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Abstract 

A hydroinformatics system represents an electronic knowledge encapsulator that models 
part of the real world and can be used for the simulation and analysis of physical, 
chemical and biological processes in water systems, for a better management of the 
aquatic environment. Thus, modelling is at the heart of hydroinformatics. The theory of 
nonlinear dynamics and chaos and the extent to which recent improvements in the 
understanding of inherently nonlinear natural processes present challenges to the use of 
mathematical models in the analysis of water and environmental systems are elaborated 
in this work. In particular, it demonstrates that the deterministic chaos present in many 
nonlinear systems can impose fundamental limitations on our ability to predict behaviour 
even when well-defined mathematical models exist. On the other hand, methodologies 
and tools from the theory of nonlinear dynamics and chaos can provide means for a better 
accuracy of short-term predictions as demonstrated through the practical applications in 
this work. 

The first chapter discusses the role of mathematical modelling in hydroinformatics, 
exemplifying both the physically-based and the data-driven modelling practices and 
challenges. It further elaborates the main goal of this research work in describing, 
elaborating mathematically and illustrating the general principles and concepts of 
modelling based on chaos theory. It also addresses the implications that arise from 
modelling complex nonlinear dynamical systems in the aquatic environment that are 
essential for understanding the possible consequences of nonlinearity for modelling. 

Modelling nonlinear dynamical systems based on chaos theory is closely connected to 
data-driven modelling. Chapter 2 describes the history of learning models from data and 
critically reviews both the classical approaches based on empirical risk minimisation and 
the approaches based on structural risk minimisation. Learning models from data as an 
illposed problem that is closely related to computational intelligence based on search and 
optimisation methods. These are discussed further in this chapter. 

Chapter 3 is at the heart of this work. It describes, elaborates mathematically and 
illustrates the main concepts of the theory of nonlinear dynamics and deterministic chaos. 
It further introduces and demonstrates the methods and techniques for the identification, 
reconstruction, delineation and quantification of the underlying dynamics of nonlinear 
dynamical systems from a time series of observables. The phase-space reconstruction 
based on univariate time series is further extended and elaborated using the multivariate 
embedding methodology proposed in this work. Finally, it elaborates how models can be 
constructed that realistically map the underlying structure dictating the dynamical 
evolution of the system. 

Chapter 4 further extends this notion of models that learn from data by introducing the 
Bayesian network formalism. Special attention is given to dynamic Bayesian networks 
that are well suited for learning models from time series data observed on complex 
dynamical systems. 



In Chapter 5, a novel hybrid framework for modelling nonlinear dynamical systems 
that draws on both chaos theory and dynamic Bayesian networks is proposed, 
mathematically elaborated and demonstrated. This modelling framework combines the 
multivariate phase-space reconstruction of the underlying dynamics based on a time 
series of observables and a mixture of local models learned in a dynamic Bayesian 
network formalism. 

In Chapter 6, the proposed modelling framework is applied to the identification, 
modelling and prediction of hydrodynamical and hydrological systems: sea water level 
and surge dynamics along the Dutch cost, precipitation dynamics at De Bilt 
meteorological station in the Netherlands and rainfall-runoff dynamics of the Huai river 
in China. The results from these applications show that the methodology and the 
modelling framework presented in this thesis generate reliable and accurate short-term 
forecasts and can be used as a valuable modelling tool in engineering practice.  



Samenvatting 

Een hydroinformatica-systeem is een weergave van een elektronisch kennisraamwerk 
waarmee een gedeelte van de werkelijkheid wordt gemodelleerd en dat gebruikt kan 
worden voor de simulatie en analyse van fysische, chemische en biologische processen in 
water systemen ten behoeve van een beter beheer van de aquatische omgeving 

Aldus vormt modellering het centrum van de hydroinformatica. Dit proefschrift 
behandelt de theorie van de niet-lineaire dynamica en chaostheorie. De aan deze 
methoden onlosmakelijk verbonden niet-lineaire natuurlijke processen, vormen in het 
bijzonder een uitdaging voor het toepassen van mathematische modellen voor de analyse 
van nietlineaire processen in land- en watersystemen. 

In het bijzonder wordt gedemonstreerd dat deterministische chaos, die aanwezig is in 
vele niet-lineaire systemen, fundamentele beperkingen kan opleggen aan ons vermogen 
om gedrag te voorspellen, zelfs als er sprake is van goed gedefinieerde mathematische 
modellen. Daarentegen laten de praktische toepassingen die in dit proefschrift zijn 
beschreven zien dat methodieken en technieken uit de theorie van de niet-lineaire 
dynamica en chaos, een basis kunnen vormen voor grotere nauwkeurigheid van korte 
termijn voorspellingen. 

Het eerste hoofdstuk beschrijft de rol van mathematische modellering in de 
hydroinformatica, waarbij voorbeelden worden gegeven van zowel op fysica gebaseerde 
(physically-based) als op gegevens gebaseerde (data-driven) modeltoepassingen en de 
daarbij horende uitdagingen. Verder wordt het hoofddoel van het onderzoek 
geformuleerd, ondersteund met beschrijving, mathematische formulering, en voorbeelden 
van de algemene principes en concepten van het modelleren op basis van chaostheorie. 
Tevens worden de implicaties behandeld van het modelleren van complexe niet-lineaire 
dynamische systemen in de aquatische omgeving, die essentieel zijn voor het begrijpen 
van de mogelijke consequenties van niet-lineariteit bij het modelleren. 

Het modelleren van niet-lineaire dynamische systemen, gebaseerd op chaostheorie, 
sluit nauw aan op gegevens-gestuurd modelleren. Hoofdstuk 2 beschrijft de historie van 
dergelijke modellen en behandelt op kritische wijze de beschikbare literatuur van zowel 
de klassieke benaderingen die zijn gebaseerd op empirische risico minimalisatie als de 
benaderingen die zijn gebaseerd op structurele risico minimalisatie. Gegevens-gestuurd 
modelleren is een niet scherp gedefinieerd probleemgebied dat nauw gerelateerd is aan 
kunstmatige intelligentie, welke is gebaseerd op zoekalgoritmen en 
optimalisatiemethoden. Dit wordt verder in dit hoofdstuk beschreven. 

Hoofdstuk 3 behandelt het centrale deel van het onderzoek. Het geeft een 
mathematische beschrijving van de hoofdprincipes van de theorie van de niet-lineaire 
dynamica en deterministische chaos. Voorts worden methoden en technieken 
geïntroduceerd voor de identificatie, reconstructie, beschrijving en kwantificering van de 
onderliggende structuur van niet-lineaire dynamische systemen. 

De fase-ruimte reconstructie die is gebaseerd op unvariabele tijdreeks benadering, is in 
dit onderzoek verder uitgewerkt tot een multivariabele methodologie. Tenslotte wordt in 



dit hoofdstuk behandeld hoe lokale modellen kunnen worden opgebouwd die op 
realistische wijze de onderliggende fase-ruimte structuur weergeven die de dynamische 
evolutie van het systeem bepaalt. 

In hoofdstuk 4 wordt de notie van modellen die leren uit gegevens, verder uitgewerkt 
aan de hand van de introductie van Bayesiaanse netwerken. Speciale aandacht wordt 
geschonken aan dynamische Bayesiaanse netwerken die zeer geschikt zijn voor het 
gegevens-gestuurd leren uit tijdreeksen die zijn ontleend aan complexe dynamische 
systemen. 

In hoofdstuk 5 wordt een nieuw hybride raamwerk voor het modelleren van niet-
lineaire dynamische systemen voorgesteld, mathematisch uitgewerkt en beproefd, dat 
bouwt op zowel chaostheorie als op dynamische Bayesiaanse netwerken. Dit 
modelleerraamwerk combineert de multivariabele fase-ruimte reconstructie van de 
onderliggende dynamica, die is gebaseerd op een tijdreeks van waarnemingen, met een 
mix van lokale modellen in een dynamisch Bayesiaans netwerk. 

In hoofdstuk 6 wordt het voorgestelde modelleerraamwerk toegepast voor 
identificatie, modellering en voorspelling van hydrodynamische en hydrologische 
systemen: voorspelling van zeewaterstand en golfbeweging langs de Nederlandse kust; 
neerslagdynamica van het meteorologische station De Bilt; en regen-afvoer dynamica van 
de Huai rivier in China. Het resultaat van deze toepassingen toont aan dat de methodiek 
en het in dit proefschrift voorgestelde modelleerraamwerk betrouwbare en nauwkeurige 
kortetermijn voorspellingen genereert. Het ontwikkelde modelleerraamwerk kan worden 
beschouwd als waardevol instrumentarium voor de ingenieurspraktijk.  
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Chapter 1 
Introduction 

The scientist does not study nature because it is useful; he 
studies it because he delights in it, and he delights in it 
because it is beautiful. If nature were not beautiful, it 
would not be worth knowing, and if nature were not worth 
knowing, life would not be worth living. Of course I do not 
here speak of that beauty that strikes the senses, the beauty 
of qualities and appearances; not that I undervalue such 
beauty, far from it, but it has nothing to do with science; I 
mean that profounder beauty which comes from the 
harmonious order of the parts, and which human 
intelligence can grasp. 

—Henri Poincaré 

1.1 Modelling: the current practices and challenges 

In a thesis like “nonlinear dynamics and deterministic chaos and its applications to 
hydrodynamics and hydrological modelling” it is natural to ask what contribution one of 
the fundamental technologies of modern science—namely, mathematical modelling, 
(typically including extensive numerical simulations)—can bring to efforts made to 
enhance our understanding of natural processes and phenomena in the aquatic 
environment. A moment’s consideration makes it clear that the potential contribution is 
profound: for instance, one can immediately identify a number of water and 
environmental problems—the motion of the water in the oceans, the generation and 
mitigation of floods, sediment transport and morphodynamics, water quality etc.—of 
overwhelming importance in which an accurate quantitative description of the causal 
relationships between specific processes, actions and consequences can only be obtained 
from studies of highly sophisticated mathematical models containing many subtle and 
interacting effects. 

These mathematical models are mainly conceptualisations of the primary physical 
processes that are perceived and identified to be deterministic in their contribution to the 
natural phenomenon, expressed through mathematical algorithmic equations. Such 
equations describe the quantitative relationships between the different system parameters, 
and thus the behaviour of the whole system, based on fundamental principles, such as 
conservation of mass, momentum (and energy). The solution of these equations, in order 
to find the functional relationships that describe and define the physical boundary domain 
in which the water flows, requires the application of specific numerical techniques and 
the imposition of certain boundary conditions. This branch of science that considers the 
discretisation of the physical domain and the corresponding equations governing the 



natural processes, was conceived after the Second World War and born in the 1960s, and 
further known as computational hydraulics (or computational fluid dynamics) is now 
well established. 

By bringing these computational hydraulics techniques together with the recently 
proliferating information and communication technologies, a new discipline emerged of 
what is nowadays referred to as Hydroinformatics (Abbott, 1991). A hydroinformatics 
system indicates, as Abbott put it, an electronic knowledge encapsulator that models part 
of the real world and can be used for the simulation and analysis of physical, chemical 
and biological processes in water, for a better management of the aquatic environment. 
Therefore, the development of mathematical models, which adequately represent our 
current image of reality, is at the heart of hydroinformatics (Price, 2001). 

But hydroinformatics is even more complex, in that it is an emerging socio-technical 
construct (see Jonoski, 2002). This leads to the modelling of socio-political issues—for 
example, socio-economic consequences of certain activities in the aquatic environment or 
the involvement of different stakeholders and public participation in the decision making 
processes in the management of limited water resources. In addition to the complex 
technical issues one must also try to account for the vagaries of human psychology. We 
can expect that issues based on global water-related problems, as well as the general 
consequences of limited resources and credible, degrading environmental conditions, will 
become increasingly relevant factors. These have to be taken into account in the future 
development of hydroinformatics systems. 

Each of these issues involves many individual components and processes, interacting 
with each other in complex ways. Clearly one immediate, primarily technical, challenge 
to mathematical modelling is to quantify these interactions. For instance, in water quality 
modelling, the challenge is to extend the forms of the algorithmic equations used to 
conceptualise the processes of advection and dispersion to include sediment, chemical 
and biological processes, which are less well understood than the water hydrodynamics 
alone. Such technical questions will—and should—remain the purview of experts, and in 
most cases their resolution requires the successful collaboration of experts from many 
different disciplines. This leads to the convergence of different sciences and the notion of 
integrated modelling. In this area, the challenge is to develop well-defined computational 
models, properly reflecting the essential governing processes and features of such 
complex problems. 

Beyond this problem-specific technical challenge, however, are challenges and 
limitations that arise from the very nature of dynamical systems in which many elements, 
some of which may adapt their behaviour in time, are interacting. Looking back at the 
organisation of the classical sciences, we find that at each level of understanding, 
basically we study two types of phenomena: (i) agents (molecules, finite volumes, cells, 
species and recently software modules) and (ii) interaction of agents (chemical reactions, 
physical interactions and processes, system responses, emergence and evolution). 
Studying agents in isolation is a fruitful way of discovering insights into the form, 
function and conceptualisation of an agent, but doing so has also some limitations. 
Although reductionism is a powerful way of looking into the natural processes and 
phenomena, specifically reductionism fails when we try to use it in a reverse direction. 
As we shall see throughout this thesis, having a complete and perfect understanding of 
the dynamics of an agent in no way guarantees that we will be able to predict how this 
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single agent will behave for all the time in future, and especially in the context of other 
interacting agents. Such adaptive complex dynamical systems often behave in ways that 
seem non-intuitive, or even counter-intuitive, based on our current knowledge and 
experience. The reason for this, is of course, real limitations to the extent with which 
computational models may be applied. For example, the derivation of the original 
hydrodynamic equations has to make certain assumptions due to our limited knowledge 
of the underlying processes, such as the resistance and turbulence in particular. Such 
assumptions are usually expressed in empirical forms that require the values of one or 
more parameters to be identified in each particular application during the “calibration” 
process. This requires the results of the computational models to agree closely with 
observed data. It is important that this calibration process does not violate the physical 
integrity of the parameters. The procedure of forcing the model parameters in order to 
reproduce the observed data is due to the fact that the mathematical model is just an 
approximate conceptualisation and representation of the real world systems. The model 
errors include missing processes and parameters and/or limited knowledge about 
representations and governing laws about the processes, the error of discretisation of both 
the physical domain and equations, arbitrary numerical processes depending on the 
applied numerical scheme, bugs in the numerical code, errors in the measured data, and 
so on. Thus, there is a need for the modeller to acknowledge and cope with uncertainties. 
Figure 1.1 schematically illustrates how the science expressed through mathematical 
modelling interacts with the real world.  

 

Figure 1.1. The universe of natural 
processes related to the scientific 
understanding expressed through the 
mathematical modelling. 

On the left side of the figure are the natural processes that are recurrently coupled to 
themselves. On the right side is the human understanding that attempts to model the 
natural world. Experimentation (conducted in laboratory or scale models) consists of 
manipulating the environment and observing the changes. Furthermore it also implicitly 
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includes monitoring and collecting data about the real world processes that are 
measurable and of interest. Theorising is the process of constructing and manipulating 
models based on the application of (physical) laws about the perceived and identified 
underlying processes with an ultimate goal of making accurate predictions of future 
observations. Simulation, mostly done with computational models, somewhat resides 
between the two, and manipulates both models and environment trying to answer “what-
if” questions and scenarios. 

The inherently nonlinear nature of these natural processes means that they can exhibit 
sudden and dramatic changes in the form of their behaviour when small changes are 
made to the parameters describing the interactions within the system and/or in their initial 
(boundary) conditions. Further emergent properties—that is, characteristics whose 
existence is not at all apparent in the initial formulation of the system, frequently arise, 
and theories of self-organisation in natural systems (Haken 1983) have attempted to 
analyse certain aspects of this behaviour. While non-expert users of these computational 
models can hardly expect—nor be expected—to be aware of the subtle details 
surrounding the technical modelling aspects, it is vital that those responsible for making 
decisions on possible courses of action in the aquatic environment be aware in particular 
of this second category of general constraints and characteristics that affect the 
applicability and reliability of the models. 

To achieve this awareness, it is essential to go beyond our conventional linear 
intuition and to develop an appreciation of what can—as well as what cannot—occur in 
complex adaptive nonlinear systems. The development of the appropriate nonlinear 
intuition is extremely important, for it is clear that mathematical models, to the extent that 
they are credible, not only tell us what is likely to occur but can limit our perceptions of 
what can actually occur. Indeed, in our later discussion of the history of classical 
modelling based on the Newtonian mechanics, we will exemplify this (potentially 
negative) aspect of modelling. The essence of this phenomenon is that even in dynamical 
systems whose evolution from moment to moment follows precise deterministic laws, 
with no external random influences of any kind, the behaviour over long times can be 
essentially unpredictable and irregular. That a system governed by deterministic laws can 
exhibit effectively random-like behaviour runs directly counter to our normal intuition! 
Perhaps it is because this intuition is inherently linear; indeed, this phenomenon cannot 
occur for linear systems. Linear methods interpret all regular structures in a data set, such 
as dominant frequency, as linear relationships. This means that the intrinsic dynamics is 
of the system are govern by the linear paradigm that small causes lead to small effects. 
Since linear equations describing dynamical system can only lead to exponentially 
growing or periodically oscillating solutions (dynamical evolution of the system), all 
irregular behaviour of the system has to be attributed to some random external input to 
the system. On the other hand, as we will demonstrate throughout this work, random 
input is not the only possible source of irregularity in a system’s output: nonlinear 
dynamical systems can produce very irregular data with purely deterministic equations of 
motions, caused by slight changes in some of the control parameters and the sensitivity to 
the initial (and/or boundary) conditions. Of course, the systems which exhibits both, 
nonlinearity and random input, will most likely produce irregular data as well. 

 
 

Nonlinear dynamics and chaos with applications to hydrodynamics and hydrological modelling     4



 
The ‘small causes-small effects’ intuition is, more likely, because of our view of a 

clockwork universe, a view which in the past was vigorously stated by the great French 
mathematician and natural philosopher Laplace; in Philosophical Essays on 
Probabilities, Laplace wrote: 

“An intellect which at any given moment knew all the forces that animate 
Nature and the mutual positions of the beings that comprise it, if this 
intellect were vast enough to submit its data to analysis, could condense 
into a single formula the movement of the greatest bodies of the universe 
and that of the lightest atom; for such an intellect, nothing could be 
uncertain; and the future just like the past would be present before its 
eyes.” 

In short, Laplace argued that from a knowledge of the initial state of the universe (and its 
forces) comes an exact knowledge of the final state of the universe. Indeed, in Newtonian 
mechanics, this belief is in principle true. However, in the real world exact knowledge of 
the initial state is not achievable. No matter how accurately the velocity of a particular 
particle is measured, one can demand that it be measured more accurately. Although we 
may, in general, recognise our inability to have such exact knowledge, we typically 
assume that if the initial conditions of two separate experiments are almost the same, then 
the final conditions will be almost the same. For most smoothly behaved systems, this 
assumption is correct. But for complex nonlinear natural systems, this assumption is far 
from the truth. At the turn of the 20th century, Henri Poincaré, another great French 
mathematician and natural philosopher, understood this phenomenon very precisely and 
wrote (as translated in Science and Method (1908, 1953)): 

A very small cause which escapes our notice determines a considerable 
effect that we cannot fail to see, and then we say that the effect is due to 
chance. If we knew exactly the laws of nature and the situation of the 
universe at the initial moment, we could predict exactly the situation of 
that same universe at a succeeding moment. But even if it were the case 
that the natural laws had no longer any secret for us, we could still only 
know the initial situation approximately. If that enabled us to predict the 
succeeding situation with the same approximation, that is all we require, 
and we should say that the phenomenon had been predicted, that it is 
governed by laws. But it is not always so; it may happen that small 
differences in the initial conditions produce very great ones in the final 
phenomena. A small error in the former will produce an enormous error in 
the later. Prediction becomes impossible, and we have the fortuitous 
phenomenon. 

Indeed, this great French mathematician was working on a fortuitous phenomenon, as he 
called it, which was deep: chaos. 
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1.2 Rediscovering chaos: a new tool in the arsenal of science 

In the movie Jurassic Park, Jeff Goldblum played a character who described himself as a 
“chaotician”, an expert in chaos theory, dealing with “predictability in complex nonlinear 
systems…the “butterfly effect”. As demonstration, he placed a drop of water on the back 
of Laura Dern’s hand. “Which way is going to roll off?” he asked. She reasoned that a 
second drop, released at the same place as the first, would have the same path. To her 
surprise, each drop followed its own unique path rolling downward. “Why?” explained 
Goldblum, “…because tiny variations in the initial position and the skin never repeat and 
vastly affect the outcome… That is chaos.” 

James Gleick (1987) stated “where chaos begins classical science stops”. As long as 
the world has had physicists inquiring into the laws of nature, it has suffered a special 
ignorance about the disorder in the atmosphere, in the turbulent sea, in the fluctuations in 
the ecological populations, in the erratic morphodynamic changes, in the beat of the heart 
and the pulsations of the brain. The irregular side of nature, the coexisting and switching 
dynamical regimes- these have been puzzles to science. But at the end of the nineteenth 
century J.Hadamard for the first time discovered chaos in a special (Hamiltonian) 
dynamical system called the geodesic flow on a manifold of negative curvature 
(Hadamard, 1898). Hadamard immediately understood the profound philosophical 
importance of his result: an arbitrarily small uncertainty on the initial condition entails a 
large uncertainty on the predicted state of the system after a sufficiently long time. Other 
scientists, such as P.Duhem and H.Poincaré also understood the importance of the 
phenomenon discovered by Hadamard, and Poincare (1908) discusses the relevance of 
sensitive dependence on initial condition to the dynamics of a hard sphere system, and to 
weather predictions. The early discovery of chaos had however no lasting influence on 
physics. The new ideas were forgotten and had to be rediscovered again, much later and 
independently. On the mathematical side, however, the work of Hadamard and Poincaré 
led to uninterrupted progress up to the present day, with contributions of such scientists 
as Kolmogorov, Smale, and many more. Incidentally, an essential step in the 
mathematical development of dynamical systems theory was the creation of ergodic 
theory, for which ideas originating in physics were important. 

The time evolution of chaotic systems is typically complicated and irregular looking. 
Indeed, a regular (periodic or quasi-periodic) time evolution is predictable and therefore 
not chaotic. Although chaotic dynamical systems never exactly repeat, nor settle upon 
periodic trends, they are not random. They are deterministic in nature, they have 
structure, though subtle, and that makes them at least partially predictable. In other 
words, they show that the model is predictable in its unpredictability. When the interest 
for these kinds of irregular and complicated time evolutions of dynamical systems 
developed among physicists in the 1970s to give what is now called chaos theory (or 
theory of nonlinear dynamics more broadly), all kinds of new scientific tools existed that 
had not been available to Poincaré. One such tool is the electronic computer, which 
allowed Lorenz (1963) to compute in 1963 for the first time a chaotic time evolution of 
the simplified weather dynamics (see Chapter 3 for details), and to visualize it in the form 
of what we now call a strange attractor. Other tools were mathematical, like ergodic 
theory. Finally, there were new experimental laboratory tools permitting for instance a 
detailed study of the onset of hydrodynamic turbulence, one of the most challenging and 
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difficult phenomena. What we know about it results mostly from experimental studies, 
which knowledge is nowadays encapsulated into computational models. It is these 
experimental studies that showed that hydrodynamical turbulence is basically a 
deterministic chaos, as we would now say, corresponding to the claim of Ruelle and 
Takens (1971), that it is described by strange attractors. A mathematical proof of chaos in 
Navier-Stokes equations does not exist at this time (and when one is obtained, it will no 
longer create much excitement). We have thus here a very interesting situation from 
epistemological point of view, where we are firmly convinced of a certain mathematical 
fact (the existence of chaos in the solution of the inherently nonlinear Navier-Stokes 
equations) but our belief is based on experimental evidence, based on the data analysis of 
the observations. 

As we mentioned above, the ultimate goal of physically-based modelling is actually 
forecasting, which raises another important issue related to deterministic chaos. Here the 
main objective is an attempt to provide a reliable forecast for some time into the future 
(the forecasting horizon) given some knowledge about the performances of the 
instantiated model and the situations (observations) in the real world system until the 
current time. The main issue is to set (adjust) the physically-based model to assimilate the 
initial (boundary) conditions at time now as accurately as possible, and to develop the 
forecasts up to the forecasting horizon making the best use of the observed available data. 
This brings up the notion of data assimilation techniques which can dramatically improve 
the performances of the mathematical model. State space data-driven models are the 
popular form of data assimilation into physically-based models (they are discussed in 
Chapter 5 of the thesis). Another alternative approach of improving the performance of 
physically-based models is to work with the differences (errors) between the model 
outputs and the observations. These differences provide useful insight of what is missing 
in the terms of processes and conceptualisation from the original model. The main idea is 
that the differences can be modelled very accurately using pure data-driven techniques 
such as various statistical methods, artificial neural networks, wavelet networks, fuzzy 
logic approximators and other techniques. The forecasts on the differences in a 
conjunctive use with the forecasts from the physically based model can lead to 
improvements in the results. Data-driven modelling is therefore a valuable complement 
to the physically-based modelling in the forecasting situations. However, data-driven 
modelling has also its own value independently of the physically-based modelling, and in 
the last decade has developed as an alternative to it. If one neglects the focus of using a 
mathematical model to better understand and describe the relationships between different 
variables and components of the underlying physical system, the main issue becomes the 
temporal accuracy of moment-to-moment estimates of the time series made by any 
model. In this respect, a data-driven model may give substantial forecasting 
improvements. Furthermore, this is particularly emphasised in the case where the 
physical processes are difficult to identify and formulate in an appropriate mathematical 
algorithmic form. Basically, what the data-driven model provides is a link (mapping) 
between the input-output sets of data observed on particular processes, such as 
meteorological forcing and water level in the sea. The data-driven model does not make 
certain assumptions and conceptualisations about the underlying processes that are 
connected in a “black-box” manner. The model has its own internal structure, for 
example, mimicking the brain structure as an artificial neural network does, and these 
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structures are very hard to interpret in connection to the physical processes being mapped 
in the model. Generally, the data-driven model has to be trained on data, namely 
observables of the natural processes. It can be said that the model has “learned” from 
data. This led to a new stream of modelling in hydroinformatics termed as model 
induction from data (Dibike, 2002). What is important here is that there should be 
completeness about the input data in relation to the physical processes so that an accurate 
and reliable model can be induced by the learning machine based on computational 
intelligence and machine learning techniques. In this way, the data-driven model 
naturally tries to minimise the dependency on knowledge of the real world processes. 

Increasingly however, the complementary role of data-driven and mathematical 
modelling is being recognised. This is due to the fact that pure mathematical theories may 
fail to make accurate predictions of complicated water end environmental-related 
processes because the real world dynamical systems do not always obey equations with 
numerical and analytical solutions. Similarly, data-driven models induced from 
complicated observations and sometimes even missing observations of hidden processes 
are often inadequate because they fail to relate (and sometimes explain) complex effects 
from simple causes. It is only through the marriage of mathematical and data-driven 
modelling that many asserts of the complex dynamical processes can withstand 
reasonable tests. The theory of nonlinear dynamics and chaos is the good candidate to 
play this complementary role due to the fact that this theory originated based on 
mathematical analysis of deterministic dynamical systems described by a set of 
differential equations. 

Thus, the main goal of this thesis is to assist in the development of this nonlinear 
literacy—or in the current context, numeracy- by describing, elaborating mathematically 
and illustrating the general principles and concepts that arise from modelling complex 
nonlinear dynamical systems in the aquatic environment. Our motivation and perspective 
is based on the considerable work in the last two decades that has been made in 
understanding nonlinear phenomena in the natural sciences (see, e.g. Campbell, 1989). In 
particular, the surge of interest in nonlinear dynamical systems and chaos theory has 
shown that such concepts as bifurcations, attractors, basins of attraction, dynamical 
regimes, fractals, dimensions, predictability and local modelling are essential for 
understanding the possible consequences of nonlinearity for modelling.  

It must be said at this point that, however insightful and brilliant, the physical ideas of 
Poincaré on chaos were at the level of scientific philosophy. To some physicists chaos is 
a science of process rather than a state, of becoming rather than being. But now, after the 
rediscovery of chaos, science is focused and looking for examples of chaos which seem 
to be intrinsically inherited in many natural dynamical processes and systems. As 
Feigenbaum (1983), one of the greatest chaos theorists, put it: “Fifteen years ago, science 
was heading for a crisis of increasing specialisation. Dramatically, that specialisation has 
reversed because of chaos”. Because it is a science of the global nature of nonlinear 
dynamical systems, it has brought together thinkers from fields that had been widely 
separated. Since new tools are now available for making strong claims about the 
universal behaviour of complexity, our present understanding of chaos in physics and 
mathematics is at the level of quantitative science. The theory of nonlinear dynamics and 
data analysis have progressed to the stage where most fundamental properties of 
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nonlinear dynamical systems have been observed in the laboratory and proven 
theoretically on various mathematical models. 

What is currently lacking, and especially in the field of hydroinformatics, is the study 
of such nonlinear dynamical systems (e.g. movement of the body of water in oceans, 
rivers, subsurface and surface, ecological processes, hydrometeorological processes etc.) 
applying and extending the methods and techniques developed in the theory of nonlinear 
dynamics and chaos. Often we know little about the structure and interactions of such 
complex dynamical systems, but in practice we can measure (partly) its output and some 
of its inputs. In this respect, most direct link between the methods and concepts of 
deterministic chaos and the real world is the nonlinear analysis of data (time series) from 
real systems. Yet surprisingly the interactions on one level of understanding are often 
very similar to the interaction on other levels. Why is this so? Consider the following 
research questions: (i) Why do we find self-similar structures in biology and other 
disciplines? How does this relate to the self-similarity found in inanimate objects 
(phenomena) such as clouds, mountains, coast lines, turbulent eddies, fluid dynamics 
patterns and sedimentation patterns? Is there some way of generalising the notion of self-
similarity to account for these types of phenomena? (ii) Is there a common reason why it 
is difficult to predict weather patterns, turbulence and other natural processes? Is this 
unpredictability due to limited knowledge of the underlying processes or is it somehow 
inherent in these complex systems? Can we quantify it? Can we increase our knowledge 
about the system under study in order to improve the mathematical models? (iii) How can 
we generally model and predict such unpredictable systems? The answers to these 
questions are apparently related to one simple fact: nature is chaotic. 

Developing modelling methodologies and demonstrating applications of chaos to 
hydrology, hydrodynamics, meteorology, ecology (and other such disciplines), which are 
currently at very opening stage, may work towards reaching the level of quantitative 
science and creating tools for the engineering practice, which is the major objective of 
this thesis. 

1.3 Scope and contributions 

This work presents a novel hybrid modelling approach based on the theory of nonlinear 
dynamics and chaos. The modelling technique combines the multivariate phase-space 
reconstruction of the underlying dynamics based on time series of observables and 
mixture of local models learned in dynamic Bayesian network framework. The described 
modelling approach is applied for identification, modelling and prediction of 
hydrodynamical and hydrological systems: sea water level and surge dynamics along the 
Dutch cost, precipitation dynamics at De Bilt meteorological station in The Netherlands 
and rainfall-runoff dynamics of the Huai river in China. The results form these 
applications show that the methodology and the modelling framework presented in this 
thesis demonstrate reliable and accurate short-term forecasting performances and can be 
used as a modelling tool in the engineering practice. 

Contributions of this thesis include the following: 
A critical review of learning models from data from a statistical perspective focused 

on regression and density estimation, exemplifying both, the classical approaches based 
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on empirical risk minimisation and the approaches based on structural risk minimisation. 
Demonstration through examples and original discussions are provided. 

Introduction, mathematical elaboration and demonstration of the methods and 
techniques based on the theory of nonlinar dynamics and chaos for the identification, 
reconstruction, delineation and quantification of the underlying dynamics of nonlinear 
dynamical systems from a time series of observables. The classical phase-space 
reconstruction of the dynamical systems known in the literature addresses methods and 
techniques based on univariate time series. This work further extends and proposes 
methodology for multivariate embedding, which is then tested and further demonstrated 
on the real case studies. Furthermore, this work elaborates how multivariate local models 
can be constructed in the reconstructed phase-space. Outlook of a methodology for 
analysis of spatially extended dynamical systems is provided. 

Design, mathematical description, implementation and application of a novel data-
driven modelling framework, termed as Hidden Markov Mixture of Models (experts). 
The framework aims at separating the seemingly complex global nonlinear dynamics into 
couple of local sub-dynamics that can be modelled by separate models (experts). The 
separate local multivariate models through a competition specialise on modelling 
different parts of the reconstructed phase space of the dynamical system where the gating 
procedure between the models is described with a dynamic Bayesian network expressed 
as hidden Markov model. First, this framework is tested using synthetic data generated by 
known dynamical systems and than applied to the case studies. 

Development of methodology, based on the multivariate phase-space reconstruction of 
and the Shannon’s conditional entropies for assessment of the local uncertainty and 
predictability of the dynamical system. Its application to the surge dynamics at Hoek van 
Holland tidal station in the North Sea. 

The results from the applications of this novel hybrid modelling technique, which 
showed improved predictive performances in comparison with other nonlinear data-
driven modelling techniques, such as artificial neural networks and fuzzy inference 
systems.  

1.4 Thesis outline 

This work is composed of seven chapters. A short overview of the material to be 
presented in the following chapters is given here. 

Modelling nonlinear dynamical systems based on chaos theory is closely connected to 
data-driven modelling, as we will elaborate latter in this work. Chapter 2 describes the 
history and critically reviews learning from data, exemplifying both, the classical 
approaches based on empirical risk minimisation and the approaches based on structural 
risk minimisation. The problem of learning from data as an ill-posed problem is closely 
related to computational intelligence based on search and optimisation methods that are 
further discussed in this chapter. 

Chapter 3 is at the heart of this work. It describes, elaborates mathematically and 
illustrates the main concepts of the theory of nonlinear dynamics and deterministic chaos. 
It further introduces and demonstrates the methods and techniques for the identification, 
reconstruction, delineation and quantification of the underlying dynamics of nonlinear 

Nonlinear dynamics and chaos with applications to hydrodynamics and hydrological modelling     10



dynamical systems from a time series of observables. The phase-space reconstruction 
based on univariate time series is further extended and elaborated using multivariate 
embedding methodology proposed in this thesis. Finally, it elaborates how models can be 
constructed that realistically map the underlying structure dictating the dynamical 
evolution of the system. 

Chapter 4 further extends this notion of models that learn from data by introducing the 
Bayesian network formalism. Special attention is given to dynamic Bayesian networks 
that are well suited for learning models from time series data observed on complex 
dynamical systems. 

In Chapter 5 we propose, mathematically elaborate and demonstrate a novel hybrid 
framework for modelling nonlinear dynamical systems that draws on modelling based on 
both chaos theory and dynamic Bayesian networks. 

Chapter 6 describes the results of the applications of the nonlinear dynamics and chaos 
to the following hydroinformatics problems: (i) Chaos and predictability of water levels 
and surges along the Dutch coast; (ii) Identification and reconstruction of the chaotic 
rainfall dynamics on different temporal scales and (ii) Rainfall-runoff modelling. 

Chapter 7 summarises the conclusions drawn from this present work and highlights 
the strengths and weaknesses of the theory of nonlinear dynamics and deterministic chaos 
applied to hydroinformatics problems. It further identifies some related application areas 
that deserve further investigation in the future.  
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Chapter 2 
Learning and Regularisation 

2.1 General 

Modelling nonlinear dynamical systems based on chaos theory and the methodology 
elaborated in this thesis is closely linked to data-driven modelling, i.e. learning models 
from data. This learning problem is an ill-posed problem and related to computational 
intelligence techniques based on search and optimisation. Thus, the main aim of this 
chapter is to provide a brief review of the learning theory from statistical and machine 
learning perspectives and the associated methods and techniques, which are relevant and 
further used in this work. It addresses both, the classical approaches based on Empirical 
Risk Minimisation (ERM) principle and the approaches based on Structural Risk 
Minimisation (SRM) principle. The problem of learning is so general that almost any 
question that has been discussed in statistical science has its analogy in learning theory. 
Furthermore, some important general results were first found in the framework of the 
learning theory and then reformulated and projected in the terms of statistics. 

In the beginning of this thesis we postulated (without any discussion) that learning is a 
problem of function estimation on the basis of empirical data (observables). The ultimate 
goal is the modelling of a mapping f: x→y from multidimensional input x to output y. The 
output can be multidimensional, but we will mostly address situations and applications 
where it is a one dimensional real-valued vector. The multivariate function estimation is 
not, in principle, distinguishable from supervised machine learning. However, until 
recently supervised machine learning and multivariate function estimation, based on the 
statistical learning theory, had fairly distinct groups of practitioners, and small overlap in 
language, literature, and in the kinds of practical problems under study. 

2.2 Setting of the learning problem 

We describe the general model of learning from observables, based on Vapnik’s 
statistical learning theory (Vapnik, 1995, 1998), through the following three components 
(Figure 2.1):  

(i) A generator (G) of a random vectors drawn independently from a fixed 
unknown probability distribution function p(x). 

(ii) A supervisor (S) who returns an output value y to every input vector x (based on the 
true function y=f(x)), according to a conditional probability distribution function 
p(y|x), also fixed and unknown. 



(iii) A learning machine (LM) capable of implementing a set of functions f (x, α), 
where Λ is a set of parameters1. 

 

Figure 1.1. A model of learning from 
observables (Vapnik, 1995). During 
the learning process, the learning 
machine observes the pairs (x, y) (the 
training set) and uses them to adapt its 
parameters. The goal is to return a 
value ŷ, which is close to the 
supervisor’s response y. After training, 
the machine should generalise well, 
that is, given a new input pattern x, the 
machine will provide a reasonable 
prediction of the unobserved output 
associated with this x. 

In this manner, the learning problem is that of choosing from a given set of functions f(x, 

α), the one which best approximates the supervisor’s response. The selection of 

the desired estimated function is based on a training data set of N 
independent and identically distributed (i.i.d) observations drawn according to the joint 
probability distribution p(x, y)=p(y|x)p(x): 

D=(xi, yi)i=1…N 
(2.1) 

 

 

 

 

1 Note that the elements are not necessarily vectors, they can be any abstract parameters. 
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2.3 Learning and the problem of risk minimisation 

In order to find the best available approximation to the system’s (supervisor’s) response, 
the fit of the model to the system is measured using a criterion representing the loss or 

discrepancy between the response of the system y to a given input x and 
the response provided by the learning machine. The performance of the model is 
measured by the expected value of the loss, termed as expected risk: 

 (2.2) 

The goal is to find the function minimises the risk functional R(α) (over the 
class of possible functions f(x, α), in the situation where the joint distribution p(x, 
y) is unknown and the only available information is contained in the training set (2.1). 
The quality R(α) represents the ability to yield good performance for all possible  

 

situations (i.e. input patterns (x, y)) and is thus called the generalisation error. The 
optimal set of parameters minimises the generalisation error: 

 (2.3) 

In order to minimise the risk functional, the following inductive principle can be applied 
(Vapnik, 1995): 

(i) The risk functional R(α) is replaced by so-called empirical risk functional 

 
(2.4) 

(ii) One approximates the function that minimises the risk (2.2) by the 

function minimising the empirical risk (2.4). 

This corresponds to estimating the joint probability by the empirical density: 

 

  

where δ(·) is the Dirac function. Minimising (2.4) is referred to as training the model. 
The data set D and the empirical risk Remp(α) are the training set and training error, 
respectively. 

This principle is called the empirical risk minimisation inductive principle (ERM 
principle). An inductive principle defines a learning process if for any given set of 
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observations the learning machine chooses the approximation using this inductive 
principle. In learning theory the ERM principle plays a crucial role and is quite general. 
The classical methods for the solution of a specific learning problem, such as the least-
squares method in the problem of regression estimation or the maximum likelihood (ML) 
method in the problem of density estimation, are realisations of the ERM principle for the 
specific loss (error) functions. 

2.4 The three main learning problems 

The formulation of the learning problems is rather broad and it naturally encompasses 
many specific problems. Generally applicable, the learning problems can be categorised 
in three main categories, namely: pattern recognition, regression estimation and density 
estimation. Further in this section we give a brief description of each of the learning 
problems on the basis of the model of learning from observations described in Section 
2.2. 

2.4.1 Pattern recognition 

Let the supervisor’s output y take only two values y={0, 1} and let the set of functions f(x, 
α), be a set of indicator functions (binary type of functions which can take only 
two values: zero and one). For the pattern recognition problem the following loss 
function can be considered: 

 
(2.5) 

For this loss function, the risk functional (2.2) determines the classification error. The 
problem, therefore, is to find an approximation function that minimises the probability of 
classification error when the join probability p(x, y) is unknown, but the data (2.1) are 
given. 

2.4.2 Regression estimation 

We now consider the case there the supervisor’s answer y is a real value, and when f(x, 
α), is a set of real functions that contains the regression function: 

f(x, α0)=∫y p(y|x). 
(2.6) 
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It is known that the regression function is the one that minimises the risk functional (2.2) 
with the following loss function2: 

L(y, f(x,α))=(y−f(x, α))2 
(2.7) 

Thus the problem of regression estimation is the problem of minimising the risk 
functional (2.2) with the loss function (2.7) in the situation where the joint probability 
p(x, y) is unknown, but the data (2.1) are given. 

2.4.3 Density estimation 

Finally, consider the problem of density estimation from a set of densities p(x, α), 
For this learning problem we consider the following loss function: 

L(p(x, α))=−log p(x, α). 
(2.8) 

It is known that the desired density minimises the risk functional (2.2) with the loss 
function (2.8). Thus, again to estimate the density from the data one has to minimise the 
risk functional under the condition that the underlying probability distribution is 
unknown, but the i.i.d data (2.1) are given. 

In the text above (Section 2.3) we mentioned that the empirical risk minimisation 
principle can be seen as a framework for the realisation of the classical methods for the 
solution of a specific learning problem, such as the least-squared method and the ML 
method. Indeed, by substituting the specific loss function for the regression estimation 
(2.7) in the empirical risk functional (2.4) one obtains the following functional to be 
minimised in order to find the proper model estimation and the optimal model parameters 

 

 
(2.9) 

which forms the framework for the least-squared method. Alternatively, by substituting 
the loss function of the density estimation problem (2.8) in the empirical risk functional 
(2.4) one obtains the following functional to be minimised: 

 
(2.10) 

 

 

2 If the regression function f(x) does not belong to f(x, α), then the function f(x, α0) 
minimising the risk functional (2.2) with the loss function (2.7) is the closest to the regression in 

the metric  
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Minimising this functional is equivalent to the maximum likelihood method. 

 

2.5 The paradigm of solving learning problems based on the 
Empirical Risk Minimisation principle 

The setting of the learning problem involves two major requirements: (i) to estimate the 
desired function from a wide set of functions and (ii) to estimate the desired function on 
the basis of a limited number of examples (observables). The methods developed in the 
framework of the classical learning paradigm (created in the 1920s and 1930s) did not 
take into account these requirements. Therefore, in the 1960s considerable effort was put 
into both the generalisation of the classical results for wider sets of functions and the 
improvement of the existing techniques for statistical inference. Although there are 
several classical techniques for estimating the parameters of a set of functions and density 
estimations, such as the method of moments (dated back to Johan Bernoulli, 1667–1748), 
method of maximum likelihood (Fisher, 1920), method of least-squares (dated back to 
Gauss 1777–1855), method of minimum cross entropy (Shanon, 1949), method of 
Bayesian estimation (dated back to Bayes, 1763), method of probability weighted 
moments (Greenwood et al., 1979) and method of L-moments (Hosking, 1990), most of 
the models of function estimation are based on the maximum likelihood method. It forms 
an inductive engine in the classical paradigm. Textbooks such as Benjamin and Cornell 
(1970) and Berger (1985) treat the classical methods in details. 

2.5.1 Maximum likelihood (ML) and the density estimation problem 

It is difficult to trace back who introduced the ML method, though Daniel Bernoulli 
(1700–1780) was one of the first to report it. In 1922 Fisher developed the ML method 
for estimating the unknown parameters of the density (Fisher, 1952). The method can be 

summarised as follows: Let p(x, α), be a set of density function where in this 
case the set Λ is necessarily constrained in Rn (α is a n-dimensional vector). The unknown 
density p(x, α0) belongs to this set. The problem is to estimate this density using i.i.d. data 
(x1,…, xN) distributed accordingly to this unknown density. Fisher suggested 
approximating the unknown parameters by the values that maximise the function: 

 
(2.11) 

The ML gives an asymptotically unbiased parameter estimation, and of all the unbiased 
estimators it has the smallest mean squared error. The variances approach asymptotically 
to: 

Var(α)=−E(∂2 ln L(α)/∂α2) 
(2.12) 
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Furthermore these estimators are invariant, consistent and sufficient (Hald, 1952). 
Analytical expressions for the parameter estimation are sometimes difficult to derive, 
which means that numerical optimisation routines have to be derived in order to 
determine the maximum of the likelihood function. However, those numerical routines 
may also have problems in finding the optimum due to the reason that the likelihood 
function can be extremely flat for large sample sizes and due to the existence of local 
maxima. 

Some of the characteristics of the ML estimators discovered during their applications 
in the past decades are: (i) ML methods are straightforward to implement; (ii) ML 
estimators may not exist (Vapnik, 1995), and when they do, they may not be unique or 
give a biased error (Koch, 1991); (iii) ML estimators may give inadmissible results 
(Lundgren, 1987); (iv) the likelihood function can be used for other purposes than just 
finding the parameters: values close to the ML are more plausible than those further 
away. This argument can be utilised to obtain an interval, which comprises a plausible 
range of values for certain parameters α; (v) ML estimators are adaptable for more 
complicated modelling situations, because ML satisfies a convenient invariance property 
(Huber, 1964): If q=f(α), where f is an objective function, then qML=f(αML). Thus having 
found ML estimators for one parameterisation, the ML estimators for other 
parameterisations are immediate. 

Furthermore, the ML method allows the linking of the risk function (2.2) and the 
assumption on the noise distribution on the observed output; see Section 2.5.3 on 
regression estimation model. One can say that the ML is very useful, since it is quite 
straightforward to evaluate from the ML estimators and the observed information. 
Nonetheless, it is an approximation and should only be trusted for large data sets (though 
the quality of approximation will vary from model to model). 

2.5.2 ML and the pattern recognition (discriminant analysis) problem 

Using the ML technique, Fisher (1922) considered a problem of pattern recognition 
(which he called discriminant analysis). He proposed the following model: 

There exist two categories of data distributed according to the two 
different statistical laws p1(x, α*) and p2(x, β*) (densities, belonging to 
parametric classes). Let the probability of occurrence of the first category 
of data be q1 and the probability of the second category be 1−q1. The 
problem is to find a decision rule that minimises the probability error. 

Knowing these two statistical laws and the value of ql, one can immediately construct 
such a rule: The smallest probability of error is achieved by the decision rule that 
considers vector x as belonging to the first category if the probability that this vector 
belongs to the first category is not less then the probability that this vector belongs to the 
second category. This happens if the following inequality holds: 

q1p1(x, α*)≥(1−q1)p2(x, β*). 
(2.13) 
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One can consider this rule in the equivalent form as: 

(2.14) 

called the discriminant function (rule), which assigns the value of 1 for representatives of 
the first category and value of −1 for representatives of the second category. To find the 
discriminant rule one has to estimate two densities p1(x, α*) and p2 (x, β*). In the classical 
paradigm ML method in the framework of the ERM is used to estimate the parameters α* 
and β* of these densities. 

2.5.3 ML and the regression estimation model 

Regression estimation in the classical paradigm is based on another model, the so-called 
model of measuring a function with additive noise: 

Suppose that the unknown function has a parametric form: 
f0(x)=f(x, α0) 

(2.15) 

where x can be a multivariate vector and is an unknown vector 
of parameters. Suppose also that in any point xi (pattern in a 
multidimensional space) one can measure the value of this finction with 
additive noise: 

yi=f(xi, α0)+εi, 
(2.16) 

where the noise εi does not depend on xi and is distributed according to 
a known density function p(ε). Then the problem is to estimate the 

function f(x, α0) from the set f(x, α), using the data obtained by 
measurements of the function f(x, α0), corrupted with additive noise. 

In this model, using the observations of pairs D=(x1, y1),…, (xN, yN) one can estimate the 
parameters α0 of the unknown function f(x, α0) by the ML method, namely by minimising 
the functional:  

 
(2.17) 

where p(ε) is a known function and ε=y−f(x, α0). Under the assumption of normal 
distribution law: 

 
(2.18) 
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with zero mean and some fixed variance σ2 (scalar in univariate or covariance matrix in 
multivariate case) as a model of noise, one can obtain the likelihood of the data set, which 
is the least-squared method: 

 
(2.19) 

Maximizing the likelihood (2.19) over the parameters α is equivalent to minimising the 
function: 

 
(2.20) 

which is the so-called least-squared functional, where the loss function (2.7) is based on 

the Euclidean norm 2. The least-squared solution in this case is a special case of the 
empirical risk minimisation inductive principle. Choosing other laws p(ε), one can obtain 
other ML parameter estimators in the regression problem (see Huber, 1964 for details). 

2.5.4 Noisy output and the generalisation error 

In the regression estimation problem, we have shown the link between the assumed 
output noise distribution and the loss (error) function. Let us now briefly demonstrate the 
influence of this noise on the generalisation performance using the expected risk 
functional. Let us assume again that the system is corrupted by additive, independent 
noise, with zero mean and σ2 variance: y=f(x, α)+ε. The underlying joint probability 
distribution, which generates the output of the system, can be written as p(x, y)=p(y|x) 
p(x)=p(ε)p(x). Substituting the loss function (2.7) into (2.2), for the expected risk 
(generalisation error) follows: 

(2.21) 

By recaling that and 

one can derive the following expression for the generalisation error: 

 (2.22) 

The difference in the generalisation error between the noisy and noise-free case is an 
additive constant. This gives the following insights: 

• The noise level is a lower bound on the generalisation error 
• The generalisation error of a perfect model learned from the data is the variance of the 

output noise (the integral on the right-hand side of Equation 2.22 vanishes) 
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• Output noise can be neglected as far as the generalisation error is concerned. However, 
this of course is not the case with the empirical risk (training error). 

2.5.6 Linear regression 

In this part we describe the particular case where the model is linear, since it will be used 
latter for constructing the local linear models in the phase space of a dynamical system 
(see Section 3.3.7). The unknown function in a parametric form is given as: 

f(x, α0)=xT·α 
(2.23) 

where T is transpose operator and is an unknown vector of parameters. We also 
assume that the system is linear, corrupted by additive independent normal noise. The 
data set consists of a number of N input-output pairs, which are mapped as: y=x·α0+ε. The 
goal is to estimate the optimal set of parameters α0. Let us denote the by X, Y and E the 
N×P, N×1 and N×1 matrices (respectively) containing the transposed input, output and 
noise vectors: 

 

(2.24) 

The empirical risk functional is expressed simply as: 

 
(2.25) 

The linear maximum likelihood estimator is obtained by minimising the empirical risk 

(2.25). Taking the derivative one can obtain the 
well-known expression of the linear regression estimator: 

 (2.26) 

2.5.7 Nonlinear regression 

For the more general case of a nonlinear regression parameterised model f(x, α0), using 
the squared loss (error) function, the empirical risk is expressed as in (2.9). Unlike the 
linear case, there is no analytical solution for the minimisation of the empirical risk. 

Finding the proper model estimation and the optimal model parameters is a 
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standard optimisation problem (see Section 2.8 for details). The gradient of the empirical 
risk is: 

 
(2.27) 

For multivariate model f, Jf is the Jacobian matrix calculated in α. For an univariate 

model,  

2.6 Non parametric methods of density estimation 

Estimating densities from some narrow set of densities or so-called parametric set of 
densities (e.g. from a set of densities determined by a finite number of parameters) was 
the subject of the classical paradigm, where a “self-evident” type of model inductive 
engine (e.g. ML method) was used. To estimate a density from the wide (nonparametric) 
set one required a new type of inference that contains regularisation techniques. 
Regularisation, loosely speaking, means that while desired model is constructed to map 
approximately the observed vectors to the observed output of the system, constrains are 
applied to the construction of the model with the main goal of reducing the expected risk 
(generalisation error). We will return to the important subject of regularisation further in 
this chapter. At the beginning of 1960s several such types of (nonparametric) algorithms 
were suggested (Rosenblatt, 1956; Parzen, 1962; Chentsov, 1963). In the middle of 
19970s the general approach for creating for creating these kinds of algorithms was found 
(Vapnik and Stefanyuk, 1978). Nonparametric methods of density estimation gave rise to 
statistical and machine learning algorithms that overcome the limitations of the classical 
methods. 

2.6.1 Parzen’s windows method 

Among the various nonparametric methods of density estimation, the Parzen windows 
method (Parzen, 1962) probably is the most popular and attractive. According to this 
method, one first has to determine the so-called kernel function. For simplicity we 
consider here a simple kernel function: 

 
(2.28) 

where K(u) is a symmetric unimodal density function. Using this function and the ERM 
principle, one can determine the density estimator as: 

 
(2.29) 
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In the 1970s a comprehensive asymptotic theory for Parzen-type of nonparametric 
density estimation was developed (Devroye, 1985). This theory includes the following 
two important assertions: 

(i) Parzen’s estimator is consistent (in various metrics) for estimating a density from a 
wide class of densities (functions) 

(ii) The asymptotic rate of convergence for Parzen’s estimator is optimal for “smooth” 
densities. 

The main drawback of the findings was that for both classical models (pattern recognition 
and regression estimation) using nonparametric methods instead of parametric methods, 
it is possible obtain a good approximation to the desired dependency if the number of 
observation is sufficiently large. Naturally a question follows: What does a sufficiently 
large data set means? This question will be further addressed in this chapter with the 
description of the structural risk minimisation principle. 

2.6.2 The problem of density estimation is an ill-posed problem 

Let us recall that the learning from data or simply the learning problem is to obtain a 
function f in a given set Λ that minimises the risk functional (generalisation error): 

R(α)=∫L(x, α)p(x)dx 
(2.30) 

Let us now focus on the problem of estimating the density p(x). If one can estimate this 
density correctly, one could hope in turn to estimate the R(α). We now wish to solve the 
probability distribution problem, i.e. find the density p(u) (if it exists) satisfying the 
integral equation: 

 
(2.31) 

where P(x) is an unknown probability distribution function, but we have number N of 
observations x1,…xN… available, sampled from this distribution. The unknown p.d.f. can 
then be approximated by using the empirical distribution function (Figure 2.2):  

 

Figure 2.2. The empirical distribution 
function PN(x) constructed from the 
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observed data x1,…xN approximates the 
truth probability distribution function 
P(x) (Vapnik, 1998). 

 
(2.32) 

where H is the Heavyside (step) function. Its derivative is the Dirac function δ. 
According to the fundamental Glivenko-Cantelli theorem (Glivenko, 1933), the empirical 
distribution function (2.32) converges uniformly towards the desired function P(x). The 
approximation problem of density estimation then becomes: 

 
(2.33) 

where the obvious solution to this problem is expressed as: 

 
(2.34) 

the empirical density estimation. Therefore, one has to solve the integral equation (2.31) 
for the case where instead of the exact right-hand side, one knows an approximation that 
converges uniformly to the unknown function as the number of observation increases. 
Despite the (uniform) convergence of PN(x) towards P(x), the solution pN(u) of (2.33) 
does not converge towards the (unknown) solution p(u) of (2.31). The density estimation 
problem is thus ill-posed problem (there may be a continuum of solutions in a wide class 
of functions {p(u)} for a particular data set). Notice that the use of the empirical density 
(2.34) as an estimate of p(x) in (2.3) leads to the expression of the empirical risk or 
(unregularised) training error. 

In order to practically illustrate the fact that the density estimation is an ill-posed 
problem, we consider a classical example in nonlinear regression. Consider the extremely 
simple setting: we try to estimate a sinusoid on 10 points with x values generated in the 
interval [0;2] and y values in [−1;1].  

The model is a simple one-parametric function y=sin(απx). It is a nonlinear model and 
depends on a single parameter α, which in this case represents the frequency. Let us 
consider for example that we generate 10 observations from this sinusoidal with 
parameter α=1, which are slightly polluted by an additive independent with noise (see 
Figure 2.3). The noise level is rather low with a zero mean and variance 0.03, which 
gives us a signal-to-noise ratio of 5.1%. 
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Figure 2.3. The 10 sampled data points 
polluted with additive independent 
white noise (variance 0.03) are 
displayed with the sinusoid from 
which they were sampled. 

In this example the underlying mapping is taken as one of the possible models (from a 
wide set of functions). The best estimation of the parameter (i.e. the one that gives 
minimum risk and generalise best) would obviously be In this particular problem 
where the model depends on a unique parameter, it is unnecessary to route to 
multidimensional optimisation (to be discussed in this chapter). A simple line search will 
suffice. The loss function, expressed as a mean squared error, is a function of a single 
parameter: 

 
(2.35) 

Figure 2.4 shows the behaviour of the MSE as a function of the parameter α, which was 
varied on the interval [0;15] using the step of 0.01. As expected the MSE (value 0.0158) 
reaches its first minimum around (1.04 precisely), which is only a good estimated 

local minimum, since the global minimum is in where the MSE actually reaches 
value 0, due to the Ocam’s razor (to be discussed latter). The resulting model for the best 

MSE and the optimal parameter is plotted together with the underlying 
mapping function and the observables on Figure 2.5. The empirical risk minimisation 
principle indeed minimises the distance to the data, as these points are actually on the 
model. 
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Figure 2.4. The MSE as a function of 
the model parameter α (two minima 
are clearly visible). 

 

Figure 2.5. The solution function 
which resulted from the empirical risk 
minimisation principle (dashed) 
together with the observed data points 
and the “true” underlying mapping 
(solid line). 
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It is clear that this solution is not a favourable one in terms of generalisation 
capabilities. Apart from a couple of observables where both curves cross each other, the 
model produces estimations irrelevant to the underlying mapping. The reason for this is 
simple: whatever set of N points we observe (generate in this case) with ordinates in 
[−1;1], there exists a value of model parameter α, such that the associated sinusoid 
approximates the data arbitrarily closely. This is reflected in the fact that the sinusoid, 
even thought it has a single parameter, has infinite capacity, that is, it can interpolate with 
arbitrary precision any set of any number of points within its range. 

In order to create a better model, some background or a priori information 
(knowledge) has to be presented to this simple learning machine. Let us add a small 
regularisation term to the loss function (the mean squared error): C(α)=0.01α2. This 
regularisation term corresponds to imposing a penalty on the large values of the 
parameter α. In other words, we express our belief that the probability density of the 
parameter α, should be more densely distributed towards small values, which favours low 
frequencies, i.e. smooth functions. The resulting loss function expressed in a term of 
MSE as a function of parameter α is shown on Figure 2.6. It is now clearly visible that 
due to the regularisation effect, there exists only one clear global minimum of the MSE at 
the value of the parameter Figure 2.7 displays the shape of the resulting 
model ŷ=sin(1.04πx), original mapping and the data points. Note that despite the limited 
amount of data available, the nonlinear model provides a fairly good approximation of 
the underlying mapping in the domain of the data. 

 

Figure 2.6. The MSE as a function of 
the model parameter α with the help of 
the regularisation term, resulting in one 
clear MSE minimum (at ) 
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Figure 2.7. The solution function 
which resulted from the regularised 
empirical risk minimisation principle 
(dashdotted) together with the 
observed data points and the “true” 
underlying mapping (solid line). 

2.6.3 Artificial neural networks 

The Artificial Neural Network (ANN) approach to nonlinear regression and density 
estimation is a computational learning approach inspired by studies of the brain and 
nervous systems in biological organisms. The inspiring functionality of a biological 
neural system has been attributed to the parallel-distributed processing nature of the 
biological neurons. An ANN emulates this structure by distributing computations 
(learning tasks) to small and simple processing units, called artificial neurons, which are 
interconnected to form a connectionist model—network (see Figure 2.8). The historical 
developments of the first ANN-type of learning machine point back to Rosenblatt (1962) 
who suggested the first model of perceptron. He described the model as a program for 
computers and demonstrated with simple pattern recognition experiments that this model 
can be generalised. In 1986 several authors independently proposed a method for 
simultaneously constructing the vector coefficients for all neurons of the perceptron 
model using the so-called back-propagation method (LeCun, 1986; Rumelhart, Hinton 
and Williams, 1986), which was one of the important milestones in the general learning 
theory. 

Let us now return to our learning problem and briefly describe the ANNs as nonlinear 
nonparametric regression estimators. The regression function (f: x→y) is a multivariate 
nonlinear and especially time-varying (dynamical) mapping, which is of particular focus 
of this thesis. When the exact nonlinear underlying structure of this mapping cannot be 
establish a priori, the general estimator may be synthesised as a combination of 
parametrised basis functions: 

Nonlinear dynamics and chaos with applications to hydrodynamics and hydrological modelling     28



(2.35) 

where Gt,i(xt, θt,i) denotes multivariate basis function and is a set of model 
parameters. These multivariate basis functions may be generated from univariate basis 
function using radial basis, tensor product, wavelet basis or ridge construction methods. 
This type of regression is often referred to as “nonparametric” due to the large number of 
the basis functions. Equation (2.35) encompasses a large number of nonlinear estimation 
methods such as: projection pursuit regression (Fridman and Stuetzle, 1981; Huber 
1985), Volterra series (Billings, 1980; Mathews, 1991), fuzzy inference systems (Jung 
and Sun, 1993), generalised linear models (Nelder and Wedderburn, 1972), multivariate 
adaptive regression splines (MARS) (Friedman, 1991) and many artificial neural 
networks paradigms including functional link networks (Pao, 1989), multi-layer 
perceptrons (MLPs) (Rumelhart et al., 1986), radial basis function networks (RBFs) 
(Moody and Darken, 1988; Lowe, 1989; Poggio and Girosi, 1990), wavelet networks 
(Zhang, 1993; Bakshi and Stephanopoulos, 1993; Juditsky 1997) and hinging hyper-
planes (Breiman, 1993). For an introduction to ANNs we refer to any of the following 
textbooks: (Bishop, 1995; Haykin, 1999; Hecht-Nielsen, 1990; Ripley, 1996).  

 

Figure 2.8. Typical multi-layer 
perceptron architecture. 

ANNs in data-driven modelling are interesting for several reasons: (i) they provide a 
convenient generic non-linear modelling tool to the practitioners; (ii) they can 
approximate any continuous function arbitrarily well as the number of neurons (basis 
functions) increases without bound (Cybenko, 1989; Hornik, 1989; Poggio and Girosi, 
1990); (iii) they have been successfully applied to many complex practical problems, 
including speech recognition (Robinson, 1994), hand-written digit recognition (Le Cun et 
al., 1989), financial modelling (Refenes, 1995), medical diagnosis (Baxt, 1990) among 
others, and finally to many civil engineering problems ranging from rainfall-runoff 
modelling in hydrology (Minns, 1995), runoff modelling (Minns 1998), ocean water level 
forecasting (Frison et.al, 1994, Abarbanel, 1996), storm surges classification (Zijderveld, 
2003), sediment transport modelling (Bogaard 2000), automated land-cover image 
classification (Velickov et al., 2000) to geological classification and regression (Alvarez, 

Learning and regularisation       29



2001). In this work we will make use of three types of neural network architectures in 
some of the practical applications (see Chapter 6): fixed dimension MLPs, wavelet 
networks, and both fixed and variable dimension RBFs. 

MLPs among the other ANNs architectures have enjoyed a privileged position in the 
research community because of their simplistic structure, easy algorithmic 
implementation, approximating capabilities, relation to the biological systems and 
various historical reasons. Figure 2.8 shows a typical two hidden layer MPL with logistic 
sigmoid basis functions in the hidden layers and a single output linear neuron. 
Mathematically, networks of this type can be expressed as: 

(2.36) 

where bt,i denotes the bias on the ith neuron in the first layer and θt,i is a row vector 
containing the weights connecting each input pattern with the ith neuron. The transfer 
(basis) function σ in the input and hidden layers is usually a nonlinear, increasing, 
bounded function such as the hyperbolic tangent (tanh), the error function (erf) or the 
simple sigmoid function: σ(u)=1/(1+exp(−u)). For regression estimations, the transfer 
function at the output layer is usually kept linear (for extrapolation reasons), while for 
pattern recognition problems it is customary to apply a nonlinear bounded function again 
(for soft classification purposes). This allows the interpretation of the output of the 
network as a class membership. The choice of the number of input and output units is 
generally problem and process dependent. In the time series modelling and nonlinear 
dynamic system identification applications in this thesis, we will mostly have one output 
(the forecast) and as many inputs as necessary for proper reconstruction of the dynamics 
of the systems analysed. Although the MLPs discussed in this thesis exhibit a feed-
forward architecture, recurrent and modular type of architectures (Vassilios and 
Kehagias, 1998) have also been applied to some of the analysed problems (see Chapter 
6). A detailed description of the various ANN architectures is beyond the scope of this 
thesis. 

Finally, we would like to stress that almost fifteen years have passed since the 
construction of the first efficient ANN-type of learning machine. From a conceptual point 
of view, important achievements were made in constructing and investigating different 
structures of ANNs. In spite of consequent achievements in some applications using 
ANNs, the theoretical results obtained did not contribute much to the general learning 
theory. The so-called overfitting phenomenon observed in experiments is actually a 
phenomenon of “false structure” known in the theory for solving ill-posed problems 
(Denker et al., 1987). From the theory for solving ill-posed problems, regularisation 
techniques were adopted that prevent overfitting (Plaut at al., 1986; Krogh and Hertz, 
1992), force structural optimisation of ANNs (e.g. optimal brain damage and optimal 
brain surgeon) (Le Cun et al., 1990; Hassibi and Stork, 1993) and stop training early 
(Ljung et al., 1992).  
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2.7 Regularisation 

In the previous section, we described and demonstrated that the induction of models from 
data using the ERM principle is ill-posed problem. In the 1960s and 1970s, in various 
branches of mathematics, several streams of investigation were developed which founded 
the basis for regularisation theory for solving ill-posed problems. We introduce the 
concepts of well-posed and ill-posed problems and the regularisation technique in a 
general context, which become very important for creating new paradigms in solving 
learning problems. 

2.7.1 Well-posed and ill-posed learning problems 

The existence of the ill-posed problems has been observed in the early 1890s by the 
French mathematician Hadamard (1902) who considered a typical inverse problem, the 
problem of solving operator equations (finding f that satisfies the equality): 

 (2.37) 

where is an operator and F belongs to the metric space can be a linear as well 
as a nonlinear operator. Typical examples include derivative or integral operators. For 
example, a system governed by a second order differential equation can be discretised 
and expressed as a linear equation A·f=F, where F is a set of discrete measurements and 
A is a known matrix representing the differential equation f (e.g. the second derivative is 
expressed simply as a band diagonal matrix with −2 on the diagonal and 1 on the upper 
and lower first band). In the context of the parametric regression estimation, F is the 
observed data, and f is the unknown data model, containing a set of parameters. This is a 
typical inverse problem as we wish to invert the cause+system=effect type of dependency. 
Knowing the cause and the effect, we try to reason about the system, or more precisely 
about the processes underlying the system. 

Hadamard noticed that in some cases, equation (2.37) is ill-posed: a small deviation on 
the right-hand side of this equation (Fδ instead of F, were ||F−Fδ||<δ is arbitrarily small) 
can result in a large deviation in the solutions f. In the case where the right-hand side of 
the equation is not exact, the functions fδ that minimise the risk functional 

R(f)=||Af−Fδ||2 
(2.38) 

does not guarantee a good approximation to the desired solution, even if δ→0. In the 
middle of the 1960s (Tikhonov, 1963) it was discovered that if instead of minimising the 
function (2.38) one minimises the functional 

R*(f)=||Af−Fδ||2+γ(δ)Ω(f) 
(2.39) 

where Ω(f) is so-called regularisation functional, and γ(δ) is an appropriately chosen 
parameter (depending on the level of noise), then it is possible to obtain a solution that 
converges to the desired one as δ tends to zero (Tikhonov, 1963; Ivanov, 1962; Phillips 
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1962). The regularisation parameter γ, also called hyper-parameter, implicitly defines a 
structure on the possible models by constraining the model. Roughly speaking, the low 
values of γ in (2.39) impose a weak constraint and put more weight on the empirical risk 
minimisation, while large values of the regularisation parameter give more importance to 
the minimisation of the regularisation function. The regularised empirical risk 
minimisation problem is a trade-off between fitting the data with the model and 
constraining the model to stay in a small well-chosen, problem-dependent subset of 
functions. Furthermore, the balance between satisfying the constraint on the model and 
staying close to the data is governed by the regularisation parameter. 

It is further interesting to notice that Hadamrad initially reported that ill-posed 
problems were restricted as a mathematical phenomenon and that the real-life problems 
were “well posed”. However, it was latter found that many actual inverse problems are 
ill-posed. This is true in a large number of fields, from meteorology, hydrology, and 
mechanics to geophysics or statistics (as we demonstrated with simple example in the 
previous section). A classical example for linear ill-posed problem is a Fredholm general 
integral equation of the first kind: 

 

 
(2.40) 

where K is known squared integral kernel, and f is a sought solution. 
On the other hand, let us now describe the concept of Hadamrad well-posedness. The 

problem (2.37) is a well-posed if the following conditions hold: 

1. That means a solution to (2.37) exists. 

2. The solution is unique. 

3. With and we have The solution is stable with 
small variations in the right-hand side of (2.37). 

The third condition above is equivalent to writing that the inverse operator 
continuous. One can say that in the context of this study, the inverse operator is the 
learning procedure. Learning procedures based on the ERM principle (such as 
minimisation of the quadratic loss function in the regression estimation example) are not 
stable and the learning problem is thus ill-posed. 

The definition of the Hadamard well-posedness does not accommodate a number of 
tasks such as parameter restoration. This required an extension of the definition of an ill-
posed problem. Tikhonov (1963) stated that well-posedness restricts the definition above 
to a set The restriction made by Tikhonov is reflected in the following result: If 
the operator is non-ambiguous and continuos on a compact set then the inverse 

operator is continuous on the image Having a continuous operator with  
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continuous inverse on compact sets3, the stability condition is guaranteed. Tikhonov’s 
well-posedness can be assured by the following conditions: problem (2.37) is well-posed 

if there exist a subset such that:  

1. It has a solution,  

2. The solution is unique,  

3. For any sequence and such that we have 

 
The last condition is especially interesting in the context of a learning procedure based on 
the minimisation of a given loss function L. It means that if we have a series of models fi 
such that min L(fi)→min L(f), then likewise fi→f. This is precisely what we were missing 
earlier. Indeed, the law of large numbers does guarantee the convergence of the empirical 
risk to the expected risk, but only in the case where the problem is well-posed will the 
corresponding convergence be true for the solution of the minimisation problem (White, 
1989; Vapnik 1995). 

