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Chapter 1
Topological Approaches of the Bonding
in Conceptual Chemistry

Bernard Silvi, M. Esmail Alikhani, Christine Lepetit
and Remi Chauvin

Abstract Though almost a century old, Lewis’s theory of chemical bonding
remains at the heart of the understanding of chemical structure. In spite of their
basic discrete nature, Lewis’s structures (topological 0-manifolds) continue to lend
themselves to sophisticated treatments leading to valuable results in terms of
topological analysis of chemical properties. The bonding topology is however not
only defined, but also refined by direct consideration of the nuclear geometry, itself
determined by the configuration of the embedding electron cloud. During the last
century, the theory has thus been complemented by the mesomery concept, by the
Linnett’s double quartet scheme and by the VSEPR/LCP models. These models
rely on an assumed spatial disposition of the electrons which does not take the
quantum mechanical aspects into account. These models are reexamined by
investigation of the topological 1-manifolds generated by the gradient field of
potential functions featuring the electron cloud configuration, such as the electron
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density or electron localization function (ELF). In this chapter, we reexamine these
models in order to escape from the quantum mechanical dilemma and we show how
topological analyzes enable to recover these models.

1.1 Introduction

Chemistry thinks the matter as being made of atoms linked one to another by bonds.
This description has been initiated in the first half of the XIXth century by John
Dalton [1] who drew caloric forces between bonded atoms. It was consistently
improved all along the century with the introduction of many fundamental con-
cepts. The concept of isomerism, proposed by Berzélius in order to account for
structural differences between species having the same stoichiometry but different
properties, has been addressed by Alexander Crum Brown [2, 3]. The concept of
valence due to Frankland and Kolbe which gives a rationale to the bonding con-
nectivity between atoms, has been an important step ahead in the development of
structural chemistry where the important contributions of Kekulé, Kolbe, Couper,
Butlerov, Lodschmidt, Crum Brown, Hofmann, Le Bel and Van’t Hoff yield the
contemporary representations. The emerging picture of a molecule is, therefore, that
of a discrete network where the nodes are occupied by the elemental atoms. The
possible valences of the elements are given by their position in the Periodic Table.
In this respect, the determination of the structural formulas of the possible isomers
corresponding to a given stoichiometry appears to be first a discrete topology
problem (before being a geometry problem for the particular case of stereoisomers),
which can be mathematically formalized within the framework of finite graph
theory [4].1 In this context, a bridge spanning the traditional gap between chemistry
and mathematics was early recognized by the mathematician James J. Sylvester. In
his benchmark article “Chemistry and Algebra” [5], 21 years after Kekulé on
carbon tetravalence [6] and 41 years before Lewis on “The Atom and the
Molecule” [7], he gave a tribute to Frankland while stating: “It may not be wholly
without interest to some of the readers of NATURE to be made acquainted with an
analogy that has recently forcibly impressed me between branches of human
knowledge apparently so dissimilar as modern chemistry and modern algebra (…).
I hardly ever take up Dr. Frankland’s exceedingly valuable “Notes for Chemical
Students”, which are drawn up exclusively on the basis of Kekulé’s exquisite
conception of valence, without deriving suggestions for new researches in the
theory of algebraical forms”. And farther: “Every (quantic) invariant and co-variant
thus becomes expressible by a graph precisely identical with a Kekulean diagram or
chemicograph”. The invariant and co-variant are here assignable to a set of atoms of
given valences and a set of bonds, respectively.

1The concept of infinite graph applicable to non-covalent molecular materials being less directly
fruitful because of the ambiguity in the definition of the eigenvalue spectrum.

2 B. Silvi et al.



The physical meaning of the bonding edges of the graph was however unknown.
Nevertheless, it rapidly appeared to Berzélius that electric rather than caloric forces
were accountable for the bonding [8], this idea was further reformulated by Laming
[9] in a fully atomistic fashion accounting for Faraday’s electrochemical equivalent.
Laming’s hypotheses anticipate the atomic electronic shell structure half a century
before Joseph John Thomson’s discovery of the electron:

a mass of electrical matter, or electricity, may be regarded as composed of electrical atoms,
just as a mass of ordinary matter contains ordinary atoms; and thus the sphere of electricity
which surrounds an ordinary atom will consist of a number of electrical atoms arranged in
concentric strata. The number of electrical atoms belonging to a given ordinary atom may
be assumed to be such as to complete its external spherical stratum, or, on the contrary, it
may be such as to leave that external spherical stratum more or less imperfect.

A few years after Thomson’s discovery of the electron, G. N. Lewis proposed in
a memorandum dated March 28, 1902 [7], his cubic atomic model in which the
vertices are occupied or not by electrons according to the element’s column in the
Periodic Table. In this way, he established a direct link between electrons and the
concept of valence which provides a foundation to Abegg’s valence and counter-
valence law [10]. It is worth noting that these different atomic models have been
conceived on the only basis of chemical arguments. Moreover, Lewis atom is closer
to nowadays representations than Thomson’s 1904 plum-pudding model [11].
Lewis’s atom in molecule is composed of a kernel grouping the nucleus and the
inner shell electrons and an outer shell, the valence shell. The atom tends to have an
even number of electrons in its valence shell and especially eight electrons which
are symmetrically arranged at the corner of a cube. The atomic shells of two bonded
atoms mutually interpenetrate and therefore electrons may belong to the valence
shells of two bonded atoms. Lewis emphasized the concept of electron pair as the
cornerstone of molecular structure and proposed to write the formulas of chemical
compounds by using atomic symbols surrounded by a number of dots corre-
sponding to the number of electrons in the atomic shell. In spite of its simplicity,
Lewis’ approach is remarkably efficient and remains fundamental for basic chem-
ical education. Although Lewis’ model explains the structure of a majority of
molecular species, it fails, for example, to account for the hexagonal structure of
benzene or for the paramagnetism of dioxygen. Whereas Huggins’ attempt to
understand benzene by a single Lewis structure yielded chimerical representations
[12], the concept of mesomery, pioneered by Ingold [13, 14], which considers a
weighted superposition of structures has been very successful with this respect and
therefore constitutes an important complement to Lewis’s model. In order to be able
to treat dioxygen, Linnett modified the original Lewis model by splitting the initial
octet into two sets of four electrons, one having one spin quantum number and the
other the opposite value [15, 16].

Until this point, a molecule has been formally described from a set of N nodes
(nuclei) by three features only: a labelling (composition: stoichiometry, bruto for-
mula), a topology (connection: bonding skeleton), and a topography (constitution:
Lewis structures, resulting from the application of the labelling on the topology).
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Nevertheless a “molecular structure” is also defined by a geometry (disposition, i.e.
Cram-Dreiding structures) [17]. As the smallest constituent of a—pure substance in
French, the Lavoisier’s language—a molecule is assigned to a particular molecular
structure corresponding to an equilibrium geometry and corresponding energy
(as ultimately determined by iterative resolution of the Schrödinger equation), and
to a temperature-dependent chemical potential (as determined from the Boltzmann
distribution of states) [18].

In a first attempt to go from topology to geometry, the spatial extension of the
bonding and non bonding pairs has been accounted for by the model of Sidgwick
and Powell [19] involving both shared and unshared groups having the same size
which is uniquely determined by the type of spatial arrangement considered.
Gillespie and Nyholm have substantially improved this model explaining the
arrangement of the pairs around of a given centre as due to the exclusion principle
[20]. The repulsion depends on the type of pairs considered, for example a lone pair
is more repulsive than a bonding pair, and on the electronegativity of the ligands. In
the earliest version of the Valence Shell Electron Pair Repulsion (VSEPR) model
[21], the valence pairs are considered as points on a sphere the arrangement of
which is found by maximizing the least distance between any pair of points. The
points on a sphere were replaced in a first time by tangent spherical electronic
domains attracted by the central positive core and further by ellipsoid, “pear” and
“egg” shaped domains of different sizes [22]. Electron pair domains are defined as a
charge cloud which occupies a given region of space and excludes other pairs from
this region as a consequence of the Pauli exclusion principle. This electron pair
domain version of VSEPR emphasizes the shape and size of the domains rather
than the magnitude of their mutual repulsion. In addition to bond and lone pair
domains, Gillespie considers single electron domains which are expected to be
smaller than an electron pair domain [23]. The VSEPR model is very successful in
predicting qualitatively the shape of molecules. It enables to understand many
features of the molecular geometry in a qualitative fashion.

The Lewis’ and VSEPR models are finally simple to understand and to apply,
they provide very convincing explanations of the molecular structure and suffer few
exceptions. They have consequently acquired a central place in chemical education.
Both rely on the hypothesis of the formation of individualized localized electron
pairs which is not an experimental fact and which remains questionable from a strict
theoretical point of view. Beyond covalence, actually, the nature of the interactions
between atoms (i.e. the “absolute edge weight” of the molecular graph, see below)
can indeed be appraised on a purely phenomenological basis (“sharing and pairing”
of formal “electronic” quanta) [24].

The aim of this chapter is to give the consistency between the following chapters
gathered in this Volume. It consists in an introduction of the topological analysis
methods which enable the recovery of the different concepts used in the chemical
description of the matter in the spirit of Lewis’ model as well as to go deeper into
their contents. After a reminder of the links between chemistry and topology
introducing the two types of discrete and continuous topological approaches, the
general spirit of these approaches is presented in the subsequent sections.
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1.2 Chemistry and Topology

Many authors, among whom the authors of the following chapters of this volume,
have addressed the relevance of various aspects of topology in chemistry (see for
example: Ayers et al. [25]). From the abstract mathematical standpoint, however, a
topology is defined within the framework of set theory: given a set X, a topology T
on X is a family of parts of X, called m open sets, i.e. a subset of PðXÞ ¼ 2X , such
that:

(i) the empty set and X are open sets;
(ii) any union of open sets is an open set;
(iii) the intersection of any finite number of open sets is an open set.

The ðX; TÞ couple is called a topological space on X. If X is a metric space
(endowed with a distance), the canonical topology is defined from the corre-
sponding open balls of X (each of them being defined by a center and a radius).
A topological space ðX; TÞ is a topological manifold if it is separated and locally
euclidean, i.e. every point in X admits an open neighborhood homeomorphic to R

n:
n is unique and defines the dimension of X, then referred to as a nD-manifold.

Within the chemical context, the “molecular space” is the 3D space filled with
electrons and punctual nuclei restricting or straining the euclidean topology
depending of the electron model. The molecular space is thus either:

• the discrete 0D-manifold of the Lewis’ graph embedded in the 3D euclidean
space with an approximate or optimized nuclear geometry. The topology is the
one induced by the canonical graph distance.

• or the continuous 1D-manifold generated by a sufficiently regular potential
function V(r) (electron density, ELF, MESP, see below) through its gradient
field ∇V(r) straining the 3D space for some particle moving through geodesics
according to the least action principle and Euler-Lagrange equations (see
Sect. 1.4.2.1). The corresponding topology can be regarded as a generalization
of the graph topology for a continuous set of vertices: two points in R

3 define a
generalized edge if they are on the same gradient path of V . The distance
between two points is either infinite if the points do not ly on the same path, or
equal to the length of the gradient arc between the two points if the points are on
the same path (the gradient paths are actually oriented and thus formally define
generalized edges of directed graphs). The open balls of the metric topology are
therefore arcs of gradient paths, where a neighborhood of any wandering point is
homeomorphic to a neighborhood of the tangent space defined by the gradient
direction in the dual space.

Application of the gradient dynamical system theory allows delineation of
non-overlapping basins forming a partition of the molecular space in R3 from which
the basin adherences are removed. This partition defines a topology (unions of basin
interiors completed by the empty set), which is metric in the Lewis’ sense (the
connectivity between basins being related to their synapticity), and which is also a

1 Topological Approaches of the Bonding in Conceptual Chemistry 5



sigma-algebra.2 The measure of the basin-derived measurable sets can be the
absolute value of the corresponding integral of V .

The two types of approaches are addressed in the following chapters, and
respective general prerequisites are shortly presented in the following sections.

1.3 Discrete Chemical Topology: Chemical Bonding
and Graph Theory

Within the context of chemistry [26, 27], a molecule is primarily described by a
discrete molecular graph G ¼ ðV ;EÞ, where V is the finite set of vertices corre-
sponding to atomic nodes, and E is the set of edges corresponding to two-center
bonds.3 Therefore, the natural topology of the molecule is the one defined by the
edge set E through the canonical metric of G, where the distance dGðu; vÞ between
two vertices u and v is the smallest number of consecutive edges (shortest path)
between them.

Topological comparison between molecular graphs is addressed through either
combinatorial analysis or spectral analysis.

Combinatorial analysis of graphs allows the definition of graph invariants (not
depending on the numbering of the nodes), called topological indices, lending
themselves to the search for empirical relationships with physico-chemical prop-
erties. This approach first proposed by Wiener in 1949, initiated the today widely
addressed investigation field of Quantitative Structure-Activity Relationships
(QSAR).

The main Wiener index is a global quantitative index of the graph topology [28]
defined as the sum of all the distances of the unordered pairs of vertices:

WðGÞ ¼
X

fu;vg�V

dGðu; vÞ ð1:1Þ

A related index is the Wiener Polarity Index:

WPðGÞ ¼ cGð3Þ ð1:2Þ

2In the mathematical sense, metric does not mean measurable. Though the spirits of the definitions
are tightly related, a topological space ðX; TÞ, even metric, is indeed not a measurable space a
priori. The smallest r-algebra of X containing the topology T is the Borel algebra AB serving to
define all the measurable subsets of X including all the open sets: only ðX;ABÞ is a measurable
space. Reminder: a r-algebra of X is a part A of PðXÞ, the elements of which are called m
measurable sets, such that:

i. X 2 A (or ; 2 A);
ii. 8A 2 A;XnA 2 A (A is closed under complementation);
iii. 8fA1;A2;A3; . . .g � A;A1 [A2 [A3 [ � � � 2 A (A is closed under countable unions).

3if multi-center bonds are considered, the molecular graph is replaced by a molecular hyper-graph.
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where cGðkÞ denotes the number of unordered pairs of vertices fu; vg such that
dGðu; vÞ ¼ k.

The relevance of W and WP was illustrated by an accurate correlation between
the boiling point (bp) of alkanes and the values of these indices for the corre-
sponding graphs:

bp ¼ aW þ bWP þ c ð1:3Þ

where a; b; c are constants for a given group of isomers CnH2n+2:

Dbp � 98=n2DW þ 5:5DWP ð1:4Þ

Many other topological indices can be defined, calculated by direct inspection of
molecular graphs, and used in QSAR analysis.

Spectral graph theory allows extraction of more concealed quantitative features
of graphs, such as the so-called “graph energy” [29] It is based on the diagonal-
ization of the adjacency matrix of G (or the corresponding Hessian matrix). As the
adjacency matrix of G features the Hamiltonian of a Lewis’ molecular model,
spectral graph theory is the mathematical foundation of the Hückel Molecular
Orbital (HMO) method, the eigenvalues corresponding to orbital energies and the
eigenvectors to monoelectronic orbitals spanned by a basis set of atomic orbitals
bound to each of the constituting atoms.

Beyond these practical applications, abstract spectral graph theory has also been
essential in the appraisal of the long-lasting concept of chemical “aromaticity”,
namely the influence of the cyclic character of electron delocalization on the
molecular energy. Many indices of aromaticity based on various criteria
(energetic-structural, magnetic, electronic) have been proposed as approximates of
the exact measure of aromaticity. The latter was however proposed as early as 1976,
when Gutman et al. on one hand [30], and Aihara on the other hand [31], simulta-
neously proposed the definition of the Topological Resonance Energy (TRE) by
subtracting the contributions of the cyclic components of the graph from the total
graph energy. Nevertheless, the quite abstract and complicated process, based on the
Sachs’s theorem [32, 33] missed a chemical interpretation and did not draw the
attention of the chemists’ community. It was not until recently that indirect and direct
chemical interpretations of TRE were disclosed, the key being the simultaneous
consideration of the Möbius- and Hückel-types of the cyclic molecule [34, 35].

The Lewis’ molecular graph remains however somewhat arbitrary, because it
relies on the decision whether any two edges are bonded or not. It corresponds to
the case of a transferable (uniform) resonance integral b� which is constant, and
normalized to b� ¼ 1, for all pair of atoms connected by an edge. In the same way
the HMO theory can be generalized to heteroatomic structures by assigning variable
Coulomb integrals depending on the atoms occupying given vertices, a b-variable
HMO model allows a more accurate description of the molecules. The molecular
graph is therefore edge-weighted, e.g. by Coulson-type equations relating the bond
distances to the bond orders, and the corresponding resonance integral b featuring

1 Topological Approaches of the Bonding in Conceptual Chemistry 7



the variable interaction between the atoms. The most general molecular graph is
therefore an edge- and vertex-weighted version of the complete graph of G, with b
values possibly tending to zero for pairs of “almost non-bonded” atoms. This
generalization allowed the definition of the adiabatic TRE versus the usual TRE
referred to as the vertical TRE [35].

Finally, graph theory not only remains a powerful analysis tool for direct
interpretation of molecular properties, but is also a systematic synthesis tool for the
description of molecular structures. In the same way the electronic properties are
accurately described by a weighted superposition of mesomeric forms (or valence
bond structures), the underlying structure is completely described by a series of line
graphs. Following Estrada, indeed [36], whereas the covalent connectivity (Lewis
structure) is described by a vertex-weighted graph G, the 2D-geometry (bond
distances) described by the corresponding edge-weighted graph is equivalently
described by the corresponding vertex-weighted line graph L1ðGÞ. Pursuing in the
same spirit, the local 3D-geometry (bond angles) is described by the
vertex-weighted second line graph L2ðGÞ, and the global 3D-geometry (torsion
angles) by the vertex-weighted third line graph L3ðGÞ. A molecule is therefore fully
described by the series of its vertex-weighted line graphs LnðGÞ.

1.4 Continuous Chemical Topology: Chemical Bonding
and Functional Analysis

1.4.1 Intuitive Bonding Chemical Concepts and Quantum
Mechanics

For almost a century Quantum Mechanics is the physical theory which describes the
interaction between particles, such as electrons and nuclei in molecules, and
therefore enables the quantitative exact predictions of observables. The reduction of
chemistry to physics corresponds to the mechanistic working program of Dirac
[37]:

The underlying physical laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty is only
that the exact application of these laws leads to equations much too complicated to be
soluble.

Although the predictive power of Quantum Mechanics is unquestionable, its
ability to provide explanations has been questioned from an epistemological point
of view by Thom [38]. As neither atoms in molecules nor bonding and non bonding
pairs are defined in terms of quantum mechanical observables, the bridges linking
the intuitive chemical approach to Quantum Mechanics are built either by inter-
preting the approximate molecular wave functions or on the basis of the statistical
interpretation of Quantum Mechanics. In the latter approach, the analysis of
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electron density of probability functions and more generally density of property
functions enables a step-by-step recognition of the chemical objects showing that
“Chemistry emerges from Quantum Mechanics” [39].

The one-electron density, qðrÞ, expresses the probability of finding one electron
in a volume element centered at r, the remaining electrons being anywhere. It is a
fundamental physical property measured in coherent X-ray scattering experiments
or calculated with quantum chemical methods. It is involved in very important
theorems such as the electrostatic expression of the Hellmann-Feynman theorem
[40–43] which enables the calculation of the forces on nuclei and the
Hohenberg-Kohn theorem [44] which is at the root of the Density Functional
Theory (DFT). The one electron density can be be written as the sum of the spin
contributions:

qðrÞ ¼ qaðrÞþ qbðrÞ ð1:5Þ

where qaðrÞ and qbðrÞ are the probabilities of finding one electron with respectively
a and b spins in the volume element centered at r. The integration of the
one-electron density over the whole space yields the number of electrons of the
system:

Z
qðrÞdr ¼

Z
qaðrÞdrþ

Z
qbðrÞdr ¼ Na þNb ¼ N ð1:6Þ

The pair function Pðr; r0Þ expresses the probability of finding one electron in the
volume element centered at r and an other in that centered at r0. It has four spin
components, namely Paaðr; r0Þ;Pabðr; r0Þ;Pbaðr; r0Þ and Pbbðr; r0Þ and is nor-
malized to NðN � 1Þ when ordered pairs are considered [45].

Consider first the concept of atom in molecule. Several definitions can be pro-
posed which depend upon choices such as the nature of the space, the required
properties of the atom in the molecule. Richard Bader’s definition is based on (i) a
space filling non overlapping partition of the density and (ii) on the fulfillment of an
energy decomposition requirement: the electronic energy of the molecule is the sum
of atomic and interatomic contributions having a definite value. Condition (i) can be
written as:

X
A

Z

XA

qðrÞdr ¼
X
A

�NA ¼ N ð1:7Þ

where XA is the region of space occupied by atom A and N the number of electrons
of the molecule, whereas condition (ii) implies:

E ¼
X
A

EA þ
X
A

X
\B

EAB ð1:8Þ
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Making use of the Hohenberg-Kohn theorem [44], the contributions appearing in
Eq. 1.8 have the following expression:

EA ¼ TA½qðrÞ� þ
Z

XA

Z

XA

qðrÞqðr0Þ
jr� r0j drdr0 þ

Z

XA

vAðrÞqðrÞdr

EAB ¼
Z

XA

Z

XB

qðrÞqðr0Þ
jr� r0j drdr0 þ

Z

XA

vBðrÞqðrÞdrþ
Z

XB

vAðrÞqðrÞdr
ð1:9Þ

where TA½qðrÞ� is the kinetic energy of atom A and vAðrÞ the contribution of atom A
to the external potential, in other words vAðrÞ ¼ �ZA

jr�RAj where ZA is the charge of the

nucleus of atom A at position RA. All potential energy contributions have definite
values, but this is not the case of the kinetic energy TA½qðrÞ�. The latter should be
calculated by integrating the kinetic energy density over the volume XA. The kinetic
energy density TðrÞ is a density of property. A density of property, say, qW ðrÞ is a
local function such as:

Z
qWðrÞdr ¼ hWjŴðr; pÞjWi ð1:10Þ

where Ŵðr; pÞ is the one electron operator associated to the property. The density of
property is obtained:

qW ðrÞ ¼
Z

ŴðpÞFðr;pÞdp ð1:11Þ

where Fðr; pÞ is the joint distribution of position and momentum. Although joint
distributions are not defined in Quantum Mechanics, it is possible to introduce
so-called phase-space quasi distributions, such as the Wigner function [46], in order
to get an expression which yields the proper expectation value of the operator when
integrated over all space. They are built by applying correspondence rules. They do
not fulfill the requirement of uniqueness [47] but satisfy the marginal distributions:

Z
Fðr; pÞdp ¼ qðrÞ

Z
Fðr; pÞdr ¼ qðpÞ

ð1:12Þ

For an operator which only depends upon the position coordinates, it follows
from Eq. 1.12 that the density of property is just the product of this operator by the

electron density function. The kinetic density operator K̂ ¼ p̂2

2m depending on p, the
kinetic energy density TðrÞ, appears to be the sum of two contributions. the first one
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TsðrÞ ¼ 1
2
jrWj2 ð1:13Þ

is called the definite positive kinetic energy density, it is always positive and yields
the expectation value of the kinetic energy when integrated over all space. For
stationary states, the second contribution vanishes. For a stationary state this latter
contribution is the Laplacian of the electron density multiplied by an arbitrary
constant as a consequence of the non-uniqueness of the joint quasi distribution [48,
49]. The condition for a definite integrated kinetic energy density is that the integral
of r2qðrÞ vanishes which happens when the integration is performed over the
whole space or, according to the divergence theorem, if the bounding surface is a
zero flux surface:

Z

X

r2qðrÞdr ¼
I

S

nðrÞ � rqðrÞds ¼ 0 ð1:14Þ

where nðrÞ denotes a unit vector normal to SðrÞ at point r. Since the atomic
volumes X are bounded by zero-flux surfaces of rqðrÞ, they are identified as the
basins of the gradient dynamical system of the electron density function.

The same strategy of falsification can be applied to the electronic domains of
Gillespie in order to find their boundaries. According to the definition “charge cloud
which occupies a given region of space and excludes other pairs from this region”
one expects that the following hypotheses are verified in the case of two different
domains XA and XB:

1. qaðrÞ ¼ qbðrÞ ¼ 1
2 qðrÞ

2. Prr0 ðr; r0Þ � 1
4 qðrÞqðr0Þ for r 6¼ r0

3. Prrðr; r0Þ � 0: for r; r02XA or r; r02XB

4. Prrðr; r0Þ ¼ qrðrÞqrðr0Þ � 1
4 qðrÞqðr0Þ for r; r0 in different domains.

where r and r0 stand for a or b. In order to find the bounding surface we measure
the probability NkðrÞ of finding a same spin pair a in finite sampling volume VðriÞ
around a point at position ri chosen such as

R
VðriÞ qðrÞdr, is equal to an arbitrary

small value nV . Let now the sampling volume move along a normal to the bounding
surface as displayed on Fig. 1.1. When VðriÞ is entirely in XA or XB;NkðriÞ ¼ 0
such as at positions r0 and r3, at positions r1 or r2 it straddles the bounding surface
so:

VðriÞ ¼ VðriÞ \XA þVðriÞ \XB ð1:15Þ
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and

NkðriÞ ¼
Z

VðriÞ\XA

qaðrÞdr
Z

VðriÞ\XB

qaðr0Þdr0 þ
Z

VðriÞ\XA

qbðrÞdr
Z

VðriÞ\XB

qbðr0Þdr0 ¼
1
2
nAðnV � nAÞ

ð1:16Þ

with nA ¼ R
VðriÞ\XA

qðrÞdr. The maximum of NkðriÞ occurs at position r2 when the

reference point belongs to the bounding surface, which is therefore a zero flux
surface of rNkðriÞ. The spin pair composition cpðrÞ[50] and the Electron
Localization Indicators (ELI) for same spin pairs � r

xðriÞ[51] and opposite pairs
� ab

x ðriÞ[52] have been introduced instead of NkðriÞ in order to remove the arbitrary
choice of nV and size dependence problems. These functions were introduced by
their authors for two main reasons: on the one hand support the gradient dynamical
system analysis of the electron localization function (ELF) of Becke and
Edgecombe [53] designed in order to identify “localized electronic groups in atomic
and molecular systems” and on the other hand enable the generalization of ELF to
post Hartree-Fock wave functions. The ELF kernel provides an excellent analytical
approximation of the spin pair composition and ELI functions.

An other definition of the electron domains is based on the hypothesis that the
variance r2ð�NðXÞÞ of their populations �NðXÞ ¼ R

X qðrÞdr should be minimal with
respect to a variation of the domain boundaries. The minimization of the variance
with respect to the domain volumes implies that the variational equation

dr2ð�NðXÞÞ
dVðXÞ ¼ 0 ð1:17Þ

Fig. 1.1 Sampling volume
in the neighbourhood of the
bounding surface of two pair
domains

12 B. Silvi et al.



should be satisfied. This equation can be written in terms of a surface integral

dr2ð�NðXÞ
dVðXÞ ¼

I

SðXÞ

n � rgðrÞds ¼ 0 ð1:18Þ

in which gðrÞ is a scalar function for which the bounding surface SðXÞ is a zero flux
surface. The determination of gðrÞ from the expression of r2ð�NðXÞÞ is hampered by
the fact that it involves a six dimensional integral [54]. Paul W. Ayers has intro-
duced the local covariance measure function to minimize the Frobenius norm of the
covariance matrix of the domain populations and shown that this function can be
approximated by the ELF [55].

1.4.2 Applications of the Gradient Dynamical System
Partitioning

The gradient dynamical system theory appears to be a method of choice for par-
titioning the molecular space into non overlapping volumes on the basis of ener-
getic or statistical criteria.

1.4.2.1 Short Mathematical Overview

This mathematical theory provides a partition of the space which is analogous to the
more familiar partition made in hydrology in river basins delimited by watersheds.
It relies on the study of a local function VðrÞ called the potential function. The
potential function carries the physical or chemical information e.g. the electron
density, the ELF (see below), or even the electrostatic potential [56–58]. In the
cases treated in the present book, the potential function is required to be defined at
any point of a manifold which is either R3 for molecules or the unit cell for periodic
systems. Moreover the first and second derivatives with respect to the point coor-
dinates must be defined for any point. Its gradient rVðrÞ forms a vector field
bounded on the manifold and determines two kinds of points: on the one hand are
the wandering points corresponding to rVðrwÞ 6¼ 0: and on the other hand are the
critical points for which rVðrcÞ ¼ 0: A critical point is characterized by the index
IP, the number of positive eigenvalues of the second derivatives matrix (the Hessian
matrix). There are four kinds of critical points in R

3:

(i) attractors of index 0, also denoted ð3;�3Þ critical points, which are the local
maxima of the potential function,

(ii) saddle points of index 1 or ð3;�1Þ,
(iii) saddle points of index 2 or ð3; 1Þ,
(iv) repellors of index 3 or ð3; 3Þ which are the local minima.
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The number of critical points satisfies the Poincaré-Hopf formula:

X
P

ð�1ÞIP ¼ vðMÞ ð1:19Þ

in which the sum is performed over the critical points, IP is the index of the critical
point labelled by P and vðMÞ is the Euler characteristic of the manifold on which
the gradient field is bound, i.e. 1 for a molecule, 0 for a periodic system.

The formal analogy with a velocity field (i.e. rVðrÞ ¼ dr=dt) enables to build
trajectories by integrating over the time variable. Each trajectory starts in the
neighborhood of a point (or set of points) called the a-limit for which rVðrÞ ¼ 0
and ends in the neighborhood of another point (or set of points) called the x-limit
for which also rVðrÞ ¼ 0. Except for asymptotic behaviors, the a and x-limits are
critical points. The set of trajectories having a given critical point as x-limit is
called the stable manifold of this critical point whereas its unstable manifold is the
set of trajectories for which it is a a-limit. The stable manifold of a critical point of
index 0 (a local maximum or attractor) is the basin of the attractor, that of a critical
point of index larger than 0 is a separatrix: it is the boundary between basins.

1.4.3 The Basins of the Electron Density and of the ELF

The large maxima of the electron density are expected and are found at the nuclear
positions RA. These points are x-limits for the trajectories of rqðrÞ, in this sense
they are attractors of the gradient field although they are not critical points for the
exact density because the nuclear cusp condition makes rqðRAÞ not defined. The
stable manifold of the nuclear attractors are the atomic basins. The non-nuclear
attractors occur in metal clusters [59–62], bulk metals [63] and between homonu-
clear groups at internuclear distances far away from the equilibrium geometry [64].
In the Quantum Theory of Atoms in Molecules (QTAIM) an atom is defined as the
union of a nucleus and of the electron density of its atomic basin. It is an open
quantum system for which a Lagrangian formulation of quantum mechanics [65–
70] enables the derivation of many theorems such as the virial and hypervirial
theorems [71]. As the QTAIM atoms are not overlapping, they cannot share
electron pairs and therefore the Lewis’s model is not consistent with the description
of the matter provided by QTAIM.

The analysis of ELF yields a partition into core and valence basins which
“correspond to the qualitative electron pair domains of the VSEPR model and have
the same geometry as the VSEPR domains” [72]. The core basins, labeled as C(A)
where A is the atomic symbol of the element, surround nuclei with atomic charge
Z[ 2. For a given atom, their number varies with the number of core shell of the
element and also with the local symmetry in the molecule. They are usually
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gathered in a single “super-bassin”, although it may be interesting to consider the
basins of the external core shells, the subvalence basins, to explains geometrical
features [73, 74]. The map of the ELF basins of Al3N3H3 in the molecular plane is
displayed in Fig. 1.2. The valence basins are organized around the core basins
represented in magenta with which they share a boundary. The adopted nomen-
clature to label the valence basins is V(A,B,…) where A,B,… are the atomic
symbols of the atomic cores having a boundary with the considered valence basin.
There are 3 V(Al,H), 3 V(N,H) and six (Al,N) valence basins corresponding to the
Al–H, N–H and Al–N bonds. The V(Al,H) and V(N,H) basins encompass the
proton and are therefore the valence shells of the hydrogen atoms. The valence shell
of each aluminum atom is composed by the two V(Al,N) basins and the V(Al,H)
located around the Al core whereas the nitrogen valence shells involve two V(Al,N)
and V(N,H) basins. A valence basin may belong to the valence shell of one or
several atomic valence shells. The synaptic order of a valence basin is the number
of atomic valence shell to which it belongs. There are therefore monosynaptic
basins V(A), disynaptic V(A,B) and higher polysynaptic basins, V(A, B, C,…).

1.4.4 Molecular Graphs and Chemical Structure

The concept of molecular graph introduced by Bader [75, 76] refers to the set of the
unstable manifolds of the saddle points of index 1, called bond critical points
(BCPs) in the case of the analysis of the one electron density. The unstable

Fig. 1.2 Map of the ELF
basins in the molecular plane
of Al3N3H3 and ELF = 0.085
isosurface. The molecule is
bounded by the qðrÞ ¼
	10�5 isosurface. Color
code: magenta = core, light
blue = bonded hydrogens,
other colors = Al–N bonds
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manifold of a BCP is called bond path as it is the union of the two trajectories
linking the nuclear attractors of two adjacent interacting atoms. Figure 1.3 shows
the molecular graph of Al3N3H6 which clearly corresponds to the standard bonding
network.

The molecular graph, built from the gradient field critical points, provides a
complete representation of the bonding in a molecule accounting for the bonds, the
lone pairs and their organization around the cores. It is obtained following the
recipe of Krokidis et al. [77] which yields rather intricate patterns around the core
basins. In fact ELF molecular graphs have been introduced in the context of the
study of the bonding along a reaction pathway because they provide a clear syn-
thetic picture of the topology at each stage of the reaction.

In general the gradient field depends upon a set of parameters, for example the
nuclear coordinates in the case of the electron density and ELF fields calculated
with the Born-Oppenheimer approximation. These parameters are called control
parameters and the topology of the gradient field expressed by its critical points and
their connectivity may change with the control space parameters. The set of points
of the control parameter space for which a given topology is preserved is called a
structural stability domain. In a reaction the system visits different stability
domains which link the structure of the reactants to that of the products. At the
turning points at which the system goes from one structural stability domain to an
other some of the critical points change of type, or become wandering points. In any
case the Poincaré-Hopf relation must be satisfied. This evolution can be described
in terms of bifurcation catastrophes [78] in the sense of René Thom [79]. In the
framework of the electron density analysis, the study of reaction is limited to few
types of reactions (isomerizations, cyclizations) because the rqðrÞ field enables to

Fig. 1.3 Density isocontours
and molecular graph of
Al3N3H6. The BCP’s are
represented by 
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distinguish chemically bonded atoms from non bonded pairs (for a diatomic
molecule the Poincaré-Hopf relation imposes a BCP at any internuclear distance).
The process of the creation-annihilation of electronic domains, as depicted by ELF,
has been formalized in the Bonding Evolution Theory (BET) of Krokidis et al. [77].
This method has been widely applied to investigate organic chemistry reaction
mechanisms [80–86].

1.5 Conclusion

In the following nineteen chapters, the relevance of topology in chemistry is
addressed.

The first section presents the latest methodological advances in the topological
analysis of molecular structure and reactivity. The first four chapters by Paul L.
A. Popelier, Shant Shahbazian, Carlo Gatti et al. and Cherif F. Matta et al, deal with
the most recent developments and extensions of the topological analysis of the
electron density (QTAIM). In particular, a direct link between QTAIM and
chemical graph theory is provided by the localization-delocalization and electron
density-weighted connectivity matrices described by Chérif F. Matta et al.. The
chapter by Ángel Martín Pendás et al. highlights emergent interests in forgotten
scalar and vector fields for topological analyses within the gradient dynamical
system theory. The current density vector field is more specifically considered by
Paolo Lazzeretti, while the Fukui function gradient field, enabling the definition of
the chemically reactive regions of a molecule and thus providing a measure of the
chemical reactivity, is envisaged by Patricio Fuentealba et al. Other topological
tools relevant for the analysis of chemical reactivity and reaction mechanisms, are
discussed in the next two chapters by Paul Mezey and Juan Andrés et al.
respectively.

The second section focuses on applications of topological analysis for the
characterization of p-electron delocalization and aromaticity. The chemical graph
theory approach is here shown to remain more topical than ever. In spite of the
development of advanced quantum chemical tools beyond Hartree-Fock, DFT or
multi-configurational methods, a direct understanding of computational results
often requires recourse to the methods of graph theory or Hückel Molecular
Orbitals (HMOs). While aromaticity is certainly one of the “most basic topological
concept” in chemistry (specific effect of the cyclic character of p-systems in
molecules), it has long suffered from a lack of clear-cut definition. The merit of the
discrete graph theory level is first illustrated by Ivan Gutman and Slavko
Radenkovic delineating the scope of approaches based on the counting of Kekulé
structure types for the prediction of the “observable aromatic character” of ben-
zenoids, in particular around the perylene family. From a more general standpoint,
Miquel Solà et al. address the relevance of the basic “counting rules of aromaticity”
in a systematic manner. The main application of graph theory in quantum chemistry
is the use of the adjacency matrix as a Hückel Hamiltonian. Within this context,
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Stéphane Humbel et al. give a survey of their Hückel-derived Valence Bond
methods for the mesomeric description of p-conjugated systems through localized
Lewis structures, while presenting their friendly HuLiS freeware. In a more specific
prospect, Jean-PaulMalrieu, et al. show that the topological Hückel mono-electronic
Hamiltonian and Hubbard bi-electronic Hamiltonian provide valuable tools for the
study of magnetic properties of open-shell p-conjugated hydrocarbons.

The last section is devoted to applications of various topological methods for the
characterization of particular weak bonds or interactions. The case of hydrogen and
halogen bonding is addressed in the first three chapters by Slavomir Grabowski,
Laurent Joubert and Vincent Tognetti, and Manuel Yañez et al. respectively. The
characterization of non-covalent interactions is then reviewed by Julia
Contreras-Garcia et al. The diversity of nitrogen-oxygen bonds is illustrated by
Slawomir Berski and Agnieszka J. Gordon. Finally, relativistic effects on bonding
schemes such as the charge-shift bonding character of actinide oxides are examined
by Julien Pilmé et al. through combined ELF and QTAIM topological analyses.

In a whole, the volume gives a selected but topical overview of the value of
topological methods for an improved understanding of chemical structure and
reactivity. It thus outlines the prospects while providing inspiration for future
developments in this field.

References

1. Dalton J (1808) New system of chemical philosophy. R. Bickerstaff, London
2. Brown AC (1864) Trans Roy Soc Edinb 23:707
3. Brown AC (1865) J Chem Soc 18:230
4. Babaev EV (1999) Chemical topology: introduction and fundamentals. In: Bonchev D,

Rouvray R (eds). Gordon and Breach, Reading, pp 167–264
5. Sylvester JJ (1878) Nature 17:284
6. Kekulé von Stardonitz FA (1857) Annalen der Chemie und Pharmacie 106:129
7. Lewis GN (1916) J Am Chem Soc 38:762
8. Berzélius JJ (1819) Essai sur la théorie des proportions chimiques et sur l’influence chimique

de l’électricité, par J. J. Berzélius,… Traduit du suédois sous les yeux de l’auteur et publié par
lui-même. Méquignon-Marvis, Paris

9. Laming R (1845) Phil Mag 27:420
10. Abegg A, Anorg Z (1904) Chem 39:330
11. Thomson JJ (1904) Phil Mag 7:237
12. Huggins ML (1922) Science 55:679
13. Ingold CK (1922) J Chem Soc 121:1133
14. Ingold CK (1933) J Chem Soc 143:1120
15. Linnett JW (1961) J Am Chem Soc 83:2643
16. Linnett JW (1964) The electronic structure of molecules. A new approach. Methuen, London
17. Maraval V, Chauvin R (2007) New J Chem 31:1853
18. Chauvin R (1996) J Math Chem 19:147
19. Sidgwick NV, Powell HM (1940) Proc Roy Soc A 176:153
20. Gillespie RJ, Nyholm RS (1957) Quart Rev Chem Soc 11:339
21. Gillespie RJ (1963) J Chem Educ 40:295
22. Gillespie RJ (1991) Chem Soc Rev 21:59

18 B. Silvi et al.



23. Gillespie RJ, Robinson EA (1996) Angew Chem Int Ed Engl 35:495
24. Lepetit C, Maraval V, Canac Y, Chauvin R (2016) Coord Chem Rev.308:59
25. Ayers PL, Boyd RJ, Bultinck P, Caffarel M, Carbó-Dorca R, Causá M, Cioslowski J,

Contreras-Garcia J, Cooper DL, Coppens P, Gatti C, Grabowsky S, Lazzeretti P, Macchi P,
Martín Pendás A, Popelier PL, Ruedenberg K, Rzepa H, Savin A, Sax A, Schwarz WE,
Shahbazian S, Silvi B, Solà M, Tsirelson V (2015) Comput Theor Chem 1053(2). Special
Issue: Understanding structure and reactivity from topology and beyond

26. Diudea MV, Gutman I, Lorentz J (1999) Molecular topology. Nova Science, Huntington,
New York

27. Restrepo G, Villaveces JL (2012) Int J Phil Chem 18:3
28. Wiener H (1947) J Am Chem Soc 69:17
29. Gutman I (1978) Ber Math Stat Sekt Forschungszentrum Graz 103:1
30. Gutman I, Milun M, Trinajstic N (1976) Croat Chem Acta 48:87
31. Aihara J (1976) J Am Chem Soc 98:2750
32. Sachs H (1962) Publ Math (Debrecen) 9:270
33. Heilmann O, Lieb E (1972) Commun Math Phys 25:190
34. Chauvin R, Lepetit C, Fowler PW, Malrieu JP (2010) Phys Chem Chem Phys 12:5295
35. Chauvin R, Lepetit C (2013) Phys Chem Chem Phys 15:3855
36. Estrada E (2000) Chem Phys Lett 319:713
37. Dirac PAM (1929) Proc Roy Soc A 123:714
38. Thom R (1993) Prédire n’est pas expliquer. Flammarion, Paris
39. Popelier PLA (2007) Faraday Discuss 135:3
40. Hellmann H (1937) Einführung in die Quantenchemie. Franz Deuticke, Leipzig and Vienna
41. Feynman RP (1939) Phys Rev 56:340
42. Hurley AC (1954) Proc Roy Soc A
43. Hurley AC (1954) Proc Roy Soc A 226(1165):179
44. Hohenberg P, Kohn W (1964) Phys Rev 136:B864
45. McWeeny R (1989) Methods of molecular quantum mechanics, 2nd edn. Academic Press,

London
46. Wigner E (1932) Phys Rev 40(5):749
47. Shewell JR (1959) Am J Phys 27:16
48. Cohen L (1966) J Math Phys 7:781
49. Cohen L (1979) J. Chem. Phys. 70:788
50. Silvi B (2003) J Phys Chem A 107:3081
51. Kohout M, Pernal K, Wagner FR, Grin Y (2004) Theor Chem Acc 112:453
52. Kohout M, Pernal K, Wagner FR, Grin Y (2005) Theor Chem Acc 113:287
53. Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397
54. Silvi B, Fourré I, Alikhani E (2005) Monatsh Chem 136:855
55. Ayers PW (2005) J Chem Sci 117:441
56. Gadre SR, Shirsat RN (2000) Electrostatics of atoms and molecules. Universities Press,

Hyderabad
57. Balanarayan P, Gadre SR (2003) J Chem Phys 119:5037
58. Espinosa E, Lecomte C, Molins E (1999) Chem Phys Lett 300:745
59. Cao WL, Gatti C, MacDougall PJ, Bader RFW (1987) Chem Phys Lett 141:380
60. Gatti C, Fantucci P, Pacchioni G (1987) Theor Chim Acta (Berlin) 72:433
61. Cioslowski J (1990) J Phys Chem 94:5496
62. Mei C, Edgecombe KE, Smith VH Jr, Heilingbrunner A (1993) Int J Quant Chem 48:287
63. Silvi B, Gatti C (2000) J Phys Chem A 104:947
64. Martín Pendás A, Blanco MA, Costales A, Mori Sánchez P, Luaña V (1999) Phys Rev Lett

83:1930
65. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford Univ Press, Oxford
66. Bader RFW (1994) Phys Rev B 49:13348
67. Bader RFW (2001) Theor Chem Acc 105:276
68. Bader RFW (2005) Monatsh Chem 136:819

1 Topological Approaches of the Bonding in Conceptual Chemistry 19



69. Bader RFW (2007) J Phys Chem A 111:7966
70. Bader RFW (2007) The quantum theory of atoms. In: Matta CF, Boyd RJ (eds) Molecules:

from solid state to dna and drug design. Wiley, New York, pp 37–59
71. Srebrenik S, Bader RFW (1975) J Chem Phys 63(9):3945
72. Gillespie RJ, Robinson EA (2007) J Comput Chem 28:87
73. Gillespie RJ, Noury S, Pilmé J, Silvi B (2004) Inorg Chem 43:3248
74. de Courcy B, Pedersen LG, Parisel O, Gresh N, Silvi B, Pilmé J, Piquemal JP (2010) J Chem

Theory Comput 6:1048
75. Bader RFW, Anderson SG, Duke AJ (1979) J Am Chem Soc 101:1389
76. Bader RFW, Nguyen-Dang TT, Tal Y (1981) Rep Prog Phys 44:893
77. Krokidis X, Noury S, Silvi B (1997) J Phys Chem A 101:7277
78. Tal Y, Bader RFW, Erkku J (1980) Phys Rev A 21:1
79. Thom R (1972) Stabilité Structurelle et morphogénèse. Intereditions, Paris
80. Berski S, Andrés J, Silvi B, Domingo L (2003) J Phys Chem A 107:6014
81. Polo V, Andres J, Castillo R, Berski S, Silvi B (2004) Chem Eur J 10:5165
82. Santos JC, Andrés J, Aizman A, Fuentealba P, Polo V (2005) J Phys Chem A 109(16):3687
83. Berski S, Andrés J, Silvi B, Domingo LR (2006) J Phys Chem A 110:13939
84. Andrés J, Berski S, Domingo LR, Polo V, Silvi B (2011) Curr Org Chem 15:3566
85. Andrés J, Berski S, Domingo LR, González-Navarrete P (2012) J Comput Chem 33:748
86. González-Navarrete P, Domingo LR, Andrés J, Berski S, Silvi B (2012) J Comput Chem

33:2400

20 B. Silvi et al.



Part I
Topological Methods: Definition, State

of the Art and Prospects



Chapter 2
On Quantum Chemical Topology

Paul L.A. Popelier

Abstract Quantum Chemical Topology (QCT) is a branch of theoretical chemistry
that uses the language of dynamical systems (e.g. attractor, basin, homeomorphism,
gradient path/phase curve, separatrix, critical points) to partition chemical systems
and characterise them via associated quantitative properties. This methodology can
be applied to a variety of quantum mechanical functions, the oldest and most
documented one being the electron density. We define and discuss the topological
atom, and justify the name topology. Then we define the quantum atom without
reference to the topological atom. Subsequently, it turns out that each topological
atom is a quantum atom, a property that enables the construction of a topologically
inspired force field called QCTFF. We briefly discuss the four primary energy
contributions governing this force field under development, and how the machine
learning method kriging captures the variation in these energies due to geometrical
change. Finally, in a more philosophical style, we advocate falsification in the area
of chemical interpretation by means of quantum mechanical tools, introducing the
concept of a non-question.

2.1 Introduction

Recently a chapter on the “Quantum Theory of Atoms in Molecules (QTAIM)” [1]
was commissioned by editors Frenking and Shaik for their book on fundamental
aspects of chemical bonding. This detailed and lengthy chapter has meanwhile been
published [2], and features alongside authoritative chapters on alternative approa-
ches such as EDA, NBO, Valence Bond, conceptual DFT, Block-localised
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wavefunctions, ELF and high-resolution X-ray crystallography. The spirit of that
book combined an educational style with an awareness of current scientific
boundaries, while avoiding too many equations in the main text, as requested by the
editors. That chapter managed to deliver added value in explaining QTAIM again,
by means of an alternative angle of exposition, different to that in other sources [3–
7]. Moreover, an historic narrative was given there, as well as a discussion of
topological energy partitioning. The current chapter selects and re-explains ele-
ments from that document, with the new didactic example of HCN, justifies the
name of Quantum Chemical Topology (QCT) (which encompasses and supersedes
QTAIM), outlines the current state of affairs in a novel QCT-based protein force
field, and briefly invites the community to start falsifying interpretative methods
(QCT and non-QCT) in case studies where the outcome would make a difference.

The term Quantum Chemical Topology (QCT) was first coined [8] in 2003, and
the first dedicated symposium took place in 2013, in Mexico City. Footnote 19 in
the paper that coined QCT, gave a detailed justification for this name and it is
helpful to quote part of this footnote, with a few modifications: “…The use of the
acronym QCT does not downplay the physics behind “Atoms in Molecules”
(AIM) by referring to the topology language as the central idea behind it. Instead,
the name QCT seeks to capture better what this approach is about. The term (QT)
AIM is widely used but is actually too narrow because, strictly speaking, it only
makes sense as a term if one analyses the electron density topologically. Only then
does one recover an atom in a molecule. A topological analysis of the Laplacian of
the electron density (which is part of AIM) or the topology of the electron local-
ization function (ELF), for example, does not yield atoms in molecules. However,
they can both be put under the umbrella of QCT since they share the central
topological idea. Also, returning to the electron density, one could use the topo-
logical analysis to recover molecules inside van der Waals complexes, an important
idea in intermolecular forces. Again, as a name, AIM would not describe this result.
The name QCT also invites any future developments based on a topological
analysis of other 3D or higher-dimensional scalar functions.” This view was
elaborated in Sect. 2.2 of a chapter [9] published in 2005, and updated again in the
introduction of a paper [10] in 2009, and finally in Box 8.1 in Chap. 8 of the
aforementioned book [2] edited by Frenking and Shaik.

The current book should be the right habitat to start thinking more in terms of
falsification when interpreting a chemical phenomenon. Unfortunately, not many
papers directly and critically compare methods. The papers that do so, however,
often terminate with diplomatic and almost vague conclusions. This status quo
perhaps adds to the prevailing notion that all methods are equivalent in quality and
predictive value. They can all be used at the same time, in spite of their known
pitfalls, and even if their results contradict each other. Such view is echoed in
Hoffmann’s statement that “any rigorous definition of a chemical bond is bound to
be impoverishing” and also in his advice “that one should have fun with the fuzzy
richness of the idea”. Such an attitude perpetuates discussions, without prospect of
them ever being resolved. Is this really the fate of interpretative theoretical
chemistry? Or should one strive for conceptual hygiene? Is chemistry really this
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hopelessly complicated universe preventing chemists to ever discover the right tools
to give them solid insight in this universe? Interpretative methods urgently need to
make predictions that are falsifiable: one method is wrong and the other is right. Or
is asking for such binary resolution naïve? Or is calling for this binary clarity a step
towards doing better science? This chapter will give a few examples of interpre-
tations disagreeing and thereby setting the scene for falsification.

2.2 The Topological Atom

Surely everyone can agree that there are atoms inside molecules, in the same way
that there are living cells inside an animal or a plant. Molecules are not novel
aggregates of electrons and nuclei but are rather constructions based on
pre-organised entities called atoms. Similarly, an animal is not a totally new form of
life but instead built from specialised cells that each represent pre-organised (more
elementary) matter such as proteins, lipids, carbohydrates and nucleotides. Several
energy production mechanisms inside a unicellular creature are the same as in the
cell of an animal. In a loosely similar vein, atoms largely retain their energy in
going from an isolated state in the gas phase to an existence inside a molecule. The
near-preservation of atoms is exactly what chemistry is about as a science: the study
of how atoms change when interacting with other atoms. Therefore it is important
that an atom inside a molecule is defined and calculated such that it does a good job
in not changing too much while going from the gas phase to the molecule. It is then
that one recovers a truly chemical atom rather than a physical atom. The chemist
recovers an atom that allows her, or more modernly him, to insulate how the atom
interacts with other atoms rather than being distracted by how that atom was built
from scratch (i.e. electrons and the nucleus). Only physics is interested in building
the atom from its constituents. Chemistry focuses on the small changes an atom
undergoes as it interacts with other atoms, small compared to the energy changes
involved in building an atom from electrons and a nucleus (all brought together
from infinity).

The question is now how to define an atom inside a molecular system and this is
where opinions differ, perhaps unfortunately. No experiment helps in settling the
contentious question of how to define an atom, and even if there was such an
experiment then the interpretation of its measured signal would probably be equally
contentious. Hence, it appears that an answer to a prime question of chemistry—
what is an atom in a molecule?—can only be tackled theoretically. An important
guide to value the theoretical proposals on what an atom inside a molecule actually
is, is the energetic transferability of that atom. In other words, how much does the
energy of a given atom change as it is transferred from one atomic environment to
another one? We will come back to energy transferability in Sect. 2.3.

In this section we focus on the molecular electron density and its shape. We seek
a theoretical proposal to define an atom inside a molecule, based on the internal
differences in the molecular density. In doing so, we avoid introducing a reference
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density and this minimality obeys Occam’s razor. This principle of parsimony in
assumptions is a quality gauge while assessing theories and models. The fewer
parameters a model or theory possesses, while explaining the same number of
observed phenomena, the more powerful it is. As a result, the more minimal models
are preferable to the more elaborate ones. If experiment does not come to the aid of
ranking theoretical proposals by their merit, then Occam’s razor does.

After this philosophical but also strategic interlude we are ready to inspect the
electron density of a simple pilot system, the HCN molecule, which is linear.
However, we first ask why the electron density is a good starting point to look for
an atom in a molecule. Figure 2.1 summarises the argument: the electron density,
denoted ρ(r), is independent from the route by which it was generated. In other
words, the electron density is an “information platform” describing in detail how
electrons distribute themselves in a molecule regardless of the route in which this
information was obtained. Figure 2.1 shows three main routes from which the
electron density can be acquired.

First, ρ(r) can be obtained from experiment, that is, X-ray crystallography.
Routine crystallography only uses local parts of a system’s electron density, namely
those at the core of each atom, from which crystallography determines each nuclear
position. High-resolution crystallography [11] goes further and collects data on the
valence electron density with an eye on measuring chemical features such as bonds
and lone pairs. From the 1970s onwards this was done by introducing an artificial
reference electron density, which was subtracted from the target electron density, in
order to eliminate the huge electron density peaks near the nuclei. This reference
density consists of a mere superposition of spherically averaged atomic densities,
thereby not allowing any hybridisation to develop and thus missing any chemical

Fig. 2.1 The electron density ρ is a three-dimensional function that can be obtained from three
different routes: X-ray diffraction (i.e. crystallography), SCF-LCAO-MO (or “orbitals”) and a
method without orbitals where the electron density is known only in given grid points. A method
that defines an atom at the level of ρ has the advantage that its definition is independent on how the
electron density was obtained
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features. As a result, this difference density (technically known as the deformation
density) contains all the chemical features. Although a simple and innocent looking
approach, the exact form of the reference density is a concern. Different results can
be obtained for different choices made in constructing the deformation density.
However, there is a more minimal way forward, which avoids such choices in the
first place.

Occam’s razor proposes to use the molecular electron density as its own refer-
ence. Subtracting this density from itself returns a zero density everywhere, which
is of course useless but introducing the gradient achieves what is required. The
gradient represents an internal difference, via its definition as a derivative, which
contains the difference of two function values, each evaluated at two points
infinitesimally close to each other. At a given point, the gradient vector contains
local information on how the function (in the case the electron density) changes
internally. We wonder how the information obtained by the reference-free intro-
spection can be revealed. The key to this goal is simply plotting a succession of
gradient vectors, as shown in Fig. 2.2.

The gradient path that results from the primitive construction shown in Fig. 2.2
is all one needs to reveal the internal structure of the electron density. A bundle of
gradient paths, called the gradient vector field, naturally exposes two fundamental
features a chemist wants to extract from the electron density: the atom and the bond.
Figure 2.3 illustrates this for a simple molecule: hydrogen cyanide.

Figure 2.3 clearly shows how a gradient path is everywhere orthogonal to a
contour line of constant electron density. This statement is equivalent to the fact that
the gradient path traverses the electron density in the direction of maximum ascent.
As a result a gradient path also has a direction: its trajectories contain “earlier”
points and “later” points in space. The question is now if it has a beginning and an
ending. The answer is affirmative to both parts of the question. In fact, the origin
and terminus of a gradient path have something in common: they are points where

Fig. 2.2 In its most elementary construction a gradient path can be seen as a succession of
infinitely short gradient vectors. Starting at ri the gradient vector evaluated at this point is followed
over a very short stretch, reaching r1, where the gradient is re-evaluated and again followed very
briefly. This resulting broken line becomes a gradient vector in the continuous limit, ultimately
terminating in point rf
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the gradient vanishes. Such a point is called a critical point. Points ri and rf in
Fig. 2.3 are critical points. By deduction all points at infinity are critical points. In
three-dimensions there are four types of (non-degenerate) critical points.

Figure 2.3 shows two types of critical points: the maximum and the bond critical
point. The maximum is an attractor for an infinite number of gradient paths orig-
inating at infinity. Each such set of gradient paths forms a topological atom. The
bond critical point is a saddle point in that it is a maximum in two directions only
(rather than three) and a minimum in the remaining direction. The latter direction is
the molecular axis. Indeed, a gradient path originates at the bond critical point and
terminates at one of the nuclear maxima. A second gradient path originates at the
bond critical point but at the opposite side, and is attracted to the other nuclear
maximum at that side. This pair of gradient paths is called an atomic attraction line
[12]. When the forces on all nuclei vanish, as is the case for a local energy mini-
mum, then the atomic interaction line becomes a bond path. The set of all bond
paths occurring a molecule (or molecular complex) is called a molecular graph.
A graph is a mathematical structure that models pairwise relations between objects,

Fig. 2.3 Electron density contour plot of HC ≡ N superimposed to its gradient vector field, which
consists of an infinite multitude of gradient paths, here represented by a few dozen paths
originating at infinity and terminating at the respective nuclei. A special bundle of gradient paths
starts at infinity and ends up at the little squares, which are bond critical points. From each bond
critical point emerge two gradient paths, each of which is attracted to a different nucleus. This pair
of gradient paths is called the atomic interaction line, or in this case of a local energy minimum, the
bond path. The carbon is placed at the origin and the bold square box marks the −6 a.u. and +6 a.u.
horizontal and vertical boundaries of the plot. The electron density values of the contour lines are
1 × 10−n, 2 × 10−n, 4 × 10−n and 8 × 10−n au where n starts at −3 and increases with unity
increments
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which in this case are atoms. Such a relation is robust under moderate geometric
deviations (shrinking and elongation) from the local energy minimum geometry.

It should be pointed out that a gradient path can always be characterised and
classified by the types of the two critical points that it manifestly connects. This was
done exhaustively [13] and for the first time in 2003. This classification focuses on
how many gradient paths can originate from a source critical point and how many
gradient paths can terminate at the sink critical point.

The attentive reader may ask how a gradient can originate at a critical point if, at
that point, the gradient vanishes and hence the gradient path construction of Fig. 2.2
collapses at ri. In other words, if there is no gradient there is no directional guid-
ance. This is true but, in practice, the gradient path starts from a position
infinitesimally close to the bond critical point, in a direction given by the relevant
eigenvector of the Hessian of ρ evaluated at the bond critical point. At that new
point the gradient does not vanish. The meaning of the bond critical point is still a
matter of debate but an explanation of it, not given in the original literature by
what Bader et al., will be given just below.

Let us look again at HC ≡ N and fix the value of the electron density at 0.001 a.u.
Figure 2.4 show the contour associated with this value, which can be taken as the
practical edge of the molecule when in the gas phase. Note that when a molecule is
part of a condensed phase then there is no need for such a practical edge; the whole
molecule will then be topologically bounded, by a surface that is parameter-free, as
explained below. The ρ = 0.001 a.u contour is the boundary between the blue region
(ρ < 0.001 a.u.) and the green region (0.001 a.u. < ρ < 0.29 a.u.). If the electron
density is increased beyond 0.29 a.u. then the hydrogen atom becomes disconnected
from the rest of the molecule. In other words, this hydrogen, while still being inside

Fig. 2.4 The atomic
disconnection process in
HC ≡ N. Each bond critical
point (little black square)
marks the contact point
between two adjacent atoms

2 On Quantum Chemical Topology 29



the molecule, is now completely enclosed by its own contour lines (not shown). The
value of 0.29 a.u. is special because it is that at the bond critical point between H and
C.While increasing the electron density starting from 0.001 a.u., the value of 0.29 a.
u. is the highest electron density for which the hydrogen is still attached to the rest of
the molecule. For any higher value the contours encompassing the whole molecule
become disconnected. The same disconnection process occurs when ρ increases
above 0.49 a.u., which of course is the electron density at the second bond critical
point. It is then that C and N also become disconnected. Now, all three atoms in
HC ≡ N are fully encircled by their own contours. Overall, this process shows that
bond critical points are “contact points” between certain atoms. A bond critical point
between two given atoms represents the transition point of them being connected or
disconnected. When connected, they are encompassed by the same contours. When
disconnected, the respective atoms have their own “atomic” contours.

It is clear that topological atoms are non-overlapping. This is an important
property that has attractive consequences in the area of intermolecular forces, where
the thinking is dominated by overlapping molecules. The second important feature
of topological atoms is that there are no gaps between the atoms. As a consequence,
every point in space belongs to a topological atom; there is no “empty” (i.e.
unallocated) space. The absence of the void has consequences for how one thinks
about pockets in enzymes, including active sites and allosteric sites. The familiar
ball-and-stick, or even “helix/turn/sheet ribbon” representation of the protein
modelling world, gives the impression that there is empty space. A molecular view
according to topological atoms challenges [14] this impression. Instead, if a ligand
enters an enzymatic pocket, it will have to deform a host of topological atoms, each
of which has an energy cost. Steric hindrance then becomes a more gradual and
continuous concept as opposed to the simple on-off picture that van der Waals radii
give. In other words, whereas traditional atoms act as billiard balls, topological
atoms behave like sponges.

Figure 2.5 gives a three-dimensional view of the topological partitioning of the
pilot molecule. The vertical solid lines appearing in Figs. 2.3 and 2.4 now show

Fig. 2.5 Two views of the same three-dimensional representation of the three topological atoms
(grey H, gold C, blue N) in HC≡N. The interatomic surfaces are bundles of gradient paths
originating at infinity and terminating at a bond critical point (little bright purple sphere)
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their full 3D extent as so-called interatomic surfaces. These surfaces are the sharp
boundaries between atoms inside a molecule. Because a molecule is simply the
union of its topological atoms the boundary between molecules is also
sharp. Hence, a molecule in condensed matter is fully bounded by interatomic
surfaces, which are parameter free. The use of molecular contour surfaces of
constant electron density (e.g. ρ = 0.001 a.u.) is artificial and exists for practical (i.e.
visualisation) purposes only. Note that a molecule in the gas phase, alone in the
Universe, is a fiction: sooner or later one will find another molecule far away that
still shares a topological boundary with the original “isolated” molecule.

The hydrogen cyanide molecule, H–C≡N, can be isomerised to hydrogen iso-
cyanide, H–N+≡C–, by tilting the hydrogen over the carbon and gradually rotating it
to the right. Eventually, this hydrogen ends up at the right hand side of a new linear
arrangement, which can also be written as C– ≡ N+

–H for easy comparison with H–
C≡N. At some sharp transition point during the rotation of hydrogen, the atomic
interaction line flips over: where it originally connected H and C, it then connects
H and N. This means that the connectivity of the atoms suddenly changes, which is
a topological feature. This is an example of a so-called conflict mechanism.

We now ask in which way(s) the name topology is appropriate for what we have
discovered. Topology is the mathematical study of shapes and topological spaces. It
is an area of mathematics concerned with the properties of space that are preserved
under continuous deformations including stretching and bending. Avoiding precise
mathematical terms, one can define topology as the study of qualitative properties
of certain objects that are invariant under continuous transformations. For example,
Euler’s work on the Königsberg bridge problem was one of the earliest topological
studies. He showed it was impossible to find a route through the city of Königsberg
that crosses each of the seven bridges exactly once. This solution only depended on
which bridges are connected to which islands and riverbanks. In other words, only
connectivity mattered, not the length of the bridges or the distances between them.
This work also marked the beginning of graph theory and thereby establishes a link
between topology and graph theory. In general, the motivation behind topology is
that some geometric problems do not depend on the exact shape of the objects
involved, but rather on the way they are put together. How does this way of
thinking apply to the analysis of the electron density discussed above?

The keyword “topology” was first used [15] in the expression “quantum
topology” by Bader et al. in 1979. Unfortunately, this name is already taken by a
branch of mathematics that connects quantum mechanics with low-dimensional
topology, which has little to do with Bader et al. developed and which culminated
in QCT. In any event, the name “quantum topology” was inspired by a paper [16]
by Collard and Hall published in 1977. These authors were the first to use the
Poincaré-Hopf theorem, which links the respective numbers of each of the four
possible types of critical points to the so-called Euler characteristic. The latter is a
purely topological concept and hence justifies the name topology. The Euler
characteristic is an application of algebraic topology, one of the four branches of
topology, which uses tools from abstract algebra to study topological spaces.
Collard and Hall also pointed out that the analysis of the discontinuous change in
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the topological characteristics of a molecular charge distribution resulting from the
continuous change in its nuclear coordinates is given by catastrophe theory [17].
This theory is a branch of bifurcation theory in the study of dynamical systems. In
turn, bifurcation theory is the mathematical study of changes in the qualitative or
topological structure of a family of vector fields. A second branch of topology
called differential topology, which is the field dealing with differentiable functions
on differentiable manifolds and which is closely related to differential geometry,
also applies to QCT. In fact, as early as 1996, a differential geometry study [18]
appeared on the Gaussian curvature of interatomic surfaces. Differential topology
also makes use of the Poincaré-Hopf theorem, and hence the two branches of
topology overlap. Finally, we mention that there are two remaining branches in
topology, called geometric topology and general topology. The first branch, which
includes knot theory, is the study of manifolds and maps between them, particularly
embeddings of one manifold into another. This branch does not appear to have been
applied as of yet in QCT. The second branch (general topology, also known as
point-set topology) establishes the foundational aspects of topology (point-set
topology, compactness and connectedness etc.). It deals with the basic set-theoretic
definitions and constructions used in topology, and thereby underpins the three
other branches (differential, geometric and algebraic topology).

Figure 2.6 shows an example of a 2D dynamical system that has nothing to do
with quantum mechanics but shows key features of QCT. The equations state how
the time derivative (dot signifies d/dt) varies as a function of the position in (x, y)
space, as a non-linear function of x and y. A particle at position (x, y) will travel

Fig. 2.6 Simple system of two ordinary differential equations, which shows a separatrix (dashed
line) and two critical points (pink). This topological object separates the basin dominated by the
attractor critical point (0, 1) (top). The second critical point shown is a saddle-type critical point, at
which the separatrix trajectories (dashed line) terminate. The collection of trajectories (phase flow)
can be seen as the paths followed by imagined particles travelling in time. The superscripted dots
in the equations signify differentiation with respect to time
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with a direction and magnitude given by the vector (−x, 1−x2−y2). The resulting
trajectories form the phase flow in Fig. 2.6, which is reminiscent of the gradient
vector field of the electron density of a diatomic molecule with one nucleus shown
(at the attractor critical point (0, 1)). The second critical point shown lies at point (0,
−1) and clearly has a qualitatively different flow pattern locally. This critical point
is both a maximum and a minimum, depending on the direction of approach to it,
and is reminiscent of a bond critical point. The two dashed trajectories lines that
terminate at this critical point form a separatrix, which is reminiscent of an inter-
atomic surface.

A non-exhaustive list of quantum mechanical functions that have hitherto been
partitioned includes the electron density ρ(r) (the analysis of which started with
Ref. [19]), its Laplacian ∇2ρ(r) (started off with Refs. [20, 21] and studied for the
first time in terms of the full topology in Refs. [13, 22, 23]), the nuclear potential
Vnuc(r) (studied [24] already in 1980 but the first elaborate and self-contained study
[10] appeared only 30 years later), the electron localization function (ELF) [25]
(started with Ref. [26] and reviewed in Ref. [27]), the electrostatic potential [28]
(started with thorough but stubbornly named “topographic” instead of topological
studies [29, 30] and continued with more modern work [31–34]), the virial field
[35], the magnetically induced molecular current distributions (started with [36]),
the intracule density (started with Ref. [37]), the Ehrenfest force field (topology first
investigated [38] in 2012 and then improved [39] in 2015), and finally the topo-
logical energy partitioning (Coulomb potential energy partitioning started with [40]
and culminated into the theory of Interacting Quantum Atoms (IQA) [41] (see
below), leading to energetic underpinning for the topological expression of
chemical bonding [42]) By bundling all these QCT studies under the umbrella of
the topology, the combined method is strengthened and can start competing with
the more traditional interpretative method of quantum chemistry [43–49]. This
competition should be seen in the light of falsification.

At the end of Sect. 2.2 it is useful to pause and muse about the character of the
topology as an instrument to study Nature. The language of dynamical systems,
which is rooted in topology, is at the heart of QCT. A hallmark of QCT’s parti-
tioning is its binary character: a point in space belongs to a QCT subspace or not.
Whereas non-QCT approaches allow for more gradual transitions from one sub-
space (e.g. an atom) to another, QCT works with step functions. The 3D step
function defines a finite-volume subspace that remains well defined under (possibly
large) geometrical deformations. Topology does allow for large deformations in the
geometry of the objects it defines while still characterising them by the same
invariant measures. However, once beyond a certain degree of deformation, the
topological object changes. The suddenness of this change makes some researchers
uncomfortable. The comfort of a gradual change may look appealing but then one
can ask if this is a false comfort. Can a world view with only gradual change make
any clear decision on what is A and what is B? Or should one not care about being
able to make this decision? Or can one make the decision at the price of introducing
a parameter? But is then the problem of state allocation (i.e. making the afore-
mentioned decision) not simply deferred to fixing a parameter value?
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The topology, even with its abrupt decisions, focuses on the essence of a system
in the same way that a phase diagram does. A molecular system can be in the liquid
state or the solid state, and the transition between these two states is abrupt (in the
limit of an infinitely large system). A phase diagram shares the characteristics of a
topologically partitioned space: it has sharp boundaries and it ignores the geo-
metrical details of the system. Indeed, a phase diagram looks beyond the exact
positions of the atoms in the molecules that make up a system; the atoms can
vibrate while the molecules can translate and rotate. In the same way, QCT looks
beyond the exact trajectories of the gradient paths but focuses on their connectiv-
ities, which are robust over large deformations of the gradient paths themselves.
A topological atom is then analogous to a phase. This is an example of how Nature
itself apparently imposes binary structures onto reality: it makes sense to say that a
piece of matter is either a liquid or a solid and the boundary between the two is
sharp.

There are more examples of sharp compartmentalisation in Nature. One of the
deepest examples is the architecture of thermodynamics, which discerns the system
and the surroundings. It is essential to the theoretical and practical functioning of
thermodynamics that a point in space either belongs to the system or to the sur-
roundings. Any fuzzy partitioning or delay in decision would paralyse any ther-
modynamic calculations or predictions. Secondly, Life itself, this most complex of
structures, has organised and evolved under the very existence of sharp boundaries.
Due to its small size, a cell membrane is a relatively sharp boundary between the
cytoplasm and the extracellular space. Of course, the boundaries are open (under
the control of specialised proteins in the cell’s lipid membrane). The boundaries of a
topological atom are also open in that electrons can swirl through them.
A topological atom is a pattern, comparable to the shape of water as it rapidly
cascades over a rock in a river. From a distance, the water appears standing still in a
barely fluctuating shape but of course the water itself streams through the pattern.
Thirdly, at a higher level, human societies have also carved up the Earth’s space in
non-overlapping subspaces with sharp boundaries, called countries. When a terri-
tory is not allocated to a single clear “attractor” such as China, Pakistan or India, as
in the case of Kashmir, then a dispute arises, proving the inherent human nature of
partitioning land into non-overlapping sections. Further examples of binary statuses
are found in the legal atmosphere where one is either alive or dead, married or not,
or guilty or innocent. The question then remains why Chemistry is not the right
locale to propose non-overlapping partitioning. What is so intrinsically fuzzy about
atoms and electron densities that would prevent sharp boundaries? Is life or human
society perhaps less fuzzy?

At the very end of this section on the topological atom, and on the wider
topological approach with its fundamental characteristics and consequences, we put
the topology to rest and look at energy instead. Energy is a quantum mechanical
observable and the main question is how it can be partitioned. This is the topic of
the next section, where we forget about the gradient vector field of the electron
density, at least at the start.
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2.3 The Quantum Atom

Energy is as important as the electron density. The Schrödinger equation presents
the energy and the wave function as prime quantities, joined at the hip and being of
equal status. For each eigenvalue (energy), there is an eigenfunction (wave func-
tion) and they both come as an inseparable pair. Because the electron density
immediately derives from the wave function, the molecular electron density and the
molecule’s energy are also twinned. Hence, because this electron density is of
prime importance due to the first Hohenberg-Kohn theorem, energy shares this
importance. Indeed, energy is in charge of the way a molecular system behaves and
understanding it is therefore crucial. Phenomena, such as steric hindrance, ulti-
mately reduce to energy considerations, even if sterics appear irreducible intuitively
(based on daily life experience). The natural way to understand something (at least
in the Western tradition of doing science) is to study its parts. Such an approach
calls for the spatial partitioning of energy.

The key question is how to define a molecular fragment that has a well-defined
kinetic energy. This question is attacked by starting with local kinetic energy,
which is the kinetic energy at a particular point per unit volume. This quantity is
thus a kinetic energy density, which when integrated over a volume, gives the
kinetic energy of the electrons in that volume. The kinetic energy of a molecular
fragment is then obtained from a 3D integral of the kinetic energy density over the
volume of that fragment. However, there is a practical problem in that there is no
“the” kinetic energy density; at best, there is “a” kinetic energy density. We write
“at best” because if one starts from the quasiprobability distribution function the
quantum mechanical treatment of kinetic energy, partitioned or not, is actually
problematic. Local kinetic energy is then ambiguous. However, within the para-
digm that Anderson et al. [50] call the ‘‘Laplacian family of local kinetic energies’’,
the deduction below is valid [51].

Although there are an infinite number [52] of expressions for the kinetic energy
density, it is sufficient to choose only two possible expressions to develop this
deduction [53], as given by Eqs. 2.1 and 2.2,

K(rÞ ¼ � 1
4
N
Z

ds0 w�r2wþw r2w�� � ð2:1Þ

G(rÞ ¼ 1
2
N
Z

ds0rw� � rw ð2:2Þ

where N is the total number of electrons in the system, w the system’s N-electron
wave function, and

R
ds0 signifies integration over all electrons except one. Note

that the electron spin is not considered here. It is easy to show that the two kinetic
energy densities, K(r) and G(r), are linked via the Laplacian of the electron density,
∇2ρ, or
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K(rÞ ¼ G(rÞ� 1
4
r2qðrÞ ð2:3Þ

The Laplacian of the electron density vanishes when integrated over whole space
or

Z
whole space

dV r2qðrÞ ¼ 0 ð2:4Þ

Integrating both sides of Eq. 2.3 over whole space then gives a unique value of
the molecule’s kinetic energy,

K ðmolecule) ¼ G ðmolecule) ¼ T ðmolecule) ð2:5Þ

where T expresses the kinetic energy regardless of whether it was calculated from
K(r) or G(r). Because a single molecule in the gas phase occupies whole space, one
indeed recovers the kinetic energy of the molecule by integration over whole space.
This energy is well-defined because it is unique: indeed, both K(r) and G(r) give
the same answer.

The main question is now if this same unique result can also be obtained for a
molecular fragment. Let us consider the subspace of an arbitrary fragment, denoted
⨁. For such an arbitrary subspace in 3D space we find thatZ

�
dV r2qðrÞ 6¼ 0 ð2:6Þ

From this equation and integration over both sides of Eq. 2.3, one deduces that

K(�Þ 6¼ G(�Þ ð2:7Þ

Hence, we do not obtain a unique kinetic energy for an arbitrary subspace.
However, if we can find a special subspace Ω such that

Z
X

dV r2qðrÞ ¼ 0 ð2:8Þ

then it makes sense to speak of a unique and hence well-defined kinetic energy
T(Ω) associated with such a special subspace,

K(XÞ ¼ G(XÞ ¼ T(XÞ ð2:9Þ

An atom that occupies such a special subspace Ω, and thereby obeys Eq. 2.9, is
called a quantum atom. At this moment we do not worry about what this quantum
atom looks like nor about how many possible such atoms there are. The only matter
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we are interested in is whether the topological atom is also a quantum atom. A way
to find out is to reformulate Eq. 2.9 using Gauss’s divergence theorem, which yieldsZ

X

dV r2qðrÞ ¼
Z
@X

dSrqðrÞ � nðrÞ ¼ 0 ð2:10Þ

where ∂Ω is the boundary of Ω. Equation (2.10) shows how a volume integral over
Ω is equal to a surface integral over ∂Ω. Now we focus on the integrand of the
surface integral and also look at the gradient vector field in Fig. 2.3. The interatomic
surface ∂Ω, separating H and C for example, is a surface that consists of gradient
paths. Hence the normal to this surface, denoted n(r), is orthogonal to a gradient
path at any point belonging to this surface including the bond critical point, or

rqðrÞ � nðrÞ ¼ 0 8r2@X ð2:11Þ

If Eq. 2.11 is true then Eq. 2.10 is also true. Thus a topological atom is a
quantum atom. Note that, unlike Bader et al. do we claim the reverse, which is that
each quantum atom is also a topological atom. In fact, we now know that this
statement is not correct. So, in summary, all topological atoms are quantum atoms
but not all possible quantum atoms are topological atoms [54]. Therefore, any
criticism [50] against the orthodox version of QTAIM which is the one propagated
by Bader, does not apply to the approach presented here. In other words, we do not
insist that the topological atoms are the only quantum atoms. We have deliberately
introduced and justified topological atoms on their own merit, independently from
quantum mechanics. They are indeed remarkable and attractive objects, and one can
ask why not more scientific disciplines use the elegant idea of partitioning by
gradient vector field subspace (called basin in short).

It is important to properly appreciate the result obtained above (Eq. 2.9) as a
“gateway” to a fully quantum-mechanically based force field. Traditional force
fields ignore kinetic energy, or more precisely, they do not explicitly account for it.
However, kinetic energy is a physical quantity and cannot be switched off; it does
influence the behaviour of atoms in a system and hence must somehow be incor-
porated in a force field or what one could call a “rapid energy predictor”.
A traditional force field only mimics the effect of kinetic energy, and only indi-
rectly, by including it in a Morse-like potential, for example. Such a methodology
does not isolate the kinetic energy in an atomic way. Instead, it lumps the behaviour
of the kinetic energy of two interacting atoms into bond-based parameters. QCT
offers a completely different route, one where the parameterisation is atom-based.
Moreover, this novel parameterisation recognises the explicit existence of kinetic
energy, at atomic level. That a topological atom offers this route, by virtue of being
a quantum atom (with a well-defined kinetic energy) is enticing. In the next section
we give a very brief outline of the QCT force field strategy.
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2.4 Towards a QCT Protein Force Field

2.4.1 Topological Energy Partitioning

An early and important result in the development of QTAIM was that an atom in a
molecule has its own (atomic) virial theorem. This means that, for any given
topological atom, there is a (simple) relation between the kinetic energy of this atom
and its potential energy. This in turn means that the potential energy of an atom (i.e.
interacting with itself and all remaining atoms) can be trivially calculated from the
atom’s kinetic energy (which we already know to be well defined). As a further
consequence, the total energy of an atom (which is the sum of kinetic and potential
energy) can be calculated from the kinetic energy alone. The sum of all total atomic
energies forming a molecule then yields the total energy of that molecule. However,
all of this is only true if the forces on the atomic nuclei vanish. If not, one is left
with a residual virial term consisting of nuclear position vectors dotted into
non-vanishing forces on the nuclei. Partitioning the latter (molecular) quantity over
the respective atoms has always been a problem, until in 2001 the potential energy
of an atom was calculated [40] independently from the kinetic energy.

The calculation of the interatomic electrostatic potential energy Velec involves a
six-dimensional integral, over the volume of each of the two topological atoms
A and B, or

VAB
elec ¼

Z
XA

dr1

Z
XB

dr2
qtot r1Þqtotðr2ð Þ

r12
ð2:12Þ

where the total charge density, qtotðrÞ, is the sum of the nuclear charge density and
minus the electron density –ρ(r) (i.e. electronic and hence corrected by a minus sign
catering for the negative electronic charge), while r12 is the distance between two
infinitesimal pieces of charge density [40]. This work was further developed with
the calculation of non-Coulomb interaction energies [55, 56].

The use of Eq. 2.12 implies that the condition of vanishing forces no longer
restricts the topological partitioning of the molecular energy into intra- and
inter-atomic contributions. This advance led to the development of Interacting
Quantum Atoms (IQA) [41], which since its implementation in AIMALL [57] has
become an increasingly popular tool in the armoury of interpretative quantum
chemical tools. A second and parallel development from the advance in the
aforementioned 2001 paper [40] is that of a quantum mechanical force field based
on the energies associated with topological atoms (at any nuclear configuration and
including non-stationary points on the potential energy surface). This is indeed
what our lab started doing, initially much focusing on multipolar electrostatics,
under the acronym QCTFF (Quantum Chemical Topology Force Field) [9, 58–60].
There is sustained and consistent evidence [61] that multipole moments are more
accurate and realistic than point charges. In spite of the latter’s inherent and well
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documented limitations some researchers are still looking (e.g. Ref. [62]) for the
“magic point charge” that accurately reproduces the molecular electrostatic
potential, even if that point charge is then just a mathematical number without any
connection to the physical process of charge transfer. We believe that the atomic
monopole is primarily a measure of charge transfer; at long range this monopole
becomes increasingly representative of the electrostatic potential that this atom
generates.

Applying the Laplace multipole expansion leads to

VAB
elec ¼

X
lAlBmAmB

TlAlBmAmB QlAmA QlBmB ð2:13Þ

where Q‘m represents the m-th component of a rank ‘ atomic multipole moment,
while T is a purely geometrical interaction tensor. The convergence properties of
this series expansion have been thoroughly studied [63–67] by our lab. There are
three conceptual and technical advantages associated with QCT multipole
moments. They are more compact than Cartesian multipole moments, avoiding
redundancies, they demonstrate good convergence at short-range, and they escape
penetration effects (and hence damping functions) due to their non-overlapping
nature.

Note that VAB
elec consists of 4 contributions, exhausting the purely electronic and

nuclear contribution on both A and B (i.e. 4 = 2 × 2) that is, the electron-electron
Coulomb energy VAB

ee;coul, the electron-nucleus attraction (potential) energy, denoted

VAB
en , its dual V

BA
en , and the nucleus-nucleus repulsion, V

AB
nn . When added, these terms

lead to the full electrostatic interaction between two atoms A and B, VAB
elec, or

VAB
elec ¼ VAB

ee;coul þVAB
en þVBA

en þVAB
nn ð2:14Þ

The electron-nucleus attraction energy is calculated as a three-dimensional
integral,

VAB
en ¼ �ZB

Z
XA

dr
qðrÞ
r1B

ð2:15Þ

where r1B is the distance between an electron inside the volume of atom A and the
nucleus of atom B. This calculation can also be performed if A = B, which features
in the intra-atomic energy discussed below.

The energy VAB
ee;coul can be related to the second-order reduced matrix, ρ2(r1,r2).

To understand how exactly, one needs to know the fine structure of ρ2(r1,r2), or

q2ðr1; r2Þ ¼ qcoul2 þ qexch2 þ qcorr2 ¼ qðr1Þqðr2Þ � q1ðr1; r2Þq1ðr2; r1Þþ qcorr2 ðr1; r2Þ
ð2:16Þ
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where the first term refers to the quantum-mechanically uncorrelated Coulomb-like
pair density, the second term to the Fock-Dirac exchange (which is dominated by
and associated with the Fermi hole), while the third term is at least an order of
magnitude smaller [41, 68] than the second term, and connected with the Coulomb
hole. The energy quantity VAB

ee is associated with the whole of ρ2(r1,r2), collecting
the three types of interactions that electrons experience when interacting with each
other. Each term in Eq. 2.16 is associated with a type of potential energy, so that the
corresponding fine-structure of VAB

ee automatically follows,

VAB
ee ¼

Z
XA

dr1

Z
XB

dr2
q2ðr1; r2Þ

r12

¼
Z
XA

dr1

Z
XB

dr2
qðr1Þqðr2Þ

r12
�

Z
XA

dr1

Z
XB

dr2
q1ðr1; r2Þq1ðr2; r1Þ

r12
þ

Z
XA

dr1

Z
XB

dr2
qcorr2 ðr1; r2Þ

r12

¼ VAB
ee;coul þVAB

ee;exch þVAB
ee;corr

ð2:17Þ

The second term in Eq. 2.17 represents the exchange delocalisation energy,
VAB
ee;exch, which is (already) present at Hartree-Fock level. This term teases out the

interaction that keeps bonded atoms together. The degree to which atoms are bonded
can be estimated by a non-energy measure, which is typically a quantum-mechanical
bond order. QCT offers such a measure [69]. However, it was shown by our lab [56]
that this bond order is only the first term of the multipolar expansion of VAB

ee;exch.
Hence, the latter quantity contains more information than a bond order. However, in
the construction of QCTFF, the route of expanding VAB

ee;exch as so-called exchange
moments was abandoned because they have an imprint of the molecular orbitals they
are derived from. This imprint hampers transferability. The energy quantity VAB

ee;exch

can remain unexpanded because it drops off so quickly with distance [70] in satu-
rated systems, which proteins largely are. However, multipole moments are essential
in the representation of electrostatics because this type of interaction drops off more
slowly than VAB

ee;exch. Therefore the number of non-negligible VAB
elec values is much

larger than the number of VAB
ee;exch values. The trouble with this observation is the

rapidly increase in the number of possible distances between A and B. In other
words, atoms that are further apart can appear in more possible configurations than
atoms that are closer to each other. This is why it is undesirable to calculate all
possible 1,n (n > 4) VAB

elec interactions. A multipole series succeeds in avoiding the
calculation of all these VAB

elec interactions. The series separates a geometrically
entangled (since r12 involves simultaneously r1 and r2) energy quantity into single
atom quantities, i.e. multipole moments. This separation enables the calculation of
the interatomic interaction to be free of large geometric variations. Conversely,
short-range interactions (1, 2; 1, 3 and 1, 4) are geometrically much more con-
strained and hence would not benefit that much from multipole moments. This is
why it is alright to not expand the electrostatic energy VAB

elec at short range.
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The third term in Eq. 2.17 completes the discussion on the three types of
electron-electron energy contributions. The quantity VAB

ee;corr covers the effect of
dynamic correlation and hence dispersion. It is absent at Hartree-Fock level or
VAB
ee;corr ¼ 0.

VAB
ee;corr ¼

XnG
j¼1

Xj

k¼1

XnG
l¼1

Xl

m¼1

djklm

Z
XA

dr1

Z
XB

dr2
1
r12

Gjðr1 � RjÞGkðr1 � RkÞ

Glðr2 � RlÞGmðr2 � RmÞ ð2:18Þ

where djklm are 4-index coefficients that we have extracted from the computer
program GAUSSIAN, Gp is the p-th Gaussian primitive centered on Rp and nG is
the number of primitives. The number of d-coefficients rapidly increases with the
number of primitives, in particular as ¼[nG(nG + 1)]2. Hence truncation schemes
must be devised and I/O optimised.

The energy contribution VAB
ee;corr was calculated for the first time [71] as late as

2015, for the four simple case studies of H2, N2, H2O and CO, operating on
CCSD/cc-pVDZ wave functions obtained by the program MOLPRO. The effect of
dynamic correlation is dual: an increase in the magnitude of the nucleus-electron
attraction energy, and a decrease in the electronic repulsion. Representing disper-
sion accurately and consistently within the QCT framework (rather than by a
bolt-on [72]) is important for future-proof success in the modelling of the conju-
gated residues (imidazole, phenol, indole and benzyl) of the four aromatic amino
acids [73]. This streamlined approach will avoid penetration effects, which the
non-overlapping topological atoms naturally preclude. Hence, there is no need for
damping functions in QCTFF. It appears that satisfactory expressions for damping
functions are problematic in view of the complexity of atom typing [74]. The
dynamic correlation part of QCTFF is currently under investigation in lab (in
connection with the program GAUSSIAN). Figure 2.7 summarises the three types
of interatomic energy contributions of QCTFF.

The remaining energy contribution is intra-atomic in nature, denoted Eintra, and
measures the intrinsic stability of an atom. It cannot be written as “V” because this
symbol is reserved for potential energy only and the atomic “self-energy” [40] also
contains kinetic energy, which is well-defined for a topological atom, as clearly
argued above. Broadly speaking, Eintra features in (and indeed may control) rotation
barriers, steric hindrance, the anomeric effect, the gauche effect or other stereo‐
electronic effects. We note that in typical potentials, such as the Lennard-Jones
potential, repulsion is formulated as an inter-atomic effect, whereas within QCT,
steric “interaction” is a mono-atomic property. The full consequence of this
philosophical difference still needs to be worked out because it already appears to
have an impact on the way we should think about “steric clashes”. Some support
against the traditional view that steric effects are due to precise one-to-one inter-
action, and hence in favour of the QCT view, comes from a non-QCT angle.
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Weinhold, who pioneered the natural bond orbital (NBO) method, writes in a paper
[75] dating from 1997: “A persistent theme of this work is that steric exchange
repulsion is not simply a sum of pairwise interactions between two electron pairs,
but rather a complex function of the entire N-electron distribution. The pattern of
orbital energy changes due to exchange repulsion is more complex than a simple
‘‘atom–atom repulsion’’ picture would suggest.” The contribution Eintra has indeed
an imprint of the whole molecule, although it has a practical cut-off, which we call
the atomic horizon (see next paragraph and energetic transferability between tri-
and penta-peptides).

Setting A = B in Eqs. 2.15 and 2.17 allows one to write the intra-atomic energy
of topological atom A as

EA
intra ¼ TA þVAA

ee þVAA
en ð2:19Þ

where TA is its kinetic energy. The intra-atomic energy EA
intra is the energy that a

single atom possesses inside a system, regardless of whether this system is a single
molecule or a cluster of molecules (including even ions). Work from our lab (to be
published in Molecular Physics 2016) shows that an oxygen, nitrogen or carbon has
the same energy, within maximum 2.3 kJmol−1, when appearing in a tri-peptide
(three amino acids) compared to appearing in a penta-peptide, with these peptides’
common nuclear skeleton in the same configuration. This energetic transferability
was observed in seven test cases, i.e. the homo-oligopeptides of Ala, Ser, Thr, Gly,
Val, Leu and Ile. This high degree of energetic transferability is an asset to QCT.
Transferability has also been detected [76] in terms of atomic charges by those who
develop alternative partitioning schemes (such as the Hirshfeld partitioning [77]
scheme and all its variants).

Fig. 2.7 Overview of the three types of inter-atomic energy contributions: Coulomb, exchange
and correlation, each with the specific chemical insight they offer
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2.4.2 Machine Learning

The final strand of QCTFF to discuss briefly is the way atomic properties (both
intra- and inter-) are predicted from the coordinates of the nuclei surrounding the
atom of interest. In general, this mapping is so complex that it needs a machine
learning method, and one that can handle high-dimensional spaces, given the large
number of coordinates that influence the atom of interest. Kriging [78] is such a
method. Originating in geostatistics, Kriging is a powerful interpolation technique
that can capture the behaviour of an output as a function of many inputs, using a
relatively small amount of data points. In its infancy [79] it succeeded in predicting
where the best location for a mine would be in a two-dimensional landscape, based
on measurements of a precious material (originally gold but could be diamond, oil,
uranium or any ore) at various locations in this landscape. The basic idea of Kriging
is to predict the value of a function at a given point by computing a weighted
average of the known values of the function in the neighborhood of the point. An
accessible account of the details of Kriging as used within the QCTFF context has
been given elsewhere [80].

Here we highlight one key idea, namely that of maximising the likelihood L,
which has not been clarified in that previous account [80]. To fix thoughts, let us
start with a simple example: a coin is being tossed thrice. If the coin is fair, then the
probability to observe head up, (denoted pH), is one half, that is pH = 0.5. Equally,
the probably of observing tail denoted pT is one half, or pT = 0.5. The probability to
observe head up twice and then tail (HHT) is pHHT = pHpHpT = pH

2 (1-pH) = 0.125.
An equivalent way of saying this is to reverse this statement: the likelihood L that
the coin was fair (i.e. pH = 0.5), given the observation of two heads being up
(HHT), is one eighth, i.e. L = 0.125. This is formally written as follows:

LðpH ¼ 0:5jHHTÞ ¼ 0:125 ð2:20Þ

In summary, the likelihood L is a function returning the probability of observed
outcomes (e.g. HHT), given a parameter value (i.e. pH). We now ask ourselves how
the likelihood L = pH

2 (1-pH) can be maximised. Mathematically this is easy: calculus
tells us that dL/dpH = d/dpH [pH

2 (1-pH)] = 2pH-3 pH
2 , which vanishes when pH = 2/3.

A plot, or a quick calculation of the second derivative, tells us that pH = 2/3 is
indeed a maximum, at which point L = 4/27. The result that pH, max L = 2/3 can be
intuitively understood by stating that the coin is biased towards heads up, by a
factor 2 over tail up. Indeed, with such a bias, the probability of the observed
outcomes HHT, given pH = 2/3, is maximal. How does all this help understanding a
key aspect behind Kriging?

Kriging uses the same strategy of maximising the likelihood: it finds the
parameters θh and ph (h = 1, 2, …, d) in the so-called Gram matrix R,
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Rij ¼ exp �
Xd
h¼1

hhjxih � x jhjph
" #

hh [ 0; 0\ ph � 2 ð2:21Þ

such that the likelihood L of the Kriging model, given the observed data points yi,

Lðh; p; l; rjyi; i ¼ 1; 2; . . .;NÞ� exp �ðy� 1lÞTR�1ðy� 1lÞ
2r2

" #
ð2:22Þ

is maximal, where σ2 is the process variance, 1 is a column vector of ones, and μ
models the global trend of the observable y. The observations are fixed (i.e. atomic
properties = output and coordinates of surrounding nuclei = input) but the
parameters are being varied such that what we observed becomes maximally likely.
How this maximisation is achieved is beyond the scope of this intentionally
non-technical text but this is a very important active research topic in our lab.

We refer the interested reader to the literature [51, 73, 80–86] for the use of
Kriging in the construction of QCTFF. Here we can only afford three general
remarks. Firstly, we know that three of the four types of energy contributions
described above can be Kriged successfully for all 20 amino acids, cholesterol,
small carbohydrates and small water clusters (also in the presence of a cation) and a
few pilot systems (NMA, ethanol, water, etc.). Proof-of-concept of successful
Kriging of the dynamic correlation energy contribution still needs to be obtained
but we do not expect any fundamental problems.

Secondly, the term “successful” needs to be qualified. The performance of a
Kriging model is validated by an external test set of molecular configurations. This
is where we display the full performance of a Kriging model over the whole test set,
by means of a so-called S-curve. From the latter one can read off which percentage
of test configurations scores an energy prediction error up to any desired value. For
example, if this value is set to 4 kJmol−1 (referring the old-fashioned and arbitrary
unit of kcalmol−1) then 70 % of test configurations containing all local energy
minima found in the Ramachandran map of the doubly-capped amino acid iso-
leucine, return an error of less than 4 kJmol−1. While the mean error over all 200
test configurations is 3.3 kJmol−1, there is a small percentage (*2 %) of test
configurations that have errors just over 10 kJmol−1. While this behavior is typical,
matters are worse for cysteine where only 50 % return an error of less than
4 kJmol−1, while the average is 5.3 kJmol−1 and just over 10 % have an error within
the interval 10–20 kJmol−1. The reported errors are all purely electrostatic and
involve all interactions of the type 1, 4 and higher. This is a rather severe test
because it involves short-range interactions, switching on all multipole moments up
to the hexadecapole moment. The average of mean errors over all 20 amino acids is
4.2 kJmol−1, while the worse values are for cysteine, alanine and arginine, all at
5.3 kJmol−1. The best mean error is 2.8 kJmol−1 for tyrosine.

Thirdly, the kriging method covers all polarisation effects, but without intro-
ducing polarisabilities. The QCTFF method focuses on the end result of the

44 P.L.A. Popelier



polarisation process, not the process itself. As a result, when used in a molecular
dynamics simulation, QCTFF renders immediately the energies of all atoms in
response to a given nuclear configuration. There is no need to iteratively converge
towards a self-consistent field at each simulation step.

2.5 An Invitation to Falsification

As announced in the Introduction there is a need for more falsification in the area of
chemical interpretation by means of quantum mechanical tools. In a first stage
contradictions need to be spotted: when are two methods providing (semi)-quan-
titatively or qualitatively different interpretations? The second stage is more chal-
lenging: how can an experiment judge one interpretation to be right and the other
wrong? A valiant but strongly disputed [87] example of this kind of scientific
activity was published [88] in 2009 where it was claimed that experiment could
disprove QTAIM’s interpretation of an attractive interaction between the two
hydrogens in the bay region of phenanthrene.

With regards to the second stage, one could broaden the decision process, not
through experiment, but by teasing out a clash with a theoretical principle or
another theoretical interpretation that is more firmly established. For example, a
number of electronegativity scales all agree that boron is a very electropositive
element. One may then ask how it is possible that a population analysis allocates a
negative net charge to boron. Yet this happens. For example, in 1995 Siegbahn
allocated a net charge −0.26e to boron in (BH3NH3)2 using the Mulliken population
analysis. Of course the QTAIM charge of boron is emphatically positive. Another
candidate for a falsifiable case study is that of 1, 2-difluoroethene, which was
discussed in a 2009 publication [89] comparing the IQA method (i.e. QCT) with the
non-QCT method EDA and NBO, in connection with interpreting stereo-electronic
effects. IQA rules that there is significant FF’ delocalisation in the cis isomer, which
is “not easily found in NBO” according to the article. This is a fine example of one
method spotting an effect and the other not. The challenge is to exploit this dif-
ference, either via an experiment that can confirm one or the other method, or
demonstrate that guidance (in synthesis for example) is more reliable by one
method than by the other.

A final example is that of diborane. A pivotal question is: can QTAIM and hence
QCT extract a Lewis diagram from a given molecular wave function? A very recent
study, published [70] in 2013, set out to answer precisely this question, and the
answer is yes. It is possible by inspecting motives in calculated VAB

exch values, and
this 2013 work systematically investigated VAB

exch values, for all atom-atom inter-
actions in 31 small covalent molecules (including ions) and 3 van der Waals
complexes. For the first time, clear clusters were revealed in the values of VAB

exch,
clusters separated by almost an order of magnitude in energy, starting with hun-
dreds of kilojoules per mole, and decreasing in a stepwise manner to less than
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0.1 kJmol−1. This quantitative information reveals where to draw the lines in a
Lewis diagram.

A useful example illustrating this success is that of diborane, B2H6, which at one
time was controversial in terms of its Lewis structure. Figure 2.8 shows a
ball-and-stick diagram of B2H6, endowed with �VAB

xc

���� values (in kJmol−1 and for
HF/6-311G(d,p) wave functions). The two largest (absolute) values are 385 and
222 kJmol−1, corresponding to the covalent bonds BHterm and BHbridge, respec-
tively. They provide the “sticks” of the molecular graph, which was controversial
until 1951. We note that Pauling got the structure wrong while Longuet-Higgins got
it right. The next strongest interaction is that between the bridging hydrogens
(117 kJmol−1) (green in Fig. 2.8), which is three times larger than the value between
the two borons (34 kJmol−1) (red in Fig. 2.8).

In a private communication, Roald Hoffmann spontaneously pointed out that the
HH interaction is something new to him and that there is some BB bonding in B2H6

is easier to understand. The latter assertion followed from his explanation of a MO
diagram. Here we have a clear example of two theories (QCT and MO) stating
qualitatively different things. Again, the challenge is to find an experiment that
could settle this contradiction.

In closing this section, it is helpful to philosophise a little more, in order to
contemplate if the suggested falsification is useful or even possible. Let us start with
a simple and clear but ridiculous example (plucked from reality). A reality TV
celebrity said that she thought that the sun and the moon were the same object.
Sure: when the sun has gone down then it is time for the moon to appear a bit later
on. A casual observer may not have a problem with this view. In fact, contemporary
political correctness and encouragement of diversity in personal views may even
support this assertion. Her “theory” can be adhered to for a long time until one
evening, a less casual and alert observer (hopefully herself) sees a red sun at dusk at
the same time as the moon, and both objects and clearly separated in the sky,
almost at opposite ends in fact. Such special evenings exist and this one “experi-
ment” kills off the old theory. In summary, at the edge of our knowledge, competing
theories (e.g. sun = moon and sun ≠ moon) coexist. However, one crucial obser-
vation can banish one theory to the history books while promoting the other to build
on and use for asking the next exciting question. It is important that a decision is
obtained as to which theory is right because otherwise, any planning on how to put
a person on the moon is clearly futile, just as an example. To recap briefly with a

Fig. 2.8 A ball-and-stick diagram of diborane, B2H6, endowed with numerical values of �VAB
xc in

kJmol−1. The unlabelled disks represent hydrogen atoms
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now serious example, Alan Guth’s inflation theory is really at the edge of our
collective human knowledge. This theory predicts the existence of gravitational
waves but they have never been detected with certainty (in spite of a premature
announcement in 2014). A momentous multi-year, multi-team data collection
project set up on the South Pole, can still not decide if gravitational waves exist or
not. The signal could be due only to galactic dust. It remains important to settle this
question for once or for all. Falsification is needed to make true progress.

The main question is now if the process of falsification (whether smoothly
controlled or erratic is not important) is relevant for the interpretation of chemical
phenomena. Is the above analysis of the two examples discussed too simple? Does
the mechanism of falsification apply to theoretical interpretative chemistry? I
believe it does but we should be aware of one more notion. Let us discuss what I
call the non-question, again starting with an example.

How can we come to grips with the particle-wave duality? Is there an experiment
that can decide, for once and for all, if a quantum object is either a particle or a
wave? The textbook answer is no: the quantum object is both. But then we ask why
this question cannot be settled. In fact, there are enough experiments that decide in
favour of a wave, while others decide in favour of a particle. How can this be? A
way out is suggesting that the wave-particle question is a non-question. A
non-question is a question that cannot be settled one way or the other because it
makes a fundamentally wrong assumption. The problem here, however, is that it is
not clear which assumption exactly. But there are several clear examples of
non-questions. One is “what is north of the North Pole?”, another is “What came
first: the chicken of the egg?” The latter cannot be solved because it ignores what
really happened in evolution: a pre-chicken “lays” a pre-egg and so on. As one
moves back in time the distinction between the two becomes problematic and the
question actually dissolves. This chicken-egg “question” is a non-question because
it wrongly assumes that one can project a binary end point of evolution onto the
very beginning of this evolution. Such a false projection is clearer in a typical
child-like question such as “why does a tree not weep if it is chopped down?” Well,
one needs a pretty highly developed nervous system in order to weep, a system that
the tree clearly lacks. Again, this is a simple example, perhaps ludicrous to adults,
but unfortunately spilling over to the world of some adults who believe plants feel
pain.

Of course, one should be open to new initially mysterious phenomena, such as
X-rays killing living cells. Clearly, X-rays do not emerge from the wonderfully
mature edifice of classical mechanics. But one should beware of the non-question.
One can spend a life time thinking about the question of the beginning and end of a
thing until someone shows that this thing is actually circular. This then means that
the wrong image has been projected onto an object, giving rise to a natural and
innocent question, which turns out to be a vicious non-question. Imagine if this
thing is the Universe. One will then have wasted a life time thinking about this
question because it actually turned out to be a non-question. The earlier one spots a
non-question, the earlier one can ask the real question. This transition is a major
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advance: perhaps from childhood into adulthood, from deluded or blinkered adult to
informed adult, from scientist in a desert to scientist in an oasis.

As a community, we should increase the effort in spotting non-questions. Maybe
“how aromatic is this compound?” is a non-question. In order to save time and
focus on the real question I advocated [90] to carry out bottom-up research and
focus on the emergence of patterns of primary quantities (closely linked to the
Schrödinger equation). If aromaticity is captured some way along this bottom-up
approach then this concept is lucky, as it were, and will survive. Those that spotted
this property, more than a century ago, at high and intuitive level, without knowing
about quantum chemistry, will then be vindicated. But if aromaticity falls apart into
two or more new concepts, or even worse, evaporates altogether, then that is
progress. We have then turned the non-question into a question and we can then
re-explore the complex world of chemical phenomena armoured with more pow-
erful insight.

2.6 Conclusion

Quantum Chemical Topology has a long and rich history of about four decades. It
started with an innocuous paper [19] in 1972, which however marked the birth of a
completely novel way of thinking about how to partition and characterise a
quantum mechanical system. That the topological atom, which can exist in its own
right, is also a quantum atom, makes it possible to build a force field using these
atoms. Perhaps this force field is better “called a rapid energy predictor” because it
overhauls the architecture of traditional force fields and probes deeper into the
quantum mechanics that underpin them. Finally, we point out the need for falsifi-
cation of theoretical interpretative tools and theories. Experimentalists need more
reliable and predictive guidance from theoretical interpretation. If methods con-
tradict each other there is an opportunity to establish one method as the way
forward. However, one should beware of the non-question.
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Chapter 3
Localization-Delocalization Matrices
and Electron Density-Weighted
Adjacency/Connectivity Matrices:
A Bridge Between the Quantum Theory
of Atoms in Molecules and Chemical
Graph Theory

Chérif F. Matta, Ismat Sumar, Ronald Cook and Paul W. Ayers

The development of chemistry has both led to, and been made
possible by, the evolution of certain primary concepts. These
concepts, without which there would be neither correlation nor
prediction of the observations of descriptive chemistry, are:
(1) the existence of atoms of functional groupings of atoms in
molecules as evidenced by characteristic sets of properties;
(2) the concept of bonding; and (3) the associated concepts of
molecular structure and molecular shape. These concepts
logically (but not historically) are consequences of fundamental
topological properties of the charge distribution (electronic and
nuclear) in a molecular system. In terms of the
Born-Oppenheimer approximation the electronic distribution
ρ(r) is the scalar field defined in the real three-dimensional space
with Euclidean metric. The universal topological properties of
ρ(r) are characterized by its gradient field ∇ρ(r) [1].
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Abstract Chemical graph theory (CGT) starts by defining matrices that represent
the molecular graph then proceed to extract numbering-independent matrix
invariants to be used as molecular descriptors in empirical quantitative structure to
activity (or property) relationships (QSAR/QSPR). Two proposed matrix repre-
sentations of molecular structure are presented in this chapter as alternatives to
simple connectivity molecular graphs. Firstly, it is proposed to use a more
“nuanced” connectivity matrix by weighing the “ones” entered in a CGT molecular
graph matrix by the bond critical point electron densities associated with each bond
path to yield what we term the “electron density-weighted adjacency/connectivity
matrices (EDWAM/EDWCM)”. In a second approach, it is proposed to use the
localization and delocalization indices of the quantum theory of atoms in molecules
(QTAIM) to construct a richer representation of the molecular graph, a “fuzzy”
graph, whereby an edge exists between any two atoms (measured by the delocal-
ization index between them) whether they share a bond path or not. Such a fuzzy
graph is represented by what we term “electron localization-delocalization matrix
(LDM)”. We show that the LDM representations of a series of molecules provide a
powerful tool for robust QSAR/QSPR modeling.

3.1 Introduction

A molecule can be abstracted as a network of points (vertices) connected by lines
(edges) and hence constituting a graph. Molecular graphs formed from a set of edges
each consisting of what chemists normally call a “chemical bond” can be—but
generally are not—complete. (A “complete graph” is one in which every pair of
vertices is connected by an edge, a trivial example being the graph of a diatomic
molecule). In contrast, a graph based on any pair-wise property such as inter-nuclear
distance, nuclear-nuclear repulsion, or a count of electrons delocalized between any
two pairs of atoms in the molecule necessarily constitutes a complete graph.

Molecular graphs, complete or incomplete, can be conveniently represented by
connectivity matrices as can be seen in the examples in Fig. 3.1 and in Refs. [1–9].
A complete graph where connectedness is indicated by 1 and disjointedness by 0
will have a non-zero entry for every non-diagonal element of the matrix while an
incomplete graph has finite entries only for connected vertices and zero elsewhere
in the matrix (Fig. 3.1).

A matrix representative of a complete graph with n vertices whereby connec-
tivity is assigned “1” as in Fig. 3.1a is thus filled with ones except along the
diagonal and hence has n(n − 1)/2 edges, the number of non-diagonal elements of
its matrix representative. In practice, a complete graph such as the delocalization
matrix (DM), described below, may have zero (negligible) entries other than along
the diagonal when the delocalization index between a given pair of atoms in a
molecule has a magnitude below the precision to which the numerical entries are
reported.
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Within Bader’s Quantum Theory of Atoms in Molecules (QTAIM) [10–12] a
molecular graph is defined as the set of connected bond paths found in the
molecular electron density. The molecular graph, so defined, is generally incom-
plete in the graph-theoretic sense since generally not every atom is sharing a bond
path with every other atom in the molecule (except in diatomics and possibly a few
other exceptions). The same theory, QTAIM, also defines delocalization indices
(DIs), vide infra, that define a “complete graph” since there is a non-directed DI
between every pair of atoms in the molecule whether sharing a bond path or not. As
already mentioned, while in principle a DI graph is complete, in numerical practice
it may not be so.

3.2 The Localization-Delocalization Matrix (LDM)

3.2.1 Definition of the LDM

Dmitriev, in his introductory book on Chemical Graph Theory (CGT), discusses the
relation between molecular topology, graph theory, and what is known today as
QTAIM. The author outlines the topological underpinnings of QTAIM in the dif-
ferential topology and topography of the electron density ρ(r) culminating with the
Poincaré-Hopf relationship relating the numbers and types of different critical
points (CPs) in the electron density scalar field (points where the gradient of the
electron density vanishes, that is, ∇ρCP = 0).

QTAIM locates the various critical points in the density and uses each bond
critical point (BCP) as a starting point for the search of the inter-atomic surfaces of
zero-flux in the gradient vector field of the electron density separated and shared by

Fig. 3.1 a An example of a
complete graph with 6
vertices (K6) with
(6 × 5)/2 = 15 edges along
with its matrix representative
according to the numbering
scheme. b An example of an
incomplete graph with the
same number of vertices and
numbering scheme as in
(a) along with its matrix
representative
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pairs of bonded atoms. A BCP is also used in tracing its associated bond path which
is a unique line of maximal electron density that links the nuclei of two bonded
atoms [13–15] and which characterizes the nature and strength of chemical bonding
[16].

The bond path is always found to be accompanied by a shadow graph, the virial
path, first discovered by Keith, Bader, and Aray [17]. The virial path is a line of
maximally-negative potential energy density in three-dimensional space that links
the same pair of atoms that share a bond path and an interatomic surface of
zero-flux. No theoretical basis has ever been provided that requires the presence of
a virial path as a doppelganger of every bond path that links two chemically bonded
atoms, however, there is no known computational violation of this observation to
date known to the authors. The presence of the virial path links the concept of
chemical bonding directly with the concept of energetic stability as amply discussed
in literature on QTAIM.

The partitioning of the space into separate non-overlapping atomic basins,
exhausting all three-dimensional space, entails the definition of “atomic properties”
that add-up to yield the corresponding molecular counterparts. Such atomic prop-
erties are obtained by integrating each corresponding property density over the
bounded region of real space occupied by the atomic basin.

Figure 3.2 shows the intersection of the atomic basins with the H–C–C(O)–OH
plane in ethanoic (acetic) acid. The figure displays isodensity contours of the

Fig. 3.2 Contours of the electron density in the molecular plane of ethanoic (acetic) acid. The
countours from outside inwards have the values (in atomic units (a.u.)): 0.001 au then 2 × 10n,
4 × 10n, and 8 × 10n, n starting at −3 and increasing in steps of unity. Nuclei are linked by bond
paths and atomic basins are separated by the intersections of the interatomic surfaces with the
molecular plane, every atomic basin being distinguished by an element-specific dominant color.
Each BCP appears at the intersection of the associated bond path and interatomic surface and is
depicted as a small red dot
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electron density, a representative set of gradient vector field lines traced by the
gradient of the electron density, the intersections of interatomic surfaces (IASs)
with the plane of the figure, the set of bond paths that are coplanar with the plane of
the figure, and the bond critical points each of which lies simultaneously on the IAS
and the associated bond path. For atoms exposed on the molecular surface (and
hence that extend to infinity), the atomic basins are usually delimited by the
intersections of their IASs with the outer isodensity contour of ρvdW = 0.001 atomic
unit (a.u.), the van der Waals envelope (1 a.u. of electron density = 1 electron per
cubic bohr).

As explained above, numerical integration (using readily available robust soft-
ware such as Keith’s AIMAll [18]) yields atomic quantum mechanical averages of
properties such as atomic electron populations (N(Ω)), number of electrons local-
ized within the basin (Λ(Ω)), and number of electrons delocalized (shared) between
one atomic basin and every other basin in the molecule (δ(Ω,Ω’)).

The number of electrons delocalization (shared) between atomic basins Ωi and
Ωj can be measured by the delocalization index (DI), δ(Ωi,Ωj). For a closed-shell
molecule, the DI at the Hartree-Fock level of theory is defined [19]:

dðXi;XjÞ ¼ 2 FaðXi;XjÞ
�� ��þ 2 FbðXi;XjÞ

�� ��; ð3:1Þ

where

FrðXi;XjÞ ¼ �
Xocc
k

Xocc
l

Z
Xi

Z
Xj

u�
kðr1Þulðr1Þu�

l ðr2Þukðr2Þdr1dr2 ð3:2Þ

¼ �
Xocc
k

Xocc
l

SklðXiÞ SlkðXjÞ ð3:3Þ

is the Fermi correlation, and where Skl(Ωi) = Slk(Ωi) is the overlap integral of two
spin orbitals φk and φl within Ωi, and where σ refers to spin (α or β). For single
determinantal methods, the first order density matrix—printed in standard electronic
structure software—is sufficient to determine all properties since it fixes the second
order density matrix. For post-Hartree-Fock methods, the Müller approximation is
used by AIMAll, the software used to obtain the LIs and DIs, to obtain an
approximate second-order density matrix from the first order density matrix.

If i = j in Eqs. 3.2 and 3.3, (Skl(Ωi) Slk(Ωj) → [Skl(Ωi)]
2), then both integrals are

over the same atomic basin giving the total Fermi correlation for the electrons
contained within that basin. At the limit of total localization this double integral
approaches–Nσ(Ωi), the negative of the σ-spin population of Ωi. This limit is
reached only when atoms are infinitely separated since in any molecule electrons in
a given atomic basin always exchange with electrons in every other atomic basin
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to some extent and |Fα(Ωi, Ωi)| ≤ Nα(Ωi). This localization index (LI) is thus
defined [19]:

KðXi;XiÞ ¼ FaðXi;XiÞj j þ FbðXi;XiÞ
�� ��: ð3:4Þ

In a molecule, the electron population of an atom is always shared to some
extent with other basins, i.e., there always exists a degree of electron sharing or
delocalization.

Since electrons can either be localized within a basin or shared with other basins
in the molecule, then the LI of an atom plus half of the sum of its (n − 1) DIs shared
with the remaining atoms in the molecule (where n is the number of atoms in the
molecule), must necessarily equal its electron population N(Ωi) [19, 20]:

NðXiÞ ¼ KðXiÞþ 1
2

Xn
j 6¼i

dðXi;XjÞ ¼
Z
Xi

qðrÞdr: ð3:5Þ

The population N(Ωi) obtained via the bookeeping of electrons’ whereabouts
embodied in the first equality of Eq. (3.5) or through the integration of the electron
density over Ωi (second equality of Eq. 3.5) determines the atomic charge which,
given the atomic number ZXi , is defined (in a.u.):

qðXiÞ ¼ ZXi � NðXiÞ: ð3:6Þ

Since the total molecular electron population N is the sum of the atomic pop-
ulations then it is expressible as the sum of two (sub-)populations: The molecular
average number of localized electrons (Nloc) plus the molecular average of delo-
calized electrons (Ndeloc) [20]:

N ¼
Xn
i¼1

NðXiÞ ¼
Xn
i¼1

KðXiÞþ 1
2

Xn
i¼1

Xn
j 6¼i

dðXi;XjÞ ¼ Nloc þNdeloc; ð3:7Þ

where

Nloc �
Xn
i¼1

KðXiÞ; ð3:8Þ

and

Ndeloc � 1
2

Xn
i¼1

Xn
j6¼i

dðXi;XjÞ ¼ N � Nloc ¼ N � trðfÞ: ð3:9Þ
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Further, the full set of molecular LIs and DIs can be organized in a
localization-delocalization matrix (LDM, or ζ-matrix) [20–25]:

ð3:10Þ

In the LDM, the sum of the matrix elements in any row or corresponding column
equals the atomic population N(Ωi) (by the first equality of Eq. 3.5) and hence the
sum of the column sums or row sums equals the total molecular electron popula-
tion. The trace of the LDM is the localized electron population (Nloc) of the
molecule (Eq. 3.8), and the delocalized electron population can be obtained by
difference (Eq. 3.9).

The LDM is a representation of a complete molecular graph where all atoms
(vertices) are interconneced by non-directional DI links (edges), and where the
diagonals are non-zero giving the number of electrons localized in a given atomic
basin. This last point distinguishes the LDM graph from a typical “complete graph”
of the type shown in Fig. 3.1a in that vertices are connected back to themselves
through their respective LIs.

3.2.2 The LDM as a Molecular Fingerprinting
and Similarity Assessment Tool

The distances between the localization-delocalization matrices (LDMs) of different
molecules can be used as a measure of their dissimilarity. The greater or smaller the
“distance” between two LDMs the lesser or more similar are the molecules they
represent.

