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Preface  

During their undergraduate education, students take various courses on fluid flow, 
heat transfer, mass transfer, chemical reaction engineering and thermodynamics. 
Most of the students, however, are unable to understand the links between the 
concepts covered in these courses and have difficulty in formulating equations, 
even of the simplest nature. This is a typical example of not seeing the forest for 
the trees. 

The pathway from the real problem to the mathematical problem has two 
stages: perception and formulation. The difficulties encountered in both of these 
stages can be easily resolved if students recognize the forest first. Examination of 
trees one by one comes at a later stage. 

In science and engineering, the forest is represented by the basic concepts ,  
i.e., conservation of chemical species, conservation of mass, conservation of momen- 
tum, and conservation of energy. For each one of these conserved quantities, the 
following inventory rate equation can be written to describe the transformation of 
the particular conserved quantity ~ :  

I Rate~ (Rate~ I I Rate~ 1 
~p in ~p out + generation 

Rate of ~ ) 
accumulation 

in which the term 9~ may stand for chemical species, mass, momentum or energy. 
My main purpose in writing this textbook is to show students how to translate 

the inventory rate equation into mathematical terms at both the macroscopic and 
microscopic levels. It is not my intention to exploit various numerical techniques 
to solve the governing equations in momentum, energy and mass transport. The 
emphasis is on obtaining the equation representing a physical phenomenon and its 
interpretation. 

I have been using the draft chapters of this text in my third year Mathematical 
Modelling in Chemical Engineering course for the last two years. It is intended as an 
undergraduate textbook to be used in an (Introduction to) Transport Phenomena 
course in the junior year. This book can also be used in unit operations courses in 
conjunction with standard textbooks. Although it is written for students majoring 
in chemical engineering, it can also be used as a reference or supplementary text 
in environmental, mechanical, petroleum and civil engineering courses. 

The overview of the manuscript is shown schematically in the figure below. 
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PREFACE ix 

Chapter 1 covers the basic concepts and their characteristics. The terms ap- 
pearing in the inventory rate equation are discussed qualitatively. Mathematical 
formulations of "rate of input" and "rate of output" terms are explained in Chap- 
ters 2, 3 and 4. Chapter 2 indicates that the total flux of any quantity is the sum 
of its molecular and convective fluxes. Chapter 3 deals with the formulation of the 
inlet and outlet terms when the transfer of matter takes place through the bound- 
aries of the system by making use of the transfer coefficients, i.e., friction factor, 
heat transfer coefficient and mass transfer coefficient. The correlations available in 
the literature to evaluate these transfer coefficients are given in Chapter 4. Chapter 
5 briefly talks about the rate of generation in transport of mass, momentum and 
energy. 

Traditionally, the development of the microscopic balances precedes the macro- 
scopic balances. However, it is my experience that students grasp the ideas better 
if the reverse pattern is followed. Chapters 6 and 7 deal with the application of 
the inventory rate equations at the macroscopic level. 

The last four chapters cover the inventory rate equations at the microscopic 
level. Once the velocity, temperature or concentration distributions are determined, 
the resulting equations are integrated over the volume of the system to get the 
macroscopic equations covered in Chapters 6 and 7. 

I had the privilege of having Professor Max S. Willis of the University of 
Akron as my Ph.D supervisor who introduced me to the real nature of transport 
phenomena. All that I profess to know about transport phenomena is based on the 
discussions with him as a student, a colleague, a friend and a mentor. His influence 
can be easily noticed throughout this book. Two of my colleagues, Gtiniz Gttrtiz 
and Zeynep Hi~a~maz Katna~, kindly read the entire manuscript and made many 
helpful suggestions. My thanks are also extended to the members of the Chem- 
ical Engineering Department for their many discussions with me and especially 
to Timur Do,u, Tfirker Gfirkan, Gtirkan Karaka~, 0nder Ozbelge, Canan 0zgen, 
Deniz Uner, Levent Yllmaz and Hayrettin Yticel. I appreciate the help provided by 
my students, Giilden Camql, Ye~im Gti~bilmez and Ozge O~uzer, for proofreading 
and checking the numerical calculations. 

Finally, without the continuous understanding, encouragement and tolerance of 
my wife Ay~e and our children, (~i~dem and Burcu, this book could not have been 
completed and I am grateful indeed. 

Suggestions and criticisms from instructors and students using this book will 
be appreciated. 

Ankara, Turkey 
March 2002 

][SMALL TOSUN (itosun@metu.edu.tr) 
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Chapter 1 

In troduc t ion  

1.1 B A S I C  C O N C E P T S  

A concept is a unit of thought. Any part of experience that we can organize into 
an idea is a concept. For example, man's concept of cancer is changing all the time 
as new medical information is gained as a result of experiments. 

Concepts or ideas that are the basis of science and engineering are chemical 
species, mass, momentum, and energy. These are all conserved quantities. A 
conserved quantity is one which can be transformed. However, transformation does 
not alter the total amount of the quantity. For example, money can be transferred 
from a checking account to a savings account but the transfer does not affect the 
total assets. 

For any quantity that is conserved, an inventory rate equation can be written to 
describe the transformation of the conserved quantity. Inventory of the conserved 
quantity is based on a specified unit of time, which is reflected in the term, rate. 
In words, this rate equation for any conserved quantity ~ takes the form 

( Rateof  ) _ (  Rateof  
input of ~ output of )+( ) ~p generation of ~p 

= (  Ra teof  ) 
accumulation of ~p 

(1.1-1) 

Basic concepts, upon which the technique for solving engineering problems is 
based, are the rate equations for the 

�9 Conservation of chemical species, 

�9 Conservation of mass, 

�9 Conservation of momentum, 

�9 Conservation of energy. 
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The entropy inequality is also a basic concept but it only indicates the feasibility 
of a process and, as such, is not expressed as an inventory rate equation. 

A rate equation based on the conservation of the value of money can also be 
considered as a basic concept, i.e., economics. Economics, however, is outside the 
scope of this text. 

1 . 1 . 1  C h a r a c t e r i s t i c s  o f  t h e  B a s i c  C o n c e p t s  

The basic concepts have certain characteristics that are always taken for granted 
but seldom stated explicitly. The basic concepts are 

�9 Independent of the level of application, 

�9 Independent of the coordinate system to which they are applied, 

�9 Independent of the substance to which they are applied. 

The basic concepts are applied both at the microscopic and the macroscopic 
levels as shown in Table 1.1. 

Tab le  1.1 Levels of application of the basic concepts. 

Level Theory Experiment 

Microscopic 

Macroscopic 

Equations of Change 

Design Equations 

Constitutive Equations 

Process Correlations 

At the microscopic level, the basic concepts appear as partial differential equa- 
tions in three independent space variables and time. Basic concepts at the micro- 
scopic level are called the equations of change, i.e., conservation of chemical species, 
mass, momentum and energy. 

Any mathematical description of the response of a material to spatial gradients 
is called a constitutive equation. Just as the reaction of different people to the same 
joke may vary, the response of materials to the variable condition in a process 
differs. Constitutive equations are postulated and cannot be derived from the 
fundamental principles 1. The coefficients appearing in the constitutive equations 
are obtained from experiments. 

Integration of the equations of change over an arbitrary engineering volume 
which exchanges mass and energy with the surroundings gives the basic concepts 
at the macroscopic level. The resulting equations appear as ordinary differential 
equations with time as the only independent variable. The basic concepts at this 
level are called the design equations or macroscopic balances. For example, when 
the microscopic level mechanical energy balance is integrated over an arbitrary 

1 The mathematical form of a constitutive equation is constrained by the second law of ther- 
modynamics so as to yield a positive entropy generation. 
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engineering volume, the result is the macroscopic level engineering Bernoulli equa- 
tion. 

Constitutive equations, when combined with the equations of change, may or 
may not comprise a determinate mathematical system. For a determinate math- 
ematical system, i.e., number of unknowns -- number of independent equations, 
the solutions of the equations of change together with the constitutive equations 
result in the velocity, temperature, pressure, and concentration profiles within the 
system of interest. These profiles are called theoretical (or, analytical) solutions. A 
theoretical solution enables one to design and operate a process without resorting 
to experiments or scale-up. Unfortunately, the number of such theoretical solutions 
is small relative to the number of engineering problems which must be solved. 

If the required number of constitutive equations is not available, i.e., number of 
unknowns > number of independent equations, then the mathematical description 
at the microscopic level is indeterminate. In this case, the design procedure appeals 
to an experimental information called process correlation to replace the theoretical 
solution. All process correlations are limited to a specific geometry, equipment 
configuration, boundary conditions, and substance. 

1 . 2  D E F I N I T I O N S  

The functional notation 

= ~ ( t , x , y , z )  (1.2-1) 

indicates that there are three independent space variables, x, y, z, and one inde- 
pendent time variable, t. The ~p on the right side of Eq. (1.2-1) represents the 
functional form, and the ~p on the left side represents the value of the dependent 
variable, ~. 

1 . 2 . 1  S t e a d y - S t a t e  

The term steady-state means that at a particular location in space, the dependent 
variable does not change as a function of time. If the dependent variable is ~, then 

= 0 2-2) 
X~y~Z 

The partial derivative notation indicates that the dependent variable is a func- 
tion of more than one independent variable. In this particular case, the independent 
variables are (x, y, z) and t. The specified location in space is indicated by the 
subscripts (x, y, z) and Eq. (1.2-2) implies that ~ is not a function of time, t. 
When an ordinary derivative is used, i.e., d ~ / d t -  0, then this implies that ~ is a 
constant. It is important to distinguish between partial and ordinary derivatives 
because the conclusions are very different. 
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Example  1.1 A Newtonian fluid with constant viscosity, #, and density, p, is 
initially at rest in a very long horizontal pipe of length L and radius R. At t = O, 
a pressure gradient IAP[/L is imposed on the system and the volumetric flow rate, 
Q, is expressed as 

Q - T r R 4 ] A P t [ 8  #L 1 - 32 ~=IE~ exp ( -  A2~) ] ) ~ n 4  

where v is the dimensionless time defined by 

#t 
T - -  pR u 

and ) ~ 1  - -  2.405, A2 = 5.520, A3 = 8.654, etc. Determine the volumetric flow rate 
under steady conditions. 

Solution 

Steady-state solutions are independent of time. To eliminate the time from the 
unsteady-state solution, we have to let t --~ oc. In that case, the exponential term 
approaches zero and the resulting steady-state solution is 

~rR 4 IAPI 
':2= 

8 #L 

which is known as the Hagen-Poiseuille law. 

Comment :  If  time appears in the exponential term, then the term must have a 
negative sign to assure that the solution does not blow as t ~ 0o. 

Example  1.2 A cylindrical tank is initially half full with water. The water is fed 
into the tank from the top and it leaves the tank from the bottom. The volumetric 
flow rates are different from each other. The differential equation describing the 
time rate of change of the height of water in the tank is given by 

dh = 6 _  8v/- ~ 
dt 

where h is the height of water in meters. Calculate the height of water in the tank 
under steady conditions. 

Solution 

Under steady conditions dh/dt  must be zero. Then 

0 =6-8  

or, 
h = 0.56m 



1.3. MATHEMATICAL FORMULATION OF THE BASIC CONCEPTS 5 

1 . 2 . 2  U n i f o r m  

The term uniform means that at a particular instant in time, the dependent vari- 
able is not a function of position. This requires that all three of the partial deriva- 
tives with respect to position be zero, i.e., 

The variation of a physical quantity with respect to position is called gradient. 
Therefore, the gradient of a quantity must be zero for a uniform condition to exist 
with respect to that quantity. 

1 . 2 . 3  E q u i l i b r i u m  

A system is in equilibrium if both steady-state and uniform conditions are met si- 
multaneously. An equilibrium system does not exhibit any variations with respect 
to position or time. The state of an equilibrium system is specified completely by 
the non-Euclidean coordinates 2 (P, V, T). The response of a material under equi- 
librium conditions is called property correlation. The ideal gas law is an example 
of a thermodynamic property correlation that is called an equation of state. 

1 . 2 . 4  F l u x  

The flux of a certain quantity is defined by 

F l u x -  Flow of a quantity/Time = Flow rate (1.2-4) 
Area Area 

where area is normal to the direction of flow. The units of momentum, energy, 
mass and molar fluxes are Pa ( N / m  2, or kg/m.  s2), W / m  2 ( J / m  2. s), k g / m  2. s, 
and kmol /m 2. s, respectively. 

1.3 M A T H E M A T I C A L  F O R M U L A T I O N  OF 
T H E  B A S I C  C O N C E P T S  

In order to obtain the mathematical description of a process, the general inventory 
rate equation given by Eq. (1.1-1) should be translated into mathematical terms. 

1 . 3 . 1  I n l e t  a n d  O u t l e t  T e r m s  

A quantity may enter or leave the system by two means: (i) by inlet and/or outlet 
streams, (ii) by exchange of a particular quantity between the system and its 

2 A Euclidean coordinate system is one in which length can be defined. The coordinate system 
(P, V, T)is non-Euclidean. 
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surroundings through the boundaries of the system. In either case, the rate of 
input and/or output of a quantity is expressed by using the flux of that particular 
quantity. The flux of a quantity may be either constant or dependent on position. 
Thus, the rate of a quantity can be determined as 

(Flux) (Area) 

Inlet/Outlet rate = / / F l u x  dA 

A 

if flux is constant 

if flux is position dependent 
(1.3-1) 

where A is the area perpendicular to the direction of the flux. The differential 
areas in cylindrical and spherical coordinate systems are given in Section A.1 in 
Appendix A. 

E x a m p l e  1.3 Note that the velocity can be interpreted as the volumetric flux 
( m 3 / m  2. s). Therefore, volumetric flow rate can be calculated by the integration 
of velocity distribution over the cross-sectional area that is perpendicular to the 
flow direction. Consider the flow of a very viscous fluid in the space between two 
concentric spheres as shown in Figure 1.1. The velocity distribution is given by 
Bird et al. (1960) as 

vo = 2#E(e)s inO 1 -  -~ + a 1 -  

where 

,.(l+cos )l cos 

Use the velocity profile to find the volumetric flow rate, Q. 

Solut ion  

Since the velocity is in the O-direction, the differential area that is perpendicular 
to the flow direction is given by Eq. (A.1-9) in Appendix A as 

dA = r sin 0 dr de (1) 

Therefore, the volumetric flow rate is 

j~0 27r j~R 
Q = vo r sin 0 drdr (2) 

R 
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Figure  1.1 Flow between concentric spheres. 

Substitution of the velocity distribution into Eq. (2) and integration gives 

Q = wR3(1_ IAPI (3) 
6#E(e) 

1 . 3 . 2  R a t e  o f  G e n e r a t i o n  T e r m  

The generation rate per unit volume is denoted by ~ and it may be either constant 
or dependent on position. Thus, the generation rate is expressed as 

Generation rate = 

(~) (Volume) if R is constant 

/ / ~ .  dV if ~ is position dependent (1.3-2) 

V 

where V is the volume of the system in question. It is also possible to have the 
depletion of a quantity. In that case, the plus sign in front of the generation term 
must be replaced by the minus sign, i.e., 

Depletion rate = - Generation rate (1.3-3) 
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E x a m p l e  1.4 Energy generation rate per unit volume as a result of an electric 
current passing through a rectangular plate of cross-sectional area A and thickness 
L is given by 

7rx  

~ - -  ~osin ( T )  

where ~ is in W / m  3. Calculate the total energy generation rate within the plate. 

Solut ion 

Since ~ is dependent on position, energy generation rate is calculated by integration 
of ~ over the volume of the plate, i.e., 

io Energy generation rate = A ~o sin dx 

2 AL ~o 
7r 

1 . 3 . 3  R a t e  o f  A c c u m u l a t i o n  T e r m  

The rate of accumulation of any quantity 9~ is the time rate of change of that 
particular quantity within the volume of the system. Let p be the mass density 
and ~ be the quantity per unit mass. Thus, 

Total quantity of 9~- i f  f p~  dV (1.3-4) 
J J J 

V 

and the rate of accumulation is given by 

'( ss ) Accumulation rate = -~ ~ p ~ dV (1.3-5) 
y 

If ~ is independent of position, then Eq. (1.3-5) simplifies to 

d 
Accumulation rate = ~-~ (m ~) (1.3-6) 

where m is the total mass within the system. 
The accumulation rate may be either positive or negative depending on whether 

the quantity is increasing or decreasing with time within the volume of the system. 

1.4 SIMPLIFICATION OF THE RATE 
EQUATION 

In this section, the general rate equation given by Eq. (1.1-1) will be simplified for 
two special cases: (i) steady-state transport without generation, (ii) steady-state 
transport with generation. 
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1.4.1 Steady-State Transport Without Generation 

For this case Eq. (1.1-1) reduces to 

Rate of input of ~ - Rate of output of (1.4-1) 

Equation (1.4-1) can also be expressed in terms of flux as 

/A (inlet flux of ~)dA - / / A  (Outlet flux of ~)dA 
i n  o u t  

(1.4-2) 

For constant inlet and outlet fluxes Eq. (1.4-2) reduces to 

( Inlet flux ) ( Inlet ~p area = ( O u t l e t f l u x )  ( O u t l e t ) o f  ~ area (1.4-3) 

If the inlet and outlet areas are equal, then Eq. (1.4-3) becomes 

Inlet flux of ~ -  Outlet flux of (1.4-4) 

It is important to note that Eq. (1.4-4) is valid as long as the areas perpendicular 
to the direction of flow at the inlet and outlet of the system are equal to each other. 
The variation of the area in between does not affect this conclusion. Equation 
(1.4-4) obviously is not valid for the transfer processes taking place in the radial 
direction in cylindrical and spherical coordinate systems. In this case either Eq. 
(1.4-2) or Eq. (1.4-3) should be used. 

Example  1.5 Consider a solid cone of circular cross-section whose lateral surface 
is well insulated as shown in Figure 1.2. The diameters at x = 0 and x = L are 
25cm and 5cm, respectively. I f  the heat flux at x = 0 is 45 W / m  2 under steady 
conditions, determine the heat transfer rate and the value of the heat f lux at x = L. 

Figure 1.2 Heat transfer through a solid circular cone. 
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So lut ion  

For steady-state conditions without generation, the heat transfer rate is constant 
and can be determined from Eq. (1.3-1) as 

Heat transfer rate = (Heat flux) x=0 (Area) x=0 

Since the cross-sectional area of the cone is 7rD2/4, then 

Hea t t rans fe r ra te=(45)[  7r(0"25)2 ] 4  = 2.21W 

The value of the heat transfer rate is also 2.21 W at x : L. However, the heat flux 
does depend on position and its value at x = L is 

(Heat flux)~=L = 2.21 = 1126 W / m  2 (o.o5)2/4] 

C o m m e n t :  Heat flux values are different from each other even though the heat 
.flow rate is constant. Therefore, it is important to specify the area upon which a 
given heat flux is based when the area changes as a function of position. 

1.4.2 Steady-State Transport With Generation 

For this case Eq. (1.1-1) reduces to 

input of ~ generation of ~ = output of ~p 

Equation (1.4-5) can also be written in the form 

f f  (Inlet flux of p ) d A +  ff[ ~ d V =  ff  (Outlet flux of ~p)dA (1.4-6) 
J J A  ir~ JJJVsys JJAout 

where ~ is the generation rate per unit volume. If the inlet and outlet fluxes 
together with the generation rate are constant, then Eq. (1.4-6) reduces to 

( I n l e t f l u x ) ( X n l e t ) + ~ ( S y s t e m ) o f  ~ area volume = ( Outlet flux ) ( Outlet ~ area 

(1.4-7) 

E x a m p l e  1.6 An exothermic chemical reaction takes place in a 20 cm thick slab 
and the energy generation rate per unit volume is 1 • 106 W / m  3. The steady-state 
heat transfer rate into the slab at the left-hand side, i.e., at x = 0, is 280 W. 
Calculate the heat transfer rate to the surroundings from the right-hand side of the 
slab, i.e., at x = L. The surface area of each face is 40cm 2. 
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Solut ion  

At steady-state, there is no accumulation of energy and the use of Eq. (1.~-5) gives 

(Heat transfer rate)z=L = (Heat transfer rate)x=o + N ( Volume) 

= 280 + (1 x 106) (40 x 10-4)(20 x 10 -2) = 1080 W 

The values of the heat fluxes at x -  0 and x = L are 

280 
(Heat flux) x=0 = 40 x 10 .4 

1080 
(Heat flux)x=L = 40 X 10 -4 

= 70 x 103 W / m  2 

= 270 x 10 a w / m  2 

C o m m e n t :  Even though the steady-state conditions prevail, both the heat transfer 
rate and the heat flux are not constant. This is due to the generation of energy 
within the slab. 
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P R O B L E M S  

1.1 One of your friends writes down the inventory rate equation for money as 

( C h a n g e i n a m o u n t ) _ ( i n t e r e s t ) _ (  Service ) ( Dollars ) 
of dollars charge + deposited 

_ ( Checks 
written ) 

Identify the terms in the above equation. 

1.2 Determine whether steady- or unsteady-state conditions prevail for the 
following cases: 

a) The height of water in a dam during a heavy rain, 
b) The weight of an athlete during a marathon, 
c) The temperature of an ice cube as it melts. 

1.3 What is the form of the function ~(x, y) if c92~/OxOy = 0? 

(Answer:  ~(x, y) - f (x) + h(y) + C, where C is a constant) 

1.4 Steam at a temperature of 200 ~ flows through a pipe of 5 cm inside diameter 
and 6 cm outside diameter. The length of the pipe is 30m. If the steady rate of 
heat loss per unit length of the pipe is 2 W / m ,  calculate the heat fluxes at the 
inner and outer surfaces of the pipe. 

(Answer: 12 .7W/m 2 and 10.6 W / m  2) 

1.5 Dust evolves at a rate of 0.3 kg /h  in a foundry which has the dimensions of 
20 m x 8 m x 4 m. According to ILO (International Labor Organization) standards, 
the dust concentration should not exceed 20mg/m 3 to protect workers' health. 
Determine the volumetric flow rate of ventilating air to meet the standards of ILO. 

(Answer: 15,000m3/h) 

1.6 An incompressible Newtonian fluid flows in the z-direction in space between 
two parallel plates that are separated by a distance 2B as shown in Figure 1.3 (a). 
The length and the width of each plate are L and W, respectively. The velocity 
distribution under steady conditions is given by 

V Z  " - -  [1 2] 
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Figure  1.3 Flow between parallel plates. 

a) For the coordinate system shown in Figure 1.3 (b), show that the velocity 
distribution takes the form 

V z 

IAP[B2 [ x x 2 ] 

b) Calculate the volumetric flow rate by using the velocity distributions given 
above. What is your conclusion? 

(Answer :  b)For both cases Q=21ApIB3W)3#L 

1.7 An incompressible Newtonian fluid flows in the z-direction through a straight 
duct of triangular cross-sectional area, bounded by the plane surfaces y -- H, 
y = x/~ x and y = - x / ~  x. The velocity distribution under steady conditions is 
given by 

[API (y - H) (3  X 2 - -  y2) vz -- 4 #LH 
Calculate the volumetric flow rate. 

( Answer: Q=v/~H4'AP' #L 
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1.8 For radial flow of an incompressible Newtonian fluid between two parallel 
circular disks of radius R2 as shown in Figure 1.4, the steady-state velocity distri- 
bution is (Bird et al., 1960) 

b2 tAPt [ 21 

where R1 is the radius of the entrance hole. Determine the volumetric flow rate. 

F igure  1.4 Flow between circular disks. 

4 7rb 3 IAPI ) 
Answer :  Q = -~ ln(R2/R1) 



Chapter 2 

Molecular and Convective 
Transport 

The total flux of any quantity is the sum of the molecular and convective fluxes. The 
fluxes arising from potential gradients or driving forces are called molecular fluxes. 
Molecular fluxes are expressed in the form of constitutive (or, phenomenological) 
equations for momentum, energy, and mass transport. Momentum, energy, and 
mass can also be transported by bulk fluid motion or bulk flow and the resulting 
flux is called convective flux. This chapter deals with the formulation of molecular 
and convective fluxes in momentum, energy and mass transport. 

2.1 M O L E C U L A R  T R A N S P O R T  

Substances may behave differently when subjected to the same gradients. Consti- 
tutive equations identify the characteristics of a particular substance. For example, 
if the gradient is momentum, then the viscosity is defined by the constitutive equa- 
tion called Newton's law of viscosity. If the gradient is energy, then the thermal 
conductivity is defined by Fourier's law of heat conduction. If the gradient is con- 
centration, then the diffusion coefficient is defined by Fick's first law of diffusion. 
Viscosity, thermal conductivity and diffusion coefficient are called transport prop- 
erties. 

2 . 1 . 1  N e w t o n ' s  L a w  o f  V i s c o s i t y  

Consider a fluid contained between two large parallel plates of area A, separated 
by a very small distance Y. The system is initially at rest but at time t - 0, 
the lower plate is set in motion in the x-direct ion at a constant velocity V by 
applying a force F in the x-direction while the upper plate is kept stationary. 
The resulting velocity profiles are shown in Figure 2.1 for various times. At t - 0, 

15 
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the velocity is zero everywhere except at the lower plate which has a velocity V. 
Then the velocity distribution starts to develop as a function of time. Finally, at 
steady-state, a linear velocity distribution is obtained. 

F i g u r e  2.1 Velocity profile development in flow between parallel plates. 

Experimental  results show that  the force required to maintain the motion of 
the lower plate per unit area (or, momentum flux) is proportional to the velocity 
gradient, i.e., 

F V 
= # (2.1-1) A ~ Y 

Transport 
Momentum Velocity 

flux property gradient 

and the proportionality constant, tt, is the viscosity. Equation (2.1-1) is a macro- 
scopic equation. Microscopic form of this equation is given by 

Tyx 
dvx (2.1-2) 

which is known as Newton's law of viscosity and any fluid obeying Eq. (2.1-2) 
is called a Newtonian fluid. The term ~/ux is called rate of strain 1 or rate of 
deformation or shear rate. The term Tux is called shear stress. It contains two 
subscripts, x which represents the direction of force, and y which represents the 
direction of the normal to the surface on which the force is acting. Therefore, it is 
possible to interpret Tux as the flux of x - m o m e n t u m  in the y-direct ion.  

Since the velocity gradient is negative, i.e., vx decreases with increasing y, a 
negative sign is introduced on the right-hand side of Eq. (2.1-2) so that  the stress 
in tension is positive. 

1 Strain is defined as deformation per unit length. For example, if a spring of original length 
Lo is stretched to a length L, then the strain is ( L -  Lo)/Lo. 



2.1. MOLECULAR T R A N S P O R T  17 

In SI units, shear stress is expressed in N / m 2 ( P c )  and velocity gradient in 
( m / s ) / m .  Thus, the examination of Eq. (2.1-1)indicates that  the units of viscosity 
in SI units are 

N / m  2 N.s (kg. m/s2) ,  s kg 
= P c . s -  = = 

# = ( m / s ) / m  m 2 m 2 m. s 

Most viscosity data in the cgs system are usually reported in g/(  cm. s), known as 
a poise (P), or in centipoise (1 cP = 0.01 P) where 

1Pa. s = 10 P = 103 cP 

Viscosity varies with temperature. While liquid viscosity decreases with in- 
creasing temperature, gas viscosity increases with increasing temperature. Con- 
centration also affects viscosity for solutions or suspensions. Viscosity values of 
various substances are given in Table D.1 in Appendix D. 

E x a m p l e  2.1 A Newtonian fluid with a viscosity of 10 cP is placed between two 
large parallel plates. The distance between the plates is 4 mm. The lower plate is 
pulled in the positive x-direction with a force of 0.5 N, while the upper plate is 
pulled in the negative x-direction with a force of 2 N. Each plate has an area of 
2.5 m 2. If  the velocity of the lower plate is 0.1 m / s ,  calculate: 

a) The steady-state momentum flux, 
b) The velocity of the upper plate, 
c) Parts (a) and (b) for a Newtonian fluid with tt = 1 cP. 

Solut ion 

a) The momentum flux (or, force per unit area) is 

F 
T y x - -  - .~ 

0 . 5 + 2  

2.5 
= 1Pc  
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b) From Eq. (2.1-2) 

/o Y TyxY 
~-yx dy - - # dvx =v 1/'2 - V1 (1) 

# 

Substitution of the values into Eq. (1) gives 

112 - -0  1 -  (1)(4 x 10 -3) = _ 0.3 m / s  (2) 
" 10 x 10 - 3  

The minus sign indicates that the upper plate moves in the negative x-direction.  
Note that the velocity gradient is dvx/dy = -  lOOs -1. 

c) Since the momentum flux is the same irrespective of the fluid, Tyx -- 1 Pa. 

V2 = 111 wy~Y 
# 

= 0 . 1 -  (1)(4 • 10 -a) 
1 x 10 - 3  

= - 3 . 9 m / s  (3) 

The velocity gradient in this case is d v z / d y - - 1 0 0 0 s  -1. 

C o m m e n t "  Viscosity is a measure of the ability of the fluid to transfer momen- 
turn. Therefore, the decrease in viscosity causes a steeper velocity gradient. 

2 . 1 . 2  F o u r i e r ' s  L a w  o f  H e a t  C o n d u c t i o n  

Consider a slab of solid material of area A between two large parallel plates of a 
distance Y apart, initially the solid material is at a temperature To throughout. 
Then the lower plate is suddenly brought to a slightly higher temperature T1 and 
maintained at that  temperature. The second law of thermodynamics states that  
heat flows spontaneously from the higher temperature T1 to the lower temperature 
To. As time proceeds, the temperature profile in the slab changes, and ultimately 
a linear steady-state temperature is attained as shown in Figure 2.3. 

F i g u r e  2.3 Temperature profile development in a solid slab between two plates. 



2.1. M O L E C U L A R  T R A N S P O R T  19 

Experimental measurements made at steady-state indicate that the rate of heat 
flow per unit area is proportional to the temperature gradient, i.e., 

T1-  To 
A ~ "  Y 

Transport 
Energy property Temperature 

flux gradient 

(2.1-3) 

The proportionality constant, k, between the energy.flux and the temperature 
gradient is called the~nal conductivity. In SI units, Q is in W ( J / s ) ,  A in m 2, 
dT /dx  in K /m,  and k in W/(  m. K). The thermal conductivity of a material is, 
in general, a function of temperature. However, in many engineering applications 
the variation is sufficiently small to be neglected. Thermal conductivity values for 
various substances are given in Table D.2 in Appendix D. 

The microscopic form of Eq. (2.1-3) is known as Fourier's law of heat conduction 
and is given by 

dT (2 1-4) qu = - k --~y 

in which the subscript y indicates the direction of the energy flux. The negative sign 
in Eq. (2.1-4) indicates that heat flows in the direction of decreasing temperature. 

E x a m p l e  2.2 One side of a copper slab receives a net heat input at a rate of 
5000W due to radiation. The other face is held at a temperature of 35 ~ I f  
steady-state conditions prevail, calculate the surface temperature of the side receiv- 
ing radiant energy. The surface area of each face is 0.05 m 2, and the slab thickness 
is 4cm. 

So lu t ion  

5000 W 

_1 

t---~ y 

35~ 

Phys ica l  p rope r t i e s  

For copper" k = 398 W / m .  K 
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Analys i s  

System: Copper slab 

Under steady conditions with no internal generation, conservation statement for 
energy reduces to 

Rate of energy in = Rate of energy o u t -  5000 W 

Since the slab area across which heat transfer takes place is constant, the heat flux 
through the slab is also constant and is given by 

5O0O 
= 100,000 W / m  2 

qY = 0.05 

Therefore, the use of Fourier's law of heat conduction, Eq. (2.1-~), gives 

f 0.04 /T~5 
100,000 dy - - 398 dT 

J0 
or, 

To = 45.1 ~ 

2 . 1 . 3  F i c k ' s  F i r s t  L a w  o f  D i f f u s i o n  

Consider two large parallel plates of area A. The lower one is coated with a material 
,4 which has a very low solubility in the stagnant fluid B filling the space between 
the plates. Suppose that the saturation concentration of Jt is PAo and ,4 undergoes 
a rapid chemical reaction at the surface of the upper plate and its concentration 
is zero at that  surface. At t = 0 the lower plate is exposed to the fluid B and as 
time proceeds, the concentration profile develops as shown in Figure 2.4. Since 
the solubility of r is low, an almost a linear distribution is reached under steady 
conditions. 

F i g u r e  2.4 Concentration profile development between parallel plates. 



2.1. MOLECULAR TRANSPORT 21 

Experimental measurements indicate that the mass flux of Jt is proportional to 
the concentration gradient, i.e., 

?~A : :DAB PAo 
A ~ Y 

Transpor t  
M ass Concent ra t ion  

flux of .A proper ty  gradient  

(2.1-5) 

where the proportionality constant, ~)AB, is called the binary molecular mass dif- 
fusivity (or, diffusion coefficient) of species A through B. The microscopic form of 
Eq. (2.1-5) is known as Fick's first law of diffusion and is given by 

dwA 
j A ~  - - ~ A B  P --~y (2.1-6) 

where jAy and WA represent the molecular mass flux of species r in the y-direction 
and mass fraction of species A, respectively. If the total density, p, is constant, 
then the term p (dwA/dy) can be replaced by dpA/dy and Eq. (2.1-6) becomes 

dPA 
jAy = -- :DAB "~y p = constant (2.1-7) 

To m e a s u r e  ~DAB experimentally, it is necessary to design an experiment (like the 
one given above) in which the convective mass flux is almost zero. 

In mass transfer calculations, it is sometimes more convenient to express con- 
centrations in molar units rather than mass units. In terms of molar concentration, 
Fick's first law of diffusion is written as 

dxA 
J* -- ~ ~DAB C (2.1-8) 

where J~ and X A represent the molecular molar flux of species A in the y-direction 
and mole ~ fraction of species A, respectively. If the total molar concentration, c, 
is constant, then the term c(dxA/dy) can be replaced by dcA/dy and Eq. (2.1-8) 
becomes 

dcA 
J~4y = -:DAB -~y C = constant (2.1-9) 

Diffusion coefficient has the dimensions of m2/s  in SI units. Typical values 
of :DAB a r e  given in Appendix D. Examination of these values indicates that the 
diffusion coefficient of gases has an order of magnitude of 10 -5 m2/s  under atmo- 
spheric conditions. Assuming ideal gas behavior, the pressure and temperature 
dependence of the diffusion coefficient of gases may be estimated from the relation 

T3/2 
~)AB c~ P (2.1-10) 
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Diffusion coefficients for liquids are usually in the order of 10 -9 
hand, ~)AB values for solids vary from 10 -1~ to 10 -14 m2/s. 

m 2 ! s. On the other / 

E x a m p l e  2.3 Air at atmospheric pressure and 95 ~ flows at 20 m / s  over a fiat 
plate of naphthalene 80cm long in the direction of flow and 60cm wide. Experi- 
mental measurements report the molar concentration of naphthalene in the air, CA, 
as a function of distance x from the plate as follows: 

x CA 
(cm) ( mol /m 3) 

0 0.117 
10 0.093 
20 0.076 
30 0.063 
40 0.051 
50 0.043 

Determine the molar flux of naphthalene from the plate surface under steady con- 
ditions. 

Solut ion 

Phys ica l  p rope r t i e s  

Diffusion coefficient of naphthalene (A) in air (B) at 95 ~ (368 K)" 

(T~AB)368 -- (T~AB)300 3--~/ = (0.62 X 10 -5) 

= 0.84 x 10 -5 m2/s 

Assumpt ions  

1. The total molar concentration, c, is constant. 

2. Naphthalene plate is also at a temperature of 95 ~ 

Analysis 

The molar flux of naphthalene transferred from the plate surface to the flowing 
stream is determined from 

J L  I =0 = - dx / x=0 

It is possible to calculate the concentration gradient on the surface of the plate by 
using one of the several methods explained in Section A.5 in Appendix A. 



G r a p h i c a l  m e t h o d  

0.12 

The plot of CA versus x is given in Figure 2.5. 
curve at x -  0 is - 0.0023 (mol /m3) /cm.  

The slope of the tangent to the 
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F i g u r e  2.5 Concentration of species ,4 as a function of position. 

C u r v e  f i t t ing  m e t h o d  

Semi-log plot of C A versus x is shown in Figure 2.6. 

0.2 

0.1 

0.08 

0.06 

~ 0.04 

0.02 

0.01 s t t I 

0 10 20 30 40 50 

x (cm) 

F i g u r e  2.6 Concentration of species ,4 as a function of position. 
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It appears from Figure 2.6 that a straight line represents the data fairly well. The 
equation of this line can be determined by the method of least squares in the form 

y - m x + b  (2) 

where 
y = log CA (3) 

To determine the values of m and b from Eqs. (A. 6-10) and (A. 6-11) in Appendix 
A, the required values are calculated as follows: 

Yi xi x iy i  x 2. 
Z 

- 0 .932  0 0 0 

- 1 .032 10 - 10.32 100 

- 1 .119 20 - 22.38 400 

- 1.201 30 - 36.03 900 

- 1.292 40 - 51.68 1600 

- 1 .367  50 - 68 .35  2500 

2 _ 5500 E Y i = - 6 . 9 4 3  E x i = 1 5 0  E x ~ Y ~ = - 1 8 8 . 7 6  E x i  

The values of m and b are 

m = ( 6 ) ( -  188.76)  - ( 1 5 0 ) ( - 6 . 9 4 3 )  = - 0 . 0 0 8 7  
( 6 ) ( 5 5 0 0 )  - ( 1 5 0 )  2 

b = ( -  6 . 9 4 3 ) ( 5 5 0 0 )  - ( 1 5 0 ) ( -  188.76)  = _ 0 .94  

( 6 ) ( 5 5 0 0 ) -  (150)  2 

Therefore, Eq. (2) takes the form 

log  CA = -- 0 .087  x -- 0 .94  (4) 

or,  

CA -- 0.115 e - ~176 (5) 

Differentiation of Eq. (5) gives the concentration gradient on the surface of the 
plate as 

x--0 

= - ( 0 . 1 1 5 ) ( 0 . 0 2 )  - - 0 .0023  ( m o l / m 3 ) / c m  - - 0 .23  m o l / m  4 (6) 

Substitution of the numerical values into Eq. (1) gives the molar flux of naphthalene 
from the surface as 

J~.x [x=o - (0 .84 > 1 0 - 5 ) ( 0 . 2 3 )  - 19.32 • 1 0 -  7 m o l / m  2. s 
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2.2  D I M E N S I O N L E S S  N U M B E R S  

Newton's "law" of viscosity, Fourier's "law" of heat conduction, and Fick's first 
"law" of diffusion, in reality, are not  laws but defining equations for viscosity, #, 
thermal conductivity, k, and diffusion coefficient, ~)AB. The fluxes (Tux, qy, JAy) 
and the gradients (dvx/dy, dT/dy, dpA/dy ) must be known or measurable for the 
experimental determination of #, k, and DAS. 

Newton's law of viscosity, Eq. (2.1-2), Fourier's law of heat conduction, Eq. 
(2.1-4), and Fick's first law of diffusion, Eqs. (2.1-7) and (2.1-9), can be generalized 
a s  

( M o l e c u l a r ) _ ( T r a n s p o r t )  ( Gradientof ) (2.2-1) 
flux property driving force 

Although the constitutive equations are similar, they are not completely analogous 
because the transport properties (#, k, :DAB) have different units. These equations 
can also be expressed in the following forms: 

_;_d 
ryz = p dy (pvx ) p -- constant 

pCp - constant 

p = constant 

q y  - -  
k d 

p(~p dy 
(pCpT) 

JAu = - -  ~ ) A B - -  
dPA 
dy 

pvx = momentum/volume 

(2.2-2) 

pCpT = energy/volume 

(2.2-3) 

PA -- mass of A/volume 

(2.2-4) 
The term #/p in Eq. (2.2-2) is called momentum diffusivity or kinematic vis- 

cosity, and the term k/pCp in Eq. (2.2-3) is called thermal diffusivity. Momentum 
and thermal diffusivities are designated by u and a, respectively. Note that the 
terms u, a, and DAS all have the same units, m2/s, and Eqs. (2.2-2)-(2.2-4) can 
be expressed in the general form as 

Molecular ) - (Diffusivity) ( Gradient of 
Quantity/Volume ) (2.2-5) 

The quantities that appear in Eqs. (2.2-1) and (2.2-5) are summarized in Table 
2.1. Since the terms u, a, and ~DAB all have the same units, the ratio of any two 
of these diffusivities results in a dimensionless number. For example, the ratio of 
momentum diffusivity to thermal diffusivity gives the Prandtl number, Pr: 

Prandtl number = P r -  - = (2.2-6) 
a k 

The Prandtl number is a function of temperature and pressure. However, its de- 
pendence on temperature, at least for liquids, is much stronger. The order of 
magnitude of the Prandtl number for gases and liquids can be estimated as 
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Table  2.1 Analogous terms in constitutive equations for momentum, energy, and 
mass (or, mole) transfer in one-dimension. 

Momentum Energy Mass Mole 

Molecular flux 

Transport property 

Gradient of driving force 

Diffusivity 

Quanti ty/Volume 

Gradient of Quantity/Volume 

Ty~ qY JAu JAy 

# k ~DAB ~DAB 

dvx dT dp A dcA 
dy dy dy dy 

l] Ot ~AB ~DAB 

pvx pCpT PA CA 

d(pvx) d(pCpT) dPA dcA 
dy dy dy dy 

(103)(10 -5) 
P r -  10_2 = 1 for gases 

Pr = (103)(10-3) = 10 for liquids 
10-1 

The Schmidt number is defined as the ratio of the momentum to mass diffusivities: 

Schmidt number = Sc = u _ _ # (2.2-7) 
:DAB P ~AB 

The order of magnitude of the Schmidt number for gases and liquids can be esti- 
mated as 

10-5 
Sc = (1)(10 -5) = 1 for gases 

10 - 3  
S c - -  = 10 3 for liquids 

(103)(10 -9 ) 

Finally, the ratio of c~ to 79AB gives the Lewis number, Le: 

Lewis n u m b e r -  L e -  
a k Sc 

~DAB PCP~)AB Pr (2.2-8) 

2.3 C O N V E C T I V E  T R A N S P O R T  

Convective flux or bulk flux of a quantity is expressed as 

Convective 
flux ) = (Quantity/V~ ( Characteristic velocity ) (2.3-1) 
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When air is pumped through a pipe, it is considered to be a single phase and 
a single component system. In this case, there is no ambiguity in defining the 
characteristic velocity. However, if the oxygen in the air were reacting, then the 
fact that  air is composed predominantly of two species, 02 and N2, had to be taken 
into account. Hence, air should be considered a single phase, binary component 
system. For a single phase system composed of n components, the general definition 
of a characteristic velocity is given by 

n 

- (2.3-2) 
i 

where ~i is the weighting factor and vi is the velocity of a constituent. The three 
most common characteristic velocities are listed in Table 2.2. The term Vi in the 
definition of the volume average velocity represents the partial  molar volume of a 
constituent. The molar average velocity is equal to the volume average velocity 
when the total molar concentration, c, is constant. On the other hand, the mass 
average velocity is equal to the volume average velocity when the total mass density, 
p, is constant. 