2.7.2 Tikhonov regularisation method 

In this section we shell briefly highlight the main concept of the Tikhonov regularisation 
technique. A main contribution of Tikhonov is that he proposed a method for turning an 
ill-posed problem into a close well-posed problem. The idea is to continue the learning 
problem to a restricted set by use of a regularisation functional Ω(f) (2.39). In the context 
of the empirical risk minimisation in parametric regression, this functional will typically 
depend on the model parameters. Setting a constraint on this functional Ω(f)≤c defines a 

structure of subsets of the function set Under these conditions, the regularised 
empirical risk minimisation problems we wish to solve can be written as: 

 (2.41) 

Equation (2.41) is equivalent to seeking the function minimising the empirical risk in a 
small subset of Λ. The problem here is that it is difficult to carry out minimisation with 
inequality constraints. However, according to the Kuhn and Tucker theorem (see e.g. 
Fang, 1993), there is an implicit equivalence between solving (2.41) and minimising 
modified version of the risk functional: 

 (2.42) 

which leads us to the regularisation technique described with equation (2.39). Note that 
this is reminiscent of the optimisation method of Lagrange multipliers. 

3 The image of a compact set through a continuous operator is compact. 
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2.7.3 Regularisation functionals 

In the previous section we introduced the concept of the regularisation and the use of the 
regularisation functonal Ω(f) in order to make the learning problem well-posed. 
Nonetheless, not all functionals are well suited to be used in regularisation of ill-posed 
learning problems. As we discussed above the regularisation should actually define a 
structure of compact sets of functions. In order for the functional Ω to be suitable, it has 
to fulfil a number of conditions (Dontchev and Zollezi, 1992):  

1. Ω is semi-continuous in a dense subset of Λ. This is the case for any continuous 
function on Λ. 

2. Ω is positive: Ω(f)≥0. 
3. A solution of problem (2.37) exists in the domain of definition of Ω. 
4. Ω defines a structure of compact sets: {f|Ω(f)}≤c are all compact. 

If all these conditions are met, according to Dontchev and Zollezi (1992), Ω deserves the 
name of the regularisation term. For a regularisation term Ω, the minimisation problem 
(2.42) is a well-posed problem. The above conditions are far from being restrictive. This 
allows for a large class of regularisation functinals to be used. In particular, a common 
choice of Ω consists in taking a norm on Λ, Ω(f)=||f||p or some power of this norm. In the 

same line, another common choice is to use an operator typically a derivative operator 

 
We would finally like to round off this section describing the impact of the general 

concept of regularisation with the following citation from Vapnik (1995): 

“…The influence of the philosophy created by the regularisation theory 
for solving ill-posed problem is very deep. Both the regularisation 
philosophy and the regularisation techniques become widely disseminated 
in many areas of science including optimisation, control theory, machine 
learning and statistics…” 

2.8 The paradigm of solving learning problems based on the 
Structural Risk Minimisation principle 

The ERM principle described previously, though enriched with the regularisation theory, 
is intended for dealing with large data sample sizes. In the typical engineering real-life 
problems one deals with limited amount of data. Clearly, there was a need for a theory, 
which goes beyond the ERM principle, that is, a theory for controlling the generalisation 
ability of learning machines or constructing an inductive principle for minimising the risk 
functional (2.2) using a small sample of training data. This theory was constructed in the 
late 1960s by Vapnik and Chervonenkis (1968, 1971). The remarkable element of this 
theory is a collection of different concepts, the so-called capacity concept of the learning 
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machine. Roughly speaking, for a given learning task, with a given finite amount of 
training data, the best generalisation performance will be achieved if the right balance is 
found between the accuracy attained on a particular training set, and the capacity of the 
learning machine, that is, the ability of the machine to learn any training set without error 
(or an error which has a certain bound). 

Another important concept is the so-called VC dimension (Vapnik—Chervonenkis 
dimension), or more precisely the VC dimension of the set of functions implemented by 
the learning machine, which is the measure of the notion of capacity mentioned above. It 
was found that both the necessary and sufficient conditions of consistency and the rate of 
convergence of the ERM principle depend on the capacity of the set of functions 
implemented by the learning machine (Vapnik and Chervonenkis, 1989). In particular, it 
was proven that distribution-free bounds on the rate of uniform convergence of the ERM 
principle depend on the VC dimension, the number of training errors, and the number of 
observations. This form of bounds led to a new induction principle for controlling the 
generalisation ability of the learning machines, the so-called Structural Risk 
Minimisation (SRM) principle4. It is thus the SRM principle that opened up new 
possibilities for inducing (in a real sense) models from and development of new 
directions in data-driven modelling as sub-symbolic process descriptors. In this section 
we briefly describe the main concepts of a bound on the generalisation ability of the 
learning machines and the SRM induction principle. We will also further demonstrate 
how SRM principle can be linked with ANNs. Finally, we will discuss how the Bayesian 
approach in learning theory, although has a substantial place in the classical paradigm of 
function estimation, bringsus to the same scheme and idea as the SRM principle. 

2.8.1 A bound on the generalisation performance of the learning machine 

In the late 1970s the investigations in the rate of convergence of the learning machines 
resulted in a family of bounds governing the relation between the capacity of a learning 
machine and its performance (generalisation ability). The theory explored the 
considerations under what circumstances, and how quickly, the mean of some empirical 
quantity (empirical risk) converges uniformly, as the number of available data increases, 
to the true mean (which would be calculated from an infinite amount of data) (Vapnik, 
1979). One of the most remarkable results of the statistical learning theory is the 
existence of a distribution-free upper-bound on the expected risk R(α) (for a fixed, finite 
number of observations). Keeping in mind the setting of our learning-from-data problem 
(see Section 2.2), given a set of i.i.d. observables {(xi, yi),i=1…N} generated according to 
an unknown probability density, and our learning machine (set of functions f(x, α)) with  

 

 
4 See monograph by V.N.Vapnik: Estimation of Dependencies Based on Empirical Data, Nauka, 
Moskow, 1979. English translation: Springer-Verlag, New York, 1982. 
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the task to learn the mapping xi→yi, the following bound on the risk holds (Vapnik, 1995) 
with probability 1−η: 

 

 
(2.43) 

where h is non-negative integer called VC dimension of this set of functions and is a 
measure of the notion of the capacity of the learning machine and N is the number of the 
training data patterns. The right-hand side of the equation (2.43) is usually called the 
bound on the risk. Some authors (Guyon et al., 1992) call it the “guaranteed risk”, but this 
is arguable since it is really bound on the expected risk, not a risk, and it holds only with 
a certain probability, and therefore is not guaranteed. The second term on the right-hand 
side is known as the VC confidence. 

We would like to stress here three points about this bound on the risk (generalisation 
error). First, remarkably, it is independent of any probability density p(x, y). It assumes 
only that both the training and the test data are drawn independently according to some 
probability density p(x, y) (see Section 2.2). Second, it is usually not possible to compute 
the left-hand side of the equation (2.43) directly. Finally, if we know the VC dimension 
h, we can easily compute the right-hand side of the equation (2.43). Thus, given (or 
properly chosen) several learning machines (several sets of functions), and choosing a 
fixed, sufficiently small η, by then taking the machine which minimises the right-hand 
side of (2.43) gives the minimum lowest upper bound on the actual risk. This gives an 
inductive principle for choosing a learning machine for a given learning task, and is the 
essential idea of the structural risk minimisation principle. Given a fixed family of 
learning machines to choose from, to the extent that the bound is tight for at least one of 
the machines, one will not be able to do better than this. If the bound is not too tight for 
any of the learning machines, the hope is that the right-hand side still gives useful 
information (satisfactory accuracy and generalisation ability) as to which learning 
machine minimises the actual risk. 

2.8.2 Structural Risk Minimisation (SRM) principle 

We briefly summarise here the principle of structural risk minimisation (SRM) (Vapnik, 
1979). We mentioned earlier that the ERM inductive principle can deal with large data 
sample sizes. Considering the inequality (2.43), when the ratio N/h (ratio between the 
number of training samples to the VC dimension) is large, the VC confidence becomes 
small. The actual risk is then close to the value of the empirical risk. In this case, a small 
value of the empirical risk Remp (α) guarantees a small value of the expected risk R(α). 
However, when the ratio N/h is small (limited amount of data to learn from), a small 
Remp(α) does not guarantee a small value of the risk R(α). In this case, in order to 
minimise the risk R(α), one has to minimise the right-hand side of (2.43) simultaneously 
over both terms: the empirical risk and the VC confidence. 

Note that the VC confidence term depends on the chosen class of function, whereas 
the empirical risk and the actual risk depend on one particular function chosen by the 
learning procedure. Our goal is to find a particular subset of the chosen set of functions, 
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such that the risk bound for that subset is minimised. Clearly we cannot arrange that the 
VC dimension as a controlling variable in the optimisation procedure will vary smoothly, 
since it is an integer. Instead one can introduce a “structure” by dividing the entire class 
of functions into nested subsets (see Figure 2.9). 

 

Figure 2.9. Nested subset of functions 
ordered by VC dimension. 

For each subset, one must be able either to compute h, or to get a bound on h itself. SRM 
then consists of finding the subset of functions, which minimises the bound on the actual 
risk. Simply training a set of machines, one for each subset can do this, where for a given 
subset the goal for training is to minimise the empirical risk. One then takes that trained 
machine in the series whose sum of empirical risk and VC confidence is minimum 
(optimal), Figure 2.10.  

The general SRM principle can be implemented in many ways. For example, there are 
several possible ways to implement the SRM principle for a set of functions used by 
ANNs: 

1. For a fully connected feed-forward neural network (Figure 2. 8) in which the number 
of units in one of the hidden layers is monotonically increased, the set of 
implementable functions define a structure as a number of hidden units is increased. 
The risk on this structure can be further minimised. 

2. Consider a set of functions S={f= (x, θ), }, implementable by an ANN 
(learning machine) with fixed architecture, where the parameters {θ} are the weights 
of the neural network. A structure can be introduced through Sp={f(x, θ), ||θ||≤cp} and 
c1<c2<…<cn. Under the general loss function, the minimisation of the empirical risk 
within one element Sp of the structure introduced can be done by minimizing the 
functional 

 

  

which with appropriately chosen Lagrange multipliers leads us to the well-known 
weight decay estimation procedure (Plaut et al., 1986; Krogh and Hertz, 1992). 
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Figure 2.10. The bound on the risk is 
the sum of the empirical risk and the 
VC confidence. The smallest bound on 
the risk is achieved by taking particular 
trained machine on an appropriate 
subset of the structure whose sum of 
the empirical risk and the VC 
confidence is minimal (adopted from 
Vapnik, 1998). 

3. The structure can be imposed on the input representation to the ANN with fixed 
architecture. The input can be modified by introducing a transformation z=K(x, β), 
where the parameter β controls the type of the transformation (e.g. the width of the 
smoothing kernel). A structure can be introduced in a set of functions S={f(K(x,β),θ), 

} through β≥cp and c1>c2>…> cn. The SRM principle can be then 
implemented by estimating the VC dimension (confidence) for each of the elements S 
of the structure and by minimising the empirical risk. In this way the upper bound on 
the actual risk can be minimised. 

The structural risk minimisation inductive principle has laid the ground for the emerging 
computation learning technique known as Support Vector Machine (SVM). 

2.8.3 Support vector machine 

Support vector machine is relatively new computational learning technique, which 
embodies the SRM principle. The main idea of the support vector machine is to map the 
input vector x into a high-dimensional feature space Z by using nonlinear mapping 
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(kernel functions) chosen a priori, and then an optimal separating hyperplane is 
constructed using the SRM inductive principle. The optimal separating hyperplane passes 
through the given points (patterns) from the training data set, which are found by solving 
dual quadratic optimisation problem. The points (vectors) are termed support vectors. 

A detailed description of the concept and the algorithm of SVM is outside of the scope 
of this thesis. For introduction to the subject of support vector machines and the SRM 
principle we refer to Vapnik (1995, 1998), Burges (1998), Saunders et al. (1998), 
Schölkopf (1997) and Smola (1996). A brief description of SVMs for pattern recognition 
and their application in a framework of hybrid data-driven model is given in Chapter 6. 

Since their introduction (Vapnik, 1995), SVMs have attracted the attention of the 
researchers and practitioners due to their solid theoretical background, based on the 
statistical learning theory and the SRM principle, and their increasing successful 
application to real-life problems in both the pattern recognition and regression 
estimations. For the pattern recognition case, SVMs have been used for hand-written digit 
recognition (Cortes and Vapnik, 1995; Burges and Vapnik, 1995; Scholkopf, Burges and 
Vapnik, 1996) object recognition (Blanz et al., 1996), voice identification (Schmidth, 
1996), face image detection (Osuna et. al., 1997) and text categorisation (Joachims, 
1997). For the regression estimation case SVMs have been compared on benchmark time 
series prediction test (Muller et al., 1997; Mukherjee et al., 1997) on artificial data 
(Vapnik, Golowich and Smola, 1996) and for dynamic reconstruction of the well-known 
Lorenz chaotic system (Mattera and Haukin, 1999). Dibike, Velickov and Solomatine 
(2000a and 2000b) with Babovic and Kajzer (2000) have pioneered the application of 
SVMs for solving civil engineering problems. Velickov et al. (2000), have demonstrated 
and compared SVMs with other sub-symbolic model induction engines for automated 
land cover classification of remote sensed images for the purposed of the hydrological 
modelling. A novel hybrid algorithm was also developed and reported. 

2.8.3 Bayesian learning paradigm and the SRM principle 

Tomas Bayes was a British cleric and amateur mathematician (it appeared a very good 
one), who died in 1691. Among his papers was found a curious unpublished manuscript, 
which was then published in 1763 (see Molina, 1963 for a photographic reproduction of 
the work and some historical comments) and gave rise to a new learning paradigm, 
termed with different names, such as “Bayesian learning” or “Bayesian approach” or 
“Bayesian statistics”. Latter on, in almost his first published work (1794), Laplace 
rediscovered Bayes’ principle in greater clarity and generality, and then for the next 40 
years proceeded to apply it to various problems of astronomy, geodesy, meteorology and 
statistics. The Bayesian learning paradigm is founded upon the premise that all forms of 
uncertainty can be expressed and measured by probabilities (Bernardo and Smith, 1994). 
Although the paradigm can be expressed in a formal framework, based on mathematical 
abstraction and rigorous analysis, it relies upon subjective experience. That is, it offers a 
rationalist and coherent theory where all kinds of uncertainties (e.g. parameters of the 
model, models, process uncertainties) are described in terms of subjective beliefs or 
probabilities. However, once the individual beliefs of uncertainties are expressed, and 
assuming access to the same data, the results should be unique and reproducible. 
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Bayesian learning paradigm is based on the rather simple chain rule (or theorem) 
known as Bayes’ rule, yet it is by far one of the most important principles underlying the 
scientific inference (see Jaynes, 1995). Simple application of the conditional probability 
definition allows us to derive the Bayes rule. Denoting two events (or proposition) by A 
and B, and applying the basic product and sum rules of probability we have: 

P(A∩B)=P(A|B)P(B) 
P(B∩A)=P(B|A)P(A) (2.44) 

 (2.45) 

As we obviously have P(A∩B)=P(B∩A) and if P(B)>0, we get from (2.44) the well-
known Bayes’ rule (although Bayes never wrote it): 

 
(2.46) 

It can be also shown that in (2.46) an additional event/proposition C can be introduced, 
such that: 

 
(2.47) 

One can ask the question: But what is so important in (2.47) apart from it being just a 
statement that the product probability rule is consistent? The important thing is that in the 
Bayes’ rule (2.27) we have a mathematical representation of the process of learning; 
exactly what we need for our extended logic that allows induction of models from data. 
P(A|C) is our prior probability for A when we know only C. P(A|BC) is its posterior 
probability, updated as a result of acquiring new information B. Typically and very 
generally, A represents some hypothesis or theory (or model), whose truth we wish to 
ascertain, B represents the new data from observations, and C represents the background 
information (knowledge), that is, the totality of what we knew (and believed) about A 
before getting the data B. The other distributions on the right-hand side are the likelihood 
and the evidence (also known as innovation or predictive distribution). Thus the Bayes 
rule can be written in a form:  

 
(2.48) 

Our subjective beliefs and views on the uncertainty are expressed in the prior 
distributons. Once the data is available the evidence allows us to update these beliefs. The 
resulting posterior distribution incorporates both our a priori knowledge and the 
information conveyed by the data, and thus improves on our common sense. In the first 
place it is clear that the prior probability P(A|C) is necessarily present in all inductive 
inference; therefore to ask the question of type “What do you know about A after seeing 
B?” cannot have any definitive answer, because is not a well-posed question in the 
Bayesian learning paradigm, if we fail to take into account the question “What did you 
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know about A before seeing B?”. This reasoning is crucial to judge the frequently 
repeated phrase “Let the data speak for themselves!”. Our view on this phrase is: they 
cannot and never have. For example, if we want to decide between various learning 
machines (data models) but refuse to supplement the data with prior information 
(incorporating our background knowledge and understanding of the relationships 
between physical processes being modelled) about them, any probabilistic inference will 
lead us to favour the “Sure Thing” (ST) model, according to which, for example, every 
millisecond of detail of the dynamical system was inevitable; nothing else could have 
happened. For the data we will always have much higher probability (close to 1) on the 
ST model than on any other model. Only by supplying proper prior information could the 
ST model be rejected. 

The other remarkable think is that Bayes’ rule also allows to produce several levels of 
inference, as probabilities conditioned on C can be in turn calculated using Bayes’ rule. If 
we write for example that P(A|BC)=P(A|C)(P(B|AC)/P(B|C)), we can in turn combine this 
with the result of another inference in the form P(A|C)=P(A)(P(C|A)/P(C)). This 
formalism is very useful to incorporate new knowledge in our inference, or to update the 
results (model) once new information is available. In this way we can apply Bayes’ rule 
repeatedly as new pieces of information B1, B2,…arrive, thus the posterior probability 
from each application is becoming the prior probability for the next. This raises a 
possibility for effective sequential learning (training of the machine) since at any stage 
the probability that Bayes’ rule assigns to A depends only on the total evidence Btot=B1, 
B2,…, BN. One can reach the same learning performance by a single application of the 
Bayes’ rule using Btot. 

Although in the classical paradigm of learning from data and especially function 
estimation an important place belongs to the Bayesian approach (see Berger, 1985 for 
overview), in the last decade Bayesian learning paradigm is receiving increasing attention 
(Berger, 1999) due to the reasons briefly discussed above. The Bayesian learning 
paradigm and especially the investigation of the ability to induct models describing 
dynamical systems from data (dynamic Bayesian networks) is one of the major focuses of 
this thesis (see Chapter 4). 

However, one of reasons we introduced the Bayesian learning paradigm in this section 
was the intention to show that Bayesian learning implicitly embodies the SRM induction 
principle. Consider, for simplicity, the problem of regression estimation from 
measurements corrupted with independent additive noise (same as in section 2.3.3)  

yi=f(xi, α0)+εi. 
(2.49) 

In order to estimate the regression model in within the ML framework, one had to know a 
parametric set of functions f(x, α), that contain the regression function 
f(x, α0), and to know (or assume) the noise distribution model p(ε). 

In the Bayesian approach, additional information needs to be supplied: one has to 
know the a priori density function p(α) that for any function from the parametric set of 
functions f(x, α), defines the probability for it to be the appropriate model. If f(x, 
α0) is the regression model, then the probability of the training data D=(x1, y1),…, (xN, yN) 
can be written as: 
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(2.50) 

Having seen the data, the a posteriori probability that the parameter α defines the 
regression model can be estimated applying the Bayes’ rule: 

 
(2.51) 

This expression can be used to choose the approximation to the regression model, using 
different estimation frameworks (such as maximum a posteriori or evidence framework, 

see Chapter 4 for details). Choosing the approximation function that maximises 
the conditional probability (2.50) on is equivalent to the following functional: 

 
(2.52) 

If we simply consider that the noise distribution is according to the normal law, 

 
(2.53) 

the functional (2.53) can be written as: 

 
(2.54) 

which has to be minimised with respect to the parameter a in order to find the 

approximation function The first term of the functional (2.54) is in fact the 
empirical risk, and the second term can be regarded as a regularisation term. Therefore 
the Bayesian approach brings us to the same scheme that is used in the SRM inductive 
principle. 

To summarise, in order to use the Bayesian learning framework, one must posses the 
following strong a priori information:  

(i) The given set of functions of the learning machine should coincide with the type of 
the engineering problems to be solved. 

(ii) The a priori distributions on a particular modelling problem (or the various 
uncertainties) are expressed by subjective beliefs using the domain information and 
knowledge. 

One can argue that these two requirements are positive or negative requirements in the 
process of model induction from data. Some authors (see Vapnik, 1995) argue that due to 
the human-machine type of inference this is the only shortcoming of the Bayesian 
approach (since machine learning in a real sense should induct the models from data), 
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whether others (see Hecerman, 1996) elaborate that these requirements are one of the 
major advantages of the Bayesian learning framework. This debate is in fact the essence 
of this thesis. We strongly argue that for engineering problem-solving and modelling 
purposes (e.g. hydrodynamic modelling, hydrological modelling, environmental 
modelling, etc.) the process of model induction from data is an interactive process 
mobilising as much as possible of the available knowledge of the underlying physical 
processes and already known relationships between various variables describing them. 
These kinds of prior domain information/knowledge should guide the process of learning 
models from data, which in turn we hope to improve our knowledge and beliefs about the 
factual physical systems and processes (and sometimes lead to new discoveries) 
throughout the perception and cognition of the induced models (viewed in terms of the 
definition of model described in Chapter 1). 

The first requirement of the Bayesian learning framework mentioned above can be 
interpreted as the required regularisation (see Section 2.7) in order to avoid solving ill-
posed problems by imposing certain constraints on the set of functions (learning 
machine). For example, in a case of hydrodynamic modelling problem, one could express 
those constrains by the first principles for Hamiltonian type of systems translated as 
conservation of mass, momentum, and energy. 

The second requirement of the Bayesian learning paradigm is probably at the heart of 
data-driven modelling. The real Bayesian approach advocates that one should express 
beliefs about various kinds of uncertainties (e.g. model parameters, type of the models, 
inherent process uncertainties, uncertainties due to a lack of knowledge about specific 
processes) present in the modelling problem without necessarily seeing the data 
beforehand. This in turn might be a difficult task for analysis of data that are observed on 
some new phenomenon and processes. The data exploratory analysis should play an 
important role in this case, hereby providing a way of using the data to assist in 
specifying the prior information to the learning machine. This approach is sometimes 
termed as a empirical Bayesian framework, and is being frequently used in practice. 

The fact that the Bayesian learning paradigm can also be used for machine learning (in 
a true sense) is due to the reason that Bayesian framework inherits the notions of 
regularisation and capacity control, as we discussed above. The advocates of the pure 
machine learning approach (machine-only type of inference) favour weak a priori 
qualitative information about the reality being modelled. Our view is that these kinds of 
approaches can be of use only in the analysis of huge amounts of data and information, 
which in general do not necessarily describe some (dynamical) physical processes. Thus 
they can be seen rather as a technique, but not as a real modelling tool. This discussion 
provokes us to raise the same question, which was raised many times since the invention 
of the computer: The question about the existence of a “real thinking computer”. Am 
interesting answer to this question was given by J.von Neumann (quoted by Jaynes, 
1995): 

“…You insist that there is something that a machine can do. If you will 
tell me precisely what it is that a machine cannot do, then I can always 
make a machine which will do exactly just that!…” 
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In principle, the only operations which a learning machine cannot perform for us are 
those we cannot describe with sufficient details and knowledge, or which cannot be 
completed in a finite number of steps. Of course, to argue about it we need to point to the 
existence of human brain, which in fact does it. Just as in the citation above, the only 
limitations on making a machine which learns from data and tries to perform useful 
inductive reasoning are our own limitations in not knowing exactly what “learning from 
data” consists of. 

 

2.9 Search for the minimum of risk in solving learning problems 

We have introduced earlier in this chapter that a significant part of the problem of model 
induction from data, using the ERM and SRM inductive principles or Bayesian 
framework, consists of searching for some kind of a minimum of the actual risk (either 
expressed through the empirical risk or the smallest upper bound on the expected risk). 
This in turn requires employment of some optimisation technique. The purpose of this 
section is to give a brief description of the optimisation techniques, which in one way or 
another are used throughout this work. Optimisation methods are covered in many books 
such as e.g. (Fletcher, 1987) or (Press et al., 1992) for one-dimensional and multi-
dimensional problems. For comparative analysis of different global optimisation methods 
and search strategies in a relation to model calibration refer to Solomatine (2000). Some 
of the optimisation methods discussed here (such as quadratic approximation and 
conjugate gradient) are necessary to handle nonlinear problems. However, most of the 
methods presented in this section are also used in the linear case. Indeed, iterative 
minimisation methods are a common alternative to the computationally expensive matrix 
inversion methods. 

2.9.1 Back-propagation method 

In section 2.6.3 we introduced the artificial neural networks as nonlinear nonparamentric 
learning machines, where the so-called back-propagation method was one of the 
important achievements in the general learning theory. The back-propagation method is 
usually accredited to LeCun (1986) or Rumelhart et al. (1986). However, it was 
discovered earlier in different contexts. Vapnik (1995) mentions its use in Bryson et al., 
(1963) for solving some control problems. Bottou (1991) cites Amari (1967) in the 
context of adaptive systems and notes that it is nothing more than a proper application of 
the derivation rules invented by Leibnitz in the 17th century. This method is indeed an 
application of chain rule of derivation to the MLP type of ANNs. We present here the 
derivation for a one input, one-hidden layer case, but the generalisation is 
straightforward. 

The local quadratic loss function (sometimes termed as cost) for data example k is 
expressed as:  
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Lk(θ)=(yi−y(xk))2 
(2.55) 

For a simplistic calculation we introduce the output hj of a hidden unit j, and its input as 
pj =h−1(hj). The derivatives of the loss function with respect to the input of the hidden 
layer and the input layer are: 

 
(2.56) 

 
(2.57) 

The derivatives with respect to the parameters are: 

 
(2.58) 

 
(2.59) 

The calculation of the neural network estimation is done by a forward pass, introducing hj 
and y(x) given the xi, θji and Θj. The calculation of the derivatives of the loss with respect 
to the parameters is done by back-propagation, using (2.56) and (2.57), then (2.58) and 
(2.59). The first order derivatives with respect to the parameters allow the use of first 
order optimisation method to minimise L(θ) (and even some approximations of second 
order methods). The first order derivatives with respect to the inputs allow the use of a 
neural network as a part in a modular or hybrid model as presented latter. 

2.9.2 Quadratic optimisation 

For one-dimensional optimisation, the basic techniques are for example golden search or 
parabolic interpolation. These are not directly relevant to the machine learning, though 
they are crucial when performing a line search, i.e. minimising along a given search 
direction. The quadratic optimisation is also relevant for to the minimisation in a multi-
dimensional space (Fletcher, 1987). Given a cost function L(θ), one can perform a 

quadratic expansion around such as: 

 
(2.60) 

where H is the Hessian matrix (matrix containing second order partial derivatives) of the 
loss function. This expression relates to the use of a quadratic loss function. It is exact for 
linear models and gives a good approximation to the nonlinear models.  
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2.9.3 Steepest descent 

The steepest descent algorithm dates back to Cauchy (see Press et al., 1992). The main 
idea of this algorithm is at every iteration to search along the direction of the steepest 
descent i.e. the gradient: 

 (2.61) 

where ηt is a gain parameter that can be initiated in different ways. For example: 

• setting ηt to a constant parameter; 

• finding the “optimal” rate of change:  

The rate of convergence of an algorithm can be defined as a speed at which it gets closer 
to the solution, or in other words, the ratio between the distance to the solution at time t 
and the distance to the solution at time t-1. Its convergence rate is a standard topic of 
improvement in numerical analysis (e.g. Møller, 1993), due to the well-known reason that 

when the loss surface has a very narrow valley around the optimal solution the 
algorithm jumps from one side to the other of the valley in very short orthogonal steps, 
which in turn results in a large number of iterations. Several improvements have been 
suggested such as adding a momentum term (see Møller, 1993). 

2.9.4 Stochastic gradient descent 

The stochastic version of the gradient descent algorithm, sometimes referred as on-line 
gradient descent, can lead to a drastic improvement in the convergence. The application 
of the algorithm and the convergence analysis date back to 1950s. Rumelhart et al. (1986) 
introduced and applied this algorithm for the first time to ANNs. The stochastic algorithm 
consists of updating the parameters on the basis of the gradient of the local loss: 

 (2.62) 

where the Lk is the local loss for a pattern k: ||yk−fθt(xk)||2. The choice of the pattern k to 
use in time step t is done in a stochastic manner, taking the training examples at random. 
This updating scheme is well suited for on-line adaptation of the parameters, while the 
previous algorithm uses the computation of the gradient on the entire training set, making 
it better suited for off-line (or batch) training. The stochastic gradient descent is 
recommended for learning problems such as higher dimensional pattern recognition, 
where the training set is large, and often redundant. It is generally less well suited to 
small scale pattern recognition and regression estimation. In such cases, the conjugate 
gradient algorithm presented below usually yields better results. For a good introduction 
and demonstration of the convergence of the algorithm we refer to Bottou, (1991). 

 

Nonlinear dynamics and chaos with applications to hydrodynamics and hydrological modelling     46



2.9.5 Conjugate gradient 

The conjugate gradient method increases the efficiency of the optimisation by avoiding 
the oscillations of the steepest descent method in ill-posed cases. This algorithm is being 
studied extensively in the linear optimisation literature. A neural network perspective is 
described in Møller (1993). A brief description of the conjugate gradient is presented 
below. 

Let us first recall that two vectors u and v are said to be conjugate with respect to 
matrix A if: uT Av=vT Au=0, which means that they are orthogonal in the sense of the 
quadratic form. As we discussed earlier, the quadratic approximation (2.60) involves the 
Hessian matrix of the loss function. Furthermore, during the search it would be 
convenient that once a minimisation step is completed, the next search direction does not 
interfere with the previous one (in order to avoid reversing the previous gain). In other 
words, it would be good if the choice of the next search direction is restricted to the 
conjugate hyperplane, that is, the old and the new search directions are kept conjugate 
with respect to the Hessian matrix H. One can construct a set ht of successive conjugate 
search directions together with a set gt of gradient directions. If θt is the approximation of 
the location of the minimum of L(θ) at step t, then the next gradient directions can be 
expressed as: 

 (2.63) 

The next search direction can be taken as a combination of the gradient direction and the 
previous search direction: 

ht+1=gt+1−γt+1ht, 
(2.64) 

where γt+1 is a scalar. We recall that the hi are a conjugate family of vectors, and in 
particular ht+1

THht=ht−1
THht=0. This property is used together with (2.64) at step t+1 and 

to obtain the value of the γt+1: 
0=gt+1

THht−γt+1ht
THht and ht

THht=gtTHht,   

which results to: 

 
(2.65) 

This expression still involves several computations of the Hessian matrix, the calculations 
of which one in general wants to avoid. By noticing the property that as θt is obtained by 
a search along the direction ht starting from θt−1, there exists a value at such that 
θt−θt−1=atht. From (2.63) one can write: 

gt+1−gt=H(θt−θt−1)=atHht, 
(2.66) 

which leads to a more convenient expression for the γt+1:  
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(2.67) 

Yet another consequence of the line search along ht is that the gradient of the loss 

function L in θt is orthogonal to the search direction, Using (2.66) and 
(2.64), this can be extended to: 

 (2.68) 

In this manner several authors have proposed different versions of the equation (2.67): 

(2.69) 

(2.70) 

(2.71) 

The effects of the three expressions are indeed the same when the loss function is exactly 
quadratic. However, in the case of nonlinear regression estimation, this is not the case 
and the Hessian is not constant. In this case, the last two expressions (2.79) and (2.71) 
show better performances since they restart the algorithm by resetting the search direction 
to the gradient of the loss function. Indeed, when two successive gradient directions are 
too close, then gt+1≈gt, leading to ht+1≈gt+1. Finally, it should be noted that the conjugate 
gradient algorithm does not depend on the setting of an extra parameter such as the 
learning rate in both steepest descent and stochastic gradient descent. 

2.9.6 Newton and quasi-Newton 

Let us first recall that the derivative in θt of the loss function is: 
which leads to a direct estimation of the minimum: 

 (2.72) 

This is similar to the Newton method for finding roots in one-dimensional problems. 
Equation (2.72) is valid only for exact quadratic loss function. In the general case, the 
Newton algorithm in multi-dimensional space consists of choosing the search direction 
according to: 

 (2.73) 
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where ηt+1 is set by simple line search. This second order method expressed in (2.73) 
requires the calculation of the Hessian of the loss function, which one wants to avoid due 
to high computational demands and the sensitivity of the second order derivatives in the 
context of nonlinear models. Usually, the quasi-Newton method is used to approximate 

the Hessian. If one rewrites the quadratic loss function as 
the Hessian becomes: 

 
(2.74) 

Neglecting the first term in (2.74) gives the Gauss-Newton approximation (Battiti, 1992), 
where the Hessian can be written as: 

 
(2.75) 

Since the choice of the proper search direction depends on the inverse of the Hessian 
(2.73), one can approximate this inverse using the Sherman-Morrison inversion identity 
by the following iterative formula: 

 
(2.76) 

where after N iterations, approximates the inverse of the approximate Hessian. 
Another method for computing the approximate inverse Hessian, commonly used in 

practice, is the one-step Broyden-Fletcher-Goldfrd-Shanno (BFGS) method (see for 

example Battiti, 1992). If one introduces the following differences 
and st=(θt+1−θt), then the positive definite update for the inverse Hessian is: 

(2.77) 

This expression ensures that the Hessian and its inverse are symmetric positive definite. It 
can be shown that for an exact line search, BFGS is equivalent to the conjugate gradient 
method. 

2.10 Summary 

The essence of the data-driven modelling, which is closely related to modelling nonlinear 
dynamical systems based on chaos theory is learning models from data. This learning 
problem is an ill-posed problem and related to computational intelligence techniques 
based on search and optimisation. In this chapter we provided a brief review of the 
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learning theory from statistical and machine learning perspectives and the associated 
methods and techniques, which are relevant and further used in this work. Both, the 
classical approaches based on Empirical Risk Minimisation (ERM) principle and the 
approaches based on Structural Risk Minimisation (SRM) principle especially related to 
the multivariate regression estimation were addressed. We contributed with an original 
discussion and demonstrated the parallels between the two approaches. Furthermore, the 
Bayesian learning paradigm that combines learning from data and prior domain 
information/ knowledge was introduced and discussed. Finally, our standpoint is that for 
engineering problem-solving and modelling purposes (e.g. hydrodynamic modelling, 
hydrological modelling, environmental modelling, etc.) the process of learning models 
from data is an interactive process mobilising as much as possible of the available 
knowledge of the underlying physical processes and already known relationships between 
various variables describing them. 
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Chapter 3 
Nonlinear Dynamical Systems and 

Deterministic Chaos 

3.1 Introduction 

The paradigm of nonlinear dynamics and the concept of deterministic chaos in the last 
decade have influenced the thinking and problem solving in many fields of science and 
engineering. As models, chaotic dynamical systems show rich and even surprising variety 
of dynamical structures and solutions. Most appealing for researches and practitioners is 
the fact that the deterministic chaos provides a prominent explanation for irregular 
behaviour and instabilities in dynamical systems, which are deterministic in nature. The 
most direct link between the concept of deterministic chaos and the real world is the 
analysis of data (time series) from real systems in terms of the theory of nonlinear 
dynamics, which is the major focus of this thesis. We consider a “system” in this context 
as a natural phenomenon or processes, a laboratory experiment, or a numerical 
simulation. 

Linear methods interpret all regular structure in a data set, such as dominant 
frequency, as linear correlations. This means that the intrinsic dynamics of the system are 
governed by the linear paradigm that small causes lead to small effects. Since linear 
equations describing dynamical system can only lead to exponentially growing or 
periodically oscillating solutions (dynamical evolution of the system), all irregular 
behaviour of the system has to be attributed to some random external input to the system. 
On the other hand, as we will demonstrate in this chapter, random input is not the only 
possible source of irregularity in a system’s output: nonlinear dynamical systems can 
produce very irregular data with purely deterministic equations of motions, caused by 
slight changes in some of the control parameters and sensitivity to the initial (and/or 
boundary) conditions. Of course, the systems which exhibit both nonlinearity and random 
input will most likely produce irregular data as well. 

On the other hand, the theory of nonlinear dynamics and data analysis have progressed 
to the stage where most fundamental properties of nonlinear dynamical systems have 
been observed in the laboratory and proven theoretically on various mathematical 
models. What is currently lacking, and especially in the field of hydroinformatics, is the 
study of such nonlinear dynamical systems (e.g. movement of the body of water in 
oceans, rivers, subsurface and surface, ecological processes, hydrometeorological 
processes etc.) through the methods and techniques developed in the theory of nonlinear 
dynamics. Often we know little about the structure of such complex dynamical systems, 
but in practice we can measure (partly) its output and some of its inputs. Consider, for 
example, the movement of a body of water in a particular location of the ocean near 
estuary: one can measure some limited output variables that are of practical interest, such 
as water levels, surges and currents. Furthermore, one could also measure (or estimate) 



the forcing of this system, such as astronomical tides, wind speed and direction, air 
pressure, salinity, water temperature, discharges of a river etc. When we try to build a 
model of such a system, the ultimate goal is usually to establish the equations of motions, 
which will describe the underlying dynamics of the system in terms of meaningful 
quantities. Writing down the behaviour of the relevant components of the system in a 
mathematical language (e.g. Navier-Stokes equations in this case), we try to combine all 
we know about their actions and interactions. This approach allows us to construct a 
simplified model (image) of what happens in nature. Most of the knowledge we have 
about the inherent mechanisms has been previously derived from the first principles in 
mechanics (and of course under clear assumptions and limitations), though the 
relationships between various parameters involved in these equations, such as friction 
laws, diffusion mechanisms and turbulence mechanisms have been mostly derived from 
empirical observations. We usually call these models physically-based (or process-
based). Alternatively, the theory of nonlinear dynamics and the concept of deterministic 
chaos allow for the construction of (learning, inducting) models that are based almost 
purely on time series data, produced by the dynamical system. These models learn the 
input-output relationships between the components from the observed data (time series), 
and are thus referred to as data-driven models. 

The problem treated in this chapter lies at the heart of this work. What can we infer 
about the dynamical structure and laws governing the system under study, given a 
sequence of observations of one or a few time variable characteristics of the system, 
using nonlinear methods? We suppose that the domain knowledge about the dynamical 
system is limited to some assumptions that we may make about the general structure of 
these laws. Since the observations of the system are most likely incomplete, the 
solution—learning models from data—will not be unique (as we have discussed in 
Chapter 2). The ambiguity will be partially resolved by utilising the previous knowledge 
we posses about the system under study and by some physically-based restrictions that 
we can impose on the analysis. Thus the quest for a model consistent with the 
observations will be done employing the SRM induction principle, explained in previous 
Chapter 2, and the Bayesian approach (introduced in Chapter 2 and elaborated further in 
Chapter 4). 

Models based entirely on time series data have the drawback that the terms they 
contain (such as relationships, weights, geometrical and dynamical invariants, transitional 
probabilities, parameters, etc.) do not usually have a meaningful interpretation, and thus 
are called sub-symbolic. This lack of a physical interpretation is obviously not a failure 
of the individual methods employed, but is fundamental to this approach. Nevertheless, a 
successful model learned from data (as a data and information, and eventually, 
knowledge encapsulator) can reproduce the data in a statistical sense, i.e. during 
simulation it yields a time series with a similar amount of information and properties as 
the original observed data. Furthermore, in particular modelling tasks, such as prediction, 
noise reduction, density estimation, and control, such models are often superior to the 
physically-based models. Ultimately, our goal is to combine the insight of the physically-
based approach and intrinsic learning capabilities of the data-driven approach to 
modelling. This is to a large extent still an open problem. We advocate a sound 
mathematical framework together with the data-driven methods and techniques offered 
by the theory of nonlinear dynamics and deterministic chaos (evolving in the framework 
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of the SRM or Bayesian learning paradigm) as one possible skeleton for bridging the 
gaps between these two modelling approaches. 

Bearing this in mind, in this chapter we describe the basics of the theory of nonlinear 
dynamical systems with special attention to the concept of deterministic chaos. As a 
support to the mathematical formulations of the nonlinear methods and techniques we use 
some solutions of well-known nonlinear dynamical systems and then further project the 
application of those techniques to real-life problems (demonstrated in Chapter 6). As we 
pointed out earlier in this text, even pure nonlinear deterministic systems can produce 
quite rich and irregular dynamic evolutions (solution of the system through time). 
Although we have not yet introduced the mathematical formulation and the methods of 
the theory of nonlinear dynamics and the concept of deterministic chaos we would like to 
demonstrate this observation by several examples. 

Example 3.1: 

Consider the analysis of the time series (output) found by numerical integration of the 
well-known Lorenz system in computational fluid dynamics. The goal of this experiment 
is to demonstrate the sensitive dependence of the solution of this system on the initial 
conditions. Lorenz (1963) studied a model of two-dimensional convection in a horizontal 
layer of fluid heated from bellow. He simplified the dynamics of the system to the 
following set of ordinary differential equations: 

 

(3.1) 

where x represents the velocity, y is the fluid temperature difference, and z is the 
deviation of the temperature from linear temperature profile at each instant, and r, σ, b 
are positive parameters determined by the heating of the layer of fluid, the physical 
properties of the fluid and the height of the layer. These equation with three dependent 
variables and three parameters have a great diversity of solutions exhibiting complex 
dynamical structures (which cannot even be described in several pages here), and are 
most frequently utilised to study the origin and nature of deterministic chaos. The system 
(3.1) was numerically integrated using the fourth-order Runge-Kutta algorithm (see 
Parker and Chua, 1989) using the following values of the parameters r=27, σ=10, b=2.66, 
and with initial conditions (x0,y0,z0)=(0,1,0). The time step used in the numerical 
integration was ∆t=0.01 sec with 10000 iterations in total (t=100 sec). The second 
numerical integration was performed using slightly changed initial conditions 
(x0,y0,z0)=(0,1.01,0) (differ by 0.01%). The solution of the variable y(t) for both initial 
conditions is presented in Figure 3.1. 
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Figure 3.1. The graph of y(t) as a 
solution of Lorenz system (3.1) for 
r=27, σ=10, b=2.66, and t=0÷50 sec 
(∆t=0.01 sec). The solid line represents 
the solution for initial conditions 
(0,1,0) and the dashdotted line 
represents solution with initial 
conditions (0,1.01,0). The initial 
condition differ (0.01%). 

As presented on Figure 3.1, the solution of the dynamical system (3.1) is highly sensitive 
on the choice of initial conditions. Due to the nonlinearity of the system, small 
perturbations and changes to the initial conditions can cause large differences in the 
response (output) of the system during its dynamical evolution. One could pose the 
following questions: Suppose the time series were measured as an outcome of a physical 
experiment (scale model) or real system. Can we, by analysis of the time series using 
nonlinear methods, infer the sensitivity to the initial conditions of this particular 
dynamical system?. What are the consequences? Can we quantify them? 

Example 3.2: 

Analysis of the time series generated (or measured) by numerical integration of the well
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known Rössler (1976) system in computational mechanics. Our goal of this experiment is 
to demonstrate the existence of different irregular solutions of the system (different 
dynamical structures—regimes) with respect to change of some of the system’s 
parameters. 

 

(3.2) 

As for the Lorenz system, the Rössler system (3.2) was integrated numerically using 
the fourth-order Runge-Kutta algorithm using the following values of the parameters: 
a=0.2, b=0.2, and the values of the parameter c were increased from c=2.6, 3.5 to 4.1, 
using initial conditions (x0, y0, z0)=(3, 0, 0). The time step used in the numerical 
integration was 

∆t=0.01 sec with 10000 iterations in total (t=100 sec). The results, in the form of time 
series x(t), the power spectra, and the phase portrait, of the solutions of the system using 
the three different values for the parameter c are presented in Figure 3.2. 
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Figure 3.2. Solutions of the Rössler 
system (3.2) as time series x(t), the 
power spectrum versus frequency and 
the phase portrait (projected plot of 
dependent variables x(t) and y(t)) for: 
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(a) c=2.6 a periodic; (b) c=3.5, a 
period-doubled; and (c) c=4.1, a 
period-quadrupled solution. Each orbit 
on the phase portraits moves clockwise 
as time t increases. 

The results presented in Figure 3.2 suggest that there is a periodic attractor (which will 
be discussed latter, but in this context it is a geometrical figure of the trajectory of the 
dynamical system) when c=2.6, that it has undergone a period doubling before c 
increases to 3.5 and a quadrupling before c reaches value of 4.1. One can see from the 
power spectra that the resultant noise (due to the round-off and truncation errors in both 
the numerical integration and analysis of the time series) dominates the signal at the basic 
level between the peaks. However, the peaks of the fundamental frequency and its 
harmonics are clearly identifiable in Figure 3.2(a). Also the appearance of subharmonics 
of order ½ is clearly visible in Figure 3.2(b), and the subharmonics of order ¼ in Figure 
3.2(c). This is also confirmed by the phase portraits, which demonstrate the periodic, 
period-doubled and period-quadrupled (even the appearance of a broader band of 
frequencies) evolution of the dynamical system. A further increase of the value of the 
parameter c>4.5 leads to a highly irregular solution, which is characterised with 
appearance of a broadband spectrum, erratic signal and a strange geometrical figure in the 
phase portrait. As we will demonstrate latter, one speaks about onset of deterministic 
chaos. The results of this experiment arise the following questions: Suppose the time 
series were measured as an outcome of a real dynamical system. Can we, by analysis of 
the time series, identify existence of different dynamical regimes and presence of 
deterministic chaos? For which values of the control parameters and the nonlinear terms 
(components) the investigated dynamical system exhibits dynamical instabilities and 
routes to chaos? Can we model and predict such dynamical systems? 

Example 3.3: 

Numerical solution of the well-known Lotka-Volterra (or known as predator-prey) 
equations used in environmental modelling. The growth of a population of x individuals 
of a species of prey and y individuals of a species predator is governed by the equations: 

 

(3.3) 

where a, b, c >0 are reaction parameters. Lotka (1920) used these equations to model 
the chemical reactions in well-stirred conditions between different concentration of 
molecules x and y. Voltera (1926) used predator-pray equations to model the population 
of fish in the Adriatic sea These equation were numerically integrated using the fourth
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order Runge-Kutta algorithm with the following values of the parameters a=?, b=?, c=? 
and using different initial populations. The resulting phase portrait together with the 
vector field is presented on Figure 3.3. The solution of this dynamical system exhibits 
reach geometrical and dynamical properties. Depending on the initial populations of the 
prey and predator, dynamical system may evolve asymptotically towards two possible 
equilibrium points (points where the vector field vanishes). According to the topological 
characters of the orbits near the equilibrium point, the solution of the system (see Figure 
3.3) exhibits two types of equilibrium points (states), one is so-called saddle point (0,0) 
and the other is so-called vortex or centre (located in the first quadrant of the (x,y)-plane). 
The former one corresponds to a natural disaster, since both species will disappear from 
that particular aquatic environment, while the latter one is a favourable solution 
describing the desired balance between the both species. The mechanisms for generating 
such asymptotically 

stable points will be elaborated latter in the context of the stability analysis of the 
dynamical systems. What is interesting for this dynamical system is the existence of so-
called basins of attraction. There clearly exist two basins of attraction (geometrical 
spaces in the phase-space of the system), that is, given certain initial conditions and other 
geometrical and dynamical properties, the dynamical evolution of the system will take a 
path to one or other dynamical regime. 

 

Figure 3.3. Phase portrait and vector 
field of the solutions of the predator-
prey system (3.3) for different initial 
populations. Two asymptotic 
equilibrium points are clearly visible: 
(i) the saddle point (0,0) and (ii) the 
centre (vortex) point (2.125,2.125) 
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located in the first quadrant of the 
(x,y)—plane. 

This example triggers the following questions: Given time series data observed on such a 
dynamical system, can we identify the existence of such equilibrium points and basins of 
attraction? How many are there? What are the conditions under which the dynamical 
system evolves towards one or another and even interchange between different attractors? 

The main intention of these examples is to provoke some questions that we would like 
to explore and address throughout this work. Obviously, there is a broad range of 
questions that we have to address when talking about nonlinear dynamical systems and 
analysis of data produced by such systems. Furthermore, in a diverse field such as 
nonlinear dynamical systems, any selection of topics for a single chapter must be 
incomplete. However, the most important concepts for nonlinear analysis of time series 
and inducting models from those data are presented in this chapter. Analysis of data 
originating from nonlinear dynamical system is not as well established and is far from 
being well understood compared with its linear counterpart. In this chapter we make 
efforts to explain the perspectives and limitations of the data-driven methods based on the 
nonlinear dynamics we will introduce, which sometimes requires going back to the basics 
of physics and mathematics.  

3.2 On dynamical systems 

3.2.1 Essential definitions 

Any system whose time evolution from some initial state is described by a set of rules is 
called a dynamical system. When these rules are a set of differential equations, the system 
is called a flow, because their solution is continuous in time, whereas if the rules are set 
of discrete difference equations, the system is referred to as a map. The evolution of a 
dynamical system is best described in terms of its phase space, that is a coordinate 
system whose coordinates are all the variables that enter the mathematical formulation of 
the system. Thus the phase space can completely describe the state of the system at any 
moment in time. To each possible state of the system there corresponds a point in the 
phase space. The collection of all points in phase space that completely describes the 
dynamic evolution of the system is called a trajectory. The graph depicting the evolution 
of the system from different initial conditions is called a phase portrait. The final or 
asymptotically approaching equilibrium states are modelled by limit sets. By definition, a 
limit set that collects trajectories is called an attractor (we discuss latter the notion of an 
attractor in detail). 

If the dynamical system is just a point particle of mass m, then its state at any given 
moment is completely described by its speed v and position r. Thus, its phase space is 
two dimensional with coordinates v and r or p=mv and q=r, as in the common Newtonian 
notation. If instead we were dealing with a cloud of N particles, each of mass m, the 
phase space would be 2N-dimensional with coordinates p1, p2,…, pn, q1, q2,…, qn, where 
N indicates the number of independent positions or momenta or the number of degrees of 
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freedom. In classical mechanics the total energy E of a dynamical system is related to the 
equation of motion via the Hamiltonian H: 

H=H(q, p)=Ekinetic+Epotential 
(3.4) 

By definition, dynamical systems whose Hamiltonian does not vary in time are called 
conservative systems. Otherwise they are called dissipative systems. 

The conservative systems have interesting properties, the most important of which is 
the conservation of volumes in phase space. For example, the conservation of mass of a 
fluid in motion is expressed analytically by the continuity equation: 

 
(3.5) 

where ρ is the density of the fluid at time t and v is the velocity of the fluid at space point 
under consideration. Equation (3.5) holds for a motion of a fluid made by N-phase space 
points, provided that ρ=ρ(q,p,t) stands for the density in phase space and v for the 
velocity of points in phase space (.i.e., the 2N-dimensional vector with components q(t) 
and p(t)). The term divρv can be written as:  

(3.6) 

The second term on the right-hand side of (3.6) is equal to ρdivv. If we now recall from 

mechanics that for conservative systems and one can 
find that divv=0. Therefore (3.6) reduces to: 

 
(3.7) 

Equation (3.7), known as Liouville’s theorem, states that, in a 2N-dimensional coordinate 
system p1, p2,…, pn, q1, q2,…, qn, dρ/dt=0. Thus, since the mass is m=ρV (where V 
denotes volume), one finds that for conservative dynamical systems dV/dt=0; volumes in 
phase space are conserved. This implies that for conservative systems the trajectories are 
constant-energy trajectories. Since each initial condition in phase space defines a unique 
constant-energy trajectory, the energy surface is the complete phase space, which bounds 
the volume. One can say that conservative systems cannot “forget” their initial states (or 
perturbations). A typical example for conservative system is frictionless motion of fluid, 
which is of course an idealistic case. 

On the other hand, real dynamical systems are characterised by existence of various 
internal forces and processes (e.g. friction, shear stress, absorption and diffusion), and 
permanent interaction with other systems, thus, causing transformation of energy (e.g. in 
hydrodynamic motion of fluid transformation of kinetic energy into heat) and exchange 
of energy between interacting systems. Therefore, one has to deal with dissipative 
dynamical systems and observations produced by those systems in nature. One of the 
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most interesting properties of dissipative dynamical systems is the property of 
irreversibility, a property of most natural processes. This implies that the system does not 
remember any disturbance forever, thus irreversible processes are one-way evolutions of 
the dynamical systems. In mathematical terms, a process is reversible if it is 
indistinguishable when time is reversed, which is not the case with most physical 
processes in nature, and hence with processes related to water resources and aquatic 
environments. Another important property of the dissipative systems is the dissipation of 
the volume in phase space. The geometrical figures formed by the trajectories of such 
dynamical systems do not necessary reveal integer topological or Euclidean dimensions, 
but usually fractal or non-integer dimensions. Since the attractor cannot be a clear 
geometrical figure (e.g. point, circle, torus or hyper-tori), the only alternative is that the 
attracting set in question is a fractal set existing in a finite area of the phase space of zero 
volume. We demonstrate these characteristics using practical examples in the following 
sections. 

3.2.2 Stability analysis of flows and maps 

In applications of the theory of nonlinear dynamical systems one is usually interested in 
enduring rather than transient phenomena, and so in steady states. Thus steady solutions 
of the governing equations are of special importance in order to further understand the 
transients and different evolutions of dynamical systems. Of these steady state solutions 
only the stable ones correspond to the states which persist in practice, and are usually the 
only ones observable. As we mentioned and demonstrated earlier, even pure nonlinear 
deterministic systems can produce a variety of solutions as a result of dynamical 
instabilities, that is, a small cause may have a large effect, or small disturbances at a 
given moment may grow and become significant such that after some time the behaviour 
of the system depends substantially on the nature of the disturbance, however small the 
disturbance was. Lorenz described this in a metaphor in which the unstable atmosphere 
might be triggered by the flutter of the wings of butterfly in a distant place, and thereby a 
devastating tornado may arise; this is the so-called butterfly effect in dynamical systems. 
A bifurcation occurs where the solution of a nonlinear system changes its qualitative 
character as parameters or some terms (components in the set of equations) change. 

In this section our goal is to focus on the stability analysis of dynamical systems and 
to derive the necessary conditions for a map of the flow to be characterised as 
conservative or dissipative. Since the mathematical apparatus for stability analysis is well 
defined on linear systems, we first consider those systems, and than project the same 
reasoning to nonlinear dynamical systems. 

Let us first consider a system of two linear, first-order ordinary differential equations 
(ODEs): 

 
(3.8) 

where aij are constants and denotes dx/dt. Using vector notation (3.8) can be rewritten 
as 
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(3.9) 

 

  

The equilibrium of the system (3.9) can be found if we set or Ax=0. Therefore, if A 
is nonsingular, the only equilibrium state is x=0 (x1=0 and x2=0 in this example). Assume 
that a solution of (3.9) is of the form 

x(t)=ceλt 
(3.10) 

where λ is a scalar and c is nonzero vector. Using (3.8), equation (3.10) can be rewritten 
as 

Ac=λc. 
(3.11) 

A nontrivial solution to (3.11) for a given λ is the eigenvector, and λ is the eigenvalue. 
Since we are interested in a nontrivial (nonzero) solution, it is necessary that 

Det(A−λI)=0 
(3.12) 

which usually called the determinant equation. This equation can be further written as:  

 

  

or finally: 
λ2+λTraceA+DetA=0. 

(3.13) 

This quadratic equation is the well-known characteristic equation. Its solutions λ1 and λ2 
are eigenvalues which are either both real or both complex (complex conjugate). Once 
the eigenvalues are determined, the solution of (3.11) gives the corresponding 
eigenvectors: 
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Assuming that λ1≠λ2, it follows that c1 and c2 are two linearly independent vectors in R2. 
Thus, both c1eλt and c2eλt are solutions to (3.10). Since the original system is linear, any 
linear combination of these solutions will also be a solution, or in general form: 

 (3.14) 

Let us now analyse the stability of such solution. Suppose that λ1, λ2 are real. If they are 
both negative, then in this case x(t)→0 as t→∞ independently of the initial conditions 
x(0). Thus, in this case the evolution of the system is attracted to the equilibrium state no 
matter where the evolution initially started. One can say that the equilibrium state is 
asymptotically stable. This stable equilibrium state is called a fixed point or a node or an 
elliptic point. If λ1, λ2 are real positive, then one can infer that with t→∞, solution 
x(t)→∞. In this case, regardless the initial conditions, the system will not approach the 
equilibrium state. Furthermore, even if the evolution of the dynamical system starts very 
close to the equilibrium state, it goes to infinity. In this case one can say that the origin 
repels all initial states, and it is thus unstable. If λ1<0<λ2, we find that the contribution of 
λ1 pushes the system towards the equilibrium state, whereas the contribution of λ2 tries to 
repel further states from the equilibrium state. In other words, the linear combination of 
these two motions leads to evolutions that appear to approach the equilibrium state and 
then move away. One can define this unstable equilibrium state as a saddle (or a 
hyperbolic point). 

If λ1, λ2 are complex with λi=α+βi, then the solution can be expressed as: 
x(t)=eαt(k1cosβt+k2sinβt), where k1 and k2 are appropriate vectors. If α is negative, then 
x(t)→0 as t→∞, and the equilibrium state is again asymptotically stable. If a is positive, 
then x(t)→∞ as t→∞, and the equilibrium state is unstable. If α=0, then the solution is 
periodic where periodicity is determined by the initial conditions. This case is classified 
as neutral stability where the equilibrium state is called a center or a vortex.  

From this analysis one can summarise that a dynamical system of n first-order 
ordinary differential equations is asymptotically stable if the real parts of its eigenvalues 
are negative and it is unstable otherwise. If one recalls the characteristic equation (3.13) 
and its solutions (eigenvalues): 

 
(3.15) 

one can easily prove that 
λ1λ2=DetA 
λ1+λ2=TraceA (3.16) 

If we combine (3.16) with our stability conclusions for this particular case (n=2), one can 
further conclude that the equilibrium state of the system is asymptotically stable if and 
only if DetA>0 and TraceA<0. In any other case the equilibrium state is unstable. For 
example, consider the system 

 
(3.17) 
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One can easily find the eigenvalues of the system: λ1=−1 and λ2=4. The DetA=λ1λ2=−4 
and TraceA=λ1+λ2=3, thus the equilibrium state of dynamical system (3.17) is unstable. 

We shall now extend the stability analysis to a nonlinear system of n first-order ODEs. 
In this case the system can be mathematically expressed as: 

 

(3.18) 

where f1, f2 and fn are nonlinear functions of all or some of the variables x1,…, xn. When 
these functions do not depend explicitly on time, hence there are no time-varying external 
forces acting on the dynamical system and the flow field f is stationary, such dynamical 
systems are called autonomous. Since the right-hand side of (3.18) is stationary, it can be 
proven that no two trajectories (corresponding to two evolutions from two different 
conditions) will intersect in the phase space (see for example Rosen, 1970). If on the 
other hand, the functions in (3.18) f1, f2 and fn depend explicitly on time, the dynamical 
system is called nonautonomous. 

As analytical solution of (3.18) is usually not obtainable and a straightforward 
application of the stability analysis described above is not applicable. To address the 
issue of stability in this case, we have to proceed with an analysis which investigates the 

properties of system for where 

indicate very small deviations from an equilibrium state The system 
(3.18) can be rewritten as: 

 

(3.19) 

One can simplify the above system of differential equations by ignoring all nonlinear 
terms involving fluctuations on the right-hand side (equal zero). In this way one can 

effectively replace by 

etc. 

Considering that the system (3.19) becomes 
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(3.20) 

which is in fact a linear system of first-order differential equations describing the 

evolution of the fluctuations about the equilibrium state 

If the fluctuations grow in time then the system is driven away from the 
equilibrium state and is unstable, whereas otherwise is stable. In a vector form, the 
system (3.2) can be presented as: 

 
(3.21) 

where 

 

  

The stability of the equation (3.21) is, as described before, determined by the eigenvalues 
λi, defined by the equation 

Det(A−λI)=0   

where the matrix A in this case is the Jacobian matrix of f evaluated at This is a direct 
result of the application of the Taylor’s theorem, stating that a nonlinear function f(x1, 
x2,…, xn) is equal to  

 

  

Knowing that at equilibrium and by neglecting the higher-order 
terms one obtains: 
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Since for a nonlinear system of n first-order ODEs we have: 

   

and further taking into account that finally we have: 

 
(3.22) 

where 

 

(3.23) 

If one compares the equations (3.22) and (3.21), than it follows that A=A′ This result 
provides us in many cases the possibility to investigate the stability of equilibrium states 
of dynamical systems. Important is to note that it is always the eigenvalues computed 
from Det(A−λI)=0 or Det(A'−λI)=0 that determine the stability of a dynamical system. 
We discuss latter the physical interpretation of the values of these eigenvalues. 

The dynamical systems we have considered up to this point are described by a set of 
differential equations that have continuous solution and we referr to them as flows. To 
emphasise that there are nonlinear systems other than flows, we shall next introduce 
nonlinear difference equations. Difference equations are mathematically interesting and 
have many important applications. They are also, in many ways, more elementary and 
from application point of view more fundamental than differential equations due to 
several reasons. Firstly, they involve a discrete variables (ones that can be mostly 
observed on real physical systems) rather then continuous ones. Secondly, the solution of 
complex nonlinear dynamical systems described by sets of differential equations (such as 
the systems we model in hydraulics and hydrology) can be found almost exclusively by 
numerical integration, and thus, one has to deal with sets of difference equations.  

A difference equation, recurrence equation or map is in general of the form: 
xn+1=F(xn, n) for n=0,1,2,…, N 

(3.24) 

where and functions F: Rm×Z→Rm, which depend on certain parameters and 
time. Thus difference equations are functional, sometimes algebraic, systems that 
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correspond to differential equations. The integral variable n here corresponds to the 
independent real variable t. For example, the dynamical system 

 
(3.25) 

is a two-dimensional map known as Hénon map (Hénon, 1976), while the dynamical 
system 

xn+1=µxn(1−xn) 
(3.26) 

is one-dimensional system known as logistic equation (May, 1976) frequently used to 
model the growth of a certain population in ecosystems. 

Stability analysis on maps is very similar to stability analysis on flows. One takes x0 as 
the given initial conditions of the dependent variables and considers their dynamical 
evolution, as n→∞. Furthermore one can study the functions F, which depend on certain 
parameters, and how the solutions {xn}, i.e. the sequences {x0, x1,…}, change both 
quantitatively and qualitatively with those parameters. Consider the stability of the Hénon 
map introduced above (3.25). The equilibrium points (or fixed points) are found by 

assuming that and (where similarly xn+1−xn=0). 
From (3.25) at equilibrium point one can write 

 

  

which results in second-order algebraic equation and thus the 
two fixed points are: 

 

  

As with flows, one can proceed by investigating the properties of a map in the presence 

of small fluctuations about the equilibrium state, that is, 
Equation (3.25) then becomes  

 
(3.27) 
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Neglecting the terms involving fluctuations higher than first order, (3.27) can be written 
as 

 

  

which now represents a set of two linear first order difference equations. It can be written 
in vector form as 

 
(3.28) 

where If one applies the previously derived conditions for stability 
of flow (for set of 2 equations), the Henon map is stable if DetA=−b>0 and 

and unstable otherwise. It is also obvious that A represents the 
Jacobian of F at for f1(x, y)=1−2ax2+y and f2(x, y)=bx. 

The equation (3.28) can be extended to system of n difference equations and 
represents a very interesting property for deriving the necessary conditions for a map to 
be characterised as conservative or dissipative system. Thus, for maps, by regarding a set 
of perturbations as defining some initial volume in phase space, one can conclude that 
this volume will not grow or decay (i.e. it will be conserved) if |DetA|=1. On the other 
hand, for flows, whether their volumes in phase space defined by the trajectories expand 
or contract or remain same is determined by the trace of A and not by the determinant. A 
flow evolution of a perturbation is given by (3.21). This equation has a solution 

where is the initial vector. Assuming that A has distinct 
eigenvalues λ1, λ2,…, λn one can find matrix U such that U−1AU=D, where D is diagonal: 

 

  

A can be written as 
A=UDU−1.   

Using the multiplication theorem, we derive that 
DetA=(DetU)(DetD)Det(U−1)=DetD=λ1λ2…λn 

(3.29) 

Similarly, 
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TraceA=TraceD=λ1+λ2,+…+λn 
(3.30) 

In fact, one could generalise the above to consider not just but any function f(A): 
Det[f(A)]=Det[f(D)]=f(λ1)f(λ2)…f(λn) 

(3.31) 

and 
Trace[f(A)]=Trace[f(D)]=f(λ1)+f(λ2),+…+f(λn). 

(3.32) 

Assuming that f(A)=eAt, the determinant (3.31) becomes: 

(3.33) 

Now, we can similarly argue that a volume V of perturbations in phase space will be 
conserved if |Det(eAt)|=1, which translates to |e(TraceA)t|=1 or TraceA=0. Thus, a flow 
represents a conservative system if the trace of the Jacobian is zero and a dissipative 
system if |e(TraceA)t|<1, which translates to Trace A<0. Since TraceA=λ1+λ2+…+λn, the 
sum of the eigenvalues dictates whether volumes contract or expand or remain the same. 
It is important to stress that each eigenvalue gives the rate of contraction or expansion 
along a direction of one of the coordinates in phase space. If all eigenvalues are negative 
the volumes contract along all directions. Obviously, one can have positive and negative 
λ’s, while λ1+λ2 +…+λn<0. It is thus possible to have expansion along certain directions 
in phase space, even though the initial volume shrinks in time. Such systems will be latter 
termed as deterministic chaotic systems. The eigenvalues λ1, λ2,…, λn, are known as 
Lyapunov exponents of the flow (Eckman and Ruelle, 1985). Direct extension of the 

above arguments to maps where leads to the conclusion that the Lyapunov 
exponents are the logarithms of the eigenvalues of A. Note that in dissipative systems 
even though an initial volume shrinks to zero it does not necessarily mean that the 
volume will shrink to a point. In a 3D phase space a surface (e.g. the geometrical figure 
of the attractor) has zero volume, but it is not a point. 

Finally, let us illustrate the above arguments for the stability of nonlinear dynamical 
systems on the examples already introduced earlier. For the Lorenz system (3.1) where 
r,σ,b are positive physical parameters, one can conclude that it is a dissipative system, 
since 

 

  

and TraceA=−(σ+1+b)<0. For the Rössler system (3.2) where a,b,c are positive 
constants, the trace of the Jacobian A is TraceA=a−c−x and the system is dissipative 
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when a<c. For the Hénon map (3.25), one can find that it corresponds to dissipative 
system if |DetA|=|b|<1.  

3.2.3 Attractors and strange attractors 

The solution of a nonlinear dynamical system from some initial conditions with the 
presence of small perturbations can in general evolve mathematically following three 
possibilities: (i) the system can be “attracted” by the stable equilibrium state; (ii) repelled 
by the unstable equilibrium state; and (iii) engaged in a never-ending motion (frictionless 
systems). For all these mathematical possibilities in the real world only the first one is 
plausible. The settling part or the transient of the system is modelled by the trajectory in 
phase space. The final state or the equilibrium state is modelled by limit sets. In the 
previous section we have already introduces four such limit sets, and all of them points: 
fixed point, repeller, center and saddle point. Furthermore we defined the attractor as a 
limit set which collects trajectories, that is, the different trajectories describing the system 
transients from different geometrical objects (e.g. point limit set). Consider, for example, 
the standard seiche test performed for any numerical model in computational hydraulics. 
Without bottom or wall friction (free-slip boundary conditions) the motion of the fluid is 
simply a conservative system whose evolution is undisturbed. When bottom (and/or wall 
friction) is introduced, the kinetic energy is gradually being spent and eventually the 
motion of the fluid stops at the stable equilibrium point (in phase space). Points, however, 
are not the only limit sets. A cycle or an ellipse may also be a limit set for a trajectory of 
dynamical system. An example of such an attractor, which describes regular periodic 
motion, was already given in the Example 3.2 and is presented on Figure 3.2a. When the 
system is disturbed, its intrinsic dynamics soon assembles regular periodic motion with a 
particular frequency. Figure 3.4 schematically presents this type of attractor. 

 

Figure 3.4. Phase portrait of a two-
dimensional system having a limit 
cycle as an attractor. Trajectories from 
different initial conditions are attracted 
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and stay on the cycle. The evolution of 
the system is periodic. 

A periodic attractor of a limit cycle may be embedded in more than two dimensions. In 
such cases the trajectory may form complex geometrical shapes, which, when projected 
might give an impression that the trajectory intersects itself, which is not the case (see 
Figure 3.5). If there exist several such periodic components in the motion of dynamical 
system, the total evolution of the system is quasi-periodic. In such motion the trajectory 
fills the surface of a torus in three-dimensional phase space and a hyper-torus in phase 
space defined with more than three dimensions. In this sense, quasi-periodic motions can 
look quite “irregular”.  

 

Figure 3.5. A periodic attractor in 3D 
phase space and its plane phase 
portrait. 

Quasi-periodic motions occur in nature quite often. For example, astronomical tidal 
motion is composed of more than hundred such periodic components, due to the relative 
motions of earth, sun and moon. Ideally, daily temperature can be viewed as a quasi-
periodic variable with several distinct frequencies. The previous Figure 3.2.c shows a 
projected phase portrait of such quasi-periodic motion. 

Up to this point we have discussed three types of attractors: points, limit cycles and 
tori. All of them are submanifolds of the total available phase space. In addition, they are 
topological structures characterised by topological integer dimensions of 0,1,2,…, n, or 
by Euclidean dimensions of 1,2,3,…, n+1, respectively. The identification of these 
attractors from dynamical systems is quite straightforward. Linear methods, such as, 
Fourier analysis can verify if a given evolution is steady state, periodic, or quasi-periodic 
(see Example 3.2). A very interesting modelling property of nonlinear dynamical systems 
that exhibit such attractors is that the long-term predictability of these systems is 
guaranteed. When a dynamical system exhibits a torus as its attractor, a set of different 
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initial conditions defines a set of different trajectories each of them assembling around 
the torus, gradually filling its surface but without diverging from one another. This 
provides some kind of long-term predictability, since small perturbations will not grow; 
see Figure 3.6. Due to the small irregularities and perturbations, the future values may 
differ from the observations. However, data assimilation techniques can be employed in 
this case to improve the predictions.  

 

Figure 3.6. A torus as an attractor of a 
dynamical system. Trajectories 
defining the evolution of the system 
from different initial conditions do not 
diverge. A long-term predictability is 
ensured. 

Let us now consider the power spectrum of some output of a nonlinear dynamical system 
presented on Figure 3.7. The power spectrum is distributed over a wide range of 
frequencies that have almost the same contribution, thus generating a broadband power 
spectrum. Such spectra are indicative of nonperiodic random evolutions where there is 
motion in all frequencies (even not really distinguishable from a white noise). 
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Figure 3.7. Power spectrum showing 
contribution of all frequencies. Such 
spectra are often called broadband 
noise spectra and are indicative of 
random motion. 

The question normally follows: Is it possible that such spectra can be generated by a 
deterministic dynamical system? Let us assume that the answer is yes. This implies that 
the evolution of such dynamical system must be described by a nonperiodic trajectory in 
a phase space which never intersects itself. Thus, the trajectory must be of infinite length 
and confined in a finite area of the phase space of zero volume. Since the attractor cannot 
be a torus or hyper-torus (then the trajectory is of infinite length and confined to a finite 
area), the only possible alternative is that the attracting set in question is fractal set 
(Parker and Chua, 1989), which exhibits a non-integer dimension. The first such 
dynamical system was discovered by Lorenz (1963) from the convection equations (see 
Example 3.1). The power spectrum presented on Figure 3.7 is estimated on the variable 
y(t) as a solution of Lorenz system (3.1). The attractor of the Lorenz system in different 
views is presented on Figure 3.8, revealing an “interesting” nonplanar geometrical shape 
and nonintersecting nearby orbits of the trajectory.  
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Figure 3.8. Different views of the 
trajectory and the attractor of the 
Lorenz system (3.1). The evolution of 
the system is described by a trajectory 
which is 10000 time steps long (100 
seconds, since ∆t=0.01 sec). 