The inter-molecular distance between two molecules A and B, each represented
by an n × n LDM, is defined as the Frobenius norm of the difference matrix, that is:

dðA;BÞ � A� Bk k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i;j

aij � bij
�� ��2s

; ð3:11Þ
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where αij and βij are two corresponding matrix elements in the matrices A and
B that represent each molecule in the pair.

After the electronic structure calculation yields a wavefunction file,
AIMAll/AIMStudio program [18] is used to calculate the localization and delo-
calization indices. A Python program (AIMLDM), developed by Sumar et al. [25],
extracts the localization and delocalization indices from AIMAll’s output and
calculates the matrix invariants as well as the Frobenius distances.

3.2.3 Some Limitations of LDMs and Possible Solutions

LDMs share well-known limitations with all matrix representatives of molecular
graphs when used as a tool for comparing different molecules. These limitations are
briefly outlined along with possible solutions. In this Sect. (3.2.3), only the pro-
posed solutions are outlined leaving examples of their actual usages in a subsequent
Sect. (3.4) below.

3.2.3.1 Ambiguity of Atomic Labelling

Any matrix representation of the molecular graph, complete or incomplete, is
labelling-dependent since there exists n! ways to label the n-atoms composing a
given molecule. Unless all compared molecules have very similar graphs and can
be given consistent atomic labelling, e.g. benzoic acids substituted, say, at the para-
position by monoatomic substituents such as halogens, one must rely on “matrix
invariants”.

Labelling-independent invariants extracted from a matrix representation of a
molecular graph include, for example, the characteristic polynomial, the eigenval-
ues, the trace, and the determinant.

LDMs, by being real and symmetric, are diagonalizable by a similar
transformation:

P�1fP ¼ D; ð3:12Þ

where D is the diagonalized LDM. The eigenvalues can then be organized as a
vector sorted in a consistent order of, say, increasing value.
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For example, an LDM-ζ-matrix of methane is:

ð3:13Þ

of which the total number of localized electrons is given by its trace,
trðfCH4

Þ ¼ 5:815, while its determinant detðfCH4
Þ � 0:082, and the corresponding

D written either as a matrix or a column vector is:

DCH4

0:251 0 0 0 0
0 0:423 0 0 0
0 0 0:423 0 0
0 0 0 0:423 0
0 0 0 0 4:295

0
BBBB@

1
CCCCA

5�5

�

0:251
0:423
0:423
0:423
4:295

2
66664

3
77775
5�1P¼ 5:815

ð3:14Þ

where the sum of the elements of D represent the total number of localized electrons
since the trace of a matrix is invariant upon diagonalization. The Frobenius distance
can be calculated using D without regard to the arbitrariness of the labelling
scheme.

3.2.3.2 Differently-Sized Molecules Are Represented
by Unequally-Sized Matrices

Let’s suppose we desire now to compare the matrices (3.13) or (3.14) with the
corresponding ones for ethane. The Frobenius distance (Eq. 3.11) clearly cannot be
evaluated being not defined since the matrix representing ethane is 8 × 8 while that
representing methane is only 5 × 5.

Following the lead of White and Wilson [26], a solution to this problem is to
enlarge all matrices to equal the size of the largest matrix in the set by “padding”
the smaller matrices with zeros. The zero padding is, effectively, adding ghost
atoms to equalize the sizes of all matrices in the molecular set.
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To illustrate how this is achieved, let us write a ζ-matrix representative of ethane:

ð3:15Þ

and the corresponding D-vector:

DC2H6 ¼

0:284
0:323
0:430
0:430
0:440
0:440
3:638
4:632

2
66666666664

3
77777777775
8�1

; ð3:16Þ

In order to compute the Frobenius distance between ethane and methane, we
enlarge the matrix representative of methane with ghost atoms to:

ð3:17Þ

which, in its D-form, can now be compared with the corresponding vector in
Eq. (3.16) for ethane (yielding a methane-ethane Frobenius distance of ca. 3.294).
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While the padding with zeroes appears ideal for homologous series such as the
aliphatic hydrocarbons, other approaches may be more adequate when there exists a
“common skeleton” with substituents at a particular location that perturbs the active
group of interest. These substituents may or may not have the same number of
atoms, but are all attached to the same atom of the common skeleton. An example is
provided by the substituted benzoic acids series.

Figure 3.3 represents the series of para-substituted benzoic acids, whereby we
can consider the carboxylic group as the active center responsible for “activity”,
here the pKa. In this case, the active center is being perturbed through a common
skeleton (the aromatic ring) which transmits the perturbation of a substituent S of
variable size and nature (in this example, S is at position 15 attached to C8 in
Fig. 3.3).

In the example of the substituted benzoic acids, all matrices are equalized in size
by condensing all the atoms of S into a “super-atom”, that is a collection of nuclei
and their associated atomic basins that are taken as one self-contained group. The
idea of a super-atom implements the concept of pruning the branches introduced by
Pye and Poirier [27, 28].

The number of localized electrons within the super-atom S is the sum of the
localized electrons in each composing atom plus the number of electrons delocal-
ized within the group (that is between the constituent atoms). Thus, we define the
localization index of the super atom [21]:

K Xsuper
� � ¼ Xnsuper

i¼1

K Xið Þþ
Xnsuper
i ¼ 1
i 6¼ j

i; j 2 Xsuper

d Xi;Xj
� � ð3:18Þ

It is non-coincidental that Eq. (3.18) bears a striking resemblance to Eq. (3.7)
since at the limit where the super-atom is enlarged to consist of the full molecule

Fig. 3.3 p-Benzoic acid viewed as an active centered (−COOH) perturbed by a distant substituent
(S) attached at carbon C8
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then in this case the number of electrons localized within the bounds of the full
super atom (which includes Nloc and Ndeloc) is none else than N, the total number of
electrons in the molecule.

On the other hand, the number of electrons shared between the super-atom S and
an atom k outside of S is given by the sum of the delocalization indices of every
atom within S to that atom [21]:

d Xsuper;Xk
� � ¼ Xnsuper

i ¼ 1
i 2 Xsuper

d Xi;Xkð Þ; ð3:19Þ

leading to off-diagonal entries of ½δ(Ωsuper,Ωk) between the super-atom and the kth
atom in the molecule.

As an example, and following the numbering scheme in Fig. 3.3, an LDM of p-
nitrobenzoic acid is a 17 × 17 matrix:

ð3:20Þ

in which the matrix elements belonging to the atoms composing the super-atom are
in italicized-bold font for easy distinction. This matrix reduces to a 15 × 15 matrix
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upon treating the –NO2 group as a super-atom, which, with columns and rows sums
explicitly shown, is:

ð3:21Þ

where N(NO2) = 23.50 e– indicating a net electron withdrawal of 0.50 e– from the
common skeleton.

3.2.3.3 Other Limitations of LDMs

As discussed in Ref. [20], some matrix invariants within the context of chemical
graph theory may occasionally be identical despite being derived from different
molecular graphs. A known example is that of the characteristic polynomial of
1,4-divinylbenzene and that of 2-phenylbutadiene which are identical
(x10 – 10x8 + 33x6 – 44x4 + 24x2 – 4). This problem is extremely unlikely when the
molecules are coded not by topological connectivity matrices consisting of ones and
zeroes but rather by their respective LDMs (or electron density-weighted
adjacency/connectivity matrices, discussed below) since these matrices cannot
contain elements that are all of identical magnitudes.

Another common limitation of all known connectivity graphs—complete or
incomplete—or of their matrix surrogates is their inherent insensitivity to optical
isomerism. This limitation is circumvented if the experimental dataset includes the
active isomers.
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Finally, and as any other method for use in empirical modeling of experimental
data, conformational averaging has to be performed whenever there exists more
than one thermally-accessible rotamer that compete significantly for the molecular
population as governed by the Boltzman-distribution at the temperature of interest.

3.3 The Electron Density-Weighted Adjacency/Connectivity
Matrix (EDWAM/EDWCM)

The LDM requires for its determination a quantum chemical calculation since the
calculation of the LIs and DIs requires the electron density and the electron pair
density contained in the second order density matrix which is inaccessible from
experiment [29].

The usage of matrix representatives of molecules is not restricted to LDMs and
can be extended to quantities directly derivable from both theory and experiment
such as the matrix of Coulombic nuclear-nuclear repulsion, the distance matrix, or
the matrices of bond critical point (BCP) properties such as the electron
density-weighted adjacency/connectivity matrix (EDWAM/EDWCM) [22–24, 30].

The chemical graph theoretic hydrogen-suppressed connectivity matrix of ethane
is:

ð3:22Þ

with a determinant of −1, a vector D = (1, −1), and the characteristic polynomial:

k2 � 1: ð3:23Þ

The unique features and properties of this molecule are captured with a higher
fidelity and specificity if (a) the “ones” in the above matrix are multiplied
(weighted) by the value of the electron density (in a.u.) at the bond critical point
(BCP), and (b) if all atoms are kept including hydrogen atoms to yield an EDWAM
representative of this molecule. The idea of EDWAM was first communicated
to one of us (CM) by Professor Lou Massa in the form of a private communication
[30].
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An EDWAM representation of ethane is:

ð3:24Þ

which yields a determinant of zero, and D = (−0.607, −0.369, 0.000, 0.000, 0.000,
0.000, 0.369, 0.607), and a characteristic polynomial:

1:000k8 � 0:504k6 þ 0:050k4: ð3:25Þ

The molecular graph is generally incomplete since not every pair of atoms share
a bond path. The EDWAM has the advantage of being accessible from experiment
and relatively inexpensive to calculate theoretically since it does not involve any
numerical integration over atomic basins. Because of these practical advantages, the
EDWAMmay be well-suited for quantitative structure activity relationship (QSAR)
studies that involve large molecular sets typical of the in silico phase of drug design
for example.

The limitations and solutions discussed for LDMs in Sect. 3.2.3 apply to the
EDWAMs.

3.4 Some Applications of Molecular Fingerprinting Using
LDMs in Quantitative Structure-to-Activity/Property
Relationships (QSAR/QSPR) Studies

3.4.1 LDMs as Predictors of pKa’s and λmax’s of Benzoic
Acids

LDMs have recently been used to accurately model and predict the pKa and λmax

values of a series of 14 para-substituted benzoic acids with the general structure as
given in Fig. 3.3 [21]. To obtain a meaningful measure of distance that satisfies, for
example, the triangle inequality, one must choose as reference a molecule that
extremizes the studied property. The Frobenius distance (Eq. 3.11) between any
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given member of the molecular set and this reference is a measure of their dis-
similarity and assumed to reflect the dissimilarity of their properties.

The molecule chosen as reference for the property “pKa” is taken to be the most
acidic, that is, the molecule exhibiting the lowest pKa value—which is p-ni-
trobenzoic acid [pKa(BANO2) = 3.44]. In the case of the property “λmax”, the
reference is taken to be the unsubstituted benzoic acid as it exhibits the smallest
value [λmax(BA) = 230 nm].

The diagonal elements of the LDM, the LIs, are usually the matrix elements with
the largest magnitudes. The sum of the LIs often represent 70–90 % of the electron
population of a molecule and hence the trace of the LDM is a size-sensitive
property that can bias properties that are primarily driven electronically (e.g. pKa).
In these cases where the property of interest is clearly determined by electronic
properties and is size-independent, the diagonal suppressed LDM, namely the
delocalization matrix (or DM), can be a better fingerprinting tool as this example
demonstrates [20, 21].

The squared correlation coefficients (r2) of linear fits of the Frobenius distances
to pKa and λmax are given in Table 3.1. The values listed in the table show that the
strongest correlation of pKa is with distances calculated from the sub-graph matrix
of the −COOH group, which can be considered as the “active center” with respect
to a property such as pKa. This subgraph yields a marginally stronger correlation
with pKa than the −OH subgraph, which can be rationalized on the basis that acidity
reflects the ability of the entire −COOH group to accommodate an excess negative
charge upon deprotonation. Inclusion of irrelevant regions in the molecule (by
including the matrix of the full molecule, rather than the sub-graph of the relevant
“active center”) destroys the correlation. This sensitivity to the “important” or
“property-determining” region in the molecule indicates a possible inherent ability
of the LDM/DM fingerprinting to detect the active center of the property in question
automatically.

Table 3.1 Linear squared Pearson correlation coefficients (r2) from fitting Frobenius distances
versus pKa, and versus λmax

Property n DM LDM

Full COOH OH Full COOH OH

pKa
1 14 0.349 0.986 0.966 0.159 0.970 0.973

λmax (nm)2 8 0.757 0.970 0.926 0.445 0.972 0.931

LDM localization delocalization matrices; DM delocalization matrices (diagonal
suppressed-LDM); full matrix calculated for the full molecule; COOH and OH matrices
calculated for these two sub-graphs
Data obtained from Ref. [21]
1Reference is p-nitrobenzoic acid, pKa(BA–NO2) = 3.44
2Reference is unsubstituted benzoic acid, λmax(BA) = 230 nm
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The linear correlations between the calculated Frobenius DM distances of the
sub-graphs from that of the reference (p-nitrobenzoic acid) are displayed in
Fig. 3.4a. Linear regression yields the relation:

pKa ¼ 3:456þ 72:990� d½COOH�DM ðBANO2;BAS)

½r2 ¼ 0:986; q2 ¼ 0:982; St:Err: ¼ 0:064; n ¼ 14�
; ð3:26Þ

where q2 is the squared leave-one-out cross-validated linear regression coefficient
which has an almost identical value as r2 in this case indicating the absence of
over-fitting [31].

The CRC Handbook of Chemistry and Physics [32, 33] lists a value of 6.03 for
the pKa of p-dimethylaminobenzoic acid (p-DMABA). The CRC’s pKa value is
inconsistent with the LDM modeling which yields a value of 5.04 [21], the latter
agreeing very closely with the value reported in the primary literature (pKa = 5.03)
[34]. Further, a calculation based on Hammett σ-constants yields a predicted pKa of
4.85 for p-aminobenzoic acid (p-ABA) which is expected to be close to that of
p-DMABA, and which corroborates that the CRC’s entry for p-DMABA should be
corrected to 5.03 [21].

Electronic spectra remain notoriously difficult to calculate on a large scale by
available quantum chemical methods. This is where empirical modeling may pro-
vide a practical advantage. The first Hohenberg-Kohn (HK) theorem [35, 36] tea-
ches us that the ground state density, ρ(r), completely specifies the hamiltonian
Ĥ½qðrÞ�, and hence it also completely specifies the excited state functions and their
properties e.g. energies (the eigenvalues) through the time independent
many-particle Schrödinger equation. The mapping of the ground state density to the

Fig. 3.4 a Linear correlations between experimental pKa and Frobenius distance of the partial
delocalization matrices (DMs) from the most acidic molecule in the group (p-nitrobenzoic acid, or
BANO2). The partial DMs for the least steep plot include the atoms of the −COOH group while
those of the steepest plot include the −OH group only. b Linear correlations between experimental
λmax values and Frobenius distances of the partial localization delocalization matrices (LDMs)
calculated for the −COOH subgraph with (unsubstituted) benzoic acid as reference (λmax

(BA) = 230 nm). (Adapted with permission from Ref. [21])
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energies of the ground and excited states is equivalent to a mapping to the differ-
ences between these energies and, hence, to UV spectra.

The modeling based on the LDM is also shown capable of the empirical pre-
diction of the substituents effects on the UV absorption surpassing the Hammett
constants model in this case. Smith et al. ascribe the inefficiency of modeling
spectra with Hammett constants to their calculations from ground state equilibrium
constants or bond dissociation energies when the energy gap between a ground and
an excited state is what governs UV absorption [37]. One can argue, however, that
the ground state equilibrium constants are rooted in the ground-state electron
density that fixes the Hamiltonian and the ground and excited eigenstates, as
stipulated by the first Hohenberg-Kohn theorem [35, 36]. It appears that it is by
virtue of this theorem that our modeling of UV spectra, based on the LDMs/DMs of
the ground states, can predict electronic excitation energies as described below.

Protonated para-benzoic acids exhibit a primary band *230 nm and a sec-
ondary weaker band *270 nm [37–39]. The primary band is red-shifted by sub-
stitutions in the aromatic ring whether electron donating or withdrawing [38].
Electron withdrawing substituents alter λmax of the secondary band only if they are
ππ*-chromophores e.g. −NO2 and −NHCOCH3 [38], two substituents which we
excluded from the correlation for that reason.

Non-chromophoric electron withdrawing groups can red-shift the primary band
so much as to overlap and merge with the secondary band sometimes. Electron
donors, in contrast, red-shift both the primary and secondary bands [38]. The first
band of a series of 8 para-substituted benzoic acids, modeled with the Frobenius
inter-matrix distances calculated for the −COOH sub-matrices taking unsubstituted
benzoic acid as reference is displayed in Fig. 3.4b and yields the following linear
regression equation:

kmax ¼ 222:50þ 3:4171� 103 � d½COOH�LDM ðBA;BAS)
½r2 ¼ 0:973; q2 ¼ 0:944; St:Err: ¼ 5:74; n ¼ 8�

; ð3:27Þ

where the closeness of q2 and r2 is again indicative of strong predictivity of the
model that surpass the modeling with traditional descriptors such as the Hammett σ-
constants (see Ref. [21] for details).

3.4.2 LDM-Based Similarity of Rings-in-Molecules (RIMs)
to Benzene as a Measure of Local Aromaticity

Aromaticity remains one of the most elusive properties to define in chemistry. It is
an abstract term that implies a plethora of properties without being identified with
any of these properties. There are several measures of aromaticity that capture one
or another of these chemical or physical properties. These measures fall in at least

70 C.F. Matta et al.



six broad principal categories: (i) Structural indices of aromaticity such as
Krygowski’s HOMA index [40–43]; (ii) magnetic properties such as Schleyer’s
NICS and its variants [44–46], NMR spectra [47, 48], or ring currents [49–51];
(iii) energetic criteria such as resonance energies and aromatic stabilization energies
[52–55]; (iv) chemical graph theory criteria as described in detail in Chap. 11 of this
book by Professor Ivan Gutman and Dr. Slavko Radenković and references therein;
(v) quantum chemical calculated measures of electron delocalization of which the
PDI and the FLU are well-known examples among several (see for example Refs.
[56–63]); and (vi) aromaticity measures derived from the ring critical point prop-
erties, the electrostatic potential, or other properties derived from the electron
density (see for example Refs. [49, 64–70]).

These aromaticity measures are generally, but not always, highly correlated and
lead at least, but again not always, to a similar ranking of local aromaticity of
various rings within molecules [71]. The discrepancies between various indices of
aromaticity is not surprising since each of these indices bring to the fore primarily a
single aspect of an essentially mutli-dimensional multi-facetted phenomenon.

The LDM codes for more than one aspect of the electron distribution in the
molecule (one-electron density and pair density) as described in Sect. 3.1 above.
Equations (3.5–3.10) show that an LDM contains information on atomic popula-
tions, atomic charges, the total number of electrons in the molecule (and their
localized and delocalized subpopulations), and also two-electron information
derived from the pair density, that is, the full atom-atom delocalization matrix of the
system. It is thus expected that the LDM codes strongly for aromaticity by virtue of
the first Hohenberg-Kohn theorem. The core question is how to get from LDMs to a
description of aromaticity?

It is proposed here to approach the problem of quantifying aromatic character
from a different angle using LDMs. Instead of attempting to measure aromaticity
directly, the similarity of a given 6-membered carbon ring in a condensed aromatic
system to benzene is taken, itself, as a measure of aromaticity. In a second
approach, the eigenvalues of the LDM of a “ring-in-a-molecule (RIM)” are taken
as predictors of the local aromatic character of that ring [72, 73].

All rings dealt with in this study are exclusively 6-membered carbon rings. Since
these rings occur mainly in polycyclic benzenoid hydrocarbons (PBHs), the number
of hydrogen atoms that are attached to a given ring varies depending on the
neighborhood of the ring in the molecule. To avoid this inconsistency due to
the variability of the atoms bonded to the carbon atoms forming the ring, we focus
the study exclusively on the carbon skeleton made of the six carbons within a given
ring.

When a carbon atom or more is shared between two rings this atom is taken
twice, once in evaluating the LDM of one ring and a second time in evaluating the
LDM of the second ring. For each molecule, we thus have a number m of LDMs
which equals the number of different 6-membered rings in the molecule.

For example, phenanthrene is broken down to three separate LDMs each rep-
resenting one of its three rings as shown in Scheme 3.1.
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The LDMs of the three rings of phenanthrene according to the labeling
Scheme 3.1 are [72]:

ð3:28Þ

ð3:29Þ

ð3:30Þ

Note that unlike the LDM of the full system, a partial LDM such as the ones
provided for the individual rings of phenanthrene above will generally not sum into
an integer number of electrons since the sum of sums now yields the population of

Scheme 3.1 Phenanthrene with its atom and ring labeling scheme
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these six carbon atoms within the molecule. This observation reflects the fact that
atoms in molecules are open quantum sub-systems exchanging electrons and energy
with their neighbours.

If one constructs ring matrices in the same order as that chosen to construct the
matrix of the reference, namely, benzene, then the similarity distance measured by
the Frobenius distance becomes invariable to the atomic labelling. For example if
we choose to construct the benzene reference sub-matrix by listing an ortho-carbon
atom as the second atom immediately following the ipso-carbon atom, the meta-
carbon attached to it as the third, the para- as the fourth, the second meta- as the
fifth, and the second ortho- as the sixth, then the Frobenius distance will be
insensitive to what atom we pick as the first in the ring of interest as long as we
stick to a nearest neighbour listing of the atoms (whether taken clockwise or
anticlockwise is unimportant).

Scheme 3.2 depicts the structures of a selection of aromatic benzenoid hydro-
carbons the local aromaticity in which is considered. A comparison with
well-known aromaticity criteria such as HOMA (structural), NICS (magnetic), and
FLU and PDI (electron delocalization) with the Frobenius distance of local rings

Scheme 3.2 Molecular set considered in the study of “rings-in-molecules (RIMs)” similarity
distance from benzene

3 Localization-Delocalization Matrices and Electron Density … 73



from benzene reveals striking correlations. The eigenvalues of the LDMs taken as
absolute predictors of aromaticity (not compared with benzene) are also highly
correlated with these aromaticity measures as well.

The correlations of common aromaticity indices with the Frobenius distance of a
ring in a PBH from benzene are generally non-linear except possibly in the case of
PDI. Some of these correlations are depicted in Fig. 3.5 and listed in Table 3.2 and
discussed in greater detail elsewhere [72, 73]. Cyclohexane is excluded from
Fig. 3.5 despite of falling on the general trend lines to improve the resolution of the
plot in the region of aromatic rings in PBHs.

3.4.3 LDM-Eigenvalues as Predictors in QSAR

One of the more useful manipulations of a matrix are the linear transformations
giving rise to eigenvectors and eigenvalues. One of us (IS) has recently observed
that there is a strong correlation between the number of electrons (N(Ω)) in the
atomic basins and the eigenvalues of the LDM matrices. The largest eigenvalues are

Fig. 3.5 Correlations between the Frobenius distance of various rings listed in Table 3.2 from
benzene and four common aromaticity indices: HOMA, PDI, FLU, and NICS(0)
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associated with the atoms having the most electrons and the smallest eigenvalues
being generally associated with the hydrogen atoms. This observation provides a
route to reducing the high-dimensional complexity of the LDM to provide a set of
molecular descriptors for building quantitative structure property relationships
(QSPR) or quantitative structure activity relationships (QSAR).

One of us (RC) has begun to explore the use of Principal Component Analysis
(PCA) [74] to reduce the dimensions of the LDM and extract information from it to
build robust QSPRs and QSARs. In the PCA approach, a matrix containing entries
that may be statistically correlated is converted to an eigenvector, devoid of such
correlation between variables, composed of what is termed the “principal compo-
nents (PCs)”. The PCs may be equal in number to the original variables or can be
lesser. The first PC is the one with maximal variance followed by PCs that maxi-
mize the variance subject to the constraint of being orthogonal to all previous PCs.

The PCs are, thus, orthogonal (and uncorrelated) by construction and represent
the eigenvectors of the (symmetric) covariance matrix. Each of these eigenvectors
can be thought of as one of n-axes of an n-D ellipse. Axes of this ellipse that are
small mean that the corresponding variance along that axis is also small. We can
then neglect axes smaller than a given threshold (and its corresponding PC) from
the representation of the LDM without losing much information.

As mentioned above we have observed that there is a strong correlation between
the eigenvalues of the LDM and the number of electrons in the atom basins. The
hydrogen atoms have the smallest number of electrons and therefore within the
dimensionality reducing transformations of the PCA, we will be able to effectively
ignore their contributions to the eigenvalues extracted from the LDM by the PCA
transformation. Functionally, this is equivalent to the hydrogen suppressed structure
used by Kier and Hall to develop their “Atom Level Electrotopological State” [75].

Table 3.2 Aromatic rings sorted in order of their dissimilarity to benzene as measured by the
Frobenius distance and four corresponding common indices of aromaticity

Molecule Ring dFrob HOMA PDI NICS(0) FLU

Benzene 0 1.001 0.105 −11.5 0

Triphenylene Outer 0.1634 0.93 0.086 −10.6 0.003

Phenanthrene Outer 0.1991 0.902 0.082 −11.4 0.005

Chrysene Outer 0.2301 0.859 0.079 −11.1 0.008

Anthracene Inner 0.2420 0.884 0.07 −14.2 0.007

Naphthalene 0.2816 0.779 0.073 −10.9 0.012

Naphthacene Inner 0.2945 0.774 0.063 −13.8 0.011

Chrysene Inner 0.3574 0.553 0.052 −8.2 0.019

Anthracene Outer 0.3859 0.517 0.059 −8.7 0.024

Phenanthrene Inner 0.4026 0.402 0.053 −6.8 0.025

Triphenylene Inner 0.4306 0.067 0.025 −2.6 0.027

Naphthacene Outer 0.4417 0.325 0.051 −6.7 0.031

Cyclohexane Chair 0.7408 −4.34 0.007 −2.1 0.091

See Scheme 3.2 for the structures of these molecules
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As an initial foray into extracting useful information from the LDMs using the
PCA transformation we looked at a series of carboxylic acids that extended the set
used by Matta et al. [20, 21] to evaluate the potential of LDMs to predict physical
properties (e.g. pKa) of the acids. One of our first observations is that as long as the
pair-wise values for the LI (e.g. C1 to C1, O7:O7, etc.) and the DI (C1to O7,O7:H4,
etc.) are retained, then the ordering of the LDM does not affect the eigenvalues that
are produced from the LDM (Table 3.3).

Table 3.4 shows the largest six eigenvalues extracted using the PCA method. For
most of these acids the six largest eigenvalues account for >95 % of the variance in
the LDM. Almost all the unaccounted-for variance (especially in the larger mole-
cules) is due to the hydrogen atoms.

As pointed out by Matta [20], a threshold of dissimilarity is assumed between
the members of a molecular set for the construction of a QSAR model. Similarity is
commonly quantified on the basis of amino acid sequence matching [76], mis-
matching of 2-dimentional chemical graphs [8], on 3-D molecular skeleton
superpositions [77], and on point-by-point comparison of electron density—pi-
oneered by Carbó [78–81] or of the molecular electrostatic potential [82–94].
Through relationships (5) and (6) in Ref. [20], a similarity of ρ(r) necessarily leads
to the similarity of all other ground-state properties, and hence the most funda-
mental molecular comparisons are those effected at the electron density level.

One way to appreciate the similarity of a group of molecules would be to map
the molecules in n-dimensional abstract mathematical space and determine if the
eigenvalues resulting from the PCA of the LDM coincide with chemical intuition.
The visualization of such multi-dimensional data is not feasible beyond three
dimensions. Thus even for the 6-dimensional descriptor space that can be con-
structed from the principal components listed in Table 3.4, the reduction of
dimensionality is a must to visualize distance similarity relationships between
molecules.

Such dimensional reduction may be achieved by “Multidimensional Scaling
(MDS)” techniques. MDS projects the n-dimensional distance in a
lower-dimensional space (2- or 3-dimensions) under the constraint of maximizing
the retention of the structure of the inter-molecular distance matrix. The repre-
sentation of the n-dimensional space is optimized in the lower-dimensional pro-
jection by minimizing what is known as “stress”. The smaller the stress the better
the projection up to the (generally unattainable) limit of zero which is a projection
that preserves the distance matrix completely. The quality of the projection can be
gleaned from what is known as a “Shepard diagram”.

The Shepard diagram is a scatter plot in which the dissimilarities between the
molecules, measured as the distances in the full n-dimensional space, are compared
with the corresponding distances in the projected 2-dimensional space. A large
spread is an indicator of a poor MDS projection and vice versa up to the
unreachable extreme where all points fall on one line which indicates a perfect
MDS projection.

Using the data in Table 3.4 and the MDS algorithm in the software package
XLSTAT™, the Shepard diagram displayed in Fig. 3.6 is obtained. One can glean
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Table 3.3 “Scrambled” LDM for acetic acid and resulting eigenvalues

Table 3(a)

C1 C2 H3 H4 H5 O6 O7 H8

C1 4.010 0.464 0.475 0.477 0.477 0.060 0.053 0.004

C2 0.464 2.793 0.017 0.021 0.021 0.654 0.417 0.005

H3 0.475 0.017 0.397 0.017 0.017 0.009 0.007 0.001

H4 0.477 0.021 0.017 0.419 0.018 0.010 0.006 0.001

H5 0.477 0.021 0.017 0.018 0.419 0.010 0.006 0.001

O6 0.060 0.654 0.009 0.010 0.010 8.276 0.143 0.008

O7 0.053 0.417 0.007 0.006 0.006 0.143 8.171 0.321

H8 0.004 0.005 0.001 0.001 0.001 0.008 0.321 0.075

F1 F2 F3 F4 F5 F6

Eigen. 3.314 1.816 0.968 0.762 0.559 0.541

Var.% 41.4 22.7 12.1 9.5 7.0 6.8

Cum.% 41.4 64.1 76.2 85.8 92.7 99.5

Table 3(b)

H3 O7 H4 H5 O6 C1 H8 C2

H3 0.397 0.007 0.017 0.017 0.009 0.475 0.001 0.017

O7 0.007 8.171 0.006 0.006 0.143 0.053 0.321 0.417

H4 0.017 0.006 0.419 0.018 0.010 0.477 0.001 0.021

H5 0.017 0.006 0.018 0.419 0.010 0.477 0.001 0.021

O6 0.009 0.143 0.010 0.010 8.276 0.060 0.008 0.654

C1 0.475 0.053 0.477 0.477 0.060 4.010 0.004 0.464

H8 0.001 0.321 0.001 0.001 0.008 0.004 0.075 0.005

C2 0.017 0.417 0.021 0.021 0.654 0.464 0.005 2.793

F1 F2 F3 F4 F5 F6

Eigen. 3.314 1.816 0.968 0.762 0.559 0.541

Var.% 41.4 22.7 12.1 9.5 7.0 6.8

Cum.% 41.4 64.1 76.2 85.8 92.7 99.5

Table 3(c)

O6 H4 C2 H3 H5 O7 H8 C1

O6 8.276 0.010 0.654 0.009 0.010 0.143 0.008 0.060

H4 0.010 0.419 0.021 0.017 0.018 0.006 0.001 0.477

C2 0.654 0.021 2.793 0.017 0.021 0.417 0.005 0.464

H3 0.009 0.017 0.017 0.397 0.017 0.007 0.001 0.475

H5 0.010 0.018 0.021 0.017 0.419 0.006 0.001 0.477

O7 0.143 0.006 0.417 0.007 0.006 8.171 0.321 0.053

H8 0.008 0.001 0.005 0.001 0.001 0.321 0.075 0.004

C1 0.060 0.477 0.464 0.475 0.477 0.053 0.004 4.010

F1 F2 F3 F4 F5 F6

Eigen. 3.314 1.816 0.968 0.762 0.559 0.541

Var.% 41.4 22.7 12.1 9.5 7.0 6.8

Cum.% 41.4 64.1 76.2 85.8 92.7 99.5

Eigen. eigenvalues, Var.% percent variability, Cum.% cumulative percentage
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from this figure that (a) the Kruskal Stress is low, and that (b) the scatter-plot is
highly linear.

The 2-dimensional MDS projection of the 6-dimensional eigenvalue descriptors
of the LDM are shown in Fig. 3.7.

Table 3.4 Eigenvalues from PCA of a series of carboxylic acids (non-traditional names are used
to highlight the functional groups attached to the C–COOH skeleton)

Compounds F1 F2 F3 F4 F5 F6 pKa

Acetic Acid 3.3139 1.8157 0.9681 0.7624 0.5594 0.5410 4.76

Fluoroacetic acid 2.8279 1.7929 1.3095 0.8673 0.5903 0.5444 2.586

Difluoroacetic acid 2.4528 1.6669 1.3705 1.1398 0.8523 0.3994 1.34

Trifluoroacetic acid 2.2115 1.4565 1.1411 1.1403 1.1120 0.7399 0.52

Chloroacetic acid 2.8650 1.8055 1.3091 0.8645 0.5579 0.5375 2.866

Dichloroacetic acid 2.4669 1.6702 1.3612 1.1442 0.8436 0.4083 1.26

Trichloroacetic acid 2.2149 1.4654 1.1462 1.1454 1.0845 0.7442 0.512

Glycine 3.0611 2.6926 1.7311 0.9443 0.7691 0.5314 2.366

N-methylglycine 3.4219 2.4983 2.0691 1.5747 0.8849 0.7399 2.35

N,N-dimethylglycine 3.5031 3.1997 2.3859 1.5197 1.0354 0.8589 2.04

2-hydroxyacetic acid 2.7729 2.2391 1.7063 0.9008 0.7231 0.5576 3.83

2-mercaptoacetic acid 2.7687 2.2753 1.6337 0.8686 0.6791 0.5247 3.55

2-methylacetic acid 3.2949 2.6510 1.6724 0.9231 0.7578 0.5431 4.875

2,2-dimetylacetic acid 3.6229 2.8154 2.0677 1.5495 0.9162 0.7466 4.84

2,2,2-trimethylacetic acid 3.5044 3.4968 2.6103 1.6493 1.1271 0.8440 5.031

2-methoxyacetic acid 3.5054 2.5375 1.6007 1.1461 0.8160 0.6961 3.57

2-cyanoacetic 2.8160 2.2821 1.6958 0.8868 0.7173 0.4891 2.45

2-ethylacetic acid 3.4123 2.6025 2.4643 1.5942 0.9186 0.7470 4.82

2,2-diethyl acetic acid 3.6628 2.9875 2.5368 2.4024 1.9023 1.4590 4.71

2-phenylacetic acid 2.9070 2.3874 2.2992 2.1406 1.6469 1.4845 4.31

Fig. 3.6 Shepard plot of the
transformed six dimensional
data listed in Table 3.4
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The mapping of the 6-dimensional eigenvalue descriptors of the LDM to a
2-dimensional space (Fig. 3.7) is in line with our chemical intuition:
Electron-withdrawing functional groups are mapped together (upper left quadrant)
and electron donating groups are in close proximity and far from the first group
(lower right quadrant).

For closely related series of carboxylic acids we might reasonably expect that the
positions on the map could scale with physical properties. Matta showed in Fig. 14
of Ref. [20] that a strong correlation exists between the experimental pKa values of
fluorine- and chlorine-substituted acetic acids (SAA) and the Frobenius distance of
their localization-suppressed-LDMs (DMs) from that of unsubstituted acetic acid
(AA). The data can be closely fit to an exponential model:

pKaðSAA) � �0:588þ 5:415 exp½�5:066 ddelocðAA,SAAÞ�
ðr2 ¼ 0:979; n ¼ 7Þ ð3:31Þ

Fig. 3.7 Two-dimensional MDS projection of the 6-dimensional eigenvalue descriptors of the
LDM
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Similarly, if we regress the distances (d) of the chlorine and fluorine substituted
acids (SAA) from acetic acid taken from the data used to generate the plot in
Fig. 3.7 we get the relationship:

pKaðSAA) � 8:4075 expð�0:644 dÞ
ðr2 ¼ 0:996; n ¼ 7Þ ð3:32Þ

This suggests that the 2-dimensional projection of the 6-dimensional eigenvalue
descriptor set for these molecules retains most of the information of the LDM (and
DM) representations of the molecules. We have also shown [95] that the six
eigenvalues for the molecules in Table 3.4 can be used to build robust models for
multiple physical properties (pKa, LogP, LD50 (oral:rat), Henry’s Law Constants,
melting point, boiling point, vapour pressure and the Atmospheric OH rate
constant).

In another preliminary evaluation of the use of the 6-dimensional eigenvalues
from the LDM as universal descriptors we looked at building a model of the
inhibitive properties of heterocyclic diazoles for acidic iron corrosion [96].
Table 3.5 shows the computed eigenvalues and corrosion inhibitor efficiencies (CIE
%) for a set of diazoles reported by Babic-Samardzija et al. [96].

From these eigenvalues a relatively simple model can be built:

CIE(%Þ ¼ 77:6097þ 703:1552ðF4� F5Þ � 261:6683� ðF4Þ2 � 464:9701ðF5Þ2
ðr2 ¼ 0:987; q2 ¼ 0:898; n ¼ 8Þ

ð3:33Þ

with both a high correlation coefficient and a high cross-validation score. A plot of
the experimental versus predicted corrosion inhibition efficiencies is shown in
Fig. 3.8.

Table 3.5 Eigenvalues and corrosion inhibitor efficiencies (CIE%) for a set of diazoles (CIE%
taken from Babic-Samardzija et al. [96])

Compound F1 F2 F3 F4 F5 F6 CIE%

3-amino-1H-isoindole 3.160 2.854 2.306 1.968 1.566 1.487 90.7

Indazole 2.700 2.432 1.974 1.857 1.540 1.385 83.6

Imidazole 2.608 2.230 1.832 1.081 0.785 0.216 83.4

4-bromoimidazole 2.461 2.140 1.598 1.168 0.847 0.517 83.1

4-methylimidazole 3.471 2.254 1.964 1.262 0.890 0.760 82.8

Pyrazole 2.516 2.321 1.782 1.127 0.799 0.204 79.3

4-nitropyrazole 2.406 2.104 1.981 1.107 1.061 0.990 59.4

4-sulfopyrazole 2.405 2.266 1.993 1.617 1.088 1.069 80.3
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In summary, preliminary investigations show the potential of the eigenvalues of
the LDM extracted from the matrices using the principal component analysis
method as “pruned” descriptors of the electron densities contained within the LDM.
When compared to the full LDM or DM matrices, the distances of molecules
calculated using a combination of PCA and multidimensional scaling produce a
simple exponential model between the Euclidian distance separating the molecules
of the set and their experimental pKa. Furthermore, for a more extended group of
carboxylic acids, the same set of eigenvalues (Table 3.4) have been used to build
physical property models for pKa, LogP, LD50 (oral:rat), Henry’s Law Constants,
melting point, boiling point, vapor pressure and the Atmospheric OH rate constant.
For each set of these physical properties, models having both high regression
coefficients (r2 > 0.95) and high cross validation scores (q2 > 0.90) could be
produced.

Finally, accurate and robust models for corrosion inhibition efficiencies have
been found for multiple sets of corrosion inhibition data. This finding is rather
remarkable as corrosion inhibition depends on a number of molecular properties
such as hydrophobicity (LogP) and Lewis Base strength as well as the solubility of
the inhibitor. This corroborates the concept that similarity based on electron density
descriptors may in fact capture more than one aspect of the phenomenon being
studied.

Fig. 3.8 Correlation of observed and predicted CIE (%) where the predicted values are obtained
using the eigenvalues extracted by PCA from the LDMs
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3.4.4 LDMs-as a Tool to Evaluate the Quality of Basis Sets
and of the Levels of Theory

Another potential use of the LDM is in assessing the quality of basis sets and/or the
different new density functional theory (DFT) functionals, for example. The fun-
damental assumption is that the closer a given level of theory is to another the closer
the corresponding LDMs will be and the smaller the Frobenius distance.

As an exploratory investigation, only Hartree-Fock (HF) results on four small
molecules (CH4, CH3OH, H2O, and NH3) are considered here in conjunction with a
variety of standard basis sets. Since the Hartree-Fock method is variational, the
lower the energy the better the quality of the corresponding basis set. In the set of
basis sets investigated in this work, the lowest energy is obtained at the HF/cc-pvqz
level of theory, which implies that it is the best level of theory used as the com-
parison standard.

Figure 3.9 displays the correlation between the total energy and the LDM
Frobenius distance from the best result (HF/cc-pvqz) for each of the four studied
molecules. The plots show that the general trend is that the lower the energy the
smaller the distance from the best result.

This new proposal is elaborated in detail elsewhere [25]. Clearly much more
numerical corroboration is needed before claiming a definitive usefulness of LDMs
in evaluating and comparing the quality of basis sets and/or levels of theory.

3.5 Closing Remarks

As stressed above, the first Hohenberg–Kohn (HK) theorem [35, 36] by estab-
lishing a unique functional mapping between the ground-state electron density and
both the external potential and the total number of electrons fixes the Hamiltonian.
The electron density then, through the intermediacy of the time-independent
Shrödinger equation, determines the eigenstates and eigenvalues uniquely. Once the
eigenstates are fixed all properties of the ground and excited state are also fixed. It is
not surprising then that powerful descriptors can be extracted from the electron
density. The pioneering work of Paul Popelier in his Quantum Topological
Molecular Similarity (QTMS) approach [97–103], whereby Euclidean similarity
distances between molecules in a molecular set are defined on the basis of differ-
ence in the sum of their bond critical points properties, led the way for others like us
to follow his step. While our approach is different than QTMS, since it rests on a
full atomic level description of electron localization and delocalization in each
molecule in the set while QTMS is based on a full bond-by-bond level of analysis,
what QTMS and the analysis of LDMs have in common is their basis in the
topological partitioning of the electron density and its characteristic gradient vector
field, as suggested in 1981 by I. Dmitriev in the opening quotation of this chapter.
Both QTMS and LDMs analyses are traceable to physical quantities derived from
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Fig. 3.9 Correlation of the
Frobenius distance of the
LDM obtained with the best
basis set cc-pvqz versus the
total Hatree-Fock energy with
datapoints calculated using
basis sets of varying quality.
The best quality calculations
reside in the lower left side of
each plot and the least
accurate ones reside in the
upper-right corner
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or related to the electron density and, in the case of LDM, also to electron delo-
calization information related to the electron-pair density as well.

In this new approach we draw on the strengths of two sub-fields of theoretical
chemistry: Bader’s Quantum Theory of Atoms in Molecules (QTAIM) to extract
physically meaningful descriptors from the electron density and related properties
and Chemical Graph Theory which led the way in abstracting the chemical graph in
matrices followed by mathematical treatment to extract matrix invariants for the
purpose of correlating with and predicting experimental properties of compounds.
This new approach is promising and wide reaching, with possible applications
ranging from predicting physicochemical properties of series of molecules to their
corrosion protective abilities passing by as diverse problems as quantifying aro-
maticity to possibly providing a practical tool for assessing the quality of newly
developed basis sets of electronic structure calculations such as new DFT
functionals.

A book is presently being written by the authors about LDMs and their uses
[104]. This book will contain extensive data that support the basic claim of this
chapter, that is, that LDMs are a molecular fingerprinting tool that can provide a
basis for robust QSAR-type studies.
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Chapter 4
Extending the Topological Analysis
and Seeking the Real-Space Subsystems
in Non-Coulombic Systems
with Homogeneous Potential Energy
Functions

Shant Shahbazian

Abstract It is customary to conceive the interactions of all the constituents of a
molecular system, i.e. electrons and nuclei, as Coulombic. However, in a more
detailed analysis one may always find small but non-negligible non-Coulombic
interactions in molecular systems originating from the finite size of nuclei, magnetic
interactions, etc.While such small modifications of the Coulombic interactions do not
seem to alter the nature of amolecular system in real world seriously, they are a serious
obstacle for quantum chemical theories and methodologies which their formalism is
strictly confined to theCoulombic interactions.Although the quantum theory of atoms
in molecules (QTAIM) has been formulated originally for the Coulombic systems,
some recent studies have demonstrated that most of its theoretical ingredients are not
sensitive to the explicit form of the potential energy operator. However, the
Coulombic interactions have been explicitly assumed in the mathematical procedure
that is used to introduce the basin energy of an atom in a molecule. In this study it is
demonstrated that the mathematical procedure may be extended to encompass the set
of the homogeneous potential energy functions thus relegating adherence to the
Coulombic interactions to introduce the energy of a real-space subsystem. On the
other hand, this extension opens the door for seeking novel real-space subsystems,
apart from atoms in molecules, in non-Coulombic systems. These novel real-space
subsystems, quite different from the atoms in molecules, call for an extended for-
malism that goes beyond the orthodox QTAIM. Accordingly, based on a previous
proposal the new formalism, which is not confined to the Coulombic systems nor to
the atoms in molecules as the sole real-space subsystems, is termed the quantum
theory of proper open subsystems (QTPOS) and its potential applications are detailed.
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The harmonic trap model, containing non-interacting fermions or bosons, is consi-
dered as an example for the QTPOS analysis. The QTPOS analysis of the bosonic
systems is particularly quite unprecedented not attempted before.

Keywords Quantum theory of atoms in molecules � Topological analysis �
Non-Coulombic systems � Homogeneous potentials � Virial theorem
4.1 Introduction

The quantum theory of atoms in molecules (QTAIM) has gained a widespread
recognition in the last 20 years in chemistry, molecular and solid-state physics, and
even in molecular biology [1–3]. However, all applications of the QTAIM have been
confined to the Coulombic systems namely, systems containing electrons and
clamped nuclei interacting via the Coulombic potential. Even the recent extension of
the QTAIM, termed the multi-component QTAIM (MC-QTAIM) [4–16], which
goes beyond the clamped nucleus model and deals with the AIM analysis of certain
types of non-Born-Oppenheimer molecular wavefunctions, is also confined to the
Coulombic systems. Although it is understandable that the Coulombic systems are of
prime interest in most applications in chemistry and physics, there are many
non-Coulombic systems which are also interesting to be considered from the view-
point of the AIM analysis. However, before discussing examples of such systems, it
must be emphasized that even for usual molecular systems the Coulombic interac-
tions are just approximate potentials, albeit accurate enough for most practical
applications, which are used usually in quantum chemical calculations. For highly
accurate quantum description of an atomic or molecular system, various small but
non-negligible non-Coulombic terms must be added to the Coulombic potential that
weak internal magnetic interactions of electrons, originating from the L-S and the
S-S couplings, and modifications originating from the finite size of nuclei are just
examples. Accordingly, confining the QTAIM formalism to the Coulombic inter-
actions is “artificial” and certainly against the basic idea that atoms in molecules are
“real” objects emerging independent from the details of the models used to describe
molecular systems [17].

On the other hand, in recent decades a wealth of experimental and theoretical
evidence has been accumulated demonstrating molecular-like structure for systems
not traditionally considered as molecular systems. One may include in this list the
“nuclear molecules” in nuclear physics [18, 19], various “exotic molecules” com-
posed of fundamental particles other than electron, protons and neutrons [20–31],
“artificial molecules” in condensed-matter physics [32–35], and the “molecular
Bose-Einstein condensates” [36–39]. In considering such molecular-like systems
the question emerges whether any underlying AIM structure is derivable from the
wavefunctions of these systems. To answer this question one must apply the AIM
analysis to these systems however, all such systems are intrinsically non-Coulombic
in their nature and the formalism of the orthodox QTAIM must be modified to be
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applicable to these systems. Therefore, there is a real demand to extend the for-
malism of the orthodox QTAIM to non-Coulombic systems.

The programme of reconsidering the QTAIM formalism in the case of
non-Columbic interactions was started sometime ago and it was demonstrated that
the subsystem variational procedure and the subsystem hypervirial theorem are both
insensitive to the nature of the potential energy operator as far as there is a bound
quantum state in the system [40, 41]. This is also true for the local zero-flux
equation of the one-particle density which is the equation of deriving the
inter-atomic surfaces for both the Coulombic and non-Coulombic systems [40, 41].
However, upon considering the Hookean molecules, i.e. model systems where
some of the Coulombic interactions have been replaced with the harmonic potential,
it emerged that the AIM structures derived from the topological analysis were not
the one expected based on “chemical intuition”, which is routed in previous
experiences with the Coulombic systems [41]. Thus, the use of topological analysis
and the local zero-flux equation do not automatically guarantee that the emerging
“real-space” subsystems are the usual AIM, also called topological atoms. In pre-
sent study more examples of exotic real-space subsystems in non-Coulombic sys-
tems are presented.

In contrast to the previous studies [40, 41], the focus of this contribution is on
the part of the QTAIM formalism that is sensitive to the nature of the potential
energy operator namely, the basin energy of an atom in a molecule [1].
Accordingly, the definition of the basin energy is extended beyond the Coulombic
potential energy function demonstrating that for the subset of homogeneous
potential energy functions the regional virial theorem may be used to derive
well-defined, origin-independent, basin energies.

4.2 The Generalized Subsystem Virial
Theorem for the Homogeneous Potential
Energy Functions

The atomic/regional theorems, emerging from the subsystem hypervirial theorem
[9, 42, 43], are insensitive to details of the potential energy operator and are true as
far as a system is composed of a single type of quantum particles and there is a
bound stationary state emerging from the interaction of quantum particles with each
other and the external fields. This insensitivity is compelling since the orthodox
formalism may be employed with least modifications for non-Coulombic systems
however the regional/basin energies have been derived employing explicitly the
properties of the Coulombic potential (see particularly Sect. 6.3 in [1]). In the
present section the very definition of the basin energy is extended to include the set
of the homogeneous potential energy functions (for an elementary discussion on the
homogeneous potential energy functions see Chap. 14 in [44]).
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A homogeneous potential energy function for a typical N-particle system has the
following property: V̂ s~r1; . . .; s~rNð Þ ¼ snV̂ ~r1; . . .;~rNð Þ, where s is an arbitrary
scaling parameter and n is the degree of homogeneity [44]. It is straightforward to
demonstrate that for this set of potential energy functions the following relation
holds: V̂ ~r1; . . .;~rNð Þ ¼ 1=nð ÞPN

k¼1~rk � ~rkV̂ ~r1; . . .;~rNð Þ [44], where ~rk are the
vectors describing the position of each of the N particles; the Coulombic potential is
a special member of this set where n ¼ �1 [1]. It is evident that

PN
k¼1~rk � ~rk is a

projection operator and it is called the virial operator. It is also straightforward to
demonstrate that the virial theorem holds generally for any stationary state of an

N-particle system: 2 T̂
� � ¼ PN

k¼1~rk � ~rk

D E
[44], where T̂ is the sum of the kinetic

energy operators of all quantum particles, T̂ ¼PN
k¼1 t̂k ¼ ��h2

�
2m

� �PN
k¼1 r2

k ,
while . . .h i is used to denote the mean value of the operators for a stationary state.
For systems where the potential energy operator is a homogeneous function the
virial theorem simplifies to: 2 T̂

� � ¼ n V̂
� �

[44].
The local form of the virial theorem derived from the subsystem hypervirial

theorem is as follows [1]:

2T ~qð Þ ¼ �VT ~qð Þþ L ~qð Þ ð4:1Þ

In this equation T ~qð Þ is the kinetic energy density introduced as: T ~qð Þ ¼R
ds0W� PN

k¼1 t̂k
� �

W ¼ N
R
ds0W�̂tqW ¼ � 1=2ð Þtr r

$
~qð Þ

h i
þ 1=2ð ÞL ~qð Þ, where the

second equality originates from the indistinguishability of quantum particles.

VT ~qð Þ ¼ �~q � ~r � r$ ~qð Þ
� �

þ ~r � ~q � r$ ~qð Þ
� �

is the total virial density (the symbol � is
used to emphasize the dyadic nature of the product) while L ~qð Þ ¼ ��h2

�
4m

� �r2q ~qð Þ
where q ~qð Þ ¼ N

R
ds0W�W is the one-particle density of quantum particles (ds0

implies summing over spin variables of all quantum particles and integrating over
spatial coordinates of all quantumparticles except a typical particle denoted by~q). The
stress tensor density is the key density that both kinetic and total virial densities are

based on while the Schrödinger-Pauli-Epstein variant is used in this study: r$ ~qð Þ ¼
N�h2

4m

� � R
ds0 W� ~r~rW

� �
þW ~r~rW

�� �
� ~rW

�� �
~rW
� �

� ~rW
� �

~rW
�� �n o

[1].

It is timely to emphasize that stress tensor density is not unique and the
Schrödinger-Pauli-Epstein variant is just one member of the infinitely large family of
the stress tensor densities [45]. For a real-space subsystem, e.g. AIM, enclosed by the
zero-flux surfaces, X, based on Gauss’s theorem one derives: L Xð Þ ¼
��h2

�
4m

� � R
X d~qr2q ~qð Þ ¼ ��h2

�
4m

� � H
@X dS ~rq ~qð Þ �~n ~qð Þ ¼ 0 (~n ~qð Þ is the unit

vector orthogonal to the zero-flux surface). Also, T Xð Þ ¼ RX d~qT ~qð Þ and VT Xð Þ ¼R
X d~q VT ~qð Þ are basin kinetic and total virial energies, respectively, and the
regional/subsystem virial theorem is as follows [1]:

92 S. Shahbazian



2TðXÞ ¼ �VTðXÞ ð4:2Þ

It is important to realize that the total virial density is composed of two con-
tribution, one originating directly from the virial operator and called basin

virial density: VB ~qð Þ ¼ R ds0W� �PN
k¼1~rk � ~rk

� �
W ¼ N

R
ds0W� �~q � ~rq

� �
W ¼

�~q � ~rq � r$ ~qð Þ
� �

and another term originating from the assumed zero-flux sur-

faces as boundaries of subsystems and called surface virial density:

VS ~qð Þ ¼ H@X dS ~q � r$ ~qð Þ
� �

�~n ~qð Þ. It is straightforward to demonstrate that the

surface virial is null for the total system and this fact differentiates the virial theorem
of total system with that of the real-space subsystems [1].

At the mechanical equilibrium [1], the Hamiltonian of an N-particle system with
a homogeneous potential energy is:

Ĥ ¼ T̂ þ V̂ ¼
XN
k¼1

t̂k þ 1=nð Þ~rk � ~rk

� �
¼
XN
k¼1

ĥk ð4:3Þ

Based on this equation the energy density is:

E ~qð Þ ¼
Z

ds0W� XN
k¼1

ĥk

 !
W ¼ N

Z
ds0W�ĥqW

¼ N
Z

ds0W� � �h2
�
2m

� �r2
q þ 1=nð Þ~q � ~rq

� �
W ¼ T ~qð Þ � 1=nð ÞVB ~qð Þ

ð4:4Þ

Integration of the energy density in the whole space (R3) yields the total energy
of the system: E ¼ T̂

� �þ V̂
� �

, while based on the virial theorem for total system

one derives: E ¼ 1þ 2=nð Þ T̂
� � ¼ 1þ n=2ð Þ V̂

� �
. However it is well-known if the

integration is done on a real-space subsystem (X �R3), then the resulting basin
energy, because of the origin-dependence of the basin virial density, is also origin
dependent which is plainly an unpleased feature [1]. To overcome this problem,
inspired by the regional virial theorem, Eq. (4.2), the following modified energy
density and basin energy are introduced:

E ~qð Þ ¼ T ~qð Þ � 1=nð ÞVT ~qð Þ ¼ T ~qð Þ � 1=nð Þ VB ~qð ÞþVS ~qð Þ� �
EðXÞ ¼

Z
X

d~qE ~qð Þ ¼ TðXÞ � 1=nð ÞVTðXÞ ð4:5Þ
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Using Eq. (4.2) as the regional virial theorem the basin energy may be expressed
just by the regional kinetic or total virial energies:

EðXÞ ¼ 1þ 2=nð ÞTðXÞ ¼ � 1=2þ 1=nð ÞVTðXÞ ð4:6Þ

For the special case of the Coulombic potentials Eq. (4.6) recovers the
well-known results derived from the orthodox formalism: EðXÞ ¼ �TðXÞ ¼
1=2ð ÞVTðXÞ [1].
ForN-particle systems with one- and two-particle interactions the potential energy

operator is: V̂ ~r1; . . .;~rNð Þ ¼PN
k¼1 v̂k ~rkð Þþ PN

i[ j v̂ij ~ri;~rj
� �

. The role of the virial
operator is the projection of the two-particle terms into “pseudo” one-particle con-
tributions and this is easily seen for a two-particle system: v̂12 ¼ 1=nð Þ
~r1 � ~r1v̂12 þ~r2 � ~r2v̂12
� �

; these “pseudo” one-particle contributions make it possible

to introduce the virial density bypassing the need to introduce potential energy density
explicitly [1]. For the subset of N-particle systems without two-particle interactions,
i.e. non-interacting systems trapped in external potentials, the relation between
one-particle interactions and the virial operator is as follows: v̂k ¼ 1=nð Þ~rk � ~rkv̂k.
Accordingly, one may now introduce the potential energy density directly:
V ~qð Þ ¼ R ds0W� PN

k¼1 v̂k
� �

W ¼ N
R
ds0W�v̂qW, which is equal to the basin virial

density. The local and regional forms of the virial theorem are then transformed as
follows:

2T ~qð Þ ¼ nV ~qð Þ � Vs ~qð Þþ L ~qð Þ
2TðXÞ ¼ nVðXÞ � VsðXÞ ð4:7Þ

The energy density and basin energies for the real-space subsystems is then
introduced as follows:

E ~qð Þ ¼ T ~qð ÞþV ~qð Þ � 1=nð ÞVs ~qð Þ
EðXÞ ¼

Z
X

d~qE ~qð Þ ¼ TðXÞþVðXÞ � 1=nð ÞVsðXÞ

¼ 1þ 2=nð ÞTðXÞ ¼ 1þ n=2ð ÞVðXÞ � 1=2þ 1=nð ÞVsðXÞ

ð4:8Þ

These equations vividly demonstrate that apart from the potential energy density
originating from the interaction of each quantum particle with the external field, the
surface virial also contributes to the basin energy. Assuming X ¼ R3 the surface
virial vanishes and the equations are indistinguishable from those derived for
the total system independently.
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4.3 The Topological Analysis of Non-Coulombic Systems:
The Harmonic Trap Model

The topological analysis of the one-particle density yields the topological structure,
through identifying critical points (CPs) and the boundaries between real-space
subsystems. Particularly, the local zero-flux equation, ~rq ~qð Þ �~n ~qð Þ ¼ 0, is used to
determine the zero-flux surfaces that act as inter-atomic boundaries [1]. However,
these surfaces are just a small subset of the zero-flux surfaces emerging from the
equation [40, 46, 47]. It has been demonstrated that the zero-flux surfaces that are
not acting as the boundaries of topological atoms may found interesting applica-
tions; the “morphologies” of the real-space subsystems which they are shaping are
different from the topological atoms [48–55], and even more exotic (from the
viewpoint of their morphology) real-space subsystems emerge from the net
zero-flux equation,

R
X d~qr2q ~qð Þ ¼ 0, as demonstrated recently [47, 56]. All these

studies point to the fact that even for the Coulombic systems the topological
analysis may yield a wide spectrum of real-space subsystems apart from the
topological atoms. Accordingly, it is tempting to consider what kind of real-space
subsystems may emerge from the topological analysis of non-Coulombic systems.
In the rest of this section the harmonic trap model is considered for this purpose.

The model of N quantum particles confined in a harmonic trap has been widely
used to model the Bose-Einstein condensation in trapped dilute gases [57–68], and
more recently in trapped Fermi gases [69–73]. A simplified model of the trap may be
constructed assuming a non-interacting system of quantum particles in an external
isotropic harmonic trap, as a homogeneous potential, n ¼ 2, with the following
Hamiltonian: Ĥ ¼PN

k¼1 ĥk ¼ ��h2
�
2m

� �PN
k¼1 r2

k � a2 x2k þ y2k þ z2k
� �	 


, where
a ¼ 2pfm=�h and f is the frequency of mechanical vibration of the particle in the trap
[44]. The spectrum of the eigenfunctions and eigenvalues of the one-particle
Hamiltonian, ĥK/v1v2v3 ¼ ev1v2v3/v1v2v3 , is well-known (v1; v2; v3 are the quantum

numbers) [44], e.g. /000ðx; y; zÞ ¼ a=pð Þ3=4Exp � a=2ð Þ x2 þ y2 þ z2ð Þ½ �, e000 ¼ 3p�hf

and /100ðx; y; zÞ ¼ 4a5
�
p3

� �1=4
xExp � a=2ð Þ x2 þ y2 þ z2ð Þ½ �, e100 ¼ 5p�hf . The

wavefunction of the system may be constructed based on the statistics of the trapped
particles. In the ground state of the system filled with non-interacting bosons all
particles are at the lowest one-particle energy state, EBoson

0 ¼ Ne000 ¼ 3Np�hf , and
neglecting the spin variable, the spatial part of the wavefunction is a simple product of
the one-particle eigenfunctions associated to the lowest one-particle energy state:

WBoson ¼
QN

k¼1 /000 xk; yk; zkð Þ ¼ a=pð Þ3N=4Exp � a=2ð ÞPN
k¼1 x2k þ y2k þ z2k
� �� �

. On
the other hand, if the trap is filled with fermions then the spin variable is of pivotal
importance and the spin-eigenfunctions, instead of the spatial eigenfunctions, must be

used to construct the fermionic wavefunction,
wv1v2v3 ¼ /v1v2v3a
�wv1v2v3 ¼ /v1v2v3b


(a and b are the

spin eigenfunctions). The Pauli Exclusion Principle dictates a N � N determinant,
composed of the spin-eigenfunctions, as the ground state wavefunction of the system:
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WFermion¼ N!ð Þ�1=2PN!
i¼1 �1ð Þpi P̂i w000 x1; y1; z1ð Þ�w000 x2; y2; z2ð Þw100 x3; y3; z3ð Þ. . .� �

,

where P̂i is the permutation operator generating all possible permutations of particles
within the spin-eigenfunctionswhile pi is the number of transpositions/exchanges (the
wavefunction is a linear combination of such determinants if the determinants are
describing degenerate ground states) [44]. The ground state energy of the fermionic
system is:EFermion

0 ¼ 3Np�hf þ 2p�hf
P

v1

P
v2

P
v3 nv1v2v3 v1 þ v2 þ v3ð Þ, where nv1v2v3

is the occupation number of the one-particle energy states denoted by the quantum
numbers v1; v2; v3 and is always equal to two, one or zero.

The formalism of the QTAIM is insensitive to the statistics of quantum particles
however, according to the best of author’s knowledge, no previous QTAIM
analysis of a bosonic system has been done. This is understandable since only
many-electron systems have been considered within the context of the QTAIM [1].
The one-particle density and its gradient vector field for the bosonic system are as
follows:

qBoson x; y; zð Þ ¼ N a=pð Þ3=2Exp �a x2 þ y2 þ z2
� �� �

~rqBoson ¼ �N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a5=p3

q
Exp �ar2
� �

~r
ð4:9Þ

Since the one-particle density is isotopic, the gradient vector field is written in
the spherical polar coordinate system (r; h;u): r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and ~r ¼ r~r0,

where~r0 ¼~i sin h cosuþ~j sin h sinuþ~k cos h is the unit vector [44]. It is evident
from these equations that the topological structure of the gradient vector field is
independent from the number of particles and from the equation: ~rqBoson ¼ 0, just
a single (3, −3) CP emerges at the origin of the coordinate system. The one-particle
density monotonically decays from its maximum value at the origin

qBoson 0; 0; 0ð Þ ¼ N a=pð Þ3=2 and this pattern is reminiscent of the one-electron
density of atoms [1]. This similarity is suggestive that the ground state of the
bosonic aggregate, trapped in the external harmonic potential, independent from the
number of trapped bosons, is similar to a single atom (a “giant atom” if N ! 1).
Interestingly, this is also in line with the description of the Bose-Einstein con-
densate at its ground state as a “super-atom” [57]. Evidently, just a single topo-
logical atom emerges from the topological analysis and the zero-flux surfaces
emerging from the local zero-flux equation are all crossing the CP. In the case of the
fermionic system the explicit form of the ground state one-particle density depends
on the number of particles and only two cases, N ¼ 2; 8, are considered here. For a
two-particle system the one-particle density and its gradient vector field for the
system are as follows:

qN¼2
Fermion rð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a3=p3

p
Exp �ar2
� �
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~rqN¼2
Fermion ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16a5=p3

q
Exp �ar2
� �

~r ð4:10Þ

These equations clearly demonstrate that the two-particle fermionic system is
quite similar to the bosonic system and the structure of a single atom emerges from
the topological analysis. For the eight-particle system, N = 8, the Pauli Exclusion
Principle dictates the occupation of the three degenerate one-particle lowest energy
excited states /100;/010;/001 (a “closed-shell” configuration), apart from the
ground one-particle /000 state which is also occupied for N = 2 system. The
one-particle density and its gradient vector field for this system are as follows:

qN¼8
FermionðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a3=p3

p
1þ 2ar2
� �

Exp �ar2
� �

~rqN¼8
FermionðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16a5=p3

q
1� 2ar2
� �

Exp �ar2
� �

~r
ð4:11Þ

In contrast to the Eqs. (4.9) and (4.10), the one-particle density is not mono-
tonically decaying in this system and from the equation: ~rqN¼8

Fermion ¼ 0, two kinds of
CPs emerge. A CP is located at the center of the coordinate system and infinite
numbers of CPs are all located on a spherical surface around the center of the
coordinate system with the radius: rCP ¼ 1

� ffiffiffiffiffi
2a

p
. The amount of one-particle den-

sity at the central CP is: qN¼8
Fermion 0ð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4a3=p3
p

, while on the spherical surface one

finds: qN¼8
Fermion 1

� ffiffiffiffiffi
2a

p� � ¼ 2Exp �1=2½ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a3=p3

p
. Evidently, the amount of

one-particle density is larger at the spherical shell and the central CP is a global
minimum or a (3, +3) CP whereas the CPs on the spherical surface are “non-isolated”
(1, −1) CPs that have been rarely observed in molecular systems [74]. Instead of the
well-known “point” attractors with rank 3, e.g. (3, −3) or (3, −1), in this system one
is faced with a “global” attractor with rank 1, i.e. (1, −1), which is a spherical surface
with infinite numbers of degenerate point attractors; a similar global attractor in the
one-electron density of the 2S excited state of hydrogen atom also appears [75].
Based on the emerging topological structure, this system also seems to be composed
of a single real-space subsystem though it is not a topological atom. Finally one
infers from the comparison of the eight-particle bosonic and fermionic systems that
statistics of particles has a pivotal role on the topological structure of the one-particle
density which does not seem to be noticed previously.

4.4 Conclusion and Prospects

The programme of extending the QTAIM formalism to non-Coulombic systems
widens the applications of the theory and in this regard it is similar to the ongoing
programme of extending the QTAIM to the multi-component systems. Sometime
ago it was proposed that the real-space subsystems emerging from the topological
analysis do not need to be similar to the topological atoms and a generalized
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framework called Quantum Theory of Proper Open Subsystems (QTPOS) was
developed to deal with all types, rather than just the topological atoms, of the
real-space subsystems [47]. While in that paper only the Coulombic systems were
conceived as targets, the present contribution demonstrates that the QTPOS may be
conceived as a general theory that deals with both the Coulombic and non-Coulombic
systems composed of a single type of quantum particles interacting with each other
and external fields through the homogeneous potentials. Apart from the previously
considered examples [41], and those considered in this chapter, a large number of
interesting systems, some indicated in the first section, remain to be considered within
context of the QTPOS. However, a completely comprehensive theory must encom-
pass also quantum systems containing particles that their interaction potentials are
inhomogeneous functions. This is also important in the case of extending the QTAIM
analysis further since upon adding new, albeit small, terms to the Coulombic poten-
tials the resulting potential energy operator is inevitably inhomogeneous.

The comparative analysis of the real-space subsystems emerging in fermionic
and bosonic systems is another novel aspect of the present study. This is an
interesting area for future studies since it may reveal the “local” role of the Pauli
Exclusion Principle in molecular systems. Pauli “repulsions” and associated steric
interactions are usually invoked in both qualitative and quantitative analysis to
rationalize conformational selections, tracing molecular stresses and instabilities.
However, most of such analyzes are based on indirect methods and one may hope
that a direct comparative QTAIM analysis on a fermionic system and associated
bosonic counterpart may reveal a more detailed picture of the role of the statistics
on the local interactions in molecular systems.

Acknowledgments The author is grateful to Masume Gharabaghi and Ángel Martín-Pendás for
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Chapter 5
Exploring Chemistry Through the Source
Function for the Electron and the Electron
Spin Densities

Carlo Gatti, Ahmed M. Orlando, Emanuele Monza
and Leonardo Lo Presti

Abstract The Source Function, a chemical descriptor introduced by Bader and
Gatti in 1998, represents a challenging tool to see the electron density from an
unusual perspective. Namely, as caused, at any point in the space, by source
contributions operating at all other points of space. Summing up the local sources
over the atomic basins of a system, enable us to regard the electron density at any
system’s location as determined by smaller or larger contributions from all the
atoms or group of atoms of the system. Such decomposition of sources provides
valuable chemical insight and it may be applied, on the same grounds, to theo-
retically or experimentally derived electron densities. Two recent Source Function
developments, specifically its application to detect subtle electron delocalization
effects and its extension to the electron spin density sources are reviewed through
this chapter. An original application, as viewed through the eyes of the Source
Function, then follows each illustrated development. Precisely: (a) the electron
delocalization mechanisms in complex and non planar aromatic systems, like the
homotropylium cation and the 1,6-methano[10]annulene, and (b) the spin density
transferability properties in a series of n-alkyl radicals.

Keywords Source function � Electron density � Electron spin density � Chemical
bonding � Electron conjugation � Aromaticity � Non-planar aromatic frameworks �
Chemical transferability � Spin density transferability
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Abbreviations

bcp Bond critical point
BP Bond path
CP Critical point
DI Delocalization index
ED Electron density
FHDD Fermi Hole Delocalization Density index
HOMA Harmonic Oscillator Model of Aromaticity
LS Local Source Function
MO Molecular Orbital
NBCC Non Bonded Charge Concentration
NICS Nucleus-Independent Chemical Shift
QTAIM Quantum Theory of Atoms in Molecules
PAH Polycyclic Aromatic Hydrocarbons
PDI Para-Delocalization Index
rp Reference point
SDD Electron Spin Density Distribution
SF Source Function (for the electron density)
SFS Source Function (for the electron spin density)
SF% Percentage Source Function (for the electron density)
SFS% Percentage Source Function (for the electron spin density)
SFLAI Source Function Local Aromaticity Index
3MR Three-Membered Ring
6MR Six-Membered Ring
7MR Seven-Membered Ring
10MR Ten-Membered Ring

5.1 Introduction

This chapter highlights recent developments and new applications of the Source
Function (SF) descriptor, introduced long time ago by Bader and Gatti [1] and later
on largely used in several studies (for comprehensive and critical overviews,
updated to 2012, see Refs. [2, 3]). The SF enables one to see the properties of a
scalar at a given point of the space in terms of source contributions from all other
points of the space, within an interesting cause-effect relationship. It represents,
therefore, a tool profoundly germane to one of the main operative notions of
chemistry, that is that any local property and chemical behaviour of a system is to
some extent, be it small or large, influenced by the remaining parts of the system. It
is also neatly connected to the Topological methods in molecular chemistry, one of
the main focus of the present book, as the SF relates a local property of a scalar of
interest to chemistry, say the electron density, to its local source behaviour in
another, far or close, region of space. Analysing such a link between the properties
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of two τóποι can be clearly considered as a topological method. Following a general
presentation of the SF tool (Sect. 5.2), the present chapter reviews two recent SF
developments, specifically its use to detect subtle electron conjugation effects
(Sect. 5.3) and its extension to the electron spin density (Sect. 5.4). It is shown that
the sources and thus the kind of link existing between two τóποι may largely
depend on the function being analysed (electron or electron spin density). The two
reviewed developments are then each followed by the presentation of an original
application. Namely, the SF analysis of the electron conjugation in non planar
systems (Sects. 5.3.1–5.3.3), where σ/π separation is disabled, and the study,
through the eye of the SF, of the electron spin density transferability in n-alkyl
radicals (Sect. 5.4.1). Section 5.5 concludes.

5.2 The Source Function Descriptor

In the late 1990s, Bader and Gatti [1] showed that the electron density (ED) at any
point r in a closed quantum system with boundary at infinity, may be thought as
determined by a local source (LS), LS(r, r′), operating at all other points in space:

qðrÞ ¼
Z

LS(r; r0Þdr0 ð5:1Þ

The function LS at r is defined in terms of the Laplacian of the electron density
at r′ according to:

LSðr; r0Þ ¼ �ð4p � r� r0j jÞ�1 � r2qðr0Þ ð5:2Þ

The factor ð4p � r� r0j jÞ�1 is a Green’s function, or an influence function [4],
which represents the effectiveness of the cause, ∇2ρ(r′), in producing the effect,
ρ(r). By integrating LS over the topological atoms Ω defined by the Quantum
Theory of Atoms in Molecules (QTAIM) [5], i.e. over the disjoint and exhaustive
regions of space bounded by zero-flux surfaces in the ∇ρ(r) vector field, ρ(r) is then
partitioned into a sum of basin contributions:

qðrÞ ¼ Sðr; XÞþ
X
X0 6¼X

Sðr;X0Þ ð5:3Þ

In Eq. 5.3, each S(r, Ω) addendum is called the source function (SF) of atom Ω to
ρ(r) at the reference point r (hereinafter, rp) and the summation is conveniently
decomposed into a source from the atomic basinΩ hosting the rp and a sum of sources
from the remaining basinsΩ′. Although any mutually exclusive or fuzzy partitioning
scheme could be used to subdivide the LS integration over R3 into convenient con-
tributions, adoption of the QTAIM criterion enables one to provide a rigorous
association, rooted in quantummechanics, of individual Source contributions S(r,Ω)

5 Exploring Chemistry Through the Source Function … 103



to atoms or group of atoms (“functional groups”). In other words, the SF tool brings
quantitative chemical insight [2, 6], as it allows to quantify the extent to which the
various functional groups or atoms in a system contribute to determine the amount of
electron density at a given rp. This property holds whether such chemical moieties are
or are not linked through a bond path (BP) to the nucleus of the basin hosting the rp.
The SF is so able to highlight, in the real space, nonlocal quantum effects, provided
they have some influence on the ground-state ED and are properly modelled within
the adopted computational model.

One relevant feature of the SF descriptor is that its evaluation requires only the
knowledge of the ED distribution and it is so also experimentally accessible from
single-crystal or powder X-ray diffraction intensity data through the so-called
multipole models [7–9]. As a matter of fact, the SF tool provides a true bridge
between theory and experiment, allowing one to compare either results on the same
grounds [2, 3, 10]. Since the seminal work by Bader and Gatti, the SF descriptor has
been extensively and successfully applied to study non-local bonding effects in
molecules and crystals [2, 3, 6, 11–17].

When one is dealing with the investigation of the chemical bonding, it is rea-
sonable that bond critical points (bcp’s) be taken as the least biased choices for rp’s
[2, 6]. The relative ability of an atom Ω to determine the ED at the rp is called the
Source Function percentage contribution of Ω to rp, SF%(rp, Ω):

SF% rp;Xð Þ ¼ S rp;Xð Þ
q rpð Þ � 100 ð5:4Þ

The more covalently bonded are two atoms, the higher will be their ability to
contribute to the ED value at their intervening bcp and, thus, their related SF%
contribution [2, 6]. For less localized interactions, the SF contributions also become
much more delocalised throughout the molecule and individual SF% values become
generally smaller [2, 3, 6, 14]. Such an analysis has been applied to several classes of
chemical bonds [2, 3], including hydrogen-bonds, multi-center bonds, metal-metal
and metal-ligand bonds in organometallic systems, and it has also been exploited for
assessing even more subtle chemical features, like electron delocalization effects
[15], the role of substituents [16], and the effect of the environment [18].

5.3 A SF-based Description of Electron Delocalization
and Aromaticity

There not exist perhaps in chemistry other concepts besides those of “electron
delocalization” and “aromaticity” that, although being cornerstones of chemical
understanding and classification, seem at the same time to elude any attempt of
being rigorously defined and, thus, uniquely quantified (for a comprehensive and
updated bibliography see Ref. [19]). Such intrinsic limit is but a consequence of
their not direct association to quantum-mechanical observables.
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More than 30 years ago, Bader et al. [20] and Cremer et al. [21] published two
seminal papers about the use of electron distributions and bcp properties for
describing conjugation, hyperconjugation and homoaromaticity features. Those
papers opened the way to the study of the various facets related to electron delo-
calization through electron-based descriptors. One main conclusion was that the
electronic effects predicted by orbital models could be mirrored into observable
properties of the electron density distribution, along with the important additional
pro that being based on an observable, the analysis may be equally applied to non
planar systems, where the σ-π separation of the molecular orbital models does no
longer apply. In those two studies, descriptors like the electron-density-based bond
orders, the bond ellipticity and the degree of the alignment of axes uniquely
defining the plane of the π-electron distribution for each CC bond had for the first
time been introduced to quantify the extent of electron delocalization (and aro-
maticity). Successful applications of the method had then concerned several
interesting cases, like the assessment of potential homoaromatic conjugation in a
series of non planar cations, including the debated case of the homotropylium
cation [21, 22] or the characterization of competing electron conjugation pathways
in some 11,11-disubstituted 1,6-methane[10]annulenes [23, 24].

Though it had been unequivocally shown that the electron density bears rec-
ognizable signatures (of the effects) of electron delocalization, it later on became
progressively evident that its very mechanism is immediately related only to the
quantum-mechanical correlation among electron pairs. Such correlation had long
time before already been discussed, among others, by Mc Weeney [25] and Bader
and Stephens [26]. The so called exchange-correlation density, ρ2,xc (r1, r2), is an
useful tool to study such correlation. It measures the deviation between the true pair
density of a system and that given by the purely classical description of a product of
two independent electron densities, not subject to any Coulomb and Fermi corre-
lation of electron motions. Use of the exchange-correlation density has led through
years to the definition of several electron delocalization descriptors, like the so
called delocalization indices (DI’s) [27], that provide an estimate of the number of
electrons pairs delocalized (shared) between two atoms Ω and Ω′, no matter
whether they are or they are not directly linked by a bond path. DI’s have been
largely employed to highlight delocalization effects and to quantify aromaticity, for
example through the so-called para-delocalization index PDI [28] or the Fermi Hole
Delocalization Density index, FHDD [29], which both represent global measures of
electron delocalization non homogeneity. The performance of such global aro-
maticity indicators has also been extensively compared with that of several other
aromaticity measures, less fundamental in nature and based instead on given,
indirect consequences of electron delocalization. The HOMA (Harmonic Oscillator
Model of Aromaticity) [30, 31] and NICS (Nucleus-Independent Chemical Shift)
[32, 33] indices, represent just two popular examples. HOMA exploits the increase
of the CC bond length equalization with increasing electron delocalization homo-
geneity, while NICS the supposedly different magnetic shielding of a magnetic test
dipole at the center of a conjugated ring in the presence of a diatropic (aromatic
system) or paratropic (antiaromatic system) ring current. Both indices have been
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largely used, but also seriously criticised (for a comprehensive and critical review
on aromatic indices, the reader is referred to Ref. [34]). Such a plethora of
descriptors often disagree even in ranking classical aromatic compounds on an
absolute (overall and local) aromaticity scale, sometimes raising even more con-
fusion. According to Bultinck [34] this divergence is not a consequence of a real
multidimensional character of aromaticity [35], but it is rather due to “confusion
and vagueness of the term (local) aromaticity”.

Recently we showed that the SF descriptor is able to reveal, order and quantify
π-electron delocalization effects, despite being defined in terms of the ED and its
Laplacian, that is of quantities depending only from the diagonal elements of the
first order density matrix. Our analysis [15] was applied to simple benchmark
organic systems, such as benzene, biphenyl and polycyclic aromatic hydrocarbons
(PAH). The onset of electron delocalization was found to be mirrored into an
enhanced capability of determining the density distribution along a given bond by
the distant, though through-bonds connected, atomic regions. The SF allows to
translate such alteration of sources into an easy-to-catch pictorial representation,
consisting of enhanced and reduced atomic SF contributions to the bcp density
from, respectively, distant and nearby atoms, and relative to cases where electron
delocalization does not realize. Such effects can then be magnified by choosing
suitable rp’s lying above (or below) the plane of the carbon-membered rings, so as
to sample regions where the π-type molecular orbitals can enter directly, and not
just indirectly, into the play [2, 15, 20]. Magnification of effects due to electron
correlation does not imply, as a prerequisite, a perfect σ/π Molecular Orbital sep-
aration. Indeed, the SF analysis is currently performed on the full ED and an
analogous outcome would be obtained in terms of an ED sharing the same local
density values, but given numerically on a grid, rather than analytically, from
separate MO contributions.

Eventually, we proposed an our own index based on the SF descriptor (SFLAI,
Source Function Local Aromaticity Index) for quantifying the degree of aromaticity
of 6-membered rings (6MRs) in polycyclic systems. Analogously to the SF analysis
of electron delocalization, such an index might prove to be particularly useful for
application to experimentally-derived ED’s, as, at variance with other commonly
employed quantum-mechanical (local) aromaticity descriptors, it does not require
the knowledge of the pair density.

According with the functional form of the Fermi Hole Delocalization Density
(FHDD) index [29], SFLAI is defined as [15]:

SFLAI ¼ 1� c
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX6
A¼1

k �
X6
b¼1

SFAb%

 !2
vuut ð5:5Þ

In Eq. (5.5), the summation runs over all SF% contributions of the carbon atom
A to each b-th C–C bcp in the benzenoid ring, k is the analogue quantity in benzene
and c is a normalization constant, such that SFLAI is exactly 0 in cyclohexane. We
found that this descriptor correlates well with several other structural and quantum

106 C. Gatti et al.



aromaticity indices and particularly well with those defined through the pair den-
sity, like FHDD. Moreover, SFLAI is able to correctly detect the progressive
increase of π delocalization on passing from cyclohexane, through cyclohexene and
1,3-cyclohexadiene, to benzene. Eventually, it properly orders the local aromaticity
of different rings in simple PAH and in their partially hydrogenated derivatives
[15]. In summary, the SF descriptor has proved to be a quite interesting tool to
discuss electron delocalization effects, despite its lack of a direct physical link to the
very mechanism of electron delocalization, as it is instead the case of the indices
based on the exchange correlation density like the delocalization indices.
A systematic application of SF analysis on X-ray derived electron densities of
benzene and substituted napthalene crystals has been already discussed some time
ago [36, 37] and related publications have appeared [38] or are currently in
preparation [39].

In the following paragraph, we extend, instead, our electron delocalization SF
study of ab initio EDs to some non-planar and less conventional conjugated
systems.

5.3.1 Non-planar Aromatic Systems

A long-standing tenet of organic chemistry states that aromaticity requires a planar
ring of atoms to be exploited [40]. Accordingly, distortions from planarity imply a
(usually slight) loss of aromatic character [41], even though delocalized π systems
tend in principle to be preserved due to their high stability. The propensity of
aromatic compounds to remain planar arises from the requirement of maximizing
the π-symmetry overlap among formally single-occupied p orbitals on adjacent
nuclei. Au contraire, significant deviations from planarity are usually associated to
antiaromatic systems [42, 43] where the energy cost of achieving an unfavourable
electron configuration in molecular π orbitals can be alleviated by a spontaneous
distortion of the ring that breaks—or reduces—the π overlap. Cycloottatetraene is a
prototypical example of a compound exhibiting such a distortion [44].

Yet, several classes of non-planar aromatic compounds are also known. In most
cases, such compounds contain fused benzene-like ring moieties that are bent
out-of-plane by steric constraints. Molecular belts [45], pyrenophane derivatives
[46, 47] and contracted porphyrinoids [48] are representative examples of these
systems. In general, the study of non-planar aromatic compounds opens new
opportunities for developing molecular devices with potential application in
materials science. For example, porphyrinoids have recently attracted significant
interest, as their curved aromatic structures show concave or convex π surfaces able
to interact in various ways with electroactive compounds [48].

In late 1950s, a novel class of cyclic compounds was discovered, that exhibited
aromatic character from a chemical, thermodynamic and spectroscopic viewpoint
despite the presence of sp3-hybridized atoms within the ring [49]. In his pioneering
work, Winstein [49] named such compounds as ‘homoaromatics’ due to their
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similarity with homo-conjugated alkenes. According to the IUPAC Compendium of
Chemical Terminology [50], “…whereas in an aromatic molecule there is contin-
uous overlap of p-orbitals over a cyclic array of atoms, in an homoaromatic
molecule there is a formal discontinuity in this overlap resulting from the presence
of a single sp3 hybridized atom at one or several positions within the ring; p-orbital
overlap apparently bridges these sp3 centres, and features associated with aro-
maticity are manifest in the properties of the compound”.

Great efforts were devoted in the last decades to gain insights into the
homoaromatic character, and several new homoaromatic compounds were dis-
covered since then. Some authors have recently claimed to have found neutral
homoaromatic molecules [51], even though homoaromatic character in neutral
compounds was largely questioned and debated in the past [52]. In fact,
homoaromaticity is usually associated to charged moieties exhibiting homoconju-
gate π network, i.e. a formally conjugated system with an interposed non-conjugate
group or a sp3-hybridized C atom. From a structural viewpoint, this implies that
homoaromaticity is associated with the union of a cyclopropane-like system with an
unsaturated linear segment [53–58]. From the ED perspective, homoconjugate
patterns may be either distinguished as through-bond (if a bcp is present between
the sp2 carbon atoms bonded to the off-plane sp3 group) or as through-space (if a
bcp is lacking). Both kinds of interactions have been thoroughly characterized by
the topological analysis of the ED scalar field by Childs, Cremer and co-workers
[59, 60]. Barzaghi and Gatti [22] have studied the structures, energetics and ED
topological features of a series of supposedly 6π electron homoaromatic systems,
which differ by the number of basal carbon atoms (from 4 to 7) and the formal
charge (−2 to +1), i.e. Cn+3Hn+4

(n−4) for n = 2−5. They actually found that Möbius
aromaticity is preferred over through-bond homoaromaticity, in stabilizing all these
structures. In the former, stability is achieved by involving the basis orbitals of the
external methylene group, thus effectively ruling out transmission of conjugation
along the ring-fused bond. The electron delocalization largely involves the off-plane
sp3 group, leading to a strong enhancement and to a gain of partial π-character of
the bonds linking the polyenic fragment with the methylene group. This situation
chiefly characterizes the case with n = 5, discussed through the SF descriptor in the
next paragraph.

5.3.2 Homotropylium Cation

Homotropylium cation (cyclooctatrienylium, (I), C8H9
+, Scheme 5.1), also called

homotropenylium, is the archetype of homoaromatic compounds [61] and belongs
to the category of through-space homoconjugate systems [60, 62]. It adopts a
boat-shaped conformation, with just the sp3 C2 atom being significantly off-plane.
This system has been thoroughly studied, both recently and in the past [63–65],
with the aim of investigating the interplay among its structural, energetics and
induced magnetic properties [60, 66] as well as of evaluating energy barriers
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involved in carbocation rearrangements [67, 68] and of understanding the role of
substituents on the ring chemistry [65, 69].

In this section, we report on the ability of the SF descriptor to investigate
electron delocalization in I, taken as a representative test-case for homoaromaticity.
The gas-phase optimized geometry of (I) was obtained at the DFT/B3LYP level of
theory, with the DZVP2 basis set [70]. Point symmetry (Cs) was exploited while
computing the wavefunction. The Gaussian09 program was used throughout [71].
All the topological properties, delocalization indices and atomic SF contributions
were evaluated with a modified version [72] of the AIMPAC suite of programs
[73]. The accuracy of the numerical integration was checked ensuring that the
magnitude of the atomic integrated Lagrangian is lower than 10−3 and 10−5 au for C
and H atoms, respectively, and that the percentage errors (ER%) [14] in the ED
reconstruction at the rp’s according to Eq. (5.3) are lower than 1 %.

According with the model of cyclic electron circulation through the sp2 atoms
(Scheme 5.2), bond lengths tend to equalize in the C1–C8–C7–C6–C5–C4–C3
pseudo-7MR (Table 5.1), with small but significant deviation from planarity
affecting the whole ring. The C1–C3 distance (2.148 Å), on the other hand, is well
larger than 2rC, rC being the covalent radius of an sp2 carbon (0.73(2) Å) [74]. As
expected, a BP is absent between C1 and C3.

Table 5.1 also shows delocalization indices (DI) computed for relevant atom
pairs, together with relative Source Function percentage (SF%) contributions from
various groups of atoms at each reference point. DI values confirm the delocalized
nature of (I) and the limited share of electrons between the bridgehead atoms C1
and C3 [δ(C1, C3) = 0.28]. The percentage SF contributions from bonded atoms,
SFij%, parallel such trend as their values are almost constant in the pseudo-7MR

(I)

Scheme 5.1 Structure of the homotropylium cation, with resonance formulae

Scheme 5.2 Homotropylium
cation, with atom numbering
scheme
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and similar to the value in benzene, while the reconstruction of the density at the
C1–C3 midpoint reveals a scenario of highly delocalised sources. Only 33 % of this
density is determined by the closest atoms C1 and C3 and the apical sp3 carbon C2
is found to contribute even more (18.8 %) than each of the bridgehead atoms.
Relatively high SFnn% and SFothers% contributions are observed for the bonds in the
pseudo-7MR, though lower than the analogues in benzene [15]. This is likely the
consequence of the peculiar (homoconjugative) aromatic character of the π system
in this compound. In fact, C2 is an allylic sp3 atom; therefore, it provides an almost
halved SF% contribution to its adjacent bonds with respect to a sp2 carbon atom
within a conventional aromatic network, as may be seen (Table 5.1) from the
SFnn% data and their separate contributions from next neighbour atoms, reported in
parentheses in this same Table. Interestingly, the SFnn% contributions to the bcp
density of the bonds C2–C3 (and C1–C2) linking the polyenic fragment with the
methylene group are, instead, even larger than for benzene. The SF descriptor thus
neatly reveals the asymmetry of the electron delocalization capability, which, rel-
ative to benzene, is definitely lower from the methylenic group to the polyenic
fragment and slightly larger, though only in percentage, in the opposite direction.

Both bond distances and DI’s in Table 5.1 suggest that the methylene sp3 group
behaves as an allylic carbon, being able to interact with the electron delocalized
system within the pseudo-7MR through an allegedly hyperconjugative mechanism.
Actually, the percentage contribution of C2 to C3–C4 bcp is comparable to that
observed for the allylic C atom C5 in 1,3-cyclohexadiene (Table 5.2). This simi-
larity is conserved even for SF% contribution to distant bonds and it is mirrored by
DI’s values involving C2 in I and its non bonded atoms C4 and C5 as well as C5
with its non bonded atoms C3 and C2 in 1,3 cyclohexadiene.

Although in non-planar systems the σ/π symmetry labelling of molecular orbitals
(and related electrons) is no longer valid, it is still possible to enhance electron

Table 5.1 Bond lengths d, DI’s δ and SF% contributions for symmetry-independent C–C bonds
in (I)

Bond i–j d/Å ρbcp, au δ(Ci, Cj) SFij% SFnn% SFothers% SF%(C2)

C2–C3 1.496 0.251 1.00 78.5 5.9 (3.0; 2.9) 1.5 38.6

C3–C4 1.385 0.311 1.45 85.8 3.9 (1.5;2.4) 0.8 1.5

C4–C5 1.411 0.297 1.33 84.8 5.2 (2.8; 2.4) 0.9 0.3

C5–C6 1.407 0.298 1.38 85.1 4.8 (2.3; 2.5) 1.3 0.1

C1–C3b 2.148 0.087 0.28 32.7 30.0 (18.8, 5.6, 5.6) 2.8 18.8

C=C 1.402 0.301 1.39 84.3 5.2 (2.6; 2.6) 1.4 //

If not otherwise specified, bond critical points (bcp’s) in the ED scalar field were taken as rp’s.a

For the sake of comparison, the last line shows the same parameters as computed in benzene (D6h)
a‘ij’ means contributions from the bonded C atoms i and j, ‘nn’ implies contributions from the
next-neighbour couple of C atoms and ‘others’ refers to contributions from all the other carbon
atoms in the ring. In the case of SFnn%, the separate contribution from the two (or three, for C1–
C3) next-neighbour atoms is reported in parenthesis, ordered by increasing carbon atom number
bNo bcp found. The midpoint between the C1 and C3 nuclei was chosen as the reference point
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delocalization effects by suitably choosing reference points other than
bcp. According with our previous study on simple aromatic hydrocarbons [15], we
located such new rps by moving away from the bcp along the major axis of the
bond (see Fig. 5.1). The major axis is defined in terms of the L2 eigenvector of the
ED Hessian matrix at the bcp, along which the magnitude of the negative curvature
of the ED at bcp is a minimum [5, 20]. Bader et al. [20] showed that the L2

eigenvector points in the direction of the maximum in the π-electron distribution of
the molecular orbital theory. The outcomes of such an analysis are collected in
Table 5.3.

Data in Table 5.3 nicely confirm the expected enhancement of next-neighbour
and other atoms sources and the concomitant decrease of those from atoms the rp
directly refers to. As concerns the C4–C5 and C5–C6 bonds, no remarkable dif-
ferences are observed upon choosing the rp above (i.e. in cis- with respect to C2) or

Table 5.2 Comparison of C2 in homotropylium with the allylic carbon atom (C5) in
1,3-cyclohexadiene

Homotropylium 1,3-cyclohexadiene

SF%(C2, @ bcp C3–C4) 1.4 SF%(C5, @ bcp C3–C4) 1.2

SF%(C2, @ bcp C4–C5) 0.3 SF%(C5, @ bcp C2–C3) 0.2

SF%(C2, @ bcp C5–C6) 0.1 SF%(C5, @ bcp C1–C2) 0.1

δ(C2, C4) 0.054 δ(C5, C3) 0.061

δ(C2, C5) 0.020 δ(C5, C2) 0.014

Fig. 5.1 Reference points (rp’s, red spheres) considered for computing the SF contributions
shown in Table 5.3. These rp’s were located on the directions determined by the L2 eingenvectors
of the ED Hessian matrix, as evaluated at the corresponding bcp’s

Table 5.3 SF %
contributions above/below the
pseudo-7MR plane at the
distance of 1 au from the bcp

Bond i–j SFij%
a SFnn% SFothers% SF%(C2)

C2–C3 53.3/55.5 8.4/14.7 2.3/4.7 29.2/27.5

C3–C4 74.1/74.4 6.5/6.8 2.2/0.9 2.4/2.7

C4–C5 71.9/71.7 9.0/9.1 1.9/1.4 0.4/0.7

C5–C6 73.1/72.0 8.1/8.3 2.4/2.5 0.0/0.2
aThe subscripts ‘ij’, ‘nn’ and ‘others’ have the same meaning as in
Table 5.1
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below (trans-C2) the pseudo-7MR plane.1 On the other hand, for the C2–C3 bond,
the SF contributions are clearly different whether they are evaluated above or below
the plane. More in detail, SFnn% and SFothers% are greater when the rp is chosen in
trans- with respect to the C2 atom, that is by moving the rp towards the interior
rather than to the exterior of the ring and thus to a more symmetric position relative
to the atoms of the ring. Thanks to the degree of freedom ensured by the choice of
the rp, the SF descriptor may be a very efficient sensor of electron delocalization
magnitude asymmetries.

In conclusion, even for a homoconjugated system, like the homotropylium
cation (I), the SF picture nicely fits with that provided by more sophisticated
instruments like the delocalization indices. On top of this, due to its mixed
local/integral nature (choice of the rp and summation of local sources within a
region of space), the SF descriptor may reveal relevant asymmetries in the electron
delocalization processes. These may be related to different magnitudes of the
electron delocalization effects when travelling in opposite directions along a
sequence of bonds, or to different magnitudes of such effects when moving per-
pendicularly to a bond path and in opposite directions relative to a bcp.

In the next section, a more complex case will be explored, where homoconju-
gation coexists with aromaticity in a nonbenzenoid 10-membered ring (10MR).

5.3.3 1,6-Methano[10]Annulene

1,6-methano[10]annulene (IIa, C11H10, Scheme 5.3) was the first discovered stable,
aromatic cyclodecapentaene. In this respect, it represents a true cornerstone in the
history of nonbenzenoid aromatic compounds [75]. Even though the methylene
bridge at the C11 carbon (Scheme 5.4) distorts the hydrocarbon backbone from
being planar, the 10MR is aromatic, as it can be inferred from the NMR spectrum.
Indeed, peripheral H nuclei are deshielded, while the bridging ones are strongly
shielded, due to the significant intra-annular diamagnetic ring current induced by
the magnetic probe [76]. Moreover, the main ring is prone to electrophilic substi-
tution reactions [77, 78]. Interestingly, (IIa) can exist in equilibrium with its nor-
caradiene valence tautomer (IIb, Scheme 5.3), that undergoes spontaneous valence
tautomerization to the (slightly) more stable (IIa) compound [75, 79]. The equi-
librium between these two forms is rather subtle, and it is not surprising that
different substituents R, R′ at the bridging methylene atom can reverse the stability
order, as demonstrated by single-crystal X-ray diffraction experiments [80–83].

In general, bridged methano[10]annulene derivatives are a very attractive class
of compounds for investigating non-trivial aromatic systems. Being quite easy to be
synthesized and showing a somewhat ‘tunable’ conjugation pattern [84] due to the

1Actually, the pseudo-7MR system is not rigorously planar. Here we intend the mean least-squares
plane passing through the sp2 atoms.
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above sketched tautomerism [79], these compounds allow for a systematic exper-
imental investigation of electron delocalization. Some decades ago, they were
extensively studied by Gatti et al. by applying QTAIM topological descriptors to
their theoretical ED distributions and using X-ray derived crystalline geometries
[23, 24]. Similarly, Bianchi, Destro and Merati lately applied such approach to the
accurate experimentally-derived ED distribution of a polybridged annulene
derivative [85]. A first attempt of understanding aromaticity (and possibly
homoaromaticity) in these compounds using descriptors based on the pair density
was carried out far more recently [84].

In their study, Gatti et al. found that when the C1–C6 bond length is close to the
value of normal CC bonds, i.e. for R = R′ = CN or CH3, the π-like charge distri-
bution of the 3MR system is preserved and the whole cyclopropyl ring behaves a a
conjugate π bond. However, when the C1–C6 bond lengthens, the 3MR Critical
Point (CP) approaches the CP of the C1–C6 bond and, for R = R′ = H or F, the two
points eventually merge, leading to an annulenic structure. Even in such structure,
however, besides the presence of the 10-π electronic system, a conjugative coupling
of the cyclopropyl ring to the [10]-annulenic framework occurs, similarly to the
case of homotropylium cation. The strong involvement of the two external bonds of
the 3MR ring in conjugation make them very short and with quite significant
ellipticity [23]. Moreover, the overall conjugative mechanism is signalled by the
presence of two 7MR ring CPs, largely displaced from the plane of the
10-annulenic framework and pointing towards the bridgehead carbon C11 [23, 24].
The availability of this extra-conjugation mechanism complies with the far better
stability of 1,6-methano[10]annulene relative to the extremely reactive π-isoelec-
tronic unbridged [10]annulenes. These latter are in fact characterized by very
alternating CC bond lengths and bear few if any signs of aromaticity.

In this section, we extend the SF analysis to 1,6-methano[10]annulene
(Schemes 5.3 and 5.4), on the basis of the results found on homotropylium

Scheme 5.3 1,6-methano[10]annulene

Scheme 5.4 Numbering scheme for atoms and rings in 1,6-methano[10]annulene, compound (IIa)

5 Exploring Chemistry Through the Source Function … 113



(Sect. 5.3.2) and naphthalene [15]. The latter compound was considered for the sake
of comparison with the annulenic 10MR of (IIa). The level of theory and adopted
computer codes are the same as described in Sect. 5.3.2. Computations on IIa have
been performed within the C2v symmetry constraint.

There is a certain similarity among bond lengths, DI’s and SFij% values in the
10MR of (IIa) and naphthalene [15], Table 5.4. However, a closer inspection of the
SF% contributions of distant atoms to each Ci–Cj bond reveals that the nature of
their delocalization patterns is markedly different. Actually, the lack of the C1–C6
bond in 1,6-methano[10]annulene (d = 2.283 Å, no bcp found) implies that π-
delocalized electrons are constrained to flow along the perimeter of the 10MR, i.e.
no crossing of the delocalization pattern among the opposite sides of the cyclic
chain is allowed through the C1–C6 bridge. In turn, this implies that atoms on
opposite branches of the chain partly lose their influence over a given rp. The
farther is the atom from the rp, the more significant this effect is.

For example, C1 gives a null contribution to the ED of C4–C5 and C5–C6 bcp’s,
whereas its influence to C3–C4 is slightly lower than in naphthalene (0.3 vs. 0.4 %).
On the other hand, SF% contribution of C6 to C4–C5 and C5–C6 is slightly higher
in 1,6-methano[10]annulene (Table 5.4). This fact reflects also on SFothers% values,
which are always lower than in naphthalene, even when C1 and C6 do not con-
tribute directly (but in turn do it indirectly through the lack of the C1–C6 bond) to
that quantity.

It is instructive to see whether some kind of through-space homoconjugation is
also present between the not bonded C1 and C6 atoms. Indeed, atoms C1 and C6
have a significant influence on the ED at their midpoint (see Table 5.4). Moreover,
bond distances and DI’s of the allylic bonds (C11–C1/C11–C6 in (IIa) and C2–
C1/C2–C3 in (I)) are almost the same in 1,6-methano[10]annulene and

Table 5.4 Bond lengths, d, DI’s, δ, and SF% contributions for the symmetry-independent C–C
bonds in 1,6-methano[10]annulene (first row) and for corresponding bonds in naphthalene (second
row)

Bond d/Å δ(Ci, Cj) SFij%
b SFnn%

b,c SFothers%
b,d SF%(C1) SF%(C6)

C1–C6a 2.283 0.17 25.2 38.1 (19.1, 0.0, 19.1) 5.0 (2.5, 0.0, 2.5) 12.6 12.6

1.434 1.22 81.2 9.8 (4.9, 0.0, 4.9) 3.2 (1.6, 0.0, 1.6) 42.7 42.7

C1–C2 1.414 1.29 83.7 6.4 (2.7, 0.0, 2.3) 1.9 (0.8, 0.0, 1.1) 41.5 0.0

1.427 1.25 82.5 7.3 (3.0, 2.0, 2.3) 3.0 (1.4, 0.0, 1.6) 40.7 2.0

C2–C3 1.398 1.44 85.1 4.4 (2.2, 2.2, 0.0) 1.8 (0.6, 0.0, 1.1) 2.2 0.0

1.380 1.49 85.3 4.4 (2.4, 2.0, 0.0) 2.3 (0.7, 0.4, 1.2) 2.0 0.4

C3–C4 1.431 1.31 83.5 5.4 (5.4, 0.0, 0.0) 1.4 (0.0, 0.7, 0.8) 0.3 0.3

1.424 1.29 83.7 5.9 (5.9, 0.0, 0.0) 1.9 (0.0, 0.8, 1.1) 0.4 0.4
aWhen a bcp is not present, the C···C midpoint was selected as rp
bThe subscripts ‘ij’, ‘nn’ and ‘others’ have the same meaning as in Table 5.1
cFor a given Ci–Cj bond, the values within parentheses are (from left to right): the SF% contributions of the nearest
neighbour C atoms belonging to the same ring (A) of the bond being analysed and not being shared with the other
6MR; the same contributions from C1 and C6 atoms, common to the two 6MRs; the same contributions from
atoms belonging only to the other 6MR (B). Bridging C11 atom is excluded from SF% contributions
dAs in (c), but referred to the “other” C atoms. C11 atom is excluded
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homotropylium cation (Table 5.5). At the C11–C1 bcp in IIa, SFnn% amounts to
7.5, 5.4 % due to C2 and C10 and the remaining 2.1 % to C6. In the homotropylium
cation, the SFnn% for the C2–C3 bcp is equal to 5.9, 2.9 % arising from C4 and
3.0 % from C1. The latter value is remarkably greater than 2.1 % from C6 in the
annulenic system. This implies that in compound (IIa) C6 is indeed simultaneously
involved in the electron delocalization pattern of both the pseudo-6MR’s. Thus, its
influence to the allylic bond must be lower than in homotropylium cation, that
possesses a unique ring of atoms. It should be noted that SFothers% at the C11–C1
bcp in 1,6-methano[10]annulene is twice the value detected for the analogue allylic
C2–C3 bond in homotropylium, in a sort of additive bis-homoconjugative fashion.
A further confirmation of the identical role of C-sp3 atoms (C11 and C2) in both
molecules is given by their almost comparable influence to distant bonds, as shown
in Table 5.6.

Table 5.7 shows the integral topological descriptors for the through-space
bridging C···C interactions in the homotropylium cation (C1···C3) and in the
annulenic system (C1···C6). The latter interaction is clearly weaker and more
delocalized than its C1···C3 analogue in homotropylium. Higher delocalization
could be explained by noting that in the 1,6-methano[10]annulene two

Table 5.5 Bond lengths, d, DI’s, δ, and SF% values for symmetry-independent C1–C11
(1,6-methano[10]annulene, C11H10) and C3–C2 (homotropylium cation, C8H9

+) allylic bonds

System d/Å δ(Ci, Cj) SFij%
a SFnn% SFothers% SF%(Callyl)

C11H10 1.494 0.98 76.8 7.5 3.1 38.0

C8H9
+ 1.496 1.00 78.5 5.9 1.5 38.6

aThe subscripts ‘ij’, ‘nn’ and ‘others’ have the same meaning as in Table 5.1

Table 5.6 Comparison of C11 in 1,6-methano[10]annulene with C2 in homotropylium

Homotropylium 1,6-methano[10]annulene

SF%(C2, @ bcp C2–C3) 38.6 SF%(C11, @ bcp C11–C1) 38.0

SF%(C2, @ bcp C3–C4) 1.4 SF%(C11, @ bcp C1–C2) 1.2

SF%(C2, @ bcp C4–C5) 0.3 SF%(C11, @ bcp C2–C3) 0.1

SF%(C2, @ bcp C5–C6) 0.1 SF%(C11, @ bcp C3–C4) −0.1

δ(C2, C4) 0.054 δ(C11, C2) 0.051

δ(C2, C5) 0.020 δ(C11, C3) 0.022

Table 5.7 Comparison of C1···C6 (1,6-methano[10]annulene) and C1···C3 (homotropylium)
interactions

System d/Å δ(Ci, Cj) SFij%
a SFnn% SFothers% SF%(C2(Ia) or C11 (IIa))

C11H10 2.283 0.17 25.2 38.1 5.0 18.9

C8H9
+ 2.148 0.28 32.7 29.0 2.8 17.8

The midpoint is taken as rp in both systems
aThe subscripts ‘ij’, ‘nn’ and ‘others’ have the same meaning as in Table 5.1
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pseudo-6MR’s contribute to the density at the midpoint, instead of just one 7MR as
in homotropylium. Indeed, the annulenic 10MR can in principle delocalize elec-
trons without passing through C1···C6. Therefore, the “through bond”, but not
necessarily the “through space” homoconjugative mechanism is expected to be less
important than in homotropylium. In this respect, the weakening of C1···C6 is a
straightforward consequence. As a further proof, each pseudo-6MR in the annulenic
system does not show the typical para effect of aromatic 6MR [15], as δ(C1,
C3) = 0.07 is larger and not smaller than δ(C1, C4) = 0.05 and δ(C1, C5) = 0.02 is
much smaller than both δ(C1, C3) and δ(C1, C4).

5.4 Source Function Applied to Spin-Polarized Systems:
A Novel Tool for Gaining Insight
into the Transmission of Magnetic Information
at the Molecular and Sub-molecular Level

Various cutting-edge research areas, including spintronics [86], advanced sensing
[87] and production of porous molecular sieves [88, 89] continuously require the
development of novel magnetic networks, often designed at the molecular scale.
Different mechanisms, such as direct exchange, ligand-mediated exchange and
superexchange are involved in transmitting the magnetic information from a given
paramagnetic centre to its neighbouring atoms [90]. Such mechanisms often
compete with each other, so it is far from trivial even to accurately understand—
saying nothing about predicting—the macroscopic magnetic properties of complex
bulk materials. Similarly to the ED scalar field, magnetism is also due to non-local
effects, which may likewise develop through space or through chemical bonds. In
particular, non-locality is crucial in determining magnetic properties, as it inherently
concerns far range correlations among unpaired electrons, more or less localized
onto different centres.

To achieve a first-principle understanding of magnetism in complex systems, the
electron spin density distribution, SDD (s(r)), is often analysed. It is defined as:

sðrÞ ¼ qa rð Þ � qb rð Þ ð5:6Þ

with ρα(r) and ρβ(r) being the spin α and β contributions to the total electron
density, ρ(r). The SDD expresses the local extent of spin polarization. It is positive
(negative) when the ED due to the α electrons at r exceeds (is lower than) that due
to the β electrons, while s(r) = 0 implies local full pairing.

Although SDD is customarily obtained from quantum mechanical simulations, it
is also experimentally accessible through magnetic scattering of polarized X-rays
[91] and neutrons [92]. The ever increasing availability of intense neutron and
synchrotron X-ray sources, along with a recent extension of the standard
Hansen-Coppens multipolar model, will largely improve the quality and enhance
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the role of experimentally-derived SDD, which might so become soon a key
instrument to understand and design specific magnetic interactions in complex
solid-state networks [93].

The SDD alone is, however, neither able to provide direct information on the
reasons underlying possible spin polarization effects, nor to disentangle different
exchange/pairing mechanisms. Of late, we have proposed a novel SDD-based
real-space descriptor [94], the spin density Source Function (SFS), that is able to
gain quantitative insight on the relative importance of different atoms or groups of
atoms in determining the electron spin density at a given reference point. Due to its
own nature, this new tool equally applies to theoretically or experimentally derived
SDDs. From Eqs. (5.1)–(5.3), the SF decomposition scheme for the SDD s(r) will
read as follows:

s rð Þ ¼
Z
R3

LSSðr; r0Þdr0 ¼
X
X

Z
X

LSSðr; r0Þdr0 ¼
X
X

SFSðr;XÞ ð5:7Þ

where the Local Source LSS is now defined in terms of the spin density Laplacian:

LSSðr; r0Þ ¼ � 1
4p

r2sðr0Þ
r� r0j j ¼ �r2 qaðr0Þ � qbðr0Þ

� �
4p r� r0j j ¼ r2qbðr0Þ � r2qaðr0Þ

4p r� r0j j
ð5:8Þ

The Green function (4π|r − r′|)−1, being a purely geometrical (effectiveness)
factor, is common to both Eqs. 5.2 and 5.8, while the local cause, ∇2s(r′), and
effect, s(r), are now given in terms of the electron spin density, rather than of the
total electron density. This implies that SF and SFS descriptors will in general
provide quite different pictures of how the two scalars are determined at a given
point, that is of how the electron density and the electron spin density information is
transmitted throughout a system. Such a difference is but a consequence of the
diverse local condensation (∇2u(r′) < 0, u = s or ρ) or dilution (∇2u(r′) > 0) of the
two distributions throughout a system. Finally, note that the integral over the whole
space is partitioned, also for SFs, into disjoint contributions from Bader’s topo-
logical atoms Ω′s [5], implying that ∇2s(r′) does not generally sum to zero when
integrated over a basin Ω.

A full description of the various technical aspects of the SFS tool is reported in
the original paper [94]. Here, we just summarise the effect that the local relative
dilution/concentration of α and β densities has on the local source for the spin
density. This effect represents a crucial step to correctly interpret the outcomes of
the SFS tool, and it can be easily understood by inspecting at Table 5.8.

When ∇2s(r) < 0, the local source LSS is positive and the α component of the
total electron density, i.e. its α-spin polarization, is increased at a given rp
r. Viceversa, when ∇2s(r) > 0, LSS is negative and it is the β component that turns
out to be raised at the rp. The ability of a given source point r′ to determine an α or
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β contribution to the electron density at the rp is named as ‘α’ or ‘β effect’,
respectively. Clearly, for a given r′, the magnitude of such effect depends on the
distance from the rp, but its α or β nature is only a function of the source point r′.
Table 5.8 illustrates the role played by the local relative magnitudes of the α- and β-
density Laplacian values in determining such nature, which eventually depends on
which of the two SDD Laplacian contributions prevails (Eq. 5.8). In particular, if
either ρα or ρβ is locally concentrated, while the other distribution is locally
depleted, the α or β nature of the effect will be necessarily defined by the con-
centrated distribution, regardless of the relative magnitudes of the ρα or ρβ
Laplacians. However, when both ρα and ρβ are locally concentrated or depleted, the
sign of LSS(r, r′) will depend on whether it is the α or the β distribution that is more
concentrated or depleted. What matters is the relative concentration or dilution of
the two distributions, as having both distributions concentrated or depleted does not
guarantee an α or β effect, respectively. As an example, a point r′ where both the α
and β distributions are depleted, but ∇2ρα(r′) < ∇2ρβ(r′), will act as α source as ρα is
locally less depleted than ρβ.

We also demonstrated that the specific choice of the rp is crucial in determining
how the paramagnetic centre influences the non-magnetic centres and vice versa.
This occurs because of the large anisotropy of the SDD and of its Laplacian
distributions. Indeed, it may result that s(r) be significantly determined by atomic
basins different from the atomic basin to which the point belongs to, and even so in
the case of regions within the basin of the paramagnetic centre [94].

In our first paper on the SF for the spin density [94], we have addressed a very
simple test case, 3B1 water, to exemplify whether an atom or group of atoms concur
or oppose the paramagnetic center in determining a given local polarization.

Likewise, in the example reported below, we investigate such a behaviour in n-
alkyl radicals, but we also focus, in particular, on their spin density transferability.
Use of the SF tool to assess and analyse the transferability of the ED properties in
the corresponding n-alkanes was reported long time ago [1]. The present study
represents the first case where such an analysis is extended to the electron spin
density.

Table 5.8 How the signs and relative magnitudes of ∇2ρα and ∇2ρβ at r′ produce an α or β effect
on the spin density s(r) at the rpa

Sign(∇2ρα(r′)) Sign(∇2ρβ(r′)) Relative magnitudes ∇2s(r) LSS(r,r′) Effect on s(r)

>0 >0 ∇2ρα > ∇2ρβ >0 <0 β

∇2ρα < ∇2ρβ <0 >0 α

>0 <0 Any >0 <0 β

<0 >0 Any <0 >0 α

<0 <0 |∇2ρα| > |∇2ρβ| <0 >0 α

|∇2ρα| < |∇2ρβ| >0 <0 β
aThis table is reproduced with permission from Ref. [94], Copyright 2015, The Royal Society of
Chemistry (RSC)
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5.4.1 Electron Density and Electron Spin Density
Transferability Viewed Through the Eye of the Source
Function Tool: The Case of N-alkyl Radicals

A cornerstone of chemistry is the atomic group transferability paradigm, deduced
from a plethora of experimental facts and corroborated on a firm quantitative basis,
for a large variety of group properties, by the Quantum Theory of Atoms in
Molecules [5]. The Source Function descriptor may be then conveniently exploited
to add further insight. On the one hand, the SF tool is capable to distinguish
between perfect transferability, implying that the electron density of a group is fully
transferable among a series of chemically related compounds, from the case of
compensatory transferability, where a constant value for a group property is only
achieved through compensatory effects [2, 6]. On the other hand, the occurrence of
perfect transferability of a group property, say for instance the value of the electron
density at a bcp within the group, not only implies a transferable SF contribution
from the atoms forming the group, but also that the sum of contributions to that
density from the remaining atoms or group of atoms in the system remains constant,
no matter the size of the system. This clearly adds further (chemical) information on
how perfect transferability realizes.

Terminal methyl groups in n-alkanes, past ethane, are known to be fully
transferable [5] as they show several properties (energy, electron population, vol-
ume and spectroscopic responses) that remain constant regardless the length of the
carbon chain. The transferability of the electron distribution in the methyl group is
so good that a constant value for the electron density at its unique C–H bcp is also
observed, past ethane. Such transferability realizes because of a constant SF con-
tribution from the CH3 group and a constant SF external contribution from the
remaining atoms in the chain, no matter its length [1, 2].

To verify whether this holds true also for SDD, CH3(CH2)nCH2
• n-alkyl radicals

[95] with n = 1–3, at fully optimized geometries and in their most stable confor-
mations were considered. These correspond for all systems to the C[p] orbital,
housing the unpaired electron in the terminal CH2

• group, being almost eclipsed
with respect to one of its β C–H bonds. Wavefunctions were calculated at the
UPBE1PBE/6-311 + G(d,p) level, using the Gaussian-09 code. Spin contamination
annihilated wavefunctions [IOP(5/14 = 2), pop = noab] were used for both
geometry optimization and SFS analysis. Integration of the spin density over the
basin of the terminal CH2

• group typically shows that more than 91 % of the excess
α density lies in this group and essentially on the C (90 %), the second most
important contribution (6 %) coming from the eclipsed β-hydrogen atom mentioned
above.

Figure 5.2 compares the electron density [top, (a)] and the electron spin density
[middle, (b)] transferability at the C–H bcp of the terminal CH2

• group for all
considered radicals.

