for the LTI equivalent (lifted) system.

Consider a multi-output system depicted in Fig. 13.1. In this case we do not
assume that sensors measure all states at the same time; instead we consider a
spatially distributed system for which different sensors measure different elements
of the state and send this information to the centralized controller at different rates.
The states of the model are partially updated according to the information that is
received at any given update instant.

A
—P Plant : . 0

o Model {—| Network

=

Fig. 13.1 Networked control system with centralized controller and distributed multirate sensor
measurements
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In what follows we will provide details on how the states of the model are
partially updated and how to obtain the response of the corresponding lifted system.
The lifted system state equation directly provides necessary and sufficient condi-
tions for the stability of the multirate system.

We consider linear time-invariant systems and models with dynamics
described by:

(13.1)

where u = KX . In this section we approach the multirate problem by considering an
N-partition of the state of the system and, correspondingly, the model (13.1),
according to the number of sensors that are used to obtain measurements:

X1 )21
X X

x= |7 x=1"7 (13.2)
XN N

N
where x;,%; ER", Zni = n. The case when each scalar element of the state is

i=1
measured by a different sensor only represents a particular case of (13.2) so, in
general, elements of the state may be grouped into different subsets and, conse-
quently, each subset of the system state may have different dimensions. Let the
integer s; represent the update period that sensor i uses to send measurements in
order to update the corresponding part of the model state x;. Let s represent the
minimum common multiple of all s;.

In order to obtain the response of the multirate system using the model-based
control input with partial updates we define all the update instants within a period
s by arranging the periods s; and its multiples up to before s in increasing order
as follows:

s1,2s1,...,(r171)s1

$2,2852, ..., (ra— 1)s

2252, (2= o (13.3)
SN,ZSN, ey (I‘N — I)SN

where the integer r; = £ for i =1...N represents the relative update rate compared

to the update rate given by the period s. Let 4; for i = 1.. .p—1 represent the update
instants in increasing order, where p is the total number of update instants within a
period s including the update at time s. Note that at any given instant one or more
sets of states X; can be updated. This procedure can be better shown through a
simple example.
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Consider the state of a system that is partitioned into three subsets x, x, x3 with
corresponding periods s; =3, s, =4, 53 =6. Then we proceed to define all update
instants within a period s = 12, as follows:

h=3=ys
hy=4=s,
hy =6 =25 =53 (13.4)
hy =8 =2s
hs =9 = 3s

Note that at the time instant #3 we have two partial updates for this example.
Let us define, in general, the partial update matrices:

0 0 0
L=10 I, 0 (13.5)
0 0 0

that is, the ith partial update matrix /; € R" ™" contains an identity matrix of size ni
at the position corresponding to x; and zeros elsewhere. Define

Ly=L+1L+I. .. (13.6)

The matrices /), represent all updates that happen at time instant /;.

Theorem 13.1 The uncertain system with distributed sensors as shown in Fig. 13.1
with model-based control input and with partial multirate model updates is asymp-
totically stable for a given selection of update periods s; if and only if the eigen-
values of

D
A+ ZAh”ihiEh[_hiith[_l (137)

i—1
are within the unit circle of the complex plane, where

hi—h;_1—1 .
Ehi*hi—l = Z Ahi_hH ~BK (A + é K)j
Jj=0

Uy = —1y)(A +BK)" U,y + 1, <A’“ +

hi—hy=
; A ’uhqhq,U11q1>
q=1

(13.8)
with hg =0, Up, =1, hy =s.
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Proof Let us consider the beginning of a period s. At this time instant, all sensors
send measurements and we have that x (ks) = x(ks). At the time of the first update
after time ks, that is, at time ks + /i, we have:

hi—1 .
x(ks 4+ hy) = (A’“ + > AMIBK(A + éK)’>x(k) =(A" + 5, )x(ks) (13.9)

Jj=0

and the model state after the update has taken place is given by:
(ks + hy) = ((1 ~ L) (A +BK)" +1,, (A" + Eh,))x(k) = Upx(ks). (13.10)
Following a similar analysis we can obtain the response of the system at time
ks + h, as a function of x(ks+ h;) and X (ks + hy):
hy—hi—1 , o
x(ks + ) = A" (ks + hy) + > APTTUIBK(A + BK)'E (ks + hy).
=0

j=

(13.11)

Similarly, the response of the model at time ks + &, as a function of x(ks + /;) and
X (ks 4 hy) is given by:

hy—hy .,

Z(ks+hy) = (I — 1) (A +BK)" "% (ks + i) + Ippx(ks + ho)  (13.12)

but, since both x(ks+h;) and & (ks + h;) can be expressed in terms of x(ks), we
obtain the following:

x(ks + hy) = (A" + APME, + By, Uy, )x(ks) (13.13)

and the model response is now described by:

hy—hy

% (ks + hp) = ((1 — 1) (A +BK)" Uy, + I, (A" + APTMEy, 4+ 8y, Uy, ))x(ks)
= Up,x(ks).

By following the same analysis for each update instant /; up to /1, = s we obtain

P
x((k+1)s) = (AS +y o AhE, Uh11>x(ks). (13.15)
i=1

i=
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Since (13.15) represents a discrete-time LTI system with state matrix given by
(13.7), then the networked system is asymptotically stable when the eigenvalues of
(13.7) lie inside the unit circle. ¢

Example 13.1 Consider the fifth order unstable system given by:

—-1.05 035 0.02 035 024
035 1.1 0.1 0.035 0.035
A= | 003 032 021 -04 06 |, B=
0.06 003 03 -0.7 0.55
0.035 0.03 06 03 0.2

I e =Y
[ N I T N I

Its nominal model is given by:

—-1 035 002 035 024

035 1 005 0035 0.035
A=1]003 035 015 —-045 06 |, B =

0.06 0.035 034 —0.75 0.6

0.035 0.035 05 03 04

e e e

1
2
1
2
1

If it were possible to send periodic updates of all states, that is, to send all states
at the same time instants, then we could use previous results in order to search for
the range of stabilizing periods. For instance, we can use the results in Theorem 2.6
in Sect. 2.3 or the equivalent results in Theorem 2.8 in Sect. 2.4.1.

It can be shown that using a single-rate approach we would need to use a period
h < 10. Figure 13.2 shows the response of the system and the model for the initial
conditions shown below and using the update period 2 =9, the largest stabilizing
single-rate period. Note that the entire state of the model is updated at the same time
instants. The initial conditions in this simulation are given by:

xo=[ 05 06 03 —05]".

Now suppose that each state of the system can be measured by a different sensor
node using a different update rate. By using the results in this section, it is possible
to show the existence of multirate stabilizing update periods. The number of
combinations of stabilizing periods is quite large including those that involve
lower sampling periods. In many cases it is possible to decrease a few of the
individual sampling periods while increasing the rest of them. For instance, if we
select the periods s, =10, s, =6, s3=15, s,=10, s5=230, the eigenvalues of
(13.7) are all inside the unit circle, which means that the multirate networked
system is asymptotically stable.

Figure 13.3 shows the response of the plant and the model for this particular
selection and using the same initial conditions as in Fig. 13.2. It is important to note
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that many update period combinations result in a stable system and the one selected
is one that provides for significant reduction of network communication compared
to the more conservative single-rate implementation in which all sensors would
need to use a sampling period /& < 10.

13.1.2 Updates with Network Constraints

In the previous section we addressed distributed systems and interconnections.
We assumed that at certain time instants it is possible for more than one sensor to
have access to the network and to transmit a measurement. In this way, flexibility
is obtained when choosing different rates for each transmitting node. In many
cases this is not a strong assumption, especially if the sampling time of the system
is long enough to schedule several nodes to transmit within a sampling interval
(here, we can think on 7T-discretized versions of continuous-time systems, where
T is chosen according to specifications related to actuators, sensors, and the
communication network as well). However, in other cases, the sampling time
may be very small and the network will grant access only to one node at every
discrete time k.

In this section we derive similar stabilizing conditions for scheduling trans-
missions of feedback measurements considering network constraints in the form of
restricted access to the communication channel. We consider the architecture
shown in Fig. 13.1.

Consider an N-partition of the state of system and model (13.1) according to the
number of sensors that are used to obtain measurements. This partition is
represented as in (13.2).

Define the augmented state z(k) = {;((12)
time intervals, s and s, representing the entire update cycle and the subinterval of
empty slots, respectively. The details are as follows: s; represents the number of
discrete-time instants that other applications may use for communication over the
network and are called empty slots since they are not used by the system under
analysis. After s; time instants the N sensors associated with our system transmit
their current measurements sequentially, that is, only one sensor transmits at each
one of the following N time slots. Clearly, all sensors use the same update period

but with strict scheduling to avoid overlapping. The update period is s =s; + N.

}. In this problem we consider two

Theorem 13.2 The uncertain system with distributed sensors as shown in Fig. 13.1
with model-based control input, with partial model state updates, and with sequen-
tial updates is asymptotically stable if and only if the eigenvalues of

V(NI (13.16)
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are within the unit circle of the complex plane, where

A BK
0 A+BK

. (13.17)

V(N) is of the form:

1 0
Iy -1y

with I; defined in (13.5).

V(N) =

I 0
r (13.18)
LoI-1,

Proof During the interval k € [ks, ks+s;), there are no updates of the state of the
model and the augmented system evolves according to:

z2(k + 1) = Tz(k). (13.19)

The response of the system at time ks + sy, at the time corresponding to the first
update of the current cycle, in terms of z(ks) is given by:

I 0

z(ks +51) = [[1 -1

]F‘“z(ks). (13.20)

The response at the time of the following scheduled update, that is, when the
second sensor transmits its measurement update, is given by:

(1 o0 I 0 .
2(ks+ 514 1) = Lz I—Iz}r{h I_Il}r z(ks). (13.21)

The response after the entire model state vector was sequentially updated can be
represented by:

z((k+1)s) = V(NI z(ks). (13.22)

Since (13.22) represents an LTI system for a given number of nodes, then the
networked system is asymptotically stable when the eigenvalues of (13.16) are
within the unit circle of the complex plane. ¢

Remark The objective in this section is to find the range of possible update periods
s that can be used while maintaining stability. The number of empty slots s; can
be used by other applications and for transmission of acknowledgement messages,
if desired.