It is obvious that the Lorenz attractor does not look like the topologically well-shaped 
attractors previously described. The trajectory is deterministic since it is the result of the 
solution of the nonlinear dynamical system, previously described in Example 3.1. 
However this trajectory is strictly nonperiodic. The simulation of the trajectory shows 
that it loops and jumps from one part of the attractor to the other irregularly. Intensive 
studies of the Lorenz attractor have shown that the fractal dimension of the attractor is 
estimated to be about 2.06 (see, for example, Grassberger and Procaccia, 1983). 
However, the fractal nature of the attractor does not merely mean nonperiodic orbits; It 
also causes nearby trajectories to diverge. The trajectories which are initiated form 
different initial conditions soon reach the attracting set, but two nearby trajectories do not 
stay close to each other after some time. They soon diverge and follow totally different 
paths in the attractor. This divergence means that the evolution of the dynamical system 
from two slightly different initial conditions will be completely different, thus implying a 
sensitive dependence on initial conditions, as we demonstrated in Example 3.1 and Figure 
3.1. If we “restart” the system from various initial conditions all of the resulting 
trajectories will be bound to the attracting set. However, qualitatively all of the solutions 
differ. In this case one can say that the system has generated randomness. We can now 
see that there exists a nonlinear dynamical system, even though it can be described by 
simple deterministic rules (differential equations) that can generate such deterministic 
randomness, which is usually termed chaos. These dynamical systems are called 
deterministic chaotic systems, and their attractors are called strange attractors. Some 
other examples of strange attractors of the dissipative dynamical systems that we have 
introduced earlier are shown on Figure 3.9 and Figure 3.10.  
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Figure 3.9. The strange attractor of the 
Rössler system (3.2). The evolution of 
the system is described by a trajectory 
which is 20000 time steps long 
(∆t=0.01 sec). 

 

Figure 3.10. The strange attractor of 
the Henon map (3.25), a=1.4, b=0.3. 
The evolution of the system is 
described by a trajectory which is 
15000 iterations long. 

3.2.4 Delineating and quantifying the dynamics 
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In this section we shall briefly introduce some of the key concepts for delineating and 
quantifying the dynamics of nonlinear systems (still seen as a set of differential 
equations). A separate section will be devoted for reconstruction and modelling of the 
underlying dynamics from observations, since inducting models from data is the key 
focus of this work. 

POINCARÉ SECTIONS 

A classical convenient technique for delineating the dynamics of a system is given by the 
Poincaré sections or maps. It replaces the flow of an nth-order continuous-time system 
with an (n-1)th-order discrete-time system. The resulting map is thus called a Poncaré 
map, ensuring the its limit sets correspond to the limit sets of the underlying flow. The 
usefullnss of the Poncaré map lies in the reduction of order of the dynamical system and 
the fact that it bridges the gap between continuous and discrete-time systems. The 
simplest way to describe the Poincaré map is that it represents a slice through the 
attractor of the dynamical system. First from a suitable oriented surface in m-dimensional 
phase space (see Figure 3.11) one can construct a map on this surface by capturing the 
trajectory of the flow. The iterates of the map are given by the points where the trajectory 
intersects the surface in a specified direction (from above in Figure 3.11). Thus the map 
checks every full orbit around the attractor. 

 

Figure 3.11. Poincaré section (map) of 
a flow in three dimensions. The 
successive intersection points A, 
B,…of the continuous trajectory with 
the surface of sections define iterates 
of a two-dimensional map in this case. 

It is important to stress that the discrete “time” of the Poincaré map is the intersection 
count and is usually not simply proportional to the original time t of the flow. The time a 
trajectory spends between two successive intersection points will vary, depending both on 
the type of the trajectory (dynamics) and on the surface of the section chosen. If one deals 
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with periodic evolution of period n, then this sequence consists of n dots repeating in the 
same order (see Figure 3.12a). If the evolution of the system is quasi-periodic the 
sequence of points defines a closed limit cycle (see Figure 3.12b). Finally, if the 
evolution is deterministic chaos, then the Poincaré section is a collection of points that 
show an interesting pattern, often revealing the fractal nature of the underlying attractor 
(see Figure 3.13).  

 

Figure 3.12. (a) Periodic evolution of 
dynamical system and the Poincaré 
section. (b) A quasi-periodic evolution 
of a dynamical system. The Poincaré 
section is a sequence of points defining 
a limit cycle. 
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Figure 3.13. Poincaré section of the 
Lorenz attractor. The (y, x) variables 
are plotted every time the x-variable 
equals zero and its derivative is 
negative. 

The process of obtaining the Poincaré section corresponds to sampling the phase space of 
the dynamical system in order to reveal some of its dynamics. Thus, the choice of the 
proper surface of section will then be a crucial step in the analysis of data. However, in 
many cases the surface of sections, and therefore the appropriate sampling interval, can 
be defined in such a way that it corresponds to a physically meaningful measure of the 
dynamical system. For example, for a periodically or quasi-periodically forced motion 
(e.g. tidal water levels and currents) one can sample the trajectory at times that are 
multiple integers of the forcing periods. Then the sequence of strictly compatible points is 
obtained, which can be further analysed. Another interesting application of the Poincaré 
section could be the collection of all minima or all maxima of the dynamical system if 
one is interested in modelling the dynamics of extreme events. Collecting maxima (or 
minima) corresponds to performing a section by a surface of the zero time derivative (as 
in case of Figure 3.13). 

Furthermore, analysis and modelling of the sequence of times between successive 
intersections could expose some interesting properties of the underlying dynamics. More 
generally, the times between successive passages of a continuous trajectory through a 
Poincaré section are related deterministically to the properties of the motion in between. 
An individual time interval is given by the length of the path from one intersection to the 
next divided by the average velocity of the phase space vector on this path. Therefore, it 
is plausible that the sequence of time intervals obtained from the Poincaré section allows 
the reconstruction of the deterministic motion. These kinds of application of the Poincaré 
section are demonstrated latter on in case-study applications (see Chapter 6). 

Finally, when dealing with dynamical systems whose attractors live in low-
dimensional phase space (e.g. 3D, but will be discussed latter), performing Poincaré 
surface of sections can be used to establish approximate relationships between the 
variables, i.e. the coordinates defining that phase space. For example, Figure 3.14 shows 
the Poincaré section of the Rössler attractor defined with the plane y=0. One can see the 
relationship between the variables x and z when y=0. 
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Figure 3.14. Poincaré section of the 
Rössler attractor with plane y=0 (see 
also Figure 3.9). One could establish 
simple relationship between the 
variables x and z. 

These kinds of examples can also trigger a further approximation of the two-dimensional 
section by a one-dimensional mapping, simply by recording a sequence of values of 
particular variable (e.g. x) for successive intersections, and then plotting xt versus xt+1, see 
Figure 3.15. In this way, one could obtain the return map.  
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Figure 3.15. A return map of the 
variable x obtained from the Poincaré 
section of the Rössler attractor with 
plane y=0. One could analyse the type 
of the mapping between values of x 
corresponding to successive 
intersections. 

DIMENSIONS 

In the previous sections we discussed the dynamical side of deterministic chaos which 
manifests itself in the sensitive dependence of the evolution of a dynamical system on its 
initial conditions and small perturbations. This strange behaviour in time of a 
deterministic chaotic system has its counterparts in the geometry of the limit set in phase 
space formed by the trajectory of the system, the attractor. Thus, one could say that the 
dynamics of a system are dictated by the geometry of the phase space and its attractor. 
This geometry can be quantified by a series of geometrical and dynamical invariants, 
termed as dimensions and Lyapunov exponents. In this section we show that the strange 
attractors possess non-integer dimensions while the dimension of a non-chaotic attractor 
is always an integer. Furthermore, the notion of dimensions allows for a remarkable 
property that an attractor can be identified and reconstructed from observed time series 
produced by dynamical systems. 

Attractors of dissipative dynamical systems (the kind of systems we are interested in) 
generally may have a very complicated geometry, which led researchers to call them 
strange. Since these strange attractors possess non-integer dimensions, their values can 
be quantified only by fractal dimensions. Non-integer dimensions are assigned to 
geometrical objects which exhibit an unusual kind of self-similarity and which show 
structure on all length scales. In general, there are five different types of fractal 
dimensions (Young, 1983). The simplest type, and mostl commonly known, is the 
capacity5 dimension. The others are information dimension, correlation dimension, kth 
nearest-neighbour dimension and Lyapunov dimension. Various discussions on these 
dimensions and their relationships presented here can be found in Farmer et al. (1983), 
Young (1983), Badii and Politi (1985) and Mayer-Kress (1986). 

Capacity dimension can be defined as follows: Suppose one covers an attractor with 
volume elements (such as spheres, cubes etc.) each with diameter ε. Let N(ε) be the 
minimum number of volume elements needed to cover the attractor. If the attractor is a 
D-dimensional manifold—where D is necessarily an integer (this is the dimension of the  
 
 
 

5 Here capacity is used with different meaning compared to the capacity of the learning machine 
discussed in the previous chapter. 
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dynamical system, that is, the number of state variables that are used to describe the 
dynamics of the system in Euclidean space)—then the number of volume elements 
needed to the attractor is inversely proportional to εD (see for example York, 1983), that 
is, 

N(ε)=kε−D 
(3.34) 

where k is some constant depending on the type of volume element used. The capacity 
dimension Dcap can be obtained by solving (3.34) for D and taking the limit as ε 
approaches zero: 

 
(3.35) 

If the limit does not exist, then Dcap is not defined. Since a d-dimensional manifold 
locally resembles Rd, Dcap of a manifold equals the topological dimension, which is an 
integer.  

For objects that are not manifolds, Dcap can take on non-integer values. An interesting 
questions arises whether another covering (e.g., spheres instead of cubes or even a 
mixture of spheres and cubes) can result in a different value of Dcap. Young (1983) has 
demonstrated that the values of Dcap can differ in such cases, but this results in an 
implication that the capacity dimension is closely related to the Hausdorff dimension, 
which is a measure for self-similarity of sets (see Grassberger, 1985). In such cases the 
minimum values of all coverings should be used. 

Capacity dimension is purely a metric concept (and sometimes is termed as a box-
counting dimension). It utilises no information about the time behaviour of the dynamical 
system. The information dimension, on the other hand, is defined in terms of the relative 
frequency of visitation of volume elements by the trajectory; thus, it is a probabilistic 
type of dimension. Similarly, as in the case of capacity dimension, the information 
dimension is defined by 

 
(3. 

36) 

where 

 
(3.37) 

In this case the Pi is the relative frequency with which a typical trajectory enters the ith 
volume element of the covering; see Figure 3.16. 
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Figure 3.16. Evolution of dynamic 
system in phase space showing the 
visitation of the trajectory of a sphere 
in the various dimensions analysis. 

One could easily recognise, from the Shannon information theory, that H(ε) in (3.37) is in 
fact the entropy—in this case is the amount of average information needed to specify the 
point x (state of the system) with accuracy ε if the point is known to be on the attractor. 
This is the reason why DI is called an information dimension, which specifies how this 
amount of information scales with the resolution ε. For sufficiently small ε, (3.36) can be 
rewritten as 

H(ε)=kε−DI 
(3.38) 

for some constant of proportionality k. In other words, the amount of information needed 
to specify the state of the dynamical system in a phase space increases inversely with the 
DI th power of ε.  

Another probabilistic type of dimension, which is widely used to compute the 
dimension of the attractor from observables, is the correlation dimension. It also depends 
on refining a coverage of the attractor with N(ε) volume elements of diameter ε, and is 
defined by 

 

(3.39) 

where, as before, the Pi is the relative frequency with which a typical trajectory enters the 
ith volume element. In order to interpret the numerator of (3.39), usually for practical 
applications, one estimates the so-called correlation sum (or functional) from N points on 
the trajectory by 
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 (3.40) 

The correlation sum for a collection of points (states) N in the phase space is the fraction 
of all possible pairs of points on the trajectory which are closer than a given distance ε in 
a particular norm. In the limit of an infinite amount of data (N→∞) and for small ε one 
can define the correlation dimension as 

 
(3.41) 

At this point in the discussion we set the equation (3.40) in such a form. A more detailed 
discussion on how correlation dimension can be estimated from time series generated and 
observed on some nonlinear dynamical system, is given in the next section. 

The kth nearest-neighbour dimension was first formulated by Pettis et al. (1979) and is 
completely based on probabilistic concepts. One considers an attractor embedded in Rd 
with N randomly chosen data points from the trajectory. If r(k, x), defined as a distance 

between x and its kth nearest neighbour in {xi}, and as a mean of r(k, x) are taken 
over {xi} such as  

 
(3.42) 

then Pettis at al. showed that for sufficiently large N, there exist probabilistic functions g 
and c such that the kth nearest-neighbour dimension Dnn is well-defined by the relation 

 
(3.43) 

For practical applications the estimation of Dnn is difficult since one does not know the 
functions g and c, and (3.43) is an implicit relationship.  

Finally, the last dimension considered in this context can be estimated from the 
Lyapunov exponents (introduced earlier in the stability analysis) and is usually termed 
the Lyapunov dimension. Let λ1≥λ2≥…≥λn be the Lyapunov exponents of an attractor of a 
time-continuous dynamical system. The Lyapunov dimension as defined by Kaplan and 
York (1979) can be written as 

 
(3.45) 

where j is the largest integer such that λ1+…+λj≥0. This means that the integer part of the 
dimension of the attractor is the maximal number of exponents that one can add (in 
descending order) such that their sum remains positive. The fractional part is found by a 
simple linear interpolation (the second term on the right-hand side of the above equation). 
If such j cannot be estimated, then Dλ is defined to be 0, meaning that in such case the 
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dynamical system exhibits stable equilibrium point and all Lyapunov exponents are 

negative. If the dynamical system has an attractor, then (recall the stability 
analysis), thus j is guaranteed to be less than n. For an attracting limit cycle, the generic 
situation is that λ1=0>λ2 >…>λn, and the Lyapunov dimension is 1. Similarly, the 
Lyapunov dimension of generic attracting K-periodic behaviour is K. If one deals with a 
chaotic deterministic system, the Lyapunov dimension Dλ is almost always a non-integer. 
For example, in three-dimensional deterministic chaotic system (e.g. Lorenz system) with 
Lyapunov exponents λ+>0>λ_, 

 
(3.46) 

For an attractor, λ++λ_< 0 must hold, from which follows that 2<Dλ< 3 (e.g. the 
dimension of the Lorenz attractor is estimated to be 2.06). 

Given the different definitions and descriptions of the dimensions one could ask what 
are the practical implications all these dimensions? First of all, dimensions can be used to 
distinguish between strange and non-strange attractors, but with a careful interpretation of 
the obtained estimation of the dimension. One of the basic assumptions when defining the 
dimensions is that there is a sufficiently large number of points (states) N on the 
trajectory. This means that in practice one should deal with quite long time series (how 
long we will discuss latter) which defines in a great detail the trajectory in phase space, 
i.e. the dynamic evolution of the system. Other issue is the influence of noise on the 
dimension estimation and the existence of a so-called temporal correlation in the data. All 
these issues will be addressed in the Section 3.3. A second practical application of the 
dimension is the use of it to quantify the geometrical complexity of the attractor and 
possibly reveal its dynamics. The dimension of the attractor (or the first integer above) 
gives the lower bound on the number of essential state variables needed to describe the 
dynamics on the attractor mathematically. In physical language, the dimension is a lower 
bound on the number of degrees of freedom of the attractor, and therefore on the number 
of differential equations. For example, motion on a limit cycle (dimension 1) can be 
described by a first-order differential equation where the variable could be the arc-length 
along the circle or perhaps the angle of rotation. In the case of a deterministic chaotic 
system, the motion of an attractor with dimension 2.6 can be modelled, at least 
theoretically, by a set of three differential equations (three is the first integer above the 
dimension 2.6). 

Since this dimension only provides knowledge about the attractor, sometimes it is 
referred to as a local dimension. When dealing with real dynamical systems, one does not 
have an infinite length of the trajectory and, thus, all possible states (and dynamic 
regimes) of the system (one does not have full information about the attractor). This 
implies that the general or global dynamics of the systems may live in a higher dimension 
(global dimension) than the dimension of the attractor. The number of the state variables 
necessary to fully describe the general dynamics of the system is usually termed the 
number of sufficient state variables. The estimation of the dimensions described above 
also give a certain indication for this number, as presented in the Section 3.3. 
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LYAPUNOV EXPONENTS 

One of the most striking features for deterministic chaotic systems is the limited 
predictability (or unpredictability) of the future evolution of the system, despite the 
determinism of the system. This has been already made evident in Example 3.1 and 
Figure 3.1. This unpredictability is a consequence of the inherent instability of the 
solution, reflected by the sensitive dependence on the initial conditions. In the Section 
3.2.1 we have shown that the stability of the system is closely related to the eigenvlues of 
the dynamical system whose generalisation is expressed by dynamic invariants known as 
Lyapunov exponents. The Lyapunov exponents are related to the average rates of 
divergence and/or convergence of nearby trajectories in phase space, and therefore, the 
measure how predictable or unpredictable the dynamical system is. In other words, they 
express the loss of information in time and are usually express in units of an inverse of 
time. 

One can estimate as many different Lyapunov exponents for a dynamical system as 
there are phase space coordinates, i.e. principal axes, which give the average exponential 
rates of expansion and contraction of the attractor along these axes. Usually in practice, 
one is interested in the maximal Layapunov exponent that can be used to categorise the 
type of the motion of the system as presented in Table 3.1.  

Table 3.1. Possible types of motion of dynamical 
systems and the corresponding maximal Lyapunov 
exponents 

Type of motion Maximal Lyapunov exponent 
stable fixed point λ<0 
stable limit cycle λ=0 
deterministic chaos 0<λ< ∞ 
noise (random motion) λ=∞ 

From the stability analysis we have seen that a positive maximum Lyapunov exponent 
indicates expansion and exponential divergence of the nearby trajectories. Therefore what 
distinguishes strange attractors from non-chaotic attractors is the existence of a maximal 
positive Lyapunov exponent. However, estimating the maximal Lyapunov exponent for a 
dynamical system does not necessarily reveal the global dynamics of the system. In a 
complete data analysis one would like to determine all the Lyapunov exponents, i.e. the 
Lyapunov spectrum, which may expose additional information of the attractor of the 
system and its governing dynamics. One could also use the Lyapunov spectrum to 
compute the dimension of the attractor as discussed previously. 

Following the above discussion, we now give a formal definition of Lyapunov 
exponents and their determination for a dynamical system described by mathematical 
equations. Given a continuous dynamical system in d-dimensional phase space one can 
monitor the evolution of a set of infinitesimal perturbations of the initial conditions in an 
attractor that are confined within an d-dimensional sphere (hypersphere), see Figure 3.17. 
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Figure 3.17. A schematic 
representation of the evolution of a set 
of initial conditions in the phase space. 

Due to the locally deforming nature of the flow (effects of stretching and folding), this d-
sphere will become a d-ellipsoid in time. If one orders the principal axes of this sphere 
(ellipsoid) from the most rapidly to the least rapidly growing, one can compute the 
average growth (expansion or contraction) rates λi of any given principal axis pi as 
follows: 

(3.47) 

Here pi(0) is the radius of the principal axis pi at time t=0 (i.e. in the initial hyperspere), 
and pi(T) is its radius after some time T. The set of λi is the Lyapunov spectrum. When at 
least one Lyapunov exponent is positive, then the dynamical system is characterised by 
deterministic chaos, and the initial sphere will evolve to some complex ellipsoid structure 
reflecting the exponential divergence of nearby trajectories (starting from very similar 
initial conditions) along at least one direction on the attractor. This sensitivity to small 
disturbances results in an inability to predict the evolution of the trajectory beyond a 
certain time horizon, which is approximately the inverse of the divergence rate. However, 
short-time predictability exists. When no positive Lyapunov exponent exists, then there is 
no exponential divergence, and thus the long-time predictability of the dynamical system 
is guaranteed. 
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A method for estimating the entire Lyapunov spectrum for nonlinear dynamical 
system defined mathematically by a set of differential equations (or difference equations) 
was already discussed in Section 3.2.1. From this section we already know that the 
linearised equations describe the local dynamics via the evolution of small perturbations 
as: 

 (3.48) 

where is the initial vector. Recalling the discussion in Section 3.2.1, the matrix A 
can be used to find the entire Lyapunov spectrum. In fact, the Lyapunov spectrum is a set 
of the eigenvalues of A that can be estimated at any point along the numerically 
integrated trajectory if the governing equations are known. In mathematical language, the 
Lyapunov exponent λi is defined as the normalised logarithm of the modulus of the ith 
eigenvalue of the product of all Jacobians along the trajectory in the limit of an infinite 
long trajectory. In the case where the mathematical formulation of the dynamical system 
is not known and one deals with time series of observables (the case we are interested in), 
the estimation of the Lyapunov exponents uses the same concept and is be discussed in 
the Section 3.3. 

From the facts that at least one Lyapunov exponent of a chaotic system must be 
positive, then one Lyapunov exponent of any limit set other than equilibrium point must 
be 0, and that the sum of the Lyapunov exponents of an attractor must be negative, it 
follows that a strange attractor must have at least three Lyapunov exponents. Therefore, 
deterministic chaos can only occur in minimum three-dimensional phase space of a 
dynamical system (exceptions are some maps, where chaos occurs in lower dimensions, 
see for example Ott, 1993). In the three-dimensional case, the only possibility for 
Lyapunov spectrum is (+,0,−), that is λ1>0, λ2=0 and λ3<0. Since the contraction must 
outweigh the expansion in order to have stable three-dimensional deterministic chaos, the 
only possibility is that λ3<−λ1. For dynamical systems that are described by a fourth-
dimensional phase space, there exist three possibilities: 

(i) (+,0,−,−): λ1>0, λ2=0, and λ3≤λ4< 0. 
(ii) (+,+,0,−): λ1≥λ2>0, λ3=0, and λ4<0. This can be the case for most real dynamical 

systems and has been regarded as hyper-chaos by Rössler (1979). 
(iii) (+,0,0,−): λ1>0, λ2=λ3=0, and λ4<0. This corresponds to a chaotic two-torus. As far as 

reported in the literature, this case has not yet been observed. 

The summary of the Lyapunov exponents for different types of attracting sets together 
with the qualitative description of the dynamics is presented in Table 3.2. 
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Table 3.2. Lyapunov spectrum of different 
attracting sets with the characterisation of 
dynamical systems. 

Attracting setApproaching 
equilibrium 
state 

Flow Poincare 
map 

Lyapunov 
exponents 

Dimension

equilibrium 
point 

point   0>λ1≥λ2≥…≥λn 0 

periodic circle one or 
more 
points 

λ1=0 
0>λ2≥…≥λn 

1 

two-periodic torus one or 
more 
closed 
curves 

λ1=λ2=0 
0>λ3≥…≥λn 

2 

K-periodic K-
torus 

one or 
more (K-
1) tori 

λ1=…=λK=0 
0>λK+1≥…≥λn 

K 

Deterministic 
chaos 

strange self 
similar—
fractal 

λ1>0 (at least) 
∑λi<0 

non-integer

For example, for the Lorenz dynamical system, λ1=2.16, λ2=0.00, λ3=−32.4, and ∑λ<0; 
thus one speaks about a chaotic deterministic dynamical system. The Lyapunov 
dimension is Dλ =2+2.16/|−32.4|≈2.07, which coincides with the correlation and capacity 
dimensions (see, for example, Grassberger and Procaccia, 1983). 

HOW THINGS ARE RELATED 

Dimensions and Lyapunov exponents are different ways of describing and quantifying 
properties of the same invariant measure. All these quantities characterise aspects of the 
same underlying dynamics of the system. Thus, it is natural to seek for relations between 
them. When defining the various types of dimension of the attractor, the basic approach 
used is to cover an attractor with volume elements (such as spheres, cubes etc.) each with 
diameter ε. Some of these elements may and may not include points (states) which are 
available (computed or measured). If one defines the probability of finding a point in the 
ith n-dimensional volume element to be Piε=Miε/N, where Miε is the number of points in 
the ith volume element with size ε, and N is the total number of points on the trajectory, 

then the average probability for a given covering, can be approximated as: 

 (3.49) 

This equation in fact relates the first momentum (the mean) of the variable Piε. One can 
extend this formulation to consider any moment of measure P: 
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 (3.50) 

One can extract the dimension D from (3.50) as follows: 

 
(3.51) 

For q=0, the value for the dimension D0 can be estimated by solving the limit 

 

(3.52) 

Since is the average probability given by [1/N(ε)]∑iPiε, where N(ε) is the number of 

volume elements in the covering that are not empty. Thus, and equation 
(3.52) becomes 

 
(3.53) 

which is in fact the capacity dimension (see equation (3.35)). Similarly, for q=1 it can be 
shown that the D1=DI, which is the information dimension. Furthermore, for q=2 the 
equation (3.51) results in D2=Dc, the correlation dimension. Extending this procedure to 
higher moments, one could speak about generalised dimensions, D3, D4,…, Dn. In general 
D0>D1>D2>…>Dn, tgough the inequality can be replaced by an equality only in special 
cases (Hentschel and Procaccia, 1983). Like the various moments used in statistics to 
characterise the distribution of random variable, the generalised dimensions can be used 
to give a statistical characterisation of the multiple scaling in fractals. 

We have also seen that the positive Lyapunov exponents characterise the exponential 
divergence of nearby trajectories. The fact that trajectories diverge directly implies a loss 
of information about their future position; thus the uncertainty about the future position 
grows with the rates of the expanding principal axes (as discussed in Figure 3.17). Pesin 
(1977) has found that the sum of all positive Lyapunov exponents is an upper bound of 
the so-called Kolmogorov-Sinai entropy (see Ruelle, 1978): 

 (3.54) 

Very often, Pesin’s identity is the only way to obtain a good estimate of the Kolmogorov-
Sinai entropy of a time series, since direct computation often requires a large amount of 
data (Ruelle, 1978). We address the subject of entropy estimation from time series data in 
the next section. Less obviously than the entropy, the dimension of the attractor is also 
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related to the Lyapunov exponents via the Lyapunov dimension. The relationship was 
first introduced by Kaplan and Yorke (1979) and is expressed by equation (3.45). 

3.3 Reconstruction of dynamics from time series of observables 

The study of mathematical nonlinear dynamical systems presented in the previous section 
has demonstrated that random-looking behaviour can arise even from simple nonlinear 
systems. Such dynamics, now termed as deterministic chaos, exhibit broadband power 
spectra, and complicated strange attractors possessing fractal dimensions with positive 
Lyapunov exponents, whose dynamics can change via bifurcation and long-term 
predictability cannot be guaranteed. When the mathematical formulation of the studied 
nonlinear system is known, than the reconstruction and identification of the dynamics 
using nonlinear methods is quite straightforward. However, when one deals with real-life 
dynamical systems (such as hydrological or meteorological systems) where one cannot 
observe all the variables, and furthermore one may not know completely the 
mathematical formulation and the total number of variables governing the dynamics, the 
reconstruction and identification of the dynamics becomes complicated. If one adds the 
fact of the inevitable presence of measurement and dynamical noise embedded into the 
time series of the observables, reconstruction of the dynamics of such systems becomes a 
real challenge. 

The reconstruction of the vector space (quasi phase space) which is equivalent to the 
original phase space of the dynamical system from a time series is the basis of almost all 
nonlinear methods exploring dynamic or metric properties of the data. Having stressed 
the importance of the phase space for the study of dynamical systems with deterministic 
properties, the first important problem that we address in this section is the phase space 
reconstruction from a time series of observables, which is technically solved by methods 
of time delays (or embedding methods). Both, the reconstruction of the phase space using 
scalar and multivariate time series are described. Further, will discuss and demonstrate 
the necessity of finding a good embedding in order to reconstruct properly the attractor 
and reveal the dynamics of system. The estimation of the attractor dimension, the 
dimension of the phase space and the Lyapunov exponents from the time series is also 
discussed. Various important issues, such as the effect of the length of the time series, 
temporal correlations and effect of the noise on the estimation of those dynamical and 
geometrical invariants are also addressed. Finally, once the dynamics of the system are 
reconstructed, the modelling of such dynamics using both local and global models is 
presented. 

3.3.1 Phase space reconstruction—method of time delay 

Most commonly, the time series obtained from dynamical system is a sequence of scalar 
measurements of some quantity which depends on the current state of the system, taken 
at multiples of a fixed sampling time: 

sn=s(x(n∆t))+ηn 
(3.55) 
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Thus, we look at the dynamical system through some measurement function s and make 
observations only up to some random fluctuations ηn, the measurement noise. Let us 
neglect the effect of the noise at this level of presentation. The system on which the 
observable quantity is being measured is evolving with time. The phase space 
reconstruction problem is that of recreating all the states of the dynamical system when 
the only information available is contained in a time series, whether univariate or 
multivariate. A remarkable work, first started by Whitney (1936), extended by Pacard et 
al. (1980), and put on firm mathematical basis by Takens (1981), showed that the phase 
space can be reconstructed (approximated) from scalar or univariate time series of some 
observable x(t). This is technically solved by the method of time delay embedding, which 
is known, as Takens’s embedding theorem. According to this theorem, the dynamics of a 
time series {x1, x2,…, xN} are fully captured or ‘embedded’ in the m-dimensional phase 
space (m>d, where d is the dimension of the attractor) defined by the delay vectors 

Yt={xt, xt−τ, xt−2τ,…, xt−(m−1)τ} 
(3.55) 

where τ is suitable time delay and m is referred to as an embedding dimension. Let us 
stress a few important considerations about the definition of the embedding dimension. 
When an attractor of dynamical system exists, its dimension (be it integer or fractal) is 
smaller than the dimension of the phase space. One can take advantage of this (in a 
modelling sense) and try to develop a model of the lower-dimensional dynamical system 
that describes only the motion of the attractor (since it is defined by available data 
describing the visitation of the trajectory). This can be achieved by embedding the 
attractor in a smooth manifold (smooth in a sense of a non-intersecting trajectory) and 
restricting our model of the dynamics only to this manifold. Recall that the k-dimensional 
manifold is a geometrical model, i.e. set of points that locally resembles Rk. More 
precisely, M is a k-dimensional manifold if for each point there exist an open 
neighborhood of x such that this neighborhood is diffeomorphic (a smooth mapping exist) 
to some other open neighborhood in Rk. The lowest possible dimension of such manifold 
is called an embedding dimension and, thus, gives the number of essential variables to 
model the dynamics of the system (as discussed previously). Attractors that are 
topological structures (points, limit cycles and tori) are submanifolds of the manifold in 
which they are embedded. Strange attractors (ones that have fractal dimensions) are not 
submanifolds. When we try to reconstruct the attractor from a time series of observables, 
the dimensionality of the manifold that embeds it, it is not known a proiri. Thus, one has 
to search for a proper embedding dimension, such that the structure of the attractor 
becomes invariant. According to Whitney (1936), any smooth manifold of dimension d 
can be smoothly embedded in m=2d+1 dimension. Taken’s theorem (1981) shows that if 
the dimension of the manifold containing the attractor is d, then embedding the data in a 
phase space with dimension m≥2d+1 preserves the topological properties of the attractor. 
Sauer et al. (1991) further discussed the generalisation of the embedding theorem, 
emphasising the importance of the fractal dimension of the attractor for estimation of the 
minimal dimension of the embedding space, i.e. m>2d. Some authors (see, for example, 
Abrabanel et al., 1991) suggest that, in practice, m>d is sufficient. 

The above discussion shows that the main result of the various variations of the 
embedding theorem is that it is not the dimension of the underlying true phase space that 
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is important for the necessary embedding of the time series, but the fractal (or integer) 
dimension of the attractor d. In natural dissipative dynamical systems this dimension can 
be much smaller than the dimension of the true phase space of the system. In fact, low-
dimensional dynamics have been observed in various complex dynamical systems, 
including hydrological, meteorological and oceanographic systems (we discuss these in 
detail in Chaper 6, which deals with the applications). However, one should not forget 
that the search for the dimension of the true phase space of the system from time series is 
equally important, since it may enhance our knowledge and understanding of the 
underlying dynamics and reveal further the number of the sufficient variables necessary 
to fully describe the motion of the system mathematically. 

Apart from the Taken’s time delay embedding method for the reconstruction of the 
phase space that is most commonly used, several other methods exist that may be suitable 
for particular application and better representation of the data, especially if the data are 
noisy and one wants to reduce the noise level implicitly. One of the embedding methods 
which is closely naturally related to the mathematical description of the nonlinear 
dynamical systems is the so-called derivative coordinates. In this case, the phase space 

coordinates are constructed from the derivatives of the observable 
Numerically, one should form the adequate differences between successive observations, 

i.e. 

etc. Then the state vector of the system at time t 

is defined by One could also use integrals instead of derivatives or 
mixtured representation, based on the physical problem analysed. The advantage of phase 
space reconstruction using derivative coordinates is their clear physical meaning. 
However, their drawback lies in their sensitivity to noise. In order to illustrate this, let us 

assume that the measurement noise η(t) is identically distributed with variance 
zero mean, and normalised autocorrelation function cnoise(τ). Further let the observable be 
a recorder with a high sampling rate (1/∆t) such that the successive observations are 

strongly correlated (with cobs(τ)). One can claim that the first derivative is corrupted 
by a larger noise level than the original signal itself. If x(t) is the “clean” variable and 
s(t)=x(t)+η(t) is the observed signal, then the first derivative can be written as 

(3.56) 

The variance of the derivative, which now becomes (x(t+∆t)−x(t−∆t))/2∆t, is then 

and the variance of the noise 

Therefore, the relative noise level of the first darivative in root mean square sense is 

 
(3.57) 
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which can be much larger than the relative noise level of the original signal σnoise /σobs, if 
the autocorrelation of the signal decays considerably slower than the autocorrelation of 
the noise: a real situation which occurs in most flow-like dynamical systems (runoff, 
water levels etc.). Analogous considerations can be made of the higher derivatives, which 
even further amplify the noise level. Therefore, derivative techniques have to be used 
with care, and usually may require additional data preprocessing using nonlinear low-
pass filtering techniques, such as continuous wavlet transform. 

Another kind of data analysis technique that is being used for reconstruction of the 
phase space of dynamical systems from observables is the so-called singular value 
decomposition technique (Broomhead and King, 1986). This technique has appeared in 
the literature under various different names, such as temporal principal component 
analysis (PCA), singular spectrum analysis (SSA), Karhunen-Loeve transformation, or 
empirical orthogonal functions (EOFs) method. However, the basic idea is to characterise 
the time series by its most relevant components in a delay embedding space RM (we do 
not use the term phase space in this context) where M is most probably too large. This 
technique uses a set of all delay vectors xi=x(t0−M∆t), 1≤M≤N (using time delay equal to 
∆t) and estimates the eigenvalues λn and eigenvectors ρn (which are orthogonal) of their 
M×M covariance matrix C: 

(3.58) 

The set of the delay vectors form an irregular cloud in RM. Often, there are directions in 
which the cloud extends, or does not extend. The eigenvalues of the covariance matrix 
are squared lengths of the semi-axes of the hyper-ellipsoid which best fit the cloud of 
data points, and the corresponding eigenvectors give the directions of those axes. The 
eigenvalues describe variables that are statistically linearly independent, while the 
eigenvectors span the embedding space, which is sometimes called the singular space. 
The most relevant directions in this space are thus given by the vectors corresponding to 
the largest eigenvalues, which can be used in further analysis and transformations. If 
there are very small eigenvalues, the corresponding directions may be neglected and 
considered as noise level of the observable. In order to illustrate this, the eigenvalue 
spectrum computed on the y(t) variable of the Lorenz system is presented in Figure 3.18a. 
Figure 3.18b shows both time series: the original and reconstructed using the first 10 
components, i.e. EOFs. Figure 3.19 presents a two dimensional projections of the original 
and reconstructed attractor using the reconstructed variable y(t). 
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Figure 3.18. (a) The eigenvalue 
spectrum of the covariance matrix of 
the y(t) variable of Lorenz system. The 
first 10 eigenvalues and the 
corresponding eigenvectors are more 
relevant. The “noise floor” can clearly 
be seen; (b) Original (dots) and 
reconstructed (line) time series of the 
variable y(t). Although the root mean 
squared error RMSE is 0.0014, the plot 
of the differences between the two 
time series shows the presence of a 
large error in the transition region of 
the trajectory from one to the other 
wing of the attractor, due to the 
nonlinear character of this transition. 
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Figure 3.19. Two-dimensional 
projection of the attractor of the 
Lorenz system (a) original times 
series; and (b) reconstructed time 
series using the first 10 components. 

The main drawback of this reconstruction approach is that it ensures linear independence 
of the variables. In real practical applications this might not be the desired result, since 
the nonlinearity of the system is what we are interested in. Therefore, this approach can 
be very useful in quantifying the nonlinearity present in the dynamics of the system. One 
could create surrogate time series (as we did in the above example) using linear 
independent components and further apply appropriate statistical tests to the residuals in 
order to investigate the presence of nonlinearity in the data (see, for example, the BSD 
nonlinearity test proposed by Brock at al., 1987).  

Which method is appropriate for the reconstruction of the phase space of dynamical 
system using time series data in general depends on the type of the application and 
dynamical system being analysed, and the quality of the available data. Frazer (1989) 
demonstrated by several examples that Taken’s time delay method, with appropriately 
chosen time delay τ and embedding dimension m, is superior to the singular value 
decomposition method and derivative coordinates. In general, we do not favour or discard 
any of these methods, but in real applications try to exploit them all, since we argue that 
the nonlinear time series analysis and modelling is an interactive process. Note also that 
up to this point of discussion, we have not presented the embedding theorems in a 
rigorous mathematical language; instead we have focused on explaining them in 
physicists’ words. The mathematical aspects of the embedding theorems are well 
described in the original “embedology” work by Sauer et al. (1993) and the paper by 
Takens (1981). 

3.3.2 Estimating dimensions from time series 

The importance of estimating various dimensions for the proper reconstruction of the 
phase space from time series of observables has been already highlighted. The various 
ways to characterise the self-similarity of a geometrical object (such as the attractor) have 
also been discussed in the previous section. However, there still remains a question about 
how to estimate the fractal dimension from time series, which are usually limited in their 
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length and polluted by noise. The most widely used fractal dimension quantifier is the 
correlation dimension dc, which is based on the correlation integral or function analysis 
(Grassberger and Procaccia, 1983a,b). Obtaining a noninteger, finite dc for a time series 
when a corresponding stochastic surrogate does not exist demonstrates fractal scaling and 
indicates possible chaotic dynamics. This algorithm uses the phase space reconstruction 
from a scalar time series using the method of delays (3.55), where the reconstruction 
procedure involves the choice of time delay τ. The correlation sum C(r) for a collection 
of points Yt in some vector space is the fraction of all possible pairs of points which are 
closer than a given distance r in a particular norm; see Figure 3.20a. 

 
(3.59) 

where H is the Heaviside step function, H(y)=1 for y>0 and H(y)=0 for y≤0, r is the 
radius of the sphere centered on Yi, N is the number of points in Yt, and Nref is a calibrated 
number of reference points taken from Yt that are needed to yield consistent statistics. 
The norm |Yi−Yi| is the standard Euclidean norm. The sum just counts the pairs (Yi, Yj) 
whose distance is smaller than r or, put in other words, the relative frequency with which 
a typical trajectory enters the ith volume element (sphere). The correlation function C(r) 
is estimated for the range of r available from the time series and for several embedding 
dimensions m. Then C(m,r) is inspected for the signatures of self-similarity, usually by 
estimating the slope of Log C(r) versus Log r plot. If the time series is characterised by an 
attractor, then for positive values of r, the correlation integral C(r) is scaled to the radius r 
by the power law: 

 (3.60) 

where υ is called the correlation exponent (slope of the Log C(r) versus Log r plot) and a 
is a constant. The slope can be generally estimated by the least-squares fit of a straight 
line over a certain range (length scales) of r, known as the scaling region (see Figure 3.21 
for an illustration). 

 

Figure 3.20. (a) Evolution of dynamic 
system in phase space showing the 
time-sampled data points and the 
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neighborhood of the sphere in the 
correlation integral analysis (b) 
Influence of the temporal correlation 
on correlation integral analysis. While 
for point A there are some dynamically 
uncorrected neighboring points (lying 
on different trajectories), all 
neighboring points for point B are 
temporally correlated and thus 
stimulate a correlation dimension close 
to 1. 

For a random process, υ varies linearly with increasing of m, without reaching a 
saturation value, whereas for deterministic process, the value of the correlation exponent 
υ saturates and becomes independent of m for increasing embedded dimension. The 
saturation value dc is defined as the correlation dimension of the attractor of the time 
series. If the correlation dimension dc leads to a finite integer value, the underlying 
dynamics of the system is considered to be dominated by a strong periodic determinism. 
If the value of dc is fractal and usually small then the system is thought of as being 
dominated by a low-dimensional deterministic chaotic dynamics governed by the 
geometrical and dynamical properties of an attractor.  

 

Figure 3.21. Graphical illustration of 
the procedure for estimating the 
correlation dimension. 
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As we already pointed out, the correlation dimension of the attractor indicates the 
dimension of the phase space (m=2d+1) required for a smooth embedding the attractor. 
This in turn provides information on the number of essential variables necessary to 
describe the dynamic evolution of the system. The embedding dimension where the 
correlation dimension reaches its saturation value provides the upper bound on m, and it 
is sufficient to fully describe the dynamics of the system. 

Soon after its publication in 1983 the correlation dimension became a quite popular 
dimension estimation tool and since then many researchers have reported evidence of the 
existence of low-dimensional attractors for a vast number of dynamic systems, including 
weather and rainfall (e.g. Nicolis and Nicolis, 1984; Fraedrich, 1986; Esex et al., 1986; 
Tsonis and Elsner, 1988; Hense, 1987; Rodriguez-Iturbe et al., 1989; Sharifi et al., 1990; 
Tsonis et al., 1993; Jayawardena and Lai, 1994; Georgakakos et al., 1995; Koutsoyiannis 
and Pachakis, 1996; Sivakumar et al., 1998, 1999; Sivakumar, 2000). Usually, these 
conclusions were made whenever the authors succeeded in fitting a straight line to a 
portion of the Log C(r) versus Log r plot. Furthermore, several authors found the 
existence of correlation dimensions on nondeterministic data sets (e.g. Theiler, 1986 and 
1991; Osborne et al., 1986; Osborne and Provenzale, 1989), which seemed to be in 
contradiction with the fact that stochastic data are of infinite dimension. Closer 
examination by several authors (see Sivakumar, 2000 for overview) showed that the 
straightforward application of the Grassberger-Procaccia correlation dimension suffers 
for several problems, such as the number of the points needed for reliable estimation of 
the correlation dimension and the choice of appropriate time delay for the reconstruction 
of the phase space (this will be addressed in the text below). 

An important consideration for assessing the reliability of the correlation dimension of 
the attractor is the size of the embedded time series. For a finite data set one can argue 
that there are parts of the scaling region r below which there are no pairs of points 
(depopulation). At the other extreme, when the radius r approaches the diameter of the 
cloud of points in phase space, the number of pairs of points no longer increases as the 
radius increases. In geometrical terms, the time series must be long enough to contain the 
points along the “edges” of the attractor. This lack of points on lower and higher length 
scales results in a s-shaped Log C(r) versus Log r plot, thus, requiring careful 
interpretation of these curves and involving a nontrivial extrapolation from a finite data 
set to a evidently existing attractor. Several authors studied the necessary length of the 
time series and the number of points needed to reliably estimate the correlation dimension 
of the attractor. Wilcox et al., (1991) and Tsonis et al., (1993) suggested criteria such as 
10A or 10(2+0.4m) data points, where A is the greatest integer lower than dc and m the 
embedding dimension. These criteria imply, for example, that to investigate the existence 
of an 5-dimensional attractor using some hydrological observable, one needs as many as 
10,000 points, which requires 27 years of daily hydrological records. Also, different 
variables for a different dynamical systems may require a different number of points to 
obtain the correlation dimension, depending on how each is coupled to the rest of 
variables and whether each exhibits thresholds in its behaviour (see, for example, Islam et 
al., 1993). Other authors (e.g. Rodrigues-Iturbe et al., 1989) suggested continuating to 
decrease the total available length of the time series and estimating the correlation 
dimension until significant changes in the results are observed in order to obtain the 
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minimum number of necessary data points (termed in (3.59) as the number of reference 
points).  

Another important consideration while estimating the correlation dimension from a 
time series is the effect of noise. If the data are noisy, then below a length scale of a few 
multiplies of the noise level the method detects the fact that the data points are not 
confined to the fractal structure of the attractor, but are scattered over the whole available 
phase space. Thus, the local correlation exponents υ increase and at the noise level they 
reach the value of the embedding dimension m. Some authors (e.g. Kanz et al., 1993) 
recommend preprocessing the noisy time series using nonlinear noise reduction methods 
(to be discussed), before passing the data to the correlation dimension analysis. 

Finally, one of the major problems of the dimension estimation from time series data 
is the problem of temporal correlations (see Figure 3.20b), which was not properly 
addressed by the authors seeking a low-dimensional attractor in hydrological systems. 
The most important temporal correlations are caused by the fact that data close in time 
are also close in space, a fact which is not only true for purely deterministic systems but 
also for many stochastically driven processes. Rather than this continuity in time, 
correlation dimension analysis look into the smoothness in the phase space, implying that 
similar present states evolve into similar states in near future, thus providing a measure of 
the static geometrical properties of a possible fractal attractor. Theiler (1986) studied the 
problem of temporal correlations and proposed a simple modification to the correlation 
function analysis (3.59) in order to exclude those points which are temporally correlated. 
This technically means that the second sum in the correlation function (3.59) is started 
after a typical correlation time tmin=nmin∆t has elapsed, 

 
(3.61) 

The detection of the temporal correlations and the determination of a safe value of the 
correlation time tmin has been solved by Provenzale et al., (1992) by introducing the so-
called space time separation plot. The idea is that in the presence of temporal correlations 
the probability that a given pair of points has a distance smaller than r does not only 
depend on r but also on the time that has elapsed between two measurements. This 
dependance can be detected by plotting the number of pairs as a function of two 
variables: the time separation ∆t and the distance r. In this manner, one can obtain 
contour lines with the same probability as a function of ∆t and r, and thus identify the 
correlation time tmin. The correlation time tmin for a flow-type of dynamical system with a 
high sampling frequency can be quite large (up to 500 samples), which in turn reduces 
the total number of points for the estimation of the correlation function (3.61). If one 
deals with a long time series, this statistical loss is marginal. The effect of the temporal 
correlations on the dimension estimation for hourly, daily and weekly rainfall data for De 
Bilt meteo station in the Netherlands was studied by Velickov (2001). It was shown that 
if the temporal correlations are not properly encountered in the dimension estimation, one 
could severely underestimate the correlation dimension of the attractor, and thus the 
embedded dimension of the reconstructed phase space of the rainfall dynamics. 

The correlation and Lyapunov dimensions, which are mostly used to estimate the 
attractor dimension from time series, are one way to estimate the optimal embedded 
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dimension m. Another way to estimate the optimal value of m is to look for false nearest 
neighbours (FNN) in phase space at a given value of m. Consider a situation that an m0—
dimensional delay reconstruction is the embedding, but an (m0−1)—dimensional is not. 
The question is what happens when passing from m0 to m0−1 (note the similarity with a 
Poincarè section). One simply projects the along one coordinate and thus maps different 
parts of the attractor onto each other. When selecting a number of close points from such 

a region of the the images of the points will form different groups, depending 
from which part of the attractor the points are sampled. This lack of a unique location of 
all the images in m0−1 dimensions is reflected by finding false neighbours, meaning that 
the determinism is violated. When increasing m, starting from small values of the 
embedding, one can thus detect the minimal (optimal) embedding dimension by finding 
no more false neighbours. This FFN method for estimating the optimal embedding 
dimension was first proposed by Čenus & Pyragas (1988) and further elaborated by 
Kennel et al. (1992). It was found by Kennel et al. (1992) that for noise-free time series 
the percentage of false neighbours will drop to zero when the optimal embedding 
dimension m is reached. A further increase in the embedding dimension will not affect 
the false neighbours since the attractor will be properly unfolded. In a presence of noise, 
one should not expect a drop in the percentage of false neighbours to zero in any 
dimension. Furthermore, if the time series in question is stochastic, there will not be a 
substantial drop of the false neighbours with the increase of the embedding dimension. 

In order to illustrate the dimension estimation from time series observed on a real 
dynamical system, we briefly present here some of the results obtained by analysis of 
10min water levels (328608 data points) observed at the Hoek van Holland tidal station in 
the Netherlands (a detailed analysis and discussion is presented in Chapter 6). Figure 3.22 
show the correlation integral for the water level data at different length scales.  

From Figure 3.24 one can see the saturation value of the correlation exponent for 
properly chosen time delay for the embedding of the water level time series (the optimal 
time delay is τ=21 in this case). This indicates the importance of finding the optimal time 
delay in order to properly unfold the attractor (if one exists) in the phase space. The value 
of the correlation dimension of the attractor in this case is estimated to be dc=2.40. 
Taking into account the previous discussion about the estimation of the embedding 
dimension m, if one uses Taken’s embedding theorem the embedded dimension (integer 
number) of the manifold which contains the attractor is about m=6. If one uses Withney’s 
recommendation, the embedding dimension is about m=5. Abrabanel’s recommendation 
(the first integer above the correlation dimension) leads us to m=3. The false nearest 
neighbours method gives an estimation of the embedding dimension m=6; see Figure 
3.25.  
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Figure 3.23. Correlation integral (sum) 
for the Hoek van Holland water level 
data (period 1990–1996, 10min data). 
Double logarithmic plot was chosen 
for better visual presentation of the 
power law scaling between the 
correlation sum C(r) and the length 
scales r. The correlation sum was 
computed for different embedding 
dimensions (the line with squares 
corresponds to embedding dimension 2 
and the line with open circles 
correspond to embedding dimension 
20). After embedding dimension m=12 
the lines become parallel and thus the 
slope (correlation exponent) saturates, 
see next Figure 3.24. 
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Figure 3.24. Relationship between the 
correlation exponent v and embedding 
dimension m for the Hoek van Holland 
10min interval water level data using 
different time delays τ. The correlation 
exponent increases with an increase of 
the embedded dimension up to a 
certain value and further saturates 
(when using time delays between τ=18 
and τ=24). The saturation value of the 
correlation exponent, that is the 
correlation dimension, is 2.40 
(uncertainty 0.5) which indicates 
presence of an attractor in the 
dynamical system. 
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Figure 3.25. The percentage of the 
false nearest neighbours as a function 
of the embedding dimension for the 
water level data at Hoek van Holland 
tidal station. 

This figure shows that the percentage of the FFN drops to about 1% with the 
embedding dimension m=6, and remains unchanged with a further increase in the 
embedding dimension. The Lyapunov dimension estimated on the basis of the Layapunov 
exponents for the same data set is dλ=5.55, (see next Section 3.3.4), thus indicating an 
embedding dimension of m=6. As previously pointed out, this embedded dimension 
reveals the essential dimension of the phase space (and the number of the essential 
variables) necessary to model the dynamics of the attractor. The sufficient dimension of 
the phase space, necessary to fully describe the global dynamics of the system, can also 
be identified, for example from Figure 3.24, as a dimension where the correlation 
exponent reaches its saturation value (12 in this case). More discussion on the dimension 
estimation is presented in Chapter 6. From the brief presentation of some of the results it 
is obvious that there is no real “recipe” prescribed for the estimation of various 
geometrical and dynamical quantities based on the time series. Extracting and modelling 
the dynamics of dynamical systems from time series obviously requires a highly 
interactive approach and a careful analysis of the obtained results. 

3.3.3 Finding appropriate time delay 

The time delay τ between successive elements in the delay vectors (3.55) is not a 
mathematical subject of the embedding theorems, since they consider data with infinite 
precision. Embeddings with the same m but different τ are equivalent in the mathematical 
sense, but in real applications, the delay time τ needs to be appropriately chosen in order 
to fully capture the structure of the attractor. If τ is too small then the delay vectors are 
not independent, such that all points are accumulated around the bisectrix of the 
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embedding space, resulting in a loss of the characteristics of the attractor structure. If τ is 
very large (i.e. much larger than the decorrelation time of the system), the different 
coordinates (delay vectors) may be almost dynamically uncorrelated. In this case the 
reconstructed attractor may become very complicated, even if the underlying ‘true’ 
attractor is simple. Casdagli et al. (1991) discussed rather rigorously the influence of the 
choice of τ on the quality of the phase space reconstruction, but did not come up with a 
real practical method for determining an optimal value of τ. In the literature, the issue of 
how to estimate τ has been emphasised greatly, and at east a dozen different methods 
have been suggested. For example, the straightforward choice of τ is usually made with 
the help of the zero-crossing autocorrelation function. Tsonis and Elsener (1988) 
suggested that the time delay may be chosen as the lag time at which the autocorrelation 
function falls below a threshold value which is commonly defined as 1/e, specially if the 
autocorrelation function exhibits an exponential decay. If the data are suspected to be 
very noisy, τ has to be larger than the time when the normalised autocorrelation function 

decays to However, it must be pointed out that the autocorrelation 
function exploits the linear structures in the data. 

In the terms of nonlinear methods, the choice of τ corresponding to the first minimum 
of the time delayed mutual information (Fraser and Swinney, 1986) demonstrated good 
performances in the practical applications. This delayed mutual information is based on 
the Shnanon’s entropy and can be computed as follows: Given a time series of observable 
s, one can calculate the transitional probabilities Ps(si) that a measurement s yields si. The 
information entropy is thus defined as:  

 
(3.62) 

The entropy expressed in (3.62) is a measure of the uncertainty associated with the 
measurement s. In other words, one can think of the degree of surprise when one reads 
the value of the measurement s. Low-probability (unexpected) measurements carry 
greater entropy than the high-probability (expected) measurements. The question now is 
how the value of the measurement x(t+τ) depends on x(t) as a function of the time delay 
τ. If one denotes s=x(t) and q=x(t+τ), then the conditional entropy can be written as: 

 
(3.63) 

where Psq(si, qj) is the probability that measurements of s and q yield si and qj. In this case 
one could define H(q, si) as the uncertainty of q given si. The mutual information is then 
defined as the amount by which a measurement of s=si reduces the uncertainty of q: 

I(q, si)=H(si)+H(q)−H(q, si). 
(3.64) 

If the time delay is chosen to coincide with the first minimum of the mutual information, 
than the reconstructed state vector Yt will consist of delay components that possess 
minimal mutual information between them. The mutual information method is probably 
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the most comprehensive method of determining proper time delays when reconstructing 
the dynamics of the systems from time observables. The only drawbacks of this method 
are that it requires a large amount of data and that it is computationally expensive. In 
order to illustrate the difference in the proper time delay determination, we will again 
consider the Lorenz dynamical system. Figure 3.26 shows the auto correlation function 
and the mutual information for the variable y(t).  

 

Figure 3.26. The autocorrelation 
function (dash-dotted line) and the 
mutual information (solid line) as a 
function of time lags for the y(t) 
variable of the Lorenz system. 

According to Figure 3.26, the autocorrelation function decays smoothly (due to the 
flow-type nature of the Lorenz dynamical system) and thus does not even exhibit a zero 
crossing for the first 300 time lags (a zero crossing exist at a time lag of 580, but is not 
presented on this figure for better representation). On the other hand, the mutual 
information reaches its minimum at time lag of τ=18. It is well-know for the Lorenz 
system that the optimal time delay is ¼ of the mean orbital period, which in this case 
correspond to τ=20. Thus the mutual information is able to properly determine the 
optimal time lag in comparison with the autocorrelation function for this particular 
example. The time delay as the lag time at which autocorrelation function falls below a 
threshold value of 1/e=0.368 corresponds in this case to τ=28, which provides a better 
estimate than the zero-crossing criterion. The reason for this is that a typical trajectory of 
the Lorenz system stays some time on one wing of the attractor (as discussed previously), 
spiraling from the inside to its border before it jumps to the other wing. A record of the y-
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variable thus shows alternations of oscillations around a negative mean close to zero, 
which reflect a smooth decay of the autocorrelation function and do not indicate that the 
average period of the motion on a single wing is of relevance. 

The autocorrelation function and the mutual information as a function of the time lags 
for the water level data (10min interval) at Hoek van Holland tidal station (1990–1996) is 
presented in Figure 3.27. Both functions suggests a similar optimal value for the time 
delay of τ=20 time steps, which corresponds to 3.33 hours. 

 

Figure 3.27. The autocorrelation 
function (dash-dotted line) and the 
mutual information (solid line) as a 
function of time lags for the hourly 
water level time series at Hoek van 
Holland tidal station. 

Another alternative for estimating the time delay reported in the literature is to build 
‘local’ prediction models (Farmer and Sidorovic, 1987) of the attractor dynamics utilising 
different values for τ, while trying to minimise the prediction error. Any global 
optimisation method can be used to search for optimal value of τ. However, this method 
is very sensitive to noisy data. Since all of these methods yield different values for the 
time delay, we advocate that in a particular application one should perform a sensitivity 
analysis and estimate the dynamic and metric invariants by varying τ, and thus in a way 
optimise the time delay (see Velickov, 2001 for discussion).  
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3.3.4 Estimating Lyapunov exponents form time series 

In Section 3.2.4 we discussed how to obtain the complete Lyapunov exponent spectrum 
when one knows the mathematical formulation of the dynamical system, that is, the 
mapping from one state to another state of the system in phase space is known. Same 
analogy has resulted in different algorithms for estimating the Lyapunov exponents from 
observables. Following the definition of the Lyapunov exponents, in order to estimate the 
exponents one simply has to consider nearby points on the attractor and monitor their 
long-term evolution. Wolf et al. (1985) first presented an approach by which the largest 
Lyapunov exponent, λ1, is estimated once the attractor has been reconstructed from the 
time series. Theoretically, λ1 is estimated by monitoring the long-term evolution of a pair 
of nearby orbits. However, one has to point out that the reconstructed attractor from the 
time series contains just one trajectory. The reconstruction can, nevertheless, provide 
points that may be considered to lie on different trajectories if one chooses two points 
whose temporal separation in the original time series is at least one mean orbital period of 
the dynamics of the system. As long as their spatial separation in the reconstructed 
attractor is small, those two points can be considered to define the early state of the first 
principal axis. By monitoring their separation, and when it becomes large two new points 
can be sampled. Repeating this procedure many times from using different pairs of points 
gives the average estimate of the largest Lyapunov exponent λ1. The algorithm of Wolf et 
al. (1985) was further modified and improved by Frank (1990) for estimation of λ1 in 
case of noisy data sets. 

In order to estimate the whole Lyapunov spectrum, according to the Jacobian method 
(see, for example, Eckman et al., 1986) a neighbourhood of l points within a small 
distance is considered around a reference point on the reconstructed trajectory. Then a 
local linear map that maps the whole neighbourhood into a neighbourhood after some 
time horizon T is derived. To obtain the mapping, the location of the neighbours at each 
time step is monitored. For sufficiently small neighbourhoods and time intervals, the 

evolution of the nearby states is approximated by equation (recall the 
stability analysis in Section 3.2.2). Therefore, information about the local phase space 
expansions and contraction rates is contained in the linearised equations, which provides 
the reasoning behind obtaining local linear maps, though the general mapping of the 
neighbourhoods in the attractor is nonlinear. When one tries to obtain a mapping from the 
reconstructed attractor, the basic assumption is thus that the l points are small fluctuations 
from the reference point on the trajectory and that the evolution of each fluctuation obeys 
a local linear law. For each point a value of the local mapping parameter a is obtained. 
For many points the idea is to find an optimal set of parameters that minimises the linear 
regression error from all neighbours. Extending the analogy to n dimensions results in the 
task of estimating an n×n matrix A whose eigenvalues provide the Lyapunov exponents. 

Let us illustrate this approach on a simple example. For simplicity, we assume that the 
time series of some observable is {s(t)}:3,1,2,1,1,3,2,3,3,5,3,3,2,1. Furthermore, a three-
dimensional phase space (m=3) is reconstructed using dime delay τ=1; see Table 3.3. The 
coordinates of the reconstructed phase space are x1(t)=s(t), x2(t)=s(t−1) and x3(t)=s(t−2). 
Such a reconstruction results in a sequence of state vectors {y(n)}, where n plays the role 
of the time index, and in this case y(1)=[2,1,3], y(2)=[1,2,1], etc. Let us denote the nearest 
neighbor to the vector y(1) as yk(1) (the superscript k indicates the kth closest neighbour), 
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which in this case is state vector (point in phase space) y1(1)=y(5) =[2,3,1]. The distance 
between y(1) and y1(1) is denoted by z1(1). If there exists some underlying mapping 
which takes y(1) and y1(1), and moves them to the next time step, i.e. to the points y(1+1) 
and y(1,1+1). It is important to point out that y(1,1+1)≠y1(1+1), which means that the 
closest neighbour to y(1+1) is not necessarily the point y(1,1+l). Similarly, the distance 
between y(1+1) and y(1,1+l) can be denoted as z(1,1+1). 

Table 3.3. A simple hypothetical example of phase 
space reconstruction used to define the nearest 
neighbour in order to illustrate the methodology 
behind estimating Lyapunov exponents from time 
series (adopted from Tsonis, 1992). 

m=3, τ=1   
n 1 2 3 4 5 6 7 8 9 10 11 12

        z(1, 1+1)   
       

x1(t) 2 1 1 3 2 3 3 5 3 3 2 1
x2(t) 1 2 1 1 3 2 3 3 5 3 3 2
x3(t) 3 1 2 1 1 3 2 3 3 5 3 3

  ↓ ↓     ↓ ↓   
  y(1) y(1+1)     y1(1) y(1,1+1)≠y1(1+1)   
    

      z1(1)                  

If F is the underlying mapping, one could write: 
z(1,1+1)=F(y1(1))−F(y(1))=F(y(1)+z1(1))−F(y(1)). 

(3.65) 

Equation (3.65) can be generalised for any point y(n) and any of its k=1,…,l closest 
neighbours, 

z(k, n+1)=F(y(n)+zk(n))−F(y(n)). 
(3.66) 

Taylor’s series expansion about zk(n) and truncation of the high-order terms (except 
linear) results in 

z(k, n+\)=Azk(n) 
(3.67) 

where the matrix A is defined as 
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(3.68) 

which is in fact the Jacobian matrix (3×3 in this case). Since z(k, n+1) and zk(n) are 
vectors, one can write the first component of z(k, n+1) as 

 
(3.69) 

or considering all neighbours k=1,…,l, 

(3.70) 

The entries of the matrix B can be estimated from the time series of the observable {s(n)}. 

In our case (see Table 3.3), etc. In 
general notation, zk(n)={s(nk+(a−1)τ)−s(n+(a−1)τ)}, where nk is the time index value 
associated with the kth neighbour to y(n) and a=1,2…,(m−1), where m is the embedding 
dimension. Likewise, the entries of the matrix D can be written in general notation by the 
following expression za(k, n+1)={s(nk+1+(a−1)τ)−s(n+1+(a−1)τ)}. Therefore by 
inverting the matrix, in theory it is possible to obtain the partial derivatives of the 
mapping (entries in matrix C). By repeating the procedure for the second, third,…, and n 
components all entries in equation (3.58) can be obtained. However, in practice one has 
more equations (due to large number of neighbours) than unknowns and thus the problem 
is overdeterminated. In such cases, the solution can be obtain by least-squares methods 
(see, for example, Eckman et al., 1986). Note that this procedure can be generalised for 
any embedding dimension m (there will be m components of the vectors). Up to this point 
of discussion, the presented procedure refers to just one point and its neighbours on the 
trajectory, and the monitoring of the evolution just one time step ahead. The complete 
estimation for this point requires the estimation of the m×m Jacobians for some n time 
steps along the trajectory, which results in A(1), A(2),…, A(n). According to the Oseledec 
multiplication ergodic theorem (see Abrabanel and Kennel, 1991), the Lyapunov 
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exponents (for the point and its neighbours) are the logarithms of the eigenvalues of the 
matrix 

 
(3.71) 

whereT denotes transpose operator and An=A(1)A(2)…A(n). Finally, the whole procedure 
is repeated for many other points and their neighbours. Thus, the Lyapunov exponent 
spectrum is produced by the average from all the points sampled along the trajectory. As 
pointed out by Abrabanel et al., (1989, 1990) these approaches may not provide reliable 
estimations for all but the leading Lyapunov exponents. The difficulty in estimating 
negative Lyapunov exponents is due to the fact that fractal attractors are often thin in 
many locations (points) along the directions of convergence of the orbits in phase space. 
The existence of such thin regions result in a lack of neighbours or false neighbours due 
to the presence of noise that can easily distort these regions. The solution of this problem 
is to consider quite long time series and as many as possible of the different number of 
points in phase space. On the other hand, if one considers neighbours that are large 
compared to the thickness of the attractor, yet small compared to the size of the attractor, 
then the points in these neighbourhoods, in general, lie close to some curved subsurface 
within the local neighbourhood. Employing linear mapping of the fluctuations in this case 
may result in a severe underestimation of the Lyapunov exponents. To overcome these 
problems Brown and Abrabanel (1991) showed that local nonlinear mappings 
(polynomials of order 3) may be advantageous in some real-life applications when one 
deals with noisy and limited data sets. 

The procedure of estimating the Lyapunov exponents from a time series of 
observables presented above suggests that this task is far from trivial and computationally 
demanding. The monitoring of the long-term evolution of the fluctuations from nearby 
orbits on the trajectory implicitly requires modelling of the dynamics of the attractor (that 
is the mapping from one state to another), though in the stage of identifying the 
underlying dynamics of the system. Thus, estimation of the complete spectrum of the 
Lyapunov exponents should be seen as an iterative and interactive process, which 
sometimes requires from the modeller a re-estimation of the complete geometrical 
properties of the attractor in the modelling process, until there is enough convincing 
evidence for their reliable estimation. In this work we have used the modified version of 
the algorithm of Brown and Abrabanel (1991) for Lyapunov spectrum estimation. 
Furthermore, the largest Lyapunov exponent, which has significant dynamics 
identification and modelling implications, was checked against the algorithm of Wolf et 
al. (1985). As an example, the Lyapunov spectrum estimated from the water level time 
series at Hoek van Holland tidal station is presented in Figure 2.28.  
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Figure 3.28. Estimated average local 
Lyapunov exponents for the hourly 
water level time series at Hoek van 
Holland tidal station in m=6 
dimensions. The data are consistent is 
showing a sum of global Lyapunov 
exponents (the values for about 1000 
steps along the attractor) that is 
negative. 

The largest Lyapunov exponent is estimated as λ1=0.38 (uncertainty 0.02) which 
indicates a loss of information of 0.38 bits/hour during the dynamical evolution of the 
system, and thus loss of predictive capabilities. The reliable limits of predictability of the 
system based on the available time series is between λ1

−1=1/0.38=2.63 hours and 
τ/λ1=4/0.38=10.53 hours. The Lyapunov spectrum contains a large negative exponent 
λ6=−0.90 which indicates presence of strong dissipation mechanisms in the dynamics of 
the system. The presence of positive Lyapunov exponents and the fact that 

provide strong evidence that dynamics of the system is driven 
by deterministic chaos. Furthermore, one of the Lyaunov exponents λ4=0.0 is clearly 
zero, which indicates that the deterministic motion of system can be mathematically 
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described by a system of 6 nonlinear ordinary differential equations. More results are 
presented in Chapter 6. 

3.3.5 Entropies form time series data 

When we introduced the concept of mutual information for time delay estimation, we 
have also briefly discussed the concept of information entropy. The general concept of 
entropy is fundamental for the study of statistical mechanics and thermodynamics. From 
the thermodynamics perspective entropy is a quantity describing the amount of disorder 
in the system. One can generalise this concept to the amount of information stored in 
more general probability distributions. This is the entropy approach that information 
theory is concerned with. The theory has been developed since 1940s and 1950s, where 
the main contributors were Shannon, Renyi and Kolmogorov. The text book of Jaynes 
(1995) gives an historical overview of the development of the information theory and its 
connections with the probability theory complemented by an excellent philosophical 
discussion. 

Information theory provides an important approach to time series analysis. The 
observation of a system is regarded as a source of information, that is, a stream of 
numbers which can be considered as a transmitted message. If these numbers are 
distributed according to some probability distribution, and the transitions between 
different numbers occur with well-defined probabilities, one can questions of type: “How 
much do I learn on average about the sate of the dynamical system when I perform 
exactly one measurement?”, or “How much information do I know about the future 
observations when I have observed the entire past?”. Information theory supplies 
concepts that can give certain quantitative answers. For example, when one knows that 
the dynamical system is at rest at a stable fixed point, a single observation suffices to 
determine the whole future with exactly the same precision as the precision of the past 
observations. If one deals with regular periodic dynamical systems, an observation of a 
single period is enough to know all about the time series generated by this system. If the 
system is random, then one is not able to predict with certainty the next observation even 
with an infinite number of previous observations. One could also ask whether the concept 
of entropy could provide certain quantitative information when one deals with systems 
whose dynamics is quasi-periodic and chaotic. Therefore, for these reasons a numerical 
value of the entropy of a time series observed on a certain dynamical system is interesting 
for its characterisation. Firstly, its inverse (similar to Lyapunov exponents) is the relevant 
time scale or the predictability of the system.  

Secondly, it suplies topological information about the folding process of the attractor. 
Thirdly, in general, it can provide qualitative information for identification of the 
dynamics of the system, i.e. it is zero for a systems which exhibit regular periodic 
motion, positive and finite for deterministic chaos and infinite for stochastic processes. 

One of the most commonly used entropy estimation in nonlinear time series analysis is 
the Kolmogorov-Sinai entropy hKS, which can be obtained from the set of correlation 
functions Cm(r) (Grassberger and Procaccia, 1983). For practical applications, it can be 
approximated as the limit as the embedding dimension m→∞ of the distance (in log-log 
coordinates) between successive correlation curves Cm(r) and Cm+1(r) (see Baddi and 
Politi, 1985 and Grassberger, 1985): 

Nonlinear dynamical systems and deterministic chaos       113



 
(3.72) 

and further 

 (3.73) 

Similary to the generalisation of the dimensions of the attractor (see Section 3.2.4), the 
entropy concept can also be generalised. We have discussed that the most robust 
dimension is the correlation dimension D2, and the same goes for the entropies: h2 is the 
most robust, due to the fact that the second moment in the correlation sum is an 
arithmetic average over the numbers of the neighbours. In this case, h2 is just an estimate 
for hKS, and for multifractal attractors can be considerably smaller than hKS (reported by 
Grassberger and Procaccia, 1983). 

One of the main difficulties of extracting the entropies from time series data is 
primarily because their computation requires far more data than calculating dimensions 
and Lyapunov exponents, since the limit m→∞ constitutes the crucial problem (high 
embeddings are needed). However, as discussed above h2 can be approximated using the 
correlation sum, which is anyway computed for the estimation of the correlation 

dimension. Also, we recall that using the Pesins’ identity one can 
find the upper bound of the Kolmogorov-Sinai entropy. 

