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Abstract

A hydroinformatics system represents an electronic knowledge encapsulator that models
part of the real world and can be used for the simulation and analysis of physical,
chemical and biological processes in water systems, for a better management of the
aquatic environment. Thus, modelling is at the heart of hydroinformatics. The theory of
nonlinear dynamics and chaos and the extent to which recent improvements in the
understanding of inherently nonlinear natural processes present challenges to the use of
mathematical models in the analysis of water and environmental systems are elaborated
in this work. In particular, it demonstrates that the deterministic chaos present in many
nonlinear systems can impose fundamental limitations on our ability to predict behaviour
even when well-defined mathematical models exist. On the other hand, methodologies
and tools from the theory of nonlinear dynamics and chaos can provide means for a better
accuracy of short-term predictions as demonstrated through the practical applications in
this work.

The first chapter discusses the role of mathematical modelling in hydroinformatics,
exemplifying both the physically-based and the data-driven modelling practices and
challenges. It further elaborates the main goal of this research work in describing,
elaborating mathematically and illustrating the general principles and concepts of
modelling based on chaos theory. It also addresses the implications that arise from
modelling complex nonlinear dynamical systems in the aquatic environment that are
essential for understanding the possible consequences of nonlinearity for modelling.

Modelling nonlinear dynamical systems based on chaos theory is closely connected to
data-driven modelling. Chapter 2 describes the history of learning models from data and
critically reviews both the classical approaches based on empirical risk minimisation and
the approaches based on structural risk minimisation. Learning models from data as an
illposed problem that is closely related to computational intelligence based on search and
optimisation methods. These are discussed further in this chapter.

Chapter 3 is at the heart of this work. It describes, elaborates mathematically and
illustrates the main concepts of the theory of nonlinear dynamics and deterministic chaos.
It further introduces and demonstrates the methods and techniques for the identification,
reconstruction, delineation and quantification of the underlying dynamics of nonlinear
dynamical systems from a time series of observables. The phase-space reconstruction
based on univariate time series is further extended and elaborated using the multivariate
embedding methodology proposed in this work. Finally, it elaborates how models can be
constructed that realistically map the underlying structure dictating the dynamical
evolution of the system.

Chapter 4 further extends this notion of models that learn from data by introducing the
Bayesian network formalism. Special attention is given to dynamic Bayesian networks
that are well suited for learning models from time series data observed on complex
dynamical systems.



In Chapter 5, a novel hybrid framework for modelling nonlinear dynamical systems
that draws on both chaos theory and dynamic Bayesian networks is proposed,
mathematically elaborated and demonstrated. This modelling framework combines the
multivariate phase-space reconstruction of the underlying dynamics based on a time
series of observables and a mixture of local models learned in a dynamic Bayesian
network formalism.

In Chapter 6, the proposed modelling framework is applied to the identification,
modelling and prediction of hydrodynamical and hydrological systems: sea water level
and surge dynamics along the Dutch cost, precipitation dynamics at De Bilt
meteorological station in the Netherlands and rainfall-runoff dynamics of the Huai river
in China. The results from these applications show that the methodology and the
modelling framework presented in this thesis generate reliable and accurate short-term
forecasts and can be used as a valuable modelling tool in engineering practice.



Samenvatting

Een hydroinformatica-systeem is een weergave van een elektronisch kennisraamwerk
waarmee een gedeelte van de werkelijkheid wordt gemodelleerd en dat gebruikt kan
worden voor de simulatie en analyse van fysische, chemische en biologische processen in
water systemen ten behoeve van een beter beheer van de aquatische omgeving

Aldus vormt modellering het centrum van de hydroinformatica. Dit proefschrift
behandelt de theorie van de niet-lineaire dynamica en chaostheorie. De aan deze
methoden onlosmakelijk verbonden niet-lineaire natuurlijke processen, vormen in het
bijzonder een uitdaging voor het toepassen van mathematische modellen voor de analyse
van nietlineaire processen in land- en watersystemen.

In het bijzonder wordt gedemonstreerd dat deterministische chaos, die aanwezig is in
vele niet-lineaire systemen, fundamentele beperkingen kan opleggen aan ons vermogen
om gedrag te voorspellen, zelfs als er sprake is van goed gedefinieerde mathematische
modellen. Daarentegen laten de praktische toepassingen die in dit proefschrift zijn
beschreven zien dat methodieken en technieken uit de theorie van de niet-lineaire
dynamica en chaos, een basis kunnen vormen voor grotere nauwkeurigheid van korte
termijn voorspellingen.

Het eerste hoofdstuk beschrijft de rol van mathematische modellering in de
hydroinformatica, waarbij voorbeelden worden gegeven van zowel op fysica gebaseerde
(physically-based) als op gegevens gebaseerde (data-driven) modeltoepassingen en de
daarbij horende uitdagingen. Verder wordt het hoofddoel van het onderzoek
geformuleerd, ondersteund met beschrijving, mathematische formulering, en voorbeelden
van de algemene principes en concepten van het modelleren op basis van chaostheorie.
Tevens worden de implicaties behandeld van het modelleren van complexe niet-lineaire
dynamische systemen in de aquatische omgeving, die essentieel zijn voor het begrijpen
van de mogelijke consequenties van niet-lineariteit bij het modelleren.

Het modelleren van niet-lineaire dynamische systemen, gebaseerd op chaostheorie,
sluit nauw aan op gegevens-gestuurd modelleren. Hoofdstuk 2 beschrijft de historie van
dergelijke modellen en behandelt op kritische wijze de beschikbare literatuur van zowel
de klassieke benaderingen die zijn gebaseerd op empirische risico minimalisatie als de
benaderingen die zijn gebaseerd op structurele risico minimalisatie. Gegevens-gestuurd
modelleren is een niet scherp gedefinieerd probleemgebied dat nauw gerelateerd is aan
kunstmatige  intelligentie, welke is gebaseerd op zoekalgoritmen en
optimalisatiemethoden. Dit wordt verder in dit hoofdstuk beschreven.

Hoofdstuk 3 behandelt het centrale deel van het onderzoek. Het geeft een
mathematische beschrijving van de hoofdprincipes van de theorie van de niet-lineaire
dynamica en deterministische chaos. Voorts worden methoden en technieken
geintroduceerd voor de identificatie, reconstructie, beschrijving en kwantificering van de
onderliggende structuur van niet-lineaire dynamische systemen.

De fase-ruimte reconstructie die is gebaseerd op unvariabele tijdreeks benadering, is in
dit onderzoek verder uitgewerkt tot een multivariabele methodologie. Tenslotte wordt in



dit hoofdstuk behandeld hoe lokale modellen kunnen worden opgebouwd die op
realistische wijze de onderliggende fase-ruimte structuur weergeven die de dynamische
evolutie van het systeem bepaalt.

In hoofdstuk 4 wordt de notie van modellen die leren uit gegevens, verder uitgewerkt
aan de hand van de introductie van Bayesiaanse netwerken. Speciale aandacht wordt
geschonken aan dynamische Bayesiaanse netwerken die zeer geschikt zijn voor het
gegevens-gestuurd leren uit tijdreeksen die zijn ontleend aan complexe dynamische
systemen.

In hoofdstuk 5 wordt een nieuw hybride raamwerk voor het modelleren van niet-
lineaire dynamische systemen voorgesteld, mathematisch uitgewerkt en beproefd, dat
bouwt op zowel chaostheorie als op dynamische Bayesiaanse netwerken. Dit
modelleerraamwerk combineert de multivariabele fase-ruimte reconstructie van de
onderliggende dynamica, die is gebaseerd op een tijdreeks van waarnemingen, met een
mix van lokale modellen in een dynamisch Bayesiaans netwerk.

In hoofdstuk 6 wordt het voorgestelde modelleerraamwerk toegepast voor
identificatie, modellering en voorspelling van hydrodynamische en hydrologische
systemen: voorspelling van zeewaterstand en golfbeweging langs de Nederlandse kust;
neerslagdynamica van het meteorologische station De Bilt; en regen-afvoer dynamica van
de Huai rivier in China. Het resultaat van deze toepassingen toont aan dat de methodiek
en het in dit proefschrift voorgestelde modelleerraamwerk betrouwbare en nauwkeurige
kortetermijn voorspellingen genereert. Het ontwikkelde modelleerraamwerk kan worden
beschouwd als waardevol instrumentarium voor de ingenieurspraktijk.
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Chapter 1
Introduction

The scientist does not study nature because it is useful; he
studies it because he delights in it, and he delights in it
because it is beautiful. If nature were not beautiful, it
would not be worth knowing, and if nature were not worth
knowing, life would not be worth living. Of course | do not
here speak of that beauty that strikes the senses, the beauty
of qualities and appearances; not that | undervalue such
beauty, far from it, but it has nothing to do with science; |
mean that profounder beauty which comes from the
harmonious order of the parts, and which human
intelligence can grasp.

—Henri Poincaré

1.1 Modelling: the current practices and challenges

In a thesis like “nonlinear dynamics and deterministic chaos and its applications to
hydrodynamics and hydrological modelling” it is natural to ask what contribution one of
the fundamental technologies of modern science—namely, mathematical modelling,
(typically including extensive numerical simulations)—can bring to efforts made to
enhance our understanding of natural processes and phenomena in the aquatic
environment. A moment’s consideration makes it clear that the potential contribution is
profound: for instance, one can immediately identify a number of water and
environmental problems—the motion of the water in the oceans, the generation and
mitigation of floods, sediment transport and morphodynamics, water quality etc.—of
overwhelming importance in which an accurate quantitative description of the causal
relationships between specific processes, actions and consequences can only be obtained
from studies of highly sophisticated mathematical models containing many subtle and
interacting effects.

These mathematical models are mainly conceptualisations of the primary physical
processes that are perceived and identified to be deterministic in their contribution to the
natural phenomenon, expressed through mathematical algorithmic equations. Such
equations describe the quantitative relationships between the different system parameters,
and thus the behaviour of the whole system, based on fundamental principles, such as
conservation of mass, momentum (and energy). The solution of these equations, in order
to find the functional relationships that describe and define the physical boundary domain
in which the water flows, requires the application of specific numerical techniques and
the imposition of certain boundary conditions. This branch of science that considers the
discretisation of the physical domain and the corresponding equations governing the



Nonlinear dynamics and chaos with applications to hydrodynamics and hydrological modelling 2

natural processes, was conceived after the Second World War and born in the 1960s, and
further known as computational hydraulics (or computational fluid dynamics) is now
well established.

By bringing these computational hydraulics techniques together with the recently
proliferating information and communication technologies, a new discipline emerged of
what is nowadays referred to as Hydroinformatics (Abbott, 1991). A hydroinformatics
system indicates, as Abbott put it, an electronic knowledge encapsulator that models part
of the real world and can be used for the simulation and analysis of physical, chemical
and biological processes in water, for a better management of the aquatic environment.
Therefore, the development of mathematical models, which adequately represent our
current image of reality, is at the heart of hydroinformatics (Price, 2001).