Remark 1In Theorem 13.2, for simplicity, we choose to transmit the measurements
pertaining to a given system without empty slots between each other and leaving the
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time interval s, for other applications to use. This approach can be easily extended
to the case in which we can select different update patterns but all states are updated
only once during a cycle of duration s. A further extension can combine this
approach and the ideas in previous sections in order to schedule several updates
of one or more particular sensors during each cycle. However, this represents a lack
of flexibility for selection of update rates since the rates have to be multiples of each
other in order to prevent the eventual overlap of schedules that would occur
otherwise.

Example 13.2 Consider the continuous-time model of a batch reactor.

1.3800 —0.2080 6.7150 —5.6760 0 0

. —0.5810 —4.2900 0 0.6750 . 5.6790 0
B 1.0670  4.2730 —6.6540 5.8930 |’ B 1.1360 —3.1460

0.0480  4.2730 1.3430 —2.1040 1.1360 0

In this example we consider the case when each state can be measured by a
different sensor and we also consider model uncertainties described by A = A+A
where the elements in A take values in the range a; < [—0.01,0.01]. The
continuous-time model and plant parameters are discretized using 7=0.01 s.
The largest value for the update period s is found to be s = 226, which corresponds
to 2.26 s considering the sampling period 7. Figure 13.4 shows the response of the
model-based system with sequential updates for two choices of update period that
result in a stable networked system. The second option is the limit value and the
response is oscillatory and the system is stable with a slow convergence time.

13.2 Two-Channel NCS

We call two- or double-channel MB-NCS an NCS in which not only the path from
the sensor to the controller is implemented using a digital network but also the
path from the controller to the actuator as well. This configuration offers more
flexibility to the designer since there is no need to place the model/controller and
actuator/plant in the same node, or directly connect them using a dedicated wire.
Depending on the circumstances of the problem, it is many times preferable to use
the network to implement this controller to plant connection. The configuration is
shown in Fig. 1.1 in Chap. 1. The specific model-based implementation for a
system controller pair is shown in Fig. 13.5, where T is the sampling time of the
underlying system.


http://dx.doi.org/10.1007/978-3-319-07803-8_1#Fig1
http://dx.doi.org/10.1007/978-3-319-07803-8_1
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Fig. 13.4 Response of system in Example 13.2 for two different choices of stabilizing update
periods: (fop) s =2 s. (Bottom) s =2.26 s

13.2.1 Multirate Approach for Stability

Consider the plant and model dynamics (13.1) implemented as in Fig. 13.5, where
the entire state is transmitted from a single sensor node. Here the two switches are
closed at different constant rates, giving rise to the constant update intervals # and m.
Both n and m are integers and, when multiplied by the underlying sampling period of
the plant 7, give rise to update periods that are multiples of the underlying sampling
period T. As a starting point we wish to find the bounding values of m and
n that preserve stability of a discrete-time MB-NCS using instantaneous feedback.
Note that in this case, between input updates, the input to the plant is held constant
in the actuator and it is equal to the last received value. We do not require any
special computation in the actuator it only needs to hold the most current update
from the controller.

Assume that n>m (low measurement rate, which is typical in many
implementations of physical systems). Define p =n/m, and p is assumed to be
an integer.

Theorem 13.3 The lifted system corresponding to Fig. 13.5 is asymptotically
stable if only if the eigenvalues of:
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| NETWORK ‘

Fig. 13.5 Model-based networked control system with communication network between
sensor-controller and controller-actuator

A" + SH,-F" (13.23)
i=0
lie inside the unit circle, where
H; = iA"”"”’jBK (13.24)
=1
r=(A+BK)" (13.25)

Proof Since p=n/m is an integer the period of the equivalent (see Fig. 2.13 in
Chap. 2) linear time-varying periodic system is n. Taking a similar approach as in
Sect. 13.1 we obtain an LTI system. In order to find the state equations of the lifted
system, let us describe the response of the system as a function of the input updates
that take place every m clock ticks. Following a similar approach as in Sect. 2.4.1
we obtain:

x(kn +n) = A"x(kn) + [A"'+ A" . +A""|Bu(kn)
+ [Anfmfl_i_ AnfmfZ_"_ o +An—2m]Bu(kn + m)
+ [Aanmfl_'_ An72m72_~_ o +A”*3’"]Bu(kn + 2m)+

(13.26)

The input « is a function of the state of the plant at times kn and a function of the
state of the model otherwise. The state of the model between sensor updates can be
expressed in terms of the state of the plant at times kn as follows:


http://dx.doi.org/10.1007/978-3-319-07803-8_2#Fig13
http://dx.doi.org/10.1007/978-3-319-07803-8_2
http://dx.doi.org/10.1007/978-3-319-07803-8_2#Sec5
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u(kn) = Kx(kn)
u(kn +m) = Kz (kn +m) = K(A + BK)’"x(kn)

e (13.27)
u(kn + 2m) = Kx (kn +2m) = K(A + BK)*"x(kn)

Note that the model has access at all times to the input that it generates as it can
be deduced from Fig. 13.5. The network connection is between the controller and
the plant, and the model is part of the controller. Equation (13.26) becomes:

x((k+1)n) = (A" + Hol® + H\T" + HoI'? + ... 4 H, 1 I7 ") x(kn)
el (13.28)
- (A" + ZH,T’)x(kn)
i=0

where H; and I are given in (13.24) and (13.25). Equation (13.28) represents a
discrete-time LTI system, therefore stability is achieved when the eigenvalues of
(13.23) lie inside the unit circle. *

Example 13.3 Consider now the following plant and model implemented as in
Fig. 13.5 where the network is also used to connect the controller to the plant.

T=1s.
09 0.1 0.01
A= B =
0 1.07 0.01

i 09117 0.1054 p 0.0109
~\0.0360 1.0672 ~\ 00117
K =(-23294 —17.6266).

In this case we have two variables, n and m, and, intuitively, we expect a
decrease in the necessary value of n as m increases. An appropriate way to
proceed here then is as follows: first find the largest value of n for m =1, that is,
find the value of / in Theorem 2.8 in Sect. 2.4.1. Then select a value for n less than
the value of / that we just found and find the divisors of n. With this information
we can plot the eigenvalues of (13.23) as a function of m. For the example in hand,
the highest value of &, from Theorem 2.8, is 29, so for illustrative purposes we can
fix n =24 (the choice of 7 is taken considering the existence of a large number of
divisors to get p=n/m an integer). For this case the eigenvalues of equation
(13.23) are shown in Fig. 13.6. Note that the horizontal axis contains those values
of m that result in p being an integer. The response of the plant is shown in
Fig. 13.7. The first plot represents the response of the system by choosing
parameters n,m according to Fig. 13.6 for which all eigenvalues of (13.23) have
magnitude less than one (inside the unit circle). In the second plot the selected
parameters result in an unstable system since not all eigenvalues of (13.23) lie
inside the unit circle.


http://dx.doi.org/10.1007/978-3-319-07803-8_2#Sec5
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Fig. 13.7 Response of the plant for n =24 and different values of m for which: (a) stability is still

preserved and (b) system becomes unstable
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Fig. 13.8 Sets of admissible values of n and m for Example 13.3. (Filled square) represent the
pairs (n,m) that result in a stable system. (Multiplication sign) represent the pairs (n,m) that result
in an unstable system, the rest are inadmissible rates

Figure 13.8 shows all admissible pairs (n,m) in the range n < 30, i.e., those pairs
that result in p having an integer value, it also shows which of those pairs provide
stability for the system in Example 13.3.

In the previous analysis it was assumed that the controller update is held constant
in the actuator node. Both actuator and sensor node functions are simplified and
most of the computations are performed in the controller node. The holding
operation is one that, in general, restricts the model-based control properties. By
assuming that the actuator is able to receive and synchronize a sequence of input
values, we obtain an improved performance in the sense that the controller only
needs to receive a measurement update every 4 time units and compute a sequence
of predicted input values and send them all in one larger packet to the actuator.

When the controller node receives a measurement update from the sensor at time
k =1, it predicts the sequence of inputs u(k) for k =1;. . . t; + h, that is, the controller
computes, instantaneously, the same sequence of control inputs that it would
compute for the traditional, one-channel MB-NCS configuration, over the time
horizon [#;, t,+h] and sends this sequence of input values to the controller. Since
the sensor updates are periodic, the model is updated at time k = #; + & and performs
the same computations again but using the new sensor measurements that was just
received. The input sequence is sent to the actuator node in a single and larger
packet. The actuator synchronizes the sequence by applying each input value at the
corresponding time instant. By using this approach the results in Sect. 2.4.1 apply
directly to the two-channel MB-NCS configuration where only two updates are
necessary every / time units. The update from sensor to controller, then the update
from controller to actuator after a sequence of control inputs is calculated.


http://dx.doi.org/10.1007/978-3-319-07803-8_2#Sec5
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13.2.2 Two-Channel Networked Systems and Input Tracking

In order to show corresponding results for the input tracking problem when using a
two-channel network, we recall the transfer function representation that was used in
Sect. 11.3. In that section both the model and the controller were represented using
discrete-time input—output models. Additionally, we will also use similar event-
based strategies to determine the non-periodic update instants.

With respect to Fig. 13.5, the controller node contains the model T (z) and the
controller C(z). The controller has access to the reference input signal as well.
When the controller node receives a measurement update from the sensor, it pre-
dicts the sequence of inputs u(k) and the corresponding sequence of model outputs
y (k) for k=1;...1+N, where f; is the latest update instant. This input and output
prediction is made assuming that the reference signal remains constant during the
prediction horizon N. The input sequence is sent to the actuator node in a single and
larger packet. The actuator synchronizes the sequence by applying each input value
at the corresponding time instant. Similarly, the model output sequence is sent to
the sensor node in order to obtain the output error and apply the event policy.

If no error event update has been generated before or at time 7, + N, then a time-
triggered update takes place and a new output measurement is sent to the controller
to compute new sequences in order to repeat the cycle again fork=1¢;,, ...ty 1 +N
with #;, 1 =t + N. Note that the control process can be periodic but not necessarily,
since an error event can occur at time #; + M, for M < N, which makes t; . =1, + M.

Finally, the controller also contains the set-point detector and it will send a
request for a measurement update to the sensor node if a change in the set-point
value occurs. This new event will initialize the prediction cycle no matter if error or
time events have not been generated yet.