3.3.6 Nonlinear noise reduction 

All data to some extent are contaminated by noise, and noise by definition is the 
unwanted part of the data. The only question is what does it mean for practical analysis 
tasks such as modelling and prediction. Generally speaking, in the terms of a nonlinear 
time series analysis the effect of noise is one of the most prominent limiting factors for 
the predictability of deterministic systems. The range of the length scale through which 
one can monitor the exponential divergence of nearby trajectories is bounded from below 
by noise in the data. An extreme consequence of the noise is the breakdown of the self-
similarity and the fractal nature of the attractor of a deterministic dynamical system that 
could lead to a wrong impression about the qualitative behaviour of the dynamics. We 
have already discussed the effect of noise in the correlation dimension estimation, 
especially in terms of the difficulties of obtaining the correlation exponent at microscopic 
(small) length scales. Several authors have studied the effect of noise on the estimation of 
the geometrical and dynamical invariants estimation within the nonlinear time series 
analysis context (see, for example, Schreiber and Kantz (1995). They presented a 
remarkable result, concluding that in case of presence of uncorrected white noise the 
tolerable noise level for estimation of various dimensions, exponents and entropies from 
time series, focusing on the small length scales, cannot be greater than 5%. Therefore one 
has to deal with the sensitivity of these quantities to noise, especially focusing on the 
length scales which give a robust estimation of those quantities. Another approach is to 
try to reduce the noise level using appropriate noise reduction algorithms. Before 
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proceeding with the discussion on noise reduction, we have to make an important 
distinction between the terms used. In general, there are two types of noise that one can 
clearly define: measurement and dynamical noise. Measurement noise refers to the 
corruption of observations by errors which are independent of the dynamics. The 
dynamics satisfy some deterministic mapping xn+1=F(xn), but one measures the scalars 
sn=s(xn)+ηn, where s(xn) is some smooth measuring functions which maps points on the 
attractor to real numbers and ηn are random numbers. The series {ηn} is referred as to the 
measurement noise. On the other hand, dynamical noise is a feedback process wherein 
the system is perturbed by a small random amount at each time step, i.e. 

xn+1=F(xn+ηn). 
(3.74) 

Dynamical and measurement noise are two notions that are very difficult to distinguish a 
posteriori based on the data only, and furthermore they can be mapped onto each other, 
as has been pointed out by Bowen and Ruelle (1975). Although one is interested in 
quantifying the dynamical noise, generally dynamical noise induces greater problems in 
the nonlinear time series analysis than the measurement (or additive) noise, since it can 
pollute and distort a nearby clean trajectory of the underlying deterministic system. 
Furthermore, what one interprets as a dynamical noise may sometimes be higher-
dimensional deterministic parts of the dynamics with small amplitudes. Therefore, 
dynamical noise may have great influence on the observed dynamics because transitions 
to qualitatively different behaviour (bifurcations) can be induced or delayed by the 
dynamical noise. 

Noise reduction, in a practical sense, means that one tries to decompose a time series 
into two components, one of which evidently contains the deterministic signal and the 
other contains the random fluctuations. The classical linear statistical tool to carry out this 
decomposition is the power spectrum. Random noise has a flat and broadband spectrum, 
whereas periodic and quasi-periodic time series exhibit sharp spectral lines. After both 
components have been identified in the time series, one could use any linear filter to 
separate the time series accordingly. However, this approach fails for deterministic 
chaotic dynamical systems because the output of such systems usually leads to a 
broadband power spectra itself and thus possesses spectral properties generally attributed 
to random noise. Even if parts of the spectrum can be clearly associated with the 
deterministic nature of the signal, a separation of the noise for most parts of the 
frequencies will fail. 

The way to exploit the deterministic structure using nonlinear noise reduction 
techniques is closely related to the modelling and prediction of the attractor of the 
dynamical system in the reconstructed phase space from time series. The main idea 
behind this is the following: Let the time evolution of the dynamical system be 
deterministic with the mapping xn=f(xn−m,…, xn−1), however, not known to us. All the 
information we have about the system is a time series of some noisy measurements 
observed on the dynamical system sn=xn+ηn, where ηn is suppose to be random noise 
characterised by fast decay of the autocorrelation function and no correlations with the 
signal xn. If the time series is free of noise, than the trajectory of the deterministic system 
in the phase space will define a clear geometrical object. However, due to the presence of 
noise the points in the reconstructed phase space will not lie on the “true” trajectory, but 
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will be scattered around it. In order to clean a particular value of the time series, one has 

to replace (correct) the measurement by a prediction based on the previous 
measurements in the reconstructed phase space. 

 (3.75) 

This idea can be further enhanced using an implicit relation (Kantz et al., 1993), such as 
xn−f(xn−m,…, xn−1)=0 

(3.75) 

and solving it for one of the coordinates in the middle, say xn−m/2. Figure 3.29 gives a 
graphical representation of the simple nonlinear noise reduction technique. 

 

Figure 3.29. Graphical illustration of 
the simple nonlinear noise reduction 
technique. With regard to the reference 
time n0, the trajectory is close to: a) the 
true trajectory (bold line) for two time 
steps in the past; b) the true trajectory 
for two time steps in the future. Both 
are not close with regard to the time n0, 
due to the sensitive dependence on the 
initial conditions. Finally, the 
trajectory c) is close in the past and in 
the future to the true trajectory and 
thus to the time n0. (Figure courtesy of 
Kantz et al., 1993). 

Of course, one does not know the mapping function f and one must approximate it. Based 
on the type of the approximation of the mapping function f, several versions of this 
nonlinear noise reduction approach exist. The basic approximation can be that the 
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mapping function f is locally constant. In other words, in order to obtain the estimate 

for the value one could form delay vectors (points in phase space) 
yn=(sn−m+1,…, sn) and find which ones are close to the Then the average value of the 

sn−m/2 is used as a cleaned (corrected) value  

 
(3.76) 

where the neighbourhood of radius ε around the point This formula is 
very similar to the local modelling and prediction of the dynamics of the attractor (see 
next Section 3.3.7), with the main difference that here one can use the future values of the 
time series, which practically means that the neighbourhood is never empty. The only 
parameter is used in (3.76) is the radius ε and if ε is too small, in the worst case, what can 
happen is that no correction of the observation is made at all. If the radius ε is too large, 
the outcome of the algorithm can result in a slight distortion of the geometry of the 
attractor. In practical applications one must ensure that the distortion is considerably 
smaller than the noise level in the time series. Obviously, before applying any noise 
reduction or surgical noise removal from the time series in real applications, one should 
try these algorithms on well-known mathematical dynamical systems. As an illustration, 
we present here example of the application of simple nonlinear noise reduction algorithm 
on the Hénon map. The “clean” signal obtained by 15000 iterations of the Hénon map 
was polluted by 10% of additive, independent and uniformly distributed noise, which was 
bounded in magnitude (0.10) with standard deviation of 0.07 (compared to the standard 
deviation of the generated time series of 0.72). Figure 3.30 shows the reconstructed phase 
space of the polluted and cleaned time series. 

 

Figure 3.30. Hénon map time series 
(15000 points) of polluted by 10% 
additive noise and the cleaned time 
series by applying the simple nonlinear 
noise reduction algorithm. 
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As an example of a real application, Figure 3.31 shows the correlation exponent 
estimation as a function of the embedding dimension for daily rainfall time series (period 
1955–1998, 16071 samples) at De Bilt meteo station in the Netherlands, for both the 
original and “cleaned” time series.  

 

Figure 3.31. Relation between the 
correlation exponent and the 
embedding dimension for the daily 
rainfall time series data at De Bilt 
meteo station (period 1955–1998). 
Time delay τ=4 hours. 

From the results presented on Figure 3.31 one can see that the “noise-free” time series of 
the daily rainfall exhibits better saturation with the increase of the embedding dimension 
and lower correlation dimension (4.65 in this case) compared to the original time series. 
Correlation dimension estimation was also performed on the derivative time series of the 
rainfall data (daily intensities) and on stochastic surrogate time series containing the same 
power spectrum as the original time series. As expected, the stochastic surrogate data 
does not exhibit any saturation with the increase of the embedding dimension. This 
indicates that the underlying dynamics of the daily rainfall times series at De Built meteo 
station may be driven by deterministic chaos. More discussions and results are presented 
in Chapter 6. 
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3.3.7 Modelling and forecasting (global vs. local) 

The most direct link between the mathematical methods and techniques offered by the 
theory of nonlinear dynamical systems and the concept of deterministic chaos and the 
real world dynamical systems (such as aquatic systems) is the analysis of data (time 
series) produced by those systems. Having introduced and demonstrated the methods and 
techniques for reconstruction, identification, delineation and quantification of the 
underlying dynamics of such nonlinear systems from observables, one may justifiably get 
the feeling that subjective judgement of the modeller may be required in order to make 
maximal use of those techniques; thus one requires interactive analysis process. Once the 
dynamics of the system is reconstructed and characterised from the time series of 
observables, the next natural step is to explore possibilities for constructing models from 
the data that will realistically model the underlying attractor dictating the dynamics of the 
system. In general, the ultimate goal of constructing such models is forecasting, which in 
the terms of the phase space representation of the dynamics means the extrapolation of 
the trajectory, thus, modelling the dynamical evolution of the system in time which is yet 
to be observed. Therefore, in this context, the concept of learning models from data is 
usually a nonlinear regression estimation of the reconstructed trajectory of the dynamical 
system from time series data in phase space. These regression estimation techniques have 
already been discussed in Chapter 1. We have also learned that the dissipative dynamical 
systems, though deterministic in nature, exhibit sensitive dependence on initial conditions 
and exponential growth of small dynamical disturbances in time, and therefore can be 
characterised by deterministic chaos, which in turn limits the predictability. One could 
certainly pose the following questions: What are the consequences of the existence of 
such chaotic dynamics? or How can such dynamical systems best be modelled? or How 
uncertain is the forecasting? 

In order to give answers to these (and similar) questions, one should not forget that the 
chaotic dynamics is deterministic. Chaotic dynamical systems obey certain rules. Their 
dynamics live in a certain phase space with certain degrees of freedom, and are 
asymptotically stable and attracted to certain geometrical objects that can be identified 
and quantified using various geometrical invariants and measures, such as the 
dimensions. They have limited predicting power, which clearly and explicitly can be 
quantified with the Lyapunov exponents and entropies, for example. However, before 
their predictive power is lost (i.e. for short-term prediction) their predictability may be 
adequate and even better than the generally applied nonlinear neural network prediction. 
This advantage is due to the knowledge gained by the reconstruction of the underlying 
determinism, and the capability of accurately modelling the evolution of the nearby orbits 
in the reconstructed phase space locally, rather then globally. Therefore, the modelling in 
this sense is the modelling of the reconstructed phase space of the dynamical system. 
Consequently, the basic philosophy behind nonlinear forecasting is the same as that of 
estimating the Lyapunov exponents (described in Section 3.3.4): to accurately obtain 
from a time series of an observable the mapping that dictates where in an m-dimensional 
phase space the next point (state) will be located. 

To model nonlinear deterministic dynamics, or a dominant deterministic part of some 
mixed system, one has to accurately reconstruct the phase space from time series of 
observable. At this point of the discussion, we consider an m-dimensional delay 
embedding based on univariate (scalar) time series of an observable; we extend this latter 
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to vector valued (multivariate) time series embedding. Since the time series data are 
discretely sampled over time, the underlying dynamics is described by a deterministic 
model in phase space, which is always a map of the form 

Yn+1=fn(Yn) 
(3.77) 

where Yn are delayed vectors (states) Yt={sn, sn−τ, sn−2τ,…, sn−(m−1)τ}, formed by the 
embedding of the time series of observable {sn=xn+ηn} in m-dimensional phase space 
with an appropriate time delay τ=v∆t (v is time index—integer). In order to forecast the 
next state of the dynamical system, one needs find the estimator of the regression 

function and thus, one can estimate the prediction of sn+l, 

 (3.77) 

After these more general considerations, the next step is to find the proper approximation 
of the model, expressed through its structure and capacity, and a criterion for the quality 
of the model which is to be learned form the data in the reconstructed phase space (such 
as the ERM or SRM principles discussed in Chapter 1). Generally speaking, there are two 
possibilities for choosing the structure of the model in order to approximate the “true” 
mapping function, namely global and local approximations. 

GLOBAL MODELS IN PHASE SPACE 

The global modelling in phase space is a global nonlinear regression estimation problem, 
which we addressed in Section 2.6. We basically have to choose appropriate parametric 
or nonparametric model (functional form), which has enough capacity to approximate the 
true (unknown) function of the whole attractor. A widely used approach is to choose the 
structure of the function f to be a superposition of several basis functions, 

The k basis functions Φi usually are kept fix during the empirical or 
structural risk minimisation procedure, while optimising the parameters αi of the model. 
The most commonly used basis functions range from polynomials, radial basis functions, 
sigmoid functions (neural networks) and recently wavelet basis functions. 

The main advantages of polynomials are that most practitioners are familiar with them, 
there is the possibility of estimating the parameters using linear algebra and the existence 
of physical interpretations of the trained model. However, the main drawback is that the 
number of parameters may become very large, for example, in m-dimensional phase 
space if one uses polynomial of order l, the number of parameters is k=(m+1)!/m!l!. As an 
illustrative step-by-step example of estimating polynomial mapping in phase space in 
order to model the attractor and forecast the future value of the observable, we consider a 
very simple setup: We are given a time series of observable s(n) (which were in fact 
generated by the logistic map) of 18 observations in total, s(1)=0.4100, s(2)=0.9676,…, 
s(18)=0.9979. Using the time delay embedding method (with τ=l and m=2) one can 
reconstruct two dimensional phase space from the time series with coordinates 
y1(n)=s(n−τ) and y2(n)=s(n). Note that the optimal time delay and the embedding 

Nonlinear dynamics and chaos with applications to hydrodynamics and hydrological modelling     120



dimension are estimated using the methods and techniques for phase space reconstruction 
we described earlier in this chapter. Such reconstruction results in a sequence of state 
vectors (points) y(n) in phase space that lie on the trajectory that has to be modelled; see 
Figure 3.32. For example, point 2 is defined by the state vector y(2) with coordinates 
(0.41, 0.9676), point 3 by y(3)=(0.9676, 0.1254), etc., and the last point is point 18 
defined by the vector y(18)=(0.4775, 0.9979). The main task now is to obtain a prediction 
for the observation s(19), i.e. one has to find the next point in the phase space 
y(n+1)=f(y(n)). From the reconstructed phase space it is visible that the trajectory of 
dynamical system can be approximated by a quadratic polynomial function, e.g. 
y(n+1)=a+by (n)+cy2 (n).  

 

Figure 3.32. Illustration of two-
dimensional reconstruction of the 
phase space from a time series of 
observable and global modelling in 
phase space on a hypothetical example. 

The task now is to estimate the parameters a, b and c of the global mapping function in 
phase space. However, since there are more points which must satisfy the mapping 
function than parameters, the problem is overdetermined. In this example, one could 
write 16 equations mapping the states from one time step to another and 3 parameters, 
namely 

y(3)=a+by(2)+cy2(2) 
y(4)=a+by(3)+cy2(3) 
… 
y(18)=a+by(17)+cy2(17) 

  

which can be written in a matrix form as A=BC, where the entries in matrix C are the 
parameters of the function. Due to overestimation one cannot directly invert the matrix B, 
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i.e. C=AB−1. In this case one could employ any nonlinear regression estimation technique 
discussed in Chapter 2. Strang (1986) showed that by using the squared loss (error) 
function e=||BC−A||2 and minimising the empirical risk, the parameter vector can be 
estimated as C=(BT B)−1 BTA. In this example, parameters are estimated as a≈0, b≈4 and 
c≈−4. Thus, the global mapping function which can be used to forecast the next states of 
the dynamical system is of the form 

y(n+1)=4y(n)−4y2 (n)=4y(n)[1−y(n)]   

which is in fact the logistic map with parameter µ=4. 
Another very flexible model class for approximating the global mapping function in 

phase space, which was introduced in the field of nonlinear time series analysis by 
Broomhead and Lowe (1989), is the radial basis functions. The basis function in this case 
is a scalar function Φ(r) of the argument r. One has to further select k centres yi on the 
reconstructed attractor. In this case the mapping function can be written as  

 (3.78) 

Typical basis functions Φ(r) that are most commonly used are bell-shaped, though 
increasing and even singular functions have been reported in the literature. The function f 
is modelled by adjusting the parameters αi of the basis functions. If the centres yi are 
reasonably well distributed on the attractor, the superposition of the basis functions yields 
a global hyper-surface which models the global dynamics of the attractor. Thus, the 
number and the positions of the centres have to be selected properly. In order to assist 
this procedure, one can use some clustering algorithm (such as k-means) to initialise the 
centres. Determining the parameters αi is then a risk minimisation problem. The typical 
width of the basis functions Φ(r) can be optimised systematically by testing several 
values. Furthermore, the number of the centres and the width of the basis functions can 
be introduced as regularisation parameters in the optimisation algorithm, for example, 
gradient descent. 

Neural networks provide another nonparametric class of models for the global 
modelling in phase space and have already been discussed in Section 2.6.3. 

The last class of models that we would like to address in the context of global 
modelling in phase space is the so-called wavelet networks. The wavelet network can be 
seen as a special feed forward neural network supported by the continuous wavelet 
theory. The have been recently introduced by Zhang (1993) and started to attract much 
attention due to their capabilities of efficiently decomposing the time series. The basic 
idea of the wavelet transform is to map functions from the amplitude-time domain to a 
frequency-time phase space. For the sake of clarity we first discuss a one-dimensional 
case in R and then its generalisation to Rn. The wavelet transform is the transformation 
(or projection) of the original function to a family of functions generated by dilating and 
translating a single basis function which is called a mother (or basic) wavelet. In 
mathematical terms, if ψ(x) is the mother wavelet, the family 

 
(3.79) 
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is used for the continuous wavelet transform. If the mother wavelet is chosen such that 

 
(3.80) 

where is the Fourier transform of ψ(x), then the following transformations hold for 

any  

 
(3.81) 

and 

 
(3.82) 

The expression (3.80) is called the continuous wavelet transform and by using the 
convolution integral it calculates the set of wavelet coefficients for values of the different 
scaling (dilating) and translating parameters. The inverse of the scaling parameter defines 
the presence of particular frequencies, and the translating parameter incorporates the time 
structure in the transformation. The expression (3.81) is the reconstructed function on the 
basis of the wavelet transformation. Note that this reconstruction procedure can be 
utilised to extract or filter out particular frequencies from the signal (this is practically 
illustrated in the application in the Section 6.2). Furthermore, the choice of the mother 
wavelet ψ(x) determines the properties of the wavelet transform (see Daubechies, 1990 
for discussion). In order to implement practically the continuous wavelet transform and 
the reconstruction respectively, they have to be written in discretised form. Normally in 
the wavelet theory literature (Lewalle, 1995) this is done by taking a regular lattice with a 
uniformly distributed translation parameter t and exponentially distributed scaling 
dilation parameter d, or more precisely, the following discretised wavelet family is used 

 (3.83) 

where α and β define the steps of the scale (s) and the translation (n) discretisations 
respectively. As pointed out by Daubechies (1990) by using this discretised wavelet 
family, the reconstruction expression, an analogue of (3.82), will not automatically hold. 
An additional condition for the wavelet family (3.38) is the need for it to fold, so that the 
discretised wavelet family constitutes a frame of the R space (see details in Daubechies, 
1990). If the wavelet family (3.83) is a frame of the R space, then an analogue of the 
reconstruction expression (3.82) can be written as: 

 
(3.84) 
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The expression (3.84) can be further written as a summation of N approximations of 
several discretised wavelet family (3.83), or in general form: 

 
(3.85) 

The expression (3.85) defines the one-dimensional wavelet network which can be only 
used to approximate functions in R. In order to generate an approximate function in Rn, 
we need to construct multivariate wavelets. Zhang (1994) presented an extension of the 
one-dimensional wavelet network (3.85) using radial wavelets of form: 

 (3.86) 

where the norm is ||x||=(xTx)1/2 and is a single variable nonlinear function. Using the 
radial wavelet (3.86) the one-dimensional wavelet network can be extended to the 
following multi-dimensional function approximator: 

 
(3.87) 

where N is the number of the wavelets used to construct the network, are 

scaling parameters (diagonal matrices), are the translation parameters and 

are linear weights of the wavelets. Similary to the neural network, the 
parameters of the wavelet net (the linear weights of the contribution of each of the 
wavelets) can be learned by minimising the loss function using any optimisation 
algorithm, such as described in section 2.9. 

LOCAL MODELS IN PHASE SPACE 

In general, global models provide good approximations of the mapping function if f is 
well behaved and not very complicated. For dynamical systems which exhibit chaotic 
determinism whereby close orbits in the phase space diverge exponentially locally, a 
better approach is building local models in phase space, as introduced by Farmer and 
Sidorowich (1987) and then further elaborated by Casdagli (1989) and Sugihara and May 
(1990). The basic idea of the local approximation methods is to use only the states close 
to present state in phase space in order to make predictions. Thus, they learn 
neighbourhood relations from the data and map them forward in time. Although this 
approach is conceptually simpler than the global models, depending on the type of the 
local approximations used, they can require a large computational effort. In general, local 
approximations are well suited for long time series (the phase space is well populated 
with neighbours) and small noise level. 

In order to predict the value of the observable Sn+T (sn≈xn for low noise level), which is 
part of the state vector Yn+T where T is some time horizon in the future, based on the state 
vectors Yn and past history embedded in the reconstructed phase space, k nearest 
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neighbours of Yn are found on the basis of some norm ||Yn−Yn′||, with n'<n. Depending on 
the number of the neighbours considered and the type of the local mapping chosen, 
several variations of the local approximation method are attempted: 

(i) Zeroth order approximation in which the closest neighbour to the current state in 
phase space is chosen and the prediction is simply given as 
Ŷn+T=Yn'+T 

(3.88) 

where n′ is the time of the closest neighbour. In the example previously introduced (see 
Figure 3.32) the task was to obtain a prediction for the observation s(19). According to 
this approximation, s(19) is approximated to the point to which the nearest neighbour in 
the phase space of y(18) evolved. In this example, the nearest neighbour to state y(18) is 
state y(11), which evolved to y(12), whose coordinates are (0.9998, 0.000568). Thus, the 
prediction for s(19) is simply s(19)≈0.000568. The true value of s(19), computed from 
the logistic map is s(19)=0.000808, which is a reasonable prediction. Having the value of 
s(19) and thus the state y(19), one can find its nearest neighbour and predict the value of 
s(20), and so on. Such zeroth order local approximation was initially applied by Lorenz, 
who tried to predict the weather using this kind of persistent prediction. In order to 
predict the weather tomorrow one looks in the past to find closest weather pattern to that 
of the current weather, further analyse how it evolved and assume that this will be the 
prediction of the weather for tomorrow. Normally a question arises whether one 
neighbour is enough for such a prediction. 

An improvement to the zeroth order approximation is to consider several neighbours 
in phase space. To predict the future of a point in phase space, one searches for its k 
closest neighbours and uses the average of the images of all these points, i.e. 

 
(3.89) 

The number of the neighbours k can be obtained by minimising the prediction error 
(optimisation), space time separation plots or false nearest neighbours algorithm. A 
modification to this local approximation is to introduce further a weighted average of the 
images of several neighbours in the form 

 

(3.90) 

Sugihara and May (1992) further introduced exponential weighting of images of exactly 
k=m+1 neighbours, which forms a simplex containing the current point 
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(3.91) 

There are also other similar suggestions of using this kind of local approximation, which 
in fact exploits the idea of almost model free local approximations. 

(ii) Local linear models (LLMs) 
An improvement to the zeroth order approximation is the first order or local linear 

approximation. The idea is to consider the k neighbouring points and learn local linear 
mapping functions in order to make predictions. The predicted state can be expressed as 
Ŷn+T=fn(Yn)=A(Yn)+B 

(3.92) 

where m×m matrix is the Jacobian of fn at Yn and B is an m-vector. The solution of 
equation (3.92) is discussed in section 2.5.6. Following the example that we have 
introduced, in order to predict s(19) one can find the closest neighbours to its state, 
namely, the closest neighbours to the state y(18) are points 2, 5 and 11. We can further fit 
a linear function between the closest neighbours and their images (the states towards they 
evolved; 3, 6 and 12), such as 

y(3)=a+by(2) 
y(6)=a+by(5) 
y(12)=a+by(11) 

(3.93) 

By solving (3.93) we estimate the parameters a and b and thus predict the next state, 
y(19)=a+by(18) (therefore the value of s(19) as well). The predicted value of s(19) by 
local linear approximation is s(19)=0.00887, which is better than the zeroth order 
approximation. In the same manner, we further find the neighbours of the point 19 and 
reestimate the local mapping function. This type of adaptive local approximation is 
referred to as direct forecasting and requires constructing the local mapping function at 
each prediction time step. An alternative to this approach is to obtain the local mapping 
function fn and then to iterate the predictions some time steps in the future until the 
prediction horizon T is reached (T=i∆t, i=1,2…,). Such iterative forecasting is simpler 
and sometimes can give better results than direct forecasting, especially for longer 
prediction horizons. 

(iii) Higher order approximations (polynomials) 
Analogous to the local linear approximation, one can increase the order of the local 

approximations using high order polynomials and even neural networks. However, this 
dramatically increases the number of parameters to be estimated and reduces the 
robustness of the local approximation, since at each time step one has to reestimate a 
neural network, for example, without much gain in prediction accuracy (see Abarbanel, 
1996). Some authors (see, for example, Farmer and Sidorowich, 1988) have also 
proposed an estimation of the error associated with iterative forecasting: 
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where m is the embedding dimension, N number of point in the 
time series, o is the order of local approximation, λ1 is the largest Lyapunov exponent and 
T is the prediction horizon. 

As an illustration of the forecasting performances of the local linear models in phase 
space, in Figure 3.33 we present some of the results obtained by a nonlinear time series 
analysis of the hourly surge water levels at Hoek van Holland tidal station in the 
Netherlands.  

 

Figure 3.33. Comparison between 
performance of different types of 
prediction models for the surge water 
level data at Hoek van Holland tidal 
station. Coefficient of determination 
(squared correlation coefficient) 
between the measured and predicted 
data is used as a performance measure. 

From the results presented in Figure 3.33, we can see that for short-term predictions 
(up to 6 hours) local linear models in phase space, both direct and iterated, perform better 
in comparison to nonlinear neural networks and linear ARIMA models. The local linear 
models were calculated using the reconstructed phase space (embedding dimension m=5 
and time delay t=4) from the time series of hourly surge water levels (1990–1996) by 
utilising the knowledge of the past evolution of k=300 neighbouring states. Two neural 
networks were considered in this case. The first neural network was constructed using the 
same information of the reconstructed phase space, thus generating a global nonlinear 
model of the phase space. The second neural network was constructed using time series 
data of water levels, air pressure, wind speed and wind direction from several 

Nonlinear dynamical systems and deterministic chaos       127



neighboring tidal stations (see Solomatine et al. 1999). LLMs clearly show better results 
than both neural networks for short prediction horizons (up to 6 hours), which justifies 
the predictability of the dynamical system obtained from the entropies and Lyapunov 
exponents from the time series. Finally, as a comparison between the nonlinear and the 
classical statistical linear modelling approach, an Autoregressive Integrated Moving 
Average Model (ARIMA) was constructed using the surge time series data. For a 
prediction horizon of one hour, the ARIMA model gives not significantly worse 
performance compared with both LLMs and NN models due to the deterministic 
persistency and continuity of the dynamical system. However, with the increase of the 
prediction horizon, it becomes obvious that the underlying dynamics of the system is far 
from linear. More results and discussions are presented in Chapter 6. 

3.3.8 Multivariate embedding (input-output systems) 

Up to this point of the discussion we have considered reconstruction of the phase space of 
the system and its underlying dynamics for time series of single dynamic variable. In 
principle, because of the embedding theorems that assume infinite long and noise free 
time series, scalar time series that observe the response of the system are generically 
sufficient to reconstruct the dynamics of the system provided that enough state variables 
(delay coordinates) are used. In practice, however, if one has several time series 
simultaneously measuring different observables with different physical meaning, an 
alternative approach can be taken for multivariate reconstruction of the phase space. For 
example, in the thermal convection experiment, time series of measurements of the z-
variable of the Lorenz system (3.1) cannot reconstruct properly the dynamics of the 
Lorenz system if there are not long enough and properly sampled, because of the x-y 
symmetry. More natural approach is to reconstruct the dynamics using all state variables 
of the Lorenz system. In this special case this would simplify the identification of the 
dynamics and the analysis of the results, since these variables span the true phase space. 
However, when one deals with real-life complex nonlinear dynamical systems, one does 
not know the exact number of the state variables, which drive the dynamics of the system 
(which is what we are trying to identify), and does not have time series of measurements 
of all those variables. Moreover, macroscopically meaningful variables are quite often 
complicated nonlinear functions of several microscopic variables, that can be furthermore 
very difficult to measure. Thus, the real phase space of the system may embody an 
attractor that is more folded than a delay embedding of only one dynamic observable. 
One can try to reconstruct the phase space using the available multivariate time series of 
measurements. Since the number of the variables is not enough for a full reconstruction 
of the phase space, one will have to involve additional delay variables. For example, for 
reconstruction of a nine-dimensional phase space one could use the observed time series 
of three variables and their proper time delays. This multivariate reconstruction of the 
phase space does not include conceptual problems in comparison to the univariate 
embedding, but makes the algorithms somewhat more complicated technically. 

An important issue in multivariate time series analysis, and thus the reconstruction of 
the phase space of dynamical system, is the relationships between the variables. This is 
because they basically provide a simultaneous time evolution of the crucial dynamic 
variables. Several authors (e.g. Abrabanel, 1994) characterise the relationships between 
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the dynamical variables as non-predictive and predictive. The natural approach in 
modelling is usually to distinguish between the dynamical variables as dependent and 
independent, thus conceptualising the dynamical system as an input-output system. Non-
predictive relationships between the variables investigate relations and structures between 
the independent and dependent variables by including future information of the 
dependent variables. Thus, these kinds of relationships are used to analyse the underlying 
dynamics and cause-effect repercussions rather than building prediction models. On the 
contrary, predictive relationships do not include future values of the dependent variables 
while studying the structure and relations between dependent and independent variables. 
As a result, such multivariate models can be used to carry out simulations to examine the 
effects of an impulsive change of one or more variables on others, and further as 
prediction models. 

Similarly to the univariate embedding, the reconstruction of the phase space using 
multivariate time delay embedding procedure requires proper selection of the time delays 
and embedding dimensions. In mathematical terms this can be expressed as follows: One 
considers and M-dimensional noisy time series each containing N measurements s1, s2,…, 
sN where si=(s1,i, s2,i,…, sM,i), i=1,2,…N. As in the case of univariate time series (M=1), 
the time delay reconstruction can be written as: 

 

(3.94) 

where τi, mi,=1,2,…M are the time delays and embedding dimensions, respectively. 
Following the embedding theorem, there exist in the generic case a function F: Rd→Rd 
(d=∑Mmi) that maps the current state of the system into the next state, 

Vn+1=Fn(Vn) 
(3.95) 

if the total embedding dimension d is sufficiently large. Equation (3.95) can also be 
written in equivalent form for practical implementation such as 

s1,n+1=F1,n(Vn) 
s2,n+1=F2,n(Vn) 
. 
. 
. 
sM,n+l=FM,n(Vn) 

(3.96) 

We can expect that multivariate embedding (3.94) and multivariate models of type (3.96) 
will include more information and hence a more accurate description and prediction of 
the underlying dynamics of the system. Moreover, multivariate phase space 
reconstruction allows the incorporation in the modelling procedure of both the temporal 
information containing the time series and the spatial information deriving from 
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considering several variables of the system, and the delayed information. However, 
looking at equation (3.94) it is obvious that for small values of the individual embedding 
dimensions, the reconstructed phase space will contain a large amount of delay vectors 
and thus great redundancy of data. In terms of the theory of nonlinear dynamics, this 
means that the cloud of points may easily hide the manifold holding the attractor of the 
system. Furthermore, the trajectory of the system may not be smooth and clear as much 
as the trajectory revealed from the univariate reconstruction. Therefore, similary to the 
univariate reconstruction, the problem of reconstructing the phase space using 
multivariate times series of observables is that of finding the proper time delays and 
embedding dimensions, which will unfold the attractor of the dynamical system, so that 
equations (3.95) and (3.96) hold. Choosing the time delays for the multivariate 
embedding is similar as the choice of time delay from a scalar time series; thus methods 
and techniques discussed earlier in this chapter hold. Furthermore, one could use for 
example the mutual information technique between two or three time series of 
observables to find the optimal time delays. 

The choice of the embedding dimensions from multivariate time series data is more 
difficult and still an open problem. Recently, Cao et al. (1995, 1997) have proposed a 
method for choosing the minimum embedding dimensions based on the average false 
nearest neighbours. This method draws on the false nearest neighbourhood technique 
(described in section 3.3.2). The basic idea is to utilise the continuity of the mapping 
function F in phase space (3.95) or the functions F1,…, FM (3.96) if they exist. For 
practical implementation it is better to consider the mapping functions F1,…, FM 
separately since they may differ (e.g. for the Lorenz system: depends only on y and x 

itself but not on z, while depends on all variables x, y and z). Thus one could consider, 
for example, the problem of finding the minimum embedding dimensions of F1 in (3.96) 
for already chosen time delay τi. For any given set of dimensions one could construct 

series of the delay vectors Vn, defined in (3.94), where 
For each vector Vn one could find its neighbour Vη(n), such that 

(3.97) 

where one could use either the Euclidean norm or some other norm. Having found the 
neighbouring points, the idea is now to calculate the mean one-step prediction error from 
a simple neighbourhood local predictor (recall the local zeroth order models), and thus, 
express the error as a function of the embedding dimensions, 

(3.98) 

One could also consider different error measures, such as mean absolute error or root 
mean squared error. Different error measures that are used to assess the quality of the 
predictions throughout this work are presented in Appendix A. Is obvious that in order to 
minimise the error (3.99) one needs to solve an optimisation (error minimisation) 
problem, i.e. 
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(3.99) 

where Z denotes all non-negative integers. In this way one could find the minimum 
embedding dimensions, which minimise the one-step ahead prediction error. However, 
this does not imply optimal embedding dimensions which will smoothly unfold the 
attractor of the system. The main drawback of this method is that it is a model based on 
predefined local models (one must assume the local mapping functions and the number of 
neighbours) and is very sensitive to noise. 

In this work we propose a systematic approach to the reconstruction of the phase space 
from the multivariate time series. The main idea is to make a compromised use of both, 
finding a proper multivariate embedding that will ultimately unfold and expose the 
attractor and dynamics of the system, based on its geometrical and dynamical invariant 
quantifiers (such Poincare sections, dimensions, entropies and Lyapunov exponents), and 
finding a suitable embedding seen as a modelling problem (the approach described 
above). A step by step description of the proposed procedure is as follows. 

1. Estimate the time delays and embedding dimensions for all times series of observables 
separately using the methods already described in this section; 

2. Reconstruct the phase space as defined in (3.94); 
3. Compute the Poincare sections, information, correlation and Lyapunov dimension of 

the attractor, and the Lyapunov spectrum; 
4. Apply the singular value decomposition (SVD) and the average mutual information 

(AMI) in order to investigate the redundancy between the delayed vectors; 
5. Reduce the redundancy by choosing smaller embedding dimensions (if necessary); 
6. Repeat steps 2–5 until there is no significant change in the statistics of estimations of 

correlation dimension of the attractor and the maximum Lyapunov exponent in 
particular; 

7. Vary the initially estimated time delays in order to investigate the sensitivity of the 
correlation dimension and maximum Lyapunov exponent estimation. If necessary 
correct the time delays and repeat the whole procedure starting from step 2; 

8. Use the newly (or initially) estimated time delays to find the minimum embedding 
dimensions following the average false nearest neighbours prediction procedure 
described above. Investigate the selection of the number of neighbours for the zeroth 
order local approximation for the variable which is the target of the predictions. If the 
values of the embedding dimensions differ significantly from the values estimated 
after at the end of step 7, adjust them and repeat the whole procedure starting at step 2. 

The described procedure was initially applied on the Lorenz system. The time series for 
x, y, and z variables, each with a length of 20000 samples (time step ∆t=0.01 sec), were 
generated by numerical integration of the Lorenz system as described in Example 3.1. 
The noise introduced in the time series due to the truncation error and the nonlinear 
analysis is estimated to be less than 0.5%. The time delays and the embedding 
dimensions were obtained separately for each times series and are summarised in Table 
3.5.  
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Table 3.5. Time delays, embedding dimensions and 
maximal Lyapunov exponents for the Lorenz 
system variables x, y, and z. 

Variable τ m λ1 
x 18 3 0.026 
y 18 3 0.024 
z 15 3 0.021 

Initial multivriate reconstruction of the phase space as defined in (3.94), leads to the 
series of state vectors each having nine components, composed of the three variables and 
their time delays, 

Vn=(xn, xn−18, xn−36, yn, yn−18, yn−36, zn, zn−15, zn−30) 
(3.100) 

Using SVD analysis (described in section 3.3.1), one was able to find that three 
eigenvalues out of nine are insignificant and their relative constribution is smaller than 
1% level. These findings were also supported by the AMIs estimated between the mutual 
pairs of the vector components. This analysis led to a reduction of the components of the 
state vectors from nine to six, such as 

Vn=(xn, xn−18, xn−36, yn, yn−18, yn−36, zn, zn−15, zn−30) 
(3.101) 

meaning the reduction of the embedding dimensions to m1=2 for each variable. 
Investigation of the reconstructed phase space on different values of the time embedding 
showed that the values between τi=14÷20, do not significantly change the reconstruction 
and for simplicity the time delay for all variables was set to τi=15. An example of the 3D 
representation of the reconsrtructed phase space as defined by (3.101) is presented in 
figure 3.34.  

 

Figure 3.34. 3D view of the 
mulitvariate reconstruction of the 
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Lorenz atractor as defined by (3.101) 
projected to the components (xn, yn−15, 
zn−15). 

Furthermore, step 8 of the described procedure was applied in order to determine the 
minimum embedding dimensions for predictive purpuses. Two multivariate zeroth order 
local predictors were considered, namely 

 (3.102) 

and 

(3.103) 

The optimal number of neighbouring points (states) in phase space was found to be k=45. 
By minimising the mean squared error for one-step prediction, the values of the 
embedding dimensions were estimated as mx=my=2 and mz=1. These results indicated that 
a proper multivariate reconstruction of the phase space can be successfully achieved if 
one uses the time delays of τi=15 and embedding dimensions mi=2. However, if the 
ultimate goal of the multivariate embedding is the prediction of the variable z, then using 
an embedding dimension of mz=1 gives better forecasting results. The multivariate 
embedding was further used to forecast the values of the variables x and z using zeroth 
order local models as an average of the images of 45 neighbours. The first 19500 points 
were used for the phase space reconstruction and the search for the neighbours and the 
last 500 points of the time series were used to assess the quality of the predictions. The 
prediction horizon was chosen to be 20 steps ahead. The quality of the predictions was 
assessed by evaluating the normalised mean squared error (that is the MSE divided by the 
variance of the test data) and is presented in Table 3.6. The predicted values of the 
variable x using multivariate zeroth order local models are presented in Figure 3.35 and 
we also compared with the prediction from a global multivariate neural network model, 
designed as a three-layered feedforward (architecture 6×9×1) network using static 
backpropagation learning algorithm. 
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Table 3.6. The normalised mean squared error for 
mulivariable zeroth order local predictors for the 
test data set (500 samples) using prediction horizon 
of 20 steps for the Lorenz system variables x and z. 
The predictions are also compared to a global 
multivariate neural network model. 

normalised mean squared error Variable 
multivariate 
zeroth local 
model 

global 
neural 
network 

univariate 
zeroth local 
model 

x (equaton 
3.102) 

0.00100 0.00144 0.00168 

z (equaton 
3.103) 

0.00168 0.00201 0.00228 

 

Figure 3.35. Predicted value of the x 
variable of the Lorenz system for 
predicton horison of 20 time steps 
ahead. The solid line represents the 
measured value, the dash-dotted line 
represent the prediction obtained using 
the multivariate zeroth local predictors 
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(3.102) and the dashed line represents 
the prediction obtained by multivariate 
neural network (global model). The 
lower graph represents the errors from 
the predictions. The solid line is the 
error between the measurements and 
the LLMs predictors and the dashed 
line is the error between the 
measurements and the NN predictor. 

From the results presented in Table 3.6 and Figure 3.35 one can see that the overall 
predictive capabilities of the multivariate local models are better in this case compared to 
both the neural network and the univariate local models. The errors are quite small due to 
the fact that the chosen prediction horizon (20 steps ahead) is still well into the zone of 
the predictability defined by the largest Lyapunov exponents, which in this case is a 
maximum of 40–50 time steps in the future (the inverse of the maximum Lyapunov 
exponents). What is interesting to notice is the fact that the zeroth approximation of the 
local models (locally constant dynamics) for short-term prediction horizons performs 
better then a global sophisticated neural network model. The plot of the errors also shows 
that the locally constant dynamics fails to capture the transitions of the oscillations from 
the one wing of the Lorez attractor to the other, due to the highly nonlinear effect of these 
transitions, and thus, exhibits higher absolute errors in comparison to the nonlinear neural 
network model. A better approach would possibly be to use local linear or maybe second 
order local polynomials. In Chapter 5 latter in the thesis we will again address the issue 
of modelling of those nonlinear transitions. Finally, we would like to mention that the 
computational time for learning the local multivariate models for the setup we used in 
this experiemnt, took about 20 seconds, while the neural network model took about 1 
hour using 10000 training epohs. Practical applications of multivariate local modelling 
approach are presented in Chaper 6.  

3.4 Selected nonlinear phenomena 

In the preceding sections we have already discussed the properties of deterministic 
chaotic dynamics, its identification, delineation and modelling, but nonlinear dynamical 
systems possess much richer phenomenology than just deterministic chaos. Therefore, in 
this final section we shall address some selected nonlinear phenomena, such as 
bifurcations, intermittency, spatially extended systems and coexistence of attractors, 
related to the issues of nonlinear time series analysis and modelling of such dynamical 
systems. 
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3.4.1 Bifurcations and routes to chaos 

We have already briefly introduced the notion of bifurcation at the beginning of this 
chapter in the context of stability analysis. Bifurcation occurs where solutions of a 
nonlinear system change its qualitative character due to a change of parameters and thus 
some dynamical variables. In particular, bifurcation theory is about how the number of 
asymptotically approaching steady solutions depends on the parameters of the dynamical 
systems under study. A bifurcation, contradicting the Linnaeus’ assertion that “Nature 
does not proceed with jumps”, may confound intuition, so that many applications of 
bifurcation theory might be of importance in practice. Typical examples in hydraulics are 
hydraulic jumps, breaking waves and other flow discontinuities, such as rolewaves. In 
terms of phase space representation, this implies the change in stability of existing 
geometrical objects (attractors), but also the birth and death of objects. In this section we 
shall briefly discuss the most relevant types of bifurcations, which are graphically 
illustrated in Figure 3.36.  

 

Figure 3.36. Illustrative presentation of 
different bifurcation diagrams. The 
abscissa represents some control 
parameter and the ordinate shows the 
position of the attractors. Solid lines 
denote stable orbits while dotted lines 
unstable orbits. (Figure courtesy of 
Drazin, 1992). 

The period doubling bifurcation has been observed in almost any mathematical model 
system and in many real-life oscillating dynamical systems. At the crucial parameter 
value a stable period-p orbit becomes unstable, and at the same instant a period-2p orbit 
emerges from it (recall the example 3.2). In Fourier language, one prefers the formulation 
that subharmonics are created in the system. Period doubling bifurcations often appear in 
a cascade, which is usually the so-called Feigenboum scenario, meaning that further 
period doublings occur at higher values of the control parameter, until at some stage 
infinite period is reached and the motion becomes chaotic (recall the broad-band spectra). 
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This type of bifurcations exhibit many universal details (see, for example, Ott(1993)), 
from which the most interesting one is the scaling law between the parameter values rp, 
pth period and the distance towards the critical value of the parameter, such as 

 
Very similar in its structure and bifurcation diagram is the pitchfork bifurcation. In 

this case a stable fixed point becomes unstable and two new stable fixed points are 
created, and in fact, this kind of bifurcation may usually take a part of the period doubling 
bifurcation, as shown in Figure 3.36. 

The tangent bifurcation (saddle-node bifurcation) is a very characteristic bifurcation, 
and its mechanism describes typically how, inside a chaotic dynamical regime, with a 
change of the control parameter a stable periodic solution may suddenly occur. 

Finally, the last bifurcation we want to mention is the super-critical Hopf bifurcation. 
For a value of a certain control parameter where a stable fixed point becomes unstable a 
stable limit cycle is born. Furthermore, a limit cycle can itself bifurcate into a two-
frequency torus by another Hopf bifurcation. Under further changes of the system 
parameters the torus becomes unstable and may either develop into a hyper-torus via a 
Hopf bifurcation or even in a chaotic attractor (with fractal dimension). This is the route 
to chaos by quasi-periodicity and is very common for hydrodynamical systems. In 
addition, many hydrodynamical systems, and in particular the externally driven ones, 
exhibit symmetry breaking bifurcations. 

All of the above bifurcations are continuous in the sense that the response to small 
dynamical perturbations due to the change in system parameters is still small, but 
growing continuously exponentially. In contrast, a sudden change of chaotic attractors 
may occur, which is usually called a crisis. It is a very fast occurring global bifurcation 
and thus difficult to study from a mathematical point of view. A crisis may manifests 
itself in a sudden disappearance of the attractor of the dynamical system, in a sudden 
change of its size or the merging of two attractors. In nature one may speak of natural 
disasters, such as flash floods, fast forming storm surges, spontaneous atmospheric 
pressure fields etc. 

As an illustrative example of the mechanisms inherent in the different types of 
bifurcation discussed and in the route to chaos, we present in Figure 3.37 the bifurcation 
diagram of the very simple logistic map xn+1=µxn(1−xn), for different values of its 
controlling parameter µ. It is evident that the period doubling and pitchfork bifurcations 
occur for a while. The map has a cycle 2 for example when the controlling parameter 
µ=3.4. This cycle further bifurcates to cycles of period 4,8,16, etc., as µ increases. Above 
the value of the control parameter µ≈3.57, the map exhibits deterministic chaos, but once 
the chaotic dynamics is achieved, by further increase of µ there are evident appearances 
of zones, where the periodic motion has established again (tangent bifurcations).  
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Figure 3.37. The complete bifurcation 
diagram of the logistic map. 

This example shows that even a very simple nonlinear dynamical system may generate a 
reach dynamical structure based on slight changes in its control parameters. Obviously, in 
order to study bifurcations with a time series of observables, one has to be able to obtain 
a time series that embodies significant information regarding the response of the system 
under different dynamical regimes, and under different physical conditions, and even 
multi-channel measurements. Typically, candidates of such dynamical systems could be 
numerical models. For in-depth study of the theory of bifurcation we recommend the 
textbooks of Drazin (1992) and Ott (1993). Furthermore, in Chaper 6 we will present a 
practical application of the bifurcation mechanisms and the route to chaos using time 
series obtained by three-dimensional hydrodynamical model simulations. 

3.4.2 Intermittency 

Another group of interesting nonlinear phenomena is known as intermittency. The notion 
of itermittency means that the dynamical evolution of the system alternates between 
periodic (regular, smooth, laminar) and chaotic (irregular, turbulent) behaviour in an 
irregular manner. The chaotic phases can occur as long bursts or they can look like short 
bursts, depending on the dynamical properties of the system. For example, in spatially 
extended hydrodynamical systems, such as weekly turbulent flow, intermittency means a 
simultaneously appearance of turbulent and laminar phases at different places in real 
space. Several different scenarious have been proposed in the literature (see Bergé et al., 
1986) to study and explain intermittency in deterministic dynamical systems. As reported 
by Berge at al., 1980 in some deterministic systems, such as thermodynamical and 
hydrodynamical systems, intermittency occurs generically. In other systems, it occurs 
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only for critical values of some control parameters (Pomeau and Manneville 1980). In 
such systems, periodic orbits may become unstable under the change of some control 
parameters or it may disappear without creation of new ones. In order to be able to study 
the nonlinear mechanisms of intermittency from a time series, one can compute the 
statistics of this type of dynamics, i.e. the distribution of the inter-burst times and the 
duration of the bursts, and, furthermore, one can try to establish relations between the 
average length of periodic phases and the closeness of the parameter to its critical value. 
This implies that one needs to be able to obtain detailed time series from controlled 
experiments. 

3.4.3 Spatialy extended systems 

Up to this point of presentation and discussion, we have assumed that nonlinear 
deterministic dynamics, responsible for the observed time series, dominantly possess 
attractors of low dimensions (dimension less than the essential degree of freedom) that 
can be estimated and regarded as flows. However, many dynamical systems, and 
especially hydrodynamical systems, are composed of a huge number of microscopic 
degrees of freedom, which mathematically are usually formulated by systems of partial 
differential equations. Therefore, their degrees of freedom are attached to the points in 
space and can be interpreted as local amplitudes, imposing that the spatially extended 
dynamical systems exhibit infinite degrees of freedom, meaning that the complete (true) 
phase space cannot be even reconstructed. Generally speaking, in almost all 
hydrodinamical systems coupling between the different degrees is diffusive. For example, 
in one-spatial dimension and with arbitrary forcing (driving) term q(x, t), the dynamics of 
such systems can be generally described by partial differential equations of type 

 
(3.104) 

where the second term describes the diffusive coupling and the third term describes the 
nonlinearities. Of course, the most prominent example in hydrodynamics are the Navier-
Stokes equations, where u(x, t) is the vector valued local velocity field of the fluid, the 

term F(u, ∂u/∂x) has the nonlinear form and the driving term is the gradient of 
the pressure. The usual approach to solve the dynamics of such complex spatially 
extended systems is utilising various numerical methods developed in computational 
hydraulics and mechanics, by discretisation of the space and application of certain 
numerical schemes (approximations) to the partial derivatives in those points (see, for 
example, Abbot, 1986). Discretisation of the space leads to a system of an enumerable set 
of degrees of freedom, u(x, t)≈u(xi, t), and in order to avoid integration step one often 
discretises time also. Such resulting approxime dynamical systems of difference 
(mapping) functions in the theory of nonlinear dynamical system are called coupled map 
lattices. In each lattice site i=1,2,…,L, the dynamics is expressed as, for example: 

ui,n+1=(1−2ε)F(ui,n)+ε(F(ui−1,n)+F(ui+1,n)) 
(3.105) 

Nonlinear dynamical systems and deterministic chaos       139



where the first index in ui,n is the spatial index, the second index is the temporal one, and 
ε is some indicator based on the neighbourhood. The nearest neighbour coupling used in 
the above expression is again diffusive, since it is the simplest representation of the 
Laplacian on the lattice. An even further step of discretisation would involve 
discretisation of the possible states of the system. This means that if for the individual 
degrees of freedom, ui, one could assume only a finite number of different values (in 
simplest case 0 and 1), then one can speak of a cellular automation or cellular automata 
(CA). Cellular automata have five major characteristics: 

1. they exist on lattices of discrete sites; 
2. the time evolution takes place in discrete steps; 
3. each site has a finite number of possible values (states); 
4. each site evolves in time according to a deterministic rule (mathematically known); 
5. the rule for each site depends only on some finite neighbourhood on the lattice and a 

finite number of previous time steps (e.g. rule 3.105). 

In spite of their simplicity cellular automata show a surprising ability to reproduce 
complex dynamics. Applications of cellular automata can be found in non-equilibrium 
physics, population dynamics, chemical reactions, epidemiology, parallel computing, 
geophysics and hydrodynamics (see, for example, Wolfram, 2002; Wilson 1988 for 
introduction and Abbot and Minns, 1997 for a general discussion of the application of 
CA to turbulence modelling). Due to their discrete nature CA are particularly well suited 
for implementation and simulation on digital computers. However, although they look 
simple, CA implementation in real application problems may demand a huge 
computational capacity. For example, consider simple CA where automation sites are 
arranged on a one-dimensional lattice. All sites are identical, they may have a finite 
number k of possible values, and there is a dependence only on the previous time step. 
Furthermore, let the automation (update of the values at each site) depends only on the 
value of the site itself and its two immediately adjacent sites in the previous time step. 
Graphically, the structure of this CA can be represented as a simple discretised line with 
three highlighted sites (points). Thus there are k3 possible initial “local” states at any 
given site on the lattice. Since there are k possible results (values), the total number of 

possible rules is In the simplest case when k=2 (only two possible values, e.g. 0 and 
1) there are 256 possible rules. It is obvious that this number increases extremely rapidly 
with increasing k. Thus k=3 gives about 7.6×1012 possible rules that have to be searched 
through at each updating time step for this very simple example. 

During the spatial evolution of the dynamics if the coupling is diffusive, this part of 
the dynamics cannot introduce irregularities. Diffusion smooths down all excitation 
patterns, and usually the diffusion operator (the Laplacian) has only negative eigenvalues, 
which contribute to exponentially decaying solutions. Therefore, only the nonlinearities 
(which in equations (3.104) and (3.105) are purely local) can cause deterministic chaotic 
solutions of the underlying dynamics. The two effects can lead to what is usually called 
spatiotemporal chaos. It is characterised by an instability and exponentially decaying 
correlations both in time and space directions (Toricini et al., 1991). This means that 
local perturbations spread in space with increasing instead of decreasing amplitudes in 
contrast to global diffusion processes. 

Nonlinear dynamics and chaos with applications to hydrodynamics and hydrological modelling     140



ANALYSIS OF SPATIALLY EXTENDED SYSTEMS 

One can further pose the question how to analyse these kind of spatially extended 
dynamical systems from a time series of observables using nonlinear methods. In many 
situations it will be most convenient to focus on a particular spatial part (subsystem of 
interest) and to measure similar physical quantities simultaneously at different positions 
in this part of the dynamical systems. Using these time series of spatially distributed 
measurements one can try to reconstruct the phase space of the system in a spatial 
direction, by choosing the embedding dimension and spatial distance δ between the 
positions of the measurements. The latter again attempts to find the best compromise 
between redundancy and decorrelation. As for the time delay, the mutual information 
between two simultaneously measured variables as a function of their spatial distance can 
be used. It has been conjectured and demonstrated for number of mathematical models 
that systems exhibiting spatiotemporal chaos have attractors which are not finite-
dimensional but possess a finite dimension-density (Bauer at al., 1993, Tsimring, 1993, 
Torcini et al., 1992). This means that the dimension determined for a subsystem is 
proportional to its spatial extent. Spatially extended systems can be characterised by 
Lyapunov spectra, entropies and dimensions, just like low dimensional deterministic 
chaos. The unknown, however, lies in the dependence of these geometrical and 
dynamical quantities on the spatial scales. It has been proven by Ruelle (1982) and others 
for partial differential equations and showen numerically for many coupled map 
dynamical systems (see, for example, Paladin and Vulpiani, 1986), tat the spectrum of 
Lyapunov exponents has, in the limit of the large spatial scales L, the following property: 

 (3.106) 

In other words, this means that the i-th Lyapunov exponent in a system with size L has a 
value which depends on the ratio i/L only. Under the assumption that the Pensin identity 
(3.54) holds, the Kolmogorov-Sinai entropy can be approximated from the Lyapunov 

spectrum, such as where λ(x0)=0, such that the 
entropy of the system is proportional to its spatial scale. Similarly, by applying the 
Kaplan-Yorke relation (3.45), one can estimate the Lyapunov dimension proportional to 
the spatial scale of the system. 

Dimension, entropy and Lyapunov densities can be estimated from a time series 
obtained by numerical simulation of spatially extended dynamical systems. It is, 
however, still an open issue whether it is possible to determine these densities from the 
time series of observables on a small part of the system. Even for a multivariate time 
series which represents a finite subsystem of an extended system conclusions and 
extrapolations of the results are difficult. Thus, in order to study spatiotemporal nonlinear 
dynamics from time series properly, one needs a vast amount of multichanneled and 
multivariate time series data sampled sufficiently over the spatial domain of interest. On 
the other hand, studying in detail the complete spatial dynamics and evolution of the 
complete states of the system in microscopic level may not be of practical interest. In 
practice, one is more interested in studying the so-called spatiotemporal patterns such as, 
for example in hydrodynamical systems, rotating spiral waves, appearance propagation 
and deformation of large eddies, moving fronts, breaking waves etc. The patterns 
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mentioned above have a clear signature in the real space. Once they are recognised, based 
on their characteristics e.g. velocities, geometries, length scales, then one can proceed to 
a deeper study of their emergence (pattern formation), evolution and interaction (see 
Cross and Hohenberg, 1993). Utilising the sophisticated remote image sensing techniques 
available nowadays, one is able to record the dynamical evolution of spatially extended 
systems, in a sense that values of particular variable are assigned to every small element 
of the grid (pixel) over time. Image analysis techniques, based on pattern recognition, 
together with some of the techniques we described in this chapter, such as wavelet 
decomposition, singular spectrum analysis and fractal dimension estimation techniques, 
can be employed to study these spatiotemporal patterns. 

Finally, we would like to stress the importance of local modelling in phase space in 
the analysis of spatially extended dynamical systems based on time series data. All 
numerical engines that at present are used to approximate the dynamics of the spatially 
extended systems, usually described mathematically by a set of partial differential 
equations based on physical laws, exploit neighbourhoods in some way or another by the 
numerical methods employed (e.g. equation 3.105). Thus, these are in general set of local 
mapping functions (algebraically expressible) which map the evolution of the states of 
the system throughout the domain of dependency. On the other hand, all methods and 
techniques discussed in this chapter that are used to reconstruct, delineate and model the 
dynamics of the system by nonlinear time series analysis, are also almost exclusively 
based on neighbourhood statistics. The dimension is, loosely speaking, the rate at which 
the point on the attractor loses its neighbours if one decreases the radius of the 
neighbourhood. The entropy correspondingly is the information loss rate if one increases 
the embedding dimension at a fixed length scale. The maximal Lyapunov exponent 
quantifies the loss of information with the increase of distances between neighbours. 
Building models in phase space, learned from data, are parametric mapping functions 
(algebraically expressible) that describe the evolution of the system states based on the 
previous evolutions of their neighbours. Based on the discussion above, one could infer 
the following conclusion: Learning parametric local models (e.g. linear or polynomials) 
in the phase space reconstructed from a time series of observables of spatially extended 
dynamical system, is conceptually equivalent to applying a certain numerical scheme 
(e.g. finite difference) as approximate numerical solution in physically-based 
mathematical models. 

3.4.4 Multiply or coexisting attractors 

One remarkable feature that can occur in nonlinear dynamical systems is the coexistence 
of attractors or basins of attractions. The attractor towards which the dynamics of the 
system will evolve depends on the initial and/or boundary conditions and the values of 
the control parameters. Theoretically this means that the long time evolution of the 
dynamical system exhibits several trajectories or even interchange between them given 
certain physical conditions. The coexistence of the attractors can be theoretically studied 
on mathematically defined dynamical systems by reconstruction of the phase space for 
different evolutions of the system using different initial and/or boundary conditions and 
sets of control parameters. Such an example we have already described and demonstrated 
in Section 3.1 (recall example 3.3) using the well-known predator-prey dynamical 
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system. The region of phase space leading to a given attractor is called a basin of 
attraction. The basins of two coexisting attractors can even interlace in a very complex 
way, possessing fractal boundaries (Grebogi et al., 1983). The simplest coexisting 
attractors are, for example, two different stable points or limit cycles which are often 
related by some symmetry. A typical example could be a groundwater hydrodynamical 
system with two wells. Another example is again the famous Lorenz dynamical system. 
For certain ranges of the values of the parameters and initial conditions there coexist 
stable fixed points and fractal attractors. Furthermore, the strange attractor of the system 
is composed by two geometrical objects (two wings), which themselves constitute strange 
attractors and parts of the trajectory that link them. The evolution of the system alternates 
between these two parts of the attractor (subattractors), clearly revealing the existence of 
two dynamical regimes. 

Most natural dynamical system, for example hydrometeorological systems, show a 
similar type of behaviour. The studies of weather patterns using nonlinear methods have 
demonstrated the coexistence of several attractors in the weather systems on different 
time scales (see, for example, Elsner and Tsonis, 1988 and 1992). The historical records 
of the outputs of most hydrological systems, for example runoff of a particular 
catchment, in general show presence of several distinguishing parts in the evolution due 
to the presence of seasonal components, normal and extreme events. Moreover, in most 
natural dynamical systems one could even observe a nonunique mapping between 
different dynamical variables of the system. A typical example is the histeresis-type of 
water level—discharge relationship during flooding events. Reflected in terms of 
nonlinear dynamics and phase space reconstruction of the system, this indicates possible 
existence of distinguishable different geometrical parts in the attractor or even coexisting 
attractors, which are characterised by different underlying local dynamics (dynamical 
regimes) and transition between them driven by the physical conditions of the system and 
the interacting systems. Obviously, reconstruction of the phase space of such complex 
dynamical systems from time series of observables, and in particular identification of the 
existence or nonexistence of different dynamical regimes, requires time series with 
proper time and length scales that will in turn reveal the complicated geometrical 
structure of attractor(s) and underlying global dynamics. Form a modelling perspective, 
one could think of exploring the possibility of hybrid modelling of the complex global 
dynamics, consisting of: (i) models with different structures and capacities which will be 
learned and specialised to map the local dynamics in phase space, thus modelling 
different dynamical regimes; and (ii) a gating model in phase space which learns to map 
the transitions (specific parts of the trajectories in phase space) based on the previous 
evolution of the state variables and different dynamical conditions. This idea of hybrid 
modelling in phase space of complex nonlinear dynamical systems is further explored 
and discussed in Chapter 5 of this work, where we propose and elaborate a novel hybrid 
modelling framework. 
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3.5 Summary 

The paradigm of nonlinear dynamics and the concept of deterministic chaos in the last 
decade have influenced the thinking and problem solving in many fields of science and 
engineering. We showed that as models chaotic dynamical systems show rich and even 
surprising variety of dynamical structures and solutions. Most appealing is the fact that 
the deterministic chaos provides a prominent explanation for irregular behaviour and 
instabilities in dynamical systems, which are deterministic in nature. The most direct 
approach to reconstruct, identify, quantify, model and control deterministic chaos in real 
dynamical systems is the analysis of data (time series) generated from these systems 
using methods and techniquies based on the theory of nonlinear dynamics, which we 
elaborated and demonstrated in this chapter.  
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Chapter 4 
Dynamic Bayesian Networks 

4.1 General 

In Chapter 2 we have briefly introduced the Bayesian approach to learning. We have also 
discussed that the Bayes chain rule provides a natural mathematical framework for 
learning and inference where background domain knowledge can be incorporated in the 
learning procedure. Furthermore, we also demonstrated that the Bayesian approach to 
learning inherently embodies the structural risk minimisation principle, thus providing a 
sound framework for regularisation and generalisation. In this chapter we further extend 
this discussion and present a probabilistic framework for learning models from time 
series data. We express these models using the Bayesian network formalism (also known 
as probabilistic graphical models or belief networks), that is, a marriage between 
probability theory and graph theory in which dependencies between variables are 
expressed graphically. Special attention and focus will be given to dynamic Bayesian 
networks, which are well suited for learning models from time series data observed from 
complex dynamical systems. 

There are at least several reasons for elaborating dynamic Bayesian networks and 
Bayesian methods in this work. Firstly, dynamic Bayesian networks can handle 
incomplete data sets, in a sense that not all of the dynamical variables needed to 
completely describe the dynamical evolution of the system are observed as a time series 
and thus some of the variables can be regarded as hidden in the processes of inference 
and learning. Secondly, dynamic Bayesian networks, expressed as graphical models, 
allow to learn and understand the causal relationships between the variables. The process 
is useful when one tries to gain understanding about the problem domain based on the 
time series data, for example, during the exploratory data analysis. In addition, modelling 
the causal relationships allows one to make simulations of the dynamical systems in the 
presence of interventions. Thirdly, dynamic Bayesian networks in combination with 
Bayesian methods allow for an efficient computation of marginal and conditional 
probabilities that are required in the inference and learning procedures. Moreover, the 
inherent regularisation capabilities provide principled approaches for avoiding overfitting 
the data, model selection and model averaging. Fourthly, as already mentioned, Bayesian 
methods can facilitate the combination of domain knowledge and data. Anyone who has 
performed real-world modelling tasks knows the importance of prior domain knowledge, 
especially when the data is scarce and incomplete. In addition, Bayesian networks in 
general can be built from prior knowledge alone, thus representing expert (knowledge-
based) systems, which are well-known to the artificial intelligence community. The 
causal semantics present in Bayesian networks makes the encoding of causal prior 
knowledge particularly straightforward. The way of encoding the strength of causal 
relationships in Bayesian networks is by use of probabilities. Fifthly, various 



uncertainties (such as model and parameter uncertainties, uncertainties in the domain 
knowledge) in Bayesian networks are handled in probabilistic manner. Finally, dynamic 
Bayesian networks in conjunction with Bayesian methods provide a framework for richer 
hybrid models appropriate for a time series describing the dynamics of complex and 
multiresolution systems. In the previous Chapter 3 we have elaborated and demonstrated 
that nonlinear dynamical systems show very rich and complex dynamical structures in 
their evolutions, characterised by the presence of chaotic dynamics, different dynamical 
regimes (even coexisting attractors) and an irregular dynamical evolution between them. 
These irregular dynamical transitions between different dynamical regimes (or modes) of 
the system can be modelled using dynamic Bayesian networks based on the information 
of the position in the phase space, previous evolutions, and performance of the models 
that are particularly learned and suited to model different parts of the dynamics of the 
system. This framework will be discussed and mathematically elaborated in the next 
Chapter 5. 

Having stressed the motivation for the description of dynamic Bayesian networks, we 
discuss first the Bayesian interpretation of probability and review methods from Bayesian 
statistics for combining prior knowledge and data. Furthermore, we introduce and 
describe Bayesian networks in general and focus on dynamic Bayesian networks for 
modelling time series, including the well-known Kalman filter and Hidden Markov 
Models (HMMs). In addition, we elaborate on the problem of learning the parameters of 
dynamic Bayesian networks, especially the presence of hidden variables using the 
Expectation-Maximisation (EM) algorithm. Computing various probabilities and 
inference in such models may be computationally intractable, therefore we briefly discuss 
the use of Monte Carlo approximation techniques and Gibbs sampling in particular. 
Finally, we discuss some issues related to richer structures of dynamic Bayesian network 
and their relation to modelling complex nonlinear and non-stationary dynamical systems. 

4.2 Bayesian approach to probability and statistics (inference) 

In order to understand Bayesian networks and learning, it is necessary to briefly introduce 
the classical and the Bayesian approach to probability, followed by some basic 
introduction to graph theory. 

4.2.1 Classical definition of probability 

When using the classical probability, one may think in terms of: probability that a storm 
will occur; the probability that a particle will not follow certain trajectory; the probability 
of observing a string of three rainy days in a month. We use here the general term sample 
point to refer to the “things” we are talking about; thus in this particular case, an 
abstraction of a storm event, a geometrical point, or a chance outcome. A sample space 
Ω, or universe, is the set of all possible sample points in the situation of interest. The 
sample points in a sample space must be mutually exclusive and collectively exhaustive. 
A probability measure p(·), is a function on subsets of a sample space Ω. These subsets 
are referred to as events. The values p(A), p(B), are called probabilities of 
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the respective events (for ). This classical approach to probability dates back 
to Laplace (1749–1827) and his contemporaries and remains the most common way of 
dealing with probability. At its heart we find the Laplace’s classical definition of 
probability (Laplace, 1951): 

The theory of chance consists in reducing all of the events of some kind to 
a certain number of cases equally possible, that is, so to say, such as we 
may be equally undecided about in regard to their existence, and in 
determining the number of cases favorable to the event whose probability 
is sought. The ratio of this number to that of all the cases possible is the 
measure of the probability. 

One can write the formula for the classical probability as: 

 
(4.1) 

where, N(f)=number of favourable outcomes 
N(s)=total number of possible events in the sample space. 
Expressed in mathematical terms, we present here the definition of probability 

(adopted from Neapolitan, 1990). 

Definition 4.1: 
A probability measure on a sample space Ω is a function mapping subsets of Ω to the 
interval [0,1] such that: 

1. For each p(A)≥0; 
2. p(Ω)=1; 
3. For any countably infinite collection of disjoint subsets of Ω, Ak, k=1,…, 

 
(4.2) 

In general, one needs to check that the sets (events) themselves satisfy certain properties 
to ensure that they are measurable and that the probabilities are assigned by the principle 
of indifference. The fundamental idea of this principle is that alternatives are always to be 
judged equiprobable without any reason to expect or prefer one over the other 
(Weatherford, 1982). In general, the probabilities can be estimated by counting the 
realisations or some other form of direct measurement. In this sense, the probability is an 
attribute or a property of the real world. The term physical probability is often used to 
denote this interpretation of probability (Heckerman, 1997). More details on these 
classical probability issues can be found in Chung (1979). For an excellent philosophical 
discussion and historical outlook on the main developments in probability theory we refer 
the reader to Jaynes (1995, 1996).  

Based on these physical probabilities, a branch of the statistics known as inferential 
(or frequentist) statistics, that attempts to make valid predictions based on only a sample 
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space of all possible observations was developed. For example, imagine a bag of 10000 
marbles of which some are black and some white, but the exact proportion of these two 
colours is unknown. The inferential statistics implies that it is necessary to count all the 
marbles in order to make some statements about this proportion. A randomly acquired 
sample of 1000 marbles may be sufficient to make an inference about the portion of black 
and white marbles in the entire population. If 40% of this sample consists of white 
marbles, than one may be able to infer that about 40% of the population are also white. 
This inference seems rather straightforward. In fact, it might seem that there is no need to 
even acquire sample of 1000 marbles, but a sample of 100 or even 10 marbles may be 
sufficient. However, this assumption is not necessarily correct. As the sample size 
becomes smaller, the potential for error grows. For this reason, inferential statistics has 
developed numerous techniques for stating the confidence level (certainty) that can be 
labelled on these inferences. 

4.2.2 Bayesian definition of probability 

The classical inferential approach (frequentist or objective) based on the classical 
probability theory does not permit the introduction of prior (background) knowledge into 
the calculations. For the rigours of the scientific method, this is an appropriate response 
to prevent the introduction of extraneous data and information that might skew the 
experimental results. However, there are certainly times, such as learning models from 
data as an ill-posed problem, when the use of prior knowledge would be a useful, and 
indeed a necessary, contribution to the modelling process. 

In contrast to the classical probability, the Bayesian probability of an event x is a 
person’s degree of belief in that event. This interpretation of the probability is called 
subjective or Bayesian interpretation, in honour of the Tomas Bayes, who helped to 
pioneer the theory of probabilistic inference. Whereas a classical probability is a physical 
property of the world, a Bayesian probability is a property of the person who assigns the 
probability. One important difference between the physical probability and personal 
probability is that the latter does not require repeated trials. In the Bayesian approach, the 
probability or belief will always depend on the state of knowledge of the person who 
assigns that probability. For example, if we were to give someone a coin, he would likely 
assign a probability of ½ to the event that the coin would show heads in the next toss. If, 
however, we convinced that person that the coin is special and was weighted in favour of 
heads, he would assign a higher probability to the event. 