But hydroinformatics is even more complex, in that it is an emerging socio-technical
construct (see Jonoski, 2002). This leads to the modelling of socio-political issues—for
example, socio-economic consequences of certain activities in the aquatic environment or
the involvement of different stakeholders and public participation in the decision making
processes in the management of limited water resources. In addition to the complex
technical issues one must also try to account for the vagaries of human psychology. We
can expect that issues based on global water-related problems, as well as the general
consequences of limited resources and credible, degrading environmental conditions, will
become increasingly relevant factors. These have to be taken into account in the future
development of hydroinformatics systems.

Each of these issues involves many individual components and processes, interacting
with each other in complex ways. Clearly one immediate, primarily technical, challenge
to mathematical modelling is to quantify these interactions. For instance, in water quality
modelling, the challenge is to extend the forms of the algorithmic equations used to
conceptualise the processes of advection and dispersion to include sediment, chemical
and biological processes, which are less well understood than the water hydrodynamics
alone. Such technical questions will—and should—remain the purview of experts, and in
most cases their resolution requires the successful collaboration of experts from many
different disciplines. This leads to the convergence of different sciences and the notion of
integrated modelling. In this area, the challenge is to develop well-defined computational
models, properly reflecting the essential governing processes and features of such
complex problems.

Beyond this problem-specific technical challenge, however, are challenges and
limitations that arise from the very nature of dynamical systems in which many elements,
some of which may adapt their behaviour in time, are interacting. Looking back at the
organisation of the classical sciences, we find that at each level of understanding,
basically we study two types of phenomena: (i) agents (molecules, finite volumes, cells,
species and recently software modules) and (ii) interaction of agents (chemical reactions,
physical interactions and processes, system responses, emergence and evolution).
Studying agents in isolation is a fruitful way of discovering insights into the form,
function and conceptualisation of an agent, but doing so has also some limitations.
Although reductionism is a powerful way of looking into the natural processes and
phenomena, specifically reductionism fails when we try to use it in a reverse direction.
As we shall see throughout this thesis, having a complete and perfect understanding of
the dynamics of an agent in no way guarantees that we will be able to predict how this
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single agent will behave for all the time in future, and especially in the context of other
interacting agents. Such adaptive complex dynamical systems often behave in ways that
seem non-intuitive, or even counter-intuitive, based on our current knowledge and
experience. The reason for this, is of course, real limitations to the extent with which
computational models may be applied. For example, the derivation of the original
hydrodynamic equations has to make certain assumptions due to our limited knowledge
of the underlying processes, such as the resistance and turbulence in particular. Such
assumptions are usually expressed in empirical forms that require the values of one or
more parameters to be identified in each particular application during the “calibration”
process. This requires the results of the computational models to agree closely with
observed data. It is important that this calibration process does not violate the physical
integrity of the parameters. The procedure of forcing the model parameters in order to
reproduce the observed data is due to the fact that the mathematical model is just an
approximate conceptualisation and representation of the real world systems. The model
errors include missing processes and parameters and/or limited knowledge about
representations and governing laws about the processes, the error of discretisation of both
the physical domain and equations, arbitrary numerical processes depending on the
applied numerical scheme, bugs in the numerical code, errors in the measured data, and
so on. Thus, there is a need for the modeller to acknowledge and cope with uncertainties.
Figure 1.1 schematically illustrates how the science expressed through mathematical
modelling interacts with the real world.

Figure 1.1. The universe of natural
processes related to the scientific
understanding expressed through the
mathematical modelling.

On the left side of the figure are the natural processes that are recurrently coupled to
themselves. On the right side is the human understanding that attempts to model the
natural world. Experimentation (conducted in laboratory or scale models) consists of
manipulating the environment and observing the changes. Furthermore it also implicitly



Nonlinear dynamics and chaos with applications to hydrodynamics and hydrological modelling 4

includes monitoring and collecting data about the real world processes that are
measurable and of interest. Theorising is the process of constructing and manipulating
models based on the application of (physical) laws about the perceived and identified
underlying processes with an ultimate goal of making accurate predictions of future
observations. Simulation, mostly done with computational models, somewhat resides
between the two, and manipulates both models and environment trying to answer “what-
if” questions and scenarios.

The inherently nonlinear nature of these natural processes means that they can exhibit
sudden and dramatic changes in the form of their behaviour when small changes are
made to the parameters describing the interactions within the system and/or in their initial
(boundary) conditions. Further emergent properties—that is, characteristics whose
existence is not at all apparent in the initial formulation of the system, frequently arise,
and theories of self-organisation in natural systems (Haken 1983) have attempted to
analyse certain aspects of this behaviour. While non-expert users of these computational
models can hardly expect—nor be expected—to be aware of the subtle details
surrounding the technical modelling aspects, it is vital that those responsible for making
decisions on possible courses of action in the aquatic environment be aware in particular
of this second category of general constraints and characteristics that affect the
applicability and reliability of the models.

To achieve this awareness, it is essential to go beyond our conventional linear
intuition and to develop an appreciation of what can—as well as what cannot—occur in
complex adaptive nonlinear systems. The development of the appropriate nonlinear
intuition is extremely important, for it is clear that mathematical models, to the extent that
they are credible, not only tell us what is likely to occur but can limit our perceptions of
what can actually occur. Indeed, in our later discussion of the history of classical
modelling based on the Newtonian mechanics, we will exemplify this (potentially
negative) aspect of modelling. The essence of this phenomenon is that even in dynamical
systems whose evolution from moment to moment follows precise deterministic laws,
with no external random influences of any kind, the behaviour over long times can be
essentially unpredictable and irregular. That a system governed by deterministic laws can
exhibit effectively random-like behaviour runs directly counter to our normal intuition!
Perhaps it is because this intuition is inherently linear; indeed, this phenomenon cannot
occur for linear systems. Linear methods interpret all regular structures in a data set, such
as dominant frequency, as linear relationships. This means that the intrinsic dynamics is
of the system are govern by the linear paradigm that small causes lead to small effects.
Since linear equations describing dynamical system can only lead to exponentially
growing or periodically oscillating solutions (dynamical evolution of the system), all
irregular behaviour of the system has to be attributed to some random external input to
the system. On the other hand, as we will demonstrate throughout this work, random
input is not the only possible source of irregularity in a system’s output: nonlinear
dynamical systems can produce very irregular data with purely deterministic equations of
motions, caused by slight changes in some of the control parameters and the sensitivity to
the initial (and/or boundary) conditions. Of course, the systems which exhibits both,
nonlinearity and random input, will most likely produce irregular data as well.
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The *small causes-small effects’ intuition is, more likely, because of our view of a
clockwork universe, a view which in the past was vigorously stated by the great French
mathematician and natural philosopher Laplace; in Philosophical Essays on
Probabilities, Laplace wrote:

“An intellect which at any given moment knew all the forces that animate
Nature and the mutual positions of the beings that comprise it, if this
intellect were vast enough to submit its data to analysis, could condense
into a single formula the movement of the greatest bodies of the universe
and that of the lightest atom; for such an intellect, nothing could be
uncertain; and the future just like the past would be present before its
eyes.”

In short, Laplace argued that from a knowledge of the initial state of the universe (and its
forces) comes an exact knowledge of the final state of the universe. Indeed, in Newtonian
mechanics, this belief is in principle true. However, in the real world exact knowledge of
the initial state is not achievable. No matter how accurately the velocity of a particular
particle is measured, one can demand that it be measured more accurately. Although we
may, in general, recognise our inability to have such exact knowledge, we typically
assume that if the initial conditions of two separate experiments are almost the same, then
the final conditions will be almost the same. For most smoothly behaved systems, this
assumption is correct. But for complex nonlinear natural systems, this assumption is far
from the truth. At the turn of the 20" century, Henri Poincaré, another great French
mathematician and natural philosopher, understood this phenomenon very precisely and
wrote (as translated in Science and Method (1908, 1953)):

A very small cause which escapes our notice determines a considerable
effect that we cannot fail to see, and then we say that the effect is due to
chance. If we knew exactly the laws of nature and the situation of the
universe at the initial moment, we could predict exactly the situation of
that same universe at a succeeding moment. But even if it were the case
that the natural laws had no longer any secret for us, we could still only
know the initial situation approximately. If that enabled us to predict the
succeeding situation with the same approximation, that is all we require,
and we should say that the phenomenon had been predicted, that it is
governed by laws. But it is not always so; it may happen that small
differences in the initial conditions produce very great ones in the final
phenomena. A small error in the former will produce an enormous error in
the later. Prediction becomes impossible, and we have the fortuitous
phenomenon.

Indeed, this great French mathematician was working on a fortuitous phenomenon, as he
called it, which was deep: chaos.
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1.2 Rediscovering chaos: a new tool in the arsenal of science

In the movie Jurassic Park, Jeff Goldblum played a character who described himself as a
“chaotician”, an expert in chaos theory, dealing with “predictability in complex nonlinear
systems...the “butterfly effect”. As demonstration, he placed a drop of water on the back
of Laura Dern’s hand. “Which way is going to roll off?” he asked. She reasoned that a
second drop, released at the same place as the first, would have the same path. To her
surprise, each drop followed its own unique path rolling downward. “Why?” explained
Goldblum, “...because tiny variations in the initial position and the skin never repeat and
vastly affect the outcome... That is chaos.”

James Gleick (1987) stated “where chaos begins classical science stops”. As long as
the world has had physicists inquiring into the laws of nature, it has suffered a special
ignorance about the disorder in the atmosphere, in the turbulent sea, in the fluctuations in
the ecological populations, in the erratic morphodynamic changes, in the beat of the heart
and the pulsations of the brain. The irregular side of nature, the coexisting and switching
dynamical regimes- these have been puzzles to science. But at the end of the nineteenth
century J.Hadamard for the first time discovered chaos in a special (Hamiltonian)
dynamical system called the geodesic flow on a manifold of negative curvature
(Hadamard, 1898). Hadamard immediately understood the profound philosophical
importance of his result: an arbitrarily small uncertainty on the initial condition entails a
large uncertainty on the predicted state of the system after a sufficiently long time. Other
scientists, such as P.Duhem and H.Poincaré also understood the importance of the
phenomenon discovered by Hadamard, and Poincare (1908) discusses the relevance of
sensitive dependence on initial condition to the dynamics of a hard sphere system, and to
weather predictions. The early discovery of chaos had however no lasting influence on
physics. The new ideas were forgotten and had to be rediscovered again, much later and
independently. On the mathematical side, however, the work of Hadamard and Poincaré
led to uninterrupted progress up to the present day, with contributions of such scientists
as Kolmogorov, Smale, and many more. Incidentally, an essential step in the
mathematical development of dynamical systems theory was the creation of ergodic
theory, for which ideas originating in physics were important.