The results in Sect. 11.3 can be extended to consider this type of implementation
and by following some mild assumptions.

Corollary 13.4 Assume that:

— All nodes (actuator, controller, and sensor) for a given networked system are
synchronized.

— There exists a time-triggered sensor event equivalent to the duration of the input
and model output sequences that are predicted by the controller.

Then the plant output tracking error is bounded for any bounded reference step
input if
(@) The term 1 +T(2)C(z) has all its zeros inside the unit circle.
(b) The poles of the controller C(z) contain the factor (z-1).
(c) The poles of T(z) have magnitude less than one. .


http://dx.doi.org/10.1007/978-3-319-07803-8_11#Sec5
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13.3 Notes and References

The contents of Sect. 13.1 were first published in [90]. Results presented in
Sect. 13.2 can also be found in [82] and in [89]. The lifting methods used in this
chapter are based on common lifting techniques presented in [42]. See also [16, 26,
130] for additional discussion on lifting techniques.

The analysis, development, and controller synthesis for networks of
interconnected distributed systems has attracted significant attention within the
control systems community. Examples of such systems can be found in a wide
variety of applications such as power networks, multi-agent robotic systems, and
coordination of autonomous vehicles, large chemical processes comprised several
subsystems interacting one with each other, and also in areas that consider eco-
nomic and/or social systems. In addition, the availability of cheap, fast, embedded
sensor, and controller subsystems that are able to communicate via a shared digital
network allow for the different subsystems to share their local information with
other (possibly all other) subsystems so to achieve a common objective in a more
efficient way [34, 64, 233].

Multirate sampling has been used mainly to reduce computation effort in
sampled data systems [285]. The work in [285] provides experimental results of a
Model Predictive Control (MPC) multirate controller in which a multivariable plant
is approximated by three single-output models which are modeled and sampled at
different rates. The main purpose in this work is to sample the output representing
the slow dynamics of the system at a lower rate in order to reduce the dimension and
complexity of the optimization problem at those sampling instants when only the
fast dynamics are sampled. Other references concerning the implementation of
multirate MPC algorithms are [139, 226].

The multirate implementation generalizes the dual-rate approach frequently
used in sampled-data and networked systems [55, 56, 145] where two different
rates are used in the control system. These two rates correspond to the actuator
(fast rate) and the sensor (slow rate). In the dual-rate approach, it is assumed that
the entire output vector is measured and sent through the network at the same
time instant.

Multirate systems have also been studied using different approaches.
Vadigepalli and Doyle [253] developed a multirate version of the Distributed and
Decentralized Estimation and Control (DDEC) for large scale process based on
model distribution and internodal communication. The model distribution provides
a definition of the states of interest to be estimated locally by each node using
measurements that are sampled periodically using different intervals at each node.
Communication between nodes is used in order to share information due to the
interactions between local subsystems resulting from the model decomposition
overlapping states.



Chapter 14
Distributed Control Systems

Many control applications consider the interaction of different subsystems or
agents. The increased use of communication networks has made possible the
transmission of information among different subsystems in order to apply improved
control strategies using information from distant subsystem nodes.

In recent years there has been a strong interest in the analysis, development, and
controller synthesis for networks of interconnected systems. The importance and
challenges of networks comprised from several to many subsystems or agents have
been recognized early by the research community [224]. Examples of such systems
can be found in a wide variety of applications such as: power networks, multi-agent
robotic systems and coordination of autonomous vehicles, large chemical processes
comprised of several subsystems interacting one with each other, and also in areas
that consider economic and/or social systems. In addition, the availability of
inexpensive, fast, embedded sensor and controller subsystems that are capable to
communicate via a shared digital network allows for the different subsystems
to share their local information with other (possibly the rest of) subsystems so it
can be used to achieve a common objective in a more efficient way [233]. However,
digital communication networks have limited bandwidth and not all agents can
communicate at a given time instant. It becomes necessary to be able to schedule
the broadcast of information by the different nodes in such a way that bandwidth
constraints are not violated.

It is in this type of applications where the model-based architectures studied
throughout this book provide great advantages in the sense of reducing needed
network communication compared to other techniques where models of the systems
are not used in the operation of the overall networked system. In the control of
distributed coupled systems the improvement in the use of network resources is
obtained by implementing models of other subsystems within each local controller.

E. Garcia et al., Model-Based Control of Networked Systems, Systems & Control: 327
Foundations & Applications, DOI 10.1007/978-3-319-07803-8_14,
© Springer International Publishing Switzerland 2014
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< > — e
System 1 System 2 . System N
LCU 1 LCU 2 LCUN
NETWORK

Fig. 14.1 Model-based network interconnected systems

A simple representation of the setup under consideration in this chapter is
presented in Fig. 14.1 where the measurements can be transmitted over the network
and the arrows represent the physical interconnections or coupling of the
subsystems.

The first part of this chapter focuses on distributed systems that transmit infor-
mation at periodic time intervals. Section 14.1 studies the single-rate implementa-
tion where all nodes transmit at the same instants. Section 14.2 investigates
multirate implementations where each node uses its own periodic update interval.
The second part of the chapter discusses event-triggered control strategies
in distributed systems. Section 14.3 offers a centralized triggering condition.
Section 14.4 provides a decentralized triggering condition. Notes and references
are given in Sect. 14.5.

14.1 Single-Rate Periodic Communication

Throughout this book we have studied different control and communication strat-
egies that have been implemented using the MB-NCS framework. In the present
chapter similar strategies are now applied to the stabilization of coupled unstable
subsystems.

To simplify the analysis and to clearly explain the model-based implemen-
tation we restrict our attention to the case when all subsystems send measure-
ments to update the models in other subsystems using the same sampling period.
Next section will generalize this approach to the multirate periodic
communication case.

In this section we consider a network of N interconnected agents or subsys-
tems as seen in Fig. 14.1. Each subsystem has a discrete-time state-space
representation:
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xp(k+ 1) = Apxy (k) + Buu (k) + > Ay (k)
=2

xk+1) =4 (k) + Bouy (k) + Z Anjix;(k)
J=1,j#2

N (14.1)

X,‘(k—‘r 1) :A,‘X,‘(k) -‘rB,‘u,‘(k) + Z A,‘jxj‘(k)

J=1 A

N—-1
v (k+ 1) = Ay () + By (k) + > Anx; (k).
=

In this framework each Local Control Unit (LCU) contains copies of the models
of all subsystems including the model corresponding to its own local dynamics
in order to generate estimates of the states of all subsystems in the network. Each
LCU does not necessarily need models of all subsystems but only of those agents
whose states need to be estimated by that particular local controller. The states that
need to be estimated by a particular controller, say LCUi, fall in one of two
categories: (a) the states that directly affect the model dynamics of system i, and
(b) the states that directly or indirectly affect the model dynamics of the states in (a),
the first category.

The model of each subsystem is represented by:

Ri(k+1) = A%;(k) + B i (k) + iv: A% (k) (14.2)
J=1,j#

for each i € N, N denotes the set {1,2,...N} of N integers where X, X ERM
represent respectively the real state of the izh unit and the state of the corresponding
model, u;,1i; € R™ represent the local input for subsystem or plant i and the input
for model i, respectively. The matrices Ai, Aij, Bi, A i,A ij,1§ i are of appropriate
dimensions. Note that the subsystems could have different dynamics and different
dimensions, the dimensions mi and ni could be all different in general. Note also
that each LCUi has access to its local state x; at all times which is used to compute
the local subsystem control input:

ui(k) = Kix;(k) + XN: Kijx j(k). (14.3)
R

An important point in this model-based distributed approach is to guarantee that all
subsystems have identical values of the estimated states, i.e., of the model states
(14.2). For instance, if a subset of the LCUs, N; C N, needs to generate estimates of

state x;, i.e., to generate X ;, we want to ensure that)E{ =X ,-’ forallj,l € Ny, where)%{ is
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the estimate of x; at LCUj. From (14.2) we can see that this task can be
accomplished by using the same model parameters at each LCU and also by feeding
each model the same input i ;, and by repeating this procedure for all models in each
control unit. The control inputs (14.3) are unsuitable for this task since they depend
on the states of the real subsystems. In order to obtain the same estimated states in
all necessary control units we define the model control inputs as

(k) = Ki% (k) + ZN: K% (k). (14.4)
J=L, i

These control inputs are applied to all models in all LCUs whereas (14.3) is applied
to each local subsystem. It is clear now that although LCUi computes an estimate X ; of
X;, this estimated state is not used to control subsystem i since we have the real state
available. At LCUi we use x; as input for the models ensuring that the same model
equations with the same model control inputs are implemented at all LCUs.

Define the augmented plant and model-state vectors:

T
X = [xlT 2T o xal

£=[R17 %27 . &a’]"

(14.5)
The equations in (14.5) represent the states of all systems and all corresponding
models. The dynamics of the overall system and model can be represented by:

x(k+ 1) = Ax(k) + Bu(k) (14.6)

£(k+1)=Ax (k) +Bi (k). (14.7)

N
The form of the matrices A,A ER"™"and B,B €R"" where n = Zni and
i=1
N
m= Z mi are as follows:
i=1

A Ap ... Ay B 0
Ay Ay ... Ay, 0 B 0
A= | .| B=] . )
Anl An2 An 0 0 B,7
. ) ) (14.8)
A Ap . Ay, B, 0
oAy Ay o Ay 0 B 0
A= 21 2 . .2 B — 2
Anl An2 An 0 0 Bn
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We can describe the dynamics of the overall system as given in the next

proposition.

Proposition 14.1 Assume (,A,B) is stabilizable. The dynamics of the overall

system are represented by:

x(k+1) = (A + BK jigg)x + BK o% (14.9)

where K,p=K — K jiqe. Kyive=diag(K;) is a matrix containing the controller
gains K; as main diagonal sub-matrices. The controller K is a stabilizing controller
for the overall model dynamics, i.e., A + BK is Hurwitz.

Proof We rewrite (14.6) in the next form
x(k+1) = Ax + Bu = Ax + B(Kiggx(k) + (K — Kaiag) % (k)) (14.10)
where u is the augmented vector containing each agent local subsystem control inputs
u= [ulT wl L. unT]T. (14.11)

Equation (14.10) can be simple rewritten as (14.9). *

Theorem 14.2 System (14.6) with control input u(k) = K giqex(k) + Ko X (k) and
single-rate periodic updates of the states of the models is asymptotically stable if
only if the eigenvalues of

:‘

—1
(A+BKuiag)" + 3 (A + BKuiag)" " 'BK oy (A +BK) (14.12)
Jj

I
=}

lie strictly inside the unit circle, where h is the sampling period.