Tab le  2.2 Common characteristic velocities. 

Characteristic Velocity Weighting Factor Formulation 

Mass average Mass fraction (wi) v = ~-~'-i w~vi 

Molar average Mole fraction (xi) v* - ~ i  xivi 

Volume average Volume fraction (c~Vi) v" = ~ i  ciVivi 

The choice of a characteristic velocity is arbitrary. For a given problem, it is 
more convenient to select a characteristic velocity which will make the convective 
flux zero and thus yield a simpler problem. In the literature, it is common practice 
to use the molar average velocity for dilute gases, i.e., c - -  constant, and the mass 
average velocity for liquids, i.e., p = constant. 

It should be noted that  the molecular mass flux expression given by Eq. (2.1- 
6) represents the molecular mass flux with respect to the mass average velocity. 
Therefore, in the equation representing the total mass flux, the characteristic ve- 
locity in the convective mass flux term is taken as the mass average velocity. On 
the other hand, Eq. (2.1-8) is the molecular molar flux with respect to the mo- 
lar average velocity. Therefore, the molar average velocity is considered to be the 
characteristic velocity in the convective molar flux term. 

2 . 4  T O T A L  F L U X  

Since the total flux of any quantity is the sum of its molecular and convective 
fluxes, then 
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( T o t a l )  (Transpor t )  ( Gradientof ) 
flux = property driving force 

Molecular flux 

+ (Quantity 
Volume)(  CharacteristicvelOcity ) 

�9 , ,, S 

Convective flux 

(2.4-1) 

or, 

Total flux ) - (Diffusivity) ( Gradient of 
Quantity/Volume ) 

% t 

Molecular flux 

+ (Quantity~ Volume ] ( CharacteristiCvelocity ) 
..,, t 

Convective flux 

(2.4-2) 

The quantities that appear in Eqs. (2.4-1) and (2.4-2) are given in Table 2.3. 

Table 2.3 Analogous terms in flux expressions for various types of transport in 
one-dimension. 

Type of Total Molecu la r  Convective Constraint Transport Flux Flux Flux 

dvx None 
- #  dy Momentum 7ryx (p vx) vy 

d(pv~) p = const. 
dy 

- k  dT 
dy 

Energy ey d(pC'p T) (P (~PT) v~ 

dy 

dwA 
--PDAB dy 

M a s s  ~)A~ PA Vy 
dPA 

- -  ~ ) A B  dy 

dxA 
--CT)AB dy 

M o l e  NA~ dcA CAVy 
- -  ~ ) A B  dy 

None 

p Cp - const. 

None 

fl -- const. 

None 

c -  const. 
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The general flux expressions for momentum, energy and mass transport in dif- 
ferent coordinate systems are given in Appendix C. 

From Eq. (2.4-2), the ratio of the convective flux to the molecular flux is given 
by 

Convective flux 
Molecular flux 

(Quantity/Volume) (Characteristic velocity) 
(Diffusivity)(Gradient of Quantity/Volume) 

(2.4-3) 

Since the gradient of a quantity represents the variation of that particular quantity 
over a characteristic length, the "Gradient of Quantity/Volume" can be expressed 
a s  

Gradient of Quantity/Volume = 
Difference in Quantity/Volume 

Characteristic length 
(2.4-4) 

The use of Eq. (2.4-4) in Eq. (2.4-3) gives 

Convective flux (Characteristic velocity) (Characteristic length) 
Molecular flux Diffusivity 

(2.4-5) 

The ratio of the convective flux to the molecular flux is known as the Peclet number, 
Pe. Therefore, Peclet numbers for heat and mass transfers are 

VchLch 
Pert = (2.4-6) 

c~ 

VchLch 
PeM -- 

:DAB 
Hence, the total flux of any quantity is given by 

(2.4-7) 

Molecular flux 
Total f l u x -  Molecular flux + Convective flux 

Convective flux 

Pe<< l  
Pe N 1 
Pe>> l  

(2.4-s) 

2 .4 .1  R a t e  o f  M a s s  E n t e r i n g  a n d / o r  L e a v i n g  t h e  S y s t e m  

The mass flow rate of species i entering and/or leaving the system, ~hi, is expressed 
a S  

Mass ,~ /I Gradient of ) 
rhi = Diffusivity ,] \ Mass of//Volume 

I 

M o l e c u l a r  m a s s  f lux of species  i 

( M a s s o f i ) ( C h a r a c t e r i s t i c )  ( F l o w ) ( 2 . 4 - 9 )  
+ Volume velocity area 

C o n v e c t i v e  m a s s  flux of spec ies  i 

In general, the mass of species i may enter and/or leave the system by two means" 
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�9 Entering and/or leaving conduits, 

�9 Exchange of mass between the system and its surroundings through the 
boundaries of the system, i.e., interphase transport. 

When a mass of species i enters and/or leaves the system by a conduit(s), the 
characteristic velocity is taken as the average velocity of the flowing stream and it 
is usually large enough to neglect the molecular flux compared to the convective 
flux, i.e., PeM >> 1. Therefore, Eq. (2.4-9) simplifies to 

or~ 

(Mass of i )  ( Average ) ( Flow ) 
rhi - Volume velocity area (2.4-10) 

- ;, (v1.4 = Q[ 
Summation of Eq. (2.4-11) over all species leads to the total mass flow rate, rh, 
entering and/or leaving the system by a conduit in the form 

[m=;(v/A-;e[ 
in terms of molar basis, Eqs. (2.4-11) and (2.4-12) take the form 

[i~i - c~ (v)A = ci Q[ (2.4-13) 

[ A = c ( v > A =  cQ I (2.4-14) 

On the other hand, when a mass of species i enters and/or leaves the system as 
a result of interphase transport, the flux expression to be used is dictated by the 
value of the Peclet number as shown in Eq. (2.4-8). 

Example  2.4 Liquid 13 is flowing over a vertical plate as shown in Figure 2.7. 
The surface of the plate is coated with a material .A which has a very low solubility 
in liquid B. The concentration distribution of species .4 in the liquid is given by 
Bird et al. (1960) as 

C A __ 1 f r 1 6 2  
CAo - -  F(4/3) ~ u  e - U 3 d u  

where CAo is the solubility of r in 13, ~ is the dimensionless parameter defined by 

~ = x 9 ~DABZ 

and F(4/3) is the gamma function defined by 

j~0 (~~ 
r(n) = ~n-le-f~dl~ n > 0  
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r - - - -  

s 

z 

_ 2 '  

Figure  2.7 

~ Surface coated with species A 

Solid dissolution into a falling film. 

Calculate the rate of transfer of species j t  into the flowing liquid. 

S o l u t i o n  

Assumpt ions  

1. The total molar concentration in the liquid phase is constant. 

2. In the x-direction, the convective flux is small compared to the molecular 
flUX. 

Analysis  

The molar rate of transfer of species ,,4 can be calculated from the expression 

 oW/o L iZA = NA~ fx=o dzdy (I) 
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where the total molar flux of species jt at the interface, NAxI~=o, is given by 

, (2)  NA~ [~=o- JAx [~=0 = -  DAB \ OX ] ~=0 

By the application of the chain rule, Eq. (2) takes the form 

NA~ ]x=0 -= -- ~)AB ~X k &/ v=0 

The term O~] / Ox is 

0--~ = 9 ~ 7 ) A B z  (4) 

On the other hand, the term dcA/d~ can be calculated by the application of the 
Leibnitz formula, i.e., Eq. (A.4-3) in Appendix A, as 

dcA CAo _773 
= e ( 5 )  dv r(4/3) 

Substitution of Eqs. (~) and (5) into Eq. (3) yields 

NA~ Ix=0 -- F(4/3) 9 ~DABZ (6) 

Finally, the use of Eq. (6) in Eq. (1) gives the molar rate of transfer of species r 
as 

1 WcAo (3pgS) 1/3 
(I)ABL) 2/3 (7) 

2.4.2 R a t e  of Energy  Ente r ing  a n d / o r  Leaving the  Sys t em 

The rate of energy entering and/or leaving the system,/~, is expressed as 

Thermal ) (  Gradientof ) 
diffusivity Energy/Volume 

,, . s  

Molecular energy flux 

( Energy '~ /' Characteristic ( 
+ 5 ~  ) \ -~ velocity 

Convective energy flux 

FlOWarea ) (2.$15) 

As in the case of mass, energy may enter or leave the system by two means: 
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�9 By inlet and/or outlet streams, 

�9 By exchange of energy between the system and its surroundings through the 
boundaries of the system in the form of heat and work. 

When energy enters and/or leaves the system by a conduit(s), the characteristic 
velocity is taken as the average velocity of the flowing stream and it is usually large 
enough to neglect the molecular flux compared to the convective flux, i.e., Pert >> 1. 
Therefore, Eq. (2.4-15) simplifies to 

Energy 
/~ ---- \Volume) ( AVerage a r e a )  (2.4-16) velocity ) ( FlOw 

Energy per unit^volume, on the other hand, is expressed as the product of energy 
per unit mass, E, and mass per unit volume, i.e., density, such that Eq. (2.4-16) 
becomes 

/~ _ (Energy ( Average 
Volume ] \ area velocity ) ( Fl~ ) - / ~ r h  (2.4-17) 

\ 
% J 

Y 

M a s s  flow r a t e  

N O T A T I O N  

A 

C 

Ci 

"DAB 

e 

F 
j ,  

J 
k 
~h 

N 

P 

Q 
q 
T 

area, m 2 

heat capacity at constant pressure, k J/kg. K 
total concentration, kmol/m 3 
concentration of species i, kmol/m 3 
diffusion coefficient for system A-B, m2/s 
rate of energy, W 
total energy flux, W / m  2 
force, N 
molecular molar flux, kmol/m 2. s 
molecular mass flux, kg/m 2. s 
thermal conductivity, W/m.  K 
total mass flow rate, kg/s 
mass flow rate of species i, kg/s  
total molar flux, kmol/m 2. s 
total molar flow rate, kmol/s 
molar flow rate of species i, kmol/s 
pressure, Pa 
heat transfer rate, W 
volumetric flow rate, m3/s 
heat flux, W / m  2 
temperature, ~ or K 
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t 
V 
Vi 
V 

11" 

v m 

142 
X 

Xi  

Y 

time, s 
volume, m 3 
partial molar volume of species i, m3/kmol 
velocity, m / s  
molar average velocity, m / s  
volume average velocity, m / s  
total mass flux, k g / m  2. s 
rectangular coordinate, m 
mole fraction of species i 
rectangular coordinate, m 

OL 

# 
/2 

7r 

P 
Pi 
Tyx 
OJi 

thermal diffusivity, m2/s  
rate of strain, 1/s  
viscosity, kg/m.  s 
kinematic viscosity (or, momentum diffusivity), m2/s  
total momentum flux, N / m  2 
total density, k g / m  3 
density of species i, k g / m  3 
flux of x -  momentum in the y -  direction, N / m  2 
mass fraction of species i 

Overl ines  

per unit mass 
partial molar 

Bracke t  

(a) average value of a 

Supe r sc r ip t  

sat saturation 

Subscr ip t s  

A, B species in binary systems 
ch characteristic 
i species in multicomponent systems 

Dimensionless  Numbers  

L e  

Pert 
PeM 
Pr 
Sc 

Lewis number 
Peclet number for heat transfer 
Peclet number for mass transfer 
Prandtl number 
Schmidt number 
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P R O B L E M S  

2.1 Three parallel flat plates are separated by two fluids as shown in the figure 
below. What should be the value of ]I2 so as to keep the plate in the middle 
stationary? 

(Answer: 2 cm) 
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2.2 The steady rate of heat loss through a plane slab, which has a surface area 
of 3 m 2 and is 7 cm thick, is 72 W. Determine the thermal conductivity of the slab 
if the temperature distribution in the slab is given as 

T = 5 x + 1 0  

where T is temperature in ~ and x is the distance measured from one side of the 
slab in cm. 

(Answer :  0.048 W / m .  K) 

2.3 The inner and outer surface temperatures of a 20cm thick brick wall are 
30 ~ and - 5 ~ respectively. The surface area of the wall is 25 m 2. Determine the 
steady rate of heat loss through the wall if the thermal conductivity is 0.72 W / m .  K. 

(Answer :  3150 W) 

2.4 Energy is generated uniformly in a 6cm thick wall. The steady-state tem- 
perature distribution is 

T = 145 + 3000 z - 1500 z 2 

where T is temperature in ~ and z is the distance measured from one side of 
the wall in meters. Determine the rate of heat generation per unit volume if the 
thermal conductivity of the wall is 15 W / m .  K. 

(Answer :  45 k W / m  3) 

2.5 The temperature distribution in a one-dimensional wall of thermal conduc- 
tivity 20 W / m .  K and thickness 60 cm is 

T = 80 + 10e -~176 sin(Try) 

where T is temperature in ~ t is time in hours, ~ = z/L is the dimensionless 
distance with z being a coordinate measured from one side of the wall and L is the 
wall thickness in meters. Calculate the total amount of heat transferred in half an 
hour if the surface area of the wall is 15 m 2. 

(Answer :  15,360 J) 

2.6 The steady-state temperature distribution within a plane wall of 1 m thick 
with a thermal conductivity of 8 W / m .  K is measured as a function of position as 
follows: 
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z T 
(m) (oc) 

0 30 
0.1 46 
0.2 59 
0.3 70 
0.4 79 
0.5 85 
0.6 89 
0.7 90 
0.8 89 
O.9 86 
1.0 80 

where z is the distance measured from one side of the wall. Determine the uniform 
rate of energy generation per unit volume within the wall. 

(Answer:  1920 W / m  3) 

2.7 The geothermal gradient is the rate of increase of temperature with depth in 
the earth's crust. 

a) If the average geothermal gradient of the earth is about 25 ~  estimate the 
steady rate of heat loss from the surface of the earth. 
b) One of your friends claims that the amount of heat escaping from 1 m 2 in 4 days 
is enough to heat a cup of coffee. Do you agree? Justify your answer. 

Take the diameter and the thermal conductivity of the earth as 1.27 • 104 km and 
3 W / m .  K, respectively. 

(Answer:  a) 38 x 109 kW) 

2.8 Estimate the earth's age by making use of the following assumptions" 

(i) Neglecting the curvature, the earth may be assumed to be semi-infinite plane 
that began to cool from an initial molten state of To = 1200~ Taking the 
interface temperature at z = 0 to be equal to zero, the corresponding temperature 
distribution takes the form 

T = To erf 2~_~ (1) 

where erf(x) is the error function defined by 

~~ x u2 
erf(x) - - ~  e-  du (2) 



38 CHAPTER 2. MOLECULAR AND CONVECTIVE TRANSPORT 

(ii) The temperature gradient at z = 0 is equal to the geothermal gradient of the 
earth, i.e., 25 ~  

(iii) The thermal conductivity, the density and the heat capacity of the earth are 
3 W / m .  K, 5500 k g / m  3 and 2000 J /kg .  K, respectively. 

Estimation of the age of the earth, based on the above model, is first used by 
Lord Kelvin (1864). However, he knew nothing about radioactivity and heating 
of the earth's crust by radioactive decay at that  time. As a result, his estimates, 
ranging from 20 to 200 million years, were completely wrong. Today, the geologists 
generally accept the age of the earth as 4.55 billion years. 

(Answer :  85.3 • 10 ~ year) 

2.9 A slab is initially at a uniform temperature To and occupies the space from 
z -- 0 to z = oc. At time t - 0, the temperature of the surface at z - 0 is suddenly 
changed to T1 (T1 > To) and maintained at that  temperature for t > 0. Under 
these conditions the temperature distribution is given by 

T 1 - T  =er f (  z ) 
T1 -To 2 - ~  (1) 

If the surface area of the slab is A, determine the amount of heat transferred into 
the slab as a function of time. 

( A n s w e r :  Q - 2 kA(T1- T~ v/t) 

2.10 Air at 20 ~ and I atm pressure flows over a porous plate that  is soaked in 
ethanol. The molar concentration of ethanol in the air, CA, is given by 

CA = 4 e -  1.5z 

where CA is in k m o l / m  3 and z is the distance measured from the surface of the 
plate in meters. Calculate the molar flux of ethanol from the plate. 

(Answer :  0.283 k m o l / m  2. h) 

2.11 The formal definition of the partial molar volume is given by 

Substitute 

(i) 

n 
v = - ( 2 )  

r 

into Eq. (1) and show that  the volume fraction is equal to the mole fraction for 
constant total molar concentration, c, i.e., 

ci Vi - xi (3) 



PROBLEMS 39 

This further implies that the molar average velocity is equal to the volume average 
velocity when the total molar concentration is constant. 

2.12 For a gas at constant pressure, why does the Schmidt number usually remain 
fairly constant over a large temperature range, whereas the diffusion coefficient 
changes markedly? 

2.13 Gas A dissolves in liquid B and diffuses into the liquid phase. As it diffuses, 
species r undergoes an irreversible chemical reaction as shown in the figure be- 
low. Under steady conditions, the resulting concentration distribution in the liquid 
phase is given by 

CA cosh {A [1 - (z/L)]} 
CAo cosh A 

in which 

A -  4/kL2 
V :DAB 

w h e r e  CAo is the surface concentration, k is the reaction rate constant and "DAB is 
the diffusion coefficient. 

T 
L 

Gas A 

Liquid B 

T 
z 

a) Determine the rate of moles of r entering into the liquid phase if the cross- 
sectional area of the tank is A. 

b) Determine the molar flux at z - L. What is the physical significance of this 
result? 

Answer :  a) /~A-  A79ABCAoAL tanhA b) 0)  
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Chapter 3 

Interphase Transport and 
Transfer Coefficients 

In engineering calculations, we are interested in the determination of the rate of 
momentum, heat and mass transfer from one phase to another across the phase in- 
terface. This can be achieved by integrating the flux expression over the interfacial 
area. Equation (2.4-2) gives the value of the flux at the interface as 

interphase 
flux ) 

(Diffusivity) ( Gradient of 
Quantity/Volume ) 

+ ( Quantity V o l u m e ) (  Characteristic 
velocity )]interface 

Note that the determination of the interphase flux requires the values of the quan- 
tity/volume and its gradient to be known at the interface. Therefore, equations 
of change must be solved to obtain the distribution of quantity/volume as a func- 
tion of position. These analytical solutions, however, are not possible most of the 
time. In that case we resort to experimental data and correlate the results by the 
transfer coefficients, namely, the friction factor, the heat transfer coefficient, and 
the mass transfer coefficient. The resulting correlations are then used in designing 
equipment. 

This chapter deals with the physical significance of these three transfer coef- 
ficients. In addition, the relationships between these transfer coefficients will be 
explained by using dimensionless numbers and analogies. 

3.1 F R I C T I O N  F A C T O R  

Let us consider a fiat plate of length L and width W suspended in a uniform stream 
having an approach velocity vo~ as shown in Figure 3.1. 

41 
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F i g u r e  3.1 Flow on a flat plate. 

As an engineer we are interested in the determination of the total drag force, i.e., 
the component of the force in the direction of flow, exerted by the flowing stream 
on the plate. This force can be calculated by integrating the total momentum flux 
at the wall over the surface area. The total momentum flux at the wall, ~yxly=0, is 

~y~ly=o = ry~ly=o + (pv~vy)ly=o (3.1-1) 

where Tyxly=O is the value of the shear stress at the wall. Since the plate is 

stationary, the fluid which is in contact with the plate is also stagnant I and both 
vx and vy are zero at y = 0. Therefore, Eq. (3.1-1) reduces to 

~y~ly=o = Tyxly=O = Tw (3.1-2) 

and the drag force, FD, on one side of the plate can be calculated from 

F D : T ~ dxdz (3.1-3) 

Evaluation of the integral in Eq. (3.1-3) requires the value of the velocity 
gradient at the wall, which can be obtained from the solution of the equations 
of change. Since this is almost an impossible task in most cases, it is customary 
in engineering practice to replace r~  by a dimensionless term called the friction 
factor, f ,  such that  

1 
T~ = -~ p v ~ f  (3.1o4) 

Substitution of Eq. (3.1-4) into Eq. (3.1-3) gives 

1 
FD = -~ PVoo f dxdz = (WL)  -~ pv  (f} (3.1-5) 

where (f) is the friction factor averaged over the area of the plate 2, i.e., 

( f ) -  r  fL = W L  Jo f dxdz (3.1-6) 

]o Jo dxdz r 

1This is known as the no-slip boundary condition. 
2See Section A.2 in Appendix A. 
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Equation (3.1-5) can be generalized in the form 

lED = A~hK~n(f) I (3.1-7) 

in which the terms Ach, characteristic area, and Kch, characteristic kinetic energy, 
are defined by 

Wetted surface area for flow in conduits 
Ach = Projected area for flow around submerged objects (3.1-8) 

1 2 (3.1-9) K~h = -~ p v~h 

where V~h is the characteristic velocity. 
Power, I~, is defined as the rate at which work is done. Therefore, 

P o w e r -  Work _ _ (Force) (Distance) _ - (Force) (Velocity) (3.1-10) 
Time Time 

or, 

I I;V = FDV~h] (3.1-11) 

E x a m p l e  3.1 Advertisements for cars in the magazines give the complete list of 
their features, one of which is the friction factor (or, drag coefficient) based on the 
frontal area. Sports cars, such as Toyota Celica, usually have a friction factor of 
around 0.24. If  the car has a width of 2 m and a height of 1.5 m, 

a) Determine the power consumed by the car when it is going at 100 kin/h .  
b) Repeat part (a) if the wind blows at a velocity of 3 0 k m / h  opposite to the 
direction of the car. 
c) Repeat part (a) /f the wind blows at a velocity of 30 k in /h  in the direction of 
the car. 

Solution 

Phys i ca l  p r o p e r t i e s  

For air at 20 ~ (293 K ) : p  = 1.2 k g / m  3 

Assumption 

1. Air is at 20 ~ 

Analysis 

a) The characteristic velocity is 

Vch -- (100) ( 3600)1000 = 27.78 m/s  
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The drag force can be calculated from Eq. (3.1-7) as 

F~ - A~h pv~h ( f )  

= ( 2 •  [2 (1"2)(27"78)2] (0.24) - 333.4N 

The use of Eq. (3.1-11) gives the power consumed as 

= (333.4)(27.78) = 9262 W 

b) In this case the characteristic velocity is 

Vch = (100 + 30) ( 1000 ) \ 3 - -~  = 36.11m/s 

Therefore, the drag force and the power consumed are 

FD-- (2  • 1.5)[2 (1"2)(36"11)2] (0.24) = 563.3N 

--(563.3)(36.11) = 20,341W 

c) In this case the characteristic velocity is 

= ( 00- - -  Vch 19.44 m/s 

Therefore, the drag force and the power consumed are 

1 ] 
FD -- (2 x 1.5) ~ (1.2)(19.44) 2 (0.24) = 16a.a N 

l~d = (163.3)(19.44) = 3175W 

3.1.1 Physical Interpretation of Friction Factor 

According to Newton's law of viscosity, Eq. (2.1-2), the shear stress at the wall is 
expressed as 

Ov~ (3.1-12) 
Tw -- it ~ y=0 

The minus sign is omitted in Eq. (3.1-12) because the value of v~ increases as the 
distance y increases. Substitution of Eq. (3.1-12) into Eq. (3.1-4) gives 

1 it Ovzl 
-2 f  = pv 2 0 y  ly=o 

(3.1-13) 
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The friction factor can be determined from Eq. (3.1-13) if the physical properties of 
the fluid (viscosity and density), the approach velocity of the fluid, and the velocity 
gradient at the wall are known. Since the calculation of the velocity gradient 
requires determination of the velocity distribution in the fluid phase, the actual case 
is idealized as shown in Figure 3.2. The entire resistance to momentum transport 
is assumed to be due to a laminar film of thickness 5 next to the wall. 

F igure  3.2 The film model for momentum transfer. 

The velocity gradient in the film is constant and is equal to 

C~ U x V c~  
= (3.1-14) 

Oy y=0 5 

Substitution of Eq. (3.1-14) into Eq. (3.1-13) and multiplication of the resulting 
equation by the characteristic length, Lch, yields 

f Re = (3.1-15) 

where the dimensionless term Re is the Reynolds number defined by 

R e -  LchV~p (3.1-16) 
tt 

Equation (3.1-15) indicates that the product of the friction factor with the Reynolds 
number is directly proportional to the characteristic length and inversely propor- 
tional to the thickness of the momentum boundary layer. 

3.2 H E A T  T R A N S F E R  C O E F F I C I E N T  

3 . 2 . 1  C o n v e c t i o n  H e a t  T r a n s f e r  C o e f f i c i e n t  

Let us consider a flat plate suspended in a uniform stream of velocity v~ and 
temperature Too as shown in Figure 3.3. The temperature at the surface of the 
plate is kept constant at Tw. 
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Figure  3.3 Flow over a flat plate. 

As an engineer we are interested in the total rate of heat transfer from the plate 
to the flowing stream. This can be calculated by integrating the total energy flux 
at the wall over the surface area. The total energy flux at the wall, eyly=o , is 

ey t y=o-  qyly=o + (pOpTvy)]y=o (3.2-1) 

where qyly=o is the molecular (or, conductive) energy flux at the wall. As a result 
of the no-slip boundary condition at the wall, the fluid in contact with the plate 
is stagnant and heat is transferred by pure conduction through the fluid layer 
immediately adjacent to the plate. Therefore, Eq. (3.2-1) reduces to 

eyly=o - qyly-0 - qw (3.2-2) 

and the rate of heat transfer, (~, from one side of the plate to the flowing stream is 

(~ = q~ dxdz (3.2-3) 

Evaluation of the integral in Eq. (3.2-3) requires the determination of the temper- 
ature gradient at the wall. However, the fluid motion makes the analytical solution 
of the temperature distribution impossible to obtain in most cases. Hence, we usu- 
ally resort to experimentally determined values of the energy flux at a solid-fluid 
boundary in terms of the convection heat transfer coefficient, h, as 

I q~ = h(T~  - T ~ ) I  (3.2-4) 

which is known as Newton's law of cooling. The convection heat transfer coef- 
ficient, h, has the units of W/m2.K.  It depends on the fluid flow mechanism, 
fluid properties (density, viscosity, thermal conductivity, heat capacity) and flow 
geometry. 

Substitution of Eq. (3.2-4) into Eq. (3.2-3) gives the rate of heat transfer as 

 0w]0 L = (Tw - Too) h d x d z  = (WL) (h ) (T~  - Too) (3.2-5) 
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where (h> is the heat transfer coefficient averaged over the area of the plate and is 
defined by 

1 ~ W ~ L h d x d  z (3.2-6) 
WL (h>= w L = 

fofo dxd  
Equation (3.2-5) can be generalized in the form 

(~ - Ag(h> (AT)oh I (3.2-7) 

where AH is the heat transfer area and (AT)oh is the characteristic temperature 
difference. 

3.2.1.1 Phys ica l  i n t e r p r e t a t i o n  of hea t  t r an s f e r  coefficient 

According to Fourier's law of heat conduction, Eq. (2.1-4), the molecular energy 
flux at the wall is expressed as 

OT] (3.2-8) 
q ~ - - k  ~ y=o 

Combination of Eqs. (3.2-4)and (3.2-8)gives 

h ~ 
k OT 

T ~ - T ~  Oy y--0 
(3.2-9) 

The convection heat transfer coefficient can be determined from Eq. (3.2-9) if the 
thermal conductivity of the fluid, the overall temperature difference, and the tem- 
perature gradient at the wall are known. Since the calculation of the temperature 
gradient at the wall requires the determination of the temperature distribution in 
the fluid phase, the actual case is idealized as shown in Figure 3.4. 

F igu re  3.4 The film model for energy transfer. 
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The entire resistance to heat transfer is assumed to be due to a stagnant film 
in the fluid next to the wall. The thickness of the film, ~t, is such that it provides 
the same resistance to heat transfer as the resistance that exists for the actual 
convection process. The temperature gradient in the film is constant and is equal 
to 

OT[ Too - T~ (3.2-10) 
-~Y I y=0 = ~t 

Substitution of Eq. (3.2-10) into Eq. (3.2-9) gives 

k 
h ~ (3.2-11) 

Equation (3.2-11) indicates that the thickness of the film, St, determines the value 
of h. For this reason the term h is frequently referred to as the film heat transfer 
coefficient. 

E x a m p l e  3.2 Energy generation rate per unit volume as a result of fission within 
a spherical reactor of radius R is given as a function of position as 

(;) ] 
where r is the radial distance measured from the center of the sphere. Cooling fluid 
at a temperature of Too flows over the reactor. If  the average heat transfer coe]fi- 
cient (h} at the surface of the reactor is known, determine the surface temperature 
of the reactor at steady-state. 

Solu t ion  

System: Reactor 

Analysis 

The inventory rate equation for energy becomes 

Rate of energy out = Rate of energy generation (1) 

The rate at which energy leaves the sphere by convection is given by Newton's law 
of cooling as 

Rate of energy out = (47rR2)(h)(T~ - Too) (2) 

where Tw is the surface temperature of the sphere. 
The rate of energy generation can be determined by integrating ~ over the vol- 

ume of the sphere. The result is 

Rateofenergygenerat ion=~o27rfo~fo 

8~ 
= 1--~oR3 

[ 
(3) 
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Substitution of Eqs. (2) and (3) into Eq. (1) gives the surface temperature as 

2 ~oR 
T,~ = Too + (4) 

15 (h) 

3.2.2 Radia t ion  Heat  Transfer Coefficient 

The heat flux due to radiation, qR, from a small object to the surroundings wall is 
given as 

qR = e a (T 4 - T~) (3.2-12) 

where 6 is the emissivity of the small object, a is the Stefan-Boltzmann constant 
(5.67051 x 10 -s  W / m  2. K4), T1 and T2 are the temperatures of the small object 
and the wall in degrees Kelvin, respectively. 

In engineering practice, Eq. (3.2-12) is written in an analogous fashion to Eq. 
(3.2-4) as 

qR _ h R (T1 - T2) (3.2-13) 

where h R is the radiation heat transfer coefficient. Comparison of Eqs. (3.2-12) 
and (3.2-13) gives 

hR __ 6 cr (T 4 - T24) ,,~ 46 a(T} 3 (3.2-14) 
T 1 -  T2 - 

provided that (T> :>> (T1 - T 2 ) / 2 ,  where (T) = (T1 + T2)/2. 

3.3 M A S S  T R A N S F E R  C O E F F I C I E N T  

Let us consider a flat plate suspended in a uniform stream of fluid (species B) 
having a velocity voo and species r concentration CA~ as shown in Figure 3.5. The 
surface of the plate is also coated with species ,4 with concentration CA~,. 

Figu re  3.5 Flow over a fiat plate. 

As an engineer we are interested in the total number of moles of species ,4 
transferred from the plate to the flowing stream. This can be calculated by inte- 
grating the total molar flux at the wall over the surface area. The total molar flux 
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at the wall, NA,, l y=o, is 

+ (CAVe)ly=o (3.3-1) 

i 
* I is the molecular (or, diffusive) molar flux at the wall. For low where JAy, v=0 mass 

transfer rates Eq. (3.3-1) can be simplified to 3 

"~ * I (3.3-2) NAyIu=o = NA~o JAy y=o 

and the rate of moles of species A transferred, /~A, from one side of the plate to 
the flowing s t ream is 

i~A = NA~ dxdz  (3.3-3) 

Evaluation of NA~o requires the determination of the concentration gradient at  the 
wall. Since this is almost impossible to obtain, in an analogous manner  to the 
definition of the heat transfer coefficient, the convection mass transfer coefficient, 
kc, is defined by 4 

I NA~ < ( C A :  ' CA~)] (3.3-4) 

The mass transfer coefficient has the units of m / s .  It depends on the fluid flow 
mechanism, fluid properties (density, viscosity, diffusion coefficient) and flow ge- 
ometry. 

Subst i tut ion of Eq. (3.3-4) into Eq. (3.3-3) gives the rate of moles of species ,4 
transferred as 

f0wf0 L i~A = (CA~o -- CA~) kcdxdz  = (WL)(kc}  (CA~o -- CA~) (3.3-5) 

where (kc) is the mass transfer coefficient averaged over the area of the plate and 
is defined by 

/o /o 
(kc) : W L : W L  kc dxdz  (3.3-6) 

a Note that v u is the molar average velocity defined by 

s __  
V y - -  

CAVAy �9 CBVB u 

At the wail, i.e., y = 0, VB u = 0 due to no-slip boundary condition. However, VAn ~ 0 as a result 
of the transfer of species .4 from the surface to the flowing stream. Therefore, v~ I~=o ~: 0 . 

4 Equation (3.3-4) may be called Newton's law of mass transfer as suggested by Slattery (1999). 
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Equation (3.3-5) can be generalized in the form 

A ik:i } (3.3-7) 

where AM is the mass transfer area and (ACA)~h is the characteristic concentration 
difference. 

3 . 3 . 1  P h y s i c a l  I n t e r p r e t a t i o n  o f  M a s s  T r a n s f e r  C o e f f i c i e n t  

The use of Fick's first law of diffusion, Eq. (2.1-9), in Eq. (3.3-2) gives 

OCA I (3.3-8) N A ~  -- -- ~)AB ~ y  y--O 

Combination of Eqs. (3.3-4)and (3.3-8)gives 

"DAB OCA 
kc = - (3.3-9) 

CA,,,, -- CA m Oy y=O 

The convection mass transfer coefficient can be determined from Eq. (3.3-9) if the 
diffusion coefficient, the overall concentration difference, and the concentration 
gradient at the wall are known. Since the calculation of the concentration gradient 
requires the determination of the concentration distribution, the actual case is 
idealized as shown in Figure 3.6. 

F i g u r e  3.6 The film model for mass transfer. 

The entire resistance to mass transfer is due to a stagnant film in the fluid 
next to the wall. The thickness of the film, 5c, is such that  it provides the same 
resistance to mass transfer by molecular diffusion as the resistance that  exists for 
the actual convection process. The concentration gradient in the film is constant 
and equal to 

OCA CA~, -- CA~, 
= (3.3-10) 

Oy y=o 5c 
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Substitution of Eq. (3.3-10) into Eq. (3.3-9) gives 

~)AB kc --" 
5~ 

(3.3-11) 

Equation (3.3-11) indicates that the mass transfer coefficient is directly propor- 
tional to the diffusion coefficient and inversely proportional to the thickness of the 
concentration boundary layer. 

3 . 3 . 2  C o n c e n t r a t i o n  a t  t h e  P h a s e  i n t e r f a c e  

Consider the transfer of species Jt from the solid phase to the fluid phase through 
a fiat interface as shown in Figure 3.7. The molar flux of species .,4 is expressed by 
Eq. (3.3-4). In the application of this equation to practical problems of interest, 
there is no difficulty in defining the concentration in the bulk fluid phase, CA~, 
since this can be measured experimentally. However, to estimate the value of CAw, 
one has to make an assumption about the conditions at the interface. It is generally 
assumed that the two phases are in equilibrium with each other at the solid-fluid 
interface. If T~ represents the interface temperature, the value of CAw is given by 

{ P~t /TZT (Assuming ideal gas behavior) fluid = gas (3.3-12) 

CAw = Solubility of solid in liquid at T~ fluid = liquid 

The Antoine equation is widely used to estimate vapor pressures and it is given in 
Appendix D. 

Interface 
1 i 

F ~ NAw=kc(CAw-CA~) 

Solid Fluid 

Figu re  3.7 Transfer of species A from the solid to the fluid phase. 

E x a m p l e  3.3 0.5 L of ethanol is poured into a cylindrical tank of 2 L capacity 
and the top is quickly sealed. The total height of the cylinder is I m. Calculate the 
mass transfer coefficient if the ethanol concentration in the air reaches 2% of its 
saturation value in 5 minutes. The cylinder temperature is kept constant at 20 ~ 
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S o l u t i o n  

P h y s i c a l  p r o p e r t i e s  

p = 7 8 9 k g / m  3 

For ethanol (A) at 2 0 ~  (293K)"  A/fat 46 
- 43.6 m m H g  

A s s u m p t i o n  

1. Ideal gas behavior. 

A n a l y s i s  

The mass transfer coefficient can be calculated from Eq. (3.3-~), i.e., 

NAw = kc (CAw -- CAoo) (I) 
The concentration difference in Eq. (1) is given as the concentration of ethanol va- 
por at the surface of the liquid, CAw, minus that in the bulk solution, CA~. The con- 
centration at the liquid surface is the saturation concentration while the concentra- 
tion in the bulk is essentially zero at relatively short times so that CA,--CA~ "~ CA~. 
Therefore Eq. (1) simplifies to 

= 

The saturation concentration of ethanol is 

CAw = 7~T 

= 43.6/760 = 2.39 x 10 .3  k m o l / m  3 (3) 
(0.08205)(20 + 273) 

Since the ethanol concentration within the cylinder reaches 2% of its saturation 
value in 5 minutes, the moles of ethanol evaporated during this period is 

nA = (0.02)(2.39 x 10-3)(1.5 x 10 -3)  -- 7.17 x 10 - s  kmol (4) 

where 1.5 x 10 -3 m 3 is the volume of the air space in the tank. Therefore, the molar 
flux at 5 minutes can be calculated as 

nA 
NA~ = (Area)(Wime) 

7.17 x 10 - s  
= (2 x 1 0 - 3 / 1 ) ( 5  x 60) = 1.2 x 10 . 7  k m o l / m 2 ,  s (5) 

Substitution of Eqs. (3) and (5) into Eq. (2) gives the mass transfer coefficient as 

1.2 x 10 -7 
k~ = 2.39 x 10 -3 = 5 x 10 -5  m / s  (6) 
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3.4 D I M E N S I O N L E S S  N U M B E R S  

Rearrangement of Eqs. (3.1-4), (3.2-4)and (3.3-4)gives 

1 

h 
qw --- ~ [A(pO'pT)  

NA~ = k~ Aca 

A (pv~h) - pvoo - 0 (3.4-1) 

(3.4-2) 

ACA -- CA~ -- CAoo (3.4-3) 

Note that Eqs. (3.4-1)-(3.4-3) has the general form 

Interphase flux ) _ ( T r a n s f e r  in coef f ic ien t ) (  Difference Quantity/Volume ) (3.4-4) 

and the terms f v c h / 2 ,  h /pC 'p ,  and kc all have the same units, m/s.  Thus, the 
ratio of these quantities must yield dimensionless numbers: 

Heat transfer Stanton number -  StH -- 
p OpVch 

(3.4-5) 

Mass transfer Stanton number -  StM = kc (3.4-6) 
Vch 

Since the term f / 2  is dimensionless itself, it is omitted in Eqs. (3.4-5) and (3.4-6). 
Dimensionless numbers can also be obtained by taking the ratio of the fluxes. 

For example, when the concentration gradient is expressed in the form 

Gradient of Quanti ty/Volume- 
Difference in Quantity/Volume 

Characteristic length 
(3.4-7) 

the expression for the molecular flux, Eq. (2.2-5), becomes 

Molecular f l u x -  (Diffusivity)(Difference in Quantity/Volume) (3.4-8) 
Characteristic length 

Therefore, the ratio of the total interphase flux, Eq. (3.4-4), to the molecular flux, 
Eq. (3.4-8), is 

Interphase flux (Transfer coefficient)(Characteristic length) 
Molecular flux Diffusivity 

(3.4-9) 

The quantities in Eq. (3.4-9) for various transport processes are given in Table 3.1. 
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Tab le  3.1 Transfer coefficient, diffusivity and flux ratio for the transport  of 
momentum, energy and mass. 

Process Transfer Coefficient Diffusivity 
Interphase Flux 

Molecular Flux 

1 # 1 pVchLch 
Momentum -~ f Vch --p -2 f ]Z 

Energy 
h k hLch 

, G  , G  k 

kcLch 
Mass k c "DAB 

"DAB 

The dimensionless terms representing the ratio of the interphase flux to the 
molecular flux in Table 3.1 are defined in terms of the dimensionless numbers as 

1 pVchLch _ 1 
f # -- ~ f Re (3.4-10) 

h Lr 
= Nu (3.4-11) 

k 
kr 

= NUM -- Sh (3.4-12) 
"DAB 

where Nu is the heat transfer Nusselt number and NUM is the mass transfer Nusselt 
number. The mass transfer Nusselt number is generally called the Sherwood num- 
ber, Sh. Equations (3.4-10)-(3.4-12) indicate that  the product ( f R e / 2 )  is more 
closely analogous to the Nusselt and Sherwood numbers than f itself. A summary 
of the analogous dimensionless numbers for energy and mass transfer covered so 
far is given in Table 3.2. 

Tab le  3.2 Analogous dimensionless numbers in energy and mass transfer. 

Energy Mass 

P r -  ~-#CP 
a k 

v # 
Sc  ~ 

"DAB fl "DAB 

N u  ~-- 
hLch k, cLch 

NUM -- S h -  
~)AB 

N u  

StH -- Re Pr 
h 

p OpVch 

Sh kr 
StM -- Re Sc - Vch 
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3.5 T R A N S P O R T  A N A L O G I E S  

Existing analogies in various transport processes depend on the relationship be- 
tween the dimensionless numbers defined by Eqs. (3.4-10)-(3.4-12). In Section 3.1.1 
we showed that 

1 Lch 
~ f R e -  5 (3.5-1) 

On the other hand, substitution of Eqs. (3.2-11) and (3.3-11) into Eqs. (3.4-11) 
and (3.4-12), respectively, gives 

Lch 
Nu = (3.5-2) 

5t 

and 
Lch  

Sh - (3.5-3) 
5~ 

Examination of Eqs. (3.5-1)-(3.5-3)indicates that 

Interphase flux Characteristic length 
= (3.5-4) 

Molecular flux Effective film thickness 

Comparison of Eqs. (3.4-9) and (3.5-4)implies that 

Diffusivity 
Effective film thickness = Transfer coefficient (3.5-5) 

Note that the effective film thickness is the thickness of a fictitious film which would 
be required to account for the entire resistance if only molecular transport were 
involved. 