The time evolution of chaotic systems is typically complicated and irregular looking.
Indeed, a regular (periodic or quasi-periodic) time evolution is predictable and therefore
not chaotic. Although chaotic dynamical systems never exactly repeat, nor settle upon
periodic trends, they are not random. They are deterministic in nature, they have
structure, though subtle, and that makes them at least partially predictable. In other
words, they show that the model is predictable in its unpredictability. When the interest
for these kinds of irregular and complicated time evolutions of dynamical systems
developed among physicists in the 1970s to give what is now called chaos theory (or
theory of nonlinear dynamics more broadly), all kinds of new scientific tools existed that
had not been available to Poincaré. One such tool is the electronic computer, which
allowed Lorenz (1963) to compute in 1963 for the first time a chaotic time evolution of
the simplified weather dynamics (see Chapter 3 for details), and to visualize it in the form
of what we now call a strange attractor. Other tools were mathematical, like ergodic
theory. Finally, there were new experimental laboratory tools permitting for instance a
detailed study of the onset of hydrodynamic turbulence, one of the most challenging and
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difficult phenomena. What we know about it results mostly from experimental studies,
which knowledge is nowadays encapsulated into computational models. It is these
experimental studies that showed that hydrodynamical turbulence is basically a
deterministic chaos, as we would now say, corresponding to the claim of Ruelle and
Takens (1971), that it is described by strange attractors. A mathematical proof of chaos in
Navier-Stokes equations does not exist at this time (and when one is obtained, it will no
longer create much excitement). We have thus here a very interesting situation from
epistemological point of view, where we are firmly convinced of a certain mathematical
fact (the existence of chaos in the solution of the inherently nonlinear Navier-Stokes
equations) but our belief is based on experimental evidence, based on the data analysis of
the observations.

As we mentioned above, the ultimate goal of physically-based modelling is actually
forecasting, which raises another important issue related to deterministic chaos. Here the
main objective is an attempt to provide a reliable forecast for some time into the future
(the forecasting horizon) given some knowledge about the performances of the
instantiated model and the situations (observations) in the real world system until the
current time. The main issue is to set (adjust) the physically-based model to assimilate the
initial (boundary) conditions at time now as accurately as possible, and to develop the
forecasts up to the forecasting horizon making the best use of the observed available data.
This brings up the notion of data assimilation techniques which can dramatically improve
the performances of the mathematical model. State space data-driven models are the
popular form of data assimilation into physically-based models (they are discussed in
Chapter 5 of the thesis). Another alternative approach of improving the performance of
physically-based models is to work with the differences (errors) between the model
outputs and the observations. These differences provide useful insight of what is missing
in the terms of processes and conceptualisation from the original model. The main idea is
that the differences can be modelled very accurately using pure data-driven techniques
such as various statistical methods, artificial neural networks, wavelet networks, fuzzy
logic approximators and other techniques. The forecasts on the differences in a
conjunctive use with the forecasts from the physically based model can lead to
improvements in the results. Data-driven modelling is therefore a valuable complement
to the physically-based modelling in the forecasting situations. However, data-driven
modelling has also its own value independently of the physically-based modelling, and in
the last decade has developed as an alternative to it. If one neglects the focus of using a
mathematical model to better understand and describe the relationships between different
variables and components of the underlying physical system, the main issue becomes the
temporal accuracy of moment-to-moment estimates of the time series made by any
model. In this respect, a data-driven model may give substantial forecasting
improvements. Furthermore, this is particularly emphasised in the case where the
physical processes are difficult to identify and formulate in an appropriate mathematical
algorithmic form. Basically, what the data-driven model provides is a link (mapping)
between the input-output sets of data observed on particular processes, such as
meteorological forcing and water level in the sea. The data-driven model does not make
certain assumptions and conceptualisations about the underlying processes that are
connected in a “black-box” manner. The model has its own internal structure, for
example, mimicking the brain structure as an artificial neural network does, and these
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structures are very hard to interpret in connection to the physical processes being mapped
in the model. Generally, the data-driven model has to be trained on data, namely
observables of the natural processes. It can be said that the model has “learned” from
data. This led to a new stream of modelling in hydroinformatics termed as model
induction from data (Dibike, 2002). What is important here is that there should be
completeness about the input data in relation to the physical processes so that an accurate
and reliable model can be induced by the learning machine based on computational
intelligence and machine learning techniques. In this way, the data-driven model
naturally tries to minimise the dependency on knowledge of the real world processes.

Increasingly however, the complementary role of data-driven and mathematical
modelling is being recognised. This is due to the fact that pure mathematical theories may
fail to make accurate predictions of complicated water end environmental-related
processes because the real world dynamical systems do not always obey equations with
numerical and analytical solutions. Similarly, data-driven models induced from
complicated observations and sometimes even missing observations of hidden processes
are often inadequate because they fail to relate (and sometimes explain) complex effects
from simple causes. It is only through the marriage of mathematical and data-driven
modelling that many asserts of the complex dynamical processes can withstand
reasonable tests. The theory of nonlinear dynamics and chaos is the good candidate to
play this complementary role due to the fact that this theory originated based on
mathematical analysis of deterministic dynamical systems described by a set of
differential equations.

Thus, the main goal of this thesis is to assist in the development of this nonlinear
literacy—or in the current context, numeracy- by describing, elaborating mathematically
and illustrating the general principles and concepts that arise from modelling complex
nonlinear dynamical systems in the aquatic environment. Our motivation and perspective
is based on the considerable work in the last two decades that has been made in
understanding nonlinear phenomena in the natural sciences (see, e.g. Campbell, 1989). In
particular, the surge of interest in nonlinear dynamical systems and chaos theory has
shown that such concepts as bifurcations, attractors, basins of attraction, dynamical
regimes, fractals, dimensions, predictability and local modelling are essential for
understanding the possible consequences of nonlinearity for modelling.

It must be said at this point that, however insightful and brilliant, the physical ideas of
Poincaré on chaos were at the level of scientific philosophy. To some physicists chaos is
a science of process rather than a state, of becoming rather than being. But now, after the
rediscovery of chaos, science is focused and looking for examples of chaos which seem
to be intrinsically inherited in many natural dynamical processes and systems. As
Feigenbaum (1983), one of the greatest chaos theorists, put it: “Fifteen years ago, science
was heading for a crisis of increasing specialisation. Dramatically, that specialisation has
reversed because of chaos”. Because it is a science of the global nature of nonlinear
dynamical systems, it has brought together thinkers from fields that had been widely
separated. Since new tools are now available for making strong claims about the
universal behaviour of complexity, our present understanding of chaos in physics and
mathematics is at the level of quantitative science. The theory of nonlinear dynamics and
data analysis have progressed to the stage where most fundamental properties of
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nonlinear dynamical systems have been observed in the laboratory and proven
theoretically on various mathematical models.

What is currently lacking, and especially in the field of hydroinformatics, is the study
of such nonlinear dynamical systems (e.g. movement of the body of water in oceans,
rivers, subsurface and surface, ecological processes, hydrometeorological processes etc.)
applying and extending the methods and techniques developed in the theory of nonlinear
dynamics and chaos. Often we know little about the structure and interactions of such
complex dynamical systems, but in practice we can measure (partly) its output and some
of its inputs. In this respect, most direct link between the methods and concepts of
deterministic chaos and the real world is the nonlinear analysis of data (time series) from
real systems. Yet surprisingly the interactions on one level of understanding are often
very similar to the interaction on other levels. Why is this so? Consider the following
research questions: (i) Why do we find self-similar structures in biology and other
disciplines? How does this relate to the self-similarity found in inanimate objects
(phenomena) such as clouds, mountains, coast lines, turbulent eddies, fluid dynamics
patterns and sedimentation patterns? Is there some way of generalising the notion of self-
similarity to account for these types of phenomena? (ii) Is there a common reason why it
is difficult to predict weather patterns, turbulence and other natural processes? Is this
unpredictability due to limited knowledge of the underlying processes or is it somehow
inherent in these complex systems? Can we quantify it? Can we increase our knowledge
about the system under study in order to improve the mathematical models? (iii) How can
we generally model and predict such unpredictable systems? The answers to these
questions are apparently related to one simple fact: nature is chaotic.

Developing modelling methodologies and demonstrating applications of chaos to
hydrology, hydrodynamics, meteorology, ecology (and other such disciplines), which are
currently at very opening stage, may work towards reaching the level of quantitative
science and creating tools for the engineering practice, which is the major objective of
this thesis.

1.3 Scope and contributions

This work presents a novel hybrid modelling approach based on the theory of nonlinear
dynamics and chaos. The modelling technique combines the multivariate phase-space
reconstruction of the underlying dynamics based on time series of observables and
mixture of local models learned in dynamic Bayesian network framework. The described
modelling approach is applied for identification, modelling and prediction of
hydrodynamical and hydrological systems: sea water level and surge dynamics along the
Dutch cost, precipitation dynamics at De Bilt meteorological station in The Netherlands
and rainfall-runoff dynamics of the Huai river in China. The results form these
applications show that the methodology and the modelling framework presented in this
thesis demonstrate reliable and accurate short-term forecasting performances and can be
used as a modelling tool in the engineering practice.

Contributions of this thesis include the following:

A critical review of learning models from data from a statistical perspective focused
on regression and density estimation, exemplifying both, the classical approaches based
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on empirical risk minimisation and the approaches based on structural risk minimisation.
Demonstration through examples and original discussions are provided.

Introduction, mathematical elaboration and demonstration of the methods and
techniques based on the theory of nonlinar dynamics and chaos for the identification,
reconstruction, delineation and quantification of the underlying dynamics of nonlinear
dynamical systems from a time series of observables. The classical phase-space
reconstruction of the dynamical systems known in the literature addresses methods and
techniques based on univariate time series. This work further extends and proposes
methodology for multivariate embedding, which is then tested and further demonstrated
on the real case studies. Furthermore, this work elaborates how multivariate local models
can be constructed in the reconstructed phase-space. Outlook of a methodology for
analysis of spatially extended dynamical systems is provided.

Design, mathematical description, implementation and application of a novel data-
driven modelling framework, termed as Hidden Markov Mixture of Models (experts).
The framework aims at separating the seemingly complex global nonlinear dynamics into
couple of local sub-dynamics that can be modelled by separate models (experts). The
separate local multivariate models through a competition specialise on modelling
different parts of the reconstructed phase space of the dynamical system where the gating
procedure between the models is described with a dynamic Bayesian network expressed
as hidden Markov model. First, this framework is tested using synthetic data generated by
known dynamical systems and than applied to the case studies.

Development of methodology, based on the multivariate phase-space reconstruction of
and the Shannon’s conditional entropies for assessment of the local uncertainty and
predictability of the dynamical system. Its application to the surge dynamics at Hoek van
Holland tidal station in the North Sea.

The results from the applications of this novel hybrid modelling technique, which
showed improved predictive performances in comparison with other nonlinear data-
driven modelling techniques, such as artificial neural networks and fuzzy inference
systems.