One common criticism of the Bayesian definition of probability is that probabilities 
seem arbitrary. Normally, questions arise: Why should degrees of belief satisfy the rules 
of probability? On what scale one should measure the probabilities? These questions have 
been studied expensively by various researchers in the past (e.g., Ramse, 1931; Cox, 
1946; Good, 1950; Savage, 1954; DeFinnetti, 1970). Regarding the first question, it turns 
out that each set of properties leads to the same rules: the rules of probability. The fact 
that the different sets lead to the rules of probability provides a particularly strong 
argument for using probability to measure beliefs. At this point of discussion it is worth 
mentioning that during the last two decades a completely new branch of the set theory 
was developed, termed fuzzy set theory (fuzzy subsets more precisely) or fuzzy logic 
(Zadeh, 1989). The subjective degrees of belief are expressed through fuzzy membership 
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functions, which are further used in fuzzy reasoning and inference. A more detailed 
discussion on this topic is however outside of the scope of this thesis. 

In regard with the second question, related to the scale in the process of measuring the 
degree of beliefs (probability assessment), it makes sense to assign a probability of one 
(or zero) to an event that will (or not) occur, but the major issue is what probabilities one 
should assign to beliefs that are between the extremes. This question has been extensively 
studied and discussed in the Operations Research, System Analysis, Management Science 
and Psychology literature. The main problem with the probability assessment is that of 
precision. Can one really say that her or his probability of event x is 0.601 or 0.599? In 
general no, since in most cases the probabilities are used to make decisions, and these 
should not be very sensitive to small variations in probabilities. The questions of 
precision and accuracy are elaborated in the well-established practice of sensitivity 
analysis (e.g. Howard and Matheson, 1983; Spetzler et al., 1975). Furthermore, in order 
to avoid such questions and discussions, some authors have proposed proposing that the 
probability assessment procedure is seen as an act of expert judgement (e.g. Bernardo and 
Smith, 1994; Krause, 1998). Whichever view one takes, the Bayesian probabilistic 
approach offers a mechanism by which the probability estimates may be revised in the 
light of experience and evidence. 

Let us return to the issue of learning from data using the Bayesian approach. In order 
to examine the Bayesian analysis we shall introduce some notation for the mathematical 
description in this chapter. We shall replace the term events with the variables1. We 
denote a variable by an upper case letters (e.g. X, Y, Xi, Θ). A variable has a set of states 
corresponding to mutually exclusive and collectively exhaustive set of events, about 
which we may be uncertain. A variable may be discrete, having a finite or countable 
number of states or it may be continuous. For example, we may use a two-state or binary 
variable to represent the possible working regimes of a water pump, and a continuous 
variable to represent its operational capacity. The state or value of a corresponding 
variable is denoted by the same letter in lower case (e.g. x, y, xi, θ). A bold notation is 
used (e.g. X, Y, Xi, Θ) to denote a set of variables and the corresponding bold lower case 
letter (e.g. x, y, xi, θ) to denote an assignment of state or value to each variable in a given 
set. This is usually known as the variable set X is in configuration x. We use P(X=x|ξ) (or 
P(x|ξ)) to denote the probability that X=x of a person with state of information ξ 
(sometimes called background knowledge). In the problems further considered, we define 
Θ to be a variable whose values θ may correspond to the possible true values of the 
physical probability. We sometimes refer to θ a model parameter. We express the 
uncertainty about Θ using probability density function p(θ|ξ). In addition, we use 
D={X1=x1, X2=x2,…, XN=xN} to denote the data set of our observations.  

1 The term “random variable” is often used in the literature. We shall reserve the term “random 
variable” for the situations where there are repeated observations, which is not strictly the case for 
the variables used in Bayesian learning and Bayesian networks as discussed in this chapter. 
Bayesians sometimes use the term “uncertain variable”. 

 

CONDITIONAL PROBABILITY 
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An important concept in the Bayesian treatment of certainties in Bayesian networks and 
inference is conditional probability. A conditional probability statement is of the 
following kind: 

“Given the event B (and everything else known is irrelevant for A), then 
the probability of the event A is r.” 

The above statement is denoted as P(A/B)=r. This represents the statement “if B is true 
and no other information at hand is relevant to A, then the probability of A is r”. If we are 
counting sample points, we are interested here in the fraction of events B for which A is 
also true, thus we are switching our attention from the sample space Ω to the subset B. 
Conditional probabilities are essential to a fundamental rule of probability calculus, the 
product rule. The product rule defines the probability of a conjunction of events: 

P(A, B)=P(A|B)P(B) 
(4.3) 

where P(A, B) is the probability of the joint event and also called joint probability 
distribution of events A and B. If all these probabilities are conditioned by a context C, 
then the Eq. (4.3) can be modified as: 

P(A, B|C)=P(A|B, B, C)P(B|C) 
(4.4) 

From the Eq. (4.3), we can deduce the following relation for conditional probability with 
P(B)≠0, which is in fact the simplest form of Bayes’ theorem: 

 
(4.5) 

CHAIN RULE OR FACTORISATION 

A joint probability distribution over n variables can be defined recursively using the 
product rule (Eq. 4.3) as follows: 

P(X1, X2,…, Xn)=P(X1|X2,…, Xn)P(X2,…, Xn) 
= P(X1|X2,…, Xn)P(X2|X3,…, Xn)P(X3,…, Xn) 
=P(X1|X2,…, Xn)P(X2|X3,…, Xn)…P(Xn−1|Xn)p(Xn) 

(4.6) 

The above Eq. (4.6) can be generalised as: 

 
(4.7) 

This property of joint probability distribution is called the general factorisation property. 
It is noted that the product rule allows any ordering of variables in the factorisation. This 
property is very important in decomposing the large joint probability distribution, which 
can be easily transparent and tractable. 
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MARGINALISATION 

Let us consider a variable A having states a1, a2,…, an, then the probability distribution 
over these states is given by: 

 
(4.8) 

where, xi is the probability of A being in state ai denoted by P(ai). Similarly the variable B 
has states b1, b2,…, bm. Note that if A and B are discrete variables, then the joint 
probability distribution P(A, B) is a table of probabilities for all possible pairs P(ai, bj). In 
the case when the variables A and B are continuous, the underlying probability density 
functions are required for the joint probability distribution P(A, B). For illustration we 
assume that the variables A and B are discrete. Then the joint probability distribution 
table for P(A, B) will be also a table of n×m, which consists of a probability for each 
configuration (ai, bj). If the probability distribution for each state of variable B is known, 
then we can produce the probability distribution table for P(A, B) by applying the product 
rule Eq. (4.3) as: 

P(ai,bj)=P(ai|bj)P(bj) 
(4.9) 

In order to understand this concept clearly, we present the following example: Table 4.1 
consists of probability distribution for P(A|B). The probability distribution for variable B 
is known (0.4, 0.4, 0.2). Then the joint probability distribution P(A, B) is obtained by 
multiplying each j the column for bj of the Table 4.1 by P(bj). The Table 4.2 is the result 
of using the product rule to give joint probability distribution for P(A, B).  

Table 4.1: An example of P(A|B) 
  b1 b2 b3 
a1 0.4 0.3 0.6 
a2 0.6 0.7 0.4 

Table 4.2: Calculated joint probability distribution 
P(A, B) 

  b1 b2 b3 
a1 0.16 0.12 0.12 
a2 0.24 0.28 0.08 

It should be noted that sum of each column in Table 4.1 is equal to one, whereas the sum 
of all the entries in Table 4.2 is equal to one. Having estimated the joint probability 
distribution P(A, B), the probability distribution P(A) can be further calculated. If ai is the 
state of A then there are exactly m different events for which A is in state ai, namely 
mutually exclusive events (ai, b1),…, (ai, bm). Therefore the following holds: 
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(4.10) 

This calculation (4.10) is called marginalisation and we say that variable B is 
marginalised out of P(A, B). The generalised notation for marginalisation is: 

 
(4.11) 

From the Table 4.2, if one marginalises B, we get 
P(a1)=P(a1, b1)+P(a1, b2)+P(a1, b3)=0.16+0.12+0.12=0.40 

and 
P(a2)=P(a2, b1)+P(a2, b2)+P(a2, b3)=0.24+0.28+0.08=0.60 

(4.12) 

In general, while the product rule is used to construct joint probability distributions, 
marginalisation reduces a joint probability distribution to a distribution over a subset of 
its variables. 

4.2.3 Bayes theorem 

We have so far concentrated largely on the static aspects of the probability theory. But 
probability is a dynamic theory: it provides a mechanism for coherently revising the 
probabilities of events as evidence becomes available. Bayesian theorem plays a central 
role in this. We have introduced the general concept of the Bayesian theorem in Chapter 
2 (section 2.8.3) as a learning paradigm and showed that it silently inherits the notions of 
regularisation and capacity control. The straightforward application of the product rule 
and the definition of the conditional probability can be used to derive the well-known 
Bayes theorem. From Eq. (4.3), it follows that P(A|B)P(B)=P(B|A)P(A), which can be 
written 

 
(4.13) 

This general form of the Bayes theorem tells us how to obtain a posterior probability on a 
hypothesis A after observation of some evidence B, given the prior probability in A and 
the likelihood of observing B where A is to be the cause. 

In the context of learning models from data, we rewrite the Bayes theorem in the 
following form: 

 
(4.15) 

where we can update our belief in the hypothesis H (the model parameters) given the 
additional evidence E (data set of observations) and the background information ξ 
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(background knowledge on the processes which are reflected in our model structure). 
Using the notation we have introduced in the previous section, the Bayes theorem can be 
further rewritten as: 

 
(4.16) 

In order to explain and illustrate all elements in the Eq. (4.16) we will consider the 
common coin probability problem (Howard, 1970). If we throw the coin up in the air, this 
event has two possible outcomes (states): a “heads” and a “tails” when the coin lands on 
the flat surface. Suppose one flips the coin N times and measures the fraction of flips 
where the outcome is heads. From a classical probability perspective, the long-run 
fraction of head outcomes is a probability of heads, which is unknown. We can estimate 
this physical probability from the N observations using criteria such as low bias and low 
variance. Then, we can use this estimate as our probability for heads on the N+1 throw. In 
the Bayesian approach, we also assert that there is some physical probability of heads, but 
we encode our uncertainty about this physical probability using Bayesian probabilities, 
and use the Bayes theorem (rule) to compute our probability of heads on the N+1 throw. 

Let Θ be the variable whose value θ may corresponds to the possible true values of the 
physical probability of heads. The data set of our observations is D. We express our 
uncertainty about Θ given the background information ξ on that state using the 
probability density function p(θ|ξ). Thus, in Bayesian terms, the coin problem reduces to 
computing P(xN+1|D,ξ) from P(θ|ξ), that is, computing the posterior probability given the 
prior probability and the evidence. Using the Eq. (4.16) and having only one parameter θ 
we have: 

 
(4.17) 

where the normalisation term is 
P(D|ξ)=∫P(D|θ,ξ)P(θ|ξ)dθ 

(4.18) 

Let us consider the term P(D|θ,ξ). This term is the likelihood function of observing the 
data, which in this particular case is the binomial distribution function. In particular, 
given the value of Θ, the observations in D are mutually independent, and the probability 
of heads (tails) on any observation is θ(1−θ). Therefore, Eq. (4.17) becomes: 

 

  

where h and t the number of heads and tails observed in D, respectively. These quantities 
are sometimes called hyperparameters and are said to provide sufficient statistics for (in 
this case) binomial sampling, because they provide sufficient information to compute the 
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posterior probability from the prior probability. Finally, we average over all possible 
values of Θ, to determine the probability that the N+1 throw of the coin will result as 
heads: 

P(XN+1=heads|D,ξ)=∫P(XN+1=heads|θ,ξ)P(θ|D,ξ)dθ 
= ∫θ p(θ|D,ξ)dθ≡EP(θ|D,ξ)(θ) 
(4.20) 

  

where EP(θ|D,ξ)(θ) denotes the expectation of θ with respect to the distribution P(θ|D,ξ). 
Up to this point of discussion, we have considered observations drawn from a 

binomial distribution. In general, observations may be drawn from any physical 
probability distribution: 

P(x|θ,ξ)=f(x,θ) 
(4.21) 

where f(x,θ) is the likelihood function with parameters θ. For example, X may be a 
continuous variable and have a Gaussian probability distribution with mean µ and 
variance σ: 

P(x|θ, ξ)=(2πσ)−1/2 e−(x−µ)/2σ 
(4.22) 

where θ={µ, σ}. However, in most real-world problems the assumption that the 
observations are drawn from the Gaussian distribution is not valid. In this case a more 
appropriate prior probability may be a mixture of Gaussian (or other) distributions, e.g.: 

P(x|θ,ξ)=0.3·P(x|(µ1, σ1),ξ)+0.5·P(x|(µ2, σ2),ξ)+0.2·P(x|(µ3, 
σ3),ξ) (4.23) 

In this way, we have introduced an additional hidden or unobserved variable U, whose 
states correspond to three possibilities: (i) observations are biased towards low values; (ii) 
observations are normal and (iii) observations are biased towards high values. 

To summarise, regardless of the functional form we can learn about the parameters 
(model) given data using the Bayes rule. We define the model structure M based on our 
background knowledge, the we further define variables corresponding to the unknown 
parameters, assign prior probability to these variables, and use Bayes rule to update our 
belief about the parameters given the data: 

(4.24) 

We can then average over all possible values of Θ to make predictions: 
P(xN+1|D,ξ}=∫P(xN+1|θ,ξ)P(θ|D,ξ)dθ 

(4.25) 

which integrates out the uncertainty in the model structure and the model parameters. For 
a class of distribution known as the exponential family, these computations can be done 
efficiently and in a closed form. Members of this class include binomial, multinomial, 
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normal, Gamma, Poisson, and miltivariate normal distributions (for details see Bernardo 
and Smith, 1994). In closing this section, we emphasise that, although the Bayesian and 
classical approaces may sometimes yield same prediction, they are fundamentally 
different methods for learning from data. The problem of learning the model parameters 
and the model structure will be further discussed in the context of dynamic Bayesian 
networks. 

4.3 Bayesian networks 

In this section we introduce some concepts and definition of graph theory that are needed 
to describe Bayesian networks. Graphs are essential tools for building Bayesian networks 
and indeed, Bayesian networks are a marriage between probability theory and graph 
theory. 

4.3.1 Introduction to graph theory (basic definitions) 

Very many problem domains can be structured through using a graphical representation. 
Essentially, one identifies the concept or items of information which are relevant to the 
problem under consideration (represented by nodes in the graph), and then makes explicit 
the relationships and influences between these concepts. 

Graph: 
A graph G is defined as a pair G=(V,E), where V={V1, V2,…, Vn} is finite set of vertices 
or nodes and E is a subset of the set V×V called the edges or arcs. Thus, the graph G is 
simply collection of nodes V and edges E between nodes. These nodes can be connected 
by edges. If there is a link between two nodes Vi and Vj, we use Eij to denote such a link 
as shown in the following Figure 4.1. 

 

Figure 4.1. Example of graph with 
directed and undirected links. 

 

The link of a graph can be directed or undirected, depending on whether or not the order 
of the involved nodes matters. 
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Directed link: 

Let G=(V,E) be a graph. When and then the link Eij is called a 

directed link. A directed link between nodes Vi and Vj is denoted by In Figure 
4.1, E12 is a directed link as it links V1 and V2 in the direction V1 to V2. 

Undirected link: 

Let G=(V,E) be a graph. when and then the link between nodes Vi and 
Vj is called an undirected link. An undirected link between nodes Vi and Vj is denoted by 
Vi − Vj or Vj−Vi. In Figure 4.1, E34 is an undirected link between the two nodes V3 to V4. 

Parents and children: 

When there is a directed link from Vi to Vj, then Vi is said to be a parent of 
Vj and Vj is said to be a child of Vi. In Figure 4.1, V1 is the parent of V2, whereas V2 is the 
child of V1. 

Directed and undirected graphs: 
A graph in which all the links or edges are directed is called a directed graph. Conversely, 
a graph in which all the edges are undirected is called an undirected graph. Thus, in a 
directed graph, the order of the nodes defining a link is important, whereas in an 
undirected graph, that order is immaterial. 

Cyclic and acyclic graphs: 
A cycle is closed directed path in a directed graph. A directed graph is said to be cyclic if 
it contains at least one cycle. Otherwise it is called a directed acyclic graph (DAG); see 
Figure 4.2. 

 

Figure 4.2. Example of an acyclic and 
a directed cyclic graph. 

DAGs play an important role since they are used as a basis for building Bayesian 
networks. As already mentioned, the important point about a graphical representation of a 
set of variables is that the edges can be used to indicate relevance or influences between 
the variables. Absence of an edge between two variables, on the other hand, provides 
some form of independence statement that nothing about the state of one variable can be 
inferred by the state of the other. There is a direct relationship between the independence 
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relationships that can be expressed graphically and the independence relationships that 
can be defined in terms of probability distributions. 

4.3.2 Conditional independence 

The notions of independence and conditional independence are fundamental for the 
probabilistic inference. Detailed studies of the conditional independence properties can 
be found in Dawid (1979) and Pearl (1988). For completeness, we include definitions and 
the basic notation after Dawid (1979). The variables X and Y are independent if and only 
if P(X,Y)=P(X)P(Y). The independence is denoted by If the variables X and Y are 
independent then the following can be written: 

 
(4.26) 

Now we introduce a further variable Z. Then denotes that X is conditionally 
independent of Y given Z. The following expression shows the conditional independence: 

P(X,Y|Z)=P(X|Y,Z)P(Y|Z)=P(X|Z)P(Y|Z) 
(4.27) 

As X and Y are conditionally independent given Z, Y drops from the term P(X|Y,Z) and 
results in P(X|Z). One can draw a directed acyclic graph that directly encodes this 
assertion of conditional independence; see Figure 4.3. 

 

Figure 4.3. Variable X is conditionally 
independent of Y given Z. 

A significant feature of the structure of the graph in Figure 4.3 is that we can now 
factorise the joint probability distribution of the variables X, Y and Z into the product of 
terms that contains at most two variables, thus simplifying the computations: 

P(X, Y, Z)=P(X, Y|Z)P(Z)=P(X|Z)P(Y|Z)P(Z) 
(4.28) 

As a concrete example, one can think of the variable Z as representing a decrease where 
the variables X and Y may represent symptoms. In this configuration, if we observe the 
decrease at present, the probability of either symptom (X or Y) being present is 
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determined. Actual confirmation of one symptom being present will not alter the 
probability of occurrence of the other symptom. 

A different scenario (adopted from Krause, 2000) is illustrated in Figure 4.4, where X 
and Y are marginally independent, but conditionally dependent given Z. For example, 
both “rain” (X) and “sprinkler on” (Y) may cause the lawn to become wet. Before any 
observation of the lawn is made, the probability of rain and the probability of the 
sprinkler being on are independent. However, once the lawn is observed to be wet, 
conformation of raining may influence the probability of sprinkler being on (they are 
alternative causes). This is an example of “explaining away” (Russel and Norvig, 1995), 
that is, the presence of one cause making an alternative less likely. The probability 
distribution for this case as shown in Figure 4.4 can be again factorised as: 

P(X, Y, Z)=P(Z|X, Y)P(X, Y)=P(Z|X, Y)P(X)P(Y) 
(4.29) 

It is noted that this is again making use of the independence of X and Y, P(X, 
Y)=P(X)P(Y). 

 

Figure 4.4. Variables X and Y are 
conditionally dependent given Z. 

4.3.3 Bayesian networks defined 

A Bayesian network is simply a graphical model that represents conditional 
independence and efficiently encodes the joint probability distribution (physical or 
Bayesian) between a set of variables (Heckerman, 1997). In mathematical terms, a 
Bayesian network for a set of variables X={X1, X2,…, Xn} consists of: 

1. A network structure S that encodes a set of conditional independence assertions about 
variables in X; 

2. A set P of local probability distributions associated with each variable. Together, these 
components define the joint probability distribution for X. 

The network structure S is a directed acyclic graph. The nodes in S are in one-to-one 
correspondence with the variables X. We use the notation after Perl (1988), Xi to denote 
both the variable and its corresponding node, and Pai to denote parents of node Xi in S. 
The lack of possible arcs in S encodes conditional independencies. This implies that, 
given the structure S, the Bayesian network provides a complete joint probability 
distribution for the variables through the equation: 
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(4.30) 

The local probability distributions P are the distributions corresponding to the terms in 
the product of Eq. (4.30). Readers familiar with methods for supervised machine learning 
will recognise that a local distribution function is in fact a probabilistic classification or 
regression function. Thus, a Bayesian network can be viewed as a collection of 
probabilistic classification/regression local models organised by conditional-
independence relationships. This point of view is in a line with the local modelling in 
phase space discussed in the previous Chapter 3. The probabilities encoded by a Bayesian 
network may be Bayesian or physical. When building Bayesian networks from prior 
knowledge alone, the probabilities will be Bayesian. When learning these networks from 
data, the probabilities will be physical (and their values uncertain). 

In order further to illustrate the process of building Bayesian network we shall 
consider two examples: 

Example 4.1 (simple weather example) 

Given a situation where it might rain today, and might rain tomorrow, what is the 
probability that it will rain on both days? Rain on two consequitive days are not 
independent events with isolated probabilities. If it rains on one day, it is more likely to 
rain the next day as well. Solving such a problem involves determining the joint 
probability: chances that it will rain today, and then determining the chance that it will 
rain tomorrow conditional on the probability that it will rain today. Suppose that P(rain 
today)=0.20 and P (rain tomorrow|it rains today)=0.70. The probability of such joint 
event is determined by: 

P(E1, E2)=P(E1)P(E2|E1) 
(4.31)  

which also can be expressed as 

 
(4.32) 

Working out the joint probabilities, a possible result can be expressed in Table 4.3.  

 

 

 

Table 4.3. Marginal and joint probabilities for rain 
both today and tomorrow 
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  Rain 
tomorrow 

No rain 
tomorrow 

Marg. prob. 
rain today 

Rain today 0.14 0.06 0.20 
No rain today 0.08 0.72 0.80 
Marg. prob. rain 
tomorrow 

0.22 0.78   

From the Table 4.3 it is evident that the joint probability of rain over both days is 0.14., 
but there is a great deal of other information that had to be brought into the calculations 
before such a determination was possible. With only two discrete, binary variables, four 
calculations were required. The same scenario is expressed using a Bayesian network in 
Figure 4.5 (“!” is used to denote “not”) 

 

Figure 4.5. An example of Bayesian 
network showing the probability of 
rain. 

One attraction of the Bayesian network is the efficiency that only one branch of the three 
needs to be traversed. In this case, we are only concerned with P(E1), P(E2|E1) and P(E1, 
E2). Furthermore, one can also utilise the graph both visually and algorithmically to 
determine which variables are independent of each other. Instead of calculating four joint 
probabilities, we can use the independence of the variables to limit our calculations to 
two. It is self-evident from the Figure 4.5 that the probabilities of rain on the second day 
having rained on the first are completely autonomous from the probabilities of rain on the 
second day having not rained on the first. 

Example 4.2 (wet grass) 

This example is adopted from Jensen (1996). Mr. Holmes leaves his house in the morning 
and notices that his grass is wet. It is due to either rain or has he forgotten to turn off the 
sprinkler? His belief in both events increases. Next he notices that the grass of his 
neighbour Dr Watson’s grass is also wet Elementary: Holmes is almost certain that it
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has been raining, as there is no sprinkler for Watson’s grass. A Bayesian network 
representing the situation described is shown on Figure 4.6. 

 

Figure 4.6. A Bayesian network model 
for the “wet grass” example. 

The network consists of four variables namely: Holmes’ grass (H), Watsons’ grass (W), 
Rain (R) and Sprinkler (S). For sake of simplicity, every variable is assumes to be in only 
two states “Yes” and “No” denoted by “y” and “n” respectively. In general, the prior 
probabilities for rain (R) being in state “y” and in state “n” is denoted P(R=y) and 
P(R=n). For all others variables also, the same types of notation are used. Let P(R=y)=0.2 
and P(R=n)=0.8, which can be denoted as P(R)=(0.2, 0.8). Similarly, the prior 
probabilities for sprinkler S be P(S)=(0.1,0.9). The remaining conditional probabilities are 
listed in the following Tables 4.4 and 4.5. 

Table 4.4 Conditional probabilities for Watsons’ 
grass (W) 

Rain(R) Yes (y) No (n) 
W=y 1 0.2 
W=n 0 0.8 

Table 4.5 Conditional probabilities for Holmes’ 
grass (H) 

Rain (R) Yes (y) No (n) 
Sprinkler (S) Yes (y) No (n) Yes (y) No (n) 
H=y 1 1 0.9 0 
H=n 0 0 0.1 1 

It should be noted that the Table 4.4 and 4.5 is actually P(W|R) and P(H|R, S) 
respectively. In order to calculate the initial probabilities for W and H, we use the product 
rule presented in Eq. (4.3) to calculate P(W, R) and P(H, R, S) as follows: 

P(W=y, R=y)=P(W=y|R=y)P(R=y)=1·0.2–0.2 
P(W=y, R=n)=P(W=y|R=n)P(R=n)=0.2·0.8=0.16 
P(W=n, R=y)=P(W=n|R=y)P(R=y)=0–0.2–0 
P(W=n, R=n)=P(W=n|R=n)P(R=n)=0.8–0.8–0.64 
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These joint probabilities for P(W, R) are tabulated in Table 4.6. This table is result of a 
multiplication of Table 4.4 by the prior probability of rain P(R).  

Table 4.6: Joint probabilities for P(W, R) 
Rain (R) Yes (y) No (n) 
W=y 0.2 0.16 
W=n 0 0.64 

From P(W, R), we can marginalise R to get the probability distribution P(W). By 
summing up the rows in Table 4.6 we have: 

P(W=y)=0.2+0.16=0.16 
P(W=n)=0+0.64=0.64 

  

The calculation of P(H, R, S) follows the same scheme, only the product is: 
P(H, S, R)=P(H|R,S)P(R, S).   

Since R and S are independent, we have: 
P(H, S, R)=P(H|R, S)P(R)P(S).   

The required joint probability distribution for P(H, R, S) is obtained by multiplying Table 
4.5 by P(R)P(S). For example (see Table 4.7 for complete joint probabilities): 

P(H=y, S=y, R=y)=P(H=y|R=y, S=y)P(R=y)P(S=y)=1·0.2·0.1=0.02   

Table 4.7 Joint probabilities for P(H,R,S) 
Rain (R) Yes (y) No (n) 
Sprinkler (S) Yes (y) No (n) Yes (y) No (n) 
H=y 0.02 0.18 0.072 0 
H=n 0 0 0.008 0.72 

Having computed P(H, R, S), we can marginalise (R, S) to get P(H). From Table 4.7 it 
follows that: 

P(H=y)=0.02+0.18+0.072+0=0.272 
P(H=n)=0+0+0.008+0.72=0.728. 

  

 

4.3.4 Inference in Bayesian networks 

The most common task we wish to solve using Bayesian networks is probabilistic 
inference. Once we have constructed our Bayesian network (model) from prior 
knowledge, data or a combination of both, we usually need to determine various 
probabilities of interest from the model. For example, in our wet grass example, we may 
wish to know the probability of a rain or sprinkler given the observation (evidence) on 
the Holmes’ grass. This probability is not directly stored in the model and needs to be 
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computed. In general, the computation of a probability of interest given a model and 
additional evidence is known as probabilistic inference (Heckerman, 1997). In other 
words, inference is the task of efficiently deducing what is the underlying distribution 
over a particular subset of variables (parameters) given that one knows the states of some 
other variables in the network. Thus, one needs to calculate a particular conditional or 
marginal probability distribution.  

Inference in Bayesian networks is straightforward when all available evidence is on 
variables that are ancestor of the variables of interest. However, when evidence is 
available on a descendant of the variables of interest, one needs to perform inference 
against the direction of the edges. This can be done by employing the Bayes’ theorem. 
We can illustrate this by using the example 4.2: Let us assume that Watson’s grass is wet. 
Now we are able to determine all the other probabilities given the evidence on W. First, 
the information that Watson’s grass is wet is used to update probability of rain P(R). For 
this, Bayes’ theorem is used as: 

 

  

From Table 4.4, we have P(W=y|R)= (1,0.2) and P(R)=(0.2,0.8). Thus: 

 

  

This probability is higher than the prior probability of rain P(R)=(0. 2,0.8), which is 
logical because the evidence of Watson’s wet grass has increased probability of rain. 
Now to update probability of H, we use fundamental product rule as follows: 

P(H, R, S)=P(H|R, S)P(R)P(S)   

Similarly, joint probability distribution for P(H, R, S) is obtained by multiplying Table 
4.5 by P(R)P(S). The following Table 4.8 shows the updated joint probabilities.  

Table 4.8 Updated joint probabilities for P(H,R,S) 
Rain (R) Yes (y) No (n) 
Sprinkler (S) Yes (y) No (n) Yes (y) No (n) 
H=y 0.056 0.504 0.0396 0 
H=n 0 0 0.0044 0.396 

Finally, P(H) can be computed by marginalising (R, S) from Table 4.8, which results in 
P(H)=(0.5996, 0.4004). 

For problems with many variables, the above direct approach is not practical. 
However, it is possible to evaluate the marginal probability of all variables given 
observations on some other variables. The problem of conditioning Bayesian networks on 
observations is in general NP-hard (Cooper, 1990), but experience shows that in many 
real systems the networks are sparsely connected and therefore the calculations are 
tractable. Several researchers have developed probabilistic inference algorithms for 
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Bayesian networks with discrete variables that exploit conditional independence roughly. 
One of the first algorithms in singly connected networks was developed by Pearl (1988). 
He developed a message passing scheme, based on the d-separation principle, in which 
each time a variable received some new evidence it sent a message to its neighbours, 
which sent new messages to their neighbours. This process is called the local message 
passing process. Local computation in a Bayesian network is the process of computing a 
variable’s posterior probability distribution from the posterior distribution of its 
neighbours- and only its neighbours (Mayo, 2001). Thus, when evidence arrives at a 
node, its neighbours update themselves, then their neighbours update themselves, and so 
on, until the entire network absorbs the evidence. Inference via local computation is 
highly efficient for singly connected Bayesian networks. 

However, the situation is more complex when the network is multiply connected. 
Later on, Lauritzen and Spiegelhalter (1988), Jensen et al. (1990) created an algorithm for 
multiply connected networks that first transforms the Bayesian networks into a tree where 
each node in the tree corresponds to a subset of variables. The algorithm then exploits 
several mathematical properties of this tree to perform probabilistic inference. The most 
popular algorithm used for discrete variables today is the junction tree algorithm designed 
by the Odin group at Aarhus University (Jensen, 1996). 

Methods for exact inference in Bayesian networks with continuous variables that 
encode multivariate-Gaussian or Gaussian-mixture distributions have been developed by 
Shacher and Kenely (1989) and Lauritzen (1992), respectively. These methods also use 
assertions of conditional independence to simplify the inference. Approximate methods 
for inference in Bayesian networks with other distributions have also been developed 
(Saul et al., 1996; Jaakkola and Jordan, 1996), which utilise Monte-Carlo methods. When 
a Bayesian network structure contains undirected cycles, inference in principle is 
intractable. However, for many practical applications, where the generic inference 
methods are impractical, researchers are developing techniques that are custom tailored to 
particular network topologies (Heckerman, 1989; Shacher et al, 1990; Jensen and 
Andersen, 1990; Darwiche and Provan 1995). 

Before closing this section on the “static” Bayesian networks, that is, they do not deal 
with temporal (time-series) data, we would like to mention some of the practical 
successful applications of Bayesian networks and the ongoing research in this area. 

AutoClass project 
The National Aeronautic and Space Administration (NASA) has a large investment in 
Bayesian research. In gathering data from the deep-space observatories and planetary 
probes, an apriori imposition of structure or patterns expectations is inappropriate. The 
AutoClass project was aimed to develop Bayesian applications that can automatically 
perform pattern recognition and classification of the raw data. An applied example of 
AutoClass’s application was the input of infrared spectra. Although no differences among 
this spectra were initially sustected, AutoClass sucesfully distinguished two subgroups of 
stars (see Cheeseman and Stutz, 1995 for details). Velickov and Solomatine (2000) 
successfully applied the AutoClass system for unsupervised classification of surge data 
along the Dutch coast. 

Lumiere project 
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Microsoft began work in 1993 on Lumiere, its project to create software that could 
automatically and intelligently interact with users by anticipating the goals and needs of 
these users (Horvitz, 1998). This research started as a continuation on earlier research on 
pilot-aircraft interaction and resulted in the “Office Assistant” product with the 
introduction of the Office suite of desktop applications, and is nowadays probably the 
most-sophisticated personal agent based on Bayesian inference.  

Autonomy project 
Autonomy project started as European research project in 1991. Its goal was to create text 
mining and information retrieval engine that will infer information goals from free-text 
queries, based on Bayesian inference. This project resulted in a knowledge management 
suite of tools fully based on Bayesian networks. 

In the context of this work, Shrestha (2002) has applied Bayesian networks for risk 
assessment of structural collapse of sewer, which resulted in very encouraging 
performance of the proposed Bayesian network. 

4.4 Dynamic Bayesian networks 

Up to this point of discussion, we have introduced only static Bayesian networks. These 
kinds of networks are useful for solving diagnostic type of problems, since they cannot 
deal with temporal data. However, learning models from data that describe dynamical 
systems, which is the focus of this thesis, require incorporation of the temporal order of 
the processes and variables in the network. This concept plays an important role in the 
design of dynamic Bayesian networks. In time series modelling, we observe the values of 
certain variables at different points in the time. The assumption that an event can cause 
another event in the future, but not vice-verse, simplifies the design of Bayesian networks 
for time series. That means directed arcs should flow forward in time. Assuming a time 
index t to each variable, one of the simplest causal models for a time series data 
{Y1,Y2,…,YT} is a first-order Markov model, in which each variable is directly influenced 
only by the previous variable; see Figure 4.7.  

 

Figure 4.7. A Bayesian network 
representing a first-order Markov 
process. 

The joint probability distribution of a sequence of observation {Y1, Y2,…,YT} can always 
be factorised using first-order Markov model as: 

P(Y1, Y2,…, YT)=P(YT|Y1, Y2,…,YT−1)·P(Y1, Y2,…, YT−1) 
=P(YT|YT−1)·P(Y1, Y2,…, YT−1) 
=P(YT|YT−1)·P(YT−1|Y1, Y2,…, YT−2)·P(Y1, Y2,…, YT−2) 
=P(YT|YT−1)·P(YT−1|YT−2)…P(Y2|Y1)·P(Y1) 
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This form of Eq. (4.13) is called Markov chain rule of first order. Using the shorthand 

notation to denote sequences from t=1,…, T the above equation can be written in 
compact form as: 

 
(4.34) 

Thus, dynamic Bayesian networks are a special case of singly connected Bayesian 
networks specifically aimed at time series modelling. In this case, one assumes causal 
dependencies between events in time leading to a simplified network structure, such as 
the one shown in Figure 4.7. Namely, in its simplest form, the states of some dynamical 
system described as a dynamic Bayesian networks satisfy the following first order 
Markovian condition (Pavlovic, 1999): the state of a system at time t depends only on its 
immediate past: its state at time t−1. These models do not directly represent dependencies 
between observable over more than one time step. Having observed {Y1, Y2,…, YT}, the 
model will only make use of YT to predict the value of YT+1. One simple way of extending 
Markov models is to allow higher order interactions between variables. For example, a τth 
order Markov model allows arcs from {Yt−τ,…, Yt−1} to Yt. The following Figure 4.8 
shows the Markov model of order 2, where conditional probability P(YT|Y1, Y2,…, YT−1) 
can be simply replaced by P(YT|YT−1, YT−2). 

 

Figure 4.8. A Bayesian network 
representing a second order Markov 
process. 

Thus, in general, a Markov model of order k is a probability distribution over a sequence 
of variables {Y1, Y2,…, YT} with the following conditional independence property: 

P(Yt|Y1,…,Yt−1)=P(Yt|Yt−k,…, Yt−1) 
(4.35) 

Since {Yt−k,…, Yt−1} summarises all the relevant past information, Yt is generally called a 
state variable. Because of the above conditional independence property, the joint 
distribution of a whole sequence can be decomposed into the product as: 

 
(4.36) 

This equation is the generalised form of the Eq. (4.34). The Markov model of order 1 is 
completely specified by the so-called initial state probabilities P(Y1) and transition 
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probabilities P(YT|YT−1). Before we go further in the generalisation of the dynamic 
Bayesian networks, let us illustrate the first order Markov model using the following 
example (adopted from Lussier, 1998). 

Example 4.3 (weather types) 

Let us consider three types of weather: sunny (S), rainy (R), and foggy (F) and assume for 
the moment that the weather lasts all day i.e. it does not change from rainy to sunny in the 
middle of the day. Let us try to predict weather based on the previous history of 
observations of weather. The simplified model of weather prediction will be: we will 

collect statistics on what the weather will like today based on what the weather was like 
yesterday, the day before, and so forth. However, if assume first order Markov model, the 
tomorrow’s weather will depend on only today’s weather. The following table shows 
probabilities of tomorrow’s weather based on today’s weather P(Wtomorrow|Wtoday). 

Table 4.9. Probabilities for P(Wtomorrow|Wtoday). 
    Tomorrow’s weather 
Today’s weather Sunny (S) Rainy (R) Foggy (F) 
Sunny (S) 0.8 0.05 0.15 
Rainy (R) 0.2 0.6 0.2 
Foggy (F) 0.2 0.3 0.5 

For first-order Markov models, we can use these probabilities to draw a probabilistic 
finite state automaton. For the weather domain, we would have three states (Sunny (S), 
Rainy (R), Foggy (F)), and every day we would transition to a possibly new state based 
on the probabilities in Table 4.9. Such an automaton is schematically presented in Figure 
4.9.  
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Figure 4.9. Schematisation of the 
simple weather model. 

This simple model allows to make various probabilistic inferences such as: 

• Given that today is sunny, what is the probability that tomorrow is sunny and the day 
after is rainy? 

Applying the product rule and then the first-order Markov assumption, we have: 

P(W2=S,W3=R|W1=S)=P(W3=R|W1=S,W2=S)·P(W2=S|W1=S) 
=P(W3=R|W2=S)·P(W2=S|W1=S) 

= 0.05·0.8=0.04 

  

• Given that today is foggy, what is the probability that it will be rainy two days from 
now?  

There are three possible sequences to get from foggy today to rainy two days 
from now: {F, F, R}, {F, R, R}, {F, S, R}. Therefore one has to sum over these 
paths: 

P(W3=R|W1=F)=P(W2=F,W3=R|W1=F)+P(W2=R,W3=R|W1=F)+ P(W2=S, 
W3=R|W1=F) 

= P(W3=R|W1=F,W2=F)P(W2=F|W1=F)+ P(W3=R|W1=F,W2=R)P(W2=R|=F)+ 
P(W3=R|W1=F,W2=S)P(W2=S|W1=F) 

=P(W3=R|W2=F)P(W2=F|W1=F)+ P(W3=R|W2=R)P(W2=R|W1=F)+ 
P(W3=R|W2=S)P(W2=S|W1=F) 

=0.3·0.5+ 0.6·0.3+ 0.05·0.2=0.34 

  

 

4.4.1 State-space models 

As already mentioned, these simple Markov models can be extended to include 
dependencies between the observables using higher-order Markov process. However in 
perspective of dynamic Bayesian networks, another way to extend Markov model is to 
conceive a higher conceptualisation level that the observations are dependent on a hidden 
variable, which we call state, and that the sequence of states is modelled as a Markov 
process; see Figure 4.10. 
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Figure 4.10. Generic structure of a 
dynamic Bayesian network. 

A generic dynamic Bayesian network is structured as a sequence of time slices, where the 
nodes at each slice encode the state at the corresponding time point. The conditional 
probability distributions encode both a state evolution model, which describe the 
transitional probabilities between the states, and a sensor model, which describes the 
observations that can result from a given state. Typically, one assumes that these 
distributions do not vary over time, although this is also possible, as we will discuss in 
Chapter 5. A classic model of this kind is the linear-Gaussian state-space model, also 
known as Kalman filer, see Figure 4.11.  

 

Figure 4.11. A dynamic Bayesian 
network specifying conditional 
independence relation for a state-space 
model. 

In state-space models, a sequence of D-dimensional real-valued observation vectors 
{Y1, Y2,…, YT}, is modelled by assuming that at each time step Yt was generated from a 
K-dimensional real-valued hidden state variable Xt, and that the state evolution model is 
defined by first-order Markov process. The joint probability of the state-space model can 
be expressed as: 

(4.37) 

The state transition probability P(Xt|Xt−1) is decomposed into deterministic and stochastic 
components: 

Xt=ft(Xt−1)+ωt 
(4.38) 

where ft is the deterministic transition function determining the mean of the Xt given Xt−1, 
and wt is a zero-mean random noise vector. Similarly, the emission model P(Yt|Xt) is 
decomposed as: 

Yt=gt(Xt)+vt. 
(4.39) 
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If both the transition and output function are linear and time-invariant and the distribution 
of the states and observation noise variables is Gaussian, the model becomes a linear-
Gaussian state-space model: 

Xt=AXt 1+ωt 
Yt=CXt+vt (4.40) 

where A is the state transition matrix and C is the observation matrix. Linear Gaussian 
state-space models (sometimes referred as linear dynamic models) are used extensively in 
all areas of control and signal processing. In the area of data-driven modelling they have 
recently showed promising results in the area of data assimilation for physically-based 
models (e.g. Babovic, 2000). 

4.4.2 Hidden Markov models 

It would be intractable in general to model sequential data in which the conditional 
probability distribution P(YT|Y1, Y2,…, YT−1) of an observed variable YT at time t depends 
on all the details of the previous values Y1, Y2,…, YT−1 (Bengio, 1999). Even with Markov 
models of order k the problem is that they quickly become intractable for large k. For 

example, for a multinomial state variable the number of required 
parameters for representing the transition probabilities is of order O(nk+1). This 
necessarily restricts one to using a small value of k.  

However it is possible to model sequential data using the concept of hidden variables 
which can summarise a past sequence concisely. In other words, the hidden variables 
which are unobserved variables carry all the information from Y1, Y2,…, YT−1 that is 
useful to describe the distribution of the next observation YT. This is precisely what 
Hidden Markov Models (HMMs) embed: we do not assume that the observed data 
sequence has a Markov property of low order; however, another, unobserved but related 
variable (the state variable) is assumed to exist and to have the Markov property (with 
low order, typically k =1). HMMs are generally taken order of 1 because a HMM of order 
1 can emulate an HMM of any order by increasing the number of values that the state 
variable can take (for details see MacDonald and Zucchini, 1997). 

In mathematical terms, the joint probability for the sequences of hidden states {St} and 
observations {Yt} can be factored in exactly the same manner as Eq. (4.37), with St taking 
place of Xt: 

 
(4.41) 

Consequently, the conditional independences in an HMM can be also expressed 
graphically using dynamic Bayesian network shown in Figure 4.12. 
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Figure 4.12. A dynamic Bayesian 
network specifying conditional 
independence assumption for a Hidden 
Markov Model of first order. Square is 
used to represent the discrete hidden 
variable. 

The joint distribution (Eq. 4.41) is therefore completely specified in terms of: 

(i) The initial state probabilities P(St) 
(ii) The transition probabilities P(St|St−1) 
(iii) The emission probabilities P(Yt|St) 

All of the conditional probability distribution can be time-varying P(St|St−1)=(St|St−1, t) or 
time invariant, parametric P(St|St−1)=(St|St−1, θ) or non parametric (conditional probability 
tables). Depending on the type of the state space of hidden and observable variables, a 
HMM can be discrete, continuos, or a combination of two. In general, the hidden state is 
represented by a single multinomial variable that can take one of K discrete values, 

Thus, state transition probabilities, P(St|St−1) for time-invariant HMM 
can be specified by a single K×K transition matrix. If the observed variables are discrete 
symbols taking on one of L values, the emission probability P(Yt|St) can be fully specified 
by a K×L observation matrix. For real value observation vectors, P(Yt|St) can be modelled 
in many different forms, such as a Gaussian, mixtures of Gaussian or a neural network. 
HMMs can be also extended to allow for input variables, known as input-output HMMs 
(e.g. Bengio and Frasconi, 1995). The system then models the conditional distribution of 
a sequence of output observations given a sequence of input observations. These kinds of 
HMMs have been extensively applied to problems of bioinformatics (Krogh et al., 1994; 
Baldi et al., 1994), speech recognition and (Juang and Rabinner, 1991) and system 
identification (Smyth, 1994). 

In order to illustrate the concept of HMMs, let us consider an example (adopted from 
Wolfgong, 1999) where the HMM is a four-state model as shown in the following Figure 
4.13. The state sequence {St}=(S1, S1, S2, S3, S3, S4) generates the observation sequence 
{Yt}=(Y1, Y2, Y3, Y4, Y5, Y6). When progressing through the model, at each time t that a 
state Sj is entered, an observation Ym is generated with probability bmj. The transition from 
state i at time t−1 to state j at t time is governed by the discrete state bigram transition 
probability aij. The observation probabilities attain their maxima when corresponding 
state is visited. Therefore in Figure 4.13, the maximum values for bmj are obtained for b11, 
b21, b32, b43, b53, and b64. 
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Figure 4.13. An example of a four-
state HMM model. 

The probability that the observation sequence {Yt}=(Y1, Y2, Y3, Y4, Y5, Y6) is generated 
given the model and moving through the state sequence {St}=(S1, S1, S2, S3, S3, S4) is 
calculated simply as a product of the state transition and corresponding maximum 
observation probabilities as: 

P({St,Yt})=a01b11a11b21a12b32a23b43a33b53a34b64 
(4.42) 

In practice, only the observation sequence {Yt} is known and the underlying state 
sequence {St} is hidden as explained above. Given that {St} is unknown, the required 
likelihood is computed by summing up the probabilities over all possible state sequences, 
given the observation sequence. More precisely:  

 
(4.43) 

where So is constrained to the model entry state, and St+1 to be the model exit state. As an 
alternative to the Eq. (4.43), the likelihood can be approximated by only considering the 
most likely state sequence, i.e. 

 

(4.44) 
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The direct computation of Eq. (4.43) or Eq. (4.44) is intractable. Simple recursive 
procedures are used to calculate these quantities very efficiently, assuming that 

P(Y|S)=P(Y|θ) 
(4.45) 

and the model parameters θ are known. Given a set of training examples and a particular 
model, the parameters of that model can be determined by a robust and efficient 
reestimation procedure (to be further discussed). 

4.4.3 Switching state-space models 

In order to model a time series with continuous but non-linear dynamics, it is possible to 
combine the real-valued hidden state of linear-Gaussian state-space models and the 
discrete state of HMMs (Ghahramani and Hinton, 1998). One natural way to do this is the 
switching state-space models. In switching state-space models, the sequence of 
observations {Yt} is modelled using a hidden state space comprising of M real-valued 

state space vectors, and one discrete state vector {St}. The discrete state is a 

multinomial variable that can take on M values: and sometimes is referred 
to as a switch variable. The joint probability of observations and hidden states can be 
factored as: 

(4.46) 

which corresponds graphically to the conditional independences represented in Figure 
4.14. Conditioned on a setting of the switch variable St=m, the observed variable is 
multivariate Gaussian with output defined by the state-space model m. The probability of 
the observation vector {Yt} can be expressed as: 

(4.47) 

where D is the dimension of the observation vector, R is the observation noise covariance 
matrix, and C(m) is the output matrix for state-space model (recall Eq. 4.40). 
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Figure 4.14. Dynamic Bayesian 
network representation for switching 
state-space models. St is the discrete 
switch variable and Xt(m) are the real-
valued state vectors. 

Each real-valued state space vector evolves according to the linear-Gaussian dynamics of 
a state-space model with differing initial state, transition matrix, and state noise. The 
switch state itself evolves according to the discrete Markov dynamics specified by initial 
state probabilities P(S1) and an M×M state transition matrix P(St|St−1). 

4.5 Learning dynamic Bayesian networks 

How can dynamic Bayesian networks (DBNs) learn from data? There are several variants 
of this question. The structure of the DBN can be known or unknown, and the variables in 
the network describing the dynamics of the system can be observable or hidden in all or 
some of the data points. Learning the structure (and the parameters at the same time) of a 
DBN is a difficult problem and is closely related to machine learning. As we have already 
argued in Chapter 2, our approach of learning models from data is based on a maximum 
utilisation of the expert knowledge about the physical processes and the relationships 
between variables characterising those processes that are encapsulated in the model 
structure and model parameters. Thus, our assumption of learning DBNs is that the 
learning process starts with some a priori knowledge about the model(s) structure (the 
architecture of the DBN) and the model parameters. This initial knowledge is represented 
in the from of a priori probability distribution over possible model structures and 
parameters, and updated using the time series of observables to obtain a posterior 
probability distribution over the models and parameters. In Section 4.2.3 we have already 
described the process of learning posterior probabilities using the Bayesian framework. 
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More formally, assuming a prior distribution over models structures P(M) and a prior 
distribution over parameters for each model structure P(θ|M), a data set of time series of 
observables D is used to form a posterior distribution over models using Bayes rule: 

 

(4.48) 

For a given model structure, one can compute the posterior distribution over the 
parameters: 

 
(449) 

Given the data set of observations D={Y1, Y2,…,YT}, one can predict the next observation 
YT+1 using the Bayesian framework as: 

P(YT+1|D)=∫P(YT+1|θ,D, M)P(θ|D, M)P(M|D)dθdM 
(4.50) 

which integrates out the uncertainty in the model structure and parameters. Using this 
learning approach we obtain the somewhat limited case of the Bayesian approach to 
learning if we assume a single model structure M and we estimate the model parameters 

that maximises the likelihood of observations P(D|θ, M) given that model. Since we 
focus in this work on estimating model parameters given the model structure(s), in 
principle this is an only approximate Bayesian learning, due to the reason that in practical 
applications a full-fledged Bayesian analysis is often impractical. Some researchers have 
developed approximate methods for integrating over the posterior distribution in the case 
of neural network models (e.g. Neal, 1996; MacKay, 1995). 

4.5.1 Learning with complete data 

The most straightforward learning situation to consider is that where the structure of the 
DBN is (believed to be) known and data is observable on all variables in the network. 
Assuming a data set of observables D={y(1), Y(2),…, Y(N)}, each of which can be a time 
series of vectors, then the likelihood of the data set is: 

 
(4.51) 

Since we assume that the model structure is known, from this point of the discussion we 
can drop the implicit conditioning on the model structure, M. The model parameters can 
be obtained by maximising the likelihood, or equivalently the log likelihood: 
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(4.52) 

Since the observation vector includes all variables in the Bayesian network, each term in 
the log likelihood can be factored as: 

 
(4.53) 

where j indexes the nodes in the network, pa(j) is the set of parents of j, and θj are the 
parameters that define the transitional probabilities. The likelihood therefore decouples 
into local terms involving each node and its parent(s), thus simplifying the estimation 
problem. Any optimisation algorithm (e.g. gradient-based, see Section 2.9) can be used to 
maximise the log likelihood given with Eq. (4.52). 

4.5.3 Learning with incomplete data 

Let us now discuss methods for learning about parameters when the data set is 
incomplete (i.e. some variables in some cases are not observed or are hidden). An 
important distinction concerning missing data is whether the absence of an observation is 
dependent on the actual states of the variables describing the dynamical system. For 
example, a missing datum in a study of surge dynamics along the coast may indicate the 
presence of a stormy situation. In contrast, if a variable is hidden (i.e. is not observable in 
any case), then the absence of the data is independent of the states. Although Bayesian 
methods are suited to the analysis of both situations, methods for handling missing data 
where absence is independent of states (i.e. presence of hidden variables) are simpler than 
those where the absence and states are dependent. In this work we concentrate on the 
problem of learning DBNs with hidden variables. We refer readers interested in the more 
complicated case to Pearl (1995). With hidden variables, the exact computation of 
posterior distribution of the model parameters is intractable, meaning that the log 
likelihood cannot be decomposed as in Eq. (4.53). In this case we have: 

 
(4.54) 

where X is the set of hidden variables, and ∑X is the sum (or integral) over X required to 
obtain the marginal probability of the data. Thus, one requires approximate methods. 

A number of such approximations have been described in the literature. One can 
broadly divide them into two classes: stochastic and deterministic. The Stochastic class of 
approximations is based on Monte-Carlo or sampling methods. These approximations can 
be extremely accurate, but computationally demanding. A widely studied stochastic 
method is Gibbs sampling (Geman and Geman, 1984), which is a special case of the 
general Markov chain Monte-Carlo methods for approximate inference. Given variables 
{X1, X2,…, Xn} with some joint distribution p(x), we can use Gibbs sampling to 
approximate the expectation of a function f(x) with respect to p(x) as follows. First, we 
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assign an initial state for each variable in {X}. Next, we pick some variable Xi, unassign 
its current state, and compute its probability distribution given the state of the other n-1 
variables. Then, we sample a state for Xi based on its probability distribution, and 
compute f(x). Finally, we iterate the previous two steps, keeping track of the average 
value of f(x). In the limit, as the number of cases approaches infinity, this average is equal 
to the mathematical expectation Ep(x)(f(x)), provided that two conditions are met. First, the 
Gibbs sampler must be irreducible, and second each variable Xi must be chosen infinitely 
(see Neal, 1993 for discussion).  

Monte-Carlo methods yield accurate results, but they are often impractical for large 
data sets. Another approximation that leads to accurate results for relatively large data 
samples is the Gaussian approximation (Kass and Raftery, 1995). The idea behind this is 

that, for large amounts of data, can be 
approximated with a multivariate-Gaussian distribution. In particular, if we denote: 

g(θ)≡log(P(D|θ, M)·P(θ|M)) 
(4.55) 

and let be the estimation of θ that maximises g(θ). Then this configuration also 
maximises P(θ|D, M), and is known as the maximum a posteriori (MAP) configuration of 
the model parameters θ. As the sample size of the data increases, the Gaussian peak will 

become sharper, tending to a delta function at the MAP estimation In this limit, one 
does not need to compute averages or expectations. Instead, one simply makes 
predictions based on the MAP configuration. 

A further approximation is based on the observation that, as the sample size increases, 

the effect of the prior P(θ|M) diminishes. Thus, one can approximate by the maximum 
likelihood (ML) configuration of model parameters θ: 

 
(4.56) 

As already previously discussed, one class of maximisation techniques for finding MAP 
or ML is gradient-based optimisation. For example, using gradient ascent one can follow 
the derivatives of g(θ) or the likelihood P(D|θ, M) to a local maximum (e.g. Russel et al., 
1995). Of course, these gradient-based methods find only local maxima. 

Another alternative technique for finding a local ML or MAP is the expectation-
maximisation (EM) algorithm, introduced by Dempster et al., (1977). This algorithm can 
be viewed as a deterministic version of the Gibbs sampling. The EM algorithm iterates 
through two steps: expectation—E step, and maximisation—M step. We shall here 
describe the main concept of the EM algorithm, since a more detailed explanation is 
given in Chapter 5. In the context of learning DBNs with hidden variables, the log 
likelihood is expressed as Eq. (4.54). Using any distribution Q over the hidden variables, 
one can obtain a lower bound on L(θ) as: 
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(4.57) 

where the inequality is known as Jensen’s inequality and can be proven using the 
concavity of the log function (see e.g. Neal and Hinton, 1993). If one defines the energy 
of the global configuration (X, Y) to be log P(Y, X|θ), then the lower bound F(Q, θ)≤L(θ) 
is the negative of the quantity known in statistical physics as the free energy: the 
expected energy under Q minus the entropy of Q (Hinton and Zemel, 1994). Thus, the 
EM algorithm alternates between maximising F with respect to Q and θ, respectively, 
holding the other fixed. It is thus coordinate ascent in F. Starting with some initial 
parameters θ0: 

(4.58) 

(4.59) 

The EM algorithm is fast, but it has the disadvantage of not providing a distribution over 
the model parameters θ. In addition, Lauritzen (1995) reported that when a substantial 
amount of data is missing, the likelihood function has a number of local maxima leading 
to poor results (which is also problem with gradient-based methods). Several 
improvements have been suggested to overcome this problem (e.g. Buntine, 1995). 

In the light of the previous introduction to the dynamic Bayesian networks, state-space 
models and HMMs in particular, we present the learning of the model parameters with 
the presence of hidden variables at the end of this section. 

LEARNING STATE-SPACE MODELS 

Recalling Eq. (4.37), the log probability of the hidden states and the observations for 
linear-Gaussian state-space models can be written as: 

(4.60) 

In Eq. (4.60) each of the conditional probabilities terms is Gaussian, e.g. using Eq. (4.40): 

(4.60) 

where R is the covariance of the observation noise vt, ′ operator is the matrix transpose, 
and |·| is the matrix determinant. The model parameters can be estimated by maximising 
Eq. (4.60). By taking derivatives of Eq. (4.60), one obtains linear system of equations. 
For example, the ML estimate of the observation matrix C can be found from: 
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(4.61) 

Since the states are in fact hidden, in the M step one uses the expected values. The 
expected value of f(x) with respect to the posterior distribution of X in shorthand notation 

is denoted here as and can be estimated as: 

 
(4.62) 

Using the expected values, then the M step for the observation matrix C estimation now 
becomes: 

 

(4.63) 

Similar M steps can be derived for all the other parameters by taking derivatives of the 
expected log probability (Shumway and Stoffer, 1982; Digalakis et al., 1993), which in 

general requires computation of terms such as These 
terms can be efficiently computed using Kalman smoothing algorithm. The Kalman 
smoother solves the problem of estimating the state at time t of a linear-Gaussian state-
space model given the model parameters and a sequence of observations {Y1,…, Yt,…, 
YT}. It basically consists of two parts: a forward recursion which uses the observations 
from Y1 to Yt, known as Kalman filtering (Kalman and Bucy, 1961), and a backward 
recursion which uses the observations from YT to Yt+1 (Rauch, 1963), which is known and 
Rauch-Tung-Striebel smoother. We have already previously discussed that in order to 
compute marginal probability of a variable in Bayesian network, one needs to take into 
account both the evidence above and below the variable. In fact, the Kalman smoother is 
simply a special case of the belief propagation algorithm. The Gaussian marginal density 
of the hidden state vector is completely defined by its mean and covariance matrix. If one 

denotes the quantities and as a mean vector and covariance matrix of Xt, 
respectively, given observations {Y1,…, Yτ}, the Kalman filter consists of the following 
forward recursions: 

 (4.64) 

 (4.65) 

 (4.66) 
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 (4.67) 

 (4.68) 

where the and are the prior mean and covariance of the state, which are model 
parameters. Equations (4.64) and (4.65) in fact describe the forward propagation of the 
state mean and variance before having seen the observation at time t. The mean evolves 
according to the known dynamics A which also affects the variance. In addition, the 
variance also increases by the state noise Q. The observation Yt has the effect of shifting 

the mean by an amount proportional to the prediction error where the 
proportionality term Kt is known as the Kalman gain matrix. Observing Yt also has the 
effect of reducing the variance of Xt. At the end of the forward recursions the values for 

and are obtained. One now needs to proceed backwards and evaluate the 
influence of future observations on the estimates of the states in the past:  

 (4.69) 

 (4.70) 

 (4.71) 

where Jt is a gain matrix similar to the Kalman gain matrix. In addition, one can also 
recursively compute the covariance across two time steps (after Shumway and Stoffer, 
1982): 

 (4.72) 

which is initialised as Finally, the expectations required 
for the optimisation algorithm, for example EM, can now be straightforwardly computed 
as: 

 (4.73) 

 (4.74) 

 (4.75) 

LEARNING HIDDEN MARKOV MODELS 
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Recalling the Eq. (4.41), the log probability of the hidden variables and observations for 
an HMM can be written as: 

(4.76) 

Let us represent the K-valued discrete state St using K-dimensional unit column vectors, 
e.g. the state at time t taking on the value “2” is represented as St=[010…0]′. Each of the 
terms in Eq. (4.76) can be decomposed into summations over the sate variable S. For 
example, the transitional probability is: 

 
(4.77) 

where Pij is the probability of transition from state j to state i, arranged in a K×K matrix 
P. Then the log of transitional probability can be expressed as: 

(4.78) 

using matrix notation. Similarly for the initialisation, if we assume a vector of initial state 
probabilities, π, then: 

 (4.79) 

Finally, the emission probabilities depend on the type of the observations. In general, we 
can express the log of the emission probabilities as: 

 (4.80) 

where E is the emission probability matrix. Since the state variables are hidden, we 
cannot compute all terms in Eq. (4.76) directly. In this case, the EM algorithm, which for 
the case of HMMs in known as the Baum-Welch algorithm (Baum et al., 1970), can be 
used to compute the expectations under the posterior distribution of the hidden states 

given the observations. These expectations can be expressed as a function of and 

The first term is a vector containing the probability that the HMM was 
in each of the K states at time t given its current parameters and the entire sequence 

(1≤t≤T) of observations. The second term is a matrix containing the joint 
probability that the HMM was in each of the K2 pairs of states at times t−1 and t given its 
current parameters and the entire sequence of observations. In the HMM notation 
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(Rabiner and Juang, 1986), which is mostly used in the literature, corresponds to γt 

and to ξt. Given these expectations, the maximisation step is quite 
straightforward: one takes derivatives of the Eq (4.76) with respect to the model 
parameters, sets these to zero, and solves subject to sum-to-one constrains that ensure 
valid transition, emission and initial state probabilities. For example, for the transition 
matrix one can obtain: 

 

(4.81) 

The required expectations are computed using the so-called forward-backward algorithm. 
This algorithm is simply belief propagation applied to the DBN corresponding to HMM 
(see Smyth et al., 1997). The forward pass recursively computes αt, define as joint 
probability of St and the sequence of observations Y1,…, Yt: 

(4.82) 

On the other hand, the backward recursive pass computes βt, defined as the conditional 
probability of the observations Yt+1,…, YT given St: 

(4.83) 

 

 

 

 

Having computed αt and βt, the expectations needed for EM are: 
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(4.84) 

 

(4.85) 

Note that the Kalman smoothing algorithm and the forward-backward algorithm are 
conceptually identical. The forward-backward algorithm will be discussed in more detail 
in the next Chapter 5 where we introduce a hybrid Hidden Markov Mixture of Models 
(HMMMs) framework for data-driven modelling. 

4.6 Summary 

In general, Bayesian networks are a concise graphical formalism for describing 
probabilistic models. Dynamic Bayesian networks are designed to handle temporal data. 
In this chapter we have provided a partial overview of the methods for learning and 
inference in dynamic Bayesian networks, focussing on the case when the model(s) 
structure is defined a priori using background knowledge of the underlying dynamics of 
the modelled system. Within the wide range of the interesting DBN models (see Berger, 
1999 for a recent overview), we have focused on the general notion of state-space models 
and HMMs in particular, and have presented how the model parameters can be trained 
from data.  
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Chapter 5 
A Hybrid Framework for Modelling 

Nonlinear Dynamical Systems 

5.1 Introduction 

Since the advent of cybernetics, nonlinear dynamical systems have been an important 
modelling tool in various fields ranging from physical to social sciences. Most real 
dynamical systems have three essential features. First, they show quite irregular 
dynamical evolution—the observed outputs show very rich and complex dynamical 
structures in their evolutions, although we try to assume that they are driven by some 
deterministic dynamics. Second, they have a quite large stochastic component—the 
observed outputs are noisy nonlinear function of the inputs, and the dynamics itself may 
be sometimes driven by some unobserved “noise” process. Third, they can be 
characterised by some finite-dimensional phase space (where some internal variables may 
not be directly observable) that summarises most of the information about the past 
behaviour of the underlying processes relevant for identification, classification and 
prediction of its future evolution. 

From a modelling standpoint, as we have already elaborated in Chapter 3, irregularity 
and chaos are essential to allow a dynamical system with few variables to generate very 
rich and complex dynamical structures, characterised by the presence of chaotic 
dynamics, different dynamical regimes (even coexisting attractors) and an irregular 
dynamical evolution between them. These irregular (stochastic-like) transitions between 
different dynamical regimes of the system can be modelled using dynamic Bayesian 
networks, such as state-space and hidden Markov models, as discussed in Chapter 4. In 
addition, existence of such transitions between different dynamic regimes is a source of 
non-stationarities, which are severe problem in modelling dynamical systems. 

A basic hybrid framework for modelling such complex nonlinear dynamical systems is 
the mixture of experts (ME) framework, introduced by Jacobs at al. (1991) in the neural 
network community. The mixture of experts framework, which comes also by many other 
names such as modular networks or multiple models or ensemble of models, aims at 
separating the seemingly complex global dynamics into a couple of lower-dimensional 
sub-dynamics which can be modelled by separate models (experts) more easily. In terms 
of the language of deterministic chaos, it means that the separate models (experts) 
specialise on modelling different parts of the reconstructed phase space based on the 
different geometrical complexities of the attractor. For example, the Lorenz dynamical 
system (see Section 3.1) exhibits switching between two different oscillatory modes 
(dynamic regimes) which are globally nonlinear. Instead of modelling the dynamical 
structure by a “global” or “monoclined” models, one could think of employing two 
simple models (even linear as we will demonstrate latter) that specialise on the two 



different oscillatory modes, and then the nonlinearity can be incorporated into the gating 
procedure. A central problem of using a mixture of models framework is therefore the 
calculation of the activation of each model (expert), called the gating problem. 

Figure 5.1 shows the architecture of a hybrid ME framework, consisting of three 
experts and one gating model both having access to the input vector. Note that in our case 
the input space is the reconstructed phase space of the dynamical system based on the 
time series of the observables. 

 

Figure 5.1. Architecture of a hybrid 
mixture of models framework 

The gating model has one output gj per expert (model). The output of the ME is the 
weighted (by the gating model outputs) mean of the expert outputs: 

 
(5.1) 

The gating model of the ME learns in fact to partition the input space (phase space) in a 
soft way, and attributes experts to these different regions. In particular, the gating model 
outputs gj(x) can be regarded as the conditional probability that a particular expert has 
generated the output given the data set and the model structure. A probabilistic 
interpretation of the ME framework is recently described in Boshop (1995, see section 
6.4). 

In the last decade, several solutions have been proposed to the gating problem of the 
hybrid ME framework. In its original formulation (Jacobs et al., 1991) the expert 
activities are provided by a feed-forward gating neural network based on the input vector. 
Further extension by the use of a recurrent gating network, in order to take into account 
the previous performances of the experts, is elaborated by Cacciatore and Nowlan (1994).  

Kehagias and Petridis (1997) proposed an algorithm for on-line time series 
segmentation using predictive modular neural networks. An alternative, non-recurrent 
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approach to distinguish between different dynamic regimes is the annealed competition 
of experts (ACE) method proposed by Pawelzik et al. (1996). It has its roots in statistical 
mechanics and is a purely performance-driven concept, which considers a moving 
average prediction error for estimating the experts’ activities. 

In contrast to these approaches, we use the concept of Hidden Markov Mixture of 
Models (Experts)—HMMMs and associate each prediction model (expert) with a hidden 
state of the system corresponding to a particular dynamic regime. This concept is similar 
to the concept of input-output hidden Markov models introduced by Bengio and Frasconi 
(1995). However, the proposed approach can be seen as more general and conceptually 
more flexible by integrating: (i) the input information; (ii) the information on the position 
in the phase space and previous evolutions; (iii) the performance of the models that are 
particularly learned and suited to model different dynamical regimes; and (iv) 
information on the hidden dynamical regimes for modelling the gating probabilities by 
HMM. The proposed hybrid HMMMs framework for modelling nonlinear dynamical 
systems is further elaborated mathematically, demonstrated and discussed in this chapter. 

5.2 Hidden Markov mixture of models (experts) 

5.2.1 Description and underlying assumptions 

The proposed hybrid HMMMs framework is a combination of both, the modelling of the 
reconstructed phase space of nonlinear dynamical systems, and the dynamic Bayesian 
networks expressed with hidden Markov models throughout the gating procedure. It is 
best described by the following underlying assumptions: 

• There are several discrete hidden states that we call dynamic regimes. Each of these 
dynamic regimes is modelled by a corresponding mapping function in the 
reconstructed phase space of the dynamical system. These models are called experts, 
and they can range from local models to neural networks, and even to conceptual 
models. Note that any input-output mapping can be modelled, not necessarily the 
reconstructed phase space. 

• At each time step a single expert, modelling a particular dynamic regime, is responsible 
for generating the corresponding observation. We do not know which of the experts 
actually generated the observation; thus the posterior emission probabilities of the 
experts for each time step need to be estimated from the data. 

• For modelling the sequence of the hidden dynamic regimes, we assume that the 
dynamics of these regimes is quite irregular and can be described by a first order 
Markov process. Thus, the next dynamic regime depends on the current dynamic 
regime and implicitly on the data. This is expressed as a matrix of transitional 
probabilities between the hidden dynamic regimes (recall HMMs from the previous 
chapter). We do not know these transitional probabilities. The initial distribution can 
be assign by an expert depending on the modelling problem, but the probabilities will 
need to be adjusted (estimated) from the data. 

In this section we further present how we can learn the model parameters (if necessary) 
for each expert, the parameters of the transition matrix, and the emission probability 

A hybrid framework for modelling nonlinear dynamical systems       187



vector for each expert across the hidden dynamical regimes at each time step. The 
process of learning builds on the forward-backward estimation procedure and the EM 
algorithm previously described in Chapter 4. The description of this proposed framework 
includes the following characteristics and implications: 

(i) Discovering hidden dynamical regimes. Intelligent data analysis and data mining in 
general often use the term “discover hidden knowledge”, but without clearly defining 
the concept “hidden knowledge”. This framework clearly defines hidden dynamical 
regimes as the components of the mixture density. The presented Bayesian 
probabilistic approach allows for a principled interpretation in terms of probabilities, 
enabling the discovery of interesting relations. For example, in the case of predicting 
the runoff, the hidden regimes can be referred to as “catchment preparation” or 
“seasonal effects” depending on the considered time scale; in case of surge water level 
prediction, the hidden regimes can be referred to as a “storm phases” for example. 
Methodologically, it is important to clarify that this approach does not insert 
knowledge that “catchment preparation” is important for the peak runoffs, but it does 
make assumptions that in turn yield this knowledge. 

(ii) Combining supervised with unsupervised learning. Approaches to learning from data 
are traditionally divided into supervised and unsupervised learning. The proposed 
hybrid framework combines the strengths of both approaches to learning: the 
advantage of supervised learning constraining the model structure, parameters and 
performance evaluation, while providing the flexibility of unsupervised learning that 
allows for discovering and interpreting the sequence of the hidden dynamical regimes. 

(iii) Becoming experts through competition. This framework uses competitive learning, 
meaning that for each training pattern, all experts compete. If a particular expert’s 
prediction is better that the others, it receives a larger share of the data point to update 
its parameters than the others. Thus, it learns to improve its predictions in the areas 
where it is already good, and learns to ignore areas where some other experts are 
better. 

(iv) Combining forecasts. The idea of combining forecasts, going back to Bates and 
Granger (1969), has become increasingly important in applied forecasting and 
especially when different models produce different qualitative and quantitative 
forecasts. In most approaches to forecast combination, the individual models are given 
equal weights to all their training data points. This framework allows for soft 
combination of the forecasts of the experts where the relative weights of each expert 
vary at each time step. These weights are the estimates of the posterior probabilities 
and they reflect the training set performance of the experts in similar situations. 