Using Eqs. (3.5-1)- (3.5-3), it is possible to express the characteristic length as 

1 
L~h = -~ f Re 5 - Nu (it - Sh 5~ 

Substitution of Nu = StH Re Pr and Sh = StM Re Sc into Eq. (3.5-6) gives 

1 
f 5 = StH Pr 5t = StM Sc (~c 

z 

(3.5-6) 

(3.5-7) 

3 . 5 . 1  T h e  R e y n o l d s  A n a l o g y  

Similarities between the transport of momentum, energy and mass were first noted 
by Reynolds in 1874. He proposed that the effective film thicknesses for the transfer 
of momentum, energy and mass are equal, i.e., 

5 -  5 t -  5~ (3.5-8) 

Therefore, Eq. (3.5-7) becomes 

---f -- StH Pr = StM Sc 
2 

(3.5-9) 
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Reynolds further assumed that Pr = Sc - 1. Under these circumstances Eq. (3.5-9) 
reduces to 

f = Stn -- StM (3.5-10) 

which is known as the Reynolds analogy. Physical properties in Eq. (3.5-10) must 
be evaluated at T = (T~ + Too)/2. 

The Reynolds analogy is reasonably valid for gas systems but should not be 
considered for liquid systems. 

3 . 5 . 2  T h e  C h i l t o n - C o l b u r n  A n a l o g y  

In the Chilton-Colburn analogy the relationships between the effective film thick- 
nesses are expressed as 

= Pr 1/3 ~ = Sc 1/3 (3.5-11) 
~t 6~ 

Substitution of Eq. (3.5-1~) into Eq. (3.5-7) yields 

f - -  StH Pr 2/3 -- jH (3.5-12) 

and 

f2-- StM jM (3.5-13) Sc2/a 

where jH and jM are the Colburn j-factors for heat and mass transfer, respec- 
tively. 

Physical properties in Eqs. (3.5-~2) and (3.5-13) must be evaluated at T = 
(Tw + Too)~2. The Chilton-Colburn analogy is valid when 0.6 _< Pr < 60 and 
0.6 _ Sc _< 3000. Note that Eqs. (3.5-12) and (3.5-13) reduce to Reynolds analogy, 
Eq. (3.5-10), for fluids with Pr = 1 and S c -  1. 

As stated in Section 3.1, the drag force is the component of the force in the 
direction of mean flow. In general, both viscous and pressure forces contribute to 
this force 5. In Eq. (3.1-3), only viscous force is considered in the evaluation of 
the drag force. The reason for this is that the pressure always acts normal to the 
surface of the flat plate and the component of this force in the direction of mean 
flow is zero. In the case of curved surfaces, however, the component of normal 
force to the surface in the direction of mean flow is not necessarily zero as shown 
in Figure 3.8. Therefore, the friction factor for flow over flat plates and for flow 
inside circular ducts includes only friction drag, whereas the friction factor for flow 
around cylinders, spheres, and other bluff objects includes both friction and form 
drags. As a result, f/2 term for flow around cylinders and spheres is greater than 

5The drag force arising from viscous and pressure forces are called friction (or, skin) drag and 
form drag, respectively. 
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the j -factors .  The validity of the Chilton-Colburn analogy for flow in different 
geometries is given in Table 3.3. 

F igure  3.8 Pressure force acting on curved and flat surfaces. 

Table 3.3 Validity of the Chilton-Colburn analogy for various geometries. 

Flow Geometry Chilton-Colburn Analogy 

Flow over a flat plate 

Flow over a cylinder 

/ 
- -  -~ j H  --~ j M  2 

j H  ~ j M  

Flow over a sphere jH -- jM if ~ Nu >> 2 
Sh>>2 t 

/ 
Flow in a pipe ~ -- jH -- jM if Re > 10,000 (Smooth pipe) 

E x a m p l e  3.4 Water evaporates from a wetted surface of rectangular shape when 
air at 1 atm and 35 ~ is blown over the surface at a velocity of 15 m/s .  Heat 
transfer measurements indicate that for air at 1 atm and 35 ~ the average heat 
transfer coefficient is given by the following empirical relation 

0.6 (h) = 21 vo~ 

where (h) is in W/m2. K and voo, air velocity, is in m/s.  Estimate the mass 
transfer coefficient and the rate of evaporation of water from the surface if the area 
is 1.5 m 2. 



3.5. TRANSPORT ANALOGIES 59 

Solution 

Physical  proper t ies  

For water at 35 ~ (308 K) �9 psat = 0.0562 bar 

p = 1.1460 kg/m 3 

For air at 35 ~ (308 K) �9 u = 16.47 • 10 -6 m2/" s 
Cp - 1.005 kJ/kg. K 
Pr - 0.711 

Diffusion coefficient of water (.4) in air (B) at 35 ~ (308 K)" 

( 3 0 8 )  3/2 
(~)AB)308 -~" ( ~DAB)313 ~k 313 

(308)  3/2 
= ( 2 . s s  • 10 --  2 .81  • 10 - 5  m 2 / s  

The Schmidt number is 

/2 
Sc = 

DAB 
16.47 • 10 -6 

= = 0.586 
2.81 • 10 -5 

Assumpt ion  

1. Ideal gas behavior. 

Analysis 

The use of the Chilton-Colburn analogy, jH - - jM,  gives 

{kc}-(h)p~p ( P r )  2 / 3 ~ c  = 21V~6pCp= ( P r )  2/3~cc (1) 

Substitution of the values into Eq. (1) gives the average mass transfer coefficient 
a8 

(21) (151 ~ (0.711 } 2/3 
{k~) = ( l~ i~i i -O~5)  \ 0 . - ~  - O . 1 0 5 m / s  

Saturation concentration of water is 

at 

CAw -~ T i T  
0.0562 

(8.314 x 10-2)(35 + 273) 
= 2.19 x 10 -3 kmol/m 3 
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Therefore, the evaporation rate of water from the surface is 

i~A = A(k~) (CA~, -- CAoo) 

= (1.5)(0.105)(2.19 • 10 -3 -- 0) = 3.45 X 10 -4 kmol / s  

N O T A T I O N  

A 
AH 
AM 

ci 

~)AB 
Fo 
/ 
h 
ju 
j M  
K 
k 
kc 
L 
M 
N 

P 

q 
qR 

T 
t 
?3 

X 

Y 
z 

area, m 2 
heat transfer area, m 2 
mass transfer area, m 2 

heat capacity at constant pressure, k J /kg .  K 
concentration of species i, kmo l /m  3 
diffusion coefficient for system A-B, m2/ s  
drag force, N 
friction factor 
heat transfer coefficient, W / m  2. K 
Chilton-Colburn j - factor for heat transfer 
Chilton-Colburn j - factor for mass transfer 
kinetic energy per unit volume, J / m  3 
thermal conductivity, W / m .  K 
mass transfer coefficient, m / s  
length, m 
molecular weight, kg /kmol  
total molar flux, kmo l /m  2. s 
molar flow rate of species i, kmol / s  
pressure, Pa 
heat transfer rate, W 
heat flux, W / m  2 
heat flux due to radiation, W / m  2 
gas constant, J /mol .  K 
energy generation rate per unit volume, W / m  3 
temperature,  ~ or K 
time, s 
velocity, m / s  
rate of work, W 
rectangular coordinate, m 
rectangular coordinate, m 
rectangular coordinate, m 
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(~ 

A 
6 
6~ 
6t 
E 

# 
/.] 

P 
O" 

T y x  

Bracke t  

thermal diffusivity, m 2/s  
difference 
fictitious film thickness for momentum transfer, m 
fictitious film thickness for mass transfer, m 
fictitious film thickness for heat transfer, m 
emissivity 
viscosity, kg/m.  s 
kinematic viscosity (or, momentum diffusivity), m2/s  
total momentum flux, N / m  2 
density, k g / m  3 
Stefan-Boltzmann constant, W / m  2. K 4 
flux of x - momentum in the y - direction, N / m  2 

average value of a 

Supe r sc r i p t  

sat saturation 

Subsc r ip t s  

A , B  
ch 
i 
W 

O0 

species in binary systems 
characteristic 
species in multicomponent systems 
surface or wall 
free-stream 

D i m e n s i o n l e s s  N u m b e r s  

N u  

NUM 
Pr 
Re 
Sc 
Sh 
StH 
StM 

Nusselt number for heat transfer 
Nusselt number for mass transfer 
Prandtl number 
Reynolds number 
Schmidt number 
Sherwood number 
Stanton number for heat transfer 
Stanton number for mass transfer 
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P R O B L E M S  

3.1 Your friend claims that humid air causes an increase in the gas consumption 
of cars. Do you agree? 

3.2 Air at 20 ~ flows over a flat plate of dimensions 50 cm x 25 cm. If the average 
heat transfer coefficient is 250 W / m  2. K, determine the steady rate of heat transfer 
from one side of the plate to air when the plate is maintained at 40 ~ 

(Answer:  625W) 

3.3 Air at 15 ~ flows over a spherical LPG tank of radius 4m. The outside 
surface temperature of the tank is 4 ~ If the steady rate of heat transfer from the 
air to the storage tank is 62,000 W, determine the average heat transfer coefficient. 

(Answer:  28 W / m  2. K) 

3.4 The volumetric heat generation in a hollow aluminum sphere of inner and 
outer radii of 20 cm and 50 cm, respectively, is given by 

= 4.5 x 104 (1 + 0.6r 2) 

in which ~ is in W / m  3 and r is the radial coordinate measured in meters. The 
inner surface of the sphere is subjected to a uniform heat flux of 15,000 W / m  2, 
while heat is dissipated by convection to an ambient air at 25 ~ through the outer 
surface with an average heat transfer coefficient of 150 W / m  2. K. Determine the 
temperature of the outer surface under steady conditions. 

(Answer:  92.3 ~ 
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3.5 In the system shown below, the rate of heat generation is 800 W / m  3 in Region 
A which is perfectly insulated on the left-hand side. Given the conditions indicated 
in the figure, calculate the heat flux and temperature at the right-hand side, i.e., 
at x - 100 cm, under steady-state conditions. 

(Answer :  320W, 41.3 ~ 

3.6 Uniform energy generation rate per unit volume at ~ = 2.4 • 106 W / m  3 is 
occurring within a spherical nuclear fuel element of 20 cm diameter. Under steady 
conditions the temperature distribution is given by 

T = 900 - 10,000 r 2 

where T is in degrees Celsius and r is in meters. 

a) Determine the thermal conductivity of the nuclear fuel element. 
b) What  is the average heat transfer coefficient at the surface of the sphere if the 
ambient temperature is 35 ~ 

(Answer :  a) 40 W / m .  K b) 104.6 W / m  2. K) 

3.7 A plane wall, with a surface area of 30 m 2 and a thickness of 20 cm, separates 
a hot fluid at a temperature of 170 ~ from a cold fluid at 15 ~ Under steady-state 
conditions, the temperature distribution across a wall is given by 

T - 150 - 600 x - 50 x 2 

where x is the distance measured from the hot wall in meters and T is the temper- 
ature in degrees Celsius. If the thermal conductivity of the wall is 10 W / m .  K :  

a) Calculate the average heat transfer coefficients at the hot and cold surfaces. 
b) Determine the rate of energy generation within the wall. 

(Answer:  a) <h}hot = 300W/m2.  K, <h>cold = 477W/m2.  K b) 6000W) 

3.8 Derive Eq. (3.2-14). 

(Hint:Express T1 and T2 in terms of <T}.) 
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3.9 It is also possible to interpret the Nusselt and Sherwood numbers as di- 
mensionless temperature and concentration gradients, respectively. Show that  the 
Nusselt and Sherwood numbers can be expressed as 

-(OT/Oy)~=o 
N u -  (T~ - T ~ ) / L ~ h  

and 

S h =  
-(o~A/oy)~=o 

(CA~ -- CA~)/L~h 



Chapter 4 

Evaluation of Transfer 
Coefficients: 
Engineering Correlations 

Since most engineering problems do not have theoretical solutions, a large portion 
of engineering analysis is concerned with the experimental information which is 
usually expressed in terms of engineering correlations. These correlations, however, 
are limited to a specific geometry, equipment configuration, boundary conditions, 
and substance. As a result, the values obtained from correlations are not exact and 
it is possible to obtain two different answers from two different correlations for the 
same problem. Therefore, one should keep in mind that  the use of a correlation 
introduces an error in the order of =t= 25~0. 

Engineering correlations are given in terms of dimensionless numbers. For ex- 
ample, the correlations used to determine friction factor, heat transfer coefficient 
and mass transfer coefficient are generally expressed in the form 

f = f(Re)  

Nu = Nu(Re, Pr) 

Sh = Sh(Re, Sc) 

In this chapter, some of the available correlations for momentum, energy, and 
mass transport  in different geometries will be presented. Emphasis will be placed 
on the calculations of force (or, rate of work), heat transfer rate and mass transfer 
rate under steady conditions. 

65 
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4.1 R E F E R E N C E  T E M P E R A T U R E  A N D  
C O N C E N T R A T I O N  

The evaluation of the dimensionless numbers that  appear in the correlation re- 
quires the physical properties of the fluid to be known or estimated. The physical 
properties, such as density and viscosity, depend on temperature and/or  concen- 
tration. Temperature and concentration, on the other hand, vary as a function of 
position. Two commonly used reference temperatures and concentrations are the 
bulk temperature or concentration and the film temperature or concentration. 

4.1.1 Bulk Temperature and Concentration 

For flow inside pipes, the bulk temperature or concentration at a particular location 
in the pipe is the average temperature or concentration if the fluid were thoroughly 
mixed, sometimes called the mixing-cup temperature or concentration. The bulk 
temperature  and the bulk concentration are denoted by Tb and cb, respectively, 
and are defined by 

/ vnT dA 

T b =  A (4.1-1) 

J" v,~ dA 
A 

and 

/ v~ c dA 

A (4.1-2) Cb f f  
[ / v n  dA 
J J 

A 

where vn is the component of velocity in the direction of mean flow. 
For the case of flow past bodies immersed in an infinite fluid, the bulk temper- 

ature and bulk concentration become the free stream temperature and free stream 
concentration, respectively, i.e., 

Tb = Too~ For flow submerged objects over 
Cb ~ Coo J (4.1-3) 

4.1.2 Film Temperature and Concentration 

The film temperature, Tf, and the film concentration, ci, are defined as the arith- 
metic average of the bulk and surface values, i.e., 

%+T~ 
Tf - 2 (4.1-4) 
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and 
cb + c~ (4.1-5) 

c f =  2 

where subscript w represents the conditions at the surface or the wall. 

4.2 F L O W  P A S T  A FLAT P L A T E  

Let us consider a flat plate suspended in a uniform stream of velocity v~ and 
temperature Too as shown in Figure 3.3. The length of the plate in the direction 
of flow is L and its width is W. The local values of the friction factor, the Nusselt 
number and the Sherwood number are given in Table 4.1 for both laminar and 
turbulent flow conditions. The term R e ~  is the Reynolds number based on the 
distance x and defined by 

Re~ _ _ x v ~ p  _ _ x v ~  (4.2-1) 
tt v 

Table  4.1 The local values of the friction factor, the Nusselt number and the 
Sherwood number for flow over a flat plate. 

Laminar Turbulent 

f~ 0.664Rex -1/2 (A) 0.0592Re~ -1/5 (D) 

Nu~ 0.332 Re~/2 Pr 1/3 (B) 0.0296 Re 4/~ Pr ~/3 (E) 

Shx 0.332 Re 1/2 Sc 1/3 (C) 0.0296 Re 4/5 Sc 1/3 (F) 

Rex _< 500,000 5 • 105 < R% < 107 

0.6 < Pr < 60 0.6 < Sc < 3000 

The expression for the friction factor under laminar flow conditions, Eq. (A) 
in Table 4.1, can be obtained analytically from the solution of the equations of 
change. Blausius (1908) was the first to obtain this solution using a mathematical 
technique called the s i m i l a r i t y  so lu t i on  or the m e t h o d  o f  c o m b i n a t i o n  o f  variables.  

Note that Eqs. (B) and (C) in Table 4.1 can be obtained from EQ. (A) by using the 
Chilton-Colburn analogy. Since analytical solutions are impossible for turbulent 
flow, Eq. (D) in Table 4.1 is obtained experimentally. The use of this equation in 
the Chilton-Colburn analogy yields Eqs. (E) and (F). 

The average values of the friction factor, the Nusselt number and the Sherwood 
number can be obtained from the local values by the application of the mean value 
theorem. In many cases, however, the transition from laminar to turbulent flow 
will occur on the plate. In this case, both the laminar and turbulent flow regions 
must be taken into account in calculating the average values. For example, if the 
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transition takes place at xc, where 0 < xc < L, then the average friction factor is 
given by 

l[j0- ] (f) -- ~ (fx)lam dx + (fx)t~,'b dx (4.2-2) 
a 

Change of variable from x to Rex reduces Eq. (4.2-2) to 

1 [foReC l ReL ] 
(f) -- ~ (fx)lam dRex + (fx)t~,.b dRex (4.2-3) 

J Rec 

where Rec, the Reynolds number at the point of transition, and ReL, the Reynolds 
number based on the length of the plate, are defined by 

Rec = x~ v~ (4.2-4) 
/2 

L vo~ 
ReL = (4.2-5) /2 

Substitution of Eqs. (A) and (D) in Table 4.1 into Eq. (4.2-3) gives 

0.074 1.328 Relc/2 - 0.074 Re 4/5 
< f ) -  ae~/5 + ReL (4.2-6) 

Taking Rec = 500,000 results in 

0.074 1743 /.g\ (4.2-7) ~ / = ~  1/5 ReL l~e L 
The average values of the friction factor, the Nusselt number and the Sherwood 

number can be calculated in a similar way for a variety of flow conditions. The 
results are given in Table 4.2. In these correlations all physical properties must be 
evaluated at the film temperature. 

Note that  once the average values of the Nusselt and Sherwood numbers are 
determined, the average values of the heat and mass transfer coefficients are cal- 
culated from 

<h} = <Nu)k 
L (4.2-8) 

<kc) = (Sh}T~AB 
L (4.2-9) 

On the other hand, the rate of momentum transfer, i.e., the drag force, the rate 
of heat transfer and the rate of mass transfer of species .4 from one side of the 
plate are calculated as 

FD = (WL) ( l p v ~  <f) (4.2-10) 

J _ _  "tL 



Table 4.2 Correlations for flow past a flat plate. 

Laminar Laminar and Turbulent Turbulent 

(f) 1.328Rei1/2 (A) 0.074Rei'/5 -1743ReLl (D) 0.074ReLli5 (G) 

(Nu) 0.664 Pr1l3 (B) (0.037 Re;'' -871) Pr1I3 (E) 0.037 Re;/'  PI-'/^ (H) 

(Sh) 0.664 (C) (0.037 -871) S C ' / ~  (F) 0.037 S C ' / ~  (I) 

ReL 5 500,000 5 x lo5 < ReL < 10' ReL > lo8 

0.6 5 Pr 5 60 0.6 5 Sc I3000 
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[ (~ - (WL)<h} ITw - T I] (4.2-11) 

l iZA - (WL){kc> ICAw -CAoo, I (4.2-12) 

Engineering problems associated with the flow of a fluid over a fiat plate are clas- 
sifted as follows: 

�9 Calculate the transfer rate; given the physical properties, the velocity of the 
fluid, and the dimensions of the plate. 

�9 Calculate the length of the plate in the direction of flow; given the physical 
properties, the velocity of the fluid, and the transfer rate. 

�9 Calculate the fluid velocity; given the dimensions of the plate, the transfer 
rate, and the physical properties of the fluid. 

E x a m p l e  4.1 Water at 20 ~ flows over a 2m long fiat plate with a velocity of 
3 m~ s. The width of the plate is I m. Calculate the drag force on one side of the 
plate. 

S o l u t i o n  

Phys ica l  p r o p e r t i e s  

For water at 20 ~ (293 K) �9 { p = 999 k g / m  a 
/ ~ -  1001 x 10 -6 k g / m . s  

A s s u m p t i o n  

1. Steady-state conditions prevail. 

Analys is  

To determine which correlation to use for calculating the average friction factor 
<f), we must first determine the Reynolds number: 

R e L -  L voop = (2)(3)(999) = 6 x 106 
# i001 x 10 -6 

Therefore, both the laminar and the turbulent flow regions exist on the plate. The 
use of Eq. (19) in Table ~.2 gives the friction factor as 

<f> - 
0.074 1743 

1/5 - "ReL e L 
0.074 

(6 x 106)1/5 
1743 

6 x 106 
= 3 x  10 -3 



4.2. F L O W  PAST  A FLAT PLATE 71 

The drag force can then be calculated from Eq. (~.2-10) as 

FD = (WL) -~ p 

--(lx2) [2(999)(3)2 (3• 10 - 3 ) - 2 7 N  

Example 4.2 Air at a temperature of 25 ~ flows over a 30cm wide electric 
resistance flat plate heater with a velocity of 13 m/s. The heater dissipates energy 
into the air at a constant rate of 2730 W/m 2. How long must the heater be in the 
direction of flow for the surface temperature not to exceed 155 ~ 

Solution 

Physical properties 

The film temperature is (25 + 155)/2 - 90 ~ 

u - 2 1 . 9 5  x 10 -6  m 2/s 
For air at 90 ~ (363 K) and Iatm' k -  30.58 x 10 -3 W/m. K 

Pr = 0.704 

Assumptions 

1. Steady-state conditions prevail. 

2. Both the laminar and the turbulent flow regions exist over the plate. 

Analysis 

The average convection heat transfer coeJficient can be calculated from Newton's 
law of cooling as 

q~ 

(h) = Tw - Too 
2730 

155- 25 
--- 21 W/m2. K (1) 

< N u )  - 
<h)L _-- (0.037~4/5-871) p r l / 3 r t e  L 

(21)L 
30.58 x 10 -3 

-{0.037[ 
(13)L ] 4/5 } 

21.95 • 10 -6 - 871 (0.704) 1/3 (2) 

To deterTnine which correlation to use, it is necessary to calculate the Reynolds 
number. However, the Reynolds number cannot be determined a priori since the 
length of the heater is unknown. Therefore, a trial-and-error procedure must be 
used. Since we assumed that both the laminar and the turbulent flow regions exist 
over the heater, the use of Eq. (E) in Table ~.2 gives 
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Simplification of Eq. (2) yields 

F(L) = L -  1.99 L 4/5 + 1 . 1 3 -  0 (3) 

The length of the heater can be determined from Eq. (3) by using one of the 
numerical methods for root finding given in Section A.7.2 in Appendix A. The 
iteration scheme for the Newton-Raphson method, Eq. (A.7-18), becomes 

F(Lk) 
= - (4) Lk+l Lk (dF/dL)L~ 

in which the derivative of the function F(L) is 

dF 
= 1 - 1.592 L -~/5 (5) 

dL 

Assuming L 4/5 ~_ L, a starting value can be estimated as L1 - 1.14141. Therefore, 

0.05930 
L2 - 1.14141 + = 1.24914 

0.55044 

0.00152 
L3 -- 1.24914 + = 1.25205 

0.52272 
0 

L 4 -  1.25205 + = 1.25205 
0.52201 

Since L3 - L4, the length of the plate is approximately 1.25 m. Now, it is necessary 
to check the validity of the second assumption: 

(1.25)(13) = 7.4 x 105 ~ Checks/ 
ReL -- 21.95 x 10 -6 

E x a m p l e  4.3 A water storage tank open to the atmosphere is 12 m in length and 
6 m in width. The water and the surrounding air are at a temperature of 25 ~ 
and the relative humidity of the air is 60%. If the wind blows at a velocity of 
2 m / s  along the long side of the tank, what is the steady rate of water loss due to 
evaporation from the surface? 

Solut ion  

P h y s i c a l  p r o p e r t i e s  

For air at 25 ~ (298 K) " u -  15.54 • 10 -6 m 2 / s  

Diffusion coefficient of water (,4) in air (B) at 25 ~ (298 K ) '  

( 2 9 8 )  3/2 
( AB)298 -- ( aB)313 

( 2 9 8 ~  3/2 
= (2.88 • 10 -5) \ ~ ]  - 2.79 • 10 -5 m 2 / s  / 
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The Schmidt number is 
/2 

S c  = 
~DAB 
15.54 • 10 -6 

= = 0.56 
2.79 x 10 -5 

For water at 25 ~ (298 K)"  p ~ t  = 0.03165bar 

Assumptions 

1. Steady-state conditions prevail. 

2. Ideal gas behavior. 

Analysis 

To determine which correlation to use, we must first calculate the Reynolds number: 

L voo 
R e L  = 

/2 

= (12)(2) = 1.54 x 106 
15.54 x 10 -6 

Since both laminar and turbulent conditions exist, the use of Eq. (F) in Table ~.2 
gives 

{ S h } -  (0.037 ~,l.teL4/5 - 8 7 1 ) S c  1/3 

= [0.037 (1.54 X 106) 4/5 - 871] ( 0 . 5 6 )  1 /3  - -  2000 

Therefore, the average mass transfer coefficient is 

(kc> -- (Sh> :DAB 
L 

= (2000)(2.79 x 10 -5) _ 4.65 • 10 -3 m / s  
12 

The number of moles of H20 (A) evaporated in unit time is 

i~A = A { k~ }  [C~A at - CA (air)] 

= A (k~} (cy  t - 0.6CSA at) -- 0.4A (k~} C~A ~t 

Saturation concentration of water, CSA at, is 

P2 
c~t  = 7~ T 

0.03165 
= (8.314 • 10-2)(25 + 273) = 1.28 x 10 -3 k m o l / m  3 

Hence, the rate of water loss is 

?'YtA --- n A  M A  - "  0.4A (k~) CsAatMA 

= (0.4)(12 x 6)(4.65 x 10-3)(1.28 x 10 -3 ) (18 ) (3600 )=  1 1 . 1 k g / h  
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4.3 F L O W  P A S T  A S I N G L E  S P H E R E  

Consider a single sphere immersed in an infinite fluid. We may consider two cases 
which are exactly equivalent: ( i )  the sphere is stagnant, the fluid flows over the 
sphere, ( i i )  the fluid is stagnant, the sphere moves through the fluid. 

According to Newton's second law of motion, the balance of forces acting on a 
single spherical particle of diameter DR, falling in a stagnant fluid with a constant 
terminal velocity vt, is expressed in the form 

Gravitational fo rce -  Buoyancy + Drag force (4.3-1) 

or, 

6 PPg = 6 Pg + ' 4 ' -2 p 

where pp and p represent the densities of the particle and fluid, respectively. In 
the literature, the friction factor f is also called the drag coefficient and denoted 
by CD. Simplification of Eq. (4.3-2) gives 

4 g D p ( p p  - p) 
f v2t = -~ p 

Equation (4.3-3) can be rearranged in dimensionless form as 

4 
f Re2p - ~ Ar 

(4.3-3) 

(4.3-4) 

where the Reynolds number, Rep, and the Archimedes number, Ar, are defined by 

Rep = D p v t p  (4.3-5) 
# 

D gp (p.  - p) 
Ar = (4.3-6) #2 

Engineering problems associated with the motion of spherical particles in fluids are 
classified as follows: 

�9 Calculate the terminal velocity, vt; given the viscosity of fluid, #, and the 
particle diameter, DR. 

�9 Calculate the particle diameter, Dp; given the viscosity of the fluid, #, and 
the terminal velocity, vt. 

�9 Calculate the fluid viscosity, #; given the particle diameter, Dp,  and the 
terminal velocity, vt. 

The difficulty in these problems arises from the fact that the friction factor f in Eq. 
(4.3-4) is a complex function of the Reynolds number and the Reynolds number 
cannot be determined a priori. 
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4.3.1 Frict ion Factor  Corre la t ions  

For flow of a sphere through a stagnant fluid, Lapple and Shepherd (1940) pre- 
sented their experimental data in the form of f versus Rep. Their data can be 
approximated as 

24 f -  
Rep 
18.5 

f -  a@6 

f=o.44 

Rep < 2 (4.3-7) 

2 < Rep < 500 (4.3-8) 

500 _< Re p < 2 x 105 (4.3-9) 

Equations (4.3-7) and (4.3-9) are generally referred to as Stokes' law and Newton's 
law, respectively. 

In recent years, efforts have been directed to obtain a single comprehensive 
equation for the friction factor that covers the entire range of Rep. Turton and 
Levenspiel (1986) proposed the following five-constant equation which correlates 
the experimental data for Rep _ 2 • 105. 

24 (1 + 0.173 R@ 657) + 0.413 
f = Rep 1 + 16,300 R@ 1~ 

(4.3-10) 

4.3.1.1 S o l u t i o n s  to  the  eng ineer ing  p r o b l e m s  

Solutions to the engineering problems described above can now be summarized as 
follows: 

m Ca lcu la te  vt; given tt and Dp 

Substitution of Eq. (4.3-10)into EQ. (4.3-4) gives 

0.31 Re 2 
Ar - 18 (aep  +0.173 R@ 657) + 1 + 16,300 Rep 1"~ (4.3-11) 

Since Eq. (4.3-11) expresses the Archimedes number as a function of the Reynolds 
number, calculation of the terminal velocity for a given particle diameter and fluid 
viscosity requires an iterative solution. To circumvent this problem, it is necessary 
to express the Reynolds number as a function of the Archimedes number. The fol- 
lowing explicit expression relating the Archimedes number to the Reynolds number 
is proposed by Turton and Clark (1987): 

Ar (1 + 0.0579 Ar~ -1'214 Rep -- (4.3-12) 

The procedure to calculate the terminal velocity is as follows: 
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a) Calculate the Archimedes number from Eq. (4.3-6), 
b) Substitute the Archimedes number into Eq. (4.3-12) and determine the Reynolds 
number, 
c) Once the Reynolds number is determined, the terminal velocity can be calculated 
from the equation 

# Rep 
vt = = (4.3-13) 

pDp  

E x a m p l e  4.4 Calculate the velocities at which a drop of water, 5 mm in diameter, 
would fall in air at 20 ~ and the same size air bubble would rise through water at 
20 ~ 

Solu t ion  

Phys i ca l  p r o p e r t i e s  

For water at 20 ~ (293 K) �9 { p = 999 k g / m  3 
# = 1001 • 10 -6 kg/m.  s 

For air at 20~ (293 K)" { p - 1.2047kg/m 3 
# = 18.17 • 10 -6 kg /m.  s 

Analys i s  

Water droplet falling in air 

To determine the terminal velocity of water, it is necessary to calculate the Archimedes 
number using Eq. (~.3-6): 

D gp (p.  - p) 
Ar = 

tt 2 

= (5 • 10-3)3(9.8)(1.2047)(999- 1.2047) = 4.46 x 106 
(18.17 x 10-6) 2 

The Reynolds number is calculated from Eq. (~. 3-12): 

Ar At0.412) -1.214 Rep - ~-~ (1 + 0.0579 

4.46 106 
_ _ x [1 + 0.0579 (4.46 x 106)~ -1'214 

18 

Hence, the terminal velocity is 

= 3581 

V t  - -  

/z Rep 

p D g  

(18.17 x 10-6)(3581) 

(1.2047)(5 x 10 -3) 
= 10.8 m / s  
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Air bubble rising in water 

In this case, the Archimedes number is 

D gp - p) 
Ar = # 2  

= (5 • 10-3)3(9.8)(999)(1.2047- 999) = _ 1.219 x 106 
(1001 x 10-6) 2 

The minus sign indicates that the motion of a bubble is in the direction opposite to 
gravity, i.e., it is rising. The Reynolds number and the te~ninal velocity are 

Ar (1 + 0.0579 Ar~ -1'214 Rep -- y~ 

_ _ 1.219 • 106 [1 + 0.0579 (1.219 • 1 0 6 ) ~  - 1 " 2 1 4  - - 1825 
18 

v t  - -  
# Rep 
p D p  

(1001 • 10-6)(1825) 
(999)(5 x 10 -3) 

= 0.37 m / s  

m C a l c u l a t e  Dp; given # and  vt 

In this case Eq. (4.3-4) must be rearranged such that  the particle diameter is 
eliminated. If both sides of Eq. (4.3-4) are divided by Re~, the result is 

f = Y (4.3-14) 
Rep 

where Y, which is independent of Dp, is a dimensionless number defined by 

4 g - 

Y = 5 p2va t (4.3-15) 

Substitution of Eq. (4.3-10) into Eq. (4.3-14) yields 

0.413 
24 (1 + 0.173 Re~; 65~) + Rep + 16,300 Rep ~176 (4.3-16) Y = Re2p 

Since Eq. (4.3-16) expresses Y as a function of the Reynolds number, calculation 
of the particle diameter for a given terminal velocity and fluid viscosity requires 
an iterative solution. To circumvent this problem, the following explicit expression 
relating Y to the Reynolds number is proposed by Tosun and Ak~ahin (1992) as 

a e p  -- 
(6 y13/20 _ y6/11) 17/20 
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where ~(Y) is given by 

0.052 0.007 0.00019) (4.3-18) 
q1(y) - exp 3.15 -+- y1/4 + y1/2 y3/4 

The procedure to calculate the particle diameter is as follows: 

a) Calculate Y from Eq. (4.3-15), 
b) Substitute Y into Eqs. (4.3-17) and (4.3-18) and determine Rep, 
c) Once the Reynolds number is determined, the particle diameter can be calculated 
from the equation 

DR - -  ft R e p  (4.3-19) 
pvt 

Example 4.5 A gravity settling chamber is one of the diverse range of equipment 
used to remove particulate solids from gas streams. In a settling chamber, the 
entering gas stream encounters an abrupt and large increase in cross-sectional area 
as shown in the figure below. As a result of the sharp decrease in the gas velocity, 
the solid particles settle down by gravity. In practice, the gas velocity through the 
chamber should be kept below 3 m~ s to prevent the re-entrainment of the settled 
particles. 

Gas i n l e t -  

~ ~ L  J 
-I  

Gas outlet 

Spherical dust particles having a density of 2200 kg/m a are to be separated from 
an air stream at a temperature of 25 ~ Determine the diameter of the smallest 
particle that can be removed in a settling chamber 7 m long, 2 m wide, and i m 
high. 

Solution 

Physical  proper t ies  

For air at 25 ~ (298 K)" { p = 1.1845 kg/m 3 
# = 18.41 • 10 -6 kg/m.s  
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Analysis 

For the minimum particle size that can be removed with 100% efficiency, the time 
required for this particle to fall a distance H must be equal to the time required to 
move this particle horizontally a distance L, i.e., 

H L 
t ._._ _ _  _ _  (vl 

where (v) represents the average gas velocity in the settling chamber. Taking 
(v) - 3  m / s ,  the settling velocity of the particles can be calculated as 

= (3) (7)_  0.43m/s 

The value of Y is calculated from Eq. (~. 3-15) as 

4 g (pp - p) # 
3 p2 vat 

4 (9.8)(2200- 1.1845)(18.41 • 10 -6) 
3 (1.1845)2(0.43) 3 

= 4.74 

Substitution of the value of Y into Eq. (4.3-18) gives 

0.052 0.007 0.00019 / 
~(Y) - exp 3.15 + y1/4 -~ y1/2 y3/4 

[ 0.052 0.007 0.00019] 
-----exp 3.15+ (4.74)1/4 + (4.74)1/2 -(4.74)3/4 --24.3 

Therefore, the Reynolds number and the particle diameter are 

R e p  --  
(6 y 1 3 / 2 0  _ y 6 / l l )  17/20 

24.3 
= = 2.55 

[6 (4.74)13/20 - (4.74)6/11] 17/2o 

D p  - -  
# Rep 

pvt 

(18.41 • 10-6)(2.55) = 92 • 10-6m 
(1.1845)(0.43) 
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m Calcula te  #; given Dp and vt 

In this case Eq. (4.3-4) must be rearranged so that the fluid viscosity can be 
eliminated. If both sides of Eq. (4.3-4) are divided by Re 2, the result is 

f - X (4.3-20) 

where X, which is independent of #, is a dimensionless number defined by 

Z - 4 gDp(pp - p) (4.3-21) 
3 pv2t 

Substitution of Eq. (4.3-10) into Eq. (4.3-20) gives 

0.413 24 (1 + 0.173 Re~5657) + (4.3-22) 
X -  Rep 1 + 16,300 Rep 1"~ 

Since Eq. (4.3-22) expresses X as a function of the Reynolds number, calculation 
of the fluid viscosity for a given terminal velocity and particle diameter requires 
an iterative solution. To circumvent this problem, the following explicit expression 
relating X to the Reynolds number is proposed by Tosun and Ak~ahin (1992) as 

24 (1 + 120X-2~ 4/11 Reg = ~- X _ 0.5 (4.3-23) 

The procedure to calculate the fluid viscosity is as follows: 

a) Calculate X from Eq. (4.3-21), 
b) Substitute X into Eq. (4.3-23) and determine the Reynolds number, 
c) Once the Reynolds number is determined, the fluid viscosity can be calculated 
from the equation 

Dpvtp (4.3-24) 
# =  Rep 

E x a m p l e  4.6 One way of measuring fluid viscosity is to use a falling ball viscome- 
ter in which a spherical ball of known density is dropped into a fluid-filled graduated 
cylinder and the time of fall for the ball for a specified distance is recorded. 

A spherical ball, 5mm in diameter, has a density of 1000kg/m 3. It falls 
through a liquid of density 910kg/m 3 at 25~ and travels a distance of 10cm 
in 1.8 min. Determine the viscosity of the liquid. 

Solut ion 

The terminal velocity of the sphere is 

Distance 
Vt - -  

T i m e  

I0 x 10 -2 
m 

(1.8)(60) 
= 9.26 x 10 -4 m / s  
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The value of X is calculated from Eq. (~.3-21) as 

4 gDp(pp - p) 
X ~  - 

3 

= _4 (9.8)(5 • 10-3) (1000-  910) = 7536 
3 (910)(9.26 • 10-4) 2 

Substitution of the value of X into Eq. (4.3-23) gives the Reynolds number as 

24 ( x_2O/11)4/11 
Ree - ~-  ~,1 + 120 

24 [ ] _ 3 . 2 •  3 = 7536 1 + 120 (7536) -20/11 4/11 

Hence, the viscosity of the fluid is 

Dgvtp 
t t =  Rep 

(5 • 10-3)(9.26 • 10-4)(910) 

3.2 x 10 -3 
= 1.32 kg /m.  s 

4.3.1.2 Dev ia t i ons  f rom ideal behav io r  

It should be noted that Eqs. (4.3-4) and (4.3-10) are only valid for a single spherical 
particle falling in an unbounded fluid. The presence of container walls and other 
particles as well as any deviations from spherical shape affect the terminal velocity 
of particles. For example, as a result of the upflow of displaced fluid in a suspension 
of uniform particles, the settling velocity of particles in suspension is slower than the 
terminal velocity of a single particle of the same size. The most general empirical 
equation relating the settling velocity to the volume fraction of particles, w, is given 
by 

vt (suspension) 
vt(single sphere) = (1 - w) ~ (4.3-25) 

where the exponent n depends on the Reynolds number based on the terminal 
velocity of a particle in an unbounded fluid. In the literature, values of n are 
reported as 

4 . 6 5 - 5 . 0 0  R e p < 2  
n =  2 .30 -2 .65  5 0 0 _ < R e p < 2 X 1 0 5  (4.3-26) 

The particle shape is another factor affecting terminal velocity. The terminal 
velocity of a non-spherical particle is less than that of a spherical one by a factor 
of sphericity, r i.e., 

vt (non-spherical) 
= r < 1 (4.3-27) 

vt (spherical) 

Sphericity is defined as the ratio of the surface area of a sphere having the same 
volume as the non-spherical particle to the actual surface area of the particle. 
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4 . 3 . 2  H e a t  T r a n s f e r  C o r r e l a t i o n s  

When a sphere is immersed in an infinite stagnant fluid, the analytical solution for 
the steady-state conduction is possible t and the result is expressed in the form 

N u -  2 (4.3-28) 

In the case of fluid motion, contribution of the convective mechanism must be 
included in Eq. (4.3-28). Correlations for including convective heat transfer are as 
follows: 

R a n z - M a r s h a l l  co r re la t ion  

Ranz and Marshall (1952) proposed the following correlation for constant surface 
temperature: 

I Nu - 2  + 0.6 Re~/2 Prl/3 ! (4.3-29) 

All properties in Eq. (4.3-29) must be evaluated at the film temperature. 

W h i t a k e r  co r re l a t ion  

Whitaker (1972) considered heat transfer from the sphere to be a result of two 
parallel processes occurring simultaneously. He assumed that the laminar and 
turbulent contributions are additive and proposed the following equation: 

( r~ l /2  ~ 2/3) prO.4 1/4 Nu - 2 + 0.4 ttep -~- 0.06 rtep (ttoo/#w) (4.3-30) 

All properties except #w should be evaluated at Too. Equation (4.3-30) is valid for 

3.5 _< Rep ~ 7.6 x 104 

0.71 < Pr < 380 
w 

1.0 _ ttoo/#w _ 3.2 

4.3.2.1 Ca lcu la t ion  of the  heat  t r ans fe r  r a t e  

Once the average heat transfer coefficient is estimated by using correlations, the 
rate of heat transferred is calculated as 

- 

E x a m p l e  4.7 An instrument is enclosed in a protective spherical shell, 5cm in 
diameter, and submerged in a river to measure the concentrations of pollutants. The 
temperature and the velocity of the river are 10 ~ and 1.2m/s ,  respectively. To 
prevent any damage to the instrument as a result of the cold river temperature, the 
surface temperature is kept constant at 32~ by installing electrical heaters in the 
protective shell. Calculate the electrical power dissipated under steady conditions. 