1.4 Thesis outline

This work is composed of seven chapters. A short overview of the material to be
presented in the following chapters is given here.

Modelling nonlinear dynamical systems based on chaos theory is closely connected to
data-driven modelling, as we will elaborate latter in this work. Chapter 2 describes the
history and critically reviews learning from data, exemplifying both, the classical
approaches based on empirical risk minimisation and the approaches based on structural
risk minimisation. The problem of learning from data as an ill-posed problem is closely
related to computational intelligence based on search and optimisation methods that are
further discussed in this chapter.

Chapter 3 is at the heart of this work. It describes, elaborates mathematically and
illustrates the main concepts of the theory of nonlinear dynamics and deterministic chaos.
It further introduces and demonstrates the methods and techniques for the identification,
reconstruction, delineation and quantification of the underlying dynamics of nonlinear
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dynamical systems from a time series of observables. The phase-space reconstruction
based on univariate time series is further extended and elaborated using multivariate
embedding methodology proposed in this thesis. Finally, it elaborates how models can be
constructed that realistically map the underlying structure dictating the dynamical
evolution of the system.

Chapter 4 further extends this notion of models that learn from data by introducing the
Bayesian network formalism. Special attention is given to dynamic Bayesian networks
that are well suited for learning models from time series data observed on complex
dynamical systems.

In Chapter 5 we propose, mathematically elaborate and demonstrate a novel hybrid
framework for modelling nonlinear dynamical systems that draws on modelling based on
both chaos theory and dynamic Bayesian networks.

Chapter 6 describes the results of the applications of the nonlinear dynamics and chaos
to the following hydroinformatics problems: (i) Chaos and predictability of water levels
and surges along the Dutch coast; (ii) Identification and reconstruction of the chaotic
rainfall dynamics on different temporal scales and (ii) Rainfall-runoff modelling.

Chapter 7 summarises the conclusions drawn from this present work and highlights
the strengths and weaknesses of the theory of nonlinear dynamics and deterministic chaos
applied to hydroinformatics problems. It further identifies some related application areas
that deserve further investigation in the future.



Chapter 2
Learning and Regularisation

2.1 General

Modelling nonlinear dynamical systems based on chaos theory and the methodology
elaborated in this thesis is closely linked to data-driven modelling, i.e. learning models
from data. This learning problem is an ill-posed problem and related to computational
intelligence techniques based on search and optimisation. Thus, the main aim of this
chapter is to provide a brief review of the learning theory from statistical and machine
learning perspectives and the associated methods and techniques, which are relevant and
further used in this work. It addresses both, the classical approaches based on Empirical
Risk Minimisation (ERM) principle and the approaches based on Structural Risk
Minimisation (SRM) principle. The problem of learning is so general that almost any
question that has been discussed in statistical science has its analogy in learning theory.
Furthermore, some important general results were first found in the framework of the
learning theory and then reformulated and projected in the terms of statistics.

In the beginning of this thesis we postulated (without any discussion) that learning is a
problem of function estimation on the basis of empirical data (observables). The ultimate
goal is the modelling of a mapping f: x—y from multidimensional input x to output y. The
output can be multidimensional, but we will mostly address situations and applications
where it is a one dimensional real-valued vector. The multivariate function estimation is
not, in principle, distinguishable from supervised machine learning. However, until
recently supervised machine learning and multivariate function estimation, based on the
statistical learning theory, had fairly distinct groups of practitioners, and small overlap in
language, literature, and in the kinds of practical problems under study.

2.2 Setting of the learning problem

We describe the general model of learning from observables, based on Vapnik’s
statistical learning theory (Vapnik, 1995, 1998), through the following three components
(Figure 2.1):

(i) A generator (G) of a random vectors drawn independently from a fixed
unknown probability distribution function p(x).

(i) A supervisor (S) who returns an output value y to every input vector x (based on the
true function y=f(x)), according to a conditional probability distribution function
p(y|x), also fixed and unknown.
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(iii) A learning machine (LM) capable of implementing a set of functions f (x, ),
0 € A where A is a set of parameters’.

Figure 1.1. A model of learning from
observables (Vapnik, 1995). During
the learning process, the learning
machine observes the pairs (X, y) (the
training set) and uses them to adapt its
parameters. The goal is to return a
value y, which is close to the
supervisor’s response y. After training,
the machine should generalise well,
that is, given a new input pattern x, the
machine will provide a reasonable
prediction of the unobserved output
associated with this x.

In this manner, the learning problem is that of choosing from a given set of functions f(x,
a), aeh *the one which best approximates the supervisor’s response. The selection of

the desired estimated function is based on a training data set of N
independent and identically distributed (i.i.d) observations drawn according to the joint
probability distribution p(x, y)=p(y|X)p(X):
D=(xi, Yi)i=1..n
(2.1)

! Note that the elements € € MAare not necessarily vectors, they can be any abstract parameters.
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2.3 Learning and the problem of risk minimisation

In order to find the best available approximation to the system’s (supervisor’s) response,
the fit of the model to the system is measured using a criterion representing the loss or

discrepancy between the response of the system y to a given input x and
the response provided by the learning machine. The performance of the model is
measured by the expected value of the loss, termed as expected risk:

2.2)

The goal is to find the function minimises the risk functional R(a) (over the

class of possible functions f(x, ), @ € /in the situation where the joint distribution p(x,
y) is unknown and the only available information is contained in the training set (2.1).
The quality R(«) represents the ability to yield good performance for all possible

situations (i.e. input patterns (X, y)) and is thus called the generalisation error. The
optimal set of parameters minimises the generalisation error:

(2.3)

In order to minimise the risk functional, the following inductive principle can be applied
(Vapnik, 1995):

(i) The risk functional R(a) is replaced by so-called empirical risk functional

(2.4)

(i) One approximates the function that minimises the risk (2.2) by the
function minimising the empirical risk (2.4).

This corresponds to estimating the joint probability by the empirical density:

where 3(:) is the Dirac function. Minimising (2.4) is referred to as training the model.
The data set D and the empirical risk Remp(t) are the training set and training error,
respectively.

This principle is called the empirical risk minimisation inductive principle (ERM
principle). An inductive principle defines a learning process if for any given set of
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observations the learning machine chooses the approximation using this inductive
principle. In learning theory the ERM principle plays a crucial role and is quite general.
The classical methods for the solution of a specific learning problem, such as the least-
squares method in the problem of regression estimation or the maximum likelihood (ML)
method in the problem of density estimation, are realisations of the ERM principle for the
specific loss (error) functions.

2.4 The three main learning problems

The formulation of the learning problems is rather broad and it naturally encompasses
many specific problems. Generally applicable, the learning problems can be categorised
in three main categories, namely: pattern recognition, regression estimation and density
estimation. Further in this section we give a brief description of each of the learning
problems on the basis of the model of learning from observations described in Section
2.2.

2.4.1 Pattern recognition

Let the supervisor’s output y take only two values y={0, 1} and let the set of functions f(x,

a), aeh »be a set of indicator functions (binary type of functions which can take only
two values: zero and one). For the pattern recognition problem the following loss
function can be considered:

(2.5)

For this loss function, the risk functional (2.2) determines the classification error. The
problem, therefore, is to find an approximation function that minimises the probability of
classification error when the join probability p(x, y) is unknown, but the data (2.1) are
given.

2.4.2 Regression estimation

We now consider the case there the supervisor’s answer y is a real value, and when f(x,
a), @ € Ajs a set of real functions that contains the regression function:

f(x, a0)=ly p(ylx). (2.6)
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It is known that the regression function is the one that minimises the risk functional (2.2)
with the following loss function?:
L(y, fox@)=(y—f(x, @))*
2.7

Thus the problem of regression estimation is the problem of minimising the risk
functional (2.2) with the loss function (2.7) in the situation where the joint probability
p(x, y) is unknown, but the data (2.1) are given.

2.4.3 Density estimation

Finally, consider the problem of density estimation from a set of densities p(x, o),
a € A .For this learning problem we consider the following loss function:

L(p(x, a))=—log p(x, a). (2.8)

It is known that the desired density minimises the risk functional (2.2) with the loss
function (2.8). Thus, again to estimate the density from the data one has to minimise the
risk functional under the condition that the underlying probability distribution is
unknown, but the i.i.d data (2.1) are given.

In the text above (Section 2.3) we mentioned that the empirical risk minimisation
principle can be seen as a framework for the realisation of the classical methods for the
solution of a specific learning problem, such as the least-squared method and the ML
method. Indeed, by substituting the specific loss function for the regression estimation
(2.7) in the empirical risk functional (2.4) one obtains the following functional to be
minimised in order to find the proper model estimation and the optimal model parameters

(2.9)

which forms the framework for the least-squared method. Alternatively, by substituting
the loss function of the density estimation problem (2.8) in the empirical risk functional
(2.4) one obtains the following functional to be minimised:

(2.10)

2 |f the regression function f(x) does not belong to f(x, a), oeh sthen the function f(x, ag)
minimising the risk functional (2.2) with the loss function (2.7) is the closest to the regression in

the metric



Learning and regularisation 17

Minimising this functional is equivalent to the maximum likelihood method.

2.5 The paradigm of solving learning problems based on the
Empirical Risk Minimisation principle

The setting of the learning problem involves two major requirements: (i) to estimate the
desired function from a wide set of functions and (ii) to estimate the desired function on
the basis of a limited number of examples (observables). The methods developed in the
framework of the classical learning paradigm (created in the 1920s and 1930s) did not
take into account these requirements. Therefore, in the 1960s considerable effort was put
into both the generalisation of the classical results for wider sets of functions and the
improvement of the existing techniques for statistical inference. Although there are
several classical techniques for estimating the parameters of a set of functions and density
estimations, such as the method of moments (dated back to Johan Bernoulli, 1667-1748),
method of maximum likelihood (Fisher, 1920), method of least-squares (dated back to
Gauss 1777-1855), method of minimum cross entropy (Shanon, 1949), method of
Bayesian estimation (dated back to Bayes, 1763), method of probability weighted
moments (Greenwood et al., 1979) and method of L-moments (Hosking, 1990), most of
the models of function estimation are based on the maximum likelihood method. It forms
an inductive engine in the classical paradigm. Textbooks such as Benjamin and Cornell
(1970) and Berger (1985) treat the classical methods in details.