Proof By Proposition 14.1 we have that the state equation containing all sub-
systems is given by (14.9). Equation (14.9) is of the form (2.64) with state matrix
A+ BK g, controller gain K,z and single-rate updates. Then Theorem (2.8) in
Chap. 2 can be applied directly using these modified matrices. Similarly, the lifted
system (Chap. 2)

h—1
x((k+1)h) = <(A + BK jigg) +Z A+BKd,,,€, - ’BKoﬁc(A +BK)> (kh)
j=0

is an LTI system and it is asymptotically stable if and only if the eigenvalues of
(14.12) lie strictly inside the unit circle. L 4
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Fig. 14.2 Maximum eigenvalue of (14.12) for different values of &

Example 14.1 We consider a network of N = 6 subsystems represented by (14.1)
all with different dynamics. The dimensions of the systems vary from 1 to 3 as well.
The models for all different parameters represent an uncertainty as follows: 12 %
alteration in the A; matrices, 10 % in A;;, and 6 % in B;. Some of the systems are
unstable and every agent is coupled to all other agents including those with different
dimensions by corresponding coupling matrices A;;. The eigenvalues of (14.12) are
shown in Fig. 14.2 for different values of 4, the single-rate update rate. It can
be seen that for 27 <11 the overall networked system is asymptotically stable.
Figures 14.3 and 14.4 show the response of all subsystems for the largest stabilizing
rate /=11 and for initial conditions:

40)=1, ©(0)=05 x3(0)—{0'6}, x;;(O)—{_O'S} x5(0)

0.3 —0.4
1 0.3

=105]. x(0)=|-05
0.6 —0.4

14.2 Multirate Periodic Communication

In this section we consider the same problem and approach as in the previous
section, but we do not restrict all updates to take place at the same time instants.
Instead, we allow each subsystem to use a different sampling period. This approach
results in a better usage of network resources. By allowing the sensors to transmit
their measurements using different sampling periods we reduce the probability of
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packet collisions and the size of networked induced delays compared to the case
when all of the sensors need to sample and transmit at the same instants. Addition-
ally, we will show that in many cases a further reduction in network communication
can be obtained by using different updating rates for each sensor compared to the
single-rate case shown in previous section.

Consider a set of N subsystems or agents as represented in Fig. 14.1. Each
subsystem can be represented by:

xi(k+ 1) = Aix; (k) + Biu; (k) + i Ajixi(k). (14.13)

J=1 A

Consider also the models in (14.2),
~ A N ~
Bilk+1) = Aggi(k) + B (k) + Y Ayki(k)
J=1,

for each i € N, N denotes the set {1,2,...N} of N integers where x;, £; eRr™
represent respectively the real state of the itk unit and the state of the corresponding
model, u;,i; ER™ represent the local input for subsystem i and for model i,
respectively. The matrices Ai, Aij, Bi, Ai,Aij,éi are of appropriate dimensions.
Note that the subsystems could have different dynamics and different dimensions,
the dimensions mi and ni could all be different in general. Note also that each LCUi has
access to its local state x; at all times which is used to compute the local subsystem
control input. The system control inputs #; and the model control inputs # ; are given
by (14.3) and (14.4), respectively. Likewise, the overall networked system can be
represented by (14.6) and (14.7), where A, A ER™"and B,B ER™™ with

N N
n= Z niand m = Z mi. The system and model matrices are given by (14.8).
i=1 i=1

Let s; represent the sampling period that sensor i uses to send measurements in
order to update the states of all models corresponding to subsystem i, that is, a
measurement x; to update all models X;. Let s represent the minimum common
multiple of all s;.

In order to obtain the response of the overall networked system with multirate
samplings and using the model-based control inputs we define all the update instants
within a period s by arranging the periods s; and its multiples up to before s in
increasing order as follows:

S1,2S1, ey (1‘1 — 1)S1

S2,2S2, ey (}"2 — 1)S2

SN,ZSN, ey (rN — 1)SN
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where r; =2 for i=1...N represents the relative sampling rate compared to

the sampling rate given by the period s. Let &; for i =1.. .p-1 represent the update
instants in increasing order, where p is the total number of update instants within
a period s including the update at time s. Note that at any given instant one or
more sets of states x; can be updated. This procedure can be better shown trough a
simple example.

Consider a set of three subsystems xy, X, x3 with corresponding periods s; =2,
s, =3, 53 =4. Then we proceed to define all update instants within a period s =12,
as follows:

hh=2=us
hhy=3=s

hy =4 =25 =53
hy =6 =351 =25,
hs =8 =4s; = 2s3
he =9 =35,

h; =10 = 55,

Note that at the time instants k3, 4, hs we have more than one system broad-
casting information for this example.
Let us define, in general, the update matrix corresponding to subsystem i:

0 0 O
Ii=10 I, O
0 0 O

that is, the ith update matrix /; € R"*" contains an identity matrix at the position
corresponding to x; and zeros elsewhere.
Define

I =L+1+1I...

The matrices I, represent all updates that take place at time instant 4;.

Theorem 14.3 The overall networked system (14.6) with model-based control
inputs and with multirate model updates is asymptotically stable for given inter-
sample periods s; if and only if the eigenvalues of

p
(A + BKaiag)' + > (A+ BKuiag)

i=1

hy—hi —

:‘hi*hi—thifl (1414)
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lie inside the unit circle, where

hi—hi 1 —1 ‘ o
Enny= , (A+ BKaiag)" """ BK (A + BK)
=0

Uy, = (1 _Ih,-)(A —I—BK)h"*h""Ulh_] —|—1/1I.((A +BKdmg)h"

i
+ (A + BKdiag)hiithh,,thfl Uhqfl)
q=1

with hy = 0, Uho =1, hp = S.

Proof Let us consider the beginning of a period s. At this time instant all sensors
send measurements and we have that X (ks) = x(ks). At the time of the first update
after time ks, that is, at time ks + /&, we have:

h]*l . R R .
x(ks + hy) = ((A 4 BKaiag)™ + Z (A+ BKdiag)”““-’BKQﬁ (A+B K)’)x(ks)
j=0

— ((A + BKigg)" + E, )x(ks)
and the model state after the update has taken place is given by:

%(ks+h)= (I —In) (A +BK)" + 1, ((A + BKuiag)" + Ep, ) )x(ks)
= Uhlx(k).

Following a similar analysis we can obtain the response of both the system and
the model at time ks + &, as a function of x(ks+ ;) and £ (ks + hy):

x(ks +hp) = (A+ BKd,-ag)hrh'x(ks + hy)
B! ho—hy—1-j TRy
+ (A + BKiag)"™ ™" " BK oy (A + BK)'% (ks + hy)
=0

hy—hy

R(ks+hy) = —1;,) (A +BK)" "% (ks + h1) + Inx(ks + ho)

but, since both x(ks + &) and & (ks + /) can be expressed in terms of x(ks), we get:
h hy—hy — -
x(ks + hz) = ((A +BKdiag) : + (A +BKdiag) 2 l:.hl + Epyny U/n)x(ks)

)Z(kﬁ' + /’lz) = (([ — Ihz) (A +BAK)hz_hthl

+ 1, (A 4 BKig)"™ + (A + BKiag) " " Z), + Epy i, Un, ) )x(ks)
= Up,x(ks).
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Fig. 14.5 Response of the first order systems (fop) and the second order systems (botton)
for 51 =60, s, =15, s3=10, s,=10

By following the same analysis for each updating instant /; up to h,=s we
obtain the following

P
X((k + 1)S) = ((A + Bdeag)s + Z (A +BKdiag>hpihiEhi,hiil Uh‘.1>x(ks)
i=1
(14.15)

Since (14.15) represents an LTI system then the overall networked system is
asymptotically stable when the eigenvalues of (14.14) lie inside the unit circle. 4

Example 14.2 We use the same set of systems and models as in Example 14.1 with
the same initial conditions. By allowing the agents to broadcast their states using
different rates we are able to asymptotically stabilize the overall system and to
further reduce the communication between agents. There exist many combinations
of periods s; that result in a stable system. The next selection that significantly
increases the sampling periods and reduces network traffic compared to =11 in
Example 14.1 was used in the simulation shown in Figs. 14.5 and 14.6,

S = 60, Sy = 15, 53 = 10, Sq4 = 10, S5 = 30, S — 12.
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Fig. 14.6 Response of the third order system 1 (top) and third order system 2 (bottom) for
§5 = 30, S — 12

This selection increases the update time intervals of subsystems 1,2,5, and 6 by
49, 6, 19, and 3 sampling instants of the plant, respectively, while reducing
the update time intervals of subsystems 3 and 4 by only one sampling interval
of the plant.

14.3 Centralized Model-Based Event-Triggered Control

A different way to schedule model updates using the model-based approach was
shown in Chap. 6. The Model-Based Event-Triggered (MB-ET) approach, in
contrast to the periodic implementation, adjusts the broadcasting intervals
according to the current state error. In this section we extend the MB-ET strategy
to consider multiple coupled subsystems. Each LCU is in charge of evaluating its
own local state error in order to decide the time instants in which the real state needs
to be broadcasted to the other agents so all LCUs that implement the model
corresponding to that particular control unit that has sent information update the
corresponding model state.
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In this section we consider a network of N interconnected continuous-time
subsystems or agents. Each subsystem can be described by a state-space represen-
tation as follows:

N
K= A+ B+ > Ay (14.16)
J=10#

foreachi € N, where Nisthe set {1,2,...N} of N integers; x; € R™ represents the
state of the ith subsystem, u; € R™ represents the local input for subsystem i.
A ERMIMA,; E RV B, € RMX™  represent  respectively the  state,
coupling, and input matrices for the ith subsystem.

In this framework each LCU contains copies of the models of all subsystems
including the model corresponding to its own local dynamics in order to generate
estimates of the states of all subsystems in the network. Each LCU does not
necessarily need models of all subsystems but only of those agents whose states
need to be estimated by that particular local controller as it was explained earlier in
this chapter.