1 See Example 8.9 in Chapter 8. 
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So lu t ion  

P h y s i c a l  p r o p e r t i e s  

For water at 10 ~ (283 K) �9 

p - 1000 k g / m  3 
# - 1304 x 10 -6 k g / m .  s 
k - 587 x 10 -a  W / m .  K 
Pr - 9.32 

For water at 32~ (305 K)" # = 769 • 10 -8 kg /m.  s 

Analysis 

System: Protective shell 

Under steady conditions, the electrical power dissipated is equal to the rate of heat 
loss from the shell surface to river. The rate of heat loss is given by 

(~ = (TrD 2) (h)(T~ - Too) (1) 

To determine (h>, it is necessary to calculate the Reynolds number 

Dpvoop 
Rep = 

# 

= (5 x 10-2)(1.2)(1000) = 4.6 x 104 
1304 • 10 -6 

(2) 

The Whitaker correlation, Eq. (~.3-30), gives 

or, 

N u - 2 +  (0.4 T M  1/2 Re2/3) prO.4 1/4 rtep + 0.06 ( # ~ / # ~ )  

Nu : 2 + [0.4 (4.6 • 104) 1/2 + 0.06 (4.6 • 104) 2/3] (9.32) 0.4 

(1304 • 1 0 - ~ )  1/4 

• 769 • 10 -6 

The average heat transfer coeLficient is 

- 456 (3) 

( k )  (h) - Nu  -~p 

= 10 
5 • 10 -2 = 5353 W / m  2. K (4) 

Therefore, the rate of heat loss is calculated from Eq. (1) as 

(~ = [~(5 • 10-2) 2] (5353)(32-  10) = 925 W (5) 
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4 . 3 . 3  M a s s  T r a n s f e r  C o r r e l a t i o n s  

When a sphere is immersed in an infinite stagnant fluid, the analytical solution for 
the steady-state diffusion is possible 2 and the result is expressed in the form 

Sh = 2 (4.3-32) 

In the case of fluid motion, contribution of convection must be taken into con- 
sideration. Correlations for convective mass transfer are as follows: 

R a n z - M a r s h a l l  corre la t ion  

For constant surface composition and low mass transfer rates, Eq. (4.3-29) may be 
applied to mass transfer problems simply by replacing Nu and Pr with Sh and Sc, 
respectively, i.e., 

~-~ 1/2 I Sh = 2 + 0.6 rtep Sc 1/3 (4.3-33) 

Equation (4.3-33) is valid for 

2 _ Re p _~ 200 

0.6 < Sc < 2.7 

Frossling cor re la t ion  

Frossling (1938) proposed the following correlation: 

I s I h -  2 + 0.552-~ e Sc 1/a (4.3-34) 

Equation (4.3-34) is valid for 

2 _ Re p < 800 

0.6 < Sc < 2.7 

Steinberger and Treybal (1960) modified Frossling correlation as 

I Sh - 2 + 0.552 Re~ 53 Sc 1/3 1 (4.3-35) 

which is valid for 
1500 _ Rep _ 12,000 

0.6 < Sc < 1.85 

2See Example 8.13 in Chapter 8. 
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S te inbe rge r -Treyba l  corre la t ion  

The correlation originally proposed by Steinberger and Treybal (1960) includes a 
correction term for natural convection. The lack of experimental data, however, 
makes this term very difficult to calculate in most cases. The effect of natural 
convection becomes negligible when the Reynolds number is high and Steinberger- 
Treybal correlation reduces to 

Sh 0.347 Re~62 Scl/3 1 (4.3-36) 

Equation (4.3-36) is recommended for liquids when 

2000 < Rep ~ 16,900 

4.3.3.1 Calcula t ion  of the  mass t ransfe r  ra te  

Once the average mass transfer coefficient is estimated by using correlations, the 
rate of mass of species r transferred is calculated as 

(4.3-37) 

Example  4.8 A solid sphere of benzoic acid (p = 1267 kg/m3)with a diameter of 
12mm is dropped in a long cylindrical tank filled with pure water at 25 ~ If  the 
height of the tank is 3 m, determine the amount of benzoic acid dissolved from the 
sphere when it reaches the bottom of the tank. The saturation solubility of benzoic 
acid in water is 3.412 kg /m 3. 

Solut ion 

Phys ica l  p rope r t i e s  

p -  1000kg/m 3 
For water (B) at 25 ~ (298 K) �9 tt = 892 x 10 -6 kg/m.  s 

I)AB = 1.21 X 10 -9 m2/s  

The Schmidt number is 

S c -  /~ 
p E)AB 

892 X 10 -6 
= = 737 

(1000)(1.21 X 10 -9) 

Assumptions 

1. initial acceleration period is negligible and the sphere reaches its terminal 
velocity instantaneously. 
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2. The diameter of the sphere does not change appreciably. Thus, the Reynolds 
number and the terminal velocity remain constant. 

3. Steady-state conditions prevail. 

4. Physical properties of water do not change as a result of mass transfer. 

A n a l y s i s  

To determine the terminal velocity of the benzoic acid sphere, it is necessary to 
calculate the Archimedes number using Eq. (~.3-6)" 

= D gp(p. - p)  

#2 

= (12 • 10 -3 )3 (9 .8 ) (1000) (1267-  1000) = 5.68 • 106 
(892 • 10-6) 2 

The Reynolds number is calculated from Eq. (~.3-12): 

Ar ARO.412) -1.214 Reg  - ]-~ (1 + 0.0579 

_ _ 5.68 • 106 [1 + 0.0579 (5.68 • 106)~ - 1 ' 2 1 4 -  - 4056 
18 

Hence, the terminal velocity is 

# Rep 
V t  - - -  

p D p  

= (892 • 10-6)(4056) = 0.3 m / s  
(1000)(12 x 10 -3)  

Since the benzoic acid sphere falls the distance of 3 m with a velocity of 0.3 rolls, 
then the falling time is 

Distance 
t =  

Time 
3 

= ~ = 10s 
0.3 

The Sherwood number is calculated from the Steinberger-Treybal correlation, Eq. 
(~. 3- 3 6) , as 

Sh - 0.347 Re~ 62 Sc 1/3 

= 0.347 (4056)0'62(737) 1/3 = 541 

The average mass transfer coefficient is 

<kc> = Sh ( "DAB 

(1. 1 
i2 x 10 -a  - 5.46 x 10 .5  m / s  
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The rate of transfer of benzoic acid (species A) to water is calculated by using Eq. 

rhA -- (TrD 2) (kr (CA~ - -CA=)MA -- (TrD2p) (k~) (PA,, --PA~) 

= [7r(12 x 10-3) 2] (5.46 x 10-5)(3 .412-  0 ) -  8.43 x 10 -s  kg / s  

The amount of benzoic acid dissolved in 10 s is 

MA -- 7:nAt 
= (8.43 x 10-S)(10) --8.43 X 10 -7 kg 

Ver i f ica t ion of a s s u m p t i o n  ~ 2 

The initial mass of the benzoic acid sphere, Mo, is 

M o -  
12 x 10-3) 3 ] 

(1267) 
J 6 

- 1 . 1 4 6  • 10  - 3  k g  

The percent decrease in the mass of the sphere is given by 

8.43 x 10 -7 ) 
i:]~6 x 10 -3 

x 100 = 0.074% 

Therefore, the assumed constancy of Dp and vt is justified. 

4.4 F L O W  N O R M A L  TO A S I N G L E  
C Y L I N D E R  

4.4.1  Frict ion Factor Corre lat ions  

For cross flow over an infinitely long circular cylinder, Lapple and Shepherd (1940) 
presented their experimental data in the form of f versus ReD, the Reynolds num- 
ber based on the diameter of the cylinder. Their data can be approximated as 

6.18 
f =~ .  s/9 

Ire D 

f =  1.2 

ReD < 2 (4.4-1) 

104 < ReD _< 1.5 x 105 (4.4-2) 

The friction factor f in Eqs. (4.4-1) and (4.4-2) is based on the projected area of 
a cylinder, i.e., diameter times length, and ReD is defined by 

Droop 
ReD = (4.4-3) 

# 
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Tosun and Ak~ahin (1992) proposed the following single equation for the friction 
factor that covers the entire range of the Reynolds number in the form 

8/5 
f =  ~, 8/9 1 + 0 . 3 6 R e ,  9 

r t e  D 

ReD _ 1.5 • 105 (4.4-4) 

Once the friction factor is determined, the drag force is calculated from 

(1 2) 
FD = (DL) -~ p v ~  f (4.4-5) 

Ex am ple  4.9 A distillation column has an outside diameter of 80cm and a 
height of 10 m. Calculate the drag force exerted by air on the column if the wind 
speed is 2.5 m / s. 

Solut ion 

Phys ica l  p roper t i e s  

For air at 25 ~ (298 K)" { p - 1.1845kg/m 3 
# -  18.41 • 10 -6 kg/m. s 

Assumption 

1. Air temperature is 25 ~ 

Analysis  

From Eq. (4.~-3) the Reynolds number is 

D v ~ p  
ReD -- 

tL 
= (0.8)(2.5)(1.1845) = 1.29 • 105 

18.41 • 10 -6 

The use of Eq. (~.~-~) gives the friction factor as 

6.18 ( ~, 5/9)s/5 
f - ~, s/9 1 + 0.36 l-re D 

r t e  D 

[ ] = (1.29 x 105)s/9 1 + 0.36 (1.29 x 105) 5/9 s/s 

Therefore, the drag force is calculated from Eq. (~.~-8) as 

( 1 2  ) 
FD - (DL) -~ p v ~  f 

= (0.8 • 10) [2 (1.1845)(2.5)2] (1.2) - 35.5 N 

= 1.2 
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4 . 4 . 2  H e a t  T r a n s f e r  C o r r e l a t i o n s  

As stated in Section 4.3.2, the analytical solution for steady-state conduction from 
a sphere to a stagnant medium gives Nu = 2. Therefore, the correlations for 
heat transfer in spherical geometry require that  Nu --+ 2 as Re --+ 0. In the case 
of a single cylinder, however, no solution for the case of steady-state conduction 
exists. Hence, it is required that  Nu --+ 0 as Re -+ 0. The following heat transfer 
correlations are available in this case: 

W h i t a k e r  c o r r e l a t i o n  

Whitaker (1972) proposed a correlation in the form 

( ,-, 1/2 ) prO.4 (#oo/#w)l/4 Nu = 0.4 rte D + 0.06 Re~  3 (4.4-6) 

in which all properties except #~ are evaluated at Too. Equation (4.4-6) is valid 
for 

1.0 ___ ReD _< 1.0 x 105 

0.67 < Pr < 300 

0.25 <_ t%o/#~ _< 5.2 

Z h u k a u s k a s  c o r r e l a t i o n  

The correlation proposed by Zhukauskas (1972) is given by 

where 

[Nu - C R e ~  Pr~(Pr~/Prw)l/4 I (4.4-7) 

0.37 if Pr_<10 
n -  0.36 if P r > 0  

and the values of C and m are given in Table 4.3. All properties except Pr~ should 
be evaluated at Too in Eq. (4.4-7). 

Tab l e  4.3 Constants of Eq. (4.4-7) for the circular cylinder in cross flow. 

1 - 40 0.75 0.4 

40 - 1000 0.51 0.5 

1 • 1 0 3 -  2 x 105 0.26 0.6 

2 x 1 0 5 -  1 • 10 ~ 0.076 0.7 

Re D C m 
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C h u r c h i l l - B e r n s t e i n  cor re la t ion  

Churchill and Bernstein (1977) proposed a single comprehensive equation that 
covers the entire range of ReD for which data are available, as well as for a wide 
range of Pr, which is in the form 

Nu = 0.3 + 
0.62 tte D Pr I ReD 

[1 + (0.4/Pr)2/3] 1/4 1 + 2812-00 
(4.4-8) 

where all properties are evaluated at the film temperature. 
recommended when 

ReD Pr > 0.2 

Equation (4.4-8) is 

4.4.2.1 Ca lcu la t ion  of the  hea t  t r ans fe r  r a t e  

Once the average heat transfer coefficient is estimated by using correlations, the 
rate of heat transferred is calculated as 

I Q = (uDL)(.h. } I T~ ~-- Too[ I (4.4-9) 

E x a m p l e  4.10 Assume that a person can be approximated as a cylinder of 0.3 m 
diameter and 1.8 m height with a surface temperature of 30 ~ Calculate the rate 
of heat loss from the body while this person is subjected to a 4 m / s  wind with a 
temperature of - 10 o C. 

Solution 

Phys i ca l  p r o p e r t i e s  

The film temperature is ( 3 0 -  10)/2 = 10~ 

For air at - 10 ~ C (263 K) ' 

# = 16.7 x 10 -6 kg/m.  s 
u = 12.44 x 10 -6 m2/s  
k = 23.28 x 10 -a W / m .  K 
Pr = 0.72 

u -  14.18 x 10 -6 m2/s  / 

For air at 10 ~ (280 K) �9 k = 24.86 x 10 -3 W / m .  K 
Pr = 0.714 

For air at 30 ~ (303 K)" ( Prtt -_18 . 71 • 10-6 kg/m.  s 

Assumption 

1. Steady-state conditions prevail. 
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Analysis 

The rate of heat loss from the body can be calculated from Eq. (~.4-9)" 

(~ = (7~DL)<h) (Tw - Too) (I) 

Determination of <h> in Eq. (1) requires the Reynolds number to be known. The 
Reynolds numbers at Too and Tf are 

at T o o -  - 1 0 ~  R e D -  D vo~ = (0.3)(4) = 9.65 x 104 
u 12.44 x 10 -6 

at Tf = 10~ ReD = D v ~  _- (0.3)(4) -- 8.46 x 104 
u 14.18 x 10 -6 

W h i t a k e r  c o r r e l a t i o n  

The use of Eq. (~.4-6) gives the Nusselt number as 

Nu - ( 0 . 4 R e ~  2 +0.06 R e ~  3) Pr  ~ (#oo/].tw) 1/4 

= [0.4 (9.65 x 104) 1/2 + 0.06 (9.65 x 104) 2/3] (0"72)0 '4(  16"7• • 10 -6 )1/4 

- 214 

Hence, the average heat transfer coefficient is 

1o 
0.3 = 16.6 W / m  2. K 

Substitution of this result into Eq. (1) gives the rate of heat loss as 

Q -- (~r x 0.3 x 1.8)(16.6)[30 - ( -  10)1 = 1126 W 

Z h u k a u s k a s  c o r r e l a t i o n  

Since ReD = 9.65 x 104 and Pr  < 10, from Table 4.3 the constants are: C = 0.26, 
m = 0.6 and n - 0.37. Hence, the use of Eq. (~.~-7) gives 

Nu -- 0.26 Re~ 6 Pr ~ (Proo / Prw) I/4 

----- 0.26 (9.65 X 104)0'6(0.7'2) 0.37 (0.72)1/4 = 226 
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Therefore, the average heat transfer coefficient and the rate of heat loss from the 
body are 

0.3 = 17.5 W / m  2. K 

~) - (~- x 0 . 3  x 1 . 8 ) ( 1 7 . 5 ) [ 3 0  - ( -  10)1 - 1 1 8 8  W 

C h u r c h i l l - B e r n s t e i n  c o r r e l a t i o n  

The use of Eq. (~.~-8) gives 

[ 0.62 rte D Pr 1 ReD 
Nu - 0.3 + 

[1 + (0.4/Pr)  2/3] 1/4 1 + 2812-00 
i .  J 

0.62 (8.46 x104)1/2(0.714)1/3 [ ( 8 . 4 6 x 1 0 4 ) 5 / s ] 4 / 5  

= 0.3 + [1 + (0.4/0.714)2/3] 1/4 1 + 28,200 - 340 

The average heat transfer coefficient and the rate of heat loss from the body are 

= 0.3 - 28.2 W / m  2. K 

(~ = (~ x 0.3 x 1.8)(28.2)[30 - ( -  10)] = 1914 W 

C o m m e n t :  The heat transfer coefficient predicted by the ChurchiU-Bernstein cor- 
relation is 70% greater than the one calculated using the Whitaker correlation. It 
is important to note that no two correlations will exactly give the same result. 

4 . 4 . 3  M a s s  T r a n s f e r  C o r r e l a t i o n s  

Bedingfield and Drew (1950) proposed the following correlation for cross- and 
parallel-flow of gases to the cylinder in which mass transfer to or from the ends of 
the cylinder is not considered: 

1 / 2  44 Sh - 0.281rte D Sc 0' (4.4-~0) 

Equation (4.4-10) is valid for 

400 _< ReD _~ 25,000 

0.6 < Sc < 2.6 
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For liquids the correlation obtained by Linton and Sherwood (1950) may be used: 

Equation (4.4-11) is valid for 

I Sh = 0.281Re~ 6 Sc 1/3 [ (4.4-11) 

400 _ ReD _~ 25,000 

Sc <_ 3,000 

4.4.3.1 Calcu la t ion  of the  mass  t r ans fe r  ra te  

Once the average mass transfer coefficient is estimated by using correlations, the 
rate of mass of species A transferred is calculated as 

[ mA = (7~DL) (kc) tCA,~ - CA~[ MA] 

where A//A is the molecular weight of species A. 

(4.4-12) 

E x a m p l e  4.11 A cylindrical pipe of 5cm outside diameter is covered with a thin 
layer of ethanol. Air at 30~ flows normal to the pipe with a velocity of 3 m~ s. 
Determine the average mass transfer coefficient. 

Solution 

Phys ica l  p rope r t i e s  

Diffusion coefficient of ethanol (.A) in air (13) at 30 ~ (303 K)" 

( aB)3o3 
('303) 3/2 

-- (~)AB)313 k313  

(3oa) = (1.45 x lO 
3/2 

-- 1.38 • 10 -5 m2/s  

For air at 30 ~ (303 K) �9 u = 16 • 10 -6 m2/s  

The Schmidt number is 

Sc 
Y 

~DAB 
16 x 10 -6 

1.38 • 10 -5 
= 1.16 

Assumptions 

1. Steady-state conditions prevail. 

2. Isothermal system. 



94 CHAPTER 4. EVALUATION OF TRANSFER COEFFICIENTS 

Analys i s  

The Reynolds number is 

D voo 
ReD : 

/2 

= (5 x 10-2)(3) = 9375 
16 x 10 -6 

The use of the correlation proposed by Bedingfield and Drew, Eq. (4.4-10), gives 

.-, 1 / 2  44  Sh - 0.281~e D Sc ~ 

= 0.281 (9375)1/2(1.16) T M  = 29 

Therefore, the average mass transfer coefficient is 

( k c ) - - S h (  7)AB 

= ( 2 9 ) (  l '38X10-5)5x 10 .2 = 8 x 1 0 - 3 m / s  

4.5 F L O W  IN C I R C U L A R  P I P E S  

The rate of work done, l)d, to pump a fluid can be determined from the expression 

where rh and I~ are the mass flow rate and the specific volume of the fluid, re- 
spectively. Note that  the term in parenthesis on the right-hand side of Eq. (4.5-1) 
is known as the shaft work in thermodynamics a. For an incompressible fluid, i.e., 
f /=  1/p =constant,  Eq. (4.5-1) simplifies to 

- Q IAPI (4.5-2) 

where Q is the volumetric flow rate of the fluid. Combination of Eq. (4.5-2) with 
Eq. (3.1-11) gives 

FD <v> -- Q tAPI (4.5-3) 

or~ 

~ (v>~) f] (~>-Q fzxPJ [(TrDL) (-~ p 

Expressing the average velocity in terms of the volumetric flow rate 

Q 
( v ) -  7rD2/4 

3Work done on the system is considered positive. 

(4.5-4) 

(4.5-5) 
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reduces Eq. (4.5-4) to 

1 Pl = 
32 pL f Q2 

7r2D 5 

Engineering problems associated with pipe flow are classified as follows: 

(4.5-6) 

�9 Determine the pressure drop, ]AP], or the pump size, I/V; given the volumetric 
flow rate, Q, the pipe diameter, D, and the physical properties of the fluid, 
p and #. 

�9 Determine the volumetric flow rate, Q; given the pressure drop, ]AP[, the 
pipe diameter, D, and the physical properties of the fluid, p and #. 

�9 Determine the pipe diameter, D; given the volumetric flow rate, Q, the pres- 
sure drop, ]Ap], and the physical properties of the fluid, p and #. 

4 . 5 .1  F r i c t i o n  F a c t o r  C o r r e l a t i o n s  

4.5.1.1 Laminar  flow correlat ion 

For laminar flow in a circular pipe, i.e., Re = D(v)p/tt < 2100, the solution of the 
equations of change gives 4 

10 
(4.s-7) 

The friction factor f appearing in Eqs. (4.5-6) and (4.5-7) is also called the 
Fanning friction factor. However, this is not the only definition for f available 
in the literature. Another commonly used definition for f is the Darcy friction 
factor, fD, which is four times larger than the Fanning friction factor, i.e., fD = 4f. 
Therefore, for laminar flow 

64 
f u -  R-~ (4.5-8) 

4.5.1.2 Turbulen t  flow correlat ion 

Since no theoretical solution exists for turbulent flow, the friction factor is usually 
determined from the Moody chart (1944) in which it is expressed as a function 
of the Reynolds number, Re, and the relative pipe wall roughness, s/D. Moody 
prepared this chart by using the equation proposed by Colebrook (1938) 

1 ( s / D  1.2613) 
- 4log 

3.7065 Re v/-f 
(4.5-9) 

where e is the surface roughness of the pipe wall in meters. 

4See Section 9.1.3.1 in Chapter 9. 
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4.5.1.3 Solutions to the engineering problems 

I. Laminar  flow 

For flow in a pipe, the Reynolds number is defined by 

R e -  
D{v)p 4pQ 

# 7r#D 

Substitution of Eq. (4.5-10) into Eq. (4.5-7) yields 

47r#D 
f =  pQ 

(4.5-10) 

(4.5-11) 

R Calculate lAP] or l~; given Q and D 

Substitution of Eq. (4.5-11)into Eq. (4.5-6) gives 

lzxpf - 
128#LQ 

7rD 4 

The pump size can be calculated from Eq. (4.5-2) as 

1~ = 128 #L Q2 
7rD 4 

(4.5-12) 

(4.5-13) 

n Calculate Q; given lAP[ and D 

Rearrangement of Eq. (4.5-12) gives 

7rD 4 lAP I Q= 
128 #L 

(4.5-14) 

I Calculate D; given Q and lAP] 

Rearrangement of Eq. (4.5-12) gives 

D-(128#LQ) 1~47flAP] (4.5-15) 
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II. Turbulen t  flow 

m Calculate  IAPI or l~; given Q and D 

For the given values of Q and D, the Reynolds number can be determined using Eq. 
(4.5-10). However, when the values of Re and e/D are known, determination of f 
from Eq. (4.5-9) requires an iterative procedure since f appears on both sides of 
the equation. To avoid the iterative solutions, efforts have been directed to express 
the friction factor, f, as an explicit function of the Reynolds number, Re, and the 
relative pipe wall roughness, e/D. 

Gregory and Fogarasi (1985) compared the predictions of the twelve explicit 
relations with Eq. (4.5-9) and recommended the use of the correlation proposed 
by Chen (1979): 

1 f e/D 
v/y = - 4 log \ 3~7---~5 5.0452Re log A) (4.5-16) 

where ( E/D ) 1'1098 (7.1490) 0'8981 
A = \ ~  + --R-7-e (4.5-17) 

Thus, in order to calculate the pressure drop using Eq. (4.5-16), the following 
procedure should be followed through which an iterative solution is avoided: 

a) Calculate the Reynolds number from Eq. (4.5-10), 
b) Substitute Re into Eq. (4.5-16) and determine f, 
c) Use Eq. (4.5-6) to find the pressure drop. Finally, the pump size can be 
determined by using Eq. (4.5-2). 

Example  4.12 What is the required pressure drop per unit length in order to 
pump water at a volumetric flow rate of 0.03 m 3/s at 20 ~ through a commercial 
steel pipe (e = 4.6 x 10 -5 m) 20cm in diameter? 

Solut ion 

Physical  proper t ies  

For water at 20 ~ (293 K)" { p = 999 kg/m 3 
# = 1001 x 10 -6 kg/m. s 

Analysis 

The Reynolds number is determined from Eq. (~.5-10) as 

4pQ 
Re = 

rr#D 

= (4)(999)(0.03) = 191 x 103 
7r(lO01 x 10-6)(0.2) 
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Substitution of this value into Eqs. (4.5-17) and (~.5-16) gives 

A =  ( 6 / D )  1'1~ + (7"1490) ~ Re 

[(4.6 X 10-5/0.2) 1'1098 ( 7 . 1 4 9 0 )  

= 2.5497 + 191X 10 a 

0.8981 

= 1.38 x 10 -4 

1 ( e / D 5 . 0 4 5 2  ) 
x/-f = - 4 log 3.7065 - R------7- log A 

= -4log [(4.6 _ 1915"0452x 10 a log(1 �9 38 x 10-4)] --15.14 

Hence, the friction factor is 
f = 4.36 x 10 -a 

Thus, Eq. (4.5-6) gives the pressure drop per unit pipe length as 

tAPI 3 2 p f Q  2 
L rr2D 5 

(32)(999)(4.36 x 10-3)(0.03) 2 
7r2(0.2) 5 = 40 P a / m  

R Calcula te  Q; given lAP I and  D 

In this case rearrangement of Eq. (4.5-6) gives 

f =  

where Y is defined by 

I~2DSjApI 
Y = 32 pL 

Substitution of Eqs. (4.5-10) and (4.5-18)into Eq. (4.5-9) yields 

(4.5-18) 

(4.5-19) 

e/D 
Q = - 4 Y log 3.7065 

#D 

+ 7g) (4.5-20) 

Thus, the procedure to calculate the volumetric flow rate becomes" 

a) Calculate Y from Eq. (4.5-19), 
b) Substitute Y into Eq. (4.5-20) and determine the volumetric flow rate. 

E x a m p l e  4.13 What is the volumetric flow rate of water in m3/s at 20~ 
that can be delivered through a commercial steel pipe ( e -  4.6 x 10 -5 m) 20cm in 
diameter when the pressure drop per unit length of the pipe is 40 P a / m  ? 
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Solution 

Physical  proper t ies  

For water at 20 ~ (293 K) �9 { p = 999 kg/m 3 
# -  1001 • 10 -6 kg/m. s 

Analysis 

Substitution of the given values into Eq. (~.5-19) yields 

/Tr2D 5 AP[ 

/ue  (012)5 (40) 1.99 x 10 -3 

Hence, Eq. (~.5-20) gives the volumetric flow rate as 

+ 

e/D #D ) 
Q - - 4 Y log 3. 706-----5 + 

- -(4)(1.99 x 10 -3) log [(4.6 x3.706510-5/0.2) 

- 0.03 m 3 / s - -  / 

(1001 x 10-6)(0.2) 
(999)(1.99 x 10 -3) 

m Calculate D; given Q and [AP] 

Swamee and Jain (1976) and Cheng and Turton (1990) presented explicit equa- 
tions to solve problems of this type. These equations, however, are unnecessarily 
complex. A simpler equation can be obtained by using the procedure suggested by 
Tosun and Ak~ahin (1993) as follows. Equation (4.5-6) can be rearranged in the 
form 

f = (DN) 5 (4.5-21) 

where N is defined by 
(Tr 2 ]AP])  1/5 

N = 32pLQ 2 (4.5-22) 

For turbulent flow, the value of f changes between 0.00025 and 0.01925. Using an 
average value of 0.01 for f gives a relationship between D and N as 

0.4 
D -  -~- (4.5-23) 

Substitution of Eq. (4.5-21) to the left-hand side of Eq. (4.5-9), and substitution 
of Eqs. (4.5-10) and (4.5-23) to the right-hand side of Eq. (4.5-9) gives 

({F ( )1 }) D = 0.575 log(eN) + 5.806 # -0.171 2 
N pQN 

1/5 

(4.5-24) 
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The procedure to calculate the pipe diameter becomes: 

a) Calculate N from Eq. (4.5-22), 
b) Substitute N into Eq. (4.5-24) and determine the pipe diameter. 

Example 4.14 Water at 20~ is to be pumped through a commercial steel pipe 
(E = 4.6 x 10 -5 m) at a volumetric flow rate of 0.03 m3/s. Determine the diameter 
of the pipe if the allowable pressure drop per unit length of pipe is 40 Pa/m. 

Solution 

Physical properties 

For water at 20 ~ (293 K)" { p = 999 kg/m 3 
t t -  1001 • 10 -6 kg/m. s 

Analysis 

Equation (Jr. 5-22) gives 

(Tr 2 IAPI) 1/5 

N - 32 pLQ2 

= [ ~2 (40) 
(32)(999)(0.03) 2 

Hence, Eq. (4.5-24) gives the pipe diameter as 

1/5 
= 1.69 

D 0.575 log(6N) + 5.806 # -0.171 
N pQN 

( { [  ( 1001X10-6 ) ]  
0.5751.69 log [(4.6 x 10-5)(1.69)] + 5.806 (999)(0.03)(1.69) 

2) --1/5 
-0.171 ~ ) - 0.2m 

4.5 .2  H e a t  T r a n s f e r  C o r r e l a t i o n s  

For heat transfer in circular pipes, various correlations have been suggested 
depending on the flow conditions, i.e., laminar or turbulent. 

4.5.2.1 Laminar flow correlation 

For laminar flow heat transfer in a circular tube with constant wall temperature, 
Sieder and Tate (1936) proposed the following correlation: 

INU= 1186 [Re Pr (DIL)] 1/3 (#/ttw)~ (4.5-25) 
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in which all properties except #w 
Equation (4.5-25) is valid for 

are evaluated at the mean bulk temperature. 

13 < Re < 2030 
m 

0.48 _ Pr _ 16,700 

0.0044 _ #/#w -< 9.75 

The analytical solution 5 to this problem is only possible for very long tubes, i.e., 
L I D  ~ oc. In this case the Nusselt number remains constant at the value of 3.66. 

4.5.2.2 Turbu len t  flow corre la t ions  

The following correlations approximate the physical situation quite well for the 
cases of constant wall temperature and constant wall heat flux" 

D i t t u s - B o e l t e r  correlation 

Dittus and Boelter (1930) proposed the following correlation in which all physical 
properties are evaluated at the mean bulk temperature: 

where 

[Nu - 0.023 Re 4/5 Pr~~ (4.5-26) 

0.4 for heating 
n -  0.3 for cooling 

The Dittus-Boelter correlation is valid when 

0.7 < Pr < 160 

Re >_ 10,000 

L / D  >_ 10 

Sieder -Tate  corre la t ion  

Sieder and Tate (1936) correlation is 

~-~ 4/5 )0.14 Nu - 0.027rtep Pr 1/3 (#///t w (4.5-27) 

in which all properties except #w 
Equation (4.5-27) is valid for 

are evaluated at the mean bulk temperature. 

0.7 _ Pr < 16,700 

5See Section 9.3.1.2 in Chapter 9. 

Re __ 10,000 

L / D  >__ 10 
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W h i t a k e r  cor re la t ion  

The equation proposed by Whitaker (1972) is 

[.Nu~ 0.015 Re~83 Pr~ (#/#w)~ ] (4.5-28) 

in which the Prandtl number dependence is based on the work of Friend and 
Metzner (1958), and the functional dependence of # /#~ is from the work of Sieder 
and Tate (1936). All physical properties except #w are evaluated at the mean bulk 
temperature. The Whitaker correlation is valid for 

2, 300 < Re <_ l x105 

0.48 < Pr < 592 

0.44 _< tt/#~ _< 2.5 

4.5.2.3 Calcu la t ion  of the  heat  t rans fe r  ra te  

Once the average heat transfer coefficient is calculated from correlations by using 
Eqs. (4.5-25)-(4.5-28), then the rate of energy transferred is calculated as 

I (~ - (TrDL)(h)ATLM ] (4.5-29) 

where ATLM, logarithmic mean temperature difference, is defined by 

ATL  = - - - [ (Tw - Tb)i~ ] (4.5-30) 

In (Tw-Tb)o~t 

The derivation of Eq. (4.5-29) is given in Section 9.3 in Chapter 9. 

E x a m p l e  4.15 Steam condensing on the outer surface of a thin-walled circular 
tube of 65 mm diameter maintains a uniform surface temperature of 100 ~ Oil 
flows through the tube at an average velocity of 1 m~ s. Determine the length of the 
tube in order to increase oil temperature from 40 ~ to 60 ~ Physical properties 
of the oil are as follows: 

# -  12 .4  • 10 -3 kg/m.  s 

At 50 ~ �9 u - 4.28 x 10 -5 m 2//s 
P r -  143 

At 100 ~ �9 # = 9.3 x 10 -3 kg/m.  s 
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Solution 

Assumptions 

1. Steady-state conditions prevail. 

2. Physical properties remain constant. 

3. Changes in kinetic and potential energies are negligible. 

Analysis 

System: Oil in the pipe 

The inventory rate equation for mass becomes 

Rate of mass in - Rate of mass out - rh - p(v)(TrD2/4) (i) 

On the other hand, the inventory rate equation for energy reduces to 

Rate of energy in = Rate of energy out (2) 

The terms in Eq. (2) are expressed by 

Rate of energy in = rh Cp(Tb~ - Tr~I) + 7rDL(h)ATLM 

R~t~ of ~n~gy  o~t - m dp(Tbo~ - T ~ )  

(a) 
(4) 

Since the wall temperature is constant, the expression for ATLM, Eq. 
becomes 

Tbo~t -- Tb., 
ATLM -- ln(  -rbo~,) 

Substitution of Eqs. (1), (3), (4) and (5) into Eq. (2) gives 

(4.5-so), 

(5) 

L = l {v}pdP ln ( T~ -- Tb,~ ) 
D 4 (h) T~ -Tbo~ 

(6) 

Noting that StH -- (h}/((v)pCp) = N u / ( R e P r ) ,  Eq. (6) becomes 

L 1 1 l n ( T w - T b ~ )  1 R e P r l n ( T w - T b ~ )  
- 4 St----H T - - ~ - n o ~  = 4 N---U-- T~-Tbo~t 

(7) 

To determine Nu (or, (h)), first the Reynolds number must be calculated. 
mean bulk temperature is (40 + 60) /2  = 50 ~ and the Reynolds number is 

The 

R e  ~-~ 
Div) 

l /  

= (65 x 10-3)(1)  = 1519 
4.28 x 10 -5 

Laminar flow 
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Since the flow is laminar, Eq. (~.5-25) must be used, i.e., 

Nu = 1.86 [Re Pr (D/L)] 1/3 (#/#w) TM 

Substitution of Eq. (8) into Eq. (7) yields 

L 
= RePr  

D 

I o14 ( 
( # / # ~ )  In T~-Tb,,~ 

(4)(1.86) T~ - Tbo~ 

= (1519)(143) 
(12.4 x 10-3/9.3 x 10-3) -0"14 

(4)(1.86) 
= 2602 

,.(lOO 4o)] 
1 0 0  - 6O 

3/2 

( 8 )  

The tube length is then 

L = (2602)(65 • 10 -3) - 169m 

E x a m p l e  4.16 Air at 20~ enters a circular pipe of 1.5cm internal diameter 
with a velocity of 50 m/s .  Steam condenses on the outside of the pipe so as to keep 
the surface temperature of the pipe at 150 ~ 

a) Calculate the length of the pipe required to increase air temperature to 90 ~ 
b) Discuss the effect of surface roughness on the length of the pipe. 

S o l u t i o n  

P h y s i c a l  p r o p e r t i e s  

The mean bulk temperature is (20 + 90)/2 = 55 ~ 

For air at 20 ~ (293 K ) ' p -  1 .2047kg/m 3 
# - 1 9 . 8  • 10 -6 kg /m.  s 

For air at 55 ~ (328 K)" v -  18.39 • 10 -6 m2/s/ 
Pr - 0.707 

For air at 150 ~ (423 K ) ' #  = 23.86 • 10 -6 kg /m.  s 

Ana lys i s  

a) System: Air in the pipe 

The inventory rate equation for mass reduces to 

Rate of mass of air i n -  Rate of mass of air out = rh (1) 

Note that for compressible fluids like air, both density and average velocity depend 
on temperature and pressure. Therefore, using the inlet conditions 

= (7rD2/4)(P(V))~nlet 

- - [  ~r(0"015)2] (1.2047)(50)= 1.06 x 10-2 kg / s  = 

[ J 
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In problems dealing with the flow of compressible fluids, it is customary to define 
mass velocity, G, as 

a = = p<v> (2) 

The advantage of using G is the fact that it remains constant for steady flow of 
compressible fluids through ducts of uniform cross-section. In this case 

G = (1.2047)(50) = 60 .24kg /m 2. s 

The inventory rate equation for energy is written as 

Rate of energy in = Rate of energy out (3) 

Equations (3)-(5) of Example 4.15 are also applicable to this problem. Therefore, 
we get 

L l R e P r l n ( T ~ - T b ~  ) 
-D = -4 N----~ ~ - Tbo~, (4) 

The Nusselt number in Eq. (~) can be determined only if the Reynolds number is 
known. The Reynolds number is calculated as 

DG 
R e -- 

# 
(0.015)(60.24) 

= 19.80 x 10 -6 - 45,636 ~ Turbulent flow 

The value of L depends on the correlations as follows: 

D i t t u s - B o e l t e r  correlat ion 

Substitution of Eq. (~.5-26) into Eq. (~) gives 

L Re~ Pr ~ ( T ~ o - T b , ~ )  
D =  0.092 In T~-Tbo~  

= (45'636)~176 In (150-150- 9020) 

Therefore, the required length is 

= 58.3 

L = (58.3)(1.5) = 87 cm 

S i e d e r - T a t e  correlat ion 

Substitution of Eq. (~.5-27) into Eq. (4) gives 

( )--0.14( ) 
L Re~ prU/3 #/#w Tw - Tb,~ 

= 0.108 In T~ - Tbou~ 

(45,636)0"2(0.707) 2/3 f 19.80 x 10-6~ - 0 . 1 4  

- - 0:I-68 ~ 23.86 x 10 -6 

150 - 20 ) 
In 150 - 90 = 49.9 
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Therefore, the required length is 

L = (49.9)(1.5) - 75 cm 

Whi take r  correlat ion 

Substitution of Eq. (~.5-28) into Eq. (~) gives ( )--0.14( ) 
L Re~ Pr~ #/#~ T~ - Tb~,~ 

D--- 0.06 In T~-Tbo~ 

- - ( 4 5 '  636)~176 (19"80 • 10-6 ) - ~  • 10 .6 

Therefore, the required length is 

L - (67)(1.5) --- 101 cm 

b) Note that Eq. (4) is also expressed in the form 

L _ _ I  l_~in(T~-Tb,~ ) 
D 4 StH T~ - Tbo~t 

l n (  150 - 20 ) 
150  - 90  = 67 

(5) 

The use of the Chilton-Colburn analogy, i.e., f /2 = StH Pr 2/3, reduces Eq. (5) to 

L lPr2/31n(Tw-Tb~ ) 

1 in 0 .  
- 2 f 150-90  - f (6) 

The friction factor can be calculated from the Chen correlation, Eq. (~.5-16) 

1 ( e/D 5.0452 log A) 
- ~  = - 4 log 3.7065 Re 

where 
A - ( e / D )  1"1~ + (7"1490) ~  

For various values of e/D, the calculated values of f, L/D and L are given as 
follows: 

L 
e/D f L/D (cm) 

0 0.0053 57.9 86.9 
0.001 0.0061 50.3 75.5 
0.002 0.0067 45.8 68.7 
0.003 0.0072 42.6 63.9 
0.004 0.0077 39.8 59.7 
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C o m m e n t :  The increase in surface roughness increases the friction factor and 
hence power consumption. On the other hand, the increase in surface roughness 
causes an increase in the heat transfer coefficient with a concomitant decrease in 
pipe length. 

4 . 5 . 3  M a s s  T r a n s f e r  C o r r e l a t i o n s  

Mass transfer in cylindrical tubes is encountered in a variety of operations such as 
wetted wall columns, reverse osmosis, and cross-flow ultrafiltration. As in the case 
of heat transfer, mass transfer correlations depend on whether the flow is laminar 
or turbulent. 

4.5.3.1 L a m i n a r  flow cor re la t ion  

For laminar flow mass transfer in a circular tube with a constant wall concentration, 
an analogous expression to Eq. (4.5-25) is given by 

! .... I Sh = 1.86 [ReSc(D/L)] 1/3 (4.5-31) 

Equation (4.5-31) is valid for 

[ReSc (D/L)] 1/3 > 2 

4.5.3.2 T u r b u l e n t  flow cor re la t ions  

Gi l l i l and -She rwood  cor re la t ion  

Gilliland and Sherwood (1934) correlated the experimental results obtained from 
wetted wall columns in the form 

] Sh - 0.023 Re~ sC~ ] (4.5-32) 

which is valid for 
2,000 __ Re < 35,000 

0.6 < Sc < 2.5 

L i n t o n - S h e r w o o d  c o r r e l a t i o n  

The correlation proposed by Linton and Sherwood (1950) is given by 

[ Sh = 0.023 Re0"S-3 Sc1(.3[] 

Equation (4.5-33) is valid for 

(4.5-33) 

2,000 < Re _ 70,000 

0.6 <_ Sc < 2,500 
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4.5.3.3 Calcu la t ion  of the  mass t rans fe r  ra te  

Once the average mass transfer coefficient is calculated from correlations given by 
Eqs. (4.5-31)-(4.5-33), then the rate of mass of species A transferred is calculated 
a s  

, ,  : =  

[ ~A --(TrDL.!_(ky ! (ACA)LM M A ] (4.5-34) 

where A/IA is the molecular weight of species A, and (ACA)LM, logarithmic mean 
concentration difference, is defined by 

- - - 

(ACA)LM= I n  [(CAW(cAw ---- cAbCAb)out)in ] ( 4 . 5 - 3 5 )  

The derivation of Eq. (4.5-34) is given in Section 9.5 in Chapter 9. 

E x a m p l e  4.17 A smooth tube with an internal diameter of 2.5cm /s cast from 
solid naphthalene. Pure air enters the tube at an average velocity of 9 m~ s. If the 
average air pressure is I atm and the temperature is 40 ~ estimate the tube length 
required for the average concentration of naphthalene vapor in the air to reach 25% 
of the saturation value. 