2.5.1 Maximum likelihood (ML) and the density estimation problem

It is difficult to trace back who introduced the ML method, though Daniel Bernoulli
(1700-1780) was one of the first to report it. In 1922 Fisher developed the ML method
for estimating the unknown parameters of the density (Fisher, 1952). The method can be

summarised as follows: Let p(x, a), aeh *be a set of density function where in this
case the set A is necessarily constrained in R" (o is a n-dimensional vector). The unknown
density p(x, ag) belongs to this set. The problem is to estimate this density using i.i.d. data
(X3,..., Xy) distributed accordingly to this unknown density. Fisher suggested
approximating the unknown parameters by the values that maximise the function:

(2.11)

The ML gives an asymptotically unbiased parameter estimation, and of all the unbiased
estimators it has the smallest mean squared error. The variances approach asymptotically
to:
Var(a)=—E(&* In L(a)/d0?)
(2.12)
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Furthermore these estimators are invariant, consistent and sufficient (Hald, 1952).
Analytical expressions for the parameter estimation are sometimes difficult to derive,
which means that numerical optimisation routines have to be derived in order to
determine the maximum of the likelihood function. However, those numerical routines
may also have problems in finding the optimum due to the reason that the likelihood
function can be extremely flat for large sample sizes and due to the existence of local
maxima.

Some of the characteristics of the ML estimators discovered during their applications
in the past decades are: (i) ML methods are straightforward to implement; (ii) ML
estimators may not exist (Vapnik, 1995), and when they do, they may not be unique or
give a biased error (Koch, 1991); (iii) ML estimators may give inadmissible results
(Lundgren, 1987); (iv) the likelihood function can be used for other purposes than just
finding the parameters: values close to the ML are more plausible than those further
away. This argument can be utilised to obtain an interval, which comprises a plausible
range of values for certain parameters a; (v) ML estimators are adaptable for more
complicated modelling situations, because ML satisfies a convenient invariance property
(Huber, 1964): If q=f(a), where f is an objective function, then qu =f(op.). Thus having
found ML estimators for one parameterisation, the ML estimators for other
parameterisations are immediate.

Furthermore, the ML method allows the linking of the risk function (2.2) and the
assumption on the noise distribution on the observed output; see Section 2.5.3 on
regression estimation model. One can say that the ML is very useful, since it is quite
straightforward to evaluate from the ML estimators and the observed information.
Nonetheless, it is an approximation and should only be trusted for large data sets (though
the quality of approximation will vary from model to model).

2.5.2 ML and the pattern recognition (discriminant analysis) problem

Using the ML technique, Fisher (1922) considered a problem of pattern recognition
(which he called discriminant analysis). He proposed the following model:

There exist two categories of data distributed according to the two
different statistical laws py(x, ) and px(x, ") (densities, belonging to
parametric classes). Let the probability of occurrence of the first category
of data be q; and the probability of the second category be 1-qg;. The
problem is to find a decision rule that minimises the probability error.

Knowing these two statistical laws and the value of g, one can immediately construct
such a rule: The smallest probability of error is achieved by the decision rule that
considers vector x as belonging to the first category if the probability that this vector
belongs to the first category is not less then the probability that this vector belongs to the
second category. This happens if the following inequality holds:
AuP1(X, o )>(1-q)pa(X, B).
(2.13)
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One can consider this rule in the equivalent form as:

(2.14)

called the discriminant function (rule), which assigns the value of 1 for representatives of
the first category and value of —1 for representatives of the second category. To find the
discriminant rule one has to estimate two densities py(x, @) and p, (x, B). In the classical
paradigm ML method in the framework of the ERM is used to estimate the parameters o
and B~ of these densities.

2.5.3 ML and the regression estimation model

Regression estimation in the classical paradigm is based on another model, the so-called
model of measuring a function with additive noise:

Suppose that the unknown function has a parametric form:

fo()=f(x, ao) .15
2.15

where x can be a multivariate vector and @ € Ajs an unknown vector
of parameters. Suppose also that in any point x; (pattern in a
multidimensional space) one can measure the value of this finction with
additive noise:
yi=f(xi, ao)+ei,
(2.16)

where the noise i does not depend on xi and is distributed according to
a known density function p(g). Then the problem is to estimate the

function f(x, ao) from the set f(x, o), &€ A susing the data obtained by
measurements of the function f(x, ay), corrupted with additive noise.

In this model, using the observations of pairs D=(xy, y1),..., (Xn, Yn) ONe can estimate the
parameters o, of the unknown function f(x, ag) by the ML method, namely by minimising
the functional:

(2.17)
where p(e) is a known function and e=y—f(x, o). Under the assumption of normal

distribution law:

(2.18)
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with zero mean and some fixed variance o (scalar in univariate or covariance matrix in
multivariate case) as a model of noise, one can obtain the likelihood of the data set, which
is the least-squared method:

(2.19)

Maximizing the likelihood (2.19) over the parameters a is equivalent to minimising the
function:

(2.20)

which is the so-called least-squared functional, where the loss function (2.7) is based on

the Euclidean norm || B ||2 The least-squared solution in this case is a special case of the
empirical risk minimisation inductive principle. Choosing other laws p(g), one can obtain
other ML parameter estimators in the regression problem (see Huber, 1964 for details).

2.5.4 Noisy output and the generalisation error

In the regression estimation problem, we have shown the link between the assumed
output noise distribution and the loss (error) function. Let us now briefly demonstrate the
influence of this noise on the generalisation performance using the expected risk
functional. Let us assume again that the system is corrupted by additive, independent
noise, with zero mean and o variance: y=f(x, a)+c. The underlying joint probability
distribution, which generates the output of the system, can be written as p(x, y)=p(y|x)
p(x)=p(g)p(x). Substituting the loss function (2.7) into (2.2), for the expected risk
(generalisation error) follows:

(2.21)

By recaling that and
one can derive the following expression for the generalisation error:
(2.22)

The difference in the generalisation error between the noisy and noise-free case is an
additive constant. This gives the following insights:

* The noise level is a lower bound on the generalisation error
* The generalisation error of a perfect model learned from the data is the variance of the
output noise (the integral on the right-hand side of Equation 2.22 vanishes)
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« Qutput noise can be neglected as far as the generalisation error is concerned. However,
this of course is not the case with the empirical risk (training error).

2.5.6 Linear regression

In this part we describe the particular case where the model is linear, since it will be used
latter for constructing the local linear models in the phase space of a dynamical system
(see Section 3.3.7). The unknown function in a parametric form is given as:
f(X, 0g)=x"-a.
(2.23)

where T is transpose operator and & € Ais an unknown vector of parameters. We also
assume that the system is linear, corrupted by additive independent normal noise. The
data set consists of a number of N input-output pairs, which are mapped as: y=x-oo+e. The
goal is to estimate the optimal set of parameters ay. Let us denote the by X, Y and E the
NxP, Nx1 and Nx1 matrices (respectively) containing the transposed input, output and
noise vectors:

(2.24)

The empirical risk functional is expressed simply as:

(2.25)

The linear maximum likelihood estimator is obtained by minimising the empirical risk

(2.25). Taking the derivative one can obtain the
well-known expression of the linear regression estimator:

(2.26)

2.5.7 Nonlinear regression

For the more general case of a nonlinear regression parameterised model f(x, o), using
the squared loss (error) function, the empirical risk is expressed as in (2.9). Unlike the
linear case, there is no analytical solution for the minimisation of the empirical risk.

Finding the proper model estimation and the optimal model parameters is a
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standard optimisation problem (see Section 2.8 for details). The gradient of the empirical
risk is:

(2.27)

For multivariate model f, J; is the Jacobian matrix calculated in o. For an univariate

model,

2.6 Non parametric methods of density estimation

Estimating densities from some narrow set of densities or so-called parametric set of
densities (e.g. from a set of densities determined by a finite number of parameters) was
the subject of the classical paradigm, where a “self-evident” type of model inductive
engine (e.g. ML method) was used. To estimate a density from the wide (nonparametric)
set one required a new type of inference that contains regularisation techniques.
Regularisation, loosely speaking, means that while desired model is constructed to map
approximately the observed vectors to the observed output of the system, constrains are
applied to the construction of the model with the main goal of reducing the expected risk
(generalisation error). We will return to the important subject of regularisation further in
this chapter. At the beginning of 1960s several such types of (nonparametric) algorithms
were suggested (Rosenblatt, 1956; Parzen, 1962; Chentsov, 1963). In the middle of
19970s the general approach for creating for creating these kinds of algorithms was found
(Vapnik and Stefanyuk, 1978). Nonparametric methods of density estimation gave rise to
statistical and machine learning algorithms that overcome the limitations of the classical
methods.

2.6.1 Parzen’s windows method

Among the various nonparametric methods of density estimation, the Parzen windows
method (Parzen, 1962) probably is the most popular and attractive. According to this
method, one first has to determine the so-called kernel function. For simplicity we
consider here a simple kernel function:

(2.28)
where K(u) is a symmetric unimodal density function. Using this function and the ERM
principle, one can determine the density estimator as:

(2.29)
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In the 1970s a comprehensive asymptotic theory for Parzen-type of nonparametric
density estimation was developed (Devroye, 1985). This theory includes the following
two important assertions:

(i) Parzen’s estimator is consistent (in various metrics) for estimating a density from a
wide class of densities (functions)

(if) The asymptotic rate of convergence for Parzen’s estimator is optimal for “smooth”
densities.

The main drawback of the findings was that for both classical models (pattern recognition
and regression estimation) using nonparametric methods instead of parametric methods,
it is possible obtain a good approximation to the desired dependency if the number of
observation is sufficiently large. Naturally a question follows: What does a sufficiently
large data set means? This question will be further addressed in this chapter with the
description of the structural risk minimisation principle.

2.6.2 The problem of density estimation is an ill-posed problem

Let us recall that the learning from data or simply the learning problem is to obtain a
function f in a given set A that minimises the risk functional (generalisation error):
R(a)=IL(x, a)p(x)dx
(2.30)

Let us now focus on the problem of estimating the density p(x). If one can estimate this
density correctly, one could hope in turn to estimate the R(a). We now wish to solve the
probability distribution problem, i.e. find the density p(u) (if it exists) satisfying the
integral equation:

(2.31)
where P(x) is an unknown probability distribution function, but we have number N of

observations Xy,...xy... available, sampled from this distribution. The unknown p.d.f. can
then be approximated by using the empirical distribution function (Figure 2.2):

Figure 2.2. The empirical distribution
function Py(x) constructed from the
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observed data xj,...Xy approximates the
truth probability distribution function
P(x) (Vapnik, 1998).

(2.32)

where H is the Heavyside (step) function. Its derivative is the Dirac function 3.
According to the fundamental Glivenko-Cantelli theorem (Glivenko, 1933), the empirical
distribution function (2.32) converges uniformly towards the desired function P(x). The
approximation problem of density estimation then becomes:

(2.33)

where the obvious solution to this problem is expressed as:

(2.34)

the empirical density estimation. Therefore, one has to solve the integral equation (2.31)
for the case where instead of the exact right-hand side, one knows an approximation that
converges uniformly to the unknown function as the number of observation increases.
Despite the (uniform) convergence of Py(x) towards P(x), the solution py(u) of (2.33)
does not converge towards the (unknown) solution p(u) of (2.31). The density estimation
problem is thus ill-posed problem (there may be a continuum of solutions in a wide class
of functions {p(u)} for a particular data set). Notice that the use of the empirical density
(2.34) as an estimate of p(x) in (2.3) leads to the expression of the empirical risk or
(unregularised) training error.