The former transferability is confirmed to occur also in the n-alkyl radicals, and
with similar mechanisms to those operative in the corresponding alkanes.
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The dominant contribution to the bcp electron density (0.265 au) comes from the
terminal group hosting the bcp, while the remaining methyl and methylene bridge
groups adjust their SF contributions so as to provide a constant residual density
(0.013 au). An almost perfect transferability is then recovered also for the very low
value of the spin density, s = −0.0004 au, found for all systems at the
bcp. However, at variance with the electron density, the overall α SFS contribution
from the terminal CH2

• group, s = 0.0041, is more than compensated for by an
overall β and constant contribution, s = −0.0045, arising from the remaining part of
the molecule, regardless of the length of the chain. Spin transferability is thus
ensured through a combination of opposing α and β SFS cumulative effects of
similar magnitude. An equally remarkable transferability characterizes the value of
the spin density at the (3, +1) −∇2ρ critical point, located above the plane of the
terminal CH2

• group, about 1 au far from the C and on the same side of the H
eclipsed to the C[p] orbital housing the unpaired electron [Fig. 5.2, bottom (c) and
Fig. 5.3]. This (3, +1) CP and the almost symmetric one lying below such plane, but
of (3, −1) signature, may be both associated to non-bonded charge concentrations

Fig. 5.2 Electron density and
electron spin density
transferability as viewed
through the source function,
in n-alkyl radicals. The
electron (a) and electron spin
(b) densities at a terminal C–
H bcp are reported along with
their total SF contributions
from the various CH2 and
CH3 groups in each system,
c is the same as (b), but for a
(3, +1) −∇2ρ non bonded
charge concentration (NBCC)
reference point associated to
the unpaired electron. All
values are given in atomic
units (au)
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(NBCCs). They are largely due to the unpaired electron, although they do not
correspond to electron spin density maxima.

At variance with the case of the terminal C–H bcp, the s value is large and
positive, s = 0.0968 au, at this NBCC. It is larger than half the density value,
ρ = 0.1717 au, and fully dominated by the overall α effect contribution, s = 0.1026,
from the terminal CH2

• group. The role of the remaining part of the molecule is just
that of slightly counteracting such contribution through a comparatively modest
overall β effect (s = −0.0058) at the NBCC. In summary, though transferability
holds true for both the electron and the electron spin density in n-alkyl radicals, it
realizes in quite different ways and largely dependent on the selected rp.

To add further insight, it is instructive to dissect the SF group contributions, in
terms of their atomic components, for one member of the series (n-butyl radical,
Figs. 5.3 and 5.4, for rp = bcp and rp = NBCC, respectively). Comparing
Fig. 5.3a with Fig. 5.3 b, one notices further differences between the electron
density and electron spin density reconstructions at the terminal C−H bcp. First, for
rp = bcp, the atoms bonded to each other always oppose themselves in their action,
one giving an α and the other a β effect. This typically occurs for through-bond
transmission between covalently bonded atoms (“antiferromagnetically” coupled).
Secondly, the individual atomic SFS contributions are very large in magnitude, even
forty time as large (C11) as the s value they concur to reconstruct. The overall
contributions from the terminal CH2

• or from its neighbouring CH2 group are also

Fig. 5.3 Atomic SF (a) and SFS (b) percentages at the C11–H13 bond critical point (bcp, shown as
a black dot in the upper left ball-and-stick scheme) for the n-butyl radical. In (c) the SFS
percentages only due to the magnetic orbital density are displayed. The values of ρ and s at the bcp
are given in atomic units. Atoms are portrayed as spheres with volumes proportional to their source
percentage contributions to ρ and s values at the bcp. Colour codes: (a) blue or yellow whether
atoms represent positive or negative sources for ρ at the bcp; (b) and (c) green or red whether
atoms represent positive (α effect) or negative (β effect) sources for s at bcp. Note, instead, that in
(b) and (c) the sign of percentage atomic sources is positive (negative) when the atom concurs
(opposes) to the s value at the bcp
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much larger in magnitude than the s value at rp, but not as large as the individual
atomic contributions because of the opposing contributions from their covalently
bonded atoms. At last, while the SF contributions from the H atoms of the terminal
CH2

• group to the C11–H13 bcp density markedly differ between each other, and
with that from H13 being almost 14 times as large as the one from H12, this is not
at all the same for the corresponding SFS contributions. The latter are more com-
parable in magnitude, as that from H13 is only three times as large as that from H12
atom, which is not directly related to the bcp taken as rp. It is clear, from such data,
that the spin density at C–H bcp originates from much less local sources than it is
for its corresponding electron density.

A quite different scenario characterises the spin density reconstruction at the
NBCC located above the plane of the terminal CH2

• group (Fig. 5.4a). The large
s value at this rp is essentially determined by the C carrying the unpaired electron,
SFS% (C11) = 113.4, the role of its linked H and C atoms being simply that to
neutralize the slight α-effect excess arising from the C11 atom. It emerges that the
SFS% values are able to neatly distinguish the case where the rp characterizes a
covalent bonding interaction, with respect to the case where the rp is associated to a
NBCC largely due to a fairly localised unpaired electron (see the spin atomic
populations reported earlier for such systems). Spin information transmits indeed
quite differently in the two cases, if judged from the relative SFS% values.
However, the order of magnitude of the overall SFS contributions from the two H of
the terminal CH2

• group or the order of magnitude of the cumulative SFS contri-
bution from the β-CH2 group, are similar for the two selected reference points.

Fig. 5.4 n-butyl radical: (a) atomic SFS percentages at the (3, +1) −∇2ρ critical point, located
above the plane of the terminal CH2

• group, highlighted as a black dot in the upper left
ball-and-stick scheme and associated to non-bonded charge concentrations largely due to the
unpaired electron. In (b) the SFS percentages only due to the magnetic orbital density are
displayed. The values of ρ and s at the reference point bcp are shown. Colour codes for atoms and
signs of atomic SFS percentages bear the same meaning and are defined analogously to Fig. 5.3
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The large discrepancy on the SFs percentages arises from the three order of mag-
nitude larger s value at NBCC.

In Ref. [94] we showed that interpretation of SFS values may be largely
enhanced when they are decomposed into a magnetic and into a reaction or re-
laxation contribution, the former being due to the magnetic natural orbital(s)
density and the second one to the remaining natural orbitals density. Magnetic
orbital(s) are easily obtained through diagonalization of the first order density
matrix and identified by picking up the orbital(s) with occupations equal to or very
close to 1. Technical details and a full discussion of the mentioned decomposition
scheme are reported in Ref. [94] and in its supplementary information.
Interestingly, the magnetic contribution, though being due only to an α-density,
does not always lead to an α-effect, but may also result in an overall decrease of the
spin density at a given rp. Likewise, the reaction contribution may either concur or
counteract the magnetic one in determining the SDD at the rp. For n-alkyl radicals,
the situation is very simple as there is only one magnetic natural orbital, whose
effect is made visible in Figs. 5.3c and 5.4b for the case of n-butyl radical and for
the two examined rps. The role of the reaction contribution may be assessed from
the difference of (b) and (c) SFS values in Fig. 5.3 and, analogously, of (a) and
(b) SFS values in Fig. 5.4. One observes that the magnetic orbital density plays the
major role and that the remaining relaxation density moderately (from 5 to 20 % in
magnitude) concur to the effects produced by the former density, for both rps.
These effects may be either of α or of β nature for both densities, but always agree
in their nature in this case, at least for the more significant contributions.

5.5 Concluding Remarks

In this chapter, we reviewed two recent developments of the Source Function
analysis and illustrated a couple of novel applications thereof, which emphasize the
ability of this descriptor to retrieve interesting and non trivial chemical insights.

We first showed that, analogously to what already reported for planar mono- and
polycyclic aromatic hydrocarbons, the Source Function tool is able to detect subtle
electron delocalization effects also in the non-planar and less conventional hydro-
carbons, like the homotropylium cation and the 1,6-methano[10]annulene, where
the usual σ/π separation does no longer apply. The analysis of such systems has
been made by dissecting the electron density values at bond critical points in terms
of Source Function contributions from the bonded atoms, their next neighbouring
carbon atoms and the other carbon atoms in the system and by comparing the nature
of such dissection with that obtained for more conventional, π-conjugated, planar
reference compounds. Clear, quantitative footprints of through space and through
bond homoconjugation mechanisms have been so identified for the homotropylium
cation, along with similarities and differences, relative to benzene, in the way
electron conjugation realizes in the unsaturated moiety of its C atom linkage. In the
case of the 1,6-methano[10]annulene, comparison with source contributions
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patterns in naphthalene and homotropylium cation, has enabled us to disentangle
the signatures of the ‘classical’ electron delocalization scheme, involving circula-
tion of π electrons along the 10MR hydrocarbon chain, from those due to the
homoconjugative mechanism, which takes place essentially through space and
largely involves the two allylic, short bridge bonds.

Both discussed cases confirm that the Source Function picture nicely complies
with that provided by more sophisticated instruments based on the pair density, like
the delocalization indices. But the Source Function has, possibly, an advantage as it
may also reveal chemically relevant asymmetries in the electron delocalization
processes. It has been shown how these asymmetries disclose the non equivalence
of the delocalization effects between two atoms directly or indirectly connected
along a sequence of bonds or the different magnitudes of such effects when moving
perpendicularly to a bond and in opposite directions relative to the bond critical
point.

Secondly, we briefly reviewed the recent extension of the Source Function to the
electron spin density. Similarly to the case of the electron density, such develop-
ment enables one to see the electron spin density at any point in the space in terms
of source contributions from the remaining points. The influence of each atom or
group of atoms in determining the spin polarization at any point can be then
quantified by integrating these local sources within atomic basins. It becomes so
possible to evaluate whether an atom or group of atoms concurs with or counteracts
the paramagnetic centre(s) in determining the local valence spin polarization at a
given point and whether it does so in a relevant or negligible measure. At the same
time, competing or cooperating spin propagation mechanisms can be disentangled.
Decomposition of source function contributions into a magnetic and into a relax-
ation term adds further precious chemical insight and largely facilitates their
interpretation. The magnetic contribution, though associated to an α-density only,
may still result in both an overall increase or decrease of the spin density at a given
point. The relaxation contribution may then either concur or counteract the effect of
the magnetic term.

We have concluded our chapter by analysing whether the spin density properties
are as transferable as are the electron density properties in a series of n-alkyl
radicals. We have convincingly shown that this is actually the case, but also that the
transferability of the two fields realizes in a quite distinct manner and one that
strongly depends on where the field is reconstructed through the Source Function
contributions. For instance, when the electron density or its spin counterpart are
reconstructed at the C–H bcp of a terminal CH2

• group one finds that the electron
density at such point is largely determined by the atoms of the terminal group, and
with the remaining atoms providing only a small, constant contribution, regardless
the length of the chain. Instead, in the case of the spin density, the overall α
contribution from the terminal CH2

• group is more than compensated for by an
overall β and constant contribution arising from the remaining part of the molecule.
Spin transferability at the bcp is thus ensured through a combination of opposing α
and β contributions of similar magnitude. Quite different is the case for the spin
density reconstruction at the non bonded charge concentration located above the
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plane of the terminal CH2
• group, where the very large spin density value is

essentially determined by the carbon carrying the unpaired electron and where the
role of its linked hydrogen and carbon atoms is just that of neutralize the slight α-
effect excess arising from the radicalic carbon.

In general, joint analyses of the spin and electron density source functions
provide interesting insights, as the different way the two scalar fields dilute and
concentrate in the space lead to reconstructions of these fields which may be totally
different. For example, this is the case of the points associated to the lone pair
electrons in water triplet [94] or the just mentioned case of the spin density at the
terminal C–H bcp in n-alkyl radicals.

Being defined in term of observables, the Source Function tool is amenable to
experimental determination. This is already a standard practice for the electron
density. The latter has become almost routinely accessible, even from microcrystals,
due to the impressive advance of the photon source technology and the develop-
ments of modern multipole methods (including the availability of pole libraries) [9].
The electron spin density is, however, also becoming more and more within reach,
experimentally [96]. The ongoing possibility of an unbiased comparison of ab initio
and experimental (polarized neutrons plus X-rays) spin densities is of a paramount
importance for the molecular-scale design of novel magnetic materials. Electron
spin densities are known to be very sensitive to the adopted theoretical framework
[94], while several technical limitations arise when experimental results are con-
sidered [9]. The Source Function could be a valuable tool in such regard. It shows
how the electron spin density is determined in the various molecular regions and,
therefore, it could also neatly disclose the cause behind an observed, significant spin
density difference or behind a particular spin density sensitivity to computational
and methodological parameters.
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Chapter 6
Emergent Scalar and Vector Fields
in Quantum Chemical Topology

A. Martín Pendás, E. Francisco, A. Gallo Bueno, J.M. Guevara Vela
and A. Costales

Abstract Several potentially useful scalar and vector fields that have been scarcely
or even never used to date in Quantum Chemical Topology are defined, computed,
and analyzed for a few small molecules. The fields include the Ehrenfest force
derived from the second order density matrix, which does not show many of the
spurious features encountered when it is computed from the electronic stress tensor,
the exchange-correlation (xc) potential, the potential acting on one electron in a
molecule, and the additive and effective energy densities. The basic features of the
topology of some of these fields are also explored and discussed, paying attention to
their possible future interest.

6.1 Introduction

The use of topological approaches in the theory of chemical bonding has become a
standard procedure to gain insight on the nature of quantummechanical binding in all
sort of systems, from small molecules to biomolecules or even materials [16, 28, 29].
An outstanding advantage of these techniques over other procedures lies in their
invariance under orbital transformations. Being based on quantities derived from real
or momentum space density matrices, their physical or chemical interpretation exists
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per se, and does not rely on method-dependent objects, e.g. orbitals. Moreover,
topologically derived quantities may be compared smoothly across different levels of
theory and, in favourable cases, like when using the electron density as a basic
variable, with experiment. Today, it is common to gather all these methods under the
umbrella of Quantum Chemical Topology (QCT).

Despite the success of these techniques over the years, and the torrent of new
information about bonding they have provided, it is our opinion that the vast
majority of standard QCT procedures are based on electron probability measures
and not on energetically derived properties. In this sense, the electron density itself
and its various derivatives (its gradient field or its laplacian), the localization and
delocalization indices of the Quantum Theory of Atoms in Molecules (QTAIM) [1],
or the source function defined by Bader and Gatti [2] are clear examples. The
electron localization function (ELF) of Becke and Edgecombe [3], although
reformulated in terms of kinetic energy density excesses by Savin and coworkers
[33], was originally introduced in terms of the same spin Fermi hole curvature.
Similarly, the restricted space partitioning techniques introduced by Kohout
[19–23] leading, for instance, to the Electron Localizability Indicator (ELI), the
maximum probability domains (MPD) of Savin and coworkers [6], or the electron
distribution functions (EDFs) of Francisco et al. [10, 11, 13, 25] make wide use of
first or higher order electron number densities.

In this arena, energetic properties are usually derived by integrating densities
over real space domains, and not by examining appropriate scalar or vector fields.
Exceptions to this rule exist: the localized orbital locator (LOL) focuses on the
topological properties of a kinetic energy density [34], and the QTAIM virial (V)
and energy density (H) fields are commonly examined at critical points (CPs) of
the density. The latter are however computed from the density and its derivatives
through the QTAIM’s local virial theorem [1], that depends on an arbitrary choice
of the kinetic stress tensor [9].

We thus believe that there is still plenty of room to introduce new, or scarcely
known, scalar and vector fields in QCT characterized by a solid energetic meaning.
We review in this Chapter some possibilities, paying attention to the links that may
exist among them as well as with other widely used descriptors. As it will become
clear, we will focus on quantities that depend on the two-particle density q2 r1; r2ð Þ.
This dependence gives rise to implementation and computational difficulties. On the
one hand, only wave function methods provide well-defined second order density
matrices. This, in principle, leaves density functional theory (DFT) aside, although
approximate results obtained with DFT pseudo wave functions have been found to
be qualitatively similar to those extracted from costly correlated alternatives.
Moreover, the two-particle density is not part of the standard output of conventional
electronic structure packages. Given the usefulness that q2 is showing in chemical
bonding in the last years [12, 31], we firmly think that this situation should change.
On the other hand, quantities based on the pair density intrinsically demand more
computing power than those based on the plain electron density. Again, we think
that this fact should not preclude their use if they are found to provide unique
insights into bonding.
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We will consider four scalar and two vector fields that we are starting to explore
as potentially useful candidates in QCT studies. The exchange-correlation potential
Vxc rð Þ, which determines the covalent interaction energy density among electrons at
point r and the rest of the electrons of the system, the potential acting on an electron
in a molecule as defined by Zhao and Yang [7, 8] (PAEM), which determines the
interaction of an electron belonging to a molecule and the remaining electrons and
nuclei, and the additive and effective energy densities Eadd rð Þ;Eeff rð Þ, that provide
additive (counting half the interaction of an electron with the rest of the system’s
particles) and effective (counting them all) energetic contributions of a volume
element located at r to the total energy. All these scalar fields may be subjected to
the standard QCT procedure, so their gradients will induce topological partitions of
the physical space, providing new sets of critical points, inter-basin surfaces, etc.
The vector fields explored are the PAEM force, defined as minus the PAEM gra-
dient, and the Ehrenfest force field, i.e. the force density acting on electrons at r due
to the remaining particles comprising the molecule. Vector fields can also be used
to directly determine partitions of the space, as shown in the case of the Ehrenfest
field [27].

Since our aim here is presenting the overall features of these quantities, we will
focus on their basic properties, showing their basic topological portraits in a small
set of archetypal molecules. We will stress the similarities and differences with
other known fields, as well as their potential usefulness.

The rest of the Chapter is organized as follows: first we will briefly define all the
quantities we will discuss, leaving some technical details for an appendix. Then we
will present the behaviour of the scalar and vector fields in a couple of systems,
computed at several levels of theory, discussing their similarities and differences.
We will end with some conclusions and prospects.

6.2 On QCT Fields Depending on the Pair Density

As shown in the introduction, we have decided to focus in this contribution on some
fields that depend on the second order density, q2 r1; r2ð Þ. This is an essential
ingredient of the molecular energy, entering the electron-electron repulsion. Any
total energy index that does not use it relies either on (i) some approximate density
functional, or (ii) on a local theorem that allows for a mapping of the two body
complexity of the electron-electron interactions onto one body contributions (like the
local virial theorem). Since the quantities we will manipulate are related to total
energy (or force) components, we will easily recognize in their definitions a set of
well known components of the energy: electron-nucleus attraction, electron-electron
repulsion, nucleus-nucleus repulsion, and kinetic energy (densities).

In order to ease the comparison among the different quantities that we will
introduce, it is instructive to recall two important auxiliary fields that will appear in
several of our discussions. The first is the molecular electrostatic potential (MEP),
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Vmep rð Þ, widely used in computational chemistry and the theory of chemical
reactivity [32]:

Vmep rð Þ ¼
X
B

ZB

jr� RBj �
Z

q r2ð Þ
jr� r2j dr2; ð6:1Þ

where B runs over all the nuclei of the molecule, and ZB is the nuclear charge of a
nucleus at RB. It measures the potential energy that a positive test unit charge (not
belonging to the molecular system) gains on being transported from infinity to point
r when all geometric and electronic relaxation is quenched. Minus its gradient, the
electric field derived from it,

EðrÞ ¼ �$Vmep rð Þ ¼
X
B

ZB r� RBð Þ
jr� RBj3

�
Z

q r2ð Þ r� r2ð Þ
jr� r2j3

dr2; ð6:2Þ

is equal to the force acting on our test charge at r.
We will now briefly consider basic notions about the fields we will use, leaving

for the Appendix details on the computation of their gradients and/or Hessians
which are needed to obtain their topology.

6.2.1 The Exchange-Correlation Potential

The diagonal second-order reduced density matrix (2-RDM) of a molecule,
q2 r1; r2ð Þ, given by (a summation over the spin variables of all the electrons is
implicitly assumed from now on),

q2 r1; r2ð Þ ¼ N N � 1ð Þ
Z

dr3; . . .; drNWHW; ð6:3Þ

may always be written in the form

q2 r1; r2ð Þ ¼ q r1ð Þq r2ð Þ � qxc r1; r2ð Þ; ð6:4Þ

where qC r1; r2ð Þ ¼ q r1ð Þq r2ð Þ is the Coulombic or independent particle part of the
pair density and qxc r1; r2ð Þ defines the exchange-correlation (xc) density. The
delocalization index between a pair of real space atoms or fragments A and B of a
molecule, dAB, which is usually taken as the analogous within QCT to the classical
covalent bond order used in the molecular orbital paradigm, results from averaging
the electrons 1 and 2 of qxc r1; r2ð Þ over the domains associated to A and B,
respectively (XA;XB). Its energetic counterpart, given by an analogous integration
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of �jr1 � r2j�1qxc r1; r2ð Þ, is an essential ingredient of the interacting quantum
atoms approach (IQA) [5, 15, 26], and has repeatedly been shown to provide a
measure of the covalent interaction energy between A and B [14, 17].

Hence, the scalar field Vxc rð Þ, defined by

VxcðrÞ ¼
Z

qxc r; r2ð Þ
jr� r2j dr2; ð6:5Þ

and named the xc potential in what follows provides the covalent energy density at
r due to the interaction of the electrons lying in volumen element dr and the rest of
the system. Given that it has been shown that the exchange-correlation energy
between two QTAIM domains is clearly linked to the appearance of bond critical
points (BCPs) in the q field [5, 26], this fact establishing for the first time a direct
connection between bond paths and energetic quantities, we expect that the
topology of Vxc rð Þ may shed more light on this important problem. To that end, it is
also useful to recall that

R
qxc r; r2ð Þdr2 ¼ q rð Þ, so our exchange-correlation

potential provides, in a way, a distance weighted density measured in a covalent
energy scale.

6.2.2 The Ehrenfest Force

The total potential energy of a molecule, excluding the internuclear repulsion,

V ¼ �
XN
i

X
B

ZB

jri � RBj þ
XN
i[ j

1
jri � rjj ; ð6:6Þ

yields the following expression for �$1V, the instantaneous force acting over
electron 1,

�$1V ¼ �
X
B

ZB r1 � RBð Þ
jr1 � RBj3

þ
X
i[ 1

r1 � rið Þ
jr1 � rij3

: ð6:7Þ

Averaging �$1V over the motions (i.e. positions) of electrons 2; 3; . . .;N gives

Fe r1ð Þ ¼ N
Z

dr2. . .drNWH �$1Vð ÞW: ð6:8Þ

Fe rð Þdr is the force acting over the electrons within the infinitesimal volume
dr. It is known as the Ehrenfest force [1], and has been often used within the
QTAIM to develop force concepts in chemical bonding studies [18, 30].

The Ehrenfest force owes its popularity to a deep theoretical link with one-body
quantities through the electronic stress tensor [1], Fe rð Þ ¼ �r � r rð Þ. The stress
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tensor r may be obtained from the non-diagonal first order density q r0; rð Þ. We have
shown, however, that severe errors [27] may be introduced when gaussian basis sets
are used to obtain Fe as a divergence, so direct use of our previous expressions
depending on the 2-RDM may alleviate this problem. Be it as it may, there have
been scarce studies of the structure and topology of the Ehrenfest field.

Since the probability of finding one and only one of the electrons of the system
in volume dr is q rð Þdr, Fe rð Þ=q rð Þ is a vector field directly comparable with E,
Eq. 6.2. Thus, substituting Eq. 6.7 in Eq. 6.8 and taking into account that the N � 1
electrons with i[ 1 are equivalent to electron 2 gives

Fe r1ð Þ ¼ �q r1ð Þ
X
B

ZB r1 � RBð Þ
jr1 � RBj3

þ
Z

dr2
q2 r1; r2ð Þ
jr1 � r2j3

r1 � r2ð Þ; ð6:9Þ

and using Eq. 6.4

Fe rð Þ ¼ q rð Þ$Vmep rð ÞþFxc rð Þ ð6:10Þ

Fe rð Þ=q rð Þ ¼ �E rð Þþ Fxc rð Þ
q rð Þ ; where ð6:11Þ

FxcðrÞ ¼ �
Z

dr2
qxc r; r2ð Þ
jr� r2j3

r� r2ð Þ: ð6:12Þ

Equations 6.10 and 6.11 contain most of the physics of the problem. In the first
place, Fe behaves as �E, since the first is a force over electrons and the second over
positive charges. In the second place, the Ehrenfest force is corrected by a term that
might be called the xc force, Fxc rð Þ. The exchange part of this term, as in the case of
the exchange energy, serves mainly to elliminate the self-interaction force, i.e. to
take properly into account that an electron interacts with the remaining N � 1
electrons and not with N electrons. A more direct form to understand this is the
following. Given that

R
dr2qxc r; r2ð Þ ¼ q rð Þ, Eq. 6.12 elliminates, overall, the

electron field generated by a single electron. In other words, we add to �E rð Þ a
term equal to

Fxc rð Þ
q rð Þ ¼ � 1

q rð Þ
Z

dr2
qxc r; r2ð Þ
jr� r2j3

r� r2ð Þ � � r� r2ð Þ
jr� r2j3

ð6:13Þ

due to a positive charge.
Notice that Eq. 6.12 is not the gradient of Eq. 6.5, contrarily to what we showed

between the MEP and the molecular electrostatic field. This is due to the absence of
a Hellmann-Feynman-like theorem for the electronic subsystem or, in other words,
to the explicit dependence of qxc r; r2ð Þ on r. This has been the source of some
confusion in the past. Similar comments apply to the other quantities that follow.
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The Ehrenfest field has already been examined in some test systems, but its
relation to E has been obscure due to the computational problems commented
above.

6.2.3 The Potential Acting on an Electron in a Molecule

Zhao and Yang [7, 8] define the potential acting on an electron in a molecule
(PAEM) as the interaction energy of a local electron that belongs to the molecule
(say electron 1) with all the nuclei and the remaining electrons. The instantaneous
Coulomb interaction energy of the first electron at r1 with the rest of particles is

V1 ¼ �
X
B

ZB

jr1 � RBj þ
XN
i[ 1

1
jr1 � rij : ð6:14Þ

Averaging V r1ð Þ over the positions of all of the remaining electrons in the
system gives

V 0 rð Þ ¼
Z

dr2. . .drNWHV1W; ð6:15Þ

which, in terms of q rð Þ and q2 r; r2ð Þ, reduces to

V 0 rð Þ ¼ � q rð Þ
N

X
B

ZB

jr� RBj þ
1
N

Z
q2 r; r2ð Þ
jr� r2j dr2: ð6:16Þ

Since q rð Þ=N measures the probability of finding the first electron at r and
N N � 1ð Þ½ ��1q2 r; r2ð Þ the probability of finding the first electron at r while the
second electron is at r2, the potential acting on an electron at r is expressed as

VPAEM rð Þ ¼ V 0 rð Þ
q rð Þ=N ¼ �

X
B

ZB

jr� RBj þ
1

q rð Þ
Z

q2 r; r2ð Þ
jr� r2j dr2: ð6:17Þ

Using again Eq. 6.4 we have

VPAEM rð Þ ¼ �Vmep rð Þ � Vxc rð Þ
q rð Þ : ð6:18Þ

As pointed out by Zhao et al., the potentials �Vmep rð Þ and VPAEM rð Þ display
essential differences. First, VPAEM rð Þ describes the interaction energy of an internal
electron with the rest of the molecule, while �Vmep rð Þ represents the interaction
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energy of an external unit charge with the whole molecule. Second, VPAEM rð Þ
contains the xc interaction energy of the target electron with all the other electrons,
a quantum effect, while there is no such xc effect in �Vmep rð Þ. Third and finally, the
second term in Eq. 6.18 also includes the self-interaction of the considered electron
with itself that is canceled by that which is contained in the electronic part of
Vmep rð Þ.

Zhao and Yang define the force acting on one electron in a molecule as

FPAEM rð Þ ¼ �$VPAEM rð Þ ¼ $Vmep rð Þþ$
Vxc rð Þ
q rð Þ

� �
: ð6:19Þ

The field q rð ÞFPAEM rð Þ � f PAEM rð Þ is not equal to the Ehrenfest force given by
Eq. 6.10 due to the same Hellmann-Feynman-like problem already put forward, but
is closely related to it. A relevant difference between Fe and FPAEM is that, while
FPAEM rð Þ derives from a potential (VPAEM rð Þ), Fe rð Þ does not. From a physical
point of view, the Ehrenfest force is computed by averaging the instantaneos force
sufferered by one of the electrons over the positions of the remaining electrons,
while to obtain FPAEM rð Þ Eq. 6.19 is applied after averaging the potential
(Eq. 6.15). For comparative purposes with Vmep rð Þ and FeðrÞ, respectively, the
PAEM scalar and vector fields that we will actually compute are �VPAEM rð Þ and
f PAEM rð Þ.

6.2.4 The Additive and Effective Energy Densities

Finally, we will introduce kinetic energy densities to define new scalar fields
conveying total energy information. These, as far as we know, have not been used
before within QCT, and stem from local forms of IQA global quantities, the atomic
(or group) additive and effective energies. The additive energy density (AED) is
defined as

EaddðrÞ ¼ GðrÞ �
X
B

ZBqðrÞ
jr� RBj þ

1
2

Z
R3

q2ðr1; r2Þ
r12

dr2 þ 1
2

X
B6¼A

ZAZB

RAB
dðr� RAÞ;

ð6:20Þ

where G rð Þ ¼ �h2

2m $ � $0ð Þq r; r0ð Þjr¼r0 is the Lagrangian kinetic energy density con-
structed from q r; r0ð Þ, the non-diagonal first-order density matrix, and R3 as a
subindex in the integral means integration over all the space. The integration of
Eadd rð Þ over a region XA containing a single nucleus ZA at RA gives
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Z
XA

EaddðrÞdr¼ EaddðXAÞ ¼
Z
XA

GðrÞ �
X
B

ZB
Z
XA

qðrÞ
jr� RBj dr

þ 1
2

Z
R3

dr2

Z
XA

q2ðr1; r2Þ
r12

dr1 þ 1
2

X
B 6¼A

ZAZB

RAB
; ð6:21Þ

where Eadd XAð Þ is the additive energy of region XA within the IQA formalism [5].
The total energy of the system is recovered simply from E ¼ P

A E
add XAð Þ, i.e. by

integrating Eadd rð Þ over all space. In other words, Eadd rð Þdr represents the contri-
bution of the volume element dr at r to the total energy of the molecule.

The additive energy is constructed to mimic the standard energy density used in
the QTAIM, Ee rð Þ, this time without the constraints imposed by the need of the
latter to satisfy the virial theorem [1]. It is generally assumed that EeðrÞ ¼
GðrÞþVðrÞ; where VðrÞ is the local virial field, so Ee rð Þ ¼ �K rð Þ, the
Hamiltonian kinetic energy density.

Closely related to the additive density is the effective energy density, EED, given
by Eq. 6.20 where the 1=2 factors that elliminate double counting in the electron–
electron and nucleus–nucleus terms have not been taken into account:

EeffðrÞ ¼ GðrÞ �
X
B

ZBqðrÞ
jr� RBj þ

Z
R3

q2ðr; r2Þ
jr� r2j dr2 þ

X
B 6¼A

ZAZB

RAB
dðr� RAÞ ð6:22Þ

The EED is a measure of the local energy density of volume element dr, and
plays a role similar to the orbital energy of an electron described by a given
spinorbital. Actually, Eeff rð Þ�q rð Þ is a local orbital energy. It is also clear that EED
integrated over an atomic (or fragment) domain will lead to the IQA group effective
energy, Eeff XAð Þ. Differences in atomic group effective energies are key to
understand chemical changes, so we expect that changes in local EEDs will give
information about local energy reorganizations in chemical processes.

Remembering the definition of the MEP, Eq. 6.1, and using Eq. 6.4, Eeff rð Þ
transforms to

Eeff r1ð Þ ¼ G r1ð Þ � Vmep r1ð Þq r1ð Þ � Vxc r1ð Þþ
X
B6¼A

ZAZB

RAB
d r1 � RAð Þ: ð6:23Þ

As we can see from Eq. 6.18, q rð ÞVPAEM rð Þ ¼ �Vmep rð Þq rð ÞþVxc rð Þ, so that
Eeff rð Þ can be equally written as

Eeff rð Þ ¼ G rð Þþ q rð ÞVPAEM rð Þþ
X
B6¼A

ZAZB

RAB
d r� RAð Þ: ð6:24Þ
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The quantity
R
dr q rð ÞVPAEM rð Þ represents the total potential energy of the

electrons in the volume element dr.

6.3 Computational Details and Studied Systems

We will now turn to show the general properties of the scalar and vector fields
presented in the last Section. Our purpose here is not that of systematizing, but just
picking some very simple systems where we will compare the fields with each other
when relevant, or show their shape and basic topology.

All the scalar and vector fields defined in Sect. 6.2, as well as their gradients and
Hessians, were computed with our PROMOLDEN code [24]. All the electronic
structure calculations were performed with a domestic version of the GAMESS
code [35].

We will start considering a simple correlated description of the H2 molecule,
where the basic features of the fields will be presented. Then we will show to what
extent these features are general by examining the ethylene molecule at the Hartree-
Fock level.

6.4 Results and Discussion

6.4.1 The Dihydrogen Molecule

We will briefly discuss here the basic structure of the fields in the prototype H2

molecule, computed at a simple CAS[2,2]//6-311G level. Figure 6.1 shows a
comparison of the density, MEP, PAEM and the xc potentials along the internuclear
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axis. All these scalars show extrema (which may rise to infinity) at the nuclear
positions, so we may topologically consider these as attractors of their gradient
fields. We should notice that, as well known, the position of the attractors in the
density, and in this case also in the xc potential, do not exactly coincide with the
nuclear positions in the case of H atoms whenever finite gaussian basis sets are
used. This are artifacts of the modeling.

Several interesting facts stand out. First, it is rather interesting that q and Vxc are
not only alike, but strikingly similar. Although the relation between the exchange-
correlation density and the density has already been pointed out, the role of the r�1

12
weight seems small. This is a non-trivial result that we have found pretty general.
Vxc rð Þ, a covalent energy density, is close to quantitatively equal to the density. As
we will show below, its critical points are also extremely close to those of the
density. Although the validity of these assertions demands further work, we think
that these results reinforce the energetic link between the BCPs of the QTAIM and
the exchange-correlation channels that was found in our previous work on the
interatomic exchange-correlation energies [5, 26].

We must also comment on the (di)similarities between the MEP and the PAEM
potentials. As expected the impact of considering the potential felt by an electron of
the molecule, or that felt by a test charge is considerable in a two electron system. In
both cases, the electron-nucleus interaction dominates, being counteracted by
electron-electron contributions of two and one electrons, respectively, as shown in
Eqs. 6.1 and 6.17. This leads to similar portraits but larger PAEM values in this
system.

Figure 6.2 contains a visual summary of the vector fields along the internuclear
axis. In the first place, all of these fields lead to topologically equivalent gradient
portraits. Nuclei are attractors, and the only other critical point is the standard
(3, −1) BCP of the density, at the midpoint along the nuclear axis. Therefore, all the
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fields provide the same partition of the space. Secondly, the density scaled gradient
of the PAEM and the Ehrenfest force are almost coincident. Their difference is due
to the Hellmann-Feynman imbalance commented before, very small in this system.
This means that although strictly speaking Fe is not a gradient field, the PAEM
potential may be used as an approximate potential for it. Thirdly, both the gradients
of the density and the xc potential are again extremely similar.

Finally, Fig. 6.3 depicts the additive and effective energy densities together with
the Hamiltonian kinetic energy density along the internuclear axis. Although not
clear on the figure scale, the three quantities change sign at large distances. Close
enough to the nuclei the three energies are stabilizing, and it is clear that the
internuclear region boosts binding, since it is in this part where the energy densities
are clearly more stabilizing than what we would get from the superposition of free
hydrogen atoms. Notice that both the effective energy and �K rð Þ integrate to the
same total electronic molecular energy.

6.4.2 The Ethylene Molecule

In this subsection we will show that the above results are of quite general validity.
We have chosen the C2H4 system, computed at the HF//TZV(3d,p)++ level.
Figure 6.4 contains the density as well as the MEP, xc, and PAEM potentials along
the C–C and C–H internuclear axes. Our previous conclusions can be repeated
almost exactly here, stressing the similarity between the xc potential and the
electron density. The gradient fields show again the great similarity between the
Ehrenfest and PAEM forces.

We also show in Fig. 6.5 the gradient field portraits of just two of our fields: the
xc gradient and the Ehrenfest field. As it can be seen, both display the same
topology, with six attractors at nuclear positions and (3, −1) critical points along the
C–C and C–H lines. Both provide an atomic-like partition of the space. Moreover,
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the position of the C–H BCPs (the C–C one is determined by symmetry) hardly
varies upon changing the field. This can better be grasped from Table 6.1, where the
bonded radius of the C atom is displayed for our fields.

It is perhaps more interesting to examine the effective and additive energy
densities. Figure 6.6 shows them along the C–C and C–H lines together with K rð Þ
and r2q rð Þ. First, we should notice that these densities have laplacian-like
behavior. This is here a much more clear feature than in the H2 case, where only one
shell exists. It is also notorious that the qualitative behavior of K follows that of
Eadd. The latter shows bonded energy concentrations similar to the bonded charge
concentrations of the laplacian field. As before, the generality of these results is to
be determined in future works. If confirmed, another energetic-like link, this time
between an energy density and the laplacian of the electron density would have
been uncovered. Figure 6.7 shows the −1.5 and −0.5 a.u. isosurfaces of Eadd and
r2q in ethylene. Notice that the number and type of the critical points in the
valence region coincides for the two fields.
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Fig. 6.5 xc (top), and
Ehrenfest (bottom) gradient
portraits for the C2H4

molecule in the molecular
plane

Table 6.1 Carbon bonded
radii along the C–H line for
different fields in the C2H4

molecule

Field C radius Vector field C radius

$q 1.291 �q$VPAEM 1.295

$Vmep 1.297 $Vxc 1.278

FH
e

1.326 FeðrÞ 1.293

All the nuclear CPs except the 3, −3 CPs of the hydrogen atoms
corresponding to $qðrÞ and $VxcðrÞ coincide with the nuclear
positions. The latter are displaced 0.033 and 0.018 bohr towards
the C nucleus, respectively. FeðrÞH and FeðrÞ are the Ehrenfest
force derived from the quantum stress tensor and Eq. 6.10,
respectively. All distances in a.u
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6.5 Summary and Conclusions

We have briefly reviewed here some scalar and vector fields that might play a
significant role in future developments of Quantum Chemical Topology. In this
contribution we have focused on some scalar densities and forces that depend on
the pair density, thus delivering direct information on electron-electron interactions.
Several interesting conclusions have emerged. On the one hand, we have shown
that the gradient of the potential acting on an electron in a molecule (PAEM)
defined by Zhao and Yang is strinkingly similar to the Ehrenfest force. This means
that the absence of a Hellmann-Feynman link between both does not affect quali-
tatively their shape. Another potentially important discovery is the semi-
quantitative similarity between the exchange-correlation potential and the elec-
tron density. We believe that this reinforces the link between covalency and
topology, paving the way to future studies that definitively link energetic properties
to the electron density topology. Our other energetic scalars, the additive and
effective energy densities, have also shown intriguing connections to several
well-known fields. The former, for instance, integrates to the total molecular
energy, and is locally similar to minus the Hamiltonian kinetic energy density, that
does also integrate to E at stationary points on potential energy surfaces. As the
exchange-correlation potential mimics the density from the energetic side, the
additive energy density mimmics the Laplacian. Future works will determine
the role that these functions may play in chemical bonding theory.
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Appendix

Here, we give some details regarding the calculation of the different scalar and
vector fields defined in Sect. 6.2, as well as of their gradients and Hessians. In all of
the following expressions, $f rð Þ and $tf rð Þ represent the gradient of the scalar field
f rð Þ in row and column forms, respectively, $t$f rð Þ is the 3 × 3 array of the second
derivatives of f rð Þ, and $tf rð Þ$g rð Þ is the 3 × 3 array that results from the matrix
product of the column vector $tf rð Þ with the row vector $g rð Þ. All the integrals
involving the molecular orbitals (MOs) were evaluated using the McMurchie-
Davidson algorithm as implemented in the PROMOLDEN code.

The xc potential, qxc r1; r2ð Þ, can be written in terms of a set of m real MOs ui
(i ¼ 1; . . .;m) in the form

qxc r1; r2ð Þ ¼
Xm
p� q

Xm
r� s

kpq;rsup r1ð Þuq r1ð Þur r2ð Þus r2ð Þ; ð6:25Þ
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where the array λ is symmetric in the (pq) and (rs) pairs. To compact the notation,
we will collect the pair of indices p and q with p� q in a single index i, and the
product up rð Þuq rð Þ will be represented as /i rð Þ. Then

qxc r1; r2ð Þ ¼
X
i;j

kij/i r1ð Þ/j r2ð Þ: ð6:26Þ

Although it is not strictly necessary, it is convenient for our purposes to diag-
onalize λ and express qxc r1; r2ð Þ in the form

qxc r; r2ð Þ ¼
X
i

giGi rð ÞGi r2ð Þ; ð6:27Þ

where gi are the eigenvalues of λ,

Gi rð Þ ¼
X
j

dji/j rð Þ; ð6:28Þ

and d1i; d2i; . . .ð Þ � di is the ith eigenvector of λ. This is the usual way of proceed in
the PROMOLDEN program to facilitate the numerical evaluation of all the integrals
that appear within the Interacting Quantum Atoms (IQA) method. Substituting 6.27
into Eq. 6.5 we have

Vxc rð Þ ¼
X
i

giGi rð Þ
Z

dr2
Gi r2ð Þ
jr� r2j ¼

X
i

giGi rð ÞVGi rð Þ: ð6:29Þ

The gradient of Vxc rð Þ is

$Vxc rð Þ ¼
X
i

giGi rð Þ$VGi rð Þþ
X
i

giVGi rð Þ$Gi rð Þ ð6:30Þ

The three components of $Gi rð Þ can be obtained simply by deriving Eq. 6.28.
On the other hand, from the definition of VGi rð Þ in Eq. 6.29 we have

$VGi rð Þ ¼ �
Z

dr2
Gi r2ð Þ r� r2ð Þ

jr� r2j3
ð6:31Þ

From the definition of Fxc rð Þ in Eqs. 6.12 and 6.27 we also have

Fxc rð Þ ¼ �
X
i

giGi rð Þ
Z

dr2
Gi r2ð Þ r� r2ð Þ

jr� r2j3
¼

X
i

giGi rð Þ$VGi rð Þ; ð6:32Þ
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so that

$Vxc rð Þ ¼ Fxc rð Þþ
X
i

giVGi rð Þ$Gi rð Þ: ð6:33Þ

It is important to note that, according to the above equations, Fxc rð Þ 6¼ $Vxc rð Þ.
The Hessian of Vxc rð Þ is obtained by simply deriving Eq. 6.33:

$t$Vxc rð Þ ¼ Hxc rð Þþ
X
i

gi $
tGi rð Þ$VGi rð ÞþVGi rð Þ$t$Gi rð Þ½ �; ð6:34Þ

where Hxcð Þab� @Fxc;a=@b
� �

. From Eq. 6.32 one has

Hxc ¼
X
i

gi $
tVGi rð Þ$Gi rð ÞþGi rð Þ$t$VGi rð Þ½ �; with ð6:35Þ

$t$VGi rð Þ ¼
Z

dr2
Gi r2ð Þ
jr� r2j5

3 a� a2ð Þ b� b2ð Þ � dabjr� r2j2
h i

: ð6:36Þ

Regarding the Ehrenfest force, Fe rð Þ, calling Hð Þe;ab� He;ab ¼ @Fe;a=@b
� �

, one
easily obtains from Eq. 6.10

He rð Þ ¼ q rð Þ$t$Vmep rð Þþ$tVmep rð Þ$q rð ÞþHxc rð Þ ð6:37Þ

The exact relationship between Fe rð Þ and f PAEM rð Þ ¼ q rð ÞFPAEM rð Þ, obtained
by explicity computing the gradient $ Vxc=qð Þ that appears in Eq. 6.19, is

f PAEM rð Þ ¼ Fe rð Þ � Vxc rð Þ
q rð Þ $q rð Þþ

X
i

giVGi rð Þ$Gi rð Þ: ð6:38Þ

As a consequence of the last term in Eq. 6.38 the expression for HPAEM, defined
as HPAEMð Þab¼ @ f a;PAEM rð Þ=@b� �

is a little bit cumbersome:

HPAEM ¼ He � Vxc

q
$t$q� $tqð ÞFxc

q
þ Vxc

q2
$tq$q

� $tq
q

X
i

giVGi$Gi þ
X
i

gi $tGið Þ $VGið ÞþVGi$
t$Gi½ �:

ð6:39Þ

The gradient and Hessian of Eeff rð Þ, Eq. 6.23, are given by

$Eeff ¼ $G� q$Vmep � Vmep$q� $Vxc; ð6:40Þ
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$t$Eeff ¼ $t$G� q$t$Vmep � $tVmep$q� Vmep$
t$q

� $tq$Vmep � $t$Vxc:
ð6:41Þ

where $t$Vxc rð Þ is given by Eq. 6.34 The gradient and Hessian of Eadd rð Þ,
Eq. 6.20, are even more complicated:

$Eadd ¼ $G� q$Vnuc
mep � Vnuc

mep$q

� 1
2

q$V ele
mep þV ele

mep$qþFxc

h i
� 1
2

X
i

giVGi$Gi;
ð6:42Þ

$t$Eadd ¼ $t$G� q$t$Vnuc
mep � $tVnuc

mep$q� Vnuc
mep$

t$q� $tq$Vnuc
mep

� 1
2

Hxc þ q$t$Vele
mep þ$tVele

mep$qþV ele
mep$

t$qþ$tq$Vele
mep

h i
� 1
2

X
i

gi $
tGi$VGi þVGi$

t$Gi½ �:
ð6:43Þ

To shorten Eqs. 6.39–6.43, the dependence on r of every magnitude has been
avoided.
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Chapter 7
Topology of Quantum Mechanical
Current Density Vector Fields Induced
in a Molecule by Static Magnetic
Perturbations

P. Lazzeretti

Abstract It is shown that the quantum mechanical theory of static magnetic
properties can be reformulated in terms of electronic current densities induced by an
external magnetic field and permanent magnetic dipole moments at the nuclei.
Theoretical relationships are reported to evaluate magnetizability, nuclear magnetic
shielding and nuclear spin-spin coupling via the equations of classical electro-
magnetism, assuming that the current density is evaluated by quantum mechanical
methods. Emphasis is placed on the advantage of the proposed formulation, as an
alternative to procedures based on perturbation theory, as regards interpretation of
response allowing for the ideas of current density tensor and current susceptibility
vector. Visualisation of the electronic interaction with a magnetic field and
intramolecular perturbations, e.g., nuclear magnetic dipoles, is made possible via
current density maps, nuclear shielding density maps and plots of nuclear spin-spin
coupling density. Topological analysis of the quantum mechanical current density
in terms of Gomes stagnation graphs is shown to yield fundamental information for
understanding magnetic response. Examples are given for a few archetypal mole-
cules. A topological definition of delocalized electron currents is proposed.
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7.1 Introduction

The magnetic response of diamagnetic atoms, molecules and clusters, i.e., typical
quantum mechanical systems, can be effectively interpreted and visualized via the
laws of classical electrodynamics, allowing for functions of position r which
describe the electronic charge density qðrÞ, a scalar property, and the electronic
current density J(r), a vector field, evaluated by quantum mechanical methods.

An introduction to magnetic properties merging classical relationships with
quantum mechanical computational recipes constitutes a trait d’union between
classical and quantum mechanics rather interesting from the epistemological point
of view. In fact, qðrÞ and J(r) are subobservables [1], that is, expectation values of
corresponding quantum mechanical operators: if these expectation values are
known as functions in R

3, a number of molecular electromagnetic properties can be
evaluated without the explicit use of electronic wave functions.

The central aim of this chapter is to give a simple, self-contained approach to a
set of molecular magnetic properties in terms of induced current densities and
related property density maps, via classical relationships combined with quantum
mechanical definitions, and computational procedures. Some efforts are made to
document the effectiveness of such a theoretical treatment, in the attempt to
rationalize the phenomenology and to form a mental image of the mechanisms
underlying the electronic interaction with static magnetic perturbations.

Particular prominence is given to JBðrÞ and JmI ðrÞ, describing respectively the
current density induced in the electron cloud by a spatially uniform static magnetic
field B and by a permanent magnetic dipole mI at nucleus I. Emphasis is placed on
the practical advantages arising from the use of functions defined within the
3-dimensional space for interpreting experimental data, e.g., the parameters of
nuclear magnetic resonance (NMR) spectroscopy, by means of two-dimensional
maps and perspective representations of three-dimensional fields.

Besides, the mathematical properties of JB and JmI as dynamical systems
constitute an object of investigation per se quite appealing from the purely math-
ematical point of view. The structure of these vector fields can be studied by the
tools of differential topology. The phase portraits giving a geometric representation
of the trajectories in the vicinity of points at which the modulus of the current
density vanishes are particularly interesting.

Terminology and notation adopted in previous papers and reviews [2–5] are
used, allowing for standard tensor formalism, e.g., summation over repeated Greek
indices is implied according to the Einstein convention.
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7.1.1 The Conventional Approach of Perturbation Theory
to Magnetic Properties

The magnetic response of atoms and molecules to external static electromagnetic
fields and internal perturbations, e.g., nuclear magnetic dipoles and nuclear electric
quadrupoles, is usually rationalized within the framework of time-independent
Rayleigh-Schrödinger perturbation theory (RSPT) [6, 7] by introducing tensors of
increasing rank which describe intrinsic electronic properties. For instance, RSPT is
the basic tool used by Van Vleck to study second-rank nab magnetizability tensors
[8]. Ramsey implemented an analogous approach to the magnetic shielding [9–11]
rIab of nucleus I and to the electron-mediated interaction between the spins of two
nuclei I and J in a molecule via JIaJb nuclear spin-spin coupling [12, 13]. These
quantities are related to the spectral parameters of high resolution NMR spec-
troscopy [14]. The components of the chemical shift tensor 1Iab, which can in
principle be obtained experimentally for a molecular species in ordered phase, are
related to the absolute shielding tensor components rIab by the equation

1Iab ¼ ðrREFab � rIabÞ=ðdab � rREFab Þ � rREFab � rIab;

where rREFab is the absolute shieding of a reference compound and dab is the
Kronecker tensor.

Within the RSPT computational scheme for nondegenerate systems [7] the

eigenvalue problem Hð0Þjji ¼ Eð0Þ
j jji for the unperturbed Hamiltonian Hð0Þ is pre-

liminarly solved, determining the unperturbed energy levels Eð0Þ
j and wavefunctions

jji. All over this chapter the reference state eigenvector jai will assumed to be the
ground state of a diamagnetic atom, or a molecule within the Born-Oppenheimer
approximation. The wavefunction and the energy of the a-perturbed state correct to
a given order are obtained according to a well known scheme [6, 7], assuming a
complete set of unperturbed eigenstates. For instance,

Wa ¼ Wð0Þ
a þWð1Þ

a þ � � � ; ð7:1Þ

Wð1Þ
a ¼ � 1

�h

X
j 6¼a

jj i j Ĥð1Þ�� ��aD E
x�1

ja ; ð7:2Þ

W ð1Þ
a ¼ a Ĥð1Þ�� ��aD E

; ð7:3Þ

W ð2Þ
a ¼ a Ĥð2Þ�� ��aD E

� 1
�h

X
j6¼a

x�1
ja a Ĥð1Þ�� ��jD E

j Ĥð1Þ�� ��aD E
; ð7:4Þ
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where xja ¼ ðEð0Þ
j � Eð0Þ

a Þ=�h denotes the natural transition frequencies. Ĥð1Þ and

Ĥð2Þ are first- and second-order perturbing Hamiltonians.
RSPT formally yields a rapidly convergent series for the interaction energy of a

molecule in the presence of external perturbing fields and an easy-to-handle set of
computational recipes for related response properties up to fourth-order, which are
evaluated by differentiation with respect to perturbation parameters [3].
Nonetheless, the analysis of predictions arrived at by k-th order wavefunctions
WðkÞ

a ¼ WðkÞ
a ðx1; x2 . . .xnÞ depending on 6n space-spin coordinates x i � r i � si; i ¼

1; . . .n for an n-electron system [3, 15, 16], may be quite hard, if not impossible, in
the majority of cases. Propagator methods [17–20] and coupled cluster theory [21–
23] offer appealing alternatives to RSPT for accurate calculations in small and
medium-size molecules with ground states characterized by a dominant single
electronic configuration [24–27], but, in general, do not make simpler the inter-
pretation of results.

7.1.2 The Hydrodynamical Approach to Quantum
Mechanics

In 1926 Schrödinger proposed a definition of quantum-mechanical current density,
which satisfies a continuity equation formally identical to that of classical electro-
dynamics, in his fourth paper on quantization as an eigenvalue problem [28]. A few
months later, in the same year, Madelung put forward an alternative foundation of
quantum theory allowing for a hydrodynamical analogy [29]. Fundamental contri-
butions were given by de Broglie in 1926 [30] and 1927 [31]. Later on, more
advanced formulations were elaborated by Landau [32] and by London [33]. Within
the hydrodynamical approach to quantum mechanics, the continuity condition and a
vector equation, with the same form as the Hamilton-Jacobi equation of motion of
classical mechanics, provide a substitute of the wave equation [34–40]. The equation
of motion can also be recast as the Newton second law, taking into account a
nonlocal quantum potential1 [34]. Takabayasi investigated a relativistic hydrody-
namics, which offers a hydrodynamical model of the Dirac matter [41].

The profound physical meaning [42], the capacity to gain an accurate and deep
understanding of the phenomenology and the philosophical implications [43, 44] of
the representation of quantum mechanics proposed by Madelung [29], Landau [32],
and London [33] (MLL) cannot be overstressed. Bohm showed that the hydrody-
namical quantum mechanics is deterministic and provides an interpretation of
physical reality alternative to that of the Copenhagen School [34, 35].

1See Eq. (8a) of Ref. [34]. By combining the first two addenda on the l.h.s. of Eq. (2) of Ref. [36],
a quantum-mechanical relationship of the same form as the Newton’s second law is obtained for a
particle acted upon by the Lorentz force and by the nonlocal Bohm potential, see Eq. (94) of Ref.
[15].
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In a number of instances, the MLL formulation is quite useful, e.g., it yields
powerful tools for studying molecular magnetic response, which can be rationalized
via the electronic current density induced by a spatially uniform, time-independent
external magnetic field B and by intramolecular magnetic dipoles mI, I ¼ 1; 2. . .N
at the nuclei. The practical advantages of dealing with a vector function of position
in real space, instead of a complex wave function depending on 6n space-spin
coordinates for an n particle problem, are evident.

As recalled in the Introduction, the charge density and the current density are
expectation values of related linear Hermitian operators [1], defined respectively by

q̂ðrÞ ¼ �e
Xn
i¼1

dðr� riÞ; ð7:5Þ

ĴðrÞ ¼ � e
2me

Xn
i¼1

p̂idðr� riÞþ dðr� riÞp̂i½ �: ð7:6Þ

Therefore, if charge and current density subobservables [1] are available, one
can keep apart the quantum mechanical procedure used to get them, and rely on
relationships of classical electrodynamics for solving a number of problems quite
efficiently. In most cases, a simple representation of the J-field by a set of arrows is
sufficient to visualize essential features of systems responding to magnetic pertur-
bations [24, 25, 45]. Separate plots of streamlines and modulus of the current
density field are required to understand topological subtleties [15]. The differential
Biot-Savart (BS) law [46] affords simple and clear interpretations of nuclear
magnetic shielding [24, 25, 47–50] and nuclear spin-spin coupling [16, 51, 52] via
the related concept of property density [3, 53, 54].

However, besides providing powerful interpretative tools, maps of current density
field are very interesting by themselves for more general reasons. A few problems of
physico-mathematical interest have received much attention. The analysis is carried
out by the theory of differential equations and differential topology. Most relevant
characteristics are observed in the vicinity of the singularities. A point at which the
modulus of the current density vanishes is referred to as “equilibrium” or “stagnation”
point (SP). The singularities determine the topological structure of the vector field,
which is described in compact form by a “stagnation graph” (SG) conveying essential
information [55–57] for understanding magnetic response.

The quantum mechanical theory underlying the present study is outlined in
Sect. 7.2. Topological aspects are taken into account in some detail in Sects. 7.3 and
7.4. A few observations on magnetic symmetry [58] are recalled in Sect. 7.5,
reporting results obtained for some molecules which deserve a special attention for
the peculiarity of their magnetic response. In particular, we considered a few,
neutral or charged, mono-cyclic conjugated systems described by the general for-
mula CnHn, customarily regarded as “aromatic” on the magnetic criterion, and
classified as “diatropic”. They have aroused a major interest in connection with the
so-called ring-current model (RCM) [15].
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7.2 Electron Current Density Induced by Magnetic Fields
and Nuclear Magnetic Dipoles

The expression for the quantum mechanical current density induced in the electron
cloud by a homogeneous, static magnetic field B ¼ $� AB, where

AB ¼ 1
2
B� r ð7:7Þ

is the vector potential in the Coulomb gauge, is obtained as a sum of diamagnetic
and paramagnetic contributions by theoretical procedures illustrated by McWeeny
[59] and employed in previous Refs. [3, 15, 60], whose notation is used in the
following. The diamagnetic contribution,

J B
d ðrÞ ¼ � e2

me
ABðrÞcð0ÞðrÞ; ð7:8Þ

is related to the probability density of the unperturbed molecule [59],

cð0ÞðrÞ ¼ n
Z

dx2. . .dxnWð0Þ
a ðr; x2; . . .xnÞWð0Þ	

a ðr; x2. . .xnÞ; ð7:9Þ

and the paramagnetic contribution, parallel to the canonical momentum vector p̂ , is
given by

J B
p ðrÞ ¼ � ne

me

Z
dx2. . .dxn

� B �WB	
a ðr; x2; . . .xnÞp̂Wð0Þ

a ðr; x2; . . .xnÞ
h

þWð0Þ	
a ðr; x2. . .xnÞp̂B �WB

a ðr; x2; . . .xnÞ
i
: ð7:10Þ

The total current density is obtained by summing,

JB ¼ JBd þ JBp : ð7:11Þ

Analogous expressions are found for the current density induced by a nuclear
magnetic dipole mI via the Ramsey nuclear spin/electron orbit interaction [12, 13,
15, 16, 51, 52, 61–63]. The diamagnetic contribution is connected to the probability
density of the unperturbed system [59], Eq. (7.9),

JmI
d ðrÞ ¼ � e2

me
AmI ðr� RIÞcð0ÞðrÞ; ð7:12Þ
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indicating by

AmI ðr� RIÞ ¼ l0
4p

mI � ðr� RIÞ
r� RIj j3 ; ð7:13Þ

the vector potential associated to the permanent magnetic dipole m I at nucleus
I. The paramagnetic contribution is obtained by

JmI
p ðrÞ ¼ � en

me

Z
dx2. . .dxn

� mI �WmI	
a ðr; x2; . . .xnÞp̂Wð0Þ

a ðr; x2; . . .xnÞ
h

þWð0Þ	
a ðr; x2; . . .xnÞp̂mI �WmI

a ðr; x2; . . .xnÞ
i
: ð7:14Þ

The total current density induced by the nuclear magnetic dipole is

JmI ¼ JmI
d þ JmI

p : ð7:15Þ

The first-order RSPT functions, Eq. (7.1),WB
a and WmI

a that appear in Eqs. (7.10)
and (7.14) are axial vectors with three independent components, that is

WBa
a

�� � ¼ 1
�h

X
j6¼a

x�1
ja j ji jjm̂ajah i; ð7:16Þ

WmIa
a

�� � ¼ 1
�h

X
j 6¼a

x�1
ja j ji jjB̂n

Ia ja
D E

; ð7:17Þ

denoting by

m̂ ¼ � e
2me

Xn
i¼1

l̂i; ð7:18Þ

the orbital magnetic moment operator related to the angularmomentum, and by B̂n
I the

n-electron operator for the magnetic field at nucleus I. The latter is obtained as a sum,

B̂n
I ¼

Xn
i¼1

B̂i
I ; ð7:19Þ

of operators for the magnetic field exerted by the i-th electron on nucleus I,

B̂i
I ¼ � e

me
M̂i

I ; ð7:20Þ
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related to the operator

M̂i
I ¼

l0
4p

ri � RI

ri � R Ij j3 � p̂i ¼
l0
4p

l̂iðR IÞ
r i � RIj j3 : ð7:21Þ

The operator l̂iðRIÞ represents the angular momentum of electron i with respect
to the origin at nucleus I with position RI [3].

The spin-dipolar and the Fermi contact terms of the Ramsey theory [12, 13] are
obtained from the general expression for the current density

J ðrÞ ¼ r �MðrÞ; MðrÞ ¼ � e
me

QðrÞ; ð7:22Þ

due to the magnetization density M associated to the electron spin density defined
via the spin density matrix [59, 62],

Qðr ; r0Þ ¼
Z
s¼s0

ŝcðx; x0Þds; QðrÞ ¼ Qðr; rÞ; ð7:23Þ

denoting by ŝ the spin operator. The corresponding contributions to the current
density are [4, 61, 62]

JmI
SDðrÞ ¼ � en

me

Z
dx2. . .dxn

� $� mI �WSD	
a ðr; x2; . . .xnÞŝWð0Þ

a ðr; x2; . . .xnÞ
n

þWð0Þ	
a ðr; x2; . . .xnÞŝWSD

a ðr; x2; . . .xnÞ �mI

o
;

ð7:24Þ

JmI
FCðrÞ ¼ � en

me

Z
dx2. . .dxn

� $ � mI �WFC	
a ðr; x2; . . .xnÞŝWð0Þ

a ðr; x2; . . .xnÞ
n

þWð0Þ	
a ðr; x2; . . .xnÞŝWFC

a ðr; x2; . . .xnÞ � mI

o
;

ð7:25Þ

In these cases the current field is parallel to $ � ŝ.
Definitions of the second-order energy alternative to the RSPT’s, Eq. (7.4), are

obtained in terms of JB and JmI , via relationships of classical electromagnetism
easily applicable to calculate magnetizability, nuclear magnetic shielding, and
reduced spin-spin coupling tensors, that is, via the expression

WBB ¼ � 1
2

Z
AB � JBd3r; ð7:26Þ
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and from either side of the interchange theorems [3, 4]

WmIB ¼ �
Z

AmI � JBd3r ¼ �
Z

AB � JmI d3r; ð7:27Þ

WmImJ ¼ �
Z

AmI � JmJ d3r ¼ �
Z

AmJ � JmI d3r; ð7:28Þ

In fact, the quantum mechanical relationships for magnetizability, nuclear
magnetic shielding, and nuclear spin-spin coupling arrived at from the derivatives
of the second-order energy expressed in the form (7.26)–(7.28) are the same as
those obtained via RSPT [2–4],

nab ¼ � @2WBB

@Ba@Bb
; ð7:29Þ

rIab ¼ @2WmIB

@mIa@Bb
; ð7:30Þ

KIaJb ¼ @2WmImJ

@mIa@mJb
: ð7:31Þ

The magnetizability defined via Eq. (7.29) and the reduced indirect nuclear
spin-spin coupling, Eq. (7.31), are measured in J T−2 and J−1 T2 ≡ NA−2 m−3,
respectively, within the SI system of units [64]. The dimensionless shielding tensor
of nucleus I, Eq. (7.30), is customarily expressed in parts per million, p.p.m.

Equations (7.7) and (7.26) show that the contribution to the interaction energy
from the component of JB parallel (or antiparallel) to B vanishes identically. Such a
component is only given by the paramagnetic term, Eq. (7.10). Null contributions to
the energy, Eq. (7.27), are obtained for JB parallel (or antiparallel) to m I and JmI

parallel (or antiparallel) to B, according to Eqs. (7.7) and (7.13).

7.2.1 Gauge Invariance of Induced Current Density
and Magnetic Properties

In the gauge transformation of the vector potential, Eq. (7.7),

AB ! AB þ$f ; ð7:32Þ
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induced by a generating function2 f ðrÞ, the first-order Hamiltonian

ĤB ¼ �m̂ � B � e
me

Xn
i¼1

AB
i � p̂i; ð7:33Þ

undergoes the transformation

ĤB ! ĤB þ e
me

ðraf ÞP̂a; ð7:34Þ

where P̂ ¼ Pn
i¼1 p̂i is the n-electron canonical momentum operator. The corre-

sponding transformation of the first-order wavefunction, Eq. (7.16), is given by

BaW
Ba
a ! BaW

Ba
a þWPb

a rbf ; ð7:35Þ

introducing the first-order function

WPb
a ¼ � e

me�h

X
j6¼a

Wð0Þ
j hjjP̂bjaix�1

ja ¼ � ie
�h
�̂RbW

ð0Þ
a : ð7:36Þ

The second identity in Eq. (7.36) is obtained by the hypervirial relation [65]

hajR̂ajji ¼ i
me

x�1
ja hajP̂ajji; ð7:37Þ

allowing for the definition of overlined operators, i.e.,

�̂R � R̂� hajR̂jai: ð7:38Þ

Therefore, in the gauge transformation, Eq. (7.32), the change in the diamagnetic
and paramagnetic contributions to the current density, Eqs. (7.8) and (7.10), is
given by

JBd ! JBd � e2

me
cð0Þ$f ; JBp ! JBp þ

e2

me
cð0Þ$f ; ð7:39Þ

so that the total current density, Eq. (7.11), is invariant. A translation of the
coordinate system can be assimilated to a gauge transformation, Eq. (7.32), in
which the generating function is

2The f function is fully arbitrary, provided it is continuous and has the physical dimensions of a
magnetic flux density times the square of length. It is well-behaved for r ! 1 and satisfies the
condition r2f ¼ 0.
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f B � daA
B
a ¼ 1

2
�abcdaBbrc: ð7:40Þ

Therefore, the total electron current density JB is origin independent. Explicit
formulae expressing the change of diamagnetic and paramagnetic contributions to
JB are given elsewhere [3, 4].

In the gauge transformation, Eq. (7.32), of the vector potential (7.7), the inter-
action energy, Eqs. (7.26) and (7.27), the magnetizability and the nuclear shielding,
Eqs. (7.29) and (7.30), are invariant for exact [2, 3, 15, 66–71] and optimal vari-
ational eigenfunctions [65]. There is a connection between gauge invariance and
charge-current conservation [65, 72, 73], as can be easily seen, for instance, from
relationship (7.26). In the change of gauge considered above, one gets an additional
term on the r.h.s. of Eq. (7.26), which is required to identically vanish for the
energy to stay the same, that is,Z

JB � $fd3r ¼
Z

$ � ðf JBÞd3r �
Z

f$ � JBd3r ¼ 0: ð7:41Þ

Allowing for the Gauss theorem, the first volume integral on the r.h.s. of
Eq. (7.41) is equivalent to a surface integral, which vanishes due to the boundary
conditions cð0ÞðrÞ; JBa ðrÞ ! 0 for r ! 1. Therefore the integral on the l.h.s. of
Eq. (7.41), arising in the gauge transformation induced by the generating function f,
vanishes, and the interaction energy, Eq. (7.26), is invariant, if the continuity
equation $ � JB ¼ 0 is satisfied. As f is fully arbitrary, one finds in particular, for f B

given by Eq. (7.40), that is, f / x; y; z, an integral conservation condition for JB

from Eqs. (7.8) and (7.10) [3, 60],Z
JBa d

3r ¼ 0: ð7:42Þ

This relationship is equivalent to the Arrighini-Maestro-Moccia (AMM) sum
rule [74],

P̂a; m̂b

� �
�1¼

1
2
�abc a l̂c

�� ��a� �
; ð7:43Þ

which is also a condition for origin independence of total magnetizabilities [2, 3,
15, 68–71, 74]. The operator l̂b ¼ �e

Pn
i¼1 rib in Eq. (7.43) denotes the electric

dipole of the electrons.
The flux of the current density JB

IB ¼
Z
S
JB � ds ð7:44Þ
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from a surface S defines the current passing through. The oriented element of S is
indicated by ds. If S is closed, IB vanishes, which constitutes the integral form of
the continuity equation

r � JB ¼ 0:

7.2.2 Current Density Tensor and Current Susceptibility
Vector

The current density second-rank tensor [3, 15, 71, 75] associated with the
magnetic-field induced current density JBa is a function of position defined all over
the molecular domain by the derivative

J Bb
a ðrÞ ¼ @JBa ðrÞ

@Bb
: ð7:45Þ

An analogous definition has been proposed for the current density JmI
a induced

by a nuclear magnetic dipole [16, 51, 52, 62, 63]

J mIb
a ¼ @JmI

a

@mIb
: ð7:46Þ

The diamagnetic and paramagnetic contributions to J Bb
a , Eq. (7.45), are obtained

from Eqs. (7.8) and (7.10), respectively,

J Bb

daðrÞ ¼ � e2

2me
�abcrcc

ð0ÞðrÞ; ð7:47Þ

J Bb
paðrÞ ¼ � ne

me

Z
dx2. . .dxn

� WBb	
a ðr; x2; . . .xnÞp̂aWð0Þ

a ðr; x2; . . .xnÞ
h

þWð0Þ	
a ðr; x2. . .xnÞp̂aWBb

a ðr; x2; . . .xnÞ
i
:

ð7:48Þ

The contributions to J mIb
a , Eq. (7.46), obtained from current density terms

corresponding to a given Ramsey mechanism, e.g., the diamagnetic and param-
agnetic contributions from the nuclear spin/electron orbit terms, Eqs. (7.12) and
(7.14), are, respectively,
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J mIb

da ðrÞ ¼ � l0
4p

e2

me
�abc

rc � RIc

jr� RI j3
cð0ÞðrÞ; ð7:49Þ

J mIb
pa ðrÞ ¼ � ne

me

Z
dx2. . .dxn

� W
mIb

	
a ðr; x2; . . .xnÞp̂aWð0Þ

a ðr; x2; . . .xnÞ
h

þWð0Þ	
a ðr; x2. . .xnÞp̂aW

mIb
a ðr; x2; . . .xnÞ

i
: ð7:50Þ

The nonsymmetric current density tensor is an intrinsic molecular property, in
terms of which magnetizability and nuclear magnetic shielding are obtained from
Eqs. (7.26), (7.27), (7.29), (7.30) and (7.45)–(7.50),

vad ¼
1
2
�abc

Z
rbJ Bd

c ðrÞd3r; ð7:51Þ

rIad ¼ � l0
4p

�abc

Z
rb � RIb

jr� RI j3
J Bd

c ðrÞd3r ¼ � 1
2
�bcd

Z
rbJ mIa

c ðrÞd3r: ð7:52Þ

According to these equations, there is no contribution of JBx to vxx and rIxx, nor a
contribution to rIxx from JmI

x . Analogous statements hold for the y and z directions.
All the relevant equations of the theory of magnetic response can be rewritten in
terms of current density tensors, e.g., the AMM sum rule, Eq. (7.43), is obtained by
integrating the current density tensor, Eq. (7.45),Z

J Bb
a ðrÞd3r ¼ � e

me
2 P̂a; m̂b
� �

�1��abc a l̂c
�� ��a� �� � ¼ 0: ð7:53Þ

The spin-orbit, spin-dipolar, and Fermi contributions to the reduced spin-spin
coupling tensor for two nuclei I and J can be recast in the general form

KIaJb ¼ � l0
4p

�dac

Z ðrc � RIcÞ
jr� RI j3

J mJb

d ðrÞd3r

¼ � l0
4p

�dbc

Z ðrc � RJcÞ
jr � RJ j3

J mIa
d ðrÞd3r; ð7:54Þ

where differentiation of the vector potential (7.13) and of various current density
terms, Eqs. (7.12), (7.14), (7.24) and (7.25), with respect to magnetic dipole
components has been formally carried out. Details on the derivation of the
spin-dipolar and Fermi contributions have been previously illustrated [4].
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A current susceptibility vector is defined via Eq. (7.44),

IBa ¼
Z
S
J Ba

b ðrÞdsb ð7:55Þ

where dsb ¼ nbdS is the element of area orthogonal to JBðrÞ, with orientation
defined by the orthogonal unit vector n. IBa is the electronic current passing through
S per unit of magnetic field Ba. It is conveniently expressed in nanoampère/tesla in
the SI system [24–27, 76, 77].

A similar definition can be proposed for the current induced by a nuclear
magnetic dipole from Eq. (7.46).

7.2.3 Property Density Functions as Maps on the Current
Density Field

Noninvertible maps of the current density vector field can be defined to construct
second-rank property density tensors quite useful for interpreting the phe-
nomenology of magnetic response. For instance, the electron coupled effects of a
perturbing B on a nuclear magnetic dipole m I can be impressively visualized via
nuclear magnetic shielding density functions of position r , with the dimension of
the inverse of a volume, which are defined by the second-rank tensor RI [3, 4, 53,
54]. They are directly connected to the magnetic-field induced current-density by
the map

f : JBðrÞ ! RIðrÞ

and are immediately obtained from the integrand of the BS law [46]. The R I density
function

XI

ad

ðrÞ ¼ � l0
4p

�abc
rb � RIb

jr� RI j3
J Bd

c ðrÞ ð7:56Þ

is useful to determine regions of the molecular basin where shielding-deshielding
mechanisms take place, and to analyze the contribution provided by different
domains of the JBðrÞ field all over the molecular dimensions. Nice representations
are obtained by plotting components of RI

ab in a plane specified by fixing one
spatial coordinate.

Similarly, visualizations of magnetic-dipole induced current-density, together
with maps of the nuclear spin-spin coupling density [4, 16, 51, 52, 62],
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jJbIaðrÞ ¼ � l0
4p

�dbc
ðrc � RJcÞ
jr� RJ j3

J mIa
d ðrÞ; ð7:57Þ

(a tensor defined all over the molecular domain, measured in T2 J−1 m−3 in the SI
system), yield fundamental complementary information on the nuclear coupling
phenomenon, transmission paths and electron-nuclear interaction. The j IJ function
can be integrated to obtain the local magnetic field

hB̂n
Jbi ¼ �KJbIamIa ;

and the coupling constant, Eq. (7.54). These expressions can also be regarded as
generalized forms of the integral BS law from classical electrodynamics [46].

7.3 Singularities, Stagnation Lines and Stagnation Graph
of a Current Density Field

The current density of an n-electron quantum mechanical system may form 3n −
2-dimensional vortices in 3-dimensional configuration space [78–84]. If the system
admits a description in terms of density matrices, natural orbitals are obtained by
diagonalizing cð0ÞðrÞ, Eq. (7.9). Then the total current density vector, JB or JmI , can
be analyzed in terms of distinct contributions from each orbital.

The topology of the JB vector field deserves a careful and detailed investigation.
Its most interesting features are observed in the proximity of an SP at which the
modulus jJBj vanishes. An SP is classified in terms of topological index3 i [85, 86],
and of a (rank, signature) label [15, 55–57, 87–90]. A continuous, open or closed,
path of SPs is referred to as stagnation line (SL), consisting of either vortex points
(index i ¼ þ 1), or saddle points (index i ¼ �1).

In the vicinity of a stagnation point at r0, the fields JBðrÞ and JmI ðrÞ can be
described by a truncated Taylor series expansion about r0, e.g.,

JBc rð Þ ¼ ra � r0að Þ raJ
B
c

h i
r¼r0

þ 1
2

ra � r0að Þ rb � r0b
� � rarbJ

B
c

h i
r¼r0

þ � � �
ð7:58Þ

3The topological index i counts the number of times that the current density vector JB rotates
completely while one walks counterclockwise around a circle of radius �, so small that JB has no
zeroes inside except the SP at its centre. The topological index i of a saddle (vortex) line is −1
(+1). Both SPs have ðr; sÞ ¼ ð2; 0Þ.
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The 3 × 3 transposed Jacobian matrix ~=B
ab ¼ raJBb , evaluated at the stagnation

point r0, has real elements. It represents a nonsymmetric tensor in the absence of
molecular point group symmetry. Within the linear approximation [91], only the
first term in the expansion is considered and the description of the field about a
stagnation point amounts to solving a system of three coupled linear differential
equations whose corresponding matrix is given by the transposed Jacobian matrix.

Reyn [92] reported a table of all possible phase portraits in the vicinity of a
stagnation point in three-dimensional flow and a corresponding classification of
canonical forms in connection with the eigenvalues and eigenvectors of the
Jacobian =B

ab. Within the classification of stagnation points based on the (rank,
signature) index [87] proposed in Refs. [55–57] and generally adopted [15, 89, 90],
the rank r is defined as the number of nonvanishing eigenvalues of the Jacobian, the
signature s is the excess of positive over negative eigenvalues, if they are real or
pure imaginary.4 Because of the continuity equation raJBa ¼ 0 for stationary flow,
the Jacobian is traceless all over the definition domain of the JB vector field, so that
only two eigenvalues are linearly independent. This places a limit on the possible (r,
s). The allowed cases are [55–57, 93]

• (3, ±1) points, which correspond to isolated singularities, referred to as
saddle-nodes [92]. Two eigenvalues satisfy the condition n3 ¼ �<ðn1 þ n2Þ
(the symbol < denotes the real part of its argument). If n1 and n2 are real (they
may also be n1 ¼ n2), then, in the representation of the flow in the plane of the
eigenvectors t1 and t2 corresponding to n1 and n2, a node or a saddle point (see
Ref. [91] for the nomenclature) is observed; if they are complex conjugate a
focus is found.

• (2, 0) points, corresponding to the eigenvalues n3 ¼ 0; n1 ¼ �n2. For real
n1;2 ¼ 
a (pure imaginary n1;2 ¼ 
ib), the phase portrait of a saddle (vortex) is
observed. The eigenvectors t1 and t2, corresponding to n1 and n2, are real in the
case of a saddle (they give the direction of the asymptotes through the singu-
larity) and imaginary in the case of a vortex. Saddle and vortex stagnation lines
are continuous manifolds of (2, 0) points. Usually these SLs are symmetry
determined and lie entirely on symmetry planes of a molecule. The eigenvector
t3 is locally tangent to the SL. (2, 0) points can be open lines—this is the case of
an axial vortex (AV)—or form close loops. A toroidal vortex (TV) flows around
a closed vortex line of (2, 0) points [78]. Diamagnetic (paramagnetic) AVs of
the electronic current density rotate clockwise (anticlockwise) with respect to an
observer placed at the North pole of the B field. The direction of flow about a
vortical line is determined by the vorticity, i.e., by the local $� JB.

• (0, 0) degenerate points, corresponding to three zero eigenvalues of the
Jacobian, which are referred to as branching or transition points. From the
mathematical point of view, the change of regime is related to an exchange

4If the eigenvalues are complex one defines the signature as the difference between the number of
eigenvalues having a positive real part and the number of eigenvalues having a negative real part.
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between different canonical forms of the Jacobian [15]. Since a (0, 0) point
corresponds to a transition between pure imaginary and pure real eigenvalues,
the branching must necessarily take place at an SP characterized by three zero
eigenvalues [55, 56].

The reason for the denomination “branching point” used for (0, 0) singularities is
easily understood. Consider, for instance, a molecule of Dnh symmetry, in the
singlet electronic ground state, in the presence of a magnetic field B along the
highest symmetry axis Cn. According to the general analysis of Sect. 7.5.2, in the
outer reaches of the molecular domain, the induced electronic current density is
diamagnetic, that is, it flows in planes at right angles to B, like the Larmor current
that takes place in atoms. In the proximity of the North and South poles, at large
distance from the molecular plane, the diamagnetic regime is represented by the
primary (2, 0) vortical stagnation line parallel to B and Cn. Transition to different
regimes, e.g., from vortex to saddle flow, or vice versa, takes place closer to the
centre of charge, i.e., in the regions of higher electron density qðrÞ, where the
primary vortex line may split up into saddle and vortical lines.

The splitting of a SL into several SLs is regulated by a fundamental topological
theorem proved by Gomes [55–57, 93] in the form of an index conservation con-
straint. Recall that, according to footnote 3, the index of a saddle (vortex) line is −1
(+1). When an SL of index i0 splits into m new lines, the sum of the indices of the
SLs which emerge from the branching point must satisfy the condition

Xm
k¼1

ik ¼ i0: ð7:59Þ

For instance, a vortex line may bifurcate giving rise to two new vortex lines and
one saddle line. This bifurcation conserves the total index +1.

7.3.1 The Gomes Flow

A simple model of velocity vector field exhibiting branching of vortex and saddle
stagnation lines has been considered by Gomes [56] via the system of differential
equations

_x ¼ y3 þ yðz2 � z� 2Þ
_y ¼ �x3 � xðz2 þ z� 2Þ
_z ¼ 0

8<
: ð7:60Þ

describing trajectories everywhere parallel to the xy plane, shown in Figs. 7.1 and
7.2 for some z values. They display the change of regime occurring in different
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Fig. 7.1 The Gomes flow, Eq. (7.60). On the left [right], from top to bottom z ¼ þ 2:5,
z ¼ þ 1:5, z ¼ þ 0:5 ½z ¼ �2:5; z ¼ �1:5; z ¼ �0:5�. Regular orbits are blue. The homoclinic
trajectories through saddle points are red
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planes. Branching points are found on the central stagnation line at z ¼ 
2:0 and
z ¼ 
1:0. Branchings conserve the total index +1. The stagnation graph of Fig. 7.3
conveys complete information on the velocity field (7.60) in compact and eco-
nomical form.

Fig. 7.3 Perspective view of
the stagnation graph of the
Gomes flow, Eq. (7.60), for
jzj\2:5. The central
stagnation line coincides with
the z axis. Green (red) lines
correspond to clockwise
(anticlockwise) vortices in
Figs. 7.1 and 7.2, saddle lines
are blue

Fig. 7.2 The Gomes flow, Eq. (7.60), on the z ¼ 0 plane. The color code is the same as in Fig. 7.1
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7.4 Bifurcations of a Dynamical System

The splitting of an SL of the quantum mechanical current densities J B and JmI at a
branching point in R

3 can be studied within the framework of bifurcation theory of
dynamical systems, see [94–96] for an introduction to the subject. Accordingly, let
us consider a system of first-order differential equations in matrix form

_X ¼ FlðX Þ ð7:61Þ

where _X � dX=dt, X 2 R
3 and l 2 R

k. With this notation it is implied that Fl

depends on k parameters [94]. The system (7.61) is referred to as a flow in
three-dimensional space. It will be assumed in the following that Fl does not
depend explicitly on time, but only on X. For Fl ¼ Fl½X ðtÞ�, the flow (7.61) is said
to be autonomous. The solutions to the system of algebraic equations

FlðXÞ ¼ 0 ð7:62Þ

are referred to as fixed, or equilibrium, or stagnation points of the flow.
The existence of roots of FlðXÞ ¼ 0 can be studied via maps describing their

dependence onl. The solution as a function of the parameter is referred to as a solution
branch and a bifurcation point is a point inRk fromwhich a set of branchesmoves out
[94]. The codimension of a bifurcation is defined to be the smallest dimension ofRk in
which a bifurcation can take place [94]. In the following we will limit ourselves to
studying two-dimensional flows of codimension one, taking into account a few
archetypal one-dimensional differential forms listed in Appendix A of Ref. [94].
A second differential equation can be added to consider systems of two types, either

_x ¼ flðxÞ
_y ¼ �ay

	
ð7:63Þ

or

_x ¼ �ay
_y ¼ flðxÞ

	
ð7:64Þ

with a[ 0 an arbitrary constant, which without loss of generality will be taken
equal to 1. The continuity equation

ra _xa � @ _x
@x

þ @ _y
@y

¼ 0;

satisfied by (7.64), is not fulfilled by the flow (7.63). Two classes of bifurcations of
codimension 1, satisfying the continuity constraint, i.e., corresponding to the flow
(7.64), are considered in the following:
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• supercritical, or normal bifurcations, characterized by opposite sign of the terms
appearing in the polynomial expansion of fl. In such a case, the nonlinear terms
in x2 or x3 within this expansion have an effect opposing to the instability
generated by the term of the lower order [94, 95].

• subcritical, or inverse bifurcations, in which the nonlinear term, of the same sign
as that of lower order, has also a destabilizing effect.

7.4.1 Supercritical Saddle-Centre Bifurcation

This bifurcation can be modelled by the system of differential equations

_x ¼ �y
_y ¼ l� x2

	
ð7:65Þ

obtained by adding the first equation to the canonical one-dimensional normal form
in Table I, p. 297 of Ref. [94]. The field is characterized by the C2tðCsÞ � 2mm
magnetic symmetry, see Sect. 7.5. The transposed Jacobian of (7.65) is

~=ab ¼ 0 �1
�2x 0


 �

For l\0 the dynamic system has no equilibrium points, for l� 0 there is a
couple of equilibrium points (coinciding in a critical degenerate point for l ¼ 0),
respectively in ð ffiffiffi

l
p

; 0Þ ð� ffiffiffi
l

p
; 0Þ. The corresponding matrices are

~=abð ffiffiffi
l

p
; 0Þ ¼ 0 �1

�2
ffiffiffi
l

p
0


 �
; ~=abð� ffiffiffi

l
p

; 0Þ ¼ 0 �1
2

ffiffiffi
l

p
0


 �

The eigenvalues are determined by solving the equation k2 � 2x ¼ 0, with roots
k1;2 ¼ 
 ffiffiffiffiffi

2x
p

. Hence

• for the point ð ffiffiffi
l

p
; 0Þ the solutions are k1;2 ¼ 
 ffiffiffiffiffiffiffiffiffiffi

2
ffiffiffi
l

pp
, i.e., k1 [ 0 and k2\0:

the equilibrium point is a saddle,
• for the point ð� ffiffiffi

l
p

; 0Þ the solutions are pure imaginary, k1;2 ¼ 
i
ffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
l

pp
: the

equilibrium point is a centre.

The trajectories on the ðx; yÞ plane do not exhibit equilibrium points for l\0,
see top left of Fig. 7.4. For l ¼ 0, a cusp is observed in the proximity of the (0, 0)
degenerate point, at which the bifurcation takes place. For l[ 0 the typical phase
portraits of a saddle and a vortex are observed. Homoclinic orbits, or trajectories, of
the flow of this dynamical system join a saddle equilibrium point to itself.
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Fig. 7.4 On the left [right]: supercritical [subcritical] saddle-centre bifurcation, Eq. (7.65)
[Eq. (7.66)], for l ¼ �1; 0; þ 1, from top to bottom. Regular orbits are blue. The homoclinic
trajectories through saddle points and the trajectories joining at the cusp, i.e., at the degenerate
critical point corresponding to the bifurcation, are red
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7.4.2 Subcritical Saddle-Centre Bifurcation

The system of differential equations corresponding to this bifurcation has a form
similar to Eq. (7.65), except for the sign of x2 in the second equation:

_x ¼ �y
_y ¼ lþ x2

	
ð7:66Þ

The transposed Jacobian of (7.66) is

~=ab ¼ 0 �1
þ 2x 0


 �

Accordingly, there are two equilibrium points for l� 0, respectively in
ð ffiffiffiffiffiffijljp

; 0Þ and ð� ffiffiffiffiffiffijljp
; 0Þ (coalescing at a degenerate critical point for l ¼ 0). The

corresponding matrices are

~=abð
ffiffiffiffiffiffi
jlj

p
; 0Þ ¼ 0 �1

2
ffiffiffiffiffiffijljp

0


 �
; ~=abð�

ffiffiffiffiffiffi
jlj

p
; 0Þ ¼ 0 �1

�2
ffiffiffiffiffiffijljp

0


 �

Hence

• the point ð ffiffiffiffiffiffijljp
; 0Þ, with corresponding pure imaginary eigenvalues k1;2 ¼



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

ffiffiffiffiffiffijljpq
is a centre,

• the point ð� ffiffiffiffiffiffijljp
; 0Þ, with corresponding real eigenvalues of opposite sign,

k1;2 ¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffijljpq
, is a saddle.

The scenario is inverted with respect to that of the supercritical bifurcation of
Sect. 7.4.1, see the right column of Fig. 7.4.

7.4.3 Transcritical Saddle-Centre Bifurcation
(Supercritical)

This bifurcation corresponds to the system

_x ¼ �y
_y ¼ lx� x2

	
ð7:67Þ
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The transposed Jacobian of (7.67) is

~=ab ¼ 0 �1
l� 2x 0


 �

There are two equilibrium points, ð0; 0Þ and ðl; 0Þ, with corresponding
Jacobians

~=abð0; 0Þ ¼ 0 �1
l 0


 �
; ~=abðl; 0Þ ¼ 0 �1

�l 0


 �

The eigenvalues are k1;2 ¼ 
 ffiffiffiffiffiffiffi�l
p

and k1;2 ¼ 
 ffiffiffi
l

p
. Hence,

• the (0, 0) point is respectively a saddle for l\0 and a centre for l[ 0,
• the ðl; 0Þ point is a centre for l\0 and a saddle for l[ 0.

Therefore, on varying the value of the parameter from negative to positive within
the interval �1� l� 1, an inversion of the bifurcation scenario with exchange of
stability [94] is observed. The bifurcation occurs at the degenerate critical point for
l ¼ 0. The trajectories are displayed on the left of Fig. 7.5. The flow is charac-
terized by the C2vðCsÞ � 2mm magnetic symmetry, see Sect. 7.5.

7.4.4 Transcritical Saddle-Centre Bifurcation (Subcritical)

The system of differential equations is

_x ¼ �y
_y ¼ lxþ x2

	
ð7:68Þ

The transposed Jacobian has the form

~= ¼ 0 �1
lþ 2x 0


 �

The equilibrium points are (0, 0) and ð�l; 0Þ. Hence,
• the eigenvalues at (0, 0) are k1;2 ¼ 
 ffiffiffiffiffiffiffi�l

p
: a saddle and a centre are observed

for l\0 and l[ 0, respectivley,
• the eigenvalues at ð�l; 0Þ are k1;2 ¼ 
 ffiffiffi

l
p

: a saddle and a centre are observed
for l[ 0 and l\0, respectively.

The trajectories are displayed on the right column of Fig. 7.5. Also in this case,
on varying the parameter within the interval �1� l� 1 there is an inversion of the
bifurcation scenario with exchange of stability.
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Fig. 7.5 On the left [right]: supercritical [subcritical] transcritical saddle-vortex bifurcation,
Eq. (7.67) [Eq. (7.68)], for l ¼ �1; 0; þ 1. Colour conventions are the same as in Fig. 7.4
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7.4.5 Supercritical Pitchfork Bifurcation

This bifurcation pattern is more complex than the previous ones. In fact, on varying
the parameter, we pass from one equilibrium point for l\0 to three equilibrium
points for l[ 0. The autonomous system is

_x ¼ �y
_y ¼ lx� x3

	
ð7:69Þ

The corresponding transposed Jacobian is

~= ¼ 0 �1
l� 3x2 0


 �

For l\0 there is only the (0, 0) equilibrium point, for 0\l\þ 1 also the
solutions ð
 ffiffiffi

l
p

; 0Þ emerge. Hence the phase portraits are

• a saddle for l\0 and a centre for l[ 0 at point (0, 0);
• two saddles at points ð
 ffiffiffi

l
p

; 0Þ (only for l[ 0).

Within this scenario the saddle flow bifurcates into a centre and two adjacent
saddles. This happens at the critical degenerate point corresponding to l ¼ 0, at
which the unique solution of the differential system starts splitting into three
solutions. The phase portrait is neither a saddle nor a centre. The orbits are shown in
the left column of Fig. 7.6.

The Gomes theorem [56] is fulfilled. In fact, using the index +1 (−1) for a centre
(saddle), Eq. (7.59) is satisfied passing from top to bottom of the left column of
Fig. 7.6: the index value −1 is conserved.

7.4.6 Subcritical Pitchfork Bifurcation

This is analogous to the previous one, except for the sign of the nonlinear term,

_x ¼ �y
_y ¼ lxþ x3

	
ð7:70Þ

The transposed Jacobian is

~= ¼ 0 �1
lþ 3x2 0


 �

Hence,

• the root (0, 0) corresponds to a centre for l[ 0 and a saddle for l\0,
• the roots ð
 ffiffiffiffiffiffijljp

; 0Þ correspond to centres for l\0.
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Fig. 7.6 On the left [right]: supercritical [subcritical] pitchfork bifurcation, Eq. (7.69) [Eq. (7.70)],
for l ¼ �1; 0; þ 1. Colour conventions are the same as in Fig. 7.4. The magnetic symmetry is
given by Eq. (7.74)
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Within this scenario two centres and the saddle in between, corresponding to
three different fixed points, reduce to a single centre, see the right column of
Fig. 7.6. Also in this case the Gomes theorem is satisfied, as shown by adding the
indices, (+1 + 1 − 1 = +1).

7.5 Magnetic Symmetry of a Molecule in an External
Magnetic Field

The point group symmetry of a molecule in a field B and the local symmetry at the
site of nucleus I, carrying the permanent magnetic dipolem I , determine the essential
features of J BðrÞ and JmI ðrÞ fields and of their SGs. In the absence of magnetic
perturbations, one can take into account the 32 point groups describing the symmetry
of the time-averaged charge density .ðrÞ of a molecule in the equilibrium state. In
the presence of magnetic field, or intramolecular magnetic dipoles at the nuclei, the
analysis of stationary electron current densities JB and JmI ðrÞ becomes an essential
tool. Since the equilibrium state is unchanged if the sign of these vectors is reversed,
it is expedient to introduce the time-reversal operator T [97], which changes the sign
of the current at each point in space, but does not act on the spatial coordinates.
T commutes with the spatial rotations and reflections and satisfies the cyclic con-
dition T2 ¼ E, but it cannot itself be regarded as an element of a group. It always
appears as a combination TGi for any operatorGi in a group G, but TC3 cannot occur
as a separate symmetry transformation, since ðTC3Þ3 ¼ TE ¼ T .

By introducing T in the 32 finite point symmetry groups, 58 new symmetry
groups can be constructed via the Tavger-Zaitsev algorithm [58, 98, 99]. The
procedure can be summarized in the following terms. For any of the 32 groups,
G � Gif g; i ¼ 1; 2. . .n, a subgroup H of index 2 in G is selected. The elements Ai

of the set G�H, such that G ¼ HþAiH, are used to obtain a magnetic group G0,
isomorphic to G, by the recipe

G0 ¼ Hþ TAiH: ð7:71Þ

In the Schönflies notation we denote this magnetic group as G0ðHÞ. The cor-
responding notations in the Shubnikov system and in the international system are
also used [58].

The magnetic groups of a few relevant molecules in the presence of a magnetic
field are considered hereafter to discuss the main features of the JB field.
Hamermesh [58] and Mulliken conventions [100, 101] are used.

Orthorombic system

D2 � E C2ðzÞ C2ðyÞ C2ðxÞf g � 222

C2 � E C2ðzÞf g � 2

D2ðC2Þ � E C2ðzÞ TC2ðyÞ TC2ðxÞf g � 222

ð7:72Þ
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C2v � E C2ðzÞ rvðxzÞ rvðyzÞf g � 2mm

C2 � E C2ðzÞf g � 2

C2vðC2Þ � E C2ðzÞ TrvðxzÞ Tr0vðyzÞf g � 2mm

ð7:73Þ

D2h � E C2ðzÞ C2ðyÞ C2ðxÞ i rvðxyÞ rvðzxÞ rhðzyÞf g
� mmm

C2h � E C2 i rhf g � 2=m

D2hðC2hÞ � E C2ðzÞ TC2ðyÞ TC2ðxÞ i rðxyÞ TrðzxÞ TrðyzÞf g
� mmm

ð7:74Þ

Tetragonal system

D2d � E 2S4ðzÞ C2ðzÞ C0
2ðxÞ C0

2ðyÞ 2rdf g � 42m

S4 � E S4ðzÞ C2ðzÞ S34ðzÞ
� � � 4

D2dðS4Þ � E 2S4ðzÞ C2ðzÞ TC0
2ðxÞ TC0

2ðyÞ 2Trdf g � 42m

ð7:75Þ

D4h � E 2C4 C2 2C0
2 2C

00
2 i 2S4 rh 2rv 2rd

� � � 4=mmm

C4h � E C4 C2 C3
4 i S34 rh S4

� � � 4=m

D4hðC4hÞ � E C4 C2 C4
3 2RC

0
2 2RC

00
2 i S34 rh S4 2Rrv 2Rrd

� �
� 4=mmm

ð7:76Þ

Trigonal system

D3 � E 2C3 3C2f g � 32

C3 � E 2C3f g � 3

D3ðC3Þ � E 2C3 3TC2f g � 32

ð7:77Þ

C3v � E 2C3 3rvf g � 3m

C3 � E 2C3f g � 3

C3vðC3Þ � E 2C3 3Trvf g � 3m

ð7:78Þ

Hexagonal system

D3h � f E 2C3 3C2 rh 2S3 3rv g � 6m2

C3h � E 2C3 rh 2S3f g � 6

D3hðC3hÞ � E 2C3 3TC2 rh 2S3 3Trvf g � 6m2

ð7:79Þ
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D6h � fE 2C6 2C3 C2 3C0
2 3C00

2 i 2S3 2S6 rh 3rd 3rv g
� 6=mmm

C6h � 6=m � fE 2C6 2C3 C2 i 2S3 2S6 rh g
D6hðC6hÞ � fE 2C6 2C3 C2 3TC0

2 3TC00
2 i 2S3 2S6 rh 3Trd 3Trv g

� 6=mmm

ð7:80Þ

A series of simple rules is obtained taking magnetic symmetry into account:

• A symmetry plane orthogonal to B (usually a rh plane) cannot be crossed by the
trajectories

• Trv and Trd planes can be crossed only by streamlines normal to them in the
typical case of vortical regime. If a streamline approaches a Trv;d plane forming
an angle different from p=2, it is scattered away, and a saddle is found.
Therefore any open or closed, vortex or saddle, SL may lie on, but not pass
through, a Trv;d plane, and pass through perpendicularly, but not lie on, a rh
plane. In most of the systems considered in this chapter, the SLs are determined
by symmetry and are entirely contained in Trv;d planes.

• As the in-plane components of the JB vector vanish all over Trv;d planes by
symmetry, the continuity equation for stationary flow, r � JB ¼ 0 is necessarily
fulfilled for the perpendicular component, even if JB has been evaluated via
approximate quantum mechanical methods.

• The Cn symmetry axes parallel to the inducing magnetic field B, lying on Trv
planes, are necessarily SLs.

• In the absence of Trv;d planes, e.g., for chiral molecules, the electron flow
spirals about a Cn symmetry axis, and only isolated (3, ±1) isolated points are
observed in the SG.

These rules are useful to analyze the main features of the SGs in connection with
the point group symmetry of a molecule perturbed by magnetic fields and nuclear
dipole moments. They have been applied to a large series of compounds [102].
A few examples are considered in the following Sect. 7.5.1.

7.5.1 The Stagnation Graph of Some Small Molecules

Spatial models of magnetic-field induced electronic currents have been constructed
via stagnation graphs and current density maps displayed in Figs. 7.7, 7.8, 7.9, 7.10,
7.11, 7.12, 7.13, 7.14, 7.15, 7.16, 7.17, 7.18, and 7.19, which provide fundamental
help for rationalizing magnetizability and nuclear magnetic shielding. A number of
interesting features has been observed [102]. A perspective view of the SG of the
JB current density in trans-difluoro ethene C2H2F2, in a uniform external magnetic
field B perpendicular to the molecular plane (a system with magnetic symmetry
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Fig. 7.7 Perspective view of the stagnation graph of the current density vector field in planar
ethene C2H4, with magnetic symmetry D2hðC2hÞ. The uniform external magnetic field B is applied
in the direction of the C–C bond, coincident with the z axis. Here and in the following figures,
green (red) lines denote diamagnetic (paramagnetic) vortices, saddle lines are blue
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C2h, the same as in the absence of field), shows a “dust” of (3, ±1) stagnation points:
as there is no Trv plane, SLs do not occur. These isolated SPs correspond to local
saddle-nodes and diamagnetic or paramagnetic foci, see Figs. 1 and 2 of Ref. [102].
An analogous situation was found for planar H3BO3, with C3h magnetic symmetry:
the stagnation graph consists of isolated stagnation points because of the absence of
Trv planes, see Figs. 3 and 4 of Ref. [102]. Also the stagnation graph of the current
density vector field in distorted ethene C2H4, with magnetic symmetry D2ðC2Þ
consists of a “dust” of (3, ±1) SPs. Accordingly, plots of the current density vector
field contain only two symmetry-connected spiralling streamlines, see Figs. 5 and 6
of Ref. [102].

Fig. 7.8 Perspective view of an intermediate portion of the current density vector field in ethene
C2H4, with magnetic symmetry D2hðC2hÞ, showing the bifurcation at points P
2 of the central
diamagnetic vortex into two vortices flowing about the C–H bonds. The uniform external magnetic
field B is applied in the direction of the C–C bond, coincident with the z axis. The sequence of
vortex-saddle splittings documented by the SG of Fig. 7.7 is fully contained within the streamline
surface, and is not visible
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Ten (0, 0) critical points lying on the C–C bond direction are found in the SG of
the energetically stable rotamer with D2hðC2hÞ symmetry in Fig. 7.7. The current
density vector field is shown in Fig. 7.8. Denoting by P
i; i ¼ 1; 2 . . . 5; branching
points on opposite sides of, and equally spaced from, the origin in the centre of
mass (CM), they are P
1 at ±0.47, P
2 at ±0.52, P
3 at ±0.92, P
4 at ±1.54, and
P
5 at ±2.60, with distances in bohr. The C nuclei are located at ±1.24 bohr from
CM. The P
1 and P
2 SPs are separated by a short segment (0.05 bohr) of
saddle-type SL, which can be observed by magnifying the figure [102].

The primary diatropic vortex SL branches out at two (0, 0) critical points (too far
to be seen in Fig. 7.7) into a set of three SLs on the plane of the nuclei: a central
(blue) saddle SL and two (green) vortical SLs crossing the C–H bonds. These vortex
lines become saddle-type at points with coordinates (x ¼ 0; y ¼ 
1:05; z ¼ 
0:86)
bohr, where the i topological index changes from −1 to +1. The saddle SLs merge at

Fig. 7.9 Perspective view of the stagnation graph of the current density vector field induced by a
magnetic field B � B�1 normal to the yz plane of the nuclei of ethylene. Green (red) lines denote
diamagnetic (paramagnetic) vortices, saddle lines are blue. Isolated blue points mark ð3;
1Þ
saddle-nodes, isolated green (red) points denote ð3;
1Þ diamagnetic (paramagnetic) foci
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P
2. At P
5 the central saddle SL splits into a central (red) paratropic vortical SL,
and two saddle SLs lying on the TrvðxzÞ plane orthogonal to that of the molecule.
These saddle SLs change index sign at two points with coordinates (x ¼ 
1:10,
y ¼ 0, z ¼ 
1:07) bohr, and the emerging diatropic vortex lines end up at P
1. Two
cages are found, each about one C nucleus. These patterns consist of a set of SLs
merging at P
3 and P
4 (two paratropic vortical, two saddle SLs, and a central
portion of diatropic vortical SL). All the branchings fulfill the Gomes theorem,
Eq. (7.59).

Fig. 7.10 Display of the current density vector in the plane containing the nuclei of ethylene. The
applied magnetic field is orthogonal to the plot plane and directed outward. Atom positions are
marked by crosses. The maximum modulus is 1.84 (cut to 0.25) au and the step between two
consecutive contours is 0.025 au. Contours of the magnetic shielding density RH

xx, Eq. (7.81), of
hydrogen nucleus on the molecular plane of ethylene are represented in red. Solid (dashed) red
lines denote positive (negative) values
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The SG for JB induced by a field orthogonal to the molecular plane of ethene is
displayed in Fig. 7.9 and the corresponding streamlines are plotted in Fig. 7.10.
A contour map (in red) of the shielding density

XI

xx

ðrÞ ¼ � l0
4p

�xbc
rb � RIb

jr� RI j3
J Bx

c ðrÞ; ð7:81Þ

defined via Eq. (7.81) for I = H is shown in Fig. 7.10 on the plane of the nuclei of
CH2–CH2. Red contours superimposed to the streamlines of the JBðrÞ field provide
visual understanding of the local (shielding or deshielding) contributions at points
r on the plot plane [103]. Figure 7.10 shows that the largest proton shielding
component, rHxx ¼ 29:9 ppm, is essentially determined by local flow. Nearly van-
ishing contributions of opposite sign arise from closest and furthest portions of
distant current loops. An interesting set of phase portraits was observed for the

Fig. 7.11 Spiralling paratropic trajectories of current density above the plane containing the
nuclei of ethylene for a field perpendicularly pointing outward. The mirror image of this pattern is
observed below the plane of the nuclei. Isolated blue points mark ð3
 1Þ saddle-nodes, isolated
green (red) points denote ð3
 1Þ diamagnetic (paramagnetic) foci
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Fig. 7.12 Spiralling diatropic trajectories of current density above the plane containing the nuclei
of ethylene for a field perpendicularly pointing outward. The mirror image of this pattern is
observed below the plane of the nuclei. The isolated ð3;
1Þ stagnation points are represented with
the colour convention of Fig. 7.11

Fig. 7.13 Asymptotic lines of current density on the plane containing the nuclei of ethylene. The
magnetic field, applied at right angles to the plot plane, points outwards. Blue points denote
ð3;
1Þ saddle-nodes, green (red) spots mark regions of diamagnetic (paramagnetic) spiral flow
about ð3;
1Þ foci
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trajectories spiralling about the red (3, ±1) foci. All of them are connected by
asymptotic streamlines, starting and ending at each focus, as shown in the per-
spective spatial view of Figs. 7.11 and 7.12. Homoclinic lines on the rh plane are
displayed in Fig. 7.13.

Fig. 7.14 Perspective view
of the stagnation graph of the
current density vector field in
eclipsed ethane C2H6, with
magnetic symmetry D3hðC3hÞ.
The uniform external
magnetic field B is parallel to
the C–C bond axis

7 Topology of Quantum Mechanical Current Density … 187



A perspective view of the stagnation graph of the current density vector field of
methane CH4 in a uniform external magnetic field B parallel to a C2 symmetry axis
bisecting HCH angles (a system with D2dðS4Þ magnetic symmetry isomorphic to
D2d) shows branching points occurring at a short distance (�
0:4 bohr) from the C
nucleus, see Fig. 9 of Ref. [102]. An analogous representation of the SG of JB of a
distorted ethane molecule C2H6, in the presence of uniform external magnetic field
parallel to the C–C bond axis, with magnetic symmetry D3ðC3Þ, contains eight (3,
±1) foci along the threefold symmetry axis, which indicates that the diatropic
electron flow spirals about it and that closed current density loops are absent. This is
confirmed by the corresponding streamline map, showing a single diatropic tra-
jectory spiralling about the C3 symmetry axis [102]. This pattern can be compared

Fig. 7.15 Perspective view of the current density vector field in ethane C2H6, with magnetic
symmetry D3hðC3hÞ. The uniform external magnetic field B is parallel to the C–C bond axis
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with the series of distinct closed loops in Fig. 7.15 for a flow with D3hðC3hÞ
magnetic symmetry and Fig. 7.17 for a flow with D3dðS6Þ magnetic symmetry. The
corresponding SGs are shown in Figs. 7.14 and 7.16.

The C3vðC3Þ magnetic subsymmetry, Eq. 7.78, is observed in methane for B
along a C–H bond, taken to lie in the z direction. The corresponding SG is reported
in Fig. 7.18. The cage of SLs about a C nucleus is a transferable pattern, compare
for that observed for ethane in Figs. 7.14 and 7.16. Four (0, 0) branching points
occur along the threefold axis, at P
1 ¼ 
0:66, P
2 ¼ 
0:50 bohr from the origin
on the C nucleus [102]. The corresponding streamline map is displayed in Fig. 7.19.

Fig. 7.16 Perspective view
of the stagnation graph of the
current density vector field in
staggered ethane C2H6, with
magnetic symmetry D3dðS6Þ.
The uniform external
magnetic field B is parallel to
the C–C bond axis
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7.5.2 Magnetic Symmetry, Stagnation Graph and Induced
Current Density of Mono-cyclic Neutral and Charged
CnHn Systems in a Magnetic Field

Several attempts have been made to achieve reliable representations of the JB

current density field in neutral and charged cyclic conjugated compounds with
chemical formula CnHn in the presence of a static magnetic field orthogonal to the
molecular rh plane, in connection with their magnetotropicity [15]. The molecular
point group symmetry of these unsaturated systems determines the essential fea-
tures of the induced current density field and relative SG. DnhðCnhÞ magnetic groups
[58, 98, 99] were considered to discuss the symmetry of conjugated cyclic mole-
cules [104].

Fig. 7.17 Perspective view of the current density vector field in ethane C2H6, with magnetic
symmetry D3dðS6Þ. The uniform external magnetic field B is parallel to the C–C bond axis
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For instance, assuming B along the Cn axis, parallel to the z direction, the
magnetic group of benzene, the archetypal aromatic molecule, contains the sym-
metry elements listed in Eq. (7.80), that of cyclopropenyl cation, with n ¼ 3, is
given by Eq. (7.79), and that of the cyclobutadienyl dication, C4H2þ

4 , by Eq. (7.76).
Other interesting cyclic systems are the cyclopentadienyl anion, C5H�

5 , belonging
to the symmetry group D5hðC5hÞ, and the tropylium cation C7Hþ

7 . These systems
are regarded as aromatic on the magnetic criterion [15]. Using the nomenclature of
Eqs. (7.72)–(7.80),

D5h � fE 2C5 2C2
5 5C2 rh 2S5 2S35 5rv g

C5h � E C5 C2
5 C3

5 C4
5 rh S5 S75 S35 S95

� �
D5hðC5hÞ � E C5 C2

5 C3
5 C4

5 5TC2 rh S5 S75 S35 S95 5Trv
� �

ð7:82Þ

Fig. 7.18 Perspective view
of the stagnation graph of the
current density vector field in
methane CH4. The uniform
external magnetic field B is
parallel to a C3 symmetry axis
along a CH bond
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The magnetic point groups for the tropilium cation, D7hðC7hÞ, and
cyclo-octatetraenyl di-cation and di-anion, D8hðC8hÞ, can also be constructed by the
Tavger-Zaitsev recipe [58, 98, 99], Eq. (7.71).

The electronic wavefunction of neutral and charged CnHn cyclic conjugated
molecules is characterized by sigma/pi separability for symmetry reasons, see, for
instance Ref. [15] and references therein. This feature is only preserved in the
presence of magnetic field perpendicular to the molecular rh plane. In these con-
ditions, the magnetic response properties, e.g., magnetizability and nuclear mag-
netic shieldings, can be partitioned into separate contributions from r- and p-
electrons. Analogously, the current density field JB induced in neutral and charged
CnHn cyclic systems by a magnetic field B perpendicular to the molecular rh plane,
can be represented by the superposition of disjoined r- and p-contributions.
Accordingly, total properties can be rationalized in terms of separate pieces [15].
On the other hand, for B parallel to the molecular plane, r- and p-electron flow is
inextricably mixed.

A general quantum-mechanical procedure, referred to as continuous transfor-
mation of origin of the current density-diamagnetic zero (CTOCD-DZ) [3, 15, 71,
105], within the damped DZ2 variant [106, 107], has been employed, at the

Fig. 7.19 Streamlines of the current density vector field in methane CH4 on a plane through the C
nucleus, normal to the uniform external magnetic field B parallel to the C3 symmetry axis along a
CH bond. The (2, 0) stagnation points are identified via the stagnation graph of Fig. 7.18
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Hartree-Fock level of accuracy, to obtain the stagnation graph of DnhðCnhÞ com-
pounds. The third-order linear autonomous system for the flow was integrated using
Runge-Kutta procedures [108].

Stagnation graphs of unsaturated CnHn hydrocarbons in a magnetic field
orthogonal to the rh molecular plane are displayed in Fig. 7.20. It can be observed
that the SGs of the JB field, characterized by the symmetry elements of the mag-
netic groups DnhðCnhÞ, show common features. In the outer reaches of the
molecular domain the flow is diamagnetic. It is represented in Fig. 7.20 by a green
open vortical line, coinciding with the highest symmetry axis and extending to the
boundaries of configuration space. A pair of (0, 0) transition points, at the same
distance above and below the plane of the carbon nuclei, is found for all systems.
The distance of the (0, 0) SPs increases from ≈1.3 bohr for n = 3 to ≈2.0 bohr for
n = 4, and to ≈2.5 bohr for n = 5. Approximately the same values were found for
higher n, i.e., ≈2.5 bohr for n = 6, ≈2.4 bohr for n = 7, and ≈2.13 bohr for n = 8.

The 2n + 1 SLs originating at the north (0, 0) point merge at the other; n of the
southbound lines are saddle lines and n are diamagnetic vortical lines. In Fig. 7.20,
the former are represented in blue, the latter in green. Each diamagnetic vortex
crosses the molecular plane in the region of a C–C bond, close to its midpoint, each
saddle line passes through a point of rh in the proximity of the carbon nucleus
[104]. The conservation condition (Gomes theorem) [55–57, 93], Eq. (7.59), is
satisfied. All the SLs lie on a topological surface with the shape of an oval ball,
referred to as separatrix [56], encasing domains of localized flow and a central
paramagnetic vortex represented by a red line in Fig. 7.20. All over this surface, the
element of electric current, Eq. (7.44), dIB ¼ JB � ds vanishes, since no current
density streamline can cross the separatrix.

Quite remarkably, the topological index of each of the 2n SLs constituting the
skeleton of the separatrix does not stay the same on moving south (north) from the
north (south) branching point, which can be observed in Fig. 7.20 as a colour
change corresponding to a change of local regime—from saddle to vortex and
viceversa. The change takes place at points lying on a same plane for every SL. One
can ask if such a change implies a violation of the index conservation theorem,
Eq. (7.59). The question is answered in the negative if it is assumed that, for each
SL, the scenario is modelled by the pitchfork bifurcations of Eqs. (7.69) and (7.70),
visualized in Fig. 7.6.

The corresponding maps for the streamlines of the current density flowing on the
rh plane displayed in Fig. 7.21 show patterns of vortex and saddle regime which are
elucidated by the SGs of Fig. 7.20. The existence of a central paramagnetic vortex,
documented for the first time in 1982 by Lazzeretti and Zanasi [109], is the dis-
tinctive feature of all diatropic systems with DnhðCnhÞ magnetic symmetry. It must
exist as required by the index conservation constraint proven by Gomes, Eq. (7.59)
[55–57, 93]. The analysis of proton magnetic shielding in cyclic compounds [110]
is consistent with these results.
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Fig. 7.20 The stagnation graph of the JB current density in cyclic systems CnHn for n ¼ 3; 4; . . .8.
Green (red) SLs denote diamagnetic (paramagnetic) vortices, saddle SLs are blue
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Fig. 7.21 Streamlines of the JB current density vector field induced by a static, uniform magnetic
field at right angles to the molecular plane of CnHn cyclic systems for n ¼ 3; 4; . . .8. Diamagnetic
flow is clockwise
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7.5.3 Five-Membered Heterocyclic Molecules

The stagnation graphs of 1,3-cyclopentadiene, furan, pyrrole, and thiophene, in the
presence of a magnetic field perpendicular to the molecular plane [111], are displayed
in Fig. 7.22. They show that the electron flow induced by a perpendicular magnetic
field in pentatomic cyclic molecules with C2vðCsÞ � fE TC2 Trv r0v g
symmetry is characterized by a regime remarkably different from that of DnhðCnhÞ
compounds discussed in Sect. 7.5.2. An analogous consideration was made for

Fig. 7.22 The stagnation graph of five-membered cyclic compounds. Clockwise from top left:
1,3-cyclopentadiene, pyrrole, furan, and thiophene in the presence of a magnetic field
perpendicular to the molecular plane. Diamagnetic (paramagnetic) vortices are represented by
green (red) lines, and saddle lines are blue. All the stagnation lines lie on the Trv plane of
magnetic symmetry
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phosphole and arsole [111, 112], with lower CsðC1Þ � fE Tr g magnetic
symmetry.

The stagnation graphs of 1,3-cyclopentadiene, furan, pyrrole, and thiophene is
characterized by a similar pattern in the proximity of the CH2 group or the
heterotom, i.e., the green truncated vortex line, denoting diamagnetic flow which
extends to the tail regions of the molecular domain. On crossing the plane of the
nuclei, for the first three compounds, this SL corresponds to saddle flow. A small
closed loop corresponding to two vortices flowing in opposite directions, which
characterizes a TV, is observed in front of it in pyrrole and thiophene. More
complicated patterns were found in the vicinity of the CH2 moiety of
1,3-cyclopentadiene and nearby the oxygen atom in furan.

Another common feature constitutes the hallmark of all the five-membered
cyclic molecules in Fig. 7.22 and characterizes their peculiar magnetic response,
that is, the closed stagnation loop disconnected from the rest of the SG, passing
nearby the midpoint of the pentagon side opposite to the CH2 group or the het-
eroatom. The green diamagnetic vortex line crossing the C–C bond and the red
paramagnetic vortex line, flowing in the vicinity of its centre of mass, are connected
to blue saddle lines by (0, 0) points, at which change of regime takes place. The
Gomes index of this disconnected piece is 0, as two lines with opposite ±1 index
emerge at each branching point.

The red portion of the stagnation loop crossing the molecular plane indicates,
according to the colour code of Fig. 7.22, the presence of a paramagnetic vortex,
which is actually observed in the streamline maps [111]. Its substantial difference
from that typical of DnhðCnhÞ aromatics, corresponding to a vortical SL in between
two (0, 0) degenerate points on the main symmetry axis, i.e., belonging to a con-
nected set of SLs, can hardly be overemphasized. Therefore, the disconnected
stagnation loop is the topological signature distinguishing five-membered hetero-
cyclic molecules from the cyclic CnHn molecules to which they are frequently
associated. An analysis of diatropicity of pentatomic cyclic molecules, and a
comparison of their aromaticity (on the magnetic criterion) with benzene’s, should
not put aside these findings.

7.5.4 Cyclopropane

Chemists traditionally assumed that cyclopropane enjoys a peculiar combination of
properties referred to as r-aromaticity, which would be determined by r-electron
delocalization related to resonance and to strained geometry. In fact, the experi-
mental average magnetizability nav of C3H6 is much larger than that calculated from
additive Pascalian schemes. The enhanced anisotropy of nab has been attributed to
the presence of r-electron ring currents induced by a magnetic field perpendicular
to the molecular plane, which would also cause upfield chemical shift in proton
magnetic resonance. This interpretation has been seriously questioned in recent
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papers [113, 114] via near Hartree-Fock representations of magnetic-field induced
current density field. No proof for strong diatropism was found for the cyclopropane
molecule in a magnetic field normal to the carbon plane.