Solution 

Phys ica l  p rope r t i e s  

Diffusion coefficient of naphthalene (,4) in air (B) at 40 ~ (313 K)" 

31313/2 
( ~DAB)313 - -  (~)AB)300 3---0-6 

~313~ 3/2 
= (0.62 x 10 -5) k, 300 ] = 6.61 x 1 0  - 6  m 2 / s / 

For air at 40~ (313 K ) ' u -  16.95 • 10 -6 m2/s  

The Schmidt number is 

/2 
Sc - 

~DAB 
16.95 x 10 -6 

= = 2.56 
6.61 x 10 -6 

Assumptions 

1. Steady-state conditions prevail. 

2. The system is isothermal. 



4.5. FLOW IN CIRCULAR PIPES 109 

Analysis 

System: Air in the naphthalene tube 

If naphthalene is designated as species .A, then the rate equation for the conservation 
of species A becomes 

Rate of moles of ,4 in = Rate of moles of .A out (i) 

The terms in Eq. (1) are expressed by 

Rate of moles of A in = 7rDL(k~>(ACA)LM (2) 

Rate of moles of ,4 o u t -  Q(CAb)o,a = (TrD2/4)(v>(cAb)o,a (3) 

Since the concentration at the wall is constant, the expression for (ACA)LM, Eq. 
(~.5-35), becomes 

( A C A ) L M  - -  (4) 
In[ ] - 

Substitution of Eqs. (2)-(~) into Eq. (1) gives 

L 

D 

1 (v> [ (CAb)~ 
= 4 <kc>ln 1 -  CAw 

= 4 <kc> In (1 - 0.25) = 0.072 \ k~ (5) 

Note that Eq. (5) can also be expressed in the form 

(S-~M) ( R e S c )  L - 0.072 1 = 0.072 
D Sh 

(6) 

The value of L depends on the correlations as follows: 

C h i l t o n - C o l b u r n  a n a l o g y  

Substitution of Eq. (3. 5-13) into Eq. (6) gives 

L 2 
= 0.072 -_ Sc 2/3 

f 
(7) 

The Reynolds number is 

R e -  
D(v) 

b' 

_-- (2.5 x I0-2)(9) = 13 274 => 
16.95 x 10 -6 ' 

Turbulent flow 
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The friction factor can be calculated from the Chen correlation, Eq. 
Taking c/D ~ O, 

e/D )1.1098 

A =  2.5497 

_ { 7.1490 ~ 0.8981 

/ 13,274 

7.1490) 
+ Re 

0.8981 

= 1.16 • 10 -3 

1 ( e /D 5.0452 ) 
v/] = - 4 l o g  3.7065 Re logA 

[ 5.0452 log(1 16• 10-3)1 
= - 4 l o g  13,274 " 

Hence Eq. (7) becomes 

f - 0.0072 

L (0.072)(2)(2.56) 2/3 
D 0.0072 

The required length is then 

= 37.4 

L -  (37.4)(2.5) - 93.5cm 

L in ton-Sherwood  corre la t ion 

Substitution of Eq. (4.5-33) into Eq. (6) gives 

L = 3.13 Re ~ Sc 2/3 
D 

= 3.13 (13,274)~ 2/3 = 29.4 

The tube length is 
L = (29.4)(2.5)- 73.5cm 

4.5.4  Flow in Non-Circu lar  Duct s  

The correlations given for friction factor, heat transfer coefficient, and mass transfer 
coefficient are only valid for ducts of circular cross-section. These correlations can 
be used for flow in non-circular ducts by introducing the concept of hydraulic 
equivalent diameter, Dh, defined by 

Flow area ) 
Dh -- 4 Wetted perimeter 

The Reynolds number based on the hydraulic equivalent diameter is 

(4.5-36) 

D (v>p 
Reh = (4.5-37) 

# 
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so that the friction factor, based on the hydraulic equivalent diameter, is related 
to Reh in the form 

f h - - f ~ (  l~-~e6h ) (4.5-38) 

where 9t depends on the geometry of the system. Since 9l = 1 only for a circular 
pipe, the use of the hydraulic equivalent diameter has no t  been recommended for 
laminar flow (Bird et al., 1960; Fahien, 1983). The hydraulic equivalent diameter 
for various geometries is shown in Table 4.4. 

Table 4.4 The hydraulic equivalent diameter for various geometries. 

Geometry D h 

T 
b 2b 

b 
2ab 

a + b  

I D o  I 

D O - Di 
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E x a m p l e  4.18 Water flows at an average velocity of 5 m~ s through a duct of 
equilateral triangular cross-section with one side, a, being equal to 2 cm. Electric 
wires are wrapped around the outer surface of the duct to provide a constant wall 
heat flux of 100 W / c m  u. If  the inlet water temperature is 25 ~ and the duct length 
is 1.5m, calculate: 

a) The power required to pump water through the duct, 
b) The exit water temperature, 
c) The average heat transfer coefficient. 

Solution 

P h y s i c a l  p r o p e r t i e s  

p = 9 9 7 k g / m  3 
For water at 25 ~ (298 K) �9 # = 892 • 10 -6 kg /m.  s 

Cp = 4180 J /kg .  K 

Assumptions 

1. Steady-state conditions prevail. 

2. Changes in kinetic and potential energies are negligible. 

3. Variations in p and Cp with temperature are negligible. 

Analysis 

System: Water in the duct 

a) The power required is calculated from Eq. (3.1-11) 

[ (1 ) ]  
I/V= FD(V) = (3aL) -~ p(v} 2 f (v) (1) 

The friction factor in Eq. (1) can be calculated from the modified form of the Chen 
correlation, Eq. (4.5-16) 

1 ( e / D 5 . 0 4 5 2  ) 
x/~ = - 4 log 3.7065 Reh log A (2) 

where 
A- ( ~/D + (7"1490) 0'8981Reh 

The hydraulic equivalent diameter and the Reynolds number are 

a 
Dh = 

2 
= ~ = 1 . 1 5 5 c m  

(3) 
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Dh(v)p 
Reh -- # 

= (1.155 • 10-2)(5)(997) = 64, 548 ~ Turbulent flow 
892 x 10 -6 

Substitution of these values into Eqs. (3) and (2) and taking ~/D ~ 0 gives 

A - (--R--~eh ]7"1490 ~ o.8981 

1490)o 8o81 
= 64,548 - 2.8 x 10 .4 

1 ( 5 . 0 4 5 2 )  
v/_ f = - 4 log Reh log A 

= -  4 log [-64,5'0452 1~ • 1 0 - 4 ) ] 5 4 8  

Hence, the power required is calculated from Eq. (1) as 

I ~ -  {(3)(2 x 10-2)(1.5)[2 (997)(5)2] (0.0049)} (5) = 27.5W 

b) The inventory rate equation for mass is 

4 -- 0.863 kg/s 

The inventory rate equation for energy reduces to 

f = 0.0049 

(4) 

Rate of energy in = Rate of energy out 

The terms in Eq. (5) are expressed by 

Rate of energy in - dn Cp(Tb~ - T~ef ) + ( ~  

Rate of energy out - r C p  (Tbo~t -- TreI) 

(5) 

(6) 
(7) 

where (~w is the rate of heat transfer to water from the lateral surfaces of the duct. 
Substitution of Eqs. (6) and (7) into Eq. (5) gives 

= 25 + (3)(2)(150)(100) = 50oc 
(0.863)(4180) 
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c) The mean bulk temperature is (25 + 50)/2 = 37.5 ~ At this temperature 

k = 628 • 10 - 3 w / m . K  and Pr = 4.62 

The use of the Dittus-Boetter correlation, Eq. (~.5-26), gives 

~-, 4 / 5  pr0.4 Nu = 0.023 rtep 

- 0.023 (64, 548) 4/5 (4.62) 0.4 = 299 

Therefore, the average heat transfer coeLficient is 

(k) (hi = Nu 

- (299) ( 628 x 10 -3 = 16,257 W / m  2. K 

4 . 6  F L O W  I N  P A C K E D  B E D S  

The chemical and energy industries deal predominantly with multiphase and mul- 
ticomponent systems in which considerable attention is devoted to increasing the 
interracial contact between the phases to enhance property transfers and chemical 
reactions at these extended surface interfaces. As a result, packed beds are exten- 
sively used in the chemical process industries. Some examples are gas absorption, 
catalytic reactors, and deep bed filtration. 

4 . 6 . 1  F r i c t i o n  F a c t o r  C o r r e l a t i o n s  

The friction factor for packed beds, fpb, is defined by 

~3 DR lAP] (4.6-1) 
f Pb - l _ e pv2 L 

where e is the porosity (or, void volume fraction), Dp is the particle diameter, and 
Vo is the superficial velocity. The superficial velocity is obtained by dividing the 
volumetric flow rate to the total cross-sectional area of the bed. Note that the 
actual flow area is a fraction of the total cross-sectional area. 

E x a m p l e  4.19 Water flows through an annulus at a volumetric flow rate of 
5 m3/rain. The diameters of the inner and the outer pipes are 30cm and 50cm, 
respectively. Calculate the superficial velocity. 
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Solut ion  

If the inside and outside pipe diameters are designated by Di and Do, respectively, 
the superficial velocity, Vo, is defined by 

Q 5 
= = 25.5 m/min  Vo = ~D2o/4 u(0.5)2/4 

The actual average velocity, (v)act, in the annulus is 

Q 5 
( V )  a c t  -~- 2 = __ (Do 2 - D i ) /4  ~ [(0.5) 2 (0.3) 2]/4 = 40 m/min  

Commen t :  The superficial velocity is always less than the actual average velocity 
by a factor of porosity, which is equal to [ 1 -  (Di/Do) 2] in this example. 

For packed beds, the Reynolds number is defined by 

Dpvop 1 
R%b -- (4.6-2) 

# 1 - c  

For laminar flow, the relationship between the friction factor and the Reynolds 
number is given by 

150 
fpb = Repb Repb < 10 (4.6-3) 

which is known as the Kozeny-Carman equation. 
In the case of turbulent flow, i.e., Revb > 1000, the relationship between Repb 

and fpb is given by the Burke-Plummer equation in the form 

[ fpb -  i-75 I J  Repb > 1000 (4.6-4) 

The so-called Ergun equation (1952) is simply the summation of the Kozeny- 
Carman and the Burke-Plummer equations 

150 
_ fpb = R%b ~ 1.75 (4.6-5) 

E x a m p l e  4.20 A column of 0.8 m: cross-section and 30 m height is packed with 
spherical particles of diameter 6 mm. A fluid with p = 1.2 kg /m 3 and # = 1.8 • 
10 -5 kg/m. s flows through the bed at a mass flow rate of 0.65 kg/s .  If the pressure 
drop is measured as 3200 Pa, calculate the porosity of the bed: 

a) Analytically, 
b) By using Newton-Raphson method. 
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Solution 

Assumption 

1. The system is isothermal. 

Analysis 

The superficial velocity through the packed bed is 

0.65 
Vo - (1.2)(0.8) = 0 . 6 r r m / s  

Substitution of the values into Eqs. (~.6-1) and (~.6-2) gives the friction factor 
and the Reynolds number as a function of porosity in the form 

e 3 D p  IAP[ 
fPb = 1 _  e pv2L 

e 3 [ (6x10-a ) (3200)  ( e3 ) 
= 1 - e  (1.2)(0.677)2(30) = 1.164 1 - e  (1) 

Dpvop 1 
Repb = 

# i - e  [(6x 10-3)(0.677)(1.2)] 1 = 2 7 0 . 8 ( ~ _ e  ) 
= i ~ x l - - - ~  -5 1 -  e (2) 

Substitution of Eqs. (1) and (2) into Eq. (~.6-5) gives 

e 3 - 0.476 e 2 + 2.455 e - 1.979 = 0 (3) 

a) Equation (3) can be solved analytically by using the procedure described in Sec- 
tion A. 7.1.2 in Appendix A. In order to calculate the discriminant, the terms M 
and N must be calculated from Zqs. (A.7-5) and (A. 7-6), respectively: 

M = (3)(2.455) - (0.476) 2 = 0.793 
9 

N = -(9)(0.476)(2.455) + (27)(1.979) + (2)(0.476) 3 
54 = 0.799 

Therefore, the discriminant is 

A = M 3 + N 2 

= (0.793) 3 + (0.799)2= 1.137 

Since A > O, Eq. (3) has only one real root as given by Eq. (A.7-7). The terms S 
and T in this equation are calculated as 

S - ( N  + V ~ )  1/3 

= ( 0 . 7 9 9 + r  1/3 = 1.231 
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T =  ( N -  V/~) 1/3 

: 
- - 0.644 

Hence the average porosity of the bed is 

0.476 
c -  1 . 2 3 1 -  0.644 + 

3 
= 0.746 

b)  Equation (3) is rearranged as 

F(e) - c 3 - 0.476 e 2 + 2.455 e - 1.979 = 0 (4) 

From Eq. (A. 7-18) the iteration scheme is 

s  l - -  Ek 

F(ek) 
dF 

d~ 
s 

(5) 

The derivative of the function F is given by 

dF 
= 3 e 2 - 0 . 9 5 2  e + 2.455 

de 

Assuming a starting value of 0.7, the calculation scheme is 

0.151 
e2 - 0.7 + 3.259 = 0.746 

0.003 
e3 - 0.746 - ~ = 0.745 

3.414 

Since e2 ~ e3, the value of porosity is 0.746. 

4 . 6 . 2  H e a t  T r a n s f e r  C o r r e l a t i o n  

W h i t a k e r  (1972) p roposed  the  following corre la t ion  for hea t  t rans fe r  in packed beds: 

~-~ 1/2 ,-~ 2/3~ pr0.4 Nupb -- 0.4 rtepb + 0.2 t~epb ) (4.6-6) 

T h e  Nussel t  n u m b e r  in Eq. (4.6-6) is defined by 

(h)Dp e 
= (4.6-7) Nupb k 1 - e 

E q u a t i o n  (4.6-6) is valid when  

3.7 _< Repb <_ 8000 
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0.34 < e < 0.74 
u 

Pr ~ 0.7 

All properties in Eq. (4.6-6) are evaluated at the average fluid temperature in the 
bed. 

4.6.2.1 Ca lcu la t ion  of the heat t r ans fe r  ra te  

Once the average heat transfer coefficient is determined, the rate of heat transfer 
is calculated from 

IQ=a,V(h}ATLM[ (4.6-8) 

where V is the total volume of the packed bed and av is the packing surface area 
per unit volume defined by 

6(1 - e )  
a~ = (4.6-9) 

Dp 

4 . 6 . 3  M a s s  T r a n s f e r  C o r r e l a t i o n  

Dwivedi and Upadhyay (1977) proposed a single correlation for both gases and 
liquids in packed and fluidized beds in terms of the j - f ac to r  as 

0.765 0.365  jM. + (4.6-10) 

which is valid for 0.01 < Repb < 15,000. The t e r m s  JMpb 
are defined by 

_ 

and 

4.6.3.1 

and Repb in Eq. (4.6-10) 

(4.6-11) 

, Dpvop 
Repb = (4.6-12) 

# 

Calculation of the  mass  t r ans fe r  rate 

Once the average mass transfer coefficient is determined, the rate of mass transfer 
of species A, rhA, is given by 

I dnA = avV(kc)(ACA)LM~4"A I (4.6-13) 

E x a m p l e  4.21 Instead of using a naphthalene pipe as in Example ~.17, it is sug- 
gested to form a packed bed of porosity 0.45 in a pipe, 2.5 cm in internal diameter, 
by using naphthalene spheres of 5 mm in diameter. Pure air at 40 ~ flows at a 
superficial velocity of 9 m / s  through the bed. Determine the length of the packed 
bed required for the average concentration of naphthalene vapor in the air to reach 
25% of the saturation value. 
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S o l u t i o n  

P h y s i c a l  p r o p e r t i e s  

Diffusion coefficient of naphthalene (A) in air (B) at 40 ~ (313 K)"  

('~)AB)313 
( ' 3 1 3 )  3/2 

-- ( ~ A B  )300 ~k300 

= (o.62 • lO 
3/2 

- 6 .61 • 10 - 6  m 2 / s  

For air at 40~ (313 K ) ' u  = 16.95 • 10 -6 m 2 / s  

The Schmidt number is 
/,/ 

Sc = 
~)AB 
16.95 • 10 -6 

= = 2.56 
6.61 • 10 -6 

A s s u m p t i o n s  

1. Steady-state conditions prevail. 

2. The system is isothermal. 

3. The diameter of the naphthalene spheres does not change appreciably. 

A n a l y s i s  

System: Air in the packed bed 

Under steady conditions, the conservation statement for naphthalene, species A, 
becomes 

Rate of moles of Jt in = Rate of moles of Jt out (1) 

The terms in Eq. (1) are expressed by 

Rate of moles of A in - avV(kc)(ACA)LM (2) 

Rate of moles of .4 out = Q (CAb)o~t - (~D2/4) Vo(CAb)out (3) 

Since the concentration at the surface of the naphthalene spheres is constant, the 

CA b )out 
(ACA)LM = (4) 

- 
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Substitution of Eqs. (2)-(4) into Eq. (1) and noting that V -  QrD2/4)L gives 

Vo ln [l (CAb)out ] (5) 
L -- (kc)a, CAw 

Note that for a circular pipe, i.e., av - 4/D, the above equation reduces to Eq. (5) 
in Example ~.17. 

The interracial area per unit volume, av, is calculated from Eq. (~.6-9) as 

a v  -= 

6(1 - e )  

Dp 
6(1 - 0 . 4 5 )  

0.005 
= 660 m -1 

To determine the average mass transfer coefficient from Eq. (4.6-10), first it is 
necessary to calculate the Reynolds number 

Repb -- 
Dpvo 

V 

= (0.005)(9) = 2655 
16.95 x 10 -6 

Substitution of this value into Eq. (4.6-10) gives 

0.765 
+ 

0.765 
- (2655)o.s2 + 

0.365 

(Re;b) o.as6 

0.365 
(2655)o.3s 6 = 0.0186 

in which ejMpb is given by Eq. 
coefficient is 

Therefore, the average mass transfer 

<k~> = 0.0186 v------2--~ 
eSc2/a 

(0.0186)(9) 

(0.45)(2.56)2/3 
= 0 . 2 m / s  

The length of the bed is calculated from Eq. (5) as 

L ~ _  m 
9 

(0.2)(660) in(1 - 0.25) -- 0 .02m 

C o m m e n t :  The use of a packed bed increases the mass transfer area between air 
and solid naphthalene. This in turn causes a drastic decrease in the length of the 
equipment. 
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N O T A T I O N  

A 
av 

Op 
ci 

D 
Dh 
D p  

"DAB 

FD 
f 
G 
g 
ju 
j M  
k 
kc 
L 
M 
dn 
.M 

P 

Q 
q 

T 
t 

V 
v 

Vo 

vt 

W 

x 

A 
6. 

E 

il 
l] 

P 

area, m 2 
packing surface area per unit volume, 1 /m 
heat capacity at constant pressure, k J/kg.  K 
concentration of species i, kmol/m 3 
diameter, m 
hydraulic equivalent diameter, m 
particle diameter, m 
diffusion coefficient for system A-B, m 2/s / 

drag force, N 
friction factor 
mass velocity, kg /m 2. s 
acceleration of gravity, m/s  2 
Chilton-Colburn j -  factor for heat transfer 
Chilton-Colburn j - fac tor  for mass transfer 
thermal conductivity, W/m.  K 
mass transfer coefficient, m/s  
length, m 
mass, kg 
mass flow rate, kg/s  
molecular weight, kg/kmol 
molar flow rate, kmol/s 
pressure, Pa 
heat transfer rate, W 
volumetric flow rate, m3/s 
heat flux, W/m 2 
gas constant, J/mol. K 
temperature, ~ or K 
time, s 
volume~ m 3 
velocity, m/s 
superficial velocity, m/s 
terminal velocity, m/s 
work, J; width, m 
rate of work, W 
rectangular coordinate, m 

difference 
porosity 
surface roughness of the pipe, m 
viscosity, kg/m. s 
kinematic viscosity, m2/s 
density, kg /m 3 
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Overlines 

Bracket  

(a) 

Superscript 

sat 

Subscripts 

A , B  
b 
c 

ch 

f 
i 
in 
L M  
o u t  

pb 
w 

cx3 

per mole 
per unit mass 

average value of a 

saturation 

species in binary systems 
bulk 
transition from laminar to turbulent 
characteristic 
film 
species in multicomponent systems 
inlet 
log-mean 
out 
packed bed 
wall or surface 
free-stream 

Dimensionless Numbers 

Ar 
Pr 
Nu 
Re 
ReD 
Reh 
ReL 
Rex 
Sc 
Sh 
Stn 
StM 

Archimedes number 
Prandtl number 
Nusselt number 
Reynolds number 
Reynolds number based on the diameter 
Reynolds number based on the hydraulic equivalent diameter 
Reynolds number based on the length 
Reynolds number based on the distance x 
Schmidt number 
Sherwood number 
Stanton number for heat transfer 
Stanton number for mass transfer 
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P R O B L E M S  

4.1 Air at atmospheric pressure and 200 ~ flows at 8 m / s  over a flat plate 150 cm 
long in the direction of flow and 70 cm wide. 

a) Estimate the rate of cooling of the plate so as to keep the surface temperature 
at 30 ~ 
b) Calculate the drag force exerted on the plate. 

(Answer:  a) 1589 W b) 0.058 N) 

4.2 Water at 15 ~ flows at 0.15 m / s  over a flat plate 1 m long in the direction of 
flow and 0.3 m wide. If energy is transferred from the top and bottom surfaces of the 
plate to the flowing stream at a steady rate of 3500 W, determine the temperature 
of the plate surface. 

(Answer:  35 ~ 
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4.3 Fins are used to increase the area available for heat transfer between metal 
walls and poorly conducting fluids such as gases. A simple rectangular fin is shown 
below. 

x 

L.'" 
~ Z  

L 

If one assumes, 

�9 T -  T(z)  only, 

�9 No heat is lost from the end or from the edges, 

�9 The average heat transfer coefficient, (hi, is constant and uniform over the 
entire surface of the fin, 

�9 The thermal conductivity of the fin, k, is constant, 

�9 The temperature of the medium surrounding the fin, Too, is uniform, 

�9 The wall temperature, Tw, is constant, 

the resulting steady-state temperature distribution is given by 

T - T ~  c~ [A (1 - L ) ]  

T~, - Too cosh A 

where 

A = ~/2(h)L2kB 

If the rate of heat loss from the fin is 478 W, determine the average heat transfer co- 
efficient for the following conditions" Too = 175 ~ T~ = 260 ~ k = 105 W / m .  K; 
L = 4cm; W -  30cm; B - 5ram. 

(Answer :  400 W/m2.  K) 
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4.4 Consider the rectangular fin given in Problem 4.3. One of the problems 
of practical interest is the determination of the optimum values of B and L to 
maximize the heat transfer rate from the fin for a fixed volume, V, and W. Show 
that the optimum dimensions are given as 

Bopt ~ ( ( h w 2V 2 ) 
1/3 ( kV )1/3 

and Lopt ~" ~ - ~  

4.5 Consider the rectangular fin given in Problem 4.3. If a laminar flow region 
exists over the plate, show that the optimum value of W for the maximum heat 
transfer rate from the fin for a fixed volume, V, and thickness, B, is given by 

Wopt --1.2 V4/5B-6/5 [(~-~) prl/3 v ~  ] 
2 / 5  

where k / i s  the thermal conductivity of the fluid. 

4.6 A thin aluminum fin (k = 205 W / m .  K) of length L = 20 cm has two ends 
attached to two parallel walls which have temperatures To = 100 ~ and TL = 90 ~ 
as shown in the figure below. The fin loses heat by convection to the ambient air 
at Too = 30~ with an average heat transfer coefficient of (h / = 120W/m2.  K 
through the top and bottom surfaces (heat loss from the edges may be considered 
negligible). 

/ J o I ' 

I - "  s"  . r | 

':,'~ > z B =0.25 mm , , ' "  ! 

L = 20 cm 

One of your friends assumes that there is no internal generation of energy within 
the fin and determines the steady-state temperature distribution within the fin as 

T - T ~  
To-Too 

= e Nz -- 2gt sinh Nz 
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in which N and ~t are defined as 

~/2(h) 
N = V k B  

To - Too 
2 sinh NL 

a) Show that there is indeed no internal generation of energy within the fin. 
b) Determine the location and the value of the minimum temperature within the 
fin. 

(Answer:  z = 0.1 cm, T = 30.14 ~ 

4.7 Rework Example 4.8 by using the Ranz-Marshall correlation, Eq. (4.3-33), 
the Frossling correlation, Eq. (4.3-34), and the modified Frossling correlation, Eq. 
(4.3-35). Why are the resulting Sherwood numbers differ significantly from the 
value of 541? 

4.8 In an experiment carried out at 20 ~ a glass sphere of density 2620 kg /m 3 
falls through carbon tetrachloride (p = 1590 kg /m 3 and tt = 9.58 x 10 -4 kg/m.  s) 
with a terminal velocity of 65 cm/s. Determine the diameter of the sphere. 

(Answer:  21 mm) 

4.9 A CO2 bubble is rising in a glass of beer 20cm tall. Estimate the time 
required for a bubble of 5 mm in diameter to reach the top if the properties of CO2 
and beer can be taken as equal to that of air and water, respectively. 

(Answer:  0.54 s) 

4.10 Show that the use of the Dittus-Boelter correlation, Eq. (4.5-26), together 
with the Chilton-Colburn analogy, Eq. (3.5-12), yields 

f ~_ 0.046 Re -~ 

which is a good power-law approximation for the friction factor in smooth circular 
pipes. Calculate f for Re- -  105, 106 and l0 T using this approximate equation 
and compare the values with the ones obtained by using the Chen correlation, Eq. 
(4.5-16). 

4.11 For laminar flow of an incompressible Newtonian fluid in a circular pipe, 
Eq. (4.5-12) indicates that the pressure drop is proportional to the volumetric flow 
rate. For fully turbulent flow show that the pressure drop in a pipe is proportional 
to the square of the volumetric flow rate. 

4.12 The purpose of the blood pressure in a human body is to push blood to 
the tissues of the organism so that they can perform their function. Each time 
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the heart beats, it pumps out blood into the arteries. The blood pressure reaches 
its maximum value, i.e., systolic pressure, when the heart contracts to pump the 
blood. In between beats, the heart is at rest and the blood pressure falls down to 
a minimum value, diastolic pressure. An average healthy person has systolic and 
diastolic pressures of 120 and 80mmHg, respectively. Human body has about 5.6 
L of blood. If it takes 20 s for blood to circulate throughout the body, estimate the 
power output of the heart. 

(Answer :  3.73 W) 

4.13 Water is in isothermal turbulent flow at 20 ~ through a horizontal pipe 
of circular cross-section with 10cm inside diameter. The following experimental 
values of velocity are measured as a function of radial distance r: 

r Uz 

(cm) ( m / s )  

0.5 0.394 
1.5 0.380 
2.5 0.362 
3.5 0.337 
4.5 0.288 

The velocity distribution is proposed in the form 

Vz - - V m a  x 1 - ~  

where V m a  x is the maximum velocity and R is the radius of the pipe. Calculate 
the pressure drop per unit length of the pipe. 

(Answer :  12.3 P a / m )  

4.14 In Example 4.15, the length to diameter ratio is expressed as 

1 1  
= 4 St---H In 

Use the Chilton-Colburn analogy, i.e., 

f = StH Pr 2/3 
2 

and evaluate the value of L/D. Is it a realistic value? Why? 

4.15 Water at 10~ enters a circular pipe of internal diameter 2.5cm with a 
velocity of 1.2 m/s .  Steam condenses on the outside of the pipe so as to keep the 
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surface temperature of the pipe at 82 ~ If the length of the pipe is 5 m, determine 
the outlet temperature of water. 

(Answer:  51 ~ 

4.16 Dry air at I atm pressure and 50 ~ enters a circular pipe of 12 cm internal 
diameter with an average velocity of 10cm/s.  The inner surface of the pipe is 
coated with a thin absorbent material which is soaked with water at 20 ~ If the 
length of the pipe is 6 m, calculate the amount of water vapor carried out of the 
pipe per hour. 

(Answer:  0.067kg/h) 

4.17 A column with an internal diameter of 50 cm and a height of 2 m is packed 
with spherical particles of 3 mm in diameter so as to form a packed bed with 
e = 0.45. Estimate the power required to pump a Newtonian liquid (# - 70 x 
10 -3 kg /m.s ;  p = 1200 k g / m  3) through the packed bed at a mass flow rate of 
1.2kg/s.  

(Answer:  39.6 W) 

4.18 The drag force, FD, is defined as the interfacial transfer of momentum from 
the fluid to the solid. In Chapter 3, power, I~, is given by Eq. (3.1-11) as 

I/V = FD Vch (i) 

For flow in conduits, power is also expressed by Eq. (4.5-2) in the form 

= Q IAPt (2) 

a) For flow in a circular pipe, the characteristic velocity is taken as the average 
velocity. For this case, use Eqs. (1) and (2) to show that 

FD -- A IAPI (3) 

where A is the cross-sectional area of the pipe. 

b) For flow through packed beds, the characteristic velocity is taken as the actual 
average velocity or, interstitial velocity, i.e., 

Vo 
- - ( 4 )  

C 

in which Vo is the superficial velocity and e is the porosity of the bed. Show that 

FD = eA  IAPI (5) 

where A is the cross-sectional area of the packed bed. 
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c) In fluidization, the drag force on each particle should support its effective weight, 
i.e., weight minus buoyancy. Show that the drag force is given by 

FD -- A L ( 1  - e ) ( p p  - p )g  e 

where L is the length of the bed, p and p p  are the densities of the fluid and solid 
particle, respectively. Note that in the calculation of the buoyancy force, the volume 
occupied by solid particles should be multiplied by the density of suspension, i.e., 
ep + (1 -e.)pp, instead of p. 

Combine Eqs. (5) and (6) to get 

IAPL 
= g ( 1  - - p)  (7 )  

which is a well-known equation in fluidization. 

4.19 A 15 • 90 m lawn is covered by a layer of ice of 0.15 mm thick at - 4 ~ The 
wind at a temperature of 0 ~ with 15% relative humidity blows in the direction 
of the short side of the lawn. If the wind velocity is 10m/s,  estimate the time 
required for the ice layer to disappear by sublimation under steady conditions. 
The vapor pressure and the density of ice at - 4 ~ are 3.28 mmHg and 917 kg /m 3, 
respectively. 

(Answer:  33 min) 
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Chapter 5 

Rate of Generation in 
Momentum,  Energy and 
Mass Transfer 

In Chapter 1, the generation rate per unit volume is designated by ~. Integration 
of this quantity over the volume of the system gives the generation rate in the 
conservation statement. In this chapter, explicit expressions for ~ will be developed 
for the cases of momentum, energy, and mass transport. 

5.1 R A T E  OF G E N E R A T I O N  IN M O M E N T U M  
T R A N S P O R T  

In general, forces acting on a particle can be classified as surface forces and body 
forces. Surface forces, such as, normal stresses (pressure) and tangential stresses, 
act by direct contact on a surface. Body forces, however, act at a distance on a 
volume. Gravitational, electrical and electromagnetic forces are examples of body 
forces. 

For solid bodies Newton's second law of motion states that 

Summation of forces ) 
acting on a system 

Time rate of change of ) 
momentum of a system 

(5.1-1) 

in which forces acting on a system include both surface and body forces. Equa- 
tion (5.1-1) can be extended to fluid particles by considering the rate of flow of 

133 
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momentum into and out of the volume element, i.e., 

( R a t e o f  / ( Rate of / / Summation of forces ) 
momentum in - momentum out + acting on a system 

( Time rate of change of ) 
- momentum of a system (5.1-2) 

On the other hand, for a given system, the inventory rate equation for momentum 
can be expressed as 

( Rateof / / _ Rate of 
momentum in momentum out 

+ ( Rate of momentum 
generation / 

_ _ ( Rate of momentum ) 
accumulation (5.1-3) 

Comparison of Eqs. (5.1-2) and (5.1-3)indicates that 

( R a t e  of momentum ) -  (Summation of forces ) ( 5 . 1 - 4 )  
generation acting on a system 

in which the forces acting on a system are the pressure force (surface force) and 
the gravitational force (body force). 

5 .1.1 M o m e n t u m  G e n e r a t i o n  As  a R e s u l t  o f  G r a v i t a t i o n a l  
F o r c e  

Consider a basketball player holding a ball in his hands. When he drops the ball, 
it starts to accelerate as a result of gravitational force. According to Eq.(5.1-4), 
the rate of momentum generation is given by 

Rate of momentum generation = Mg (5.1-5) 

where M is the mass of the ball and g is the gravitational acceleration. Therefore, 
the rate of momentum generation per unit volume, ~, is given by 

[ - p g[ (5. 

5.1.2  M o m e n t u m  G e n e r a t i o n  As  a R e s u l t  o f  P r e s s u r e  F o r c e  

Consider the steady flow of an incompressible fluid in a pipe as shown in Figure 5.1. 
The rate of mechanical energy required to pump the fluid is given by Eq. (4.5-3) 
a s  

1~ = FD{v) = Q [AP[ (5.1-7) 

Since the volumetric flow rate, Q, is the product of average velocity, (v}, with the 
cross-sectional area, A, Eq. (5.1-7) reduces to 

A lAP[ - FD = 0 (5.1-8) 
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System boundary 

F igu re  5.1 Flow through a pipe. 

For the system whose boundaries are indicated by a dotted line in Figure 5.1, 
the conservation of mass states that 

m~ -mo~t (5.1-9) 

or, 

(p(vlA)i,~ = (p(vlA)out (v>in = (V}o,a (5.1-10) 

On the other hand, the conservation statement for momentum, Eq. (5.1-3), takes 
the form 

( R a t e o f )  ( Rate of ) ( Rate of momentum ) 
momentum in - momentum out + generation = 0 

and can be expressed as 

(rh(v))~,~ -[(m(V))o~,t + FD] + ~ (AL) = 0 (5.1-12) 

where ~ is the rate of momentum generation per unit volume. Note that the rate 
of momentum transfer from the fluid to the pipe wall manifests itself as a drag 
force. The use of Eqs. (5.1-9) and (5.1-10)simplifies Eq. (5.1-12) to 

(AL) - FD = 0 (5.1-13) 

Comparison of Eqs. (5.1-8) and (5.1-13) indicates that  the rate of momentum 
generation per unit volume is equal to the pressure gradient, i.e., 

L 
(5.1-14) 

5.1.3 M o d i f i e d  P r e s s u r e  

Equations (5.1-6) and (5.1-14) indicate that the presence of pressure and/or gravity 
forces can be interpreted as a source of momentum, in fluid mechanics, it is 
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customary to combine these two forces in a single term and express the rate of 
momentum generation per unit volume as 

L 

where P is the modified pressure 1 defined by 

= P + pgh (5.1-16) 

in which h is the distance measured in the direction opposite to gravity from any 
chosen reference plane. 

5.1.3.1 P h y s i c a l  i n t e r p r e t a t i o n  of t he  modi f i ed  p r e s s u r e  

Consider a stagnant liquid in a storage tank open to the atmosphere. Let z be the 
distance measured from the surface of the liquid in the direction of gravity. The 
hydrostatic pressure distribution within the fluid is given by 

P = Patm + pgz (5.1-17) 

For this case the modified pressure is defined as 

P = P -  pgz (5.1-18) 

Substitution of Eq. (5.1-18) into Eq. (5.1-17) gives 

P = Patm = constant (5 

The simplicity of defining the modified pressure comes from the fact that it is 
always constant under static conditions whereas the hydrostatic pressure varies as 
a function of position. Suppose that you measure a pressure difference over a length 
L of a pipe. It is difficult to estimate whether this pressure difference comes from 
a flow situation or hydrostatic distribution. However, any variation in 7 ) implies a 
flow. Another distinct advantage of defining modified pressure is that  the difference 
in "P is independent of the orientation of the pipe as shown in Table 5.1. 

5.2 R A T E  OF G E N E R A T I O N  IN  E N E R G Y  
T R A N S P O R T  

Let us consider the following paradox: "One of the most important problems that 
the world faces today is energy shortage. According to the first law of thermodynam- 
ics, energy is converted from one form to another and transferred from one system 
to another but its total is conserved. I f  energy is conserved, then there should be 
no energy shortage." 

1 The  term 7 ) is also called equivalent pressure, dynamic  pressure and piezometr ic  pressure.  



5.2. R A T E  OF G E N E R A T I O N  IN  E N E R G Y  T R A N S P O R T  137 

Table  5.1 Pressure difference in flow through a pipe with different orientation. 

Geometry 79A -- 79B PA -- PB 

~ - - L - - A  

A B 
bLOW �9 . . . . . .  ~ . . . . . . .  

(Prn - p)gH (Pm - p)gH 

J 

(Pro - p )gH + pgL sin 0 

T 
L 

1 

FLOW 

A_ 

(Pro - p)gH (P,n - p )gH + pgL 

The answer to this dilemma lies in the fact that  although energy is conserved, 
its ability to produce useful work decreases steadily as a result of the irreversibilities 
associated with the transformation of energy from one form into another 2. These 
irreversibilities give rise to energy generation within the system. Typical examples 

2 N o t e  t h a t  1 ,000  J a t  1 0 0 ~  is m u c h  m o r e  v a l u a b l e  t h a n  1 ,000  J a t  20  ~  
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are the degradation of mechanical energy into thermal energy during viscous flow 
and degradation of electrical energy into thermal energy during transmission of an 
electric current. 

Generation of energy can also be attributed to various other factors such as 
chemical and nuclear reactions, absorption radiation, and presence of magnetic 
fields. Energy generation as a result of chemical reaction will be explained in detail 
in Chapter 6. 

The rate of energy generation per unit volume may be considered constant in 
most cases. If it is dependent on temperature, it may be expressed in various forms 
s u c h  a s  

a + b T  
= (5.2-1) 

~o eaT 

where a and b are constants. 

5.3 R A T E  OF G E N E R A T I O N  IN M A S S  
T R A N S P O R T  

5 . 3 . 1  S t o i c h i o m e t r y  o f  a C h e m i c a l  R e a c t i o n  

Balancing of a chemical equation is based on the conservation of mass for a closed 
thermodynamic system. If a chemical reaction takes place in a closed container, the 
mass does not change even if there is an exchange of energy with the surroundings. 

Consider a reaction between nitrogen and hydrogen to form ammonia, i.e., 

N2 + 3 H2 = 2NH3 (5.3-1) 

If A1 = N2, A2 = H2 and A3 = NH3, Eq. (5.3-1) is expressed as 

A1 + 3 A2 = 2 A3 (5.3-2) 

It is convenient to write all the chemical species on one side of the equation and give 
a positive sign to the species which are regarded as the products of the reaction. 
Thus, 

2 A3 - A1 - 3 A2 = 0 (5.3-3) 

or, 
8 

aiAi  = 0 (5.3-4) 
i--1 

where ai is the stoichiometric coefficient of i th chemical species (positive if species 
is a product, negative if species is a reactant), s is the total number of species in the 
reaction, and A~ is the chemical symbol for the i th chemical species, representing 
the molecular weight of species. 
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Each chemical species, Ai, is the sum of the chemical elements, Ej,  such that  

t 

Ai = ~-~,/~ji Ej (5.3-5) 
j--1 

where ~ji represents the number of chemical elements Ej in the chemical species 
Ai, and t is the total number of chemical elements. Substitution of Eq. (5.3-5) 
into Eq. (5.3-4) gives 

= 0 

i--1 j--1 j = l  i=1 

(5.3-6) 

Since all the Ej are linearly independent 3, then 

~ a ~ / ~ i  - 0 

i--1 

j -- 1, 2, ..., t (5.3-7) 

Equation (5.3-7) is used to balance chemical equations. 

E x a m p l e  5.1 Consider the reaction between N2 and H2 to form NH3 

0~1 N2 -b o~2 H2 q- a 3  NHa = 0 

Show how one can apply Eq. (5.3-7) to balance this equation. 

S o l u t i o n  

If  A1 =-N2, A2 -H 2  and A3 --NH3, the above equation can be expressed as 

a l  A l  q- a2 A2 q- a3 A3 ~- O (1) 
If we let E1 = N (j = 1) and E2 = H (j = 2), then Eq. (5.3-7) becomes 

al E11 + a2 El2 ~- oz3 El3 - 0 for j = 1 (2) 

a l  E21 + a2 E22 + a3 E23 - 0 for j = 2 (3) 

3 The  expression 
n 

E ~ i X i  --- Or 1 ~ ~ 2 X 2  Jr- . . .  Jr- O t n X  n 

i - - 1  

where {c~1,a2, . . . , an}  is a set of scalars, is called a linear combination of the elements  of the  set 
S - {Xl,X2, . . . ,xn} .  The  elements of the set S is said to be linearly dependent if there  exists a set 
of scalars {az,  a2,  ..., a n }  with elements cq n o t  all equal  to zero, such tha t  the  linear combinat ion 

n n 

a i x i  -- 0 holds. If ~ aixi  -= 0 holds for all a i  -- 0, then the set S is linearly independent. 
i - - 1  i - - 1  
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or~ 

~1 (2) + 0/2(0) -+- ~3(1)  -- 0 (4) 

Oil (0) -~- a2(2) + a3(3) -- 0 (5) 

Solutions of Eqs. (~) and (5) give 

1 3 
O/1 =-- - -  ~ 0/3 0/2 - -  - -  ~ C~3 ( 6 )  

If  we take a3 -- 2, then al - - 1  and c~2 = -  3. Hence, the reaction becomes 

N2 -+- 3 H2 = 2 NH3 

C o m m e n t :  Stoichiometric coefficients have units. For example, in the above 
equation the stoichiometric coefficient of H2 indicates that there are 3 moles of H2 
per mole of N2. 

5 . 3 . 2  T h e  L a w  o f  C o m b i n i n g  P r o p o r t i o n s  

Stoichiometric coefficients have the units of moles of i per mole of basis species, 
where basis species is arbitrarily chosen. The law of combining proportions states 
that 

or~ 

moles of i reacted 
(moles of / /mole  of basis species) 

-- moles of basis species (5.3-8) 

n i  - -  rtio 
= e (5.3-9) 

(~i 

where e is called the molar extent of the reaction 4. Rearrangement of Eq. (5.3-9) 
gives 

]ni = nio + ai e ] (5.3-10) 

Note that once e has been determined, the number of moles of any chemical species 
participating in the reaction can be determined by using Eq. (5.3-10). 