In order to practically illustrate the fact that the density estimation is an ill-posed
problem, we consider a classical example in nonlinear regression. Consider the extremely
simple setting: we try to estimate a sinusoid on 10 points with x values generated in the
interval [0;2] and y values in [-1;1].

The model is a simple one-parametric function y=sin(onx). It is a nonlinear model and
depends on a single parameter a, which in this case represents the frequency. Let us
consider for example that we generate 10 observations from this sinusoidal with
parameter a=1, which are slightly polluted by an additive independent with noise (see
Figure 2.3). The noise level is rather low with a zero mean and variance 0.03, which
gives us a signal-to-noise ratio of 5.1%.
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Figure 2.3. The 10 sampled data points
polluted with additive independent
white noise (variance 0.03) are
displayed with the sinusoid from
which they were sampled.
In this example the underlying mapping is taken as one of the possible models (from a
wide set of functions). The best estimation of the parameter (i.e. the one that gives

minimum risk and generalise best) would obviously be L = 1.1n this particular problem
where the model depends on a unique parameter, it is unnecessary to route to
multidimensional optimisation (to be discussed in this chapter). A simple line search will
suffice. The loss function, expressed as a mean squared error, is a function of a single
parameter:

(2.35)

Figure 2.4 shows the behaviour of the MSE as a function of the parameter o, which was
varied on the interval [0;15] using the step of 0.01. As expected the MSE (value 0.0158)

reaches its first minimum around G = 1(1.04 precisely), which is only a good estimated

local minimum, since the global minimum is in where the MSE actually reaches
value 0, due to the Ocam’s razor (to be discussed latter). The resulting model for the best

MSE and the optimal parameter is plotted together with the underlying
mapping function and the observables on Figure 2.5. The empirical risk minimisation
principle indeed minimises the distance to the data, as these points are actually on the
model.
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Figure 2.4. The MSE as a function of
the model parameter a (two minima
are clearly visible).

Figure 2.5. The solution function
which resulted from the empirical risk
minimisation principle (dashed)
together with the observed data points
and the “true” underlying mapping
(solid line).
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It is clear that this solution is not a favourable one in terms of generalisation
capabilities. Apart from a couple of observables where both curves cross each other, the
model produces estimations irrelevant to the underlying mapping. The reason for this is
simple: whatever set of N points we observe (generate in this case) with ordinates in
[-1;1], there exists a value of model parameter o, such that the associated sinusoid
approximates the data arbitrarily closely. This is reflected in the fact that the sinusoid,
even thought it has a single parameter, has infinite capacity, that is, it can interpolate with
arbitrary precision any set of any number of points within its range.

In order to create a better model, some background or a priori information
(knowledge) has to be presented to this simple learning machine. Let us add a small
regularisation term to the loss function (the mean squared error): C(a)=0.010°. This
regularisation term corresponds to imposing a penalty on the large values of the
parameter a. In other words, we express our belief that the probability density of the
parameter o, should be more densely distributed towards small values, which favours low
frequencies, i.e. smooth functions. The resulting loss function expressed in a term of
MSE as a function of parameter o is shown on Figure 2.6. It is now clearly visible that
due to the regularisation effect, there exists only one clear global minimum of the MSE at

the value of the parameter Figure 2.7 displays the shape of the resulting
model y=sin(1.04=x), original mapping and the data points. Note that despite the limited
amount of data available, the nonlinear model provides a fairly good approximation of
the underlying mapping in the domain of the data.

Figure 2.6. The MSE as a function of
the model parameter o with the help of
the regularisation term, resulting in one

clear MSE minimum (at )
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Figure 2.7. The solution function
which resulted from the regularised
empirical risk minimisation principle
(dashdotted) together with the
observed data points and the “true”
underlying mapping (solid line).

2.6.3 Artificial neural networks

The Artificial Neural Network (ANN) approach to nonlinear regression and density
estimation is a computational learning approach inspired by studies of the brain and
nervous systems in biological organisms. The inspiring functionality of a biological
neural system has been attributed to the parallel-distributed processing nature of the
biological neurons. An ANN emulates this structure by distributing computations
(learning tasks) to small and simple processing units, called artificial neurons, which are
interconnected to form a connectionist model—network (see Figure 2.8). The historical
developments of the first ANN-type of learning machine point back to Rosenblatt (1962)
who suggested the first model of perceptron. He described the model as a program for
computers and demonstrated with simple pattern recognition experiments that this model
can be generalised. In 1986 several authors independently proposed a method for
simultaneously constructing the vector coefficients for all neurons of the perceptron
model using the so-called back-propagation method (LeCun, 1986; Rumelhart, Hinton
and Williams, 1986), which was one of the important milestones in the general learning
theory.

Let us now return to our learning problem and briefly describe the ANNSs as nonlinear
nonparametric regression estimators. The regression function (f: x—y) is a multivariate
nonlinear and especially time-varying (dynamical) mapping, which is of particular focus
of this thesis. When the exact nonlinear underlying structure of this mapping cannot be
establish a priori, the general estimator may be synthesised as a combination of
parametrised basis functions:
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(2.35)

where G,i(X;, 6;) denotes multivariate basis function and BeR” is a set of model
parameters. These multivariate basis functions may be generated from univariate basis
function using radial basis, tensor product, wavelet basis or ridge construction methods.
This type of regression is often referred to as “nonparametric” due to the large number of
the basis functions. Equation (2.35) encompasses a large number of nonlinear estimation
methods such as: projection pursuit regression (Fridman and Stuetzle, 1981; Huber
1985), Volterra series (Billings, 1980; Mathews, 1991), fuzzy inference systems (Jung
and Sun, 1993), generalised linear models (Nelder and Wedderburn, 1972), multivariate
adaptive regression splines (MARS) (Friedman, 1991) and many artificial neural
networks paradigms including functional link networks (Pao, 1989), multi-layer
perceptrons (MLPs) (Rumelhart et al., 1986), radial basis function networks (RBFS)
(Moody and Darken, 1988; Lowe, 1989; Poggio and Girosi, 1990), wavelet networks
(Zhang, 1993; Bakshi and Stephanopoulos, 1993; Juditsky 1997) and hinging hyper-
planes (Breiman, 1993). For an introduction to ANNs we refer to any of the following
textbooks: (Bishop, 1995; Haykin, 1999; Hecht-Nielsen, 1990; Ripley, 1996).

Figure 2.8. Typical multi-layer
perceptron architecture.

ANNSs in data-driven modelling are interesting for several reasons: (i) they provide a
convenient generic non-linear modelling tool to the practitioners; (ii) they can
approximate any continuous function arbitrarily well as the number of neurons (basis
functions) increases without bound (Cybenko, 1989; Hornik, 1989; Poggio and Girosi,
1990); (iii) they have been successfully applied to many complex practical problems,
including speech recognition (Robinson, 1994), hand-written digit recognition (Le Cun et
al., 1989), financial modelling (Refenes, 1995), medical diagnosis (Baxt, 1990) among
others, and finally to many civil engineering problems ranging from rainfall-runoff
modelling in hydrology (Minns, 1995), runoff modelling (Minns 1998), ocean water level
forecasting (Frison et.al, 1994, Abarbanel, 1996), storm surges classification (Zijderveld,
2003), sediment transport modelling (Bogaard 2000), automated land-cover image
classification (Velickov et al., 2000) to geological classification and regression (Alvarez,
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2001). In this work we will make use of three types of neural network architectures in
some of the practical applications (see Chapter 6): fixed dimension MLPs, wavelet
networks, and both fixed and variable dimension RBFs.

MLPs among the other ANNSs architectures have enjoyed a privileged position in the
research community because of their simplistic structure, easy algorithmic
implementation, approximating capabilities, relation to the biological systems and
various historical reasons. Figure 2.8 shows a typical two hidden layer MPL with logistic
sigmoid basis functions in the hidden layers and a single output linear neuron.
Mathematically, networks of this type can be expressed as:

(2.36)

where by; denotes the bias on the ith neuron in the first layer and 6,; is a row vector
containing the weights connecting each input pattern with the ith neuron. The transfer
(basis) function o in the input and hidden layers is usually a nonlinear, increasing,
bounded function such as the hyperbolic tangent (tanh), the error function (erf) or the
simple sigmoid function: o(u)=1/(1+exp(—u)). For regression estimations, the transfer
function at the output layer is usually kept linear (for extrapolation reasons), while for
pattern recognition problems it is customary to apply a nonlinear bounded function again
(for soft classification purposes). This allows the interpretation of the output of the
network as a class membership. The choice of the number of input and output units is
generally problem and process dependent. In the time series modelling and nonlinear
dynamic system identification applications in this thesis, we will mostly have one output
(the forecast) and as many inputs as necessary for proper reconstruction of the dynamics
of the systems analysed. Although the MLPs discussed in this thesis exhibit a feed-
forward architecture, recurrent and modular type of architectures (Vassilios and
Kehagias, 1998) have also been applied to some of the analysed problems (see Chapter
6). A detailed description of the various ANN architectures is beyond the scope of this
thesis.

Finally, we would like to stress that almost fifteen years have passed since the
construction of the first efficient ANN-type of learning machine. From a conceptual point
of view, important achievements were made in constructing and investigating different
structures of ANNs. In spite of consequent achievements in some applications using
ANNSs, the theoretical results obtained did not contribute much to the general learning
theory. The so-called overfitting phenomenon observed in experiments is actually a
phenomenon of “false structure” known in the theory for solving ill-posed problems
(Denker et al., 1987). From the theory for solving ill-posed problems, regularisation
techniques were adopted that prevent overfitting (Plaut at al., 1986; Krogh and Hertz,
1992), force structural optimisation of ANNs (e.g. optimal brain damage and optimal
brain surgeon) (Le Cun et al., 1990; Hassibi and Stork, 1993) and stop training early
(Ljung et al., 1992).
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2.7 Regularisation

In the previous section, we described and demonstrated that the induction of models from
data using the ERM principle is ill-posed problem. In the 1960s and 1970s, in various
branches of mathematics, several streams of investigation were developed which founded
the basis for regularisation theory for solving ill-posed problems. We introduce the
concepts of well-posed and ill-posed problems and the regularisation technique in a
general context, which become very important for creating new paradigms in solving
learning problems.

2.7.1 Well-posed and ill-posed learning problems

The existence of the ill-posed problems has been observed in the early 1890s by the
French mathematician Hadamard (1902) who considered a typical inverse problem, the
problem of solving operator equations (finding f that satisfies the equality):

(2.37)

where Ais an operator and F belongs to the metric space F. A can be a linear as well
as a nonlinear operator. Typical examples include derivative or integral operators. For
example, a system governed by a second order differential equation can be discretised
and expressed as a linear equation A-f=F, where F is a set of discrete measurements and
A is a known matrix representing the differential equation f (e.g. the second derivative is
expressed simply as a band diagonal matrix with —2 on the diagonal and 1 on the upper
and lower first band). In the context of the parametric regression estimation, F is the
observed data, and f is the unknown data model, containing a set of parameters. This is a
typical inverse problem as we wish to invert the cause+system=effect type of dependency.
Knowing the cause and the effect, we try to reason about the system, or more precisely
about the processes underlying the system.