The model of each subsystem is

N
Gi=Adi B+ Y Ayt (14.17)
S

where £; €R" represents the state of the ith model, ii; & R™ represents the local
input for model i. The matrices A ; € R"*" A ; & R"*W B, & R"*M represent the
nominal parameters of the dynamics of the ith subsystem. Note that the subsystems
could have different dynamics and different dimensions, the dimensions mi and ni
could be all different in general. Note also that each LCUi has access to its local
state x; at all times which is used to compute the local subsystem control input:

N
u; :K,'Xi-l- Z Kij)zj (1418)
J=1,

and the local model-state error which is defined as:
e,-:)?,-—x,- (1419)

where K; and Kj; are the stabilizing control gains to be designed.

By measuring its local error, each LCUi is able to decide the appropriate times at
which it should broadcast the current measured state x; to all other units so all
LCU’s can update the state of their local models X ; corresponding to x;. At the same
time the LCU that broadcasted its state needs to update its own local model
corresponding to x; and the error ¢; is set to 0. We assume that the communication
delay is negligible and the initial conditions of the plant are nonzero but finite.
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Note that when the LCUs update the state of the model corresponding to x; then
the error ¢; is set to 0 and therefore it is less than the positive threshold that is used to
determine the update instants.

Similar to previous sections in this chapter, we want to guarantee that the models
in all necessary LCUs of any given state x; produce the same estimated state. For the
MB-ET approach used in this section enforcing this step also guarantees that the
local error (14.19) is the same for all nodes as well.

Using this framework, we can see from (14.18) that the input u; for the agent i is
not an appropriate input for the corresponding model. The input for the local
subsystem is a function of the real state which is not always available to the other
agents. In order to make sure that every agent in the network computes the same
estimate of the states of all agents we need to use the same parameters for the model
equations (14.17) and we also need to implement control inputs for the models that
can be executed at every LCU. We define the model inputs

N
i =Kigi+ Y Kyt (14.20)
J=1,j#i

These control inputs are applied to all models in all LCUs whereas (14.18) is
applied to each local subsystem. It is clear now that although LCUi computes an
estimate X ; of x;, this estimated state is not used to control subsystem i since we have
the real state available. At LCUi we use X ; as input for the models ensuring that the
same model equations with the same model control inputs are implemented at
all LCUs.

The first approach to compute the stabilizing controllers and thresholds is
presented in this section and it is based on the dynamics of the overall system and
model. The time instants at which each agent needs to send its information to the
network can be computed locally by each LCU.

Let us introduce the augmented vectors:

x=[al T x50
f=[0" & 1) (14.21)
e=[e” &7 ... &'

The dynamics of the overall system and model can be represented by:
X =Ax+Bu (14.22)
i =A% +Bi. (14.23)

N
The form of the matrices A € R"*",B € R"*™ where n= Zni and

i=1

N
m= E mi, are as follows:
i=1
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i A Ap ... A],,
A A.21 Ay . A?n

Anl AnZ v An

- (14.24)
N

(0 0 ... B,

and similarly for A and B. We describe the dynamics of the overall system in the
next proposition.

Proposition 14.4 Assume (,A,B’) is stabilizable. The dynamics of the overall
system can be represented by:

% = (A+ BK)x + BK e (14.25)

where Kop=K — Kjiqe. Kaive=diag(K;) is a matrix containing the controller
gains K; as main diagonal sub-matrices. The controller K is a stabilizing controller
for the overall model dynamics, i.e., the matrix A + BK is Hurwitz.

Proof We rewrite (14.22) in the next form
X =Ax+ Bu=Ax+ B(Kd,‘agx + (K — Kdiag)-)z)

where u is the augmented vector containing each agent local subsystem control
inputs

w=[ul” w2 .. un]" (14.26)
From (14.21) we have that ¢ = X — x and we can write

X = Ax+ BK(x + e) — BK jiqge
= (A 4 BK)x + BK ,e. *

In order to asymptotically stabilize all agents from their finite initial conditions
we implement a similar strategy as in Chap. 6. The main idea is to reduce the
threshold value as we approach the equilibrium point of the system. This can be
achieved by comparing the norm of the error to a function of the norm of the state.
The norm used in the next results is the Euclidean norm.

Consider again the plant and model described by (14.22) and (14.23) and
by using the control input u = Kgi,ex + KX we obtain expression (14.25) for
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the plant with K rendering A + BK Hurwitz, i.e., the closed-loop model is globally
asymptotically stable. Then we can always find a P which is symmetric positive
definite and is the solution of the closed-loop model Lyapunov equation:

(A +BK)'P+P(A +BK)=—-0 (14.27)

where Q is a symmetric positive definite matrix.
Let us first analyze the case when B =B for simplicity, and define the
uncertainty A = A —A. Also assume that the next bound on the uncertainty

‘ZTP + PZ‘ < A < g holds where ¢ = 6(Q), the smallest singular value of Q in

the Lyapunov equation (14.27) and A is a bound on the norm of the uncertainty.
This bound can be seen as a measure of how close A and A should be.

The next theorem provides conditions on the error and its threshold value so the
networked system is asymptotic stable. The error threshold is defined as a function
of the norm of the state and A. Additionally, the error events can be computed
locally, that is, once the thresholds have been designed each agent can decide when
to broadcast its current measurement to the rest of the agents based only on the
measurements of its own state and its own error.

Theorem 14.5 System (14.22) with u = KgiqeX + KoyX and feedback based on

error events generated when the relation:

lei] > alxi] (14.28)

is first satisfied, is globally asymptotically stable, where a =o(q — A)/b, b =2
‘PéKoﬂ-| and 0 <o < 1.
Proof In order to prove this theorem we will set a bound on the derivative
of V= x"Px along the trajectories of the system (14.25) which is equal to (14.22)
when the input u = Kgjqex + KX has already been substituted and expressed in

terms of the state error, then we can easily show that this bound can be appropriately
tuned by the choice of the threshold on the error.

V =xT[(A+BK)'P +P(A+BK)]x + ' Koy B"Px + x"PBK e
W~ . N\T W~ A .
—x[(A +A+BK) P+P(A +A+BK)|x+ 2 PEK e
— X TOx + 47 (XTP n PZ)x + 2T PBK pe.
We have just expressed V in terms of the model parameters and the uncertainty

of the state matrix A. We now proceed to evaluate the contributions of each, the
model, the uncertainty, and the error.
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V < —qlxf + [ATP + PA||xf” + 2|PB K. el
< (=g + A)|x|* + ble||x]. (14.29)

Now, by sending updates according to (14.28), which sets the error equal to O at
every update time, we can see first that

lei” < o’
and
N N
e =3l <3l = P

i=1 i=1

Since a > 0 and the norms are always nonnegative then we have that
le| < alx]. (14.30)

We can use (14.30) in (14.29) to obtain

V < (o—1)(g—A)x|*. (14.31)

Then V is guaranteed to decrease for any ¢ such 0 <o <1 and updating the
elements of the state of the models in all LCUs according to the events in (14.28). 4

The extension to consider the case of A # A and B # B is straightforward by
assuming that the next bounds on the uncertainty matrices hold:

~ ~ T ~ ~
‘<A+BK) P+P(A+BK)‘<A<q (14.32)

B| < p (14.33)

where B =B — B. In order to obtain (14.31) the local errors are set to satisfy
(triggering an update otherwise):

— A
lei| < olg—4) 1] (14.34)
b

where b = b + 28|K||P|.

By following the approach described above each LCU is capable of determining
the time instants at which it should send its current measurement to the network. An
important drawback in Theorem 14.5 is that the controller is designed based on the
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model dynamics of the overall system and the threshold is calculated as a function
of the bounds on the uncertainty of the augmented system as well. In the next
section we offer a complete decentralized solution, that is, not only the LCUs
update their states based on local information but the local controllers and the
local thresholds, which are not necessarily the same for every agent as in Theorem
14.5, can also be designed based on local model dynamics and uncertainty bounds.

14.4 Decentralized Model-Based Event-Triggered Control

Consider the network of coupled subsystems represented by (14.16) with models
(14.17). We assume that every pair (A i B ,~) is stabilizable. We design controllers K;

that render the matrices Ai +B ;K; Hurwitz. Then for every agent i, i € N, there
exists a symmetric and positive definite P; which is the solution of the closed-loop
local decoupled model

(Ai+BiKi)TPi+Pi(Ai+BiKi) =-0; (14.35)
where Q; is a symmetric and positive definite matrix.

Theorem 14.6 Let (14.18) be the control input for each agent in the networked
system (14.16). Assume that the following bounds are satisfied

~ L N\T -
‘(Ai +BiKi) P+ P; (Ai +BiKi) <A <g; (14.36)
f2
Z ‘PA,,‘ <Wi<g (14.37)
J=1,j# v )

where q; = 6(Q,), fi=q;— A; and Xﬁ = Aj; — BjKj;. Then the networked system
(14.16) is globally asymptotically stable when the local events are triggered by

jeif? > 2 |2 (14.38)

pi

|P BK | N
, and 6i is such that

W;
where y; =f;, —2(N — 1)8; — 5 pi= Z

! J=1,j#i i

(14.39)

o1 < 6; < bpn if 6n1>0
0<6 <dpnp lf 01 <0
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with
S = fi (1 L_M (14.40)
TTN—1\4 V16 22 '
_ fi 1 1 (N—-1W;
5 = < +1/7¢ T) (14.41)

Proof We consider the candidate Lyapunov function
V) =Y Vilx) (14.42)

and use the following proposition.

Proposition 14.7 The derivative of V;= x;' Pxx; along the trajectories of subsystem
i in (14.16) with control input (14.18) satisfies the inequality.

Vi< —(fi —2(N - )')|Xi|2

e 3 Bl 5o Il

oi J=1,j7i

11/

(14.43)

Proof of Proposition 14.7 Consider the local Lyapunov function V;=xPix; and
compute its derivative along the trajectories of subsystem i in (14.16) using the
local control input (14.18) to obtain

V,‘ :X,'T((Ai +B,‘K,‘)TP,' +P,(A, +B,‘K,‘))X,‘ +X;T((Zi +§,‘K,‘)TP,' +P,(Z, +§,~Ki))xi

N N N N T
+X,‘TP,'</Z A,‘j}(j-f— ZB,‘K,'J'X]') + (/Z A,']'Xj+ ZBI'K,']'X]') P,‘.)C,’

j=1j#i J=l =1 J=1t
(14.44)
and consider the next inequality involving the vectors p € R",v € R”
|6p — ITv|)* > 0 (14.45)

where IT € R"*™ and § is any positive real constant. Equation (14.45) can be
expanded to yield

M 8|y
| <| 14.46
Wy < =+ —- ( )
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Applying (14.44) to (14.41) we obtain

- pA !
Vi < —qil + Al + Z |* + il
J=1,j#i
N (1PBiK;|
e 3 (PBEL P o

J=1,j#

Finally, we write the terms involving IxJ* together and we obtain (14.43).