The molar extent of the reaction should not be confused with the fractional 
conversion variable, X ,  which can only take values between 0 and 1. The molar 
extent of the reaction is an extensive property measured in moles and its value can 
be greater than unity. 

It is also important to note that the fractional conversion may be different for 
each of the reacting species, i.e., 

Xi 
n i o  - n i  

n i o  
(5.3-11) 

4The term e has been given various names in the literature, such as, degree of advancement, 
reaction of coordinate, degree of reaction and progress variable. 
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On the other hand, molar extent is unique for a given reaction. 
Eqs. (5.3-10)and (5.3-11)indicates that 

Comparison of 

nio 
~--  X (5.3-12) 

The total number of moles, nT, of a reacting mixture at any instant can be 
calculated by the summation of Eq. (5.3-10) over all species, i.e., 

n T  - -  nTo + ~ C (5.3-13) 

where nTo is the initial total number of moles and ~ - ~-]~ hi. 

E x a m p l e  5.2 A system containing 1 mol A1, 2 mol A2 and 7 mol A3 undergoes 
the following reaction 

Al(g) + A2(g) + 3/2A3(g) ~ A4(g)+ 3 As(g) 

Determine the limiting reactant and fractional conversion with respect to each re- 
actant if the reaction goes to completion. 

Solut ion 

Since n~ >_ O, it is possible to conclude from Eq. (5.3-10) that the limiting reactant 
has the least positive value of n ~ o / ( - ~ ) .  The values given in the following table 
indicate that the limiting reactant is A1. 

Species nio / ( -  hi) 

A1 1 
A2 2 
A3 4.67 

Note that the least positive value of n i o / ( - h i )  is also the greatest possible value 
of ~. Since the reaction goes to completion, species A1 will be completely depleted 
and ~ = 1. Using Eq. (5.3-12), fractional conversion values are given as follows: 

Species X 

A1 1 
A2 0.50 
A3 0.21 

E x a m p l e  5.3 A system containing 3 tool A1 and 4 tool A2 undergoes the fol- 
lowing reaction 

2 A1 (g) + 3 A2(g) ~ A3(g) + 2 A4(g) 

Calculate the mole fractions of each species if e - 1.1. What is the fractional 
conversion based on the limiting reactant? 
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Solut ion  

Using Eq. (5.3-10), the number of moles of each species is expressed as 

nl = 3 - 2 E = 3 - ( 2 ) ( 1 . 1 ) - 0 . S m o l  

n2 = 4 -  3~ = 4 - ( 3 ) ( 1 . 1 )  - 0.7tool 

n3 - ~ = 1.1tool 

n4 = 2 c -  (2 ) (1 .1 )=  2.2mol 

Therefore, the total number of moles is 4.8 moles and the mole fraction of each 
species is 

0.8 
xl = ~ = 0.167 

0.7 
x2 = ......... 0.146 

4.8 
1.1 

x3 = ~ = 0.229 

2.2 
= O.458 x4 = 4.8 

The fractional conversion, X ,  based on the limiting reactant A2 is 

4 - 0 . 7  
X = = 0.825 

4 

Molar concentration of the i th species, ci, is defined by 

n~ (5.3-14) Ci - - V  

Therefore, division of Eq. (5.3-10) by the volume V gives 

or, 

n i  nio 
- + a~ (5.3-15) V - v  V 

where cio is the initial molar concentration of the i th species and ~ is the intensive 
extent of the reaction in moles per unit volume. Note tha t  ~ is related to conversion, 
X, by 

ci~~ Xi (5.3-17) 

The total  molar concentration, c, of a reacting mixture at any instant can be 
calculated by the summat ion of Eq. (5.3-16) over all species, i.e., 



5.3. R A T E  OF G E N E R A T I O N  IN M A S S  T R A N S P O R T  143 

where Co is the initial total  molar concentration. 
When more than one reaction takes place in a reactor, Eq. (5.3-10) takes the 

form 
m m 

(5.3-19) 

where 

n i j  - -  number of moles of i t h  species in the jth reaction 

nijo -- initial number of moles of i th species in the jth reaction 

c~ij - stoichiometric coefficient of i th species in the j th reaction 

6j = extent of the jth reaction 

Summation of Eq. (5.3-19) over all reactions taking place in a reactor gives 

or~ 

J J J 

ni - - n i  o - J r - ~  O~ijCj 

J 
(5.3-21) 

E x a m p l e  5.4 The following two reactions occur simultaneously in a batch reac- 
tor: 

C2H6 - C2H4 + H2 

C2H6 + H2 -- 2 CH4 

A mixture of 85 tool % C2H6 and 15% inerts is fed into a reactor and the reactions 
proceed until 25% C2H4 and 5% CH4 are formed. Determine the percentage of each 
species in a reacting mixture. 

S o l u t i o n  

Basis: 1 mole of a reacting mixture 

Let cl and E2 be the extents of the first and second reactions, respectively. Then, 
the number of moles of each species can be expressed as 

nC2H6 = 0.85 -- 61 -- 62 

n C 2 H  a ~ 61 

?ZH 2 ~ 61 - -  ~2  

r i C H  4 - -  2 g2  

ninert - -  0.15 

The total number of moles, nT, is 

n T - - 1 + ~ l  
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The mole fractions of C2H4 and CH4 are given in the problem statement. These 
values are used to determine the extent of the reactions as 

= 0.25 ~ ~ ' 1  = 0.333 X C 2 H 4  = 1 + E1 

2 ~ 2  
- = 0.05 ~ s2 = 0.033 

X C H 4  - -  1 + sl  

Therefore, the mole fractions of C2H6, H2 and the inerts are 

0.85 - S l - s2 0.85 - 0.333 - 0.033 
= 0.363 xC2H6 - -  1 + el 1 + 0.333 

g ' l  - -  S 2  0.333 - 0.033 
X H  2 - -  - -  --- 0 . 2 2 5  

1 + el 1 + 0.333 
0.15 

xin~rt = = O. 112 
1 + 0.333 

5 . 3 . 3  R a t e  o f  R e a c t i o n  

The rate  of a chemical reaction, r, is defined by 

r - - "  

1 ds 

V dt 
(5.3-22) 

where V is the volume physically occupied by the reacting fluid. Since both  V and 
ds/dt  are positive, the reaction rate is intrinsically positive. Note tha t  the reaction 
rate has the units of moles reacted per unit t ime per unit volume of the reaction 
mixture.  The reaction rate expression, r, has the following characteristics: 

�9 It is an intensive property, 

�9 It is independent of the reactor type, 

�9 It is independent of a process. 

Changes in the molar extent of the reaction can be related to the changes in 
the number of moles of species i by differentiating Eq. (5.3-10). The result is 

ds - 1 d n i  (5.3-23) 
OLi 

Subst i tut ion of Eq. (5.3-23)into Eq. (5.3-22) gives 

r - -  

1 1 dn~ 

a~ V dt 
(5.3-24) 

If the rate  of generation of species i per unit volume, ~i,  is defined by 

1 dni 

]r = V dt 
(5.3-25) 
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then 

Therefore, ~i is negative if i appears as a reactant; ~i is positive if i is a product. 

E x a m p l e  5.5 For the reaction 

3 A - - ~ B + C  

express the reaction rate in terms of the time rate of change of species .4, B, and 
C. 

Solut ion 

Application of Eq. (5.3-2~) gives the rate as 

1 1 dnA 1 dn8 1 dnc 
r =  3 V dt = V  dt = V  dt (1) 

If  V is constant, then Eq. (1) reduces to 

1 dcA dcB dcc 
r =  3 dt = dt = dt (2) 

C o m m e n t :  The rate of reaction is equal to the time derivative of a concentration 
only when the volume of the reacting mixture is constant. 

In the case of several reactions, ~i is defined by 

~.i -- E (~ij rj 
J 

(5.3-27) 

where rj is the rate of jth reaction. 
The reaction rate is a function of temperature and concentration and is assumed 

to be the product of two functions, one is dependent only on the temperature and 
the other is dependent only on the concentration, i.e., 

r(T, c~) -- k (T) f (c i )  (5.3-28) 

The function k(T) is called the rate constant and its dependence on the temperature 
is given by 

k(T) = A Tme - E/nT (5.3-29) 

where A is a constant, $ is the activation energy, T~ is the gas constant and T is 
the absolute temperature. The power of temperature, m, is given by 

0 from the Arrhenius relation 
m = 1/2 from the kinetic theory of gases (5.3-30) 

1 from statistical mechanics 
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In engineering practice the Arrhenius relation, i.e., 

k(T) - A e-  S/nT (5.3-31) 

is generally considered valid 5 and the rate constant can be determined by running 
the same reaction at different temperatures. The data from these experiments are 
found to be linear on a semi-log plot of k versus 1/T. 

The function f (ci) depends on the concentration of all the species in the chem- 
ical reaction. Since the reaction rate is usually largest at the start  of the reaction 
and eventually decreases to reach a zero-rate at equilibrium, the function f(ci)  is 
taken to be a power function of the concentration of the reactants. 

If f(ci)  were a power function of the products of the reaction, the reaction 
rate would increase, rather than decrease with time. These reactions are called 
autocatalytic. 

For normal decreasing rate reactions 

~, (5.3-32) f(c,) = H 
i 

where ci is the concentration of a reactant. Thus, the constitutive equation for the 
reaction rate is 

~ (5.3-33) r -  k H c  i 
i 

The order of a reaction, n, refers to the powers to which the concentrations are 
raised, i.e., 

n - E 7i (5.3-34) 
i 

It should be pointed out that  there is no necessary connection between the order 
and the stoichiometry of the reaction. 

N O T A T I O N  

A area, m 2 
c concentration, k m o l / m  3 
$ activation energy, k J / k m o l  
FD drag force, N 
g acceleration of gravity, m / s  u 
h elevation, m 
k reaction rate constant 
L length, m 

5Deviations from the Arrhenius relationship are discussed by Maheswari and Akella (1988). 



N O T A T I O N  147 

M 
rh 
?2 

n i j  

P 
P 
Q 
r 

T 
t 
V 
Y 

X 

Xi 

Z 

O~i 

(~ij 

A 
C 

P 
P m  

mass, kg 
mass flow rate, kg/s  
number of moles, kmol 
number of moles of i th species in the j th reaction 
pressure, Pa 
modified pressure, Pa 
volumetric flow rate, ma/s  
rate of a chemical reaction, kmol/m 3. s 
rate of generation (momentum, energy, mass) per unit volume 
temperature, ~ or K 
time, s 
volume, m 3 
velocity, m / s  
rate of work, W 
fractional conversion 
mole fraction of species i 
rectangular coordinate, m 

stoichiometric coefficient of species i 
stoichiometric coefficient of ith species in the jth reaction 
~'~i OLi 
difference 
molar extent of a reaction, kmol 
intensive extent of a reaction, kmol/m 3 
density, kg /m 3 
density of manometer fluid, kg /m 3 

Bracke t  

(a) average value of a 

Subscr ip ts  

a tm atmospheric 
in  inlet 
o initial 
out out 
T total 

R E F E R E N C E  
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Chapter 6 

Steady-State Macroscopic 
Balances 

The use of correlations in the determination of momentum, energy and mass trans- 
fer from one phase to another under steady-state conditions was covered in Chap- 
ter 4. Although some examples of Chapter 4 make use of steady-state macroscopic 
balances, systematic treatment of these balances for the conservation of chemical 
species, mass and energy was not presented. The basic steps in the development 
of steady-state macroscopic balances are as follows: 

�9 Define your system: A system is any region which occupies a volume and has 
a boundary. 

�9 If possible, draw a simple sketch: A simple sketch helps in the understanding 
of the physical picture. 

�9 List the assumptions: Simplify the complicated problem to a mathematically 
tractable form by making reasonable assumptions. 

�9 Write down the inventory rate equation for each of the basic concepts relevant 
to the problem at hand: Since the accumulation term vanishes for steady-state 
cases, macroscopic inventory rate equations reduce to algebraic equations. 
Note that in order to have a mathematically determinate system, the number 
of independent inventory rate equations must be equal to the number of 
dependent variables. 

�9 Use engineering correlations to evaluate the transfer coefficients: In macro- 
scopic modeling, empirical equations that represent transfer phenomena from 
one phase to another contain transfer coefficients, such as the heat transfer 
coefficient in Newton's law of cooling. These coefficients can be evaluated by 
using engineering correlations given in Chapter 4. 

�9 Solve the algebraic equations. 

149 
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6.1 C O N S E R V A T I O N  OF C H E M I C A L  
S P E C I E S  

The inventory rate equation given by Eq. (1.1-1) holds for every conserved quantity 
~. Therefore, the conservation statement for the mass of the i th chemical species 
under steady conditions is given by 

( R a t e  of mass ) (  Rate of mass ) (  Rate of generation ) 
of i in - of i out + of mass i = 0 (6.1-1) 

The mass of i may enter or leave the system by two means: (i) by inlet or outlet 
streams, (ii) by exchange of mass between the system and its surroundings through 
the boundaries of the system, i.e., interphase mass transfer. 

/ (mi)int / 
Oni)in SYSTEM Ohi)out 

Figu re  6.1 Steady-state flow system with fixed boundaries. 

For a system with a single inlet and a single outlet stream as shown in Figure 
6.1, Eq. (6.1-1) can be expressed as 

(m~)~ - (m')~ + (m')'"' + ( ~ " ' J ~ J )  M'V~" = ~ j (6.1-2) 

in which the molar rate of generation of species i per unit volume, ~ ,  is expressed 
by Eq. (5.3-27). The terms (the)i, ~ and (Thi)out represent the inlet and outlet mass 
flow rates of species i, respectively, and AJi is the molecular weight of species i. 
The interphase mass transfer rate, (rhi)i,a, is expressed as 

(rh~)~,~ t = Au(k~ )  (Ac~)r h .M~ (6.1-3) 

where (Aci)ch is the characteristic concentration difference. Note that  (rhi)int is 
considered positive when mass is added to the system. 

As stated in Section 2.4.1, the mass flow rate of species i, rhi, is given by 

7hi = p , (v)A = piQ (6.1-4) 
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Therefore, Eq. (6.1-2) takes the form 

(QPi)i~ - (QP~)o~, :l: Au(kc) (Aci)ch Mi + ( ~  aijrj) MiV~y~ - 0 
. . . . . . . . . . . . . . . . .  

. . . . .  

(6.1-5) 

Sometimes it is more convenient to work on molar basis. Division of Eqs. (6.1-2) 
and (6.1-5) by the molecular weight of species i, J~4i, gives 

(~)~ - (~)~ + (~)~ + ( ~  ~J ~J) ~ = ~  j (6.1-6) 

and 

= 0  (6.1-7) 

where ni and ci are the molar flow rate and molar concentration of species i, 
respectively. 

E x a m p l e  6.1 The liquid phase reaction 

A + 2 B  --, C + 2D 

takes place in an isothermal, constant-volume stirred tank reactor. 
reaction is expressed by 

The rate of 

r ~- k CAC B w i t h  k = 0.025 L/mol. min 

The feed stream consists of equal concentrations of species A and B at a value 
of 1 mol/L. Determine the residence time required to achieve 60% conversion of 
species B under steady conditions. 

Solut ion 

Assumption 

1. As a result of perfect mixing, concentrations of species within the reactor are 
~ f o ~ m ,  ~. ~., (~)o~ = ( ~ ) ~ .  
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A n a l y s i s  

System: Contents of the reactor 

Since the reactor volume is constant, the inlet and outlet volumetric flow rates are 
the same and equal to Q. Therefore, the inventory rate equation for conservation 
of species B, Eq. (6.1-7), becomes 

Q(cB)in -- QCB~,8 -- (2kCAsusCB.u.)Vsys = 0 (1) 

where CAius and cBs~s represent the molar concentration of species A and B in the 
reactor, respectively. Dropping the subscript "sys" and defining the residence time, 
7, as 7 -  V/  Q reduces Eq. (1) to 

(CB)in  -- CB -- (2 ]g CACB)T --  0 (2) 

or, 

T = ( C B ) i , ~  - C B  (3) 
2 k C A C B  

Using Eq. (5.3-17), the extent of the reaction can be calculated as 

(cB)~ XB ~-  ( _ ~ )  

_ (1)(0.6) = 0.3 m o l / L  
2 

(4) 

Therefore, the concentrations of species Jt and B in the reactor are 

CA = (CA)i~ + aA { = 1 -- 0.3 -- 0 . 7 m o l / L  

CB = (CB)~,~ + a S  ~ = 1 -- (2)(0.3) -- 0 . 4 m o l / L  

(5) 
(6) 

Substitution of the numerical values into Eq. (3) gives 

1 - 0 . 4  
T = = 42.9 min  

(2) (0.025)(0.7)(0.4) 

6.2 C O N S E R V A T I O N  OF M A S S  

S u m m a t i o n  of Eq. (6.1-2) over all species gives the  to ta l  mass  ba lance  in the  form 

- • = o I (6.2-1) 

Note  t h a t  t he  t e r m  

g o jrj)M, =0 ( 22) 
i 
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since mass is conserved. Equation (6.2-2) implies that the rate of production of 
mass for the entire system is zero. However, if chemical reactions take place within 
the system, an individual species may be produced. 

On the other hand, summation of Eq. (6.1-6) over all species gives the total 
mole balance as 

Y s y  s ~ 0 (6.2-3) 

In this case the generation term is not zero because moles are not conserved. 

E x a m p l e  6.2 A liquid phase irreversible reaction 

A - ~  B 

takes place in a series of 4 continuous stirred tank reactors as shown in the figure 
below. 

@ ........._~ 
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The rate of reaction is given by 

4200) 
r = kCA with k - 3 x 105 exp T 

in which k is in h -1 and T is in degrees Kelvin. The temperature and the volume 
of each reactor are given as follows: 

Reactor Temperature Volume 
No (~ (L) 

1 35 800 
2 45 1000 
3 70 1200 
4 60 900 
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Determine the concentration of species ,4 in each reactor if the feed to the first 
reactor contains 1.5 mol/L of ,4 and the volumetric flow rates of the streams are 
given as follows: 

Stream Volumetric Flow Rate 
No (L/h) 

1 500 
7 200 
9 50 

11 100 

Solut ion 

Assumptions 

1. Steady-state conditions prevail. 

2. Concentrations of species within the reactor are uniform as a result of perfect 
mixing. 

3. Liquid density remains constant. 

Analysis  

Conservation of total mass, Eq. (6.2-1), reduces to 

dni,~ = (nout (1) 

Since the liquid density is constant, Eq. (1) simplifies to 

Q ~  = Qo~t (2) 

Only four out of eleven streams are given in the problem statement. Therefore, it 
is necessary to write the following mass balances to calculate the remaining seven 
streams: 

(21 ---- ~ 6  ---- 500 

5 0 0 + 1 0 0 =  Q2 

Q2 + Q10 = Q3 

(23 -[- 50 --  ~ 4  

Q8 = Q5 

Q5 = Q6 + 200 

200 = 50 + Q10 

Simultaneous solution of the above equations gives the volumetric flow rate of each 
stream as: 
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Stream Volumetric Flow Rate 
No (L/H) 

1 500 
2 600 
3 750 
4 800 
5 7OO 
6 500 
7 200 
8 700 
9 50 

10 150 
11 100 

For  each reactor,  the reac t ion  rate cons tan t  is 

k = 3 • 105 exp 4200 ] h_ 1 
(35 + 273) = 0.359 for reactor # 1 

k = 3 x 105 exp 

k = 3 • 105 exp 

4200 ] h_ 1 
(45 + 273) = 0.551 for reactor # 2 

4200 ] h_ 1 
(70 + 273) - 1.443 for reactor # 3 

k = 3 x 105 exp 4200 ] h_ 1 
(60 + 273) = 0.999 for reactor # 4 

For  each reactor,  the c o n s e r v a t i o n  s t a t e m e n t  f o r  species  .,4, Eq. (6 .1-7) ,  can be 

w r i t t e n  in  the f o r m  

(500)(1.5) + 100 CA3 --600 CA1 --(0.359 CA1)(800) = 0 

600CA1 + 150CA4 -- 750CA2 -- (0.551CA2)(1000) = 0 

750 CA2 + 50 CA4 -- 800 CA3 -- (1.443 CA~ ) (1200) = 0 

700 CA~ -- 700 CA~ -- (0.999 CA~)(900) = 0 

S i m p l i f i c a t i o n  gives  

8.872 CA1 -- CA3 -~- '7.5 

4 CA1 -- 8.673 CA2 -4- CA4 : 0 

15 CA2 -- 50.632 CA3 '}- CA4 -- 0 

CA3 -- 2.284 CA4 = 0 
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The above equations are written in matrix notation 1 as 

8.872 0 - 1  0 
4 -8.673 0 1 
0 15 -50.632 1 
0 0 1 -2.284 

Therefore, the solution is 

cA, 

CA2 
CA3 0 

CA4 0 

CA1 

CA 2 

CA 3 

CA4 

8.872 0 - 1  0 -1 7.5 
o 4 -8.673 0 1 

0 15 -50.632 1 0 
0 0 1 -2.284 0 

0.115 -0.004 -0.002 -0.003 7.5 
o 0.054 -0.119 -0.002 -0.053 

0.016 -0.036 -0.021 -0.025 0 
0.007 -0.016 -0.009 -0.449 0 

The multiplication gives the concentrations in each reactor as 

CA, 0.859 
CA2 0.402 
CA3 "-- 0.120 
CA~ 0.053 

6 . 3  C O N S E R V A T I O N  O F  E N E R G Y  

The conservation statement for total energy under steady conditions takes the form 

( R a t e ~  ) ( R a t e ~  ) ( R a t e ~  e n e r g y ) - 0  (6.3-1) 
energy in - energy out + generation 

The first law of thermodynamics states that total energy can neither be created 
nor destroyed. Therefore, rate of generation term in Eq. (6.3-1) equals zero. 

Energy may enter or leave the system by two means: (i) by inlet and/or out- 
let streams, (ii) by exchange of energy between the system and its surroundings 
through the boundaries of the system in the form of heat and work. 

For a system with a single inlet and a single outlet stream as shown in Figure 
6.2, Eq. (6.3-1) can be expressed as 

(F",n + (~,,~t + IV) - $o~t = 0 (6.3-2) 

where the interphase heat transfer rate, Q~,~t, is expressed as 

= A . ( h )  (6.3-3) 

1Matrix operations are given in Section A.9 in Appendix A. 
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in which (AT)c h is the characteristic temperature difference. Note that  Qi,~t is 
considered positive when energy is added to the system. In a similar way, l~ is 
also considered positive when work is done on the system. 

t -  Qint .-'14I 

Ein "-1 SYSTEM 

r~ .... 
~ut 

F i g u r e  6.2 Steady-state flow system with fixed boundaries interchanging energy 
in the form of heat and work with the surroundings. 

As stated in Section 2.4.2, the rate of energy entering or leaving the system, E, 
is expressed as 

= Jr rh (6.3-4) 

Therefore, Eq. (6.3-2) becomes 

(E: 7h)in - (/~ rh)out + (~int + I~ - 0 (6.3-5) 

To determine the total energy per unit mass,/~, consider an astronaut on the space 
shuttle Atlantis. When the astronaut looks at the earth, (s)he sees that  the earth 
has an external kinetic energy due to its rotation and its motion around the sun. 
The earth also has an internal kinetic energy as a result of all the objects, i.e., 
people, cars, planes, etc., moving on its surface which the astronaut cannot see. 
A physical object is usually composed of smaller objects, each of which can have 
a variety of internal and external energies. The sum of the internal and external 
energies of the smaller objects is usually apparent as internal energy of the larger 
objects. 

The above discussion indicates that the total energy of any system is expressed 
as the sum of its internal and external energies. Kinetic and potential energies 
constitute the external energy, while the energy associated with the translational, 
rotational, and vibrational motion of molecules and atoms is considered as the 
internal energy. Therefore, total energy per unit mass can be expressed as 

-- U + }~K + EP (6.3-6) 

where ~r, EK and Ep represent internal, kinetic and potential energies per unit 
mass, respectively. Substitution of Eq. (6.3-6) into Eq. (6.3-5) gives 
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The rate of work done on the system by the surroundings is given by 

IJV - I/V8 + (P?rh)in - (P?rh)o~, t  (6.3-8) 
Shaft work Flow work 

In Figure 6.2, when the stream enters the system, work is done on the system by 
the surroundings. When the stream leaves the system, however, work is done by 
the system on the surroundings. Note that the boundaries of the system are fixed 
in the case of a steady-state flow system. Therefore, work associated with volume 
change is not included in Eq. (6.3-8). 

Substitution of Eq. (6=3-8) into Eq. (6.3-7) and the use of the definition of 
enthalpy, i.e., [-I - U + PV ,  gives 

__ [ ( /2 / - t -  EK Jr- Ep) ?it]out �9 (~int ~ l~/rs --0 (6.3-9) 

which is known as the steady-state energy equation. 
Kinetic and potential energy terms in Eq. (6.3-9) are expressed in the form 

and 

1 v2 (6.3-10) 

Ep = g h (6.3-11) 

where g is the acceleration of gravity and h is the elevation with respect to a 
reference plane. 

Enthalpy, on the other hand, depends on temperature and pressure. Change in 
enthalpy is expressed by 

dI2I - Cp dT + IY(1 - ~T)  dP (6.3-12) 

where/~ is the coefficient of volume expansion and is defined by 

Note that 

P 

(6.3-13) 

- I 01/T forf~ anan incompressibleideal gas fluid (6.3-14) 

When the changes in the kinetic and potential energies between the inlet and 
outlet of the system are negligible, Eq. (6.3-9) reduces to 

In terms of molar quantities, Eqs. (6.3-9) and (6.3-15) are written as 

out 
(6.3-16) 
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and 
(6.3-17) 

6 . 3 . 1  E n e r g y  E q u a t i o n  W i t h o u t  C h e m i c a l  R e a c t i o n  

In the case of no chemical reaction, Eqs. (6.3-9) and (6.3-16) are used to determine 
energy interactions. If kinetic and potential energy changes are negligible, then 
these equations reduce to Eqs. (6.3-15) and (6.3-17), respectively. The use of the 
energy equation requires the enthalpy change to be known or calculated. For some 
substances, such as steam and ammonia, enthalpy values are either tabulated or 
given in the form of a graph as a function of temperature and pressure. In that case 
enthalpy changes can be determined easily. If enthalpy values are not tabulated, 
then the determination of enthalpy depending on the values of temperature and 
pressure in a given process are given below. 

6.3.1.1 Cons tan t  p ressure  and no phase  change 

Since dP = 0, integration of Eq. (6.3-12) gives 

[-I = dR dT (6.3-18) 
r 

in which/:/ is  taken as zero at T~ef. Substitution of Eq. (6.3-18) into Eq. (6.3-15) 
gives 

dni,~ Cp dT - mout (~p dT + (~i~t + l)ds = 0 (6.3-19) 
~f T,. 

If Cp is independent of temperature, Eq. (6.3-19) reduces to 

min(~p(T~n - T,.ef ) - mo~tOp(To~t - Tr~f ) + (~,nt + I~s - 0 (6.3-20) 

E x a m p l e  6.3 It is required to cool a gas composed of 75 mole % N2, 15% CO2 and 
10% 02 from 800 ~ to 350 ~ Determine the cooling duty of the heat exchanger 
if  the heat capacity expressions are in the form 

Cp( j / tool .  K) = a + b T  + c T  2 + d T  a T [=] K 

where the coefficients a, b, c and d are given by 

Species a b x 10 2 C x 105 d x 105 

N2 28.882 -0.1570 0.8075 -2.8706 

02 25.460 1.5192 - 0.7150 1.3108 

CO2 21.489 5.9768 - 3.4987 7.4643 
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Solution 

Assumptions 

1. Ideal gas behavior. 

2. Changes in kinetic and potential energies are negligible. 

3. Pressure drop in the heat exchanger is negligible. 

Analysis 

System: Gas stream in the heat exchanger 

Since i~i,~t - 0  and there is no chemical reaction, Eq. (6.2-3) reduces to 

(1) 

Therefore, Eq. (6. 3-19) becomes 

Qi~t = i~ 
\aTref 

J T i n  

e f  

C p d T )  (2) 

or, 

Qi,~t = CpdT (3) 
n 

where Qi,~t = (~,~t/i~, T ~  = 1073 K, and To.t- 623 K. 

The molar heat capacity of the gas stream, Cp, can be calculated by multiplying 
the mole fraction of each component by the respective heat capacity and adding 
them together, i.e., 

3 

CP = E xi (ai + b i t  +c iT  2 + diT 3) 
i --1 

= 27.431 + 0.931 x 1 0 - 2 T  + 0.009 x 10 - s  T 2 - 0.902 x 10 -9 T 3 (4) 

Substitution of Eq. (4) into Eq. (3) and integration gives 

,v 

Qint - - 15,662 J/mol 

The minus sign indicates that heat must be removed from the gas stream. 
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6.3.1.2 C o n s t a n t  p re s su re  wi th  phase  change  

When we start heating a substance at constant pressure, a typical variation in 
temperature as a function of time is given in Figure 6.3. 

ase 

rrel 

P = const. 

hase 

t 

Figu re  6.3 Temperature-time relationship as the substance transforms from the 
7 -phase  to a -phase .  

Let T,.ef be the temperature at which phase change from the 7 -phase  to the 
a -phase ,  or vice versa, takes place. If we choose the 7 -phase  enthalpy as zero at 
the reference temperature, then enthalpies of the a -  and 7-phases  at any given 
temperature T are given as 

JT~ ((~P)~, dT a -  phase 

- ~ - J:"~:(C'p)~ dT 7 - phase 

where ~ = / ~  - / ~  at the reference temperature. 

E x a m p l e  6.4 One way of cooling a can of coke on a hot summer day is to wrap 
a piece of wet cloth around the can and expose it to a gentle breeze. Calculate the 
steady-state temperature of the can if the air temperature is 35 ~ 

Solution 

Assumptions 

1. Steady-state conditions prevail. 

2. Ideal gas behavior. 
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Analysis 

System: Wet cloth and the coke can 

The inventory rate equation for energy becomes 

Rate of energy in = Rate of energy out (1) 
Let the steady-state temperature of the cloth and that of coke be Tw. 
energy entering the system is given by 

The rate of 

Rate of energy in = AH (h)(Too - T~) (z) 

in which AH and T~ represent the heat transfer area and air temperature, respec- 
tively. On the other hand, the rate of energy leaving the system is expressed in the 
form 

Rate of energy o u t -  etA [~A + (Cp)A(Tc~ - T~)] (3) 

where iZA represents the rate of moles of water, i.e., species +4, evaporated and is 
given by 

?Z A - -  A M ( k c ) ( C A ~  - -  CA= ) (4) 

in which AM represents the mass transfer area. Substitution of Eqs. (2), (3) and 
(4) into Eq. (1) and using 

AH -- AM 

C A ~  "~ 0 

>> (Sp)A(T  - 

gives 

T~  - Tw -- CA=~A (~h}} ) (5) 

The ratio (kc)/(h) can be estimated by the use of the Chilton-Colburn analogy, i.e., 
jH = jM , as 

StH _ (Sc )  2/3 ( k c ) _  1 (Pr) 2/3 
StM -- Prr ~ (h) -- p ~ p  -~c (6) 

The use of Eq. (6) in Eq. (5) yields 

CA~o~A (Pr) 2/3 (7) 

where the properties p, Cp, Pr and Sc belong to air, species 13. The concentration 
of species ,4 at the interface, CAw, is given by 

at 

CA= = n (8) 
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It should be remembered that the quantities CAw and ~A must be evaluated at Tw, 
whereas PB, CPB, PrB and ScB must be evaluated at Tf - (Tw + Tcr Since 
T~ is unknown, a trial-and-error procedure will be used in order to determine T~ 
as follows: 

S t e p  1: Assume Tw = 1 5 ~  

S t e p  2: Determine the physical properties: 

{p~at  = 0.01703 bar  
For water at 15 ~ (288 K) �9 ~A -- 2466 • 18 = 44, 388 k J / k m o l  

The saturation concentration is 

a t  

CAw --  ~-~ Tw 

0.01703 

(8.314 • 10-2)(15  + 273) 
= 7.11 • 10 -4  k m o l / m  3 

The film temperature is Tf - (35 + 15)/2  = 25 ~ 

For air at 25 ~  (298 K)"  

p - 1.1845 k g / m  3 
u = 15.54 • 10 -6  m 2 / s  

Cp  - 1.005 k J / k g .  K 
Pr  = 0.712 

The diffusion coefficient of water in air is 

298) 3/2 
Z~AB -- (2.8S x 10 -5)  5-i-3 = 2.68 • 10 -5 m 2 / s  

The Schmidt number is 

l/ 
S c -  

~)AB 

15.54 • 10 -6 
= = 0.58 

2.68 x 10 -5 

S t e p  3: Substitute the values into Eq. (7) and check whether the right and left 
sides are equal to each other: 

TOO 

(p 

Tw = 3 5 -  1 5 =  20 

2/3 _ (7.11 X 1 0 _ 4 ) ( 4 4 , 3 8 8 ) ( 0 0 7 5 : ) 2 / 3  

B -- (1:184-5) (1.005) . 
= 30.4 

Since the left- and right-hand sides of Eq. (7) are quite different from each other, 
another value of Tw should be assumed. 
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Assume T~ = 11 ~ 

{ P~t at -- 0.01308 bar 
For water at 11 ~ (284K) �9 , ~ A  - 2475.4 x 18 = 44, 5 5 7 k J / k m o l  

The saturation concentration is 

CAw 
~a t 

7~T~ 
0.01308 

(8.314 • 10-2)(11 + 273) 
= 5.54 x 10 -4 k m o l / m  3 

The film temperature is Tf = (35 + 11)/2 = 23~ 

p = 1.1926 k g / m  3 
u = 15.36 x 10 - 6 m  2/ / s  

For air at 23 ~ (296 K)"  C'p - 1.005 k J / k g .  K 

Pr  - 0.713 

The diffusion coefficient of water in air is 

:DAB - - (2 .88  X 10 -5)  ~296~  3/2 
\313] 

- 2.65 x 10 -5 m 2 / s  

The Schmidt number is 

V 
Sc - 

~DAB 
15.36 x 10 -6 

= = 0.58 
2.65 x 10 -5 

The left- and right-hand sides of Eq. (7) now become 

To, - T ~  = 3 5 -  11 = 24 

CAwAA Pr  _ (5.54 x 10-4)(44,557)  ( )  
Therefore, the steady-state temperature is 11 ~ 

= 23.6 

C o m m e n t :  Whenever a gas flows over a liquid, the temperature of the liquid 
decreases as a result of evaporation. This process is known as evaporative cooling. 
The resulting steady-state temperature, on the other hand, is called the wet-bulb 
temperature. 
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6.3.1.3 Variable  p ressure  and  no phase  change 

Enthalpy of an ideal gas is dependent only on temperature and is expressed by Eq. 
(6.3-18). Therefore, in problems involving ideal gases, variation in pressure has no 
effect on the enthalpy change. In the case of incompressible fluids, Eq. (6.3-12) 
reduces to 

H = dp eT + ? ( P -  (6.3-22) 
ef 

in which the enthalpy is taken zero at the reference temperature and pressure. At 
low and moderate pressures, the second term on the right-side of Eq. (6.3-22) is 
usually considered negligible. 

E x a m p l e  6.5 A certain process requires a steady supply of compressed air at 
600 kPa and 50 ~ at the rate of 0.2kg/s.  For this purpose, air at ambient con- 
ditions of 100 kPa and 20 ~ is first compressed to 600 kPa in an adiabatic com- 
pressor, then it is fed to a heat exchanger where it is cooled to 50 ~ at constant 
pressure. As cooling medium, water is used and it enters the heat exchanger at 
15 ~ and leaves at 40~ Determine the mass flow rate of water if the rate of 
work done on the compressor is 44k J / s .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  l . . . .  . . . . .  System boundary 

Air 

100 kPa 
20~ 

Compressor Heat Exchanger 

............ t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ! 
~V s = 44 kJIs Tou t = 40~ Tin : 15~ 

@ 
].  

600 kPa 
50~ 

Solution 

Assumptions 

1. Steady-state conditions prevail. 

2. Changes in kinetic and potential energies are negligible. 

3. There is no heat loss from the heat exchanger to the surroundings. 

4. Heat capacities of air and water remain essentially constant at the values of 
i kJ/kg.  K and 4.178 kJ/kg.  K, respectively. 
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Analysis 

System: Compressor and heat exchanger 

Conservation of total mass, Eq. (6.2-1), reduces to 

?nl --?~t2 --?~ (1) 

Therefore, Eq. (6.3-15) becomes 

,~o~ (H, - & ) o , ~  - O~, + w, - 0 (2) 

in which the enthalpy change of the air and the interphase heat transfer rate are 
given by 

(/:/1 -/:/2)ai~ - (Cp)ai~(T, - T 2 ) ~  (3) 

(4) 

Substitution of Eqs. (3) and (~) into Eq. (2) and rearrangement gives 

m H 2 0  - -  

(mS~)o~(Tx -T~)~ + W~ 
(O~) .=o(Tou,  - Ti . )u=o 

(0.2)(1)(20 - 50) + 44 
= 0.364 kg / s  

(4.178)(40- 15) 
( 5 )  

C o m m e n t :  Defining of a system plays a crucial role in the solution of the problem. 
Note that there is no need to find out the temperature and pressure at the exit of the 
compressor. If, however, one chooses the compressor and heat exchanger as two 
separate systems, then the pressure and temperature at the exit of the compressor 
must be calculated. 

6 . 3 . 2  E n e r g y  E q u a t i o n  W i t h  C h e m i c a l  R e a c t i o n  

6.3.2.1 T h e r m o c h e m i s t r y  

Thermochemistry deals with the changes of energy in chemical reactions. The 
difference between the enthalpy of one mole of a pure compound and the total 
enthalpy of the elements from which it is composed is called the heat of fo~nation, 
A/ t l ,  of the compound. The standard heat of formation, AH~, is the heat of 
formation when both the compound and its elements are at standard conditions as 
shown in Figure 6.4. The superscript o implies the standard state. Since enthalpy 
is a state function, it is immaterial whether or not the reaction could take place at 
standard conditions. 
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Elements in their 
standard states 

(T, 1 atm) 

~ ] 1 mole of compound in its 
H /  _ standard state 

(T, 1 atm) 

F i g u r e  6.4 Calculation of the standard heat of formation, AH~. 

The standard state is usually taken as the stable form of the element or com- 
pound at the temperature of interest, T, and under 1 atm (1.013 bar). Therefore, 
the word standard refers not to any particular temperature, but to unit pressure 
of 1 atm. The elements in their standard states are taken as the reference state 
and are assigned an enthalpy of zero. The standard heat of formation of many 
compounds are usually tabulated at 25 ~ and can readily be found in the Perry's 
Chemical Engineers' Handbook (1997) and thermodynamics textbooks. For exam- 
ple, the standard heat of formation of ethyl benzene, C8H10, in the gaseous state is 
29,790 J / m o l  at 298 K. Consider the formation of ethyl benzene from its elements 
by the reaction 

S C(s) + 5 H2(g) = CsH10(g) 

The standard heat of formation is given by 

o - ~ ~ - 29 ,790J /mo l  ( A H f ) c s H 1  o H~ s H l o - S H ~  5/~ ~ ---- 

Since H~ - HO = 0 it follows that H2 

"~O ~ O  
(AH/)csH10 : HCsH 10 ---- 29,790 J / m o l  

It is possible to generalize this result in the form 

A = H  ~ 
i 

(6.3-23) 

The standard heat of formation of a substance is just  the standard heat of reaction 
in which one mole of it is formed from elementary species. Therefore, the standard 
heat of reaction, AH~ is the difference between the total enthalpy of the pure 
product mixture and that  of the pure reactant mixture at standard conditions as 
shown in Figure 6.5. 

Reactans in their 
standard states 

(T, 1 atm) 

o 

AHrxn 
Products in their 

standard states 

(T, 1 atm) 

F i g u r e  6.5 Calculation of the standard heat of reaction, AH~ 
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The standard heat of reaction can be calculated as 

AH~~ - E c~':/)~ (6.3-24) 
i 

Substitution of Eq. (6.3-23) into Eq. (6.3-24) gives 

AH~~ - ~ ai(A/~7)r (6.3-25) 
i 

Note that the standard heat of formation of an element is zero. 
If heat is evolved in the reaction, the reaction is called exothermic. If heat is 

absorbed, the reaction is called endothermic. Therefore, 

> 0 for an endothermic reaction 
AHr~ < 0 for an exothermic reaction (6.3-26) 

If the standard heat of reaction is known at 298 K, then its value at any other 
temperature can be found as follows: The variation of the standard heat of reaction 
as a function of temperature under constant pressure is given by 

( OAH~ ) dT (6.3-27) 
dAH,?~,~ = OT P = I  

The term (OAH~ can be expressed as 

(6.3-28) 

Substitution of Eq. (6.3-28) into Eq. (6.3-27) and integration gives 

f2  T ~ AHr~ (T) = AHr~ (T - 298 K) + AC~ dT 
98 

(6.3-29) 

6.3.2.2 E n e r g y  balance a round  a cont inuous s t i r red  t ank  r eac to r  

An energy balance in a continuous stirred tank reactor (CSTR) with the following 
assumptions is a good example to the energy balance with chemical reaction: 

1. Steady-state conditions prevail. 

2. Stirring does not contribute much energy to the system, i.e., 1~8 -~ 0. 

3. Volume of the system is constant, i.e., inlet and outlet volumetric flow rates 
are equal. 
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4. As a result of perfect mixing, temperature and concentration of the system 
are uniform, i.e., Co~,t = c~y~ and To~t = Tsys. 