Hadamard noticed that in some cases, equation (2.37) is ill-posed: a small deviation on
the right-hand side of this equation (F; instead of F, were |F—F;||<d is arbitrarily small)
can result in a large deviation in the solutions f. In the case where the right-hand side of
the equation is not exact, the functions fs; that minimise the risk functional

R(f)=I|IAF-F3|I

(2.38)

does not guarantee a good approximation to the desired solution, even if 3—0. In the
middle of the 1960s (Tikhonov, 1963) it was discovered that if instead of minimising the
function (2.38) one minimises the functional
R (f)=IIAF-F3|*+y(3)(f)
(2.39)

where Q(f) is so-called regularisation functional, and y(3) is an appropriately chosen
parameter (depending on the level of noise), then it is possible to obtain a solution that
converges to the desired one as & tends to zero (Tikhonov, 1963; Ivanov, 1962; Phillips
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1962). The regularisation parameter vy, also called hyper-parameter, implicitly defines a
structure on the possible models by constraining the model. Roughly speaking, the low
values of y in (2.39) impose a weak constraint and put more weight on the empirical risk
minimisation, while large values of the regularisation parameter give more importance to
the minimisation of the regularisation function. The regularised empirical risk
minimisation problem is a trade-off between fitting the data with the model and
constraining the model to stay in a small well-chosen, problem-dependent subset of
functions. Furthermore, the balance between satisfying the constraint on the model and
staying close to the data is governed by the regularisation parameter.

It is further interesting to notice that Hadamrad initially reported that ill-posed
problems were restricted as a mathematical phenomenon and that the real-life problems
were “well posed”. However, it was latter found that many actual inverse problems are
ill-posed. This is true in a large number of fields, from meteorology, hydrology, and
mechanics to geophysics or statistics (as we demonstrated with simple example in the
previous section). A classical example for linear ill-posed problem is a Fredholm general
integral equation of the first kind:

(2.40)

where K is known squared integral kernel, and f is a sought solution.
On the other hand, let us now describe the concept of Hadamrad well-posedness. The
problem (2.37) is a well-posed if the following conditions hold:

1. That means a solution to (2.37) exists.
2. The solution is unique.
3. With and we have The solution is stable with

small variations in the right-hand side of (2.37).

The third condition above is equivalent to writing that the inverse operator A
continuous. One can say that in the context of this study, the inverse operator is the
learning procedure. Learning procedures based on the ERM principle (such as
minimisation of the quadratic loss function in the regression estimation example) are not
stable and the learning problem is thus ill-posed.

The definition of the Hadamard well-posedness does not accommodate a number of
tasks such as parameter restoration. This required an extension of the definition of an ill-
posed problem. Tikhonov (1963) stated that well-posedness restricts the definition above

to a set ® € A.The restriction made by Tikhonov is reflected in the following result: If

the operator Ais non-ambiguous and continuos on a compact set R »then the inverse
-1

operator Aiis continuous on the image AR -Having a continuous operator with
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continuous inverse on compact sets®, the stability condition is guaranteed. Tikhonov’s
well-posedness can be assured by the following conditions: problem (2.37) is well-posed

if there exist a subset ® € A ssuch that:

1. It has a solution,

2. The solution is unique,

3. For any sequence ff € JIQand such that we have

The last condition is especially interesting in the context of a learning procedure based on
the minimisation of a given loss function L. It means that if we have a series of models f;
such that min L(f;)—min L(f), then likewise fi—f. This is precisely what we were missing
earlier. Indeed, the law of large numbers does guarantee the convergence of the empirical
risk to the expected risk, but only in the case where the problem is well-posed will the
corresponding convergence be true for the solution of the minimisation problem (White,
1989; Vapnik 1995).

2.7.2 Tikhonov regularisation method

In this section we shell briefly highlight the main concept of the Tikhonov regularisation
technique. A main contribution of Tikhonov is that he proposed a method for turning an
ill-posed problem into a close well-posed problem. The idea is to continue the learning
problem to a restricted set by use of a regularisation functional Q(f) (2.39). In the context
of the empirical risk minimisation in parametric regression, this functional will typically
depend on the model parameters. Setting a constraint on this functional Q(f)<c defines a

structure of subsets of the function set f eA ~Under these conditions, the regularised
empirical risk minimisation problems we wish to solve can be written as:

(2.41)

Equation (2.41) is equivalent to seeking the function minimising the empirical risk in a
small subset of A. The problem here is that it is difficult to carry out minimisation with
inequality constraints. However, according to the Kuhn and Tucker theorem (see e.g.
Fang, 1993), there is an implicit equivalence between solving (2.41) and minimising
modified version of the risk functional:

(2.42)

which leads us to the regularisation technique described with equation (2.39). Note that
this is reminiscent of the optimisation method of Lagrange multipliers.

% The image of a compact set through a continuous operator is compact.



Nonlinear dynamics and chaos with applications to hydrodynamics and hydrological modelling 34

2.7.3 Regularisation functionals

In the previous section we introduced the concept of the regularisation and the use of the
regularisation functonal Q(f) in order to make the learning problem well-posed.
Nonetheless, not all functionals are well suited to be used in regularisation of ill-posed
learning problems. As we discussed above the regularisation should actually define a
structure of compact sets of functions. In order for the functional Q to be suitable, it has
to fulfil a number of conditions (Dontchev and Zollezi, 1992):

1. Q is semi-continuous in a dense subset of A. This is the case for any continuous
function on A.

2. Q is positive: Q(hH>0.
3. A solution of problem (2.37) exists in the domain of definition of Q.

4. Q defines a structure of compact sets: Vez2 ﬂ!{le(f)}Sc are all compact.

If all these conditions are met, according to Dontchev and Zollezi (1992), Q deserves the
name of the regularisation term. For a regularisation term Q, the minimisation problem
(2.42) is a well-posed problem. The above conditions are far from being restrictive. This
allows for a large class of regularisation functinals to be used. In particular, a common
choice of Q consists in taking a norm on A, Q(f)=||f[|, or some power of this norm. In the

same line, another common choice is to use an operator L stypically a derivative operator

We would finally like to round off this section describing the impact of the general
concept of regularisation with the following citation from Vapnik (1995):

“...The influence of the philosophy created by the regularisation theory
for solving ill-posed problem is very deep. Both the regularisation
philosophy and the regularisation techniques become widely disseminated
in many areas of science including optimisation, control theory, machine
learning and statistics...”

2.8 The paradigm of solving learning problems based on the
Structural Risk Minimisation principle

The ERM principle described previously, though enriched with the regularisation theory,
is intended for dealing with large data sample sizes. In the typical engineering real-life
problems one deals with limited amount of data. Clearly, there was a need for a theory,
which goes beyond the ERM principle, that is, a theory for controlling the generalisation
ability of learning machines or constructing an inductive principle for minimising the risk
functional (2.2) using a small sample of training data. This theory was constructed in the
late 1960s by Vapnik and Chervonenkis (1968, 1971). The remarkable element of this
theory is a collection of different concepts, the so-called capacity concept of the learning
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machine. Roughly speaking, for a given learning task, with a given finite amount of
training data, the best generalisation performance will be achieved if the right balance is
found between the accuracy attained on a particular training set, and the capacity of the
learning machine, that is, the ability of the machine to learn any training set without error
(or an error which has a certain bound).

Another important concept is the so-called VC dimension (Vapnik—Chervonenkis
dimension), or more precisely the VC dimension of the set of functions implemented by
the learning machine, which is the measure of the notion of capacity mentioned above. It
was found that both the necessary and sufficient conditions of consistency and the rate of
convergence of the ERM principle depend on the capacity of the set of functions
implemented by the learning machine (Vapnik and Chervonenkis, 1989). In particular, it
was proven that distribution-free bounds on the rate of uniform convergence of the ERM
principle depend on the VC dimension, the number of training errors, and the number of
observations. This form of bounds led to a new induction principle for controlling the
generalisation ability of the learning machines, the so-called Structural Risk
Minimisation (SRM) principle. It is thus the SRM principle that opened up new
possibilities for inducing (in a real sense) models from and development of new
directions in data-driven modelling as sub-symbolic process descriptors. In this section
we briefly describe the main concepts of a bound on the generalisation ability of the
learning machines and the SRM induction principle. We will also further demonstrate
how SRM principle can be linked with ANNs. Finally, we will discuss how the Bayesian
approach in learning theory, although has a substantial place in the classical paradigm of
function estimation, bringsus to the same scheme and idea as the SRM principle.

2.8.1 A bound on the generalisation performance of the learning machine

In the late 1970s the investigations in the rate of convergence of the learning machines
resulted in a family of bounds governing the relation between the capacity of a learning
machine and its performance (generalisation ability). The theory explored the
considerations under what circumstances, and how quickly, the mean of some empirical
quantity (empirical risk) converges uniformly, as the number of available data increases,
to the true mean (which would be calculated from an infinite amount of data) (Vapnik,
1979). One of the most remarkable results of the statistical learning theory is the
existence of a distribution-free upper-bound on the expected risk R(a) (for a fixed, finite
number of observations). Keeping in mind the setting of our learning-from-data problem
(see Section 2.2), given a set of i.i.d. observables {(x;, yi),i=1...N} generated according to
an unknown probability density, and our learning machine (set of functions f(x, a)) with

“ See monograph by V.N.Vapnik: Estimation of Dependencies Based on Empirical Data, Nauka,
Moskow, 1979. English translation: Springer-Verlag, New York, 1982.
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the task to learn the mapping x;—vy; the following bound on the risk holds (Vapnik, 1995)
with probability 1-—n:

(2.43)

where h is non-negative integer called VC dimension of this set of functions and is a
measure of the notion of the capacity of the learning machine and N is the number of the
training data patterns. The right-hand side of the equation (2.43) is usually called the
bound on the risk. Some authors (Guyon et al., 1992) call it the “guaranteed risk”, but this
is arguable since it is really bound on the expected risk, not a risk, and it holds only with
a certain probability, and therefore is not guaranteed. The second term on the right-hand
side is known as the VC confidence.