Now, taking the derivative of the Lyapunov function V along the trajectories of
the state x =[x, x5! ... an]T results in the next expression

. ‘ s +30 3 PoRLy e

i=1j=1, j#i

We consider the case where all subsystems can receive measurement updates
from the rest of the agents in the network, although this is not a necessary condition
for the validity of the results in this theorem. It suffices for each agent i, i € N to
establish a bidirectional communication to those agents for which exchange of
information is needed, that is, those agents that need to estimate the state x; in any of
their models and the agents for which agent i needs to estimate their state to use in
any of their models. Then we can use the symmetry property of this type of
interconnection to obtain

P;BiKji
‘x1|+zz‘ /"1|

i=1j=1,j#i

<D= (=20 = sl ZZ
_(DJXI'Z - Zﬁiei|2)'

(14.47)

It is clear that coefficients f; are positive and, in order for condition (14.36) to be
a valid threshold we need the y; coefficients to be positive as well, which requires to
solve the following inequalities for the real parameter J;
W;
P = i_2N_1 6i——>0
xi=fi=2N=1d & (14.48)
6; >0
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It can be verified that the solution for the above inequalities is given by (14.39)
with J;1 ; as in (14.40) and (14.41), moreover the solution is a real number by the
assumption on the bounds W;. Since we showed that y;, #; > 0 then the Lyapunov
function is guaranteed to decrease by updating the models in all LCUs
corresponding to the state x; according to the threshold (14.38).

The parameters A; represent given bounds on the norm of the uncertainty for
every agent and they can be seen as a measure of how close the model and system
dynamics are. The bound W; represents a measure of how close we are able to
cancel the effects of other subsystems on system i using the control gains that are
designed based on the nominal models.

Example 14.3 Consider a network of N = 10 unstable subsystems represented as in
(14.16) all with different dynamics. The dimensions of the systems vary from 1 to
3 as well. The models for all different parameters represent an uncertainty as
follows: 12 % alteration in the A; matrices, 10 % in A;;, and 6 % in B;. Every
agent is coupled to all other agents including those with different dimensions by
corresponding coupling matrices A;;.

The unknown dynamics of the subsystems are given by:

A =04, B =1
A, =05 B,=1
A3 =02, By=1
As=1, By=1

(021 —0.4 5 1 0
|03 —07] o 1

(03 2 1 0
Ag = , Be¢=
106 —1.8 0 1

As

A [ 0.05 0.003], 5 ll 0]
100023 —0.7 0 1
[0.11 —041 0 1 00
Ag=1] 0 03 —07], Bg{o 10
. 0 —03 -05 0 0 1
(03 2 —0.07 1 00
Ag=|0 009 -1 |, Bo=|0 1 0]
01 0 02 0 1

Ap = 0 0.0023 -0.7],

0
0.05 0.003 0.5 1
Biy=10
-0.3 0 -0.5 0
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The nominal model parameters are given by:
A, =0352, B;=095
A, =044, B, =095
A;=0.176, B; =095
Ay =088, B,=0095
. [0.1848 —0.352 . 095 0
As = , Bs=
| 0264 —0.616 0 095
. [0.264 1.76 . 095 0
Ag = , Be=
0.528 —1.584 0 095
. [0.044 0.0026 . 095 0
A= , B;=
0.002 —0.616 0 095
10.0968 —0.3608 0 095 0 0
Ag = 0 0264 —0.616|, Bg=| 0 095 0
L0 —0264 —0.44 0 0 095
r0.264 176 —0.0616 095 0 0
Ag=1| 0 00792 -088 |, Bo=| 0 095 0
| 0.88 0 0.176 0 0 095
0.044 0.0026 0.44 095 0 0
A= 0 0.002 —0616|, Biy=| 0 095 0
—0.264 0 —0.44 0 0 095

Every agent is coupled to all other agents including those with different dimen-

sions by correspondin
given by:

g coupling matrices Aij. The unknown coupling matrices are

Aj=c, for i=1,2,3,4 j=1,2,3,4; i #].
Aj=lci ] for i=1,2,3,4; j=5,6,7.
Aj=[ca ¢ ] for i=1,2,3,4; j=8,910.
Aj=1lci al' for i=5,67; j=1,2,3,4.
Aj= {COZ COZ} for i=5,67 j=567T i%].
Aij_|:C3 0 63] for i=5,6,7; j=8,9,10.
0 ¢z O
Aj=lca o e for i=8,9,10; j=1,2,3,4.



14.4  Decentralized Model-Based Event-Triggered Control 349

Norm

oblF---
-
o

15
15 2 T T
P x : : x system1
k] ¥ X X + system?2
g T~ coTTTT T TTT7] + system3 ]
§ X X e system4
§ 05f----mmmm oo - -m- - - - oo - - - - - - - - -
o A D R O R ¥ & FrdFRHR|
B st | |
0 5 10 15

Time (seconds)

Fig. 14.7 The norm of the state of the overall system is shown in the fop. The broadcasting period
for subsystems 1—4 is shown at the bottom

(3 0 ' . .

Aj= for i =28,9,10; j=15,6,7.

) _0 c; 0
_C3 0 0

Aj=10 ¢ 0 for i =28,9,10; j=28,9,10; i # .
_0 0 C3

for c; =0.5, c;=0.4, c3=0.1. The nominal coupling matrices A ;j are of the same
form but with ¢ ; = 0.45, ¢, =0.36, ¢35 = 0.09.

The local controllers and thresholds are designed following the decentralized
approach in this section, where only the model parameters and the bounds on the
uncertainties are used. The results of simulations are shown in Figs. 14.7 and 14.8.
In the top portion of Fig. 14.7 it can be seen the norm of the augmented state, that is,
the response of all states of all subsystems. Figure 14.8 and the bottom portion of
Fig. 14.7 show the broadcasting periods for every agent in the networked system.
Figure 14.7 (bottom) represent the broadcasting periods for the four first order
systems, Fig. 14.8 (top) for the 3 s order systems, and Fig. 14.8 (bottom) for the
three third order systems.
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Fig. 14.8 Broadcasting period for subsystems 5-7 (fop) and 8—10 (bottom)

Example 14.4 In this example we consider a collection of three coupled carts. The
physical coupling corresponds to the springs used to connect the carts to each other,
and assume that at the equilibrium of the system, all springs are not stretched.
The dynamics of each cart and its corresponding model can be described by (14.16)
and (14.17), respectively with

0 1 0 0 0
A= , Bi= , A= ,
—Cik 0 1 dij 0
. 0 1 . 0 . 0 O
L —Cilg 0 ’ o 1 ’ v (j,‘j 0 ’

where C1=C3= 1, Cr = 2, k= 5, d12 = d32 = d21 = d23 = 1, and d13 = d31 =0. The
model parameters are k= 4.95, 313 = 6231 =0, and the remaining c?,-,- =1.01.
Results of simulations of this example are shown in Fig. 14.9. In this simulation, the
carts start with an initial condition that represents stretched springs and the purpose
is to control the carts motion to reach an equilibrium where the springs are not
stretched.
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Fig. 14.9 The norm of the state of the overall system in example 14.4 is shown in the top.
The broadcasting period (in seconds) for each cart is shown at the bottom

14.5 Notes and References

In this chapter the MB-NCS approach that was introduced in Chap. 2 has been
extended to consider networks of coupled systems using periodic communication
and using multirate sampling for discrete-time systems and using event-triggered
control for continuous-time systems.

The work discussed in Sects. 14.1 and 14.2 appeared first in [90]. The work
discussed in Sects. 14.3 and 14.4 was first published in [85].

The event-triggered control has been extended to consider networked
interconnected systems in [50, 53, 54, 95, 102-104, 177, 178, 228, 265]. A common
characteristic in the previous work on event-triggered control is the use of a Zero-
Order-Hold (ZOH) model in the controller node and the assumption that the models
being used are the same as the plants they represent, i.e., no model uncertainties are
considered. Similar model-based approaches for stabilization of coupled systems and
for cooperation of multi-agent systems have been presented in [52, 96, 240-243].

In Chap. 6 the Model-Based Event-Triggered (MB-ET) control framework that
considered model uncertainties was presented. Here, we extended that approach to
consider multiple interconnected subsystems. This strategy represents considerable


http://dx.doi.org/10.1007/978-3-319-07803-8_2
http://dx.doi.org/10.1007/978-3-319-07803-8_6
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savings on network bandwidth compared to similar work in the literature that use
model-based implementations.

Similar model-based implementations to the one presented in this chapter that
consider systems with distributed sensors can be found in [66, 240-243]. In [240]
the authors study the stabilization of coupled continuous-time systems employing
the MB-NCS framework described in Chap. 2 of this book and using a single-rate
approach which forces all agents to send measurement updates through the network
all at the same time instants. That approach was extended in [66, 242, 243] to the
case when a schedule for the updates is pre-assigned but all subsystems still use the
same update rate, i.e., a single-rate approach in which the agents send updates at
different time instants.

In [241] the same problem is considered using event-triggered control tech-
niques but the proposed solution requires the opposite updating strategy as the one
we present in Sect. 14.4; all agents need to communicate or send their information
to agent / when the error e; grows large, that is, agent i needs to send a request for
updates to all other agents, then all agents need to respond and send their current
measurements to agent i all of them at the same time instant, which may produce
packet collisions and loss of information. In addition, since the update request is
based on the local error e;, we could be requesting all other agents to send their
information to agent { when it is not necessary, i.e., their local errors are small and
the growth of e¢; may be due to large local parameter uncertainty or due to only one
or very few errors from other agents.

The strategy proposed here avoids the unnecessary increase in communication
by simply making agent i to broadcast its state according to its local error. If all
agents including agent i have the same estimate x; of x; then when the error ¢; is
large by an appropriate measure we know it is necessary for all agents to receive the
real state and update the state of the model X ;.