5. Changes in kinetic and potential energies are negligible. 

Since chemical reaction is involved in this case, it is more appropriate to work 
on molar basis. Therefore, Eq. (6.3-17) simplifies to 

(ffI i~)i,~ - (I:I iZ)out + (~nt = 0 (6.3-30) 

Any molar quantity of a mixture, r can be expressed in terms of partial molar 
q uantities2, ~i, as 

- Z x~ r (6.3-31) 
i 

Multiplication of Eq. (6.3-31) by molar flow rate, ~, gives 

/t = E/~i  ~ '  (6.3-32) 
i 

Therefore, Eq. (6.3-30) is expressed as 

i n  z o u t  

On the other hand, macroscopic mole balance for species i, Eq. (6.1-6), is 

(6.3-33) 

(~,)~ - ( ~ ) o ~  + v ~ .  Z ~'J ~5 = 0 
y 

(6.3-34) 

Multiplication of Eq. (6.3-34) by H~(T) and summation over all species gives 

i i n  o u t  J 

where the heat of reaction is defined by 

AHrxn,j -- E ~ij/~i(T) 
i 

(6.3-36) 

Subtraction of Eq. (6.3-35) from Eq. (6.3-33) yields 

+ Q,~ + v ~  ~ ~j (-lxm~,j)  = 0 (6.3-37) 
J 

2partial  molar quantities, unlike molar quantities of pure substances, depend also on the 
composition of the mixture. 
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Dividing Eq. (6.3-37) by the volumetric flow rate, Q, gives 

+ + - 0 (6 3-3S) 
J 

where T is the residence time defined by 

V~ys (6.3-39) T -  Q 

Partial molar heat capacity of species i, CRy, is related to the partial molar 
enthalpy as 

(gp, = \ ~ ] p (6.3-40) 

If Cp~ is independent of temperature, then integration of Eq. (6.3-40) gives 

fIi(T{n) - I~{(T) - Op,(T{n - T) (6.3-41) 

Substitution of Eqs. (6.3-40) and (6.3-41)into Eq. (6.3-38) yields 

(Cp)i=(Ti,~ - T) + ~ + v E rj (-AHrx~,j)  - 0 
J 

(6.3-42) 

where 
(Cp),,~ = E(ci) i ,~Cp, (6.3-43) 

i 

It should be noted that the reaction rate expression in Eq. (6.3-42) contains a 
reaction rate constant, k, expressed in the form 

k - A e-  S/nT (6.3-44) 

Therefore, Eq. (6.3-42) is highly nonlinear in temperature. 
Once the feed composition, stoichiometry and order of the chemical reaction, 

heat of reaction, and reaction rate constant are known, conservation statements for 
chemical species and energy contain five variables, namely, inlet temperature, Ti~, 
extent of reaction, ~, reactor temperature, T, residence time, ~, and interphase heat 
transfer rate, Qint. Therefore, three variables must be known while the remaining 
two can be calculated from the conservation of chemical species and energy. Among 
these variables Ti,~ is the variable associated with the feed, ~ and T are the variables 
associated with the product, T and Qint are the variables of design. 

E x a m p l e  6.6 A liquid feed to a jacketed CSTR consists of 2000 mol /m 3 A and 
2400 mol /m 3 B. A second-order irreversible reaction takes place as 

A+B---*  2C 
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The rate of reaction is given by 

r ~- k C A C B  

where the reaction rate constant at 298 K is k = 8.4 • 10 -6 m3/mol, rain, and the 
activation energy is 50, 000 J /  mol. The reactor operates isothermally at 65~ 
The molar heat capacity at constant pressure and the standard heat of formation 
of species .4, 13, and C at 298 K are given as follows: 

Species ( J /mol .  K) (kJ/ tool)  

A 175 - 60 

B 130 - 75 

C 110 - 9 0  

a) Calculate the residence time required to obtain 80% conversion of species A. 
b) What should be the volume of the reactor if species C are to be produced at a 
rate of 820 tool/rain ? 
c) If the feed enters the reactor at a temperature of 25 ~ determine the rate of 
heat that must be removed from the reactor to maintain isothermal operation. 
d) If  the heat transfer coefficient is 1050W/m 2. K and the average cooling fluid 
temperature is 15 ~ estimate the required heat transfer area 

Solut ion 

Assumptions 

1. As a result of perfect mixing, concentrations of the species within the reactor 
are uniform, i.e., (c~)o~t = (ci)sy~. 

2. Solution nonidealities are negligible, i.e., Cp~ -Cp~;  AHrx,~ = AHr~ 

3. There is no heat loss from the reactor. 

Analysis 

System: Contents of the reactor 

a) Since the reactor volume is constant, the inlet and outlet volumetric flow rates 
are the same and equal to Q. Therefore, the inventory rate equation for conserva- 
tion of species A, Eq. (6.1-7), becomes 

Q(CA)~n - QCA~,8 - (kCA~scBs~)V~ys = 0 (1) 
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where eAsy 8 and CBs~ represent the molar concentrations of species A and 13 in 
the reactor, respectively. Dropping the subscript "sys" and dividing Eq. (1) by the 
volumetric flow rate, Q, gives 

= - (2) 
kCACB 

Using Eq. (5.3-17), the extent of reaction can be calculated as 

XA 

= (2000)(0.8) = 1600mol /m3 (3) 
1 

Therefore, the concentrations of species ,4, 13, and C in the reactor are 

CA = (CA)i, + aA ~ -- 2000 -- 1600 = 400 m o l / m  3 (4) 

CB -- (CB)~,~ + aU ~ -  2 4 0 0 -  1600 = 800 m o l / m  3 (5) 

cc = (cc)~  + aC ~ = ( 2 ) ( 1 6 0 0 ) -  3200 m o l / m  3 (6) 

If  k l and k2 represent the rate constants at temperatures of T1 and T2, respectively, 
then [ 1)] 

k2 = ]r exp - - ~  T2 T1 (7) 

Therefore, the reaction rate constant at 65 ~ (338 K) is 

50,000 ( 1 
k -  8.4 x 10 -6 exp - 813-~ 338 

= 9.15 x 10 -5 m3/tool ,  rain 

1 298)] 
( 8 )  

Substitution of numerical values into Eq. (2) gives 

2000 - 400 
- = 54.6 rain 

(9.15 • 10 -5) (400)(800) 

b) The reactor volume, V, is given by 

V = v Q  

The volumetric flow rate can be determined from the production rate of species C, 
i.e.~ 

82O 
cc Q = 820 =~ Q - 3200 = 0.256 m 3 / m i n  

Hence, the reactor volume is 

V -  (54.6)(0.256)= 14m 3 



6.3. CONSERVATION OF E N E R G Y  173 

c) For this problem, Eq. (6.3-,{2) simplifies to 

Q~nt = - Q (Cp)~,~(T~ - T) - V (k CACB) (-- AH~~ (9) 

The standard heat of reaction at 298 K is 

AH~~ - E a~,(AH~)~ 
i 

-- ( -  1 ) ( -  60) + ( -  1 ) ( -  75) + (2)( -  90) = - 45 kJ / tool  

The standard heat of reaction at 338 K is given by Eq. (6.3-29) 

f 
338 

AH~~ (338) - AHr~ (298 K) + AO~ dT 
J 298 

where 

i 

: ( -  1)(175) + ( -  1)(130) + (2)(110) = - 8 5 J / m o l .  K 

Hence 

AH~~ (338) = - 45,000 + ( -  85)(338 - 298) = - 48,400 J / m o l  

On the other hand, the use of Eq. (6.3-~3) gives 

(cp),,, = 

i 

- (2000)(175)+ (2400)(130)= 662 ,000J /m 3. K 

Therefore, substitution of the numerical values into Eq. (9) yields 

Q~,~t - - (0.256)(662,000)(25 - 65) 

- ( 1 4 )  [(9.15 x 10-5)(400)(800)] ( 4 8 , 4 0 0 ) -  - 1 3  x 106 J / m i n  

The minus sign indicates that the system, i.e., reactor, loses energy to the sur- 
roundings. 

d) The application of Newton's law of cooling gives 

Or~ 
13 x 10 6 

AH = (1050)(65- 15)(60) = 4.1m 2 
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N O T A T I O N  

A 
AH 
AM 
dp 
e 

"~ A B  

E 
EK 
Ep 

s 

g 
H 
h 
k 
k~ 
rh 
M 

P 

Q 
r 

T 
t 
U 
V 
v 

X 

x i  

(~ij 

A 
AI--Zf 
A H ~  
A 
# 

area, m 2 
heat transfer area, m 2 
mass transfer area, m 2 
heat capacity at constant pressure, kJ/kg. K 
concentration, kmol/m 3 
diffusion coefficient for system r m2/s 
total energy, J 
kinetic energy, J 
potential energy, J 
rate of energy, J/s 
activation energy, J/mol 
acceleration of gravity, m/s 2 
enthalpy, J 
elevation, m 
reaction rate constant 
mass transfer coefficient, m/s 
mass flow rate, kg/s 
molecular weight, kg/kmol 
molar flow rate, kmol/s 
pressure, Pa 
heat transfer rate, W 
volumetric flow rate, m3/s 
rate of a chemical reaction, kmol/m 3. s 
gas constant, J/mol. K 
temperature, ~ or K 
time, s 
internal energy, J 
volume, m 3 
velocity, m/s 
rate of work, W 
rate of shaft work, W 
fractional conversion 
mole fraction of species i 

stoichiometric coefficient of species i 
stoichiometric coefficient of i th species in the jth reaction 
coefficient of volume expansion, Eq. (6.3-13), K -1 
difference 
heat of formation, J /mol  
heat of reaction, J 
latent heat of vaporization, J 
viscosity, kg/m. s 
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kinematic viscosity, m 2/s 
intensive extent of a reaction, kmol/m 3 
density, kg /m 3 
residence time, s 

Overl ines 

per mole 
per unit mass 
partial molar 

Bracket  

(a) average value of a 

Supersc r ip t s  

o standard state 
sat saturation 

Subscr ip ts  

A, B species in binary systems 
ch characteristic 
f film 
i species in multicomponent systems 
in  inlet 
i n t  interphase 
j reaction number 
out out 
re f reference 
sys  system 

Dimensionless  N u m b e r s  
Pr Prandtl number 
Sc Schmidt number 
Stn Stanton number for heat transfer 
StM Stanton number for mass transfer 
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P R O B L E M S  

6.1 2520 kg /h  of oil is to be cooled from 180 ~ to 110 ~ in a countercurrent heat 
exchanger as shown in the figure below. Calculate the flow rate of water passing 
through the heat exchanger for the following cases: 

a) The cooling water, which enters the heat exchanger at 15 ~ is mixed with 
water at 30 ~ at the exit of the heat exchanger to obtain 2415 kg /h  of process 
water at 60 ~ to be used in another location of the plant. 
b) The cooling water, which enters the heat exchanger at 30~ is mixed with 
water at 30~ at the exit of the heat exchanger to obtain 2415 kg /h  of process 
water at 60 ~ to be used in another location of the plant. 

H20 J 

Oil 

Heat Exchanger 

H20 at 30~ 

~, 2415 kg/h H20 
60~ 
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Assume that oil and water have constant heat capacities of 2.3 and 4.2 k J /kg .  K, 
respectively. 

(Answer:  a) 1610 kg/h)  

6.2 The following parallel reactions take place in an isothermal, constant-volume 
CSTR: 

A ~ 2 B  r -'- k l C  A k 1 = 1.3s -1 

3 A  ~ C r "-  k2C  A k2 = 0.4S -1 

Pure A is fed to the reactor at a concentration of 350 mol /m 3. 

a) Determine the residence time required to achieve 85% conversion of species ,4 
under steady conditions. 
b) Determine the concentrations of species B and C. 

(Answer:  a) 7 = 2.27 s b) cB = 309.9 mol /m 3, c c  = 47.7 mol /m 3) 

6.3 Species j t  undergoes the following consecutive first-order reactions in the 
liquid phase in an isothermal, constant-volume CSTR: 

A ~ B ~ C  

where kl = 1.5s -1 and k2 - 0.8s -1. If the feed to the reactor consists of pure A, 
determine the residence time required to maximize the concentration of species B 
under steady conditions. 

(Answer" 0.913 s) 

6.4 An isomerization reaction 
A ~ B  

takes place in a constant-volume CSTR. The feed to the reactor consists of pure 
,4. The rate of the reaction is given by 

r : k l C A - - k 2 C B  

For the maximum conversion of species ,4 at a given residence time, determine the 
reactor temperature. 

Answer:  T = In {A2T [(g2/g~)  -- 1]} 

6.5 Two electronic components (k - 190 W / m .  K) are to be cooled by passing 
0.2m3/s of air at 25 ~ between them. To enhance the rate of heat loss, it is pro- 
posed to install equally spaced rectangular aluminum plates between the electronic 
components as shown in Figure 6.6. 
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/ 

x y**'" i 

12 cm 0.25 mm 

~ L=2cm 

~ 

~ 
/~ 

Figure  6.6 Schematic diagram for Problem 6.5. 

The rate of heat loss from the electronic component at the left, i.e., z = 0, must be 
500 W and the temperature should not exceed 80 ~ while the other component 
must dissipate 2 kW with a maximum allowable temperature of 90 ~ Determine 
the number of the plates that must be placed per cm between the electronic com- 
ponents (Use the temperature distribution given in Problem 4.6). 

(Answer: One possible solution is 10 fins per cm) 

6.6 As shown in Example 6.4, the wet-bulb temperature can be calculated from 

CA~AA ( P r )  2/3 (1) 

- : ( - ; - 6 ; i ;  . 

by a trial-and-error procedure because both CAw a n d  ~A must be evaluated at T~, 
whereas PB, CPB, PrB and Scs must be evaluated at the film temperature. In 
engineering applications, an approximate equation used to estimate the wet-bulb 
temperature is given by 

T~ - To~T~ + r - O (2) 

where P~atTc~.h/tA~A(Pr)2/3 
(3) 

r  P~Azt BCp ~ s 

Develop Eq. (2) from Eq. (1) and indicate the assumptions involved in the deriva- 
tion. 

6.7 An exothermic, first-order, irreversible reaction 

A---, B 
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takes place in a constant-volume, jacketed CSTR. 

a) Show that the conservation equations for chemical species r and energy take 
the form 

e [(~A),. - ~1 - k ~ v  - 0 

[Q (Cp)i n + AH(h>] (Tin - T) + VkCA ( -  AHrxn) - 0 

(1) 

(2) 

where Tm is a weighted mean temperature defined by 

Tr~ = Q (CP)i~ Ti, + AH<h)Tc (3) 
Q (Cp)i ~ + Ag<h> 

in which (h} is the average heat transfer coefficient, Tc is the cooling fluid temper- 
ature, AH is the heat transfer area. 

b) Show that the elimination of CA between Eqs. (1) and (2) leads to 

[Q (Cp)i ~ + AH(h>] (T,~ - T) + 
kQV(cA)~,~ 

Q + k v  ( - A H ~ . )  = 0 (4) 

c) In terms of the following dimensionless quantities 

1) 
O - ~ T m  T 

A~ = A e- E/nT. 

X 

m 

1 
E 

[Q (Cp)i ~ + AH<h>] Tm 

~(CA)in(--Agrxn) 
7~Tm 

S (1 H- X) 
T{ Tm Q x 
C V A ~  

show that Eq. (4) takes the form 

e0 = 0 
~(~ - Z 0 )  (5) 

d) To determine the roots of Eq. (5) for given values of ~, and ~, it is more 
convenient to rearrange Eq. (5) in the form 

ln[ ] ~ ( 1 - # 0 )  (6) 

Examine the behavior of the function in Eq. (6) and conclude that 

�9 At least one steady-state solution exists when/~ > 0.25, 
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�9 Two steady-state solutions exist when f~ < 0.25 and 7 = ~'min < "/max or, 

")'rain ~ ~ ~--- ~/max 

�9 Three steady-state solutions exist when f~ < 0.25 and "~min < "~ < ")'max, 

where ~min and ")'max are defined by 

( l + x / 1 - 4 f l )  2 [ ( l + v / 1 - 4 f l ) ]  (7) 
~/min - -  2/~ exp - 2/~ 

( ) 2  [( )] 
2 exp - 2 

'~max-- 1 + v / 1 _ 4 ~  1 + 4 1  4~ (8) 

The existence of more than one steady-state solution is referred to as multiple 
steady-states. For more detailed information on this problem see Kauschus et al. 
(1978). 



Chapter 7 

Unsteady-State Macroscopic 
Balances 

In this chapter we will consider unsteady-state transfer processes between the 
phases by assuming no gradients within each phase. Since the dependent vari- 
ables, such as temperature and concentration, are considered uniform within a 
given phase, the resulting macroscopic balances are ordinary differential equations 
in time. 

The basic steps in the development of unsteady macroscopic balances are sim- 
ilar to those for steady-state balances given in Chapter 6. These can be briefly 
summarized as follows: 

�9 Define your system. 

�9 If possible, draw a simple sketch. 

�9 List the assumptions. 

�9 Write down the inventory rate equation for each of the basic concepts relevant 
to the problem at hand. 

�9 Use engineering correlations to evaluate the transfer coefficients. 

�9 Write down the initial conditions: The number of initial conditions must be 
equal to the sum of the order of differential equations written for the system. 

�9 Solve the ordinary differential equations. 

181 
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7.1 A P P R O X I M A T I O N S  U S E D  I N  
M O D E L L I N G  O F  U N S T E A D Y - S T A T E  
P R O C E S S E S  

7.1.1 Pseudo-Steady-State Approximation 

As stated in Chapter 1, the general inventory rate equation can be expressed in 
the form 

( R a t e o f )  ( R a t e o f )  ( Rateof ) ( Rateof ) 
input - output + generation = accumulation (7.1-1) 

Remember that the molecular and convective fluxes constitute the input and output 
terms. Among the terms appearing on the left side of Eq. (7.1-1), molecular 
transport is the slowest process. Therefore, in a given unsteady-state process, the 
term on the right side of Eq. (7.1-1) may be considered negligible if 

( Rate of ) ( Rateof ) 
molecular transport >> accumulation (7.1-2) 

or~ 

(Diffusivity) ( Gradient of / 
Quantity/Volume (Area) :>> 

Difference in quantity 
Characteristic time 

(7.1-3) 

Note that the "Gradient of Quantity/Volume" is expressed in the form 

Gradient of Quantity/Volume = 
Difference in Quantity/Volume 

Characteristic length 
(7.1-4) 

On the other hand, volume and area are expressed in terms of characteristic length 
a s  

Volume = (Characteristic length) 3 
Area = (Characteristic length) 2 

Substitution of Eqs. (7.1-4)-(7.1-6)into Eq. (7.1-3) gives 

(7.1-5) 
(7.1-6) 

(Diffusivity)(Characteristic time) >:> 1 
(Characteristic length) 2 

(7.1-7) 

In engineering analysis, the neglect of the unsteady-state term is often referred 
to as the pseudo-steady-state (or, quasi-steady-state) approximation. However, it 
should be noted that the pseudo-steady-state approximation is only valid if the 
constraint given by Eq. (7.1-7) is satisfied. 
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Example  7.1 We are testing a 2cm thick insulating material. The density, 
thermal conductivity, and heat capacity of the insulating material are 255 kg/m a, 
0.07 W/m.  K, and 1300 J/kg.  K, respectively. I f  our experiments take 10 rain, is it 
possible to assume pseudo-steady-state behavior? 

Solut ion  

For the pseudo-steady-state approximation to be valid, Eq. (7.1-7) must be satisfied, 
i.e., 

(~ t c h  >>1 
L2h 

The thermal diffusivity, a, of the insulating material is 

OL - -  
k 

0.07 
(255)(1300) 

= 2.11 x 10 -7 m2/s 

Hence, 

a ten (2.11 • 10 -7) (10)(60) 
L2h (2 • 10-2) 2 0.32 < 1 

which indicates that we have an unsteady-state problem at hand. 

7.1.2 No Variat ion of D e p e n d e n t  Variable W i t h i n  the 
P h a s e  of Interest  

In engineering analysis it is customary to neglect spatial variations in either tern- 
perature or concentration within the solid. Although this approximation simplifies 
the mathematical problem, it is only possible under certain circumstances as will 
be shown in the following development. 

Let us consider the transport of a quantity ~ from the solid phase to the fluid 
phase through a solid-fluid interface. Under steady conditions without generation, 
the inventory rate equation, Eq. (1.1-1), for the interface takes the form 

( Rate of transport of p from ) _ ( Rate of transport of ~ from ) 
the solid to the interface the interface to the fluid 

Since the molecular flux of ~ is dominant within the solid phase, Eq. (7.1-8) reduces 
to 

( Molecularf luxof~from ) ( F l u x o f ~ f r o m  ) 
the solid to the interface -- the interface to the fluid (7.1-9) 
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or, 

( Transport property ) ( Gradient ~ 
drivingforce)lsoUd 
__[(  Transfer in 
- coefficient)( Difference Quantity/Volume)lfluid (7.1-10) 

The gradient of driving force is expressed in the form 

Gradient of driving force- Difference in driving force (7.1-11) 
Characteristic length 

On the other hand, "Difference in Quantity/Volume" can be expressed as 

( Difference in ) _ (Transport property) ( Difference in ) (7.1-12) 
Quantity/Volume Diffusivity driving force 

Substitution of Eqs. (7.1-11) and (7.1-12) to the left- and right-hand sides of Eq. 
(7.1-10), respectively, gives 

Bi= 

Characteristic '~ ( Transfer 
length ] \ coefficient ) ( Transp~ property ) 

( ~ ~ - -  Diffusivity 
property ] sotid fluid 

(7.1-13) 

in which Bi designates the Blot number defined by 
(Difference in driving force)soU d 

Bi = (7.1-14) 
(Difference in driving force)fluid 

Therefore, the Biot numbers for heat and mass transfer are defined as 

B i n -  (h)Lch 
tgsolid 

(7.1-15) 

B i M  = 

(:DAB) o.d 
It is important to distinguish the difference between the Biot and the Nusselt 

(or, the Sherwood) numbers. The transport properties in the Biot numbers, Eqs. 
(7.1-15) and (7.1-16), are referred to the solid, whereas the transport properties in 
the Nusselt and the Sherwood numbers, Eqs. (3.4-11) and (3.4-12), are referred to 
the fluid. 

When the Biot number is small, one can conclude from Eq. (7.1-14) that 

( ) (Differencein)  (7.1-17) Difference in << driving force fluid driving force soUd 

Therefore, dependent variables may be considered uniform within the solid phase 
only if Bi << 1. 
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7.2 C O N S E R V A T I O N  OF C H E M I C A L  
S P E C I E S  

The conservation statement for the mass of the i th chemical species is given by 

( R a t e  of mass ) o f  i in _ ( R a t e  of mass ) o f  i out + ( Rate of generation ) o f  mass i 

_ -  ( Rate of accumulation ) o f  mass i (7.2-1) 

For a system with a single inlet and a single outlet stream as shown in Figure 7.1, 
Eq. (7.2-1) can be expressed as 

(?~ti)in -- (mi)out • (?:ni)int ~- Vsys./~i E o~ijrj -- 
J 

d(mi)~ys 
dt 

(7.2-2) 

(thi)in SYSTEM 

(tni)int 

" (tni)ou t 

Figure 7.1 Unsteady-state flow system exchanging mass with the surroundings. 

The interphase mass transfer rate, (rhi)~nt, is considered positive when mass is 
added to the system and is expressed by 

(?:ni)int -- A M { k c l  (Z~Ci)ch M i  (7.2-3) 

Substitution of Eq. (7.2-3) into Eq. (7.2-2) gives 

(QPi)in --(QPi)out iAM(kc) (Aci)ch Mi + VsysMi E a i j r j  - 
J 

d(rni)sys 
dt 

In terms of molar basis, Eqs. (7.2-2) and (7.2-4) take the form 

(~,),~ - (~,)o~ + (~,),~ + y ~  ~ ~,j ~j - 
J 

d(ni)sys 
dt 

(7.2-4) 

(7.2-5) 
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and 

(Q ci)i~ - (Q Ci)o~t i AM(k~) (Aci)~h + V~y~ E aij r 5 = 
J 

dt 
(7.2-6) 

7 . 3  C O N S E R V A T I O N  O F  T O T A L  M A S S  

Summation of Eq. (7.2-2) over all species gives the total mass balance in the form 

?Znin  - -  m o u t  -Jr- ?Znin t - -  
dmsys 

dt 
(7.3-1) 

Note that  the term ~-~'-i aijA/li is zero since mass is conserved. On the other hand, 
summation of Eq. (7.2-5) over all species gives the total mole balance as 

r~ 
J 

dnsys 
dt 

(7.3-2) 

where 

: (7.3-3) 
i 

The generation term in Eq. (7.3-2) is not zero because moles are not conserved. 
This term vanishes only when ~j = 0 for all values of j. 

E x a m p l e  7.2 An open cylindrical tank of height H and diameter D is initially 
half full of a liquid. At time t = O, the liquid is fed into the tank at a constant 
volumetric flow rate of Qin, and at the same time it is allowed to drain out through 
an orifice of diameter Do at the bottom of the tank. Express the variation of the 
liquid height as a function of time. 

S o l u t i o n  

A s s u m p t i o n s  

1. Rate of evaporation from the liquid surface is negligible. 

2. Liquid is incompressible. 

3. Pressure distribution in the tank is hydrostatic. 
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h ~ D 

Orifice of diameter D O 

[ 
H 

~" Qout 

Analysis 

System: Fluid in the tank 

The inventory rate equation for total mass, Eq. (7.3-1), reduces to 

p Q~ - p(vo)Ao = d(Ahp) 
dt 

(1) 

where {Vo) is the average velocity through the orifice, i.e., the volumetric flow rate 
divided by the cross-sectional area; Ao and A are the cross-sectional areas of orifice 
and the tank, respectively. Since p and A are constant, Eq. (1) becomes 

dh 
Qi,~ -{volAo = A d--~ (2) 

In order to proceed further, (Vol must be related to h. 
For flow in a pipe of uniform cross-sectional area A, the pressure drop across 

an orifice is given by 

(Vo) - V/1 _ ~ 4  (3) 

where ~ is the ratio of the orifice diameter to the pipe diameter, lAP] is the pres- 
sure drop across the orifice, and Co is the orifice coefficient. The value of Co 
is generally determined from experiments and given as a function of ~ and the 
Reynolds number, Reo, defined by 

Reo = Do(vo)p (4) 

For/~ < 0.25, the term V/1 - ]~4 is almost unity. On the other hand, when Reo > 
20,000, experimental measurements show that Co ~- 0.61. Hence, Eq. (3) reduces 
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to  
! 

(Vo) = 0.61 1/2 [/Xp[ (5) 
V P 

Since the pressure in the tank is hydrostatic, IAPI ~_ pgh and Eq. (5) becomes 

(vo) -- 0 . 6 1 ~ ' ~ h  - 2.Tx/h (6) 

Substitution of Eq. (6) into Eq. (2) gives the governing differential equation for 
the liquid height in the tank as 

- d t  (7) 

where 
Qr a = (8) 

2.7Ao 

Note that the system reaches steady-state when dh/dt = 0 at which point the liquid 
height, h~, is given by 

h~ = n ~ (9) 

Now, it is worthwhile to investigate two cases: 

Case (i) Liquid level in the tank increases 

At t = O, the liquid level in the tank is H/2. Therefore, the liquid level increases, 
i.e., dh/dt > 0 in Eq. (7), if 

ft 2 > H/2 (10) 

Rearrangement of Eq. (7) gives 

dt - ~ /2 f~ - x/rh (11) 

Integration of Eq. (11) yields 

t = 0 . 7 4  ~ - x/-h+Ftln f ~ -  x / -H~ (12) 
a - 4 - f i  

Equations (9) and (10) indicate that hs > H/2. When hs > H, steady-state 
condition can never be achieved in the tank. The time required to fill the tank, t f, 
is 

tf = 0.74 Too - x/H + Ft In Ft - x / ~  J (13) 

If  H/2  < h~ < H, then the time, too, required for the level of the tank to reach 
99% of the steady-state value is 

too - 0.74 ~o  - ~ . 9 9 f t  + gt In f~ - Hv/-H~ (14) 
a -  0 zg .99a 
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Case (ii) Liquid level in the tank decreases 

The liquid level in the tank decreases, i.e., dh/dt < 0 in Eq. (7), if 

f~2 < H/2 

Equation (12) is also valid for this case. Equations (9) and (15) imply that hs < 
H/2.  Since hs cannot be negative, this further implies that it is impossible to empty 
the tank under these circumstances. The time required for the level of the tank to 
reach 99% of the steady-state value is also given by Eq. (1~). 

The ratio h / H  is plotted versus t/[O.74(A/Ao)VFH] with ~ / ~ a s  a parameter 
in the figure below. 
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Example  7.3 A liquid phase irreversible reaction 

A---~ B 

takes place in a CSTR of volume VT. The reactor is initially empty. At t = O, 
a solution of species ~4 at concentration CAo flows into the reactor at a constant 
volumetric flow rate of Qin. No liquid leaves the reactor until the liquid volume 
reaches a value of VT. The rate of reaction is given by 

r - - k c A  

If the reaction takes place under isothermal conditions, express the concentration 
of species .,4 within the reactor as a function of time. 
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Solu t ion  

Assumptions 

1. Well mixed system, i.e., the temperature and the concentration of the contents 
of the reactor are uniform. 

2. The density of the reaction mixture is constant. 

Analysis 

System: Contents of the reactor 

The problem should be considered in three parts: the .filling period, the unsteady 
state period, and the steady-state period. 

i) The filling period 

During this period, there is no outlet stream from the reactor. Hence, the conser- 
vation of total mass, Eq. (7.3-1), is given by 

dmsys 
P Qin - dt (1) 

Since Qin and p are constant, integration of Eq. (1) and the use of the initial 
condition, msys = 0 at t = O, gives 

msys = Qi~p t (2) 

Since msys = pVsys, Eq. (2) can also be expressed as 

V~y~ = Qi,~ t (3) 

From Eq. (3), the time required to fill the reactor, t*, is calculated as t* = VT/Qin,  
where VT is the volume of the reactor. 

The inventory rate equation based on the moles of species .4, Eq. (7.2-6), 
reduces to 

dnA 
Q i n  CAo --  k c A Y s y s  "-- dt (4) 

where Vsys, the volume of the reaction mixture, is dependent on time. 
concentration can be expressed in terms of the number of moles as 

nA 
- ( 5 )  

Vsys 

such that Eq. (~) can be rearranged in the form 

The molar 

fO rt A dn A ~0 t 
Qin CAo -- k nA = dt (6) 
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Integration gives 

Qi,~ CAo [1 - exp( -  k t)] (7) nA = k t  

Substitution of Eq. (7) into Eq. (5) and the use of Eq. (3) gives the concentration 
as a function of time as 

CAo CA = ~ [1 - exp( -  k t)] o < t <_ VT/Q~ (8) 

The concentration c* A at the instant the tank is full, i.e., at t -  t* = VT/Qi,~, is 

* Q i n C A ~  [ 1 - e x p (  k V T ) ]  (9) 
ca = k Vr - Qi----~ 

ii) The unsteady-state period 

Since the total volume of the reactor VT is constant, then the inlet and outlet 
volumetric flow rates are the same, i.e., 

Qi,~ - Qo~t = Q (lO) 

The inventory rate equation on the moles of species A, Eq. (7.2-6), is 

Q cAo - Q cA - k cA VT = 
d( ~A VT ) 

dt  
( i i )  

Equation (11) can be rearranged in the foT-m 

_ dcA 
1 [CAo --CA (1 + kT)] = (12) 
T dt 

where T is the residence time defined by 

7" -~- 
VT 
Q 

(13) 

Equation (12) is a separable equation and can be written in the form 

ff c cA d C A ~tt l 7 - dt 
?~ CAo --CA (1 + kT) 

(14) 

Integration of Eq. (14) gives the concentration distribution as 

CAo ( ,  CAo ) [  ( l + k T ) ( t - - t * ) ]  
CA : 1 + kT + CA 1 -~-kT exp -- ~- 
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iii) The steady-state period 

The concentration in the tank reaches its steady-state value, CAB, as t ---, co. In 
this case, the exponential term in Eq. (15) vanishes and the result is 

CAo (16) 
CAB= l ~ - k T  

Note that Eq. (16) can also be obtained from Eq. (12) by letting dcA/dt = O. The 
time required for the concentration to reach 99% of its steady-state value, too, is 

T { [ ( 1 - [ - kT )  [1--exp(--kT)]]} (17) too -- t* + :i=+:kT In 100 1 -- kT 

When kT- << 1, i.e., a slow first-order reaction, Eq. (17) simplifies to 

too - t* - 4.6 v (18) 

E x a m p l e  7.4 A sphere of naphthalene, 2cm in diameter, is suspended in air at 
90 ~ Estimate the time required for the diameter of the sphere to be reduced to 
one-half its initial value if: 

a) The air is stagnant, 
b) The air is flowing past the naphthalene sphere with a velocity of 5 m~ s. 

Solution 

P h y s i c a l  properties 

pS = 1 1 4 5 k g / m  3 
For naphthalene (species A)  at 90 ~ (363 K)"  M A = 128 

P~4 ~t - 11.7 mmHg 

Diffusion coefficient of species .A in air (species B): 

( / ) A . ) 3 6 3 -  (0.62 X 10 -5) /f363'~ 3/2 
\3oo] 

-- 8.25 x 10 -6 m 2 / s  

For air at 90~ (363 K ) - ~ -  21.95 x 10 -6 m 2 / s  

The Schmidt number is 

12 
Sc = 

~)AB 
21.95 x 10 -6 

= = 2.66 
8.25 x 10 -6 

Assumptions 

1. Pseudo-steady-state behavior. 
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2. Ideal gas behavior. 

Analysis 

System: Naphthalene sphere 

The terms appearing in the conservation of species A, Eq. (7.2-2), are 

( ~ A ) i n  --- ( # t A ) o u t  - -  0 

(~),.~ = - ( ~ D ~ )  ( k ~ ) ( ~  - ~ = ) M ~  

r - - 0  

(mA)sv, = V~ys p S _  (~D~/6 )p~  

Therefore, Eq. (7.2-2) reduces to 

d (UD3pSA) 
(~D~) (k~) ( ~  - ~ )  M ~  - -~ 6 (1) 

Taking CAr - 0 and rearrangement gives 

t = 2 MA CAw 0/2 (kc} (2) 

where Do is the initial diameter of the naphthalene sphere. 
The average mass transfer coeJficient, (k~), can be related to the diameter of the 

sphere, D p, by using one of the mass transfer correlations given in Section 4.3.3. 
The use of the Ranz-Marshall correlation, Eq. (~.3-33), gives 

i/2 Sh = 2 + 0.6 rtep Sc 1/3 (3) 

a) When air is stagnant, i.e., Rep - O ,  Eq. (3) reduces to 

Sh = (kc)Dp = 2 ~ (kc) = 2DAB (4) 
~ ) A B  DR 

Substitution of Eq. (~) into Eq. (2) and integration gives 

S 2 
3 PADo 

t = 3--2 MACA~DAB (5) 

The saturation concentration of naphthalene, CAw, is 

CA w "-  

~at 

7~T 
11 .7 /~6o  

(0.08205)(90 + 273) 
= 5.17 • 10 -4 kmol /m  3 (6) 
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Substitution of the values into Eq. (5) gives the required time as 

3 (1145)(0.02) 2 
t - -  

32 (128)(5.17 x 10-4)(8.25 x 10 -6) 
= 2.59 x 105 s _~ 3 days 

b) When air flows with a certain velocity, the Ranz-Marshall correlation can be 
expressed as 

(kc)Dp _ 2 + 0.6 ( Dpvoo )1/2 . . . . .  Scl/3 
~)AB 11 

or~ 

where the coefficients a and fl are defined by 

(7) 

c t -  2:DAB -- 2 (8.25 X 10 -6) = 1.65 X 10 .5 (8) 

= 0.6 :DAB (Vc~//]) 1/2 Sc 1/3 

= (0.6)(8.25 x 10 -6) 21.95 x 10 .6 (2.66) ~/a = 3.27 x 10 .3 

Substitution of Eqs. (7)-(9) into Eq. (2) gives 

1145 f0.02 ( Dp ) 
t = (2)(128)(5.17 x 10 -4) J 0 . 0 1  1.65 x 10 .5 + 3.27 x 10-3x/-D--p dDp 

Analytical evaluation of the above integral is possible and the result is 

t = 3097 s __ 52 min 

Ver i f ica t ion  of t he  p s e u d o - s t e a d y - s t a t e  a p p r o x i m a t i o n  

(9) 

~)AB t (8.25 X 10-6)(3097) 
D~ (2 x 10-2) 2 

= 6 4 > > 1  

7 .4  C O N S E R V A T I O N  O F  M O M E N T U M  

According to Newton's second law of motion, the conservation statement for linear 
momentum is expressed as 

( Time rate of change of ) ( Forces acting ) (7.4-1) 
linear momentum of a body = on a body 

In Section 4.3, we considered the balance of forces acting on a single spherical 
particle of diameter Dp, falling in a stagnant fluid with a constant terminal velocity 
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vt. In the case of an accelerating sphere an additional force, called fluid inertia 
force, acts besides the gravitational, the buoyancy, and the drag forces. This force 
arises from the fact that the fluid around the sphere is also accelerated from the 
rest, resulting in a change in the momentum of the fluid. The rate of change of 
fluid momentum shows up as an additional force acting on the sphere, pointing 
in the direction opposite to the motion of the sphere. This additional force has a 
magnitude equal to one-half the rate of change of momentum of a sphere of liquid 
moving at the same velocity as the solid sphere. Therefore, Eq. (7.4-1) is written 
in the form 

Time rate of change of ) _ ( G r a v i t a t i o n a l )  
linear momentum of a sphere force 

_ // Buoyancy inertia 
force ) _ ( D r a g  force ) - ( Fluid force ) \ (7.4-2) 

and can be expressed as 

7r D 3p d v 7r D 3p 7c D 3p ( Tr D 2P ) ( 2 ) 7r D 3p d v 
- ~  PP-~ -- 6 PPg -- 6 pg -- 4 pv2 f -- 1---~ p ~ (7.4-3) 

where pp and Dp represent the density and diameter of the solid sphere, respec- 
tively, and p is the fluid density. Simplification of Eq. (7.4-3) gives 

dv 3 
DR (pp + 0.5 p) -~ =- DR (pp - p) g - ~ pv2 f (7.4-4) 

The friction factor f is usually given as a function of the Reynolds number, Rep, 
defined by 

D e v p  
Rep = (7.4-5) 

# 

Therefore, it is much more convenient to express the velocity, v, in terms of Rep. 
Thus, Eq. (7.4-4) takes the form 

(pp + 0.5 p) D~ d Rep _=_ A r -  3 # dt ~ / R e ~  (7.4-6) 

where Ar is the Archimedes number defined by Eq. (4.3-6). Note that when the 
particle reaches its terminal velocity, i.e., d R e p / d t  = 0, Eq. (7.4-6) reduces to Eq. 
(4.3-4). Integration of Eq. (7.4-6) gives 

t -- (PP ~-O'5p) D2p fRep  JO Ar- ~3fRe2) 
--1 

dRep (7.4-7) 

A friction factor - Reynolds number relationship is required to carry out the 
integration. Substitution of the Turton-Levenspiel correlation, Eq. (4.3-10), into 
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Eq. (7.4-7) gives 

t 
(pp + 0.5 p) D 2 

fRep( ) x Ar - 18 Rep - 3.114 Re~5657 - 0.31 Re 2 -1 
Jo 1 -Jr- 1613-0-0Gp 1"09 dRep  (7.4-8) 

Equation (7.4-8) should be evaluated numerically. 

E x a m p l e  7.5 Calculate the time required for a spherical lead particle, 1.5 mm in 
diameter, to reach 60% of its terminal velocity in air at 50 ~ 

So lu t i on  

P h y s i c a l  p r o p e r t i e s  

For air at 50~ (323 K)" { p = 1.0928 k g / m  3 
# - 19.57 x 10 -6 kg /m.  s 

For lead at 5 0 ~  = 11 ,307kg /m 3 

Analysis 

When the particle reaches its terminal velocity, the value of the Reynolds number 
can be calculated from Eq. (~.3-12). The Archimedes number is 

Ar - D3 gp(PP - p) 
#2 

= (1.5 x 10-3)3(9.8)(1.0928)(11,307) = 1.067 x 106 
(19.57 • 10-6) 2 

Substitution of this value into Eq. (~.3-12) gives the Reynolds number under steady 
conditions as 

Ar ARO.412) -1.214 
RepI~=~* = 18 (1+0.0579 

1"067• [ ] =1701  = 18 1 + 0.0579 (1.067 • 106) ~ -1.214 

In this problem it is required to calculate the time for the particle to reach a Reynolds 
number of 

Ree = (0.6)(1701)= 1021 

Therefore, the required time can be calculated from Eq. (7.4-8) as 

t = (11,307)(1.5 x 10-3)  2 

19.57 x 10 -6 I (1) 
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where 

f Rep I I = 1.067 • 10 6 -  18 R e p - 3 . 1 1 4 R e ~  657- 
,]0 

0"31 Re2g ) 

1 + 16,300 Rep 1'~ 

--1 
dRep 

The value of I can be determined by using one of the numerical techniques given in 
Section A.8-4 in Appendix A. The use of the Gauss-Legendre quadrature is shown 
below. According to Eq. (A.8-13) 

1021 

and the five-point quadrature is given by 

I M 

4 
1021 

i = 0  

(2) 

where the function F(u) is given by 

- 

1.067 • 106 - 9189 (u + 1) - 95602 (u + 1) 1.657 - 

80,789 (u + 1)2 
1 + 18.22 (u + 1) -1"09 

The values of wi and F(ui) are given up to three decimals in the following table: 

i ui wi F(ui) • 106 wiF(ui) • 106 

0 0.000 0.569 1.044 0.594 

1 +0.538 0.479 1.187 0.569 

2 -0 .538  0.479 0.966 0.463 

3 +0.906 0.237 1.348 0.319 

4 -0 .906  0.237 0.940 0.223 

4 ~ = o  wiF(ui) = 2.17 • 10 -6  

Therefore, the value of I can be calculated from Eq. (2) as 

1021 
(2.17 • 10-6) -- 1.11 • 10 -3  

2 \ / 

Substitution of this value into Eq. (1) gives 

t 
(11,307)(1.5 • 10-3) 2 (1.11 • 10 -3)  

19.57 • 10 -6 
= 1.44s 
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7.5  C O N S E R V A T I O N  O F  E N E R G Y  

The conservation statement for total energy under unsteady-state conditions is 
given by 

( R a t e o f ) _  ( Rateof ) _ ( R a t e o f e n e r g y )  
energy in energy out accumulation (7.5-~) 

For a system shown in Figure 7.2, following the discussion explained in Section 6.3, 
Eq. (7.5-1) is written as 

d 
= d-~ [(U + EK + Ep)rn]sy s (7.5-2) 

~ .  P-i,, 

SYSTEM ~ut 

Figure 7.2 Unsteady-state flow system exchanging energy in the form of heat 
and work with the surroundings. 