We would like to stress here three points about this bound on the risk (generalisation
error). First, remarkably, it is independent of any probability density p(x, y). It assumes
only that both the training and the test data are drawn independently according to some
probability density p(x, y) (see Section 2.2). Second, it is usually not possible to compute
the left-hand side of the equation (2.43) directly. Finally, if we know the VC dimension
h, we can easily compute the right-hand side of the equation (2.43). Thus, given (or
properly chosen) several learning machines (several sets of functions), and choosing a
fixed, sufficiently small n, by then taking the machine which minimises the right-hand
side of (2.43) gives the minimum lowest upper bound on the actual risk. This gives an
inductive principle for choosing a learning machine for a given learning task, and is the
essential idea of the structural risk minimisation principle. Given a fixed family of
learning machines to choose from, to the extent that the bound is tight for at least one of
the machines, one will not be able to do better than this. If the bound is not too tight for
any of the learning machines, the hope is that the right-hand side still gives useful
information (satisfactory accuracy and generalisation ability) as to which learning
machine minimises the actual risk.

2.8.2 Structural Risk Minimisation (SRM) principle

We briefly summarise here the principle of structural risk minimisation (SRM) (Vapnik,
1979). We mentioned earlier that the ERM inductive principle can deal with large data
sample sizes. Considering the inequality (2.43), when the ratio N/h (ratio between the
number of training samples to the VC dimension) is large, the VC confidence becomes
small. The actual risk is then close to the value of the empirical risk. In this case, a small
value of the empirical risk Rem, (o) guarantees a small value of the expected risk R(c).
However, when the ratio N/h is small (limited amount of data to learn from), a small
Remp(@) does not guarantee a small value of the risk R(a). In this case, in order to
minimise the risk R(a), one has to minimise the right-hand side of (2.43) simultaneously
over both terms: the empirical risk and the VC confidence.

Note that the VC confidence term depends on the chosen class of function, whereas
the empirical risk and the actual risk depend on one particular function chosen by the
learning procedure. Our goal is to find a particular subset of the chosen set of functions,
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such that the risk bound for that subset is minimised. Clearly we cannot arrange that the
VC dimension as a controlling variable in the optimisation procedure will vary smoothly,
since it is an integer. Instead one can introduce a “structure” by dividing the entire class
of functions into nested subsets (see Figure 2.9).

Figure 2.9. Nested subset of functions
ordered by VC dimension.

For each subset, one must be able either to compute h, or to get a bound on h itself. SRM
then consists of finding the subset of functions, which minimises the bound on the actual
risk. Simply training a set of machines, one for each subset can do this, where for a given
subset the goal for training is to minimise the empirical risk. One then takes that trained
machine in the series whose sum of empirical risk and VC confidence is minimum
(optimal), Figure 2.10.

The general SRM principle can be implemented in many ways. For example, there are
several possible ways to implement the SRM principle for a set of functions used by
ANNSs:

1. For a fully connected feed-forward neural network (Figure 2. 8) in which the number
of units in one of the hidden layers is monotonically increased, the set of
implementable functions define a structure as a number of hidden units is increased.
The risk on this structure can be further minimised.

2. Consider a set of functions S={f= (x, 0), Be l'-V}, implementable by an ANN
(learning machine) with fixed architecture, where the parameters {0} are the weights
of the neural network. A structure can be introduced through S,={f(x, 0), ||8]|<c,} and
C1<C,<...<C,. Under the general loss function, the minimisation of the empirical risk
within one element S, of the structure introduced can be done by minimizing the
functional

which with appropriately chosen Lagrange multipliers leads us to the well-known
weight decay estimation procedure (Plaut et al., 1986; Krogh and Hertz, 1992).
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Figure 2.10. The bound on the risk is
the sum of the empirical risk and the
VC confidence. The smallest bound on
the risk is achieved by taking particular
trained machine on an appropriate
subset of the structure whose sum of
the empirical risk and the VC
confidence is minimal (adopted from
Vapnik, 1998).
3. The structure can be imposed on the input representation to the ANN with fixed
architecture. The input can be modified by introducing a transformation z=K(x, B),

where the parameter  controls the type of the transformation (e.g. the width of the
smoothing kernel). A structure can be introduced in a set of functions S={f(K(x,$),0),

Be wr} through p>c, and c,>c,>...> c,. The SRM principle can be then
implemented by estimating the VVC dimension (confidence) for each of the elements S
of the structure and by minimising the empirical risk. In this way the upper bound on
the actual risk can be minimised.

The structural risk minimisation inductive principle has laid the ground for the emerging
computation learning technique known as Support Vector Machine (SVM).

2.8.3 Support vector machine

Support vector machine is relatively new computational learning technique, which
embodies the SRM principle. The main idea of the support vector machine is to map the
input vector x into a high-dimensional feature space Z by using nonlinear mapping
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(kernel functions) chosen a priori, and then an optimal separating hyperplane is
constructed using the SRM inductive principle. The optimal separating hyperplane passes
through the given points (patterns) from the training data set, which are found by solving
dual quadratic optimisation problem. The points (vectors) are termed support vectors.

A detailed description of the concept and the algorithm of SVM is outside of the scope
of this thesis. For introduction to the subject of support vector machines and the SRM
principle we refer to Vapnik (1995, 1998), Burges (1998), Saunders et al. (1998),
Schoélkopf (1997) and Smola (1996). A brief description of SVMs for pattern recognition
and their application in a framework of hybrid data-driven model is given in Chapter 6.

Since their introduction (Vapnik, 1995), SVMs have attracted the attention of the
researchers and practitioners due to their solid theoretical background, based on the
statistical learning theory and the SRM principle, and their increasing successful
application to real-life problems in both the pattern recognition and regression
estimations. For the pattern recognition case, SVMs have been used for hand-written digit
recognition (Cortes and Vapnik, 1995; Burges and Vapnik, 1995; Scholkopf, Burges and
Vapnik, 1996) object recognition (Blanz et al., 1996), voice identification (Schmidth,
1996), face image detection (Osuna et. al., 1997) and text categorisation (Joachims,
1997). For the regression estimation case SVMs have been compared on benchmark time
series prediction test (Muller et al., 1997; Mukherjee et al., 1997) on artificial data
(Vapnik, Golowich and Smola, 1996) and for dynamic reconstruction of the well-known
Lorenz chaotic system (Mattera and Haukin, 1999). Dibike, Velickov and Solomatine
(2000a and 2000b) with Babovic and Kajzer (2000) have pioneered the application of
SVMs for solving civil engineering problems. Velickov et al. (2000), have demonstrated
and compared SVMs with other sub-symbolic model induction engines for automated
land cover classification of remote sensed images for the purposed of the hydrological
modelling. A novel hybrid algorithm was also developed and reported.

2.8.3 Bayesian learning paradigm and the SRM principle

Tomas Bayes was a British cleric and amateur mathematician (it appeared a very good
one), who died in 1691. Among his papers was found a curious unpublished manuscript,
which was then published in 1763 (see Molina, 1963 for a photographic reproduction of
the work and some historical comments) and gave rise to a new learning paradigm,
termed with different names, such as “Bayesian learning” or “Bayesian approach” or
“Bayesian statistics”. Latter on, in almost his first published work (1794), Laplace
rediscovered Bayes’ principle in greater clarity and generality, and then for the next 40
years proceeded to apply it to various problems of astronomy, geodesy, meteorology and
statistics. The Bayesian learning paradigm is founded upon the premise that all forms of
uncertainty can be expressed and measured by probabilities (Bernardo and Smith, 1994).
Although the paradigm can be expressed in a formal framework, based on mathematical
abstraction and rigorous analysis, it relies upon subjective experience. That is, it offers a
rationalist and coherent theory where all kinds of uncertainties (e.g. parameters of the
model, models, process uncertainties) are described in terms of subjective beliefs or
probabilities. However, once the individual beliefs of uncertainties are expressed, and
assuming access to the same data, the results should be unique and reproducible.
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Bayesian learning paradigm is based on the rather simple chain rule (or theorem)
known as Bayes’ rule, yet it is by far one of the most important principles underlying the
scientific inference (see Jaynes, 1995). Simple application of the conditional probability
definition allows us to derive the Bayes rule. Denoting two events (or proposition) by A
and B, and applying the basic product and sum rules of probability we have:

P(ANB)=P(A|B)P(B)

P(BNA)=P(B|A)P(A) (2.44)

(2.45)

As we obviously have P(ANB)=P(BNA) and if P(B)>0, we get from (2.44) the well-
known Bayes’ rule (although Bayes never wrote it):

(2.46)

It can be also shown that in (2.46) an additional event/proposition C can be introduced,
such that:

(2.47)

One can ask the question: But what is so important in (2.47) apart from it being just a
statement that the product probability rule is consistent? The important thing is that in the
Bayes’ rule (2.27) we have a mathematical representation of the process of learning;
exactly what we need for our extended logic that allows induction of models from data.
P(A|C) is our prior probability for A when we know only C. P(A|BC) is its posterior
probability, updated as a result of acquiring new information B. Typically and very
generally, A represents some hypothesis or theory (or model), whose truth we wish to
ascertain, B represents the new data from observations, and C represents the background
information (knowledge), that is, the totality of what we knew (and believed) about A
before getting the data B. The other distributions on the right-hand side are the likelihood
and the evidence (also known as innovation or predictive distribution). Thus the Bayes
rule can be written in a form:

(2.48)

Our subjective beliefs and views on the uncertainty are expressed in the prior
distributons. Once the data is available the evidence allows us to update these beliefs. The
resulting posterior distribution incorporates both our a priori knowledge and the
information conveyed by the data, and thus improves on our common sense. In the first
place it is clear that the prior probability P(A|C) is necessarily present in all inductive
inference; therefore to ask the question of type “What do you know about A after seeing
B?” cannot have any definitive answer, because is not a well-posed question in the
Bayesian learning paradigm, if we fail to take into account the question “What did you
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know about A before seeing B?”. This reasoning is crucial to judge the frequently
repeated phrase “Let the data speak for themselves!”. Our view on this phrase is: they
cannot and never have. For example, if we want to decide between various learning
machines (data models) but refuse to supplement the data with prior information
(incorporating our background knowledge and understanding of the relationships
between physical processes being modelled) about them, any probabilistic inference will
lead us to favour the “Sure Thing” (ST) model, according to which, for example, every
millisecond of detail of the dynamical system was inevitable; nothing else could have
happened. For the data we will always have much higher probability (close to 1) on the
ST model than on any other model. Only by supplying proper prior information could the
ST model be rejected.

The other remarkable think is that Bayes’ rule also allows to produce several levels of
inference, as probabilities conditioned on C can be in turn calculated using Bayes’ rule. If
we write for example that P(A|BC)=P(A|C)(P(BJAC)/P(B|C)), we can in turn combine this
with the result of another inference in the form P(A|C)=P(A)(P(C|A)/P(C)). This
formalism is very useful to incorporate new knowledge in our inference, or to update the
results (model) once new information is available. In this way we can apply Bayes’ rule
repeatedly as new pieces of information B;, B,,...arrive, thus the posterior probability
from each application is becoming the prior probability for the next. This raises a
possibility for effective sequential learning (training of the machine) since at any stage
the probability that Bayes’ rule assigns to A depends only on the total evidence By=B1,
B,,..., Bx. One 