The decentralized method described in this section extends the results provided
by [261]. In [261] only a ZOH model is used, that is, the control input for each agent
remains constant between updates. With respect to previous work in event-triggered
control, the implementation of this strategy using MB-NCS accounts for the
unavoidable existence of model uncertainties in the stability analysis.


http://dx.doi.org/10.1007/978-3-319-07803-8_2

Appendix A

This appendix contains a brief review of basic tools, concepts, and methods that
have been used in this book. Essential notions concerning linear algebra, control
theory, linear systems, and Lyapunov analysis are described in the following
sections.

Linear Algebra

Vector norms and matrix norms. Let V be a vector space over R (the field of real
numbers) or C (the field of complex numbers). A real valued scalar function | - ||
defined on V is said to be a vector norm if it satisfies the following properties:

[1x]| = .

— |lx[| =0 if and only if x=0.

||ax|| = lad||x||, for any scalar a. lal denotes the absolute value of .
I+ || < ||x]| + ||y]| also called triangle inequality property.

for any x,y € V.
The norm generalizes the usual concept of length in lower dimensional
Euclidean spaces. The p-norm of vector x is defined as

n 1/p
[lxll, = (Z |x,-”> (A.1)

for 1<p<oo. Particular cases of interest include p=1,2,00 and the
corresponding norms are defined as follows:

E. Garcia et al., Model-Based Control of Networked Systems, Systems & Control: 353
Foundations & Applications, DOI 10.1007/978-3-319-07803-8,
© Springer International Publishing Switzerland 2014
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elly =D il (A2)

i=1

Il = /3 b (A3

X[ . = maxy<i<n|xi]- (A4)

For a matrix A € C™ " we can define the matrix norm induced by a vector p-
norm in the following way

[[Ax]l,
1A]l, = supyzo 7= (A5)
[Ixl,

From a system theoretic point of view the matrix induced norms can be seen as
input/output amplification gains. A particular case of this type of norm is given by
the induced 2-norm which can be computed as follows

||A||2 =V ﬂmax(A*A) (A.6)

where A,.x(A*A) represents the largest eigenvalue of the symmetric matrix A*A,
where A* denotes the conjugate transpose matrix of A.

Eigenvalues and eigenvectors. The eigenvalues 4;, i = 1,. . .,n of a square matrix
A € C"™" are the n roots of its characteristic polynomial

p(A) = det(Al — A). (A7)
A right eigenvector of matrix A is a non-zero vector x € C” that satisfies
Ax = Ax. (A.8)

Note that if x is an eigenvector of A, then any ax, a#0 scalar, is also an
eigenvector of A. Similarly, a left eigenvector of matrix A is a non-zero vector
y € C” that satisfies the following

YA =" (A9)

where the notation y* represents the conjugate transpose of the vector y.

A matrix A € R" ™" that satisfies [a;] = [aj;], where [a;;] represents the entry of
matrix A in the ith row and jth column is called a real symmetric matrix.

The eigenvalues of a symmetric matrix are all real and they can be ordered in the
following way:
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A(A) S h(A) < ... < 4(A). (A.10)

We define A,in(A) = 41(A), the smallest eigenvalue of the real symmetric matrix
A, and ., (A) = 4,,(A), the largest eigenvalue of the real symmetric matrix A.

A symmetric matrix A € R"*" is called a positive definite (semi-definite)
matrix, represented as A >0 (A >0), if z'Az is positive (non-negative) for any
non-zero vector z € R”".

The eigenvalues of a positive definite matrix A are all real and positive. Every
positive definite matrix is invertible and its inverse is also a positive definite matrix.
For A,B € R"*" the notation A >B (A>B) means that the matrix A —B is
positive definite (semi-definite).

Consider the dynamical system

i = Ax (A.11)

and consider the change of variables x=Tx’, where T is a constant, square, and
invertible matrix. By substituting x in (A.11) we have

Tx' = ATX . (A.12)
By multiplying on the left by T~ ' we obtain the following
i =T'ATY = A'Y (A.13)

where A’ =T 'AT. The characteristic polynomials of A and A’ are the same; this
can be shown as follows

det(s] — A') = det(sl — T~'AT)
= det(sT~'T — T'AT)
= det(T~'(sI — A)T)
= detT'det(sl — A)detT
= det(s] — A). (A.14)

A and A’ are called similar matrices and T is called a similarity transformation.

Now, assume that the matrix A has distinct eigenvalues 44, ...,4,. Then A has
n linearly independent eigenvectors {vi,...,v,}. Let AD:PflAP where P =
[vi,...,v,], are the right eigenvectors of matrix A. The n diagonal entries in Ap
are the eigenvalues of A

A 0

A2

Ap = (A.15)
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A and Ap are matrix representations of the same abstract linear transformation;
A and Ap are similar matrices and the similarity transformation is

P=1[v,...,v] (A.16)

When a matrix A has repeated eigenvalues, then it is not always possible to
diagonalize it. The Jordan canonical form is a useful representation of matrix
A when diagonalization is not possible. This transformation can be obtained by
means of generalized eigenvectors.

A vector v is called a generalized eigenvector of rank k of matrix A, associated
with an eigenvalue A if and only if

(A= =0 and (A—a)'v£0. (A.17)

Note that for k = 1 the definition of a generalized eigenvector is the definition of
an eigenvector of A (A.8).
Define a chain of generalized eigenvectors {vy,...,v;} as follows:

Vi =YV
Vit = (A= A)v = (A=)
Ve = (A=)’ = (A — ) v

vi=(A=2)""v = (A— ). (A.18)

For generalized eigenvectors we have the following results

— The generalized eigenvectors {vy,...,v;} defined in (A.18) are linearly
independent.

— The generalized eigenvectors of A associated with different eigenvalues are
linearly independent.

— If u and v are generalized eigenvectors of rank k and /, respectively, associated
with the same eigenvalue 4, and if u; and v; are defined by

(A.19)

and if u; and v; are linearly independent, then the generalized eigenvectors {uy, . . ., i}
and {vy,...,v,} are linearly independent.

The Jordan canonical form of a matrix A can be obtained by using a new basis of
the vector space constructed using the above results on the generalized eigenvec-
tors. A Jordan matrix J can be written as follows:
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Jo 0
J= I (A.20)

0 Js
where Jj is a diagonal matrix with diagonal elements {4y, ...,4;} (not necessarily

distinct), and each J), is an n, X n, matrix of the form
;Lk+p 1 0 o 0
Ayp 1
e 1 (A21)
O 0 e Ak#»p

for p=1,...,s, where 1, , need not be different than A, forp #qand k+n; +. ..
+ny=n. The blocks Jy,/Jq,...,Js are called the Jordan blocks and the numbers
Ai» i=1,...,k+s are the eigenvalues of A. If /; is a simple non-repeated eigenvalue
of A, then it appears in the block Jj.

Note that a matrix can be similar to a diagonal matrix without having distinct
eigenvalues; in fact, a n X n matrix is similar to a diagonal matrix if and only if there
are n linearly independent eigenvectors. Also, it can be shown that any real
symmetric matrix is similar to a diagonal matrix.

Linear Systems and Control Theory

Control theory addresses the behavior of dynamical systems and the tools and
methods to influence this behavior in order to attain a desired response. Dynamical
systems can be classified as different types (e.g., lumped or distributed) and
described using different representations (e.g., ordinary or partial differential equa-
tions; integral equations). Consider the state space representation of a continuous-
time linear finite dimensional time-invariant (LTI) system

(1) = Ax(t) + Bu(r) (A.22)
y(t) = Cx(t) + Du(r) (A.23)

where x € R” is the state of the system (n is the dimension), u € R™ represents the
input to the system, and y € R” is the output of the system. The expression in
(A.22) is called the state equation and (A.23) is called the output equation. The
input u(¢) is the available signal that can modify the behavior of the system and it is
referred to as the control input. When the control input is a function of the state of
the system, i.e., u(¥) =f(x(¢)), then a closed-loop control is applied to the system,
otherwise, an open-loop control is used. The solution to (A.22) given the initial
conditions x(fy) is
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x(t) = AT x (1) + JeAV*ﬂBu(T)dT (A.24)

to

and the output response is given by
t
y(t) = CeA)x(19) + CJ A Bu(z)dr + Du(r). (A.25)
to

Usually in LTI systems ¢, is taken to be zero (¢ =0).

Definition A.1 Let A € C"*" be a constant matrix. The exponential matrix e’ is
defined as follows:

M=1+) A (A.26)

for any — oo <t < 00.

Similarly, a discrete-time linear time-invariant system can be described using
the following state space representation

x(k+1) = Ax(k) + Bu(k) (A.27)
y(k) = Cx(k) 4+ Du(k). (A.28)

The solutions to the discrete-time state equation (A.27) and output equation
(A.28) are given, respectively, by the following expressions:

k—1
x(k) = A% ) x(kg) + ) " ACUHBu(j) (A.29)
J=ko
k—1 )
y(k) = CA R)x(ko) + >~ CA*UDBu(j) + Du(k) (A.30)
J=ko

for k > ko, where x(kp) is a given initial condition.

A state y € R" is called reachable if there exists an open- or closed-loop control
that transfers the state of the system x(¢#) from the zero state to the state y in some
finite time T. A state ¢ € R" is called controllable if there exists an open- or closed-
loop control that transfers the state from & to the zero state in some finite time 7.

A time-invariant system (A.22) or (A.27) is said to be reachable when all states
are reachable. This is true if and only if its controllability matrix given by

[A|B] = [B,AB, ..., A" 'B| ER"™ (A.31)
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Table A.1 Laplace -
transforms b S0, =2 0) f(s)=L[f )]
o(1) 1
u(f) 1/s
l‘k/k ! 1/sk+ 1
e 1/(s+a)
Fem k(s +a)f!
e “sinbt bll(s+a)*+b?]
e~ “cos bt (s+a)/[(s+a)*+b%]

Table A.2 Laplace transform properties

Time differentiation dfioft S (5) = [71£(0) + ...+ 4D (0)]
Frequency shift e~ “fir) f(s+a)

Time shift flit —ayu(t — a),a>0 e f (s)

Scaling fltl),a>0 af (as)

Convolution Jof@gt —o)de F (98 ()

Initial value lim,_+f (1) limﬁoosf (Sf

Final value lim, _, ,f(1) lim,_osf (S)<>

T If the limit exists
CIf sf (s) has no singularities on the imaginary axis or in the right half s plane

has full row rank n. Note that reachability implies controllability but the other way
around is not true in general in discrete-time systems. In continuous-time systems
reachability implies and is implied by controllability always.