(v) Coping with outliers. Many practical problems in data-driven modelling use some 
heuristic to remove outliers. Given the strong effect that outliers in general have on the 
learned model, this heuristic in dealing with outliers can significantly determine the 
model capabilities. As an alternative to removing outliers, robust statistics uses an 
influence function that downweights patterns where there is a big discrepancy between 
the predictions and the observations. However this approach is not applicable in the 
area of risk modelling which focuses on rare events and on tails of distributions. In 
contrast, this framework can cope with outliers in a way that one (or more) expert can 
be designed with a proper capacity and structure (large variance) in comparison with 
the other experts. The role of this expert (or experts) will be to act as a “garbage-
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collector”, effectively removing the outliers and “specialising” on them much better 
than the other experts. In turn, the other experts will not be affected with the big 
discrepancies in the predicted and observed patterns. 

5.2.2 Basic architecture of the HMMMs framework 

The basic architecture of the proposed HMMMs framework with the used notation is 
presented in Figure 5.2 and described bellow. 

 

Figure 5.2. The architecture of the 
HMMMs framework. 

NOTATION 

1. Observations: YT={yt|t=1,…, T} refers to the observed time series data. T is the number 
of the observations and t is the time index. Similarly, XT={xt|=1,…, T} represents the 
input to the emission model. The input data xt itself can be a vector (multivariate time 
series) or a scalar. In case of phase-space modelling, x is given by the previous lagged 
values, xt={yt, yt−τ, yt−2τ,…, yt−mτ}, where m is the embedded dimension and τ is proper 
time delay of the embedded input properly estimated as explained in Chapter 3. 

2. Dynamic regimes (states): S={1, 2,…, j,…, M} denotes the dynamic regime (state) or 
an expert. M is the number of dynamic regimes in the system and j refers to a specific 
dynamic regime which is modelled by a particular model—expert. Note that the 
modes for a particular dynamic regime could range from global to local and from 
linear to nonlinear models (e.g. neural networks). 

3. Transition probabilities (gating procedure): aij is the transition probability of 
switching from dynamic regime i to j: 

A={aij, i, j≤M, aij=P(st+1=j|st=i)} (5.2) 
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where aij≥0, and st describes the dynamic regime (state) in time t. 
4. Emission probabilities: bij is the probability of observing yt given the state and the 

model. In the HMME this probability depends on the inputs xt into the experts at time t 
through the conditional mean: 

 (5.3) 

5. Initial probabilities of each state: ∏={πi, i=1,…, M}, where the probabilities have sum 

to unity,  

For convenience, θ={A, B, ∏} denotes the entire set of parameters of the model. The 

emission probability can thus be written as  

DEFINING THE LIKELIHOOD FUNCTION 

In order to estimate the most likely path (sequence) of the dynamic evolution of the 
system, given the input data and the observations (output) generated by the system being 
throughout different dynamic regimes, one needs to define the likelihood function. On the 
basis on the conditional independence assumption for the gating mechanism, the 
probability of the current state depends only on the previous state (1st order Hidden 
Markov Model): 

P(st|st−1, st−2,…, s1, Xt−1, YT−1)=P(st|st−1) 
(5.4) 

Denoting the specific sequence or path of the dynamic evolution of the system from t=1 
to T as qT, this first order Markov assumption for the gating mechanism allowing to write 
the probability of the path qT=(s1, s2,…, sT) as: 

 
(5.5) 

Given the current input pattern xt, output yt and the previous state st−1, earlier values of s 
and y are irrelevant, thus: 

P(yt, st|qt−1, Xt−1, Yt−1)=P(yt, st|st−1, xt) 
(5.6) 

Using Eq. (5.4) this expression can be transformed in the following way: 
P(yt, st|st−1, xt)=P(yt|st, xt)P(st|st−1) 

(5.7) 
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The central problem of the hidden Markov models is to find (learn) the parameters of the 
model. Using the Eq. (5.6) and Eq. (5.7), the likelihood of generating the observables 
given the input and model parameters P(YT|θ) can be expressed as: 

(5.8) 

Using the Eq. (5.6) the likelihood becomes: 

 
(5.9) 

Furthermore using the Eq. (5.7) the likelihood can be written as: 

(5.10) 

Finally, the likelihood can be expressed in the following form: 

(5.11) 

In order to compute the likelihood, two probabilities need to be estimated. First, the 
emission probability given the current dynamic regime (state), P(yt|st, xT, θ), which varies 
at each time step. Second, the transition probability P(st st−1), which is a parameter of the 

model. The product of the last terms in the Eq. (5.11) is at the heart of the hidden 
Markov gating framework applied in this approach. Without the Markov assumption, the 
second term aij is absent and the observation (output of the dynamical system) at time t 

would be attributed to regime (state) j with probability This type of model-
based time series clustering (without the term aij) is the unconditional case (no input 
pattern x). The presence of the second term aij introduces the trade-off with the first term 
towards the entire likelihood. In most of the natural dynamical systems, the diagonal 
elements of the transitional probabilities aii, describing the self-transitions (i.e. probability 
of staying in a dynamic regime), typically have high values (above 0.90), indicating 
persistency. This means that the system will switch to other dynamic regime (state) if the 
next data patterns (forcing into the system) and the previous sequence (path) of the 
dynamic evolution of the system can be explained much better by a dynamic regime 
different from the current one. 
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MODELLING THE CONDITIONAL EMISSION PROBABILITIES 

The main assumptions used in estimation of the emission probabilities by each of the 
employed models for the different dynamic regimes are: 

Independence: Given the parameters of the emission model, the likelihood of 
observing yt given the current dynamic regime (state) and the given input pattern, is 

The emission probabilities are independent for each time 
step t.  

Each of the specified emission model is known as expert, and each individual expert is 
responsible for modelling a particular dynamic regime. 

Density function: The framework presented here allows for the assumption of different 
density distribution for the error function or the “noise”. In the specific example of a 
Gaussian density distribution, the emission probability of expert (or model) j becomes: 

(5.12) 

where is the conditional mean and is the variance of the predicted Gaussian 
density. 

The functional form of the experts (models): The functional dependence of the 

conditional mean on its input can be potentially any linear on nonlinear mapping 
function, such as a radial basis function, a multi-layered perception, wavelet networks 
etc. In this particular case we use local models based on the concept of local modelling in 
deterministic chaos. Each of the models (experts) is characterised by different model 
parameters (such as order of model, number of neighbours, embedding dimension and 
time delay). Global models can be used as well. The emission probability B is determined 
by the set of parameters θj of expert j, according to the architecture of the emission 
model. Furthermore, the different experts can have different input data sets. Typically, 
the number of inputs to each expert (model) can be a subset of the full set of inputs 
identified as important for a description of the dynamics of the system. When different 
dynamic regimes modelled by the different experts “live” on sub-areas of the 
reconstructed phase-space of the system, this approach can help to reduce the curse of 
dimensionality. 

COMPUTING THE LIKELIHOOD 

Computing the likelihood P(YT |θ) directly from Eq. (5.11) is intractable. As already 
discussed in the previous Chapter 4, Baum (1970) proposed an elegant method called the 
forward-backward algorithm. Dempster (1997) subsequently introduced the so-called 
Expectation-Maximisation or EM algorithm to maximise this probability due to the 
presence of the hidden variables. The proposed HMMM framework builds on these two 
algorithms. 
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The forward-backward algorithm applied 

Let the joint probability of having observed y from time 1 to t and of being in 
dynamic regime i at time t:  

 (5.13) 

where 1≤t≤T and θ denotes the model parameters. The probability of the entire sequence 
of observations is given by the sum over the dynamic regimes (states) at the end of the 
sequence (at time T): 

 
(5.14) 

As already discussed, the nice point of this algorithm is the decrease of computational 
complexity. Rather than being exponential in time (given the consideration of all possible 

paths), this computation is only linear in time, since can be computer recursively: 

 
(5.15) 

At the beginning of the sequence, the variable are initialised with probability 

This recursion is called the forward procedure. Given initial estimates of πi 

and Eq. (5.15) allows the computation of the probability P(YT|θ), and for t=T, the 

entire likelihood. Similarly, the backward variable is defined as the conditional 
probability of observing y from t+1 to T given the dynamic regime i at time t and the 
model parameters: 

 (5.16) 

With t=T−1, T−2,…, 2, 1 one can obtain all for all t in the backward procedure. 

Combining the variables and it is possible to estimate the important posterior 
probability of being in a dynamic regime i at time t given the entire set of observations 
and parameters: 

 

(5.17) 
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The variable is a key quantity, which describes the activation of the experts within the 
entire observed sequence that are responsible for modelling of particular dynamic 
regimes and will be referred to as an expert activation function. 

Finally, the joint probability of the transition between the dynamic regimes, P(st=i, 
st+1=j|Y, θ), can be also computed using the forward-backward procedure: 

(5.18) 

This variable serves as an additional quantity in the computation of the transitional 
probabilities.  

The EM algorithm applied 
As mentioned previously, the likelihood as given by Eq. (5.11) cannot be maximised 
directly since the hidden states are not known. The solution to this problem goes back to 
Dempster et. al (1977). For set of parameters θ and θold, an auxiliary Q-function is 
defined as: 

 
(5.19) 

It can be shown that (Baum 
et. al, 1970; Dempster et. al, 1977). This re-estimation algorithm is known in the 
literature as Baum-Welch algorithm, which for HMM is known as the Expectation 
Maximisation algorithm. Its key idea is to alternate between two steps, the E-step and the 
M-step. 

• The E-step (Expectation step) assumes that the parameters of the model are known, and 

computes for each time step t the variables and and in turn the posterior 

probabilities and  
• The M-step (maximisation step) takes the variables computed in the E-step and updates 

the parameters of the model such that Eq. (5.19) is maximised under the constrains 

and  

The new transitional probabilities are estimated as: 

(5.20) 
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The new initial probabilities of state i are The formulation for the re-estimation 
of the emission parameters depend both on the specified error function (“noise model”) 
and the specific functional form for the parameters of the model for each expert (e.g. 
global linear AR model, nonlinear neural network, local models etc.). For each expert, 
Eq. (5.19) is maximised when the following G-function is maximised (Fraser and 
Dimitradis, 1994): 

 
(5.21) 

where θj represents the parameters of the emission model of state j. Eq. (5.21) can be 
interpreted as the negative of a cost function for the emission model. The estimation of 
the parameters θj depends on the specific form of the emission model. In order to be able 
to mathematically demonstrate the updating of the parameters, the error density function 
is assumed to be Gaussian, thus each emission model for the expert has two parameters: 

the conditional mean and the variance. Assuming that the variance depends only on 
the performance on the expert, the likelihood is maximised when the partial derivative:  

(5.22) 

takes value of zero, yielding: 

 

(5.23) 

This is in fact the -weighted error between the observation yt and the predictions 
In other words, it describes the local “noise” level for particular expert j. 

The mean of expert j, is a function of the inputs into the expert (model for 

particular dynamic regime), This, in general, nonlinear dependence is parameterised 
with θj. In order to maximise Eq. (5.21) its partial derivative with respect to the 
parameters θj has to vanish: 
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(5.24) 

In the general nonlinear case, each pattern still has the importance but the parameters 
can be estimated iteratively, as an additional inner loop within each M-step. For example, 
in case of neural networks for each experts and interpreting Eq. (5.23) as a cost function, 
each expert minimises the weighted squared error: 

 
(5.25) 

The parameters- weights θj can be estimated using standard backpropagation algorithm 
(see Section 2.??). In case when each expert consist of local models in phase space, the 
parameters θj are the time delay τ, embedding dimension m, the number of nearest 

neighbours k and the order of the model n. The expert activation function in this case 
can be viewed as an effective learning rate. 

GENERATING THE PREDICTIONS 

Many forecast methods (in particular almost all nonlinear forecasting methods) focus on 
predicting the next value or a point of the time series (discharge in this case). However, 
the presented framework allows for density predication as well, which may be used for 
assessing the certainty or uncertainty of the predictions. Having estimated the expert 

activation function the density for can be expressed as a linear superposition of 
the densities of the individual experts: 

 
(5.26) 

The point prediction or the overall mean of the predicted density at time t+1 can be 

estimated as -weighted superposition of the individual means: 

 
(5.27) 

 

Nonlinear dynamics and chaos with applications to hydrodynamics and hydrological modelling     196



5.2.3 Performance measures 

There are many different criteria that one can use for evaluation of the model 
performance, which usually depend on the modelling purpose and objective (see for 
example Hall, 2000). In general, these criteria can be categorised as: graphical and 
numerical performance indicators. For evaluating the performance of the model, we use 
the following criteria selected from the graphical indictors groups: 

• A scale plot of the simulated or predicted and observed time series for both training and 
testing periods. 

• A frequency distribution and scatter plot of the simulated versus observed flows for the 
testing period. 

• Other various plots of the model performances (such as learning rate, experts activation 
functions, standard deviation plots etc.). 

Visual inspection of plots that compare the prediction of actual measurements can 
provide significant information about how close the predictions are to the observation for 
different flow regimes. 

From the several numerical indicators, we use the following performance measures: 
1) Mean square error (MSE) and Normalised mean square error (NMSE) 

 
(5.28) 

where Yobs is the observed value, Ypred is the predicted or computed value, and N is the 
length of time series. MSE measures the average sum of the square of the errors 
throughout the length of time series. However the MSE is not a good indicator for the 
error measurements for some classes of problems with quite variable dynamics. The 
normalised mean square error (NMSE), which is dimensionless quantity, provides better 
indicator for the error measurement since it is normalised by the variance of the observed 
data:  

NMSE=MSE/Variance 
(5.29) 

2) Root mean square error (RMSE) and Normalised root mean square error (NRMSE) 

 

(5.30) 

Indeed, RMSE is the root of MSE and has the same unit as the measurement unit of the 
variable (water level, discharge etc.). Similarly, NRMSE is obtained by the normalisation 
of RMSE by the standard deviation of the observed data, i.e. 

NRMSE=RMSE/Standard deviation 
(5.31) 

3) Coefficient of correlation (r) and Coefficient of determination (D) 
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(5.32) 

where is the mean value of the observed time series and is the mean value 
of the predicted time series respectively. The coefficient of correlation r measures how 
well the predicted values linearly correlate with the observed one. The ideal value for r is 
1 when there is a perfect prediction. The coefficient of determination D is the square of 
the coefficient of correlation r and measures the variability in the observed and predicted 
values. Also the ideal value for D is 1. 

As stressed before, the selection of the criteria highly depends upon the modelling 
purpose. For example, if one tries to build a model for flood forecasting, then the 
magnitude of the peak flow and time of occurrence of the peak flow would be important 
criteria. In such cases, the model performance on these terms is more important than the 
overall global error measurement, as the global error statistics provide relevant 
information on overall performance but do not provide specific information about model 
performance at extreme events. One could then use numerical indicators about the model 
performance defined over particular thresholds related to different dynamical regimes. 

4) Mean absolute error (MAE) 

 
(5.33) 

MAE can be, for example, calculated for low-flow and high-flow regimes. 
5) Maximum absolute error (MaxAbsErr) 
MaxAbsErr=max|(Yobsi−Ypredi)| 

(5.34) 

These measures in different dynamical regimes, in combination with the global statistics, 
provide a better insight into the performance of the model. 

5.3 Testing the HMMMs framework 

The algorithm for the HMMMs framework was implemented and tested in the MatLab 
computational environment. Several tests were carried out using synthetic time series 
generated by known dynamical system, both linear and nonlinear. For complex 
dynamical systems, it is important to analyse and understand the behaviour of this hybrid 
framework and build up some modelling heuristics in cases when the model assumptions 
deviate from those of the generating process. Since the proposed framework contains an 
unsupervised part in the learning from data, this section investigates whether the dynamic 
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regimes found by the hybrid model actually correspond to the true hidden states modelled 
by the individual experts. Two types of models (experts) were used in the experiments, 
namely local models and global linear models. One-step-ahead forecasts were further 
compared with two architectures of neural networks: multilayered perceptron and 
modular neural network. The following cases, reflecting wide range of different 
dynamical systems were tested: 

1. Time series generated by dynamical system exhibiting three different regimes 
corresponding to the Markov chain of hidden states; 

2. Time series generated by a dynamical system with two regimes whose sub-dynamics is 
driven by autoregressive process of order 2 (polluted with noise), and reflecting 
periodic nonstationarity; 

3. Time series generated by two completely random models reflecting pure stochastic 
process; 

4. Time series generated by nonlinear deterministic chaos: Lorenz model and McKay-
Glass model. 

5.3.1 Linear models with Markov chain of hidden states 

The data generation for this experiment consists of two distinct and different processes: 
the Markov chain of hidden dynamic regimes, and the dynamics of the individual experts. 

• Dynamic of the hidden regimes: Three hidden regimes were used to generate the 
underlying dynamics of the system. The transitional probabilities used to describe the 
Markov model between the three experts are given by the matrix: 

 

  

This allows to generate a realisation for the times series of the hidden dynamical 
regimes. 

• Dynamics of the individual experts: Each individual expert were rather simple 
multivariate global linear models polluted by additive white noise ε, written in a form 
as:  

 

  

We have used two inputs X1 and X2 with the following matrix of coefficients 
b=[0.2 0.6; 0.4 0.3; 0.55 0.15] depending in which dynamic regime is the system. 
The inputs X1 and X2 were artificially correlated with the output Y using sine and 
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cosine functions, so that the correlation coefficients were 0.68 and 0.71 
respectively. The output time series was polluted with 2% zero-mean white noise. 

We first generated a sequence of length 2000 of the (eventually hidden) regimes. This 
sequence determined which of the three processes was used for each time step to generate 
an observation Yt. Although the underlying dynamics of the individual experts is simple, 
the total dynamic of the system becomes intrinsically complex. The recognition models 
for the individual experts were global multivariate linear models and the learning task 
was to learn the model parameters and the parameters of the gating procedure. From the 
generated data we used the first 1600 samples for training and last 400 samples for cross-
validation and testing respectively (200 samples each). Figure 5.3 shows both the expert 
activation functions used to generate the time series and the uncovered expert activation 
functions from the HMMMs framework respectively. 

 

Figure 5.3. Generated (left) and 
recognised (right) sequence of the 
activation functions for the three 
experts. The figure shows only the first 
200 samples from the time series. 

Form the From the Figure 5.3 is it evident that the framework is able to accurately 
identify the expert activation functions for each expert. Figure 5.4 shows the complete 
time series of the activation functions of the three experts and the time series of the 
observable.  
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Figure 5.4. Activation of the three 
experts showing “specialisation “in 
different dynamic regimes. 
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Figure 5.5. Performance of the model 
by datasets. 

Figure 5.5 shows the performance of the model for the training, cross-validation and 
testing datasets over ten EM cycles. 
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Figure 5.6. Transitional probabilities of 
regimes persisting for the experts. 

The transitional probabilities of staying in the same dynamic regimes with the average 
time in regimes for the experts during the training cycles are presented in Figure 5.6. The 
results indicate that starting from the initial transitional probabilities of regime persisting 
of 0.85 for each expert, during the training stage the frameworks is capable of learning 
the correct transitional probabilities used to generate the synthetic time series initially. 

The predictive performances of the model for the three data sets were evaluated using 
the performance indicators summarised in Table 5.1, and using scatter plots and 
histograms as shown in Figure 5.7 and Figure 5.8. These results were further compared to 
the multilayered perceptron using architecture 2×4×1 with tanhyp transfer functions in 
the hidden layer and linear transfer function at the output, and a modular neural network 
using three separate MPLs with similar architecture. Figure 5.9 further shows the 
observed and the predicted values of the testing set using HMMMs framework and the 
neural network models. 
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Table 5.1. Modelling error for the testing data set 
using HMMMs, MPL and modular NN. 

Model NMSE RMSE NRMSE r D 
HMMMs 0.011 0.103 0.059 0.998 0.996
Multi layered 
perceptron 

0.150 0.674 0.386 0.922 0.850

Modular neural 
network 

0.147 0.668 0.383 0.932 0.868

The results from this experiment show that the HMMMs framework clearly outperformed 
both neural network models.  

 

Figure 5.7. Scatter plots of the 
measured and predicted values for the 
three data sets. 
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Figure 5.8. Histogram of the complete 
data set with the forecasts. 
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Figure 5.9. Observed and predicted 
times series (testing set). 

5.3.2 Different autoregressive processes 

The time series for the second experiment were generated using two different 
autoregressive experts using the following relation: 

 (5.35) 

where and are the autoregressive model parameters, µ is the constant (intercept), 

and ε is the random (noise) component. The parameters and were varied in such a 
way that the two experts M1 and M2 will distinguish and satisfy the following conditions 
(Box and Jenkins, 1970): 

 (5.36) 

The following values were used for the two experts: 

and 10% of additive 
zero-mean noise ε. 
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and 5% of additive zero-
mean noise ε with initial values of xt−1=120 and xt−2=100. 

We then generated a sequence of length 1000 of the (eventually hidden) states. The 
sequence was generated in such a way that for every 50 steps each of the autoregressive 
models was responsible for generating the observations. More precisely, the time series 
of the underlying dynamics consists of two different regimes, generated by the two 
experts M1 and M2. The phase space was reconstructed using time lag τ=1 and embedding 
dimension of m=5. The input data set was divided in three subsets: training (800 
samples), cross-validation and testing set (100 samples each). Local linear experts with 
different τ, m and k were used to recognise the sub-dynamics. Several runs showed that 
the global underlying dynamics of the system is best uncovered if one uses three experts. 
The activation of the three experts at the different dynamic regimes is presented in Figure 
5.10.  

 

Figure 5.10. Activation of the three 
experts showing “specialisation “in 
different dynamic regimes. 
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It is evident that the autoregressive process (higher part of the time series) is captured by 
the expert 3, whereas the lower par (dynamic regime) is captured by expert 2. 
Furthermore, the expert 1 “specialises” on capturing the transitional part of the time 
series and acts as a “garbage collector”. The gating process between the dynamical 
regimes is described by the HM model, whose model parameters (transitional and 
emission probabilities) are estimated using the forward-backward and EM algorithms 
described previously. The transitional probabilities of staying in the same dynamic 
regimes with the average time in regimes for the experts during the training cycles are 
presented in Figure 5.11. The results indicate that experts 2 and 3 have probability grater 
than 0.95 showing strong persistence where the expert 1 is activated only few time steps 
during the switching between the two main experts. The predictive performances of the 
model for the three data sets were evaluated using the performance indicators 
summarised in Table 5.2, and using scatter plots and histograms as shown in Figure 5.12 
and Figure 5.13. The results were further compared to the multi-layered perceptron and 
modular neural network, Figure 5.14, which show better performance indicators for the 
HMMMs framework.  

 

Figure 5.11. Transitional probabilities 
of regimes persisting for the experts. 

Nonlinear dynamics and chaos with applications to hydrodynamics and hydrological modelling     208



 

Figure 5.12. Scatter plots of the 
measured and predicted values for the 
three data sets. 
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Figure 5.13. Histogram of the 
complete data set with the forecasts. 

 
 
Table 5.2. Modelling error for the testing data set 
using HMMMs, MPL and modular NN. 

Model NMSE RMSE NRMSE r D 
HMMMs 0.0087 5.33 0.0935 0.996 0.992
Multi layered 
perceptron 

0.0214 8.22 0.1443 0.989 0.978

Modular neural 
network 

0.0139 6.88 0.1207 0.991 0.982
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Figure 5.14. Observed and predicted 
times series (testing set). 

5.3.3 Mixture of stochastic processes 

In order to test the ability of the HMMMs framework to recognise the underlying 
dynamics of a complete stochastic process exhibiting periodic non-stationarities, time 
series were generated based on a normally distributed random number (x) with a mean 

and standard deviation σ=0.974. Two experts M1 and M2 with the following 
coefficients: 

M1=a1+b1 x; M2=a2+b2 x 
a1=10; b1=6; a2=8; b2=2 (5.64) 

were used to generate one single time series consisting of two different dynamic regimes 
mixed up alternately at each 50 samples. The total sequence of length 1000 was divided 
in three subsets: training (800 samples), cross-validation and testing set (100 samples 
each). Two local linear experts modelling different sub-dynamics in the reconstructed 
phase-space were used as recognition models. The model parameter space was restricted 
to combination of different time delays τ=1÷4, embedding dimensions m=2÷12 and 
number of nearest neighbours k=1÷30. Thus, both the model parameters and the gating 
model were learned during the training process. 

Figure 5.15 shows the expert’s activation functions for the whole time series. Both 
experts (local linear models in this case) are capable of uncovering the the existing sub-
dynamics.  
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Figure 5.15. Activation of the experts 
capable of uncovering the different 
dynamic regimes. 

The best performances were achieved when both experts are characterised by higher 
embedding dimensions (m>10) and low time delay τ=1, indicating that the dynamics of 
the system does not exhibit any memory (there is no underlying structure) and tending to 
span infinitely the phase-space, which means completely stochastic process. Although the 
HMMMs framework is capable of identifying the existence of different dynamic regimes 
correctly, the predictive performance of this stochastic dynamics was poor. Figure 5.16 
shows the one-step-ahead predictions for the testing data set for both HMMMs 
framework and a modular NN.  
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Figure 5.16. Observed and predicted 
times series (testing set). 

5.3.4 Nonlinear deterministic chaos 

The last experiment consisted of testing the HMMMs framework for predicting 
deterministic chaotic dynamics described by time series generated by the following 
chaotic systems, which are usually used as benchmark problems in the neural networks 
and fuzzy modelling research communities: 

1. Lorenz model and 
2. Mackey-Glass time-delay differential equation. 

LORENZ MODEL 

Time series of the x variable with a length of 10000 samples (time step ∆t=0.01 sec) was 
generated by numerical integration of the Lorenz system as described in Example 3.1 in 
Chapter 3. The time delay and the embedding dimension for the reconstruction of the 
phase space of the Lorenz system are estimated as τ=18 and m=3 respectively, as 
described in Section 3.3.8. This leads to the series of state vectors each having three 
components composed by the x variable and its time delay: 

Yn={xn, xn−18, xn−36} 
(5.65) 

A hybrid framework for modelling nonlinear dynamical systems       213



As previously discussed and demonstrated (see Figure 3.8) the attractor of the Lorenz 
system is composed of two wings, whereby the evolution of the chaotic dynamics 
alternate between two different dynamic regimes. The recognition models for the two 
individual experts were local linear models with different number of neighbours k as a 
model parameter, and the learning task was to learn this parameter for each individual 
expert and the parameters of the gating procedure. The local linear models were of type: 

xn+20=Fx{xn, xn−18, xn−36} 
(5.66) 

where the prediction horizon was chosen to be 20 time steps ahead in order to be 
compatible and comparable with the multivariate experiment discussed in Section 3.3.8. 
The input data set was divided in three subsets: training (8000 samples), cross-validation 
and testing set (1000 samples each). The activation function of the two experts 
specialising at different dynamic regimes is presented in Figure 5.17.  

 

Figure 5.17. Activation of the experts 
capable of uncovering the different 
dynamic regimes of the Lorenz 
attractor. 
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The transitional probabilities of staying in the same dynamic regimes with the average 
time in regimes for the experts during the training cycles are presented in Figure 5.18. 
The results indicate that both experts have probability grater than 0.95 showing strong 
specialisation and persistence. Expert 1 (with optimum k=5) specialise on the positive 
wing and using negative gradients in the phase space whereas expert 2 (with optimum 
k=11) specialises on the negative wing using positive gradients for the local models in the 
reconstructed phase space. The gating process between the dynamical regimes is 
described by the HM model. 

 

Figure 5.18. Transitional probabilities 
of regimes persisting for the two 
experts. 

The predictive performances of the model for the testing data set were evaluated using 
the performance indicators summarised in Table 5.3, and using scatter plot and 
histograms as shown in Figure 5.19. 
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Table 5.3. Modelling error for the testing data set 
using HMMMs, modular NN and FIS. 

Model NMSE RMSE NRMSE r D
HMMMs 0.00107 0.256 0.0372 0.998   
Modular neural network 0.00154 0.376 0.0546 0.997   
Fuzzy inference system 
(FIS) 

0.00161 0.424 0.0616 0.996   

The model predictions were further compared to modular neural network, and to fuzzy 
inference system (FIS) incorporated in the MatLab simulation environment and described 
by Jang (1991, 1993). The result in Table 5.3 and Figure 5.20 show better performance 
indicators for the HMMMs framework. Compared to the multivariate local modelling 
(see Section 3.3.8) the HMMMs framework shows slightly better results. However in this 
case the phase space was reconstructed using only the x variable of the Lorenz system. It 
ti further worth mentioning that for one step-ahead prediction, the HMMMs framework 
gives exact match between the observed and predicted time series.  

 

Figure 5.19. Histograms with scatter 
plot of the observed and predicted 
values of the variable X for the testing 
data set. 
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Figure 5.20. Observed and predicted 
times series (testing set). Part of the 
testing set is presented in this figure in 
order to compare different models. 

MACKEY-GLASS MODEL 

A number of models concerning biological and meteorological processes is given in 
terms of nonlinear delay-differential equations. Many examples exist in ecology for 
describing certain population dynamics (Scheffer and Kot, 1989) and other models of the 
same class appear in the representation of different biological oscillators (Glass and 
Mackey, 1988). A well-known example of these is the Mackey-Glass equation for the 
control of white blood cell production (Mackey and L.Glass. 1977). The Mackey-Glass 
model is given by the following equation: 

 
(5.67) 

where x is the density of the circulating white blood cells (WBC), B is the random WBC 
destruction rate and the function F is the current flux of new WBC into the blood in 
response to the demand created at a time δ in the past. The particular form of the flux 
function F chosen by Mackey and Glass in the model results in the following form of the 
nonlinear delay differential equation: 
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(5.68) 

The dynamical evolution of this model shows very rich and complex dynamics having an 
infinite-dimensional state. For the delay parameter δ>16.7 the dynamics of the system is 
chaotic. Since the Mackey-Glass chaotic dynamics has been extensively examined by 
researchers as a significant benchmark to compare different data modelling approaches, 
the above results can be useful also in the context of testing the HMMMs framework. The 
time series for the variable x was generated by numerical integration using the fourth-
order Runge-Kutta method for initial condition x(0)=1.2, delay parameter δ=17, and 
x(t)=0 for t<0. The time step used in the numerical integration was ∆t=0.1 sec with 10000 
samples in total (t=1000 sec). The optimal time delay and the embedding dimensions for 
the reconstruction of the phase space were estimated as τ=6 and m=4 respectively. The 
prediction horizon was set to 6 time steps ahead. The input data set was divided in three 
subsets: training (8000 samples), cross-validation and testing set (1000 samples each). 
Figure 5.21 shows the projection of the reconstructed phase space and the attractor in 
three dimensions.  

 

Figure 5.21. 3D view of the 
reconstructed attractor of the Mackay-
Glass model. 

Local polynomial models with parameters k (number of dynamical neighbours) and n 
(order) were used as recognition experts in the reconstructed phase space. The number of 
the experts, their parameters and the gating model were learned during the training 
process. The experiments suggested that the underlying chaotic dynamics of the Mackey-
Glass model can be best uncovered using 4 local models, which specialises on different 
sub-areas in the reconstructed phase space. Figure 5.22 shows the activation functions of 
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the experts, where only expert 3 is a local liner model and the rest of the experts are local 
polynomials of order n=3 with different number of dynamical neighbours (k=5, k=8 and 
k=15 for each local expert respectively). 

 

Figure 5.22. Activation of the experts 
(local models) for the Mackey-Glass 
chaotic system. 

The predictive performances of the model for the testing data set were evaluated using 
the performance indicators summarised in Table 5.4, and using scatter plot and 
histograms as shown in Figure 5.23.  

Table 5.4. Modelling error for the testing data set of 
the Mackey-Glass dynamical system using 
HMMMs, modular NN and FIS. 

Model NMSE RMSE NRMSE r D 
HMMMs 0.000201 0.00315 0.0142 0.9999 0.9998
Modular neural 
network 

0.000267 0.00398 0.0178 0.9996 0.9992

Fuzzy inference 
system (FIS) 

0.002831 0.01134 0.0506 0.9984 0.9968
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Figure 5.23. Histograms with scatter 
plot of the observed and predicted 
values of the Mackay-Glass time series 
for the testing data set. 

As in the previous example with the Lorenz model, the difference between the original 
(generated) Mackey-Glass time series and the HMMMs predictions is very small. The 
model predictions were further compared to modular neural network, and to the fuzzy 
inference system (FIS) incorporated in the MatLab simulation environment. Figure 5.24 
represents plot of all model predictions for a small part of the testing data set. The result 
in Table 5.4 and Figure 5.24 again show better performance indicators for the HMMMs 
framework.  
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Figure 5.24. Observed and predicted 
times series (testing set). Part of the 
testing set is presented in this figure in 
order to compare the different models. 

5.4 Summary 

In this chapter we proposed and mathematically elaborated a hybrid modelling 
framework, termed as Hidden Markov Mixture of Models (experts)—HMMMs. This 
framework aims at separating the seemingly complex global nonlinear dynamics into 
couple of local subdynamics that can be modelled by separate models (experts). The 
separate local models through a competition specialise on modelling different parts of the 
reconstructed phase space of the dynamical system where the gating procedure between 
the models is described with a dynamic Bayesian network expressed as hidden Markov 
model. We have further demonstrated the wide range of dynamical systems that can be 
modelled by this framework on synthetic data generated by known dynamical systems. 
The benchmark experiments showed improved predictive performances in comparison 
with other nonlinear global data-driven modelling techniques, such as neural networks 
and fuzzy inference systems.  
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Chapter 6 
Applications 

6.1 Introduction 

This chapter describes applications of the theory of nonlinear dynamics and the concept 
of deterministic chaos within the developed HMMMS framework for identification, 
modelling and prediction of hydrodynamical and hydrological systems. The selected 
applications cover identification and reconstruction of the underlying dynamics of several 
nonlinear dynamical systems: sea water level dynamics along the Dutch coast, 
meteorological system—precipitation and rainfall-runoff dynamics. The main objective is 
to demonstrate the applicability of the methods and techniques elaborated in this thesis. 
Most of the presented results are published in the following publications: Velickov 
(2003a), Velickov (2003b), Velickov (2003c), Velickov and Price (2003), Velickov 
(2002a), Velickov (2002b), Velickov et al., (2001), Velickov and Solomatine (2000), 
Dibike et al., (2001), Dibike et al., (2000), Solomatine et al., (2001), Solomatine et al., 
(2000). 

6.2 Nonlinear dynamics, chaos and predictability of the water levels 
and surges along the Dutch coast 

6.2.1 Introduction 

Accurate short-term operational forecasting of the surge water levels at Hoek van 
Holland (the entrance in the port of Rotterdam) is crucial for effective and safe ship 
navigation and guidance decision-making processes. The previously elaborated methods 
in nonlinear dynamics and chaotic time series analysis are used in this case study with the 
main objectives to delineate and quantify the underlying dynamics of the sea water levels, 
and to further assess the variability and predictability of the coastal dynamics along the 
Dutch coast. Phase space reconstruction, based on time-delayed embedding method, 
together with Poincare surface of sections and estimation of several geometric and 
dynamic invariants, such as dimensions, entropies and Lyapunov exponents, are used to 
study the sea water level dynamics. Furthermore, the shallow-water dynamic processes, 
which cause nonlinear interaction between the different tidal constituents and the 
appearance of a double low water and a distorted high water are identified and explained. 
Finally, multivariate local models and mixture of local models incorporating 
neighbouring statistics of the meteorological forcing, tide-surge interaction and the 
different tidal phases dynamics are elaborated and tested, showing reliable and accurate 
short-term forecasting performance for both total water levels and surges. In additional, 
an assessment of the local uncertainty and predictability of the surge dynamics is 



presented and discussed. In practice, the methodology and the modelling framework 
presented in this case study may serve as a basis to improve the operational forecasting 
for ship guidance and navigation processes. 

Astronomical tides generally account for about 75–80 percent of the ocean water level 
dynamics (water level fluctuations that occur on a time scale greater than a few minutes) 
in open oceans and many well-exposed coasts. Traditionally, because of the magnitude of 
astronomical forcing, analysis of the water levels has usually emphasised linear methods 
that decompose water levels into “tides” and “other” (usually meteorological) 
components. The amplitudes and phases of the tidal constituents, driven by the 
astronomical motion of the earth, moon and sun (with known periods), are then estimated 
using some linear methods, such as Fourier analysis, response analysis or linear 
regression methods. However, the water level dynamics in coastal and estuarial swallow-
water areas, such as the coastal zone of the Netherlands, may differ significantly from the 
astronomical estimated constituents due to the nonlinear effects that include 
meteorological forcing, tide-surge and tide-current interactions, and tidal deformations 
caused by the complex topography and river discharges. 

Sea and ocean water levels as complex dynamical systems are good candidates for 
nonlinear analysis because the governing Navier-Stokes equations including the 
turbulence models are inherently nonlinear. Furthermore, the sensitive dependence on the 
initial and/or boundary conditions of the dynamical evolution of such systems, and the 
broadband and continuous power spectra are one of the hallmarks of deterministic chaos, 
which in turn limits the predictability of such deterministic systems due to the 
exponential growth of small perturbations and instabilities in the system. This study 
analyses the underlying sea water level dynamics at seven locations along the Dutch 
coast: five of which originate from complex coastal locations, and two from the open sea 
(refer to Table 6.2.1 and Figure 6.2.1). 

6.2.2 The data 

The water level data from several coastal stations along the Dutch coast are monitored by 
the Directie Nordzee (DNZ) using pressure-based water level measuring system. Water 
levels are sampled at 0.0167 Hz and averaged over period of 10 minutes. Table 6.2.1 lists 
the seven stations chosen for this study. Each time series begins at 00:00 an January 1st 
1990 and is available until 00:00 31st March 1996, which results in 337249 continuous 
samples in total for the 10min times series data and 54768 for the hourly times series. In 
addition, 10min and hourly time series data of the atmospheric pressure and wind 
speed/direction were provided by DNZ. The average heights presented in Table 6.2.1 are 
estimated by averaging the individual maximum to minimum water levels. The variance 
of these data for both the water levels and the residuals are shown together with the 
maximal ranges. Furthermore, the percentage difference (mean absolute difference) 
between the measured water levels and the harmonic tidal estimator used in practice are 
shown in Table 6.2.1 (last column).  
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Table 6.2.1. Coastal stations along the Dutch coast 
used to analyse the water level data for the period 
between 1990–1996 (337249 samples). 

Water levels Surges Codes Name Position
Max 
range 
[cm]

Average 
height 
[cm] 

Significant 
height 
[cm] 

Variance 
[cm2×103]

Max 
range 
[cm]

Variance 
[cm2×103]

% 
diff 

DZL Delfzijl N 
W 

547 293.7 358.3 12.15 439 1.429 42.9 

EPF Euro 
platform 

N 
W 

438 162.3 219.1 3.87 357 0.563 48.7 

HA1 Haringvliet 
10 

N 
W 

507 204.5 278.1 6.34 366 0.677 42.9 

HVH Hoek van 
Holland 

N 
W 

471 171.5 229.4 4.63 358 0.708 50.6 

K13 K13 
platform 

N 
W 

468 156.4 208.8 2.68 332 0.773 46.6 

VLI Vlissingen N 
W 

526 360.8 414.9 18.4 405 0.734 30.5 

YMD Ijmuiden N 
W 

486 158.1 215.6 4.00 376 0.860 55.9 

Based on the average wave height, a significant wave height (H1/3) was computed which 
gives an indication about the character of the dynamics of the sea state at the particular 
location. The significant wave height is the average height of the highest one-third of all 
waves occurring in the analysed time period (1990–1996). For example, according to the 
Beaufort Scale, the dynamics of the sea surface for significant heights between 2–4 (m) 
can be described from “Moderate waves, taking longer form, many whitecaps, some 
spray” to “Sea heaps up, white foam from breaking waves begins to be blown in streaks”, 
which corresponds to the Beaufort Scale between 5–7 and the average wind speed/forcing 
between 31–61 (km/h). 
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Figure 6.2.1. Location of the tidal 
stations along the Dutch coast. 

6.2.3 Reconstruction of the water level dynamics from time series of 
observables 

The phase space of the water level dynamics was reconstructed using the methods 
exploring the dynamic or metric properties of the data described in Chapter 3. Figure 
6.2.2 schematically represents the process of phase-space reconstruction from a historic 
time series, i.e. the water level in this case, where the main idea is to properly estimate 
the time delay τ and the embedding dimension m. 
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Figure 6.2.2. Schematisation of the 
phase-space reconstruction from 
historic time series. Each set of points 
(vector Y in equation 3.55) from the 
original time series is mapped to a 
point in the reconstructed phase space. 
The geometrical figure that contains 
the structure of the dynamical 
evolution of the system is called an 
attractor (if one exists). 

Having reconstructed the phase-space of the dynamical system using the time series from 
the long historical records, we can further use this information to model the dynamics of 
the system based on “dynamic neighbours”. Thus, we can model the attractor in phase 
space, that is, find the proper local mapping functions that map the trajectory in the 
future, in order to predict ahead for a given time horizons (1 hour, 3 hours, 6 hours, 10 
hours etc.). This can be justified by looking at “similar dynamic neighbours”. These are 
events which happen in the past and learn from their evolution for the required prediction 
horizon. This local modelling process is schematically presented in Figure 6.2.3.  
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Figure 6.2.3. Illustration of the search 
for dynamic neighbours and their 
dynamical evolution in history. Based 
on the information of their dynamic 
evolution in the past one can forecasts 
the future evolution of the dynamics in 
phase space and thus the time series. 

The correlation dimension dc, which is used to assess the embedding dimension m, 
was estimated from the time series using the methodology described in Section 3.3.2. 
Figure 6.2.4 shows the correlation integral for the water level data (Hoek van Holland) at 
different length scales.  

 

Figure 6.2.4. Correlation integral 
(sum) for the Hoek van Holland water 
level data (period 1990–1996, 10min 
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data). Double logarithmic plot was 
chosen for better visual presentation of 
the power law scaling between the 
correlation sum C(r) and the length 
scales r. The correlation sum was 
computed for different embedding 
dimensions (the line with squares 
corresponds to embedding dimension 2 
and the line with open circles 
correspond to embedding dimension 
20). After embedding dimension m=12 
the lines become parallel and thus the 
slope (correlation exponent) saturates, 
next Figure 6.2.5. 

 

Figure 6.2.5. Relationship between the 
correlation exponent v and embedding 
dimension m for the Hoek van Holland 
10 min interval water level data using 
different time delays τ. Correlation 
exponent increases with an increase of 
the embedded dimension up to a 
certain value and further saturates 
(when using time delays between τ=18 
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and τ=24). The saturation value of the 
correlation exponent, that is the 
correlation dimension, is 2.40 
(uncertainty 0.5) which indicates 
presence of an attractor in the 
dynamical system. 

From Figure 6.2.5 we can find the saturation value of the correlation exponent for a 
properly chosen time delay for the embedding of the water level time series (the optimal 
time delay is τ=21 in this case). This indicates the importance of finding the optimal time 
delay in order to correctly unfold the attractor (if one exists) in the phase space. The 
value of the correlation dimension of the attractor in this case is estimated to be dc=2.40. 
Taking into account the discussion about the estimation of the embedding dimension m 
(see Section 3.2.4), if we use the Taken’s embedding theorem the embedded dimension 
(integer number) of the manifold which contains the attractor is m=6. If we use the 
Withney’s recommendation, the embedding dimension is m=5. Abarbanel’s 
recommendation (the first integer above the correlation dimension) leads us to m=3. The 
false nearest neighbours method gives an estimation of the embedding dimension as m=6; 
see Figure 6.2.6. 

 

Figure 6.2.6. The percentage of the 
false nearest neighbours as a function 
of the embedding dimension for the 
water level data at Hoek van Holland 
tidal station. 
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This Figure shows that the percentage of the FFN drops to about 1% with the embedding 
dimension m=6, and remains unchanged for a further increase in the embedding 
dimension. The Lyapunov dimension estimated on the basis of the Layapunov exponents 
for the same data set is dλ=5.55, (Figure 6.2.8 and Table 6.2.2), thus indicating an 
embedding dimension of m=6. 

The time delay τ between successive elements in the delay vectors was estimated 
using the methodology described in Section 3.3.3. The autocorrelation function and the 
mutual information as functions of the time lags for the water level data (10min interval) 
at Hoek van Holland tidal station (1990–1996) are presented in Figure 6.2.7. Both 
functions suggest similar optimal values for the time delay of τ=20 time steps, which 
correspond to 3.33 hours. 

The Lyapunov exponents estimated from the water level time series at Hoek van 
Holland tidal station, using the methodology described in Section 3.3.4, are presented in 
Figure 6.2.8. The largest Lyapunov exponent is estimated as λ1=0.38 (uncertainty 0.02) 
which indicates a loss of information of 0.38 bits/hour during the dynamical evolution of 
the system, and thus a loss of predictive capabilities. A theoretical assessment of the 
limits of predictability of the system based on the available time series indicates values 
between λ1

−1=1/0.38=2.63 hours and τ/λ1=4/0.38=10.53 hours.  

 

Figure 6.2.7. The autocorrelation 
function (dash-dotted line) and the 
mutual information (solid line) as a 
function of time lags for the hourly 
water level time series at Hoek van 
Holland tidal station. 
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Figure 6.2.8. Estimated average local 
Lyapunov exponents for the hourly 
water level time series at Hoek van 
Holland tidal station in m=6 
dimensions. The data are consistent is 
showing a sum of global Lyapunov 
exponents (the values for about 1000 
steps along the attractor) that is 
negative. 

The Lyapunov spectrum contains a large negative exponent λ6=−0.90 which indicates the 
presence of strong dissipation mechanisms in the dynamics of the system. The presence 

of positive Lyapunov exponents and the fact that provide strong 
evidence that the dynamics of the system is driven by deterministic chaos. Furthermore, 
one of the Lyaunov exponents is clearly zero, λ4=0.0, which indicates that the 
deterministic motion of the system, at least in theory, can be described mathematically by 
a system of 6 nonlinear ordinary differential equations. 

The entropy of the time series h2, as an estimate of the Kolmogorov-Shinai entropy 
hKS, was computed using the methodology described in Section 3.3.5. Figure 6.2.9 
demonstrates the entropy estimated from the water level time series at Hoek van Holland 
tidal station for different embedding dimensions and time delays. 
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Figure 6.2.9. Dependence of the 
estimated entropies for the water level 
time series at Hoek van Holland tidal 
station on different embedding 
dimensions and time delays The results 
show that the embedding dimension 
m=6 and time delay τ=20 provides 
consistent estimate of the entropy 
h2=0.11, which is similar to the 
maximal Lyapunov exponent 
estimated from the 10min data 
(λ1=0.10, see Table 6.2.2). 

In Section 3.2.4 we stressed that the evolution over short time horizons can be sometimes 
more adequately described using the local dimension dl instead of the global embedding 
dimension m. This local dimension dl is the number of dynamic degrees of freedom that 
are required to model the attractor of the system and describe short-term evolutions in 
small regions in phase space. We could expect that this dimension is less than m, but for 
complex nonlinear systems, which may not be the case. If dl<m then the important 
dynamics can be captured locally with fewer degrees of freedom and the model can be 
simplified. If however, dl>m then the local dynamics will dictate the global behaviour of 
the system and the global embedding dimension (the essential degrees of freedom). To 
estimate the local dimension, using the same idea of FNN (see Section 3.3.2), Abarbanel 
and Kennel (1993) proposed a method to study the local structure of the phase space in 
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order to investigate if locally we require fewer dimensions than m to map the evolution of 
the local dynamics. The main idea is for a specific number of neighbours Nb and a given 
embedding dimension to construct local models that map the neighbours into the next 
time step in the same neighbourhood, but with an increased embedding dimension. When 
the percentage of bad predictions becomes independent of dl and is also insensitive to the 
number of neighbours Nb it is possible to assess the correct local dynamical dimension. In 
the case of Hoek van Holland 10min water level data, the percentage of bad predictions 
(local linear), shown in Figure 6.2.10, becomes independent of the number of neighbours 
when the local dimension is between 5 and 6.  

 

Figure 6.2.10. Local dynamic 
dimension for the water level time 
series at Hoek van Holland tidal station 
for different trial dimensions and 
number of neighbours. The results 
suggest local dynamic dimension of dl 
between 5 and 6. 

6.2.4 Estimation of the geometrical and dynamic invariants for all tidal 
stations 

The same methodology and procedures were used to analyse the time series data (10 min) 
for the water levels and surges for all seven tidal stations along the Dutch coast. Table 
6.2.2 and Table 6.2.3 summarise the results of the analysis. 
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Table 6.2.2. Various dimensions, time delay, 
entropies and Lyapunov exponents estimated using 
the water level time series 

station Time 
delay 
[samples] 
τ 

corr. 
dim 
dc 

embedding 
dimension
m 

local 
dimension
dl 

KS 
entropy 
h

KS 

entropy
h2 

max. Lyap 
[bits/samp]
λ1 

Lyap. 
dimension
dλ 

sum 
Lyapunov 
Σλi 

DZL 24 2.53 6 6 0.09 0.10 0.065 5.27 −0.15 
EPF 19 2.29 6 (5) 5 0.16 0.10 0.09 5.06 −0.25 
HA1 20 2.41 6 6 0.35 0.19 0.22 5.26 -0.49 
HVH 23 2.40 6 6 0.19 0.11 0.10 5.45 −0.38 
K13 20 2.25 6 6 0.21 0.13 0.12 5.32 −0.30 
VLI 20 2.21 6 (5) 6 (5) 0.15 0.10 0.095 5.02 −0.37 
YMD 18 2.38 6 6 0.19 0.14 0.13 5.38 -0.42 

Table 6.2.3. Various dimensions, time delay, 
entropies and Lyapunov exponents estimated using 
the residuals time series 

station time 
delay 
[samples] 
τ 

corr. 
dim 
dc 

embedding 
dimension
m 

local 
dimension
dl 

KS 
entropy 
h

KS 

entropy
h2 

max. Lyap 
[bits/samp]
λ1 

Lyap. 
dimension
dλ 

sum 
Lyapunov 
Σλi 

DZL 15 2.87 6 6 1.04 0.66 0.47 5.89 −0.12 
EPF 10 1.85 6 (5) 6 0.65 0.42 0.35 5.47 −0.52 
HA1 9 2.96 6 6 (7) 0.63 0.49 0.32 5.36 −0.42 
HVH 11 3.25 6 6 0.75 0.55 0.4 5.56 −0.36 
K13 16 2.89 6 6 (7) 0.68 0.40 0.36 5.44 −0.50 
VLI 11 1.92 6 6 (5) 0.62 0.38 0.33 5.30 −0.38 
YMD 10 2.77 6 6 0.67 0.41 0.35 5.45 −0.46 

The results presented in Table 6.2.2 and Table 6.2.3 indicate that the embedding 
dimension of the total water level dynamics is not reduced due to the subtraction of the 
astronomical tide. On the contrary, the underlying surge dynamics reconstructed from the 
time series of observables at all stations are characterised by increased local dimensions 
and larger Lyapunov exponents and entropies, which imply shorter prediction horizons 
and an increased complexity. This is also illustrated by a visualisation of the 
reconstructed phase space. Figure 6.2.11 shows the projection of the attractors of the 
reconstructed phase space in three dimensions for both the water levels and the surge data 
(using 10min data) for all analysed tidal stations. The geometry of the attractors is 
summarised in Table 6.2.4. 
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Table 6.2.4. Geometrical characteristics of the 
attractors 

Code Water levels size 
[cm] 

mean 
[cm] 

Surges size 
[cm] 

Mean
[cm] 

DZL 110.2 6.8 37.6 −0.9 
EPF 62.2 0.5 23.7 −0.2 
HA1 76.5 −4.2 26.0 −1.9 
HVH 68.0 6.4 26.6 −1.2 
K13 51.8 −1.5 27.8 −2.2 
VLI 135.8 −2.5 27.1 −0.8 
YMD 63.2 0.2 29.3 −1.2 
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Figure 6.2.11. Projection of the 
attractors of the reconstructed phase 
space in three dimensions for both, the 
water levels and surge data (using 
10min data) for all analysed tidal 
stations. The geometry of the attractors 
is compared with an atttractor of 
sinusoidal data. The attractor of Hoek 
van Holland data shows large 
distortion due to distorted high waters 
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and an appearance of double low 
waters. Similar behaviour can be 
noticed for the Haringfliet and the 
Euro Platform data. 

The local modelling in the reconstructed phase space presented and elaborated in Secton 
3.3.7, strongly depends on the ability to identify and select proper dynamical neighbours 
(similar events that happen in the past) and to learn the local mapping functions from 
their past evolutions. In order to get a sense of the neighbourhood in phase space, and to 
investigate the existence of similar dynamic regions of the attractor further, we can 
represent, for example, the ten nearest neighbours to the vector (state) Y(0) for Hoek van 
Holland tidal station (using embedding dimension m=6 and time delay τ=20); see Table 
6.2.5. Figure 6.2.12 represents the plot of the ten dynamic nearest neighbours to the 
vector at 00:10 January 1995 together with the observed and predicted (simple local 
model) water level time series.  

Table 6.2.5. The past nearest neighbours statistics 
for the phase space vectors that correspond to 
January 1, 1995 at 00:10 (GMT+1) (time index 
262944) for Hoek van Holland water level data. 
These are the starting points for the time series 
plotted in Figures 6.2.12 and 6.2.13. 

Neighbour Time 
index 

Date/time Euclidean 
distance (cm) 

1 12024 March 25, 1990, 
11:50 

14.5258 

2 97502 November 9, 
1991, 02:10 

19.1572 

3 12023 March 25, 1990, 
11:40 

19.3391 

4 97354 November 8, 
1991, 01:30 

19.7231 

5 12025 March 25, 1990, 
12:00 

21.4243 

6 97353 November 8, 
1991, 01:20 

21.7025 

7 207499 December 11, 
1993, 23:00 

21.7256 

8 207500 December 11, 
1993, 23:10 

22.2261 

9 150856 November 13, 
1992, 14:30 

23.7908 

10 97503 November 9, 
1991, 02:20 

24.8395 
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Figure 6.2.12. The 10 nearest 
neighbours (filled dots) to the vector at 
00:10 January 1995 together with the 
observed water level time series (solid 
line) at Hoek van Holland tidal station. 
The zeroth local predictions (empty 
circles) are estimated as an average of 
the images of 10 neighbours. 
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Figure 6.2.13. The dynamic evolution 
of the 10 nearest neighbours (solid 
lines) to the vector at 00:10 January 
1995 (filled dots) for the water level 
time series at Hoek van Holland tidal 
station. Results show that although 
there are several good nearest 
neighbours to the initial state, they do 
not necessarily represent neighbours in 
dynamical sense in the phase space 
forward in time. The closest 
neighbours, that are the closest orbits 
on the trajectory in phase space, are 
neighbour 2 and neighbour 5 
(represent with bold typeface in Table 
6.2.5). 

Similarly, Table 6.2.6 and Figure 6.2.14a and Figure 3.2.14b represent the statistics and 
the plot of the ten dynamic nearest neighbours to the vector at 00:10 January 1995 
together with the observed and predicted (simple local model) surge time series. 
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Table 6.2.6. The past nearest neighbours statistics 
for the phase space vectors that correspond to 
January 1, 1995 at 00:10 (GMT+1) (time index 
262944) for Hoek van Holland surge data. These 
are the starting points for the time series plotted in 
Figure 6.2.14 and Figure 6.2.15. 

Neighbour Time 
index 

Date/time Eucledian 
distance (cm) 

1 262943 January 1, 1995, 
00:00 

3.8730 

2 53817 January 9, 1995, 
17:20 

5.0990 

3 53815 January 9, 1995, 
17:00 

7.7460 

4 159491 January 12, 1993, 
13:40 

9.4340 

5 53816 January 9, 1995, 
17:10 

12.4097 

6 262941 December 31, 
1994, 23:20 

14.1067 

7 159478 January 12, 1993, 
11:30 

15.0000 

8 159490 January 12, 1993, 
13:30 

15.1327 

9 159479 January 12, 1993, 
11:40 

15.5242 

10 96830 November 4, 
1991, 10:10 

15.9687 
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Figure 6.2.14a. The 10 nearest 
neighbours (filled dots) to the vector at 
00:10 January 1995 together with the 
surge time series (solid line) at Hoek 
van Holland tidal station. The zeroth 
local predictions (empty circles) are 
estimated as an average of the images 
of 10 neighbours. 
 

Applications       243



 

Figure 6.2.14b. The dynamic evolution 
of the 10 nearest neighbours (solid 
lines) to the vector at 00:10 January 
1995 (filled dots) for the surge time 
series at Hoek van Holland tidal 
station. After approximately 20 steps 
forward in time, the initially nearby 
orbits in phase space diverge rapidly 
due to the presence of deterministic 
hyper chaos. It is also evident that 
some of the initial neighbours are not 
real “dynamical neighbours” during 
the evolution of the dynamics of the 
system. 

Finally, a recurrence plot (RP) was used to show which vectors in the reconstructed space 
are close and far from each other. More specifically, we calculate the (Euclidean) 
distances between all pairs of vectors and code them as colors. Essentially, RP is a color-
coded matrix, where each [i][j]th entry is calculated as the distance between vectors Y(i) 
and Y(j) in the reconstructed phase space. Thus, the recurrence plot is essentially a 
graphical representation of the correlation integral (Eq.3.61). The important distinction 
(and an advantage of the recurrence plots) is that the recurrence plots, unlike the 
correlation integrals, preserve the temporal dependence in the time series, in addition to 
the spatial dependence. In order to assess the structure of the reconstructed phase space of 
the surge time series, a recurrence plot was constructed and this is presented in Figure 
6.2.15. 
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Figure 6.2.15. Recurrence plot for the 
surge time series based on 10min data 
at Hoek van Holland for the period 
January 1990–March 1996. The phase 
space was reconstructed using 
embedding dimension m=6 and time 
delay τ=18. 

The plot is symmetric along the diagonal since the distance of the ith embedded vector to 
the jth embedded vector is the same as the distance of the jth to the ith. Also, there is a 
diagonal line where i=j (the distance between the surge vectors is 0). The recurrence plot 
of the surge clearly show that there is a structure in the reconstructed phase space (the 
lighter the color the closer the neighbours in Euclidean sense). Furthermore there is a 
periodic presence of vectors with higher distances especially in the winter periods, 
indicating that higher errors could be expect. The most variable part of the time series is 
year 1995 (the last part of the time series).  

The results from the analysis of the total water level and surge time series data at the 
selected tidal stations trigger the following discussion: 

Both water levels and residual data can be treated as deterministic chaotic dynamical 
systems that are close to the limit cycle with multiply pronounced spectral peaks. 
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Harmonic constituents can capture the linear periodic events, but also include long-term 
periodicities that are part of the true nonlinear dynamics. Furthermore several authors 
argue that nonlinear systems cannot be decomposed into linear subsystems in order to 
simplify the analysis if the true dynamics of the original system are to be retained. The 
results of this analysis support this finding. From Table 6.2.2 and Table 6.2.3 it is evident 
that the removal of the astronomical tide from the total water level dynamics did not 
reduce the dimensionality of the system. On the contrary, the embedding dimensions, 
entropies and Lyapunov exponents estimated from the residual time series show larger 
values, which theoretically implies shorter prediction horizons. 

The general belief is that the long-term astronomical “predictions” have a greater 
accuracy than any other model. However, from Figures 6.2.12 and 6.2.13 we can see how 
the harmonic components (and any global model) might capture the average long-term 
behaviour, but may fail to provide accurate short-term predictions of water levels and 
surges (which are of great importance for everyday operational ship navigation) due to 
the meteorological forcing and shallow water chaotic dynamics. On the other hand, even 
simple zeroth order local models are able to capture the local nonlinear dynamics of the 
system. The lack of accuracy of the harmonic estimator to capture the complex nonlinear 
dynamics along the coast (see Table 6.2.1) is strong evidence that these complex 
dynamical systems must be analysed using a nonlinear approach. 

The relatively short temporal prediction horizons described by the Lyapunov 
exponents and entropies (see Tables 6.2.2 and 6.2.3) stress the potential difficulties for 
improving any model due to the presence of chaotic dynamics. The chaotic behaviour 
occurs because water levels, including astronomical contributions and the contributions 
of many other processes, are the result of a coupled nonlinear system. The Lyapunov 
exponents have also significant ramifications for numerical models that are based on 
solutions to the hydrodynamic equations of motion. The implication of the presence of 
deterministic chaos in water level and surge dynamics is that estimates of future 
behaviour are very sensitive to mathematical formulations and assumptions, the choice of 
various coefficients and parameterisation, and the system’s current state may be also 
inadequately modelled or measured. The main implication is that improvements in the 
forecast may require significant improvements in the accuracy of the terms, coefficients 
and the measurements which are used as initial and boundary conditions. 

If we neglect the descriptive focus of using a numerical model to better understand the 
relationships between different variables and components of the underlying physical 
system, the main issue then becomes the temporal accuracy of moment-to-moment 
estimates of the time series for the water level and surges made by any model. In this 
respect, bearing in mind the presence of deterministic chaos in the water level and surge 
dynamics, local modelling in the reconstructed phase-space of the dynamical system, 
which uses information from the “real” dynamical neighbours, may give substantial 
forecasting improvements. Thus, the identification and selection of proper dynamical 
neighbours to learn from are the key issues in the local modelling approach adopted here.  
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6.2.5 Shallow-water dynamics and the dynamical neighbours 

From coastal hydrodynamics it is well-known that the amplitudes of tidal waves which 
are generated in the deep sea increase when they spread onto the shallow continental 
shelves. On the shelves the characteristics of these waves are altered by other processes 
including standing-wave generation and local resonances. In order to improve the 
selection of the dynamical neighbours for the purposes of local modelling and 
forecasting, it is important to identify and understand the processes that influence the 
local distortions which occur as the waves propagate into the shallower coastal waters 
along the Dutch coast. Three separate factors may contribute to the distortions: (i) 
Although the tidal waves still satisfy the criteria for long waves, that is, they have 
wavelengths which are much longer than the water depth, in shallow water the 
amplitudes of the waves become a significant factor of the total water depth. (ii) 
Secondly, the stronger currents which develop in the shallow water are resisted by the 
drag due to the bottom friction, a process which removes much of the tidal energy, and 
reduces the wave amplitudes. (iii) Thirdly, there can be a strong influence of the 
bathimetry and topography. The irregular coast line and varying depths impose 
complicated tidal current patterns. In the shallow-water areas where the currents take 
curved path, there must be associated surface gradients to provide the necessary cross-
stream accelerations. Exact mathematical descriptions of the complicated combination of 
these processes are seldom possible. 

The analysis of the water level time series along the Dutch coast shows that the 
interval from low to high water is shorter than the interval from high to low water: that is, 
the rise time is shorter than the fall (e.g. see Figure 6.2.16). 

 

Figure 6.2.16. Typical spring and neap 
tide at Hoek van Holland tidal station. 

In these circumstances, simple tidal predictions give times of high water which are later 
than the observed, and times of low water which are earlier. It is also further visible that 
the distortions take the form of double low and double high waters, which are more 
pronounced during the spring tide; see Figure 6.2.17. The possible explanation of the 
appearance of the double low and high water can be due to the appearance and interaction 
between higher shallow-water harmonic constituents, such as M4, M6, M8 etc. acting on a 
short-term period of time.  
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Figure 6.2.17. Spring tide (15 March 
1990, solid line) and neap tide (22-
March-1990, dashed-dotted line) at 
Hoek van Holland tidal station. Both, 
the double low water and the distorted 
peak are more pronounced for the 
spring tides. 

The power spectra for both the water levels and surges presented in Figure 6.2.18 indicate 
high energy levels from these higher-order tidal components. In order to extract these 
constituents, as an alternative to the analysis of long period components (such as monthly 
and yearly constituents), we analyse the daily time series for the harmonics present in 
each constituent. These daily harmonics may be called D1, D2, D4, etc. by analogue with 
the usual mutation of the naming of harmonic constituents. 
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Figure 6.2.18. Power spectrum of the 
water levels (left figure) and the surges 
(right figure) time series for Hoek van 
Holland tidal station. Higher order 
harmonic components have significant 
contribution to the total spectral 
energy. 

 

Figure 6.2.19. Scatter plot of the D2 
and D4 amplitudes. Possible nonlinear 
relationship is evident. 
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Figure 6.2.20. Scatter plot of the D2 
and D6 amplitudes. Possible nonlinear 
relationship is evident. 

Modulations of these Dn terms are expected to take place over the spring-neap cycle in 
the same way as the many lunar constituents in the monthly and yearly time periods. The 
daily analysis gives some insight into the relationships between the constituents, which in 
turn gives additional information for the implementation of rules for selecting proper 
dynamical neighbours for the purposes of local modelling and forecasting. The results 
from this daily analysis are presented in Figures 6.2.19, 6.2.20 and 6.2.21.  

Further to the extraction of the amplitudes for the daily Dn constituents, the 
relationships between their phases were also analysed. Figure 6.2.22 presents the 
relationships between the phases of the D2, D4, D6 and D8 components respectively. It is 
interesting to note the appearance of a phase-locking phenomenon between the shallow-
water daily tidal components. Animation of the scatter plot further shows that this phase-
locking phenomenon occurs on different time scales between the different daily Dn 
constituents, i.e. different regions on the graphs. A possible explanation could be the 
presence of standing-wave generation and local resonances in the shallow-water 
dynamics. It is thus very important to use this additional knowledge while searching for 
the “real” dynamical neighbours and learning the local mapping functions from their past 
evolutions for the purposes of modelling and forecasting. 
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Figure 6.2.21. Scatter plot of the D2 
and D8 amplitudes. Possible nonlinear 
relationship is evident. 

 

Figure 6.2.22. Phase difference 
between D2, D4, D6 and D8 shallow-
water daily tidal components. 
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The phase differences between the semidiurnal component D2 (M2) and its subharmonics 
explain the double water and distorted duration of the high water during the spring tide. 
There are also noticeable appearances of a double high water during the neap tide. The 
physical explanation of the appearance of the double low water and distortion of the 
duration of the high waters is presented in the following Figure 6.2.23.  

 

Figure 6.2.23. Schematic presentation 
of the shape of the composite seal-
level curve, controlled by the 
relationship between the amplitudes 
and the phases of the semidiurnal M2 
and four-diurnal M4 components in 
this case (AM4≈0.35AM2). For swallow-
water shelves along the Dutch coast, 
the curvature of the sea level is 
strongly dictated by the phase of the 
higher-order tidal components such as 
six-diurnal M6 and eight-diurnal M8, 
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whose daily amplitudes are significant 
in comparison to the semidiurnal 
component M2. 

6.2.6 Tide-Surge interaction 

The swallow-water dynamical processes, which cause interaction between different tidal 
constituents as already demonstrated, also cause tidal and surge components of the sea 
levels and currents to interact. Suppose, for example that, there is a process which 
depends on the square of the total sea-level: 

ξ2=(T+S)2=T2+S2+2TS 
(6.1) 

then the TS term in this case represents the interaction between the tides and the surges. 
In practice this interaction is difficult to describe in terms of analytical models and some 
knowledge can be gained from the numerical models. An alternative method is to analyse 
the distribution of the positive and negative surges relative to the high and low waters 
from the time series of the observations, as presented in Figure 6.2.24 and Figure 6.2.25. 

 

Figure 6.2.24. The distribution of the 
positive and negative surges at Hoek 
van Holland relative to the time of the 
high water for the period of 1990–
1996, showing that the tide-surge 
interaction causes the classes of high 
surges to avoid the times (presented in 
minutes) of the tidal high water. 
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Figure 6.2.25. The distribution of the 
positive and negative surges at Hoek 
van Holland relative to the time of the 
low water for the period of 1990–1996, 
showing that the tide-surge interaction 
causes the classes of high surges to 
avoid the times (in minutes) of the 
tidal low water. 

Tide-surge interaction on a local scale is very important because it is most apparent in 
shallow-water areas where large surges may be generated. This is evident from Figure 
6.2.24, which shows that the pattern of interaction causes high surge peaks to avoid the 
time of tidal high water (HW). The probabilistic analysis on the historical 10min data for 
the observed period (1990–1996) shows that positive surges (with high amplitude) occur 
both on the rising and falling tide with peaks before and after the tidal high water. 
Negative surge peaks also tend to avoid high water, especially on the rising tide. Figure 
6.2.25 shows very interesting results regarding the distribution of negative surges relative 
to the tidal low water (LW). The peak of the negative surges (with high amplitudes as 
well) occurs 2–3 hours after the LW, which can be hazardous from navigational safety 
point of view. Finally, this nonlinear interaction between the tides and surges may 
significantly change the design return period for coastal defences against flooding. 

6.2.7 Spatio-temporal analysis of the relationships between the 
meteorological forcing and the surges 

The regular tidal movements of the sea is continuously modified to a greater or lesser 
extent by the meteorological forcing due to the exchange of energy between the 
atmosphere and the sea at all time and space scales. As already discussed previously, 
these non-tidal residuals are usually called meteorological residuals or surges. Due to the 
chaotic dynamics of both the water levels and the surges (as already demonstrated), no 
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two surge events are exactly the same because small variations in weather patterns may 
produce quite different responses in the body of the sea water, particularly where there is 
a tendency for local standing waves and water-mass resonances and oscillations. 
Physically the atmosphere acts on the sea in two distinctly different ways. Changes in 
atmospheric pressure produce changes in the forces acting vertically on the sea surface 
which are felt immediately at all depths. Also, forces due to the wind stress are generated 
at and parallel to the sea surface: the extent to which they are felt at depths below the 
surface is determined by the time duration for which they act and by the density 
stratification of the water column, which control the downward transfer of momentum. 
Usually, due to their interaction, the effects of wind and air pressure on the surges are 
difficult to be identified and explained separately. 

Several possible physical responses of the sea may be modelled by analytical 
simplified solutions to the hydrodynamic equations, but a global description of the 
complex relationships can be best studied by numerical modelling techniques. In order to 
accurately describe and predict the local surge events due to the meteorological forcing 
using numerical models, we need to have a very accurate description of the atmospheric 
changes (as initial and boundary conditions) on smaller time and spatial scales, which at 
this stage of the technological development are still missing. Furthermore, bearing in 
mind that both the meteorological dynamics and the sea level dynamics bear the hallmark 
of deterministic chaos, long-term predictability is not guarantied. Although it is usual to 
forecast the surges only in terms of the extreme high amplitudes, extreme negative surges 
may also be generated by the meteorological forcing and these have significant impact 
for the safe navigation of large vessels in shallow water, such as the approach channel at 
Hoek van Holland (recall Figure 6.2.25). Furthermore, both positive and negative 
extreme surges may be generated by the same meteorological forcing at different stages 
of its progression. The analysis of the historical extreme surges in the North Sea shows 
that large positive surges are often preceded by negative surges a day or so before, due to 
the pressure gradients (drops) travelling from the deep Atlantic to the shallow shelf 
waters, such as the damaging storm surge in 1953.  

The global mechanism of surge generation due to the meteorological forcing in the 
North Sea along the Dutch coast is well-known (see for example, Heaps, 1983). This part 
of the North Sea is open to the North Atlantic ocean in the north so that the extratropical 
storms which travel across this entrance from west to east (see Figure 6.2.1) are able to 
set the water in motion with very little resistance from bottom friction. When these water 
movements are propagated into the North Sea they are affected by the earth’s rotation and 
by the shallower water as they approach the narrowing region to the south towards the 
Dutch coast. These geostrophic disturbances, which travel from north to south like tides 
as Kelvin waves are sometimes called external surges in order to distinguish them from 
the movements and changes of sea level by the meteorological forcing, which are called 
internal surges. 