The essential features of JB are understood by the SG shown in Fig. 7.23 and by the
currentdensitymapsofFig. 7.24.TheSGisverydifferent fromthat ofp-aromaticCnHn

cyclic systemanalyzed inSect. 7.5.2. It shows that theprimaryvortical SLbranchesout
into four vortical and three saddle SLs. Two far-off (0, 0) critical points, not visible in
thefigure, lie on theC3 axis, at a distance ofmore than 10 bohr from the centre ofmass.
TheGomes theorem, Eq. (7.59), is fulfilled: three diamagnetic vortical SLs, each lying
on a Trv symmetry plane, pass through the C nuclei, then they bend outward at some

Fig. 7.23 Perspective view
of the stagnation graph of the
current density vector field in
cyclopropane. The uniform
external magnetic field,
B � B�3, is parallel to the z
axis. Green (red) lines denote
diamagnetic (paramagnetic)
vortices, saddle lines are blue
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distance aboveandbelow therh plane.The fourthparamagneticvortex rotatesabout an
SL that coincides with theC3 axis. The streamlines in Fig. 7.24 show the extension of
the paramagnetic vortex about the centre of themolecule. The corresponding contours
and three-dimensional perspectiveviewaccounting for the intensity of the currentfield
indicate that the central paratropic whirlpool is as weak as the diamagnetic flow in the
tail regions.There is noevidenceof strongdelocalized currents andofr-aromaticity on
the magnetic criterion [113, 114].

0.0

1.0

1.702

Fig. 7.24 Streamlines and modulus of the current density vector field induced by a magnetic field
of unit magnitude, normal to the molecular plane of cyclopropane and directed outward. The
distance in bohr from the origin is specified by a number on the down-left corner. Atom positions
are marked by crosses. Maximum modulus (step between two consecutive contours) in au: 2.22
(0.02) at 0.0, 0.0872 (0.009) at 1.0, and 0.0916 (0.009) at 1.702
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An interesting comparison is offered by the prismane molecule, a polycyclic
hydrocarbon with formula C6H6, whose carbon and hydrogen atoms are arranged in
the shape of a six-atom triangular prism. The magnetic symmetry is the same as
cyclopropane’s D3hðC3hÞ. It is a valence isomer of benzene, far less stable than the
archetypal aromatic molecule. A spatial ring current model for this molecule has
been reported [115].

7.5.5 Cubane and Pentaprismane

Cubane is a Platonic hydrocarbon with chemical formula C8H8, possessing octa-
hedral Oh symmetry. Its special magnetic properties have been investigated by
some authors, whose work was reviewed in a recent paper [116]. A compact spatial
model for the electronic current density vector field induced in the cubane molecule
by a magnetic field perpendicular to a face has been proposed to interpret its
magnetic response.

A perspective view of the SG of the cubane molecule is shown in Fig. 7.25. It
conveys the essential information needed to understand the maps the JB field,
Figs. 7.26 and 7.27. The central vortical SL coincides with the C4ðzÞ symmetry
axis. Branching of this SL takes place at a pair of far-off critical points, where
transition occurs from diamagnetic flow in the tail regions to paratropic regime.

The central paramagnetic axial vortex is represented in Fig. 7.25 by a red line
extending to great lengths in the direction of the B field. Four green diamagnetic
vortical lines lie on the Trd planes intersecting along the z axis and containing
HCCH bonds, and four blue saddle SLs are situated on the Trv planes bisecting CC
bonds. The Gomes theorem, Eq. (7.59), is obeyed: by counting the i indices of the
SLs one has +5 − 4 = +1, i.e., the overall circulation is vortical.

On crossing the faces of the carbon cage parallel to the xy plane, short green
segments, representing diamagnetic vortical flow embedded in the blue saddle SLs,
are observed. This feature is similar to that observed in aromatic compounds
examined in Sect. 7.5.2 and it can tentatively be interpreted in terms of pitchfork
bifurcations taking place on a same plane parallel to rh.

Maps of JB field, Figs. 7.26 and 7.27, on planes orthogonal to B constitute a
basic model useful to describe the magnetic properties of cubane. They show the
diamagnetic circulation in the tail regions of the molecule, typical of all diamagnetic
systems, and the set of vortex and saddle SPs at the intersection of corresponding
SLs with the plot plane.

To sum up, the magnetic response of the C8H8 molecule to a magnetic field
applied at right angles to a face of the cube is characterized by a strong paratropic
AV flowing inside the lateral surface of the cube. The intensity of the paratropic
ring currents sustained by r-electrons in cubane is higher than that induced in the p-
electrons of benzene. Therefore, even if overall diamagnetism prevails, as proven
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by the calculated average magnetizability nav ¼ �86:5� 10�29 J T−2, the cubane
cage can be considered a hallmark of face-centred paramagnetism [116].

Pentaprismane constitutes another example of molecules designed and synthe-
sized by chemists to give pleasure through their abstract beauty. Besides, it is
endowed with noticeable magnetic properties, interpretable [117] via the theoretical
tools outlined in this chapter. A perspective view of the SG of the pentaprismane
molecule in a spatially uniform magnetic field parallel to the C5 symmetry axis, i.e.,
at right angles to the five-membered face, is shown in Fig. 7.28. The magnetic
symmetry is D5hðC5hÞ, Eq. (7.82).

Fig. 7.25 Perspective view of the stagnation graph of the current density vector field in cubane
C8H8. The uniform external magnetic field B ¼ �3Bz is perpendicular to opposite square faces of
the C8H8 cage (�3 is the unit vector in the direction of the z axis through the centre). Green (red)
lines denote diatropic (paratropic) vortices, saddle lines are blue
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Fig. 7.26 Streamlines and modulus of the current density vector field induced in cubane by a
magnetic field Bz with magnitude 1 au normal to a face of the cube and directed outward, plotted
(left) in the xy plane through the centre of the molecule; (right) in the plane of a face. The projection
of atom positions is marked by a cross. The maximum modulus (step between two consecutive
contours) in au is 4:8� 10�2 (4� 10�3) on the left, 1.93, cut at 0.2, (2� 10�2) on the right
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Fig. 7.27 Streamlines and modulus of the JB field. The graphical conventions are the same as in
Fig. 7.2. The plot planes are (left) parallel to a face at a distance z = 2 bohr; (right) parallel to the
plane of the H nuclei, at z = 2.62896 bohr. The maximum modulus (step between two consecutive
contours) in au is 0.15 (1:5� 10�2) on the left, and 9:3� 10�2 (1� 10�3) on the right
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The topological features of the SG and the associated representations of the JB

field, Figs. 7.29 and 7.30, are analogous to those reported for prismane [115] and
outlined above for cubane. A similar structure characterizes the set of vortex- and
saddle-SLs which emerge from a pair of remote (0, 0) branching points, at which

Fig. 7.28 Perspective view of the stagnation graph of the current density vector field in
pentaprismane C10H10. The uniform external magnetic field B ¼ �3Bz is perpendicular to the
pentagonal faces of the C-cage (�3 is the unit vector in the direction of the C5 � z axis through the
centre). Green (red) points denote diatropic (paratropic) vortices, or foci; saddle points are blue
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transition occurs from diamagnetic vortical flow in the outer reaches of the mole-
cule to the internal region of the current density field, enclosed within the grey
surface observable in Fig. 7.31. This surface is a two-dimensional manifold of
points r at which the zz component of the shielding density, Eq. (7.56),

XI

zz
ðrÞ ¼ � l0

4p
�zbc

rb � RIb

jr� RI j3
J Bz

c ðrÞ ð7:83Þ

vanishes for any dummy atom I all along the C5 symmetry axis, in a magnetic field
B parallel to it. It surrounds the central paratropic vortex, indicated by a red line,
and five diatropic vortices indicated by green lines, separated by the five saddle blue
lines, but it does not coincide with the separatrix. The line branching of Fig. 7.28 is
consistent with the Gomes theorem, Eq. (7.59). Planar visualisations of the density
function, Eq. (7.83), for I ¼ H, are displayed in Fig. 7.30.

Fig. 7.29 Perspective view of the JB field in pentaprismane in a uniform external magnetic field
B ¼ Bze3, of magnitude 1 au, perpendicular to the pentagonal faces. Only current densities with
jJBj between 0.05 (blue arrows) and 0.1 au (red arrows) are plotted. The figure shows the
peripheral regions of delocalized diatropic flow, the central paratropic vortex and the local
diatropic vortices about the midpoint of the C–C bonds
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7.6 Toroidal Flow and Associated Anapole Moment

As shown by Hirschfelder and coworkers, one is left with the possibility of either
AVs, rotating around nodal manifolds which extend to the boundaries of space, or
TVs flowing up through the centre and down around the sides of a closed nodal line
[37–40, 78, 118].

0.67 C plane

2.00 H plane

Fig. 7.30 Streamlines of JB and corresponding contours of the magnetic shielding density RH
zz, in

au, in pentaprismane C10H10, for an applied field of 1 au directed outward, parallel to the C5

symmetry axis, on four parallel planes, at distance (in bohr) Z = 0.67 (min ¼ �2:1� 10�3,
max ¼ 2:3� 10�3), Z = 1.47 (the plane of the C nuclei, min ¼ �2:4� 10�1, max ¼ 4:0� 10�1,
truncated at 
3:0� 10�2), Z = 2.00 (min ¼ �5:0� 10�2, max ¼ 6:3� 10�2, truncated at

3:0� 10�2), and Z = 2.59 (the plane of the H nuclei, min ¼ �6:0� 102, max ¼ 2:0� 103,
truncated at 
3:0� 10�2). In all the maps the step is 1:0� 10�3. Green (red) contours denote
shielding (deshielding). The shielding contributions which arise from the ring currents sustained
by r� electrons of the carbon atoms on the plane of the nearest pentagonal face are very small,
those provided by the delocalised currents increase on the plane at 2.00 bohr. A major shielding
contribution to rHzz arises from delocalized flow on the plane of the hydrogen nuclei. The plot at
0.67 documents the local deshielding operated by the r-currents flowing below the 5-membered
carbon ring
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Toroidal flow, see Fig. 7.32, is characterized by remarkable properties: vanishing
induced magnetic dipole moment, induced magnetic field with the shape of a
topological circumference confined inside the torus surface, and induced anapole
moment [119]. The presence of TVs in maps of JB has been detected in some
molecules [103, 120–122].

The anapole moment can be expressed [118] via the current density JB induced
by a uniform magnetic field B,

Aa ¼ � 1
6

Z
ðr2dab � rarbÞJBb d3r: ð7:84Þ

The anapole susceptibility is a nonsymmetric second-rank tensor [123, 124]
defined by

aab ¼ @Aa

@Bb
: ð7:85Þ

Fig. 7.31 Isoshielding
density surfaces RI

zzðrÞ ¼
0:0 au (represented in grey)
for any dummy atom I lying
on the C5 symmetry axis of
pentaprismane in a magnetic
field BkC5. Vortex and saddle
SLs of the SG in Fig. 7.28 lie
on this surface, which
separates the inner part of the
JB field from the peripheral
region of delocalized currents
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Whereas the components of the anapole vector are origin dependent, the trace
aav ¼ ð1=3Þaaa is invariant, so that the anapole moment induced in a freely tum-
bling molecule

A ¼ aavB ð7:86Þ

is also invariant of the origin. The sign of aav and A is opposite for two enantiomers
and these properties can therefore be considered markers for chiral discrimination
[123, 124].

Toroidal vortices are easily recognized from current density maps and corre-
sponding stagnation graph. A spatial current model for LiH [121] is described in
Figs. 7.33, 7.34, 7.35, and 7.36. The stagnation graph for a field Bx applied per-
pendicular to the z bond axis, shown in Fig. 7.33, contains a set of (2, 0) SLs lying
on the TrvðzxÞ symmetry plane i.e., a green line, crossing the bond in the vicinity of
the hydrogen nucleus, extending to the limits of the molecular domain, and a closed
loop constituted by green and red portions, corresponding to opposite vorticity,

m

J

Bind

A

Bind

J

Fig. 7.32 Above Ampère
magnetic dipole m and BS
magnetic field B ind induced
by the current density flowing
in a loop. Below Anapole
moment A and confined
magnetic field B ind induced
by the current density J
flowing on the surface of a
torus
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in the basin of the Li atom. The former indicates a diamagnetic AV, the latter is
typical of a TV [78], whose presence is confirmed by a pair of blue ð3;
1Þ
conjugated SPs on either side of the bond direction. These points are classified as
stable and unstable saddle-nodes in the terminology of Reyn [92]. An observer in
front of the nodal loop in Fig. 7.34 would see currents coming out from the (3, +1)
source point in the proximity of its centre, flowing through the centre around the
sides of this loop, and entering through the (3, −1) sink behind the nodal loop.

Fig. 7.33 Perspective view of the stagnation graph of the LiH molecule in a magnetic field,
represented by a big black arrow, perpendicular to the bond. Green (red) SLs denote diamagnetic
(paramagnetic) vortices. The stagnation loop and two off-axis conjugated saddle-node ð3;
1Þ
stagnation points (represented in blue) indicate toroidal flow in the basin of Li atom
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The TV looks like a doughnut with a very small central hole, completely encased
within an S2 surface, that is, a separatrix with the shape of a topological sphere,
which forms a boundary marking the limits to the rest of the vector field. This
separatrix is filled by asymptotic paths, referred to as homoclinic trajectories [57],
see Fig. 7.35. In the streamline plot of Fig. 7.36, the toroidal flow is represented by
two juxtaposed vortices, one diamagnetic and one paramagnetic. Their centres are
found at the intersection of the green and red SLs of the stagnation loop of the TV
with the rhðyzÞ plane.

Fig. 7.34 Perspective view of the toroidal flow in the basin of the Li atom within the LiH
molecule in a magnetic field perpendicular to the bond. All the streamlines flow through the centre
and down around the sides of the stagnation loop containing one green and one red segment. The
ð3; þ 1Þ saddle-node, observed in the foreground as a source, is connected by black trajectories to
its conjugated ð3;�1Þ (sink) partner lying behind the torus. A blue closed asymptotic line defines
the intersection of the separatrix containing the torus with the plane of the nuclei perpendicular to
the applied field. On this plane, the ð3;
1Þ points look like saddles. The other homoclinic blue
line joining the ð3;
1Þ points lies on a plane normal to the bond axis. A wavy asymptotic line,
which connects the ð3;
1Þ points passing inside the stagnation loop, is best observed in Fig. 7.35
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Fig. 7.35 Homoclinic trajectories connecting the ð3;
1Þ saddle-nodes on the separatrix of the
torus about the Li atom in the LiH molecule. The arrows indicate the direction of the eigenvectors
of the transposed Jacobian matrix $JB at the stagnation points. An asymptotic wavy line flows
across the stagnation loop, about its centre

Fig. 7.36 The current density field for LiH in a field perpendicular to the plane containing the
nuclei, with jB j ¼ 1 au. Diatropic (paratropic) current density is clockwise (anti-clockwise). The
maximum intensity of the JB field is 0.58 au, truncated to 0.10 in the perspective view on the right.
Corresponding contours start at 5:0� 10�3 au and are 5:0� 10�3 apart
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Analogous topological models of magnetic-field induced current densities are
shown in Figs. 7.37, 7.38, and 7.39 for the CO2 molecule [121] and in Figs. 7.40,
7.41, 7.42, and 7.43 for the CH–CH molecule [103].

Fig. 7.37 The current density field for CO2 in a field perpendicular to a plane containing the
nuclei, with jB j ¼ 1 au. Cross-sections of the flow in the basin of an oxygen atom, showing the
TV, and about the central carbon nucleus—insets with blue and red frame, respectively—are
magnified in the bottom. The maximum intensity of the JB field is 3.55 au, truncated to 0.30 in the
top-right contour map, which start at 0.03 au and are 0.03 apart
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7.7 The Topological Definition of Ring Currents

Several efforts have been made by many chemists to come to grips with universally
acceptable notions of aromaticity, antiaromaticity and non-aromaticity as molecular
properties. The results arrived at so far are at times rather frustrating, indicating the
difficulty, if not the impossibility, of ascribing a consistent set of common distin-
guishing features to aromatic compounds [15]. Rules of aromaticity have been pro-
posed by a number of researchers, see the chapter “Rules of Aromaticity”, by Feixas
et al. in this book [125], assuming a basic connection between aromatic character and
electron delocalization.

Electron delocalization is typical of systems whose structure is characterized by
resonance hybrids according to the valence-bond theory. Delocalized electrons do
not have a specific location; they cannot be drawn in a simple Lewis structure.
Allowing for a visualization reported in the IUPAC Gold Book [126], they are
spread across a moiety including three or more atoms of a molecule. Examples

Fig. 7.38 Asymptotic lines connecting the ð3;
1Þ points in the CO2 molecule
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[126] illustrate the peculiar delocalization of charge in ionic conjugated systems,
e.g., R-CO�

2 ;CHðCH2Þþ2 . Attempts have been made at rationalizing electron
delocalization in recent papers citing previous relevant literature [27, 127–130].

On the other hand, practical and clearcut definitions, well-suited to reconcile
diverging views [131–133], are not available for the related concept of delocalized
current induced in the electrons of a molecule by an applied magnetic field B. In
general it is merely assumed that delocalized p-electrons are quite free to move.
There is a general accord that they sustain diatropic [104, 134–136] “ring currents’’
in conjugated planar cyclic molecules, e.g., the “aromatic’’ benzene [15, 137, 138],
in the presence of B orthogonal to the molecular plane. On the same ground it is
assumed that the p-electrons of “anti-aromatic’’ systems, e.g., cyclobutadiene and
the flattened cyclo-octatetraene model molecule, support paratropic currents delo-
calized all over the carbon ring [49, 139]. The SG of the latter presents quite
remarkable features, see Fig. 5 of Ref. [139].

Fig. 7.39 Toroidal regime in the neighbourhood of an oxygen atom in the CO2 molecule. The
figure shows the small size of the diamagnetic portion
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Fig. 7.40 Perspective view of the stagnation graph of the current density vector field induced by a
magnetic field B � B�1 normal to the bond axis of acetylene. Here and in Figs. 7.41 and 7.42 the
direction of B is represented by a fat blue arrow. Green (red) lines denote diamagnetic
(paramagnetic) vortices, saddle lines are blue. Isolated blue points mark ð3
 1Þ saddle-nodes,
isolated green (red) points denote ð3
 1Þ diamagnetic (paramagnetic) foci
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Fig. 7.41 Splitting of the central diamagnetic vortex into a central saddle line and two
diamagnetic vortical lines in acetylene. The asymptotic blue trajectories passing through ð3
 1Þ
saddle-node points mark the intersection of the separatrices containing the TVs with the yz plane.
The truncated blue line is connected to the symmetrical pattern about the other C–H bond. The
diamagnetic (paramagnetic) portions of the TV are observed around green (red) SLs
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The existence of magnetic-field induced electronic “ring currents” in benzene
and other usaturated planar molecules was the object of a forceful dispute, opposing
Musher [131, 132] to Gaidis and West [133]. Musher restated his point in an
extended review article [140]. At any rate, after nearly half a century, and despite

Fig. 7.42 Magnification of the TV about a C–H bond of acetylene

Fig. 7.43 Display of the vector current density (streamlines on the left, modulus contours in the
centre, and related 3-dimensional view on the right) on a plane containing the bonds of the
acetylene molecule. The applied magnetic field is directed out, and perpendicular to, the plot plane.
Atom positions are marked by crosses. The maximum modulus is 3.54 (cut to 0.25) au, and the
step between two consecutive contour levels is 0.025 au
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several attempts at ironing out rough spots, the question still appears partially
unsettled [15, 137, 138].

In particular, a common agreement about the notion of interatomic current has
not been reached and fundamental questions remain unanswered, e.g., are delo-
calized currents a distinguishing prerogative of planar unsaturated molecules, or
rather the ubiquitous feature [131, 132] of any molecule? To what extent are the
electrons of noncyclic compounds capable of sustaining delocalized flow in the
presence of a magnetic field? Are p- and r-electrons characterized by comparable
mobility? What about a practical intensity measure of the induced currents? Are
ring-shaped molecules carriers of stronger currents compared with noncyclic ones?
Is there an indisputable quantifier of current delocalization?

Delocalized r-electron currents were found in planar saturated molecules.
A paradigmatic example is provided by H6, the cyclic arrangement of three juxta-
posed hydrogen molecules with D6h symmetry [141–143], first studied by London
[144]. Noticeably, a delocalized pattern was observed also in ethylene, another
noncyclic system which sustains an annular current (with maximum modulus 0.075
au, for jBj ¼ 1 au) orthogonal to the molecular plane, see Fig. 7.10 and a recent
paper [103]. Delocalization of electron flow takes place on the plane of the hydrogen
nuclei of the CH3-group in D3d or D3h conformations of ethane in the presence of a
magnetic field parallel to the C3 symmetry axis, see Figs. 7.15 and 7.17.

The existence of fairly large delocalized electron flow was demonstrated in H2O,
BH3, NH3, CH4, CH3–CH3, H3O

+, CHþ
3 , and NHþ

4 , by plots of quantum
mechanical current density and by current susceptibilities, Eq. (7.55), calculated by
accurate ab initio methods [102, 145]. The latter, also referred to as “current
strengths” measured in nano ampère per tesla, are defined via flux integrals eval-
uated over suitably chosen molecular domains [76]. Simple procedures, allowing
for ideal current models based on the BS law [46], have been applied to predict the
ability of a certain molecule to support magnetic-field induced electron currents
flowing through an interatomic circuit [77, 141–143].

According to the conclusions expounded in a recent paper [145] one can rea-
sonably claim that the delocalized patterns observed in the current density maps
actually prove the existence of “ring currents without a ring”. These results would
seem to lend support to the paradoxical statement made by Musher, “… the
hydrogen atom also… sustains a ring current.” [131]. Since electron currents
flowing over wide portions of a molecular domain are not the exclusive property of
cyclic conjugated systems, rigorous and comprehensive definitions of “delocalized
current’’ seem therefore to be necessary.

In the light of the findings discussed above, a definition of delocalized currentwas
tentatively proposed [145] as a current flowing along a closed loop containing three
or more atoms. It appears consistent with the IUPAC acceptation of delocalized
charge [126]. Such a definition would seem appropriate for CHþ

3 and BH3, as well as
NH3, H3O

+, andNHþ
4 . However, the intriguing case of H2O in a fieldB parallel to the

C2 axis shows that only two atoms may be sufficient to give rise to an intense
delocalized current, moving around in a loop of sufficiently large size [145].
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A falsifiable definition of “ring currents” [15] as a synonim of delocalized
currents in a molecule may be attempted within the lexicon of topology, delocalized
currents are those flowing in the domain which extends beyond the separatrix
surrounding the nuclear skeleton. This formulation would seem ad hoc for cyclic,
neutral or charged, planar molecules CnHn in the presence of a magnetic field
orthogonal to the molecular plane, i.e., compounds with DnhðCnhÞ magnetic sym-
metry, see Sect. 7.5.2, in which the separatrix is defined by the surface containing
n vortical and n saddle stagnation lines: delocalized currents flow on the outside for
a great enough distance to reach the tail regions of the electron cloud. It seems
appropriate also to the case of cyclopropane and prismane discussed in Sect. 7.5.4,
cubane and pentaprismane, Sect. 7.5.5.

However, the same definition would apply to the case of p-electron currents in the
same molecules, in which the separatrix coincides with the single vortical line
through the centre of the molecule. It would be also applicable to diamagnetic atoms,
in which the delocalized flow beyond the nucleus consists of concentric circular
streamlines about a vortical stagnation axis identifiable with the separatrix [60].

7.8 Current Density Induced by a Pair of Magnetic Dipole
Moments and Nuclear Spin-Spin Coupling

The Ramsey theory of indirect nuclear spin-spin coupling [12, 13] can be refor-
mulated in terms of linear superposition of two current density fields, JmI and JmJ ,
induced in the electrons of a molecule by nuclear magnetic dipoles mI and mJ [3,
51, 52, 61]. Graphical representations of the interference pattern within the total
current density vector field, together with corresponding density maps, Eq. (7.57),
are very useful to elucidate coupling pathways and to rationalize the exchange of
spin information between coupled nuclei.

A paradigmatic application has been reported for ethane [16]. It shows that the
Fermi contact contributions to experimental nuclear spin-spin coupling constant are
easy to explain in terms of current densities (7.25), which transport spin polariza-
tion along the coupling pathway, and associated plots of property density,
Eq. (7.57). Same-spin electron correlation, the only kind of correlation recovered by
the Hartree Fock wavefunction considered in Ref. [16], determines the alignment of
the nuclear dipoles at its ends, as shown in the current-density maps reported for
ethane, Fig. 7.44.

According to experimental and theoretical results, the magnetic dipoles of the
vicinal protons are anti-parallel, in the configuration of lower energy. Therefore, the
physically acceptable magnetic symmetries are C2v for the eclipsed, and C2h Csð Þ for
the staggered ethane. The current density fields induced in the electrons by two
anti-parallel and parallel nuclear magnetic dipoles at vicinal protons of the eclipsed
ethane, are shown respectively on the left and on the right of Fig. 7.44.

The streamlines in Fig. 7.44a cannot cross the rv plane. At a vanishingly small
distance from this plane, the trajectories flow parallel. In Fig. 7.44d, the Trv plane
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can be crossed only by streamlines perpendicular to it, according to the discussion
in Sect. 7.3. Orbits approaching this plane with an angle different from p=2 are
scattered. Actually, the phase portraits of two saddle SPs lying on Trv are observed
in Fig. 7.44d.

A representation of the Dirac-Van Vleck vector model [16, 51, 52, 146] for the
experimental vicinal coupling in CH3–CH3 is given by Fig. 7.44a. Within the

(a)

(b)

(c)

(e)

(f)

(d)

Fig. 7.44 Current density field induced via the Fermi contact interaction by two magnetic dipoles
at the vicinal protons of eclipsed ethane. The coupling pattern, for anti-parallel (parallel) dipoles, is
represented on the left (right). The streamlines are shown in (a) and (d); b and e are contour levels
for the intensity, in au; the values of the solid (dashed) lines increase (decrease) in steps of
5� 10�2 from the 0-contour, up to 0.5 au; c and f are the corresponding 3-dimensional perspective
views. The position of the nuclei is marked by a cross; a corresponding symbol can be seen in the
contour maps
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plotting conventions of this figure, the anti-clockwise flow about the H1 nucleus is
supported by b-polarised electrons [16, 51, 52, 146]. Two clockwise whirlpools,
supported by opposite a polarisation, are observed in the H1–C1 bond and about the
C1 nucleus. The regime is reversed on the right of the rv plane, as required by the
C2v magnetic symmetry. At the end of the coupling path, all over the H4 nucleus,
the circulation is clockwise, corresponding to local a-electron distribution. The
contour plots, (b) and (e), and the three-dimensional perspective views, (c) and (f),
show local maxima of modulus of the current density field about the nuclei.

The Fermi-contact coupling density, Eq. (7.57), for vicinal protons in the
eclipsed and staggered conformations of ethane is shown in Fig. 7.45. Analogous

-1

3.2

-3

3

-0.1

-0.05

0

0.05

0.1

-3

3

-3

3

-0.04
-0.02

 0
 0.02
 0.04

(a) (c)

(b) (d)

Fig. 7.45 a and c Three-dimensional perspective view of the average Fermi coupling density
ð1=3ÞjJIaaðrÞ, Eq. (7.57), in au, for the vicinal protons I � H1 and J � H4, for the eclipsed and
staggered conformations of ethane, in au. The corresponding contour plots are shown in (b) and
(d). The H1–C1–C2–H4 pathways lie over the plot plane. Absolute values larger than 0.10 and
0.04 au, respectively for eclipsed and staggered conformations, were truncated. In (b) and (d), the
position of the hydrogen nuclei is marked by crosses. Solid (dashed) lines mean positive (negative)
values. In (b) the values of the dashed (solid) lines increase (decrease) in steps of 5� 10�3 au
from the 0-contour. In (d) the step is 10�2 au
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considerations can be made for both conformations of ethane. However, since the
geometry of the former corresponds to higher molecular energy, its contribution to
the experimental coupling constant is smaller than that attributable to the latter. The
three-dimensional perspective view clearly defines the H1–C1–C2–H4 coupling
pathway through the bonds as a sequence of up-spikes in the proximity of the
nuclei. The spike pattern indicates that, in the eclipsed conformation, through-space
H1–H4 coupling takes place to a little extent, see Fig. 7.45a, b, where down-spikes
connected with the current vortex about the H1–C1 bond are observed. These
down-spikes are absent in Fig. 7.45c, d for the staggered conformation, in which
through-space vicinal coupling is unimportant. Although the up-spikes about the
carbon nuclei are much lower than those over the coupled protons, they indicate the
essential role of the charge distribution in these regions for transporting spin
information.

The interpretation of the coupling density maps of Fig. 7.45 via the approaches
of Refs. [51, 52] is facilitated by models of the interference pattern of current
densities induced by the pair of interacting nuclear magnetic dipoles. Thus, for a
reference electron of given spin close to H1, the Fermi correlation precludes
same-spin polarization in its proximity, gives rise to alternating opposite spin
densities along the coupling pathway, and determines the indirect spin-spin inter-
action for two nuclei at its ends.

7.9 Conclusions

The response of diamagnetic molecules to an external homogeneous static magnetic
field B and to intramolecular permanent nuclear magnetic dipoles m I is effectively
rationalized via maps of streamlines and modulus of quantum mechanical induced
current densities JB and JmI . In this chapter it is shown that the essential features of
intrinsic tensor properties, magnetizability vab, magnetic shielding rIab at nucleus I,

and spin-spin coupling KIaJb between nuclei I and J, are nicely explained by ana-
lyzing contributions which arise from different molecular domains. In particular,
rIab and KIaJb can be related to property-density functions RI

ab and jIaJb via non-

invertible maps, f : JBðrÞ ! RIðrÞ and f : JmI ðrÞ ! jIJðrÞ, which clearly visualize
the local phenomenology. The topological analysis of singularities, stagnation lines
and stagnation graph of JB and JmI current density vector fields provides powerful
interpretative tools, as shown in a number of examples. A definition of
magnetic-field induced delocalized electron currents (ring currents) can be proposed
on a topological criterion.
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Chapter 8
Topological Analysis of the Fukui
Function

P. Fuentealba, C. Cardenas, R. Pino-Rios and W. Tiznado

Abstract In this work, the Fukui function will be analyzed using the framework of
the topological analysis. First, the Fukui function will be introduced as part of the
Density Functional Theory of Chemical Reactivity, and its chemical interpretation
will be discussed. Then, some applications showing the importance of the topo-
logical analysis will be presented. The applications cover from acids and basis of
Lewis, substituted benzenes and as an orientation predictor for the most favorable
interaction between clusters (used as building blocks) to form larger structures.

8.1 Introduction

All the chemical and physical processes we are interested in occur in real space
(a three dimensional space). Therefore, it is obviously necessary to have
three-dimensional mathematical functions in order to adequately describe them. The
calculation and analysis of three-dimensional functions are very well known.
However, the global graphical representation and visualization of a three dimen-
sional function is not as easy as the one for one- or two-dimensional functions.
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Thus one resorts to contour maps or isosurface plots to represent them.
Unfortunately, they show only a part of the information contained in the function,
since they depend on the contour (or isosurface) value choice one decides to plot. In
order to have a more unambiguous way to analyze a three-dimensional (or higher
dimension) function, one could use the framework of the topological analysis. In
theoretical chemistry, this has already been done in the pioneer works of Bader,
which originated the Quantum Theory of Atoms in Molecules (QTAIM) [1]. Later
this topological analysis was applied to interpret the Electron Localization Function
[2–4], and lately it has been applied to the study of the Fukui function [5–7], which
is namely the object of this chapter.

We will start with the presentation of the Fukui function in the framework of the
Density Functional Reactivity Theory and its chemical interpretation, [8–14] fol-
lowed by a brief account of the different ways to analyze it and ending with its
topological analysis. Finally, several applications of this analysis will be shown,
and some open problems will be discussed.

8.2 Fukui Function

Density Functional Theory is based on the existence of a functional of the electron
density, qðrÞ, which gives the ground state energy:

E½q� ¼ F½q� þ
Z

vðrÞqðrÞdr ð8:1Þ

where F½q� is the universal functional of Hohenberg and Kohn [15], and vðrÞ is the
external potential. Besides, there is a variational principle, which yields the fol-
lowing Euler-Lagrange equation:

l ¼ dF½q�
dqðrÞ þ vðrÞ ð8:2Þ

where l is the chemical potential present in the equation as the Lagrange parameter.
It can be demonstrated that the chemical potential is the derivative of the energy
with respect to the electron number N [16]

l ¼ @E
@N

� �
v

ð8:3Þ

The derivative is well defined only for open systems and presents a discontinuity
at integer number of electrons [17–24]. Therefore, the derivative at integer number
of electrons has different values whether it is taken either by the right or the left.
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Parr and Yang defined the Fukui function, f(r), as the functional derivative of the
chemical potential with respect to the external potential at constant number of
electrons [5, 6]

f ðrÞ ¼ dl
dvðrÞ

� �
N

ð8:4Þ

Note that because of Eq. 8.3, the Fukui function is really the second derivative of
the energy with respect to the electron number and the external potential. Assuming
that the energy is an exact differential, the crossed second order derivatives are
equal, and

f ðrÞ ¼ @qðrÞ
@N

� �
v

ð8:5Þ

As for the chemical potential, the Fukui function has different values if the
derivative is taken from the right or the left. It can be demonstrated that, in the
canonical ensemble at zero temperature, the Fukui function is given by

f þ ðrÞ ¼ qNþ 1ðrÞ � qNðrÞ ð8:6Þ

When the derivative is taken by the right, and

f�ðrÞ ¼ qNðrÞ � qN�1ðrÞ ð8:7Þ

when the derivative is taken by the left.
Equations 8.5–8.7 are not valid if the ground state or its vertical anions are

degenerate states. In such cases, the functional derivative of Eq. 8.4 is ill-defined
and, a proper perturbation theory for degenerate states must be used to define Fukui
function analogues [25–27]. The Fukui function, approximated using the Eq. 8.6,
represents the molecular reactivity as an electron acceptor; whereas the Fukui
function, approximated using the Eq. 8.7, plays the same role in the reactivity of
electron donors. In a frozen orbital approximation Eqs. 8.6 and 8.7 are just the
square of the frontier orbitals, LUMO and HOMO, respectively. In this way, they
recover all the frontier orbital reactivity developed by Fukui [5, 28], making their
chemical interpretation clear. The regions of the molecule where the Fukui function
has a big value are the most prone to accept or donate electrons.

Hence, both Fukui functions are useful reactivity descriptors especially for
orbital controlled reactions. Considering the Eqs. 8.6 and 8.7, it is easy to see that
the Fukui function integrates to one:Z

f ðrÞdr ¼ 1 ð8:8Þ
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On the other side, there are many numerical evidences that the Fukui function
can have negative values [29–33]. Therefore, it cannot be interpreted as a distri-
bution function.

In chemistry, it is important to know the local preference inside a molecule to
make or break bonds (For instance, in regioselectivity and stereoselectivity). Then,
it is desirable to describe this preference by assigning a number to each atom, which
was carried out in the early days of the Fukui function. Yang and Mortier [34] had
the brilliant idea of “condensing” the Fukui function through a simple protocol, in
order to assign a number to the Fukui function on each atom of the molecule. This
was done in analogy with the Mulliken atomic population analysis. Considering
Eqs. (8.6 and 8.7), they proposed to condense both, the electron acceptor Fukui
function in atom k in the molecule as:

fk ¼ qkðNþ 1Þ � qkðNÞ ð8:9Þ

and, the electron donor Fukui function as:

fk ¼ qkðNÞ � qkðN � 1Þ ð8:10Þ

where qk(N) is the charge assigned to atom k in the molecule with N electrons,
whereas qk(N − 1) and qk(N + 1) are the charges of its vertical cation and anion,
respectively. Until today, this is the most traditional way to present the Fukui
function. In the original version, the charges were calculated using the Mulliken
population analysis. However, nowadays it is clear that this analysis fails greatly
when basis sets with diffuse functions are used. To address this problem, some
authors propose the use of net atomic charges computed using modern methods,
such as electrostatic potential analysis and natural population analysis, and the
results can differ in a significant way [35–37]. Fortunately, the Fukui function is
usually used to compare the relative reactivity of different atoms of a molecule.
Therefore, the adequate description of the local reactivity preferences is more
important than the numbers themselves. Other methodologies to calculate the
charges are also in use; the Bader’s partition of atoms in molecules (AIM) and the
Hirschfeld’s population analysis [38–42]. They differ from the Mulliken approxi-
mation because they do not use the molecular orbitals.

8.3 Topological Analysis and Condensed Fukui Function

The last two methodologies mentioned above directly divide the whole space into
various regions assigning the volume Xk to atom k in the molecule; and the inte-
gration of the density in this region is used for computing the charge of atom k. In
this way, one can generalize the proposed condensed Fukui function as:
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fk ¼
Z
Xk

f ðrÞdr ð8:11Þ

The way to choose those regions is still arbitrary. It is possible to further gen-
eralize the condensed Fukui function as:

fk ¼
Z

xðrÞf ðrÞdr ð8:12Þ

where xðrÞ is a somewhat arbitrary weight function. For instance, one choice is:

xðrÞ ¼ qk if r 2 Xk

0 otherwise

�
ð8:13Þ

The charges qk can be chosen from any of the previously mentioned population
analyses. Equation 8.12 shows even another ambiguity: every population analysis is
understood as the charge obtained after the integration of the density in a deter-
mined region of the space:

qk ¼
Z

xðrÞqðrÞdr ð8:14Þ

and the condensed Fukui function is calculated using these charges. However, this
is not exactly the same as Eq. 8.12. The Fukui function is the difference between the
densities of the neutral and charged systems, but the weight function xðrÞ is not
necessarily the same for both neutral and charged systems. If the weight function of
a system with M electrons (M ¼ N � 1; N; N þ 1) is denoted as xMðrÞ, then
Eq. 8.12 reads as:

f�ðrÞ ¼
Z

xNðrÞðqNðrÞ � qN�1ðrÞÞdr ð8:15Þ

with a similar equation for f þ ðrÞ. This is different from:

f�ðrÞ ¼
Z

ðxNðrÞqNðrÞ � xN�1ðrÞqN�1ðrÞÞdr ð8:16Þ

which comes from Eq. 8.9. Most works have used the last equation because the
definitions of the different population analyses carry it out in such a way. The
differences between both versions have been recently exposed [41, 43]. From a
formal point of view, the correct way to condense the Fukui function is through
Eq. 8.15 [43].

In order to keep its practical advantages and avoid these mentioned ambiguities,
one can use a well-studied mathematical tool (the topological analysis) to charac-
terize the Fukui function [44]. This has been applied before to analyze both the
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electron density (AIM) and the Electron Localization Function (ELF) [3, 4, 35, 45].
The Fukui function, being a scalar field in <3 itself, can also be analyzed topo-
logically. In this case, the critical points correspond to maxima, minima and saddle
points. They can be located by the analysis of its gradient fields. The maxima are
called attractors, which many times have a physical interpretation. For instance, the
Fukui function, like the electron density, has a cusp condition at the nuclei posi-
tions. Therefore, it will always have an attractor at the atomic positions. However, it
can also have attractors in other positions. We will see that this characteristic has an
interesting chemical interpretation. It is useful to define the f-localization domains
as the volumes enclosed by the isosurface f ðrÞ ¼ f involving all the points for
which f ðrÞ � f . They are called reducible when they contain more than one
attractor and, irreducible when they contain only one attractor. Each attractor is
characterized by its basin, which is the set of points lying on the trajectories ending
in this attractor. The basins are irreducible domains (they do not overlap) and the set
of all basins fills the complete space. Hence, the whole space is partitioned into
basins of attractors, and any observable physical property can be defined in those
regions. For instance, for a basin Xk , one can calculate the number of electrons
contained in this basin as:

Nk ¼
Z
Xk

qðrÞdr ð8:17Þ

The overall sum of the NK naturally results in the total number of electrons. One
can also define the condensed Fukui function as its integration over each basin as:

f�k ¼
Z
X�

k

f�ðrÞdr ð8:18Þ

The interpretation remains the same. Note that the basins of the Fukui function
f þ and f� will be different.

8.4 Some Selected Applications

In this section we present some representative examples to show how the topo-
logical analysis of the Fukui function works. Accordingly with the literature [44,
46, 47] the results are commonly reported in two ways: the first involves a
3D-representation of f rð Þ where one isosurface is selected to plot in a way that can
represent all the Fukui basins. Accompanying these isosurfaces are the values of the
Fukui function condensed in the corresponding basins. The second way makes it
simple to compare with other methods used to condense the Fukui function, due to
the fact that all atomic contributions are reported as a single value over each atom
k. The geometrical optimization and electronic structure calculation have been
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performed using the PBE0 [48] functional and the 6-311G* basis set implemented
in the G09 package of programs [49]. For topological analysis, we have used the
Multiwfn program [50] and the isosurfaces have been plotted with VMD 1.9.1
visualization software [51].

Figure 8.1 shows the condensed Fukui function for a set of Lewis acids
(LAs) and Lewis bases (LBs), which are classic examples of electrophilic (electron
acceptors) and nucleophilic (electron donors) reagents, respectively. The shapes of
isosurfaces evidence the contribution of the p atomic orbitals to the frontier
molecular orbitals (FMOs) and, therefore to the Fukui function. The LAs (BH3,
BF3, OCH2, OCHCH3) are expected to accept electrons through the pz orbital of the
reactive atom, whereas the LBs (H2O, H2S, NH3, NH2OH) are expected to donate
charge from the lone-pairs; the reactive atoms are highlighted in bold. The con-
densed values obtained with Eqs. 8.17 and 8.18 allow usto identify the most
reactive atom of the molecule. However, in contrast to the classical methods, the
topological analysis provides two basins associated to each of the reactive atoms.

Fig. 8.1 Acceptor and donor Fukui functions (f þ and f�) isosurfaces with f ðrÞ ¼ 0:01 a:u: The
values of condensed Fukui function (Eq. 8.18), and the condensed electron density (Eq. 8.17) (in
parenthesis above) are also shown next to each domain
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In the complete set of LAs these basins are symmetric and located above and below
the atom, perpendicular to the molecular plane. This reactivity description predicts
equal probability of being attacked by a nucleophile from above or below. The
same could be extrapolated for LBs H2O and H2S, but in these cases the reactivity
should describe an electrophilic attack. In cases where this does not happen, as in
NH3 and HONH2, there is a clear chemical interpretation: it is expected that
nucleophiles will primarily be attacked in the lone pair of the N.

Electrophilic aromatic substitution (EAS) reactions are among the most thor-
oughly studied classes of organic reactions from a mechanistic point of view.
Therefore, even though they are classic and widely used as reference, they are still
an adequate starting point for evaluate any local descriptor of reactivity. Such
reactions have been rationalized using empirical reactivity rules derived from res-
onance theory [52], methods based on the frontier molecular orbitals (FMOs)
theory, and electrostatic potentials [53]. The isosurfaces and condensed values for
two representative molecules, aniline (C6H5NH2 (ortho-para reactivity)), and
nitrobenzene (C6H5NO2 (meta reactivity)) are shown in Fig. 8.2. For C6H5NH2,
carbons in position ortho and para have the highest condensed values and the para
position is predicted as the most reactive between the two. This is in agreement with
the experimental observations. In contrast, for C6H5NO2 (meta reactivity), the
condensed values suggest the same preference for ortho and meta positions, which
disagrees with the experimentally observed meta preference. This inconsistence has
also been noted in earlier studies based in FMOs analysis [54]. In the last time has
been demonstrated that all the response functions based in perturbation theory
should be completely different in the case of degenerate states [25–27]. In the case
of C6H5NO2, eventhough it is not strictly degenerate, there is a quasidegenerancy
which could be the explanation of the wrong result. However, in this chapter, we
are only interested in presenting the topological analysis of the Fukui function
obtained by finite differences (Eq. 8.9).

Figure 8.3 shows the condensed values of the Fukui for a set of monosubstituted
benzenes (C6H5X, X = CH3, NH2, OH, and OCH3 (electron-releasing groups
(ERGs)) and X = CF3, CN, and NO2 (electron withdrawing group (EWGs)). The

Fig. 8.2 Donor (nucleophilic) Fukui functions isosurfaces, with f−(r) = 0.01a.u. The values of
condensed Fukui function (Eq. 8.18), and the condensed electron density (Eq. 8.17) (in parenthesis
above) are also shown next to each domain
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orto-para reactivity induced by ERGs is adequately described. However, it is
predicted that EWGs favor ortho-meta (in the case of X = NO2) and para reactivity
for the rest, which disagrees with the experimental evidence where only meta
position is favored. The results presented in Figs. 8.1, 8.2 and 8.3 are similar to
those previously reported in Ref. [44] at B3LYP/6-311G* level of theory.

Another instance, where the methodology has been used is to predict the most
favorable orientation between two small clusters to produce a larger one, according to
the “maximummatching” criteria of the Fukui function [55]. The proposal was tested
in the formation of a series of clusters Sin (n = 4− 8) using a set of small Sin (n = 2− 6)

Fig. 8.3 Condensed values of the Fukui function (Eq. 8.18) and the electron density (Eq. 8.17) (in
parenthesis) integrated in the basins of the donor (nucleophilic) Fukui function (f−). The values
have been obtained by summing the entire basin associated to each atom
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clusters, in singlet and triplet ground state multiplicities, as building blocks. The
reasoning of this strategy is simple; the integral of the Fukui function in each basin is
a measure of the “abundance” of it around the attractor associated to the basin. It is
therefore reasonable to assume that at a given distance between the fragments, an
assembling of them that makes small the total distance between the attractors cor-
responding to the more populated basins (fk large) translates into a large overlap of
the Fukui functions. We have selected two hypothetical reactions to show in this
section, the interaction between two Si3 fragments to produce Si6 (Fig. 8.4 panel (a))
and the interaction between two Si4 fragments to produce Si8 (Fig. 8.4 panel (b)).

Fig. 8.4 Best orientation to maximize the matching of the Fukui functions of two small clusters.
f− and f+ are identified in red and blue, respectively. Next to each attractor (white dots) the value of
the condensed Fukui function is also shown. a Si3 + Si3 → Si6, b Si4 + Si4 → Si8, c Si4C + Si5

2

− → Si9C
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Blue and red isosurfaces correspond to acceptor and donor Fukui functions
respectively. In the product the atoms corresponding to the original fragments are
differenced in red and blue. We obtained the same results as those previously
reported at B3LYP/6-311 +G(d, p) level of theory [55]. As an additional example of
the strategy applied to predict the most favorable interaction in clusters assemble, we
present the hypothetical reaction between the planar (D4h) Si4C

2+ cation and the
tridimensional (D3h) Si5

2− anion, to form the neutral Si9C cluster. This possibility
was suggested by Ngan and Tam [56], who based their proposal on the higher
stability of the fragments. They showed that the structural patterns of the fragments
persist in the global minimum structure of Si9C. The confrontation of the two
fragments guided by the Fukui function information allow us to obtain the global
minimum conformation of Si9C, as it can be seen in the panel (c) of the Fig. 8.4.

Fig. 8.5 Condensed values of the Fukui function (using Eq. 8.18) into the basins of the donor (f−)
(for Cu3 (a) and Cu5

− (b)) and acceptor (f+) (for O2) Fukui functions, respectively
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In the last example, although the reaction would be dominated by the electrostatic
attraction, the Fukui function is able to predict the matching of the fragments.

Finally, we would like to show two examples where this approximation was used
to predict the interaction of molecular oxygen with metallic copper clusters. It has
been shown that one can make useful predictions of the binding sites, based on the
knowledge of the donor local reactivity of the cluster, by using the condensed Fukui
function, f�k . In this way, it was reported that Cu3, Cu5, and Cu5

− have the highest
reactivity toward molecular oxygen. In Fig. 8.5, the results for Cu3 (panel a) and for
Cu5

− (panel b) are shown. These results are similar to those reported in Ref. [57].

8.5 Conclusions

This chapter has provided an introduction to the topological analysis of the Fukui
function, a strategy that allows for a theoretical expression of the chemical concepts
of local reactivity, and enables one to employ these concepts in a quantitative
manner to predict and understand chemical problems. The applicability of the
method is presented through different examples, involving acids and basis of Lewis,
substituted benzenes, and as an orientation predictor for the most favorable inter-
action between clusters (used as building blocks) to form larger structures. We hope
that by using the remarkable on-going software developments, and processor
technology, the applicability of this method increase further in both scope and
reliability, for the different areas of chemistry.
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Chapter 9
Topological Tools for the Study
of Families of Reaction Mechanisms:
The Fundamental Groups of Potential
Surfaces in the Universal Molecule
Context

Paul G. Mezey

Abstract Two types of the main topological properties of potential energy surfaces
are compared, where the first types are related to the chemical processes, confor-
mational changes and chemical reactions along the potential energy surface, and
where the second types are describing the presence, interrelations, structural vari-
ability, and shape variations of identifiable chemical species associated with the
potential surface. Some new relations are obtained when the families of topologi-
cally equivalent reaction paths representing reaction mechanisms at some energy
bound, and the algebraic structure of the fundamental group of reaction mechanisms
for a given collection of atoms (that is, for a given stoichiometry) are constrained by
the collection of “catchment regions” of the potential surface, representing chemical
species. These relations, providing additional detail when they are compared to the
more traditional, unconstrained cases, are phrased in terms of potential energy
surface level set relations and the originally integer, but “unquantized” continuous
variables of the Universal Molecule model.

9.1 Introduction

Topological methods, especially those of algebraic and differential topology [1, 2],
provide very powerful tools for the description of chemical problems, far beyond
the “skeletal models” provided by graph theory. Molecules are better described by
topology than by geometry, since a whole range of possible geometries of a given
molecule preserves the chemical identity of the molecule, that is, the topological
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features are far more significant than some specific geometrical features of our
models, especially, if one considers the Heisenberg uncertainty relation, where no
precise geometrical features are compatible with the typically available momentum
information. The inherent fuzziness of molecular electron density clouds is far more
compatible with a topological analysis than with some rigid geometrical descrip-
tion. In particular, linking classical concepts with quantum chemical reality, and
providing computational, algorithmic approaches as well as algebraic frameworks,
such as the fundamental group of reaction mechanisms discussed here, algebraic
topology and differential topology have an increasingly important role in theoretical
and computational chemistry.

The reaction path model on a potential energy surface is based on an essentially
classical mechanical concept. In reality, the actual displacements of atomic nuclei in
chemical reactions do not follow a formal path, just as electronic rearrangements do
not follow any formal path, either in a molecule when the molecular electron density
changes due to some interaction, or in some change of the electronic state. This
follows from the fact that the Heisenberg uncertainty relation and the wave-particle
duality apply to both electrons and nuclei. Nevertheless, nuclei are certainly more
“particle-like” than electrons within any given molecule. Consequently, the concept
of nuclear positions in a molecule, although not strictly valid, is still a useful
approximate concept, whereas the concept of electronic “positions” within a
molecule is far too crude to have much use beyond very simplistic models. In the
above sense, a formal reaction path, describing some essential aspects of the geo-
metrical displacements of the nuclei in a reaction has a useful role as a practical
approximation in many instances.

It is evident though that a single reaction path cannot faithfully represent the
quantum mechanical process of a chemical reaction, and some broadening of this
concept may serve as an improvement of the approximation. In this contribution a
topological approach is discussed, using certain equivalence classes of formal
reaction paths on potential energy surfaces to describe a quantum chemical concept
of reaction mechanisms. These reaction mechanisms are dependent on an energy
bound A over the actual potential energy surface. The family of all reaction
mechanisms has a group-theoretical algebraic structure, called the “Fundamental
Group of Reaction Mechanisms”, defined as the one-dimensional homotopy group
of the potential energy surface (actually a hypersurface) truncated at some energy
bound A. A brief review is given here for relevant earlier results in this field [3], as
well as their relations to the global and local shape problems of molecules [4–7],
where topological methods also play a dominant role. As a current development,
this model of the complete set of reaction mechanisms on a given potential energy
surface is now combined with some topological features of the Universal Molecule
model [8–11] for the actual common stoichiometry of the family of nuclei asso-
ciated with the same potential energy surface.
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9.2 From Reaction Path to Reaction Mechanism

The collection of all possible arrangements of a given set of N atomic nuclei forms
the relevant nuclear configuration space, that can be chosen as a metric space M,
with a well-defined distance function d(K, K′) for any pair of nuclear configurations
K and K′, where the dimension of this space is 3N − 6 for N > 2 (diatomic and
monoatomic cases are special with respect to internal coordinates).

What is less well-known, although it can be shown easily [3], that a nuclear
configuration space M of internal coordinates can never be a vector space, and this
fact is a frequent source of Euclidean-geometry-based misinterpretations of
potential energy surface (in fact, potential energy hypersurface) problems.

Nevertheless, M being a metric space, it allows the use of many tools of abstract
geometry as well as topology, and a reasonably detailed description of formal
reaction paths and reaction mechanisms is possible [3].

The potential energy surface E(K) is an energy function where the variables are
the internal nuclear coordinates, collected into the symbol K of the nuclear con-
figuration. Note, that different electronic states are associated to different potential
energy surfaces.

If energy E is regarded as one additional variable beyond the 3N−6 internal
coordinates of the nuclear configurations (the dimension of space M), than the total
dimension is 3N−5, and the energy function is in fact a (3N−6)-dimensional
hypersurface; an object that has one dimension less than the dimension of the
complete space. Note, however, that for brevity, the term “potential energy surface”
is used more often.

It is customary to think of a reaction path as a line in configuration space M, for
example, one leading from some “reactant configuration” Kreactant to some “product
configuration” Kproduct, through some intermediate K configurations. One may
associate the energy value of each configuration to the corresponding point along
the path in configuration space, and by taking these values measured along an extra
“energy” dimension, another line is obtained, a “relief path”, or “relief reaction
path” along the potential energy surface. It is also customary to regard energy E as a
“vertical” dimension, and one may think that the “relief reaction path” on the
potential energy surface E(K) runs “above” the reaction path within the configu-
ration space M. One may also think that the reaction path in the configuration space
M is the “shadow at high noon” of the relief reaction path along the potential energy
surface E(K).

For the purposes of a consistent mathematical treatment in the following topo-
logical description, one may regard a path not as the collection of points in some
space, but as a formal, continuous function p(u), assigning points in the actual space
M to values u of the unit interval, [0,1]. In our case, a path p(u) is regarded as a
continuous mapping from the closed interval [0,1] to space M, describing a con-
tinuous change of nuclear configurations K, represented by a displacement in M.
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From such a parametrization by the unit interval, with the choice of

u ¼ 0; p 0ð Þ ¼ Korig

this point is referred to as the origin, and with the choice of

u ¼ 1; p 1ð Þ ¼ Kextr

this point is referred to as the extremity of the given path p(u).
A path p(u) is called a constant path, if the image of each u is the same point K

of M:

p uð Þ ¼ K for every u:

Beyond the conditions shown above and the requirement of continuity in terms
of the metric d(K, K′) of the nuclear configuration space M, there is no additional
restriction on these functions, and many different actual parametrizations may
generate the same point set in the configuration space M, and all these different
parametrizations are regarded as different paths.

Specifically, the inverse path p−1(u) of path p(u) has the very same point set
image as the path p(u), however, these paths are considered different, and the
inverse path p−1(u) is defined by the “opposite” parametrization:

p�1 uð Þ ¼ p 1� uð Þ;

for example, the roles of origin and extremity are interchanged.
Clearly, as point sets, the path p(u), and the inverse path p−1(u) are the same, but

as paths, they are different, as long as p(u) is not a constant path.
If a path p(u) is such that its origin coincides with its extremity,

p 0ð Þ ¼ p 1ð Þ;

then p is called a closed path, or a loop.
If a path p1(u) can be continued by path p2(u), that is, if the p1(1) extremity of

path p1(u) coincides with the origin p2(0), of path p2(u),

p1 1ð Þ ¼ p2 0ð Þ;

than paths p1 and p2 have a product path p3 defined for them, indicated by the
equation

p3 ¼ p1p2
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where this product path p3 is actually defined by a specific parametrization as

p3 uð Þ ¼ p1 2uð Þ; if 0 � u � 1=2;

and

p3 uð Þ ¼ p2 2u� 1ð Þ; if 1=2 � u � 1

Evidently, the sufficient and necessary condition for the existence of the product
path p3(u) is the coincidence of p1(1) and p2(0).

The first physical constraint one may want to introduce is the elimination of
highly unrealistic, very high energy nuclear arrangements for the species considered
along the potential energy surface E(K).

Instead of considering all possible paths in M, it is useful to apply an energy
constraint, in terms of a “level set” F(A), that is, by taking only those nuclear
configurations, that is, points K of M with reference to a given potential energy
surface E(K), where the energy value E(K) is less than some bound A:

F Að Þ ¼ K : E Kð Þ\Af g

The next step of simplification is suggested by the recognition that two different
but very similar reaction paths are likely to describe essentially the same formal
chemical process. Here, the degree of similarity is treated not exclusively by
geometrical means, but also by using the tools of topology. This is an important
aspect, since even those paths which are rather different geometrically, may still
show essentially the same chemically relevant outcomes, and it is topology that
provides the means to exploit this.

Within a level set F(A) we consider two paths p1(u) and p2(u) to be homo-
topically equivalent relative to F(A), if they have coincident origins, as well as
coincident extremities,

p1 0ð Þ ¼ p2 0ð Þ;
p1 1ð Þ ¼ p2 1ð Þ;

all within F(A), and if p1(u) can be continuously deformed into p2(u) within the
level set F(A). Clearly, this condition is energy dependent; at a higher energy bound
value A, more paths can become homotopically equivalent relative to F(A). We
shall use the ̴ symbol to express this homotopical equivalence:

p1 uð Þ � p2 uð Þ:
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Those paths which are homotopic to one another within level set F(A), form a
homotopy equivalence class, denoted by [p], where the path p explicitly shown in
the notation is any one member of this equivalence class:

p½ � ¼ p0 : p0 � pf g:

The use of homotopy equivalence classes at some energy bound A is the key
step in the simplification of dealing with infinitely many possible individual reac-
tion paths, and reducing the problem to dealing with reaction mechanisms.

In order to achieve this, one should first realize that each and every path can be
regarded as a segment of a loop path, hence, one may consider only loop paths and
their homotopy classes within the energy-dependent level set F(A).

The analogy of boat trips on a flooded hilly terrain comes to mind, where the
energy bound A corresponds to the height of the water level, and any actual boat
trip can be regarded as a part of a circular boat trip. If the destination of the trip is
important, than the actual geometrical path of the boat is not the most important,
and many actual paths would qualify as essentially representing the same boat
trip. Evidently, if the water level changes, the equivalence classes of various actual
paths of boat trips may also change: for example, if a small island is flooded, some
previously non-equivalent paths for the boat trips can become equivalent, since the
actual paths of the boat trips can be deformed into one another without carrying the
boat over any land, an effort that would have been necessary before the flooding of
the island.

Returning now to the problems of reaction mechanism modelling, one may take
an arbitrary choice for a constant path p0(u) = K0 within F(A), and take all loop
paths with origin at K0.

By this choice of origin at K0, the product path necessarily exists for each and
every pair of such paths. Specifically, a path multiplied by its inverse path does
always exist. We note that a product of an algebraic entity with its inverse usually
provides some connection to a formal unit element. In our case, however, there are
many such, non-unique products, so, as it is, this choice of multiplication does not
lead yet to a unique unit element, consequently, this non-unique result does not lead
yet to a group-theoretical structure.

If, however, one takes the homotopy equivalence classes of these loop paths, and
if one takes an appropriate definition for the product of these equivalence classes,
all properties of groups can be identified, and one ends up with a group theoretical
structure not for the paths but for their homotopy equivalence classes, that is, for all
loop-like reaction mechanisms, constrained by some energy bound A.

For such a definition, the product homotopy equivalence class [p3] of two F(A)-
relative homotopy equivalence classes [p1] and [p2] generated by all loop paths in
F(A), with common origin K0, is defined as the homotopy equivalence class [p3]
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that contains as element the path-product of any path p′1 from [p1] and any path p′2
from [p2]:

p03 ¼ p01p
0
2

where p′3 is a member of homotopy equivalence class [p3]. Note that this product
path p′3 must always exist, since all loop paths considered have their origins and
extremities at the common point K0.

Then, we may write the product for the homotopy equivalence classes as

p3½ � ¼ p1½ � p2½ �;

and for all the loop-path homotopy equivalence classes this product also necessarily
exists.

The unit element [K0] for these homotopy classes is defined as the homotopy
equivalence class that contains the constant path p(u) = K0. Since all these loop
paths, when multiplied by their inverse paths, generate a loop path that is homo-
topically contractible to K0, therefore, these path-products are all homotopically
equivalent to the constant path p(u) = K0, so they must all belong to the same, and
unique, homotopy equivalence class.

The inverse of homotopy class [p] is the class [p]−1 = [p−1], since pp−1 must be
homotopically equivalent to the origin K0 of p, therefore,

p½ � p½ ��1 ¼ p½ � p�1� � ¼ K0½ �:

For a group-theoretical structure one also needs that the product has the asso-
ciativity property, and, again, this is not necessarily fulfilled for the product of the
loop-paths themselves. The associativity property does not necessarily hold for all
choices of three paths, p1, p2, and p3, even if the products exist, that is,

pA ¼ p1p2ð Þp3 6¼ p1 p2p3ð Þ ¼ pB

is possible.
For example, if one applies the product parametrization by u for paths pA (u) and

pB (u), differing only in the way the parentheses are placed, and by picking the
parameter value of u = 0.48, then, by simple application of the product rule one
obtains that

pA 0:48ð Þ ¼ p2 0:92ð Þ
pB 0:48ð Þ ¼ p1 0:96ð Þ;

which are, evidently, not in general identical points of F(A).

9 Topological Tools for the Study of Families of Reaction … 249



Hence, the associativity condition for the path product is not in general fulfilled.
However, in all instances, the paths pA = (p1 p2) p3 and pB = p1 (p2 p3) are

homotopically equivalent. Consequently, for the products of loop homotopy
equivalence classes, the associativity condition applies:

p1½ � p2½ �ð Þ p3½ � ¼ p1½ � p2½ � p3½ �ð Þ:

Since all four conditions required for a group hold, these energy constrained
homotopy equivalence classes of loop paths form a group, denoted by π1(F(A), K0).

In summary, we have the necessary group properties:

1. Closure property: each pair of homotopy classes have a product defined for them
that is also a homotpy class

2. There exists a unique unit element, [K0].
3. Each homotopy equivalence class [p] has a unique inverse [p]−1

4. The associativity condition holds, ([p1][p2]) [p3] = [p1] ([p2][p3]).

This group π1(F(A), K0) is of relevance to the reaction mechanism problem on
F(A), however, as it stands, it has some apparent shortcomings. We can show,
though, that these shortcomings are of no significance, and, indeed, the group so
derived describes the most essential algebraic structure of all reaction mechanisms
on E(K), subject to the energy bound A.

Specifically, for the given energy constraint expressed by the level set F(A), this
group π1(F(A), K0) appears highly restricted in one aspect: group π1(F(A), K0)
refers to a specific point K0 and the associated unit element [K0]. However, it can be
easily shown, that this group π1(F(A), K0) is isomorphic with any other analogous
group π1(F(A), K′0) using a different reference point K′0 and the associated unit
element [K′0].

This can be demonstrated as follows. By considering any path p00′ (u) connect-
ing point K0 to point K′0, every loop path p(u) with origin at K0 can be extended by
the two paths, p00′ (u) and p00′

−1 (u) into a loop path q with the new origin K′0

q ¼ p�1
000 p p000

For each choice of p, the two loops, p and q are clearly continuously deformable
into one another within F(A), in fact, the continuous deformation may occur within
the very point set represented by the path p00′ (u), hence p and q are necessarily
members of the same homotopy equivalence class. That is, as abstract group, the
group π1(F(A), K0), formed by homotopy equivalence classes with unit element
[K0] is isomorphic with the group π1(F(A), K′0) of homotopy equivalence classes
with unit element [K′0].

That is, there is only one such abstract group, and its algebraic structure is
independent of the choice of the actual realization of the unit element [K0], hence,
for this abstract group, the reference to any specific point K0 can be omitted, and
one may simply write π1(F(A)).
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In the terminology of algebraic topology, the lower index 1 in the notation
π1(F(A)) refers to dimension, and such a group is called the one-dimensional
homotopy group of the given F(A) set (since the objects related to one another by
continuous deformations are one-dimensional paths, as opposed to deformations of
two-dimensional sheets, or higher-dimensional objects).

Alternatively, such a group is called the Fundamental Group of the relevant set,
in our case, π1(F(A)) is the fundamental group of the F(A) level set of the metric
nuclear configuration space M, with respect to the actual potential energy surface E
(K). Since the elements of this group π1(F(A)) are equivalence classes of loop
reaction paths, which can be regarded as the relevant circular (loop) reaction
mechanisms on F(A), and since these circular reaction mechanisms contain, as
parts, all non-circular reaction mechanisms as well, these groups have been named
the Fundamental Groups of Reaction Mechanisms [3].

9.3 Generalizations of Transformations Between
Molecules: The Universal Molecule Model

A chemical reaction can be regarded as a transformation between molecules: typ-
ically, a change of the nuclear coordinates serves as an indication of this trans-
formation, and the nuclear configuration space and potential energy surface models
with the associated reaction path and reaction mechanism approaches provide a
useful description.

Of course, in the process of a chemical reaction other important changes, most
importantly, changes of the bonding pattern and the associated changes in the shape
of the electron density [4–7] also occur, where the latter changes are those which
are most directly detected by other, neighboring molecules. Even local changes of
molecular electron densities encode important information: based on the holo-
graphic electron density theorem [7], any small positive volume part of the
ground-state molecular electron density cloud contains the complete information
about the entire molecule.

If some common trends can be found in a family of molecules, then those trends
can be exploited in a predictive manner for any additional molecules which may fit
some aspects of this trend. In fact, such models involve some, often abstract “in-
terpolations” and “extrapolations” among molecules, although in some instances,
the actual variables along which these, often inexact transformations occur, are not
necessarily clearly defined.

One model, the “Universal Molecule” model explicitly allows for such transfor-
mations: all parameters describing the molecules are considered as abstract, contin-
uous variables, even those, which in the physical reality are restricted to be integers,
such as the case for the nuclear charges [8–11]. Using nuclear charges as examples, a
model where these integer values are replaced by continuous variables describes
reality only in specific cases, when the variables become integers. However, just as
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integration on the complex plane, using imaginary values, is advantageous in
deriving new relations for problems involving only real numbers, this additional
freedom of using continuous nuclear charges in the Universal Molecule models can
also lead to new relations between real molecules.

As one of the simplest examples, a continuous nuclear charge variation between
isoelectronic molecules N2 and CO provides quantum chemically rigorous elec-
tronic energy inequalities, universally valid for every common bond length value
[10]. Note that, far more complicated energy relations can also be derived by this
approach [8–11].

9.4 The Extent of Identity-Preserving Deformations
of Chemical Species

A somewhat simpler aspect of the Universal Molecule model is exploited if one
considers a specific stoichiometry, that is, a given set of nuclei, as a single
“super-entity”, and all the possible molecular species which can be obtained from
this set of nuclei and a fixed number of electrons are regarded only as variants of the
same Universal Molecule. In fact, this, somewhat simplified version of the
Universal Molecule model is the closest to the potential energy surface model: if the
electronic state is also restricted, then, in fact, all realizations of this Universal
Molecule are actual species along the potential energy surface.

It is of some interest to link this model to more conventional models of chemical
species. Traditionally, molecular deformations are often considered in the context
of shape changes, for example, shape changes of the bonding pattern and the
nuclear skeleton, or the shape changes of the actual electron density cloud [4].
Shape changes are often studied in terms of symmetry, or in terms of deformations
relative to some symmetry [5–7], and the relations between local and global sim-
ilarities among molecular species are relevant [7, 12]. One rather general model, as
a part of the Universal Molecule approach [8–11] that has been applied, for
example, for transformations between molecules by nuclear charge variations, as
well as in combinatorial quantum chemistry approaches [8], also describes defor-
mations which often go beyond those which preserve chemical identity.

For a given electronic state, associated with a specified potential energy surface
E(K), the simplest model to describe identity-preserving deformations is based on
the concept of catchment regions [3]: all distorted conformations K from where an
infinitely slow, vibrationless relaxation would lead to a common critical point on
the potential energy surface, belong to the same catchment region. Note that
catchment regions can have different dimensions: for a (3N−6)-dimensional nuclear
configuration space M, the catchment region of an energy minimum is also (3N−6)-
dimensional, yet the catchment regions of various saddle points have dimensions
less than (3N−6).
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For catchment regions of energy minima, that is, for (3N−6)-dimensional
catchment regions of nuclear configuration space M with respect to a given
potential energy surface E(K), an intuitively attractive analogy can be drawn with
actual watersheds taken as the set of all locations from where rain is collecting in a
common sinkhole [3].

Critical points on a potential energy surface all have vanishing energy gradients,
and are characterized by the second derivatives of the energy function E(K)
according to the local nuclear coordinates. The Hessian matrix of second energy
derivatives provides curvature information, and the eigenvalues of the Hessian
matrix are important clues concerning the importance of these critical points. For
simplicity in the discussion, here we ignore the cases of degenerate critical points,
where the Hessian matrix has one or more zero eigenvalues; these special cases are
discussed in [3], and will not modify the essential conclusions in this section.

Index λ is the number of negative eigenvalues of the Hessian matrix at the given
critical point, where λ = 0 corresponds to energy minima, whereas λ = 1 corre-
sponds to saddle points of transition structures (often referred to as transition
“states”). Other critical points of higher index, λ > 1, are usually avoided by
minimum energy paths, that is, by the “most likely” ideal reaction paths (which are,
of course, strictly speaking, unrealistic, even classically, showing no vibrational
contributions).

This preference for critical points of indices 0 and 1 suggests a modification of
the fundamental group approach for reaction mechanisms described in the previous
section.

From the level set F(A) of all parts of the given potential energy surface below
energy bound A, one may consider to eliminate all points of most lower-
dimensional catchments regions, except the points of those catchment regions
which belong to energy minima and transition structures, that is, to identity-
preserving distortions of energy minima, and identity-preserving distortions of
transition structures of chemical reactions. In other words, one may decide to
eliminate all those points K where the energy E(K) does not fall below the energy
bound A, and also all points which fall within a catchment region of index 2 or
higher.

This λ—constrained level set, denoted by

Fk¼0;1 Að Þ;

can then replace the original level set F(A) in the derivation of the conditions and
properties of the fundamental group of reaction mechanisms, and a new, somewhat
more distinguishing and more revealing algebraic structure is obtained. All formal
steps of the development of the fundamental group of reaction mechanisms on F(A)
can be repeated for this new set Fλ=0,1(A), and the resulting fundamental group,
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p1 Fk¼0;1 Að Þ� �
provides more chemically relevant detail describing the most important part of
potential energy surface E(K).

For example, in most potential energy surfaces there are likely regions where the
energy falls below some bound A, yet, in these regions there are some neighbor-
hoods of critical points of index λ > 1, typically avoided by trajectories which take
into account some classically-described dynamic features of molecular transfor-
mations. These neighborhoods contain points of M which are present in F(A) but
are eliminated from Fλ=0,1(A), hence these “missing” points serve as barriers to
some continuous deformations of formal reaction paths. Consequently, if this
happens, then the homotopy equivalence classes of F(A) and Fλ=0,1(A) can be
different, typically, the equivalence classes of Fλ=0,1(A) are more numerous, hence
the fundamental group of reaction mechanisms π1(Fλ=0,1(A)) for the modified level
set Fλ=0,1(A) is richer, providing more chemically relevant detail than the funda-
mental group π1(F(A)) of reaction mechanisms for the original level set F(A) of
energy bound A.

9.5 Summary

By combining some of the topological techniques used for the study of reaction
mechanisms and the determination of the extent of chemical-identity-preserving
deformations and shape changes of molecular species, the framework provided by
the Universal Molecule model leads to a more detailed and more revealing variant
of the fundamental group of reaction mechanisms, describing some essential fea-
tures of the algebraic structure of all reactions on the potential surface E(K) below
some energy bound A.
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Chapter 10
Quantum Chemical Topology Approach
for Dissecting Chemical Structure
and Reactivity

Juan Andrés, Lourdes Gracia, Patricio González-Navarrete
and Vicent S. Safont

Abstract Chemical structure and bonding are key features and concepts in chemical
systems which are used in deriving structure–property relationships, and hence in
predicting physical and chemical properties of compounds. Even though the con-
temporary high standards in determination using theoretical methods and experi-
mental techniques, questions of chemical bonds as well as their evolution along a
reaction pathway are still highly controversial. We present a conceptionally
approach to dissect chemical structure and reactivity (bond formation and breaking
processes) in the nucleation and formation of Ag on AgVO3 provoked in this crystal
by the electron-beam irradiation, and glycolic acid decomposition using concepts
from quantum chemical topology. The electronic activity that drives the structure
and the molecular mechanism of the reaction was identified, fully characterized, and
associated with specific chemical events, bond forming/breaking processes.

10.1 The Concept of Chemical Bond in Chemistry

The chemical structure and reactivity are deeply anchored in the mind of chemists,
due to the physical and chemical properties of a molecule are related with its
structure, i.e. by the arrangement of atoms and bonds. These bonds and the making
and breaking bond processes determine chemical reactivity and the achievement of
their mechanistic understanding depends on knowing the geometric structure and
the nature of the bonds in the molecules. It is also (arguably) the most challenging
problem within the discipline.

Structural elucidation both by experiments and quantum-chemical computations
has seen tremendous progress in the last decades to rationalize the chemical and
physical properties of molecules. Experimental techniques such as X-ray diffrac-
tion, electron diffraction, and nuclear magnetic resonance have been extensively
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developed to attain this knowledge by obtaining three dimensional structures. These
techniques, however, do not provide a direct view of the molecules in real space. To
overcome this drawback, atomic force microscope and inelastic tunneling probe
based on the scanning tunneling microscope are used to obtain real-space images of
the molecular structures and chemical bonds of mostly planar molecules [1, 2], and
absorbed molecules [3, 4], respectively. Very recently, Bredtmann et al. [5]
demonstrate how the chemically active valence electron densities can be directly
accessed from the full scattering patterns in order to reach information of how a
chemical reaction takes place and hence electronic bond-to-bond fluxes. The
degenerate Cope rearrangement of semibullvalene is selected as a working exam-
ple. In addition, Kössl et al. [6] have followed the progress of the alcoholysis
reaction of phenylisocyanate with cyclohexanol and of 2,4-toluene-diisocyanate
with chloraldhydrate, by means of infrared absorption spectroscopy in combination
with anharmonic frequency calculations using density functional theory. The
measured infrared marker bands in the isocyanate NCO and alcohol OH stretching
region have been employed to in situ characterization of these reactions and in
particular for determination of Arrhenius activation energies. Bratos et al. [7],
describe the X-ray filming of the I2 re-association in CCl4, comparing the experi-
mental data with standard reaction rate theories. These authors emphasized that the
atomic motions must be followed even after the first “touch” of the reacting atoms
must, and by studying the earliest stages of a reaction process, designated collec-
tively by the generic term “elementary chemical act”, is definitely becoming pos-
sible. Very recently, an international team, involving experimental and theoretical
researchers, has reported what it believes are the first direct measurements of
transition states where separate atoms can form a bond. In this work, fired X-rays at
molecules and atoms adsorbed onto a surface in a vacuum chamber are used, and
from the energy of a select portion of the X-rays scattered back, it is possible to
track how the electronic structure of each adsorbed atom changed as the reaction
progressed. The authors studied carbon monoxide oxidation on ruthenium as a well
known chemical reaction taking place in automobile catalytic converters [8]. In
addition, another team have also directly observed the formation of chemical bonds
using a femtosecond X-ray laser. The group used similar techniques to study the
formation of a gold trimer complex ([Au(CN)2

−]3) from dissolving Au(CN)2
− in

water. Both sets of researchers believe that analysing chemical bonds on such small
timescales will provide scientists with a tool to study the dynamics of complex
chemical and biological systems [9].

From the theoretical point of view, the emergence of molecular structure from
the complete molecular Hamiltonian is a very complex topic and interesting papers
on this subject have been published [10–16]. It is, with our present mathematical
understanding of quantum mechanics, impossible to solve any system which is
more complex than the hydrogen atom analytically in the sense of Schrödinger’s
quantum theory. Slightly larger systems may be solved to numerical accuracy, but
there is no hope to obtain the complete wave function for a chemically relevant
molecule. The problem of solving the quantum mechanical description of a number
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of interacting particles, known as the many-body problem [17, 18] has stimulated
the development of a number of general approximation techniques.

As it was emphasized by Löwdin [19] “Quantum chemistry deals particularly
with the electronic structure of atoms, molecules, and condensed matter, and
describes it in terms of electronic wave patterns of standing waves. It deals also
with collisions between atoms and molecules and with the study of chemical
reactivity”. In quantum chemistry, the fundamental model of chemical bond is
based on one-determinant electronic structure methods like Hartree-Fock or
Kohn-Sham density functional theory (DFT). However, despite the contemporary
high standards in determination of geometrical parameters, questions of chemical
bond are still highly controversial. This problem can be traced back to the lack of a
clear and unambiguous definition of a bond in quantum mechanics. Therefore, a
chemical bond together with other essential concepts such as electron shells, lone
pairs, aromaticity, atomic charges, (hyper-) conjugation, strain, etc. have been
getting fuzzier over time, yet invaluably useful concepts [20–23], which are of
essential importance for practical chemistry leading to constructive ideas and
developments when appropriately used and defined, have been developed. In the
Faraday Discussions 135 [24], which took place in September 2006 in Manchester,
a number of methods have been suggested (Chemical Concepts from Quantum
Mechanics) without laying an end to the debate. Many concepts, including
chemical bond, cannot be derived from theory reduction from the principles of
quantum mechanics, because they were introduced heuristically as ordering criteria,
as it was remarked by Primas [25].

What is a chemical bond? and how should we define chemical bond? are still a
critical questions for chemical community, and remain as an active area of research
[26–43]. For example, the controversy about the existence of a sextuple bond or not
in Cr2, and more recently the existence or not of a quadruple bond in C2 [44–46], as
well as the nature of hydrogen bonding [47, 48]. In this sense, chemical bonds have
even been compared to unicorns: mythical creatures of which everyone knows how
they look, despite nobody ever having seen one [49]. Very recently, the different
methods of defining and describing chemical bonds have been highlighted in a
two-volume book dedicated to the chemical bond [50]. But it is important to
remark, as noted by Frenking and Caramori [48]: “The physical nature of chemical
bonding is quite complicated [51]. It is in most cases not necessary for a synthetic
chemist to engage in elaborate quantum-chemical investigations. Standard calcu-
lations will usually provide sufficient information to classify a new compound and
design new experiments”.

10.2 Electron Density

The electron density is related to the molecular Hamiltonian, and hence is the
ultimate source of all properties in the ground- and excited states. In addition,
descriptors and/or indexes derived from the electron density possess physical and
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chemical meanings, and can be obtained both experimentally and by means of
theoretical calculations, except for properties that require the full density matrix
obtainable only from quantum mechanical calculations. Combined experimental
and theoretical charge density studies rely on the analysis of electron density dis-
tributions obtained from quantum chemical calculations, ρcalc(r), and from experi-
mental X-ray diffraction data, ρexp(r) [52–55]. The comparison of the topological
parameters of ρcalc(r) and ρexp(r) provides important information for the interpre-
tation of experimental results and allows to evaluate the accuracy of the experi-
mental data. A direct comparison between both electron density distributions is
biased because they are subjected to different sources of errors. The electron density
ρexp(r) is, for example, affected by systematic experimental errors and the model
ambiguities introduced during the reconstruction of a static electron density dis-
tribution from the measured X-ray scattering factors.

Recently, Gavezzotti [56] has reviewed the physical principles of chemical
bonding from the Feynman perspective. The answer of this question: What binds
atoms together? was provided by Feynman [57]: “The force on a nucleus in an
atomic system is shown to be just the classical electrostatic force that would be
exerted on this nucleus by other nuclei and by the electrons’ charge distribution”.
Being that the electron density is the observable common to both the experimental
and theoretical approaches, it has become logical to focus on the observable itself,
rather than on a model density, to confront and mutually validate them and their
densities [58]. But the most important reason for studying the total density has been
the increasing popularity of the so-called topological studies of bonding, that is,
those made in terms of the study of the gradient vector field of a scalar function
containing information on bonding [58]. Accurate X-ray diffraction experiments
allow for a reconstruction of the electron density distribution of solids and mole-
cules in a crystal.

The concept of molecular orbitals [59], the valence bond theory [60], related
natural bond orbitals approach [61] and the valence shell electron pair repulsion
concept [62] have provided quite reliable predictions of chemical structures, i.e.
molecular geometries, while Woodward–Hoffmann rules [63], Fukui’s frontier
molecular orbital theory [64], analysis based on valence bond theory [65] or Marcus
theory [66] have been helpful for our current understanding of chemical reactivity.
Advanced theories in science, as chemistry and/or physics, to be sustainable need to
have a mathematical support to give basic concepts of the theory. Furthermore, the
scalar fields based on electron density are experimentally amenable and thereby
provide a clear-cut bridge between theory and experiment. Collar and Hall [67], and
Bader [68] have provided the foundations of the topological analysis of
one-electron charge densities. The path-breaking works due to Bader and
co-workers have generated an active research area based on the study of the
topology of molecular scalar fields. It is aimed at providing an understanding of
molecular structure and reactivity [69]. Likewise, Nasertayoob and Shahbazian [70]
have presented the mathematical foundations of the dynamical aspects of topo-
logical analysis of the electronic charge densities.
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“Thomas [71] and Dirac [72] imagined that the kinetic and exchange energies of
systems of many electrons could be locally modeled by their uniform electron gas
energy densities”. The electron density is a scalar field that can be experimentally
accessed [55] in principle and contains all necessary information for the ground
state of the molecular system, according to the Hohenberg–Kohn [73, 74] theorems
of DFT [75]. There is growing interest in explaining chemical phenomena arising
from the structure of the charge density. One branch of this developing research
field is the so-called conceptual DFT [76, 77], which has provided rigorous defi-
nitions for various chemical concepts such as electronegativity [78] and hardness,
[79] as well as relating changes within the density to frontier orbital concepts
through the Fukui function [80]. Calculations based on the seminal idea of Kohn
[81] are now an integral component of almost all areas of chemistry, physics and
materials sciences [82–84]. Although the exact functional form of the quantum
mechanical part of the electron–electron interaction (also referred to as the
exchange–correlation interaction) is not known, our ability to derive reasonable
approximations to this functional has made DFT an enormously practical tool
[85, 86].

10.3 Quantum Chemical Topology Analysis

In recent years, the topological analysis of the three-dimensional scalar fields [87–
95], such as electron density [55, 67, 92, 95–97], the Laplacian of the electron
density [68, 92], the electron localization function (ELF) [94, 98], and molecular
electrostatic potential, have been widely used to discern chemical structure and
reactivity. This procedure, named quantum chemical topology (QCT) [99] has been
utilized for the study of chemical structure and reactivity [100–106]. Since its
origins, the well-known approach of the ‘‘atoms in molecules’’ quantum theory
(QTAIM), has evolved to be an invaluable tool for the chemical interpretation of
quantum mechanical data, which relies on the properties of the electron density ρ(r)
when atoms interact. Excellent reviews on QTAIM methods have been published
elsewhere [69, 96, 107–109].

QTAIM starts from a particular division of real space into atomic basins. Given
the appropriate operator density, any quantum mechanical observable can be
integrated within the atomic basins, giving rise to the partition of properties into
additive atomic contributions. QTAIM represents molecular structure and bonding
as consequence of the charge-density topology and geometry. However, it is
important to note that there is some controversy on the applicability of QTAIM
[110–120]. Basically, their criticisms are focused on the arbitrariness of the theory,
the ambiguity of the topological construction and lack of predictive capabilities. For
such reason, more complex topologies such as the topology of the electron local-
ization function (ELF) have been used [98, 121–124]. ELF performs a topological
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analysis of the same-spin pair probability density and thus generates basins of
localized electron pairs [125–127]. The integration of the electron density over the
ELF basin yields the basin population, that is, the amount of electron density in the
chemical bond [128–130].

As Silvi et al. [131] stated: “… the ELF topological analysis provides a math-
ematical bridge between quantum mechanics and chemistry which relies on the one
hand on the statistical interpretation and on the other hand on the theory of
dynamical system. This approach shares the dynamical system theory as common
mathematical method with the Atoms in Molecules theory, the difference being the
nature of the potential function and therefore the nature of the investigated prop-
erties. The QTAIM theory is rightly claimed to be rooted in physics rather than in
chemistry and its partition scheme aims accordingly to define open quantum sys-
tems within which the virial theorem holds.”

10.4 The Bonding Evolution Theory

The analysis of the electronic structure at the stationary points concomitantly with
the description of the possible reaction pathways associated with the chemical
rearrangements are undoubtedly one of the most relevant applications of modern
computational chemistry; nevertheless accurate geometries, energies, as well as
other observables properties cannot always be guaranteed from quantum chemical
calculations. Likewise, there is no physical observable corresponding to the
chemical bond and their rearrangement along a given chemical reaction (which
corresponds to the essence of the chemical reactivity). Such concepts cannot be
unambiguously defined in pure quantum theory, and therefore, qualitative concepts
are of essential importance for practical chemistry.

In spite of Hohenberg–Kohn theorem guarantees that all the molecular infor-
mation is encoded in the electron density, the physical description of chemical
systems requires additional postulates for extracting observable information in
terms of atomic contributions. This is achieved by the QTAIM introduced by Bader,
providing a quantum topological partitioning of the molecular space into chemi-
cally transferable molecular fragments for which the energy and all other measur-
able properties can be precisely defined [132]. The introduction of concepts such as
bond path in the framework of QTAIM allows the description of the evolution of
the electronic structure along a reaction pathway, and hence, to understand a given
chemical rearrangement following the redistribution of the electron density along
the reaction pathway connecting the stationary points. Thus, Bader and co-workers
pioneered the study of the evolution of the electron density in chemical reactions
considering the structural changes in this scalar field according to the Thom’s
catastrophes theory (CT) [97, 133, 134].
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However, the applicability of the Thom’s CT in the framework of the QTAIM has
been found to be limited to intramolecular chemical processes since no topological
changes are found in the electron density when two atoms separate. Subsequently
Silvi and Krokidis [135], as a generalization of Bader’s work, have developed the
joint use of electronic localization function ELF and Thom’s CT. In this context, the
mechanism of a given chemical reactions can be rationalized in terms of chemical
events, namely: bond forming or breaking processes, creation and annihilation of
electron pairs. This analysis allows us to understand the electronic structure and
related properties of the reactants as the reaction takes place, providing a nice guide
to elucidate the mechanism of chemical reactions and further understanding of the
chemical reactivity. This methodology proposed is known as bonding evolution
theory (BET). Changes in the control parameters defining the reaction pathway (such
as the nuclear coordinates and the electronic state) can lead to different topologies of
the ELF. Therefore, according to the theory of dynamical systems, a system can be
considered structurally stable if a small perturbation is only possible for values of the
control parameters comprised into well-defined ranges, namely structural stability
domains (SSDs), where all the critical points are hyperbolic and separated by
catastrophic points in which at least one critical point is non-hyperbolic. Therefore,
according to the BET, the reaction pathway of a given chemical system goes from a
given ELF-SSD to another by means of bifurcation catastrophes occurring at the
turning points. The bifurcation catastrophes occurring at these turning points are
identified according to Thom’s classification [133, 134]. In this way, a chemical
reaction can be understood as a sequence of chemical events (ELF-SSDs) and
separated by bifurcation points. Only three types of bifurcation catastrophes have
been found in chemical reactivity: (i) the fold catastrophe, corresponding to the
creation or annihilation of two critical points of different parity; (ii) the cusp
catastrophe, which transforms one critical point into three (and viceversa) such as in
the formation or the breaking of a covalent bond; (iii) the elliptic umbilic, in which
the index of a critical point changes by two. The identification of the turning points
connecting the ELF-SSDs along the reaction pathway allows a rigorous character-
ization of the sequence of electron pair rearrangements taking place during a
chemical transformation, such as multiple bond forming/breaking processes,
creation/annihilation of lone pairs, transformations of double bonds into single ones
or vice versa, and other electronic rearrangements. Details of the Thom’s classifi-
cation in chemical reactions have been described in detail elsewhere [103].
A plethora of chemical rearrangements have been studied by BET: cycloadditions
[103, 136–139], cyclization [140–142], SN2 reaction [143], Nazarov reaction [144],
Cope reaction [145], Cope rearrangement of semibullvalene [146], the reaction of
uranium ions with N2O in the gas phase [147], the reaction of Mn+ with small
molecules [148], or inorganic reactions involving Mo complexes [149, 150]. Also,
some reviews on the applicability of BET to understand and rationalize chemical
reactivity have been published [138, 151–153], including the study of the bonding
changes along solid-solid phase transitions [154].
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10.5 Examples

We have selected two examples: (i) QTAIM study on the AgVO3, for the simu-
lation of Ag nucleation and formation on AgVO3 provoked in this crystal by the
electron-beam irradiation. (ii) An ELF and Thom’s catastrophe theory (BET) study
for different reaction pathways associated with the decomposition of glycolic acid
decomposition.

10.5.1 AgVO3

Silver vanadium oxide nanomaterials such as AgVO3, have attracted extensive
attention owing to their potential applications in rechargeable high-energy density
lithium batteries [155] and sensors [156]. AgVO3 has scarcely been studied in
morphologies, but two phases α-AgVO3 and β-AgVO3 are known. Both structures
are monoclinic and α-AgVO3 is irreversibly transformed into β-AgVO3 at around
200 °C [157]. β-AgVO3 demonstrates a narrowband gap fit for visible light,
showing a high potential as an effective photocatalyst. However, the photocatalytic
activity of β-AgVO3 is still insignificant because of its low capability to separate
electro-hole pairs, which significantly limits its practical extensive application.
Thus, further study is necessary to enhance its photo-catalytic performance for the
practical application. Recently, experimental and theoretical studies have reported
that surface modification such as Ag nanoparticles (with excellent conductivity and
strong electron trapping ability) on surfaces could enhance the separation rate of
photogenerated holes and electrons [158–160].

This investigation’s motivation essentially arises from a discovery of an
unwanted real-time in situ nucleation and growth of Ag filaments on α-Ag2WO4,
Ag3PO4, and Ag2MoO4 crystals which was driven by an accelerated electron beam
from an electronic microscope under high vacuum [161–165].

First-principles total-energy calculations were carried out within the periodic DFT
framework using the VASP program [166]. In the calculations, electrons were intro-
duced one by one up to four in themonoclinic unit cells ofα-AgVO3 and β-AgVO3 and
the distribution of these extra electrons takes place by means of a simultaneously
geometry optimization on both the lattice parameters and the atomic positions. The
Kohn-Sham equations have been solved by means of the Perdew, Burke, and
Ernzerhof exchange-correlation functional, and the electron-ion interaction described
by the projector-augmented-wave pseudopotentials [167, 168]. The plane-wave
expansionwas truncatedat a cut-off energyof520eVand theBrillouin zoneshavebeen
sampled through Monkhorst-Pack special k-points grids that assure geometrical and
energetic convergence for the AgVO3 structures considered in this work.

A graphical representation of α-AgVO3 and β-AgVO3 structures using polyhe-
dra is presented in Fig. 10.1a, b, respectively. The number of oxygen atoms
coordinating to a vanadium atom in α-AgVO3 is four while that of β-AgVO3 is five.
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Moreover, only one type of V site is present in the α-AgVO3, forming an almost
regular tetrahedron with O atoms. This is in contrast to the four types of distorted
octahedral coordinated ones for the β-AgVO3. The smaller the coordination number
of polyhedral of vanadates, the larger the interaction between a vanadium and
oxygen atoms, and the average bond length between V and O in four coordination
is shorter than that in five coordination. It also results in an increase in the energy
gap between the HOMO and LUMO consisting of O 2p and V 3d orbitals,
respectively, and the band gap of α-AgVO3 is larger than that of β-AgVO3 in spite
of the same composition [169]. There are two types of Ag sites in the α-AgVO3,
coordinated by distorted octahedra of O atoms, which are expanded to the
c-direction by sharing the edges. The zigzag chains of [VO4] tetrahedra which are
sandwiched between the sheets of octahedra form the smaller atomic packing
compared with the octahedra as found in many vanadate bronzes, especially with
the β-AgVO3 in which 5-, 6- and 7-coordinated polyhedra formed by O atoms are
occupied by four types of Ag atoms. The computed unit-cell parameters of
α-AgVO3 structure, space group C2/c, are a = 10.619 Å, b = 10.070 Å, c = 5.574 Å,
and β = 100.41°. β-AgVO3 belongs to the Cm space group, with a = 18.677 Å, b =
3.692 Å, c = 8.148 Å, and β = 105.04°. Geometrical data for both structures are in
agreement with previous reported studies [170].

In Table 10.1, the values of the bond distances of Ag–O and V–O in [AgO6] and
[VO4] clusters for α-AgVO3 are shown as a function of electrons added. An

Fig. 10.1 Bulk structure of a α-AgVO3 and b β-AgVO3, in terms of its constituent polyhedra

Table 10.1 Values of Ag–O and V–O, in Å, in the two types of [AgO6] and [VO4] clusters for
α-AgVO3 as a function of electrons added (N)

N [AgO6]1 [AgO6]2 [VO4]

(2) (2) (2) (2) (2) (2) (2) (2)

0 2.422 2.478 2.528 2.430 2.461 2.674 1.668 1.820

1 2.210 2.740 3.042 2.233 2.554 – 1.694 1.807

2 2.429 – – 2.506 2.596 – 1.660 1.815

3 2.298 – – 2.406 – – 1.673 1.818

4 2.333 – – 2.548 – – 1.666 1.829

The multiplicity of the bond is placed in parenthesis
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analysis and a comparison of the geometries for a neutral (N = 0) and charged (N =
4) structures show a pronounced increase in the corresponding Ag–O distances with
the addition of electrons. There are two types of [AgO6], [AgO6]1 centered by
Ag1/Ag2 and [AgO6]2 centered by Ag3/Ag4 (see Fig. 10.1a). [AgO6]1 cluster when
N = 0 pass to [AgO4] for N = 1, while [AgO6]2 appears as an octahedron more
distorted with three different Ag–O distances. For N = 2, each Ag is surrounded by
four O atoms at the same time that the Ag1–Ag3 and Ag2–Ag4 contact distance is
noticeably shortened. For N = 3 and N = 4 each Ag is surrounded only by two O
atoms. Ag1–Ag3 and Ag2–Ag4 distances are shortened to 2.65 Å. For the [VO4]
clusters we find that the V–O distances remain almost unaltered.

In Table 10.2, the values of the bond distances of Ag–O in [AgOx] clusters for
x = 5, 6 and 7 for β-AgVO3, are presented as a function of the number of electrons
added. There are two types of [AgO5], centered by Ag2 and Ag3 (see Fig. 10.1b) but
are very similar, so in Table 10.2 the averaged distances for both are provided. For
N = 2 and N = 3, the two types of [AgO5] are disappeared and both Ag atoms are
surrounded by three and two O atoms, respectively. This fact can be explained due to
an approaching of Ag2 and Ag3 centers of adjacent cells at distances of 2.645 and
2.713 Å for N = 2 and N = 3, respectively. However, for N = 4 one type of [AgO5]
formed by Ag2 is maintained, while Ag3 is only coordinated to two O atoms at 2.494
Å. Ag1 and Ag4 forms the [AgO6] and [AgO7] clusters, respectively. Ag–O dis-
tances corresponding to [AgO6] cluster show a pronounced increase in passing from
N = 0 to N = 2. However, for N = 3 and N = 4, Ag1 is only bonded to two O atoms at
the same time that the Ag1–Ag3 distance of adjacent cells is noticeably shortened to
2.741 and 2.745 Å, respectively. Finally, Ag4 forms a [AgO7] cluster only for N = 0;
when electrons are added, there is a notable increase of the unit cell distortion as well
as of the constitutive polyhedra and Ag4 is coordinated to 3, 4, 5 and 5 O atoms for
N = 1, 2, 3 and 4, respectively. For the four types of [VO4] clusters, we find that the
five V–O distances remain almost unaltered.

The electronic charge of each atom is evaluated using Bader charge analysis
within the QTAIM framework, which is a way of dividing molecules or solids into
atoms on the basis of electronic charge density. Finding zero flux surfaces between
two atoms allows the atomic charge to be calculated, using integrations of the
charge density within the atomic basins, Ω, and subtracting the nuclear charge, Z, of
the corresponding atom.

Table 10.2 Values of Ag–O, in Å, in the three types of [AgOx] clusters for x = 5, 6 and 7 for
β-AgVO3, in Å, as a function of the number of electrons added (N)

N [AgO5] [AgO6] [AgO7]

(2) (2) (1) (2) (2) (2) (2) (2) (2) (1)

0 2.375 2.404 2.500 2.418 2.420 2.457 2.254 2.360 2.587 2.974

1 2.385 2.465 2.517 2.392 2.397 2.498 2.207(1) – 2.341 –

2 2.345 – 2.775 2.245 2.629 2.795 2.305 2.366(1) – 2.389

3 2.340 – – 2.363 – – 2.320 2.460 2.69(1) 3.152

4 2.243 2.460 2.931 2.408 – – 2.316 2.590 2.72(1) 3.198

The multiplicity of the bond is placed in parenthesis
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qðXÞ ¼ ZX � NðXÞ withNðXÞ ¼
Z
X
qðXÞdr ð10:1Þ

In Fig. 10.2a, the charge density of the Ag and V centers of the [AgO6]1,
[AgO6]2, and [VO4] clusters is depicted as a function of the number of electrons
added to α-AgVO3. The average bond distances of Ag–Ag as a function of the
number of electrons added are presented in Fig. 10.2b. An analysis of the results
presented in Fig. 10.2 shows that the Ag atoms of the [AgO6] clusters are more
prone to be reduced than V atoms (that form [VO4] clusters), since the Ag coor-
dination changes to 4 at N = 2 and to 2 at N = 3 and 4. Above N = 2, charge density
differences between [AgO6]1 and [AgO6]2 start to be sensed, being Ag3/Ag4 more
prone to be reduced than Ag1/Ag2 (by 0.12 units). This result is related to the major
Ag–O distance obtained for the completely reduced Ag3/Ag4 (2.548 Å) compared
to the Ag1/Ag2 (2.333 Å) for N = 4 (see Table 10.1). In addition, Ag1–Ag3

(a)

(b)

Fig. 10.2 a Charge density
of the Ag and V centers in
[AgO6]1, [AgO6]2, and [VO4]
clusters, b average Ag–Ag
distances, as a function of the
number of electrons added for
α-AgVO3
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distances are reduced from 3.66 to 2.65 Å, while Ag2–Ag3 distances are practically
maintained its initial value.

Figure 10.3a, b show 2D charge density maps associated to the interaction of
[AgO6]1−[AgO6]2 clusters, considering a neutral state (N = 0) and addition of four
electrons (N = 4), respectively. The zones with high and low charge densities are
specified by the concentration of charge lines around the atoms. A comparison of
the two pictures reveal that the electron density distribution is enhanced between
Ag1 and Ag3 for N = 4, at the same time that the Ag1–Ag3 contact distance is
shortened, since the two Ag atoms are twofold-coordinated. On the other hand,
Fig. 10.3a shows the equatorial plane of octahedral [AgO6] clusters.

The calculations of the charge density, ρbcp, at the (3,−1) bond critical points
(BCP) as well as its Laplacian, ∇2ρbcp, in Ag–O bonds for [AgO6] units are pre-
sented in Table 10.3. The effect of adding electrons to the material produces striking
differences in the values of the Laplacian and charge density at the (3,−1)
BCP. Thus, it is worth noting that the Ag–O bonds considerably reduce their
Laplacian and charge density values as the number of electrons are added increase,
indicating that these bonds become less strong in favor of the formation of metallic
Ag.

In Fig. 10.4, the charge density of the Ag centers of the [AgOx] clusters for
x = 5, 6 and 7, as a function of the number of electrons added is depicted for
β-AgVO3. The zones with high and low charge densities are specified by the

(a) (b)

Fig. 10.3 Electron density contours for a neutral (N = 0) and b charged (N = 4) α-AgVO3

structure, on a plane containing the two types of Ag atoms

Table 10.3 Laplacian and
charge density at the (3,−1)
BCPs in Ag–O bonds for
[AgO6] clusters as a function
of the number of electrons
added, N

BCP [AgO6]

Ag–O

N ρbcp ∇2ρbcp
0 0.54 6.98

2 0.46 5.68

4 0.42 5.32
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concentration of charge lines around the atoms. Figure 10.5a, b show 2D charge
density maps for neutral β-AgVO3 structure and for (N = 4), respectively.

An analysis of Fig. 10.4 shows that the charge density of the Ag2 and Ag3
centers that initially forms [AgO5] clusters are very similar till N = 2, in which they
are threefold-coordinated. As more electrons are added, Ag3 is more prone to be
reduced than Ag2. This fact is related to Ag–O, since Ag3 is coordinated to two O

Fig. 10.4 Charge density of the Ag centers of the [AgOx] clusters for x = 5, 6 and 7, as a function
of the number of electrons added for β-AgVO3. q(Ω) represents the number of valence

(a) (b)

Fig. 10.5 Electron density contours for a neutral (N = 0) and b charged (N = 4) β-AgVO3

structure, on a plane containing the four types of Ag atoms
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atoms while Ag2 recover the five coordination at N = 4. Simultaneously, in passing
from N = 0 to N = 4 Ag2–Ag3 distance decreases from 5.725 to 4.853 Å. In
addition, a comparison of the two pictures of Fig. 10.5 reveals that the electron
density distribution is enhanced between Ag2 and Ag3 for N = 4.

Ag1 center, that forms the [AgO6] clusters, shows a pronounced charge density
decrease up to N = 2, according to the change of the coordination number from 6 to
2. Therefore, Fig. 10.4 reveals that the extra electron density added to the material is
transferred from one cluster to another through the lattice network, in particular
between Ag1 and Ag3 arrangements, which behave similarly. At N = 4 both are
practically reduced and are coordinated only to two O atoms, being Ag1–Ag3
distance of adjacent cells is reduced to 2.745 Å.

Finally it is worth noting that the charge density for the Ag4, that forms [AgO7]
cluster, as well as for V atoms remains almost unaltered.

10.5.2 Glycolic acid decomposition

The gas phase decompositions of several carboxylic acids and related compounds
have been theoretically characterized by us in the past [171–176], reproducing the
experimentally observed kinetics of such processes. In particular, the decomposi-
tion of glycolic acid takes place through a homogeneous, unimolecular reaction
following a first order rate law. We demonstrated [177] that three competitive
reaction mechanisms could exist, being a two-step process the more favorable
reaction pathway. For this pathway, the first step was associated with the water
elimination, thus giving rise to the formation of an α-lactone intermediate by means
of the nucleophilic attack of the carbonyl oxygen atom. The second step was the
ring opening to obtain carbon monoxide and formaldehyde (mechanism A).
A second two-step mechanism was found to be also possible, with a first step also
describing the water elimination with formation of the α-lactone intermediate, but in
this case by means of the nucleophilic attack of the hydroxylic oxygen atom of the
carboxyl group (mechanism B, which shares the second step with mechanism A).
Finally, a third pathway was also described, consisting on a one-step process in
which the decomposition of the glycolic acid would take place in a concerted
fashion to form carbon monoxide, water and formaldehyde in a unique step
(mechanism C). The three proposed mechanisms are sketched in Scheme 10.1 along
with the atom numbering used.

In the present work, we revisited that study by using a topological approach, as
an example of the usefulness of this methodology to describe chemical reactions,
and in particular to characterize in detail the chemical events that make possible the
glycolic acid decomposition. The study has been done by using the Gaussian 09
program [178] at the MP2/6-31++G** theoretical level, that has previously proven
to be adequate to reproduce the experimental values of the rate constants [177].

To gain a deeper insight in the description of the decomposition process we have
used the TopMod package [87] to obtain the ELF function values. We have used a

270 J. Andrés et al.



cubical grid of step size smaller than 0.1 bohr. In this framework, the reaction
mechanism can be rationalized in terms of chemical events (bond forming or
breaking processes, creation and annihilation of electron pairs) that drive the
chemical rearrangement. This analysis allows us to understand the electronic
structure and related properties of the reactants as the reaction takes place, pro-
viding a further understanding of the chemical reactivity. Starting from the TS, the
reaction path has been traced following the intrinsic reaction coordinate (IRC) [179,
180] using a Rx in mass-weighted step of 0.1 amu1/2 bohr until reaching the
minimum or until a maximum of 100 steps have been done.

10.5.2.1 Mechanism A, First Step

As explained above, the mechanism A is a stepwise process, whose first step
accounts for the water elimination from glycolic acid to form the α-lactone inter-
mediate. The energy profile along the IRC path down from TS1 to the glycolic acid
in one side, and to the α-lactone intermediate in the other side, is reported in
Fig. 10.6, together with the structural stability domains (SSD) found.

For the process leading from glycolic acid to the α-lactone intermediate through
TS1, seven SSDs have been characterized, and they are indicated in Fig. 10.6.

The series of SSDs found can be viewed as a sequence of chemical events
depicted in Scheme 10.2, which has been represented according to the perspective
of the ELF analysis. In Scheme 10.2 the full lines and the points represent disy-
naptic and monosynaptic basins, respectively, and the hydrogenated basins have
been represented with ellipses.
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Scheme 10.1 The three mechanisms studied and the atom numbering used
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At the glycolic acid, the first point of the SSD-I, nineteen basins can be found,
corresponding to the five core basins, five disynaptic basins (accounting for the C–C
bond, the two C–O bonds and two basins for the C=O double bond), four hydro-
genated basins, and five monosynaptic basins associated with the oxygen atoms lone
pairs. In particular, we have found two monosynaptic basins corresponding to the O4
atom, also two monosynaptic basins for the O5 oxygen atom, and only one
monosynaptic basin corresponding to the O1 atom.

The first topological change connecting SSD-I and SSD-II is associated with a
cusp-type catastrophe. The disynaptic basin V(O1,H6) splits in two monosynaptic
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Fig. 10.6 Energy profile for the water elimination from glycolic acid (left side) to obtain the
α-lactone intermediate through TS1, calculated by means of the IRC method. The SSDs found are
indicated
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basins, V2(O1) and V(H6). The creation of the monosynaptic basin V(H6) involves
an intermediate structure in which the hydrogen is detached, and transfers electron
density (dressed proton) toward one of the lone pairs of O5. It is worth noting that
the presence of the V(H6) is observed in both SSD-II and SSD-III. Later, the
passage from SSD-II to SSD-III reveals another cusp-type catastrophe. The disy-
naptic basins V1,2(C2,O4) associated with the double bond C2=O4 are transformed
into single disynaptic basin V(C2,O4). Subsequently, when the system reaches the
SSD-IV, the monosynaptic basins V(H6) and V1(O5) are replaced by a single
disynaptic basin V(O5,H6) (cusp-type of catastrophe). The latter topological change
allows thus the formation of a water molecule which is coordinated to C3. Next, the
turning point between SSD-IV and SSD-V is associated with a fold-type catas-
trophe. Herein, the disynaptic basin V(C3,O5) becomes monosynaptic V(O5).
Thus, the water molecule coordinated to C3 and formed by O5, H6 and H7 departs
from the rest of the system. It is important to remark that according to the ELF
topological point of view when the system reaches the TS1, no breaking/forming
processes are observed. After TS1, when the system reaches the SSD-VI, the
disynaptic basin V(C2,O1) is replaced by a pair of disynaptic basins V1,2(C2,O1).
From a chemical point of view, this cusp-type of catastrophe may be interpreted as
a change of topological signature of the single bond C2–O1 to double bond C2=O1.
Finally, when SSD-VII is reached, the ELF scalar field undergoes a fold-type
catastrophe and the creation of the disynaptic basin V(C3,O4) is observed giving
rise to the formation of the lactone intermediate.

Snapshots of the ELF basins for some selected points along the IRC, repre-
senting the different SSDs found, are depicted in Fig. 10.7.

The snapshots (a), (b), (c) and (d) of Fig. 10.2 clearly describe the proton transfer
from O1 to O5. The snapshots (d) and (e) show the changes taking place between
C3 and O5: at SSD-IV there is a disynaptic V(C3,O5) basin (see the green basin
between these two atoms in Fig. 10.2d) while when the turning point between
SSD-IV and SSD-V is reached the disynaptic basin V(C3,O5) becomes monosy-
naptic V(O5) (see the red basin in Fig. 10.2e). Subsequently, the water molecule
release precedes the final cyclization of the intermediate while the last chemical
event accounts for the lactone closure. In Fig. 10.7g the small bonding basin V(C3,
O4) between C3 and O4 is observed.

To complete the topological description of the process, an analysis of the pop-
ulation evolution of the basins directly related with the changes taking place can be
done. These data are reported in Fig. 10.8.

As can be seen in Fig. 10.8, by the end of SSD-I the population of the disynaptic
basin V(O1,H6) diminishes concomitantly with an increase in the population of the
disynaptic basin V(C2,O1). Therefore, the departure of the H6 from O1 initially
makes the population of the basin corresponding to the C2–O1 bond increase.
However, when the basin V(O1,H6) disappears at the turning point between
SSDD-I and SSD-II, its population is not assumed by the disinaptic basin V(C2,
O1), but principally by a new monosynaptic basin V(O1). In Fig. 10.8 we have
represented the population of the monosynaptic basins on O1 as a whole, and
therefore a sudden increase in the V(O1) populations is noticed when the new
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monosynaptic basin appears on O1. Along SSD-II and also SSD-III the monosy-
naptic basin V(H6) briefly appears, as explained, and as can be seen in Fig. 10.8 its
population is scarce. On the other hand, the two bonding basins V1,2(C2,O4)
accounting for the double bond character of the C2–O4 bond, merge in a unique
disynaptic basin V(C2,O4) in the turning point between SSD-II and SSD-III.
Therefore its population suddenly increases at this point, and from this point on its
population decreases along the reaction coordinate.

(a) (b) (c) 

(d) (e) (f) 

(g) 

Fig. 10.7 Snapshots of the ELF localization domains (η = 0.829 isosurface) for selected points
along the IRC from TS1: a glycolic acid, belonging to SSD-I, with indication of some atoms
positions b point at s ≈ −2.596 amu1/2 bohr belonging to SSD-II, c point at s ≈ −2.196 amu1/2 bohr
belonging to SSD-III, d point at s ≈ −1.696 amu1/2 bohr belonging to SSD-IV, e TS belonging to
SSD-V, f point at s ≈ +1.997 amu1/2 bohr belonging to SSD-VI, g last point of the IRC,
corresponding to the α-lactone species plus water, belonging to SSD-VII. The color code is as
follow: purple, core basins; red, monosynaptic basins; green, disynaptic basins; blue,
hydrogenated basins. Some basins are labeled throughout the figure
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As explained above, the cusp-type catastrophe between SSD-III and SSD-IV
accounts for the V(H6) and V1(O5) monosynaptic basins being replaced by a single
disynaptic basin V(O5,H6), while the turning point between SSD-IV and SSD-V
accounts for the change in the synaptic order of the disynaptic V(C3,O5) basin to a
new monosynaptic V3(O5) basin. Hence, the whole population of the monosynaptic
basins on O5, represented as V(O5) in Fig. 10.8, decreases in the SSD-III to
SSD-IV passage and increases back in the SSD-IV to SSD-V turning point.

The topological change between SSD-V and SSD-VI corresponds to the splitting
of the V(C2,O1) basin, whose population was increasing from the very beginning
of the process. From this turning point onwards, two disynaptic basins, V1(C2,O1)
and V2(C2,O1) are observed between C2 and O1 accounting for its double bond
character. Finally, when SSD-VII is reached, the new V(C3,O4) basin appears
accounting for the closure of the lactone ring. The population of this new disynaptic
basin is quite low: slightly increases at the beginning of the SSD-VII, but soon its
population stabilizes around a 0.78 e value.

10.5.2.2 Mechanism A, Second Step

As explained above, the second step of the mechanism A accounts for the lactone
intermediate opening to form carbon monoxide and formaldehyde. The energy
profile along the IRC path down from TS4 to the α-lactone intermediate in one side,
and to carbon monoxide plus formaldehyde in the other side, is reported in
Fig. 10.9, together with the SSDs found. These have been shown in Scheme 10.3,
which as explained has been depicted from the perspective of the ELF analysis,
following the same code.

At the α-lactone, the first point of the SSD-I, fifteen basins have been found,
corresponding with the four core basins, five disynaptic basins accounting for the
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lines separate the structural stability domains found, which are indicated. V(O1) and V(O5) account
for the total population of the monosynaptic basins on the O1 and O5 atoms, respectively
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double and the three single bonds, two hydrogenated basins and four monosynaptic
basins, located two on each oxygen atom. The annihilation of the disynaptic basin V
(C2,O4) is observed in the turning point between SSD-I and SSD-II by means of a
fold-type catastrophe, and in this way the topological analysis describes the begin-
ning of the three-membered ring opening. The second topological change of the ELF
field connecting SSD-II and SDD-III corresponds to a cusp-type catastrophe where
two monosynaptic basins V1,2(O1) merging to form a unique V(O1) monosynaptic
basin. Then the bonding basin V(C2,C3) becomes monosynaptic V(C2) by means of
a fold-type catastrophe (just at the TS of the process, as can be seen in Fig. 10.9) and
the SSD-IV is reached. From that point on, the two fragments separate from each
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other along the IRC, and the changes that can be noticed are the merging of the two
disynaptic basins V1,2(C2,O1) into a unique disynaptic basin V(C2,O1) (cusp-type
catastrophe) when the system reaches the SSD-V. Finally the system reaches the
SSD-VI, the splitting of the V1(C3,O4) disynaptic basin into two disynaptic basins
V1,2(C3,O4) (cusp-type catastrophe) accounting for the newer double bond formation

Fig. 10.10 Snapshots of the ELF localization domains (η = 0.819 isosurface) for selected points
along the IRC from TS4: a α-lactone intermediate, belonging to SSD-I, b point at s ≈ −1.998
amu1/2 bohr belonging to SSD-II, c point at s ≈ −0.498 amu1/2 bohr belonging to SSD-III, d point
at s ≈ 0.498 amu1/2 bohr belonging to SSD-IV, e point at s ≈ 1.998 amu1/2 bohr belonging to
SSD-V, f last point of the IRC, corresponding to carbon monoxide plus formaldehyde, belonging
to SSD-VI
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between C3 and O4 that is observed. Snapshots of the ELF basins for some selected
points along the IRC are shown in Fig. 10.10.

The population evolution of some basins directly related with the changes taking
place in the reaction is reported in Fig. 10.11. As can be seen, the reaction begins
with a very acute diminution of the population of the V(C2,O4) disynaptic basin,
that very soon disappears in the catastrophe between SSD-I and SSD-II, thus
making apparent that the ring opening process begins in this bond, taking place the
breaking of the C2–C3 bond at a later stage. The population of this disappearing
basin is assumed by the monosynaptic basins V(O4), represented as a whole in
Fig. 10.11, whose population increase as the V(C2,C3) population decrease, and
suddenly increases at the turning point between SSD-I and SSD-II. The populations
of the monosynaptic basins on O1 (initially two basins, only one after the turning
point between SSD-II and SSD-III is reached) are also represented as a whole in
Fig. 10.11, and labeled V(O1). As can be seen, either the V(O4) population as well
as the V(O1) one constantly decrease from the SSD-I to SSD-II turning point on,
until stable values of ca 5.22 and ca 4.18 e, respectively, are reached.
Concomitantly, the population of V1(C3,O4) disynaptic basin constantly increases
until it is splitted in the turning point between SSD-V and SSD-VI, into two
disynaptic basins accounting for the double C3–O4 bond character. It can also be
noticed that the V(C2,C3) disynaptic basin at the end of SSD-III becomes
monosynaptic V(C2), with the same population that had the V(C2,C3) basin, when
the turning point between SSD-III and SSD-IV is reached. On the other hand, the
populations of the disynaptic basins V1,2(C2,O1) slightly increase and finally merge
in the turning point between SSD-IV and SSD-V.

As can be seen, there is only one basin between the C2 and the O1 atoms by the
end of the process, and the populations of the basins V(C2), V(O1) and V(C2,O1) at
the last point of the IRC are 2.39, 4.18 and 3.23 e, respectively. Therefore, the
topological description of the carbon monoxide moiety shows that the ten valence
electrons are greatly displaced towards the oxygen atom, and in fact the populations
of the V(O1) basins are greater than the population of the V(C2,O1) bonding basin,
thus reflecting the electronic displacement due to the large oxygen electronegativity.

10.5.2.3 Mechanism B, First Step

As explained above, an alternative mechanism was suggested for the water elimi-
nation from glycolic acid to yield the α-lactone intermediate, by means of the
nucleophilic attack of the hydroxylic oxygen (O1) of the carboxyl group on the α-
carbon atom (C3). The energy profile along the IRC path down from TS2 to the
glycolic acid in one side and to the α-lactone intermediate on the other is reported in
Fig. 10.12, along with the SSDs found. In Scheme 10.4 these domains have been
sketched following the same aforementioned code.