A common tool for analysis and design in control systems is the Laplace
transform. The one-sided Laplace transform is a linear operator of a function f{(¢)

with a real argument t, 7 > 0, that transforms f{#) to a function f (s) with complex
argument s. The Laplace transform, denoted as L[f(¢)], is given by the integral

f(s)= J f(t)edr. (A.32)
0

If 1) =[f1(0), . . .. £(D]", where fi(t) : [0,00) = R, i=1,...,n, and if each fi(¢) is
Laplace transformable, then we define the Laplace transform of the vector

f component-wise: ie., f(s)= [fl(s) ..... fn(s)}T, where £ .(s) = L[f,(1)].
Table A.1 shows the Laplace transform of common time signals. In Table A.2
important properties of the Laplace transform are summarized. Note that for all
functions in the table ¢ > 0; for # < 0 the functions are zero

A transformation commonly used for discrete-time systems is the Z-transform.
The one-sided Z-transform of a discrete-time signal f(n), where n > 0 is an integer,
is defined as

fe =2zlfml =" flal=" (A.33)

where z is a complex number in general.
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Stability and Lyapunov Analysis

Consider the dynamical system described by the nonlinear first order ordinary
differential equation

X =f(x), x(t0) = xo (A.34)
where x € R" and x(f) is the initial value, or initial condition, at time #, and f:

D — R" is a locally Lipschitz map from a domain D C R” into R"

Definition A.2 A function f: RY — R™ is called Lipschitz continuous if there exists
a constant L, > 0 such that

I () = fO)ll < Lallxr = x2 - (A.35)

If (A.35) is only valid on a subset D of R”, then the function f{x) is called locally
Lipschitz.
Assume that (A.34) possesses a unique solution ¢(t, ty, xo) for all t > ¢,.

Definition A.3 A point x, € R" is called an equilibrium point of (A.34), or simply
an equilibrium of (A.34), if
flx.)=0. (A.36)

We will assume that the equilibrium of interest is located at the origin of R”, i.e.,
f0)=0.

Several definitions of stability (called Lyapunov stability) can be associated with
an equilibrium of the homogeneous system (A.34).

Definition A.4 The equilibrium x =0 of (A.34) is said to be stable if for every
e > 0, there exists a 6(¢) > 0 such that
lxol| < 8(e) = ||@(2,t0,x0)]| < & (A.37)

for all +>t,. It is said to be unstable if it is not stable, and it is said to be
asymptotically stable if it is stable and

[lxo[| < 8(e) = limi—.oc [| (2. 10, x0) || = 0. (A.38)

Definition A.5 The equilibrium x =0 of (A.34) is said to be globally asymptoti-
cally stable if it is asymptotically stable when the system (A.34) is arbitrarily
initialized.

Stability of a given dynamical system can be established by means of candidate
Lyapunov functions.
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Let V:R" —R” be a continuously differentiable and positive definite function,
i.e., V(x) >0 for all x#0 and V(0)=0. If V(x) — oo when |jx|| — oo, then V is
called radially unbounded.

If system (A.34) admits a function V described in the previous paragraph and we
have V(x) < 0 for all x along the trajectories of (A.34), then the system is stable.

Similarly, if V(x) < 0, then the system is asymptotically stable. Furthermore, if
the Lyapunov function V is radially unbounded, then the system is globally asymp-
totically stable.

A notion of stability frequently used in this book concerning systems with
exogenous inputs is input-to-state stability (ISS). Consider the system with input
u described by

X =f(t,x,u) (A.39)

where f: [0, 00) X R" x R" — R”" is piecewise continuous in ¢ and locally Lipschitz
in x and u. The input u(¢) is piecewise continuous and it is a bounded function of
t for all t > 0.

In order to provide a definition for ISS, let us first define the following types of
functions:

Definition A.6 A continuous function a: [0, a) — [0, 00) is said to belong to class
K if it is strictly increasing and a(0) = 0. It is said to belong to class K, if a=o0
and a(r) — oo as r — oo.

Definition A.7 A continuous function f: [0, @) x [0, co) — [0, c0) is said to belong
to class KL if for each fixed s, the mapping f(r, s) belongs to class K with respect to
r and, for each fixed r, the mapping f(r,s) is decreasing with respect to s and
p(r,s) — 0 as s — 0.

We now provide a definition for ISS using the comparison functions defined in
the previous two items.

Definition A.8 The system (A.39) is said to be input-to-state stable (ISS) if there
exists a class KL function f and a class K function y such that for any initial state x
(to) and any bounded input u(¢), the solution x(¢) exists for all # > ¢y and satisfies

(@I < Bllx(t0)ll £ = t0) + 7 (suPyy <o (7)) (A.40)

Lyapunov functions can also be used in this case in order to certify ISS of a given
nonlinear system with exogenous input.

Theorem A.9 Let V:[0,00) x R" — R be a continuously differentiable function
such that

ar(|lxl]) < V(zx) < a(]x]) (A41)
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& flex) < -Ws) for all |2 2 p(lu) >0 (A4

for all (t,x,u) € [0,00) x R” x R”, where ay, ay are class K functions, p is a
class K function, and W5(x) is a continuous positive definite function on R". Then,
the system (A.39) is input-to-state stable with y =a; ' o a o p.

For the continuous-time linear time-invariant system described by (A.11) we
have that x =0 is always an equilibrium of (A.717). Let x(¢) = ¢(¢, 0, x,) represent the
solution of (A./7) where f, =0 without loss of generality.

Theorem A.10 The following statements are equivalent:

(a) The equilibrium x =0 of (A.11) is asymptotically stable.
(b) The equilibrium x =0 of (A.11) is globally asymptotically stable.
(o) lim,_, o ||x(®)|| =0.

Theorem A.11 The equilibrium x =0 of (A.11) is stable if and only if all eigen-
values of A have non-positive real parts, and every eigenvalue with zero real part
has an associated Jordan block of order one. The equilibrium x =0 of (A.11) is
asymptotically stable if and only if all eigenvalues of A have negative real parts.

Stability of linear systems can also be analyzed using Lyapunov functions.
A typical choice of Lyapunov function for linear systems is a quadratic function
of the form:

V(x) = x"Px (A.43)

where P > 0. The derivative of (A.41) along the trajectories of the linear system
(A.11) is given by:

V(x) = iTPx 4 x"Px
=x"(ATP + PA)x. (A.44)

Recall that if V(x) < 0 then system (A.11) is globally asymptotically stable.
Therefore we wish to find a P >0 such that the A”P+PA <0. The following
theorem formalizes this discussion.

Theorem A.12 The equilibrium x =0 of (A.11) is asymptotically stable if and only
if for any given positive definite symmetric matrix Q there exists a positive definite
symmetric matrix P that satisfies

ATP 4+ PA = —Q. (A.45)

Equation (A.45) is called the Lyapunov equation.

Discrete-time systems. Lyapunov stability concepts can also be used to
characterize and study discrete-time systems. Consider the following nonlinear
discrete-time system with dynamics given by:
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x(k+1) =f(x(k), x(ko) = xo. (A.46)

For the time-invariant system (A.46), assume without loss of generality that
ko =0 and denote its solution by ¢(k, x).

Definition A.13 A point x, € R" is called an equilibrium point of (A.46), or
simply an equilibrium of (A.46), if

Fxe) = xe. (A.47)

Definition A.14 The equilibrium x=0 of (A.46) is said to be stable if for every
e > 0, there exists a 6(¢) > 0 such that

[lxol| < 6(e) = llgp(k, xo)|| < & (A.48)

for all k> 0. It is said to be unstable if it is not stable, and it is said to be
asymptotically stable if it is stable and

lxo]l < 8(e) = limy—oo||p(k, x0)|| = O. (A.49)

Similarly, if the initial conditions x; can be arbitrarily chosen, then the system is
said to be globally asymptotically stable.

The Lyapunov function characterization in the discrete-time case is similar to its
continuous-time counterpart. Instead of derivatives we consider the differences. Let
V(x) > 0 for all x# 0. If the following is satisfied

Vx(k + 1)) = V(x(k)) < 0 (A.50)

for all x # 0, along the trajectories of the system, then the system is asymptotically
stable, furthermore, if V(x) is radially unbounded then the system is globally
asymptotically stable.

In the case of linear time-invariant discrete-time systems described by

x(k+1) = Ax(k) (A.51)
we have that x =0 is always an equilibrium of (A.51). Let x(k) = ¢(k, xo) represent
the solution of (A.51) where ko= 0 without loss of generality.

Theorem A.15 The following statements are equivalent:

(a) The equilibrium x =0 of (A.51) is asymptotically stable.
(b) The equilibrium x =0 of (A.51) is globally asymptotically stable.
() lim,_, o ||A*||=0.

Theorem A.16 The equilibrium x =0 of (A.51) is asymptotically stable if and
only if all eigenvalues of A are within the unit circle of the complex plane, i.e.,
[A(A)|| <1, i=1,...,n. In this case we say that the matrix A is Schur stable.
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The equilibrium x =0 of (A.51) is stable if and only if W(A)1 <1, i=1,...,nand
each eigenvalue with |A,(A)| =1 has associated Jordan block of order one.

Similar to the continuous-time case, a typical choice of Lyapunov function for
linear systems is a quadratic function of the form (A.43).

The time difference of (A.43) along the trajectories of the linear system (A.51) is
given by:

V(x(k+1)) = V(x(k)) = x(k+ 1)"Px(k + 1) — x(k)"Px(k)

= x(k)" (ATPA — P)x(k) (A.52)

which leads to the discrete-time Lyapunov equation shown next.

Theorem A.17 The equilibrium x =0 of (A.51) is asymptotically stable if and only
if for any given positive definite symmetric matrix Q there exists a positive definite
symmetric matrix P that satisfies

ATPA—P = —Q. (A.53)

Equation (A.53) is called the discrete-time Lyapunov equation.

Notes and References

The contents of this section are based on several books on linear systems, control
engineering, and nonlinear systems [5, 61, 76, 77, 131].
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