The standard deviation computed on the time series of the meteorological residuals 
(surges) at the different locations along the Dutch coast (see Table 6.2.1) varies between 
σ=0.24 (m) at Euro platform to σ=0.38 (m) at Delfzijl, which shows very high values 
compared to the meteorological residuals at other parts of the world. The possible 
explanation of such a high variation in the meteorological residuals is the extensive area 
of very shallow water. The power spectrum of the residuals in Figure 6.2.18 shows that 
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although the astronomical tidal variations have been removed, there are still peaks of 
energy at the tidal frequencies due to the higher-order subharmonics in the shallow-water 
area and the interaction between the tides and surges. It is interesting to note that the 
diurnal band has no significant residual energy. This indicates that for the analysis of the 
meteorological residuals it is convenient to eliminate variations at frequencies above the 
diurnal tidal band. Figure 6.2.26 shows the relationship between the surge variations 
computed using a 72-hour filter and the inverse of the air pressure difference variations 
(related to the normal atmospheric pressure of 1013 mb). The low-pass filter was used in 
order to take into account the longer time-scales for the surge.  

 

Figure 6.2.26. Variation of the 
meteorological residuals computed 
using low-pass 72-hour filter compared 
with the difference in air pressure at 
Hoek van Holland. The air pressure 
differences are plotted reversely. 

This response of the sea level to the atmospheric pressure is the well-known inverted 
barometer effect. Figure 6.2.26 shows that the surge level changes are coherent with the 
inverse of the air pressure variations. For illustration: during a typical year atmospheric 
pressure may vary between values of 980 (mb) and 1030 (mb). Compared to the standard 
atmospheric pressure of 1013 (mb), this implies (by using simple analytical relationship 
∆Pa=ρg∆ξ) a range of surge variations relative to the static sea level between +33 (cm) 
and −17 (cm). Figure 6.2.27 shows the cross-correlation and average mutual information 
between the air pressure and the surge at Hoek van Holland. 
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Figure 6.2.27. Cross-correlation (lower 
curve) and AMI (upper curve) between 
Air Pressure and Surge at Hoek van 
Holland tidal station. 

Both relationships (cross-correlation and AMI) between the air pressure and the surge 
indicates that there is a substantial influence of the air pressure 10–12 hour ago on the 
future surge, which is reflected throughout the moving depressions towards East and 
North-East. The cross-correlation function is negative indicating the inverted barometric 
effect on the surge. 

The exact inverted barometer response of the sea is seldom found in practice. As 
Figure 6.2.27 demonstrates the correlation coefficient is r=−0.42 which describes only 
part of the sea level variation. One reason for this is that the dynamic response of the 
shallow water to the movement of the atmospheric pressure fields and the wind effects is 
related to the movements of the air pressure fields. These variations, which are not 
accounted for by an inverted barometer response are most likely caused by the local 
winds and their interaction with the propagating pressure fields. The effect of the local 
winds on the currents at Hoek Van Holland within the framework of this research was 
studied in Hasan (2001) and further extended in this thesis with an analysis of the surges. 
The most effective wind direction for producing large surges is from south and 
southwest, which, in accordance to the Ekman transport to the right of the wind and the 
conservation of mass implies a corresponding build-up of the coastal sea level along with 
the long-shore current.  
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Figure 6.2.28. Relationship between 
the long-shore winds, surges, water 
levels, tides and air pressure 
differences at Hoek van Holland. The 
long-shore winds are projected on the 
southwest direction. Positive wind 
speed indicates that the wind 
component blows from southwest (210 
degrees). 

These wind-induced variations are called locally generated surges in order to distinguish 
them from the surges propagating freely as progressive waves. The nonlinear analysis 
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based on AMI showed that there is a good relationship between the long-shore and cross-
shore southtwesterly winds and the surges. Figure 6.2.28 visualises the relationships 
between the long-shore components of the wind speed, surges, total water levels, 
astronomical tides and air pressure differences. The event presented in Figure 6.2.28 is 
from 1–January–1995 starting at 00:00 (144 samples represents 1 day). It is evident that 
recorded surges are quite extreme with the amplitude of about 2.7 (m), ranging between 
positive surges of 1.55 (m) and negative surges of −1.15 (m). The extreme positive surges 
(first 280 samples, i.e. duration of about 2 days) coincide with the negative pressure 
fields and strong long-shore winds (from the southwest) with a speed between 15–20 
(m/s). The extreme negative surges (the next 2 days) are caused by the development of 
long-shore winds (towards the southwest) with a build-up of high pressure fields after the 
depression. In this case, according to the Eckman transport the coastal water is driven out 
from the coast, which with the combination of the high pressure fields induces extreme 
negative surges. Figure 6.2.29 shows the cross-correlation function between selected 
wind components and the surge at Hoek van Holland tidal station.  

 

Figure 6.2.29. Cross-correlation 
function between wind speed 
component and the surge at Hoek van 
Holland tidal station. The numbers in 
the graph represent the angles of the 
wind component from the North. 
Positive correlation sighs indicate 
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winds from North-East and negative 
signs indicate wind from South-West. 

The results presented in Figure 6.2.29 indicate that the strongest influence (r=−0.65) of 
the wind on the surge is generated by the cross-shore component of the wind (120 
degrees from North, that is a North-Westerly wind). The time delay between this 
component of the wind and the surge is 1–1.5 hours. The along-shore component of the 
wind corresponding to the cross-shore component (30 or 210 degrees from North), has 
more a long-term impact on the surge generation due to the Eckman transport. A mass of 
water is moved towards the Dutch coast by the North-South winds which implies the 
generation of positive surges.  

 

Figure 6.2.30. Average mutual 
information (bits) between wind speed 
components and the surge at Hoek van 
Holland tidal station. The numbers in 
the graph represent the angles of the 
wind component from the North. 

Although the correlation coefficient for the along-shore winds is not significant 
(r=−0.41) these winds will certainly have a longer impact on the surges at Hoek of 
Holland (time delays between 10–20 hours) as presented and discussed in Figure 6.2.28. 
The average mutual information between the wind components and the surge at Hoek van 
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Holland show the same behaviour indicating a strong relationship between the cross-
shore component of the wind (120 degrees from North, which is North-Westerly wind) 
and the surge for the lag of 1 hour; Figure 6.2.30. 

The spatio-temporal analysis between the surge at Hoek van Holland and the wind 
components at the neighbouring stations K13 and EPF demonstrated similar findings; see 
Figure 6.2.31. 

 

Figure 6.2.31. Average mutual 
information (bits) between wind speed 
components at K13 and Euro platforms 
and the surge at Hoek van Holland. 

The AMI function presented in Figure 6.2.31 indicates that the strong influence of the 
wind at both K13 and Euro platform on the surge is due to the cross-shore component of 
the wind (120 and 110 degrees from North respectively). The time delays between the 
cross-shore component of the wind at K13 and Euro platform and the surge at Hoek van 
Holland are 2.5 and 2 hours respectively. Along-shore components of the wind (30 and 
20 degrees from North) have a more long-term impact on the surge at Hoek van Holland 
(time delays between 18–20 hours). 

Finally, the spatio-temporal relations between the surges at Hoek van Holland and the 
neighbouring stations (EPF, K13, IJmuiden and Vlissingen) were investigated. Both 
functions (AMI and cross-correlation) indicate very strong relationships between the 
surges at Euro platform and Vlissingen and the surge at Hoek van Holland. These surges 
precede the surge at Hoek van Holland by about 1 hour, thus carrying important 
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information for predictive modelling. In contrast, the surges at K13 platform and 
IJmuiden show the strongest relationships with the surge at Hoek van Holland 1–1.5 
hours later. It is interesting to note that the linear cross-correlation function shows 
temporal dependencies between the surges for about 2 tidal cycles, whereas the average 
mutual information indicates a temporal dependence of about 1 tidal cycle.  

 

Figure 6.2.32. Average mutual 
information (left figure) and 
crosscorrelation (right figure) between 
the surges at the surrounding stations 
(K13, Euro platform, Vlissingen and 
Ijmuiden) and the surge at Hoek van 
Holland. 

6.2.8 Local modelling and forecasting water levels and surges 

Based on the identified and reconstructed dynamics of both water levels and surges along 
the Dutch coast, an attempt was made to build an accurate short-term forecasting model 
utilising chaos theory and the notion of “dynamic neighbours” already elaborated above. 
Univariate local models using only information from the surge times series were 
constructed initially. This analysis was extended with multivariate local models in the 
reconstructed phase-space incorporating additional information for local mapping of the 
real dynamic neighbours, such as the tidal phases, the phase-locking phenomenon and the 
tide-surge interaction. Finally, the hybrid modelling framework—mixture of local 
models—elaborated in Chapter 5, has demonstrated the best forecasting performances. 
Herewith we summarise the prediction results (using different prediction horizons) for 
the surges at Hoek van Holland. 

SURGE PREDICTION USING UNIVARIATE LOCAL MODELS 

Adaptive local models (linear and polynomial) were used in the reconstructed phase 
space of the surge at Hoek van Holland to map the dynamics of the attractor. In this 
experiment only information from the surge time series was used to build the local 
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models. The sensitivity of the choice of the local approximation, the embedding 
dimension (m), the time delay (τ) and the number of neghbours (k) were also investigated. 
Table 6.2.7 shows the available data set (training and testing) used to build and evaluate 
the local models. Tables 6.2.8, 6.2.9 and 6.2.10 summarise the performance of the 
univariate local models for the surge predictions. 

 

 

Table 6.2.7. Training and testing parts of the surge 
data set (10min) for Hoek van Holand tidal station. 

Training set: 1–Jan–1990->31–Dec–1994 (262943 
samples) 

Testing 
(unseen) sets: 

1–Jan–1995->31–Aug–1995 (34993 
samples)—overall test period 
1–Jan–1995->31–Mar–1995 (12960 
samples)—stormy period, 
the most difficult for prediction 

  

1–Jun–1995->31–Aug–1995 (13242 
samples)—nonstormy period 

 
 
Table 6.2.8. Univariate model. Performance for the 
surge prediction based on univariate local 3rd order 
polynomial models using 10min time series data 
(m=6, τ=20, k=35–50 for non-stormy period and 
k=10–15 for stormy period). 

  RMS Error (cm) for different prediction 
horizons (1 sample=10min) 

  10min 30min 1 
hour

2 
hours

3 
hours

6 
hours

10 
hours

Overall 
test 
period 
(l–Jan–
1995-
>31–
Aug–
1995) 

2.89 4.55 7.27 11.94 14.57 19.66 25.23

Stormy 
period 
(1–Jan–
1995-
>31–

3.10 5.15 9.52 15.35 17.55 23.32 27.78
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Mar–
1995) 
Non-
stormy 
period 
(1–Jun–
1995-
>31–
Aug–
1995) 

1.80 2.95 4.01 5.98 7.24 8.99 10.63

In order to compare the surge predictions using 10min and hourly data further 
experiments were carried out using local models based on the hourly surge time series; 
see Table 6.2.9.  

 
 
Table 6.2.9. Univariate model. Performance for the 
surge prediction based on univariate local 3rd order 
polynomial models using 1 hour time series data 
(m=6, τ=6, k=20–35 for non-stormy period and 
k=9–12 for stormy period). 

  RMS Error (cm) for different prediction 
horizons (1 sample=1 hour) 

  10min 30min 1 
hour

2 
hours

3 
hours

6 
hours

10 
hours

Overall 
test 
period 
(l–Jan–
1995-
>31–
Aug–
1995) 

/ / 7.32 12.55 16.90 19.54 24.51

Stormy 
period 
(1–Jan–
1995-
>31–
Mar–
1995) 

/ / 9.74 15.51 18.92 23.12 27.18

Non-
stormy 
period 
(1–Jun–
1995-

/ / 4.55 6.07 7.69 8.81 10.15
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>31–
Aug–
1995) 

The surge predictions were further compared with a univariate neural network model. 
The same reconstructed phase-space (input data) was used to train different NNs, using 
different architectures (MLP, modular, recurrent) and structures (number of hidden 
layer/nodes and transfer functions). Table 6.2.10 sumarise the results of the best 
performing NN, with a modular structure in this case. 

Table 6.2.10. Univariate model. Performance for 
the surge prediction based on univariate MPL 
(6×4×1) neural network using 1 hour time series 
data. Same input vectors from the reconstructed 
phase space were used. 

  RMS Error (cm) for different prediction 
horizons (1 sample=1 hour) 

  10min 30min 1 
hour

2 
hours

3 
hours

6 
hours

10 
hours

Overall 
test 
period 
(l–Jan–
1995-
>31–
Aug–
1995) 

/ / 7.52 12.47 14.72 16.85 21.59

Stormy 
period 
(1–Jan–
1995-
>31–
Mar–
1995) 

/ / 9.81 16.04 17.96 22.49 29.45

Non-
stormy 
period 
(1–Jun–
1995-
>31–
Aug–
1995) 

/ / 4.78 6.26 7.66 11.54 14.34

Figures 6.2.33, 6.2.34 and 6.2.35 further visualise the measured and predicted surge 
levels together with the errors for different prediction horizons based on the univarite 
local models in the reconstructed phase-space.  
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Figure 6.2.33. Prediction of the surges 
at Hoek van Holland based on hourly 
time series (solid grey line). The graph 
is zoomed at the stormy period (1–Jan–
1995->31–Mar–1995). The prediction 
horizon is 1 hour. The overall RMSE 
for NN (blue dashed line) is 7.52cm 
and for LMs (red solid line) is 7.32cm. 
The bottom figures show the errors. 
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Figure 6.2.34. Univariate model. 
Prediction of the surges at Hoek van 
Holland based on hourly time series 
(solid grey line). The graph is zoomed 
at the stormy period (1–Jan–1995-
>31–Mar–1995) The prediction 
horizon is 3 hours. The overall RMSE 
for NN (blue dashed line) is 14.72cm 
and for LMs (red solid line) is 
16.90cm. The bottom figures show the 
errors. 
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Figure 6.2.35. Univariate model. 
Prediction of the surges at Hoek van 
Holland based on 10min time series 
(solid grey line) using univariate local 
models. The graph is zoomed at the 
most variable pat of the time series 
(period 1–Jan–1995->4–Feb–1995). 
The prediction horizon is 3 hours with 
an overall RMSE of 14.57 cm. The 
bottom figure shows the prediction 
errors mostly due to a presence of 
phase error. 

Figures 6.2.34 and 6.2.35 show that for longer prediction horizons using univariate 
models (surge time series only) there is a clear presence of a phase error. The amplitudes 
of the extreme positive surges are correctly predicted. However, the error on the extreme 
negative surges is larger with more pronounced phase error. In order to improve the surge 
predictions multivariate local models, including the meteorological forcing and different 
spatio-temporal information, were further explored. 
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SURGE PREDICTION USING MULTIVARIATE LOCAL MODELS 

Multivariate local models incorporating information on surge water levels (at Hoek van 
Holland and EPF), air pressure (difference), long-shore and cross-shore wind 
components, tidal phase class, phase-locking index, and tide-surge index, were tested 
with the main objective to improve the surge predictive accuracy for longer prediction 
horizons (3,6,10 hours). Root mean squared error (RMSE) was used as a model 
performance measure. Due to the computationally demanding task hourly data were used 
to construct these models. The multivariate phase-space reconstruction of the surge 
dynamics using hourly time series data was solved technically using the proposed 
methodology described in Section 3.3.8. The optimal reconstructed multivariate phase-
space can be noted as: 

(6.2) 

Table 6.2.11 presents the hourly data sets used in these experiments, and Table 6.2.12 
and Table 6.2.13 summarise the model performances for both: the multivariate local 
models and the multivariate global ANN.  

 
 
Table 6.2.11. Training and testing parts of the data 
set (hourly data) for Hoek van Holand tidal station. 

Training set: 1–Jan–1990->31–Dec–1994 (43000 
samples) 

Testing 
(unseen) sets: 

1–Jan–1995->31–Aug–1995 (5832 
samples)—overall test period 
1–Jan–1995->31–Mar–1995 (2160 
samples)—stormy period, 
the most difficult for prediction 

  

1–Jun–1995->31–Aug–1995 (2208 
samples)—nonstormy period 
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Table 6.2.12. Multivariate model. Performance for 
the surge prediction based on multivariate local 
linear models using 1 hour time series data 
(m=variable, τ=variable, k=100–300 for non-stormy 
period and k=50–100 for stormy period). 

  RMS Error (cm) for different prediction 
horizons (1 sample=1 hour) 

  10min 30min 1 
hour

2 
hours

3 
hours

6 
hours

10 
hours

Overall 
test 
period 
(1–Jan–
1995-
>31–
Aug–
1995) 

/ / 4.86 8.90 10.15 13.85 18.27

Stormy 
period 
(1–Jan–
1995-
>31–
Mar–
1995) 

/ / 5.55 10.66 14.25 18.96 24.19

Non-
stormy 
period 
(1–Jun–
1995-
>31–
Aug–
1995) 

/ / 4.34 5.87 8.09 9.22 10.33

 
 
 
 
 
 
 
 
 

Nonlinear dynamics and chaos with applications to hydrodynamics and hydrological modelling     270



Table 6.2.13. Multivariate model. Performance for 
the surge prediction based on multivariate modular 
MPL (2 MPLs-19×16×8×1) neural network using 1 
hour time series data. Same input vectors from the 
reconstructed phase space were used. 

  RMS Error (cm) for different prediction 
horizons (1 sample=1 hour) 

  10min 30min 1 
hour

2 
hours

3 
hours

6 
hours

10 
hours

Overall 
test 
period 
(1–Jan–
1995-
>31–
Aug–
1995) 

/ / 5.90 11.11 12.35 14.09 19.29

Stormy 
period 
(1–Jan–
1995-
>31–
Mar–
1995) 

/ / 7.38 13.72 14.12 19.31 25.18

Non-
stormy 
period 
(1–Jun–
1995-
>31–
Aug–
1995) 

/ / 5.01 6.65 9.67 10.57 11.58
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Figure 6.2.36. Multivariate model. 
Prediction of the surges at Hoek van 
Holland for the stormy period (1–Jan– 
1995->31–Mar–1995) based on hourly 
time series (solid grey line). The 
prediction horizon is 1 hour. The 
overall RMSE for multivariate ANN 
(blue dashed line) is 5.90 cm and for 
multivariate LMs (red solid line) is 
4.86 cm. The bottom figures show the 
errors. 
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Figure 6.2.37. Multivariate model. 
Prediction of the surges at Hoek van 
Holland for the stormy period (1–Jan– 
1995->31–Mar–1995) based on hourly 
time series (solid grey line). The 
prediction horizon is 3 hours. The 
overall RMSE for multivariate NN 
(blue dashed line) is 12.35cm and for 
multivariate LMs (red solid line) is 
10.15cm. The phase error is not 
present any more. 

The surge predictions based on the multivariate local models, incorporating information 
on the meteorological forcing and additional knowledge expressed in a form of rules for 
selecting proper dynamical neighbours in the reconstructed phase-space, have shown 
significant improvements compared to the univariate local models. It is further evident 
that the existing phase error is not present any more. Finally, the multivariate local 
models showed better short-term (up to 10 hours ahead) predictive performances in 
comparison with the optimal neural network for the same data sets, especially in 
demonstrating capabilities for a more accurate prediction of the extreme negative surges; 
see Figure 6.2.37. The additional experiments, carried out for longer prediction horizons 
(up to 24 hours ahead), showed better performances of the global neural network model, 
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since it is capable of capturing the global input-output relationships based on the 
available time series data. 

SURGE PREDICTION USING MIXTURE OF MODELS (HMMMS) 

The local modelling experiments showed that there are clear regions (dynamical regimes) 
on the attractor of the reconstructed phase-space that can be modelled using different 
local models with different parameters (τ, m and k), i.e. capacity. For illustration, Figure 
6.2.38a shows the sensitivity of the choice of the number of neighbours k for the local 
multivariate linear models on the surge predictions. Thus a mixture of local models using 
the data-driven modelling framework elaborated in Chapter 5 was constructed 
specialising on different surge dynamics, and showed an improved forecasting 
performance. Table 6.2.14 and Figures 6.2.38, 6.2.39, 6.2.40, 6.2.41 and 6.2.42 
summarise the surge predictions using the mixture of models approach.  

 

Figure 6.2.38a. Sensitivity of the 
choice of the number of “dynamic” 
neighbours on the surge prediction. 
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Table 6.2.14. Mixture of models. Performance for 
the surge prediction based on mixture of 
multivariate local linear models using 1 hour time 
series data. 

  RMS Error (cm) for different prediction 
horizons (1 sample=1 hour) 

  10min 30min 1 
hour

2 
hours

3 
hours

6 
hours

10 
hours

Overall 
test 
period 
(1–Jan–
1995-
>31–
Aug–
1995) 

/ / 4.35 8.01 9.57 12.65 17.35

Stormy 
period 
(1–Jan–
1995-
>31–
Mar–
1995) 

/ / 5.01 9.69 12.88 16.61 22.86

Non-
stormy 
period 
(1–Jun–
1995-
>31–
Aug–
1995) 

/ / 3.98 5.57 7.98 9.05 10.20
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Figure 6.2.38. Activation function of 
each local model (expert) zoomed at 
the stormy period (1–Jan–1995->31–
Mar–1995). Prediction horizon is 1 
hour. Each expert is a multivariate 
local linear model using different 
embedding dimension m and different 
number of neighbours k. The final 
prediction is a soft combination of the 
prediction of the three experts in this 
case. For determining the optimal 
number of experts, a cross-validation 
data was used as a part of the training 
data set. 
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Figure 6.2.39. Performance of the 
mixture of models expressed through 
the observed and predicted density 
distributions for 1 hour prediction of 
the surge at Hoek van Holland. 
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Figure 6.2.40. Mixture of models. 
Prediction of the surges at Hoek van 
Holland zoomed at the stormy period 
(1–Jan–1995->31–Mar–1995) based 
on hourly time series (solid grey line). 
The prediction horizon is 1 hour. 
Mixture of local multivariate models 
(blue solid line) were used. The overall 
RMSE is 4.35 cm. The bottom figure 
shows the errors. 
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Figure 6.2.41. Mixture of models. 
Prediction of the surges at Hoek van 
Holland zoomed at the stormy period 
(1–Jan–1995->31–Mar–1995) based 
on hourly time series (solid grey line). 
The prediction horizon is 3 hours. 
Mixture of local multivariate models 
(blue solid line) were used. The overall 
RMSE is 9.57cm. The bottom figure 
shows the errors. 
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Figure 6.2.42. Mixture of models. 
Prediction of the surges at Hoek van 
Holland zoomed at the stormy period 
(1–Jan–1995->31–Mar–1995) based 
on hourly time series (solid grey line). 
The prediction horizon is 6 hours. 
Mixture of local multivariate models 
(blue solid line) were used. The overall 
RMSE is 12.65cm. The bottom figure 
shows the errors. 

SURGE PREDICTION USING MIXTURE OF MODELS (HMMMS) 
AND INCLUDING FUTURE METEOROLOGICAL INFORMATION 

The mixture of models framework showed improved surge forecasting performances 
using real prediction mode (that is, no future information was included in the models-
experts). In order to test the performance of the mixture of models framework in real 
operational mode, future (predicted) meteorological information provided by the global 
climate model (HIRLAM) was included into the model. Due to the lack of a time series 
of predicted meteorological information (air pressure and wind fields along the Dutch 
coast) for the period of 1990–1996, and based on the overall errors of the HIRLAM 
model for prediction of the air pressure and wind fields for 1999 and 2000, the predicted 
data for 1995–1996 was assumed to be the measured data disturbed with 10–20% of the 
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variances of the both time series. Future surge information was included using predicted 
surges based on univariate local models. Table 6.2.15 and Figures 6.2.43, 6.2.44, and 
6.2.45 summarise the surge predictions using the mixture of models approach including 
future meteorological information.  

Table 6.2.15. Mixture of models including future 
meteorological information. Performance for the 
surge prediction based on mixture of multivariate 
local linear models using 1 hour time series data. 

  RMS Error (cm) for different prediction 
horizons (1 sample=1 hour) 

  10 
min

30 
min

1 
hour

2 
hours 

3 
hours

6 
hours

10 
hours

Overall 
test period
(1–Jan–
1995->31–
Aug–1995)

/ / 3.85 5.32 6.12 8.02 10.50

Stormy 
period 
(1–Jan–
1995->31–
Mar–1995)

/ / 4.01 5.66 6.89 8.75 11.62

Non-stormy 
period 
(1–Jun–
1995->31–
Aug–1995)

/ / 3.18 4.37 5.23 6.56 7.89 
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Figure 6.2.43. Mixture of models 
including future meteorological 
information. Prediction of the surges at 
Hoek van Holland zoomed at the 
stormy period (1–Jan–1995->31–Mar–
1995) based on hourly time series 
(solid grey line). The prediction 
horizon is 1 hour. Mixture of local 
multivariate models (blue solid line) 
were used. The overall RMSE is 
3.85cm. Bottom figure shows the error. 
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Figure 6.2.44. Mixture of models 
including future meteorological 
information. Prediction of the surges at 
Hoek van Holland zoomed at the 
stormy period (1–Jan–1995->31–Mar–
1995) based on hourly time series 
(solid grey line). The prediction 
horizon is 6 hours. Mixture of local 
multivariate models (blue solid line) 
were used. The overall RMSE is 
8.02cm. Bottom figure shows the error. 
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Figure 6.2.45. Mixture of models 
including future meteorological 
information. Prediction of the surges at 
Hoek van Holland zoomed at the 
stormy period (1–Jan–1995->31–Mar–
1995) based on hourly time series 
(solid grey line). The prediction 
horizon is 10 hours. Mixture of local 
multivariate models (blue solid line) 
were used. The overall RMSE is 
10.50cm. Bottom figure shows the 
error. 

The performances of the mixture of models framework with future meteorological 
information were compared with the results from the numerical model WAQUA, which 
is currently in use for operational forecasting of the surges, currents and wave heights 
along the Dutch coast. Some average results from WAQUA model for 1995 and 1999 in 
hindcasting mode (model re-run with forecasted and assimilated meteorological 
information: air pressure and wind fields) are (source: RIKZ and DNZ): 

- Overall surge prediction: RMSE=9–10cm for horizons of 6–12 hours 
- Surge prediction for the stormy period: RMSE=12–15cm for horizons of 6–12 hours 
- Surge prediction for the non-stormy period: RMSE=6–8cm for horizons of 6–12 hours. 
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The surge forecasting results at Hoek van Holland generated by the mixture of models 
framework using local multivariate models are comparable with the results from the 
WAQUA numerical model in hindcasting mode. It is worth mentioning that the CPU 
time for the mixture of models framework is the order of seconds in operational 
forecasting mode. 

Finally, an experiment of surge prediction using the measured future meteorological 
information (air pressure and winds at HVH, k13 and EPF) was carried out that 
demonstrated a very low error on the surge predictions. This implies that the set-up of the 
mixture of models framework and the parameters for the local multivariate models 
together with the procedure of selecting the best neighbours in the reconstructed phase-
space were properly incorporated. Furthermore, these results indicate that the 
uncertainties in surge prediction are largely dependent on the meteorological forcing. 

6.2.9 Assessment of the local entropy and predictability of the surge 
dynamics 

The estimated geometrical and dynamical invariants of the reconstructed surge dynamics, 
(see Table 6.2.3), such as the correlation dimensions, Lyapunov exponents and 
Kolmogorov-Shinai entropies are average measures about the self-similarity, 
predictability and the complexity of the analysed dynamical system. What is more 
interesting from an operational forecasting perspective is quantifying in which cases the 
predictions of such complex dynamics in the future can be reliable and certain and in 
which cases they are uncertain. The basic methodology to examine this problem, based 
on the theory of nonlinear dynamics and conditional entropies as already elaborated in 
Section 3.3, was further applied to the surge dynamics at Hoek van Holland. Using the 
methods of symbolic dynamics and clustering techniques the reconstructed trajectory of a 
dynamical system in phase-space is mapped to a string (sequence) of letters on a certain 
alphabet. This string of letters is further analysed using information theoretical methods. 

A direct application of the conditional entropy concepts requires a symbolic 
representation of the available real valued data Xt. This is achieved by introducing a finite 
partition ∏, which divides the reconstructed continuous phase-space Y (Eq.6.2) into λ 
disjoint sets. Each set is labelled with a symbol (letter) Ai from the alphabet A. In such a 
manner, the resulting symbolic sequence represents a discrete (coarse-grained) 
description of the time evolution of the dynamical system. The finite partition ∏ of the 
reconstructed multivariate phase-space of the surge dynamics into λ disjoint sets was 
done using the Bayesian nonsupervised clustering algorithm known as AutoClass (Stutz 
and Cheeseman, 1994). This is elaborated in Velickov and Solomatine (2000). The main 
challenge in creating the partition ∏ is to find a good balance between a finer partition 
based on the relationships that underline the surge dynamics and the statistical 
significance of the entropy analysis due to the finite length of the times series of 
observables. In other words, the statistics of the entropy analysis is biased by the length λ 
of the alphabet (number of disjoint sets of the partition) since the required length of the 
time series to compute the entropies is of order O(λn). To be specific, based on the cluster 
analysis of the reconstructed phase-space of the surge dynamics at Hoek van Holland 
seven clusters were found to give best results in terms of the log of the relative marginal 
probability of the clustering model given the data. Each cluster, which maps the 
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individual point in phase-space to the symbolic sequence, was labelled using the 
following alphabet (integer numbers in this case) A= {0,1,2,3,4,5,6}. Figure 6.2.46 shows 
the real-valued surge time series together with the corresponding sequence of symbols.  

 
 
 
 

 

Figure 6.2.46. Surge time series and 
corresponding sequence of symbols 
zoomed at a stormy period (period 1–
Jan–1995->31–Mar–1995). 
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Figure 6.2.47. Average block (n-gram) 
entropy (uncertainly) as a function of 
the word length n. Beyond n=6 the 
calculation of the block entropy is not 
reliable due to insufficient statistics. 

The generated sequence of symbols mapping the surge time series was further analysed 
using the entropy concepts described in Section 3.3.5 and elaborated in Velickov et. al 
(2003). The analysis of the average block (Eq.3.72) and conditional entropies (Eq.3.73) 
for different word length n is presented in Figure 6.2.47. We see that the average 
predictability of the surge dynamics over the complete data set is good and is higher than 
80%. However, the average dynamic uncertainties do not give much insight into the 
variability of the local order and predictability in different dynamic conditions 
(regimes).The result of the calculation of the local uncertainty hn

(1) (A1…An) and 
predictability rn

(1) (A1…An) for the next hour following behind an observed section 
A1…An of the trajectory, according to Eq.(3.) and Eq.(3.), for n=2 is presented in Figure 
6.2.48. We see that the predictability which is based on the regularities found in the 
sequence for a memory (n=2) varies between 0.63–1.0. Figure 6.2.49 shows both the 
predictability of the 3rd and the 5th symbol (3 time steps ahead), calculated according to 
Eq.(3.) and Eq.(3.), following an observed section of the trajectory in phase-space for 
n=2.  
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Figure 6.2.48. Surge time series and 
local predictability (uncertainty) r2 of 
the prediction of the of the 3rd symbol 
based on the 2 preceding symbols in 
phase-space. 

 

Figure 6.2.49. Local predictability 
(uncertainty) r2 of the prediction of the 
3rd and the 5th symbol based on the 2 
preceding symbols in phase-space. The 
figure is zoomed at the storm surge in 
Jan 1995. 

Nonlinear dynamics and chaos with applications to hydrodynamics and hydrological modelling     288



As presented in Figure 6.2.49, the local uncertainty of the 5th symbol (prediction horizon 
3 hours) is higher than the 3rd symbol (prediction horizon 1) thus implying lower 
predictability. The optimal length of the section of the trajectory (memory of the system) 
based on which the local uncertainty and predictability are calculated can be assessed by 
looking at the mutual information (Eq. 3.) and autocorrelation function. Figure 6.2.50 
indicates that the first minimum of the average mutual information is at lag τ=6–8 hours 
whereas the exponentially decaying autocorrelation function reaches its value of 1/e 
(Tsonis and Elsener, 1988) (1/2.7182=0.37) at lag τ=13–15 hours, indicating some 
memory of the dynamics on a tidal cycle level. Since the reconstructed phase-space of the 
surge dynamics includes information on a tidal cycle level (Eq.6.2), the analysis of local 
uncertainty and predictability based on sections of the trajectory with length n=4 is 
considered as sufficient and with the required statistics.  

 

Figure 6.2.50. Average mutual 
information and autocorrelation 
functions for the hourly surge time 
series at Hoek van Holland. 
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Figure 6.2.51. Local predictability 
(uncertainty) r4 of the prediction of the 
5th and the 7th symbol based on the 4 
preceding symbols in phase-space. 

The results of the calculation of the local uncertainty and predictability for the next 
hour following an observed section of the trajectory in phase-space for n=4 are presented 
in Figure 6.2.51. Behind certain patterns of surge dynamics the local predictability 
reaches 95–100%. This is evident for the patterns of type “3345” which indicate the 
dynamics of positive surges, patterns of type “1123” which indicate the transition from 
negative towards positive surges and patterns of type “3344” which indicate persistency 
in the positive surges. These types of surge patterns are driven by the meteorological 
forcing and the tidal motion. However, predictability of the patterns of type “4565”, 
which indicate positive surge peaks, is very uncertain and drops to between 75–80%. 
Similarly, predictability for the surge patterns of type “2101”, which indicate peaks in the 
negative surges, is below 72%. It is interesting to note that the lowest predictability 
shows patterns of type “2211”, “1111” and “2223”, which indicates persistency of small 
negative and positive surges. These surges are due to the shallow-water dynamic 
processes, which cause nonlinear interaction between the different tidal constituents, 
appearance of double low water and distorted high water, and a phase-locking 
phenomenon on different time scales between the different daily tidal constituents as 
already demonstrated and elaborated. Finally, the analysis also shows that the local 
predictability of the positive extreme surges in general is better than the negative extreme 
surges, which on the other hand are very important for the everyday safe ship navigation 
and guidance processes. 
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6.2.10 Conclusions 

In summary, the following major conclusions resulted from this case study: 

1. Based on the nonlinear analysis, phase-space reconstruction and estimation of various 
geometrical and dynamical invariants, the dynamics of both water levels and surges 
along the Dutch coast can be characterised as deterministic chaos. The presence of the 
chaotic dynamics together with the positive Lyapunov exponents implies that there are 
limits of predictability for any model (refer to Table 6.2.2 and Table 6.2.3). However, 
reliable short-term predictions are possible. 

2. The chaotic behaviour occurs because water levels and surges, including astronomical 
contributions and the contributions from the meteorological forcing, are the result of a 
complex, coupled nonlinear dynamical system. The analysis of the shallow-water 
dynamics has demonstrated and explained the appearance of the double low water and 
the distortion of the duration of the high waters. 

3. The Lyapunov exponents and the entropies have significant ramifications for 
numerical models that are based on solutions of the hydrodynamic equations of 
motion. The implication of the presence of deterministic chaos in surge dynamics is 
that estimates of future behaviour are very sensitive to mathematical formulations and 
assumptions, the choice of various coefficients and parametrisation, and the system’s 
current state may be also inadequately modelled or measured. The main implication is 
that improvements in forecasting may require significant improvements in the 
accuracy of the terms, coefficients and the measurements, which are used as initial and 
boundary conditions, especially in the meteorological forcing. Data assimilation 
techniques, based on very accurate measured data may contribute to the improvement 
of the prediction performances. 

4. Taking into account the presence of deterministic chaos in the water level and surge 
dynamics, a mixture of multivariate adaptive local modelling in the reconstructed 
phase-space of the dynamical system, which uses information from the real dynamical 
neighbours, has demonstrated good capability for reliable short-term predictions. For 
the Hoek van Holland location, the overall prediction error for the surge 10 hours 
ahead is about 10.5cm. For stormy sea dynamics the prediction error is about 12 (cm) 
and about 8 (cm) for non-stormy sea dynamics (the test data was taken from the period 
1.01.95–31.08.95). 

5. Identification and selection of proper dynamical neighbours from the historical time 
series data is the key issue in the local modelling approach adopted in this work. The 
dynamical selection of the types and the number of neighbours in the modelling 
procedure indicates that there are different dynamical regimes present in the sea 
dynamics that may be modelled using different types of models (e.g. local models, 
neural networks, etc.). Herewith the mixture of models framework showed the best 
predictive performances. 

6. The local uncertainty analysis is an appropriate technique for studying the 
predictability of the surge dynamics. Although the overall predictability is about 80%, 
there exist certain dynamical situations when the predictability is much better than the 
average predictability and certain dynamical situations when the predictability is quite 
low, especially for the negative surges. 
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7. Chaos theory can serve as an efficient tool for accurate and reliable short-term 
predictions of water levels in order to support decision-makers in ship navigation. 

6.3 Chaos in rainfall dynamics 

6.3.1 Introduction 

The application of the theory of nonlinear dynamics associated with the concept of 
strange attractors for the description and modelling of deterministic chaos in hydrology 
has been gaining considerable interest in the last decade (Hense, 1987; Rodriguez-Iturbe 
et al., 1989; Sharifi et al., 1990; Tsonis et al., 1993; Jayawardena and Lai, 1994; 
Georgakakos et al., 1995; Koutsoyiannis and Pachakis, 1996; Sivakumar et al., 1998, 
1999; Sivakumar 2000). Reconstruction of the dynamics of the hydrological system 
based on observables is seen as an important and integral part for understanding of the 
structure of particular hydrological process and gaining new knowledge in order to 
complement physically-based modelling. The chaotic nature of the weather has been 
demonstrated by numerical experiments with global circulation models. Studies using the 
most sophisticated global circulation models demonstrate that forecasts have a sensitive 
dependence on their initial conditions. Figure 6.3.1 shows some of the outputs of the 
global circulation model—HIRLAM used by the Royal National Meteorological Institute 
(KNMI). An Ensemble Prediction System (EPS) based on 50 model runs using slightly 
different initial conditions is used for the operational forecasting of the weather including 
precipitation.  
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Figire 6.3.1. An Ensemble Prediction 
System (EPS) based on global 
circulation model (station De Bilt, 
source KNMI). The upper graph shows 
the precipitation forecast for 10 days. 
Middle graph shows the wind speed at 
10 m above the ground and the bottom 
graph shows the temperature at 2 m 
above the ground. 
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As a result, even if future global circulation model perfectly simulates the dynamics of 
the atmosphere, the predictability (as discussed in the previous section) of weather 
variables (especially precipitation) would approach zero for forecasts beyond 7–10 days 
(see for e.g. Schubert and Suarez, 1989). Detailed analyses of simplified atmospheric 
models have been used to study the underlying characteristics of chaotic behaviour 
(Lorenz, 1963, 1982, 1991; Ott, 1993). 

Analyses based on numerical models and analysis of time series of observables by the 
theory of nonlinear dynamics and chaos mathematics, provide decisive evidences 
regarding the existence or non-existence of low-dimensional deterministic chaos, 
implying the possibility of “accurate” short-term prediction, and furthermore, gaining 
knowledge about the number of essential variables necessary for mathematical modelling 
of the structure of the rainfall dynamics. Thus, the objective of this case study is twofold. 
Firstly, to review and address some of the important issues, such as the influence of the 
temporal correlations, in the application of chaos identification methods in rainfall, 
especially focused on the estimation of the geometric and dynamic invariants such as 
correlation dimension and Lyapunov exponents. Secondly, and more important, a 
question is posed regarding the existence of structurally different chaotic dynamics in the 
rainfall using different temporal scales of the observables. This issue was initially 
addressed by Rodriguez-Iturbe et al. (1989), but never further investigated. 

In this case study we review the previous studies investigating the existence of 
deterministic chaos in rainfall, the approaches applied and some of the limitations of the 
chaos diagnostic tools addressed. Furthermore we contribute with a new analysis of 
15min, hourly, daily and weekly rainfall data from De Bilt meteorological station in the 
Netherlands. Wavelet-based transformation of the rainfall time series is used to produce 
an adequate stochastic surrogate for distinguishing between stochastic and possibly 
chaotic dynamics. The singular value decomposition method (referred to in Section 3.3.1) 
together with the BDS test to the residuals are used to investigate the presence of 
nonlinearity in the rainfall data. Interpretation of the results in the last part of the 
application lead to the general discussion and conclusion concerning the question of the 
existence of structurally different chaotic dynamics in the rainfall at different temporal 
scales. 

6.3.2 Chaos in rainfall: a review of related work 

The possible existence of chaos in rainfall was first investigated by Hense (1987), who 
applied the correlation dimension method to a series of daily rainfall (N=1080 samples) 
recorded in Nauru Island. The existence of chaos in rainfall time series was indicated by 
presence of low-dimensional attractor with correlation dimension between dc=2.4÷4.0. 
However, it is questionable that the length of the rainfall record was long enough to 
justify the correlation dimension obtained. Rodriguez-Itrube et al. (1989) investigated the 
existence of chaos in rainfall using the correlation dimension method and Lyapunov 
exponents. They analysed a rainfall record of N=1990 values, measured with a highly 
sensitive rain gauge with a sampling frequency of 8 Hz and then aggregated at equally 
spaced intervals of 15 s, from a single storm event in October 1980 in Boston. Estimation 
of a finite low-correlation dimension of about 3.7 provided preliminary evidence for the 
existence of chaos in storm rainfall data. It is interesting to mention that the analysed 
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rainfall record does not contain any zero values. The presence of chaos was further 
supported by the existence of a positive Lyapunov exponent.  

Further evidence of the presence of chaos in storm rainfall was presented by Sharifi et 
al. (1990), who applied the correlation dimension method to examine data from three 
storms. The total number of samples of the time series, representing the time to 0.01 mm 
of rain, for each of the three storms were N=4000, 3991, and 3316 and the estimated 
correlation dimensions were dc=3.35, 3.8, and 3.6, respectively. The study confirmed the 
results obtained by Rodriguez-Itrube et al. (1989). Tsonis et al. (1990) further 
investigated data representing the time between successive rainfall signals each 
corresponding to a 0.01mm of rain. The existence of structure with a low-dimensional 
attractor in this time series (dc=2.4) indicated the possible existence of chaos. Islam et al. 
(1993) analysed the simulated rainfall intensity data using the correlation dimension 
method. From a data set of N=7200 samples, generated at 10 sec time step from a three-
dimensional atmospheric model, they obtained a value for the correlation dimension of 
about dc=1.5. Jayawardena and Lai (1994) investigated daily rainfall data from three 
rainfall stations in Hong Kong. The correlation dimension method, the Lyapunov 
exponents method, the Kolmogorov entropy method, and the nonlinear prediction method 
were used on the daily rainfall datasets with N=4015. Their study provided evidence of 
the existence of chaos in the daily rainfall data. The estimated correlation dimensions for 
the three stations are dc=0.95, 1.76 and 1.65, respectively. They further reported a low 
predictive possibility for the daily rainfall in Hong Kong. Georgakakos et al. (1995) 
analysed data from 11 storm events in Iowa City, and reported the possible existence of 
chaos. The correlation dimensions were found to range from dc=2.8 to dc=7.9 in the high-
intensity scaling region, while in the low-intensity scaling region they ranged from 0.6 to 
1.6. Finally, Sivakumar et al. (1999) investigated the daily rainfall data of different 
record lengths (max N=10958) observed at six rainfall stations in Singapore. They 
reported correlation dimensions between dc=1.01÷1.06 for the six stations respectively. 

The discrepancy in the attractor dimensions of the rainfall dynamics resulting from the 
above mentioned work could be caused by some of the drawbacks of the correlation 
dimension method; see Section 3.3.2 for discussion. Closer examination by several 
authors (see Sivakumar, 2000 for an overview) showed that the straightforward 
application of the correlation dimension method suffers from several problems, such as 
the number of the points needed for a reliable estimation of the correlation dimension, the 
choice and sensitivity of appropriate time delay for the reconstruction of the phase space 
and the effect of noise. However, one of the most important considerations is the 
existence of temporal correlations (see Figure 3.20b in Section 3.3.2), which was not 
properly addressed by the authors seeking a low-dimensional attractor in the rainfall. 
Another very important issue for the analysis of the rainfall time series is the existence of 
large number of zeros, which basically requires very long time series of rainfall records 
in order to populate the reconstructed phase-space of the system. These two factors are 
introducing an upward bias in the estimation of the correlation dimension from its 
definition; see Equation 3.59. 

As already presented in Section 3.3.2, the problem of the temporal correlations, which 
is more pronounced for frequently sampled time series data, is solved by Provenzale et 
al., (1992) and is discussed in Velickov (2001). For illustration, we present here the effect 
of temporal correlations on the correlation dimension estimation for the Lorenz system, 
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discussed in Section 3.1, Example 3.1. Figure 6.3.2 shows the correlation sum for the 
Lorenz data.  

 

Figure 6.3.2. Correlation integral 
(sum) for the Lorenz system (Example 
3.1). A double logarithmic plot was 
chosen for better visual presentation of 
the power law scaling between the 
correlation sum C(r) and the length 
scales r. The correlation sum was 
computed for different embedding 
dimensions m=2–10 without 
accounting for the temporal 
correlations (the most upper line 
represents m=2). 

The relationship between the correlation exponent (slope) and embedding dimension m 
for different scaling regions r for the Lorenz data is presented in Figure 6.3.3.  
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Figure 6.3.3. Relationship between the 
correlation exponent d(r) and the 
scaling regions r for different 
embedding dimension m. This 
relationship suggests lower “plateau” 
for the correlation dimension (about 
1.8–1.9) when temporal correlations 
are not accounted for. The exact 
correlation dimension for the Lorenz 
attractor is 2.06 (Grassberger and 
Procaccia, 1983). The present figure 
shows also sensitive correlation 
exponents for the lower scaling 
regions. The lowest curve corresponds 
to m=2. 

The space-time separation plot, which indicates the number of pairs as a function of two 
variables, the time separation ∆t and the distance r, calculated for the Lorenz system is 
presented in Figure 6.3.4. Technically, the plot shows the contour lines for 10%, 20%, 
30%…, of the pairs with a given temporal separation ∆t. In other words, the contour lines 
indicate the distance we have to go to find a given fraction of pairs, depending on their 
temporal separation. Only for values of ∆t where the contour lines are becoming flatter, 
does the temporal correlation not bias the correlation sum. 
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Figure 6.3.4. Space-time separation 
plot for the Lorenz data. Contour lines 
are shown at the spatial distance r 
where for a given temporal separation 
∆t a fraction of 10%, 20%, 
30%,…(lines from below) of pairs are 
found. The saturation for all contour 
lines is reached above ∆t=30 time 
steps. 

The curves shown in Figure 6.3.4 suggest that in the estimation of the correlation 
dimension (Equation 3.61) we must consider a time window of about 30 time steps. If we 
do not discard at least those pairs, which are less than 30 time steps apart, then we obtain 
the correlation exponents shown in Figure 6.3.3. The relationship between the correlation 
exponent (slope) and embedding dimension m for the Lorenz system when the temporal 
correlations are accounted for is presented in Figure 6.3.5.  
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Figure 6.3.5. Relationship between the 
correlation exponent d(r) and 
embedding dimension m for different 
scaling regions r for the Lorenz data. 
This relationship suggest “plateau” for 
the correlation dimension (about 2.0–
2.08) when temporal correlations are 
eliminated. 

The Lorenz data presented in the above experiment is considered to be noise free. In 
order to illustrate the sensitivity of the correlation dimension on the presence of noise in 
the data (rainfall data in general is considered as highly noisy data), the correlation 
dimension estimation was carried out on the Lorenz data polluted with 5% of zero mean 
white noise. Figure 6.3.6 shows the correlation exponents for different embedding 
dimensions at different scaling regions. 
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Figure 6.3.6. Relationship between the 
correlation exponent d(r) and 
embedding dimension m for different 
scaling regions r for the Lorenz data 
polluted with 5% white noise. 

It is obvious that the presence of noise seriously affects the local correlation exponents at 
the smaller scaling regions. Since the values of the rainfall, especially for frequently 
sampled records, can be comparable to the errors (noise) of the measuring devices, 
several authors (e.g. Schreiber, 1993) advocate the application of the noise reduction 
algorithms before applying the correlation dimension analysis to the rainfall data. 

6.3.3 Analysis of 15min, hourly, daily and weekly rainfall time series 

STUDY AREA AND DATA USED 

In the present application, the methods and techniques elaborated in Chapter 3 were 
applied to analyse rainfall data from De Bilt meteo station in the Netherlands. As 
mentioned above, the main objective of this analysis is the quest for the existence of 
structurally different chaotic dynamics in the rainfall using different temporal scales of 
the observables. This important issue, which may reveal the differences in the low-
dimensional attractors that were obtained for the rainfall dynamics, has not been 
investigated in the previous studies. The rainfall depths are recorded with a continuous 
tipping bucket rain gauge capable of aggregating the rainfall on different time intervals. 
The rainfall data were provided by the KNMI and are available for the period of 44 years 
between 1955 and 1998 in a form of complete 15min, hourly, daily and weekly time 
series. The length of the 15min rainfall records is N=1542816 data points, for the hourly 
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rainfall records there are N=385440 data points, for the daily records there are N=16071, 
and for the weekly records there are N=2296 data points.  

ANALYSIS OF THE 15MIN RAINFALL DATA 

In order to investigate the existence in of chaotic behaviour in the rainfall dynamics on 
different temporal scales, we first analysed the 15min rainfall time series. Figure 6.3.7 
shows the variation of the 15min rainfall data. 

 

Figure 6.3.7. Variation of the 15min 
rainfall data. First 100000 samples are 
shown. 

It is interesting to note that out of the total number of samples for the 15min rainfall time 
series only about 7% are non-zeros. In order to compare the results from the analysis we 
generated a data sequence of times between rainfall depth>0.1mm. Figure 6.3.8 shows a 
part of this sequence.  
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Figure 6.3.8. Sequence of times 
between rainfall depth>0.1mm. 

The time delay was computed using the autocorrelation function and the average 
mutual information, explained in Section 3.3.3. Figure 6.3.9 shows both functions for 
different time lags. 
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Figure 6.3.9. Autocorrelation function 
(dash-dotted line) and the normalized 
average mutual information (solid line) 
as a function of the time lags for the 
15min rainfall time series. The time 
lag is measured in 15 min units. 

The first zero-crossing of the autocorrelation function indicates time delay of about 42–
48 time lags. The average mutual information reaches the first minimum at about 22–24 
time lags. The correlation sum and the correlation exponent were computed using the 
Equation 3.61 as explained earlier. Figure 6.3.10 shows the correlation sum for the 15min 
rainfall data.  
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Figure 6.3.10. Correlation sum of the 
15min rainfall time series for different 
embedding dimensions, between m=2 
(squares) and m=50 (circles) The time 
delay used to produce this figure is 
τ=48 time samples. 

The sensitivity of the average correlation exponent (correlation dimension) on 
different time delays is presented in Figure 6.3.11. 
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Figure 6.3.11. Relationship between 
the correlation exponent and the 
embedding dimension m for the 15min 
rainfall time series using different time 
delays τ. 

The correlation exponent increases with an increase in the embedding dimension up to a 
certain value and further saturates (when using time delays between τ=24 and τ=48). The 
saturation value of the correlation exponent, that is the correlation dimension, is dc =1.05 
(uncertainty 0.05) which indicates the presence of an attractor in the rainfall dynamics. 
Application of the Taken’s embedding theorem suggests a dimension of the reconstructed 
phase-space (integer number) as m=2dc+1=3. A view of the reconstructed phase space in 
three dimensions for the 15min rainfall time series is presented in Figure 6.3.12.  
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Figure 6.3.12. A view on the attractor 
of the 15min rainfall time series in 
three dimensions. 

The estimation of the embedding dimension m was further checked using the FNN 
algorithm described in Section 3.3.2. Both embedding dimensions, estimated on the 
15min rainfall time series and on the sequence of times between rainfall depth>0.1mm, 
indicate an embedding dimension m=3; see Figure 6.3.13. 
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Figure 6.3.13. The percentage of the 
false nearest neighbours as a function 
of the embedding dimension for the 
15min rainfall data (solid) and the 
times between rainfall>0.1mm (dash-
dotted). 

The saturation value of the correlation exponents (i.e. correlation dimension), as 
presented in Figure 6.3.11, occurs at high embedding dimension m=40. This value of the 
embedding dimension at which the saturation of the correlation dimension occurs is 
considered to provide the upper bound of the phase-space sufficient to fully describe the 
dynamics of the attractor. Furthermore, according to the theory of nonlinear dynamics, 
the embedding dimension of the phase-space is equal to the number of variables present 
in the evolution of the system dynamics. Therefore, the results from the analysis of the 
15min rainfall time series indicate the existence of low-dimensional attractor that can be 
modelled with the minimum number of essential variables equal to 3 and the number of 
sufficient variables equal to 40. Such a low number of the essential variables implies the 
existence of persistency in the rainfall dynamics over very small temporal scales.  
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Figure 6.3.14. Lyapunov exponents for 
the 15min rainfall data. 

The Lyapunov exponents estimated from the 15min rainfall time series, using the 
methodology described in Section 3.3.4, are presented in Figure 6.3.14. The largest 
Lyapunov exponent is estimated as λ1=0.18 (uncertainty 0.02) which indicates the 
presence of a divergence in the nearby orbits in the reconstructed phase-space during the 
dynamical evolution of the system, and thus a loss of predictive capabilities. The sum of 
the Lyapunov exponents is negative, thus indicating presence of dissipation mechanisms 
in the rainfall dynamics and the existence of chaotic dynamics. 

ANALYSIS OF THE HOURLY RAINFALL DATA 

A similar analysis was carried out using the hourly rainfall time series. Figure 6.3.15 
shows the variation of the hourly rainfall data and Figure 6.3.16 shows the running 
variance for the hourly rainfall data computed on 72 hours (3 days) temporal window.  
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Figure 6.3.15. Variation of the hourly 
rainfall. First 10000 samples are 
shown. 

 

Figure 6.3.16. Running variance for 
the complete hourly rainfall time 
series. The time window for 
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calculation of the variance was set to 
72 hours (3 days). 

The hourly time series of the rainfall data contains about 12% of non-zero values, 
which still indicates the presence of a very large portion of zero values in the 
computation of the correlation dimension. In order to check the computation of the 
correlation dimension, we generated a time series of the rainfall differences (i.e. 
intensity), and further applied the noise reduction algorithm on the hourly data described 
in Section 3.3.6. Furthermore, a stochastic surrogate data set to the hourly rainfall time 
series was analysed in order to distinguish between possible stochastic and chaotic 
dynamics. This surrogate data set was created based on the continuous wavelet 
transformation (see Section 3.3.7, Equation 3.80) in order to preserve the power spectrum 
of the original time series. During the inverse transformation, the times (phases) of the 
wavelet coefficients were randomised in order to generate a stochastic surrogate. The 
autocorrelation and the average mutual information functions for the hourly time series 
data are presented in Figure 6.3.17. 

 

Figure 6.3.17. Autocorrelation and 
normalised average mutual 
information for the hourly rainfall time 
series. 

The autocorrelation function indicates optimal time delay of about 22 hours (first zero), 
whereas the average mutual information indicates optimal time delay of 12 hours (the 
first minimum). Figure 6.3.18 shows the correlation sum for the hourly rainfall data.  
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Figure 6.3.18. Correlation sum of the 
hourly rainfall time series for different 
embedding dimensions, between m=2 
(squares) and m=50 (circles). The time 
delay used to produce this figure is 
τ=12 hours. 

The temporal window used in the computation of the correlation sum was set to ∆t=6 
hours based on the space-time separation plot for the hourly data, presented in Figure 
6.3.19. 
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Figure 6.3.19. Space-time separation 
plot for the hourly rainfall data. 
Contour lines are shown at the spatial 
distance r where for a given temporal 
separation ∆t a fraction of 10%, 20%, 
30%,…(lines from below) of pairs are 
found. The first saturation for all 
contour lines is reached above ∆t=6 
time steps (hours). Most of the contour 
lines become flat after ∆t=72 time 
steps (3 days). 

The relationship between the average correlation exponent (correlation dimension) and 
the different time delays employed for the reconstruction of the phase-space based on the 
hourly rainfall data is presented in Figure 6.3.20. 
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Figure 6.3.20. Relationship between 
the correlation exponent and the 
embedding dimension m for the hourly 
rainfall time series using different time 
delays τ. 

The correlation exponent increases with an increase of the embedding dimension up to a 
certain value and further saturates (when using time delays between τ=8 and τ=24 hours).  

The saturation value of the correlation exponent, that is the correlation dimension, is 
dc=1.52 (uncertainty 0.1) which indicates the presence of an attractor in the rainfall 
dynamics. Application of Taken’s embedding theorem suggests a dimension of the 
reconstructed phase-space (integer number) as m=2dc+1=4 or 5. The false nearest 
neighbourhood method together with the Lyapunov spectrum (and dimension), see Figure 
6.3.26 below, indicate an optimal embedding dimension of m=4 for the hourly rainfall 
dynamics. A view (projection) of the reconstructed phase space in three dimensions for 
the hourly rainfall data is presented in Figure 6.3.21. 
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Figure 6.3.21. A view (projection) of 
the attractor of the hourly rainfall 
dynamics in three dimensions. 

Figure 6.3.20 shows that the saturation value of the correlation dimension occurs at 
embedding dimension m=38. The results from the analysis of the hourly rainfall time 
series for De Bilt station indicate the existence of a low-dimensional attractor that can be 
modelled with the minimum number of essential variables equal to 4 and the number of 
sufficient variables equal to 38. It should be noted, however, that the correlation 
dimension analysis provides information only on the number of variables influencing the 
dynamics of the system, and does not identify the variables for the mathematical model 
of the rainfall dynamics. The effect of the removal of the temporal correlations, by using 
the temporal separation window, is illustrated in Figure 6.3.22.  
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Figure 6.3.22. The effect of the 
temporal correlations on the dimension 
estimation. No removal of the temporal 
correlations contributes to 
underestimation of the correlation 
dimension. 

The correlation dimension estimation for the hourly rainfall data was carried out using 
the difference rainfall data (intensities), “noise-free” rainfall data and the surrogate 
rainfall data. The relationship between the correlation exponent for different embedding 
dimensions for the three time series is presented in Figure 6.3.23. 
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Figure 6.3.23. Relationship between 
the correlation exponent and the 
embedding dimension m for the 
difference rainfall data, “noise-free” 
data and the surrogate data. The time 
delay τ=12 (12 hours). 

Both, the “noise-free” data and the difference data indicate similar saturation values for 
the correlation dimension (between 1.48–1.56), which are not significantly different with 
the correlation dimension estimated from the original time series. The correlation 
exponent for the stochastic surrogate data does not show saturation and constantly 
increases with the increase of the embedding dimension. This indicates that the rainfall 
dynamics is different from a random process. 

In order to investigate the nonlinearity in the rainfall data, the singular value 
decomposition technique, explained in Section 3.3.1, was used to extract the linearly 
independent principal components. Figure 6.3.24 shows the results of the analysis.  
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Figure 6.3.24. (a) The eigenvalue 
spectrum of the covariance matrix of 
the hourly rainfall data. First 25 
eigenvalues and the corresponding 
eigenvectors were used to reconstruct 
the hourly precipitation; (b) Original 
(grey line) and reconstructed (line) 
time series of the hourly rainfall with 
the errors. 

The differences between the two time series were further analysed statistically. 
Looking at the residuals, they appear substantially uncorrelated according to the 
behaviour of their autocorrelations, but when applying some transformation functions on 
the residuals, namely absolute and squared residuals, some clear signals of 
autocorrelations are found (see Figure 6.3.25). This basically denotes a lack of 
independence between the residuals and some form of higher-order dependence in the 
original data. 

 

Figure 6.3.25. Autocorrelation function 
for the: (a) absolute and (b) squared 
residuals. 
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In order to confirm the presence of nonlinearity in the rainfall data, we applied the BDS 
test (Brock et al., 1987) to the residuals. This test is based on the correlation dimension 
analysis. The BSD statistics is written in the form: 

 (6.3) 

where m is the embedding dimension, r is the scaling region, C(m,r) is the correlation 
sum and N is the number of data points used to calculate the correlation sum. Brock et al. 
(1987) showed that, under the hypothesis of independence and identical distribution, the 
BDS statistics is asymptotically the normal standard distribution. The calculation of the 
BDS statistics using different values for m and r, as shown in Figure 6.3.18, resulted in 
values between 16.6–98.2. These values reject the null hypothesis of independence and 
an identical distribution of the residuals and, consequently, the linearity hypothesis on the 
rainfall data. 

Finally, the Lyapunov exponents estimated from the hourly rainfall time series, are 
presented in Figure 6.3.26. There is a presence of positive Lyapunov exponent λ1=2.1 
(uncertainty 0.1) which indicates a loss of information of 2.1 bits/hour. The presence of 
two negative Lyapunov exponents indicate strong dissipation mechanisms in the rainfall 
dynamics and suggests a Lyapunov dimension of dλ=3.87, which confirms the optimal 
embedding dimension m=4 for the hourly rainfall dynamics.  

 

Figure 6.3.26. Lyapunov exponents for 
the hourly rainfall data. 
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ANALYSIS OF THE DAILY RAINFALL DATA 

Figure 6.3.27 shows the variation of the daily rainfall data. The total number of samples 
is N=16071 with about 55% of non-zero values. 

 

Figure 6.3.27. The complete time 
series of the daily rainfall data. 

The autocorrelation and the average mutual information functions for the daily time 
series data are presented in Figure 6.3.28.  
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Figure 6.3.28. Autocorrelation and 
normalised average mutual 
information for the daily rainfall time 
series. 

The autocorrelation function indicates optimal time delay of about 7–8 days (very close 
to zero), whereas the first zero-crossing is at 14 days. The average mutual information 
indicates an optimal time delay of 4–5 days (the first minimum). Figure 6.3.29 shows the 
correlation sum for the daily rainfall data. 

Nonlinear dynamics and chaos with applications to hydrodynamics and hydrological modelling     320



 

Figure 6.3.29. Correlation sum of the 
daily rainfall time series for different 
embedding dimensions, between m=2 
(squares) and m=40 (circles). The time 
delay used to produce this figure is τ=4 
days. 

The relationship between the average correlation exponent (correlation dimension) and 
the different time delays employed for the reconstruction of the phase-space based on the 
daily rainfall data are presented in Figure 6.3.30.  
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Figure 6.3.30. Relationship between 
the correlation exponent and the 
embedding dimension m for the daily 
rainfall time series using different time 
delays τ. 

The correlation exponent increases with an increase of the embedding dimension up to a 
certain value and further saturates (when using time delays between τ=2 and τ=14 days). 
The saturation value of the correlation dimension for the optimal time delay of t=4 days, 
is dc=5.12 (uncertainty 0.2) which indicates presence of an attractor in the daily rainfall 
dynamics. Application of the Taken’s embedding theorem suggests a dimension of the 
reconstructed phase-space (integer number) as m=2dc+1=11 or 12. Figure 6.3.30 further 
shows that the saturation value of the correlation dimension occurs at embedding 
dimension of about m=30. The results from the analysis of the daily rainfall time series 
for the De Bilt station indicate the existence of an attractor that can be modelled with the 
minimum number of essential variables equal to 11 and the number of sufficient 
variables equal to 30. The sensitivity of the correlation dimension analysis on the length 
of the time series was tested by using trial lengths of the daily time series, such as 
N=1000, N=2000, N=3000, N=5000, N=10000 and the complete record (N=16071). For 
the value of N>3000 the changes in the correlation dimensions were not significant, 
indicating that the available daily rainfall time series provides sufficient statistics for the 
calculation of the correlation dimension using higher trial embedding dimensions. 

The correlation dimension estimation procedure was carried out further using the 
difference rainfall data (daily intensities), “noise-free” rainfall data and the surrogate 
rainfall data. The relationship between the correlation exponent for different embedding 
dimensions for the three time series is presented in Figure 6.3.31. The difference data 
shows a similar saturation value for the correlation dimension (dc=5.08). Both correlation 
dimensions estimated on the original daily rainfall data and the differenced data stimulate 
an embedding dimension of m=12. However, the correlation dimension estimated on the 
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“noise-free” data as dc=4.65, and the Lyapunov dimension (see Figure 6.3.32) indicate an 
optimal embedding dimension of m=11. The correlation exponent for the stochastic 
surrogate data does not show saturation and increases constantly with the increase of the 
embedding dimension. This indicates that the daily rainfall dynamics is different from a 
random process. The Lyapunov exponents estimated from the daily rainfall time series 
are presented in Figure 6.3.26. There are several positive Lyapunov exponents (maximum 
is λ1=3.07, uncertainty 0.25) indicating hyper-chaotic dynamics. The sum of the 
Lyapunov exponents is negative Σλi=−0.43, confirming the existence of an attractor in 
the daily rainfall dynamics. The Lyapunov dimension is dλ=10.68, which suggests that 
the optimal embedding dimension is m=11 for the daily rainfall dynamics. 

 

Figure 6.3.31. Relationship between 
the correlation exponent and the 
embedding dimension m for the 
difference rainfall data, “noise-free” 
data and the surrogate data. The time 
delay used is τ=4 days. 

Applications       323



 

Figure 6.3.32. Lyapunov exponents for 
the daily rainfall data. Several positive 
exponents are present indicating hyper-
chaos. 

ANALYSIS OF THE WEEKLY RAINFALL DATA 

The final analysis was performed using the time series of weekly rainfall data. Figure 
6.3.33 shows the weekly rainfall data record. The total number of samples is N=2296 
with about 94% of non-zero values. 
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Figure 6.3.33. The complete time 
series of the weekly rainfall data. 

The autocorrelation and the average mutual information functions for the daily time 
series data are presented in Figure 6.3.34. 
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Figure 6.3.34. Autocorrelation and 
normalised average mutual 
information for the weekly rainfall 
time series. 

The average mutual information function shows that there is a complete loss of 
information after 2 weeks indicating it is an optimal time delay. Figure 6.3.35 shows the 
correlation sum for the weekly rainfall data.  
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Figure 6.3.35. Correlation sum of the 
weekly rainfall time series for different 
embedding dimensions, between m=2 
(squares) and m=20 (circles). The time 
delay used to produce this figure is τ=2 
weeks. 

The relationship between the average correlation exponent (correlation dimension) and 
the different time delays employed for the reconstruction of the phase-space based on the 
weekly rainfall data is presented in Figure 6.3.36. 
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Figure 6.3.36. Relationship between 
the correlation exponent and the 
embedding dimension m for the 
weekly rainfall time series using 
different time delays τ. 

The correlation exponent increases with an increase of the embedding dimension up to a 
certain value and further saturates (when using time delays of τ=1 and τ=2 weeks). The 
saturation value of the correlation dimension for the optimal time delay of τ=2 weeks, is 
dc=4.71 (uncertainty 0.1) which indicates presence of an attractor in the weekly rainfall 
dynamics. Application of the Taken’s embedding theorem suggests a dimension of the 
reconstructed phase-space (integer number) as m=2dc+1=11. The saturation value of the 
correlation dimension occurs at an embedding dimension of about m=11 as well. The 
existence of a fractal correlation dimension (and thus attractor) for the reconstructed 
phase-space based on weekly rainfall data using time delays of τ=1 and τ=2 weeks 
supports the claims of some meteorologists (see e.g. Holton, 1992) that the global 
weather numerical models can be substantially improve for forecasting up to 14 days in 
the future. It is interesting to note that the analysis of the weekly rainfall data shows equal 
numbers for the essential variables and for the sufficient variables m=11 necessary to 
describe the dynamics. This implies that for the modelling and prediction of the weekly 
rainfall dynamics the number of the variables in the global weather models should be 
fewer than the number of the sufficient variables needed for the hourly and daily rainfall 
dynamics, 38 and 30 respectively. 

In order to support these preliminary findings, we actually need a longer time series 
than 44 years (N=2296 samples). Due to the higher embedding during the computation of 
the correlation dimension, the number of points is substantially diminished. In this case, 
the data set of weekly rainfall of N=2296 points reduces to N=1354 after trial embedding 
to m=15 with a delay of τ=4 weeks. This may imply a shrinking of the region over which 
scaling exists, which is expressed through an appearance of “S”-type of curves in the 
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Log[C(r)]−Log(r) plot. However, the curves representing the correlation sums over 
different scaling regions presented in Figure 6.3.35 do now exhibit that behaviour, 
allowing for a good estimation of the correlation exponents (slopes). 

The existence of an attractor in the weekly rainfall dynamics is further confirmed by 
the computation of the Lyapunov exponents; see Figure 6.3.37. 

 

Figure 6.3.37. Lyapunov exponents for 
the weekly rainfall data. 

There are several positive Lyapunov exponents (max is λ1=0.67, uncertainty 0.1) 
indicating hyper-chaotic dynamics. The sum of the Lyapunov exponents is negative 
Σλi=− 0.15, confirming the existence of an attractor in the weekly rainfall dynamics. The 
Lyapunov dimension is dλ=10.92, which suggests that the optimal embedding dimension 
is m=11 for the weekly rainfall dynamics. 

It is likely that at larger periods of rainfall aggregation, such as 2-weekly, 3-weekly or 
monthly rainfall, chaotic rainfall dynamics may not exist, and then at even larger periods 
of aggregation, such as seasonal and annual rainfall, a different type of chaotic dynamics 
is again established. Unfortunately, there are no time series of annual rainfall long 
enough to perform such a nonlinear time series analysis. 

6.3.4 Predicting hourly and daily precipitation 

Based on the identified and reconstructed dynamics from the hourly and daily rainfall 
times series, an attempt was made to build forecasting models utilising the local 
modelling in phase space as elaborated earlier. Several types of univariate local models 
were constructed, namely, local linear, 2nd and 3rd order polynomial models. The local 
models were constructed from the first 2/3 of the available data, whereas the last 1/3 of 
the dataset was used to evaluate model performance by calculating the correlation 
coefficient between the measured and the predicted rainfall time series. The sensitivity of 
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these local models on the embedding dimension m, the time delay τ, and the number of 
neighbours k was investigated further. Figure 6.3.38 shows the relationship between the 
correlation coefficient and the number of neighbours in phase-space for different time 
delays for a prediction horizon of 1 hour ahead.  

 

Figure 6.3.38. Correlation coefficient 
versus number of neighbours for 
different time delays. The prediction 
horizon is 1 hour ahead. Mixture of 
univariate local 3rd order polynomial 
models are used based on the 
reconstructed phase-space (m=4) from 
the hourly rainfall time series. 

Figure 6.3.38 shows that the prediction accuracy increases with increasing the number of 
neighbours until a certain value and then decreases with a further increase in the number 
of neighbours. The optimal number of neighbours k for the local models is different for 
different time delays, and for the highest correlation coefficient (r=0.63) it is between 
k=75 and 100 neighbours corresponding to time delays between τ=8 and τ=12 hours. The 
experiments further showed that using a smaller number of neighbours (k=10–25) gives a 
better estimation of the peaks of the rainfall, but leads to the overestimation of the smaller 
rainfall depths. A mixture of models using different number of neighbours showed the 
best predictive performance. 

Nonlinear dynamics and chaos with applications to hydrodynamics and hydrological modelling     330



 

Figure 6.3.39. Correlation coefficient 
versus embedding dimension for 
different time delays. The prediction 
horizon is 1 hour ahead. Mixture of 
univariate local 3rd order polynomial 
models are used based on the 
reconstructed phase-space from the 
hourly rainfall time series. 