The beginning of the reaction takes place in the same way as already explained
when studying the mechanism A: starting at the glycolic acid, with nineteen basins,
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the SSD-I ends up with the departure of the H6 from O1, where the bonding basin
V(O1,H6) splits into two monosynaptic basins V(O1) and V(H6). After that, the
proton is located between the monosynaptic basins of O1 and O5 along SSD-II and
SSD-III, finally reaching the O5 atom at SSD-IV. However, in the mechanism B the
breaking of the C3–O5 bond takes place earlier than in the mechanism A according
to the BET description: in the turning point between SSD-II and SSD-III the V(C3,
O5) disynaptic basin is replaced by a new V(O5) monosynaptic basin. In the
mechanism A this change took place once the H6 had reached the O5 atom,
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whereas in the mechanism B the C3–O5 bond breaks before the H6–O5 bond has
developed. From a topological point of view this is the main difference between the
two mechanisms, and might explain why the mechanism A is favored over the
mechanism B. As can be seen in Fig. 10.6, the turning point between SSD-IV and
SSD-V (namely, the breaking of the C3–O5 bond according to the ELF description)
is ca 8.5 kcal/mol below the TS, so that the water departure is not very much energy
demanding. However, as can be seen in Fig. 10.12, the turning point between
SSD-II and SSD-III (where the C3–O5 breaks in this case) is ca 20.5 kcal/mol
under the TS, and therefore the OH departure with the H6 proton surrounding O1, is
in this case much more energy demanding until the TS is found with the water
molecule formed far from the rest of the system. This would explain why the
mechanism A is favored over the mechanism B.

The latter steps of the mechanism B can be described analogously to the
description of the mechanism A: the double bond is developed, now between C2
and O4, when SSD-V is reached, and the last change corresponds to the ring
closure.

Snapshots of the ELF basins for some selected points along the IRC representing
the different SSD’s found are depicted in Fig. 10.13.

Fig. 10.13 Snapshots of the ELF localization domains (η = 0.85 isosurface, except when
indicated) for selected points along the IRC from TS2 (see in Fig. 10.7a the domains
corresponding to glycolic acid, belonging to SSD-I, and the atoms and basins labels there): a point
at s ≈ −4.396 amu1/2 bohr belonging to SSD-II, b point at s ≈ −3.996 amu1/2 bohr belonging to
SSD-III, c TS belonging to SSD-IV, d point at s ≈ +2.497 amu1/2 bohr belonging to SSD-V, e last
point of the IRC, corresponding to the α-lactone species plus water, belonging to SSD-VI
(η = 0.825 isosurface)
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As can be seen the snapshots in Fig. 10.7a and in Fig. 10.13a–c, clearly describe
the proton transfer from O1 to O5. Also the disappearance of the disynaptic basin
between C3 and O5 can be followed comparing the snapshots (a) and (b) of
Fig. 10.13, since the green V(C3,O5) disynaptic basin in (a) disappears in (b). As
already mentioned, the closure of the lactone ring is the last step, and the small
green bonding basin between C3 and O1 cannot be seen until SSD-VI is reached,
snapshot (e) in Fig. 10.13.

The process can also be followed with the aid of the population evolution of
some selected basins along the process. Such evolution is reported graphically in
Fig. 10.14, in which V(O1) and V(O5) account for the whole population of the
monosynaptic basins on these two atoms.

As can be seen, along SSD-I the basin populations do not change significantly,
with the exception of the V(C3,O5) population diminution anticipating the breaking
of this bond soon after SSD-I finishes. The first turning point reflects the sudden
increase on the V(O1) monosynaptic basins population, due to the appearance of a
new V(O1) basin concomitant with the V(O1,H6) hydrogenated basin disappear-
ance at this point. Then two very short domains, SSD-II and SSD-III, are reached,
in which a scarcely populated V(H6) basin briefly appears, accounting for the
dressed proton travel from O1 to O5. Also in the turning point between these two
domains, the whole population of the V(O5) basins increases because the former V
(C3,O5) basins changes to a new V(O5) monosynaptic basin. Soon after that the
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whole population of the V(O5) basins decreases back because the V(O5,H6) basin
appears replacing one of the V(O5) monosynaptic basins and taking its population,
at the turning point between of SSD-III to SSD-IV. On the other hand, the two
bonding basins V1,2(C2,O4) merge to each other in the SSD-II to SSD-III change,
and the resulting basin has got the sum of the populations until it is again splitted in
the SSD-IV to SSD-V turning point. The final appearance of the V(C3,O1)
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Fig. 10.15 Energy profile for the decomposition glycolic acid (left side) through TS3 to obtain
carbon monoxide, water and formaldehyde, calculated by means of the IRC method. The SSDs
found are indicated
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disynaptic basin accounting for the ring closure is accompanied by a diminution of
the V(O1) monosynaptic basins population.

10.5.2.4 Mechanism C

A third pathway was found to compete with the already explained mechanisms. The
third pathway is a one-step process directly leading from the glycolic acid to the

(a) (b) (c)

(f)(d)

(g) (h)

(e)

Fig. 10.16 Snapshots of the ELF localization domains (η = 0.825 isosurface, except when
indicated) for selected points along the IRC from TS3: a glycolic acid, belonging to SSD-I
(η = 0.85 isosurface), with recall of some atom positions and basin labels, b point at s ≈ −2.996
amu1/2 bohr belonging to SSD-II c point at s ≈ −1.496 amu1/2 bohr belonging to SSD-III, d point
at s ≈ −0.698 amu1/2 bohr belonging to SSD-IV, e point at s ≈ −0.398 amu1/2 bohr belonging to
SSD-V, f TS belonging to SSD-VI, g point at s ≈ +2.496 amu1/2 bohr belonging to SSD-VII, h last
point of the IRC, corresponding to carbon monoxide plus water and formaldehyde, belonging to
SSD-VIII
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reaction products, namely, carbon monoxide, water and formaldehyde. In
Fig. 10.15 we report the energy profile along the IRC path down from TS3 to the
glycolic acid on one side, and to the reaction products in the other side. The SSDs
found are indicated and sketched in Scheme 10.5.

As can be seen, the process begins in a different way than in the A and B
mechanisms: although the first topological change also corresponds to a new V(O1)
monosynaptic basin appearance, the proton transfer does not begin neither in the
first stage of the process nor in the second or the third. It is not until SSD-IV is
reached that the V(O5,H7) splits into two monosynaptic basins V(O5) and V(H7).
This can also be viewed in Fig. 10.16, in which the snapshots of the ELF basins for
some selected points along the IRC for the decomposition of the glycolic acid by
means of the mechanism C are reported. As can be seen, the snapshots (a), (b) and
(c) do not show any proton transfer.

The breaking of the C2–O1 bond can be sensed by comparing the snapshots
(b) and (c) in Fig. 10.16: the green disynaptic basin between C2 and O1 cannot be
detected at SSD-III. The proton transfer can be followed in the snapshots (c), (d),
(e), and (f) in Fig. 10.16. The C2–C3 breaking is reflected by the red monosynaptic
V(C2) basin that can be seen at Fig. 10.16g instead of the former disynaptic V(C2,
C3) green basin between these two atoms that can still be viewed at Fig. 10.16f.

Therefore, the series of chemical events taking place according to the ELF
description is rather different in the mechanism C with respect the other two
mechanisms: in the mechanism C the C2–O1 bond breaks first, forming an OH
moiety. After that, at the turning point between SSD-III and SSD-IV, the V(H7)
appears accounting from the proton migration from O5 to O1 while at the turning
point between SSD-V and SSD-VI the bonding basin V(O1,H7) appears. After that,
going down from the TS to the final products, the chemical events taking place are:
(i) the C2–C3 breaking, (the disynaptic basin V(C2,C3) becomes monosynaptic V
(C2)) (ii) the disynaptic basin V1(C3,O5) splits into two disynaptic basins V1,2(C3,
O5) accounting for the double bond formation.

In the mechanism A the H6 transfer from O1 to O5 was the first chemical event
taking place, followed by the C3–O5 breaking (water departure), lactone ring
closure through C3–O4 bond formation, and decomposition of the lactone inter-
mediate via C2–O4 bond breaking followed by C2–C3 breaking and final C3–O4
double bond formation. On the other hand, in the mechanism B the series of events
begun with the H6 departure from O1 followed by the C3–O5 breaking (OH
departure), water formation via O5–H6 bond, closure of the lactone ring through
C3–O1 bond formation, and decomposition of the lactone intermediate via C2–O1
bond breaking followed by C2–C3 breaking and final C3–O1 double bond
formation.

The population evolution of several basins, related with the advance of the
process along the mechanism C, have been represented as a function of the reaction
coordinate in Fig. 10.17, in which the SSDs found are also indicated.

Along SSD-I only a diminution of the V(C2,O1) population concomitant with an
increase in the V(O1) basins population is sensed. At the turning point between
SSD-I and SSD-II a new monosynaptic basin appears on O1, and this is reflected in
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a continuous increase in the total population of the monosynaptic basins on this
atom, represented as a whole in Fig. 10.17 under the V(O1) label. Along SSD-II the
diminution in the V(C2,O1) population continues, as well as the increase in the V
(O1) population. Also, the diminution of the populations of the monosynaptic
basins V(O4) can be sensed. The population of these basins will continue reducing
until half SSD-VII is reached.

The turning point between SSD-II and SSD-III represents the breaking of the
C2–O1 bond (the corresponding disynaptic basin disappears) with a concomitant
sudden increase of the V(O1) basins population. After that, three very short
domains (SSD-III, SSD-IV and SSD-V) can be found, accounting for the H7
departure from O5 and a monosynaptic basin on O5 appearing in the turning point
between SSD-III and SSD-IV, reflected in the sudden increase in its population
observed in Fig. 10.17. Also, a scarcely populated V(H7) basin briefly appears
along SSD-IV and SSD-V. When SSD-VI is reached, the new V(O1,H7) basin
appears with the corresponding population diminution of the V(O1) monosynaptic
basins. The next catastrophe between SSD-VI and SSD-VII accounts for the C2–C3
bond breaking. The last turning point is related with the splitting of the V(C3,O5)
basin into two disynaptic basins accounting for the double bond character of the
C3–O5 bond in formaldehyde.
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10.6 Conclusions

As recently noted by Alvarez “But we must not forget that chemistry is all about
connecting and disconnecting atoms to form new molecular or supramolecular
objects. So understanding the ways in which atoms and molecules can be held
together should play an important role in developing new chemistries” [181]. Our
analysis demonstrates that concepts from quantum chemical topology constitute a
promising tool to investigate chemical structure and reactivity.

In this work we review how these advances, have led to interesting and
important new insights into the physical chemistry of materials and molecules and
is a clear example of how overcome the sentence by Sutcliffe: “It is at least arguable
that, from the point of view of quantum chemistry as usually practiced, the
supercomputer has dissolved the bond” [182]. We then review in detail a few
specific applications that highlight some of these quantum chemical topology
capabilities. Two working examples have been selected: (i) the Ag nucleation and
formation on AgVO3 material provoked by the electron-beam irradiation, has been
investigated by means of a QTAIM study, (ii) the decomposition of glycolic acid
has been analyzed by the joint use of ELF plus CT (BET).

We conclude this chapter by quoting the Dirac’s statement [183] “It therefore
becomes desirable that approximate practical methods of applying quantum
mechanics should be developed, which can lead to an explanation of the main
features of complex atomic systems without too much computation”
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Chapter 11
Paradise Lost—π-Electron Conjugation
in Homologs and Derivatives of Perylene

Ivan Gutman and Slavko Radenković

Abstract Various Kekulé–structure–based models, aimed at describing π-electron
conjugation in polycyclic aromatic compounds are briefly described. Our main
concern are benzenoid hydrocarbons, π-electron systems in which the Kekulé–
structure–based approaches are expected to yield the best results. Although there
are numerous examples in which reasonings based on Kekulé structures render
correct results, there exist cases in which significant violations are encountered.
Perylene, its homologs, and derivatives are characteristic representatives of such
“anomalous” conjugated systems. Violations from the predictions of the Kekulé–
structure–based models are verified by means of a variety of Kekulé–structure–
independent theoretical methods.

11.1 Introduction

The way how August Kekulé discovered the structural formula of benzene is one of
the legends of the history of chemistry [1, 2]. In 1865/6, Kekulé proposed for
benzene the hexagonal formula 1 shown in Fig. 11.1, according to which the carbon
atoms would be three-valent (or, in more modern terminology: three-coordinate). In
order to make the carbon atoms four-valent, in 1872 Kekulé inserted three double
bonds into his benzene formula, which can be done in two distinct ways—formulas
2 and 3 shown in Fig. 11.1. Nowadays, these are referred to as the Kekulé structures
or the Kekulé structural formulas of benzene.

It soon became evident that not only benzene, but the whole class of polycyclic
aromatic compounds (benzenoid hydrocarbons in particular), possess a non-unique
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classical structural formula, i.e., that for such compounds several distinct Kekulé
structures can be drawn. A characteristic example is depicted in Fig. 11.2.

The fact that there may exist several equally plausible Kekulé–type structural
formulas for a chemical compound, has long pt there may exist several equally
plausibleuzzled the chemical community. A more–or–less acceptable solution was
found only after quantum–theoretical arguments were used for the description and
explanation of chemical bonding [3–8]. One direction of development of quantum
chemistry (usually referred to as “valence bond theory”) explicitly used mathe-
matical objects resembling Kekulé structural formulas.

Strictly speaking, Kekulé structures provide only a small fraction of the dia-
grams used in valence bond theory for constructing the wave function. (For
example, of 42 non-ionic Rumer diagrams of naphthalene, only three pertain to
Kekulé structures.) Nevertheless, it was a compelling idea (especially for scholars
with a chemistry background) to try to describe the physical and chemical prop-
erties of polycyclic conjugated molecules by employing only their Kekulé struc-
tures. This is usually referred to as “resonance theory”, for details see [9–12].

A noteworthy early attempt along these lines was a paper by Pauling and
coworkers [13], who used the quantity

PðijÞ ¼ Kij

K
ð11:1Þ

for rationalizing the variation of the carbon–carbon bond lengths in benzenoid
hydrocarbons; here K is the number of Kekulé structures, whereas Kij is the number
of Kekulé structures in which the bond ij is double. Nowadays, P(ij) is referred to as
the Pauling bond order.

Kekulé structures gained much on their popularity in the 1950s, when it was
discovered that

(1) if K = 0, then the respective conjugated hydrocarbon has non-bonding π-
electron molecular orbitals and an open–shell π-electron configuration, and is
thus highly unstable [14], and

Fig. 11.1 Structural formulas for benzene proposed by Kekulé in 1865/66 (1) and in 1872 (2 and
3). Note that benzene was the first chemical compound for which a cyclic structure was postulated.
Note also that in his first paper on the structure of benzene, Kekulé proposed several different
structural formulas, only one of which is the nowadays accepted one, having the form of a regular
hexagon
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(2) the determinant of the Hamiltonian matrix in Hückel molecular orbital
(HMO) theory (after setting α = 0 and β = 1), is equal to K2 [15].

Eventually, other Kekulé–structure–based relations between valence bond and
molecular orbital theories were discovered [16–21].

Already in the seminal paper by Dewar and Longuet–Higgins [15], it was
established that the K2-regularity does not hold for all polycyclic conjugated π-
electron systems, and that corrections for the “parity” of Kekulé structures need to
be taken into account. This became the concept of “algebraic structure count” [22,
23], which was later shown to be not applicable to all non-alternant conjugated
hydrocarbons [24, 25]. The fortunate fact is that all Kekulé structures of benzenoid
hydrocarbons have the same “parity” [20], which has the consequences that all
Kekulé–structure–based models work best for benzenoid systems. Also in this

Fig. 11.2 Benzo[a]pyrene (4) and its nine Kekulé structures. The Kekulé structure count is
traditionally denoted by K. Thus, for benzo[a]pyrene, K = 9
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survey, the conjugated π-electron systems considered (mainly benzenoid hydro-
carbons) belong to the class of species whose Kekulé structures have equal “parity”.

Another reason for the increase of interest to Kekulé–structure–based studies
was the recognition that in mathematics there exists a fully equivalent notion,
namely the concept of perfect matching (or, in an earlier terminology, of 1-factor)
[26–28]. This soon resulted in various mathematics–oriented researches on Kekulé
structures, see e.g. [29, 30] (which are not the concern of the present survey).

Anyway, beginning with the 1970s, a number of approaches was put forward, all
based on counting or examination of Kekulé structures (and only Kekulé struc-
tures!), all offering reasonably good quantitative prediction of various molecular
properties. We provide a short survey of these methods in the subsequent section.

11.2 Kekulé–Structure–Based Approaches: Success

11.2.1 Resonance Theory

In 1973 William Herndon put forward a resonance–theoretical model, according to
which he was able to calculate the resonance energies of benzenoid hydrocarbons
with accuracy tantamount to the best (in that time) molecular–orbital theories [31].
Let it be mentioned that similar ideas were proposed by Simpson in 1953 [32], but
in that time had little impact.

In Herndon’s resonance theory, the basic assumption is that Kekulé structures
alone suffice to describe the π-electron configuration of the ground state of a
conjugated hydrocarbon. The respective wave function is of the form

jWi ¼ 1ffiffiffiffi
K

p
XK
i¼1

jkii ð11:2Þ

where jkii is the wave function associated to the Kekulé structure
ki; i ¼ 1; 2; . . .;K. The resonance energy is then calculated as

RE ¼ 2
K

X
1� i\j�K

hkijĤjkji ð11:3Þ

where Ĥ is a formal Hamiltonian operator and hkijĤjkji are the corresponding
matrix elements. In Herndon’s model

hkijĤjkji ¼ c1 ¼ 0:841 eV

if the Kekulé structures ki and kj differ in the position of exactly three double bonds,
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hkijĤjkji ¼ c2 ¼ 0:336 eV

if the Kekulé structures ki and kj differ in the position of exactly five double bonds,
and

hkijĤjkji ¼ 0

if the Kekulé structures ki and kj differ in the position of more than five double
bonds.

For example, in the case of benzo[a]pyrene, with notation defined in Fig. 11.2,
hk1jĤjk4i ¼ hk4jĤjk5i ¼ c1, hk1jĤjk3i ¼ hk3jĤjk8i ¼ c2, hk1jĤjk5i ¼ hk1jĤjk9i ¼ 0.

For more details on Herndon resonance theory see [33–37] and in the book [38,
pp. 66–70].

Instead of the abstract and chemists–unfriendly expressions of the kind (11.2)
and (11.3), simplified resonance–theoretical approaches became popular, based
only on counting of Kekulé structures, i.e., on the number K.

Relating resonance energy and aromaticity of benzenoid molecules directly with
the number of Kekulé structures has a long history [9, 39, 40]. It was generally
believed (and accepted as self-evident) that among benzenoid isomers,
stability/aromaticity increases with their K-values [41]. Of a variety of K-dependent
expressions for resonance energy, wemention here that of Swinborne–Sheldrake [42]

RE ¼ 1:185 lnK ðeV) ð11:4Þ

similar to a much older formula by Carter [43], and the countless works on K-
dependence of HMO total π-electron energy, e.g. [44–49], the reviews [50, 51] and
the book [38, pp. 70–73].

A strong argument in favor of K-based considerations is the fact that no ben-
zenoid hydrocarbon without Kekulé structure has ever been obtained, in spite of
several synthetic attempts [52, 53]; for more details on the K = 0 case see
[38, pp. 62–66].

By using Kekulé structure count, it was attempted to rationalize thermochemical
parameters of benzenoid hydrocarbons [54–56], as well as their reactivities [57–62]
and ionization potentials [63, 64].

11.2.2 Conjugated Circuits

The fact that different parts of a polycyclic conjugated molecule may possess
different degrees of aromaticity, motivated Milan Randić to propose a simple cri-
terion for “local aromaticity” [65]. His “index of local aromaticity” is defined as
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ILAðRÞ ¼ 2KðBH � RÞ
KðBHÞ ð11:5Þ

where BH is a benzenoid molecule and BH − R is the fragment obtained by deleting
the ring R from BH. The ring R is usually assumed to be 6-membered.

It can be easily seen that 2K (BH − R) is just the number of Kekulé structures of
BH in which the ring R possesses three double bonds. For example, for the five
rings of benzo[a]pyrene (see Fig. 11.2), ILA(A) = 4/9, ILA(B) = 6/9, ILA(C) = 6/9,
ILA(D) = 4/9, and ILA(E) = 2/9. Consequently, the ring E would be the least
aromatic domain of benzo[a]pyrene, whereas the rings B and C would have the
greatest aromatic character.

The simple ILA-approach was eventually extended to the “conjugated circuit
model” [66–70].

A “conjugated circuit” is a cyclic arrangement of single and double bonds in a
Kekulé structure, such that each single bond is followed by a double bond, and vice
versa. (In mathematics, this is called an alternating cycle of a perfect matching
[28]). In Kekulé structures of benzenoid hydrocarbons, only conjugated circuits of
size 4n + 2 (i.e., 6, 10, 14, 18, …) may occur [71]. For example, the Kekulé
structure k9 of benzo[a]pyrene (see Fig. 11.2) has 2 conjugated circuits of size 6,
three conjugated circuits of size 10, and one conjugated circuit of size 14. These are
shown in Fig. 11.3.

According to the conjugated circuit model, for n = 1, 2, 3, …, one has to
determine the number qn of conjugated circuits of size 4n + 2 in all Kekulé structures
of the underlying benzenoid system, and compute the resonance energy as

Fig. 11.3 A Kekulé structure
of benzo[a]pyrene (denoted
by k9 in Fig. 11.2), and the
conjugated circuits contained
in it
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RE ¼ 1
K

X
n� 1

qn Rn ð11:6Þ

where Rn; n ¼ 1; 2; 3; . . . are parameters whose values are adjusted so as to best
reproduce molecular–orbital resonance energies. In [72], the following values were
recommended:

R1 ¼ 0:869 eV;R2 ¼ 0:247 eV;R3 ¼ 0:100 eV

and Rk ¼ 0 for k� 4 (see also [73]). More details on the conjugated circuits model
and on its relation to Herndon and Clar resonance theory can be found in
[38, pp. 79–91] and [74].

11.2.3 π-Electron Content of Rings

In a series of papers published in 2004 [75–78], Milan Randić and Alexandru
Balaban elaborated a Kekulé–structure–based method for partitioning the π-elec-
trons into individual rings of a polycyclic conjugated molecule. Their method is
quite simple: If a double bond in a Kekulé structure belongs solely to a particular
ring, then two π-electrons are assumed to belong to this ring. If a double bond is
shared between two rings, then one π-electron is assumed to belong to each ring. By
this, an “algebraic Kekulé structure” is generated [79, 80]. The actual partition of π-
electron is then obtained as an arithmetic average over all Kekulé structures.

In Fig. 11.4 the concept of algebraic Kekulé structures is illustrated by two
examples. In Fig. 11.5 we show how the π-electrons are partitioned in phenan-
threne. It is convenient to interpret the thus obtained numbers as the π-electron

Fig. 11.4 Two Kekulé structures of benzo[a]pyrene (denoted by k1 and k5 in Fig. 11.2), and the
algebraic Kekulé structures associated to them. Note that the correspondence between Kekulé
structures and algebraic Kekulé structures is not one-to-one [80]
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content of the respective rings [81]. In most cases, their values excellently agree
with other measures of local aromaticity [82–84].

At this point it is worth mentioning that recent studies showed that in the case of
very large polycyclic π-electron systems (graphenes), one needs to distinguish
between local and global features of aromaticity [85].

11.2.4 Carbon–Carbon Bond Lengths

Although Pauling, Brockway and Beach [13] used Kekulé structures for calculating
carbon–carbon bond lengths in conjugated molecules already in the 1930s, the true
beginning of this approach was in 1970s, when Herndon published his papers [33,
86, 87]. In these and subsequent works, e.g. [88–91], numerous examples have
been offered, supporting the claim that by means of Pauling bond orders, Eq. (11.1),
one can predict bond lengths with an accuracy equal to the accuracy of experi-
mental data (of that time). For what follows, it is only important that carbon–carbon
bond lengths are expected to be a monotonically decreasing function of the
respective Pauling bond order. Several such functional dependencies were pro-
posed, for example, the length rij of the bond ij can be calculated as [89]

rij ¼ rs � ðrs � rdÞ 1:84PðijÞ
0:84PðijÞþ 1

ðpm) ð11:7Þ

where rs and rd and the lengths of a single and double bond, respectively, between
sp2-hybridized carbon atoms, rs ¼ 150:4 pm; rd ¼ 133:4 pm.

For more details on the Pauling bond order see [38, pp. 73–76].

Fig. 11.5 Calculation of π-electron content of rings of phenanthrene. Note that
1
5 ð6þ 5þ 6þ 5þ 4Þ ¼ 5:2, 1

5 ð2þ 3þ 3þ 4þ 6Þ ¼ 3:6, and 1
5 ð6þ 6þ 5þ 5þ 4Þ ¼ 5:2
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11.2.5 Induced π-Electron Currents

As a relatively recent Kekulé–structure–based application, a method for calculating
induced currents of π-electrons in a polycyclic conjugated molecule placed in a
magnetic field was proposed by Randić [92]. Such “ring currents” [93] are tradi-
tionally related with aromaticity of the underlying π-electron system [94–99]. For
benzenoid hydrocarbons, the procedure proposed by Randić proceeds as follows:

(1) All Kekulé structures have to be constructed.
(2) All conjugated circuits in all Kekulé structures have to be recognized.
(3) The edges in each conjugated circuit have to be directed in an anti-clockwise

manner, representing a “current”.
(4) The “currents” thus obtained have to be superimposed over all conjugated

circuits of all Kekulé structures.

Randić and his coworkers have offered a number of examples [92, 100–104] in
which their results appear to be in a reasonably good agreement with π-electron
current densities obtained by ab initio quantum chemical computations.

11.2.6 Comments

The Kekulé–structure–based models briefly outlined in the previous parts of this
section, have been corroborated by numerous examples (mainly benzenoid
hydrocarbons) and—statistically speaking—give chemically satisfactory results. In
the subsequent section we will show that there exist cases in which these models
fail, sometimes completely disagreeing with experimental findings.

At this point we call the reader’s attention to a detail that sometimes is over-
looked. All models described above give equal importance to each Kekulé struc-
ture. This is explicitly visible from Eqs. (11.2), (11.3), and (11.6), and implicitly
from any approach in which the simple count of Kekulé structures (i.e., K) or
averaging over all Kekulé structures is encountered.

On the other hand, it was recognized quite early [105] that some Kekulé
structures give a better description of the actual molecule than others. Attempts to
incorporate this feature into resonance theoretical models [106–108] did not gain
much popularity. It may be that such distinguishing between Kekulé structures is
not at all justified. When the Pauling bond order concept was modified, by giving
different weights to different Kekulé structures (in line with the “Fries rule”), the
accuracy of the calculated bond lengths did not significantly improve [108].

Here must be mentioned the “aromatic sextet theory” developed by Erich Clar
[109], within which some Kekulé structures are represented via “Clar formulas”
whereas some are fully ignored. Details of Clar’s theory can be found in [38,
pp. 93–116] and [109, 110], but cannot be further elaborated in this survey.
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11.3 Kekulé–Structure–Based Approaches: Failures

11.3.1 Minor Violations

In the 1970s, George Hall noticed that the HMO total π-electron energy of isomeric
benzenoid hydrocarbons is remarkably well linearly correlated with their K-values
[44, 111]. This, so-called “Hall rule” is just what chemists would expect from the
dependence of thermodynamic stability of benzenoids on the number of Kekulé
structures. Eventually, it was shown that this dependence is not linear [49, 112,
113], and that it is violated in numerous cases [114]. Along the same lines,
Cioslowski and Dobrowolski established that there is a complete lack of correlation
between the ab initio π-electron energy and Kekulé structure count of benzenoid
isomers [115].

There exist polycyclic conjugated systems possessing many fixed single and
double bonds, i.e., bonds that are single (resp. double) in all Kekulé structures
[116–118]; examples are depicted in Fig. 11.6.

The pattern of cyclic conjugation in such molecules was found to be far from
what their Kekulé structures would infer [119]. The Pauling bond orders of fixed
single and double bonds are, respectively, zero and unity, and one might expect that
the carbon–carbon bond lengths in such conjugated systems would alternate
between ca. 150 pm (for single) and ca. 133 pm (for double). The geometries of
such molecules, determined by ab initio DFT calculations [120, 121] completely
disagreed from this Kekulé–structure–based prediction. Moreover, some molecules
of this kind were shown to have diradical character and a triplet ground state [122,
123].

The above examples may be understood as an indication that theoretical models
based on Kekulé structures fail in some exceptional, sporadic, borderline cases. In
the subsequent sections were point out some more serious, systematic shortcomings
of Kekulé–structure–based models.

Fig. 11.6 Examples of polycyclic conjugated systems with large number of fixed double bonds.
The part of the molecule where the double bonds are not fixed is indicated by shading. The
compounds 5 6, and 7 have 9, 4, and 3 Kekulé structures, respectively
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11.3.2 The Perylene Anomaly

Perylene (compound 8 in Fig. 11.7) is the simplest benzenoid hydrocarbon with
fixed single carbon–carbon bonds. These are the two vertical bonds belonging to
the ring E of 8. The fact that these are fixed single bonds can be verify by inspecting
the Kekulé structures of perylene, depicted in Fig. 11.8.

In Fig. 11.8 is also shown the general form of a benzenoid system P with fixed
carbon–carbon bonds. Such systems are obtained by joining two benzenoid frag-
ments X and Y which both must possess Kekulé structures. (In case of perylene,
X = Y = naphthalene, and n = 1.) Then the bonds drawn vertically in the diagram P,
belonging to the rings E1;E2; . . .;En, are single in all Kekulé structures of P.

All Kekulé–structure–based theoretical models predict that there is no π-electron
conjugation in the rings E1;E2; . . .;En. In particular, ILAðEiÞ ¼ 0 ; i� 1; 2; . . .; n,

Fig. 11.7 Perylene (8) and the general formula P of a benzenoid system with fixed single bonds,
KðXÞ[ 0 ; KðYÞ[ 0

Fig. 11.8 The Kekulé
structures of perylene. By
direct calculation (cf.
Fig. 11.5) one gets that the π-
electron content of each of the
four peripheral rings is
42/9 = 4.67, whereas the
central ring contains in
average only 12/9 = 1.67 π-
electrons
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cf. Eq. (11.5). These rings do not contain, and are not embraced by any, conjugated
circuit. Their π-electron contents are small (but non-zero), never exceeding 2.00.
For both Herndon resonance energy, Eq. (11.3), Swinborne–Sheldarke resonance
energy, Eq. (11.4), and conjugated–circuits resonance energy, Eq. (11.6),

REðPÞ ¼ REðXÞþREðYÞ :

In addition, it can be easily verified [116] that KðPÞ ¼ KðXÞ � KðYÞ.
Randić’s model of induced π-electron currents predicts zero current through the

“vertical” bonds of the rings E1;E2; . . .;En.
Of course, a sober chemist would never consider the above stated “predictions”

of properties of the benzenoid systems P as something absolutely true, but rather as
a more-or-less plausible approximation. Thus, the above Kekulé–structure–based
claims should be understood as follows:

(1) The local aromaticity of the rings E1;E2; . . .;En is small, significantly smaller
than that of other rings of P.

(2) The extent of cyclic conjugation in these rings is small, significantly smaller
than that in other rings of P.

(3) The π-electron contents of these rings is small, significantly smaller than that
of other rings of P.

(4) The difference of resonance energies

REðPÞ � ½REðXÞþREðYÞ�

is small, but non-zero.
(5) The induced π-electron current through the fixed single bonds of P is small but

non-zero.

The statements (1)–(5) can be checked by other, Kekulé–structure–independent,
theoretical methods. By this, the Kekulé–structure–based models can be tested, and
their general applicability either verified or refuted.

We begin with a good news.
The extent of cyclic conjugation can be estimated by a molecular–orbital–based

method, whose details are described elsewhere (see the survey [124], the recent
papers [125–128], and the references cited therein). This method renders the π-
electron energy–effect ef (BH,R) of the rings R of a polycyclic conjugated hydro-
carbon BH. The greater the (positive) ef-value, the greater is the thermodynamic
stabilization caused by cyclic conjugation in the underlying ring R. The ef-values
may be viewed as a measure of local aromaticity [129–132].

Now, the ef-method gives the following results for perylene (with rings labeled
as in Fig. 11.8): ef ð8;AÞ ¼ ef ð8;BÞ ¼ ef ð8;CÞ ¼ ef ð8;DÞ ¼ 0:1093 and
ef ð8;EÞ ¼ 0:0218 [133]. These are in a fairly good agreement with the Kekulé–
structure–based predictions: the extent of cyclic conjugation in the central ring of
perylene is found to be ca. five times weaker than in its four peripheral rings.
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Other, DFT-based, calculations also indicate that the properties of perylene are
in good agreement with the predictions inferred from their Kekulé structures; see
the data for P1 given in Tables 11.1, 11.2, 11.3 and in Fig. 11.11.

In the case of monobenzo-annelated perylenes, the situation is similar: in benzo
[a]perylene (9) and benzo[b]perylene (10), the ef-values of the central ring have
been only slightly changed relative to perylene, see Fig. 11.9. (The decrease and
increase of the magnitude of cyclic conjugation caused, respectively, by a- and
b-type benzo–annelation, was later found to be a general regularity [134–138].)

Now the bad news start.
The extent of cyclic conjugation in the central “empty” ring of benzo[b]perylene

is somewhat greater than in non-annelated perylene. Because perylene has three
additional annelation sites symmetry–equivalent to position b, namely, positions f,k,
o, the effect observed at benzo[b]perylene can be magnified by considering tetra-
benzo[b,f,k,o]perylene (11, Fig. 11.9). In this derivative of perylene, cyclic conju-
gation in the central “empty” ring, ef ð11;EÞ ¼ 0:0522, exceeds that of the normal,
naphthalene–like rings, ef ð11;AÞ ¼ ef ð11;BÞ ¼ ef ð11;CÞ ¼ ef ð11;DÞ ¼ 0:0437,

Table 11.2 NICS values (with virtual charge located 1 Å above the center of the ring) for the
same molecules/rings as in Table 11.1 [142]

n E1 E2 E3 E4 F1 F2 F3 F4

1 +2.77 −8.38

2 +2.71 −7.32 −7.60

3 +2.14 −0.04 −7.11 −5.95

4 +2.25 −2.82 −7.58 −5.27 −3.16

5 +2.81 −3.69 −7.09 −8.30 −5.73 −2.00

6 −1.17 −9.48 −15.65 −10.04 −9.13 −5.57 −4.01

7 +0.09 −7.35 −13.55 −15.76 −9.95 −9.66 −6.65 −4.67

The more negative NICS is, the higher is the local aromaticity and cyclic conjugation in the
underlying ring. Observe that the NICS values of some E-type rings are more negative than those
of F-type rings, contrary to what Kekulé–structure–based models would predict

Table 11.1 HOMA values of the rings of the first seven members of the perylene/bisanthrene
series (Pn) [142]

n E1 E2 E3 E4 F1 F2 F3 F4

1 0.0125 0.7735

2 0.2675 0.7031 0.6966

3 0.3271 0.5777 0.6981 0.6539

4 0.3333 0.6398 0.7199 0.6431 0.6090

5 0.3253 0.6358 0.6358 0.7352 0.6508 0.5928

6 0.3377 0.6259 0.7202 0.7687 0.6634 0.5886 0.5681

7 0.3311 0.6134 0.6864 0.7053 0.7482 0.6653 0.6010 0.5770

The labeling of the rings is indicated in Fig. 11.10. Only the data for symmetry-nonequivalent
rings are given. The greater HOMA is, the higher is the local aromaticity and cyclic conjugation in
the underlying ring. Observe that the HOMA values of some E-type rings exceed those of F-type
rings, contrary to what Kekulé–structure–based models would predict
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and is by no means “significantly smaller”, as expected from the softened inter-
pretation of Kekulé–structure–based models [133].

Analogous violations of the Kekulé–structure–based modes of cyclic conjuga-
tion were found also at other b,f,k,o-annelated perylenes [139].

The “anomality” of local aromaticity of the central ring in benzo-annelated
perylenes was eventually confirmed by other quantum chemical (DFT) calculations
[140]. For additional studies along these lines see [126].

11.3.3 Anomalies in the Perylene/Bisanthrene Homologous
Series

An obvious argument against exemplifying the shortcomings of the Kekulé–
structure–based models by means of b,f,k,o-annelated perylenes is that these are

Table 11.3 SCI values for the same molecules/rings as in Table 11.1 [142]

n E1 E2 E3 E4 F1 F2 F3 F4

1 0.0033 0.0237

2 0.0050 0.0196 0.0148

3 0.0058 0.0080 0.0190 0.0121

4 0.0060 0.0092 0.0196 0.0114 0.0094

5 0.0057 0.0092 0.0105 0.0201 0.0116 0.0088

6 0.0051 0.0087 0.0112 0.0212 0.0117 0.0083 0.0074

7 0.0052 0.0084 0.0102 0.0108 0.0206 0.0120 0.0089 0.0079

The greater SCI is, the higher is the local aromaticity and cyclic conjugation in the underlying ring.
Observe that the SCI values of some E-type rings exceed those of F-type rings, contrary to what
Kekulé–structure–based models would predict

Fig. 11.9 Energy effects of
the rings of perylene (8),
benzo[a]perylene (9), benzo
[b]perylene (10), and
tetrabenzo[b,f,k,o]perylene
(11). For the sake of
simplicity, the ef-values are
multiplied by 10,000
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highly strained, non-planar molecules, the consequence of repulsion between four
near–lying hydrogen atoms (see diagram 11 in Fig. 11.10). A direct formal way to
overcome this problem is to eliminate the overcrowded H-atoms by introducing two
new carbon–carbon bonds, see Fig. 11.10. This leads to the perylene/bisanthrene
homologous series, whose π-electron properties have been studied in due detail
[141–143]. For these benzenoid species, whose geometries are strictly planar, a
number of remarkable deviations from the Kekulé–structure–inferred picture could
be established.

In addition to the ef-method, other criteria of cyclic conjugation and local aro-
maticity have also been utilized, all based on accurate DFT calculations. These were
the “harmonic oscillator model of aromaticity”, HOMA [144–146],
“nucleus-independent chemical shifts”, NICS [147, 148], and “six-center indices”,
SCI [149, 150]. (For details on multi-center indices of aromaticity, see [99].)

Results pertaining to the “empty” rings E1;E2; . . .;En and the “full” rings
F1;F2; . . .;Fnþ 1 of Pn (see Fig. 11.10), for n ¼ 1; 2; . . .; 7 are shown in
Tables 11.1, 11.2 and 11.3. The data in Tables 11.1, 11.2 and 11.3 were obtained by
using the Gaussian 09 W package, version 0.1, at the B3LYP/6-311+(G(d,p) level
of theory [142].

Induced currents densities in the perylene/bisanthrene family were also calcu-
lated [143] (see also [151]); characteristic results are depicted in Fig. 11.11. The
respective geometries were optimized by the B3LYP/6-311+G(d,p) method, using
Gaussian 03. Current densities were computed by means of coupled HF theory,
using the diamagnetic-zero variant of the CTOCD method [143].

From the data shown in Tables 11.1, 11.2, 11.3 and Fig. 11.11 one concludes the
following:

Fig. 11.10 Transforming tetrabenzo[b,f,k,o]perylene (11) into the third member (P3) of the
perylene/bisanthrene homologous series. Here P1 = perylene, and P2 = bisanthrene. The benzenoid
molecules Pn; n ¼ 1; 2; 3; . . ., are the simplest representatives of the conjugated π-electron system
P, depicted in Fig. 11.7
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(1) The predictions of Kekulé–structure–based models are reasonably correct in
case of the first few members of the perylene/bisanthrene family Pn, especially
for n = 1 and n = 2.

(2) In the case of higher member of this family, Pn; n� 5, there are significant
violations of the Kekulé–structure–based predictions. The magnitude of cyclic
conjugation in the rings lying near the center of the “empty” ring-system
E1;E2; . . .;En is high and surpasses the cyclic conjugation of some of the rings
belonging to the “full” ring-system F1;F2; . . .;Fnþ 1.

(3) The central domain of the higher members of the perylene/bisanthrene series
has a pronounced degree of local aromaticity, not anticipated by any of the
Kekulé–structure–based models.

(4) The behavior of the members of the Pn series for n = 3 and n = 4 is borderline.

Fig. 11.11 Current density maps of three members of the perylene/bisanthrene homologous
series, cf. Fig. 11.10. Whereas the currents in perylene (P1) are localized mainly in the two
naphthalene fragments, in the case of P5 the dominating part of the current goes through some
fixed single bonds, forming a peculiar pattern that embraces the “empty” rings E1 and E5. The case
of P3 is borderline
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11.3.4 Chevrons—the Ultimate Anomaly

The partisans of Kekulé–structure–based models may argue that all examples
considered in the previous subsections contain fixed single and double bonds, and
that their models actually work only if such fixed bonds are absent. To their dismay,
we now describe a case of “anomalous” behavior in benzenoid systems in which no
carbon–carbon bond is fixed.

In this subsection we focus our attention to a class of benzenoid molecules called
“chevrons” (see in the book [116, pp. 110–120], in [152, 153], and in Fig. 11.12).

The chevron Chn has 1
6 ðnþ 1Þðnþ 2Þð2nþ 3Þ Kekulé structures, and none of its

carbon–carbon bonds is fixed. In other words, the Pauling bond orders, Eq. (11.1),
satisfy the condition 0\PðijÞ\1, i.e., for no bond ij is the Pauling bond order
equal to zero or to unity.

For the rung carbon–carbon bonds b0; b1; b2; . . .; bn�1; bn, as indicated in
Fig. 11.12, direct calculation yields for the Pauling bond order [153]:

PðbiÞ ¼ 6ðnþ 1� iÞ2
ðnþ 1Þðnþ 2Þð2nþ 3Þ : ð11:8Þ

The right–hand side of Eq. (11.8) is a monotonically decreasing function of the
parameter i, implying

Pðb0Þ[Pðb1Þ[Pðb2Þ[ � � � [Pðbn�1Þ[PðbnÞ

from which Kekulé–structure–based reasoning predicts that the lengths ri of the
rung carbon–carbon bonds b0; b1; b2; . . .; bn�1; bn should satisfy the conditions

r0\r1\r2\ � � �\rn�1\rn: ð11:9Þ

Fig. 11.12 The chevron homologous series. Formally, these are related to the perylene/bisanthrene
series: Ch2 may be viewed as benzo[cde]perylene, Ch3 as benzo[cde]bisanthrene, etc.
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The validity of inequalities (11.9) can be checked by Kekulé–structure–inde-
pendent approaches. In [153], the geometries of the chevron molecules
Chn; n ¼ 2; 3; . . .; 8, were calculated by means of the B3LYP/6-311G(d,p)
method. The optimized geometries of all studied molecules were found to be
perfectly planar and to correspond to minima on the potential energy hypersurface.
The lengths of the rung carbon–carbon bonds are collected in Table 11.4. As seen,
the ordering (11.9) is violated, beginning at n = 6.

To be on the safe side, corrections for the effect of strain caused by the two near–
lying hydrogen atoms were made [153], but these did not change our main
conclusion:

Because of the perfect planarity of the molecules and negligible steric strain, the
chevron homologous series appears to be completely suitable for applying any of
the Kekulé–structure–based models. According to Pauling–bond–order considera-
tions, the lengths of the rung bonds should monotonically increase, Eq. (11.9). This,
indeed, is the case only for the first members of the series, but it evidently violated
for the higher members, where the bond lengths first increase, then decrease
reaching a minimum around the center of the chain, and then increase again.

Thus the breakdown of the Kekulé–structure–based arguments could happen
also within a class of “good”, fully conjugated benzenoid hydrocarbons.

11.4 Conclusion

The results outlined in this chapter suggest that the Kekulé–structure–based
approaches in the theory of polycyclic conjugated compounds, and benzenoid
hydrocarbons in particular, although leading to acceptable conclusions in many
cases, are not generally valid and fail in some cases. Therefore, if such approaches
will continue to be used in the future, this should be done with a great deal of care
and caution.

Table 11.4 Length (in pm) of the rung carbon–carbon bonds in the first few members of the
chevron homologous series Chn [153]

n r0 r1 r2 r3 r4 r5 r6 r7 r8
2 137.2 142.6 146.8

3 138.3 142.2 142.2 147.1

4 138.8 142.5 143.2 144.1 147.2

5 139.0 142.8 143.3 143.3 144.1 147.2

6 138.9 142.9 143.4 143.4 143.3 144.2 147.2

7 138.9 142.9 143.6 143.5 143.4 143.4 144.2 147.2

8 138.8 142.9 143.6 143.6 143.5 143.4 143.4 144.2 147.2

Observe that the ordering ri\riþ 1, required by the Kekulé–structure–inferred Eq. (11.9), is
obeyed for n ¼ 2; 3; 4; 5, but is violated for n = 7 and n = 8, whereas the case n = 6 is borderline
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Chapter 12
Rules of Aromaticity

Ferran Feixas, Eduard Matito, Jordi Poater and Miquel Solà

Abstract The concept of aromaticity is elusive; it is not directly observable.
Somewhat surprisingly, given the fuzzy character of this concept, there exist a
number of very simple mathematical rules that can account for the aromaticity of a
large number of organic and inorganic molecules. Among them we can mention
Hückel’s, Baird’s, Wade-Mingos’, and Hirsch’s rules. In this chapter we summarize
recent advances carried out in our group in the study of these aromaticity rules.

12.1 Introduction

The field of aromaticity is in constant evolution and the variety of molecules that
present properties related to aromaticity is growing exponentially. Over the last two
decades there has been a remarkable expansion in the number of different types of
aromatic systems and in our understanding of aromaticity. In 2001 Boldyrev,
Wang, and coworkers [1] detected a series of bimetallic clusters containing Al4

2−,
the first all-metal aromatic cluster known, face-capped by an M+ cation (M = Li,
Na, Cu). Six years later the same group identified Ta3O3

− [2], the first discovered
metallic cluster with δ-aromaticity. From these and many other studies [3–5], it is
now recognized that the aromaticity concept can be applied to the entire periodic
table. It is also widely accepted that there is not a unique type of aromaticity (the
classical π-aromaticity) but chemical compounds can also have σ-, δ-, and even ϕ-
aromaticity, together with combinations of these different types (multifold aro-
maticity) [3–5]. From a theoretical point of view, the last two decades also brought
several important advances. More powerful tools to quantify aromaticity have been
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developed. Among them we can mention some refined NICS measures (such as the
NICS profiles [6, 7] or NICSπzz values [8]) and new defined indices of aromaticity
based on electron delocalization measures such as PDI [9], FLU [10], Iring [11], and
MCI [12] and the normalized versions of the last two, ING and INB [13].

Many of the novel aromatic compounds found present high symmetry. Symmetry
is one of the usual features of aromatic compounds. Although not all aromatic
species are symmetric, the most archetypal aromatic compounds are highly sym-
metric and possess degenerate highest-occupied molecular orbitals. These orbitals
can be fully occupied resulting in a closed-shell structure or can be same-spin
half-filled. This is the case of paradigmatic aromatic species, namely, benzene,
B6H6

2− closo borane cluster, C60
10+, Al4

2−, but also of triplet C5H5
+ or C60

1− with a
spin of 11/2. The closed-shell or same-spin half-filled electronic structure is the
origin of several rules of aromaticity such as the 4n + 2 Hückel [14], 4n Baird [15],
2n + 2 Wade-Mingos [16, 17], 2(n + 1)2 Hirsch [18] or the 2n2 + 2n + 1 [19] rules.

In this chapter we review the results of our recent investigations on the
abovementioned rules of aromaticity. It is worth noting that extension of these rules
to aromatic polycyclic hydrocarbons (PAH) has led to the Clar π-sextet rule [20, 21]
and the Glidewell-Lloyd [22] extension of Clar’s rule. These extensions will not be
discussed in the present chapter. Neither we will comment on the 4n rule for
Möbius aromaticity [23, 24] nor on its extension by Rzepa in what is known as the
linking number rule [25].

12.2 Hückel’s 4n + 2 Rule

The classification of molecules into groups based on similar molecular properties,
structure, or reactivity has been one of the goals of chemistry from the very
beginning. Benzene and related compounds attracted a lot of attention because of
their peculiar stability and reactivity and were gathered to form the group of aro-
matic molecules. Understanding the peculiarities of aromatic molecules and the
features that a molecule should display to join the group of aromatic compounds
became a goal of chemistry. Since aromaticity is not directly observable, theoretical
calculations have played a key role in classifying molecules as aromatic. In 1931,
Hückel put forward the importance of delocalized electrons (π-electrons) to
rationalize molecular properties of conjugated molecules [26]. According to Hückel
molecular orbital (HMO) theory, the topology of the molecule and the number of π-
electrons determines the stability of the molecule. An outcome of the HMO theory
applied to cyclic conjugated hydrocarbons was the well-known 4n + 2 stability rule
[14]. Its connection to the concepts of aromaticity and antiaromaticity has played a
central role in organic chemistry.

Hückel’s rule of aromaticity states that monocyclic conjugated hydrocarbons with
4n + 2 π-electrons are aromatic, whereas systems with 4n π-electrons are antiaro-
matic. Consequently, the number of π-electrons is crucial to determine stability,
structure, and reactivity of aromatic and antiaromatic systems. In 1954, Doering and
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Knox synthesized cycloheptatrienyl cation (C7H7
+), a molecule with six π-electrons

which represents the first experimental support to Hückel’s rule [27]. Although the
original formulation of the 4n + 2 rule was limited to monocycles, Clar and later on
Glidewell and Lloyd generalized the concept to characterize the aromaticity of
polycyclic aromatic hydrocarbons (PAH) [20, 22]. In addition, the 4n + 2 rule has
been used to rationalize multifold aromaticity in all-metal clusters [3]. More
recently, Mayer derived the 4n + 2 rule analytically to determine the energetic effects
of the ring closure [28]. As mentioned above, important advances in the field of
aromaticity has led to the definition of a number of versatile descriptors based on the
measurement of structural, magnetic, energetic or electronic properties. Before
applying these indicators to complex molecular systems, the performance of such
descriptors is usually assessed for a set of annulenes and PAH that obey 4n + 2 and
4n aromaticity rules. One of the first aromaticity criteria was suggested by Breslow
who proposed to estimate the aromatic character of a ring by comparing the π-energy
of a cyclic π-conjugated system with respect to the corresponding iso-π-electronic
linear compound [29]. A decrease of energy upon cyclization is related to aro-
maticity while an increase points out antiaromaticity. In 1972, Hobey demonstrated
that Breslow’s proposal is connected to the 4n + 2 Hückel’s rule [30]. The 4n + 2 rule
has also been assessed by means of other energetic and magnetic indicators,
including aromatic stabilization energy (ASE) calculations, nucleus independent
chemical shifts (NICS) [31] and ring currents [32] among many others.

The concept of aromaticity is strongly related to molecular topology and cyclic π-
electron delocalization. The aim of this section is to explore the nature of π-electron
delocalization patterns in simple aromatic and antiaromatic compounds that are in
agreement with the 4n + 2 and 4n rules respectively. To this end, we selected a set of
neutral annulenes and their respective dianions and dications. Electronic delocal-
ization is usually studied by computing the so-called electron sharing indices
(ESI) or through the calculation of the electron localization function (ELF) [33]. In
this work we made use of ESI calculated in the framework of the quantum theory of
atoms in molecules (QTAIM) [34]. The sum of all ESI gives the total delocalization
of the system, δTOT. Interestingly, for planar systems the total electronic delocal-
ization can be exactly split into σ and π contributions, δTOT = δσ + δπ. To analyze the
differences on electronic delocalization between aromatic and antiaromatic systems,
we studied how δπ changes when two π-electrons are either added or removed from a
set of 4n + 2 aromatic and 4n antiaromatic systems [35]. Let us consider an aromatic
4n + 2 system such as benzene (see Scheme 12.1). If we add two electrons to
benzene (N electrons), we obtain a 4n system (C6H6

2− with N + 2 electrons), which
should be antiaromatic according to Hückel’s rule. Therefore, we expect these two
added electrons will be mainly localized and the value of δπ will be barely affected
with respect to C6H6. As Table 12.1 shows, δπ is 3.369 e for C6H6 whereas the total
electronic delocalization in C6H6

2− is 3.482 e. We added a pair of π-electrons but
only an increment of 0.113 e is observed. Thus, a net change on electronic delo-
calization close to zero is expected when going from N to N + 2 species if N is an
aromatic 4n + 2 system. On the other hand, if we subtract two π-electrons from C6H6

to obtain the antiaromatic C6H6
2+ (with N − 2 electrons) one expects a significant
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decrease of δπ as Table 12.1 indicates (from 3.369 to 2.614 e). Therefore, when a pair
of electrons are added to a 4n antiaromatic system these electrons are mainly
delocalized as shown by the increment of 0.75e observed when going from an
antiaromatic C6H6

2+ to an aromatic C6H6. In general, we observed an increment of
about one electron when going from an N − 2 antiaromatic molecule to an N
aromatic system. To simplify the analysis, we calculated the difference between the
two steps (N − 2 to N and N to N + 2) as Δ2 = [2δπN − δπ(N−2) − δπ(N+2)], which
comprises the sum of changes when going from N to N + 2 and from N to N − 2
species and it is proportional to the numerical second derivative of δπ. The value of
Δ2 for benzene is 0.642. We also studied the changes on π-electronic delocalization
for a series of typical antiaromatic systems. In contrast to aromatic species, the
differences in δπ are less conclusive. In Table 12.1, we gathered the results obtained
when adding and subtracting two π-electrons to a 4n C8H8 system. The value of δπ
shows a similar increase when going from N − 2 to N and from N to N + 2, i.e. 0.522
and 0.306 e respectively to give a Δ2 of 0.216. Therefore, a clear frontier between
aromatic and antiaromatic systems cannot be established by only analyzing the
changes in the total π-electronic delocalization.

To gain more insight into the nature of electron delocalization in aromatic and
antiaromatic systems, we split the total π-electron delocalization into ortho (δπ

1,2),
meta (δπ

1,3), para (δπ
1,4), and successive contributions (crossed terms, see Fig. 12.1)

and we analyzed the changes on the so-called delocalization crossed terms when
two electrons are added or removed from systems with 4n + 2 or 4n π-electrons
[36]. For benzene, when two electrons are added to the antiaromatic C6H6

2+ to get
the aromatic C6H6 system, the ortho and para contributions significantly increase
while the meta component of the total π-electronic delocalization decreases

Table 12.1 Total electronic
delocalization (δTOT), total π
electronic delocalization (δπ),
and the corresponding crossed
contributions to this latter
(δπ

1,x) for C4H4 and C8H8

antiaromatic compounds

N − 2 N N + 2 Δ2

C6H6

δTOT 14.863 15.618 15.731

δπ 2.614 3.369 3.482 0.642

δπ
1,2 0.288 0.427 0.385 0.181

δπ
1,3 0.087 0.037 0.083 −0.096

δπ
1,4 0.059 0.094 0.051 0.078

C8H8

δTOT 20.344 20.866 21.172

δπ 3.955 4.477 4.783 0.216

δπ
1,2 0.338 0.432 0.414 0.112

δπ
1,3 0.074 0.029 0.061 −0.077

δπ
1,4 0.018 0.040 0.025 0.037

δπ
1,5 0.054 0.007 0.044 −0.084

Units are electrons
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(see Table 12.1). The opposite effect is observed when adding two electrons to
C6H6 to reach C6H6

2−, that is, meta increases whereas ortho and para components
decrease. This alternation is also captured by Δ2 which takes positive values for δπ

1,2

and δπ
1,4 components, i.e. 0.181 and 0.078 respectively, while gives negative values

for δπ
1,3 contribution, i.e. −0.096. For antiaromatic C8H8, δπ

1,2 and δπ
1,4 increase and

δπ
1,3 and δπ

1,5 decrease when going from N ± 2 to N, which corresponds to positive
Δ2 for δπ

1,2 and δπ
1,4 components and negative Δ2 for δπ

1,3 and δπ
1,5. In general, we

observed that the Δ2 value of the crossed term corresponding to the two farthest
atoms in the ring (i.e. δπ

1,4 in C6H6 or δπ
1,5 in C8H8) gives positive values when two

electrons are added or removed from an aromatic system, whereas the opposite is
true for antiaromatic species (see Table 12.1). Interestingly, the crossed terms
represent a kind of electronic footprints that clearly capture the differences between
aromatic and antiaromatic species. To sum up, we have shown the differences of
electronic delocalization patterns between systems that are catalogued as aromatic
and antiaromatic according to the Hückel 4n + 2 rule.

Fig. 12.1 Decomposition of electron delocalization in crossed-terms δπ
1,x for C6H6, C4H4, and

C8H8

Scheme 12.1 Expected changes in δπ when moving from C6H6
+2 to C6H6 and to C6H6

−2 by
adding two electrons each time
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12.3 Baird’s 4n Rule

Hückel’s rule has shown the importance of molecular topology in order to deter-
mine the aromaticity of molecular systems. In this section, we will show that the
electronic state also plays an important role and actually gives rise to a different
counting rule. The number of studies devoted to the aromaticity of excited states is
scarce when compared with the ground-state literature, but the importance of
excited-state aromaticity is very well highlighted in the excellent recent review of
Ottosson and coworkers [37], which puts forward how this property can be used to
rationalize a number of photophysical and photochemical reactions. For instance,
the design of appropriate antiaromatic olefins could lead to excited triplet-state
species suitable for adiabatic Z/E photoisomerization [38] and triplet-state aro-
maticity was used to explain the stability of substituted fulvenes [39] and the dipole
moments of fulvenes, fulvalenes, and azulene [40]. One of the first evidences of
excited-states aromaticity is due to Baird [15], who used perturbation molecular
orbital theory and Dewar resonance energy arguments to show that aromatic singlet
annulenes were antiaromatic in the lowest-energy excited triplet state (T1), and vice
versa. Baird’s rule states that 4nπ monocycles are aromatic in the T1 but it is also
generally accepted that these compounds are also aromatic in the lowest-lying
excited singlet states (S1). In 2008, Soncini and Fowler generalized Baird’s rule
stating that open-shell 4n + 2 (4n) annulenes with even (odd) total spin are aro-
matic, whereas odd (even) total spin monocyclic compounds are antiaromatic [41].
The same year, Mandado and coworkers concluded that all these rules are particular
cases of a more general rule applying separately to α and β electrons [42].

In the following we will focus on analyzing the changing patterns of electron
delocalization and the aromaticity of different vertical excited states of benzene,
cyclobutadiene (CBD) and planar cyclooctatetraene (COT).1 To this aim, we will
use electron sharing indices (ESI) and multicenter (MCI) aromaticity indices (see
Table 12.2). Interestingly, the ESIs reveal the true symmetry of the excited state
without the need of optimizing the geometry, as they do not depend on the sym-
metry of the ground state. For instance, benzene’s S1 keeps the D6h electronic
distribution but there is small reduction of the ESIs of the peripheral CC bond that
goes with the corresponding decrease of aromaticity. On the contrary, the next two
lowest-energy singlet states, S2 and S3, show the symmetry break to D2h and a
substantial reduction of aromaticity as compared to S1. T1 exhibits a more evident
symmetry break (ESIs that differ by 0.33 e) and a significant reduction of aro-
maticity, thus confirming Baird’s rule. According to Soncini and Fowler’s exten-
sion of the latter, the lowest-lying quintet state (Q1) should be also aromatic. This
rule cannot be fully confirmed by our calculations as B3LYP assigns a clear

1The ground-state minimal energy structure of COT is a non-aromatic and non-planar species that
is not so interesting from Baird's rule perspective. For this reason, we have chosen the planar D4h

COT, which is not an energy minimum but is a stationary point of the potential energy surface with
bond-length alternation and well-known antiaromatic character.
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aromatic character to Q1, but CASSCF value suggests an important reduction of
aromaticity.

CBD and COT are antiaromatic in their ground state geometries according to
Hückel’s rule. Both molecules show alternating ESI pattern with one single bond
adjacent to one double and large aromaticity values, thus corroborating this fact.
Despite the inherent D2h geometry, the vertical excitation of CBD to the T1 state
completely changes the electron distribution affording a symmetric electron delo-
calization along the ring, with only 0.11e ESI difference between adjacent bonds. In
addition, according to all electronic aromaticity indices, T1 is an aromatic species as
predicted by Baird’s rule. These results are in agreement with NICS calculations
performed by Karadakov [43, 44]. The same situation is found for the T1 state of
COT, although the effect is far much less obvious. The study of Q1 and the
lowest-energy septet state at the B3LYP level indicates that these molecules are
antiaromatic and aromatic, respectively, in agreement with Soncini-Fowler’s
extension of Baird’s rule. However, CASSCF calculation reduces the value of MCI
for the lowest-lying septet state suggesting, once again, that this rule might not be
fully attained upon inclusion of electron correlation. The systematic reduction of
delocalization indices due to the inclusion of electron correlation2 suggests that the
failure of MCI indices to reproduce Soncini-Fowler’s rule might not be completely
relevant.

Table 12.2 MCI and ESI (in electrons) and vertical excitation energies (AE in eV) of several
excited states of benzene, cyclobutadiene, and octatetraene

Molecule State MCI (B3LYP)a δ(C1,C2), δ(C2,C3) AE

C6H6 D6h S0 43.5 (72.1) 1.288, 1.288 0.00

S1 4.1 1.189, 1.189 5.00

S2 0.8 1.092, 1.203 8.17

S3 0.8 1.266, 1.116 8.17

T1 2.3 (−1.5) 1.429, 1.100 3.55

Q1 2.0 (45.1) 1.126, 1.126 7.88

C4H4 D4h S0 9.2 (10.1) 1.480, 1.002 0.00

T1 36.1 (127.1) 1.231, 1.126 0.75

C8H8 D4h S0 5.0 (−0.5) 1.482, 1.083 0.00

T1 4.7 (27.1) 1.313, 1.199 1.60

Q1 0.2 (1.3) 1.221, 1.122 8.26

Septet1 0.1 (17.8) 1.158, 1.097 13.80
aMCI values multiplied by 1000 obtained at the CASSCF level (in parenthesis B3LYP values)

2B3LYP also includes some electron correlation effects in the calculation of the energy but it is a
well-documented fact that the use of Kohn-Sham wavefunction to calculate the electron delo-
calization indices provides results close to the Hartree-Fock ones and, therefore, they do not
include electron correlation [45].
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12.4 Rules of Spherical Aromaticity

In 2000, Hirsch’s 2(n + 1)2 rule of aromaticity for spherical compounds [18, 46, 47]
was introduced as the spherical analog of Hückel’s 4n + 2 rule. Hirsch’s rule is
based on the fact that the π-electron system of an icosahedral fullerene can be, in a
first approximation, considered as a spherical electron gas surrounding the surface
of a sphere. The corresponding wave functions of this electron gas are characterized
by the angular momentum quantum number l (l = 0, 1, 2,…), with each energy level
2 l + 1 times degenerated, and thus all π-shells are completely filled when we have 2
(n + 1)2 electrons. For such reason, spherical species with 2(n + 1)2 π-electrons are
aromatic, like icosahedral C20

2+, C60
10+ or C80

8+.
In the same way that Baird’s 4n rule represented the extension of Hückel’s 4n + 2

rule to triplet state systems, those spherical systems having a same-spin half-filled
last energy level with the rest of the levels being fully filled should be aromatic.
Thus, recently Poater and Solà proved that the spherical compounds with
2n2 + 2n + 1 electrons and with a spin S = n +½ accomplish this latter statement [19].

Table 12.3 includes a series of C60 and C80 derivatives with the aim to prove
both 2(n + 1)2 and 2n2 + 2n + 1 rules for closed- and open-shell spherical com-
pounds, respectively (see Scheme 12.2) [19]. The aromaticity analysis is performed
by means of the magnetic NICS(1)zz, the electronic MCI, and the bond length

Table 12.3 NICS(1)zz (in ppm) and MCI (in electrons) values for C60 and C80 derivatives

System Symmetry Ring NICS(1)zz MCIa BLA Spin

C60 Ih 6-MR 0.8 18 0.058 S = 0

5-MR 21.5 11

C60
1− Ih 6-MR −1.4 17 0.002 S = 11/2

5-MR −19.9 49

C60
19+ Ih 6-MR −14.9 19 0.013 S = 9/2

5-MR −25.3 41

C60
10+ Ih 6-MR −18.6 11 0.030 S = 0

5-MR −29.5 17

C80 S6 5-MR 10.7 19 S = 0

6-MR −5.2 12 0.025

5-MR 26.3 18

6-MR 11.3 14 0.001

6-MR −5.1 12 0.025

C80
8+ Ih 6-MR −7.2 11 0.015 S = 0

5-MR −4.0 17

C80
5− Ih 6-MR −20.8 19 0.012 S = 13/2

5-MR −5.5 34
aMCI values multiplied by 1000

328 F. Feixas et al.



alternation (BLA) indicators. First, for C60, which does not obey any of the two
rules, all measures point out that it has a non-aromatic or only slightly aromatic
character. On the other hand, C60

10+ appears to be more aromatic than C60 with
more negative NICS and smaller BLA, in line with Hirsch’s rule for a system with
50 electrons. Next, C60

19+ and C60
1− with S = 9/2 and 11/2, respectively, thus

following the 2n2 + 2n + 1 rule, appear to be the most aromatic. For larger C80, the
different aromaticity criteria show a non-aromatic or slightly aromatic character of
this system. However, C80

8+, which obeys the 2(n + 1)2 rule, presents higher
aromaticity. Finally, C80

5− with S = 13/2, thus following the 2n2 + 2n + 1 rule, is
found to be the most aromatic with more negative NICS(1)zz, larger MCI, and
smaller BLA values.

It is worth noting that NICS calculations for open-shell systems are approximate
since they contain only the contributions arising from the perturbation of the
wavefunction due to the external magnetic field [44, 49]. Moreover, we have to
warn the reader on the use of NICS alone to draw conclusions on aromaticity.
Although in many cases one gets reasonable results, NICS results can be unsafe for
several reasons: first, NICS indicator of aromaticity can potentially incorporate
some spurious information arising from the electron ring currents not related with
aromaticity [50, 51]; second, they are biased by a spurious geometrical dependence
on the ring size, incorrectly exalting aromaticity in cyclic systems of small ring size
[52–54]; and, third, coupling of magnetic fields from different rings can lead to
wrong conclusions [55–58]. However, we consider that the combined results of the
NICS(1)zz, MCI, and BLA descriptors provide strong evidence in favor of the
2n2 + 2n + 1 rule.

Just to conclude, Hirsch et al. [18] already pointed out that the rule should be
universally applicable to all conjugated π-systems, including inorganic compounds
that present the nuclei distributed symmetrically over the spherical surface. This
point has been supported by Ge12 spherene derivatives, with Ge12

4+ (2(n + 1)2) and
Ge12

1− with S = 5/2 (2n2 + 2n + 1), being more aromatic than Ge12
2− [19].

Scheme 12.2 Examples of charged C60 and C80 fullerenes which are particularly aromatic
according to 2(n + 1)2 and 2n2 + 2n + 1 rules

12 Rules of Aromaticity 329



12.5 Equivalence Between Wade-Mingos’
and Hückel’s Rules

Closo boron hydride clusters are anions with the general formula [BnHn]
2− that

have the structure of a polyhedron with triangular faces [59]. They are very stable
and unreactive and because of that they are considered aromatic. They obey the
2n + 2 Wade rule [17, 60], in which n are the vertexes of the polyhedron, or
Mingos’ 4n + 2 rule [16, 61]. Both rules are equivalent: Wade’s rule refers to the
cage electron pairs whereas Mingos’ rule incorporates also the exo electron pairs
corresponding to the B–H bonds, thus referring to the total number of valence
electrons.

In a recent work [62], some of us have established a link between the hydro-
carbon and boron hydride chemistries by showing that hydrocarbons and boron
hydrides have a common root regulated by the number of valence electrons in a
confined space. Application of the so-called electronic confined space analogy
(ECSA) method to archetypal hydrocarbons leads to well-known boron hydrides
and, even more importantly, it allows the design of new interesting molecules that
can be a source of inspiration for synthetic chemists. In addition, application of
ECSA also allows to reach the conclusion that the 4n + 2 Wade-Mingos rule for
three-dimensional closo boranes is equivalent to the (4n + 2)π Hückel rule for
bidimensional PAHs [63].

The steps followed to apply the ECSA method are the following: (1) first we
state the model organic compound; (2) next we define its confined space (cS) as the
molecular space occupied by the molecule; (3) we transmute each C atom into a B
atom and one electron (eT); (4) these extra electrons are replaced by sacrificial
atoms (sA); (5) and finally (if necessary) we generate the new boronhydride
compound by structural relaxation (sR). During the whole process, the number of
valence electrons in the corresponding confined space remains unaltered. As sac-
rificial atoms we use H+, B3+ or [BH]4+ among others. These cations have empty
valence orbitals perfectly suited to form multicenter bonds. As an example of the
procedure, in Scheme 12.3 we apply the ECSA method in the case of ethene. ECSA
links ethene with diborane (Scheme 12.3a). However, it also links ethene with
known dianionic diboranes (B2R4

2−) [64–69] and yet to be discovered R2CBR2
2−,

B2HR4
− or R2CHBR2

2− species (Scheme 12.3b).
When the ECSA method is applied to aromatic molecules, a connection between

the aromatic closo boranes following the Wade-Mingos rule and the classical
organic molecules that obey Hückel’s rule emerges [63]. As an example, let us
consider benzene that is the archetype of the aromatic molecules (see Scheme 12.4).
In this case 36 electrons is the total number of valence electrons in the confined
space. The electronic transmutation with B− drives us to [B6H6]

6− with chair-like
structure. The sacrificial group we add is [BH]4+ leading to hexagonal pyramid
[B7H7]

2− that is not a minimum, but relaxes to a pentagonal bipyramid [B7H7]
2−, as

experimentally found [70]. The NICS(0) of −22.8 ppm points out that [B7H7]
2− is

at least as aromatic as benzene [63]. The relatively low bond length alternation
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value of 0.17 Å seems to confirm the aromatic character of this closo borane.
Resonance energies per face calculated by Aihara [48] indicate that [B7H7]

2− is the
most aromatic closo borane [BnHn]

2− (n = 5–12) after [B6H6]
2−. Similar links are

found for C4H4
2−, C5H5

− and C7H7
+ with [B5H5]

2−, [B6H6]
2−, and [B8H8]

2−,
respectively [63]. As a summary, the ECSA method links highly stable monocyclic
hydrocarbon reference compounds fulfilling (4n + 2)π Hückel’s electron rule with
the corresponding monodeltahedral closo borane clusters that obey the 4n + 2
Wade-Mingos rule. Noticeably the value of n has not the same meaning in one
equation and the other. In (4n + 2)π Hückel’s rule n can be any integer and has no
direct relationship with the structure; conversely in 4n + 2 Wade-Mingos’ rule n is
structure dependent and refers to the number of vertexes occupied by boron atoms.

12.6 Conclusions

One of the main difficulties faced by researchers interested in aromaticity charac-
terization is the lack of a physical basis for this property, which makes its quan-
tification difficult. The existence of rules of aromaticity that provide the magical
numbers of electrons that are required to reach this property helps to characterize
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aromatic compounds. In this chapter, we have shown that it is possible to differ-
entiate between aromatic and antiaromatic planar conjugated rings by analyzing
how the crossed delocalization terms changes when adding or removing a pair of
electrons. Using multicenter electron delocalization measures, we have verified the
4n Baird rule, although our results have been inconclusive about the validity of
Soncini-Fowler’s extension of Baird’s rule. We have also confirmed the validity of
the 2(n + 1)2 and 2n2 + 2n + 1 (S = n + ½) rules of spherical aromaticity for closed
and open-shell species, respectively. Finally, we have shown the existence of a
connection between the 4n + 2 Hückel rule for two-dimensional aromaticity in
planar conjugated rings and the 4n + 2 Wade-Mingos rule for three-dimensional
aromaticity in boranes.
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Chapter 13
Localized Structures at the Hückel Level,
a Hückel-Derived Valence Bond Method

Yannick Carissan, Nicolas Goudard, Denis Hagebaum-Reignier
and Stéphane Humbel

Abstract A simple Hückel Hamiltonian is used and modified to describe localized
states, where the electron pairs are confined to bonds between two atoms, or to lone
pairs. The electronic delocalization can be considered either as a mixture of these
localized states, or through a standard Hückel calculation. The two Hückel-Lewis
methods described here attempt to find the coefficients of the mixture, based on
energy or overlap consistence with the standard Hückel results. After the descrip-
tion of the two methods, test examples are used to show advantages and drawbacks
of the different approaches. In any case, the results are compared to the NBO-NRT
approach which is used on the electronic density obtained from standard DFT
hybrids calculations such as B3LYP/6-31+G(d). This chapter ends with an intro-
duction to the HuLiS program in which the two methods are implemented.

This contribution is concerned with two approaches, called the Hückel-Lewis
(HuLiS) family of methods, that aim at associating a weight to a topological
envision of the electronic structure of a molecule. These methods are embedded in
the HuLiS code, which will also be briefly described. HuLiS targets primarily at a
classroom use, and is limited to planar p-conjugated systems. Our approach has
proved to be consistent with more elaborated methods such as the Natural Bond
Orbital (NBO)-based methods using Density Functional Theory (DFT) electronic
densities, or Valence Bond (VB) approaches [1]. It also has an appreciable
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simplicity due to the underlying Hückel approximations, and its failures are easy to
understand. Finally, it conveys some clear understanding of the electronic
delocalization.

13.1 Understanding Delocalization: Lewis Drawings
and Mesomerism Versus Molecular Orbitals
(Hückel) Method

This section introduces the context and the notation of the Hückel-Lewis
(HL) methods. The notations that follow can be found in Table 13.1.

13.1.1 Definition of a Ground State Reference
Wave Function

In the following, we shall discuss the status of the objects we use in this chapter. By
application of the superposition principle of quantum mechanics, for any system,
the exact ground state wave function, Wexact, can be written as a linear combination
of an infinite number of wave functions. In the framework of a molecule with p
electrons, Wexact can be separated into two wave functions with the understanding
that these wave functions are written on an infinite basis as well:

Wexact ¼ cpexactW
p
exact þ cnon�p

exact Wnon�p
exact ð13:1Þ

The assumption is done here that the space spanned by Wexact is the direct sum of
the p and the non-p spaces. In this chapter, we are interested in treating p systems
only, thus we shall not consider Wnon�p

exact . As mentioned above, Wp
exact is written on

an infinite basis set. With no loss of generality, this basis set can be made of
localized wave functions. By local, we mean that single electrons or electron pairs
occupy orbitals, which are written on atomic basis functions that are carried by a
few number of atoms. If this number is one or two, we shall define these local

Table 13.1 Wave function and energy notations

Wref , Eref Wave function and energy of the ground state when it is described with the
reference method, here Hückel, see (13.9)

Wi, Ei Wave function and energy of a Lewis structure. They will be described also
within the Hückel framework

~W, ~E Truncated description of the wave function and energy of the ground state,
expressed on a limited set of N Lewis structures, as defined in (13.6)
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structures as Lewis structures. For higher numbers, they would be called
non-Lewis:

Wp
exact ¼ Wp=Lewis

exact þWp=non�Lewis
exact ð13:2Þ

with:

Wp=Lewis
exact ¼

X1
i¼1

cp=Lewisi Wp=Lewis
i ð13:3Þ

Wp=non�Lewis
exact ¼

X1
i¼1

cp=non�Lewis
i Wp=non�Lewis

i ð13:4Þ

The infinite sum comes from the fact that the atomic basis function set is infinite.
Yet, we shall focus on valence orbitals only. Furthermore, as we will use the Hückel
formalism, we will restrict ourselves to the parametrized basis set of one p orbital
per atom, pif gi¼1;n. So, we can rewrite (13.3) as:

Wp=Lewis
exact ¼

XNMAX

i¼1

cp=Lewisi Wp=Lewis
i þ

X1
i¼NMAX þ 1

cp=Lewisi Wp=Lewis
i ð13:5Þ

The Wp=Lewis
i

n o
i¼1;NMAX

is the full set of Lewis structures that can be written in

the Hückel basis set. The size of this set, NMAX is usually very large and we shall
restrict this set to the N meaningful structures only. In this work, we attempt to

approximate Wp=Lewis
exact by a linear combination of Wp=Lewis

i , called ~W. For the sake of
simplicity, the label p=Lewis will systematically be dropped:

Wp=Lewis
exact � ~W ¼

XN
i

ciWi ð13:6Þ

The choice of a set of local wave functions is arbitrary and other choices could
be done. For instance, instead of using Lewis and non-Lewis wave functions, one
could rewrite Wp

exact on a set of Slater determinants Dif gi¼0;1, written on delo-
calized molecular orbitals of occupation number 0, 1 or 2. In some cases, Wp

exact can
be approximated by one determinant D0. Thus:

Wp
exact ¼ C0D0 þ

X1
i¼1

CiDi|fflfflfflfflffl{zfflfflfflfflffl}
!0

ð13:7Þ
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In the Hückel framework, D0 is projected onto the Hückel basis set by the
projector operator:

P̂ ¼
Xn
i

Xn
j

jpii hpjj ð13:8Þ

The delocalized wave function of the ground state can be written as:

Wp
exact � Wref ¼ C0

Xn
i

Xn
j

jpii hpjjD0i ð13:9Þ

As C0 is not meaningful in this context, Wref can be normalized without loss of
information.

13.1.2 Lewis Structures

In the process of understanding chemistry, Lewis structures have a prominent
position. A Lewis structure is often a good approximated answer to the question
“how is the electronic structure of this molecule?”. Besides, whenever a unique
Lewis structure does not suffice, that is when some delocalization occurs,
mesomerism is invoked. With mesomerism, a set of Lewis structures is defined, and
a weight is attributed to each of them (wi for the ith structure). This weight rep-
resents the importance of the structure. The larger wi, the more significant the ith
structure will be. Such a weight can be computed in Valence Bond-like formalisms
[2, 3], but it is usually only estimated with the following qualitative rules, by
decreasing priority:

• Is the octet rule fulfilled?
• Are there charge separations?
• Is the charge distribution consistent with the electronegativity?

Whenever the answer to one of these questions is no, the weight of the con-
sidered structure gets smaller, and the corresponding structure gets less likely. This
qualitative estimate leads to the following labeling: two or more structures can be
equivalent, or a major structure can be found, together with one or more minor
structures.1 Hence the weights can be somehow ordered.

They can also be estimated numerically from ~W, (13.6). As local structures may
overlap, Sij 6¼ 0 in (13.10), in a resonant scheme that involves N structures, the

1Two structures are equivalent when they behave the same and/or when one can be deduced from
the other by symmetry.
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weight (wi) can be calculated according to the Coulson-Chirgwin’s definition
(13.11) [4].

Sij ¼ hWijWji ð13:10Þ

wi ¼ ci
XN
j

cjSij ð13:11Þ

Unfortunately, the computation of the Wi is usually not straightforward because
localized orbitals are in principle non orthogonal, and these overlapping orbitals
bring computational difficulties. Hence, Valence Bond computations have
remarkably been superseded by methods based on Molecular Orbitals (MO) [5],
where the orbitals are orthogonal to each other. Density functional theory has also
provided interesting alternatives for efficient computations [6]. However, by these
methods the electronic localization is lost and topological analysis have to be settled
a posteriori [7–14]. Here we make use of the special features of the Hückel
approximations to get the Wi, and to evaluate the ci and wi in a straightforward way.

13.1.3 Hückel in a Nutshell

The Hückel method is based on two n� n matrices, where n is the number of p
orbitals: the overlap matrix S and the Hamiltonian matrix H, which are expressed
on the basis of the atomic orbitals that are involved in the so-called p system. In the
Hückel approximation, S is simply equal to the identity matrix: the atomic orbitals
of two atoms A and B are considered orthogonal (SAB ¼ dAB). To compensate for
the fact that the method deals with non-overlapping orbitals, topological informa-
tion is embedded in H, for instance for a linear system see (13.12). The H matrix is
also called the topological matrix of the system. Remind that if A is a carbon atom,
the diagonal term HAA ¼ aA ¼ a. Formally, a is negative as it is the energy of the
occupied 2pz orbital of a sp2 hybridized carbon atom. When two such carbon atoms
are bonded, the off-diagonal term HAB is set to b which is negative as the low lying
orbital is an in-phase interaction.

The relative electronegativity of an heteroatom B with respect to carbon is taken
into account by a shift of the diagonal term in b unit: HBB ¼ aB ¼ aþ b� hB.
Since b\0, when B is more electronegative than a carbon, hB [ 0.

The off-diagonal terms HAB are negative and are relative to the strength of the
interaction between the two atoms (HAB ¼ kAB � b, with kAB � 0 because b\0).
The values of the kAB are related to the nature of the atoms A and B, and to their
coordination number [15]. We used the values proposed by Van-Catledge
throughout [16]. It is noteworthy that non-bonded atoms (A and B) have a zero
interatomic Hamiltonian parameters (HAB ¼ 0).
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H ¼

aA kABb 0 . . . 0

kABb aB . .
.

0 0

0 . .
.

aC
. .
.

..

.
0 . .

. . .
. . .

.

0 0 . .
.

an

0
BBBBBBB@

1
CCCCCCCA

ð13:12Þ

Orbital energies are obtained by solving:

detðH� eSÞ ¼ 0 ð13:13Þ

The vector e contains the energies (ej) of all the molecular orbitals (say pj) of the
molecule. In order to solve (13.13), it is of common use to write the determinant as
a function of a reduced dimensionless variable x ¼ a�e

b :

det H� eSð Þ ¼

xþ hA kAB 0 . . . 0

kAB xþ hB . .
.

0 0

0 . .
.

xþ hC . .
.

..

.
0 . .

. . .
. . .

.

0 0 . .
.

xþ hn

�������������

�������������
ð13:14Þ

¼ PnðxÞ ð13:15Þ

This determinant is a polynomial of x, called the characteristic polynomial of the
system. Its roots xi lead to the eigenvalues of the molecular orbitals ei ¼ a� xib.
Thus, one can compute the total energy of the system either by finding the solutions
of (13.13), or by finding the roots of the characteristic polynomial PnðxÞ. This
polynomial expression will be used in Sect. 13.4.3 to define the topological reso-
nance energy.

The molecular orbitals obtained by the Hückel method are delocalized over the
molecule, and are used in a Slater determinant to build the reference wave function
(Wref ) of our Hückel-Lewis family of methods. Hence, for ethyleneWref ¼ jppj and
for a four-p-electron molecule likeacrolein, it reads Wref ¼ jp1p1p2p2j. Thus, we
consider that a single determinantal wave function adequately describes the system
at hand. Radicals are considered in a restricted formalism: two electrons of opposite
spin share the same spatial part. Higher spin states are not considered in our
implementation.

The energy of a configuration is the sum of the energies of the occupied orbitals:
Eref ¼

Pnocc
j njej, where nj is the occupation number of the jth orbital. Hence, the

bielectronic part that would differentiate an open shell singlet from the triplet is
obviously missing.
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13.1.4 From Hückel Molecular Orbital to Lewis Structures

In the Hückel-Lewis family of methods, we use the fact that the Hückel
Hamiltonian is versatile, so electrons can be localized by simply zeroing out some
terms in a modified Hamiltonian matrix. This terms are those that correspond to
single bonds in a Lewis structure. The new Hamiltonian leads to eigenvectors that
correspond to local orbitals, and corresponding eigenvalues are also obtained. The
wave function Wi, that describes the ith structure, is again a Slater determinant,
obtained by distributing the electrons in the appropriate local orbitals.

Acrolein can be used as an example (Fig. 13.1). The major structure is evidently
structure I, and structure II is a reasonable structure involved in the electronic
delocalization because of the oxygen’s larger electronegativity compared to car-
bons. For the same reason, structure III has a priori less chemical relevance. The
Hückel-Lewis methods can compute the weights of each structure and help to
determine if a structure is important.

To describe structure III, the four p electrons must be located as follows: the
carbon C1 (on the left) must have two electrons in its pp orbital, and two other
electrons must be in the central double bond. We shall emphasize that the oxygen
must have an empty atomic orbital. These localized orbitals are obtained by using a
modified Hamiltonian that somehow isolates the different electronic parts of the
molecule: left carbon, central C–C bond, and right oxygen. It is noteworthy that
such a modified Hamiltonian applies to either structure II or structure III. The
eigenvectors and eigenvalues are thus the same for both (Fig. 13.2), but the elec-
tronic distribution differentiates the two structures. Hence the electronic configu-
ration ðpÞ2ðpOÞ0ðpCÞ2ðp�Þ0, with a filled orbital centered on carbon C1, corresponds
to III, while ðpÞ2ðpOÞ2ðpCÞ0ðp�Þ0, with a filled orbital centered on the oxygen,
corresponds to structure II.

HamiltonianlekcüHOriginal Modified Hamiltonian for II and III

C1 C2 C3 O4

1 α ββ 0 0
2 β α β 0
3 0 β α 1.06β
4 0 0 1.06β α+0.97β

C1 C2 C3 O4

1 α 0 0 0
2 0 α β 0
3 0 β α 0
4 0 0 0 α +0.97β

Fig. 13.1 Acrolein’s mesomeric structures. The atoms are numbered from the left to the right

13 Localized Structures at the Hückel Level … 343



This zeroing-out technique is straightforward to use and de facto isolates any
double bond or lone pair in a molecule. The Lewis structures can then be charac-
terized both with a wave function Wi and an energy Ei. Delocalization energies are
obtained by energy difference between the energy of a localized structure, and Eref ,
which is the Hückel energy of the molecule.

One shall notice that contrary to ab initio calculations, where fully localized
orbitals are necessarily non-orthogonal and lead to heavy calculations, Hückel
orbital localization does not bring any complication, neither to the code, nor to the
computational effort. The only slight complication arises from open shell covalently
paired electrons, when the two electrons are not in the same p orbital but belong to
two different orbitals, say a and b. We shall represent such a singlet coupling with a
plain arc that links the two electrons’ dots (Fig. 13.3). The wave function associated
to such a case contains the determinants ab

�� ��þ baj j.

Fig. 13.2 Acrolein’s
localized orbitals for
structures II and III, and
corresponding orbital
occupation

Fig. 13.3 Convention for covalently paired electrons. Three representative cases
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13.2 Two Different Hückel-Lewis Schemes to Define
a Configuration Interaction in the Hückel
Framework

The Hückel framework defines the reference wave function, Wref and its energy,
Eref . It is possible to extract information from this structure in the same way it is
done at high level of calculations. The Hückel solution should be seen as a quantum
chemistry calculation done in a minimal basis. If one tries to write the reference
wave function on a set of localized structures, many approaches can be defined.
These approaches are a posteriori analysis of the reference wave function and help
to understand the nature of its electronic structure. We defined the following
schemes:

HL-CI: The Hückel Lewis Configuration Interaction (CI) is formally equivalent to
the Hückel method for the interaction between several localized structures: one can
diagonalize a Hamiltonian in the basis of localized Lewis structures. In the fol-
lowing, this will be referred to as the energy based scheme.
HL-P: The Hückel Lewis Projection is a CI expansion based on the overlap
betweenWref and each of the chosen localized structuresWi. This will be referred to
as the space based scheme.

13.2.1 Energy Based Scheme

The HL-CI method is an analog of the Hückel method in the multiconfigurational
framework [17–20]. It is based on the assumption that the delocalized wave
function, which has the lowest possible energy, results from the interaction of all
local structures of higher energy. Let Wref be a delocalized wave function of energy
Eref to be written on the basis of N local structures Wif gi¼1;N of energy Ei. One

searches ~W, of energy ~E:

~W ¼
XN
i

ciWi ð13:16Þ

such that:

~E ¼ Eref : ð13:17Þ

In Hückel theory, atomic basis functions are assumed to be orthonormal. The
interaction between neighbouring functions is included in the off-diagonal term of
the Hamiltonian. In the HL-CI framework, these two approximations are done
among the local structures.
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Sij ¼ dij ð13:18Þ

Hij

��
i6¼j¼ B\0 ð13:19Þ

Hii ¼ Ei ð13:20Þ

Yet, there is no way to determine a vicinity between structures: there is no
topological matrix in the localized structures space. Thus, we add the approxima-
tion that the local structures interact in the same manner between each other. This
term is called B by analogy with the b Hückel constant (13.19). It is worth noting
that for any system with more than one localized structure, the B value will assure
that the condition (13.17) is fulfilled. The choice B\0 implies that the lowest
eigenvalue corresponds to a linear combination in which all ci are positive. This
means that the approximate solution ~W will always be an in-phase interaction
between the Wi contributors. Thus, HL-CI will not be able to give the appropriate
solution when out-of-phase interactions are required, that is when symmetry will
require such an interaction. This shortcoming will be illustrated in Sect. 13.3.1 with
the allyl radical case. HL-CI weights are computed using the Coulson-Chirgwin
definition. As Sij ¼ dij (13.18), the weight of a structure is the square of its
coefficient.

13.2.2 Space Based Scheme

The HL-P method focuses on the overlap between the localized structures and the
reference wave function. The wave function is written as a linear combination of
localized structures (13.16). Only the optimization criterion changes: instead on
focusing on the energy, it is the overlap between the linear combination of localized
structures and the reference wave function, s which is aimed at being maximized by
improving the Wif gi¼1;N set. This is done either by increasing N, or by choosing
more significant Wi structures. Let us assume that hWref jWref i ¼ 1. Then we define
the quantity to be improved as:

s ¼ hWref j ~Wi ! 1 ð13:21Þ

The overlap matrix of the localized structures, S is computed, as well as, Sref , the
vector which contains the overlap between each localized structure, Wi, and Wref .
The wave functions, localized or not, are written as single Slater determinants. Let
Wi be a local structure written on a set of non orthogonal spin orbitals /i

k

� �
k¼1;nel

and Wj another local structure written on a set of non orthogonal spin orbitals
/ j
l

� �
l¼1;nel

. Then, Sij as defined in (13.10), is computed as the determinant of the

overlap matrix of the non orthogonal occupied spin orbitals [21, 22]:
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Sij ¼ det /i
k

� ��/ j
l

�� 	 ð13:22Þ

To find the ci coefficients (elements of vector C), one solves the following linear
system of equations:

hWijWref i ¼
XN
j

cjSij; i ¼ 1;N ð13:23Þ

, Sref ¼ SC ð13:24Þ

At this stage, the norm of ~W is a direct measurement of its quality: the closer to
one, the better. As it is custom in quantum chemistry and in order to be able to
extract meaningful information from ~W, in the rest of this chapter, it is normalized.

The Coulson-Chirgwin weights (13.11) are not defined positive. If a negative
weight is computed, it means that the set of localized Lewis structures, Wif gi¼1;N , is
over complete. This can be detected by checking that eigenvalues of S are close to
zero. This is an indicator of redundancy in the Wif gi¼1;N set: the structures were not
adequately chosen and other choices should be done.

In HL-P, the trust parameter, s (13.21), is a measure of the completeness of the
set Wif gi¼1;N in the space spanned by Wref . It shall be used as well in the HL-CI
framework as safeguard. In the context of calculating s, the exact overlap matrix
must be used (13.22). In the HL-CI framework, the B constant was arbitrarily
chosen to be negative as it models an in-phase interaction. Any system which
requires out-of-phase interaction will exhibit a much lower s with HL-CI than with
HL-P. It contains also implicitly the overlap of a given structure with the reference
wave function, which is assumed to be positive.2

13.3 Comparison of the Two Hückel-Lewis Schemes:
Pros and Cons Through Examples

In this section, we compare the two Hückel-Lewis schemes previously defined with
NBO-NRT calculations [9, 13, 14] on typical examples.

We first show in Sect. 13.3.1 that the space-based HL-P and energy-based
HL-CI methods give comparable results in the description of the resonance of the
allylic systems (cation, radical and anion), except for the radical case, where the
HL-P method is more reliable as it respects symmetry.

In Sect. 13.3.2, we discuss the butadiene and benzene cases by examining how
the trust parameter s of the HL-P method is modified when Lewis structures are

2It is the same in the Hückel method: b is negative because the low energy solution is an in-phase
interaction and because two adjacent p orbitals overlap positively.
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added or removed in a given mesomerism scheme and how this parameter helps
choosing the important structures that best describe the resonance in these systems.

All NRT calculations have been performed using the NBO 6.0 program [23].
Unless otherwise mentioned, the geometries of the systems studied in this section
have been optimized at the B3LYP/6-31+G(d) level of calculation, using the G09
Gaussian [24] package. The values of the trust parameter s differ from previously
published work [1], the values published here corresponding to a normalized ~W.

13.3.1 Resonance in the Allyl Series: Cation, Radical
and Anion

Let us examine in this section the mesomerism in the three allylic systems: the
cation, radical and anion. Such molecules have served as model systems in
numerous theoretical studies on p delocalization [25–29].

In the following, the Hückel reference wave functions for the cation, radical and
anion will be noted Wþ , W� and W�, respectively (see Fig. 13.4). For each system,
three Lewis structures are considered: the left (WL) and right (WR) structures,
whereby the positive/negative charge or radical is located on the left and on the
right of the molecule skeleton, respectively. In the third structure (WC), the
positive/negative charge or radical is located on the central carbon atom, whereas
the electrons on opposite carbons are covalently paired (see Fig. 13.3). The
mesomerism scheme for the allyl radical is represented in Fig. 13.5, as an example.

Fig. 13.4 Hückel molecular orbital diagram and symmetries of the ground state of the allyl cation
(Wþ ), radical (W�) and anion (W�)
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We want to compare here the weights of each Lewis structure given by the two
different Hückel-Lewis schemes (HL-CI and HL-P) discussed in Sect. 13.2 with
those obtained by the NRT method [9, 13, 14] (see Table 13.2).

In the two-structure mesomerism, the weights for WL and WR are equal to 50 %
for the allyl series, as expected. The trust parameters given by the two schemes are
equal and agree well with the NRT method (from about 92–99 %).3

There is however a notable exception for the allyl radical: the trust parameter,
s ¼ 0%, indicates an incorrect HL-CI wave function. This surprising result can be
traced back in the assumption B\0 (13.19) and inspection of the symmetry of the
allyl radical state provides an explanation. As mentioned earlier in Sect. 13.2.1, this
assumption implies an in-phase interaction between the Lewis structures (positive ci
coefficients in (13.16)). As pointed out by Goddard [25], this actually corresponds
to an excited state. In the allyl radical case, the ground state space symmetry is A2

(C2v point group), as can be seen from Fig. 13.4. The Hückel wave function is
antisymmetric with respect to the rv plane perpendicular to the molecular plane.
Thus, only an out-of-phase combination of the resonant structures WL and WR can
account for the correct symmetry of the ground state, since each structure WL and

Table 13.2 Weights wi of resonant Lewis structures for the cationic, radical and anionic allyl
molecules obtained with the two schemes HL-CI and HL-P and compared with the standard NRT
(B3LYP/6-31+G(d)) weights

Molecule HL-CI HL-P NRT

wi s wi s wi s
þ Allyl 50/50/ 92 50/50/ 92 50/50/ 97

46/46/8 98 44/44/12 99 45/45/10 97.5
� Allyl 50/50/ 0 50/50 92 50/50/ 96

39/39/22 0 50/50/0 92 50/50/0 –

� Allyl 50/50/ 92 50/50/ 92 50/50 94

46/46/8 98 44/44/12 99 44/44/12 96.5

The weights wi (in %) are given in the order WL=WR=WC and gathered along with the trust
parameters s (in %) for each method

Fig. 13.5 Mesomerism scheme for the allyl radical: the delocalized Hückel wave function Wref is
represented as a linear combination of resonating Lewis structures WL, WR and WC

3Note here that the s value for the NRT results is defined as the sum of the weights of the p/
Lewis resonant structures built from the NBO analysis of the molecular density. The NRT
weights given here are renormalized so that the sum of the weights of all considered contributors
is equal to 100 %. The same definition will apply in Sect. 13.3.2.
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WR are symmetric to each other with respect to the rv plane. The in-phase
approximate wave function eW ¼ WL þWR is of B1 symmetry and has thus a zero
overlap (s ¼ 0%) with the reference state Wref (A2 symmetry).

As a summary for the two-structure mesomerism, we have learned that the
HL-CI method, by its construction, can not account for an out-of-phase combina-
tion of resonant structures that would be required by the symmetry of the reference
state Wref and the trust parameter is a good indicator for this shortcoming.

Let us now examine the three-structure mesomerism scheme. First, one can see
that the weights for the allyl cation and allyl anion are the same. This stems from
the fact that the Hückel molecular orbitals are the same for the neutral, cationic or
anionic systems, the different values for the neutral being due to symmetry.

The HL-CI and HL-P methods give similar weights, which compare very well
with the NRT weights, in the case of the cation and anion. The trust parameters are
improved compared to those of the two-structure mesomerism by about 10 %.
Regarding the radical, the HL-CI method gives an incorrect non-zero weight of
22 % for WC, as a direct consequence of the symmetry problem of the HL-CI
method previously discussed. The third structure WC is namely symmetric with
respect to the rv plane and cannot improve the description of the reference state. Its
weight should be zero and the quality of the mesomerism given by s remains
unchanged when this structure is included. This can be seen in Table 13.2 for the
HL-P method. This method gives the correct weight for WC as it intrinsically relies
on the overlap of each Lewis structure with the Hückel reference wave function and
thus indirectly accounts for the correct symmetry.

As a short summary on this study of the allyl series, both HL-CI and HL-P
methods provides reliable weights for the resonant structures of the ionic allyl
species compared to the weights given by the NRT method. For the allyl radical,
only the HL-P method gives the correct weight of the minor structure. The trust
parameter s is a good safeguard to identify symmetry problems in the HL-CI
method. In the following section, we will only compare results obtained with the
HL-P method with the NRT calculations.

13.3.2 Measuring the Quality of a Mesomerism Scheme:
The Butadiene and Benzene Cases

We want to show here that the trust parameter is a good indicator of the com-
pleteness of a given mesomerism scheme, that is, how relevant the chosen resonant
Lewis structures are, in quality and number. We illustrate this point with two typical
examples: the butadiene and benzene molecules, where we compare the HL-P
method with the reference NRT calculations.
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13.3.2.1 The Butadiene Case

The butadiene molecule is the simplest conjugated diene in which electron delo-
calization occurs. As can be seen from Table 13.3, the major neutral Lewis structure
of butadiene describes well the Hückel reference wave function Wref as it spans
90 % of the space. The description is gradually improved when including the
diradical structure (case 2a: s ¼ 92 %) along with the two ionic structures (case 3:
s ¼ 95 %). The comparison of case 2a with case 2b (s ¼ 92 %) tells us that the two
ionic structures and the diradical contribute the same amount to the description of
Wref , i.e. they overlap similarly with Wref . But they do not overlap with each other,
so that the trust parameter increases when both are added.

Regarding the weights of the best set (case 3), the HL-P method confirms the
dominance of the purely neutral Lewis structure (81%) over the diradical structure
(9%), which weight is equivalent to the weight of the two ionic structures together
(2� 5% ¼ 10%). This is in good agreement with the NRT results, which shows
the same tendency. In the NRT calculations, the major structure came along with
four zwitterionic structures having adjacent charges (overall weight of 16 %, each
weighting 4 %). Two of these zwitterionic structures have charges on carbon 1 and
2 and a double bond between carbon 3 and 4. In the two others, charges and double
bond are permuted. They complete the description of each double bond of this
major structure. This behavior of the NRT method will also be encountered in the
benzene case.

Table 13.3 Comparison of the HL-P weights wi (in %) and trust parameter s (in %) for the
butadiene resonance scheme with their NRT counterparts

(1) (1) (2) τ
HL-P
Case 1 100 − − 90
Case 2a 91 9 − 92
Case 2b 90 − 5 92
Case 3 81 9 5 95
NRT 70(+16)a 8 3 95

a The weights of the purely covalent Lewis structure account for 70 % and those of the four ionic
structures with adjacent charges for 16 %. See text for explanation

The number of equivalent contributors are indicated in parenthesis. The highlighted
line corresponds to the best set of  contributors
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13.3.2.2 The Benzene Case

The benzene molecule is an archetype for the study of p delocalization and aro-
maticity (see e.g. the reviews [30, 31] and references therein). In standard chemistry
textbooks, the resonance in the benzene molecule involves only the two major
Kekule structures (see Table 13.4). However this two-structure scheme is by far
incomplete to describe the p delocalization of benzene. It is well recognized in the
VB community that about 175 VB structures are needed in order to grasp the
resonance in the benzene molecule [32].

In Table 13.4, we illustrate nicely with the HL-P method the need of numerous
structures in order to obtain a good description of the resonance, that is, a high value
of s. When only the two Kekule structures are considered (case 1), the HL-P trust
parameter is rather low (77 %). When this set is augmented with the three Dewar
structures (case 2), s slightly increases to 80 %, which is obviously still not satis-
factory. One has to add six equivalent para ionic structures to gain almost 10 % from
the initial Kekule set (case 3), and another 24 extra meta ionic/covalent contributors
to reach 97 % of the spanned space (case 4). The resulting 35-structure set corre-
sponds to 145 among the 175 VB structures. The major importance of the Kekule

Table 13.4 Comparison of the weights wi (in %) and trust parameter s (in %) for the benzene
resonance scheme between the HL-P and NRT methods

Kekule Dewar para ionic meta ionic/cov.
(2) (3) (6) (24) τ

HL-P
Case 1 50 − − − 77
Case 2 40 7 − − 80
Case 3 28 7 4 − 85
Case 4 22 5 3 1 97
Case 5 − 12 6 1 86
Case 6 − − 9 2 70
NRT 19.5(+20)a 5 1 0 90

aThe weights of the two Kekule structures account for 19.5 % and those of the 12 ionic Lewis
structures with adjacent charges for 20 %. See text for explanation

The number of equivalent contributors are indicated in parenthesis. The highlighted line
corresponds to the best set of contributors
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and Dewar structures among the full set of case 4 can be evaluated when one
removes them: the quality of the resonance scheme drops to 86 % when removing
only the Kekule structures (case 5) and 70 %, when removing both (case 6).

The NRT results reported in Table 13.4 were obtained with the full set of 35
structures (case 4) as initial structures, so that we can compare both methods with
the same mesomerism scheme. They indicate an overall good description of the
density of benzene (s ¼ 90%). The best HL-P set of contributors (highlighted line
corresponding to s ¼ 97% in Table 13.4) compares well with the NRT results as it
provides the same tendency regarding the relative importance of the structures: the
Kekule structures are dominant (weight of 22 % in HL-P against 19.5 % in NRT)
over the Dewar structures (weight of 5 % in both methods), and over the para ionic
structures (weight of 3 % in HL-P against 1 % in NRT). In the HL-P scheme, the 24
meta ionic/covalent structures have a small weight of 1 % each and contribute to the
resonance scheme (s is improved by 12 % when they are included) but are absent in
NRT. One has to keep in mind that the HL-P method relies on a Hückel wave
function and does not have as much flexibility as the NRT method to describe the
resonance of benzene. This explains the small discrepancies between both methods.
Moreover, as in the butadiene case, the major Kekule structures came along with 12
zwitterionic structures having adjacent charges. Two of these zwitterionic structures
have charges on carbon 1 and 2 and double bonds elsewhere, which leads to six
structures per inital Kekule structure when permuting charges and double bonds
(two such structures per double bond for the six double bonds of the Kekule
structures) and account for an overall weight of 20 %. Their weights are added to
the weight of the Kekule structures, as they contribute to their description.

As a summary of the two examples discussed in this section, the trust parameter
s designed in the HL-P method provides a excellent means of measuring how good
a given set of contributors is, to mimic the reference wave function.

13.4 HuLiS: An Easy-to-Use Code to Link Hückel
to Lewis Concepts

HuLiS started as a Java applet and evolves to a javascript/HTML5 script to increase
the ease of use [33]. The program is available as a web application at http://ism2.
univ-amu.fr/hulis,4 and can also be downloaded as a standalone java applet. The
mobile version is available from the same address. In addition to the simple Hückel
method, HuLiS implements the two methods described herein and the topological
resonance module described in this section.

4Note to the referee: at the moment HuLiS is at http://www.hulis.free.fr but it will migrate soon.
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13.4.1 Overview of the HuLiS Program

The user can build a structure, and the Lewis structures can be generated and their
weights are evaluated almost instantaneously. All the process is graphical.

The interface (Fig. 13.6) differentiates the tools that concern the delocalized
wave function (Hückel tools on the left, in blue) and the tools for mesomerism
(Mesomery, on the right, in orange). The central panel contains the drawings and
displays the molecule, and possibly the orbitals, charges, atom numbering,
parameters. In the upper part, close to the hUndoi=hRedoi buttons, the user finds the
hpreferencei and the habouti buttons.

The user starts by the left-hand side part: the molecule has to be defined through
the types of atoms and their connectivity, which produces the Hamiltonian matrix.
This Hückel Hamiltonian is solved “on the fly”. Neat outputs can be viewed with
the left-hand side hresultsi button. The right-hand side part can then be used to
study the mesomerism. Again, tidy outputs can pop up with the right-hand side
hresultsi button. In the results panel, the program generates inputs for use in
gaussian [24], with the NBO strings that correspond to the Lewis structures.
Similarly, HuLiS can read xyz coordinates and NBO input strings using copy/paste
or via the Files Reading menu.5

Fig. 13.6 HuLiS’s screenshot of the mobile version

5The molecule has however to be Hückel-compatible i.e. essentially flat. Methyl substituents are
allowed.
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13.4.2 Automatic Generation of Localized Structures

The automatic generation of localized structures is a two-step procedure, Fig. 13.7.
In the following, we shall illustrate this procedure with the C5H�

7 radical species.
The starting point is a structure in which each atom carries its own p electrons.

This is stored as a n dimension array, called C, filled with integers equal to the
number of p electrons on each atom. In our example, at this point, the only structure
is such that C ¼ 1 1 1 1 1 . From this structure one generates all other possible
structures under the following constraints:

• do not exceed a maximum number of charge separation;
• do not exceed a maximum number of radical centers;
• do not put more than two electrons on one center.

These constraints are set up by the user in the preferences. The first step of the
procedure keeps the array unchanged, C ¼ 1 1 1 1 1 (Fig. 13.7, Path 1), or leads
for instance to C ¼ 0 1 1 2 1 (Path 2). Additionally, structures with adjacent
charges are removed. Thus, C ¼ 0 2 1 1 1 is discarded (Path 3). From these
structures, in a second step, one generates the final set by coupling the radical
centers if necessary. The coupling of two adjacent radical centers leads to a double
bond. The number of remaining radicals is computed. Each structure with a larger
number of radical centers than the maximum allowed is discarded. In the current
version (3.1.2c) this number is limited to three. Thus, C ¼ 1 1 1 1 1 is not
accepted as such (i.e. with no singlet coupling). Furthermore, the number of charge

Fig. 13.7 Example of two possible paths which generate relevant Lewis structures for the C5H�
7

species. In such a way, 39 structures can be generated which respect the conditions defined in the
text
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separations is by default set to one, i.e. one positive charge and one negative charge
on two different atoms. We believe it is a wise choice as it could be hard to give a
chemical meaning to structures with more charge separation.

13.4.3 Topological Resonance Energy

The Topological Resonance Energy (TRE) is a measurement of the resonance
energy based on the topology of the molecule [34–36]. It is defined as the difference
between the energy of the considered molecule and its acyclic counterpart. The later
is a fictitious yet well defined system in which aromaticity is lost. A way to suppress
aromaticity is to consider the mixture with an anti-aromatic system. It was recently
shown that the characteristic polynomial (13.15) of the acyclic system is the
average of the characteristic polynomial of the real molecule and its anti-aromatic
Möbius counterpart [37]. In the framework of cyclic species with p electrons, the
fictitious Möbius molecule is obtained by rotating along the n-fold cycle the p

orbital of the ith vertex by ði�1Þp
n . This leads to an out-of-phase interaction between

the p orbitals of the first and the nth vertices. In other words, the p axis rotates by p
radians along the cycle, like the Möbius ribbon. This rotation is equivalent to setting
all interactions equal between adjacent centers except for the last one which is
multiplied by −1.
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In the HuLiS application, the characteristic polynomial PnðxÞ of any molecule is
computed using the Balasubramanian algorithm [38]:

PnðxÞ ¼
Xn
k¼0

dkx
n�k ð13:25Þ

dk ¼ 1
k
trðBk�1Þ; d0 ¼ �1 ð13:26Þ

Bk ¼ BAðBk�1 � dkIÞ; B0 ¼ A ð13:27Þ

with A the topological matrix of the molecule (13.14) and I the identity matrix both
of n� n dimension. The n� n Bk matrices and the dk coefficients are completely
defined in the recursive algorithm. The roots of PnðxÞ are the energies of the
molecular orbitals of the molecule.

The topological resonance energy can be easily computed for one ring species:
the acyclic polynomial is the average of the Hückel and the Möbius system. As an
example, let us compare the topological resonance energies and the Breslow res-
onance energies, defined as the difference in energy between the cyclic and the open
molecule [39], Fig. 13.8. The agreement between both definitions is excellent.

Discussion about the status of different resonance energies is beyond the scope
of this work. The interested reader will find more information in [39, 40].

For polycyclic systems, one follows Ref. [41] and as an application, we can
compute the TRE of 1,4-Biphenylenedione. The decomposition shown in
Table 13.5 is easily done in HuLiS as a polynomial calculator is available in the
software. This calculator allows any linear combination of characteristic polyno-
mials and searches for their roots. The calculation of TRE is thus at hand for any
molecule which HuLiS is able to treat.
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Chapter 14
Magnetic Properties of Conjugated
Hydrocarbons from Topological
Hamiltonians

Jean-Paul Malrieu, Nicolas Ferré and Nathalie Guihéry

Abstract The present chapter shows first that the topological Hückel Hamiltonian
provides an analytical expression of both the singly occupied Molecular Orbitals
and the spin density distribution of mono- and poly-radical conjugated hydrocar-
bons. It permits a new derivation of the Ovchinnikov’s rule (first established from a
magnetic model Hamiltonian), which predicts the preferred ground state spin
multiplicity from the topology of the molecule. From the Hubbard simplified rep-
resentation of the bi-electronic Hamiltonian one obtains directly, without any matrix
diagonalization, a reasonable evaluation of the singlet-triplet energy difference. For
singlet di-radicals the method enables one to predict whether the Ms = 0
single-determinant solution is subject to a spin-symmetry breaking. The spin
polarization of the closed shells, which is a different phenomenon, of bi-electronic
origin, increases the value of the magnetic coupling in these systems, contrasts the
spin densities between negative and positive values and spatially extends the spin
distribution. Numerical Unrestricted Density Functional Theory calculations illus-
trate the relevance of the predictions of the topological model.

14.1 Introduction

The occurrence of open shells (or singly occupied MOs) is more common in
coordination chemistry than in organic chemistry. The metal ions which usually
bear the unpaired electrons exhibit a local spin momentum responsible for magnetic
properties. The field of molecular magnetism [1–9] and its extension to periodic
lattices are key areas of coordination chemistry because of their potential applica-
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tions. One may mention ferro- (or ferri-) magnetic lattices, commutable
spin-cross-over systems, single molecule magnets or spintronic devices. In these
systems the metal ions are connected by closed-shell ligands which mediate the
interactions between the localized spins. Theoreticians have made great efforts in
understanding the mechanisms of the magnetic interactions between magnetic sites
and have developed appropriate computational tools for their study, either based on
wave-function based methods or on density functional theory (DFT) [10–13].

The magnetism of organic compounds receives more and more attention, and the
idea that one might conceive the organic counterpart of the magnetic devices
developed by coordination chemists attracts more and more attention from
researchers [14–17]. Several works deal with famous stable radicals such as
nitroxydes and parent compounds [18]. Nevertheless purely carbon-based magnetic
polyradical architectures, using for instance the meta-xylylene unit as a building
block, have been conceived and even synthesized [19]. These architectures are
conjugated hydrocarbons and the present contribution focuses on these systems.
Conjugated hydrocarbons have the advantage of presenting a high homogeneity
(same sp2 carbons, similar CC bond lengths) and their description may take benefit
from the topological models developed in the early days of Quantum Chemistry
[20]. We shall concentrate here our attention on open-shell hydrocarbons. In con-
trast to what happens in coordination chemistry, the unpaired electrons may be
strongly delocalized, as manifest from the shapes of the singly occupied molecular
orbitals (SOMOs). Actually when one branches a (CH2)

. group on a closed-shell
moiety, such as a benzene ring or a fuzzed polycyclic hydrocarbon, the spin density
is no longer concentrated on the added methylene group, it spreads over the whole π
systems. This phenomenon is the spin delocalization, and Sect. 14.2 focuses on its
study in free radicals. The topological rules governing its extension are derived
from the Hückel Hamiltonian and confirmed by DFT calculations. In Sect. 14.3,
fully conjugated di- or poly-radicals are considered. They are frequently seen as
resulting from the attachment of two (or more) radical groups on a closed-shell
moiety. It is shown that spin delocalization can also be easily predicted from the
Hückel model and that the topology governs the ground state spin multiplicity
(singlet or triplet) owing to the Ovchinnikov’s rule [21]. This rule has been orig-
inally established from a magnetic model Hamiltonian, which is in principle valid
for strongly-correlated systems, while the π electronic population is usually con-
sidered as weakly correlated. The same rule is here derived from a mixed
Hückel-Hubbard picture, which simply considers the effect of on-site bi-electronic
repulsion as a first-order perturbation to the energies. This procedure avoids any
self-consistent mean-field calculation of the Hubbard Hamiltonian. On a series of
examples, it is shown that the energy gaps between the lowest triplet and singlet
states estimated from elementary analytical calculations compare well with the
quantitative DFT predictions reported in Sect. 14.4.

Often confused with spin delocalization, spin polarization, discussed in
Sect. 14.5, is a different phenomenon. It introduces spin densities in orbitals of
different symmetries than the SOMOs, for instance in the σ system of π radicals.
While spin delocalization is well described by restricted open-shell formalisms, spin
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polarization involves the bi-electronic operator of the Hamiltonian and requires
using either unrestricted mean-field formalisms or preferably multi-determinant
descriptions. This section briefly recalls the physics of this phenomenon and
illustrates its signatures.

In this chapter the molecular architectures, quantities and functions relative to
the free radicals will not receive ‘ nor “ upper symbols, those relative to ferro-
magnetic systems will be affected by the symbol ‘, and those concerning the
antiferromagnetic systems will be marked by “.

14.2 Spin Delocalization in Conjugated Free Radical
Hydrocarbons

14.2.1 Recall of Elementary Features

Hereafter, as we try to reach analytic conclusions, the π electrons of a conjugated
hydrocarbon are described by the Hückel Hamiltonian. The on-site energies are
assumed to be equal and define the zero of energy:

H =
X

ðp;qÞbonded
tpqðaþp aq þ aþq apÞ ð14:1Þ

where the hopping integrals tpq on the bonds p–q are negative but may be of
different amplitudes, depending on the bond strength. The description makes also
use of a Hubbard Hamiltonian

H0 ¼
X

ðp;qÞbonded
tpqðaþp aq þ aþq apÞþ

X
p

Upnp"np# ð14:2Þ

where the second term accounts for the repulsion of two electrons occupying the
same site p. This simplified representation of the bi-electronic part of the
Hamiltonian keeps its leading qualitative effects.

In the strongly-correlated limit, when the electron delocalization (i.e. the tpq
terms) becomes smaller than the electron repulsion U, an appropriate description of
the lowest states is provided by the neutral VB determinants only, i.e. those in
which each carbon p bears one unpaired electron in its π atomic orbital (AO,
hereafter labelled χp). The π electron systems behaves as a pure spin system,
obeying a Heisenberg Hamiltonian [22, 23]. The inter-atomic delocalization, i.e. the
interaction between the neutral VB distributions and the ionic ones, results in an
antiferromagnetic spin coupling on each bond. One of the below-discussed rules,
known as the Ovchinnikov’s rule [21], has been derived from this magnetic
approach. Numerous works [24] have shown the relevance of magnetic descriptions
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of conjugated hydrocarbons, despite the fact that the delocalization prevails over
bi-electronic repulsion. In the present work we shall enter the problem from the
opposite side, considering first the delocalization only and later the electronic
repulsion as a first-order perturbation.

Let us consider “alternant conjugated hydrocarbons” for which the molecular
graph, defined by the conjugated carbons, does not present odd-membered rings. As
a consequence the conjugate carbons can be separated in two classes to which one
may attribute “colors”, say red and blue. Each red atom is chemically linked to blue
atoms and vice versa. These graphs are also called “bipartite” by solid state
physicists. If one identifies the colors to spins, α or β, one may say that an alternant
hydrocarbon is a spin non-frustrated graph, in the sense that it accepts at least one
and at most two spin distributions for which each chemical bond presents a spin
alternation, and the determinants of lowest energy are the fully spin-alternant dis-
tributions (called Néel function in Solid State Physics). For sake of simplicity we
shall label p, q,… the atoms of a given color and p′, q′, … the atoms of the other
color.

A basic theorem has been established in the early days of Quantum Chemistry,
when it focused on the study of conjugated hydrocarbons. It is the so-called “mirror
theorem” [25], which says that for any alternant graph of 2n sites the 2n eigenvalues
of the Hückel Hamiltonian are in a mirror correspondence, namely to each bonding
MO φk, of negative eigenvalue εk one may associate an antibonding MO φk* of
eigenvalue

ek� ¼ �ek ð14:3Þ

and the values of the coefficients in the corresponding eigenvectors on the atomic
orbitals χp obeying

Huk ¼ ekuk; uk ¼
X
p

ckpvp ð14:4Þ

Huk�¼ek�uk�; uk�¼
X
p

ck�pvp ð14:5Þ

are equal on the atoms p of a given color and opposite on the atoms q′ of the other
color

ck�p ¼ ckp; and ck�q0 ¼ � ckq0 : ð14:6Þ

The proof is straightforward and consists in projecting the eigenequations rel-
ative to uk and u�

k on vp and on vq0 . As an important point one should notice that
the theorem is satisfied whatever the values of the hopping integrals are, they do not
need to be equal. The key condition is the fact that one atom of a color only
interacts with atoms of the other color.
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14.2.2 The Singly Occupied Molecular Orbital and Spin
Density Distribution in Free Radicals of Conjugated
Systems

The other important theorem [25] is relative to the systems with an odd (2n + 1)
number of sites, i.e. concerns the free radicals. Let us consider that the graph
implies n + 1 red atoms and n blue atoms. Then the theorem tells that the (n + 1)th
eigenenergy is zero,

enþ 1¼ 0 ð14:7Þ

and that the corresponding coefficients are zero on the minor (blue) color sites:

cnþ 1;q0 ¼ 0: ð14:8Þ

The SOMO exhibits nodes on minor (blue) atoms. The proof follows the same
logics. The non-zero coefficients on the major (red) sites satisfy the following
equations (one for each atom q′ of minor color):

X
p
tpq0cnþ 1;p ¼ 0; ð14:9Þ

where p and q are bonded atoms and n + 1 is the number of the non-bonding MO. If
the molecule is neutral, the MO unþ 1 is singly occupied (SOMO). The distribution
of the spin density is given by the squared coefficients of this MO on the various
atoms

qp = (cnþ 1;pÞ2 ð14:10Þ

qq0 ¼ 0: ð14:11Þ

From the eigenequation H unþ 1

�� � ¼ 0 or Eq. (14.9) one can easily determine the
coefficients of the SOMO and the spin densities. The relative amplitudes of the
SOMO on the different atoms may be obtained directly, on the back of an envelope.
The so-obtained SOMO is not normalized. The norm is the sum of the squares of
the amplitudes, and the atomic spin density is the square of the coefficient divided
by the norm. Giving for instance a coefficient 1 to the most isolated (less connected)
atom of major color, one satisfies Eq. (14.9) for each minor color atom q′ suc-
cessively. Let us start with an even regular 1D chain (with equal hopping integrals
t) to which an external atom is attached through a weak bond of hopping integral τ.
This atom receives an arbitrary coefficient 1. Then atom 2 of the chain has a
coefficient c2 = −τ/t. The amplitudes on the even numbered atom are the same all
along the chain c2 = −c4 = c6…. The external spin introduces a non-damped spin
wave in the chain, whatever the weakness of the hopping integral τ, as illustrated
below when τ/t = ½.
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For an alternated chain with hopping integrals t2n+1,2n = t for strong bonds and
t2n−1,2n = t′ for weak bonds. The application of Eq. (14.9) leads to c4/c2 = −t′/t = c4/
c6 = c2n+2/c2n. The spin density wave is exponentially damped, as illustrated below
for the case τ/t = 1/2 = t′/t.

1

0

-1/2 1/4 -1/8 1/16

0 00

The comparison between these two cases suggests that the spin density wave
introduced by an external magnetic site on a conjugated hydrocarbon has a long
range spatial extent when the bonds of the conjugated system are weakly con-
trasted. This is the case in fused polycyclic hydrocarbons.

Let us consider series of examples which will be studied by mean of DFT
calculations in Sect. 14.5. They are represented in Fig. 14.1 with specific labels
combining the number of 6-membered rings and a letter which refer to the various
series a, b and c. One should note that some molecules belong to several series and

Fig. 14.1 Atom labelling for the 3 series of free radicals
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may have two different labels. The first series noted b concern the phenylene and
longer analogs obtained by adding 6-membered rings to the phenylene in various
topologies. A coefficient 1 is attributed to the extracyclic atom. If the additional
benzene rings are fixed in para position, the value of the coefficients of the SOMO
decreases exponentially along the chain.

1(a,b,c)

2b

-1/4

-1/4

1/41

-1/2

-1/2

1/2

1

-1/2

-1/2

1/2

3b

-1/4

-1/4

1/41

-1/2

-1/2

1/2

-1/8

-1/8

1/8

It is interesting to note that the decrease is the same when the CH2 group is
attached in ortho position of the polyphenyl chain. At variance, for a meta position
of this group (series c, see for instance 3c below) the SOMO is not delocalized on
the chain as the chain is attached on an atom of minor color. This is a general
property: The SOMO does not exhibit delocalization tails on fragments of the
conjugated system having an equal number of atoms of the two colors which are
connected to a minor atom. This result again is independent of the magnitude of the
hopping integrals.

1/2

3c

1

-1/2

-1/2
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Let us now consider radicals obtained by adding an extra site on a polyacene or
fused polycyclic hydrocarbons.

In series a, the second system 2a (note that the first system 1a,b,c has already
been considered) is a naphthalene molecule connected to a CH2 group by one of the
outermost carbon atoms. The value 1 is attributed to the closest carbon of major
color in the lower part of the molecule. The values of the coefficients of all the
atoms in the lower part are therefore ±1. This imposes an alternant arithmetic
progression of the magnitude of the coefficients on the atoms located in the upper
part of the molecule. For a system constituted of n rings and if one numbers the
rings starting from the external CH2 group, the absolute values of the coefficients on
an atom belonging to the upper part of the chain decrease as (n − p + 1) while those
of the lower part are all equal to 1. The norm can be expressed as a function of the
number of rings of the acene: Norm(n) = (n + 1)(1 + (n + 2)(2n + 3)/6) which
asymptotically behaves as n3/3.

As a qualitative result one may notice that the largest spin density is carried by
the outer carbon atom and decreases as n−1 with the number of rings. The spin
densities on the atoms of the lower part of the skeleton decrease as n−3. The spin
densities do not follow an exponential decrease with their distance to the external
magnetic site. A strong (long range) delocalization of the unpaired electron occurs
in fused ring hydrocarbons.

2a : Norm=17                           

3a : Norm=34

-3 2

1-1

-1

1

-4 3

1-1

-2

1

1

-1
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14.3 Diradicals and Polyradicals and Their Preferred Spin
Multiplicity

This section shows how the SOMOs of diradicals can be generated from the
SOMOs of two single radicals. Then the energy difference between the lowest
triplet and singlet states may be analytically estimated from the values of the
coefficients of the SOMOs of the diradical.

14.3.1 Ferromagnetic Di- and Poly-radicals

Organic diradicals have been intensively studied by ab initio treatments [26–33].
We concentrate here on a simple and deductive approach.

(a) From radicals to diradicals: analytic derivation

First let us consider systems constituted of n + 2 sites of red color and n sites of
blue color. It is easy to show that such systems accept two non-bonding MOs, of
energy zero. Deleting hypothetically the atom p1 of major color which is expected
to bear the largest spin density, for instance located on an external CH2 group,
would lead to a free radical.

p
1 p

2

The SOMO uð�p1Þ
��� E

of this radical is of energy zero as well, as discussed

previously. The atom p1 is connected to atoms of minor color, so the coefficients on

these atoms are zero in this SOMO. Complementing the SOMO uð�p1Þ
��� E

of the

single radical on the atom p1 with a zero coefficient gives a vector u0
ðp1Þ

��� E
which

still satisfies the equation

H u0
ðp1Þ

��� E
¼ 0 ð14:12Þ

i.e. is an eigenvector for the whole molecule.
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One may repeat the same procedure for the atom p2 on which one may also
expect a large spin density and get a second SOMO of the diradical,

H u0
ðp2Þ

��� E
¼ 0: ð14:13Þ

These two eigenvectors are linearly independent as the first one has amplitude on
the p2 atom while the second one has not. They both have non-zero coefficients on
the same red atoms and zero coefficients on the blue ones. One may note that they
are not orthogonal. Using their overlap

u0
ðp1Þ

D ���u0
ðp2Þ

E
¼ uð�p1Þ
D ���uð�p2Þ

E
= S12 ð14:14Þ

they may be orthogonalized through the S−1/2 procedure.

(b) Illustrations

One may consider first the series of meta-para dimethylene polyphenylenes,
appearing as 2′bc and 3′bc in Fig. 14.2. The overlap between the two radical
SOMOs generated respectively from the two CH2 groups is very small (1/217)1/2

for 2′bc and (1/889)1/2 for 3′bc due to the decrease of the coefficients.
The second series is obtained by adding two CH2 groups on acenes, for instance

in the dimethylene naphthalene 2′a or longer analogs. From the values of the
coefficients obtained in radical 2a, the overlap between the two SOMOs of 2′a is
1/17. As the overlap is small the orthogonal localized SOMOs of the di-radical are
almost identical to those of the mono-radicals. The coefficients on the various
centers of the diradical SOMO of major amplitude on p1 are very similar to those
(in parenthesis) of the SOMO of the corresponding mono-radical: cp1 = c1 = 0.73
(0.73), c7 = −0.48 (−0.49), c5 = 0.23 (0.24), c3 = −0.25 (−0.24) and cp2 = c10 = 0.02
(0.0). The overlap between the radical SOMOs is larger (3/17) for the dimethylene
anthracene, appearing as 3′a in Fig. 14.2.

Fig. 14.2 Atom labelling for the two series of ferromagnetic diradicals
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The symmetrically orthogonalized MOs

~u0
1

�� � ¼ u0
ðp2Þ

��� E
� S12=2 u0

ðp1Þ
��� E

and ~u0
2

�� � ¼ u0
ðp1Þ

��� E
� S12=2 u0

ðp2Þ
��� E

ð14:15Þ

keep their largest amplitudes on atoms p1 and p2 respectively. In such symmetrical
systems one may use symmetry arguments to obtain directly the coefficients of the
symmetry-adapted SOMOs. One of them is antisymmetric with respect to the
reflection plane, and attributing a coefficient 1 on the less connected atoms of major
color one obtains one SOMO located on the upper side atoms with alternant values.
The symmetrical one second one has larger amplitudes on the lower side atoms.
The generalization to longer acenes is straightforward. The symmetries of these
SOMO depend on the parity of the number of rings. For 2′a they are

-1-1 11 -31 1-3

2 2-2

and the following ones for 3′a

1 1 1-1-1

2 0 -21-1

-1 1-11

From these symmetry-adapted SOMOs u0
g and u0

u, which are the canonical
(symmetry-adapted) SOMOs of the Hückel Hamiltonian, again obtained without
diagonalization, one may define the localized SOMOs
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~u0
1

�� � ¼ ð u0
g

��� E
þ u0

u

�� �Þ= ffiffiffi
2

p
;

~u0
2

�� � ¼ ð u0
g

��� E
� u0

u

�� �Þ= ffiffiffi
2

p
;

~u0
g

��� E
¼ ð u0

ð�p1Þ
��� E

þ u0
ð�p2Þ

��� E
Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ S12

p
Þ

~u0
u

�� � ¼ ðu0
ð�p1Þ � u0

ð�p2Þ
��� E

Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� S12

p
Þ:

ð14:16Þ

From the two symmetry-adapted SOMOs one may build a triplet and a singlet
state

WT ¼ core:ð~u0
1~u

0
2 � ~u0

2~u
0
1Þ=

ffiffiffi
2

p��� ��� ð14:17Þ

WS ¼ core:ð~u0
1~u

0
2 � ~u0

2~u
0
1Þ=

ffiffiffi
2

p��� ��� ð14:18Þ

It is important to notice that in this case there is no ionic component in the singlet
state. As ~u1j i and ~u2j i are eigenfunctions of H, the term which would couple the
neutral and ionic forms is null

~u0
1

� ��H ~u0
2

�� � ¼ 0: ð14:19Þ

There is no Anderson’s antiferromagnetic mechanism (or “kinetic exchange”) in
such magnetic systems.

The triplet state is the lowest state and the energy difference between the two
states is given by the direct exchange integral

ES � ET ¼ 2K12 ¼ 2 ~u0
1~u

0
2

� ��r�1
12 ~u0

2~u
0
1

�� �
: ð14:20Þ

This integral is easily calculated in the Hubbard approximation through a
summation on the atoms of the major color,

2K12 ¼ 2U
X
p

~c01p
2~c02p

2 ð14:21Þ

where ~c01p and ~c02p are the coefficients on the atom p of the SOMOs ~u0
1

�� �
and ~u0

2

�� �
respectively. Notice that the so calculated value of the energy gap between the
triplet and the singlet is necessarily a rational number, as long as the bonds have
equal hopping integrals.

If one prefers to use the symmetry-adapted SOMOs one may write as well

2K12 ¼ ðJgg þ Juu � 2JguÞ=2 ¼ ðU=2Þ
X
p

ðc02gp � c02upÞ2 ð14:22Þ
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where the symbols J refer to coulomb integrals (Jij ¼ uiuj

� ��r�1
12 uiuj

�� �
) and where

c′gp and c′up refer to the coefficients of the symmetry-adapted SOMOs on the atom
p. For the more sophisticated Pariser-Parr-Pople Hamiltonian which accounts for
repulsion integrals γpq between the electrons on site p and q, one gets:

2K12 ¼ 2
X
p� q

~c01p~c
0
2p~c

0
1q~c

0
2qcpq: ð14:23Þ

In this sum the contribution from the nearest-neighbor atoms p and q is zero
because one of them is necessarily a node in the SOMOs. If one neglects the
repulsion integrals between next-nearest neighbor (NNN) atoms, U should take a
value close to γpp. A typical value of Ueff is generally taken around 5 eV. In the
above examples we get the following estimates of the triplet to singlet gaps:

• U/8 = 0.55 eV for the metaxylylene (1′a,b,c),
• 22U/(17)2 = 0.38 eV for the dimethylene naphthalene (2′a)
• 72U/(34)2 = 0.31 eV for di-methylene anthracene (3′a)
• 6U/217 = 0.137 eV for 2′bc
• 6U/889 = 0.033 eV for 3′bc.

One sees that a Hückel approach may be used to predict, even without any
diagonalization of the Hamiltonian matrix, the amplitude of the Triplet-Singlet gap
in symmetric diradicals where the difference between the numbers of atoms of
different colors is equal to 2.

(c) Ferromagnetic polyradicals

One may generalize the previous demonstration to any difference between the
number n + p of atoms of the red color and the number n of atoms of the blue color.
One must define a set of p “external” sites of the dominant color such that by
subtracting them from the molecular graph one gets a connected “residual” alternant
graph of 2n sites. Again one may consider successively the p free radicals where
one adds one of the p “external” sites to the “residual” graph. When extended on the
other external sites with zero coefficients on these sites, the SOMOs of the p free
radicals are eigenfunctions of the total graph, with a zero eigenenergy. They are
linearly independent and thus one gets p non-bonding MOs. They must be
orthogonalized, but they necessarily have coefficients on the same major color sites
and zero coefficients on the minor color atoms. The exchange integrals between the
SOMOs are positive and the ground state has the highest spin multiplicity. The
exchange integrals between the SOMOs may be calculated from their coefficients,
which give access to the entire low-energy spectrum.

Let us consider the tri-allyl methylene as an example of polyradical. Its ground
state is a quintet, since it has 4 SOMOs, three of them being located on different
allyl groups, while the 4th one is centered on the center of the molecule. The
relative coefficients are depicted below:
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-1 1

-1-1

-1 -1

-1 -1

2

These SOMOs are orthogonal. The exchange integrals between the allyl moieties
are zero since they are spread on disjoint sets of atoms while the exchange integral
between the central SOMO and the peripheral ones is equal to U/10. For U (5 eV)
one gets K = 0.25 eV, which is close to the value (0.33 eV) obtained from
sophisticated ab initio calculations [34] on a parent compound in which the outer
conjugated carbons are bridged by CH2 groups, in order to maintain the planarity of
the conjugated skeleton.

(d) The Ovchinnikov’s rule rederived

Almost 40 years ago Ovchinnikov established that in an alternant hydrocarbon
with n* carbon atoms of one color and n carbon atoms of the other color the spin
multiplicity of the ground state is

S ¼ n � � nj j þ 1 ð14:24Þ

The demonstration made use of a Heisenberg Hamiltonian

HH ¼ 2
X
i;jh i

Jijð~Si �~Sj � I/4) ð14:25Þ

where the sites i and j are nearest neighbors, Jij is the magnetic coupling between
these sites, assumed to be antiferromagnetic, i.e. positive. This Hamiltonian works
in the space of the neutral Valence Bond distributions, with one and only one
electron per site. It only plays with spins. The diagonal energy of a determinant Ij i
is given by

Ih jHH Ij i ¼ 2
X
i;jh i

Jijð Ih jSzi � Szj � 1=4 Ij iÞ; ð14:26Þ

which gives a negative contribution on all the bonds presenting a spin alternation.
Thus the determinant of lower energy is the one presenting a spin alternation on all
bonds. If Nb is the number of bonds and if the magnetic couplings are equal to a
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common value J, its energy is −Nb J. Moreover this determinant interacts with Nb

determinants obtained by a spin exchange on the various bonds, which is the
maximum number of interactions which one may find on a line of the Hamiltonian.
Therefore this determinant only belongs to the lowest eigenvector which necessarily
has an Ms = |n* − n| value, and an S = |n* − n| + 1 spin multiplicity.

Of course the Heisenberg Hamiltonian is supposed to be valid for systems where
the electron-electron repulsion prevails on the electron delocalization. It may be
established as an effective Hamiltonian from the Hubbard Hamiltonian by a
second-order expansion, using the quasi degenerate perturbation theory, provided
that the ratio |2t/U| < 1, which results in a value of J = 2t2/U. This inequality is
hardly satisfied in conjugated hydrocarbons, which are typically considered as
strongly delocalized (almost metallic) or weakly correlated. The validity of mag-
netic treatments of half-filled bands actually extends beyond the perturbative limit.
Using a non-perturbative estimate of the magnetic coupling obtained from the exact
solution of the two-center problem, the Heisenberg Hamiltonian has proved to be
extremely efficient in the treatment of the ground state and lowest excited states of
conjugated hydrocarbons, especially when the Hamiltonian adds a scalar potential
to reproduce the effect of the sigma bonds and when the magnetic coupling,
extracted from accurate ab initio calculations on the ethylene molecule, is
geometry-dependent [35]. Nevertheless it is desirable to produce a demonstration
valid whatever the value of the |t/U| ratio, and especially when U tends to zero.

Starting from the Hubbard Hamiltonian Lieb has given a general proof of the
same theorem (called Lieb’s theorem [36] in Solid State Physics community) for
regular alternant lattices. Our approach is different, it rests on the identification of
n* − n linearly independent non-bonding MOs, defined on the atoms of major
color, from the Hückel (U = 0) limit. Their existence does not depend on the values
of the inter-site hopping integrals. Then the interaction between the electrons in
these non-bonding MOs is purely ferromagnetic. As the exchange integrals between
the orthogonalized SOMOs are necessarily positive, the ground state is of major
spin multiplicity, which demonstrates the Ovchinnikov’s statement. Notice that the
exchange integrals between the SOMOs are necessarily positive, even for disjoint
diradicals, where it falls to zero in the crude Hubbard approximation. Then in full
generality the spin multiplicity of the ground state is necessarily equal to the
number n* − n of SOMOs plus one.

To summarize this section we may say that

• we have demonstrated the Ovchinnikov’s rule regarding the preferred spin
multiplicity of alternant graphs starting from the strong delocalization limit,
rather than from the strong correlation limit and an Heisenberg Hamiltonian, as
originally done. Our demonstrations are valid even when the |U/t| ratio tends to
zero,

• the Hückel picture enables us to predict the spin densities from
back-of-an-envelope calculations, while the solution of the Heisenberg
Hamiltonian are not accessible in such an easy manner (not to speak of ab initio
computations!),
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• introducing the inter-electronic repulsion in its simplest form, through the
Hubbard Hamiltonian, this approach also gives access to a straightforward
evaluation of the energy gap between the lowest eigenstate and the other states
of the same spatial configuration.

14.3.2 Antiferromagnetic Coupling in Singlet Diradicals

(a) Analytic derivation

Let us now consider the alternant graphs having the same number of atoms of both
colors. Most of them are in principle closed-shell systems since they do not have
degenerate non-bonding MOs. The 4n-membered rings represent an exception to
this statement but a Jahn-Teller distortion removes this degeneracy and stabilizes a
closed-shell ground state. However it is worth considering first some systems where
two radical centers are weakly coupled, in an antiferromagnetic manner, through a
conjugated ligand of 2n sites, with n sites of each color. Many complexes in coor-
dination chemistry belong to this category, i.e. they may be written M1

.—L—M2
. .

M1

p1

q2

M2

In the antiferromagnetic complexes the magnetic sites M1 and M2 are respec-
tively attached to two atoms, p1 and q2, which are now of opposite colors, so that in
the total graph one has n + 1 sites of each color. If the hopping integrals between the
external magnetic sites and the atoms p1 and q2 are weak, one may clearly consider
the system as a diradical and try to analyze the physics of the magnetic coupling
between the external sites through the ligand. One may again consider the SOMOs
of the parent free-radicals (M1—L). and (L—M2)

.. The delocalization follows the
same laws as before, but now the magnetic orbital issued from M1 has amplitudes
on the atoms qi, of the same color as M1, while the magnetic orbital issued from M2

takes coefficients on the atoms pj, of the other color. The 2pz Atomic orbitals on
atoms M1 and M2 will be labelled m1 and m2 respectively. The two SOMOs u00

m1

�� �
and u00

m2

�� �
of the free radicals are orthogonal since defined on two disjoint sets of

atomic orbitals. The coefficients of these MOs are governed by Eq. (14.9), and
topologically determined if the hopping integrals are the same for all bonds.
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These two orbitals u00
m1

�� �
and u00

m2

�� �
are not eigenfunctions of the diradical, since

they interact. The hopping integrals between the red and blue atoms, p and q,
induce an interaction between these two MOs

t00 ¼ u00
m1

� ��H u00
m2

�� � ¼ X
p;qh i

tpqc
00
m1;p

c00
m2;q

; ð14:27Þ

where the atoms p and q are bonded. This interaction results in a splitting of the
energies of an in-phase MO

u00
g ¼ ðu00

m1 þu00
m2Þ=

ffiffiffi
2

p
ð14:28Þ

eg ¼ t00 ð14:29Þ

and of an out-of-phase MO

u00
u ¼ ðu00

m1 � u00
m2Þ=

ffiffiffi
2

p
ð14:30Þ

eu ¼ �t00 ð14:31Þ

It is interesting at this stage to compare these MOs to the HOMO and the LUMO
of the whole molecule. Actually they are somewhat different. The action of the
Hückel Hamiltonian on u00

m1

�� �
is given by

H u00
m1

�� � ¼ cm00
1 ;q2

q2j i: ð14:32Þ

The norm of this vector is small if the coefficient of the vector u00
m1

�� �
on the atom

to which the second radical group is attached is small. In this case the two functions

u00
g

��� E
and u00

u

�� �
are very close to the HOMO and the LUMO. The quantity t″

(Eq. 14.29) should be close to the energy of the HOMO if it is negative (of that of
the LUMO in the opposite case). The difference between the exact energy of the
HOMO and the energy εg is an indication of the diradical character of the molecule,
the smaller this difference, the stronger the diradical character of the molecule. If

this difference is small one may assimilate the HOMO and LUMO to the MOs u00
g

��� E
and u00

u

�� �
, and since the amplitudes of these radical SOMOs are obtained analyti-

cally, this approach offers an access to the shape of the HOMO (and LUMO)
without any diagonalization, from a purely topological logic.

What is the spin multiplicity of the ground state? One faces again the
well-known problem of two electrons in two MOs, which is the basic training
ground of the theory of magnetism [1–10, 53, 54]. One may treat it either from the
orthogonal magnetic orbitals u00

m1

�� �
and u00

m2

�� �
, which are centered on the external
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sites but have tails on the ligand, or from the delocalized orbitals u00
g

��� E
and u00

u

�� �
,

which are the in-phase and out-of-phase combinations of u00
m1

�� �
and u00

m2

�� �
. Let us

take the first path. As a first remark one may notice that since the two MOs u00
m1

�� �
and u00

m2

�� �
are defined on different subsets of atomic orbitals the exchange integral

is null, at least for the Hubbard Hamiltonian,

K12 ¼ Km00
1m

00
2
¼ 0: ð14:33Þ

This nullity remains valid for the more realistic Pariser-Parr-Pople Hamiltonian,
which still neglects the differential overlap distributions. If one considers the exact
bi-electronic operator, this strict cancellation does not occur, but the exchange
integral, i.e. the ferromagnetic contribution to the magnetic coupling, remains weak.
On the contrary the antiferromagnetic mixing of the neutral

WN ¼ core:ðu00
m1�u

00
m2 þu00

m2�u
00
m1Þ=

ffiffiffi
2

p��� ��� ð14:34Þ

singlet configuration, and the ionic one

WI ¼ core:ðu00
m1�u

00
m1 þu00

m2�u
00
m2Þ=

ffiffiffi
2

p��� ��� ð14:35Þ

stabilizes the singlet state. Let us calls U′ the energy difference between the ionic
and neutral configurations

U00 ¼ WIh jH WIj i � WNh jH WNj i ð14:36Þ

This quantity is easily calculated from the knowledge of the coefficients of the
MOs u00

m1

�� �
and u00

m2

�� �
on the ligand AOs

U00 ¼ ðJm00
1m

00
1
þ Jm00

2m
00
2
Þ=2� Jm00

1m
00
2

ð14:37Þ

In the Hubbard approximation the last coulomb integral is zero, since u00
m1

�� �
and

u00
m2

�� �
are defined on different subsets of atoms, and anyway the quantity U″ is

large. For the Hubbard Hamiltonian

Jm00
1m

00
1
¼

X
qi

Uqic
4
m00
1
qi

ð14:38Þ

As

WNh jH WIj i ¼ 2t00 ð14:39Þ
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the energy stabilization of the ground state singlet is equal to

ES ¼ ðU00 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U002 þ 16t002

p
Þ=2; ð14:40Þ

which can be approximated by

ES ¼ �4t002=U00 ð14:41Þ

if |t″| is sufficiently small in front of U″. This is the famous Anderson’s mechanism,
sometimes called “kinetic exchange”. The final gap between the singlet and the
triplet

ES � ET ¼ �4t002=U00 ð14:42Þ

may be estimated from the amplitudes of the SOMOs of the two free radicals on the
ligand according to Eqs. (14.27) and (14.38).

This way of thinking belongs to the magnetism point of view. Of course the
more traditional point of view consists in using a closed-shell description of the
singlet, with double occupancy of the HOMO,

U0 ¼ core:u00
g �u

00
g

��� ��� ð14:43Þ

and taking into account its interaction with the (nearly degenerate) doubly excited
configuration,

U� ¼ core:u00
u �u

00
u

�� �� ð14:44Þ

The two configurations interact through the integral Kgu = U″/2. The two
approaches are equivalent and lead to Eq. (14.40).

Notice that the crucial quantities may also be calculated from the exact energy of
the HOMO, replacing t″ by EHOMO and evaluating U″ from Eq. (14.38) using the
exact coefficients of the HOMO.

(b) Spin symmetry breaking condition

This derivation also enables us to predict whether the single-determinant descrip-
tion of the Singlet state is subject to a spin-symmetry breaking of the Ms = 0
single-determinant description, i.e. whether the lowest-energy single-determinant
description presents a spin and space symmetry breaking, the α- and β-spin MOs
being spatially different, or whether it keeps a closed-shell character [37]. In the
here-considered systems the broken-symmetry singly occupied MOs tend to
localize on the above-introduced MOs u00

m1

�� �
and u00

m2

�� �
. The broken symmetry

function takes the form
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UBS ¼ core:~u00
m1~u

00
m2

��� ��� ð14:45Þ

where the magnetic MOs are linear combinations of u00
m1

�� �
and u00

m2

�� �
;

~u00
m1 ¼ u00

m1 cos hþu00
m2 sin h

~u00
m2 ¼ u00

m2 cos hþu00
m1 sin h

ð14:46Þ

The rotation angle is given by the relation

sin 2h ¼ � 2t00

U00 ð14:47Þ

which requires that |2t″| < U″. This is the so-called instability condition. If it is not
satisfied the lowest energy single determinant is a closed shell. This analysis
therefore enables one to predict, from the direct calculation of t″ and U″, whether a
symmetry-breaking takes place in the mean-field calculation of the Ms = 0
single-determinant description of an antiferromagnetic diradical. In our topological
approach t″ = λt and U″ = μU, where λ and μ are rational numbers and t and U are
the parameters of the Hubbard Hamiltonian. In the ratio

t00

U00 ¼
k
l
:
t
U

ð14:48Þ

the first factor is topologically determined, the second one depends on the local
physics of the system. These comments are relevant for both Hartree-Fock (HF) and
Kohn-Sham DFT calculations. It is known that in DFT the effective |t|/U ratio is
larger than when using the exact Hamiltonian, so that in a homogeneous series, for
instance those discussed in the next section, the symmetry breaking takes place for
less extended systems in HF calculations than for DFT calculations.

(c) Illustrations

This approach will be illustrated on three series of compounds pictured in Fig. 14.3,
namely the dimethylene-polyphenylenes, dimethylene-polyacenes where the two
CH2 groups are attached in remote para positions. In the following t and U are
assumed to take the typical values t = −3.5 eV and U = 5 eV.

Let us consider first the paradigmatic series of para dimethylene-polyphenylenes
[38–43], (series 1″a,b,c, 2″b, 3″b of Fig. 14.3) the first member of which is the
para-xylylene. This molecule has a closed shell ground state. The topological
approach gives t′ = 2t/7 and U′ = 19U/49, the ratio t″/U″ = 0.73 t/U is larger than
0.5 in absolute value, there is no spin symmetry breaking. The value of t″ (0.29t),
agrees well with the energy of the HOMO (0.32t). The calculated singlet to triplet
gap is 1.25 eV. The larger analog, 2″b, with two phenyl rings, have been shown
[43] to be border line regarding the spin-symmetry breaking. In the optimized
geometry of the triplet the Ms = 0 solution of BL3LYP DFT calculation is
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symmetry broken, while the geometry optimization of the Ms = 0 solution con-
verges to a closed shell. The spin-decontaminated optimized geometry exhibits a
moderate symmetry breaking. The topological model gives t″ = 0.129t (to be
compared with the HOMO energy, 0.135 t) and U″ = 0.319U, which leads to a spin
symmetry breaking. The singlet to triplet energy gap is calculated to be 0.40 eV for
the accepted values of t and U. The Ms = 0 solutions of longer analogs have an S2

� �
value close to 1, i.e. are half-and-half mixtures of singlet and triplet sates. For the
larger analogs the diradical view get closer and closer to the exact
Hückel + Hubbard approach, the difference between t″ and the HOMO energy tends
to zero and so does the two evaluations of U″. For 3″b t″ = 0.063t (exact energy of
the HOMO = 0.64t) while U″ = 0.305 U. The singlet to triplet gap is evaluated to be
0.118 eV.

The dimethylene naphthalene molecule 2″a is the first member of a series of
branched polyacenes which are expected to be singlet and which accept a unique
Kékulé bond pairing. Suppressing successively one of the two extra methylene
groups one generates two free radical SOMOs a and b, the shape of which was
given in Sect. 14.2. For 2″a the hopping integral between the a and b SOMOs is
easily calculated to be equal to t″ = 3t/17 = 0.176t, close to the Hückel HOMO
energy (0.188t). The quantity U″ is also easily calculated to be equal to 101 U/289.
In this case, according to Eq. (14.38), the singlet to triplet excitation energy is found
to be 0.63 eV.

Fig. 14.3 Atom labelling for the three series of antiferromagnetic diradicals
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(d) “Undecidable” spin multiplicity

It is worth mentioning a family of graphs for which the ground state multiplicity
cannot be assessed without accurate calculations, despite the fact that they are
alternant with equal numbers of sites of both colors. These graphs are such that they
may be seen as resulting from the interaction between two disjoint free radicals
connected by one or several atoms which are nodal positions of the SOMOs of
these radicals [44]. Consider a molecular graph with 2n sites, n red and n blue sites.
If the graph may be divided into a fragment A with 2p + 1 sites, p + 1 of red color, p
of blue color, and a fragment B with 2q − 1 sites, q − 1 of red color, and q of blue
color (p + q = n), and if the atoms connecting the fragments A and B are the minor
color atoms of both fragments, i.e. blue color atoms of fragment A and red color
atoms of fragment B, then one may define a non-bonding SOMO mA on A and a
non-bonding SOMO mB on B, and the hopping integral between them, according to
Eq. (14.4) is zero, tmAmB¼ 0.

As the two MOs are defined in disjoint fragments the exchange integral KmAmB

is also null or very weak and one cannot decide about the ground state multiplicity
from topological arguments. The simplest example is the famous tetra-methylene
ethene, which can be divided into two allyl fragments connected by their nodal
central atom, and which has been intensively studied by theoreticians [45–47].

The 1-3-4-6 tetra-methylene benzene may be seen as the interaction between two
pentadienyl radicals through their nodal sites. So would be the longer
tetra-substituted polyacenes, where a polyacene would replace the benzene ring in
the preceding graph. One may show that the spin polarization mechanism actually
fixes the preferred spin multiplicity of such graphs. This situation has already been
noticed in Sect. 14.3 (b) for ferromagnetic systems (n* = n + 2) where the two radical
groups are connected through minor color sites. The compounds 2″c and 3″c of
Fig. 14.3 appear as disjoint diradicals and their singlet to triplet gap is equal to zero
in the topological approach.
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14.4 The Spin Polarization Mechanism and Its Impact

The most frequently used single-determinant descriptions of the magnetic systems
incorporate spin polarization effects through spin-symmetry breaking of the
molecular orbitals. Since the next section is devoted to comparisons between the
predictions of the topological approaches and the results of non-empirical calcu-
lations, which are performed along the Unrestricted Density Functional Theory
(UDFT) approximation, it is worth recalling briefly the main features of the spin
polarization phenomenon.

The spin polarization effect was first identified in free radicals, and in particular
in conjugated hydrocarbons [48, 49]. In such radicals (the simplest one being the
planar CH3 molecule), where the unpaired electron is supposed to occupy a π type
MO, the EPR (Electron Paramagnetic Resonance) experiment evidenced the exis-
tence of spin density on the nuclei of the hydrogen atoms. This seems in contra-
diction with the nullity of the SOMO in the plane of the molecule and thus on the H
atom nuclei. This observation could interpreted only if on leaves the closed-shell
description of the “core”,

U0 ¼ Piiia
�� �� ð14:49Þ

The orbitals are supposed to have been optimized by a self-consistent field
through a common Fock operator for α and β electrons, which averages the effect of
the exchange with the unpaired electron. This exchange effect is actually different
and it was suggested that one might accept, although remaining in a
single-determinant description, to give different space parts to α and β spin MOs of
the previously closed shell core. The resulting function

U0
0 ¼ Piia�iba

�� �� ð14:50Þ

introduces spin densities through the spatial differences between the α and β spin
MOs, and in particular in the MOs describing the σ bonds. In the so-called
Unrestricted Hartree-Fock or Unrestricted DFT the energy of such a single deter-
minant wave function may be optimized, using different Fock operators for the α
and β spin MOs. The spin polarized MOs are

ia = i�
X
r

kirr

ib = i +
X
r

kirr
ð14:51Þ

where the r’s are virtual MOs and where, according to a perturbative expansion,
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kir ¼ � ih jKa rj i
2DE3ði!r)

: ð14:52Þ

One sees there that, contrarily to the spin delocalization, the spin polarization
phenomenon is governed by the bi-electronic part of the Hamiltonian. In the
Hubbard approximation one may write

ih jKa rj i¼
X
p

cipcrpðcapÞ2Up ð14:53Þ

This integral is important when the MOs i and r have important coefficients on
the atoms where the magnetic MO has important amplitudes. This phenomenon
may introduce spin densities in MOs which are of different symmetries than the
magnetic MOs and in regions of the molecule where the spin density was (almost)
null in the restricted description.

The unrestricted single-determinant description is of course approximate. This
single determinant is no longer an eigenfunction of the S2 operator, i.e. is not a spin
eigenstate, a pure doublet, it is contaminated by components of Quartet spin
multiplicity. Nevertheless this approach is extremely simple, makes easy geometry
optimizations and is very popular.

The method can be applied to the ferromagnetic diradicals (or polyradicals of
higher spin multiplicity ground state), writing the wave function of largest Ms
value, for instance for a diradical, as

U0
Ms¼1 ¼ Piiaibab

�� �� ð14:54Þ

where the two unpaired electrons occupy the magnetic MOs a and b, and where the
core MOs are spin polarized. Since the energy difference between the high
spin-multiplicity ground state and the excited states of lower spin multiplicity is the
crucial observable, a consistent description of these open-shell states was highly
desirable. From first principle constraints, they cannot be described as single
determinants. A convenient strategy has been employed, which consists in mini-
mizing the energy of a determinant of lower Ms value, for instance for a diradical,

U0
Ms¼0 ¼ Pii0ai

0
ba

0b
0��� ��� ð14:55Þ

This function introduces eventually ionic VB components, through the overlap
between the magnetic MOs a′ and b′, and specific spin polarization effects. But it is
not a spin eigenfunction, and if the overlap between a′ and b′ remains small it is an
almost equal mixing of singlet and triplet functions. The energy of the singlet state
must be evaluated through some approximate spin decontamination techniques [50–
52]. This strategy is actually applied to all diradicals, whatever their preferred
ground state multiplicity. Moreover, as already mentioned for the monoradicals, the
spin polarization correction introduced by the unrestricted single-determinant
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treatment is only one half of the total one [10, 53, 54]. Nevertheless it is possible to
estimate the contributions of the various physical effects entering in the energy
difference between the triplet and the singlet states from the unrestricted
single-determinant approaches [55, 56].

Exploiting the mirror theorem and the Hubbard Hamiltonian it is possible to
reach some qualitative conclusions from the analytic treatment of the spin polar-
ization effect, which apply to conjugated hydrocarbons. We do not give here the
explicit derivations. They may be summarized as follows:

• in radicals and in ferromagnetic diradicals the spin polarization increases the
positive spin densities on the π orbitals of major color sites,

• it introduces negative spin densities on the π orbitals of minor color sites,
• this effect is non-local, the spin polarization introduces spin densities in regions

of the molecule where they were zero at the topological description level,
• the spin polarization usually contributes to increase the singlet triplet energy

gap, whatever its sign,
• the spin polarization of the doubly occupied π and σMO fixes the preferred spin

multiplicity of the “undecidable” diradicals through the parity of the number of
Carbon atoms separating the disjoint radicalar regions. The ground state is
singlet when this number is even, triplet when it is odd.

All these statements will be illustrated in the next section.

14.5 Comparison Between Topological Assessments
and Numerical DFT Calculations

In order to assess the validity of our topological predictions, concerning both
energy differences and spin distributions, we decided to perform DFT calculations
on the previously introduced series of hydrocarbons. To make closer the compar-
ison with topological Hamiltonians we used ideal geometries with equal CC (1.40
Å) and CH (1.05 Å) bond lengths, planar geometries and 120° angles. The basis set
was of triple zeta plus polarization quality, and the exchange correlation potential
was the B3LYP one. Both restricted and unrestricted calculations will be reported.
We did not compare with Hartree-Fock calculations since they are known [57–60]
to give a spurious concentration of the unpaired electron on the external site. Full
Configuration Interaction of the π electrons in the π valence MOs are usually
necessary to obtain reliable spin densities. The resulting natural MO, obtained at a
high computational cost, are close to the Hückel MOs and to the DFT MOs. The
numerical calculations used the B3LYP exchange correlation potential in the
Gaussian package [61]. The decomposition of the energy difference between the
singlet and the triplet has been performed according to the recently proposed
method [55, 56].
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One may first discuss the amplitude of the impact of the spin polarization on the
energies. As seen from Tables 14.1 and 14.5 this effect is not extremely sensitive to
the extent of the spin delocalization. It only increases slightly when going from 1a
to 3a. One may notice that this energy is almost constant in the series 1a, 2c, 3c,
which is in line with the localized character of the SOMO in the series, as predicted
by Hückel calculation.

Tables 14.2, 14.3 and 14.4 compare the Hückel spin densities of the mono-
radicals of Fig. 14.1 with those obtained by the RODFT calculations [55, 56].
A general comment concerns the delocalization of the unpaired electron from the
external CH2 group to the benzene rings. It is larger in the Hückel calculation, by a
factor close to 1.2. A good fit with the RODFT values would be obtained by fixing
the value of the extra-cyclic CC hopping integral t′ to 0.8t, which would only
change the ratios between the spin density of the extra cyclic carbon and those of
the rings. Actually the relative amplitudes in the rings given by the RODFT cal-
culations are in good agreement with those of the topological approach, in the series
2b, 4b, they are divided by a factor 4 when going from a ring to the next one. The

Table 14.1 Spin polarization energy (in a.u) (difference between the RDFT and UDFT solutions)
and S2

� �
of the UDFT solution of the monoradicals

Compound 1a,b 2a 3a 2b 3b 2c 3c

ΔE −0.077 −0.084 −0.104 −0.081 −0.081 −0.079 −0.079

S2
� �

0.7785 0.7896 0.8229 0.7859 0.7880 0.7829 0.7836

Table 14.2 Mulliken spin densities on the various atoms of the series a monoradicals for the
RDFT and UDFT solutions

Atoms
number

1a,b 2a 3a
Hückel RDFT UDFT Hückel RDFT UDFT Hückel RDFT UDFT

1 0.571 0.652 0.813 0.529 0.616 0.783 0.471 0.549 0.729

2 – 0.009 −0.185 – 0.010 −0.192 – 0.010 −0.203

3 0.143 0.104 0.237 0.253 0.181 0.363 0.264 0.228 0.422

4 – 0.003 −0.128 – 0.004 −0.104 – 0.005 −0.127

5 O.143 0.111 0.259 0.059 0.047 0.130 0.029 0.027 0.107

6 – – – – 0.001 −0.116 – 0.001 −0.123

7 – – – 0.059 0.041 0.139 – 0.019 0.125

8 – – – – 0.039 0.134 0.117 0.078 0.247

9 – – – – 0.001 −0.082 – 0.002 −0.081

10 – – – 0.056 0.046 0.142 0.029 0.025 0.096

11 – – – – 0.001 −0.094 – 0.001 −0.136

12 – – – – – – 0.029 0.017 0.099

13 – – – – – – – 0.001 −0.073

14 – – – – – – 0.029 0.023 0.102

15 – – – – – – – 0.001 −0.082
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Table 14.3 Mulliken spin densities on the various atoms of the series b monoradicals for the
RDFT and UDFT solutions

Atoms number 2b 3b
Hückel RDFT UDFT Hückel RDFT UDFT

1 0.516 0.600 0.767 0.504 0.590 0.758

2 – 0.009 −0.185 – 0.009 −0.184

3 0.129 0.099 0.225 0.125 0.098 0.222

4 – 0.003 −0.133 – 0.003 −0.133

5 0.129 0.104 0.244 0.125 0.102 0.240

8 – 0.002 −0.073 – 0.002 −0.078

9 0.032 0.022 0.081 0.031 0.022 0.080

10 – 0.001 −0.043 – 0.001 −0.048

11 0.032 0.024 0.084 0.031 0.022 0.083

14 – – – – 0.001 −0.025

15 – – – 0.008 0.005 0.027

16 – – – – <10−3 −0.015

17 – – – 0.008 0.006 0.029

Table 14.4 Mulliken spin densities on the various atoms of the series c monoradicals for the
RDFT and UDFT solutions

Atoms number 2c 3c
Hückel RDFT UDFT Hückel RDFT UDFT

1 0.571 0.650 0.812 0.571 0.650 0.813

2 – 0.009 −0.188 – 0.009 −0.188

3 0.143 0.106 0.248 0.143 0.106 0.249

4 – 0.004 −0.125 – 0.004 −0.124

5 0.143 0.109 0.268 0.143 0.109 0.268

6 – 0.003 −0.130 – 0.003 −0.130

7 0.143 0.102 0.242 0.143 0.102 0.243

8 – <10−3 0.030 – <10−3 0.033

9 – <10−3 −0.027 – <10−3 −0.027

10 – 0.001 0.017 – 0.001 0.018

11 – <10−3 −0.026 – <10−3 −0.025

12 – 0.001 0.017 – 0.001 0.019

13 – <10−3 −0.029 – <10−3 −0.029

14 – – – – <10−3 0.008

15 – – – – <10−3 −0.008

16 – – – – <10−3 0.004

17 – – – – <10−3 −0.008

18 – – – – <10−3 0.004

19 – – – – <10−3 −0.009
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ratios between the spin densities on the ring atoms of the series 1a, 2a, 3a are very
close to those predicted from the topology. The local character of the SOMO in 2c
and 3c, predicted by this Hamiltonian, is confirmed at this level. These tables also
report the values obtained from Unrestricted DFT (UDFT) calculations. The spin
polarization does not change significantly the ratios between the spin densities of
the atoms which bear large positive spin densities at the RODFT level, but it
introduces large values on atoms which are far from the extra-cyclic CH2

group. The spin polarization introduces long range effects, especially in the acene
series (Cf. 3a in Table 14.2), as previously commented. The effect is much less
pronounced in 2c and 3c, due to the localization of the SOMO. One sees that
despite the neglect of the spin polarization important information can be obtained
from the topological Hamiltonian (Table 14.5).

The same comments are valid concerning the spin densities of ferromagnetic
diradicals, reported in Table 14.6 for the series 1′a, 2′a and 3′a, and in Table 14.7
for the series 2′c, 3′c. The extra-cyclic spin densities are too large in the Hückel
approach but the ratios in the six-membered rings are in excellent agreement with
those given by the RODFT (Restricted Open-shell DFT) calculations.

The crucial point concerns the triplet to singlet energy gaps. Table 14.5 first
gives the estimates from RODFT, calculating the exchange integral Kab from the
RODFT SOMOs, then from the UDFT Ms = 1 and Ms = 0 solutions, using a spin
decontamination factor equal to 2 (the Yamaguchi’s correction being practically the
same). At the RODFT level the energy differences, i.e. the 2Kab quantities, are
somewhat smaller than the values obtained at the UDFT level, which confirms the
fact that the spin polarization increases the energy difference. These values must be
compared to those of the topological derivation, which only depend on the value of
U, the on-site repulsion of the Hubbard Hamiltonian. The here-reported values are

Table 14.5 Energies in a.u. of the RDFT and UDFT Ms = 1 and Ms = 0 solutions, S2
� �

of the
UDFT solutions and triplet to singlet gaps in eV of the ferromagnetic diradicals

Compound 1′a,b,c 2′a 3′a 2′bc 3′bc

Reference energy −309.0 −463.0 −616.0 −540.0 −771.0

RDFT Ms = 0 −0.601613 −0.280669 −0.951045 −0.703328 −0.796909

UDFT Ms = 0 −0.644094 −0.319110 −0.987935 −0.742861 −0.837638

S2
� �

1.0114 1.0233 1.0384 1.0408 1.0563

RDFT Ms = 1 −0.646196 −0.318504 −0.985469 −0.739320 −0.832446

UDFT Ms = 1 −0.653264 −0.326077 −0.994091 −0.746086 −0.838730

S2
� �

2.0614 2.0909 2.1395 2.0815 2.0824

Spin polar energy −0.0070 −0.00757 −0.00862 −0.00676 −0.00628

UΔETS (eV) 0.500 0.379 0.335 0.175 0.029

Topol ΔETS (eV) 0.55 0.375 0.325 0.137 0.033

2Kab (eV) 0.378 0.210 0.162 0.080 0.018

The topological estimates are based on a value U = 5 eV of the on-site repulsion
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based on U = 5 eV, a commonly accepted value. This agreement between a
topological analytic estimate and the results of black box calculations is rather
surprising.

Table 14.7 Mulliken spin densities on the various atoms of the ferromagnetic diradicals for the
triplet RDFT and UDFT solutions of series b

Atoms number 2′bc 3′bc
Hückel RDFT UDFT Hückel RDFT UDFT

1 0.519 0.587 0.756 0.504 0.586 0.753

2 – 0.009 −0.191 – 0.009 −0.186

3 0.130 0.102 0.235 0.126 0.098 0.223

4 – 0.004 −0.150 – 0.003 −0.137

5 0.130 0.107 0.264 0.126 0.098 0.233

6 – 0.004 −0.148 – 0.003 −0.137

7 0.130 0.099 0.229 0.126 0.103 0.244

8 – 0.006 −0.180 – 0.002 −0.099

9 0.166 0.133 0.323 0.031 0.024 0.098

10 – 0.004 −0.160 – 0.001 −0.074

11 0.166 0.128 0.301 0.031 0.023 0.095

12 – 0.010 −0.208 – 0.001 −0.072

13 0.185 0.138 0.328 0.031 0.023 0.113

14 0.573 0.644 0.808 – 0.004 −0.145

15 – – – 0.149 0.115 0.288

16 – – – – 0.004 −0.141

17 – – – 0.149 0.114 0.277

18 – – – – 0.009 −0.195

19 – – – 0.153 0.108 0.263

20 – – – 0.571 0.648 0.811

Table 14.6 Mulliken spin densities on the various atoms of the ferromagnetic diradicals for the
triplet RDFT and UDFT solutions of series a

Atoms
number

1′a,b,c 2′a 3′a
Hückel RDFT UDFT Hückel RDFT UDFT Hückel RDFT UDFT

1 0.583 0.627 0.804 0.531 0.594 0.770 0.485 0.545 0.735

2 – 0.014 −0.245 – 0.011 −0.223 – 0.011 −0.217

3 0.333 0.259 0.481 0.281 0.225 0.435 0.274 0.234 0.432

4 – – – – 0.009 −0.183 – 0.007 −0.169

5 0.250 0.213 0.416 0.125 0.104 0.253 0.071 0.061 0.192

6 – 0.006 −0.214 0.003 −0.181 – 0.002 −0.164

7 – – – 0.125 0.098 0.268 0.071 0.052 0.208

8 – – – – – – 0.200 0.152 0.372

11 – – – – – – – 0.002 −0.202
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The agreement is similar regarding the antiferromagnetic diradicals, reported in
Table 14.8, although we may only compare the topological model to the UDFT
calculations, which incorporate spin polarization effects. In these cases the
approximate spin-decontamination process of Yamaguchi was used [50, 51]. The
first striking result is the smallness of the Kab exchange integral, calculated at the
RODFT level, using the magnetic MOs of the triplet and localizing them. This
result is in agreement with the topological analysis. One may see a dramatic con-
trast between the values of the exchange integral in meta- versus para-dimethylene
acenes (series 1′a, 2′a, 3′a in Table 14.5, versus series 1″a, 2″a, 3″a in
Table 14.8). While the distances between the methylene groups are similar the
exchange integral almost vanish in the antiferromagnetic series. The order of
magnitude of the singlet to triplet energy gap is again correctly predicted by the
topological model. Of course this model predicts a zero value for the disjoint
diradicals 2″c and 3″c, but the DFT calculations confirm the extremely low value
of the corresponding excitation energies (0.078 and 0.018 eV respectively).

The quantitative impact of the spin polarization on the energy difference between
the singlet and the triplet states is significant but it is not directly accessible in DFT
calculations. One may of course compare the restricted DFT and unrestricted DFT
gaps, for instance in the dimethylene naphtalene 2′a which has a triplet ground
state. The RDFT values of the excitation energies are 1.0 eV while the UDFT
calculation (corrected for the spin contamination) gives 0.38 eV. This overesti-
mation is essentially due to the closed-shell constraint imposed to the restricted
DFT calculation of the Singlet, which is not physical in these ferromagnetic sys-
tems, rather than to the spin polarization itself. The core spin-polarization free
description should be the two-electron in two-orbital CASSCF solution. This
description properly reduces the ionic component of the wave function which is
exceedingly large in the restricted Ms = 0 wave function.

It is interesting at this point to return to the cases which appeared as unpre-
dictable from the spin-delocalization only, such as the tetra-methylene ethylene
(TME). The spin polarization contribution of the π doubly occupied MOs acts in
favor of the singlet, according to the preceding arguments, despite the fact that the
kinetic exchange was not decisive, due to the smallness of the hopping integral
between the localized singly occupied MOs. The spin-polarization contribution
strictly obeys the parity determinism expressed by the Ovchinnikov’s rule. This is
observed in compounds 2″c and 3″c (Table 14.8). It is worth noticing that the σ
bond spin polarization works in the same direction as that of the π system, the CC σ
bond connecting the two allyl groups in TME prefers a complete spin alternation in
the π system. Notice that the spin-polarization mechanism represents a step in the
MO picture toward the Heisenberg description. Both treatments introduce for
instance negative spin densities in the triplet state.
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14.6 Conclusion

This work has shown how one may exploit the analytical properties of the Hückel
Hamiltonian to predict many properties of monoradicals, diradicals or polyradicals.
This topological model enables one to establish analytically the coefficients of the
singly occupied MOs on the different conjugated carbons of radicals. When the
molecule has an open-shell singlet ground state, it is possible to determine the
HOMO and LUMO energies from the coefficients of the SOMOs of the mono-
radicals obtained by subtracting from the graph successively the two atoms which
are expected to bear the unpaired electrons with major spin densities. Then intro-
ducing the bi-electronic repulsion through the Hubbard Hamiltonian, the
ground-state spin multiplicity is predicted by simply considering the topology. This
model affords a derivation of the Ovchinnikov’s rule in the weak correlation limit,
consistent with the physics of conjugated hydrocarbon (|t|/U is larger than ½). One
can note that this rule was originally derived from the Heisenberg Hamiltonian, i.e.
in the strong correlation limit.

Another advantage of this approach is that it provides a direct analytical estimate
of both singlet-triplet gaps of polyradicals and the coefficients of the SOMOs.
Estimates of both direct exchange integrals for ferromagnetic systems and kinetic
exchange contributions for antiferromagnetic systems are easily obtained. One may
note that at variance, the estimation of singlet-triplet gaps from the topological
Heisenberg Hamiltonian requires a matrix diagonalization. Moreover this analysis
gives a direct access to the spin-instability condition (broken-symmetry solution
lower in energy than the spin-restricted one). The reader may play with various
architectures, involving other branching of methylene groups on polyphenylene,
acenes or fused polycyclic aromatic hydrocarbons. Let us mention that these
analysis have been recently used to predict the conductance properties of polycyclic
hydrocarbons, as function of the sites of attachments to conducting sources [62].
Finally we would like to mention that the present topological analysis can be used
to rationalize the spin-symmetry breaking occurring in the series of polyacenes,
their diradical character, which is a matter of debate in the recent literature [63–67],
and the length dependence of the singlet-triplet energy gap.

The proofs of the here-formulated theorems and rules do not require equal
hopping integrals. As a consequence the conclusions may be relevant to systems
where the conjugated hydrocarbon is either weakly or strongly bonded to external
magnetic sites, such as open-shell metal ion complexes or organic radicals like
niytroxides [68] or nitrenes [69]. The topological conclusions remain valid, as far as
the on-site energies of the external magnetic sites are not too different from those of
the sp2 carbons. Some of the conclusions are applicable to the dinuclear complexes
of Cu(II) or Ni(II) where the two magnetic ions are connected by long conjugated
hydrocarbons [70, 71]. Such architectures attract more and more attention in the
field of spintronic. Among the bridging ligands commonly used to connect tran-
sition metal ions, those which exhibit strong bond alternations (like polyenes or
chains of phenyls) are bad spin linkers. At variance, fused aromatic polybenzenic
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systems are good spin linkers. Indeed, our analysis shows that the spin delocal-
ization extent in the ligand is severely damped by bond alternation and therefore
reduces the interference effects between the spin waves of remote magnetic sites.
One should note that the spin-polarizability of hydrocarbon bridging ligands
increases with the near degeneracy of the lowest spin states. These ligands might
finally behave as non-innocent ligands.

From a conceptual point of view, this chapter also recalls the essential difference
between the spin delocalization and spin polarization mechanisms [71, 72]. The
former is governed by mono-electronic operators while the latter is a bi-electronic.
This is a matter of frequent confusion. Indeed one sometimes unduly speaks of spin
polarization of the ligand as soon as its atoms bear some spin densities [68–70]. In
most cases this is simply a delocalization effect as the magnetic orbitals have
delocalization tails on the ligand. Happily enough the spin delocalization and the
spin polarization quite often work in the same direction, regarding the sign and
magnitude of the magnetic couplings. The spin polarization may concern subsets of
orbitals which, for symmetry reasons, are not affected by the spin delocalization, for
instance the σ MOs of π radicals. When it affects the subsystems of MOs already
concerned by the spin delocalization (for instance the π MOs of π radicals) the spin
polarization reinforces the contrast in the spin density distribution on the ligand,
increasing the positive spin densities and introducing negative spin densities on the
atoms which were on nodal positions of the Hückel SOMOs.
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Chapter 15
What Can Be Learnt from a Location
of Bond Paths and from Electron Density
Distribution

Sławomir J. Grabowski

Abstract A bond path being a line of maximum electron density linking attractors
of two atoms is often applied in various studies as a criterion of the existence of
numerous interactions such as for example hydrogen, halogen or pnicogen bond. It
covers cases of atom-atom energetically stabilized links, from weak van der Waals
interactions, through stronger Lewis acid–Lewis base interactions up to covalent
bonds. The location of bond paths also allows interpreting mechanisms of inter-
actions and, in general, of chemical reactions. The Quantum Theory of Atoms in
Molecules (QTAIM) results are mainly presented here; however they are supported
by other approaches as, for example, the Natural Bond Orbitals (NBO) method or
the σ-hole concept. The most important orbital-orbital interactions determined from
the NBO method and characterizing different types of interactions are presented.
The analysis of the distribution of the electron charge density is also performed here
for numerous systems; this is shown that the regions of the concentration and
depletion of the electron density coincide with the regions of the negative and
positive regions of the electrostatic potential. The role of the analysis of the
laplacian of the electron density is shown on the basis of numerous interactions.
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15.1 Introduction

The analysis of the electron charge density is one of the most often applied and
standard approaches to describe the system investigated; molecule, ion, greater
cluster or even crystal [1–3]. This is why the Quantum Theory of Atoms in
Molecules (QTAIM) seems to be a useful tool for such analysis since it concerns
directly the electron charge density distribution of the system analyzed [4, 5]. One
of ideas of the QTAIM approach is the partitioning of 3D electron charge density
space into fragments attributed to atoms (atomic basins); the properties of those
fragments are often transferable from one system to another one. In such a way it is
possible to consider volumes of atoms or to calculate charges integrated over those
volumes. This is important that the mentioned here theoretically calculated volumes
and charges may have experimental equivalents since it is possible to perform the
crystal structure determination to have the experimental electron charge density
distribution in crystal and further apply the QTAIM approach [1–3].

However that is not all; the detailed properties of the electron density, ρ(r), of the
system considered may be analyzed [5–7]. The critical points (CPs) denoted by the
coordinates rC, are those where the gradient of the electron density, ∇ρ(rC), vanishes
and they correspond to minima, maxima or saddle points of the electron density.
The CP is labeled by giving the duo of values (ω,σ), where ω is the rank of CP
while σ is its signature. There are the following critical points; (3,−3)—the local
maximum often named as attractor is attributed to the position of atom, (3,−1)—the
saddle point which often is called the bond critical point (BCP), (3, +1)—the saddle
point which is called the ring critical point (RCP) and (3, +3)—the local minimum,
i.e. the cage critical point (CCP). The physical interpretation of critical points
mentioned here is very well known and it is discussed in numerous monographs and
review articles. This is important to announce here that the positions of (3,−3)
critical points (attractors) are attributed to the positions of atoms. However there is
an excellent agreement between the positions of non-hydrogen attractors and the
corresponding nuclei (at least the differences are much smaller than the experi-
mental or theoretical errors) but there is noticeable disagreement between the
positions of hydrogen atom attractors (local maxima of the electron density) and
their nuclei [8]. This is later discussed in this chapter.

There is another important term useful to describe the distribution of the electron
density—the bond path which links pair of attractors [9, 10]. The two gradient paths
which originate at the bond critical point and terminate at each of the two attractors
define the bond path [11]. In other words the bond path (BP) is a line of the
maximum electron density linking the nuclei (more precisely attractors) of two
atoms. The bond critical point is that one at the bond path where the electron
density attains the minimum value. There are numerous studies on properties and
physical meaning of the bond path. It was pointed out that every bond path is
accompanied by a virial path [12]. The latter one is a line linking the same nuclei as
those connected by the bond path. The virial path is characterized by the maximally
negative potential electron energy density thus it is maximally stabilizing with
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respect to any other neighboring lines. Bader has pointed out that “one may define a
bond path operator as a Dirac observable, making the bond path the measurable
expectation value of a quantum mechanical operator” [10]. The bond path denotes
two atoms are bonded and it is not equivalent to the chemical bond [10]. The former
term can describe the complete range of bonded interactions and is attributed to the
electron charge accumulation between the pair of atoms, on the other hand the latter
term—bond is limited and dominated by the pair-electron concept of Lewis. This is
why the term “bond path” at least should be considered as an alternative way to
describe the arrangement of atoms in the species analyzed. This is discussed in the
next section.

The molecular graph is defined as a set of bond paths and critical points [6, 7].
Figure 15.1 shows the molecular graph of the complex of water with fluorobenzene.
One can observe here the bond paths indicating covalent bonds (solid lines) of the
fluorobenzene and water molecules as well as two bond paths indicating inter-
molecular interactions (broken lines); i.e. the H…F and H…O contacts corre-
sponding to the O–H…F and C–H…O hydrogen bonds, respectively. The isolines
of the laplacian of electron density, ∇ρ2(r), are also presented in this figure and it is

Fig. 15.1 The molecular graph of the C6FH5–H2O complex, solid and broken lines correspond to
bond paths, big circles to attractors and small circles to critical points (green–bond critical points,
red–ring critical points), the isolines of laplacian of electron density are also presented; positive
values are depicted in solid lines and negative values in broken lines (this is the rule for the other
figures of this chapter); the laplacian isodensity lines in the plane of the complex; based on the
MP2/aug-cc-pVTZ results of calculations
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indicated where the laplacian value is negative or positive. The latter indication is
useful to describe different characteristics of the system analyzed such as the Lewis
acid and Lewis base sites, the nature of interatomic contacts (bonds or inter-
molecular contacts), the regions of the concentration and depletion of electron
charge density—the latter often leads to the location of unshared electron pairs, to
the identification if the bond is ionic or covalent in nature, etc. [13–15]. For
numerous molecular graphs analyzed hereafter these laplacian isolines or the
reactive surfaces (∇ρ2(r) = 0 isosurfaces) are also presented to deepen the under-
standing of the nature of interactions.

There is no difference if, from classical point of view, the intermolecular
interaction or the chemical bond is considered. For both cases the bond path is
created what means that two atoms are bonded (but it does not mean that neces-
sarily there is the bond between them). Sometimes the characteristics of the bond
critical point (BCP) related to the bond path considered are analyzed, the negative
value of the laplacian of the electron density at BCP, ∇2ρBCP, indicates the con-
centration of the electron charge density in the inter-atomic region what is typical
for covalent bonds. If the positive value of ∇2ρBCP is observed thus there is the
closed-shell interaction like in a case of an ionic bond, a van der Waals interaction
or a hydrogen bond. However the above classification is not always a rule.
Sometimes for strong hydrogen bonds the total electron energy density at BCP,
HBCP, is negative or even for very strong hydrogen bonds the ∇2ρBCP value is
negative like for the typical covalent bonds [16, 17]. It was stated that the inter-
action is covalent in nature or at least it is characterized by the partial covalency if
HBCP for the analyzed interatomic contact is negative, there is no requirement of the
negative value of ∇2ρBCP [18, 19]. One can mention here well known relationships
between energetic topological parameters and the laplacian of the electron density
at BCP (expressed in atomic units, see Eq. 15.1) [5, 6].

1=4r2qBCP ¼ 2GBCP þVBCP; where HBCP ¼ VBCP þGBCP ð15:1Þ

GBCP and VBCP are the components of the mentioned above HBCP energy density
and represent the kinetic electron energy density and the potential electron energy
density, respectively. GBCP is always a positive value while VBCP is always
negative.

For the C6FH5–H2O complex presented here the typical medium in strength or
weak hydrogen bonds are created where both HBCP and ∇2ρBCP values are positive.
The electron density at the H…F BCP, ρBCP, corresponding to the O–H…F
hydrogen bond is equal to 0.014 au while the ρBCP value for the H…O contact of
the C–H…O hydrogen bond is equal to 0.009 au. The electron density at BCP
corresponding to intermolecular contact, especially in a case of hydrogen bonds, is
often treated as the measure of the strength of interaction [16, 17]. The presented
values of ρBCP indicate that the hydrogen bonds considered here are rather weak, for
example the ρBCP for the H…O intermolecular contact for water dimer linked
through the medium in strength O–H…O hydrogen bond amounts *0.02 au (this
value depends slightly on a level of calculations) [20].
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It was pointed out that the n(B) → σAH
* orbital-orbital interaction may be treated

as a signature of the A–H…B hydrogen bond since it corresponds to the H…B
contact [21–24]. For the hydrogen bonds the latter orbital-orbital interaction energy
is the most important contribution to the charge transfer energy term. For two O–
H…F and C–H…O hydrogen bonds presented in Fig. 15.1 there are the n
(F) → σOH

* and n(O) → σCH
* orbital-orbital interactions, respectively, with the

corresponding energies amounting 1.7 and 0.8 kcal/mol (HF/aug-cc-pVTZ//
MP2/aug-cc-pVTZ level). The corresponding n(O) → σOH

* orbital-orbital interac-
tion for the mentioned above water dimer is equal to *6 kcal/mol (depending on
the level of calculation).

One can see two ring critical points (RCPs, red small circles in Fig. 15.1)
attributed to the benzene ring and to the ring created by covalent bonds and two
H…F and H…O contacts; i.e. the latter RCP corresponds to the O–H…F–C–C–
H…O ring. Figure 15.1 shows also the isolines of the laplacian of electron density
with the regions of the concentration of the electron density at O and F proton
acceptor centers. Those regions correspond to the lone electron pairs which are
responsible for the existence of the negative electrostatic potentials (EPs) at the
oxygen and fluorine atoms. The hydrogen atoms of the (C)H…O and (O)H…F
contacts are characterized by the positive EPs due to the significant outflow of the
electron density from the hydrogen atoms to the carbon and oxygen atoms and to
the C–H and O–H inter-atomic regions. Figure 15.2 presents maps of the

Fig. 15.2 The maps of the electrostatic potential calculated at the 0.001 au molecular electron
density surfaces for H2O (left) and C6H5F (right) molecules; red and blue colors correspond to
negative and positive EP, respectively. The maximum and minimum EP-values for H2O are equal
to +0.0709 au (H-atoms) and −0.0514 au (O-atom), respectively; such values for C6H5F are equal
to +0.0296 au (H-atoms) and −0.0259 au (F-atom); MP2/aug-cc-pVTZ level of calculations
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electrostatic potential for the H2O and C6H5F molecules calculated separately at
0.001 au electron density molecular surfaces. The distributions of the EP for both
species are in line with the observations presented earlier here and concerning the
electron charge distribution.

There is another interesting observation for the C6H5F–H2O complex
(Fig. 15.1). For all O–H, C–H and C–C covalent bonds one can see the continuous
regions of the negative laplacian surrounding the corresponding bond critical
points; with one exception of the C–F bond where there is the region of positive
laplacian between two corresponding nuclei; even the positive ∇2ρBCP value is
detected for the C–F bond critical point. This may indicate that the C–F bond is
mostly ionic in nature and that there is the polarization of C–F bond with the
concentration of the electron charge density at the fluorine centre. The polarization
of C–F bond (the percentage of the electron charge density calculated at F-centre)
evaluated within NBO approach is equal to 72.8 %. The QTAIM integrated charges
of carbon and fluorine in this bond are equal to +0.472 au and −0.714 au,
respectively.

The aim of this chapter is to show, on the basis of several examples, how the
location of the bond path may be useful to characterize, define and/or verify the
specific, considered interaction. Mainly the QTAIM approach [4–7] is considered
here; however sometimes there are also references to other methods and concepts as
for example; the Natural Bond Orbitals (NBO) method [21, 22] or the σ-hole
concept [25–27]. This is worth to note that the results presented hereafter are mainly
based on the MP2/aug-cc-pVTZ level of calculations; those results are taken from
earlier studies or the calculations were carried out especially for the purposes of this
chapter. Consequently the QTAIM calculations were performed on the
MP2/aug-cc-pVTZ wave functions. The binding energies (Ebin’s) were calculated
as differences between the energy of the complex and the sum of energies of
monomers optimized separately and they were corrected for the basis set super-
position error (BSSE) by the counterpoise method [28]. Since the NBO method is
based on the Hartree-Fock method thus the corresponding NBO results, i.e.
orbital-orbital interactions or atomic charges, if presented, are based on the
HF/aug-cc-pVTZ//MP2/aug-cc-pVTZ level. Hence there is rather not indicated the
level of calculations for the next systems discussed hereafter; unless the results
presented were obtained within other levels of calculations.

15.2 The Case of Halogen Bond

The halogen bond interaction is one of the most interesting phenomena analyzed
during the last few decades. It was found that the halogen atoms (designated later
here as X), especially if connected with carbon (in C–X bonds), often play a role of
electron acceptors (Lewis acid centers) interacting with the Lewis bases, i.e. with
the electron rich species. This seems to be strange since halogen atoms are com-
monly known as the electronegative centers. There were various trials to explain
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this phenomenon. One can mention concepts of the anisotropy of the van der Waals
radii of halogens [29] or of the anisotropy of the electron charge distribution around
the halogen atoms [30]. According to the latter concept the electron density dis-
tribution of the halogen atom is characterized approximately by the ellipsoid shape,
the major axis of the ellipsoid is perpendicular to the C–X bond while the minor
axis belongs to the C–X bond line. This is why the X-centre interacts with
nucleophiles in the direction being the elongation of the C–X bond while elec-
trophiles interact with halogens in the direction perpendicular to the C–X bond or
nearly so. The latter direction is rich in electron density while the elongation of the
C–X bond is characterized by the deficiency of the electron density. These expla-
nations are in line with experimental findings; especially those based on the crystal
structures determinations [31].

It seems that more recent σ-hole concept [25–27], being in line with explanations
based on the anisotropy of the electron charge distribution, explains additionally the
source of such anisotropy as well as this concept explains sufficiently the phenomena
of numerous other interactions, not only of the halogen bond. The σ-hole concept of
Clark, Murray and Politzer is based on simple models of electron configurations and
hybridizations [32, 33]. For example, in a case of the CF3X molecules (X = Cl, Br
and I) the approximate s2px

2py
2pz

1 configuration is observed for X-atoms, where the
Z-axis is along the C–X bond. The unshared electron pairs are responsible for the
existence of the negative electrostatic potential (EP) around the X-atom in the
direction approximately perpendicular to the C–X bond while the single pz

1 electron
is involved in the C–X σ-bond what results in the loss of the electron density on the
outermost portion of the halogen surface, in the elongation of the C–X bond. This is
why this region (σ-hole) is characterized by the positive EP.

Figure 15.3 presents the map of EP for the CF3Cl molecule. One can see here
regions of the negative EP attributed to the fluorine atoms (red color in Fig. 15.3) as

Fig. 15.3 The map of the
electrostatic potential
calculated at the 0.001 au
molecular electron density
surface for CF3Cl molecule;
red and blue colors
correspond to negative and
positive EP, respectively
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well as less negative region of EP around the Cl-atom (orange color in Fig. 15.3)
being the consequence of the existence of unshared electron pairs. The positive
region of EP in the elongation of the C–Cl bond is observed (blue color). This is
interesting that there are also regions of the positive EP in the elongation of F–C
and Cl–C bonds, attributed to the carbon which may also act as the Lewis acid sites.
Such regions are also nicely explained in terms of the σ-hole concept.

In general the σ-hole concept explains satisfactory why the halogen centers
possess the dual character; they may act as the Lewis acid and as the Lewis base. In
the former case the corresponding interaction is named as the halogen bond and it is
usually linear or nearly so due to the location of the restricted area of the positive
EP in the elongation of C–X bond.

Different complexes of the CF3Cl moiety were analyzed recently and the dual
character of the chlorine centre was also investigated. Figure 15.4 shows the
molecular graph of the CF3Cl…Cl− complex where the chlorine anion is directed to
the positive EP region of the Cl-centre in the CF3Cl molecule. The linear C–Cl…
Cl− link is observed what is in line with the σ-hole concept and the earlier
explanations presented here. The bond path linking chlorines with the corre-
sponding BCP is observed. The isolines of laplacian of the electron density are also
presented showing the anisotropic concentration of the electron density around the
(C)Cl chlorine centre while the unperturbed spherical concentration of the electron
density is observed for chlorine anion. One can also see the regions corresponding
to other σ-holes, attributed to the carbon, i.e. to the elongations of the F–C and Cl–
C bonds.

Fig. 15.4 The molecular graph of the CF3Cl…Cl− complex, solid and broken lines correspond to
bond paths, big circles to attractors and small green circles to BCPs, the isolines of laplacian of
electron density are also presented; the laplacian isodensity lines in the plane containing CFCl
atoms of the CF3Cl molecule and Cl− anion
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Figure 15.5 presents the molecular graph of the CF3Cl–HF complex where the
positively charged and characterized by the positive EP hydrogen atom of HF is
directed to the “belt” of the negative EP around chlorine atom; this “belt” is visible
from the map of the laplacian isolines performed in the plane containing CFCl
atoms of the CF3Cl molecule. In other words the Cl-centre plays the role of the
Lewis base in this complex. There are other interesting findings here. The HF
molecule is situated outside of the mentioned above CFCl plane. This is why the 2D
map with laplacian isolines do not show the negative regions of the laplacian for the
HF molecule since the latter species is situated outside the molecular graph pro-
jection. Probably such a configuration of the complex is observed because of the
repulsion between the fluorine atoms of CF3Cl and the fluorine atom of HF
molecule. Figure 15.5 presents also the reactive surface (∇2ρ(r) = 0 isosurface); this
picture may be read in the following way, the areas closed by those lines are
characterized by the negative values of the laplacian of electron density thus they
correspond to the concentration of the electron charge.

It was explained in terms of the σ-hole concept that the fluorine usually does not
possess the regions of positive EP since the high electronegativity of F-centre as
well as the sp-hybridization cause that the σ-hole usually occurring in the outermost
part of C–F bond is neutralized [32, 33]. Additionally the Lewis acid strength for
halogen atoms increases in the following order, F < Cl < Br < I what is connected
with the increase of the polarization of the corresponding C–X bonds (% of the

Fig. 15.5 The molecular graph of the CF3Cl…HF complex, solid and broken lines correspond to
bond paths, big circles to attractors and small green circles to BCPs, the isolines of laplacian of
electron density are also presented (the laplacian isodensity lines in the plane containing CFCl
atoms of the CF3Cl molecule); the reactive surface (∇ 2ρ(r) = 0 isosurface) is presented in the right
part of the figure
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electron density calculated at the carbon atom increases). For example, the HCCX
halogen derivatives of acetylene were analyzed and it was found that the maximum
EP at X center is equal to +2.3, +20.4 and +27.0 kcal/mol for X = F, Cl and Br,
respectively (B3PW92/6-31G(d,p) level of calculations) [34]. There are similar
findings of an increase of the positive EP for heavier X-center for other species, like
for example H3CX, F3CX or C6H5X [34].

Figure 15.6 presents the molecular graphs of HCCCl and HCCBr molecules with
the isolines of the laplacian of electron density. One can see the anisotropic

Fig. 15.6 The molecular graphs of the HCCCl (up) and HCCBr (down) molecule, solid and
broken lines correspond to bond paths, big circles to attractors and small green circles to BCPs,
the isolines of Laplacian of electron density are also presented
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concentration of the electron charge density around chlorine for the HCCCl
molecule, with its “thin” concentration in the elongation of C–Cl bond and wider
concentration in the direction perpendicular to this bond; the latter corresponds to
the lone unshared electron pairs. In a case of HCCBr molecule there is no the
concentration of the electron density in the C–Br bond line! This is why the more
positive EP is observed for the bromine derivative of acetylene than for the chlorine
derivative.

In a case of halogen bond the monovalent halogen center is usually analyzed
while there are only few studies on that kind of interaction with multivalent halogen
atoms. One can mention the study on Ph2IX complexes with XF3 (X = Cl, Br, I)
[35] or the study where the complexes of XF3 are compared with their XF ana-
logues (X = Br or Cl) [36]. Very recently the complexes of BrF3 and BrF5 with N2

and HCN species acting as Lewis bases were analyzed [37]. The situation for the
bromine center in BrF3 and BrF5 is different than in a case of monovalent halogens.
First of all, the whole hemispheres of multivalent bromines are characterized by the
positive electrostatic potential. It means that bromine should play the role of the
Lewis acid only and not of the Lewis base. For the BrF3 moiety characterized by the
C2v symmetry the maximum positive EP occurs for the Br center in the elongation
of the F–Br equatorial bond (Fig. 15.7). Slightly different situation is observed for
the C4v symmetry BrF5 molecule where four equivalent maxima of EP are observed
at Br-center, around the fourfold symmetry axis of the molecule (Fig. 15.7).

The distribution of the electrostatic potential for two bromine species has further
consequences; particularly the location of the maxima of EP shows the most
probable nucleophilic attacks here. This is why the liner halogen bonds are formed
with BrF3 while bent ones for the BrF5 molecule. Figure 15.8 shows the molecular
graph of the BrF3–NCH complex with the reactive surface corresponding to the
laplacian of the electron density equal to zero. The straight bond path connecting
the bromine atom with the nitrogen Lewis base center of HCN molecule is observed

Fig. 15.7 The map of the electrostatic potential calculated at the 0.001 au molecular electron
density surfaces for BrF3 (left) and BrF5 (right) molecules; red and blue colors correspond to
negative and positive EP, respectively. Black points designate the maxima of EP, one local
maximum for BrF3 and 4 local maxima for BrF5 (only 3 maxima are visible in the figure)
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here; one can say that the bond path crosses the maximum of EP of the bromine
atom. It is worth to mention that the BrF3 molecule displays a T-shaped molecular
structure and a trigonal bipyramidal electronic structure. Two lone unshared elec-
tron pairs are located symmetrically to the mirror plane containing the BrF3
molecule. This picture is in line with the chemical intuition and with the NBO
results. The latter approach confirms the existence of two unshared electron pairs
for bromine which is also characterized by 14 core orbitals (28 electrons); 3
remaining bromine electrons are involved in Br–F bonds. The electron configura-
tions for bromine in the isolated BrF3 molecule and in the BrF3–NCH complex are
practically the same according to the NBO approach, only there are negligible
differences in the occupancies of orbitals.

As it was pointed out earlier here, the different situation is observed for the BrF5
moiety. For example, for the BrF5–N2 complex the Lewis base N-center of
molecular nitrogen is directed to one of the BrF5 EP maxima. Figure 15.9 presents
the corresponding molecular graph of that complex with the Br…N bond path
crossing the local EP maximum and partly avoiding the unshared electron pair of
bromine. The bromine electron configuration derived from NBO for the BrF5
moiety is as follows, 28 core electrons, 1 lone electron pair and 5 remaining
electrons are involved in 5 F–Br σ-bonds. This means that for the square pyramidal
BrF5 molecular structure observed here there are 12 electrons in the valence shell.
The latter is often named as hypervalency in the literature [38] since the octet rule is
not obeyed here. The electron configuration of bromine in the BrF5–N2 complex is
practically the same as in the BrF5 moiety not involved in any interaction, similarly
as it was observed in a case of the BrF3 species and its complexes.

Very interesting situation is observed for the BrF5–Cl
− complex (Fig. 15.10).

This complex is characterized by a very strong interaction since the binding energy
amounts here −37.8 kcal/mol while for the complexes of BrF5 with HCN and N2

the binding energy is equal to −5.1 and −1.7 kcal/mol, respectively [37]. The
laplacian of the electron density, ∇2ρBCP, at Br–Cl BCP is positive; however the

Fig. 15.8 The molecular graph of the BrF3…NCH complex, solid lines correspond to bond paths,
big circles to attractors and small green circles to BCPs, the reactive surface (∇ 2ρ(r) = 0
isosurface) is also presented
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Fig. 15.9 The molecular graph of the BrF5…N2 complex, solid and broken lines correspond to
bond paths, big circles to attractors and small green circles to BCPs, the reactive surface (∇
2ρ(r) = 0 isosurface) is presented

Fig. 15.10 The molecular graph of the BrF5…Cl− complex, solid lines correspond to bond paths,
big circles to attractors and small green circles to BCPs, the reactive surface (∇ 2ρ(r) = 0
isosurface) is presented
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total electron energy density at BCP, HBCP, is negative what means that the
interaction is at least partly covalent in nature. The similar situation is observed for
all five Br–F connections—the positive ∇2ρBCP values and the negative HBCP ones.
It seems that the strong interaction of the BrF5 species with the Cl

− anion extorts the
greater electron density changes in the complex, particularly in the BF5 moiety. One
lone electron pair of bromine is observed in the complex within the NBO approach,
similarly as in the isolated BrF5 species; however the lone pairs in the complex
possesses s-character in 99.2 %. This is confirmed by the QTAIM approach since
Fig. 15.10 shows the spherical electron charge density concentration around bro-
mine center. The change of the location of the bromine electron lone pair results in
the existence of the straight bond path linking the Br and Cl centers in contrary to
the interactions of the BrF5 molecule with weak Lewis bases (see Fig. 15.9).

The positive values of the laplacian of electron density at all BCPs corre-
sponding to the Br–F and Br–Cl links in the BrF5–Cl

− complex may indicate the
ionic character of interactions since it was pointed out that such values are typical
for the closed-shell interactions [5–7]. This means that in the latter complex all
bonds (links) are strongly polarized; the NBO approach shows that the polarization
for the Br–F bonds is equal to 23.2 % and it amounts 33.6 % for the Br–Cl bond (%
of the electron density at the Br center). The Br atomic charge calculated within
NBO and QTAIM approaches is equal to +2.25 au and +2.32 au, respectively.
Figure 15.10 clearly shows the concentration of the electron density at attractors
and not at interatomic regions; the similar situation is observed for all BrF3 and
BrF5 complexes.

There is another interesting finding for the BrF5-Cl
− complex; the NBO

approach shows that there are tri-center four-electron (3c-4e) linear bonds here.
They concern the following linear triads in the BF5Cl

− moiety; two F–Br–F triads
and one F–Br–Cl triad. Such 3c-4e bonds were analyzed earlier in literature; for
example Weinhold and Landis analyzed numerous hypervalent centers [21] and
they extended the 3c-4e concept of Pimentel and Rundle [39, 40].

15.3 Lewis Acid–Lewis Base Interactions

The σ-hole concept mentioned in the previous section which explains the mecha-
nisms of formation of the halogen bond is also useful to analyze other Lewis acid–
Lewis base interactions [26, 27, 41]. One can mention tetrel [42–45], pnicogen [46–
50] and chalcogen bonds [51–53] where the elements of Groups IV, V and VI,
respectively, play the role of the Lewis acid centers. The mechanism of the for-
mation of those bonds is practically the same as that one of the halogen bond; a
region of positive electrostatic potential (designated as σ-hole) on the extension of
the bond to the atom being the acidic center is an effect of the electron charge shift
from the outermost part of this center. These centers possessing σ-holes are usually
characterized by the unshared electron pairs thus they may act simultaneously as the
Lewis acids and the Lewis bases. The situation is slightly different for the tetrel
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atoms which are characterized by the sp3 hybridization and do not possess free
electron pairs. That rather excludes their potential basicity. Similarly, as it was
mentioned earlier here in the previous section, multivalent halogens may be char-
acterized only by acidity properties but in that case the halogen centers possess lone
electron pairs.

The dual character mentioned few times here results in important consequences
that the same elements may be involved in the stabilization interaction; i.e. that
halogen-halogen, chalcogen-chalcogen, etc. interactions are possible. That is not all
since at least two different in nature connections may be mentioned here. For
example, the X halogen center may interact by its Lewis acid region (σ-hole) with
the Lewis base region (unshared electron pairs) of the X-center of another molecule
or both halogen centers being in the X…X contact may play the dual role, both may
act simultaneously as Lewis acid and Lewis base. Both cases of C–X…X–C
halogen-halogen interactions were described in early study of Fourmigue and Batali
[31] and they are presented in Scheme 15.1. In a case of the interaction designated
as I, the halogen atoms act simultaneously as Lewis acid and Lewis base centers.
Such centers may be sometimes related by symmetry, for example, in the crystal
structures such halogen atoms may belong to symmetry equivalent molecules. In a
case of the type II interaction one of halogens acts as the Lewis base and the second
one as the Lewis acid in spite of the fact that potentially both possess dual character.

Similar types of interactions are observed for other σ-hole bonds. For example,
P…P pnicogen interactions were analyzed in numerous complexes [54, 55]. For the
FH2P–PH3 complex the σ-hole of the FH2P moiety situated in the elongation of the
F–P bond interacts with the lone electron pair of the PH3 species; this corresponds
to the n(P) → σPF

* orbital-orbital interaction within the NBO approach; in other
words the FH2P species reveals here the Lewis acid properties while the PH3

molecule the Lewis base properties. One can expect the reverse situation, where the
FH2P and PH3 molecules act as the Lewis base and the Lewis acid, respectively
with the corresponding n(P)→ σPH

* orbital-orbital interaction. However the P center
possesses the stronger Lewis acid properties in the FH2P molecule than in the PH3

species since the n(P) → σPF
* and n(P) → σPH

* energies of interactions in the FH2P–
PH3 complex are equal to 8.9 and 2.7 kcal/mol, respectively. Besides the FH2P σ-
hole (elongation of the F–P bond) is characterized by the more positive EP than the
PH3 σ-hole (elongation of H–P bond) [54, 55]. Figure 15.11 presents the molecular
graph of this complex with the reactive surface (∇ρ2(r) = 0 isosurface). One can see
that two molecules of the complex are oriented in such a way that lone electron pair
(the electron charge density concentration) is directed to the σ-hole region.

On the other hand the (FH2P)2 dimer represents the situation of the equivalent
phosphorus atoms, both acting simultaneously as the Lewis acid and as the Lewis
base what corresponds to two equivalent n(P) → σPF

* orbital-orbital interactions
(each characterized by the energy of 29.5 kcal/mol). Figure 15.12 presents the
molecular graph of this complex. The authors described also P…P interactions in
other complexes [55]; for example for the FH2P…P(OH)H2 complex there are two
important orbital-orbital interactions: n(P) → σPF

* and n(P) → σP–OH
* ; however the
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former one is stronger than the latter one what means that the P center is more
acidic in the PFH2 moiety than in the P(OH)H2 one.

The results presented here show that for the pnicogen-pnicogen contacts there is
no clear border between type I and II configurations as it was found for
halogen-halogen interactions (Scheme 15.1). It seems that an orientation corre-
sponding exactly to the II type orientation found for the X…X contacts cannot be
formed for the P…P interaction. It probably comes from the existence of three σ-
holes for trivalent P centers while in a case of monovalent halogens there is only
one σ-hole characterized by the acidic properties.

This is worth mentioning that in both cases of pnicogen-pnicogen interaction
there is only one bond path linking the corresponding attractors (see Figs. 15.11 and

Scheme 15.1 Two types of C-X…X–C halogen-halogen interactions; this figure is based on the
scheme presented in Ref. [31]; the ellipsoids represent here the non-spherical distribution of the
electron charge density

Fig. 15.11 The molecular graph of the FH2P…PH3 complex, solid and broken lines correspond to
bond paths, big circles to attractors and small green circles to BCPs, the reactive surface (∇
2ρ(r) = 0 isosurface) is presented
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15.12). It seems that this situation may be generalized for interactions between the
same kind centers, i.e. for the chalcogen-chalcogen or halogen-halogen (dihalogen)
bonds. The results presented here show that the molecular graph does not reflect
more complex situation, i.e. differences between those two cases. Such difference is
reflected within the NBO analysis. However it seems that the QTAIM approach
provides the tools to describe that more complex situation. The σ-hole bonds, i.e.
halogen and pnicogen bonds, were analyzed recently by Eskandari and co-workers
[56, 57]. They have shown that the P…P, P…N and N…N interactions [56], as well
as halogen bonds [57], may be categorized as lump-hole interactions where the hole
is a region of charge depletion and the excess of the kinetic energy while the lump
is a region of the electron charge concentration and an excess of the potential
energy. In such a way the authors have found one hole-lump interaction for the
FH2P…PH3 complex and two equivalent hole-lump interactions for the (FH2P)2
dimer [56] what corresponds to one dominant or two equivalent orbital-orbital
interactions, respectively.

There is a very interesting case of tetrel bonds where the Group IV element plays
the role of the Lewis acid center. The tetrel bonds were analyzed recently as a kind
of σ-hole bonds [42–45]; however such interactions were known early on as the
preliminary stages of the SN2 reactions [58, 59]. For example, the methane species
may be treated as a very weak acid interacting through the H-atom with the Lewis
base centre; H-atoms of methane are characterized by the positive EP (+0.015 au at
0.001 au molecular surface) while C-centre by slightly negative EP (−0.004 au).
Figure 15.13 presents the molecular graph of the CH4…NCH complex corre-
sponding to this situation where the H…N bond path corresponding to the C–H…N
hydrogen bond is observed. However for the CH3Cl derivative there is the region of

Fig. 15.12 The molecular graph of the (FH2P)2 dimer, solid lines correspond to bond paths, big
circles to attractors and small green circles to BCPs, the reactive surface (∇ 2ρ(r) = 0 isosurface) is
presented
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the positive EP (+0.032 au) at the C-center in the elongation of the Cl–C bond, this
is the σ-hole which plays the role of the Lewis acid in interactions with electron rich
species. Figure 15.14 presents the molecular graph of such situation; this is the
CH3Cl…F− complex which may be treated as the preliminary stage of the
CH3Cl + F− → CH3F + Cl− reaction governed by the SN2 mechanism.

Let us look at few experimental studies; the addition reactions of methyl(halo-
geno)tin and methyl(halogeno)germanium compounds to electron-rich platinium(II)
complexes were analyzed [60]. These studies clearly point to an SN2 mechanism for
the interactions considered. It was found that methylhalotin species, Me3SnX
(X = Cl, Br, I), react by an SN2 pathway. The germanium analogues were also
analyzed. For example, the variable temperature NMR spectral series for Me3GeCl
shows the rate decrease of the SN2 reaction in comparison with the analogues tin
species and the authors explain that this is partly due to a size effect. This is in line
with the σ-hole concept as well as with the topology of complexes linked through
the tetrel bonds. It was found that for the tetrel atoms as well as for the other Groups
centers the positive EP increases in the Group if the atomic number of the center

Fig. 15.13 The molecular graph of the CH4…NCH complex, solid and broken lines correspond to
bond paths, big circles to attractors and small green circles to BCPs

Fig. 15.14 The molecular graph of the CH3Cl…F− complex, solid and broken lines correspond to
bond paths, big circles to attractors and small green circles to BCPs

416 S.J. Grabowski



increases. For example, for the CH3F, SiH3F and GeH3F series the maximum EP at
tetrel atom, in the elongation of fluorine—tetrel center bond, is equal to +0.033,
+0.062 and +0.068 au, respectively [45]. Hence the SN2 reaction mentioned earlier
here and preceded by the tetrel bond is more probable for the tin species than for the
germanium one. There is also the influence of the size effect. It was claimed that the
methyl groups are more important to block the tetrel center if the latter one is
characterized by the smaller size [60]. Figure 15.15 presents a similar situation of
the influence of fluorine substituents for the CF4…Cl− and GeF4…Cl− complexes.
For the carbon species the Cl-attractor is linked by the bond paths with the fluorine
attractors of CF4 species; in a case of the germanium complex there is the Cl…Ge
intermolecular bond path what means that for the germanium complex the SN2
reaction is more probable.

The similar situation occurs for ammonium cation, NH4
+ and its analogues,

PH4
+ and AsH4

+ [50]. However for those cations the whole molecular surfaces are
characterized by the positive EP thus they do not act as Lewis bases. For the NH4

+

ion the maximum EP amounts +0.286 au and it is attributed to the H-atoms while
the minimum to the nitrogen center, +0.263 au. This is why for the complexes with
hydrogen cyanide (through N-center) as well as with the other Lewis base centers
[61], firstly the H-atoms of ammonia cation are involved in interactions and next the
links are formed with the nitrogen center of NH4

+. For example, for the NH4
+…

(NCH)n clusters, the N–H…N hydrogen bonds are formed for n ≤ 4 and next, when
all H-atoms are saturated by the hydrogen bonds the N…N links are created. The
latter ones correspond to the σ-hole bonds. Figure 15.16 presents the NH4

+…
(NCH)5 cluster where one can observe four N–H…N hydrogen bonds and one N…
N interaction; for all interactions the corresponding bond paths exist.

Fig. 15.15 The molecular graphs of the CF4…Cl− (left) and GeF4… Cl− (right) complexes, solid
and broken lines correspond to bond paths, big circles to attractors and small green circles to BCPs
(red ones—RCPs), the reactive surface (∇ 2ρ(r) = 0 isosurface) is presented
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15.4 The Case of Hydrogen Bond

It was discussed that the A–H…B hydrogen bond may be classified as a case of the
σ-hole bond [33, 62]. For the A–H bond, similarly as for other covalent bonds
where the σ-hole is observed, there is the electron charge density shift from H-atom
to the A-center. However the mechanism of the σ-hole formation is different for the
H-atom than for the other heavier atoms [33, 63]. In a case of pnicogen, chalcogen
and halogen atoms p-electron is involved in the σ-bond what results in the depletion
of the electron density in outermost part of the center considered and a small area of
the increased electrostatic potential, often up to the positive value [26, 27]. Such a
region of the positive EP, if exists, is surrounded by areas of the negative EP. There
are exceptions, as for example for the tetrel atoms or multivalent halogens described
earlier here, where the whole centers are characterized by the positive EP. For the
H-atom the whole hemisphere is characterized by the positive EP and there is the
single s-type electron involved in the A–H bond, the polarization of this bond
results in the additional increase of the EP at the hydrogen atom.

This is interesting that for the protic H-atom in A–H bond there is the detectable
shift of its electron density maximum towards the A-center. This effect is not
observed for halogen, chalcogen or any others heavier atoms. That may be calcu-
lated within the QTAIM approach since the positions of attractors correspond to the

Fig. 15.16 The molecular graph of the NH4
+…(NCH)5 complex, solid and broken lines

correspond to bond paths, big circles to attractors and small green circles to BCPs, the reactive
surface (∇ 2ρ(r) = 0 isosurface) is presented
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positions of the local maxima of the electron density; they may be attributed to the
positions of atoms. However if one assumes that the atoms’ positions correspond to
nuclei thus this is not the same. Table 15.1 presents MP2/aug-cc-pVTZ results for
the selected molecules and cations containing hydrogen atoms. One can see that for
all systems considered, for A–H bonds (A = C, N, O, F, Si, P, S, Cl) the distance
between the attractors (r) is shorter than the distance between corresponding nuclei
(R). Since the positions of attractors and nuclei for heavy (non-hydrogen) atoms are
practically the same thus the R-r difference is exactly the shift of the electron
density maximum of H-atom from the corresponding nucleus to the A-atom. The
R-r difference may be also read as the distance between the nucleus of H-atom and
its attractor. The range of those differences is between 0.01 Å and 0.03 Å
(Table 15.1), the greatest values are observed for the HF molecule and H3O

+ cation,
0.034 Å and 0.032 Å, respectively. The ΔR% values relate those differences to the
R distances (between nuclei) since ΔR% = [(R-r)/R)100 %].

It seems that the greatest R-r differences occur for the more electronegative
A-atoms; this seems to be natural since the more electronegative center withdraws
easier the electron density. Figure 15.17 presents the dependence between the
electron charge density shift (expressed as the ΔR% value) and the electronegativity
of the non-hydrogen A-atom. The results for molecules and cations are included.
One can see correlations within the periods, i.e. if the A-atom belongs to the same
period and only the neutral species are considered. In a case of cations there is the
greater electron charge density shift if one compares it with the neutral molecules.
For example, the R-r value for the NH3 molecule is equal to 0.022 Å while for the
NH4

+ cation it amounts 0.025 Å; for H2O and H3O
+ species it is equal to 0.027 Å

and 0.032 Å, respectively.
Figure 15.18 presents the O–H bond length histograms based on results from

Cambridge Structural Database (CSD) [64]; X-ray and neutron diffraction results
are presented separately. The CSD searches were performed for all derivatives of
benzene containing OH group, this means that not only phenol is considered but

Table 15.1 A–H bonds of
selected molecules and
cations (A designates heavy
atom); r—the distance
between A and H attractors; R
—the distance between A and
H nuclei; ΔR% is equal to
[(R-r)/R]*100 %; ε—
electronegativity of the A
heavy atom in the Pauling
scale; distances in Å

Species r R R-r ΔR% ε

H2O 0.934 0.961 0.027 2.8 3.44

H2S 1.321 1.336 0.015 1.1 2.58

HF 0.888 0.922 0.034 3.7 3.98

HCl 1.256 1.274 0.018 1.4 3.16

NH3 0.990 1.012 0.022 2.2 3.04

PH3 1.401 1.413 0.012 0.9 2.19

CH4 1.070 1.086 0.016 1.5 2.55

SiH4 1.467 1.477 0.010 0.7 1.9

H3O
+ 0.947 0.980 0.032 3.3 3.44

H3S
+ 1.334 1.351 0.017 1.3 2.58

NH4
+ 0.997 1.022 0.025 2.5 3.04

PH4
+ 1.377 1.392 0.015 1.1 2.19
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also species where other H-atoms of benzene are substituted. Of course such
substituents may influence on the electron density distribution including the
hydroxyl group. However the aim of those searches was only to evaluate briefly the
differences between the neutron and X-ray diffraction results if the covalent bond
containing H-atom is considered. In a case of the neutron diffraction the positions of
atoms in the crystal correspond to the positions of nuclei while for the X-ray
measurements these are the positions of the local maxima of electron density; in
other words in the latter case we have the positions of attractors. This is why the
QTAIM approach may be applied for the crystal structures’ results [1–3] and for
numerous crystal structures the topological analysis based on the experimental
electron density is performed. The mentioned above searches on the phenol
derivatives were carried out for high quality measurements since the following
search criteria were applied: no disordered structures, no structures with unresolved
errors, no powder structures, no polymeric structures, e.s.d.’s for C–C
bonds ≤ 0.005 Å and the discrepancy index R ≤ 7 %.

The precision of the determination of the positions of the maxima of electron
density for H-atoms in X-ray diffraction measurements is much lower than the
precision of determination of hydrogen nuclei positions in the neutron diffraction
[8] but one can see that statistically the X-ray O–H bonds are much shorter than the
neutron diffraction counterparts (Fig. 15.18); the mean OH bond length for X-ray
experiments is equal to 0.871 Å while this value for neutron diffraction amounts
0.990 Å; the corresponding median values are equal to 0.841 Å and 0.984 Å,
respectively. The median values are presented here since the bond length distri-
butions are not the normal ones. The number of the OH bonds included in the
histograms (Fig. 15.18) for the X-ray and neutron diffraction is equal to 3798 and
12, respectively. This is because, in general, the number of X-ray observations
collected in CSD is large in comparison with the neutron diffraction ones; the total
number of crystal structures stored into Cambridge Structural Database is equal to

Fig. 15.17 The relationship between ΔR% value (for species collected in Table 15.1) and the
electronegativity of the A non-hydrogen atom, circles correspond to neutral molecules while
crosses to cations
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686 944 while only 1616 of them are the neutron diffraction measurements (CSD
summary statistics—6 January 2014 [65]). It is worth mentioning that the total
number of crystal structures deposited in CSD at the end of 2014 reached 750 200.
In spite of the great disproportion between the number of neutron diffraction and
X-ray results one can see that the experimental results clearly show that there is the
electron charge density shift from H-atom to the bonded center, in the case con-
sidered here (Fig. 15.18) to the oxygen atom.

Fig. 15.18 Histograms of the O-H bond length for O–H groups connected with benzene ring
detected in crystal structures, neutron diffraction (down) and X-ray diffraction results (up) are
presented. The horizontal axes correspond to O–H bonds (length in Å), the vertical axes to number
of observations, based on the results from the Cambridge Structural Database [64]
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In view of those results one may say that the positive EP at hydrogen atom is
enhanced owing to the electron density shift and that the links of H-atom with
Lewis base centers, i.e. hydrogen bonds, may be classified as the σ-hole bonds. An
example of the complex connected through two hydrogen bonds, O–H…F and C–
H…O, was considered in the introduction (see Fig. 15.1). These are the classical
examples of 3c-4e (3 center—4 electron) A–H…B hydrogen bonds since there are
A, H and B centers, 2 electrons of the A–H σ-bond and the lone electron pair of the
proton acceptor (B). However the A–H…π interactions, where it is difficult to
indicate the single B-center, are also classified as hydrogen bonds. It is commonly
accepted that for those interactions π-electrons play the role of the Lewis base.

Figure 15.19 shows the molecular graphs of the C2H2…HF T-shaped complex;
two graphs with the isolines of the laplacian of electron density corresponding to
two levels of calculations (MP2/aug-cc-pVTZ and MP2/aug-cc-pVQZ) are pre-
sented. In both cases there is the bond path linking the H-atom attractor of HF
molecule with the π-electron system of acetylene; in the case of aug-cc-pVTZ basis
set there is the link between H-attractor and the non-nuclear attractor
(NNA) situated between carbon atoms, in a case of the aug-cc-pVQZ basis set there
is the hydrogen–bond critical point (H…BCP) link. Practically there is no the
significant difference between those results, one may say that both NNA and BCP
mimic the one-center π-electron Lewis base. This is worth to mention that such
H…π bond paths for hydrogen bonded systems were analyzed before [66]. The
characteristics of the BCP corresponding to the H…π bond path are practically the
same for both levels (ρBCP and ∇2ρBCP are equal to 0.021 au and 0.049 au,

Fig. 15.19 The molecular graphs of the C2H2…HF complex, the MP2/aug-cc-pVTZ (left) and
MP2/aug-cc-pVQZ (right) levels, solid and broken lines correspond to bond paths, big circles to
attractors and small green circles to BCPs, the isolines of Laplacian of electron density are also
presented; there is non-nuclear attractor (small red circle) between carbon atoms (left) for the
MP2/aug-cc-pVTZ level

422 S.J. Grabowski



respectively; the remaining characteristics differ only slightly). The characteristics
of BCP situated between carbon atoms for the aug-cc-pVQZ basis set are as fol-
lows; ρBCP = 0.416 au and ∇2ρBCP = −1.274 au while for the aug-cc-pVTZ basis set
there are two BCPs between carbon attractors for which ρBCP = 0.411 au and
∇2ρBCP = −1.278 au, there is also NNA situated between latter BCPs where
ρBCP = 0.411 au and ∇2ρBCP = −1.370 au.

The situation is more complicated if the multicenter (more than 2 centers) π-
electron system plays the role of proton acceptor in hydrogen bond interaction. It is
often stated in the literature that aromatic systems or other closed-ring π-electron
systems may play the role of proton acceptors in hydrogen bonds [67]; such species
as benzene, antracene, cyclopentadienyl anion and their derivatives as well as other
moieties are often considered. This means that π-electrons as a whole are treated as
the Lewis base center. The hydrogen bonds with the multicenter π-electron systems
were analyzed recently (the calculations were performed at the MP2/6-311 ++G(d,
p) level) and it was found that at least few sub-classes of the A–H…π hydrogen
bonds may be considered [68]. Figure 15.20 presents the molecular graphs of the
C6H6…HCCH, C6H6…HF and C5H5

−…HF complexes. The binding energy for the
C6H6-HCCH complex amounts −2.1 kcal/mol (BSSE correction included), the
complex is characterized by the C6v symmetry and the molecular graph (Fig. 15.20)
reflects this symmetry since six H…C bond paths between the hydrogen of acet-
ylene and the carbon attractors of benzene are observed. For the BCPs of those
bond paths the following characteristics were found; ρBCP = 0.007 au and
∇2ρBCP = 0.023 au. One may say that the C–H…π hydrogen bond is classified here
as rather weak interaction and that all C-atoms of the benzene ring are involved
equivalently in that interaction. On the other hand one may say that there are six
equivalent C–H…C interactions for the C6H6…HCCH complex (bifurcated
hydrogen bond); this situation is different than for the C2H2-HF complex presented
earlier here where the H…BCP (or H…NNA) bond path was observed and where

Fig. 15.20 The molecular graphs of the C6H6…HCCH, C6H6…HF and C5H5
−…HF complexes

(from left to right), the MP2/6-311 ++G(d,p) level, solid and broken lines correspond to bond
paths, big circles to attractors and small circles to critical points (green—BCPs, red—RCPs)
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the BCP (or NNA) of the triple C ≡ C bond mimics the one-center Lewis base.
Since within the NBO approach the Lewis type structures are considered thus three
πCC → σCH

* intermolecular orbital-orbital interactions were found here, each of the
energy amounting 0.4 kcal/mol and each corresponding to the overlap of CC π-
bond orbital of benzene and the antibonding CH orbital of acetylene. The high C6v

structure symmetry results in the same electron charge distribution symmetry thus
as it was pointed out earlier here, there are six equivalent C…H bond paths between
acetylene and benzene as well as the equivalent charges for benzene atoms are
detected (NBO charges for C and H atoms are equal to −0.208 au and +0.209 au,
respectively; the corresponding charges for isolated benzene are equal to −0.204 au
and +0.204 au).

For the C6H6…HF complex there is the H…BCP bond path between the HF
molecule and the BCP of the CC bond of benzene; thus it is the similar situation to
that one occurring for the C2H2…HF complex. The interaction is stronger here than
for the complex of benzene with acetylene since the binding energy is equal to
−3.3 kcal/mol; the following characteristics were found for the BCP of the men-
tioned above H…BCP bond path; ρBCP = 0.010 au and ∇2ρBCP = 0.031 au. One can
see that the C6v symmetry is broken here; two carbon atoms are distinguished since
the BCP of the path between them mimics the one-center Lewis base for this
complex. The charges of those carbon atoms in the C6H6–HF complex are the most
negative ones since they are equal to −0.225 au while the remaining C-charges
amount −0.204 au; besides the intermolecular H…C distances are smallest for these
carbons, 2.503 Å, while the remaining H…C (HF-benzene) distances amount 2.724
−2.929 Å. This means that the bond path between HF and C6H6 molecules shows
the preferable H…C interactions. What is the reason of such an orientation of the
HF molecule in the C6H6–HF complex? Probably for this structure the electrostatic
interactions between benzene and HF are more attractive than in a case of the C6v

symmetry complex. However the difference is not significant; the
MP2/aug-cc-pVTZ calculations show that the transition state C6v symmetry C6H6–

HF complex is higher in energy than the corresponding complex being in the
energetic minimum only by 0.1 kcal/mol. The single πCC → σCH

* orbital-orbital
interaction is observed for the C6H6–HF complex with the interaction energy of
1.1 kcal/mol; the CC bond π-orbital corresponds here to the CC BCP which is
connected with the H-atom attractor of HF molecule (see Fig. 15.20).

Figure 15.20 presents also the C5H5
−…HF complex where the F–H…π

hydrogen bond is assisted by the negative charge. It results in the stronger C5H5
−
–

HF interaction since the binding energy is equal to −16.3 kcal/mol. The molecular
graph shows the single H…C bond path where the following characteristic of the
corresponding BCP were calculated; ρBCP = 0.028 au and ∇2ρBCP = 0.056 au. The
total electron energy density, HBCP, at this bond critical point is equal to -0.002 au
what may be explained by the partly covalent in nature corresponding H…C
interaction. Also in this case, similarly as it was found for the C6H6–HF complex,
the bond path shows the preferable H…C interaction since the charge of the cor-
responding C-atom of the C5H5

− anion is equal to −0.433 au while for the
remaining carbons of the anion this charge is situated in a range between −0.350 au
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and −0.353 au. The H…C distance corresponding to the bond path is equal to 2.007
Å while the remaining distances amount 2.395–2.902 Å. This is worth to mention
that for the C5H5

−…HF complex a lone electron pair orbital within the NBO
approach is detected for the carbon atom of C5H5

− and that this orbital is involved
in the most important n(C) → σCH

* orbital-orbital overlap for which the energy of
interaction amounts 9.7 kcal/mol; this orbital is located at the C-atom connected by
the bond path with HF molecule.

One can see that for the A–H…π hydrogen bonds presented here there are
significant structural differences between them; those differences are reflected in the
geometry as well as in the electron charge distributions. One can observe hydrogen
bonds where the protic H-atom is linked with the Lewis base by atom-atom bond
path (in C5H5

−…HF), by the atom-BCP bond path (in C6H6…HF or C2H2…HF)
and by the few equivalent atom-atom bond paths (in the C6H6…HCCH complex).
In such a situation the question arises if the meaning of the term A–H…π hydrogen
bonds should be revised. For example, maybe for the C5H5

−…HF complex the term
F–H…C hydrogen bond is more proper than the F–H…π one and maybe for the
C6H6…HCCH complex the bifurcated hydrogen bond (six F–H…C intermolecular
contacts) should be applied.

It is interesting that also σ-electrons may play a role of the proton acceptor in the
hydrogen bonds; they are designated as the A–H…σ interactions. Such systems
were analyzed theoretically for the FH…H2, H3O

+…H2, NH4
+…H2 and other

complexes where the molecular hydrogen acts as the Lewis base [69–72]. For all of
them the situation is similar to that one occurring for the C2H2…HF complex; i.e.
there is the bond path linking the hydrogen protic atom of the Lewis acid unit with
the bond critical point of H–H molecular hydrogen bond. Figure 15.21 presents the
molecular graph of the NH4

+…H2 complex where one may observe this type of the
bond path. One can see that for this complex the N–H bond of ammonia cation is
located perpendicularly (or nearly so) to the H2 molecule. Such T-shaped structures
are observed for other complexes mentioned here, where the σ-electrons of the
molecular hydrogen are the proton acceptor in hydrogen bonds [71]. For the
NH4

+…H2 complex the binding energy is equal to −2.3 kcal/mol (MP2/6-311 +
+(3df,3pd) level, BSSE included), the ρBCP and ∇2ρBCP values for the BCP cor-
responding to the H…BCP bond path linking ammonia cation with H2 molecule are
equal to 0.013 au and 0.041 au, respectively. This is interesting that the most
important orbital-orbital interaction corresponds here to the σH-H → σN–H

* overlap
where σH–H is the σ-bond orbital of molecular hydrogen while σN–H

* is the anti-
bonding N–H orbital of ammonia cation, the corresponding energy of interaction is
equal to 3.6 kcal/mol (HF/6-311 ++G(d,p)//MP2/6-311 ++G(d,p) level).

The existence of the A–H…σ hydrogen bonds was confirmed by experiment.
For example, gas phase measurements of dipole moment and vibrational predis-
sociation lifetimes as well as the determination of rotational constants performed for
the F–H…H2 complex [73] confirmed its T-shaped structure. The high-resolution
infrared spectra were analyzed for the H2–HF, D2–HF and HD–HF complexes
solvated in helium nanodroplets and also for those species the T-shaped structure
was confirmed [74–76]. The infrared vibrational predissociation spectra
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measurements were carried out for the H2–HCO
+ complex linked through C–H…σ

interaction, where the σ-electrons of the molecular hydrogen act as the Lewis base
[77]. The authors did not consider the C–H…σ interaction as the hydrogen bond;
however the results of experiment clearly show that this arrangement possesses
characteristics typical for the latter kind of interaction.

Finally it is worth mentioning that the clusters of ammonia cation, NH4
+, with

H2 molecules—(NH4
+)–(H2)n (n up to 8) were calculated [69, 78]. It was also found

that the whole molecular surface of ammonia cation (0.001 au electron density
surface was considered) is characterized by the positive EP; however the EP
maxima are attributed to H-atoms [50]. Hence the increase of the number of
molecular hydrogen molecules surrounding ammonia cation results in the N–H…σ
hydrogen bonds formation and when all N–H bonds are saturated by those inter-
actions (for n = 4) thus next H2 molecules (for clusters with n ≥ 5) are linked with
the nitrogen center of the cation, however all H2 molecules for those clusters act as
Lewis bases through their σ-electrons. The situation is very similar to that one
occurring for the (NH4

+)–(HCN)n clusters [61] mentioned earlier here (see also
Fig. 15.16).

This is interesting that the molecular hydrogen possesses the properties of Lewis
base (σ-electrons) and of the Lewis acid what is reflected in the distribution of
electrostatic potential which is negative along the H–H σ-bond and it is positive at
the outermost parts of H-atoms [79]. One may expect that the interaction of the H2

molecule with Lewis acids should result in its connection through H–H BCP while
the interaction with Lewis bases should result in the connection of the H2 species by

Fig. 15.21 The molecular graph of the NH4
+…H2 complex, solid and broken lines correspond to

bond paths, big circles to attractors and small green circles to BCPs, the isolines of Laplacian of
electron density are presented; the projection in the plane containing H2 molecule and HNH atoms
of NH4

+ cation
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one of its H-attractors. Figure 15.22 presents the latter situation where H2 interacts
as the Lewis acid with the hydride Lewis base center of LiH species. Figure 15.22
clearly shows the H…H bond path linking basic (of LiH) and acidic (of H2)
hydrogen atoms. This kind of interaction is known as the dihydrogen bond [80–83]
and really, early on the LiH…H–H system was classified as linked by this type of
interaction [84].

The distribution of the laplacian of electron density (Fig. 15.22) shows the
vertical to the H–H σ-bond concentration of the electron density and this density
depletion at the edges of H-atoms of hydrogen molecule. There is a very interesting
distribution for the LiH species where it is clear that hydride anion interacts with the
electron density deprived Li cation. The most important orbital-orbital interaction
corresponds here to the σLi–H → σH–H

* overlap where σLi–H is the σ-bond orbital of
LiH molecule while σH–H

* is the antibonding H–H orbital of dihydrogen, the cor-
responding energy of interaction is equal to 1.7 kcal/mol. The polarization of the H2

molecule is observed here since the NBO atomic charges are equal to +0.031 au and
−0.036 au (the positively charged H-atom is in contact with the negatively charged
H-atom of the LiH species). One can see that the whole H2 molecule is slightly
negatively charged, this is because of the acidic properties of H2 in this complex
what results in the electron density shift from the LiH species to the dihydrogen.
This is worth mentioning that such polarization does not occur for the dihydrogen
in the NH4

+…H2 complex considered earlier here since atomic charges of H-atoms
in the dihydrogen are both equal to +0.007 au. In the latter complex the H2

molecule is slightly positively charged since there is outflow of the electron density
from that species due to its Lewis base characteristics.

The analysis of interactions of dihydrogen with other species seems to be very
important to understand the mechanisms of numerous reactions and processes such
as for example, the activation of molecular hydrogen and next its splitting at

Fig. 15.22 The molecular graph of the LiH…H2 complex, solid and broken lines correspond to
bond paths, big circles to attractors and small green circles to BCPs, the isolines of Laplacian of
electron density are also presented
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reaction center [85]; usually the metallic center is considered both experimentally
[86] and theoretically [87].

Figure 15.23 presents molecular graphs of two complexes where dihydrogen
interacts with the phosphorus (non-metallic) center, i.e. the PFH2…H2 and PF
(CH3)2…H2 complexes are considered. In both cases the P-center is characterized
by the Lewis acid properties due to the existence of the σ-hole since the regions of
the positive EP situated in the elongation of F–P bond are observed. The σ-holes
located at the P-centers are characterized by the positive EPs which amount 0.060
au and 0.037 au for the PFH2 and PF(CH3)2 monomers, respectively. The binding
energies for the PFH2–H2 and PF(CH3)2–H2 systems are equal to −1.2 kcal/mol and
−0.7 kcal/mol, respectively (not corrected for BSSE).

There is an interesting issue if the dihydrogen in those complexes reveals its
Lewis acid or Lewis base properties. Figure 15.23 shows that for the PFH2–H2

complex the P-dihydrogen intermolecular bond path crosses the region of the σ-
hole but very close to the region of the electron charge concentration corresponding
to the unshared P electron pair and next this bond path is aimed to the BCP of
dihydrogen; however finally it ends at the H-atom attractor. The non-linear tra-
jectory of the bond path does not show ambiguously the nature of centers being in
contact; one may rather expect that the dihydrogen interacts as the Lewis base with
the Lewis acid region of phosphorus. Two most important orbital-orbital interac-
tions are detected for this complex; σ(H2) → σ*(P–F) and n(P) → σ*(H2) which
correspond to the Lewis base and Lewis acid properties of dihydrogen, respectively.
The energy of interaction for the former overlap is equal to 1.5 kcal/mol while it
amounts 0.6 kcal/mol for the latter overlap. Thus according to the NBO approach,
the dihydrogen reveals stronger Lewis base properties than the Lewis acid ones in
the PFH2…H2 complex.

The different picture is observed for the PF(CH3)2–H2 complex where the tra-
jectory of the P…dihydrogen bond path prompts the Lewis acid properties of H2

and Lewis base properties of the phosphorus species since the bond path crosses the

Fig. 15.23 The molecular graphs of the PFH2…H2 (left) and PF(CH3)2…H2 (right) complexes,
solid and broken lines correspond to bond paths, big circles to attractors and small green circles to
BCPs, the reactive surface (∇ 2ρ(r) = 0 isosurface) is presented
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lone electron pair region of P-center and it clearly ends at one of H-atoms of the
dihydrogen. The NBO results confirm that since the σ(H2) → σ*(P–F) and n
(P) → σ*(H2) orbital-orbital energies of interactions are equal to 0.2 kcal/mol and
0.6 kcal/mol, respectively showing the stronger Lewis acid properties of the
dihydrogen in that complex.

The interactions of molecular hydrogen with the PF(CH3)2 and PFH2 species are
classified as weak ones thus there are only slight electron density shifts for the
corresponding complexes, -0.002 au and +0.008 au for the PFH2–H2 and PF
(CH3)2–H2 complexes, respectively (NBO results). This means that for the PFH2–

H2 complex there is the shift from the H2 molecule while for the PF(CH3)2–H2

complex the shift to the dihydrogen is observed. Those shifts clearly confirm the
results presented earlier here of the Lewis base or Lewis acid properties of the
molecular hydrogen.

15.5 Summary

The analysis of the location of bond paths, of their trajectories and the distribution
of the electron density in species analyzed, especially if such a distribution is
discussed on the basis of the laplacian of the electron density, are very useful tools
to deepen the understanding of the nature of interactions. This is also important that
the analysis of the molecular graphs is often in line with the results of other
approaches. This is worth mentioning that the molecular graph may be treated as a
source of information on the location of atomic attractors (positions of atoms) and
on the location of bond paths corresponding to the preferable stabilizing
interactions.