The plots in Figure 6.3.39 show that the correlation coefficient increases to a maximum 
value when the embedding dimension is increased to m=4, which suggests that the 
correlation dimension of the attractor, and thus the embedding dimension, were correctly 
estimated. For noise-free chaotic dynamics the value of the maximum correlation 
coefficient between the measured and predicted rainfall should, in theory, remain 
unchanged (Casdagli, 1989). However, the plots in Figure 6.3.39 show that the prediction 
accuracy decreases slightly at higher embedding dimensions. Due to the presence of 
noise, the nearby points in the high-dimensional phase-space may be contaminated with 
points whose earlier coordinates (at low embedding dimensions) are close but whose 
recent coordinates (at high embedding dimensions) are distant. In other words they are 
false nearest neighbours, as already demonstrated in Figure 6.3.13 for the 15min data. 

The prediction accuracy for the hourly rainfall data was checked by making 
predictions for different prediction horizons. Figure 6.3.40 shows the relationship 
between the correlation coefficient between the predicted and observed hourly rainfall 
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and the prediction horizon. It can be seen that the correlation coefficient decreases 
sharply with an increase in the prediction horizon. Such a decrease of the prediction 
accuracy for several hours in the future is due to the presence of chaotic dynamics 
expressed with a large positive Lyapunov exponent; see Figure 6.3.26. The prediction 
accuracy of the hourly rainfall for 1 hour ahead expressed with the correlation coefficient 
is r=0.63 using a mixture of univariate local models, which is rather good, taking into 
account the difficulty and complexity of the rainfall prediction. This prediction accuracy 
may be increased by employing multivariate local models, involving other variables, such 
as sun radiation, wind, temperature, humidity, air pressure and others. Figure 6.3.41 
shows the observed and predicted rainfall data with a scatter plot for a part of the testing 
data set. 

 

Figure 6.3.40. Correlation coefficient 
versus the prediction horizon. Mixture 
of univariate local 3rd order polynomial 
models are used based on the 
reconstructed phase-space from the 
hourly rainfall time series (m=4 and 
τ=12). 
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Figure 6.3.41. Observed and predicted 
hourly rainfall data. Prediction horizon 
is 1 hour with a correlation coefficient 
of r=0.63. A part of the testing data set 
is visualised where an extreme rainfall 
of 20 (mm) occurred. 

A similar analysis was carried out to assess the predictive accuracy for the daily rainfall 
dynamics. Figure 6.3.42 shows the relationship between the correlation coefficient 
between the predicted and observed daily rainfall and the prediction horizon. Figure 
6.3.43 shows the observed and predicted daily rainfall data with the error and the scatter 
plot for a part of the testing data set. 
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Figure 6.3.42. Correlation coefficient 
versus the prediction horizon. Mixture 
of univariate local 3rd order polynomial 
models are used based on the 
reconstructed phase-space from the 
daily rainfall time series (m=1 1 and 
τ=4). 
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Figure 6.3.43. Observed and predicted 
daily rainfall data. Prediction horizon 
is 1 day with a correlation coefficient 
of r=0.66. A part of the testing data set 
(2000 days) is visualised. 

Figure 6.3.42 shows that the correlation coefficient decreases with an increase in the 
prediction horizon. There is a substantial loss of prediction accuracy after the first day in 
the future due to the presence of hyper-chaotic dynamics. The prediction accuracy for the 
daily rainfall for one day ahead expressed with the correlation coefficient is r=0.66.  

6.3.5 Discussion and conclusions 

In this application we have investigated the existence of chaos in rainfall dynamics using 
the methods and techniques from nonlinear dynamics and chaos mathematics, based on 
the rainfall time series recorded at the De Bilt meteo station in the Netherlands. The main 
question of the existence of structurally different chaotic dynamics in the rainfall using 
different temporal scales of the observables was addressed by the analysis of 15min, 
hourly, daily and weekly rainfall data. 

The correlation dimension method provided evidence of the existence of a low-
dimensional attractor for the different rainfall data sets aggregated over different time 
periods, thus suggesting the existence of chaotic dynamics. Based on the attractor 
dimensions that resulted for the 15min, hourly, daily and weekly rainfall data, the 
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minimum number of variables essential to model the rainfall dynamics was identified as 
3,4,11 and 11, respectively. The indicative number of sufficient variables to fully 
describe the rainfall dynamics on different temporal scales was identified as 40, 38, 30 
and 11, respectively. The effects of the time delay value, used for the phase-space 
reconstruction, on the attractor dimension estimation were also investigated in order to 
compare the results obtained from the average mutual information function. 

The Lyapunov exponents computed on the 15min, hourly, daily and weekly rainfall 
data, demonstrated strong evidence of the existence of chaotic dynamics in the 15min and 
hourly data and hyper-chaos in the daily and weekly rainfall dynamics. The existence of 
positive Lyapunov exponents for all rainfall data sets clearly showed the limits of the 
predictability of any model. 

The method of surrogate data for distinguishing between chaotic and stochastic 
rainfall dynamics based on the continuous wavelet transform, together with the test for 
nonlinearity, provided evidence that the rainfall dynamics is different from a linear 
stochastic process. In addition, the simple nonlinear noise-reduction algorithm applied to 
the different rainfall data sets improved the results for the correlation dimension 
estimation, and thus the reconstructed phase-space. 

The nonlinear prediction method based on univariate local modelling in the 
reconstructed phase-space enabled us to check the prediction accuracy using different 
time horizons and with respect to: (i) number of neighbours; (ii) optimal time delay; and 
(iii) the embedded dimension. The results indicated a reasonable short-term predictability 
for the hourly and daily rainfall, but with a sharp drop in the prediction accuracy due to 
the presence of hyper-chaotic dynamics. The mixture of models framework, elaborated in 
Chapter 5, using different capacity for the models (experts), showed the best predictive 
performances. 

In summary, the results from this application lead to the conclusion of the existence of 
structurally different chaotic dynamics in the rainfall at different temporal scales. 
However, rainfall is a multidimensional spatio-temporal phenomenon. The rainfall 
dynamics are not only highly fluctuating in time but also in space. These spatio-temporal 
signatures (patterns) are not independent but rather dependent. In addition, they usually 
occur at rather small grid resolutions, such as 5–10 km. Much more needs to be done in 
the collection of fine-resolution data in space and time in order to be able to study the 
spatiotemporal rainfall dynamics and to improve the numerical weather models. The 
recent advances in remote sensing and radar surveillance technology will help in the 
collection of such kind of data. At present it is not clear whether the dynamics of spatio-
temporal rainfall patterns can be described by an attractor in a phase-space over a certain 
area.  

6.4 Rainfall-runoff modelling 

6.4.1 Introduction 

There is a continuing interest in hydrology to model the relationships between rainfall 
and runoff. The issue of developing faster and more accurate rainfall-runoff models still 
occupies one of the central areas in the research-orientated hydrological community. At 

Nonlinear dynamics and chaos with applications to hydrodynamics and hydrological modelling     336



the same time, the application-orientated part of the community requires even simpler, 
transparent, but still acceptably accurate models, especially for the purposes of flood 
forecasting and management. 

Different types of rainfall-runoff transformation models have been proposed, ranging 
from purely empirical simple models, such as the rational method, to highly sophisticated 
distributed physical process models defined by partial differential equations, such as SHE 
(System Hydrologique Europeèn) model (Abbott et al., 1986). Based on the 
conceptualisation and the degree of representation of the involved physical processes, the 
models are classified, with the increasing degree of representation, as black-box models, 
conceptual models, and physically-based distributed models. A detailed overview of the 
characteristics of these three classes of hydrological models and their modelling protocols 
can be found, for example, in Refsgaard and Knudsen (1996), Velickov (1998). 

Black-box models are often used because they (partially) avoid having to address the 
problems of the spatial and temporal variability of the inputs and parameters, and the 
complexities of the involved physical processes. The unit hydrograph is one such linear 
black-box model and has been widely accepted in the past as a practical tool. However, 
the limitation of the unit hydrograph in representing the rainfall-runoff relationship is not 
only because of the restrictions of linearity and time invariance but is also because of the 
uncertainties in the determination of the “effective rainfall” and the separation of 
“baseflow” (Brath and Rosso, 1993). Hence, non-linearity was introduced as Volterra 
integral series for the analysis of hydrologic systems (for an overview, see Singh, 1988). 
In the early of 1990s, the quest for more accurate, but still relatively simple-to-use, black-
box models has been reinforced by yet another technique, namely that of artificial neural 
networks. The encouraging results obtained by many hydrologists, applying ANNs on 
various different catchments (see e.g. Hsu et. al., Hall and Minns, 1993), have clearly 
indicated a number of desirable properties that ANNs offer, and they have become the 
defacto data-driven modelling tool in practice. Further studies (e.g. Solomatine and 
Torres, 1996; Minns, 1998, Velickov 1997, Dibike 2002) has proven that ANNs indeed 
represent a valuable rainfall-runoff modelling paradigm. 

The theory of nonlinear dynamics and the concept of deterministic chaos has recently 
motivated applications in rainfall-runoff modelling, such as the reconstruction of the 
runoff dynamics and runoff forecasting. There is still an ongoing quest for the existence 
of deterministic chaos in the runoff dynamics. The initial investigation using the 
correlation dimension analysis on the Twin River daily runoff data (8458 points) by 
Savard (1990) showed the possible existence of an attractor with a correlation dimension 
of dc=7.9. Jayawardena and Lai (1994) investigated further the daily streamflow data 
from two stations in Hong Kong. The geometric and dynamic invariants of the 
reconstructed runoff dynamics were applied to streamflow data sets consisting of 7300 
and 6205 points respectively. Their study demonstrated initial evidence of the possible 
existence of a low-dimensional attractor in the runoff dynamics. Lai Porporato and 
Ridolfi (1996) provided evidence of the existence of deterministic chaos in the daily flow 
data of Dora Baltea, a tributary river of the river Po, in Italy. The initial application of the 
correlation dimension method to a time series consisting of 14,246 daily flows indicated 
the existence of low-dimensional attractor in the runoff dynamics. This study was further 
extended (Porporato and Ridolfi, 1997) with noise reduction, synthetic data application, 
and nonlinear prediction using univariate local models, which provided important 
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confirmations about the nonlinear behaviour of the flow phenomenon. Lui et al. (1998) 
analysed the daily streamflow data observed at 28 selected stations in United States and 
reported that the daily streamflow dynamics is characterised by a wide dynamical range 
between deterministic chaos and periodic signals contaminated with additive noise. Wang 
and Gan (1998) further analysed the unregulated streamflow data of six rivers in the 
Canadian prairies and found correlation dimensions of the attractors between dc=4–7. 
Babovic and Keijzer (1999) applied correlation dimension and Lyapunov exponent 
methods to the daily runoff data (1826 data points) of the river Luznice in Czech 
Republic. The authors reported evidence of the existence of chaotic dynamics, but did not 
find a clear signature of the attractor, due to limited amount of data (insufficient statistics 
for higher embeddings) and the presence of noise in the data. However, univariate local 
modelling based on the runoff data showed a good performance in comparison with the 
genetic programming technique. 

The main objective of this case study is to investigate further the character of the 
runoff dynamics using the elaborated nonlinear methods, and to contribute to the rainfall-
runoff modelling using a novel multivariate local modelling approach. The first part of 
the case study focuses on an exploratory data analysis and reconstruction of the runoff 
dynamics based on the daily time series of runoff and rainfall for the period of 1976–
1996, applying the techniques for multivariate phase-space reconstruction, elaborated in 
Section 3.3. This analysis is further extended with the identification of the existence of 
different hydrologic dynamical regimes (responses) in generating the runoff from the 
catchment. In the second part, we demonstrate the applicability of the multivariate local 
models in phase-space, together with the mixture of models framework, for modelling the 
rainfall-runoff dynamics. In addition, we compare the results with those of univariate 
local models and artificial neural network rainfall-runoff models, based on research 
conducted by Chuanbao (2001) and Shrestha (2002) in the framework of this thesis. 

6.4.2 The study area and available data 

The catchment selected for this study is the upper reach of the Huai River basin, namely 
Xixian sub-catchment, located upstream of the Xixian station in East China; see Figure 
6.4.1. The catchment area is about 10,190 (km2). Most of the area is mountainous, 
especially the western and southern parts are more undulating with the highest peak 
reaching 1,140 (m) above the mean sea level. To large extent the catchment is covered 
with vegetation and forestation. There is also a reservoir in the catchment, which was 
built at the end of 1950’s in the Shi River, a branch of the Huai River. Its controlling area 
is 1,100 (km2) that takes account of about 10% of the total area of the catchment. Figure 
6.4.1 shows the river networks and the distribution of rainfall stations and discharge 
stations within the study area of the catchment. Because the moisture of the air in the 
Huai River basin is generally transported from the Yellow Sea in the east and the 
topography downstream of the Xixian is a broad plain, the mountains in upstream provide 
orographic lifting. This makes the Xixian catchment a storm centre with the highest 
annual rainfall reaching 1,500 (mm). Thus, this area is the main flood source of the Huai 
River basin. Approximately once in every 5 years the basin is seriously threatened and 
damaged by heavy floods originating from the Xixian catchment. The precipitation 
events during the monsoon season (May to September) can be characterised as moving 
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depressions and cyclones according to their causality. The latter type usually has the 
characteristics of higher intensity, shorter duration and smaller scope compared with the 
former. 

 

Figure 6.4.1. The map of the studied 
area 

The mean annual rainfall over the basin is about 900 (mm) for the period of 1954–1996. 
It is normally larger in the southern parts, the hilly areas, and the coastal belt of the river 
basin. Figure 6.4.2 shows the distribution of the rainfall. The temporal variability of the 
rainfall is characterised by large seasonal change, which leads to droughts in the winter 
and spring and heavy rains in the summer and autumn. The seasonal average values of 
the spring, summer, autumn and winter for the period of 1954–1996 are estimated as 190 
(mm), 490 (mm), 165 (mm) and 66 (mm) respectively. 

The mean annual runoff is about 230 (mm/year), which corresponds to an average 
runoff coefficient of r=0.25. The actual runoff in the catchment varies in time and space. 
The spatial variation is between 50 (mm) and 1,000 (mm) from north to south (see Figure 
6.4.3). The ratio between the maximum and minimum annual runoff varies between 5 and 
30, with the higher value in the north of the basin. The yearly distribution of runoff is 
characterised by a concentration of runoff in the flood season (50%~88% of the annual 
value).  
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Figure 6.4.2. The isohyetal map of the 
mean annual precipitation. 

 

Figure 6.4.3. The spatial distribution of 
the annual runoff. 
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In this case study, the daily precipitation data from 17 rainfall stations and the daily 
discharge from 3 discharge stations are available for the period of 21 years from 1976 to 
1996, resulting in time series with a length of N=7671 samples each. The Ministry of 
Water Resources in P.R.China provided the data for research purposes. In this period, 8 
years are relatively wet, 6 years are relatively dry, and the remaining years are 
intermediate. The average annual rainfall and runoff from the catchment at Xixian station 
are presented in Table 6.4.1 and Figure 6.4.4. 

Table. 6.4.1. Annual rainfall and runoff from 1976 
to 1996 

Year Rainfall 
(mm) 

Runoff 
(mm) 

Runoff 
coefficient

Year Rainfall 
(mm) 

Runoff 
(mm) 

Runoff 
coefficient

1976 745 174 0.23 1987 1498 714 0.48 
1977 1207 378 0.31 1988 816 197 0.24 
1978 787 125 0.16 1989 1248 477 0.38 
1979 1169 328 0.28 1990 986 301 0.30 
1980 1234 510 0.41 1991 1278 612 0.48 
1981 974 257 0.26 1992 812 150 0.19 
1982 1301 653 0.50 1993 989 228 0.23 
1983 1133 450 0.40 1994 929 182 0.20 
1984 1214 476 0.39 1995 918 216 0.24 
1985 871 291 0.33 1996 1220 523 0.43 
1986 833 156 0.19 average 1055 352 0.33 

In order to calculate the average daily rainfall time series for the whole catchment from 
the 17 rainfall data, the Thiessen polygon method was used, assigning different weights 
to each rainfall station based on their coverage and geographic characteristics. The 
weighted sum of the 17 daily rainfall time series gives the average daily rainfall of the 
catchment using the following relation: 

 
(6.4) 

where, is the average daily rainfall, Wi is the weight of the rainfall station i and the Ri 
is the daily rainfall of the rainfall station i.  
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Figure 6.4.4. Annual rainfall and 
runoff from 1976 to 1996 

6.4.3 Exploratory data analysis 

The available data was first screened to check for the obvious errors. Two major checks 
conducted focused on: (i) recorded hydrographs whose volume exceeds the recorded 
rainfall, or is such a high fraction of the recorded rainfall as to be highly improbable (a 
condition usually associated with major storms over the watershed but largely missing the 
precipitation gauges), and (ii) large recorded rainfalls simultaneous with little runoff, a 
condition usually associated with intense rainfalls registered at the gauge not being 
representative of precipitation over the watershed. Figure 6.4.5 shows one of such plots. 

 

Figure 6.4.5. Rainfall and discharge for 
the studied area in 1990 
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In order to check the stationarity of the available data, the time series of daily flow from 
the three hydrological stations and the daily rainfall at all 17 rainfall stations were divided 
into three sub-sets, on which the basic statistical parameters were calculated. The 
following Table 6.4.2 presents the basic statistics for the three data sub-sets. The daily 
flow data of the three discharge stations and the 17 rainfall stations were further checked 
for consistency and homogeneity (Chaunbao, 2001) using double mass and correlation 
analysis. The result showed that data are consistent and the rainfall data originate from a 
climatic homogenous region. 

The spatial distribution of rainfall over the studied area was analysed by the division 
of the catchment into 5 hydrological response units (HRUs), based on the watershed 
delineation and its geographic and orographic characteristics. The average daily rainfall 
for each HRU is calculated by the Thiessen method from the rainfall stations belonging to 
the unit under consideration. The basic statistics of the daily rainfall for the HRUs are 
shown in Table 6.4.3 and Figure 6.4.6.  

Table 6.4.2. Basic Statistics of daily rainfall (in 
mm) and discharge data (in m3/s). Pxxxxx and 
Qxxxxx denote the rainfall and runoff data of the 
station xxxxx, respectively. 
1978–1982 1990–1996 1983–1989 Variables 
Length Mean Std. 

Dev. 
Length Mean Std. 

Dev. 
Length Mean Std. 

Dev. 
P51000 2557 3.26 11.70 2557 3.36 14.53 2557 3.01 10.84 
P51001 2557 2.45 8.66 2557 2.30 8.81 2557 2.07 7.60 
P51250 2557 2.87 12.09 2557 2.59 9.67 2557 2.54 9.48 
P51005 2557 2.61 9.67 2557 2.55 10.35 2557 2.41 8.76 
P51006 2557 3.30 12.06 2557 3.40 12.00 2557 3.19 10.72 
P51010 2557 2.64 9.69 2557 2.63 9.82 2557 2.53 8.89 
P51265 2557 2.61 9.59 2557 2.53 9.42 2557 2.48 9.39 
P51104 2557 3.28 12.10 2557 3.04 10.08 2557 3.02 9.65 
P51011 2557 2.33 8.43 2557 2.57 9.56 2557 2.13 7.75 
P51012 2557 2.59 9.16 2557 2.70 9.30 2557 2.70 9.42 
P51112 2557 2.71 9.14 2557 2.81 9.71 2557 2.72 10.19 
P51108 2557 3.03 10.83 2557 3.00 10.21 2557 2.69 8.61 
P51100 2557 3.26 11.00 2557 3.69 13.59 2557 3.46 11.70 
P51114 2557 3.34 12.13 2557 3.52 12.49 2557 3.21 10.97 
P51117 2557 2.83 10.12 2557 2.87 10.03 2557 2.86 10.10 
P51115 2557 3.07 10.10 2557 3.51 13.06 2557 3.15 10.69 
P51119 2557 3.15 10.96 2557 3.49 12.93 2557 3.36 11.17 
Q51012 2557 19.62 70.09 2557 20.06 74.72 2557 14.29 47.15 
Q51010 2557 35.82 107.61 2557 36.78 124.41 2557 28.13 90.26 
Q51005 2557 111.84 294.23 2557 127.35 300.15 2557 102.03 267.18
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Figure 6.4.6. The map of the HRUs 
with the spatial distribution of the 
rainfall. 

Table 6.4.3 and Figure 6.4.6 show that the HRUs III and IV, which include the stations 
from the southern part of the study area, have higher average rainfall as compared to the 
other units in the northern part. It shows the fact that the rainfall, driven by the monsoons, 
usually approaches from a south-eastrely direction and moves towards the north-west, 
and therefore the HRUs on the south will most likely be the first activated in the 
generation of the runoff from the catchment. Also there is a higher variability of rainfall 
in these parts as indicated by the higher values of the variance and the standard deviation. 

Table 6.4.3. Basic Statistics of daily rainfall for 5 
HRU in (mm). 

HRU Stations (No) Max Min Mean Std. 
Dev. 

I 51000, 51001, 51005, 
51006, 51010 

229.72 0 2.78 9.47 

II 51250, 51011 178.7 0 2.50 8.86 
III 51014, 51108, 51000 156 0 3.16 9.97 
IV 51112, 51117, 51114, 

51115, 51119 
173.04 0 3.10 9.8 

V 51265, 51012 137.75 0 2.60 8.76 
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In order to quantify some of the temporal characteristics of the rainfall in the study area 
for the recorded period of time, the duration of the rainfall was analysed further. The 
frequency distribution of the daily rainfall duration is presented in Figure 6.4.7. The 
results demonstrate that 54.2% of the days in the analysed period (1976–1996) are dry, 1-
day rainfall is 45.8%, 2-day rainfall is 32.0%, 3-day rainfall is 22.4%, 5-day rainfall is 
11.3%, 7-day rainfall is 6.0% and more than 7-day rainfall is 4.5%. Based on the analysis 
of the selected flood hydrographs (see further Section 6.4.5), most of the floods in the 
catchment are caused by more than a 3-day rainfall, which, as reflected by the rainfall 
duration analysis, indicates a very high risk of flooding in the study area. 

 

Figure 6.4.7. Distribution of the 
rainfall duration. 

The spatio-temporal relationships between the mean daily rainfall and the daily 
discharges at the three stations were further investigated using cross-correlation analysis 
and the average mutual information technique. Figure 6.4.8 shows the correlation 
coefficient between the mean daily rainfall and the discharges at the upstream stations 
(51005, 51010) with the discharge at the target station (51012) for different time lags. 
Figure 6.4.9 shows the average mutual information between the same variables. Both, the 
cross-correlation and the AMI functions indicate time lag between the discharges of one 
day. The maximum cross-correlation coefficient between the mean daily rainfall and the 
discharge at the target station indicates a time lag of two days, whereas the AMI function 
indicates a time lag of 3–4 days, which demonstrates their nonlinear relationship. 
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Figure 6.4.8. Cross-correlation 
function between the mean daily 
rainfall and the discharges at the 
upstream stations with the discharge at 
the target station (51012). 
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Figure 6.4.9. Average mutual 
information function between the mean 
daily rainfall and the discharges at the 
upstream stations with the discharge at 
the target station (51012). 

The average mutual information function between the daily rainfall of each HRUs and 
the daily discharge at the target station 51012 is presented in Figure 6.4.10. The results 
indicate different time lags for the different HRUs, varying between 2, 3 and 4 days for 
the HRU4, HRU2 and HRU5, and HRU1 and HRU3, respectively.  
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Figure 6.4.10. Average mutual 
information function between the 
spatially distributed daily rainfall at 
different HRUs and the discharge at 
the target station (51012). 

6.4.4 Reconstruction of the dynamics from the discharge and rainfall 
observables 

The time series of the discharge and rainfall data were used to reconstruct the phase-
space of the dynamical system using the methods and techniques elaborated in Chapter 3. 
The spectral analysis for both, the daily discharge and the mean daily rainfall (Figure 
6.4.11) show broadband power spectra serving as first indicative signs of their chaotic 
dynamics. 
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Figure 6.4.11. Power spectrum for the: 
(a) daily discharge at 51012 and (b) the 
mean daily rainfall. 

The power spectrum of discharge station 51012 shows only one dominant periodicity, 
which is the annual periodicity of 372 days. The rest of the power spectrum is very broad 
indicating weak periodicities at 152, 108, 87, 26, 13 and 7 days. Similarly, the power 
spectrum of the mean daily rainfall indicates a yearly periodicity driven by the monsoons 
occurrence during the summers while the rest of the power spectrum is characterised with 
a broad noise-like spectrum with no dominant periodicities. 

The autocorrelation and average mutual information functions for the daily flows at 
the three discharge stations and the daily mean rainfall are presented in Figure 6.4.12. 

 

Figure 6.4.12. The autocorrelation (left 
figure) and average mutual information 
(right figure) functions for the daily 
discharges and the mean daily rainfall. 

The autocorrelation function for the discharge at the target station 51012 shows an annual 
cycle (on an annual time scale) and small seasonal periodicities indicating the presence of 
a certain deterministic (but not dominant) runoff generation mechanism. For the 
exponentially decaying autocorrelation function for the discharge (long system memory), 
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the value of 1/e corresponds to time delay τ=5 days. The first minimum of the average 
mutual information suggests a time delay for the reconstruction of the runoff dynamics of 
τ=9 days. The autocorrelation function for the mean daily precipitation shows small 
periodicities on a weekly cycle, whereas the average mutual information indicates a 
substantial loss of information after the first day, reaching the first minimum at τ=3 days. 

 
The correlation dimension dc for the discharge at the target station 51012, which is 

used to assess the embedding dimension m, was estimated from the time series using the 
methodology described in Section 3.3.2. Figure 6.4.13 shows the correlation integral for 
the discharge data at station 51012 for different length scales. The relationship between 
the correlation exponent and the embedding dimension for different time delays is further 
presented in Figure 6.4.14. From Figure 6.4.14 there is a distinct saturation value of the 
correlation exponent for time delays between τ=4 and τ=12 days. The value of the 
correlation dimension of the attractor in this case is estimated to be dc=3.20. Taking into 
account the discussion about the estimation of the embedding dimension m (see Section 
3.2.4), if we use Taken’s embedding theorem the embedded dimension (integer number) 
of the manifold which contains the attractor is m=8. If we use Withney’s 
recommendation, the embedding dimension is m=6. Abrabanel’s recommendation (the 
first integer above the correlation dimension) leads to m=4. The false nearest neighbours 
method suggests an embedding dimension between m=5 and m=8; see Figure 6.4.15.  
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Figure 6.4.13. Correlation integral 
(sum) for the discharge data for the 
station 51012 (period 1971–1991, 
daily data). A double logarithmic plot 
was chosen for better visual 
presentation of the power law scaling 
between the correlation sum C(r) and 
the length scales r. The correlation 
sum was computed for different 
embedding dimensions (the line with 
squares corresponds to embedding 
dimension 2 and the line with open 
circles correspond to embedding 
dimension 20). The time delay used to 
produce this figure is τ=8. 
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Figure 6.4.14. Relationship between 
the correlation exponent v and 
embedding dimension m for the 
discharge time series at the target 
station 51012 using different time 
delays τ. The correlation exponent 
increases with an increase of the 
embedded dimension up to a certain 
value and further saturates (when using 
time delays between τ=4 and τ=12 
days). The saturation value of the 
correlation exponent, that is the 
correlation dimension, is 3.2 
(uncertainty 0.1), which indicates 
presence of an attractor in the runoff 
dynamics. 
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Figure 6.4.15. The percentage of the 
false nearest neighbours as a function 
of the embedding dimension for the 
discharge data at the target station 
51012. 

Similarly, the correlation dimension dc for the mean daily rainfall was assessed using the 
correlation sum analysis and is presented in Figure 6.4.16. 

Applications       353



 

Figure 6.4.16. Correlation sum of the 
daily rainfall time series for different 
embedding dimensions, between m=2 
(squares) and m=40 (circles). The time 
delay used to produce this figure is τ=4 
days. 

The relationship between the average correlation exponent (correlation dimension) and 
the different time delays employed for the reconstruction of the phase-space based on the 
daily rainfall data is presented in Figure 6.4.17.  
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Figure 6.4.17. Relationship between 
the correlation exponent and the 
embedding dimension m for the daily 
rainfall time series using different time 
delays τ. 

Figure 6.4.17 shows that the correlation exponent increases with an increase in the 
embedding dimension up to a certain value and further saturates (when using time delays 
between τ=4 and τ=8 days). The saturation value of the correlation dimension for the 
optimal time delay of τ=4 days, is dc=4.6 (uncertainty 0.15) which indicates presence of 
an attractor in the daily rainfall dynamics. Application of Taken’s embedding theorem 
suggests a dimension of the reconstructed phase-space (integer number) as m=2dc+1=10, 
wheras Withney’s recommendation suggests an embedding dimension of m=9 for the 
daily runoff dynamics. The saturation value of the correlation dimension occurs at an 
embedding dimension about m=31. These results are consistent with the results from the 
analysis of the daily rainfall time series for the De Bilt station. The false nearest 
neighbours method suggests an embedding dimension between m=8 and m=10; see 
Figure 6.4.18.  
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Figure 6.4.18. The percentage of the 
false nearest neighbours as a function 
of the embedding dimension for the 
mean daily rainfall. 

The Lyapunov exponents, estimated for both the discharge and the rainfall daily time 
series, are presented in Figure 6.4.19. The largest Lyapunov exponent for the discharge at 
the target station 51012 is estimated as λ1=1.21 (uncertainty 0.05), which indicates a loss 
of predictive information of 1.21 bits/day during the dynamical evolution of the system 
that yields a runoff predictability (based on the time series) of approximately one day. 
Whereas, for the mean daily rainfall times series, the presence of a higher value of the 
largest Lyapunov exponent (λ1=5.3) indicates that the prediction horizon for the rainfall 
dynamics is very short. 
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Figure 6.4.19. Lyapunov exponents for 
the daily discharge at the target station 
51012 (left figure) and the mean daily 
rainfall (right figure). 

Figure 6.4.19 further shows that the Lyapunov spectrum for the mean daily rainfall 
contains a large negative exponent λ10=−12.40, which indicates presence of strong 
dissipation mechanisms in the rainfall dynamics. The presence of positive Lyapunov 

exponents and the fact that provide strong evidence that the 
rainfall dynamics is driven by deterministic chaos. On the other hand, the Lyapunov 
spectrum estimated from the daily discharge time series at the target station 51012 shows 
a weaker dissipation mechanism. In addition, the sum of the Lyapunov exponents 

is greater than zero, which indicates that the average rate of 
divergence of the small perturbations in the runoff dynamics is dominating the average 
rate of their convergence. In other words, the trajectory of the runoff dynamics in the 
reconstructed phase-space is not bounded indicating that the system may not be 
asymptotically stable. In physical terms this implies that the studied catchment is capable 
of generating excessive runoffs (not yet historically observed) and could also exhibit 
more asymptotically stable conditions (regimes). One possible explanation of this kind of 
deterministic hyper-chaotic behaviour is the highly nonlinear coupling of the processes 
underlying the runoff dynamics.  

6.4.5 Investigation of existence of different dynamic regimes in the runoff 

The reconstruction of the runoff dynamics based on the times series of observables 
indicated the possible existence of different runoff generation mechanisms (dynamical 
regimes). In order to investigate the possible existence of different runoff generation 
mechanisms from the catchment, a classification analysis of the flood hydrographs with a 
peak discharge greater than Q>500 (m3/s) (Chuanbao, 2001) was carried out. A 
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nonsupervised Bayesian classification technique, known as Autoclass developed by 
Cheeseman and Stultz (1994) and elaborated in a data mining context by Velickov and 
Solomatine (2000), was used to classify 89 hydrographs in total using the following 
features (see Figure 6.4.20): 

 

Figure 6.4.20. Features extracted from 
the hydrogpraphs used in the 
classification analysis. 

On the basis of these features, the four classes of the runoff generation expressed through 
the hydrograph formation were identified as shown in Figures 6.4.21a–d. Class 1 (Figure 
6.4.21a) is dominated by the hydrograph rise time, rainfall intensity, base time and 
detention time. This class has the same rise and detention time. It’s occurrence is usually 
caused by the 2–3 days rainfall, and after the peak discharge there is no rainfall 
occurrence. 

 

Figure 6.4.21a. A typical hydrograph 
for class 1. The figure shows flood 
event observed in 1978. 
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Class 2 is dominated by the rise time, base time, detention time and the ratio of detention 
time to rise time. This class has a relatively longer rise time, which is caused by the 
relatively longer duration of rainfall as shown in Figure 6.4.21b.  

 

Figure 6.4.21b. A typical hydrograph 
for class 2. The figure shows flood 
event observed in 1977. 

Figure 6.4.21c further shows a typical hydrograph of class 3, which has dominant 
features such as rise time, peak discharge, total average rainfall and ratio of detention 
time to rise time. This class has relatively longer tail, which is usually caused by 
intensive 2–3 days rainfall, and after the peak discharge there is usually less-intensive 
rainfall, which lasts for long period of time (10–12 days). 

 

Figure 6.4.21c. A typical hydrograph 
for class 3. The figure shows flood 
event observed in 1991. 
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Lastly, class 4 is dominated by the rainfall intensity and duration, the rise time and the 
peak discharge. This class has sharp shape as shown in the Figure 6.4.21d, which is 
usually caused by very intensive rainfall. Although this kind of rainfall has duration of 2–
3 days, it can generate an extreme flood, especially due to preparation (wetting) of the 
catchment by a previous rainfall. 

The basic statistics of each class are shown in the Table 6.4.4, which demonstrates the 
differences in the features between the four identified classes. Thus, from the hydrograph 
analysis we can initially conclude the existence of possibly four different dynamic 
regimes in the generation of the flood hydrographs. This information is further used for 
the application of the mixture of models framework, which is discussed in the following 
sections.  

 

Figure 6.4.21d. A typical hydrograph 
for class 4. The figure shows flood 
event observed in 1980. 

Table. 6.4.4. Basic statistics of each hydrograph 
class. 

Class Feature Num. of 
instances 

Mean Min Max Std. 
Dev. 

TR   3.16 2.00 6.00 0.93 
TL   5.63 3.00 10.00 1.57 

TL/TR   1.87 1.00 5.00 0.72 
TB   8.79 5.00 14.00 2.08 
TC 31 2.50 0.00 4.00 0.71 
K   0.48 0.19 0.95 0.19 

Qmax   1601 522 4070 1019 
P   127.52 37.24 291.90 63.97 

1 

Pi   25.11 90.31 50.93 12.08 
TR   2.00 2.00 2.00 0.00 2 
TL   4.00 4.00 4.00 0.00 
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TL/TR   2.00 2.00 2.00 0.00 
TB   6.00 6.00 6.00 0.00 
TC 27 2.06 1.50 3.00 0.29 
K   0.40 0.16 0.82 0.16 

Qmax   1552 758 3620 769 
P   118.52 47.41 215.94 38.72 

 

Pi   33.91 13.20 86.57 19.06 
TR   2.00 2.00 2.00 0.00 
TL   5.58 5.00 7.00 0.69 

TL/TR   2.79 2.50 3.50 0.35 
TB   7.58 7.00 9.00 0.69 
TC 19 2.16 1.50 3.00 0.37 
K   0.39 0.23 0.65 0.14 

Qmax   789 507 1480 283 
P   82.10 59.29 112.34 16.06 

3 

Pi   31.86 11.85 88.99 19.46 
TR   1.67 1.00 2.00 0.49 
TL   4.00 3.00 5.00 0.85 

TL/TR   2.58 1.50 4.00 0.82 
TB   5.67 4.00 7.00 1.15 
TC 12 1.67 1.00 2.00 0.44 
K   0.45 0.12 0.79 0.21 

Qmax   2622 618 5000 1703 
P   174.10 51.98 262.77 60.61 

4 

Pi   70.66 17.33 126.27 32.94 

6.4.6 Modelling and forecasting the runoff 

Based on the identified and reconstructed chaotic dynamics of both runoff and rainfall, an 
attempt was made to build short-term forecasting models utilising chaos theory and the 
local modelling approach elaborated in Section 3.3.7. Initially, univariate local models, 
using only information from the discharge times series, were constructed. This analysis 
was extended with multivariate local models in the reconstructed phase-space, 
incorporating additional rainfall information for the local models. Finally, the hybrid 
modelling framework, mixture of local models—elaborated in Chapter 5, has again 
demonstrated the best forecasting performances. The runoff forecasts were further 
compared with those of artificial neural network models previously applied by Chuanbao 
(2001) in the framework of this research. Herewith we summarise the prediction results 
for the runoff (discharges) at the target station 51012. 

RUNOFF PREDICTION USING UNIVARIATE LOCAL MODELS 

Initially, univariate local models (linear and polynomial) were used in the reconstructed 
phase space of the runoff for the target station 51012 to forecast future runoff. In this 
experiment only information from the daily discharge time series at station 51012 was 
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used to build the local models. Sensitivity of the choice of the local approximation, the 
embedding dimension (m), the time delay (τ) and the number of neghbours (k) was also 
investigated in order to find the optimal model parameters. The optimal parameters are 
those which yield the least prediction error according to certain performance criteria i.e. 
highest correlation coefficient or the lowest normalised root mean squared error 
(NRMSE) between the observed and predicted data using the test data set. The first 6499 
daily discharge time series data were used as a training set and the data ranging from 
6500 to 7230 samples (2 years period) were used as a test set. The range of the model 
parameters was obtained by reconstructing the runoff dynamics. The predictive 
performances of a 3rd order local polynomial models based on different model parameters 
(m, τ and k) are presented in Figure 6.4.22, which suggest optimal values for the 
embedding dimension of m=5, a time delay τ=5 and the number of neighbours k=20, 
respectively. 

 

Figure 6.4.22. Performance of the local 
polynomial models for 1 day ahead 
runoff prediction at the target station 
51012 for different values of the 
parameters τ, m and k. The line with 
squares represents the NRMSE and the 
line with stars represents the 
correlation coefficient between the 
observed and predicted runoff. 

Figure 6.4.23 shows the runoff prediction for a prediction horizon of T=1 day ahead at 
the target station 51012 using local 3rd order local polynomial models with the optimal 
values of the parameters i.e. τ=5, m=5 and k=20. Figure 6.4.24 further shows the scatter 
plot of the predicted and observed runoffs at the target station 51012.  
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Figure 6.4.23. Prediction of the runoff 
at the target station 51012 using 
univariate local models. The prediction 
horizon is T=1 day ahead. The lower 
figures represent parts of the testing 
data set zoomed at the peak discharges 
and the base flow respectively. 

 

Figure 6.4.24. Scatter plot of the 
predicted and the observed runoff 
(discharge) at the target station 51012. 
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The results show that the overall performance of the univariate local models for a 
prediction horizon of T=1 day ahead is quite satisfactory, both for peak flows as well as 
for base flows. However the maximum discharge observed in the testing data set of 1950 
(m3/s) is underestimated by 244 (m3/s). The runoff predictions using the univariate local 
models for a prediction horizon of T=2 days ahead show deteriorating performances (see 
Figure 6.4.25) as already indicated by the largest Lyapunov exponent. Table 6.4.5 
summarises the runoff prediction performances for the testing data set using two 
prediction horizons. The performance indicators were calculated focusing on three 
different parts of the hydrograph: the peak flow, the base flow and the transitional flow 
(the rising and detention parts of the hydrograph). 

 

Figure 6.4.25. Prediction of the runoff 
at the target station 51012 using 
univariate local models. The prediction 
horizon is T=2 days ahead. The lower 
figures represent parts of the testing 
data set zoomed at the peak discharges 
and the base flow respectively. 
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Table 6.4.5. Summary of the performance 
indicators (on testing set) for the 3rd order local 
polynomial models for forecast horizons of T=1 and 
T=2 days (using τ=5, m=5, k=20). 

Runoff 
mechanism 

Performance 
indicators 

T=1 
day 

T=2 
days 

MSE 685.60 3830.96
NMSE 0.0536 0.2995 
RMSE 26.18 61.89 

NRMSE 0.2315 0.5472 
r 0.953 0.843 

Overall errors on 
testing set 

D 0.908 0.710 
MAE 163.08 358.76 Peaks 

AE on Qmax 243.91 898.00 
MSE 112.96 535.20 

NMSE 1.1044 5.2326 
RMSE 10.63 23.13 

NRMSE 1.0509 2.2875 
r 0.763 0.571 

Base flows 

D 0.581 0.326 
MSE 1246.81 6377.88

NMSE 0.1320 0.6752 
RMSE 35.31 79.86 

NRMSE 0.3663 0.8217 
r 0.940 0.747 

Transitional flows 

D 0.884 0.0.558

The following Figure 6.4.26 shows the accumulated volume of the runoff for the 
observed and predicted times series. The results indicate a clear overestimation of the 
volume of runoff especially for the base flows. 
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Figure 6.4.26. Comparison of the 
accumulated runoff volumes for the 
predicted and observed testing set at 
the target station 51012. 

This overestimation of the base flow is accounted for by the fact that the model 
parameters were chosen by minimising the overall error between the predicted and 
observed runoff, which may not be necessarily the same for the different mechanisms of 
the runoff generation process. If we minimise the errors on the peak runoff 
(discharge>500 m3/s), the optimal model parameters with respect to the forecasting 
performance are τ=4, m=7 and k=8. Table 6.4.6 summarises the optimal parameters for 
the univariate local polynomial models with respect to the forecasting performance, 
focusing on the different parts of the generated runoff. 

Table 6.4.6. Comparison between the model 
parameters (τ, m, k) based on the best runoff 
forecasting performances using univariate local 
polynomial models. 

Runoff 
mechanism

Parameters 
(τ, m, k) 

Performance 
indicators 

Value Comparison 
with testing 

set (5, 5, 
20) 

MAE 138.90 163.08 Peak flow (4, 7, 8) 
AE on Qmax 13.83 243.91 

MSE 58.93 112.96 
NMSE 0.5762 1.1044 
RMSE 7.68 10.63 

NRMSE 0.7592 1.0509 
R 0.825 0.763 

Base flow (7, 5, 35) 

D 0.681 0.581 
MSE 1048.53 1246.81 

NMSE 0.1110 0.1320 
RMSE 32.38 35.31 

NRMSE 0.3332 0.3663 
r 0.949 0.94 

Transitional 
flow 

(5, 5, 25) 

D 0.901 0.884 

The results presented in the Table 6.4.6 indicate different optimal parameters for the 
different runoff mechanisms. The mean absolute error (MAE) on the peak flows is 
reduced by 15% while the absolute error on the maximal discharge (Qmax) is reduced by 
almost 90%. Similarly, in the base flows RMSE is reduced by 28% whereas in the 
transitional flows RMSE is reduced up to 8%. In terms of nonlinear dynamics, these 
results indicate the existence of different sub-regions of the attractor in the reconstructed 
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phase-space, which can be better mapped by local models using different local 
dimensions and neighbourhoods. 

RUNOFF PREDICTION USING MULTIVARIATE LOCAL MODELS 

The univariate local models presented in the previous section do not use the rainfall as a 
forcing term, but generate the forecasts on the basis of the observed runoff and its 
reconstructed dynamics only. It may be argued that in this way a valuable source of 
information is ignored and, due to the possible existence of different dynamical regimes, 
it may not be sufficient to reconstruct the runoff dynamics using the runoff times series 
only. In this respect, multivariate local models incorporating information on the rainfall 
dynamics were tested further with a main objective of improving the runoff forecasting. 

The multivariate phase-space reconstruction of the runoff dynamics using daily time 
series data for the runoff at the target station 51012 and the mean rainfall was solved 
technically using the proposed methodology described in Section 3.3.8. The optimal 
reconstructed multivariate phase-space can be denoted as: 

(6.5) 

where the values of the time delays for the runoff and the mean rainfall are τq=5 and τp=6 
days respectively, and the values of the embedding dimensions are mq=5 and mp=9 
respectively. The optimal number of neighbours for the local models in the reconstructed 
multivariate phase-space was assessed by minimising the one-step ahead runoff 
prediction for the training (cross-validation) data set, which resulted in k=15. Both, local 
linear and local polynomial models were tested in the phase-space for the runoff 
prediction. The results showed that the multivariate local linear models are more robust 
and less sensitive to the model parameters than the local polynomial models, and were 
further used to forecast the runoff at the target station 51012. 

The following Figure 6.4.27 and Figure 6.4.28 show the results from the runoff 
prediction for a prediction horizon of T=1 day ahead using multivariate local linear 
models incorporating the rainfall dynamics. In comparison with the univariate local 
models, the results clearly demonstrate that the multivariate local models can better 
capture the peak flows as well as the base flows with higher accuracy. For the maximum 
discharge observed in this testing data set of 1950 (m3/s) the underestimation is about 45 
(m3/s) in contrast with the peak discharge underestimation of 244 (m3/s) using univariate 
models.  
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Figure 6.4.27. Prediction of the runoff 
at the target station 51012 using 
multivariate local linear models. The 
prediction horizon is T=1 day ahead. 
The lower figures represent parts of the 
testing data set zoomed at the peak 
discharges and the base flow 
respectively. 

 

Figure 6.4.28. Scatter plot of the 
predicted and the observed runoff 
(discharge) at the target station 51012. 
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The prediction horizon is T=1 day 
ahead. 

Figure 6.4.29 and Figure 6.4.30 show further the results from the runoff prediction at the 
target station 51012 for a prediction horizon of T=2 days ahead using multivariate local 
linear models. Although the multivariate local models show better predictive 
performances than the univariate local models, the runoff forecasts for 2 days ahead are 
nevertheless not satisfactory, indicating the difficulty for the runoff prediction using 
longer prediction horizons due to the underlying deterministic chaotic dynamics.  

 

Figure 6.4.29. Prediction of the runoff 
at the target station 51012 using 
multivariate local linear models. The 
prediction horizon is T=2 days ahead. 
The lower figures represent parts of the 
testing data set zoomed at the peak 
discharges and the base flow 
respectively. 
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Figure 6.4.30. Scatter plot of the 
predicted and the observed runoff 
(discharge) at the target station 51012. 
The prediction horizon is T=2 days 
ahead. 

Figure 6.4.31 shows the accumulated volume of the runoff for the observed and predicted 
times series using multivariate local models for both prediction horizons. The results 
indicate that by incorporating the runoff dynamics in the multivariate local models the 
overall runoff volume is estimated better. However there is a continuous small 
overestimation of the volume of runoff, especially in the base flows. This indicates that in 
the reconstructed runoff dynamics based on the time series of the runoff and rainfall, 
certain runoff generation processes are missing, such as the subsurface flow and 
groundwater flow. However, from a point of view of flood forecasting the multivariate 
local models are able to capture the underlying relationships between the rainfall and the 
runoff for a short prediction horizon. Table 6.4.7 summarises the performance indicators 
of the multivariate local models for runoff forecasting at the target station 51012. 
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Figure 6.4.31. Comparison of the 
accumulated runoff volumes for the 
predicted (using multivariate local 
linear models) and observed testing set 
at the target station 51012. 

 
 
 
 
Table 6.4.7. Summary of the runoff forecasting 
performance indicators (on testing set) using 
multivariate local linear models for forecast 
horizons of T=1 and T=2 days. 

Flow mechanism Performance 
indicators 

T=1 
day 

T=2 
days 

MSE 414.84 3452.55
NMSE 0.0324 0.2699 
RMSE 20.36 58.76 

NRMSE 0.18 0.5195 
r 0.984 0.856 

Overall errors on 
testing set 

D 0.9682 0.732 
MAE 132.404 392.47 Peaks 

AE on Qmax 45.38 923.10 
MSE 43.26 608.27 

NMSE 0.4229 5.940 
RMSE 6.5772 24.66 

Base flows 

NRMSE 0.6503 2.4372 
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r 0.859 0.488  
D 0.7378 0.238 

MSE 731.47 4390.36
NMSE 0.0774 0.4648 
RMSE 27.04 66.25 

NRMSE 0.278 0.6817 
r 0.961 0.783 

Transitional flows 

D 0.923 0.614 

In the previous multivariate experiments, the average daily rainfall over the 17 rainfall 
stations was used in the phase-space reconstruction of the system. The spatial distribution 
of the rainfall was thus not incorporated in the runoff dynamics. In order to investigate 
the influence of the rainfall spatial distribution on the runoff dynamics, the average 
rainfall from the 5 HRUs mentioned in Section 6.4.3 were used in the following 
experiment as an analogy for the extent of the spatial information incorporated into the 
multivariate local linear models. The embedding dimension for each HRU was taken as 
m=9, while the time delay was varied between τ=2 and τ=6 days in order to achieve the 
best predictive performances for the testing data set. The results from the runoff 
forecasting for a prediction horizon of T=1 day ahead using multivariate local linear 
models and incorporating the spatial distribution of the rainfall over the 5 HRUs are 
summarised in Table 6.4.8. 

 
 
 
Table 6.4.8. Summary of the runoff forecasting 
performance indicators using multivariate local 
linear models incorporating spatial rainfall 
distribution for forecast horizon of T=1 day. 

Flow mechanism Performance 
indicators 

T=1day

MSE 516.40
NMSE 0.0403
RMSE 22.72 

NRMSE 0.2007
r 0.9796

Overall errors on testing 
set 

D 0.9596
MAE 130.22Peaks 

AE on Qmax 43.26 
MSE 125.58

NMSE 1.2277
RMSE 11.20 

Base flows 

NRMSE 1.1080
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r 0.720  
D 0.5184

MSE 877.16
NMSE 0.0929
RMSE 26.61 

NRMSE 0.3047
r 0.953 

Transitional flows 

D 0.9082

By comparing the performance indicators in Table 6.4.8 and in Table 6.4.7, the 
incorporation of the spatial rainfall distribution does not improve the overall results of the 
runoff forecasts at the target station 51012. The overall performance indicators (errors) 
show even a slightly smaller accuracy in terms of correlation coefficient between the 
predicted and the observed runoff. However, there is a slight improvement in the peak 
flow prediction using the spatial runoff distribution. Another interesting finding is that 
although the performance indicators of the base flows show lower correlation coefficient 
(r=0.72), due to oscillations of the predicted values around the measured base flow, the 
accumulated runoff volume demonstrates that the multivariate local models incorporating 
the spatial rainfall distribution are able to maintain a good representation of the overall 
water balance. This is presented in Figure 6.4.32.  

 

Figure 6.4.32. Comparison of the 
accumulated runoff volumes for the 
predicted (using multivariate local 
linear models incorporating spatial 
rainfall distribution) and observed 
testing set at the target station 51012. 
The prediction horizon is T=1 day 
ahead. 
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COMPARISON OF THE RUNOFF PREDICTION WITH ARTIFICIAL 
NEURAL NETWORKS 

In the framework of this work, Chuanbao (2001) investigated different ANN 
architectures in order to forecast runoff at the target station 51012 from the rainfall. In 
that modelling experiment the whole data set was divided into three parts for training, 
cross validation and testing, respectively. The data from 1976 to 1992 were selected to 
train the network, the data from 1933 to 1994 were used for cross validation, and finally 
the data from 1995 to 1996 were chosen to test the neural networks. Three different types 
of neural network architectures were tested, namely: (i) multi-layered perceptrons (MLP); 
(ii) recurrent networks and (iii) modular networks. The best runoff forecasting 
performances were demonstrated by the modular neural network model using spatially 
distributed rainfall from the 5 HRUs. 

In the previous experiments using both the univariate and the multivariate local 
models, the testing data was selected within the range of 6500 to 7230 data samples. In 
order to make the performance measures comparable with the ANN results, the testing 
data was extended from 7000 to 7671 (year 1995 and 1996) and both the univariate and 
the multivariate local models were tested for runoff prediction. This testing data set 
contains runoff peaks in the range of 4000 (m3/s), which were not previously introduced 
to the local models while optimising their predictive performances, in order to test the 
extrapolation capabilities of the local models. The results from the runoff prediction at 
the target station 51012 using multivariate local linear models for a prediction horizon of 
T=1 day ahead are shown in Figure 6.4.33 with a scatter plot in Figure 6.4.34. The results 
indicate that although the predicted and observed hydrographs are in a good agreement, 
the extreme runoff peaks are still underestimated. The maximum observed peak runoff of 
3750 (m3/s) is underestimated by about 820 (m3/s). Table 6.4.9 summarises the 
comparison of the runoff forecasts between the univariate and multivariate local models 
and the best neural network model. The performance indicators show that the runoff 
forecasts using a simple nonlinear forecasting technique based on the univariate local 
models in the reconstructed runoff phase-space are comparable with the ANN model. 
Multivariate local linear models incorporating the rainfall dynamics clearly outperform 
the modular ANN model. In particular, multivariate LLMs give better results in terms of 
the peak discharge forecast. 
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Figure 6.4.33. Prediction of the runoff 
at the target station 51012 using 
multivariate local linear models. The 
prediction horizon is T=1 day ahead. 
The lower figures represent parts of the 
testing data set zoomed at the peak 
discharges and the base flow 
respectively. 
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Figure 6.4.34. Scatter plot of the 
predicted and the observed runoff 
(discharge) at the target station 51012. 
The prediction horizon is T=1 day 
ahead. 

 
 
Table 6.4.9. Comparison of the univariate and 
multivariate local models with ANN and Naïve 
models for the runoff forecasts at the target station 
51012. The testing data set ranges from 7000 to 
7671 data samples with a prediction horizon of T=1 
day ahead. 

Performance 
indicators 

Modular 
ANN 
model 

Naïve 
model

Univariate 
local 3rd 

order 
polynomial 

models 

Multivariate 
local linear 

models 

MSE 10722 43026 10994 6508.05 
RMSE 103.5 207.7 104.8 80.67 

r 0.9631 0.7707 0.9585 0.9801 
D 0.9276 0.5939 0.9187 0.9606 
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RUNOFF PREDICTION USING MIXTURE OF MODELS (HMMM) 

The final experiment performed in this case study is the application of the mixture of 
models framework elaborated in Chapter 5. The hydrograph analysis performed in 
Section 6.4.3 has shown the existence of different dynamic regimes in the generation of 
runoff. Furthermore, the local modelling experiments using both, univariate and 
multivariate local models showed that there are clear regions in the attractor of the 
reconstructed phase-space that can be modelled using different local models with 
different parameters (τ, m and k), i.e. capacity. This knowledge was used further to setup 
a mixture of multivariate local linear models whereby their activation functions (gating) 
are modelled by a Hidden Markov process. 

The multivariate local linear models (experts), based on the reconstructed phase-space 
from the time series of the runoff and the mean rainfall (Eq. 6.5) are used to model each 
of the hidden states (dynamic regimes) of the system. For the learning of the activation 
function of each expert (model) the training set consisted of 6999 samples (more than 18 
years of daily data). Part of this training set was used as a cross-validation set to 
determine the number of the local models, each representing a possible dynamic regime 
of the system. Various combinations of the parameters of the local models, such as the 
time delay, embedding dimension and the number of the nearest neighbours, were 
investigated. The same test set of the last 2 years of the data (from 7000 to 7671 data 
samples) was used to evaluate and compare the performance of the HMMMs. Table 
6.4.10 and Figure 6.4.35 summarise the main results of the mixture of models framework 
on the testing data set for the best combination of the local models. 

Table 6.4.10. Summary of the runoff forecasting 
performance indicators using mixture of 
multivariate local models for forecast horizon of 
T=1 day. The testing data set ranges from 7000 to 
7671 data samples. 

Runoff mechanism Performance 
indicators 

T=1 
day 

MSE 3045.0
RMSE 55.18 

Overall errors on testing 
set 

r 0.9858
MAE 181.40Peaks 

AE on Qmax 99.90 
MSE 30.86 

RMSE 5.55 
Base flows 

r 0.9023
MSE 1089.0

RMSE 33.0 
Transitional flows 

r 0.9642
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Figure 6.4.35. Prediction of the runoff 
at the target station 51012 using 
mixture of multivariate local linear 
models. The prediction horizon is T=1 
day ahead. The lower figure shows the 
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activation functions of each of the 
models (experts). Soft combination of 
each model’s prediction is used to 
generate the runoff prediction. 

The results indicate that the mixture of models framework improved the prediction of 
both, the base flow and the peak discharges. The underestimation in the prediction of the 
maximal recorded peak runoff of 3750 (m3/s) is significantly reduced to about 100 (m3/s).  

The combination of five different multivariate local models gave the best predictive 
performances. From the Figure 6.4.35 is noticeable that the expert 1 specialises on the 
prediction of the base flow (no impulse in the dynamical system from the rainfall) while 
the other four experts (models) specialise on the different runoff generation regimes. The 
parameters of the expert 1 used in the HMMEs (time delay τ=7, embedding dimension 
m=5 and number of nearest neighbours k=45 for the discharge time series) differ 
significantly from the parameter of the expert 3 (τ=4, m=7 and k=5 for the discharge time 
series), which on the other hand specialises on modelling of peak runoffs. This increase 
of the embedding dimension implies that the number of the essential state variables 
governing the dynamics of the runoff during extreme events is different compared to the 
number of the essential variables necessary to model the generation of the base flow. 

6.4.7 Summary and conclusions 

In this case study we have demonstrated the application of the methods based on the 
theory of nonlinear dynamics and chaos to rainfall-runoff modelling for the Xixian 
catchment of Huai River basin. As the runoff generation process is highly nonlinear, time 
varying and spatially distributed, the underlying dynamics of the system were 
investigated using multivariate phase-space reconstruction techniques. The results 
provide evidence that both the runoff dynamics and the rainfall dynamics can be 
characterised by deterministic chaos. The correlation integral analysis together with the 
Lyapunov exponents method demonstrated the existence of a strange attractor (dc=3.2) 
and a hyper-chaotic behaviour of the runoff dynamics. The stability analysis based on the 
Lyapunov exponents for the long-term behaviour of the runoff dynamics showed that the 
average rate of divergence of the small perturbations in the runoff dynamics dominate the 
average rate of their convergence. This implies that the trajectory of the runoff dynamics 
in the reconstructed phase-space is not bounded, indicating that the system may not be 
asymptotically stable exhibiting different dynamical regimes. This finding was further 
supported by an analysis of selected runoff hydrographs that showed the existence of 
possibly four different dynamic regimes in generating the runoff based on the available 
data for the period of 21 years from 1976 to 1996. 

Based on the identified and reconstructed chaotic dynamics of both the runoff and the 
rainfall, short-term forecasting models (one day ahead) utilising the local modelling 
approach were constructed in order to predict the runoff at the target station 51012. The 
univariate local models, tested initially using only information from the discharge times 
series showed relatively good predictive performance comparable with a modular 
multivariate neural network model; see Table 6.4.9. The short-term forecasting runoff 
models were further extended with multivariate local models in the reconstructed 
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multivariate phase-space incorporating additional rainfall information. Finally, the hybrid 
modelling framework—mixture of local models—has demonstrated the best forecasting 
performances, with an overall root mean squared error of RMSE=55.2 (m3/s) and a 
correlation coefficient of r=0.9858 between the observed and the predicted runoffs for the 
test data set that includes the highest observed discharge peaks. 

In summary, in this case study we have demonstrated that the methodology based on 
the theory of nonlinear dynamics and chaos supported by the mixture of modelling 
framework can serve as an efficient tool for building accurate short-term rainfall-runoff 
models, especially in real-time flood forecasting and management.  
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Chapter 7 
Conclusions 

A hydroinformatics system represents an electronic knowledge encapsulator that models 
part of the real world and can be used for the simulation and analysis of physical, 
chemical and biological processes in water systems, for a better management of the 
aquatic environment. Thus, modelling is at the heart of hydroinformatics. The theory of 
nonlinear dynamics and chaos and the extent to which recent improvements in the 
understanding of inherently nonlinear natural processes present challenges to the use of 
mathematical models in the analysis of water and environmental systems are elaborated 
in this work. In particular, we demonstrate that the deterministic chaos present in many 
nonlinear systems can impose fundamental limitations on our ability to predict natural 
processes even when well-defined mathematical models exist. On the other hand, the 
methodologies and tools based on the theory of nonlinear dynamics and chaos elaborated 
in this work can provide means for a better accuracy of short-term predictions as 
demonstrated through the practical applications. 

In Chapter 3, we described, elaborated mathematically and illustrated the main 
concepts of the theory of nonlinear dynamics and deterministic chaos. We further 
introduced and demonstrated the methods and techniques for the identification, 
reconstruction, delineation and quantification of the underlying dynamics of nonlinear 
dynamical systems from a time series of observables. The phase-space reconstruction 
based on a univariate time series was further extended and elaborated using the 
multivariate embedding methodology proposed in this work. It was elaborated further 
how models can be “learned” from data that realistically map the underlying structure 
dictating the dynamical evolution of the system. This modeling approach is closely 
connected to data-driven modelling based on the computational intelligence, search and 
optimisation methods addressed in Chaper 2. 

From a modelling standpoint, irregularity and chaos are fundamental to nonlinear 
dynamical systems, which even with a few variables can generate very rich and complex 
dynamical structures. These are characterised by the presence of chaotic dynamics, 
different dynamical regimes (even coexisting attractors) and an irregular dynamical 
evolution between them. From a modelling perspective such complexities were addressed 
by the development of a novel hybrid framework that draws on both chaos theory and 
dynamic Bayesian networks. This modelling framework, elaborated in Chapter 5, 
combines the multivariate phase-space reconstruction of the underlying dynamics based 
on a time series of observables and a mixture of local models learned in a dynamic 
Bayesian network formalism represented through a hidden Markov model. 

In Chapter 6, the proposed modelling framework was applied for identification, 
modelling and prediction of hydrodynamical and hydrological systems: sea water level 
and surge dynamics along the Dutch cost, precipitation dynamics at the De Bilt 



meteorological station in The Netherlands and rainfall-runoff dynamics of the Huai river 
in China. The main results from these practical applications are summarized as follows:  

Case study 1: Nonlinear dynamics, chaos and predictability of the water levels and 
surges along the Dutch coast 

Based on a nonlinear analysis, phase-space reconstruction and estimation of various 
geometrical and dynamical invariants, the dynamics of both water levels and surges along 
the Dutch coast can be characterised as deterministic chaos. The presence of the chaotic 
dynamics together with the positive Lyapunov exponents implies that there are limits of 
predictability for any model (refer to Table 6.2.2 and Table 6.2.3). However, reliable 
short-term predictions are possible. 

The chaotic behaviour occurs because water levels and surges, including astronomical 
contributions and the contributions from the meteorological forcing, are the result of a 
complex, coupled nonlinear dynamical system. The analysis of the shallow-water 
dynamics demonstrated and explained the appearance of the double low water and the 
distortion of the duration of the high waters. 

The Lyapunov exponents and the entropies have significant consequences for 
numerical models that are based on solutions of the hydrodynamic equations of motion. 
The implication of the presence of deterministic chaos in surge dynamics is that estimates 
of future behaviour are very sensitive to mathematical formulations and assumptions, the 
choice of various coefficients and parametrisation. The system’s current state may also be 
inadequately modelled or measured. The main implication however is that improvements 
in forecasting may require significant improvements in the accuracy of the numerical 
solution of the mathematical terms, coefficients and measurements, which are used as 
initial and boundary conditions, especially in the meteorological forcing. Data 
assimilation techniques, based on very accurate measured data may help to improve the 
prediction performances. 

Taking into account the presence of deterministic chaos in the water level and surge 
dynamics, a mixture of multivariate adaptive local modelling in the reconstructed phase-
space of the dynamical system, which uses information from the real dynamical 
neighbours, has demonstrated good capability for reliable short-term predictions. For the 
Hoek van Holland location, the overall prediction error for the surge 10 hours ahead is 
about 10.5cm. For stormy sea dynamics the prediction error is about 12 (cm) and about 8 
(cm) for non-stormy sea dynamics (the test data set was taken from the period between 
1.01.95–31.08.95). 

The identification and selection of proper dynamical neighbours from historical time 
series data are the key issues in the local modelling approach adopted in this work. The 
dynamical selection of the types and number of neighbours in the modelling procedure 
indicates that there are different dynamical regimes present in the sea dynamics that may 
be modelled using different alternative types of models (e.g. local models, neural 
networks, etc.). In this study the mixture of models framework showed the best predictive 
performances. 

Local uncertainty analysis is an appropriate technique for studying the predictability of 
the surge dynamics. Although the overall predictability is about 80%, there exist certain 
dynamical situations when the predictability is much better than the average 
predictability and certain dynamical situations when the predictability is quite low, 
especially for negative surges. 
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Chaos theory can serve as an efficient tool for accurate and reliable short-term 
predictions of water levels in order to support decision-makers in ship navigation.  

Case study 2: Chaos in rainfall dynamics 
In this application we investigated the existence of chaos in rainfall dynamics using 

methods and techniques from nonlinear dynamics and chaos mathematics, based on the 
rainfall time series recorded at the De Bilt meteo station in the Netherlands. The main 
question of the existence of structurally different chaotic dynamics in the rainfall using 
different temporal scales of the observables was addressed by the analysis of 15min, 
hourly, daily and weekly rainfall data. 

The correlation dimension method provided evidence of the existence of a low-
dimensional attractor for the different rainfall data sets aggregated over different time 
periods, thus suggesting the existence of chaotic dynamics. Based on the attractor 
dimensions that were generated for the 15min, hourly, daily and weekly rainfall data, the 
minimum number of variables essential to model the rainfall dynamics was identified as 
3, 4, 11 and 11, respectively. The indicative number of sufficient variables to fully 
describe the rainfall dynamics on different temporal scales was identified as 40, 38, 30 
and 11, respectively. The effects of the time delay value, used for the phase-space 
reconstruction, on the attractor dimension estimation were also investigated in order to 
compare the results obtained from the average mutual information function. 

The Lyapunov exponents computed on the 15min, hourly, daily and weekly rainfall 
data, demonstrated strong evidence of the existence of chaotic dynamics in the 15min and 
hourly data and hyper-chaos in the daily and weekly rainfall dynamics. The existence of 
positive Lyapunov exponents for all the rainfall data sets clearly showed the limits of the 
predictability of any model. 

The method of surrogate data for distinguishing between chaotic and stochastic 
rainfall dynamics based on the continuous wavelet transform, together with the test for 
nonlinearity, provided evidence that the rainfall dynamics is different from a linear 
stochastic process. In addition, the simple nonlinear noise-reduction algorithm applied to 
the different rainfall data sets improved the results for the correlation dimension 
estimation, and thus the reconstructed phase-space. 

The nonlinear prediction method based on univariate local modelling in the 
reconstructed phase-space enabled us to check the prediction accuracy using different 
time horizons and with respect to: (i) number of neighbours; (ii) optimal time delay; and 
(iii) the embedded dimension. The results indicated a reasonable short-term predictability 
for the hourly and daily rainfall, but a sharp drop in the prediction accuracy due to the 
presence of hyperchaotic dynamics. The mixture of models framework, elaborated in 
Chapter 5, using a different capacity for the models (experts), showed the best predictive 
performances. 

In summary, the results from this application lead to the conclusion that structurally 
different chaotic dynamics in the rainfall exist at different temporal scales. However, 
rainfall is a multidimensional spatio-temporal phenomenon. The rainfall dynamics are not 
only highly fluctuating in time but also in space. These spatio-temporal signatures 
(patterns) are not independent but rather dependent. In addition, they usually occur at 
rather small grid resolutions, such as 5–10 km. Much more needs to be done in the 
collection of fine-resolution data in space and time in order to be able to study the 
spatiotemporal rainfall dynamics and to improve the numerical weather forecasting 
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models. The recent advances in remote sensing and radar surveillance technology will 
help in the collection of such kind of data. At present it is not clear whether the dynamics 
of spatiotemporal rainfall patterns can be described by an attractor in a phase-space over 
a certain area, which in turn may improve the short-term rainfall predictions.  

Case study 3: Rainfall-runoff modelling 
In this case study we demonstrated the application of the methods based on the theory 

of nonlinear dynamics and chaos to rainfall-runoff modelling for the Xixian catchment of 
Huai River basin. As the runoff generation process is highly nonlinear, time varying and 
spatially distributed, the underlying dynamics of the system was investigated using 
multivariate phase-space reconstruction techniques. The results provide evidence that 
both, the runoff dynamics and the rainfall dynamics can be characterised as deterministic 
chaos. The correlation integral analysis together with the Lyapunov exponents method 
demonstrated the existence of a strange attractor (dc=3.2) and a hyper-chaotic behaviour 
of the runoff dynamics. The stability analysis based on the Lyapunov exponents for the 
long-term behaviour of the runoff dynamics showed that the average rate of divergence 
of the small perturbations in the runoff dynamics dominates the average rate of their 
convergence. This implies that the trajectory of the runoff dynamics in the reconstructed 
phase-space is not bounded, indicating that the system may not be asymptotically stable 
in that it exhibits different dynamical regimes. This finding was further supported by an 
analysis of selected runoff hydrographs that showed the existence of possibly four 
different dynamic regimes in the generation of the runoff based on the available data for 
the period of 21 years from 1976 to 1996. 

Based on the identified and reconstructed chaotic dynamics of both the runoff and the 
rainfall, short-term forecasting models (1 day ahead) utilising the local modelling 
approach were constructed in order to predict the runoff at the target station 51012. The 
univariate local models, tested initially using only information from the discharge times 
series, showed a relatively good predictive performance comparable with a modular 
multivariate neural network model; see Table 6.4.9. The short-term forecasting runoff 
models were further extended with multivariate local models in the reconstructed 
multivariate phase-space incorporating additional rainfall information. Finally, the hybrid 
modelling framework, based on a mixture of local models, has demonstrated best 
forecasting performances, with an overall root mean squared error of RMSE=55.2 (m3/s) 
and a correlation coefficient of r=0.9858 between the observed and the predicted runoffs 
for the testing data set. 

In summary, in this case study we demonstrated that the methodology based on the 
theory of nonlinear dynamics and chaos supported by the mixture of modelling 
framework can serve as an efficient tool for building accurate short-term rainfall-runoff 
models, especially in real-time flood forecasting and management. 

Postscript 
The potential role of the theory of nonlinear dynamics and chaos in modeling the natural 
processes in our aquatic environment is generally diverse. At the simplest level, the 
elaborated methodology and tools can be used for nonlinear time series analysis and 
system dynamics identification relating various variables describing the underlying 
processes, which in turn can generate important knowledge necessary for the 
mathematical description of the system. At the other end of the spectrum, chaos theory 
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may be used to generate important components of physically-based mathematical 
modeling systems, as well as a stand-alone data-driven modeling approach, whereby a 
mixture of multivariate local models may be used to describe specific physical processes 
or the complete system dynamics. The greatest potential for the modeling approach based 
on chaos theory in hydroinformatics, however, might be in the area of real-time 
operational forecasting and control of water systems, due to the capability of fast and 
accurate short-term forecasting as demonstrated in this work. 

Finally, the natural processes and phenomena in our aquatic environment are complex 
and adaptive dynamical systems exhibiting nonlinear interactions, chaos, switching 
dynamical regimes, adaptation, emergence and evolution. While we may always make 
further progress in understanding particular systems and their underlying processes, there 
will always be some processes that lie just beyond our scientific abilities to predict. 
Natural processes, being composed of all these features, will always have novelty, 
richness, and beauty that can never be exhausted nor fully computed. As with the surge 
water levels, precipitation dynamics and rainfall-runoff dynamics studied in this work, 
we can appreciate their splendour because we can simulate them, but only to limited 
accuracy. If all natural phenomena were either perfectly describable or absolutely 
indescribable, not only would they be uninteresting and non-challenging for the 
scientists, but life would be impossible.  
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