Let us look at examples presented in this chapter; it is evident, that very often for
weak interactions the atom-atom contacts correspond to Lewis acid–Lewis base
centers’ contacts characterized by the opposite electrostatic potentials. The hydro-
gen bonded systems are examples of such a situation, or even more generally, the σ-
hole bonds. This is interesting that the bond paths, for weak interactions, usually
connect the local maximum of EP with the minimum of EP. The complexes of the
BrF5 characterized by the pentavalent bromine center are examples of that situation;
there are four equivalent local maxima of EP at the Br center situated symmetrically
around the fourfold axis of symmetry of the BrF5 molecule. This is why the
complexes of BrF5 with weak Lewis bases are not linear since the bond path crosses
one of the local maxima of bromine. However the interactions with stronger Lewis
bases like F− or Cl− anions lead to the meaningful changes in the electron charge
distribution what results in the formation of BrF6

− and BrF5Cl
− complexes with the

F–Br…F− and F–Br…Cl− linear arrangements, respectively.
One can enumerate other examples where the molecular graphs inform of the

kinds and of the nature of interactions. The complexes of molecular hydrogen may
be mentioned here. The dihydrogen possesses Lewis acid and Lewis base charac-
teristics since the positive electrostatic potential is observed at the H-atoms, at edges
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of the H–H bond while the negative EP is connected with the σ-bond. This is why
the H2 molecule interacts with Lewis acid centers through its σ-electrons and in the
corresponding molecular graphs the bond paths between the Lewis acid center and
the bond critical point of the H–H σ-bond are observed. On the other hand if the H2

molecule reveals their Lewis acid properties thus the bond paths between H-atom of
molecular hydrogen and the Lewis base center may be observed.

In general the contour maps of the laplacian of the electron density nicely show
the links between the regions of the electron density depletion with the regions of its
concentration; this was rationalized recently by Eskandari and coworkers in terms
of the lump-hole interactions concept [55, 56].
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Chapter 16
Following Halogen Bonds Formation
with Bader’s Atoms-in-Molecules Theory

Vincent Tognetti and Laurent Joubert

Abstract In this chapter. we will show how Bader’s atoms-in-molecules theory
enables to unravel the main physicochemical factors that drive the formation of
halogen bonds, which are intriguing and fascinating noncovalent interactions at
work as well as in crystals, biological and chemical systems, and which have found
numerous applications in, among other fields, drug design and supramolecular
chemistry. In particular, the use of Pendás and coworkers’ interacting quantum
atoms scheme will cast the light on the nature of such interactions (more or less
electrostatic, more or less covalent) and will provide useful hints to account for the
existence or absence of energy minima in the corresponding potential energy sur-
face. Importantly, such a rationalizing approach can be carried out whatever the
system and also possesses predictive power.

Keywords Halogen bonds � Bader’s atoms-in-molecules theory � Energy
decomposition � Interacting quantum atoms scheme � Electrostatic interactions �
Electronic quantum exchange

16.1 Introduction

Halogen bonds [1–7] have generated for the last years a considerable amount of
experimental and theoretical works because they are ubiquitous in biology (involved
in molecular folding, ligand binding) [8–15], material science (in particular in crystal
engineering, supramolecular scaffolds) [16–24], nanoparticles chemistry [25],
organo- and organometallics catalysis [26–38], the number of their applications being
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constantly and endlessly growing in almost all these related fields, so that the bib-
liography for this chapter cannot obviously be exhaustive.

Experimentally, they can be characterized using all flavours of spectroscopy
[29–38], while an equal huge number of papers [39–60] has been devoted to the
theoretical understanding and rationalization of these particular interactions, using
the whole computational and analysis arsenal developed over the past decades
(density functional theory (DFT), post Hartree-Fock methods, molecular orbital
theory, conceptual DFT, valence bond theory, energy decomposition, quantum
chemical topology…). For the very same reasons as those when dealing with
experimental progress, our references list about theoretical advances is far from
being comprehensive.

All these plethoric works have been in particular instrumental in the advent of
the retained definition of the halogen bond by the International Union of Pure and
Applied Chemistry (IUPAC): “A halogen bond occurs when there is evidence of a
net attractive interaction between an electrophilic region associated with a halogen
atom in a molecular entity and a nucleophilic region in another, or the same,
molecular entity” [1].

In a series of recent articles, we notably investigated the properties of halogen
bonds, and more generically of interactions between halogens and electronegative
atoms, whatever in intramolecular or intermolecular fashion [61–68], from the
electron density point of view (through conceptual DFT or Bader’s
atoms-in-molecules theory (QTAIM) [69, 70], which are complementary approa-
ches, grounded on the same key-ingredient). Let us recall that the electron density is
the primary and fundamental observable of any chemical system and that it can be
obtained not only from theoretical calculations but also experimentally thanks to
X-ray diffraction. In this chapter, we will mainly focus on the QTAIM description
of halogen bond formation, that-is-to say we will follow selected QTAIM
descriptors along the reaction path leading to possible halogen-bond stabilized
complexes.

16.2 Theory

16.2.1 Basics of QTAIM: Atomic Basins and Energy
Decomposition

Bader’s atoms-in-molecules theory [69, 70] is based on the topology of the electron
density q ~rð Þ and enables to partition the three-dimensional real space into
non-overlapping domains called “basins”. To achieve such separation, one looks at
the so-called gradient paths (GPs), which are the equivalent of field lines in classical
electromagnetism. A GP is defined as a curve C such that the electron density
gradient ~rq ~rð Þ (which can stem from theoretical calculations as well as from X-ray
diffraction experiments) is tangent to C at every C point. In general (non-nuclear
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attractors will not be considered here), these GPs end at a nucleus. The collection of
all GPs terminating at the same nucleus then forms a 3D volume that is called the
atomic basin (denoted ΩA) related to nucleus A. The corresponding quantum atom
is subsequently simply defined as the union of nucleus A and basin ΩA.

Once this partition is determined, many atomic properties can be evaluated by
integrating the proper real space function over the considered basin (whose fron-
tiers, called interatomic surfaces (IASs), obey the celebrated zero density gradient
flux condition). For instance, the atomic electronic population (average number of
electrons inside a given basin) is calculated according to:

NðAÞ ¼
Z
XA

q ~rð Þd3r: ð16:1Þ

The corresponding atomic charge is then univocally defined by:

qðAÞ ¼ ZA � NðAÞ; ð16:2Þ

where ZA denotes the charge (in atomic units) of the nucleus (located at ~RA).
Besides, one could show [71–73] that the molecular energy can be exactly

decomposed by:

Emol ¼
X
A

Eintra
A þ

X
A

X
B[A

Einter
AB ; ð16:3Þ

where Eintra
A represents the intraatomic (also called “self” or “monobasin”) energy of

each atom, while Einter
AB stands for the interaction energy between each pair of atoms

A and B. More specifically,

Eintra
A ¼ TA þEne

A þEee
A : ð16:4Þ

where TA represents the atomic kinetic energy, Ene
A the attraction energy of the

electrons inside basin ΩA by nucleus A, and Eee
A the electron-electron repulsion

energy between the electrons inside the same basin.
Similarly, the pair interaction terms can be decomposed following:

Einter
AB ¼ Enn

AB þEne
AB þEen

AB þEee
AB; ð16:5Þ

where Enn
AB is the repulsion energy between nuclei A and B, Ene

AB (respectively Een
AB)

the attraction energy of the electrons in basin ΩB (resp. ΩA) by nucleus A (resp. B),
and Eee

AB the energy due to the repulsion between electrons in ΩB with those inside
ΩA.

Using perturbation theory, this last term can be rigorously split into pure
Coulombic classical and exchange-correlation (“pure quantum”) contributions:
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Eee
AB ¼

Z
XA

Z
XB

q ~rAð Þq ~rBð Þ
~rA �~rBk k d3rAd

3rB

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Eee;cl
AB

þEee;xc
AB : ð16:6Þ

Equation 16.5 can thus be rewritten:

Einter
AB ¼ Enn

AB þEne
AB þEen

AB þEee;cl
AB|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ecl
AB

þEee;xc
AB � Ecl

AB þEee;xc
AB ; ð16:7Þ

where Ecl
AB is the so-called total Coulombic classical part of the interaction energy

between the two considered atoms (note however that it may indirectly include
quantum effects since the integral in Eq. 16.6 may involve the electron density
obtained through quantum calculations). Obviously, the very same decomposition
can be made for the intraatomic electron-electron repulsion energy:

Eee
A ¼ Eee;cl

A þEee;xc
A : ð16:8Þ

One can go further by using the following expansion in terms of regular Rl,m and
irregular Il,m normalized spherical harmonics [74–76]:

1
~RB �~RA
� �� ~rA �~rBð Þ�� �� ¼

Xþ1

l¼0

Xþ l

m¼�l

ð�1ÞmIl;m ~RB �~RA
� �

Rl;�m ~rA �~rBð Þ; ð16:9Þ

so that the classical Coulombic interaction between any atom pair reads:

Ecl
AB ¼

X
lA;lB;mA;mB

GlA;lB;mA;mB
~RB �~RA
� �

QlA;mAðAÞQlB;mBðBÞ; ð16:10Þ

where G is a pure geometric tensor and Ql,m are the so-called atomic multipole
moments. In particular, the first term is given by point charges interaction (in atomic
units):

Ecl
AB ¼ qðAÞqðBÞ

~RB �~RA

�� �� þ higher terms; ð16:11Þ

the higher terms including the interaction between atomic charge-atomic dipole,
atomic dipole-atomic dipole etc., and being essential for a correct description of
electrostatics, notably in biological systems [77]. One of the peculiarities of
QTAIM is indeed that it defines atomic dipole: as the electron density is anisotropic
inside a basin due to its environment, the barycentre of the negative charge inside
the basin is thus not anymore confounded with the nucleus position, creating a
dipole inside the atom. This fruitful concept notably explains the very small dipole
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moment of carbon monoxide (via counterpolarization) [78] and can be also used to
characterize charge transfers and repolarization upon light absorption [79, 80].

Finally, it should be stressed that this full energetic decomposition, coined
“interacting quantum atoms” (IQA) by Pendás and coworkers (who have applied it
to very different systems, proving its versatility [81–87]), is in principle exact.
However, as it is grounded on the partition of the first-order reduced density matrix
(RDM) for the kinetic part and of the second-order RDM to decompose the total
electron-electron repulsion energy, it should a priori be used only in conjunction
with (post Hartree-Fock) wavefunction theory. We will mark this fact by explicitly
writing these energetic terms as functionals of the wavefunction (E ¼ E½w�).

Indeed, density functional theory (DFT) in principle provides (in the
Hohenberg-Kohn as well as in its Kohn-Sham (KS) formulation) only the exact
electron density, but does not afford direct ways to evaluate the first and
second-order RDMs, and this would remain true even if the exact density functional
was known in analytical form. Nevertheless, the IQA approach can be used in a KS
framework in an approximate way. In practice, the intraatomic contributions will be
evaluated using:

Eintra
A;KS ¼ TKS

A wKS
i

� �� 	þEne
A;KS½q� þEee;cl

A;KS½q� þEee;x
A;KS wKS

i

� �� 	
; ð16:12Þ

where TKS denotes the kinetic energy of the fictitious KS non-interacting system
and wKS

i

� �
are the KS orbitals. When dealing with functionals, one should dis-

tinguish between two different concepts: the functional itself (that-is-to-say its
mathematical expression) and the numerical value it gives in the calculation.
A given functional A½f � can give inaccurate numbers for two reasons (that might
occur simultaneously): (1) the exact f function is unknown; (2) the A functional is
only approximated. As an example, we can consider Ene

A;KS½q�. The functional is
exactly known (

R
XA

q ~rð Þvext ~rð Þdr, where vext ~rð Þ is the external potential created by
the nuclei), but it will be evaluated in practice on an approximate density
(Ene

A;KS½qapprox�).
Actually, all functionals in Eq. 16.12 are exact in the sense that they would

provide the exact KS value if the exact density and KS orbitals were used. Note that
the exchange part is exact in this perspective as a functional of the KS orbitals, but
that it is not exactly known as a functional of the electron density. However, as the
first-order RDM based on KS orbitals is not in general (even if the exact KS orbitals
were determined) equal to that of the real system (only their diagonal element,
namely the electron density, must be in principle equal), one has:

Eee;x
A;KS wKS

i;exact

n oh i
6¼ Eee;x

A ½wexact�: ð16:13Þ
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Moreover, Eq. 16.12 lacks the so-called correlation kinetic energy, so that:

TKS
A wKS

i;exact

n oh i
6¼ TA½w�: ð16:14Þ

The same analysis could be done for the interatomic energies. In this approach,
we will have:

Eee
AB;KS ¼ Eee;cl

AB;KS½q� þEee;x
AB;KS wKS

i

� �� 	
; ð16:15Þ

with:

Eee;cl
AB;KS qexact½ � ¼ Eee;cl

AB wexact½ �
Eee;x
AB;KS wKS

i;exact

n oh i
6¼ Eee;x

AB ½w�:

(
ð16:16Þ

Such possible discrepancies between wavefunction-IQA and KS-IQA could
make us think that KS-IQA is unwarranty. Interestingly, the very same question has
arisen for the evaluation of delocalization indexes [88] and for the atomic energies
derived from the virial theorem. Matta and coworkers have discussed it in great
detail from the theoretical point of view in the annex of Ref. [89], and also pro-
vided, in the same paper, definitive numerical evidence that KS virial energies
could be effectively used as surrogates for the real atomic energies, in particular
when one is interested in energy differences.

Similarly, we recently gave numerical proofs [61, 65] that the differences
between wavefunction-IQA and KS-IQA are numerically small, so that KS-IQA
can be safely used for semi-quantitative purposes. Accordingly, we will use it
throughout this chapter (for sake of clarity, the KS and ee subscript and superscript
will now be omitted).

It must be however remarked that electron-electron correlation effects are
missing in Eq. 16.12. For weak interactions like halogen bonds, the correlation
effects mainly manifest through dispersion. It has notably been proved that some
halogen-bonded complexes exhibit important dispersion [90]. From a pragmatic
point of view, it can be approximated within DFT by the addition of pair-potentials,
as pioneered by Grimme. In the so-called D2 scheme [91], one evaluates the
dispersion correction between two atoms solely based on internuclei distance and
C6 atomic coefficients:

Edisp
AB ¼ �s6fdmpðRABÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C6ðAÞC6ðBÞ

p
R6
AB

; ð16:17Þ

where fdmp denotes a damping factor (here of the Fermi-Dirac type) that switches
the interaction off at small interaction distances. Note that a priori these C6 coef-
ficients should be calculated for the atom inside the considered molecule.
Nevertheless, tabulated constant atomic values can be used as a first step.
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It must be emphasized that this D2 procedure actually provides a correction to
the DFT approximations in order to recover the correct interaction energies for
reference van der Waals systems, and not a direct evaluation of the dispersion
energy. Indeed, some DFT approximations can partly (and often fortuitously)
include dispersion effects [92]. Nonetheless, in case of functionals that are known to
fully miss dispersion (typically B3LYP), it is reasonable to presume that the cor-
rection will be close to the real dispersion energy. In consequence, the dispersion
interaction energy between any atom pair will be evaluated by the B3LYP-D2
correction.

16.2.2 Basics of QTAIM: Critical Points

QTAIM also includes a complementary local approach to atomic interactions, by
focusing on the so-called critical points (CPs), defined as points in real space where
the electron density gradient vanishes. CPs can be classified by their rank r and their
signature s, this last number being the sum of the signs of the density Hessian
eigenvalues. For instance, in this (r, s) nomenclature, (3, −3) CPs correspond to
attractors (in general nuclei). The Poincaré-Hopf (PH) relationship imposes that the
numbers of the different BCP types are linked according to (for a non-periodic
system):

nð3;�3Þ � nð3;�1Þ þ nð3;þ 1Þ þ nð3;�3Þ ¼ 1: ð16:18Þ

Of particular importance are (3, −1) CPs. They correspond to a minimum of
density along a direction and to a maximum in the two perpendicular directions. At
a molecular equilibrium geometry, they are called “bond critical points” (BCPs) and
then enable to determine which atoms are bonded in the orthodox QTAIM sense:
two atoms are bonded if and only if a BCP is present between them, the union of the
two GPs linking the BCP to each nucleus being named the “bond path”. Note that
such a characterization has raised some controversies in the last decades (see Ref.
[93] for a recent discussion). However, the existence of a bond path is a funda-
mental feature that has been explicitly mentioned in the IUPAC definition [1] of
halogen bonds.

Noteworthy, BCPs properties usually provide valuable information about the
bond itself. For instance, covalent bonds are characterized by high electron density
values (ρc) at BCPs, while ρc is typically very low for non-covalent bonds like
hydrogen, agostic, halogen, and van der Waals ones [94–97]. Another important
descriptor is the BCP density laplacian value that quantifies the electron accumu-
lation (negative values) or depletion (positive values) at the BCP. Thus, very
negative values are observed for covalent bonds (“shared interactions” in Bader’s
vocabulary), while ionic (“closed-shell” interactions) ones feature positive values.
Many relationships between interaction energies and (qc; r2qc) have been reported
in the literature.
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For completeness, one can mention that others local descriptors have been
designed over the years (ellipticity, various density energies like the Gc and Kc

kinetic, potential Vc, Hamiltonian Hc ones at BCP, reduced density gradient variation
rates [98], DFT-based local descriptors [99]…). Besides, following the appearance
and disappearance of critical points also constitutes an efficient way of describing the
mechanism of chemical transformations (see Ref. [100] for a recent example).

16.2.3 Computational Details

Consistently with our previous works, and as recommended by Kozuch and Martin
[101], the ωB97X-D exchange-correlation functional [102] was used in conjunction
with the triple-ζ aug-cc-pVTZ basis set. Potential energy surfaces were explored
through relaxed energy scans on the X…N (X being any halogen) distance with a
stepsize equal to 0.07 Å. All DFT calculations were carried out using the Gaussian 09
software [103], while Keith’s AIMAll program [104] was used for the whole topo-
logical analysis.

16.3 Unravelling Halogen Bond Formation
with the QTAIM-IQA Approach

As first examples, we will consider the Cl3COX…NH3 complexes (X = F, Cl, and
Br) that belong to the R3COX…NH3 family, which was studied by Politzer [56]
and recently revisited by us within the framework of conceptual DFT [67] and
density Laplacian maps [68].

16.3.1 Potential Energy Surfaces

The potential energy surface along the X…N distance coordinate for the three
complexes is represented in Graph 16.1.

It clearly appears that an energy minimum (from the SCF energy point of view) is
located in the chlorine and bromine cases, while the curve exhibits an overall
repulsive interaction between the two moieties for X = F.1 Consistently with the
higher bromine electrophilicity and its higher polarizability, the complexation energy
is larger for Br than for Cl. Noticeably, while bromine is in general a bigger atom
than chlorine, the equilibrium distance for the bromine complex is slightly smaller
than that for the chlorine one: the contraction due to the halogen bond formation is
thus larger.

1Very small negative values for large separation distances are due to basis set superposition errors.
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16.3.2 Electron Density Topology

The same topology is observed at any distance for the three systems: a (3, −1) CP is
present between the two moieties.2 This is actually expected from the Poincaré-
Hopf (PH) relationship, as derived in Ref. [105]. Indeed, the two fragments keep

Graph 16.1 Relative energies (with respect to the optimized free fragments) for the Cl3COX…
NH3 complexes as a function of the X…N distance

Graph 16.2 Variations of qð3;�1Þ (left) and r2qð3;�1Þ (right) as a function of the X…N distance
for the Cl3COX…NH3 complexes

2It is fundamental to notice that this critical point is a BCP at the equilibrium geometry for the
chlorine and bromine complexes, while no BCP is present along the fluorine pathway since it does
not feature any equilibrium geometry.
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their promolecular essence in the complex since they still fulfil the PH equality
given by Eq. 16.18. Thus, in order that the total complex also respects PH at the
molecular level, at least one (3, −1) or one (3, −3) must be created, a pure math-
ematical effect, independent of the nature of the interactions between the moieties
(as also discussed in Ref. [65]). Graph 16.2 shows the variations of the electron
density and laplacian values at this (3, −1) CP.

The curves are all similar in the attractive part of the potential energy surface: the
electron density and laplacian values increase, but qð3;�1Þ remains small (consistently

with the assumed non-covalent nature of the interactions), and r2qð3;�1Þ is still
positive (in accordance with their expected noncovalent character). However, these
(3, −1) CP properties do not enable to discriminate between stable and unstable
complexes (that is between X = Br, Cl on one hand, and X = F on the other hand).

It can be added that neither do some other local real space approaches like the
noncovalent interactions index (NCI) [106], which will predict attraction in all
cases due to the presence of this (3, −1) CP, as also revealed for similar systems by
Cormanich et al. [107]. Such local approaches should thus be complemented by
integrated ones. To this aim, the IQA scheme is certainly particularly appealing.

16.3.3 Energy Decomposition of the Primary X…N
Interaction

As discussed in the theory section, these DFT relative energies include both
intraatomic and interatomic contributions. We will firstly examine the primary
interatomic interaction between atoms X and N within the KS-IQA formalism
(Eqs. 16.5 and 16.16) as represented in Graph 16.3.

Graph 16.3 IQA interaction
energies between atoms X and
N (primary interaction) as a
function of the X…N distance
for the Cl3COX…NH3

complexes
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It is found negative at any distance for Cl and Br (more stabilizing in that case),
being larger and larger as the distance decreases. On the contrary, it is noteworthy
that the F…N interaction, which is destabilizing at long range, becomes slightly
negative in energy when the distance is lower than about 2.3 Å (but not enough to
overcome the other factors of destabilization, which will be discussed later).

The nature of these diatomic interactions can be further elucidated by decom-
posing them into their classical electrostatic and exchange-correlation (in fact,
exchange in our KS-IQA treatment, see Eq. 16.16) counterparts. As evidenced by
the left part of Graph 16.4, the interaction is stabilizing from a classical electrostatic
point of view at any distance for Cl and Br complexes, while it is destabilizing
whatever the F…N separation.

It is instructive to investigate the weight of the atomic point charges interaction
by defining the following ratio:

%apcXN ¼ 100
qðNÞqðXÞ
RXNEcl

XN
: ð16:19Þ

The corresponding curves are plotted in the right part of Graph 16.4.
As the point charges interaction is the most long-range one (since it decreases in

1/R, while the other terms in the multipolar expansion behave like 1/Rn), it is
intuitive that %apcXN is close to 100 when the fragments are sufficiently remote. For
smaller distances, a clear dichotomy appears: %apcXN increases, becoming larger than
100 for fluorine, whereas it decreases for the two other systems. In other words, the
higher multipolar effects tend to be opposite (stabilizing the interaction) to the point
charges ones for fluorine, while they become of the same magnitude and of the
same sign for chlorine and bromine (see also Ref. [108] for another study of
multipolar effects in halogen bonds). Such competitions can be accounted for by

Graph 16.4 Classical electrostatic energy component (left) and weight of the corresponding point

charges contribution to it (right, %apcXN ¼ 100 qðFÞqðXÞ
rFXEcl

XN
ratio) for the X…N primary interaction as a

function of the X…N distance for the Cl3COX…NH3 complexes. Please note the break at the
middle of the y-axis with two different scales
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looking at the evolution of the atomic charges along the formation path, as repre-
sented in Graph 16.5.

For the three complexes, the atomic charge on nitrogen is strongly negative
(about −1.0 e). As the distance becomes smaller, it looses in any case some elec-
trons (at most 0.1 e for chlorine when Cl…N = 2.0 Å). It can be then expected that
the charge on X will decrease due this direct charge transfer. As shown in the right
part of Graph 16.5, this is partly true for bromine and chlorine (it can be noticed that
not the whole charge lost by N is recovered by Cl and Br, due to the presence of
another electron acceptor atom (O) in the molecule), but the charge can be con-
sidered as remaining constant for fluorine (the variation only amounting to 0.01 e).

More importantly, the charges on Br and Cl are always positive, while it is
negative at any scan point on fluorine owing to its strong electronegativity. As a
consequence, along the studied pathways, qðFÞqðXÞ=RFX is negative for the Br and
Cl complexes, and positive for the F one, precluding, in this last case, the formation
of halogen bond from the classical electrostatic point of view.

However, this is not the only contribution to the interaction energy. One should
in particular scrutinize exchange counterpart (that is negative by definition), which
is plotted in the left part of Graph 16.6.

In all cases, it is higher in absolute value when the interaction distance is small.
Nevertheless, while it reaches the −100 kcal/mol value for Br and Cl (the two
curves being very similar), it is considerably lower in absolute value in Cl3COF…
NH3 (less than 50 kcal/mol at the smallest studied distance), but, in this case, it is
enough high to overcome the classical electrostatic destabilization. Thus, in order to
have more insight on the influence of exchange in bonding, it is valuable to
introduce the following ratio (see the right part of Graph 16.6).

axXN ¼ Ex
XN

Ecl
XN

: ð16:20Þ

Graph 16.5 Selected atomic charges variations as a function of the X…N distance for the Cl3COX…
NH3 complexes. Please note the break in the y-axis for the right part with two different scales
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As exchange is usually less long-range than classical electrostatics, it is not
surprising that axXN tends toward 0 for large separation distances. Conversely, it
becomes predominant at small distances (smaller than approximately 2.4 Å, cor-
responding to axXN

�� ��[ 1). For instance, for F…N = 2.0 Å, Ex
FN = −48.9 kcal/mol

(while Ecl
FN = +19.6 kcal/mol). This hierarchy also holds for the other halogens, as

exemplified by the bromine case: Ex
BrN ¼ �115:3 kcal=mol (while Ecl

BrN ¼
�103:1 kcal=mol for Br…N = 2.0 Å).

At such distances, the use, as an interpretative tool, of the molecular electrostatic
potential (which is simply the Gâteaux derivative of the molecular classical elec-
trostatic energy functional with respect to the electron density) becomes arguable
since classical electrostatics does not exclusively drive the studied interactions. This

Graph 16.6 Interaction exchange energy (left) and axXN ¼ Ex
XN

Ecl
XN

ratio (right) for the X…N primary

interaction as a function of the X…N distance for the Cl3COX…NH3 complexes

Graph 16.7 Interaction
energy due to dispersion for
the X…N primary interaction
as a function of the X…N
distance for the Cl3COX…
NH3 complexes

16 Following Halogen Bonds Formation … 447



is in particular the case at the equilibrium distances for the Cl and Br complexes for
which axCl;BrN � 0:9� 1:1. This dual character of the formed halogen bond (clas-
sical electrostatics and exchange are comparable) is also reflected in the delocal-
ization indexes values that lie in the [0.4; 0.5] range in the bonding part of the
potential energy surfaces (note that these values stull remain far from 1.0 (reached
for instance by the C–C bond in ethane), so that these bonds cannot be considered
covalent).

Lastly, as recalled in the theory section, our KS-IQA treatment does not enable
to properly extract pure correlation effects, but we proposed to use the B3LYP-D2
approach to evaluate dispersion (see Eq. 16.17). Graph 16.7 thus shows the cor-
responding estimated X…N dispersion energy:

As the C6 coefficients mainly depend on the atomic polarizability (cf. London’s
model), dispersion is more important for bromine, then chlorine, and remains small
for fluorine. Yet, in any case, it is smaller than 0.6 kcal/mol in absolute value, so
that its contribution to the primary interaction is negligible with respect to classical
electrostatic and exchange in the three studied complexes. It can also be noticed that
if dispersion between X and N was the main factor driving the formation of these
halogen bonds, then the equilibrium distance would be significantly larger (about
3.0 Å).

16.3.4 Role of the Intraatomic Energies

Up to now, it should be remarked that none of the presented curves for the primary
halogen…nitrogen interaction energies parallels those for the molecular energy.
There is however no contradiction, since, as investigated in details in Ref. [63],
secondary interactions and intraatomic (i.e. monobasin or “self”) energetic com-
ponents are important contributions to take into account in order to recover the total
molecular interaction energies.

We illustrate this last point by inspecting the variation of the monobasin nitrogen
and halogen self energies, plotted in Graph 16.8.

For all adducts, Eintra(N) is increasing when the distance decreases, the nitrogen
atom being more and more destabilized, which in line with the observation that it
looses electrons. For instance, at 2.0 Å, it is equal to +35.1 kcal/mol for the fluorine
complex, a value that is higher in absolute value than the F…N interaction energy
(−29.8 kcal/mol), impeding the formation of a stable species. The variations for the
halogen atoms are more difficult to interpret. For Br and Cl, the halogen intraatomic
energy is rather constant in the (2.2; 3.0 Å) range, certainly due to the fact that these
atoms partly get electrons lost by nitrogen. On the contrary, as the fluorine popu-
lation only varies little, there is no electron transfer to prevail on the destabilization
induced by the density reorganization (and the concomitant rise of the atomic
kinetic energy) inside the basin.
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From all these previous considerations, it seems judicious to define the following
descriptor that involves the main energetic components linked to the primary atoms:

DEtot
XN ¼ EIQA

XN þEdisp
XN þDEintra

IQA ðXÞþDEintra
IQA ðNÞ; ð16:21Þ

where ΔEintra is calculated with respect to the intraatomic energy in the relevant free
isolated fragment. The evolutions of this quantity are depicted in Graph 16.9.

A clear dichotomy is then revealed: DEtot
FN is always positive and is increasing

when the distance F…N is decreased, in concordance with the absence of an
equilibrium geometry, whereas DEtot

BrN and DEtot
ClN are negative and decreasing when

the two moieties get closer, the effect being enhanced for bromine. Obviously,

Graph 16.8 Variations of intraatomic (“self”) energies with respect to the X…N distance (the
origin corresponding to the self energies inside the isolated optimized fragment) for the Cl3COX…
NH3 complexes

Graph 16.9 DEtot
XN (as

defined by Eq. 16.21)
variations with respect to the
X…N distance for the
Cl3COX…NH3 complexes
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DEtot
XN does not enable to retrieve the full molecular energy since the secondary

interactions and the intraatomic energies of the secondary atoms, whose evaluation
can be very time-consuming for large systems (there are about N2 atoms pairs and
IQA implies 6D-integrations), are not included. However, DEtot

XN provides an
expeditious semi-quantitative view of analysing the fundamental role of the primary
atoms for the formation of halogen bonds.

16.3.5 The Case of the Fluorine Bond

It was long thought that fluorine cannot be engaged in halogen bonds. Nevertheless,
both experimental and theoretical evidence was given that, when F is linked to very
electronegative groups, a σ-hole could appear on the outer part of it, so that it can
form a stable complex with a Lewis base [109, 110]. Such a case is epitomized by
the F2 molecule, where the σ-hole (developed in the F–F axis) can be visualized
(see Ref. [111] for the corresponding figures) by both the electrostatic potential and
the first-state specific dual descriptor [112]. As a consequence, a minimum on the
potential energy surface is obtained when F2 interacts with NCCH3,

3 featuring the
F…N distance equal to 3.07 Å, while the molecular complexation energy is equal to
−0.70 kcal/mol.

The primary interaction energy decomposition is presented in Graph 16.10 for
the attractive part of the potential energy surface.

At variance with the Cl3COF…NH3 complex, EIQA
FN is negative whatever the

distance, and increasing in absolute value when the two fragments come closer.
This curve is parallel to that for exchange. The classical electrostatic part is also
decreasing, but remains positive at any point of the potential energy surface. In
other words, it is destabilizing, which seems to contradict the σ-hole paradigm. To
have more insight on this electrostatic component, atomic charges are represented
in Graph 16.11.

As previously noticed, nitrogen is negatively charged and looses electrons when
the distance decreases, but the variation is here one order of magnitude smaller than
in Cl3OF…NH3 (about 0.01 e with respect to around 0.1 e). On the contrary,
fluorine is now positively charged (we recall that for the isolated fragment it is
exactly neutral) and its charge increases when the interaction distance decreases.
These results may seem paradoxical since nitrogen also looses electrons. One thus
may have expected this fluorine atom to gain them. To illustrate the electronic
distribution between atoms, one finds at the equilibrium position, q(N) = −1.212 e,
while q(F) = 0.011 e. Interestingly, for the secondary fluorine atom: q(Fʹ) = −0.018

3We use this partner instead of NH3 because, with ammonia, the creation of a F…H–N hydrogen
bond is largely favoured; besides, the F2…NCCH3 complex has been already studied by Politzer
and coworkers [109], so that comparisons of the different theoretical approaches are possible.
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e. It follows that the electrons lost by nitrogen are actually captured by the other
(secondary) fluorine atom.

It also results from these charges signs that the pure point charges contributions,
Epc
FN , to the classical electrostatic interaction is always stabilizing, contrarily to the

total classical electrostatic part. When going from F…N = 3.68 to F…N = 3.05 Å,
Epc
FN varies from −1.02 to −1.45 kcal/mol, while Ecl

FN goes from to +0.47 to
+0.12 kcal/mol, which implies that the atomic charges are not enough high to fully
overcome the destabilization induced by the higher multipolar moments. In sum-
mary, even if fluorine is not a much polarizable atom and accordingly generates
rather small atomic multipoles, the sum of these quantities dominates the small
positive monopole.

Graph 16.10 Analysis of the
interaction energy between F
and N atoms as a function of
the F…N distance in the F2…
NCCH3 complex

Graph 16.11 Variation of
the atomic charges for F and
N as a function of the F…N
distance in the F2…NCCH3

complex. Please note the
break in the y-axis
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As previously done, the classical electrostatic contribution can be compared to
that of exchange through the axXN descriptor, as shown in the left part of
Graph 16.12.

Its negative sign is plain from our preceding remarks. The weight of exchange
considerably increases as the two partners come closer. Importantly, even for the
largest studied distance (3.68 Å), it is higher than 1.5 in absolute value, indicating
that exchange is already preponderant at this separation (below the horizontal
dotted line at y = −1 in Graph 16.12). This is thus exchange that mainly describes
the F…N interaction.

As for the intraatomic contributions, as expected, both F and N ones decrease in
absolute value when the F…N distance is reduced. These destabilizing factors are
thus once again in competition with the stabilizing interaction energy (mainly due
to exchange). All these effects can be gathered in DEtot

FN (Eq. 16.21). We found that
within the (3.05; 3.68 Å) range, it is monotically decreasing from 4.1 to
3.0 kcal/mol. The curve is henceforth very flat, in strong contrast to the Cl3COF…
NH3 complex (for which the DEtot

FN variation inside the studied F…N distance range
was almost equal to 20 kcal/mol). Fluorine and nitrogen are thus considerably less
“reluctant” to halogen bond formation.

It is also enlightening to look at the secondary interactions. As an example,
Fig. 16.1 reports selected interaction energies between atoms of the two fragments.

It shows, for instance, that the interaction energy, E0
1, between the other fluorine

atom (labelled F8 in Fig. 16.1) and nitrogen is not at all negligible with respect to
the primary interaction (−1.9 kcal/mol to be compared with −2.9 kcal/mol).
However, this secondary interaction is partly compensated by another one, E0

2,
between the same secondary fluorine and the carbon atom adjacent to the nitrogen
(+1.1 kcal/mol), so that E0

1 þE0
2 equals −0.8 kcal/mol. Please note that we refer the

interested reader to our recent paper [63] for a closer and more systematic look at all

Graph 16.12 axXN ¼ Ex
XN

Ecl
XN
(left) and%cdisptot (right, see Eq. 16.22 for definition) ratios with respect to

the F…N distance for the F2…NCCH3 complex
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these secondary contributions that very often compensate between themselves or
with the primary ones.

We have not yet discussed the role of dispersion. From Graph 16.7, it appears to
be a negligible contribution to the interaction between F and N (about
−0.3 kcal/mol). However, contrary to electrostatics, dispersion between the two
fragments (evaluated using the B3LYP-D2 correction) is cumulative: all atomic
pairs contribute to the stabilization of the complex without compensation due to
sign changes (contrarily to the classical electrostatic contribution). It is thus
informative to consider the following ratio that evaluates the total contribution of
dispersion to the complexation energy:

%cdisptot ¼ 100
DEdisp

DExB97XD

¼ 100
Edisp B3LYPD2ðF2. . .NCCH3Þ � Edisp B3LYPD2ðF2Þ � Edisp B3LYPD2ðNCCH3Þ
ESCF xB97XDðF2. . .NCCH3Þ � ESCF xB97XDðF2Þ � ESCF xB97XDðNCCH3Þ :

ð16:22Þ

As shown in the right part of Graph 16.12, the weight of dispersion increases
when the distance decreases, reaching more than 60 % at the equilibrium distance,
while the contribution of dispersion to the primary interaction energy is negligible.
It is thus clear from this simple example that distinguishing total complexation
energy from the primary interaction energy is pivotal to a physical analysis of any
halogen bond.

16.4 Conclusions

In this chapter, we provided evidence that Bader’s atoms-in-molecules provides
deep physical insight into the formation mechanism of halogen bonds. Within this
framework, the interacting quantum atoms decomposition enables to cure the
deficiencies of the local approach based on critical points, and to rigorously assess
the importance of classical electrostatics and quantum effects in terms of energetic
quantities. It was notably shown that even if classical electrostatics (that can be
further decomposed into charge points and multipolar components) generally

Fig. 16.1 Selected IQA interaction energies (which does not include dispersion correction) for the
F2…NCCH3 complex at its equilibrium geometry. All values in kcal/mol
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predominates at long range, exchange becomes an important contribution around
the equilibrium position. Furthermore, the role of atomic destabilization was also
discussed, as well as that of secondary interactions, proving that the stabilization
energy of a halogen-bonded complex is the sum of competing effects, and does not
reduce to the interaction energy between the halogen atom and the nucleophilic
atom of the Lewis base. This is conversely the subtle combination of various factors
that make such interactions challenging and incentivizing for both experimentalists
and theoreticians.
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Chapter 17
Charge Transfer in Beryllium Bonds
and Cooperativity of Beryllium
and Halogen Bonds. A New Perspective

Kateryna Mykolayivna Lemishko, Giovanni Bistoni,
Leonardo Belpassi, Francesco Tarantelli,
M. Merced Montero-Campillo and Manuel Yáñez

Abstract The main characteristics of beryllium bonds formed by the interaction of
different Lewis bases with BeX2 (X = H, F) moieties have been analyzed by means
of the Charge Displacement (CD) function. This analysis is systematically com-
pared with that provided by other approaches based on the topology of the electron
density, namely the quantum theory of atoms in molecules (QTAIM) and the
electron localization function (ELF). The CD scheme provides a quantitative
description of the charge transfer that gives rise to the formation of beryllium
bonds. For systems of suitable symmetry, its decomposition into symmetry con-
tributions allows to easily identify the mechanisms involved in the charge transfer
process, as well as to quantify possible back-donations. The CD function analysis
also provides a clear quantitative description of cooperativity between the beryllium
and halogen bonds in ternary F2Be:FCl:N-base (N-base = NH3, NHCH2, NCH)
complexes, confirming the trends obtained by the QTAIM and ELF methods. The
different viewpoints each of these methodologies provide are clearly complemen-
tary, the CD being the only one that permits to quantify the charge transfer from the
Lewis base to the Lewis acid.
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17.1 Introduction

Non-covalent interactions play a crucial role in nature, because they are responsible
for the organization of practically all molecular assemblies, either of natural origin
like DNA, or of artificial origin, such as the so-called metal-organic-frameworks
(MOFs) [1]. They hold together the so-called ‘‘soft materials’’, characterized by
binding energies of the order of the thermal energy. This definition includes
polymers, colloids and surfactants [1, 2]. Hence, not surprisingly, the detailed
characterization of the noncovalent interactions turns out to be essential for the
development of new molecular materials. In particular, the last two decades have
witnessed a massive development of new materials of potential interest for tech-
nological applications based on molecular assemblies [3, 4]. Over the same period,
the interest on non-covalent interactions has continuously increased, leading to the
characterization of a large variety of them, differing in energy or nature [5]
Remarkably enough, some of them are almost as strong as conventional covalent
linkages [6], thus going beyond the conventional view which describes the non-
covalent interactions as weak interactions between closed-shell systems with no
electron sharing. The most paradigmatic example is the inter- and intramolecular
hydrogen bond; but after its early recognition, similar closed-shell interactions, such
as the dihydrogen [6, 7], halogen [8–10], pnicogen [11–16], chalcogen [17, 18],
beryllium bonds [19, 20] or tetrel interactions [21–23] have been found to con-
tribute to the stability of different molecular assemblies.

It is worth noting that, in this astonishing development, modeling based on the
use of quantum chemistry techniques has played a crucial role. Modeling helps to
save huge amounts of money by providing clues to understand the mechanisms
involved in the material activity and opens the possibility of designing new
materials, with better performances, in very powerful synergy with experiment
[24–35].

One of the signatures of the non-covalent interactions mentioned above is the
polarization of the electron density of the closed-shell system behaving as a Lewis
base towards the closed-shell moiety which acts as a Lewis acid. Again hydrogen
bonds AH···B constitute a paradigmatic example, in which there is an interaction
between the lone-pair of the hydrogen bond acceptor B towards the σAH* anti-
bonding molecular orbital of the hydrogen bond donor [36]. This electronic density
redistribution is mirrored in the lengthening of the A–H bond and the red shift of
the A–H stretching frequency, which characterize this kind of non-covalent inter-
actions [37]. This mechanism reaches its maximum intensity in the so-called dative
bonds, in which a significant charge transfer from the Lewis base towards the Lewis
acid takes place. The difference between dative bonds and the other much weaker
non-covalent interactions mentioned above is essentially quantitative rather than
qualitative.
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These electron density redistributions lead to one of the most interesting char-
acteristics that non-covalent interactions evidenced in recent years: their capability
to modulate the intrinsic properties of the interacting subunits by changing their
donor or acceptor electron capacities [38–40]. In general, the Lewis base has its
intrinsic acidity increased after the formation of the complex, due to the charge
transfer towards the Lewis acid, whose basicity concomitantly increases too.
Depending on the intensity of this charge transfer mechanism, the increase of the
intrinsic acidity of the base can be dramatic. Typical bases like aniline, for instance,
become stronger Bronsted acids than phosphoric acid, whereas 1H-tetrazole
becomes a nitrogen Bronsted acid stronger than perchloric acid [39]. One important
consequence of these acidity enhancements is the possibility of having spontaneous
proton transfers between a Lewis base and a Lewis acid, with the spontaneous
formation of an ion-pair in the gas phase [41, 42], or the formation of polymeric
structures for ditopic monomer presenting one end that acts as a Lewis base
whereas the other acts a Lewis acid [43]. Another signature of the non-covalent
interactions is cooperativity (or anticooperativity), that is the reinforcement (or
weakening) of non-covalent interactions when two or more functionalities coincide
within the same molecular assembly, and is closely related with the aforementioned
electron density redistributions [44–75].

Therefore, the analysis of the electron density distribution of the molecular
aggregates held together through non-covalent interaction can provide valuable
information on both their properties and how these change with respect to the
isolated building blocks. This analysis can be carried out by means of different
techniques, the most popular of which are the Quantum Theory of Atoms in
Molecules (QTAIM) theory [76, 77], the Electron Localization Function
(ELF) [78–80] and the Natural Bond Orbital (NBO) method [81].

The QTAIM approach relies on a topological analysis of the electron density,
ρ(r), allowing to build up the molecular graphs as the ensemble of the critical points
of ρ(r). These include maxima associated with the position of the nuclei, bond and
ring critical points associated with the existence of a bond between two atoms or a
ring, and the bond paths, defined as lines of maximum density which connect two
maxima through a first-order saddle point called bond critical point (BCP). In
general, the electron density at the BCPs offers direct information on the strength of
the bond and the values of the so-called energy density provides information about
the covalent or electrostatic nature of the interaction.

The ELF theory allows one to divide the physical space into regions dominated
by an opposite spin pair or by a single electron. These electronic domains can be
seen as a generalization of the ideas of Lewis, so that the valence shell of a
molecule consists of two types of basin: disynaptic (or polysynaptic) basins, which
belong to two (or more) atomic valence shells and the monosynaptic ones (typically
lone-pairs), which belong to only one valence shell, and therefore correspond to
nonbonding valence density. The basin populations also offer interesting informa-
tion on the strength and characteristics of the bonds.
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The NBO method is particularly well suited to analyze charge transfer mecha-
nisms between two interacting systems through the NBO second order perturbation
analysis between the occupied orbitals of the base and the empty orbitals of the acid
[36]. These ‘‘localized hybrids’’ are obtained as local block eigenvectors of the
one-particle density matrix.

An alternative approach to specifically investigate the charge transfer between
the interacting subunits of a molecular complex is the Charge Displacement
(CD) function, introduced by Belpassi et al. [82] to study the chemical bond
between gold and the noble gases, and later on successfully employed to study the
charge transfer in noncovalent interactions [83–86] and in coordination chemistry
[87–91]. This theoretical scheme permits a quantitative analysis of the actual
electronic charge fluctuation and allows to measure the exact amount of electron
charge that, upon formation of an adduct from two constituting fragments, is
transferred across a plane perpendicular to the bond axis.

In the present study, we used this method to investigate cooperativity between
different non-covalent interactions. For sake of comparison, we also carried out a
parallel analysis using the QTAIM, ELF and NBO approaches. In particular, we
have chosen as suitable benchmark cases complexes stabilized simultaneously by
beryllium bonds, which lead usually to rather strong linkages, and halogen bonds,
which conversely are rather weak non-covalent interactions. As prototypes of
halogen bond, we have considered the complexes that FCl may form with nitrogen
bases in which the hybridization of the basic site changes from sp3, ammonia, to
sp2, methanimine, to sp, hydrogen cyanide. Then these complexes were allowed to
interact, through the fluorine atom of the FCl subunit, with beryllium difluoride, to
form the corresponding beryllium bond.

Since beryllium bonds have attracted much attention in recent years, the first part
of this study will focus on the information that the CD scheme provides on these
kind of linkages, when the base that interacts with the beryllium derivative presents
as basic sites first or second-row atoms. In particular, we have studied the beryllium
bond between BeH2 or BeF2 and H2O, SH2, NH3 and PH3.

17.2 Computational Details

Geometries and electron densities were calculated at the DFT level with the B3LYP
functional, that combines the Becke’s three-parameter non-local hybrid exchange
functional [92] with non-local correlation function of Lee et al. [93]. DFT calcula-
tions have been carried out with Gaussian 09 [94] program using aug-cc-pVTZ basis
set [95] and with ADF suite of programs in combination with TZ2P basis set [96].
The good performance of the B3LYP method to describe the structure of both
beryllium and halogen bonds has been previously assessed in the literature [19, 75].

The QTAIM and the ELF calculations have been carried out by using the
AIMAll [97] and the TopMod [98] program packages, respectively. The NBO
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analysis was carried out by means of the NBO 3.1 suite of programs [99]. The
Charge Displacement (CD) function:

DqðzÞ ¼
Zz

�1
dz0

Z1

�1

Z1

�1
Dqðx; y; z0Þdxdy ð17:1Þ

is defined as a progressive partial integration along a chosen z axis (usually chosen
to be the bond axis between the fragments) of the difference Dq x; y; zð Þ between the
electron density of the complex and that of its constituting fragments, placed
exactly in the same position they occupy in the adduct.

The CD function reflects the electron rearrangement in the boundary region arising
from the formation of the complex in a very effective and visual manner. When
measuring the amount of charge transferred from the donor to the acceptor with this
method, the most common option is to choose as reference the so called ‘‘isodensity
point’’ on the z axis, the point where the electron densities of the interacting species
are equal and tangent. This point is usually close to the BCP provided by QTAIM.

In studying the Be···X (X = H2O, SH2, NH3, PH3) bond, we used as fragments
BeH2 or BeF2 and the Lewis base X. When dealing with triads involving BeF2, FCl
and the nitrogen base, the fragment will be the BeF2 and the remaining FCl:N-base
moiety and as z axis the one joining the Be and the F atom of FCl. Conversely, in
studying the Cl···N bond, we used as fragments the N-base and the remaining
BeF2:FCl moiety and as integration axis, z, the one joining the Cl and the N atom.

17.3 Characterization of Beryllium Bonds

As mentioned in the Introduction, an extensive list of non-covalent interactions
have been successfully characterized by topological methods [100], i.e., hydrogen
bonds, halogen bonds, dihydrogen bonds or pnicogen bonds, but only few of these
in the light of the CD analysis. As beryllium bonds share many common features
with other weak interactions that involve a certain amount of charge transfer [19],
the CD analysis should provide interesting information on the nature of bonding in
beryllium complexes, and in particular on the amount of charge transfer accom-
panying the beryllium bond formation. Therefore, the aim of this section is to
discuss the results of this analysis, trying at the same time to establish the possible
relationships with topological approaches as QTAIM and ELF, and with the
descriptions obtained with the NBO method.

The optimized geometries of the binary complexes under scrutiny, indicating the
corresponding beryllium bond distances, are represented in Fig. 17.1.

The 3D contour plots of the electron density changes accompanying the beryl-
lium bond formation in H2Be–OH2 and F2Be–OH2 are reported in Fig. 17.2, as a
suitable example. Beryllium bonds for both the complexes are characterized by
significant electron density rearrangements all over the whole molecular region of
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these systems, contour plots of Δρ evidencing wide regions of charge accumulation
in the area between BeX2 and water, and in the area around the X substituents
(positive Δρ) whereas the density is depleted from the water region (negative Δρ).

There is also a non-negligible electron density depletion at the Be–X bonding
regions in both cases. This is consistent with the significant lengthening of the Be–
X (X = H, F) bond on going from the isolated BeX2 derivatives to the binary
complexes with the different bases considered. As we will discuss later this finding
is also consistent with the characteristics of the corresponding molecular graphs. It
is also worth noting that, upon the formation of the binary complexes, the BeX2

moiety becomes significantly distorted and it is not linear anymore. We will come
back later to this point when analyzing the NBO description of these systems.

The charge displacement curves for all BeH2 complexes are shown in Fig. 17.3.
This corresponds to the electronic charge that, upon the formation of the com-

plex, is transferred from positive to negative values of a chosen axis, that in our case
coincides with the Be–Y (Y = O, S, N, P) bond, through a plane perpendicular to

Fig. 17.1 Optimized structures for complexes between BeX2 (X = H, F) and different Lewis basis
B (B = NH3, PH3, H2O, SH2 from left to right) at B3LYP/aug-cc-pVTZ level of theory. The Be-X
bond length in free BeX2 is 1.332 Å and 1.379 Å for X = H and X = F, respectively

Fig. 17.2 3D isodensity surfaces (±0.0001 e/a.u.3) of for H2Be–OH2 and F2Be OH2 complexes.
Red surface (negative values) identify charge depletion areas, violet surfaces (positive values)
identify charge accumulation areas

466 K. Mykolayivna Lemishko et al.



this axis at point z. Thus, a positive value of Δq(z) means that the charge passes
from positive to negative values of z. It can be observed that Δq(z) is positive all
over the molecular region, thus showing in an unambiguous manner the presence of
charge transfer from the Lewis base to the beryllium moiety. At the boundary, the
total charge transfer (in e) for BeH2 complexes is 0.115 (NH3), 0.076 (PH3), 0.111
(H2O) and 0.084 (H2S). It is remarkable that the amount of charge transferred is
higher in BeH2 complexes than in BeF2 (see Fig. 17.4), for which total charge
transfer (e) is 0.075 (NH3), 0.063 (PH3), 0.078 (H2O) and 0.063 (H2S).

In principle, one would expect that the greater is the electronegativity of the X
substituent, the greater would become the ability of the beryllium bond to accept
charge. However, though fluorine is more electronegative than chlorine and much
more electronegative than hydrogen, the amount of charge that beryllium atom
accepts in BeF2 is lower than in the BeH2 case. This apparent contradiction has
been explained for both boron derivatives and beryllium derivatives as a conse-
quence of the deformation undergone by the Lewis acid, which significantly
modifies its electron acceptor capacity changing the aforementioned trend. In
contrast with what could be expected from the electronegativity increase by sub-
stituting a H atom by a F atom, it was proved that due to the deformation effects
BH2F and BHF2 are weaker Lewis acids than BH3 and only BF3 is slightly stronger
[101]. Similarly, BeHF was found to be a weaker Lewis acid than BeH2 [102].

Fig. 17.3 CD curves for H2Be–NH3, H2Be–PH3, H2Be–OH2 and H2Be–SH2 complexes
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Interestingly, the QTAIM comparison (Figs. 17.5 and 17.6) between beryllium
bonds is less straightforward. Electron density values at the BCPs are of course
significantly higher in NH3 and H2O complexes than in the PH3 or SH2 ones,
because in the latter case more voluminous second-row atoms are involved, so no
direct conclusions can be extracted from these facts with respect to the strength of
the beryllium bond. It should be noted, however that very similar values are found
if we compare BeH2/BeF2 results: 0.061/0.062 (NH3), 0.037/0.034 (PH3),
0.055/0.057 (H2O) and 0.034/0.032 (H2S), showing that the strength of the
beryllium bond is not necessarily smaller when BeF2 is involved. Further infor-
mation can be obtained when looking at the laplacian of the electron density (∇2ρ)
as Eskandari did studying our set of complexes [103]. The L-function, defined as
the negative of ∇2ρ, presents positive values in regions of charge concentration
(lump) and negative values on regions of charge depletion (hole). As our CD
analysis shows quantitatively, contour maps of the L-function show qualitatively
beryllium bonds as a lump-hole interaction. We looked at the L-function value on
the BCP of the beryllium bond and larger negative values are found for BeH2

complexes than for the BeF2 ones in all cases: −0.339/−0.323 (NH3), −0.114/
−0.087 (PH3), −0.455/−0.429 (H2O), −0.138/−0.099 (SH2).

Fig. 17.4 CD curve for F2Be–NH3, F2Be–PH3, F2Be–OH2 and F2Be–SH2 complexes
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QTAIM is however well suited to provide a good picture of the electron density
re-distributions triggered by the non-covalent interaction. For instance, in Fig. 17.6
is apparent the significant decrease of the electron density at the Be–X (X = H, F)
BCP, which is mirrored in the lengthening of the corresponding bonds on going
from the isolated BeX2 to the binary complexes, as already mentioned. Opposite
changes, although quantitatively smaller, are observed for the electron density at the
BCPs of the bonds between the basic site and the H atoms of the different bases.
Also consistently, the corresponding bonds shrink on going from the isolated base
to the base in the binary complex. This effect is a consequence of the electroneg-
ativity enhancement undergone by the basic site. As indicated by the CD function, a
significant charge transfer takes place from the lone-pairs of the base towards the Be
moiety. Consequently, the basic site tries to recover the charge transferred by
polarizing the valence charge of the hydrogen atoms bonded to it, with the result
that the electron density increases in the internuclear region and concomitantly the
hydrogen atoms become more acidic, as also reflected by the increase of their
natural charge.

Electron sharing becomes much clearer when dealing with ELF results (Figs. 17.7
and 17.8). In all BeH2 complexes (Fig. 17.7), disynaptic basins V(Be,N), V(Be,P), V
(Be,O) and V(Be,S) are found. Lone pairs originally from N and O atoms are now

Fig. 17.5 Molecular graphs of H2Be–NH3, H2Be–PH3, H2Be–OH2 and H2Be–SH2 complexes.
Green points correspond to BCPs along with their electron densities
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Fig. 17.6 Molecular graphs of F2Be–NH3, F2Be–PH3, F2Be–OH2 and F2Be–SH2 complexes, and
of the monomers they involved. Green points correspond to BCPs along with their electron
densities

Fig. 17.7 Three-dimensional
ELF plots (ELF = 0.85) of
H2Be–NH3, H2Be–PH3,
H2Be–OH2 and H2Be–SH2

complexes with the
population of the basins in e
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strongly interacting with the empty beryllium orbitals in such a way that those pairs
appear as shared by the atoms involved in the beryllium bond. Phosphine complex
behaves similar to ammonia, whereas BeH2–SH2 complex is different from the water
one: both hydrogens from H2S are not co-planar with BeH2, and lone pairs of sulfur
are split into two contributions: a V(Be,S) disynaptic basin and a monosynaptic V(S)
basin located over the BeH2 plane. We will return later on this BeH2–SH2 complex,
as CD analysis can provide more detailed information.

If we pay attention to ELF results for BeF2 complexes (Fig. 17.8), there are
many interesting changes with respect to the previous picture. The disynaptic basin
V(Be,P) becomes a monosynaptic V(P) pair, whereas the three V(Be,O) basins
summing 4.48 e split in two V(O) basins (3.68 e) and one basin V(Be,O) with less
than one electron (0.82 e). Regarding sulfur, all basins around this atom are now

Fig. 17.8 Three-dimensional ELF plots (ELF = 0.85) of F2Be–NH3, F2Be–PH3, F2Be–OH2 and
F2Be–SH2 complexes and of the corresponding monomers. Yellow, red, green and blue lobes
correspond to disynaptic basins involving H atoms, monosynaptic lone pair basins, to disynaptic
basins between two bonded atoms, and to monosynaptic atomic cores, respectively. The
population of the different basins is given in e−
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monosynaptic. ELF and CD clearly show how charge donation towards beryllium is
less effective with BeF2 with respect to BeH2 and offer a much unambiguous
interpretation than QTAIM.

There are other interesting features in Fig. 17.7. For instance, when the BeF2:
NH3 complex is formed, not only the V(N) monosynaptic basin on ammonia
changes into a V(Be,N) disynaptic basin, but also undergoes a significant volume
contraction, in spite of the fact that its total population decreases only slightly. This
is a direct consequence of the strength of the interaction leading to a very short
Be···N distance and therefore the volume of the basin becomes almost 1/3 the one
in the isolated base. Similar changes are observed for the other complexes. It can
also be noted in agreement with our previous CD and QTAIM analysis that the
population of the V(Be,F) disynaptic basin decreases quite significantly in the
binary complexes with respect to the isolated BeF2 molecule, leading to a weaker
and longer Be–F bond. In addition, the net population at the F lone pairs increases.

The description of the NBO is in line with that obtained by means of these
approaches, showing that the formation of a beryllium bond involves the interaction
of the lone-pair of the base with both the empty 2p orbitals of Be and the σBeX*
antibonding orbitals. The latter interaction is directly responsible of the lengthening
of the Be–X linkages already discussed, whereas the former accounts for the
bending of the BeX2 moiety, because the population of the initially empty p orbital
of Be, changes its hybridization from sp to spn, n being greater than one [19].

It is now interesting to look at the information that CD scheme can provide in the
quantification of the different charge flows associated with the bond formation. As a
suitable example, we will study the beryllium bond formation in the complexes of
H2O and H2S, taking advantage of the symmetry of these complexes. Indeed, the
electron density difference can be partitioned according to the irreducible repre-
sentation of the point group to which both the molecule and the fragments belong
[87]. This permits the separation of the electron density difference into symmetry
components, according to the following equations:

Dq ¼ RpDqp ð17:2Þ

Dq ¼ Ri2pj/i ABð Þj2 � Ri2pj/i Að Þj2 � Ri2pj/i Bð Þj2 ð17:3Þ

where p labels the different irreducible representations. A, B and AB represent the
two monomers and the complex, respectively, while ϕi are Kohn-Sham orbitals.
This decomposition permits the separation of the overall CD function into additive
symmetry component.

The H2Be–OH2 complex belongs to the C2v symmetry point group with all
nuclei laying in the σv(yz) plane. The other symmetry plane σv(xz), containing the
Be and O nuclei, cut in half both the H–Be–H, and the H–O–H angles.
Accordingly, the A1 component is expected to correlate with the donation from
occupied lone pairs of water to unoccupied spz orbital (of beryllium atom) and σ*
(of the Be–H bond) of BeH2. The B1 symmetry correlates with the donation to the
out-of-plane unoccupied px orbital of Be and B2 corresponds to the backdonation
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from the σ bonding orbitals (Be–H bond) to the empty orbitals of the Lewis base of
suitable symmetry. The A2 component does not represents any important
contribution.

The corresponding CD functions are reported in Fig. 17.9 (left panel). The major
contribution to the total charge transfer has the A1 symmetry component that
correlates with the spz orbital of the beryllium atom, whereas the donation to the
formally empty px orbital (of beryllium in the Be–H2 moiety) amounts to only the
12 % of the total charge transfer taken at the isodensity boundary (the center of the
yellow wide line). No significant backdonation is present in this case (the curve
labeled as B2 is indeed very small in the interfragment region where crosses the
zero axis).

The H2Be–SH2 complex belongs to Cs symmetry and symmetry plane (σh) cuts
in half both the H–Be–H and the H–S–H bond. Consequently, the A′ symmetry
correlates with the donation into formally empty px, spz (of Be) and σ* (of Be–H)
orbitals while the A′′ symmetry correlates to the backdonation from the occupied
orbitals of Be–H2 (i.e. the σ orbitals of the two Be–H bonds) to the unoccupied
orbitals of the SH2 molecule of suitable symmetry.

As clearly emerges from the analysis of the corresponding CD functions (right
panel Fig. 17.9), the situation in this case is markedly different from the H2O case.
In particular, the curve referred as A′′ is always negative, thus indicating the
presence of a significant amount of back-donation from the Be–H bonding orbitals
to the empty orbitals of H2S. The CD curve varies significantly along the inter-
molecular region, reaching its minimum near the isodensity boundary. At this point,
the amount of charge back-donated from beryllium to the Lewis base reaches 0.037
e, which is around 45 % of the total amount of charge transfer taken at the iso-
density point (0.084 e). Even if 0.121 e are donated from the H2S moiety to the
Lewis acid, the back-donation decreases the overall amount of charge transfer from
the basic site to the acid site, making it significantly lower than in the H2Be–OH2

case. The difference between H2S and H2O complexes could, at least partially, be
imputed to the different mutual orientation of the molecules. This is something also

Fig. 17.9 CD curve for H2Be–OH2 and H2Be–SH2 complexes according to their irreducible
representations
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evidenced by the shape and position of basins around S atom in ELF pics of these
complexes in Fig. 17.7.

We thought it was interesting to investigate whether there is some correlation
between the charge transfer (CT) and the interaction energies (Eint) in the binary
complexes defined as the difference between the electronic energy of the complex
and the monomers with the same geometry they have in the complex. Similarly, we
have also analyzed the possible correlation between CT and the deformation of the
BeX2 unit as measured by the value of the X–Be–X angle. The results obtained
have been summarized in Table 17.1.

Although a rough correlation seems to exist between the interaction energy and
the distortion of the BeX2 moiety, no correlation seems to exist at all when the
interaction energy is replaced by CT. Consistently, no correlation between charge
transfer and interaction energies is found either. For instance, the amount of charge
transfer in H2Be–NH3 is 0.040 e higher than in F2Be–NH3 although interaction
energy in the latter complex is more than 26 kJ/mol higher (see Table 17.1). The
presence of some other components (like the electrostatic one) should play a
non-negligible role. Interestingly, ELF shows that, on passing from BeH2

(Fig. 17.7) to BeF2 (Fig. 17.8), the basins in the boundary region gain some average
population (0.02 e), although some of these basins become lone pairs. In other
words, the interboundary region is slightly more populated in BeF2 complexes but
less shared, what seems to be related with the increase in the interaction energies
but a decrease of the total amount of CT.

In summary, topological tools as QTAIM, ELF and CD can offer a comple-
mentary and very complete description of beryllium bonds. These bonds, taking
into account their energetic and the amount of charge transferred from donor to
acceptor, go clearly beyond the typical definition of non-covalent interactions
(i.e. weak interactions between closed-shell systems with no electron sharing). They
present some clear features: (i) interaction energies range within 10–40 kcal/mol,
typical of weak covalent bonds; (ii) the net contribution of charge transfer from
donor to acceptor is significantly larger than the one usually found in hydrogen
bonds (for example, CT in water dimer is of 0.014–0.015 e [104], about five times
smaller than we found here for BeX2–OH2); (iii) for suitable interfragment

Table 17.1 Charge transfer
(CT), interaction energies
(Eint) and X–Be–X angles
obtained at the
B3LYP/aug-cc-pVTZ level of
theory

Complex CT (e) Eint (kJ/mol) ∠X–Be–X (deg)

H2Be–NH3 0.115 −133.0 138.8

H2Be–PH3 0.076 −57.8 145.8

H2Be–OH2 0.111 −106.2 145.4

H2Be–OH2 0.084 −32.2 147.8

F2Be–NH3 0.075 −159.7 137.4

F2Be–PH3 0.063 −69.9 144.8

F2Be–OH2 0.078 −128.3 142.6

F2Be–SH2 0.063 −37.4 146.4
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orientation and Lewis bases, beryllium bond may present a certain amount of CT in
direction going from the beryllium moiety to the base (i.e. non-negligible back-
donation), as typically occurs for transition metals in coordination bonding.

17.4 Cooperativity Between Beryllium Bonds and Halogen
Bonds. The F2Be:FCl:NCH Complex

In this section we study the cooperativity of halogen and beryllium bonds by
comparing the electronic structure of F2Be:FCl and FCl:NCH with the one of the
corresponding ternary complex, namely F2Be:FCl:NCH. Our aim is to quantify the
effect of the base on the Be···F bonding features and, at the same time, to under-
stand how the Cl···N bond is affected by the presence of the BeF2 moiety.

We start comparing the Be···F (FCl) bonding features between F2Be:FCl and
F2Be:FCl:NCH. The corresponding CD curves are reported in Fig. 17.10 as black
and green solid lines, for F2Be:FCl:NCH and F2Be:FCl, respectively. Each curve
provides a quantitative picture of the charge flow associated to the formation of the
beryllium bond in the corresponding system, while the comparison between them
gives information on the cooperative effect. Remarkably enough, both curves are
positive in the Be–F region, demonstrating the presence of a significant Be ← F
charge transfer in both cases. Moreover, at a given z point, the curve of the ternary
complex always assumes greater values with respect to the binary complex, indi-
cating that the presence of the base enhances the Be ← F charge flow.

Fig. 17.10 Solid lines are the CD functions for the formation of the Be···F bond in F2Be:FCl:
NCH (black) and F2B:FCl (green). The dotted black line corresponds to the formation of the
beryllium bond in the binary complex when atomic positions are frozen to the ones of the ternary
complex. In all cases, the z-axis is the one joining the beryllium and the fluorine atom (FCl) and
the Be atom lies in the origin (black dot in the z axis). The vertical line identifies the isodensity
boundary of the ternary complex
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As a standard, we use the value of the CD function at the point along the z-axis
where equal-valued isodensity surfaces of the isolated fragments become tangent
(vertical band in the Figures, see caption for details) to estimate the charge transfer
(CT) between the fragments. This indicates that the CT associated to the formation
of the Be···F bond is amplified through cooperative effect by 130 %, going from the
0.036 e transferred (Be ← F) in F2Be:FCl to the 0.082 e transferred in the ternary
F2Be:FCl:NCH complex.

The next step of our investigation is the study of the electron density rear-
rangement upon Cl···N bond formation in both the ternary complex F2Be:FCl:NCH
and the binary complex FCl:NCH. The corresponding CD curves are shown in
Fig. 17.11 (again, the black solid line refers to the ternary complex and the green
solid line to the binary one). Similarly to what we have found in the case of the
beryllium bond, the curve of the ternary complex is always above to the one of the
binary complex, indicating an increased Cl ← N charge flow. The CT associated to
the formation of the Cl···N bond goes from the 0.038 e(Cl ← N) of FCl···NCH to
the 0.171 e of the ternary F2Be:FCl:NCH complex (+350 %).

It is interesting to notice that the FCl ← NCH and the F2Be ← FCl charge
transfers are of very similar magnitude in the isolated binary complexes, while the
situation dramatically changes in the ternary complex, with the F2Be:FCl ← NCH
CT becoming about twice as large as that of F2Be ← FCl:NCH. However, at least
part of this difference has to be attributed to the different shortening of the corre-
sponding bonds on going from the binary complex to the ternary one, that is of 0.3
Å for Be···F and 0.5 Å for Cl···N.

Fig. 17.11 Solid lines are the CD functions for the formation of the Cl···N bond in F2Be:FCl:
NCH (black) and FCl:NCH (green). The dotted black line corresponds to the formation of the
halogen bond in the binary complex when atomic positions are frozen to the ones of the ternary
complex. In all cases, the z-axis is the one joining the chlorine and the nitrogen atoms and the Cl
atom being at the origin (black dot in the z axis). The vertical line identifies the isodensity
boundary of the ternary complex
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The significant differences in the bonding distances between the binary and
ternary complexes led us to study the beryllium and the halogen bonds in the
geometry obtained by freezing the binary complex atoms at the position they
occupy in the ternary complex. By comparing the bonding features of these systems
with the ones of the ternary complex, we want to estimate the net electronic effect
due to cooperativity, leaving out effects due to the geometry relaxation.

Before discussing cooperativity, it is necessary to compare the Be···F and Cl···N
bonds when binary complexes are on their minimum configuration with the ones of
the “frozen” binary complexes. The CD curve for the Be···F bond in the geometry
obtained by removing the NCH atoms from the ternary complex structure while
keeping the remaining atoms frozen at the same position is the black dotted line of
Fig. 17.10. In this case, we observed a CT of 0.039 e, only 0.003 e larger than the
one of the relaxed binary complex, despite the significant shortening of the Be···F
bond. Conversely, the CD associated with the formation of the Cl···N bond in the
structure obtained by removing the BeF2 molecule from the ternary complex (black
dotted line of Fig. 17.13) shows the presence of net charge transfer between the
fragments of 0.127 e, significantly higher than the 0.038 e transferred when the
binary complex is on its relaxed configuration. This behavior is consistent with the
shortening observed in the presence of a single, σ component of the interaction.

It is remarkable that, if we use the frozen binary complex as reference, the Cl←N
charge transfer increases in the ternary complex (F2Be:FCl:NCH) by 0.044 e, that is
similar to the increment of 0.041 e observed in the case of the Be← F charge transfer
upon inclusion of the NCH group.

It is worth noting that the description provided by the QTAIM theory is quali-
tatively similar, but with some quantitative differences. As shown in Fig. 17.12, the
electron density at the F2Be···FCl BCP for the complex in its equilibrium con-
formation is smaller than when the complex has the same geometry as in the F2Be:
FCl:NCH ternary complex. The same finding is observed as far as the FCl···NCH
interaction is concerned. This trend is in agreement with the increasing CT observed
on going from the relaxed dimer to the frozen dimer extracted by our CD analysis,
which is expected to be closely related to the electron density at the BCP. However,
quantitatively speaking, whereas the change in the Cl···N BCP is twice as large as

Fig. 17.12 Molecular graphs of the BeF2:FCl and FCl:NCH complexes in their equilibrium
conformation and with the geometries (frozen) they have at the corresponding ternary F2Be:FCl:
NCH complex. Green dots denote BCPs. Electron densities are in a.u
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that at the Be···F BCP, the corresponding difference in the CT component is much
bigger. This points to the fact that the electron densities at the BCP do not depend
only by the amount of charge transferred but also on the physical volume in which
it is accommodated.

17.5 Effect of the Nature of the Basic Site
on Cooperativity. Comparison of F2Be:FCl:Nbase
(N-Base = NCH, NHCH2, NH3) Ternary Complexes

In this section we extend our study by including different ternary complexes. In
particular, we study complexes of formula F2Be:FCl:N-base, where the N-base are
the sp, sp2 and sp3 hybridized bases NCH, NHCH2 and NH3, respectively. We
focused here on the comparison between the beryllium/halogen bonds in the ternary
complex and in the binary ones frozen at the same positions they occupy in the
ternary complex.

The CD curves associated to the formation of the Be···F bond in these three
systems are shown in Fig. 17.13 as black, blue and red solid lines, respectively for
N-base = NCH, NHCH2 and NH3. Remarkably enough, all curves are positive in
the Be–F (FCl) region, demonstrating the presence of a significant Be ← F charge
transfer. In the Be–F region, the black curve always assumes smaller values,

Fig. 17.13 Solid lines are the CD functions for the formation of the Be···F bond in F2Be:FCl:
N-base (black line for NCH, red for NHCH2 and blue for NH3). Their analogues for the binary
complexes F2Be···FCl obtained by removing the N-base fragment (all atoms are frozen at the same
positions they occupy in the ternary complex) are also reported for comparison as dotted lines with
the same color. In all cases, the z-axis is the one joining the beryllium and the fluorine atoms
(FCl) the Be atom being at the origin (black dot in the z axis). The vertical band contains the
isodensity boundary of the ternary complexes
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indicating that the CT component is smaller in F2Be:FCl:NCH than in F2Be:FCl:
NHCH2 and F2Be:FCl:NH3. These latter show very similar curves all over the
molecular region. The total CT extracted at the isodensity boundary are 0.082 e,
0.101 e and 0.095 e, for N-base = NCH, NHCH2 and NH3, respectively.

The CD functions associated to the formation of beryllium bond in the structure
obtained by removing the N-base fragment from the ternary complex are reported in
Fig. 17.13 as black, blue and red dotted lines for NCH, NHCH2 and NH3,
respectively. Therefore, the differences between the dotted lines are due to the
different geometry of each F2Be:FCl:N-base system, while the difference between a
solid and a dotted line of the same color can be used to estimate the net electronic
effect due to cooperativity, as we previously did in the case of F2Be:FCl:NCH. As
clearly emerges from the figure, the difference between solid and dotted lines
changes from color to color, indicating that different bases affect differently the
Be···F bond. In particular, the difference taken at the isodensity boundary is of
+0.041, +0.112 and +0.077, for the sp, sp2 and sp3 hybridized bases, respectively.
This shows that the cooperativity effect in enhancing the Be ← F CT strongly
depends even on the nature of the base.

Figure 17.14 exhibits the CD functions associated to the formation of the Cl···N
bond. As revealed by this Figure, changing the N-base strongly affects the Cl–N
interaction, with the sp hybridized NCH showing the smallest Cl ← N CT. F2Be:
FCl:NHCH2 and F2Be:FCl:NH3 show very similar curves all over the molecular
region. The total CT is now 0.171, 0.369 and 0.352 e, for N-base = NCH, NHCH2

and NH3, respectively. Indeed, the charge donated from the sp2 and sp3 bases is

Fig. 17.14 Solid lines are the CD functions for the formation of the Cl···N bond in F2Be:FCl:
N-base (black line for NCH, red for NHCH2 and blue for NH3). Their analogues for the binary
complexes FCl···N-base obtained by removing the N-base fragment (all atoms are frozen at the
same positions they occupy in the ternary complex) are also reported for comparison as dotted
lines with the same color. In all cases, the z-axis is the one joining the chlorine atom (FCl) and the
N atom. Chlorine lies in the origin (black dot in the z axis). The vertical band contains the
isodensity boundary of the ternary complexes
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more than twice the one donated by NCH. In order to study which is the effect of
the beryllium bond on the halogen bonding features, we have also reported in
Fig. 17.14 the CD functions associated to the formation of the halogen bond in the
structure obtained by removing the BeF2 fragment from the ternary complex (black,
blue and red dotted lines for NCH, NHCH2 and NH3, respectively). As one might
expect, the difference between a solid and a dotted line of the same color shows
smaller variations along the series if compared with the Be···F case. At the inter-
fragment boundary, these differences are +0.044, +0.072 and +0.061 e, for NCH,
NHCH2 and NH3, respectively. These smaller variations are expected on the basis
we are not changing the nature of the beryllium fragment and this results in a
systematic enhancement of the Cl ← N charge flow.

The mutual effect of beryllium and halogen bonds that is apparent when the CD
functions are analyzed is also seen when comparing the molecular graphs of the
ternary complexes with those of the binary ones (See Fig. 17.15), since both the

Fig. 17.15 Molecular graphs of the binary complexes, BeF2:FCl and FCl:N-base (N-base = NH3,
NHCH2, NCH) complexes and the ternary complexes, BeF2:FCl:N-base (N-base = NH3, NHCH2,
NCH). Green dots denote BCPs. Electron densities are in a.u
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beryllium and the halogen bonds exhibit a significantly larger electron density in the
ternary complexes.

Remarkably enough, there are rather good linear correlations between the
electron density at the beryllium and halogen BCPs and the CT calculated by means
of the CD function. Similarly good correlations are found when comparing the
increase of the electron density at these BCPs, by subtracting from the value of the
ternary complex the value of the binary one, with the variation of the calculated CT
when the N base is removed from the ternary complex (see Fig. 17.16).

The good linear correlations of Fig. 17.16 show that, similarly to what was found
when analyzing the CT, the stronger the interaction with the N-base, the larger the
changes in the electron densities. Note that the QTAIM analysis also indicates that
the reinforcement of both the beryllium and the halogen bonds are accompanied by
a significant weakening of the F–Cl bond, whose electron density at the BCP
decreases also following the order NHCH2 > NH3 > NCH. Consistently, the F–Cl
bond length increases from 1.649 Å to 1.817, 1.955, 2.034 Å on going form the
isolated F–Cl molecule to the ternary BeF2:FCl:N-Base complexes where N-Base is
NCH, NH3 and NHCH2, respectively.

The bonding changes on going from binary to ternary complexes is also mirrored
in the plots of the corresponding ELF (See Fig. 17.17).

In the BeF2:FCl binary complex, the formation of the Be bond leads to a dis-
tortion of the torus associated with the disynaptic F–Cl basins of the isolated
molecule. This distortion, due to the polarization effects associated with the
beryllium bond, increases on going from the BeF2:FCl binary complex to the BeF2:
FCl:N-base ternary ones. Note that for the particular case of NHCH2, where
cooperativity is stronger, the ELF shows the formation of a Be–F disynaptic basin.

Fig. 17.16 Linear relationship between the Be → F and the Cl → N charge transferred (CT(e))
and the electron density at the BCP of the Be···F and the Cl···N linkages for ternary complexes
BeF2:FCl:N-base (N-base = NH3, NHCH2, NCH)
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Fig. 17.17 Three-dimensional representations of ELF isosurfaces with ELF = 0.85 for binary
complexes, BeF2:FCl and FCl:N-base (N-base = NH3, NHCH2, NCH) complexes and the ternary
complexes, BeF2:FCl:N-base (N-base = NH3, NHCH2, NCH). Yellow, red, green and blue lobes
correspond to disynaptic basins involving H atoms, monosynaptic lone-pair basins, to disynaptic
basins between two bonded atoms, and to monosynaptic atomic cores, respectively. The
population of the different basins is given in e
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The notorious reinforcement of the Cl···N halogen bond in the triads is reflected in
the change of a N-monosynaptic basin in the binary complex into a Cl–N disynaptic
in the triad. However, for the ternary complexes involving NH3 and NCH the ELF
approach does not provide a clear picture of the weakening of the F–Cl chemical
bond since the population of the F–Cl disynaptic basins remains practically
unchanged or is a little larger in the triad. Only for the complex involving NHCH2

this weakening is rather obvious since the formation of a new Be–F disynaptic
basin reduces the F–Cl ones to only two.

17.6 Conclusions

The CD approach provides a quantitative description of the charge transfer
occurring upon the formation of a beryllium bond between the Lewis base and the
BeX2 moiety. For systems of suitable symmetry, the CD function can be easily
decomposed into additive contributions correlating with the different irreducible
representations of the molecular point group to which both the molecule and its
constituting fragments belong. This allows for the identification of the mechanisms
involved in the charge-transfer process and permits the quantification of possible
back-donations. Very importantly, this approach also provides a clear description of
cooperativity. This has been shown by the study of a series of ternary complexes
stabilized through beryllium and halogen bonds. By comparing the CD function of
the triads with that of the two binary complexes in which it can be decomposed, we
have shown that, in the former, the synergistic effect of halogen and beryllium bond
enhances the charge transfer associated with both these non-covalent interactions.
The comparison of the results obtained with the CD analysis with those provided by
QTAIM and ELF theories, shows a clear agreement as far as the analysis of
qualitative trends is concerned. This is well reflected for instance in the good
correlations between the amount of charge transferred calculated with the CD
approach and the electron density at the BCP of the linkages formed, calculated
accordingly to the QTAIM theory. However, the different viewpoints each of these
methodologies provide are clearly complementary, the CD being the only one that
permits to quantify the charge transfer from the Lewis base to the Lewis acid.
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Chapter 18
A Complete NCI Perspective: From New
Bonds to Reactivity

Christophe Narth, Zeina Maroun, Roberto A. Boto,
Robin Chaudret, Marie-Laure Bonnet, Jean-Philip Piquemal
and Julia Contreras-García

Abstract The Non-Covalent Interaction (NCI) index is a new topological tool that
has recently been added to the theoretical chemist’s arsenal. NCI fills a gap that
existed within topological methods for the visualization of non-covalent interac-
tions. Based on the electron density and its derivatives, it is able to reveal both
attractive and repulsive interactions in the shape of isosurfaces, whose color code
reveals the nature of the interaction. It is interesting to note that NCI can even be
calculated at the promolecular level, making it a suitable tool for big systems, such
as proteins or DNA. Within this chapter we will review the main characteristics of
NCI, its similarities with and differences from previous approaches. Special
attention will be paid to the visualization of new interaction types. Being based on
the electron density, NCI is not only very stable with respect to the calculation
method, but it is also a suitable tool for detecting new bonding mechanisms, since
all such mechanisms should have a detectable effect on the electron density. This
type of approach overcomes the limitations of bond definition, revealing all
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interaction types, irrespective of whether they have a name or have previously been
identified. Finally, we will show how this tool can be used to understand chemical
change along a chemical reaction. We will show an example of torquoselectivity
and put forward an explanation of selectivity based on secondary interactions which
is complementary to the historical orbital approach.

18.1 Introduction

As defined by Linus Pauling, “Chemistry is the science of substances: their
structure, their properties, and the reactions that change them into other substances”
[1]. The first aspects, structure and properties, are clearly associated with the
arrangement of atoms in a molecule, i.e. the chemical bond. These bonds determine
Pauling’s third aspect, chemical reactivity. In other words, chemical bonds are the
undisputed foundation of chemistry and their visualization should allow chemists to
understand how molecules behave at the most fundamental level.

Achievement of a mechanistic understanding of chemical and biological func-
tions as well as the structure of solid materials depends on knowing the geometric
structure and the nature of bonds. But, despite the chemical bond being a funda-
mental concept in chemistry, “what is a chemical bond?” still remains a critical
question for the chemical community because of the lack of a unique definition as
well as an unclear understanding of its physical nature.

Successful numerical solution of the Schrödinger equation has yielded energies
and properties of atoms and molecules, but not yet a clear physical explanation of
chemical bonding. There is even a controversy on the mechanistic origin of the
most “simple” chemical bond, covalent bonding, as it was remarked by Burdett in
his classical book [2].

As recently as in 2007, a special issue was devoted to the “90 Years of Chemical
Bonding” [3]. In this issue, the chemical bond was compared to a unicorn, “a
mythical but useful creature, which brings law and order [···] in an otherwise
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chaotic and disordered world” [4]. Everyone knows how it looks despite nobody
ever having seen one [4–6]. This line of reasoning is similar to Coulson’s comment:
“Sometimes it seems to me that a bond between two atoms has become so real, so
tangible, so friendly, that I can almost see it. Then I awake with a little shock, for a
chemical bond is not a real thing. It does not exist. No one has ever seen one. No
one ever can. It is a figment of our own imagination” [7]. Even chemical bonds
have been described as “noumena” rather than “phenomena” [8–10].

Chemical bonds together with other concepts such as atomic orbitals, electron
shells, lone pairs, aromaticity, atomic charges, (hyper-) conjugation, strain, etc. do
not correspond to physical observables. Such concepts therefore cannot be unam-
biguously defined in pure quantum theory, but constitute a rich set of “fuzzy”, yet
invaluably useful concepts [11–14]. They lead to constructive ideas and develop-
ments when appropriately used and defined.

In chemistry as well as in physics, advanced theories are held by two milestones:
(i) a mathematical structure/formalism disclosing the basic entities of the theory and
their mathematical relationships, and (ii) an “interpretative” recipe of basic entities
of the theory. The latter discloses the qualitative meaning of the basic entities and
their relation to other known entities within and beyond the theory. It is important to
highlight that the connection between the mathematical formalism and its inter-
pretation is always subtle. This problem can be traced back to the lack of a clear and
unambiguous definition of a bond in quantum mechanics and the plethora of
interpretations that have been introduced with various “meanings” of the “mathe-
matical symbols/entities” of the theory [15].

In front of this quandary, two opposite attitudes can be envisaged. On the one
hand, the old and negative statement of the French mathemathician R. Thom: “Il me
faut cependant avouer que la chimie proprement dite ne m’a jamais beaucoup
intéressée. Pourquoi? Peut-être parce que des notions telles que celles de valence,
de liaison chimique etc., m’ont toujours semblé peu claires du point de vue con-
ceptuel.” (I should admit that chemistry never really interested me. Why? Perhaps
because notions such as those of valence, chemical bond, etc., always appeared
unclear to me from the conceptual point of view). On the other hand, the more
recent and pragmatic comment of Alvarez et al.: “Chemistry has done more than
well in a universe of structure and function on the molecular level with just this
imperfectly defined concept of a chemical bond. Or maybe it has done so well
precisely because the concept is flexible and fuzzy” [16].

However, it is important to note that scientific arguments, debates, and contro-
versies are at the heart of chemistry. This situation has been clearly stated in the
very recent paper entitled “The Nature of the Fourth Bond in the Ground State of
C2: The Quadruple Bond Conundrum” by Danovich et al. [17] in which these
authors recongnize that they are in front of a “Rashomon effect”, in which the
bonding picture is becoming too fuzzy to be constructive anymore.

In trying to overcome this dichotomy, topological analysis has become one of
the most useful tools to characterize chemical interactions. Visualization of bonding
interactions between atoms and molecules is a long-standing quest in theoretical
and computational chemistry. The main interest lies in creating a tool that enables
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not only to see the interaction, but also to interpret its character and properties.
Different types of bonding can be revealed by various topological methods, each
based on different scalar fields [18]. This chapter deals with a new interpretative
tool, NCI (standing for Non-Covalent Interactions), for revealing non-covalent
interactions, which tries to bring some intuitive order into this fuzzy set of ideas.

18.1.1 Historical Framework

Over the years, different approaches have been developed to reveal chemical bonds.
Covalent bonds are intuitively represented using conventional Lewis structures [19].
Molecular Orbital (MO) theory has been very useful and successful for the theoretical
analysis of chemical reactions and chemical reactivity. The frontier orbital theory [20]
and the orbital symmetry rules of Woodward and Hoffman [21] are paradigmatic
examples of the possibilities of quantum chemistry within the MO theory.

To reduce the dimensionality of the problem, three-dimensional interpretative
approaches have been introduced. The conceptual density functional theory pio-
neered by Parr et al. [22] has been at the origin of very useful reactivity descriptors.
Another low dimensional approach has originally been developed by Bader: [23–
25] the topological approach. Within these approaches, 3D space is divided fol-
lowing the gradient of a scalar function into mutually disjoint regions. Bader’s
QTAIM (Quantum Theory of Atoms In Molecules) theory is based on the topo-
logical analysis of the density and provides an atomic picture of the system.
Chemical bonds and the underlying molecular graph may be traced by the analysis
of its bond critical points (BCPs, first order saddle points). Following the same
philosophy, ELF [26, 27] (Electron Localization Function) topological analysis
divides the space into chemically intuitive regions associated with electron pairs so
that electronic shells, bonds, and lone pairs are revealed. Also, purely electrostatic
interactions can be analyzed using electrostatic potential maps [28].

18.1.2 Weak Interactions

Chemical interactions between a protein and a drug, or a catalyst and its substrate,
self-assembly of nanomaterials [29, 30], and even some chemical reactions [31, 32],
are dominated by non-covalent interactions. This class of interactions spans a wide
range of binding energies, and encompasses hydrogen bonding, dipole-dipole
interactions and London dispersion [33] as well as more up to date interactions such
as halogen bonds, CH � � � p and π � � �π interactions. Repulsive interactions, also
known as steric clashes, should not be disregarded either.

More specifically, non-covalent interactions are of paramount importance in
chemistry and especially in bio-disciplines [34, 35], since they set up the force field
scenario through which chemical species interact with each other without a sig-
nificant electron sharing between them. They represent, in fact, the machinery
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through which molecules recognize themselves and establish how molecules will
approach and eventually pack together.

During the last decade, non-covalent interactions have also raised a great deal of
interest in the context of self-assembly [36] and crystallization [37], whose
underlying general rules are at the moment too far away to be fully rationalized and
understood [38]. Knowledge of such rules would in principle allow to build from
scratch (even complex) materials exhibiting the desired properties [29, 39, 40].
Although it can not be ignored that a given observed structure is generally the
outcome of a “drawing” among a plethora of energetically similar, but structurally
dissimilar options [41], understanding intermolecular non-covalent interactions and
their mutual interplay in the supramolecular assemblies is nonetheless a funda-
mental step in making progress in structural prediction and evolution.

18.1.2.1 Weak Interactions: The Need for a New Approach

Non-covalent interactions are frequently visualized using distance-dependent con-
tacts, generally without consideration of hydrogen atoms [42–44]. Hydrogen-bonds
can be identified from the molecular geometry [45] and from ELF [46], while
grid-based calculations from classical force fields are used to model van der Waals
interactions [47]. The crucial role of weak interactions can also be analyzed in an
indirect manner through property computations (from population to electrostatic
moments) [48]. However, these fluctuations are not easily visualized. In other words,
a visual quantum chemical approach was conspicuously missing in this scenario.

Let’s look at an example to clearly pinpoint the state of the art of topological
approaches to weak interactions. The image provided byQTAIM and ELF of benzene
dimer is provided in Table 18.1. Let’s first focus on a given benzene molecule: The
electron density showsmaxima (cusps) for the C andH atoms, whereas C–H and C–C
bonds are represented by BCPs (in red). ELF, instead, provides a picture based on
electron localization, so that isosurfaces appear around nuclei and bonds. In both
cases the chemical structure is revealed as expected from chemical intuition.
However, the ELF picture is obviously more intuitive thanks to the isosurfaces.

Now, if we take a look at the complete system, the stacking dimer, we can see
that intermolecular BCPs appear along with a ring critical point (second order
saddle point, in yellow). The fact that interactions are related to saddle points,
locates them on the interatomic surfaces, so that they highlight interatomic contact,
but they do not have an associated region within this approach. Moreover, the
critical points unite pairs of C atoms, which is not the chemical picture we have of a
stacking interaction: it should appear as a benzene to benzene interaction.
The VSEPR regions of benzene dimer are clearly identified by ELF, but nothing is
seen for the inter-benzene stacking interaction.

In other words, both approaches fail to correctly provide a picture of delocalized
interactions. Thus, it is the aim of this chapter to introduce such a tool, show its
advantages over previous theories and its ability to provide a complete and holistic
visionofnon-covalent interactions and their changesdirectly fromtheelectrondensity.
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18.2 NCI: Non-covalent Interaction Index

The electron density has a fundamental advantage over MO-based descriptors
because it is an experimentally accessible local function defined within the exact
many-body theory, also supported by the Hohenberg-Kohn theorem [49]. The
relationship between electron density and physical/chemical properties can be
understood from the Hohenberg-Kohn theorem, which asserts that a system’s
ground-state properties are a consequence of its electron density. Furthermore since
chemical reactions proceed by q(rÞ redistributions, methods that analyze qðrÞ
distributions should help to understand the electron structure of molecules and thus
chemical reactivity (see Sect. 18.8).

Our approach, introduced in the coming sections, uses the density and its
derivatives, allowing simultaneous analysis and visualization of all non-covalent
interaction types as real-space surfaces, thus adding an important tool to the che-
mist’s arsenal [50–52].

18.2.1 The Reduced Density Gradient

The reduced density gradient, s or RDG, is a fundamental dimensionless quantity in
DFT used to describe the deviation from a homogeneous electron distribution [49,
53, 54]. Properties of the reduced gradient have been investigated in depth in the
process of developing increasingly accurate functionals [55].

The origin of the reduced density gradient can be traced to the generalized
gradient contribution to the GGA exchange energy, EX

GGA, from density-functional
theory:

EGGA
X � ELDA

X ¼ �
XZ

FðsÞq4=3ðrÞdr; ð18:1Þ

where F(s) is a function of s for a given spin with

s ¼ 1
CS

jrqj
q4=3

; ð18:2Þ

Small values of s occur close to the nuclei, due to CS = 2(3π2)1/3 and the 4/3
exponent of the density ensuring that s is a dimensionless quantity.

s accounts for local density inhomogeneities due to its differential behavior
depending on the chemical region of the molecule. The reduced density gradient
assumes large values in the exponentially-decaying density tails far from the nuclei,
where the density denominator approaches zero more rapidly than the gradient
numerator. Small values of s occur close to the nuclei, due to the combination of
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large densities and small density gradients. The lower bound on the reduced density
gradient is zero, as occurs throughout a homogeneous electron gas and at BCPs.

The effect of bonding on the reduced density gradient is especially easy to
visualize when s is plotted as a function of the density. When ρ is given by a single
Slater Type Orbital (STO), graphs of s(ρ) assume the form f(x) = ax−1/3, where a is
a constant (see Appendix, Table 18.2). This can easily be proven from a Slater
Type Orbital (STO) model density. For a single atomic orbital ψ = e−αr, the density
is ρ = e−2αr and the gradient is ∇ρ = −2αρ, such that

sðqÞ ¼ 1
CS

2aq
q4=3

¼ 2a
CS

q�1=3: ð18:3Þ

When there is overlap between atomic orbitals, a spike in the s(ρ) diagram
appears (Fig. 18.1). The points forming this spike can identify the interaction
location when they are mapped back to real space. This procedure is able to reveal
non-covalent interactions.

Fig. 18.1 Plots of the electron density and its reduced gradient for methane, water, branched
octane, bicyclo [2,2,2]octene, and the homomolecular dimers of methane, benzene, water, and
formic acid. The data was obtained by evaluating B3LYP/6-31G* density and gradient values on
cuboid grids. Reprinted with permission from Ref. [50]. Copyright 2010 American Chemical
Society
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To explore the features associated with small reduced gradients, we first examine
plots of s versus ρ (Fig. 18.1). These plots were generated by evaluating the B3LYP
[56, 57] density and reduced gradients on cuboid grids, with a 0.1 a.u. step size, for
each molecule or dimer. To provide even more sampling of the small low-density,
low-gradient regions in hydrogen-bonded complexes, additional calculations were
performed for water and formic acid dimers with a much denser 0.025 a.u step size.

Plotting s versus ρ, as in Fig. 18.1, reveals the basic pattern of intramolecular
interactions. Methane (Fig. 18.1a) illustrates the typical covalent bond pattern. The
top left-side points (small density and large reduced gradient) correspond to the
exponentially-decaying tail regions of the density, far from the nuclei. The points
on the bottom right side (density values of ca. 0.25 a.u. and low reduced density
gradient) correspond to the C–H covalent bonds. Covalent bonds have their char-
acteristic BCP in the electron density, corresponding to s = 0. Regions near the
nuclei have larger density values and appear beyond the right edge of the plot. The
plot has an overall shape of the form aρ−1/3 because atomic and molecular densities
are piecewise exponential. The results for water are very similar, the only difference
being that the covalent bonds lie at higher density values, past the edge of the plot.
In Fig. 18.1b–d, we consider six examples of chemical systems displaying various
types of non-covalent interactions. Plots of s versus ρ for these systems all exhibit a
new feature: one or more spikes in the low-density, low-gradient region, a signature
of non-covalent interactions. This is the basis of NCI.

18.2.2 The Density Second Eigenvalue

According to the divergence theorem [58], the sign of the Laplacian of the density,
∇2ρ, indicates whether the net gradient flux is entering, ∇2ρ < 0, or leaving,
∇2ρ > 0, an infinitesimal volume around a reference point. Hence, it highlights
whether the density is concentrated or depleted at that point, relative to the sur-
rounding environment. To differentiate between different types of weak interactions
one cannot resort to the sign of the Laplacian itself (as is common within AIM
theory) since it is dominated by the principle axis of variation and is positive for all
closed-shell interactions [59].

To understand bonding in more detail, it is often useful to decompose the
Laplacian into the contributions along the three particular axes of maximal varia-
tion. These components are the three eigenvalues, λi of the electron-density Hessian
matrix, such that, ∇2ρ = λ1 + λ2 + λ3, (λ1 < λ2 < λ3). At points with zero gradient,
analysis of the Hessian eigenvalues is analogous to determining the signature of the
critical point. Thus, at nuclei (cusps interpreted as maxima of ρ), all the eigenvalues
are negative, while at the center of cages or holes (minima of ρ) all the eigenvalues
are positive. In the remaining points of space λ3 > 0, λ1 < 0, and λ2 can be either
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positive or negative. Within the NCI framework, the sign of λ2 (i.e. the perpen-
dicular plane) enables identification of the interaction type. Attractive interactions
appear at λ2 < 0 whereas in the cases where λ2 is positive (as in rings or cages),
usually several atoms interact but are not bonded, which corresponds to steric
crowding according to classical chemistry.

Both van der Waals interactions and hydrogen bonds show negative values of λ2
at the critical point (with k2 ’ 0 for van der Waals interactions and even λ2 ≥ 0 on
the surface). This can be attributed to the homomorphic virial path associated with
the bonding direction, which defines a line along which the potential-energy density
is maximally negative. Conversely, non-bonding interactions, such as steric
crowding, result in density depletion, such that λ2 > 0. Analogously, the homeo-
morphism ensures that these critical points (both ring and cages points) identify
lines of minimally-negative potential-energy density.

18.3 Interpreting NCI

18.3.1 The 2D Plot

Once the second eigenvalue has been introduced to separate attractive from
repulsive interactions, it is necessary to categorize the interactions by their strength.
This can be done thanks to the properties of the corresponding critical points.
Characteristic densities of van der Waals interactions are much smaller than den-
sities at which hydrogen bonds appear. However, steric clashes and hydrogen bonds
(HBs) span similar density ranges and overlap in plots of s(ρ). This is illustrated for
the phenol dimer in Fig. 18.2a, b. This is a hydrogen-bonded complex that exhibits
non-bonding interactions within each benzene ring and a stacking interaction
between the benzene rings. We thus have the three main types of interactions: van
der Waals, HB and steric clashes. Whereas van der Waals is well-differenciated
because it appears at smaller densities, the steric clash and the hydrogen bond
spikes overlap in Fig. 18.2a.

The interaction type can be distinguished if the s(ρ) diagrams are modified by
plotting sign(λ2)ρ as the abscissa. Analysis of the sign of λ2 thus helps to discern
between the different types of weak interactions, whereas the density itself provides
information about their strength; both are combined in the value of sign(λ2)ρ. When
the Hessian eigenvalues are considered, the different nature of these interactions is
made clear: the benzene-ring interactions remain at positive values, whereas the
hydrogen bond now lies at negative values, within the attractive regime. The NCI
spikes nearest zero density correspond to weakly-attractive dispersion interactions
between the phenyl rings.
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Fig. 18.2 Plots of a s(ρ), b NCI isosurface, for the phenol dimer. The s = 0.6 a.u. isosurface is
colored over the range −0.03 < sign(λ2)ρ < +0.03 a.u.
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18.3.2 3D Plot

18.3.2.1 3D Visualization

The 3D spatial visualization of the non-covalent interactions as defined above is
done using the data from the 2D plots as input to construct 3D plots composed of
reduced density gradient isosurfaces.

In a nutshell, a cut-off value of s close to zero, typically s < 0.5, is chosen in order
to recover all the non-covalent interactions in the system, i.e. all the spikes of the 2D
plots. The corresponding reduced density gradient isosurfaces give rise to closed
domains in the molecular space which highlight the spatial localization of the
interactions within the system (see Fig. 18.2c). Since 3D isosurfaces are, by defi-
nition, regions of low reduced gradient, the density is nearly constant within these.

At this stage, however, the types of interaction corresponding to the various
isosurfaces are not apparent. In order to discriminate between them, the density
oriented by the sign of λ2 is further used (as in the 2D plot). A RGB
(red-green-blue) coloring scheme is chosen to rank interactions, where red is used
for destabilizing interactions, blue for stabilizing interactions and green for delo-
calized weak interactions. The intensity of these colors is associated with a higher
local density and therefore with a stronger interaction.

The isovalue (or cut-off) of s(ρ) chosen for plotting the 3D isosurface determines
which features will appear in the NCI plot as well as their spatial extension. On the
one hand, all NCI spikes do not strictly achieve s = 0, so that a too low isovalue
might miss some of the interactions of interest [60]. On the other hand, too high
isovalues would disclose atomic tails of the density [61]. The cut-off is therefore
chosen from the 2D plot so that all spikes, but only spikes, are captured to render a
meaningful picture which recovers both attractive and repulsive interactions.

18.3.2.2 2D and 3D Shapes

Topological features of the electron density are very stable with respect to the
calculation method. The main effect of different methods on the s versus ρ diagram
is a shift of spikes. The only rule of thumb seems that the same s value should be
used when comparing to each other the various NCI, both in the same or in different
systems, provided a single method was employed to obtain the various electron
densities. This not being the case, different s values are seemingly required to
compare on similar grounds the s-based results for differently computed electron
density (e.g. from wavefunction, multipolar). In other words, a shift of cut-offs is
needed to obtain comparable images. This can be related to the fact that s roughly
behaves like ρ−1/3 (see Eq. 18.3), so that the effect of the method on the density is
directly followed by the s-value. This information is crucial when moving towards
bigger systems (see Sect. 18.6).
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It emerges that a one-to-one inverse correlation seems to exist among the
directionality (and the strength) of specific non-covalent interactions and the
surface/volume ratio of the corresponding s isosurface. In particular, the stronger
the interaction is, the smaller and more disc-shaped the s surface appears in real
space (and the more negative the ρ sign(λ2) values are).

In some cases, noticeably in ring closings, bicolored isosurfaces appear (see
Fig. 18.3). They result from stabilizing features (revealed by the blue color),
counterbalanced by destabilizing interactions due to steric crowding (revealed by
the red color), such as ring closure [62].

18.4 Small Molecules

To explore the features associated with small reduced gradients, we first examine
3D NCI plots in representative small molecules.

Figure 18.4 displays NCI isosurfaces for branched octane, bicyclo[2,2,2]octene,
and the homomolecular dimers of methane, benzene, water, and formic acid. These
isosurfaces provide a rich visualization of non-covalent interactions as broad areas
of real space, rather than simple pairwise contacts between atoms. We first consider
the sterically-crowded molecules bicyclo[2,2,2]octene (Fig. 18.4a) and the bran-
ched octane isomer (Fig. 18.4b). In the first case, the low-density, low-gradient

Fig. 18.3 Scheme of a mixed color isosurface in a C5 ring formed in the groove between a
carbonyl and a NH group within a peptide residue. Within this isosurface, the curvature varies
sign, leading to two well-differenciated parts. A blue external part illustrates the directional
NH···O interaction and a red part is indicative of the strain in the 5-membered ring resulting from
a multicentric density in the inner region close to the backbone. In the top panel the variation of the
density and the sign of λ2 is depicted. Reproduced from Ref. [62] with permission from the PCCP
Owner Societies
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region corresponds to the center of the cage, where steric repulsion between the
bridgehead carbons is expected. For the branched octane isomer, the isosurface lies
between the closely-interacting methyl groups on opposite sides of the central C–C
bond. The interactions are repulsive nearer the C–C bond and weakly attractive
between the hydrogen atoms. Dispersion and hydrogen bonding can also be clearly
detected. In the dispersion-bound methane dimer (Fig. 18.4d), the isosurface forms
a disc between the individual monomers. For the water dimer (Fig. 18.4e), the
isosurface lies between a hydrogen donor and oxygen acceptor, characteristic of

Fig. 18.4 NCI isosurfaces (s = 0.5) for a branched octane, b bicyclo[2,2,2]octene, and the
homomolecular dimers of c benzene, d methane, e water, and f formic acid. Gradient isosurfaces
are also shown for cuboid sections of g diamond and h graphite. Color coding in the range
−0.04 < sign(λ2)q\ þ 0:02 a.u. Reprinted with permission from Ref. [50]. Copyright 2010
American Chemical Society
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hydrogen bonds. The formic acid dimer (Fig. 18.4f) reveals stronger HBs than in
the water dimer, and also weak van der Waals interactions between the two
closely-interacting acidic hydrogens.

Finally, in the benzene dimer (Fig. 18.4c), there is an area of non-bonded
overlap located at the center of each benzene ring, resembling the isosurface for
bicyclo[2,2,2]octene. There is another lower-density surface between the overlap-
ping portions of the benzenes, where π-stacking is expected. It is important to
compare this image to the ones displayed in Table 18.1. The intermolecular
interaction in benzene dimer appears very clearly with NCI as a surface that
highlights the benzene to benzene stacking interaction, well beyond the pair
interactions found with AIM.

18.5 Solids

As we saw in the Introduction, non-covalent interactions in solid state have raised a
great deal of interest lately, due to their relevance for self-assembly [36] and
crystallization [37] processes.

Indeed, crystalline solids exhibit rich and challenging bonding patterns. We
consider the prototypical examples of carbon in the diamond (Fig. 18.4g) and
graphite (Fig. 18.4h) phases at their equilibrium geometries. In diamond, the carbon
atoms are sp3 hybridized and are connected by strong covalent bonds that form a
tridimensional, tetrahedral network. Figure 18.4g shows an NCI isosurface for a
cuboid section of the diamond crystal. The non-covalent surface extends through
the voids of the structure, creating a network similar to that of the covalent bonds.

Graphite in its α form (Fig. 18.4h) has a bidimensional, hexagonal lattice, with
the carbon atoms sp2 hybridized and covalently bonded to their three nearest
neighbors. The NCI isosurface shows areas of non-bonded overlap at the center of
the hexagonal rings, as seen previously in benzene. π–π stacking interactions
between the graphene sheets are clearly manifested by the isosurfaces filling the
interlayer spaces.

18.6 Biological Systems

Understanding of non-covalent interactions is crucial for the comprehension of the
3D structure and, thus, of the activity of biosystems [65, 66]. However, the cal-
culation of the electron density in these systems is totally unbearable.
Approximations need thus to be sought.
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18.6.1 Promolecular Densities

Densities are stable (see Sect. 18.3.2.2) to such an extent that NCI characteristics
are already contained in the sum of atomic densities, ρi

at [63, 64]. The resulting
molecular density, also known as promolecular density, ρpro, is then given by:

qpro ¼
X
i

qati ð18:4Þ

A promolecular density obtained from simple exponential atomic pieces is able
to qualititatively predict low-density, low-reduced-gradient regions similar to
density-functional results. The free atomic densities used in these calculations consist
of one Slater-type function for each electron shell, fit to closely reproduce
spherically-averaged, density-functional atomic densities (seeAppendix, Fig. 18.19).

Approximate promolecular densities were constructed by summing exponential
atomic densities for bicyclo[2,2,2]octene, and the homomolecular dimers of
methane and water.

Resultant plots of spro versus ρpro for these species show the same 2D features seen
in Fig. 18.1. Also, 3D isosurfaces generated from the promolecular density are very
similar to those obtained previously with self-consistent DFT and evenMP2 densities
(Fig. 18.5). For all cases considered, results at the self-consistent and promolecular
level are qualitatively equivalent. Only slight quantitative differences are introduced
by density relaxation that, as expected, shift the s versus ρ spikes to more bonding
regimes. Specifically, a large shift towards smaller density values is observed in the
spikes corresponding to non-bonded overlap, introducing less repulsion and greater
stability. Taking this shift into account in the choice of isosurfaces, results at the
self-consistent and promolecular level are qualitatively equivalent for all cases
considered (see Fig. 18.5 bottom). For example, lower cut-offs on the gradient (0.25–
0.35) and higher cut-offs on the density (0.08–0.09 a.u.) were required in order to
generate the isosurface for bicyclo[2,2,2]octene.

18.6.2 Examples

Promolecular densities obviously lack relaxation; however, the promolecular den-
sities are extremely useful in biomolecular systems, such as proteins or DNA.
Because the calculation of the electron density in these systems becomes extremely
computationally expensive, the promolecular density becomes an attractive option:
non-covalent interactions can be analyzed with only the molecular geometry
required as input.

We first consider two model polypeptides: an α-helix consisting of 15 alanine
residues and an anti-parallel β-sheet consisting of 17 glycine residues. Geometries
of the polypeptides were obtained with the MMFF force field using the spartan
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program [67]. Both were capped with COCH3 and NHCH3 groups. Figure 18.6
displays low-gradient isosurfaces for cuboid regions at the center of these
polypeptides, colored according to the corresponding density values. For the β-
sheet, the lowest-density portions of the gradient isosurface arise from hydrophobic,
dispersion-dominated interactions, primarily involving the CH2 groups of the gly-
cines. The higher-density regions correspond to inter-residue hydrogen-bonds and
repulsive interactions between the adjacent C=O and N–H groups. For the α-helix,
the isosurface has a large, low-density region within the helix and between the
side-chain methyl groups. The higher-density portions of the isosurface correspond
to inter-residue hydrogen-bonds along the helix and repulsive interactions between
adjacent N–H groups.

We also considered the non-covalent interactions between nucleobases in the
B-form of double-strand, six-base-pair (TGTGTG) DNA. The structure was obtained
using the X3DNA program [68] with ideal geometry parameters [69]. Figure 18.6c
displays the low-gradient isosurface for a cuboid section in the center of the DNA
helix, colored according to the sign(λ2)ρ values. The calculated isosurface resembles

Fig. 18.5 Comparison between SCF and promolecular NCI results. The same s(ρ) features are
obtained using self-consistent (left) and promolecular (right) calculations, with a shift toward
negative (stabilizing) regimes. Bottom Taking the shift in spikes into account (i.e., changing the
cut-off), the isosurface shapes remain qualitatively unaltered for selected small molecules. Figures
are shown for both SCF (left) and promolecular densities (right). NCI surfaces correspond to
s = 0.6 and a color scale of �0:03\q sign(λ2) \þ 0:03 a.u. for SCF densities. For promolecular
densities, s = 0.5 (water and methane dimers) or s = 0.35 (bicyclo[2,2,2]octene), and the color
scale is �0:04\q sign(λ2) \þ 0:04 a.u. Reprinted with permission from Ref. [51]. Copyright
2011 American Chemical Society
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that of graphite, with broad, low-density regions indicative of π-stacking between
base-steps. The interactions between individual deoxyadenosine-deoxythymidine
and deoxycytidine-deoxyguanosine pairs are shown in Fig. 18.6d, e. The isosurfaces
show non-bonded overlap within the nucleobase rings, as in benzene and graphite,
and hydrogen-bonding motifs similar to the formic acid dimer. The strong N–H� � �O
and N–H� � �N hydrogen bonds can be clearly distinguished from the weaker,
attractive C–H� � �O interaction by the density values, as shown in different colors.

The hydrogen-bonding surfaces in the DNA model have density values of ca.
0.065 a.u., compared to density values of ca. 0.035 a.u. for the polypeptide
hydrogen bonds. This is evident from the degree of blue shading for the hydrogen
bonds in Fig. 18.6. Since density values at hydrogen-BCPs correlate with the
interaction strength [25, 70], our results indicate that the hydrogen bonds between
nucleobase pairs are substantially stronger than between amino acids, in agreement
with literature data [71–73].

Fig. 18.6 Gradient isosurfaces (spro = 0.35) for cuboid sections of the a β-sheet and b α-helix
polypeptides. Gradient isosurfaces (spro = 0.25) are also shown for the c B-form of DNA, and the
d A–T and e C–G base pairs. The surfaces are colored according to values of sign(λ2)ρ, ranging
from −0.06 to +0.05 a.u. Reprinted with permission from Ref. [50]. Copyright 2010 American
Chemical Society
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Let us now consider the interaction between a ligand and a protein active site.
The low-gradient isosurface for a tetracycline inhibitor bound to the tetR protein in
Fig. 18.7 shows a complex web of non-covalent interactions between the ligand
and the active site. When analyzing non-covalent interactions in protein-ligand
complexes, it is usually assumed that these interactions are due to a specific contact
between two atoms [44]. However, it is clearly seen in Fig. 18.7 that this
assumption is only partly correct. Hydrogen bonds, such as those between the
tetracycline amine groups and two water molecules (atoms shown in orange), are
directional and specific. Conversely, van der Waals, dipole-dipole, and hydrophobic
interactions, such as those between the tetracycline and the Leu61, Val91, Ile136,
and Val166 residues (atoms shown in yellow), are not atom-specific and occupy
broader regions in space. The figure reveals some steric clashes (orange and red
regions of the isosurface) that must be offset by stronger, attractive interactions to
give binding in this crystal structure. A ligand “fits” the geometry of the active site,
and the interaction energy between the ligand and protein is comprised of many
small contributions. When trying to design a new ligand to fit a specific active site,
one should consider all such interactions.

18.7 New Bonds: Do We Really Need to Name Them All?

Hydrogen bonding was postulated in the early twentieth century based on the
stunning macroscopic differences between the first and second row hydrides, i.e.
water is a high boiling liquid without, which there would be no life, and hydrogen
sulphide is a stinking gas, under ambient conditions [1].

Fig. 18.7 Gradient isosurfaces (spro = 0.35) for interaction between the tetR protein and
tetracycline inhibitor. Surfaces colored in the sign(λ2)ρ range from −0.06 to +0.05 a.u.
Reprinted with permission from Ref. [50]. Copyright 2010 American Chemical Society
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With the advent of molecular beam and cryogenic experimental methods as well
as the ever advancing theoretical methods, HBs have been proved to exist in H2S as
well [74]. But things go even further. About a century later, chemists have iden-
tified a wealth of new bonding types along the periodic table. Halogen bonds
(XBs) (group 17) are frequently exploited for crystal engineering [75]. Recently,
similar bonding mechanisms have been proposed for adjacent main-group elements,
and non-covalent “chalcogen bonds” (group 16) [76] and “pnictogen bonds” (group
15) [77] have also been identified in crystal structures. Recently, even carbon
bonding (group 14) [78] has been proposed as a stabilizing interaction.

One of the most interesting features of NCI is that it is based on the density.
Thus, it is expected to be able to reveal any type of bonding. Before and beyond its
corresponding identification and characterization, the signature on the electron
density will be present. In the coming sections we briefly show some representa-
tives of the new bonds series, highlighting the possibility to reveal interactions all
along the periodic table from just the fast analysis of NCI.

18.7.1 Halogen Bonding

Halogen bonds (XBs) occur between a halogen atom, playing the role of Lewis
acid, and a Lewis base. This non-covalent interaction is analog to hydrogen
bonding in the sense that in both cases, an atom or group of atoms with high
electron density donates charge to an acceptor which is electron poor. Similar to
HBs, XBs are also anisotropic and involved in various fields, such as
supramolecular chemistry or even materials chemistry. Moreover, halogenated
coumpounds are often encountered in medicinal chemistry [79] and drug discovery
[80]. Quantum Chemistry approaches have revealed a sigma-hole along the axis
defined by the halogen atom and the acceptor. This can be studied thanks to the
Molecular Electrostatic Potentials, showing the charge distribution as well as the
nature of the interaction as electrostatics and charge transfer driven.

We have analyzed NCI in a series of trifluoromethyl halides, CF3X, where
X = Cl, Br, I with dimethyl ether (DME), dimethyl sulfide (DMS), trimethyl
phosphine (TMP) and imidazolin-2-ylidene (NHC). All systems were optimized
using second-order Møller-Plesset perturbation theory with the aug-cc-pVDZ(-PP)
basis set [81]. The wavefunctions were obtained at DFT level using the B3LYP
functional and the 6-31++G** basis set except for iodine, where the pseudopo-
tential LANL2DZ was used.

In the first four cases, the 2D plots (Fig. 18.8) clearly show a spike at very low
density, corresponding to a typical van der Waals interaction. In Fig. 18.8b, a
second spike arises, exhibiting non bonding interactions between the chlorine atom
and DMS hydrogens. They are closer to the halogen than the sulfide atom and
benefit from the high electron density at the halogen.
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In agreement with previous studies, the prominent spike is shifted to larger
electron densities (left) for iodine, reflecting a stronger non bonding interaction (see
Fig. 18.8e, f) as X molecular weight increases (Fig. 18.9).

Fig. 18.8 2D plots for halogen bonded complexes: a CF3Cl–DME, b CF3Cl–DMS, c CF3Br–
DME, d CF3Br–TMP, e CF3I–NHC, f CF3I–TMA. See Sect. 18.7.5.2 for an interpretation of
iodine compounds extra peaks
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18.7.2 Pnictogen Bonding

Pnictogen bonding is a weak non-covalent bonding involving group 15 elements as
electron density acceptors. Similar to halogens, the pnictogen atoms possess a
sigma-hole: a region of positive electrostatic potential in the direction of the bond,
which is attracted to a lone pair on a nucleophile with an outer negative electrostatic
potential [82, 83].

Pnictogen bonding is present in the complex between NH3 and PH3 (Fig. 18.10a)
[77] where the N atom is the donor of electron density. The sigma-hole gives rise to
the equilibrium geometries: the two molecules are oriented such that the P and N
atoms face one another directly, without the intermediacy of an H atom. This
attraction is due in part to the transfer of electron density from the lone pair of the N
atom to the σ* antibonding orbital of the P–H covalent bond. Unlike in hydrogen
bonds, the pertinent hydrogen is oriented about 180° away from the N (instead of

Fig. 18.9 3D plots for halogen bonded complexes: a CF3Cl–DME, b CF3Cl–DMS, c CF3Br–
DME, d CF3Br–TMP, e CF3I–NHC, f CF3I–TMA. NCI isosurfaces correspond to s = 0.5 a.u. and
a color scale of −0.04 < sign(λ2)q\þ 0:04 a.u.
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toward), and the N lone pair overlaps with the lobe of the P–H σ* orbital that is
closest to the P. The calculated binding energy of this pnictogen-bonded complex is
larger than the one of the hydrogen-bonded complex that is formed between the
same two molecules where the N atom is the proton acceptor (Fig. 18.10b).

We have optimized the NH3–PH3 and PH3–PH3 pairs at the ω B97X-D/6-31+G*
level of theory. The NCI analysis of the NH3–PH3 complexes shows the presence of
non-covalent bonding and this is illustrated by the 3D isosurfaces of both com-
plexes (Fig. 18.10a, b). The green color of both interactions indicates that the two
types of bonding have similar bonding strengths corresponding to that of van der
Waals interactions. Whereas in the H-mediated complex, a typical picture of HB is
obtained (Fig. 18.10b), a thick surface is obtained in the case of the pnictogen
bonding (Fig. 18.10a), which is extended like in the case of van der Waals, but
thick like HB ones.

It is interesting to note that in contrast to halogen bonds, there is no requirement
of a sigma-hole of positive electrostatic potential on the P atom, nor it is necessary
for the two interacting atoms to be of differing potential. In fact, the two atoms can be
identical, as the global minimum of the PH3 homodimer has the same structure,
characterized by a P� � �P attraction. Indeed, for the complex between PH3 and PH3,
the P atoms possess a partial positive charge and none of the located minima found
on the potential energy surface correspond to a hydrogen-bonded complex [77]. The
two minima that were located correspond to complexes where the P atoms approach
one another (Fig. 18.10c, d). The complex with the symmetric geometry
(Fig. 18.10c) was found to be dominated by electrostatic interactions, corresponding
to pnictogen bonding, whereas the second structure (Fig. 18.10d) was found to be
dominated by dispersion. This shows in the NCI isosurfaces where the interaction
region in Fig. 18.10d occupies a larger volume than that of Fig. 18.10c. This is in
agreement with the more diffuse character of the dispersion interaction compared to
the pnictogen bond which is more concentrated along the bonding direction.

Fig. 18.10 Pnictogen bond examples: a–b NH3–PH3, c–d PH3–PH3. 3D isosurface was produced
using the cut-off values of s = 0.5 a.u. and �0:05\q\0:05 a.u.
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18.7.3 Carbon Bonding

Recently, inspired by the identification of halogen, chalcogen and pnictogen
bonding, Mani et al. [78] investigated whether carbon, being a positive centre, can
accept electron density. Indeed, both experimental and theoretical studies agree that
the tetrahedral face of methane can act as a hydrogen bond acceptor. Rotational
spectra of complexes like CH4···HF, CH4 � � �HCl;CH4 � � �HCN and CH4 � � �H2O
further confirm this fact [84]. While tetrahedral faces of methane has an electron
rich centre and can act as a hydrogen bond acceptor, substitution of one of its
hydrogens with some electron withdrawing group (such as −F/OH) can make the
opposite face electron deficient. The complex between CH3F and H2O has a
potential energy minimum with water oxygen pointing towards the tetrahedral face
of CH3. Similar interactions are also found for several methanol complexes in
which the electron deficient atom (oxygen) interacts with one of the water’s lone
pair.

Four examples of complexes, which represent minima on the potential energy
surface, are shown in Fig. 18.11a–d. All complexes were optimized at the ω
B97X-D/6-31+G* level of theory. In these complexes, the electron density donors
(O, P, S and F atoms) are oriented towards the CH3 face of methanol. Through NCI
analysis, the presence of intermolecular interactions are evident in all the com-
plexes. The weak nature of this type of interaction is indicated by the green color of
the NCI-isosurfaces that corresponds to van der Waals interactions.

It should be noted that, in spite of the weakness of this type of interactions, they
are extremely relevant, since these and similar interactions could give an enthalpic
contribution to the so called “hydrophobic interactions” [78].

Fig. 18.11 Carbon bond examples for several electron donors (O, P, S and F): a MeOH–H2O,
b MeOH–PH3, c MeOH–SH2, d MeOH–FH. 3D isosurface was produced using the cut-off values
of s = 0.5 a.u. and �0:05\q\0:05 a.u.
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18.7.4 The Di-hydrogen Bond

The term di-hydrogen bond was coined to describe an interaction of the type D–
H···H–E, where D is a typical hydrogen donor such as N or O. The interesting thing
about this type of bond, is that the acceptor atom is also a hydrogen.

Thus, the accepting hydrogen atom must be hydride-like and E has to be an atom
capable of accommodating a hydridic hydrogen. Transition metals and boron are
some known examples of atoms occurring at position E. Within di-hydrogen
bonded complexes, BH3NH3 is perhaps the most widely studied [86–88]. We have
analyzed the tetramer (BH3NH3)4, whose geometry has been derived from the solid
state. Figure 18.12 shows the NCI results for (BH3NH3)4. It can be seen that each
BH3NH3 molecule interacts with the surrounding ones establishing one
di-hydrogen bond with each, and numerous van der Waals contacts. The surfaces
obtained are, in all cases, completely analogous to those obtained in previous
examples for hydrogen bonds.

We have also studied a series of nine complexes presenting di-hydrogen bonds
(LiH–HCCH, LiH–HCN, LiH–HCF3, NaH–HCCH, NaH–HCN, NaH–HCF3,
HBeH–HCCH, HBeH–HCN, HBeH–HCF3) to check the ability of NCI to detect
new types of bonds even at the promolecular level. After using the MAPS Platform
[89] to set up the initial systems, the complexes were optimized at the
MP2/aug-cc-pVDZ level with NWChem [90]. The optimized coordinates were used
to perform NCI promolecular analysis. The results are displayed in Fig. 18.13.

Even at this rough level, NCI allows to follow the evolution of the interaction
strength for the different systems. The interaction isosurfaces appear similar to those
from strong hydrogen bonds. They also seem to be stronger than the di-hydrogen

Fig. 18.12 Dihydrogen interactions in a BH3NH3 tetramer in a the fully optimized gas-phase
geometry and b the solid-state geometry. NCI surfaces correspond to s = 0.4 a.u. and a color scale
of −0.03 < sign(λ2)q\þ 0:03 a.u. Reprinted with permission from Ref. [51]. Copyright 2011
American Chemical Society. a Gaseous phase. b Crystal structure
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bond in the BH3NH3 complex. It should be noted that this agrees with the fact that
di-hydrogen bonds have been attributed very variable strengths. Crabtree et al. [91]
have placed the NH � � �HB contact at the upper end of the energy range quoted for
hydrogen bonds. Popelier instead, has found it to be in the range of normal HB
strengths [86] and Morrison and Siddick [87] assigned it towards the lower end of
the hydrogen bond strength spectrum. Our results show that the range of energies
covered go (at least) from the strong to the medium HB-type of strength.

18.7.5 Metal Driven Interactions

Although NCI is usually used for weak interactions, its basis does not limit the tool
to only weak interactions. Indeed, it can be used for covalent and ionic interactions,
as well (see S.I. in Refs. [50] and [61]). Most commonly, it is also used within
metallorganic frameworks to detect interactions with metals. We will analyze several
model examples relevant to solvation and protein structure. It should be noted that in
these cases the default cutoff value of the density needs to be increased.

Fig. 18.13 NCI surfaces for several di-hydrogen complexes: a HBeH–HCF3, b HBeH–HCCH,
c HBeH–HCN, d LiH–HCF3, e LiH–HCCH, f LiH–HCN, g NaH–HCF3, h NaH–HCCH, i NaH–
HCN. The NCI isosurfaces were plotted for s = 0.3 a.u. and a color scale of −0.03 < sign
(λ2)q\þ 0:03 a.u.
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18.7.5.1 Hg2+ Complexation

Understanding the complexation of ions and their preferential ligands is of prime
relevance when studying their bioactivity. As an example, their absorbance and
transport through the body is extremely dependent on their complexation. It would
then be extremely interesting to be able to identify the main series as well as the
potential substitution sites. In addition Mercury(II) is a heavy metal cation which is
especially challenging for quantum mechanical treatment as both correlation and
relativistic effects play a crucial role in modeling its complexes.

Figure 18.14a–d illustrates the ability of NCI to visualize in a fast and efficient
manner the complexation sites of Hg and to discriminate the strength of the binding
energies between the cation and its ligands. Figure 18.14a shows the [Hg(H2O)3]

2+

complex and suggests that the three waters bound to Hg are not equivalent, one of
the water molecules being more weakly boundline than the others. In order to
corroborate this observation, it is possible to perform a decomposition of the
interaction energy of such a complex using the RVS [85] (Reduced Variational
Space) procedure. Both polarization and charge transfer are significantly weaker for
one water molecule: whereas two of the water molecules show a polarization
energy of ca. −15 kcal/mol, and a charge transfer energy of −10 kcal/mol, the third
water shows a stabilization due to polarization and charge transfer by only
−12.7 kcal/mol and −6.2 kcal/mol, respectively.

The ability of NCI to recover the ordering of ligands is also applicable when
different ligand series are analyzed. Figure 18.14b–d shows [Hg(X)3] complexes

Fig. 18.14 Complexation of Hg. a [Hg(H2O)3]
2+, b [Hg(F)3]

−, c [Hg(Cl)3]
−, d [Hg(Br)3]

−.
Reprinted with permission from Ref. [51]. Copyright 2011 American Chemical Society
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(X standing for F, Cl and Br). It is clearly seen that F is more strongly bonded than
Cl and Br. This result is in agreement with their binding energies, which are
−632.8, −571.0 and −562.6 kcal/mol, respectively.

18.7.5.2 Zn2+ Fingers

Metals play a decisive role in many protein active sites as cofactors. The zinc finger
is a small protein structural motif that can be found in many biological systems. It is
characterized by the fact than one or more zinc ions can stabilize the fold of a
protein. One or two Zn(II) cations [100] are often tetrahedrally coordinated to four
or six amino acids such as cysteine (Cys) or histidine (His) forming four major
cores: ZnCys4, ZnCys3His, ZnCys2His2 and ZnCys6 [101].

Starting from the ZnCys4 core, its modeling can be carried out by substitution of
Cys by methyl thiolate, CH3S

– [101]. In order to analyze the effect of the envi-
ronement within the HSAB theory, we have analyzed the series M2þ ½SCH3�2�4 ,
with M = Mg, Zn, Pd (from hard to soft Lewis acids). All complexes were opti-
mized at the ωB3LYP/6-31++G** level of theory except for Pd, which was opti-
mized with the pseudopotential LANL2DZ.

In all cases, the tetracoordination of the metal to the XMe ligands clearly stands
out as a strong interaction (deep blue in Fig. 18.15). It is interesting to note that the
interaction spike shifts from ca. sign(λ2)q ¼ �0:03 a.u. to sign(λ2)q ¼ �0:06 a.u.
when passing from Mg(II), which is a hard cation, to Zn(II) and Pd(II), which are
intermediate and soft cations, respectively. This is in agreement to what is expected
from the nature of the sulfur bridge (soft) with the ligands within the HSAB theory.

Spikes appear at very low densities which correspond to secondary interactions
in between the ligands, which stabilize the whole structure. As a final note, the big

Fig. 18.15 NCI plots for Zn finger model: a [Mg(SMe)4]
2–, b [Zn(SMe)4]

2–, c [Pd(SMe)4]
2–. Top

3D NCI plot. Bottom 2D NCI plot
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spikes appearing for Pd at ca. q ¼ 0:1 a.u., along with the peaks appearing for the
iodine compounds in Sect. 18.7.1, are an artifact from the pseudopotential, and as
such, should be disregarded.

18.8 Reactivity

Understanding and predicting chemical reactivity are some of the achievements of
quantum chemistry. In this regard, the Woodward-Hoffmann rules [21] for peri-
cyclic reactions have become a classical reference. By definition, pericyclic reac-
tions evolve via a cyclic aromatic transition state of delocalized electrons where
bond making and bond breaking occur simultaneously in a cyclic array. Using the
orbital symmetry conservation, Woodward-Hoffmann proposed a list of rules of
thumb able to predict the mechanism and, hence the stereoselectivity of pericyclic
reactions. Examples include cycloadditions, electrocyclizations, sigmatropic rear-
rangements, and chelotropic reactions. Much work has been devoted to show that
electron circulation on the pericyclic transition states may be smartly characterized
by the topology of the electron localization function (ELF) [92]. Recently, it was
shown how the combined analysis of the NCI method and ELF may be employed as
a visual tool to understand the electron reorganization along an intrinsic reaction
path (IRC) [93]. Contrary to ELF, the reduced density gradient does no suffer from
catastrophes (sudden creation and/or destruction of critical points), being possible
to preclude the bonding formation from the first stages of the reaction.

One example of application of NCI to predict the outcome of pericyclic reactions is
provided by the two possible ring-openings of trans-1,2,3,4-tetrafluoro-3,4-bis
(pentafluorosulfanyl)cyclobutene (see Fig. 18.16). As a thermal, 4n electron process,
theWoodward-Hoffmann rules predict that the conrotatory opening is more favorable
than the disrotatory one [21, 94]. Additionally, a given terminal substituent may either
rotate “outward”, leading to (out,out)-1,2,3,4-tetrafluoro-1,3-bis(pentafluorosul-
fanyl)butadiene or “inward” to yield (in,in)-1,2,3,4-tetrafluoro-1,3-bis(pentafluoro-
sulfanyl)butadiene. Activation energies obtained at theωB97X-D/6-311G** level for

(in,in) (out,out)

Fig. 18.16 “Outward” (out) and “inward” (in) conrotatory processes for the thermal ring opening
of trans-1,2,3,4-tetrafluoro-1,4-bis(pentafluorsulfanyl)cyclobutene
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(out,out) and (in,in) transition states are 41.55 kcal/mol and 21.12 kcal/mol,
respectively. Because this kind of stereoselectivity is related to the direction of the
twist, it was named torquoselectivity by Houk and co-workers [95].

Rondan and Houk proposed in 1984 a widely accepted orbital model able to
explain torquoselectivity [96, 97]. In a nutshell, this model states that electron donor
substituents at C3 and C4 preferentially rotate outward in order to maximize the
stabilizing interaction with the HOMO of the breaking C3–C4 bond and to minimize
the repulsive interaction with the LUMO of the same bond. Electron acceptor
substituents undergo the opposite effect, and, consequently, inward rotation is
preferred. Since only certain orbitals are included in the model, a wrong selection of
the interacting orbitals leads to wrong predictions. This disadvantage is common for
all theories based on a selected group of orbitals, such as the frontier orbital theory
[98]. To avoid this flaw, Ponec decided to reinvestigate the problem in terms of an
electron density based indicator, such as the molecular similarity approach [99]. He
showed that the origin of the torquoselectivity comes from the low electron reor-
ganization required to convert reactants into products.

Additionally, NCI analyses of both (in,in) and (out,out) transition states provide
us with topological arguments to understand this differential selectivity. As seen in
Fig. 18.17, out of the breaking carbon-carbon covalent interaction (blue isosurface)
and its repulsive counterpart ring tension (red isosurface), we can differentiate three
types of non-covalent interactions (green isosurfaces):

Type 1 Fluor-fluor interaction between pentafluorosulfanyl groups
Type 2 Pentafluorosulfanyl-carbon interaction
Type 3 Fluor-fluor interaction between pentafluorosulfanyl and fluoro groups

All of them are present in the (in,in) transition state, whereas only interactions of
type 3 are found in the (out,out) one (see Fig. 18.18). Thus, dispersion interactions
between pentafluorosulfanyl groups and those with the carbon cycle should be the
driving force of the process. Thus, torquoselectivity can also be understood in terms
of secondary interactions as revealed by NCI: within this approach products are

Fig. 18.17 NCI isosurfaces of (out,out) (left) and (in,in) (right) transition states
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driven by the accumulation of non-covalent interactions in the transition state. This
is in agreement with the secondary interactions proposed by Hook. However, it
should be noted that the different substituants give rise to a different deformation,
leading to barriers as high as ca. 20 kcal/mol that can not be strickly attributed to
non-covalent interactions.

18.9 Summary and Conclusions

In conclusion, non-covalent interactions have a unique signature and their presence
can be revealed solely from the electron density. Non-covalent interactions are
highly nonlocal and manifest in real space thanks to the NCI analysis: in other
words, as low-gradient isosurfaces with low densities. The sign of the second

2+1epyT1epyT

3epyT3+2+1epyT

Fig. 18.18 Non-covalent interactions types in (in,in) (top left, top right and bottom left) and (out,
out) (bottom, right) transition states. Black, red and blue dashed lines represent type 1, type 2 and
type 3 interactions respectively
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Hessian eigenvalue is used to give the type of interaction, and its strength can be
derived from the density on the non-covalent interaction surface.

NCI provides a rapid and rich representation of van der Waals interactions,
hydrogen bonds, and steric clashes. For large systems, such as proteins or DNA,
NCI can be approximated from atomic densities.

Since it is based in the electron density, it is applicable to all types of chemical
bonds. We have reviewed here several such examples along the periodic table:
halogen bonds, pnictogenic bonds, di-hydrogen bonds. We have even gone to
higher densities to show that NCI is also able to reveal and characterize interactions
in organometallic systems. Finally, we have also looked at the change of chemical
interactions along a reaction path, reformulating orbital rules in the
torquoselectivity.

In summary, we have shown that the electron density and its derivatives contain
all the information to characterize all chemical bonds and their change, making NCI
a holistic tool in the analysis of weak interactions.
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Behavior of Model Densities

See Fig. 18.19.

Fig. 18.19 Behavior of s(ρ) for model densities ρ = e−αr for hydrogen and carbon
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Parameters for Promolecular Calculations

See Table 18.2.
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Chapter 19
Diversity of the Nature
of the Nitrogen-Oxygen Bond in Inorganic
and Organic Nitrites in the Light
of Topological Analysis of Electron
Localisation Function (ELF)

Slawomir Berski and Agnieszka J. Gordon

Abstract The electronic structure of nitrite group (–ONO) has been studied for 21
inorganic and organic nitrites using topological analysis of Electron Localisation
Function (ELF) for the DFT(B2PLYP)/aug-cc-pVTZ and DFT(B3LYP)/
aug-cc-pVTZ optimised geometrical structures. The N–O bonds exhibit populations
smaller than 2e, thus including the N+O−, N−O+ Lewis-type structures in the
description of electron density delocalisation is of great importance. The main focus
of the ELF analysis was formally single N–O bond in the nitrite group (–O–NO).
The results have yielded four different types of local topology: (a) single local
maximum V(N,O) with the disynaptic bonding basin, (b) two local maxima V(N),
V(O) with monosynaptic non-bonding basins, (c) single local maximum V(N) with
monosynaptic non-bonding basin, (d) absence of the local maxima in the N–O
bond. Analysis of relationships between basin population values, calculated for the
V(N,O), V(N) and V(O) basins, and the N–O bond length, has shown overall trends
that can be qualitatively described by the catastrophe theory.

19.1 Introduction

Electronic structure of compounds, containing the nitrite group (–ONO), namely
inorganic (M–ONO, X–ONO) and organic nitrites (R–ONO) is interesting as they
can serve as NO donors in various chemical and biological systems [1]. Many
organic nitrites act as nitrovasolidators [2, 3] and have been used both clinically [4]
and recreationally [5]. Inorganic nitrites i.e. alkaline nitrites have been studied in the
context of inhibition of steel corrosion process in cement environments [6] or in
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meat curing. Nitrites in plant food have also been subject of research since their
presence in food has been thought to be associated with an increased risk of
gastrointestinal cancer and methemoglobinemia in infants [7].

Physico-chemical properties of the nitrite group are associated with the nature of
the chemical bonds binding the O atom to NO group and detailed knowledge of
their electronic structure is very important. The nature of chemical bonds is usually
studied in the Hilbert space within the molecular orbital theory. A more sophisti-
cated approach, Quantum Chemical Topology [8], performed in the real space,
invokes such concepts of gradient dynamical theory as gradient path, critical point,
attractor and its basin. The most popular applications are: topological analysis of
electron density, ρ(r) proposed by Bader [9], topological analysis of Electron
Localisation Function (ELF), η(r) [10–15] and topological analysis of Electron
Localizability Indicator (ELI), ϒσ(r) [16, 17]. Our previous studies [18–28] have
shown that topological analysis is an effective tool for studying the nature of the
N–O (N–O1) bond in the –ONO (–O1–N=O2) group.

In order to understand diverse nature of N–O bonds in nitrites, a detailed
information about changes in bond topological structure during the N–O bond
dissociation is essential. Analysis of evolution of ELF field using topological
approach, during dissociation of covalent homopolar C–C bond in C2H6 and
covalent dative N–B bond in H3BNH3, was reported by Krokidis et al. [29]. On the
basis of his research the Bonding Evolution Theory (BET) was formulated [30–32].
This methodology combines topological analysis of ELF and catastrophe theory of
Thom [33]. The reaction mechanism is analysed along the energy profile con-
necting the stationary points on PES using the intrinsic reaction coordinate (IRC) of
Fukui [34]. Along reaction pathway, a system experiences a series of structural
stability domains (SSDs) within all the critical points are hyperbolic and separated
by catastrophes where at least one critical point is non hyperbolic. The bifurcation
catastrophes are identified according to Thom’s classification [33] which gives
access to their unfolding, a compact polynomial expression which contains all the
information about how ELF may change as the control parameters change. This
way, a chemical reaction is viewed as a sequence of SSDs connected by catas-
trophes describing chemical events such as bond forming/breaking processes,
creation/annihilation of lone pairs and other types of electron pair rearrangements.

The results of BET analysis for FONO show four SSDs (I–IV), characterised by
different number of the local maxima (attractors) of ELF field. For example, the
N–O1 bond dissociation of the F–O1–N=O2 (syn) molecule studied at the
CCSD/aug-cc-pVTZ//CCSD(T)/aug-cc-pVTZ shows the topologies as presented in
Fig. 19.1. For short N–O1 distances only the bonding disynaptic attractor and basin
V(N,O1) are observed. Such an ELF-topology (I) corresponds to the ‘normal’
covalent bond. ‘Normal’ covalent bond is a chemical bond A–B, represented by the
disynaptic attractor V(A,B) in topological analysis of ELF, with any value of its
basin population. Further elongation of the N–O1 bond results in electron density
redistribution and the change of local properties of ELF in the region of valence
interaction between the N and O1 atoms. As a result, two non-bonding monosy-
naptic attractors are observed, instead of the single V(N,O1) attractor. These are: the
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V(O1) attractor located in the proximity of the C(O1) core attractor and the V(N)
attractor in proximity of C(N) core attractor (II). Similar ELF-topology has been
first described by Llusar et al. [35] for the molecular fluorine, F2 and labelled
protocovalent bond. This type of bonding occurs in electron density depleted bonds
between pnictogen, chalcogen and halogen elements bearing lone pairs. It manifests
in the ELF approach through presence of two attractors close to one another
determining two monosynaptic basins instead of a single disynaptic one for a
standard covalent single bond. The population of each of those monosynaptic
basins is less than one. It has been described as protocovalent because its SSD looks
like that of two approaching fragments during covalent bond formation. In the
valence-bond community this kind of bonding is known as charge-shift bond [36].
Further dissociation of the N–O1 bond and redistribution of the electron density
from the N � � �O1 region to the adjacent bonding regions (F–O, N=O2) and the
regions of lone pairs results in vanishing of the V(O1) attractor and basin. The
N–O1 bonding described by such an ELF-topology (III) is characterised by a single
non-bonding basin V(N). Finally, when the distance between the N and O1 atoms is
very long, the V(N) attractor and basin disappear and no local maxima of ELF field
between C(N) and C(O1) core attractors are observed (IV). The ELF-topology
corresponds to the situation where two molecules, FO and NO, are separated and no
covalent bond N–O exist anymore.

Detailed analysis of a number and types of critical points (attractors) of the ELF
field enables a characterisation of quantitative changes of ELF, as well as the
electronic structure of the N–O1 bond, within the catastrophe theory. For FO1NO2,
three catastrophes observed during dissociation of the N–O1 bond, one cusp and
two fold catastrophes, are shown in Fig. 19.2. The V(N,O1) attractor is annihilated
in the cusp catastrophe and the protocovalent bond is created by two attractors,
V(N) and V(O1). Subsequently the V(N) and V(O1) attractors are annihilated in the
fold catastrophes.

In the present study, we wanted to show that all four types of ELF-topology
described above, (I–IV) can be found using topological analysis of ELF for the
optimised geometrical structures of the nitrites including N–O bond. Such result
confirms the nitrogen-oxygen bond diverse nature. We performed comparative
analysis of the electronic structure of the nitrite group (–ONO) in various inorganic
and organic moieties (X = H, F, Cl, Br, I, OH; M = Li, Na, K, Rb; R = CH3, C2H5,
C3H7, i-C3H7, C4H9, i-C4H9, C5H11, C6H11 (cyclohexyl), C6H5C(O), (CF3)2N,

Fig. 19.1 Four types of topology of ELF field observed for the FO–N=O molecule during
dissociation of the N–O bond
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(CH3)2N). In order to ensure consistency of results, the wave functions approxi-
mation for all studied molecules was performed using the DFT(B2PLYP) method
[37]. Only for the (CF3)2NONO and (CH3)2NONO molecules previously published
the DFT(B3LYP) results [27] were used.

19.2 Computational Details

Full geometry optimisations have been performed using the Gaussian 09 program
[38]. The minima on the potential energy surface have been confirmed by
non-imaginary vibrational frequencies. The DFT(B2PLYP) functional [37] has
been used as implemented in G09 programme. Unless otherwise stated, calculations
have been carried out using aug-cc-pVTZ basis sets as proposed by Dunning et al.
[39, 40]. For the RbONO molecule, the geometrical structure has been optimised
using def2-TZVPPD basis set [41] on the O, N atoms and respective pseudopo-
tential (ecp-28) and valence orbitals for the rubidium atom [42] has been applied.
The molecular orbitals, necessary for the ELF calculations have been obtained
using single-point DFT(B2PLYP) calculations and all-electron TZVall basis set

Fig. 19.2 The evolution of the basin population calculated for the V(N,O1), V(N) and V(O1)
attractors localised for the N–O1 bond in the FO1–N=O2 molecule during the process of the N–O1
bond dissociation. The plot of the total energy versus the N–O1 bond length
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[43] from the Turbomole programme library. IONO molecule has been optimized
using the aug-cc-pVTZ-PP pseudopotential [44] for the core electrons of the iodine
atom (ecp-28). Other atoms have been described using the aug-cc-pVTZ basis set.
In order to obtain the values of iodine molecular orbitals, the single-point calcu-
lations have been carried out using TZVPPall basis set for I atom from the
Turbomole programme library. Other atoms have been described with the
aug-cc-pVTZ basis set. An energy difference between the conformational isomers
of the studied molecules (ΔE) has been corrected by ΔZPVE.

Topological analysis of the Electron Localization Function (ELF) has been
carried out using TopMod09 suite [45, 46]. The wave function has been obtained
using approximation for the DFT(B2PLYP) method proposed by Feixas et al. [47],
including the natural orbitals and their occupancies only. The ELF functions have
been calculated over a rectangular parallelepipedic grid with a step of 0.05 bohr.
Graphical representations have been obtained by ChemCraft [48], the UCSF
Chimera package [49] and VMD [50] programs.

In the plot showing the relationship between basin populations, �N and N–O1
bond lengths for all HONO, MONO, XONO and RONO nitrites, the values for
IONO have been omitted. In case of the alkaline nitrites both N–O1 and N–O2
bonds have been taken into account.

19.3 Results and Discussion

19.3.1 Nitrous Acid

All compounds chosen for the study are derivatives of the simplest molecule
containing the nitrite group, nitrous acid, HONO (HO1NO2). Two conformers of
HONO are known (Cs symmetry), one syn (cis) and one anti (trans) characterising
the H–O1 bond position in relation to the terminal N=O2 bond. The DFT
(B2PLYP)/aug-cc-pVTZ optimised geometrical structure of the anti conformer is
0.63 kcal/mol more stable than the syn conformer. The single N–O1 bond in the syn
conformer (1.397 Å) is 0.043 Å shorter than the length of the equivalent bond in the
anti conformer. The terminal N=O2 bond, described as formally double bond in the
Lewis formula, is 0.013 Å shorter in the syn conformer than in the anti conformer.
Since the double N=O2 bond is shorter than the single N–O1 bond, the difference in
their electronic structures can be anticipated.

The results of the N–O1 bond electronic structure, studied in the real space using
topological analysis of ELF, will vary depending on the computational method
used. At the DFT(B2PLYP)/aug-cc-pVTZ computational level, the N–O1 bonds in
both conformers are described by two monosynaptic attractors, V(O1) and V(N).
Such ELF-topology is characteristic for the protocovalent bond. The core and
valence attractors in the syn and anti conformer of the nitrous acid are shown in
Fig. 19.3. Similar analysis, carried out using the B3LYP hybrid electron density
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functional and variety of basis sets, ranging from 6-311G(d,p) to aug-cc-pVQZ also
concluded the protocovalent N–O1 bond [18]. This result has been confirmed by a
topological analysis for the ELI-D scalar field with the correlated wave function
obtained from the CASSCF(12,10)/6-311++G(2d,2p)//B3LYP/6-311++G(2d,2p)
calculations [18]. On the other hand, the topological analysis of ELF, with corre-
lated wave function obtained from the CCSD/aug-cc-pVTZ calculations and the
CCSD(T)/aug-cc-pVTZ optimised geometrical structures, showed the bonding
disynaptic basin V(N,O1) for the syn conformer (rN–O1 = 1.396 Å) and the pro-
tocovalent bond with V(N), V(O1) basins for the anti conformer (rN–O1 = 1.432 Å)
[25].

The basin populations calculated at three computational levels for the syn and
anti conformers of HONO are collected in Table 19.1. The V(N) and V(O1) basin
populations of the protocovalent N–O1 bond, obtained with the wave function

Fig. 19.3 The core and valence attractors in the nitrous acid molecule, HONO

Table 19.1 Mean electron
populations, �N, for the
localisation basins in the syn
and anti conformers of nitrous
acid, HONO (HO1–NO2)

Method CCSD B2PLYP B3LYP

Basin syn anti syn anti syn anti

V(N) – 0.58 0.60 0.51 0.61 0.53

V(O1) – 0.44 0.51 0.40 0.51 0.42

V(H,O1) 1.78 1.79 1.81 1.82 1.81 1.82

V(N,O1) 1.15 – – – – –

V(N,O2) 2.06 2.13 2.02 2.09 2.03 2.11

V1(N) 2.67 2.73 2.75 2.82 2.74 2.80

V1(O2) 2.67 2.60 2.68 2.62 2.68 2.61

V2(O2) 2.61 2.59 2.62 2.59 2.63 2.60

V1(O1) 2.35 2.40 2.34 2.38 2.33 2.39

V2(O1) 2.35 2.39 2.33 2.38 2.33 2.39

The topological analysis performed at the CCSD/aug-cc-pVTZ,
B2PLYP/aug-cc-pVTZ and B3LYP/aug-cc-pVTZ computational
levels
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approximated from DFT(B2PLYP)/aug-cc-pVTZ calculations, are 0.60e, 0.51e for
syn conformer and 0.51e, 0.40e for anti conformer. In both cases the basin
describing the less electronegative atom yields a larger value of �N. This can be
related to the annihilation of the V(O1) attractor at the first stage of the dissociation
of the N–O1 bond (as explained above). Furthermore, larger values of �N obtained
for the V(O1) and V(N) basins for the syn conformer correspond to its shorter
N–O1 bond. This can be a result of the larger value of electron density associated
with the shorter N–O1 bond. It is worth emphasizing, that the amount of electron
density found in the N–O1 region describing the N–O1 chemical bond is much
smaller than a formal value of 2e. In the light of topological analysis of ELF the
N–O1 bond does not have a typical covalent character when a single electron pair is
shared between N and O1 atoms. The bond nature is determined by highly delo-
calised electron density, represented by Lewis structures with the N+O1− and
N−O1+ bonds. Delocalisation of the electron density among ELF-basins is quan-
titatively described by the values of covariance matrix [51]. For the V(O1) and V
(N) basins of the protocovalent bond, the electron density is delocalised mainly
with large valence basins that are located in close proximity, namely non-bonding
basins Vi=1,2(O1) and V1(N). The magnitude of the covariance for V(O1) with two
Vi=1,2(O1) lone pairs is 0.10 (each lone pair) and this value is larger than the value
of 0.07 for delocalisation with the V(N) basin (within protocovalent bond). In the
case of the V(N) basin the largest covariance value has been obtained for delo-
calisation with the non-bonding basin V1(N) and is 0.11.

At the CCSD level of calculations [25] similar values of the basin population
have been obtained. The value of �N for the V(N,O1) basin is 1.15e (syn) and 0.58e,
0.44e (anti) for the V(N), V(O1) basins, respectively. These results confirm less
covalent character of the longer N–O1 bond and more covalent character of the
N–O1 bond for the syn conformer than predicted by DFT calculations.
Nevertheless, the comparison of the CCSD, DFT(B2PLYP) and DFT(B3LYP)
results (see Table 19.1) shows that classification of the nature of the N–O1 bond is
strongly method dependent. The double bond, N=O2, in both molecules and using
all computational methods, is described by the single disynaptic bonding basin
V(N,O2) with the basin population varying from 2.02e to 2.13e. This value does
not correspond to that characteristic of a classical double N=O2 bond as predicted
by the Lewis formula (4e). Similarly, formally single H–O1 bond exhibits basin
populations in the range between 1.78e and 1.82e, smaller than formal value of 2e.

19.3.2 Alkaline Nitrites

The nature of bonding in inorganic nitrites, MONO (alkaline nitrites, MO1NO2),
has been studied for four molecules: LiONO, NaONO, KONO and RbONO. Two
stable conformers have been identified with the syn and anti configuration of the
formal M–O1 bond in respect to the terminal NO2 bond (see Fig. 19.4). The NO1
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and NO2 bonds in the syn conformer (C2v) are longest for the LiONO (1.272 Å)
molecule and gradually shorten in length which is reflected in much shorter value
(1.216 Å) for RbONO. For the anti conformer (Cs) the NO1 bond is longer than the
terminal NO2 bond. The difference between both bond lengths is 0.099 Å for
LiONO, 0.082 Å for NaONO, 0.063 Å for KONO and 0.060 Å for RbONO. The
values of the bond lengths are shown in Table 19.2.

The spatial organisation of the core and valence attractors in the MONO series
(M = Li, Na, K, Rb) obtained from topological analysis of ELF are compared in

Fig. 19.4 The core and valence attractors in the alkaline nitrites, MONO (M = Li, Na, K, Rb)

Table 19.2 N–O bond lengths and mean electron populations, �N, for the localisaton basins for the
N–O bond in alkaline metal nitrites M–ONO (MO1NO2, M = Li, Na, K, Rb)

No Molecule Conformer r(N–O1)
[Å]

V(N,O1)
[e]

r(N–O2)
[Å]

V(N,O2)
[e]

1 LiONO syn 1.272 1.56 1.272 1.56

anti 1.310 1.37 1.211 1.83

2 NaONO syn 1.272 1.51 1.272 1.51

anti 1.302 1.41 1.220 1.77

3 KONO syn 1.266 1.55 1.266 1.55

anti 1.289 1.43 1.226 1.72

4 RbONO syn 1.261 1.55 1.261 1.55

anti 1.288 1.44 1.228 1.71

The topological analysis of ELF performed at the B2PLYP/aug-cc-pVTZ (LiONO, NaONO,
KONO) and B2PLYP/def2-TZVPPD(N,O),TZVall(Rb)//B2PLYP/def2-TZVPPD (RbONO)
computational levels
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Fig. 19.4 (both for syn and anti conformers of LiONO). The electronic structure of
MONO molecules is relatively simple, because it consists only of four core basins,
C(M), C(O1), C(N), C(O2), corresponding to core electron densities of the alkali
metal, oxygen and nitrogen; two bonding disynaptic basins V(N,O1), V(N,O2) in
the valence space corresponding to the NO1 and NO2 bonds and five nonbonding
basins corresponding to non-bonding electrons of oxygen V1(O1), V2(O1), V1(O2),
V2(O2) and nitrogen V1(N). In the region between the metal atom and the ONO
group no valence bonding attractor can be found, thus the metal-oxygen interaction
has no covalent character. The ELF analysis supports the Mδ+[ONO]δ− represen-
tation of studied molecules. Very similar result has been obtained previously for
LiONO, NaONO and KONO using the DFT(B3LYP) optimised wave function and
topological analysis of Electron Localizability Indicator (ELI-D) with the CASSCF
(12,10)//MP2/aug-cc-pVTZ wave function and various basis sets [19].

The mean electron populations for the V(N,O1), V(N,O2) basins are collected in
Table 19.2. All values are smaller than 1.9e thus the electronic structure of the
bonds can be attributed to the delocalisation between structures containing formal
N–O bonds and those where the N+O−, N−O+ bonds are present. As can be seen
from Fig. 19.5, where the basin populations are plot versus the lengths of the NO1
and NO2 bonds, three groups of bonds can be distinguished. The largest and the
smallest values of �N have been obtained for the terminal NO2 and NO1 bonds in
the anti conformer, respectively. Basin populations for the terminal NO2 bond are
in the range between 1.71e (Rb) and 1.83e (Li). Populations for the NO1 bonds are
essentially smaller and range between 1.37e (Li) and 1.44e (Rb). These results
confirm different characters of the NO1 and NO2 bonds. Contribution of the
structures with the N+O−, N−O+ bonds in electron delocalisation is larger for the

Fig. 19.5 The correlation between the population of V(N,O1), V(N,O2) basins and the r(N–O1), r
(N–O2) bond lengths in the alkaline nitrites, MONO
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NO1 bond than for the NO2 bond. For the syn isomer of MONO, with two equal
NO1 and NO2 bonds, the transient values of �N have been calculated within a very
narrow range i.e. 1.51e (Na)–1.56e (Li, Rb).

The highly polarised structure of Mδ+[ONO]δ− yields the question about the
nature of the bonding in isolated [ONO]1− anion and its similarity to the [ONO]δ−

group in the alkaline nitrites. Topological analysis of ELF performed for the C2v

optimised structure (r(N–O) = 1.263 Å, <(O–N–O) = 117°) has shown the same
core and valence attractors as those observed in MONO. The basin populations for
V(N,O1) and V(N,O2) equal 1.58e thus they are very similar to the values obtained
for MONO (C2v). It supports the observation that alkaline nitrites consist of a metal
cation and nitrite anion.

The alkaline nitrites are examples of molecules with the nitrite group charac-
terised by a single disynaptic V(N,O1) and V(N,O2) basins, typical for the ‘normal’
covalent bonds. It is worth noting that the bond lengths are smaller than 1.32 Å thus
these bonds are essentially shorter than a formally single N–O1 bond in the nitrous
acid molecule, where the protocovalent bond has been identified.

19.3.3 Halogen Nitrites and Peroxynitrous Acid

The electronic structure has been studied for four halogen nitrites XONO
(XO1NO2, X = F, Cl, Br, I) and peroxynitrous acid, HOONO (HOO1NO2). For the
XONO molecules, two conformers with syn and anti orientation of the X–O bond
in respect to the terminal N=O bond have been found. For the HOONO molecule,
three conformers have been investigated: syn-syn, syn-perp and anti-perp.

The B2PLYP/aug-cc-pVTZ optimised geometrical structure of the syn con-
former of XONO is 2.99 kcal/mol (F), 3.29 kcal/mol (Cl), 3.89 (Br) and
4.66 kcal/mol (I) more stable than the anti conformer. The results for the HOONO
molecule show the syn-syn isomer as the most stable, but the syn-perp and anti-perp
conformers are only 0.92 and 3.15 kcal/mol less stable, respectively.

Comparison of the N–O1 bond lengths, collected in Table 19.3, shows longer
N–O1 bond in the less stable anti conformer of all XONO molecules. The difference
between the N–O1 bond length in the syn and anti isomers is 0.04 Å (F), 0.06 Å
(Cl), 0.15 Å (Br) and 0.16 Å (I), respectively. Similarly, the N–O1 bond length for
the less stable syn-perp and anti-perp conformers of HOONO are 0.11 and 0.10 Å
longer than in the most stable syn-syn conformer. In the case of the syn conformers
of XONO, the shortest N–O1 bond is observed for IONO (1.348 Å) and the longest
for ClONO (1.496 Å). For the anti conformers, the shortest N–O1 bond is obtained
for IONO (1.504 Å) and the longest for ClONO (1.554 Å). With such differences in
the bond lengths, significant differences in the topological structure of ELF-field
can be expected. It needs to be stressed, however, that the geometrical structure of
IONO has been optimised using pseudopotential approximation for the core elec-
trons of iodine, while for other halogen atoms the all-electron basis set has been
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used (see Computational details). This is bound to be reflected in the results of
ELF-analysis.

Topological analysis of ELF performed for XO1NO2 molecules shows an
interesting topological structures. Only single local maximum, the non-bonding
V(N) attractor, in the N–O1 bonding region can be been found for both conformers
of FONO and ClONO and for anti isomers of BrONO and IONO (see Table 19.3).
The V(N) attractor is situated in the vicinity of the C(N) core attractor. This position
of the single V(N) attractor supports ELF-topology of type III for the N–O bond as
described above. The DFT(B2PLYP)/aug-cc-pVTZ results for the syn conformers
of BrONO and IONO show the protocovalent N–O1 bond with two non-bonding
attractors, V(O1) and V(N).

Our previous studies [20, 28] related to FONO where a correlated wave function
from the CCSD/aug-cc-pVTZ//CCSD(T)/aug-cc-pVTZ was used [28], showed the
protocovalent N–O1 bond for syn isomer (r(N–O1) = 1.467 Å) and only single
V(N) attractor for anti conformer (r(N–O1) = 1.500 Å). Analysis of ELF-topology
evolution for the N–O1 bond during dissociation process confirmed that only the
V(N) attractor is observed at equilibrium. The V(N,O1) attractor expected for
‘normal’ covalent bond and two attractors V(N), V(O1) of the protocovalent bond
are observed for shorter distances than that optimised for the equilibrium structure.
The discrepancy between the DFT(B2PLYP) and CCSD results for FONO shows
that the level of calculations plays important role in the study of the nature of the
N–O1 bond in XO1NO2. Similar conclusion can be drawn from topological
analysis of ELF performed for the ClONO and BrONO molecules using the various
wave functions [23].

Table 19.3 N–O bond lengths and mean electron populations, �N, for the localisaton basins for the
N–O1 bond in halogen nitrites XONO (XO1–NO2; X = F, Cl, Br, I) and peroxynitrous acid
HOONO (HOO1–NO2)

No Molecule Conformer r(N–O1) [Å] V(O1) [e] V(N) [e] V(N,O1) [e]

1 FONO syn 1.490 – 0.41 –

anti 1.533 – 0.37 –

2 ClONO syn 1.496 – 0.42 –

anti 1.554 – 0.33 –

3 BrONO syn 1.403 0.33 0.52 –

anti 1.533 – 0.37 –

4 IONO syn 1.348 0.50 0.62 –

anti 1.504 – 0.43 –

5 HOONO syn-syn 1.393 – – 0.91

syn-perp 1.505 – 0.46 –

anti-perp 1.498 – 0.46 –

The topological analysis of ELF performed at the B2PLYP/aug-cc-pVTZ level for XONO (X = F,
Cl, Br) and HOONO molecule and the B2PLYP/aug-cc-pVTZ(H,N,O),TZVPPall(I)//
B2PLYP/aug-cc-pVTZ-PP level for IONO
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The relationship between the population of the V(N), V(O1) basins and the
N–O1 bond length is shown in Fig. 19.6. The protocovalent bond is observed for
two shortest N–O1 bonds in IONO (syn, 1.348 Å) and BrONO (syn, 1.403 Å). For
much longer N–O1 bonds in the syn forms of FONO and ClONO (r(N,
O1) > 1.48 Å) also for all anti conformers of FONO, ClONO, BrONO and IONO
(r(N,O1) > 1.50 Å), the V(O) nonbonding attractor is no longer observed. Two
types of ELF-topology (II and III), identified for the N–O1 bond are in agreement
with the expected evolution of the V(N,O1) bonding basin in a process of the N–O1
bond dissociation. In such process the V(N,O1) bonding basin is annihilated first
and then two non-bonding basins are observed V(N), V(O1). Further elongation of
the N–O1 bond results in annihilation of V(O1) and subsequently the V(N) basin.

The core and valence attractors localised in three conformers of the peroxyni-
trous acid molecule are shown in Fig. 19.7. Values of the basin populations can be
found in Table 19.3. Comparison of the N–O1 bond lengths show relatively short
bond for the syn-syn conformer (1.393 Å), which is 0.112 and 0.105 Å shorter than
in the syn-perp and anti-perp conformers. Topological analysis of ELF shows single
valence attractor between the C(N) and C(O1) core attractors for all conformers. In
the syn-perp and anti-perp isomers with longer N–O1 bond, only the V(N) attractor
is observed. The basin populations are 0.46e for both isomers. The same population
value is a result of a very small difference between the N–O1 bond lengths
(0.007 Å). For the syn-syn conformer, a single valence attractor is found in the
vicinity of the O1 atom whereas the single V(N) attractor is observed in the vicinity
of N atom. It is classified as disynaptic bonding attractor, V(N,O1). The basin
population of 0.91e is much larger than the one calculated for the single V(N) basin

Fig. 19.6 The correlation between the population of V(N), V(O1) basins and the r(N–O1) bond
length in the halogen nitrites, XO1NO2
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(0.46e). This result can be associated with the N–O1 bond in the syn-syn con-
former, much shorter than the equivalent bonds in the syn-perp and anti-perp
isomers. Our previous calculations [25] performed at the CCSD(T)/aug-cc-pVTZ
computational level yielded optimised bond lengths (1.388 Å (syn-syn), 1.473 Å
(syn-perp), 1.476 Å (anti-perp)) shorter than those obtained from the DFT
(B2PLYP)/aug-cpVTZ calculations. The shorter bonds have different ELF-topology
and the topological analysis of ELF showed protocovalent bonds with the basin
population values of: 0.60, 0.48e (syn-syn), 0.54, 0.29e (syn-perp) and 0.53, 0.29e
(anti-perp) for V(N), V(O1), respectively. This confirms topological structure of
ELF field for the N–O1 bond dependency on the computational level.

Electronic nature of the N–O1 bond in halogen nitrites and peroxynitrous acid
exhibits large diversity of ELF-topological structure characterised by types I, II and
III. They are represented by the disynaptic bonding attractor V(N,O1), the proto-
covalent bond with monosynaptic non-bonding attractors V(N), V(O1) and only
single monosynaptic non-bonding attractor V(N). The III type characterises rela-
tively long N–O1 bonds and has not been observed for HONO and MONO nitrites.
The nature of the nitrogen-oxygen interaction in XONO depends strongly on the
computational method used for geometry optimisation.

19.3.4 Organic Nitrites

The bonding in the organic nitrites, R–ONO, has been studied for eleven molecules:
methyl nitrite, CH3ONO, ethyl nitrite, C2H5ONO, propyl nitrite, C3H7ONO,
iso-propyl nitrite, i-C3H7ONO, butyl nitrite, C4H9ONO, iso-butyl nitrite,
i-C4H9ONO, amyl nitrite (3-methylbutyl nitrite) C5H11ONO, cyclohexyl nitrite,
C6H11ONO and benzoyl nitrite, C6H5C(O)ONO. For CH3ONO and C2H5ONO
molecules all known conformers have been investigated, while for the other nitrites
only the syn and anti conformers have been considered (see Fig. 19.8). Benzoyl
nitrite molecule has been studied only for one stable isomer [52]. The most

Fig. 19.7 The core and valence attractors in the peroxynitrous acid molecule, HOONO

19 Diversity of the Nature of the Nitrogen-Oxygen Bond … 541



interesting molecule in organic nitrites group is O-nitrosobis(trifluoromethyl)hy-
droxylamine, (CF3)2NONO, studied by Ang et al. [53]. Experimental studies (gas
electron diffraction, X-ray diffraction) have shown unusually long N–O bond, 1.572

Fig. 19.8 The DFT(B2PLYP)/aug-cc-pVTZ optimised geometrical structures of the organic
nitrites, RONO
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(21) Å (gas phase) and 1.669(3) Å (in crystal), respectively. In addition to the
(CF3)2NONO molecule, its simpler analogue, the (CH3)2NONO molecule has also
been studied.

The DFT(B2PLYP) optimised lengths of the N–O1 bonds are presented in
Tables 19.4 and 19.5. For the (CF3)2NONO and (CH3)2NONO molecules the DFT
(B3LYP)/aug-cc-pVTZ optimised parameters have been used [27]. The N–O1 bond
length varies between 1.404 Å for C2H5ONO (s-g) and 1.632 Å for (CF3)2NONO
(t-a). As the N–O1 bond length in (CF3)2NO1NO2 is exceptionally long, it is bound
to exhibit interesting topological features for the N–O1 interaction.

Topological analysis of ELF has not shown any bonding disynaptic basin V(N,O1)
for the interaction between the N and O1 atoms for all studied organic nitrites. Thus,

Table 19.4 N–O1 bond lengths and mean electron populations, �N for the localisaton basins for
the N–O1 bond in a series of organic nitrites, RONO (RO1–NO2)

No Molecule Conformer r(N–O1)
[Å]

V(O1)
[e]

V(N)
[e]

V(N,O1)
[e]

1 CH3O1NO syn 1.408 0.50 0.57 –

anti 1.432 0.35 0.52 –

2 C2H5O1NO syn-gauche 1.404 0.51 0.58 –

syn-trans 1.411 0.48 0.57 –

trans-gauche 1.419 0.43 0.55 –

trans-trans 1.426 0.37 0.53 –

3 C3H7O1NO syn 1.405 0.50 0.58 –

anti 1.421 0.42 0.55 –

4 i-C3H7O1NO syn 1.408 0.49 0.58 –

anti 1.422 0.38 0.53 –

5 C4H9O1NO syn 1.405 0.50 0.58 –

anti 1.421 0.42 0.55 –

6 i-C4H9O1NO syn 1.406 0.50 0.57 –

anti 1.428 0.37 0.53 –

7 C5H11O1NO syn 1.405 0.38 0.53 –

anti 1.425 0.51 0.58 –

8 (CF3)2NO1NO
1) t-s 1.632 – – –

t-a 1.583 – 0.35 –

c-a 1.617 – – –

9 (CH3)2NO1NO t-s 1.503 – 0.52 –

t-a 1.459 0.29 0.52 –

c-a 1.466 0.19 0.58 –

c-s 1.460 0.29 0.59 –

The topological analysis of ELF performed at the B2PLYP/aug-cc-pVTZ level and
B3LYP/aug-cc-pVTZ level for (CH3)2NO1NO and (CF3)2NO1NO molecules
CH3ONO—methyl nitrite, C2H5ONO—ethyl nitrite, C3H7ONO—propyl nitrite, i-C3H7ONO—
isopropyl nitrite, C4H9ONO—butylnitrite, i-C4H9ONO—isobutylnitrite, C5H11ONO—amyl nitrite
(3-methylbutyl) nitrite
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the formally single N–O1 bonding in organic nitrites cannot be classified as a standard
covalent type. All the N–O1 bonds, with the lengths in the range between 1.404 and
1.466 Å, are described by two non-bonding monosynaptic attractors V(N), V(O1).
Thus the N–O1 bonds in methyl, ethyl, propyl, butyl, amyl, cyclohexyl nitrites and
(CH3)2NONObelong to the protocovalent type. Similar results have been obtained for
the methyl and ethyl nitrite at the DFT(B3LYP)/aug-cc-pVTZ computational level
[21]. The core and valence attractors in the exemplary cyclohexyl nitrite are shown in
Fig. 19.9. In the case of longer N–O1 bonds, where the bond lengths range from
1.503 Å ((CH3)2NONO) to 1.583 Å ((CF3)2NONO), only one valence non-bonding
attractor is observed V(N). Similar ELF-topology has also been found for benzoyl
nitrite with the N–O1 bond length of 1.547 Å. The core and valence attractors in
benzoyl nitrite are presented in Fig. 19.10. The ELF topology with single V(N)
attractor resembles the one observed for the XONOmolecules. For the longest N–O1

Table 19.5 N–O1 bond lengths and mean electron populations, �N for the localisaton basins for
the N–O1 bond in organic nitrites with the aliphatic C6H11O1–NO and aromatic six-memebered
carbon ring C6H5C(O)O1–NO

No Molecule Conformer r(N–O1)
[Å]

V(O1)
[e]

V(N)
[e]

V(N,O1)
[e]

1 C6H11ONO syn 1.409 0.49 0.57 –

anti 1.421 0.39 0.53 –

2 C6H5C(O)
ONO

anti 1.547 – 0.34 –

The topological analysis of ELF performed at the B2PLYP/aug-cc-pVTZ level
C6H11O1NO—cyclohexyl nitrite, C6H5C(O)O1NO—benzoyl nitrite

Fig. 19.9 The core and valence attractors in the cyclohexyl nitrite molecule, C6H11ONO
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bond, obtained for (CF3)2NONO (t-s) with the length of 1.632Å, neither bonding nor
non-bonding attractors are found. The electron density in the interaction region
between the N and O1 atoms is characterised by attractors of the ELF field corre-
sponding to the lone pairs on the N and O1 atoms, V(N), V(O1). The 2D map of ELF
function is shown in Fig. 19.11. From ELF-topological point of view the
(CF3)2NONO molecule consists of the (CF3)2NO and NO fragments and type IV of
ELF-topology is confirmed. No covalent bond can be identified, even ‘broken’

Fig. 19.10 The core and valence attractors in the benzoyl nitrite molecule, C6H5C(O)ONO
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covalent bond as represented by the protocovalent bond or the single V(N) attractor.
The results obtained for the (CF3)2NONOmolecule supports our hypothesis of nitrite
existing in an equilibrium configuration, where no valence attractors can be found in
the N–O1 bond region.

The mean electron populations, calculated for the ELF-basins in the N–O1 bond
for all RONO molecules are collected in Tables 19.4 and 19.5. The values calculated
for the V(O1) basin of the protocovalent N–O1 bond range from 0.19e
((CH3)2NONO) to 0.51e (C2H5ONO, C5H11ONO). The results for the V(N) basin lie
between 0.52e (CH3ONO, (CH3)2NONO)) and 0.59e ((CH3)2NONO)). The values of
�N for the less electronegative element (nitrogen) are larger than the ones obtained for
the more electronegative element (oxygen). The differences �N [V(N)] − �N [V(O1)]
are between 0.07e and 0.39e. Smaller values of �N for the V(O1) basin can be asso-
ciated with the fact that during dissociation of the N–O1 bond (see Fig. 19.2) the
V(O1) basin is annihilated first. For the single V(N) basins, found in the
(CF3)2NONO (t-a), (CH3)2NONO (t-s) and benzoyl nitrite molecules the basin
population are 0.35e, 0.52e and 0.34e, respectively.

The relationship between the V(N) and V(O1) population values and N–O1 bond
length is shown in Fig. 19.12. The simple linear regression model applied to the
population values shows a negative slope along with the elongation of the r(N–O1)
distance The longer N–O1 bond has smaller amount of electron density

Fig. 19.11 The 2D plot of the ELF function in the plane crossing the N–O1 bond of the nitrite
group. Notice the lack of any local maxima of ELF between the domains of core regions of the N
and O1 atoms
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‘concentrated’ on the respective ELF basins. The regression line is steeper for the
V(O1) basin than for the V(N) basin. This corresponds to a much faster disap-
pearance of V(O1) during dissociation of the N–O1 bond.

19.4 Conclusions

In this chapter the electronic structure of nitrous acid (HONO), alkaline nitrites
(MONO), halogen nitrites (XONO), peroxynitrous acid (HOONO) and a range of
organic nitrites (RONO), have been studied using the topological analysis of
Electron Localisation Function for the DFT(B2PLYP)/aug-cc-pVTZ and DFT
(B3LYP)/aug-cc-PVTZ approximated wave function.

The nitrogen-oxygen bond in the nitrite group shows four types (I–IV) of
ELF-topologies. Those different topological structures of the ELF field can arise
from various stages of dissociation of the N–O bond. Our study confirms that the
first type (I) represented by the bonding disynaptic basin V(N,O) is observed for
alkaline nitrites and one of the HOONO conformers. The second type (II) of
ELF-topology that corresponds to the protocovalent N–O bond, represented by two
non-bonding basins V(N), V(O), is found for HONO, the halogen nitrites BrONO,
IONO and a majority of the organic nitrites. The third topological type (III),

Fig. 19.12 The correlation between the population of V(N), V(O1) basins and the r(N–O1) bond
length in organic nitrites, RONO
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characterised by single nonbonding basin V(N) is observed for the halogen nitrites
FONO, ClONO, HOONO, (CH3)2NONO and benzoyl nitrite. Finally, for the very
long N–O bond, found in the (CF3)2NO–NO molecule, the fourth type (IV) of
ELF-topology is observed. This type is characterised by an absence of local
maxima of the ELF field.

The mean electron populations for the basins describing types I–IV of
ELF-topology for the N–O bond are compared in Fig. 19.13 (see Computational
Details). All calculated values of �N are smaller than 2e, thus the electronic nature of
the N–O bond is different from a standard single covalent bond formed by two
atoms of similar electronegativity with shared electron pair. From the point view of
electron density delocalisation, the nature of the binding is dominated by structures
with the bonding pair localised on the N or O atoms, N+O−, N−O+. Only in the
alkaline nitrites, MONO, the N–O bond shows relatively large values of the basin
population (�N[ 1:3e). Relationship between the N–O1 bond length and basin
population values calculated for the V(N,O1), V(N) and V(O1) basins shows their
global evolution in agreement with a picture of the cusp and fold catastrophes (see
Fig. 19.2). At the r(N–O1) distances in the range between 1.22 and 1.39 Å, the
disynaptic bonding basin V(N,O1) is observed. Around 1.40 Å a cusp catastrophe
occurs and the V(N) and V(O1) basins appear at further distances only. The V(O1)
is observed in the nitrites until about 1.46 Å and V(N) basin until about 1.55 Å.

Topological analysis of ELF yields large diversity of the the nitrogen-oxygen
interactions in contrast to an uniform single covalent bond, predicted by the Lewis

Fig. 19.13 The correlation between the population of the V(N,O1), V(N), V(O1) basins and the
r(N–O1) bond length for all inorganic and organic nitrites
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formula N–O. Such diversity of bonding, represented by different SSDs of ELF
field, can be quantitively distinguished and described using topological concepts
and the catastrophe theory.

Finally, interesting question arises: what is the driving force behind the N–O
bond length variation. The answer is not straightforward as the studies on FONO
and HOONO show that the topology of ELF depends on the quality of wave
function used for analysis. Furthermore, different conformers can exhibit different
number and type of attractors in the N–O bond as has been shown for example for
HOONO, (CF3)2NO–NO and (CH3)2NO–NO. Nevertheless some generalisations
are possible.

Analysis of the V(N) and V(O1) covariances for the protocovalent bond shows
that electron density exchange with the nearby large basins of the lone pairs V1(N)
and Vi=1,2(O1) is larger than mutual delocalisation between the V(N) and V(O1)
basins. Thus the nature of the N–O bond can result from dispersive interaction
through instantaneous atomic dipole-dipole interactions –N+ –O+, +N– +O–
yielding energetic stabilisation. Formation of atomic dipoles would arise from large
delocalisation of electron density with the lone pairs, V1(N) and Vi=1,2(O1). In that
case, polarizability of the central O1 atom, dependent on electronegativity/
polarizability of the M, X and R groups bonded to O1 is essential.

Based on the concept of hard and soft acids and bases [54], the electronic
structure of the N–O bond in alkaline nitrites (bonding type I) is a consequence of
bonding between the O1 atom and a hard acid type atom M: Li+, Na+, K+, Rb+.
Similar bonding type can be expected for the MO–NO bond, formed by soft acid
type M atoms (Ag+). The bonding types II, III and IV with two V(N), V(O1) basins,
single V(N) basin and those without valence basins in the N–O1 bond, respectively
are effect of the interaction of the H, X, OH, R, (CF3)2N and (CH3)2N groups with
O1 atom. Those groups are characterised as either hard or soft bases. The proto-
covalent N–O1 bond (type II) is observed mainly for large group of the organic
nitrites with the alkyl group R (including cyclohexyl group), (CH3)2N, BrONO and
IONO. The alkyl and Br−, I− groups are highly polarisable, therefore they do not
significantly perturb the O1 valence electrons. This enables delocalisation between
V(O1) and Vi=1,2(O1) basins. When weakly polarisable groups, F−, Cl− and OH−

i.e. hard bases are bound to O1 atom, the polarising effect on O1 atom is intensified
withdrawing electron density from the N–O1 bond and weakening it. This can be
associated with the V(O1) basin disappearance (type III). Finally, a very strong
polarising effect is expected for the (CF3)2N group due to the lack of valence basins
(type IV) caused by large withdrawal of electron density from the N–O1 bond,
diminishing further the O1 atom delocalisation in the valence shell and decreasing
the stabilising dispersion-like interaction.
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Chapter 20
Quantum Chemical Topology in the Field
of Quasirelativistic Quantum Calculations

Mohamed Amaouch, Eric Renault, Gilles Montavon, Nicolas Galland
and Julien Pilmé

Abstract This chapter aims to present QTAIM and ELF topological analyzes in
the framework of two-component relativistic computations. Attention is focused on
spin-orbit coupling (SOC) effects on the chemical bond in systems containing
heavy atoms. The emblematic At2 and uranyl species have been studied as a rel-
evant test set. The presented methodology appears particularly suitable for evi-
dencing relativistic effects on bonding schemes. The influence of SOC was found to
depend, not only of the involved heavy atoms, but also of the bond nature.
Furthermore, the robustness of QTAIM and ELF for analyzing wave functions built
from spinors has been verified.
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20.1 Introduction

Since chemists began to draw formulas of chemical compounds where atoms are
linked by electron pairs [1, 2], simple concepts such as single and multiple bonds or
covalent and ionic bonds, appear as the cornerstone of the molecular structure
understanding. They notably have demonstrated their indisputable utility for
helping chemists in the rational design of systems with desired properties.
However, the bonding in many systems containing heavy atoms is still unclear to
chemists, especially because of relativistic effects and in particular the spin-orbit
coupling (SOC). One may distinguish electron spin-independent (scalar) effects
from spin-dependent relativistic effects. The scalar effects are associated with the
relativistic mass increase of electrons, resulting essentially from their high speed in
the vicinity of heavy nuclei. The main spin-dependent effect is the coupling
between electron spin and electron orbital momentum (SOC). The latter compli-
cates the possibility of imagining a bridge between the complex electronic structure
of systems containing heavy atoms (e.g. actinides and heavy p-elements) and
simple concepts, which can be used by chemists to understand the outcomes of
experimental observations as well as the results of state-of-the-art electronic
structure calculations. Indeed, a proper description of systems containing actinides
or heavy p-elements requires including SOC in the quantum mechanical calcula-
tions. While computational chemists have been developing tools to bridge quantum
mechanical calculations to chemist’s views for decades [3–8], this has only been
done thoroughly in the framework of non-relativistic or scalar-relativistic methods,
since scalar-relativistic effects can be incorporated into existing non-relativistic
programs with minimum extra code developments. The situation is deeply con-
trasting when looking at available tools for scrutinizing SOC effects on traditional
pictures of the chemical bond. A fundamental problem is that chemists are not
familiar with spinors which are single-particle functions usually used to expand
SOC wave functions. Since spinors are complex vector functions of two- or
four-component, they do not lend themselves easily to visualization. An illustration
is displayed on Fig. 20.1 in the case of one singly occupied two-component (2c)
spinor of the At2 species.

Fig. 20.1 One of π1/2u occupied 2c (pseudo)spinors calculated at 2c-B3LYP/aug-cc-pVTZ-PP-2c
level of theory for the At2 species. Notable mixing between σ antibonding characters
(α component) and π bonding characters (β component) is evidenced
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While seminal works intended to reveal SOC effects on the bonding schemes
were discussed in term of spinors [9–13], canonical molecular spinors are not suited
for the bonding analysis in complex systems, as opposed to small and/or symmetric
model systems. Some have promoted the use of localized spinors [14], and in order
to recover some chemical significance in terms of bonding, lone pairs and core
orbitals, natural spinors similar to natural orbitals in the non-relativistic frameworks
have been derived and implemented [15, 16]. It is worth noting that the concept of
bond order in the context of multiconfigurational wave functions have been
extended recently to two-step spin-orbit coupling approaches [17].

Alternative strategies belonging to the Quantum Chemical Topology (QCT)
methodology are known for a long time in the field of non-relativistic quantum
calculations. They aim to answer general questions about the nature of chemical
bonds, the characterization of bonding schemes, reactivity and chemical reactions.
Among them, both the Quantum Theory of Atoms In Molecules (QTAIM) and the
topological analysis of the Electron Localization Function (ELF) have been
reviewed in numerous articles and books [3, 18–23]. Recently, some of us have
notably extended ELF and QTAIM analyzes in the field of quasirelativistic quantum
calculations [24, 25]. These tools should allow computational chemists to study
complex molecular systems for which the consideration of SOC is crucial. The
current chapter aims to demonstrate their power for probing the bonding in
heavy-atom systems. It is not only of fundamental interest, but it is also crucial for
applications of societal interest (e.g. nuclear medicine, energy production), or may
be related to environmental issues (e.g. in the context of nuclear waste management).
Indeed, in order to illustrate the originality of the proposed methodology, two
emblematic test cases have been selected: the At2 species and the uranyl dication.
Astatine (At, Z = 85) is the heaviest naturally occurring halogen and one of its
longest-lived isotopes, 211At, is of considerable interest in oncology as a radio-
therapeutic agent for targeted alpha therapy [26]. While hypothetical, the At2 species
is known for displaying spectacular SOC effects [9, 27–29]. In contrast, the second
selected At-species, AtO(OH) [30], might be involved in some of the labeling
protocols, if one looks closely at the experimental conditions (pH, Eh) [31], which
are currently developed for using 211At in alpha-immunotherapy. Others interesting
systems are actinides complexes and especially those involving multiple bonds
[32–37]. The chemistry of the uranyl dication, UO2

2+, is to date more widely studied
by computational chemists than that of any other actinide. Indeed, the crucial role of
the uranyl dication during the uranium conversion stage in the nuclear fuel cycle has
brought for some decades the researchers attention on this species. Nevertheless,
much remains to be said about the bonding in UO2

2+. Among the various questions
that arise, regarding the selected systems, we focus especially on the following:

(1) What types of bond tend to establish heavy atoms and what are the factors
affecting the chemical bonding?

(2) How are depicted the SOC effects by means of QCT methodology?
(3) What is the influence of the selected computational model (methods, basis

sets) on QCT results when wave functions are built from spinors?
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20.2 The Theoretical Frame

20.2.1 Computational Strategy

The proper treatment of molecular systems containing heavy atoms needs to per-
form four-component (4c) relativistic calculations based on the exact Hamiltonian.
The most straightforward way to construct the relativistic many-electron
Hamiltonian is to augment the one-electron Dirac operator with the Coulomb or
Breit operator as a two-electron term [38]. However, the applicability of this
approach is limited to rather small systems owing to unaffordable computational
costs [39]. Either founded on an exact or an approximate formalism, several
quasirelativistic approaches are often employed as efficient alternatives [40, 41].
Accurate descriptions of relativistic effects could be obtained with the exact
two-component (X2C) Hamiltonians, the familiar Douglas-Kroll (DKn) approach,
or using the nth order regular approximation (ZORA, FORA) of the exact rela-
tivistic Hamiltonian. The relativistic effective core potential (RECP), and in par-
ticular pseudopotential (PP), as an approximate quasirelativistic method has gained
popularity as it makes possible to study systems of increasing size while preserving
a high degree of reliability comparable to the all-electron calculations [42]. Good
efficiency is ensured by replacing inner-core electrons, which leads to significant
reductions in the number of basis functions, and the simpler forms of the
Hamiltonian employed. Indeed, 2c effective valence-only Hamiltonians for n va-
lence electrons and N nuclei can be expressed as follows:

bHn ¼
Xn
i

ðĥiÞþ
Xn
i\j

ðĝijÞþVcc ð20:1Þ

where ĥi and ĝij represent effective one and two-electron operators, respectively.
Vcc is the nuclear repulsion energy. In PP approach, it is generally assumed that the
kinetic energy operator and the Coulomb interaction between electrons could be
used in their non-relativistic forms, ĥi and ĝij are expressed as:

ĥi ¼ � 1
2
Di þ bVPP ið Þ; ĝij ¼

1
rij

ð20:2Þ

All relativistic contributions can be folded into the Hamiltonian by means of the
parametrization of bVPP. The current form of PPs used in this work is:

bVPPði) =
XN
A

�Zeff Að Þ
rAi

þ
XN
k

Bk
lje

ð�bkljr
2
AiÞbPlj

 !
ð20:3Þ

where the first sum run over the N nuclei (index A) with respective effective charge
Zeff. The second sum runs over a gaussian expansion (index k) of semi-local
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short-range radial potentials which are different for different orbital
angular-momentum quantum numbers l and, for a given l, for the two total
one-electron angular-momentum quantum numbers j = l ± 1/2 (bPlj is the 2c pro-
jector onto the complete space of functions with angular symmetry l, j around the
core under study). The parameters Bk

lj and bklj are adjusted so that bVPP in 2c
valence-only atomic calculations reproduces, as closely as possible, a set of
all-electron 4c multiconfiguration Dirac-Hartree-Fock (MCDHF) energies. Note
that a transcription of such kind of PP into a scalar-relativistic spin-averaged part
(averaged relativistic potential bVAREP) and an effective one-electron spin-orbit
operator (bVSO) is easily possible [43, 44]. The omission of bVSO in the calculation
leads to one-component (1c) scalar-relativistic approach (in a non-relativistic for-
malism). Hence, SOC effects can readily be quantified via the difference between
calculations with and without bVSO included in PPs. The action of bVSO generates a
wave function built of single-particle functions known as (pseudo)spinors, φi(r),
that are no longer of pure α or β character but have both a α and a β complex
component, and hence, two-component. Usually, φi(r) are expanded using
atom-centered gaussian basis functions, χµ(r), and the expansion coefficients ci are
complex:

ui rð Þ ¼ uia rð Þ
uib rð Þ

� �
¼

P
l
cailvlðrÞP

l
cbilvlðrÞ

0
B@

1
CA ð20:4Þ

Application of the density functional theory (DFT) appears particularly attractive
due to the computational expediency and the implicit inclusion of electron corre-
lation effects. The quasirelativistic spin-orbit DFT (SODFT) method, implemented
in the NWChem programs package [44], takes advantage of 2c PPs. The inclusion
of spin-dependent terms into the variational treatment of the one-electron operator
ensures that scalar-relativistic and SOC effects are treated on an equal footing. Note
that special care has to be taken when SOC is planned to be included in calculations
with small-core PPs: standard basis sets must be supplemented with few steep
functions so that the expansions for the semi-core orbitals become flexible enough
to account for the radial differences of the spinors with j = l ± 1/2. This was found
especially relevant for the 6p elements (split of the 5p-shell to an energetically
lower lying more compact p1/2 subshell and a higher lying less compact p3/2 sub-
shell), and to a less extend for the 5p and 5d ones [27, 45]. In fine, it comes out that
the SODFT method allows chemists to perform geometry optimizations and cal-
culations of vibrational spectra at moderate computational costs for systems com-
posed of several tens of atoms.

20 Quantum Chemical Topology in the Field … 557



20.2.2 Sketch of the QTAIM Analysis

Of all the possible ways to partition the electron density in a molecule [46, 47], the
QTAIM theory [3, 18] is probably the most used for discussing the nature of
chemical bonding in molecules and solids. The pioneering works due to Bader and
coworkers in the 70s [48–50] were motived by the generalization of the quantum
mechanical principle of stationary action to a molecular subsystem. Based on the
theory of gradient dynamical systems [51, 52], they have led to an original topo-
logical partition of the electron density (so-called virial partitioning) into
non-overlapping atomic regions [48, 50, 53]. These regions are termed atomic
basins (noted Ω) and are stable manifolds of the attractors (maxima) of the density.
Then, topological atoms can be defined as the union of a nucleus and of its atomic
basin. However, non-nuclear attractors (flat maxima) can be exceptionally found in
internuclear regions of metal clusters [54]. Interestingly, the QTAIM approach can
be applied to both experimental [55] and calculated electron densities. The basins of
the density gradient field ∇ρ(r) are either circumscribed by interatomic separatrice
surfaces, i.e. zero-flux surfaces, or extend to infinity [56] as illustrated on Fig. 20.2.

The ability to use a Lagrangian formulation of quantum mechanics is an
important outcome of this partitioning, because the integrated kinetic positive
energy density G[Ω] in the basin volume has a definite value. This allows the
derivation of many theorems, such as the atomic force theorem [57, 58] and the
atomic virial theorem [57]. The topology of the gradient field is characterized by
critical points (where ∇ρ(r) = 0) and their connectivity. Critical points can be either
local maxima (attractor), minima or saddle points of the gradient field. Usually,
critical points are single points, but exceptions can occur if the system belongs to a

Fig. 20.2 2D view of the
charge density gradient vector
field for the CO molecule
calculated at the
B3LYP/6-31G level of
theory. Isovalue curves of the
density are in red and in
green, both the location of the
bond critical point and the
interatomic surface between
the two atoms (carbon domain
at the bottom and oxygen
domain at the top)
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continuous symmetry group (C∞v for instance). Among the saddle points, a bond
critical point (BCP) plays an essential role in QTAIM theory (see Fig. 20.2).
A BCP is only connected to two attractors by the trajectory of the gradient field
(bond path) and, at the BCP, the values of some descriptors are distinctly related to
the nature of the chemical bond. In molecules and crystals, the Laplacian of the
density ∇2ρ(r) reveals spatial regions where the electron density is locally con-
centrated (∇2ρ(r) < 0) or depleted (∇2ρ(r) > 0). Regions of charge concentration,
namely the Valence Shell Charge Concentrations (VSCCs), are found in both
bonding and non-bonding regions (see Fig. 20.3). It has been shown that the
number, size and location of VSCCs are often in agreement with the electron-pair
domains of the VSEPR model [59], providing an interesting physical support to the
model [60–62].

A clear homeomorphism relationship between ∇2ρ(r) and the conditional pair
probability have been established by Bader and Heard [63]. Thereby strengthening
the link between the ∇2ρ(r) probe and the chemical bond. It is worth noting that,
although the topology of ∇2ρ(r) remains a powerful tool for investigating chemical
bonds, its ability for rationalizing other important concepts in chemistry, such as
interpreting electronegativity effects, has been questioned [64].

Electron density from 2c-spinors. Most of the time, the N-electron ground state
wave functions are approximated by an antisymmetrized product of N orthonormal
single-electron functions (spin-orbitals) and are expressed in terms of a Slater
determinant |ψ>. The electron density is then the expectation value of the
one-electron density operator:

bq rð Þ ¼
XN
i

dðri�rÞ ð20:5Þ

Fig. 20.3 ∇2ρ(r) isovalue curves of the CO molecule (left) calculated at the B3LYP/6-31G level
of theory, showing VSCCs domains, and 3D view of ∇2ρ(r) (right)
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Using the variational principle under the only constraints of the single or double
occupation for each spatial orbital φi(r) (Hartree-Fock or Kohn-Sham formalisms),
the electron density becomes:

q rð Þ ¼ wjq̂ðrÞjwh i ¼
Xocc
i

niu�
i ðrÞuiðrÞ ¼

X
l

X
t

Pltvl rð ÞvtðrÞ ð20:6Þ

where φi(r) are expanded using atom-centered gaussian basis functions, χµ(r), and
Pµν are elements of the total one-electron density matrix defined as follows:

Plt ¼
Xocc
i

nicilðcitÞ� ð20:7Þ

ni is the occupation of the φi(r) orbital and ciµ and ciν are the real expansion
coefficients. Most of topological analyzes of the electron density are performed in
case of non-relativistic all-electron calculations but, if heavy elements (Z > 36) are
involved, RECPs including scalar-relativistic effects are generally used. Recently,
the transferability of the QTAIM formalism has been studied in a context of
all-electron scalar-relativistic calculations [65], more precisely scalar-relativistic
ZORA calculations [66]. Within ZORA Hamiltonians, the kinetic energy operator
differs from the non-relativistic operator. This leads to the following boundary
condition for QTAIM basins:

c2

2mc2 � vKS rð Þ
� �

rq rð Þ � nðrÞ ¼ 0 ð20:8Þ

where m is the electron mass, c is the speed of light and VKS(r) is the Kohn-Sham
potential. Anderson et al. [65] have shown that the definition of the topological
atom in the ZORA framework is unchanged. Consequently, QTAIM can be used
without any modifications in its current form: this theory is enough robust to resist
to modifications of the kinetic energy operator. Beyond the spin-free calculations,
the need to include spin-dependent relativistic effects in quantum calculations has
been demonstrated for heavy-elements. However, most studies where
spin-dependent effects are included report only a crude analysis of their impact on
the bonding. Some authors have studied the spin-dependent relativistic effects on
the electron density, through 4c, 2c and scalar-relativistic all-electron calculations,
but few is said regarding QTAIM analyzes [67–69]. Recently, some of us have
extended the QTAIM tools in the framework of quasirelativistic calculations, where
both the scalar and SOC effects are taken into account through PPs [25]. In this
context, the QTAIM theory can be used without any modifications (notably
boundary conditions). The non-relativistic formalism operating with Kohn-Sham
(KS) orbitals represented by real numbers is extended to a 2c formalism where the
wave function is constructed from complex single-particle functions known as
spinors, φi(r). These later are expanded using atom-centered gaussian basis
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functions, χµ(r), and the expansion coefficients ci are complex and determined
within the SCF procedure (Eq. 20.9). The electron density is then defined as:

q rð Þ ¼
Xocc
i

uyi rð Þui rð Þ ¼
Xocc
i

u�
ia rð Þuia rð Þþu�

ib rð Þuib rð Þ
� �

¼
X
l

X
t

Pltvl rð ÞvtðrÞ
ð20:9Þ

where Pµν is the total density matrix element obtained from the expansion coeffi-
cients, cai and cbi , which are here complex for each component α and β:

Plt ¼
Xocc
i

ni cailðcaitÞ� þ cbilðcbitÞ�
� �

ð20:10Þ

In the 2c formalism, functions of the density such as ∇2ρ(r), can be easily
evaluated from the primitive functions χµ and the density matrix elements Pµν [25].

QTAIM charges and classification of interactions at the BCP. The QTAIM
theory predicts that several local indicators calculated at the BCP are closely related
to the nature of the interactions between atoms [18, 19, 53, 70]. This prediction
relies notably on the local definition of the virial theorem:

1
4
r2q rð Þ ¼ 2G rð ÞþVðrÞ ð20:11Þ

where V(r) is the potential energy density (negative) and G(r) is the positive definite
kinetic energy density (also referred as Ts(r) in the literature). G(r) is expressed as
follows in the 2c formalism:

G rð Þ ¼ 1
2

X
l

X
t

Plt
@vlðrÞ
@x

@tðrÞ
@x

þ @vlðrÞ
@y

@tðrÞ
@y

�

þ @vlðrÞ
@z

@tðrÞ
@z

� ð20:12Þ

V(r) is then readily obtained by differentiation using Eq. (20.11). The electron
density at the BCP, ρb, is in general larger than 0.20 e bohr−3 in shared-shell
interactions, in other words, covalent bonds, and smaller than 0.10 e bohr−3 in
closed-shell interactions (e.g. ionic, van der Waals, hydrogen bonding). It is also
acknowledged that if the Laplacian of the density at the BCP, ∇2ρb, is negative, the
local concentration of charge indicates a shared-shell interaction. In contrast, if ∇2ρb
is positive there is a depletion of charge which characterizes closed-shell interac-
tions. These indicators have been extensively used to classify chemical bonds. Note
that one can define the ratio |Vb|/(2Gb), based on the potential energy density (Vb)
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and the kinetic energy density (Gb) at the BCP. This ratio is larger than 1 when
∇2ρb < 0, while it is smaller than 1 when ∇2ρb > 0. Another energetic descriptor is
often used to differentiate two categories of closed-shell bonding: the |Vb|/Gb ratio
that reflects the covalency magnitude of the interaction [71–73]. If the latter ratio is
smaller than 1, the kinetic energy density is the leading term and electrons are
destabilized close to the BCP, no covalency is expected (for example pure ionic or
van der Waals bonding). The interactions are called pure closed-shell interactions
(pure CS). The second category of closed-shell bonding, with some sharing of
electrons (|Vb|/Gb > 1, i.e. the potential energy density is large and electrons are
stabilized at the BCP), is called after Nakanishi et al. regular closed-shell (regular
CS) [74]. Thus, the analysis of the ρb, ∇

2ρb, Vb and Gb values provide information
about the bonding schemes, as summarized in Fig. 20.4.

The integration of the electron density over the atomic basins provides an atomic
population. The atomic charge of a topological atom Ω, q(Ω), is calculated by
subtracting the atomic population from the atomic number, Z(Ω). Note that, due to
the use of PPs for heavy atoms, the calculation of their atomic charge involves Zeff,
the charge of the inner-core, rather than the atomic number. In contrast to other
models of atomic charge [75, 76], the QTAIM charges take into account the ani-
sotropy of the charge distribution in the atomic basins [18, 77]. Thus, QTAIM
charges are generally larger with respect to other charge models that implicitly
consider a density distributed within spherical atomic basins (obviously not
realistic) [78].

20.2.3 Sketch of the ELF Topological Analysis

Since the last 20 years, the ELF topological analysis [4] has been intensively used
for studying of the bonding schemes in molecules and solids, or for rationalizing the
chemical reactivity [19]. The original ELF formulation of Becke and Edgecombe
[5] was built on a HF determinant. The function relies on the Laplacian of the
conditional same spin pair probability scaled by the homogeneous electron gas
kinetic energy density. ELF is generally interpreted as a signature of the
electron-pair distribution. A few years later, this formulation has been generalized
to the DFT theory by Kohout and Savin [79], and rationalized in terms of the local

Fig. 20.4 Typical QTAIM
classification of interactions
following calculated
indicators at the BCP
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excess kinetic energy due to the Pauli repulsion. Thus, ELF can be defined as
follows:

gðrÞ ¼ 1þ Ts rð Þ � Tw rð Þ
3
10 ð3p2Þ2=3qðrÞ5=3
 !2

2
4

3
5
�1

ð20:13Þ

where Ts(r) is the kinetic energy density and Tw(r) is the von Weizsäcker kinetic
energy density. Note that from a rigorous point of view, the expression of ELF
(Eq. 20.13) is only valid for closed-shell systems described by a single determinant.
Some of us have recently extended the ELF formulation to the 2c relativistic
formalism [24]. The present formulation of ELF, based on the total electron density,
can readily be calculated from occupied 2c spinors and is safe for practical use on
closed-shell species where the spin polarization is small (i.e. the two components
differ slightly, which leads to a Kramers-restricted closed-shell configuration
resembling to a scalar-relativistic singlet). In addition to the electron density
(Eq. 20.9), the different quantities appearing in ELF are evaluated from the
φi(r) spinors and Pµν elements of the total electron density (Eq. 20.10). For
instance, the von Weizsäcker kinetic energy density involves first derivatives of the
2c electron density such as:

@qðrÞ
@x

¼
X
l

X
t

Plt
@vlðrÞ
@x

vtðrÞþ
@vtðrÞ
@x

vlðrÞ
� �

ð20:14Þ

The ELF topological analysis was proposed several years ago as a bridge
between the traditional pictures of the chemical bond derived from the Lewis
theory, and first principles quantum-mechanical methodologies [4, 19, 80]. As
stated by Gillespie and Robinson [81]: This function (ELF) exhibits maxima at the
most probable positions of localized electron pairs and each maximum is sur-
rounded by a basin in which there is an increased probability of finding an electron
pair. As QTAIM analysis, the ELF topological analysis makes possible a parti-
tioning of the physical space into volumes. This is achieved by applying the theory
of dynamical systems. However, ELF attractors (maxima) can be distributed
between the atoms. The basins are localized around attractors and are separated by
zero-flux surfaces. Generally, the topology of the ELF gradient field [4] shows
punctual attractors but, according to the molecular symmetry, it also displays cir-
cular (off axis attractors for linear molecules) and spherical attractors (off center
attractors for atoms). Thus, in addition to core basins surrounding nuclei with
atomic number Z > 2, non-atomic valence basins are found. These basins are
characterized by the number of core basins with which they share a common
boundary (zero-flux surface). This number is called the synaptic order [82, 83].
Each valence basin is presented with a chemical meaning in agreement with the
Lewis theory: monosynaptic basin, labeled V(A), in the lone-pair region of A atom;
disynaptic basin, labeled V(A, B), of two-center A-B bonds. Overall, the spatial
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distribution of the valence basins closely matches the non-bonding and bonding
domains of the VSEPR model [61].

Hierarchy of the ELF basins. The f localization domain (ELF(r) = f) is a
volume limited by one or more closed isosurfaces. Initially proposed for visualizing
the ELF basins, interestingly it provides a hierarchy of basins in relation with the
nature of the chemical bond [84]. The localization domain is called irreducible if it
surrounds one attractor or reducible if it contains several attractors. When
increasing the ELF(r) value, a reducible domain splits into several domains, each
containing fewer attractors than the parent domain. The first reduction provides
useful information on the nature of bonds because the reduction yields two com-
posite domains corresponding to the interacting moieties. For example, the first
reduction in a molecule A–B splits usually for covalent bonds into core domains
and a single valence domain that contains all the valence attractors. In contrast, for
an ionic pair A+ B−, the first reduction yields domains corresponding to the cation
and to the anion fragments.

Integrated properties. As in the QTAIM theory, the ELF basin population is
calculated by integrating the electron density over the basin volume. The popula-
tions must be understood as arising from Lewis resonant structures and it is possible
to calculate some weights of formal Lewis structures [85]. Moreover, a statistical
analysis of the basin populations enables one, through the definitions of the vari-
ance and the covariance matrix, to obtain information about the electron delocal-
ization between basins [86]. Indeed, the variance of a basin is interpreted as a
measure of the electron density fluctuation with all other basins. The covariance
matrix elements are measures of the correlation between populations of two given
basins. These statistical quantities are useful for characterizing some particular
bonding schemes, such as the charge-shift bonding that recently emerged in the
literature [87], for which a stabilizing contribution is the resonance energy caused
by the covalent-ionic mixing.

The combination of ELF and QTAIM topologies has led Raub and Jansen [88]
to introduce a bond polarity index defined for a disynaptic basin V(A, B):

pAB ¼ N V A;Bð ÞjA½ ��N V A;Bð ÞjB½ �
N V A;Bð Þ½ � ð20:15Þ

where N V A;Bð ÞjA½ � and N V A;Bð ÞjB½ � give the contributions of A and B QTAIM
basins, respectively, to the N V A;Bð Þ½ � total population. By definition, a strong
polarity of the bond (i.e. mainly ionic bond) yields an index close to 1. This index
measures the polarity of the ELF basin. Note that this index can also be calculated
for a monosynaptic V(A) basin considering any contribution of a B atomic basin
towards the V(A) basin population [19].
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20.2.4 Computer Implementation in a 2c Context

The QTAIM and ELF topological analyzes, extended for the treatment of 2c wave
functions from the NWChem software, have been implemented in a modified
version of the TopMod program package [24, 89]. The program, written in Fortran
90, containing three separated modules grid_so, bas_so and pop_so. Figure 20.5
displays the program structure.

The grid_so program generate a 3D-grid containing the values of the function
(ρ(r), η(r) or ∇2ρ(r)) for each point r of a rectangular parallelepipedic grid of
dimension Nx*Ny*Nz. The bas_so module looks for attractors of the function into
the grid and assigns each grid point to basins, in the spirit of the original TopMod
algorithm where the grid points are assigned following a steepest ascent process
(using analytical gradient vectors) [89]. The last program, pop_so, provides inte-
grated populations, charges, local dipole moments and the molecular dipole. In this
implementation, the basin populations are calculated from partial overlaps over the
basins searches for which are themselves the sum of the overlaps over the cells
centered on the grid points belonging to the given basin. Using a step of 0.07 bohr
between each point of the grid, this method converges to stable values and ensures a
numerical complexity scaling as N ln(N), N being the total number of grid points.
The package (Fortran sources, Makefiles for 32 and 64 bit computer architectures
running Linux operating system and an user’s manual) is available as freeware
upon request.

Find the attractors

Assign points to basins

Assigned points (binary format)

Compute integrated quantities:

Population, electrostatic moments

Isosurfaces Visualization

GRID Cube file : ELF, ρ(r),∇2ρ(r)

Attractor positions 

grid_so

NwChem Output File

bas_so

pop_so

wfn file (2c-spinors)

Fig. 20.5 Flow diagram of the organization of TopMod-2c modules
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20.2.5 Computational Details

Geometry optimizations and frequency calculations have been performed using the
quasirelativistic SODFT method, implemented in the NWChem program package
[44], prior to the topological analyzes. Energy-consistent relativistic PPs generated
by the Stuttgart/Cologne group for At and U atoms, namely ECP60MDF [90, 91],
were used for replacing the 60 core electrons. The explicit treatment of the
remaining electrons involved the aug-cc-pVXZ-PP-2c (X = T, Q) basis sets,
described in Ref. [92], for At and the quadruple zeta ANO basis set, described in
Ref. [91], for U. For the lighter atoms, H and O, we opted for the aug-cc-pVXZ
basis sets [93, 94]. The ANO and aug-cc-pVQZ basis sets were left fully uncon-
tracted in computations on UO2

2+ species to ensure proper description of the
semi-core atomic spinors. The applied density-functional approximations were the
popular PBE0 and B3LYP hybrid functionals, and the widely used M06-2X
meta-hybrid functional. For the sake of simplicity, the results of B3LYP calcula-
tions are first discussed and, if necessary, the deviations with respect to the two
other functionals are highlighted. In order to evaluate SOC effects on the studied
species, geometry optimizations (and frequency calculations) have been also done
at scalar-relativistic level through DFT calculations, in the absence of
spin-dependent potentials (bVSO) into PPs. Afterward, new QTAIM and ELF
topological analyzes have been carried out. The SOC effects, ΔSO, are defined as
the difference between quasirelativistic and scalar-relativistic computed values.
Note that for all computations on linear species, the latters are aligned with the z-
axis. All the topological analyses here presented have been carried out using
modified versions of the NWChem [44] and TopMod [89] program packages.
Isovalue curves and surfaces have been drawn using Molekel [95].

20.3 Probing the Nature of At-X Bonds (X = At, O)

20.3.1 At2 Species

The At2 species and other species containing At atom have brought the attention
mainly for testing the reliability of relativistic quantum mechanical methods [9, 28,
29, 92, 96, 97]. It came out notably that SOC strongly affects the properties of the
closed-shell At2 species. Spectroscopic constants calculated at CCSD(T) level using
either the 4c Dirac-Coulomb Hamiltonian or an X2C Hamiltonian [9, 98], are
presented in Table 20.1.

The performances of our 2c-B3LYP/aug-cc-pVTZ-PP-2c computations seem
rather good: the calculated bond length (Re), harmonic frequency (ωe) and disso-
ciation energy (De) deviate from the ones calculated at 4c-CCSD(T) level by less
than 1.5 % on average. A lesser agreement appears with 2c-CCSD(T) results and
mainly regarding the De value, but the latter corresponds to an extrapolation to the

566 M. Amaouch et al.



complete basis set limit. In addition, the B3LYP results reported in Table 20.1
clearly show that SOC effects (ΔSO defined as the difference between quasirela-
tivistic and scalar-relativistic values) strongly weaken the bond. For instance, the
dissociation energy is reduced by more than 60 % and the reduction due to SOC on
the stretching frequency exceeds 40 % of the final value. These findings are in full
agreement with previous results [27–29, 97]. Using the language of molecular
orbitals/spinors, the weakening of the bond can be rationalized as follows: [9, 28,
29] scalar-relativistic effects strongly stabilize the 6s valence shell of At atom which
forms an inert pair (often termed the “inert pair” effect). The 6p valence electrons
give rise to a σg

2 πu
4 πg

4 configuration for At2 and only the occupied σg orbital has a
net bonding contribution. When SOC is taken into account, the two pairs of π
orbitals are split into their jz = ±1/2 and jz = ±3/2 components. The resultant
configuration can formally be written as σ1/2g

2 π1/2u
2 π1/2g

2 π3/2u
2 π3/2g

2 . SOC allows the
orbitals with the same jz quantum number and parity to mix. Two major mecha-
nisms may come into play. On one hand, the jz = ±1/2 components of the anti-
bonding πg orbital can mix with the σg one, which clearly shows that SOC weakens
the bond. On the other hand, the jz = ±1/2 components of πu can mix with the
(unoccupied) antibonding σu orbital. The latter mixing again reduces the bond
strength.

Further insights into the chemical bond and the role of SOC can be gained by
means of topological tools. As expected for most of homonuclear diatomics, the
ELF topology of the At2 species, displayed on Fig. 20.6, is split into two equivalent
core basins, C(At1) and C(At2), two equivalent nonbonding valence basins, V(At1)
and V(At2), and one disynaptic basin V(At1, At2). The ELF population analysis is
given in Table 20.2. The latter reveals a depleted population of the V(At1, At2)
basin, 0.54 e, which deviates significantly from the expected bonding population, 2
electrons, for a purely covalent single bond. In contrast, the V(At1) and V(At2)
populations, 6.96 e, are notably higher to what is strictly expected for three halogen
lone pairs (6 electrons). A large and negative covariance value of −0.30 between
the populations of monosynaptic basins V(At) has been found at B3LYP level. As
shown in Table 20.3, the QTAIM analysis strengthens the ELF results: the electron
density computed at the BCP (ρb) is notably weak, 0.046 e bohr−3, and the
Laplacian of the density (∇2ρb) exhibits a (small) positive value. This features are
commonly associated with closed-shell interactions. As previously discussed [25],
the bond in At2 definitively does not fit the shared-shell category (dominant
covalent bonding) but it also cannot be classified as ionic (for homonuclear bonds,

Table 20.1 Spectroscopic
constants of the At2 (X

1Σg+)
species computed at various
levels of theory

Re (Å) ωe (cm
−1) De (eV)

2c-B3LYP/aug-cc-pVTZ-PP-2c 3.048 109 0.65

ΔSO 0.167 −44 −1.06

2c-CCSD(T)/acv3z [98] 3.006 110 0.79a

4c-CCSD(T)/pVTZ [9] 3.046 108 0.63
aExtrapolation to the complete basis set limit
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Fig. 20.6 Top Split of the ELF localization domains (ELF = 0.7) of the At2 species calculated at
the 2c-B3LYP/aug-cc-pVTZ-PP-2c level of theory. Color code magenta for core C(At) basins, red
for nonbonding V(At) basins and green for the bonding V(At1, At2) basin. Bottom ELF profile
along the z axis, the black line corresponds to B3LYP/aug-cc-pVTZ-PP-2c calculations while the
red one to 2c-B3LYP/aug-cc-pVTZ-PP-2c calculations

Table 20.2 The ELF population analysis (electrons) of the At2 species calculated at various levels
of theory

ELF basin C(At) V(At) V(At1, At2)

2c-B3LYP/aug-cc-pVTZ-PP-2c 17.77 6.96 0.54

ΔSO +0.02 +0.16 (+0.76)a −0.36

2c-B3LYP/aug-cc-pVQZ-PP-2c 17.77 6.92 0.62

ΔSO +0.01 +0.16 (+0.42)a −0.34

2c-M06-2X/aug-cc-pVTZ-PP-2c 17.91 6.77 0.64

ΔSO +0.02 +0.13 (+0.74)a −0.30

2c-PBE0/aug-cc-pVTZ-PP-2c 17.93 6.72 0.68

ΔSO +0.03 +0.12 (+0.76)a −0.31
aΔSO π populations of V(At) is reported between parenthesis, π populations are evaluated by
taking into account only the expansion coefficients of the px and py Gaussian basis functions during
the integration of the electron density over the basin volumes
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electrostatic interactions between static charge distributions should be unimportant)
or ruled by van der Waals interactions (|Vb|/Gb > 1 at 2c-B3LYP/aug-
cc-pVTZ-PP-2c level of theory). Hence, this bond does not satisfy the standard
QTAIM classification.

Nevertheless, two specific signatures have emerged: a depleted electron density
at the BCP and a small negative or positive ∇2ρb value which are characteristics of
charge-shift bonding (CSB) [99]. CSB stands for a family of bonds that exists along
with the classical electron-pair bond families, namely the covalent and the ionic
ones, and which originated from valence bond theory [100]. CSB is related to
significant fluctuations of the electron-pair resulting from ionic-covalent mixing,
hence a notable quantity of electronic density fluctuates back and forth from one
atom to the other. Most of the bonds belonging to CSB family are homopolar bonds
of compact electronegative and/or lone pair-rich elements, and heteropolar bonds of
these elements [101]. Typical signature of CSB exist also regarding the ELF
topological analysis: the disynaptic attractor has a depleted population, usually less
than 1 e, and in some systems there is not such a disynaptic basin, which is often
replaced by a protocovalent pair of monosynaptic basins [102]. Furthermore, the
large value of the covariance of −0.30 between the populations of both V(At)
basins indicates dynamical delocalization of the density between At lone pairs and
is characteristic of CSB [87].

At this stage, the fundamental question of the bond weakening by SOC deserves
a special attention. The quantum topology tools are able to provide a fine evaluation
of spin-dependent effects on the bond. Indeed, Fig. 20.6 (bottom) shows that the
ELF value at the bonding punctual attractor appears strongly weakened by SOC.
This result is further reinforced by the ELF population analysis in Table 20.2. When
comparing scalar-relativistic and quasirelativistic B3LYP/aug-cc-pVTZ-PP-2c cal-
culations, the V(At1, At2) basin population decreases strongly with SOC, from
0.90 to 0.54 e, in favor of V(At) nonbonding basins [24]. One can notice the
spectacular increase of 0.76 e for the π population of each V(At) nonbonding basin.
Hence, the redistribution of the electron density due to SOC shall be regarded as an
electron withdrawal from the covalent σ bond to the valence π system that is
essentially located in the lone pair regions. This behavior is clearly in line with the
lone pair bond weakening effect (LPBWE) postulated by Sanderson [103], i.e. the

Table 20.3 QTAIM descriptors of the At2 species calculated at various levels of theory

ρb(e bohr−3) ∇2ρb(e bohr−5) |Vb|/Gb |Vb|/2Gb

2c-B3LYP/aug-cc-pVTZ-PP-2c 0.046 0.030 1.54 0.77

ΔSO −0.015 +0.008 −0.21 −0.11

2c-B3LYP/aug-cc-pVQZ-PP-2c 0.047 0.027 1.60 0.80

ΔSO −0.015 +0.006 −0.16 −0.09

2c-M06-2X/aug-cc-pVTZ-PP-2c 0.054 0.028 1.66 0.83

ΔSO −0.013 +0.008 −0.15 −0.08

2c-PBE0/aug-cc-pVTZ-PP-2c 0.065 0.017 1.82 0.91

ΔSO −0.013 +0.010 −0.18 −0.09
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repulsion between the bonding electrons and the lone pairs, adjacent to the bond,
that have the same symmetry (σ in dihalogen molecules). It has been rationalized
that CSB originates primarily from LPBWE [99, 100]. Therefore, SOC leads to a
rise of CSB in the At2 bond. The QTAIM analysis at the BCP provided in
Table 20.3 confirms these findings. When comparing scalar-relativistic and
quasirelativistic B3LYP/aug-cc-pVTZ-PP-2c calculations, ρb is lowered by SOC
(−0.015 e bohr−3), ∇2ρb is slightly increased (+0.008 e bohr−5) and the |Vb|/Gb ratio
decreases (−0.21). Each of these observations supports a weakening of the mag-
nitude of covalency in the At2 bond. Another striking example is the experimentally
identified AtCH3 compound where spin-orbit coupling effects are able to increase
the CSB character of the At-C bond [25].

The robustness of QCT analyzes of the 2c-B3LYP/aug-cc-pVTZ-PP-2c wave
function has also been checked. Basis set incompleteness effects have been eval-
uated by replacing the aug-cc-pVTZ-PP-2c basis set by the much more flexible
aug-cc-pVQZ-PP-2c one. The effects related to the description of the electron
correlation have also been tested by changing the DFT functional for the M06-2X
and PBE0 ones. At first, we notice that the equilibrium distance, Re, is not much
modified (at most 3 % with M06-2X functional). Regarding the calculated values
reported in Tables 20.2 and 20.3, it is obvious that the populations of ELF basins
and QTAIM indicators are quite similar and the SOC effects on these properties (i.e.
ΔSO values) appear especially stable regardless of the computational model
(functional, basis set) used. No exception has been noticed. But more importantly
are the trends drawn from the numbers. Whatever is the retained level of theory,
previously outlined trends regarding the bond in At2 are not changed at all by the
results of the further ELF and QTAIM analyzes. Thus, all our results lead to
non-ambiguous conclusions: the QCT methodology appears quite suitable to
underline SOC effects on the At2 electronic structure.

20.3.2 AtO(OH) Species

At is a rare radioelement, i.e. it has no stable isotopes, and the longest-lived isotopes
can only be produced in trace quantities (<10−8 g). Therefore, no spectroscopic
tools can be used and structural information lack in the literature for characterizing
the nature of At-bonds. Thus, quantum chemical methods represent a valuable tool
to shed light, at the molecular scale, on the chemistry of this “invisible” element.
The case of the closed-shell AtO(OH) species highlights this situation. This species
was recently identified as the product of the hydrolysis reaction of the AtO+ cation.
The measured equilibrium constant, 10−1.9 [30], is particularly impressive (indi-
cating a strong interaction between AtO+ and the involved water molecule). As
previously discussed [30], the hydrolysis constants published for other mono-
charged cations appear, in comparison, very weak. For instance, the values range
from 10−13.21 for the spherical Tl+ cation to 10−4.65 for the much bigger MeHg+

molecular cation. Does the bonding scheme in AtO(OH) can disclose strong
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interactions which can explain the peculiarity of the AtO+ hydrolysis constant. The
structure of the AtO(OH) species, optimized at the 2c-B3LYP/aug-cc-pVTZ-PP-2c
level of theory, is presented in Fig. 20.7.

The At-O1 distance, 1.953 Å, is close to the predicted bond length in the bare
AtO+ cation, 1.930 Å [104], while the At-O2 distance, 2.150 Å, is notably longer
and closer to the AtO bond length calculated for the AtOH species, 2.156 Å [25].
The At atom seems divalent and the α(O1AtO2) valence angle, about 107.5°, argue
for a AX2E2 type in VSEPR theory. Figure 20.7 also displays the ELF localization
domains. In addition to core basins, the ELF topology yields seven valence basins,
two V(At) basins accounting for At lone pairs, four V(O) valence basins and one
protonated basin, V(O, H). As in the case of the AtOH species [25], no V(At, O)
bonding basins were found. This outcome is usual for mainly ionic bonds. The
integrated ELF and QTAIM properties are presented in Table 20.4.

q(At) and q(O) atomic charges deserve a special attention: they are large (about
one unity or larger) and of opposite signs, as it could be expected for mainly ionic
bonds. The QTAIM descriptors at At-O BCPs, reported in Table 20.5, shows large
positive ∇2ρb values consistent with closed-shell interactions between At and O
atoms.

Fig. 20.7 Optimized structure (left, distances in angstroms and angle in degrees) and ELF
localization domains (right, ELF = 0.8) of the AtO(OH) species at the 2c-B3LYP/
aug-cc-pVTZ-PP-2c level of theory. Color code magenta for core C(At) basin, red for valence
V(At) and V(O) basins and cyan for the protonated bonding V(O, H) basin

Table 20.4 ELF population analysis and QTAIM charges (e) calculated at various levels of
theory for the AtO(OH) species

C(At) + V(At) V(O1) V(O2) V(O2, H) q(At) q(O1) q(O2)

2c-B3LYP/aug-cc-pVTZ-PP-2c 23.18 7.07 5.66 1.80 1.46 −0.91 −1.15

ΔSO +0.08 −0.08 −0.08 +0.06 +0.01 0.00 −0.01

2c-B3LYP/aug-cc-pVQZ-PP-2c 23.07 7.17 5.65 1.82 1.49 −0.95 −1.13

2c-M06-2X/aug-cc-pVTZ-PP-2c 22.91 7.22 5.77 1.80 1.61 −1.01 −1.22

2c-PBE0/aug-cc-pVTZ-PP-2c 23.09 7.16 5.63 1.83 1.53 −0.97 −1.17

20 Quantum Chemical Topology in the Field … 571



Nevertheless, the associated |Vb|/Gb ratios are larger than 1 and disclose some
covalency. Following the QTAIM approach, the bonding in At-O falls in the
regular CS category (not purely ionic bond), as it was previously found for the
AtOH species.

The statements drawn from ELF and QTAIM analyzes are unaffected by the
computational model (method, basis sets) used to generate the 2c wave function.
Indeed, it appears unnecessary to specify, from Tables 20.4 and 20.5, which set of
results is used for supporting the above discussion. The influence of SOC on the
bonding scheme in AtO(OH) has also been evaluated. When comparing
scalar-relativistic and quasirelativistic B3LYP/aug-cc-pVTZ-PP-2c calculations,
ELF populations, QTAIM charges and QTAIM descriptors at BCPs appear almost
unchanged. This feature was already observed for the AtOH species. We conclude
that the hydrolysis reaction of AtO+ cation leads to the formation of an
iono-covalent bond with the O atom of one water molecule, resulting in a high
equilibrium constant.

20.4 Probing the Nature of the U-O Bond in the Uranyl
Species

Many theoretical studies have examined the properties of the uranyl cation, UO2
2+

[36, 105, 106]. Regarding its bonding properties, a nominal bond order of three
emerges from the analysis of the highest filled MOs, πg

4πu
4σg

2σu
2 [35], of the ground

state electronic configuration [33, 107]. The short length of U-O bonds was
attributed notably to the participation of uranium 5f orbitals [108]. More recently,
the covalent character of these bonds have been probed by means of QTAIM
analyzes [109, 110]. But to date, the theoretical investigations on the chemical bond

Table 20.5 QTAIM descriptors calculated at various levels of theory at the At-O1 and At-O2
BCPsof the AtO(OH) species

At-O1 ρb(e bohr−3) ∇2ρb(e bohr−5) |Vb|/Gb |Vb|/2Gb

2c-B3LYP/aug-cc-pVTZ-PP-2c 0.157 0.336 1.50 0.75

ΔSO −0.007 0.001 −0.02 −0.01

2c-B3LYP/aug-cc-pVQZ-PP-2c 0.164 0.341 1.51 0.75

2c-M06-2X/aug-cc-pVTZ-PP-2c 0.167 0.315 1.55 0.77

2c-PBE0/aug-cc-pVTZ-PP-2c 0.166 0.354 1.52 0.76

At-O2 ρb(e bohr−3) ∇2ρb(e bohr−5) |Vb|/Gb |Vb|/2Gb

2c-B3LYP/aug-cc-pVTZ-PP-2c 0.105 0.227 1.40 0.70

ΔSO −0.011 −0.015 −0.04 −0.02

2c-B3LYP/aug-cc-pVQZ-PP-2c 0.110 0.215 1.44 0.72

2c-M06-2X/aug-cc-pVTZ-PP-2c 0.119 0.253 1.45 0.73

2c-PBE0/aug-cc-pVTZ-PP-2c 0.114 0.247 1.43 0.71
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in UO2
2+ have been limited to the scalar-relativistic framework, i.e. in the absence

of spin-dependent effects. Hence, applying to the bare uranyl cation our QCT
methodology, which takes into account SOC, stands for the earliest effort to tackle
this issue. The calculated bond length and harmonic frequencies at the
2c-B3LYP/ANO level of theory are shown in Table 20.6.

It is a general experience that the B3LYP functional accurately describes UO2
2+

ground state properties [105, 109, 111]. Indeed, the equilibrium distance and
symmetric stretching vibration are predicted in fairly good agreement with refer-
ence values [36, 108]. The differences between our 2c-B3LYP results and the
4c-CCSD(T) ones of Réal et al. [36] are even lower than the differences between the
4c-CCSD(T) results of Réal et al. and the older 4c-CCSD(T) results of de Jong et al.
[108] SOC effects are known to be of little importance regarding the spectroscopic
constants of UO2

2+ ground state [37, 105]. Calculated ΔSO values, displayed in
Table 20.6, show that the bond length is unchanged and the harmonic frequencies
are modified by less than 1 %. The rather limited influence of SOC has to be
checked regarding the uranyl electronic structure and the topological analysis
appears well suited for that.

Figure 20.8a displays the ELF localization domains of the UO2
2+ species at the

2c-B3LYP/ANO level of theory. The ELF topology yields six basins: three core
basins, C(U), C(O1) and C(O2), two valence basins associated to oxygen atoms, V
(O1) and V(O2), and a free valence basin for uranium, V(U). The hierarchy of ELF
domains can be used to get deeper insights into the nature of U-O interactions. The
reduction diagram displays a unique pattern, as shown in Fig. 20.9. It reveals that
U-O interactions cannot be understood as a pure ionic pairing picture [O2− U6+ O2

−] because the separation of V(O) domains from the C(U) one occurs once V(U) is
separated. Indeed, if a ionic pairs O2− U6+ exists, the reducible domain encom-
passing C(U) and V(U) must first splits into an uranium reducible domain and an
oxygen reducible valence domains. The current pattern is rather consistent with
bonds having a noticeable covalent character, although the oxygen basins do not
split into free valence V(O) basins and bonding V(U, O) basins as is usually
expected for covalent bonds. This finding can be explained by a strong polarization
of U-O bonds where the oxygen atoms provide leading contributions to the bonds.
This scheme is supported by the ELF population analysis provided in Table 20.7.
The populations obtained from 2c-B3LYP/ANO computations are close to 27
electrons for C(U) + V(U) and larger than 7.30 electrons for each V(O) basins, in

Table 20.6 Equilibrium distance and harmonic frequencies of UO2
2+ (X1Σg+) species computedat

various levels of theory

RU-O (Å) ωbending (cm
−1) ωs.stretching (cm

−1) ωa.stretching (cm
−1)

2c-B3LYP/ANO 1.701 163 1043 1131

ΔSO 0.000 −2 +8 +5

4c-CCSD(T) [36] 1.703 – 1016 –

4c-CCSD(T) [108] 1.715 – 974 –
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agreement with previous results [112]. A noticeable atomic contribution of uranium
to the population of V(O) basins is found, about 8 %. The large population of V(O)
gathers not only the integrated density corresponding to the oxygen lone pairs but
also the bonding population. The bond polarity index pUO for V(O) is 0.79, which is

Fig. 20.9 Reduction diagram
of UO2

2+ obtained at the
2c-B3LYP/ANO level of
theory

(a)

(b)

Fig. 20.8 a ELF localization domains (ELF = 0.7) of the UO2
2+ species calculated at the

2c-B3LYP/ANO level of theory. Color code cyan for core C(U) and C(O) basins, red for valence
V(U) basin and green for valence V(O) basins; the V(O) basin’s attractor locations are displayed in
red. b VSSCs of Laplacian of the electron density (∇2ρb = 0.05 e bohr−5) calculated at the
2c-B3LYP/ANO level of theory (BCPs locations are displayed in red)

Table 20.7 ELF population analysis (electrons) of the uranyl cation calculated at various levels of
theory

ELF basin C(U) + V(U) V(O) pUOV(O)
a

2c-B3LYP/ANO 27.10 7.36 0.79

ΔSO −0.08 0.04 0.00

2c-M06-2X/ANO 26.88 7.41 0.78

ΔSO −0.04 0.02 0.00

2c-PBE0/ANO 26.95 7.39 0.78

ΔSO −0.02 0.01 0.00
aBond polarity index of V(O) basin
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consistent with highly polar donor-acceptor U-O bond. This finding mirrors the
bonding scheme previously identified in Xe-O bonds for XeO3 and XeO4 com-
plexes [19]. The QTAIM analyzes strengthen the conclusions drawn from the ELF
results.

The QTAIM descriptors calculated from the 2c-B3LYP/ANO electron density
are presented in Table 20.8. A large positive charge, beyond 3.3 e, is found for
uranium atom while typical features of covalent bonds are also evidenced. In
general, the density at the BCP is greater than 0.20 e bohr−3 in shared (covalent)
bonding [70]. Here, ρb was found equal to 0.35 e bohr−3 for the U-O bonds. The
covalency magnitude of these bonds is also confirmed by the |Vb|/Gb ratio which
exceeds the 1.8 value (i.e. electrons are stabilized at BCPs). In addition, large
non-spherical VSCCs have been localized in the oxygen regions, as shown in
Fig. 20.8b. Note that for multiple bonds, ∇2ρb is generally calculated positive at the
BCP. The value of ∇2ρb, about 0.28 e bohr−5, is consistent with results of previous
QTAIM studies on uranyl species [109, 110]. Thus, the U-O bonds belong to the
electron shared picture which can be rationalized as highly polarized multiple
bonds.

We have noticed, when comparing scalar-relativistic and quasirelativistic
B3LYP/ANO calculations, that ELF and QTAIM descriptors are similar. The most
affected one by SOC is the Laplacian of the density: ∇2ρb is increased by 10 % (see
ΔSO values in Table 20.8), showing a more depleted electron density at the
BCP. Nevertheless, the bond polarity is unaffected by SOC since only trifling
modifications on atomic charges occur and pUO for V(O) is unchanged (see
Table 20.8). In the uranyl cation, the QCT tools reveal a weak influence of the
spin-dependent effects on the bonding scheme. The multiple character of U-O
bonds is also supported by scalar-relativistic computations. Introduced by Fradera
et al. in the context of QTAIM analyzes [113], the delocalization index (DI) is a
measure of the electron-sharing between two atoms and can be compared to other
bond order indices. The DI calculated for U-O bonds at B3LYP/ANO level of
theory, 2.25, is in reasonable agreement with previous results [109] and the triple
bond yield by MOs analyzes [33, 107]. In the ELF framework, covalent bonds are
often characterized by disynaptic basins with a population related to the formal
bond order (the basin population decreases while the ionic or CSB contributions to
the bond character increase). In the case of U-O bonds, no disynaptic V(U, O)

Table 20.8 QTAIM descriptors of the uranyl cation calculated at various levels of theory

q(U) q(O) ρb(e bohr−3) ∇2ρb(e bohr−5) |Vb|/Gb |Vb|/2Gb

2c-B3LYP/ANO 3.38 −0.69 0.378 0.282 1.86 0.93

ΔSO 0.01 −0.02 −0.001 0.030 −0.01 0.00

2c-M06-2X/ANO 3.45 −0.72 0.394 0.379 1.83 0.91

ΔSO 0.00 −0.01 −0.002 0.042 −0.01 −0.01

2c-PBE0/ANO 3.40 −0.70 0.394 0.245 1.88 0.94

ΔSO −0.01 −0.01 −0.002 0.033 −0.01 −0.01
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basins were found but some of the bonding population contributes to the V(O)
basins. Nevertheless, it is not possible to evaluate the bond order using the total
population of V(O) basins since the latter encompass also the oxygen lone pairs.
MOs contributions to the V(O) basins may provide indications regarding the bond
order by summing the contributions of bonding MOs to the V(O) basin population,
as shown in Table 20.9. The resulting value, 2.21, is consistent with a highly
polarized triple bond. Note that the individual contributions of the uranium 5f and
6d AOs to V(O) populations are in line with the well-known, important involve-
ment of those AOs in the frontier MOs of UO2

2+ [35].
The robustness of ELF and QTAIM analyzes with respect to the choice of the

DFT functional has again been tested. At first, the calculated bond lengths using
M06-2X and PBE0 functionals are slightly shorter (1.679 and 1.685 Å, respectively)
and therefore, the symmetric stretching vibration appears at higher frequencies
(>1090 cm−1). Regarding the ELF and QTAIM indicators, quite similar values are
obtained. ∇2ρb is the most affected one, it changes from 0.379 e bohr−5 at
2c-M06-2X/ANO level of theory to 0.245 e bohr−5 at 2c-PBE0/ANO level of theory
(35 % decrease). However, this discrepancy as well as all the others observed from
one functional to another will never change any of the conclusions stated above.

20.5 Conclusions and Ongoing Developments

In this chapter, we have shown that the QCT approach is a suitable alternative to a
crude analysis of 2c wave functions which is generally hampered by technical as
well as conceptual difficulties. The presented methodology is particularly effective
for evidencing relativistic effects on bonding schemes. Indeed, for the puzzling At2
species where it is mandatory to consider SOC effects, a much deeper under-
standing of the nature of the bond was gained. It has been uncovered the propensity
of SOC to boost the CSB character of the bond. If chemists truly expect important
spin-dependent effects in species containing At atoms, due to this element position
in the periodic table (heavy p-element), we have also shown that SOC effects on

Table 20.9 Contributions of
the bonding MOs to the ELF
population of each V(O) basin
calculated at the
B3LYP/ANO level of theory

Bonding MOs contributing to V(O) Total da fa

πg 1.70 0.16 0.04

πu 1.44 0.00 0.22

σg 0.87 0.05 0.06

σu 0.42 0.01 0.32

Total bonding populationb 4.43e

Bond orderc 2.21
aMain AO components of MO contributions integrated over the
whole V(O) basin
bBased on the six highest bonding MOs
cHalf the total bonding population
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chemical bonds may vanish depending on the nature of the bonds. Here, trifling
effects were noticed on the mainly ionic At-O bonds of the AtO(OH) species, while
it was previously found in the AtCH3 species that spin-orbit coupling effects are
able to increase the CSB character of the At-C bond [25]. Furthermore, the sim-
plicity of the methodology is highlighted via another emblematic case. It is
acknowledged that all relativistic contributions must be included into calculations
on systems like the uranyl cation (i.e. containing heavy elements), but currently all
investigations on the UO2

2+ chemical bonding are at best switched to a
scalar-relativistic level. This inconsistency is now over.

Beyond practical considerations regarding the understanding of heavy-elements
chemistry, this study has also demonstrated the robustness of QTAIM and ELF
topological analyzes in the quasirelativistic framework. Only small modifications
on the investigated descriptors, among which ELF basin populations, QTAIM
atomic charges, ρb and ∇2ρb, were found when changing between B3LYP, PBE0
and M06-2X functionals, or when moving from triple zeta basis sets to quadruple
ones. Future works will focus on extending the topological analyzes of other
functions of the electron density (Fukui functions, Non Covalent Index), as well as
the distributed electrostatic moments based on the ELF partition (DEMEP) analysis
[114], to the field of quasirelativistic quantum calculations.
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