Note that, contrary to the steady-state flow system, the boundaries of this sys- 
tern are not fixed in space. Therefore, besides shaft and flow works, work associated 
with the expansion or compression of the system boundaries must be included in 
I/V so that it takes the form 

( )  ( )  dt + ~ + Prim - P f : ~  
V in out  

A C 

(7.5-3) 

where terms A, B, and C represent, respectively, work associated with the expan- 
sion or compression of the system boundaries, shaft work, and flow work. 

Substitution of Eq. (7.5-3)into Eq. (7.5-2) and the use of the definition of 
enthalpy, i.e., _f-I = U + PV, gives 

'[ 1 = d~ (~ + EK + Ep)m (7.5-4) 
s y s  
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which is known as the general energy equation. Note that  under steady conditions, 
Eq. (7.5-4) reduces to Eq. (6.3-9). In terms of molar quantities, Eq. (7.5-4) is 
written as 

[(/~ + #~ + EP)~] ~ 

] = d-~ (0  + ~ + ~ , ) ~  (7.5-5) 
s y8  

When the changes in the kinetic and potential energies between the inlet and 
outlet of the system as well as within the system are negligible, Eq. (7.5-4) reduces 
to 

( /~)~  - (z~m)o~ + ~ ) ~  - P ~  d V ~  d dt + IfVs = -~(~fm)sys (7.5-6) 

The accumulation term in Eq. (7.5-6) can be expressed in terms of enthalpy as 

d (5~n)~ d - 

d ([_im) ~ys - P~y~ dVsv~, dP~y~ 
= d~ dt -V~y~ clt (7.5-7) 

Substitution of Eq. (7.5-7) into Eq. (7.5-6) gives 

(-f-Idn)in -(If-Izh)o~t + (~int + Vsys dP~y~ 
dt 

d (/~m) + w ~ - ~  ~ (7.5-8) 

On molar basis, Eq. (7.5-8) can be expressed as 

([-z~)~ - (I:Z~)o~, + Q ~  + v ~  d P ~  
dt 

d (iT_in)sy s +~v~-~ (7.5-9) 

E x a m p l e  7.6 Air at atmospheric pressure and 25 ~ is flowing at a velocity 
of 5 m /  s over a copper sphere, 1.5cm in diameter. The sphere is initially at a 
temperature of 50 ~ How long will it take to cool the sphere to 30 ~ ? How much 
heat is transferred from the sphere to the air? 

Solution 

P h y s i c a l  p r o p e r t i e s  

For air at 25 ~ (298 K)" 

tt = 18.41 • 10 -6 kg /m.  s 
u = 15.54 • 10 -6 m 2 / s  
k = 25.96 • 10 -3 W / m .  K 
Pr = 0.712 
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For air at 40~ (313 K ) : #  = 19.11 x 10 -6 k g / m . s  

p = 8924 k g / m  3 

For copper at 40 ~ (313 K)"  Cp = 387 J / k g .  K 
k = 3 9 7 W / m .  K 

Assumptions 

1. No temperature gradients exist within the sphere, i.e., Bi << 1. 

2. The average heat transfer coeLficient on the surface of the sphere is constant. 

3. The physical properties of copper are independent of temperature. 

4. Pseudo-steady-state behavior. 

Analysis 

System: Copper sphere 

For the problem at hand, the terms in Eq. (7.5-8) are 

?~2in - -  ?Trout - - 0  

W~=O 
(~int = -(TrD2p)(h>(T - Too) 

dP~y~ = 0 
dt 

[-Isys - ( O p ) c ~ ( T -  Tr~f ) 

where T is the copper sphere temperature at any instant and Too is the air temper- 
ature. 

Therefore, Eq. (7.5-8) becomes 

- ~D2p{h>(T- Too) = ' 6  ' ( p d p ) c ~ - ~  (1) 

Integration of Eq. (1) with the initial condition that T = T~ at t = 0 gives 

Dp (p~p)c~ ln ( T~ - Too ) 
t = 6 (h> T - Too (2) 

To determine the average heat transfer coefficient, (h), first it is necessary to cal- 
culate the Reynolds number: 

Dpvoo 
Rep - 

/ /  

= (0.015)(5) = 4 8 2 6  
15.54 x 10 -6 



7.5. CONSERVATION OF ENERGY 201 

The use of the Whitaker correlation, Eq. (~.3-30), gives 

( ~ 2/3) r0.4 )1/4 Nu = 2 + 0.4 Re 1/2 +0.06 rtep P (tto~/tt w 

=2+[0"4(4826)1/2+0"06(4826)2/3](0"712)~ 1 / 4 1 9 ~ 1 1  x 10 -6 

= 40.9 

The average heat transfer coefficient is 

0.015 = 71 W / m  2. K 

Therefore, the time required for cooling is 

t .  ( 0 . 0 1 5 ) ( 8 9 2 4 ) ( 3 8 7 ) ( 5 0 - 2 5 )  
(6)(71) In 3 0 - 2 5  = 196s 

The amount of energy transferred from the sphere to the air can be calculated from 

/o /o Qi.t = (~.t dt = 7rD2p (h> (T - Too) dt (3) 

Substitution of Eq. (2) into Eq. (3) and integration yields 

Q i n t - ( ~ ) ( p V p ) c u ( T i - T o o ) { l - e x p [ - D p ( p V p ) c u 6 < h l t  ] }  (4) 

Note that from Eq. (2) 

[ 6 <h>t ] T - Too 
exp -- = (5) 

Dp(pCp)cu Ti - Too 

S.b~tit~tion of Eq. (5) into Eq. (~) give~ 

_ (~D~6 (6) 
k g 

: 

Ver i f i ca t ion  of  a s s u m p t i o n s  

�9 Assumption ~ 1 

B i - ( h } D p  
kcu 

(71)(o.o15) 
397 

= 0.0027 << 1 
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�9 Assumption # 4 

D~- 
397 1 ( 1 9 6 )  

(8924)(387) (0.015) 2 
= 100>> 1 

Comment"  Note that Eq. (6) can simply be obtained from the first-taw of thermo- 
dynamics written for a closed system. Considering the copper sphere as a system, 

A U  = Q~t  + W Qint = A u  = m Cv A T  ,2_ m Cp A T  

Example  7.7 A solid sphere at a uniform temperature of T1 is suddenly im- 
mersed in a well-stirred fluid of temperature To in an insulated tank (T1 > To). 

a) Determine the temperatures of the sphere and the fluid as a function of time. 
b) Determine the steady-state temperatures of the sphere and the fluid. 

Solution 

Assumptions 

1. The physical properties of the sphere and the fluid are independent of tem- 
perature. 

2. The average heat transfer coefficient on the surface of the sphere is constant. 

3. The sphere and the fluid have uniform but unequal temperatures at any in- 
stant, i.e., Bi << 1 and mixing is perfect. 

Analysis 

a) Since the fluid and the sphere are at different temperatures at a given instant, it 
is necessary to write two differential equations: one for the fluid, and one for the 
sphere. 

System: Solid sphere 

The terms in Eq. (Z5-8) are 

rh~ = rho~,t = 0 

f r~  - O 

Qi,~t = -(~D2p)(hl(Ts - Tf  ) 

dPsvs = 0 
dt 

I:I~vs : Cp 8 (T~ - Tref ) 
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where Dp is the diameter of the sphere, subscripts s and f stand for the sphere 
and the fluid, respectively. Therefore, Eq. (7.5-8) becomes 

d% 
-r (T~ - T:) -- dt (1) 

where 
6(h) (2) 

r : DpOpsp ~ 

System: Fluid in the tank 

The terms in Eq. (7.5-8) are 

?zYtin ---- ?[tou t = 0 

w~=o 
(~mt -- (~D~)<A)(Ts - Tf) 

dP~y~ = 0 

dt 
msys  : m y  

I~-Isys : Cp:  (T f  - -  Tref  ) 

Hence, Eq. (7.5-8) reduces to 

dT: 
Cf (Ts - T I) = dt (3) 

where 
(h)uD2p 

r = m:Cp: (4) 

From Eq. (1), the fluid temperature, T:, is given in terms of the sphere temperature, 
Ts , as 

1 dTs 
T: - T~ + r d--Y (5) 

Substitution of Eq. (5) into Eq. (3) gives 

d2Ts dTs 
dt---- V + r ~ = 0 (6) 

where 

r = Cf + r (7) 

Two initial conditions are necessary to solve this second-order ordinary differential 
equation. One of the initial conditions is 

at t = 0  Ts=T1 (8) 
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The other initial condition can be obtained from Eq. (5) as 

dT8 
at t = O dt = r176 - T1) (9) 

The solution of Eq. (6) subject to the initial conditions defined by Zqs. (8) and (9) 
is 

r (T1 - To)[1 - exp  (-Ct)] (10) Ts - TI - -~ 

The use of Eq. (10) in Eq. (5) gives the fluid temperature in the form 

Tf  = T1 - T1 - To [r + Cf exp ( -  Ct)] (II) 
r 

b) Under steady conditions, i.e., t ~ ~ ,  Eqs. (10) and (11) reduce to 

T~ - T~ - Too = r + r r (12) 

Comment:  Note that the final steady-state temperature, Too, can simply be ob- 
tained by the application of the first law of thermodynamics. Taking the sphere and 
the fluid together as a system, we get 

A u  = - - ~ p ~ S p ,  (T~ - Ti) + ~ n ~ 5 . ~ ( T ~  - To) - 0 (~3) 

Noting that 

Equation (13) reduces to 

r = 7r D 3P ps C p~ (14) 
r 6 m fdps  

r (Too - T~) + (Too - To)  = 0 
r 

Solution of Eq. (15) results in Eq. (12). 

Example 7.8 A spherical steel tank of volume 0.5 m 3 initially contains air at 
7 bar and 50 ~ A relief valve is opened and air is allowed to escape at a constant 
flow rate of 12 tool/rain. 
a) I f  the tank is well insulated, estimate the temperature and pressure of air within 
the tank after 5 minutes. 

b) I f  heating coils are placed in the tank to maintain the air temperature constant 
at 50 ~ estimate the pressure of air and the amount of heat transferred after 5 
minutes. 

Air may be assumed an ideal gas with a constant Cp of 29 J/tool. K. 
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S o l u t i o n  

a)  System: Contents of the tank 

A s s u m p t i o n s  

1. Properties of the tank contents are uniform, i.e., [-io~t - [-I~y~. 

2. Heat transfer between the system and its surroundings is almost zero. Note 
that the insulation around the tank does not necessarily imply that (~int = O. 
Since the tank wall is in the surroundings, there will be heat transfer between 
the tank wall and air remaining in the tank during the evacuation process. 
Heat transfer may be considered negligible when (i) the mass of the wall is 
small, (ii) process takes place rapidly (remember that heat transfer is a slow 
process). 

A n a l y s i s  

Since i~in = itint = 0 and there is no chemical reaction, Eq. (7.3-2) reduces to 

dnsys 
- -  ~ t o u t  = dt => - 12 = dn~y~ dt (1) 

Integration of Eq. (1) yields 
nsys - no - 12 t (2) 

where no is the number of moles of air initially present in the tank, i.e., 

PoV (7)(0.5) = 130.3 mol  
no = ~ To = (8.314 • 10-5) (50  + 273) 

On the other hand, the inventory rate equation for energy, Eq. (7.5-5), takes the 
form 

I : I o u t  t r o u t  - -  
dt 
d~rsvs dnsy~ 

= nsys d-----~ + (]~ys dt (3) 

Substitution of Eqs. (1) and (2) into Eq. (3) gives 

dU~y~ 
- 12 (I:Io~t - ~]~y~) = ( n o  - 12 t) 

dt 
(4) 

Since [ - I -  (] § P V -  ~] + ~ T ,  the use of the first assumption enables us to express 
the left-hand side of Eq. (~) as 

= (&ys  + n Tsys) - Usy~ - n Tsy~ (5) 
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On the other hand, the right-hand side of Eq. (~) is expressed in terms of temper- 
ature as 

= 
dt dt (6) 

Hence, substitution of Eqs. (5) and (6)into Eq. (~) gives 

dT~ys 
- 12 77. T~y~ = (no - 12 t) C v  dt  (7)  

For an ideal gas 

where 

Cv 
C p = C v + n  =~ n = ~ / - 1  (8) 

C p  29 
7 . . . .  1.4 (9) 

Cv 29 - 8.314 

Note that Eq. (7) is a separable equation. Substitution of Eq. (8) into Eq. (7) and 
rearrangement yields 

So t dt 
- 12 (~/-  1) no - 12t 

_ f T ~ , 8  dT~y s 
( l o )  

Integration gives 
Tsy~ T o ( n ~  7-1 

= (111  
lto 

The variation of pressure as a function of time can be estimated by using the ideal 
gas law, i.e., 

nsysT~T~y~ (12) 
PsY~ = V 

Substitution of Eqs. (2) and (11) into Eq. (12) gives 

p s u n T o  ( n o - 1 2 t )  
= V (no -  12t) (13) 

no 

Since n To/V = Po/no, Eq. (13) reduces to 

p s y s = p o ( n ~  7 
no (14) 

Substitution of the numerical values into Eqs. (11) and (1~) gives Tsys and Psys, 
respectively, after 5 minutes as 

Tsys = (50 + 273) [ 130.3130.3- (12)(5) 
1 . 4 - 1  

= 252.4 K 
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Psys - 71130"3 - (12)(5) ] 1"4 
130.3 - 2.95 bar 

Comment: Note that Eq. (11) can be rearranged in the form 

T~ys= nsjA (15) 
To no 

The use of the ideal gas law to express the number of moles gives 

(~o~)~-1  ( To ) 7-1 T~y~ (p~ys) (7-1)/7 Tsy8 = = 
To ~ ~ To ~ (16) 

which is a well-known equation for a closed system undergoing a reversible adiabatic 
(or, isentropic) process. Therefore, the gas remaining in the tank undergoes a 
reversible adiabatic expansion throughout the process. 

b) System: Contents of the tank 

Assumption 

1. Properties of the tank contents are uniform, i.e., [--Io~,t = H~y~. 

Analysis 

Equation (7.3-2) becomes 

dnsys 
- i ~ o ~ t  = dt ~ - 1 2 =  dnsys dt (17) 

Integration of Eq. (17) yields 

n~ys = no - 12t (18) 

where no is the number of moles of air initially present in the tank, i.e., 

PoV (7)(0.5) 
no = n To = (8.314 • 10-5)(50 + 273) = 130.3 mol 

In this case the process is isothermal and, as a result, the pressure of the system 
can be directly calculated from the ideal gas law, i.e., 

V nsys (19) 

Th~ ~ e  of Eq. (IS) in Eq. (19) ~e~ult~ ~ 

psy~ - (~T~y~ ) (no - 1 2 t )  

= P o - 1 2 ( n T ~ y ~ )  y t (20) 
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Substitution of the numerical values gives 

P - 7 - (12)(8.314 x lv-5j,_vt) ](SN + 273)(5) : 3.78 bar 
0.5 

The amount of heat supplied by the heating coils is determined from the inventory 
rate equation for energy, Eq. (7.5-5). Simplification of this equation is 

-I~Io~,t i~out + (~int - d(nO)sy~ 
dt 

: O~ys dn~y~ (21) 
dt 

Since the process is isothermal, Usys remains constant. Substituting Eq. (17) into 
Eq. (21) and using the fact that i:Iout : ITt~ys yields 

= (12)(8.314)(50 + 273) = 3 2 , 2 2 5 J / m i n  

Therefore, the amount of heat transferred is 

Qmt - Q~nt t = (32,225)(5) - 161,125 J 

7 . 5 . 1  U n s t e a d y - S t a t e  E n e r g y  B a l a n c e  A r o u n d  a 

C o n t i n u o u s  S t i r r e d  T a n k  R e a c t o r  

An unsteady-state energy balance in a continuous stirred tank reactor (CSTR) 
follows the same line as the steady-state case given in Section 6.3.2.2. Using the 
same assumptions, the resulting energy balance becomes 

ou t  

+ Qmt = -~ nif-Ii(T) 
8y8 

(7.5-10) 

On the other hand, the macroscopic mole balance for species i, Eq. (7.2-5), is 

- + Z "{J : 
J 

d(ni)sys 
dt 

(?'.5-11) 

Multiplication of Eq. (7.5-11) by Hi(T) and summation over all species gives 

i i n  ou t  J 

dni 1 
: T 

i s y s  

(7.5-12) 
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Subtraction of Eq. (7.5-12) from Eq. (7.5-10) yields 

E (/ti)in [/ti(Ti~) - /~i(T)]  + Qint + V~y~ E rj(-AH~xn,j) 
J 

] = n (T) aH (T) 
----gi--- 

s y s  

(7.5-13) 

Dividing Eq. (7.5-13) by the volumetric flow rate, Q, gives 

E (ci)in [/~i(Ti~)-/ti(T)] + ~ + T E rj(-AHrx,~,j) 
i j 

= T c~ (T) dHi (T) 
dt 

s y s  

(7.5-14) 

where ~- is the residence time. Expressing the partial molar enthalpy of species i 
in terms of the partial molar heat capacity by Eq. (6.3-41) gives 

dT 
(Cp)in(Ti,~ - T) + § T E ri(-AHrx",J) - T(Cp)~y~--~ 

J 

where 

(Cp)r  E(ci)i,~Cp~ (7.5-16) 
i 

(7.5-171 
i 

Note that Eq. (7.5-15) reduces to Eq. (6.3-42) under steady conditions. On the 
other hand, for a batch reactor, i.e., no inlet and outlet streams, Eq. (7.5-15) takes 
the form 

�9 dT 
Qi,~t + Ysys Er j ( -AHrx ,~ , j )  - V~ys(Cp)~y~--~ (7.5-18) 

J 

It is important to note that Eqs. (7.5-15) and (7.5-18) are valid for systems in 
which pressure remains constant. 

Example  7.9 The reaction described in Example 6.6 is to be carried out in a 
batch reactor which operates adiabatically. The reactor is initially charged with 
2000 moles of species Jt and 2400 moles of species B at a temperature of 25 ~ 
Determine the time required for 80% conversion of A if the reactor volume is i m 3. 
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So lu t ion  

System: Contents of the reactor 

The conservation statement for species A, Eq. (Z2-5), is 

dnA 
- -  k C A C B V  --- dt (1) 

or, 

-- knAnB -- v dnA 
dt (2) 

The number of moles of species ,4 and B in terms of the molar extent of the 
reaction, c, is given by 

n A  - -  n A o  q -  C ~ A  r - -  2000 - 

n B  - -  r t B o  + a B e  - -  2400 - 

(3) 

(4) 

The molar extent of the reaction can be calculated from Eq. (5.3-12) as 

c - -  nA__...____~_o X A  

= (2000)(0.8) = 1600mol (5) 
1 

Substitution of Eqs. (3) and (,[) into Eq. (2) and rearrangement gives 

j~o 1600 de 
t = V k (2000 - e)(2400 - c) (6) 

Note that Eq. (6) cannot be integrated directly since the reaction rate constant, k, 
is dependent on c via temperature. 

The energy equation must be used to determine the variation of temperature 
as a function of the molar extent of the reaction. For an adiabatic reactor, i.e., 
Qint - O, Eq. (7. 5-18) reduces to 

dT 
r ( - A H r ~  - (Cp)sys d--t (7) 

Substitution of Eqs. (5.3-22) and (7.5-17) into Eq. (7) yields 

[ ( )  ( -  AH~~ d-t = E nioOp, + AO~, e d-T (8) 
i 

In this problem 

A 0 ~  - - 8 5 J / m o l .  K (9) 

E nioCP, - (2000)(175)+ (2400)(130) = 662,000 (10) 
i 

A H ~  = - 45,000 - 85 (T - 298) (11) 
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Substitution of Eqs. (9)-(11) into Eq. (8) and rearrangement gives 

j~o ~ de /2 T 
662, 00-0 - 85 e 98 

dT 
45,000 + 85 (T - 298) 

(12) 

Integration gives 
45,000 s 

= (13) T 298 + 6 6 2 , 0 0 0 -  85 

Now it is possible to evaluate Eq. (6) numerically. The use of Simpson's rule with 
n = 8, i.e., Ac = 200, gives 

c T [k(2000 - c)(2400 - r x 104 
( m o l / m  3 ) (K) 

0 298 248 
200 312 121.9 
400 326.7 63.3 
600 342.2 34.9 
800 358.6 20.5 

1000 376 12.9 
1200 394.4 8.9 
1400 414 6.9 
1600 434.9 6.5 

The application of Eq. (A.8-12) in Appendix A reduces Eq. (6) to 

200 [248 + 4 (121.9 + 34.9 + 12.9 + 6.9) t = --~-- 

+ 2 (63.3 + 20.5 + 8.9) + 6.5] x 10 -4 = 7.64 rain 

7.6 D E S I G N  OF A S P R A Y  T O W E R  F O R  T H E  
G R A N U L A T I O N  OF M E L T  

The purpose of this section is to apply the concepts covered in this chapter to a 
practical design problem. A typical tower for melt granulation is shown in Figure 
7.3. The dimensions of the tower must be determined such that  the largest melt 
particles solidify before striking the walls or the floor of the tower. Mathematical 
modelling of this tower can be accomplished by considering the unsteady-state 
macroscopic energy balances for the melt particles in conjunction with their settling 
velocities. This enables one to determine the cooling time and thus, the dimensions 
of the tower. 
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Melt 
feed 

,, Air 

Cooling 
air 

(S) --~.) Solid product 

Figu re  7.3 Schematic diagram of a spray cooling tower. 

It should be remembered that mathematical modeling is a highly interactive 
process, it is customary to build the initial model as simple as possible by making 
assumptions. Experience gained in working through this simplified model gives a 
feeling and confidence for the problem. The process is repeated several times, each 
time relaxing one of the assumptions and thus making the model more realistic. In 
the design procedure presented below, the following assumptions are made: 

1. The particle falls at a constant terminal velocity. 

2. Energy losses from the tower are negligible. 

3. Particles do not shrink or expand during solidification, i.e., solid and melt 
densities are almost the same. 

4. The temperature of the melt particle is uniform at any instant, i.e., Bi << 1. 

5. The physical properties are independent of temperature. 

6. Solid particles at the bottom of the tower are at a temperature Ts, the solid- 
ification temperature. 

7 . 6 . 1  D e t e r m i n a t i o n  o f  T o w e r  D i a m e t e r  

The mass flow rate of air can be calculated from the energy balance around the 
tower: 

( R a t e o f e n e r g y ) _ (  Rate of energy lost ) (7.6-1) 
gained by air by the melt particles 

or~ 

where the subscripts a and m stand for the air and the melt particle, respectively, 
and A is the latent heat of fusion per unit mass. 
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Once the air mass flow rate, rh~, is calculated from Eq. (7.6-2), the diameter 
of the tower is calculated as 

~n~,- ~ v~pa ==, D =  (7.6-3) 
7"f P a  V a 

7 . 6 . 2  D e t e r m i n a t i o n  o f  T o w e r  H e i g h t  

Tower height, H, is determined from 

H = vt t (7.6-4) 

The terminal velocity of the falling particle, vt, is determined by using the formulas 
given in Section 4.3. The required cooling time, t, is determined from the unsteady- 
state energy balance around the melt particle. 

7.6.2.1 Termina l  velocity 

The Turton-Clark correlation is an explicit relationship between the Archimedes 
and the Reynolds numbers as given by Eq. (4.3-12), i.e., 

Ar [1 + 0.0579 Ar 0'412] -1.214 Rep = (7.6-5) 

The Archimedes number, Ar, can be calculated directly when the particle diam- 
eter and the physical properties of the fluid are known. The use of Eq. (7.6-5) 
then determines the Reynolds number. In this case, however, the definition of 
the Reynolds number involves the relative velocity, vr, rather than the terminal 
velocity of the melt particle, i.e., 

R e p -  DpvrPa (7.6-6) 

Since the air and the melt particle flow in countercurrent direction to each other, 
the relative velocity, v~, is 

v~ = vt + v~ (7.6-7) 

7.6.2.2 Cool ing t ime  

The total cooling time consists of two parts: the cooling period during which 
the melt temperature decreases from the temperature at the inlet to T~ and, the 
solidification period during which the temperature of the melt remains at T~. 

i) Cool ing period:  Considering the melt particle as a system, the terms appearing 
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in Eq. (7.5-8) become 

rnin : rnout : 0 

dPsys = 0 
dt 
m,y, = (lrD~/6)p,~ 

where (T~> is the average air temperature, i.e., [(T~)i~ + (Ta )out] /2. Hence, Eq. 
(7.5-8) takes the form 

dT~ 
- 6  <h>(Tm -(T~>)= DppmOp ~ dt (7.6-s) 

Equation (7.6-8) is a separable equation and rearrangement yields 

~0 tl DpPmCPm ~(T,~ dTm (7.6-9) 

Integration of Eq. (7.6-9) gives the cooling time, tl, as 

DpPmCP,~ [(Tin)in - (Ta> ] 
tl --- 6 (-h~ In Ts -- <Ta) (7.6-10) 

The average heat transfer coefficient, (h) in Eq. (7.6-10) can be calculated from 
the Whitaker correlation, Eq. (4.3-30), i.e., 

,-, 1/2 ) Nu = 2 + 0.4~ep +0.06Re2p/3 Pr ~ (#(x~/.w) 1/4 (7.6-11) 
ii) Solidification period:  During the solidification process, solid and liquid 
phases coexist and temperature remains constant at Ts. Considering the parti- 
cle as a system, the terms appearing in Eq. (7.5-8) become 

rrtin : rhout - -0  

w =o 
(~int = -(TrD2p)(h)(Ts - (Ta)) 

dPsys = 0 
dt 

msys - r o t + m s  

{ -o 
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where mz and ms represent the liquid and solidified portions of the particle, 
respectively. Therefore, Eq. (7.5-8) reduces to 

7rD2p<h}(Ts -{T~>) - ,~ dins (7.6-12) 
dt 

Integration of Eq. (7.6-12) gives the t ime required for solidification, t2, as 

t2 
ApmDP 

6 <h} (Ts - {T~}) 
(7.6-13) 

Therefore, the total  time, t, in Eq. (7.6-4) is 

t = tl + t2 (7.6-14) 

E x a m p l e  7.10 Determine the dimensions of the spray cooling tower for the 
following conditions: 

Production rate = 3000 k g / h  

Dp = 2ram 

Pm = 1700 k g / m  3 

v~ = 2 m / s  

(T~)i= = 10~ 

(Ta)out-- 20~ 

(Tin)in = IIO~ 
T~ = 7 0 ~  

- 186 k J / k g  

Cpm - 1.46 kJ/kg.  K 

So lut ion  

P h y s i c a l  p r o p e r t i e s  

The average air temperature is (10 + 20)/2 -- 15 o C. 

For air at 15 ~ (288 K)"  

p = 1.2 k g / m  3 
# = 17.93 x 10 -6 k g / m .  s 
k - 25.22 x 10 -3 W / m .  K 

C p -  1.004 
Pr = 0.714 
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A n a l y s i s  

The mass flow rate of air, dn~, is calculated from Eq. (7.6-2) as 

<~po>[(T.)o.,-(T.),,,] 
(3000) [(1.46)(110- 70) + 1861 

(1 .004)(20-  10) 
- 73,028 k g / h  

The use of Eq. (7.6-3) gives the tower diameter as 

D -  / 4 m ~  
V ; T  f la Va 

/i4iiTa, o2s) 
: V ; i i : ~ )~ - ) (~o )  

= 3.3m 

The use of Eq. (~.3-6) gives the Archimedes number as 

A r -  
D 3 p g P a  ( P r o  - -  Pa) 

(2 • 10-3)3(9.8)(1.2)(1700- 1.2) = 4.97 • 10 ~ 
(17.93 • 10-6) 2 

Hence, the Reynolds number and the relative velocity are 

Ar [1 + 0.0579 Ar 0"412] -1.214 Rep = 

_ _ 4.97 x 105 [1 + 0.0579 (4.97 X 105)0'412] -1'214 
18 

- 1134 

V r -~- 
#a Rep 

PaDP 
(17.93 x 10-6)(1134) 

(1.2)(2 x 10 -3) 
= 8.5 m / s  

Therefore, the terminal velocity of the particle is 

V t ---- V r - -  V a --- 8 . 5  - -  2 - 6 . 5  m/s 

The use of the Whitaker correlation, Eq. (7.6-11), with #~o/#w ~ 1, gives 

- , +  (o.4 +o .o6 ,4 , , ' )  prO.', (,./,o)1,4 
= 2 + [0.4 (1134)~/' + o.o6 (1~34)'/'] (0.7~4)~ = ~9.5 
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Hence, the average heat transfer coefficient is 

k 

2 x 10 -a = 246 W / m  2. K 

The time required for cooling and solidification can be calculated from Eqs. (7. 6-10) 
and (7.6-13), respectively: 

DpPmCP,~ [(Tm)i,~ - (Ta> 1 
t l = -6 -~-~ ~n T~ - < To l 

(2 • 10-3)(1700)(1460) / 1 1 0 -  15~ __ 1.8s 
= (6)(246) In \ 7 0 -  15 ] 

~ flmDP 
t2 = 6 <h>(Ts - <Ta>) 

(186,000)(1700)(2 • 10 -3) 

(6)(246)(70- 15) 

Therefore, the tower height is 

= 7.8s 

H = (6.5)(1.8 + 7.8) = 62.4m 

N O T A T I O N  

A 
AM 
~ v  
C~ 
c 
~)AB 
EK 
Ep 

$ 

f 
g 
H 
h 
k 
kc 

~e&~ 1112 
mass transfer area, m e 
heat capacity at constant volume, k J /kg.  K 
heat capacity at constant pressure, kJ/kg.  K 
concentration, kmol /m 3 
diffusion coefficient for system A-B, m2/s  
kinetic energy, J 
potential energy, J 
rate of energy, J / s  
activation energy, J /mo l  
friction factor 
acceleration of gravity, m / s  2 
enthalpy, J 
elevation, m; heat transfer coefficient, W / m  2. K 
thermal conductivity, W / m .  K 
mass transfer coefficient, m / s  
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L 

M 

P 

Q 
T 

T 
t 
U 
V 
V 

# 

X 

Z i  

~ i j  

7 
A 
A H ~  
g 

/] 

P 
7" 

length, m 
mass flow rate, kg/s  
molecular weight, kg/kmol  
molar flow rate, kmol/s  
pressure, Pa 
heat transfer rate, W 
volumetric flow rate, m3/s  
rate of a chemical reaction, kmol /m 3 
gas constant, J /mol .  K 
temperature, ~ or K 
time, s 
internal energy, J 
volume, m 3 
velocity, m / s  
rate of work, W 
rate of shaft work, W 
fractional conversion 
mole fraction of species i 

.S  

thermal diffusivity, m 2/s  
stoichiometric coefficient of ith species in the jth reaction 

difference 
heat of reaction, J 
molar extent of a reaction, kmol 
latent heat, J 
kinematic viscosity (or, momentum diffusivity), m2/s  
density, k g / m  3 
residence time, s 

Overlines 

per mole 
per unit mass 
partial molar 

Bracke t  

(a) average value of a 

Superscripts 

O 

s 
sat 

standard state 
solid 
saturation 
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Subscripts 

A , B  
a 

ch 
i 
in 
in t  

J 
m 
o u t  

P 
8y'3 

w 

c o  

species in binary systems 
air 
characteristic 
species in multicomponent systems 
inlet 
interphase 
reaction number 
melt 
out 
particle 
system 
surface or wall 
free-stream 

Dimensionless Numbers 

Ar 

Bill 
BiM 
Pr 
Re 
Sc 
Sh 

Archimedes number 
Biot number for heat transfer 
Biot number for mass transfer 
Prandtl number 
Reynolds number 
Schmidt number 
Sherwood number 
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P R O B L E M S  

7.1 Two perfectly stirred tanks with capacities of 1.5 and 0.75 m 3 are connected 
in such a way that the effluent from the first passes to the second. Both tanks are 
initially filled with salt solution of 0.5 kg/L in concentration. If pure water is fed 
to the first tank at a rate of 75 L/min, determine the salt concentration in the 
second tank after 10 minutes? 

(Answer:  0.423 kg/L) 

7.2 Two vertical tanks placed on a platform are connected by a horizontal pipe 
5 cm in diameter as shown in Figure 7.4. Each tank is 2 m deep and 1 m in diameter. 
At first, the valve on the pipe is closed and one tank is full while the other one is 
empty. When the valve is opened, the average velocity through the pipe is given 
by 

where Iv) is the average velocity in m / s  and h is the difference between the levels 
in the two tanks in meter. Calculate the time for the levels in the two tanks to 
become equal. 
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h 

t ..... ~ < j  1 

Figure 7.4 Schematic diagram for Problem 7.2 

(Answer: 4.7 rain) 

7.3 a) A stream containing 10% species Jt by weight starts to flow at a rate of 
2 kg/min into a tank, originally holding 300 kg of pure B. Simultaneously, a valve 
at the bottom of the tank is opened and the tank contents are also withdrawn at a 
rate of 2 kg/min. Considering perfect mixing within the tank, determine the time 
required for the exit stream to contain 5% species Jt by weight. 

b) Consider the problem in part (a). As a result of the malfunctioning of the exit 
valve, tank contents are withdrawn at a rate of 2.5 kg/rain instead of 2 kg/min. 
How long does it take for the exit stream to contain 5% species Jt in this case? 

(Answer: a) 104min b)95.5min) 

7.4 The following levels were measured for the flow system shown in Figure 7.5. 
The cross-sectional area of each tank is 1.5 m 2. 

t hi h2 
(min) (cm) (cm) 

0 50 30 
1 58 35 
2 67 40 
3 74 46 
4 82 51 
5 89 58 
6 96 64 

a) Determine the value of Qin. 

b) if the flow rate of the stream leaving the first tank, Q, is given as 

determine the value of ~. 
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Qin = c o n s t a n t  

Figure  7.5 Schematic diagram for Problem 7.4 

(Answer:  a )0 .2m3/min  b)0.17mS/2/min) 

7.5 Time required to empty a vessel is given for four common tank geometries 
by Foster (1981) as shown in Table 7.1. In each case, the liquid leaves the tank 
through an orifice of cross-sectional area Ao. The orifice coefficient is Co. Assume 
that the pressure in each tank is atmospheric. Verify the formulas in Table 7.1. 

7.6 For steady flow of an incompressible fluid through a control volume whose 
boundaries are stationary in space, show that Eq. (6.3-9) reduces to 

+ + g + - ~.int = l~oo (1) 
P 

where A represents a difference between the outlet and inlet values. 

a) Using the thermodynamic relations 

d~] = T d S  - P d V  (2) 

and 

- T +dSge  (3) 

show that 

dE~ - T dSg~,~ - d ~ ] -  d Q ~ t  (4) 

where/~v, the friction loss per unit mass, represents the irreversible degradation 
of mechanical energy into thermal energy, and Sgen is the entropy generation per 
unit mass. 
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Table  7.1 Time required to empty tanks of different geometries. 

Geometry Time 

h 1 

L D J 

L ) 

T 
h 

l 
~- -D 

t m 
7r D 2 4-~ 

~/~ CoAo 

~g Trh 5/2 tan 2 0 

t - 5CoAo 

8_L [D 3/2 - ( D  - h) 3/2] 

t = 3CoAo 

~ g  ~h3/2(D - O.6 h) 

t - 3CoAo 

b) Substitute Eq. (4) into Eq. (1) to obtain the engineering Bernoulli equation 
(or, macroscopic mechanical energy equation) for an incompressible fluid as 

A P  A(v) 2 
~ g / ~ h  + ~ - w~ - o (5) 

p 2 

c) To estimate the friction loss for flow in a pipe, consider steady flow of an in- 
compressible fluid in a horizontal pipe of circular cross-section. Simplify Eq. (5) 
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for this case to get 
/~-  ]API (6) 

P 
Compare Eq. (6) with Eq. (4.5-6) and show that the friction loss per unit mass, 
/)v, for pipe flow is given by 

F-,v 2fL(v)2 
= n (7) 

7.7 A cylindrical tank, 5m in diameter, discharges through a mild steel pipe 
system (~ - 4.6 x 10 -5 m) connected to the tank base as shown in the figure below. 
The drain pipe system has an equivalent length of 100 m and a diameter of 23 cm. 
The tank is initially filled with water to an elevation of H with respect to the 
reference plane. 

Q 
�9 - - - - - - -  D 

-I-- 
H* 

1 Reference ~ ' [ @ 
Plane 

~d . . . .  

a) Apply the Bernoulli equation, Eq. (5) in Problem 7.6, to the region between 
planes "1" and "2" and show that 

( V 2 )  2 __ 2gh 
1 + 4 fLeq 

d 

where Leq is the equivalent length of the drain pipe. 

b) Consider the tank as a system and show that the application of the unsteady- 
state macroscopic mass balance gives 

(o)211 (4 L q) 
d t - -  ~ ~g 1+ d x/h (2) 

Analytical integration of Eq. (2) is possible only if the friction factor f is constant. 

c) At any instant, note that the pressure drop in the drain pipe system is equal 
to pg(h - H*). Use Eqs. (4.5-18)-(4.5-20) to determine f as a function of liquid 
height in the tank. Take H* - 1 m, H - 4 m and the final value of h as 1.5 m. 
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d) If f remains almost constant, then show that the integration of Eq. (2) yields 

t-(d)2~~(l+ 4fL~q 
Calculate the time required for h to drop from 4 m to 1.5 m. 

e) Plot the variations of (v2> and h as a function of time on the same plot. Show 
that dh/dt is negligible at all times in comparison with the liquid velocity through 
the drain pipe system. 

(Answer:  c) 0.0039 d) 7.7 rain) 

7.8 Consider draining of a spherical tank of diameter D with associated drain 
piping as shown in the figure below. The tank is initially filled with water to an 
elevation of H with respect to the reference plane. 

! 
h 

a) Repeat the procedure given in Problem 7.7 and show that 

t =  ~-~ 1 + 7  ~ 5 3 Xlh + X2) 

- x / - H  5 

where 

X1 = H* + R 

X2 = X~ - R 2 

b) A spherical tank, 4m in diameter, discharges through a mild steel pipe system 
(r = 4.6 • 10 -5 m) with an equivalent length of 100m and a diameter of 23cm. 
Determine the time to drain the tank if H* - 1 m and H = 4.5 m. 

(Answer:  b) 4.9 rain) 
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7.9 Suspended particles in agitated vessels are frequently encountered in the 
chemical process industries. Some examples are mixer-settler extractors, catalytic 
slurry reactors and crystallizators. The design of such equipment requires the mass 
transfer coefficient to be known. For this purpose, solid particles (species A) with 
a known external surface area, Ao,  and total mass, M o ,  are added to an agitated 
liquid of volume V and the concentration of species A is recorded as a function of 
time. 

a) Consider the liquid as a system and show that the unsteady-state macroscopic 
mass balance for species A is 

M )  2/3 (CSA at dcA 
( kc }Ao  -~o  - CA) -- V de (1) 

where M is the total mass of solid particles at any instant and C*A at is the equilibrium 
solubility. Rearrange Eq. (1) in the form 

V d ln(CSA at -- CA) 

(kr -- - A o ( M / M o ) 2 / a  d t  (2) 

and show how one can obtain the average mass transfer coefficient from the exper- 
imental data. 

b) Another way of calculating the mass transfer coefficient is to choose experimental 
conditions so that only a small fraction of the initial solids is dissolved during a 
run. Under these circumstances, show that the average mass transfer coefficient 
can be calculated from the following expression: 

( k c } = ~ l n  C,Aa t _ cA 

where (A} is the average surface area of the particles. Indicate the assumptions 
involved in the derivation of Eq. (3). 

7.10 Consider Problem 7.9 in which the average mass transfer coefficient of sus- 
pended particles is known. Estimate the time required for the dissolution of solid 
particles as follows: 

a) Write down the total mass balance for species ,4 and relate the mass of the 
particles, M, to concentration of species gl, CA, as 

= i -  (i) 

b) Substitute Eq. (1) into Eq. (1) in Problem 7.9 to get 

dt  = a 
d~ 

[1 - (1 +/5 'a) ~9] 2/a (1 - e) 
(2) 
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where 

0 CA V 
" - -  0 [ .  ~ "  

C~A at <kc) Ao 

~3_ Vc~ ~ 
- M o  1 (3) 

c) Show that the integration of Eq. (2) leads to 

U 2 -- U/~ -Jr-/~2 

+ x/~/32 tan-1 2/3 - 1 + u [(2//3)-  1] (4) 

where 
u 3 = 1 - ( 1  + / ~ 3 ) 0  (5) 

7.11 Rework Example 7.3 if the rate of reaction is given by 

r=kc~ (1) 

a) For the filling period show that the governing differential equation is given by 

dcA 
t - ~  + k ~  + ~ = ~ o  (2) 

Using the substitution 

show that Eq. (1) reduces to 

1 du 
CA = ku  dt (3) 

-~ t - ~  - CAokU = O (4) 

Solve Eq. (4) and obtain the solution as 

CA __ C~A_o I1 ( 2 V/ C A_o k t ) 
V k t Io (2~Aok t) 

(5) 

Note that Eq. (2) indicates that C A "-- CAo 
Eq. (5). 

at t = 0. Obtain the same result from 

b) Show that the governing differential equation for the unsteady-state period is 
given in the form 

dcA CA CAo 
d--i- + k ~ + - -  - (6) T T 
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where ~- is the residence time. Using 

1 
c A  - cA~ + - ( 7 )  

Z 

show that Eq. (6) reduces to 

where 

d z  
d-7 - z z - k ( s )  

1 
- 2 k c A s  + -  (9) 

T 

Note that CA~ in Eq. (7) represents the steady-state concentration satisfying the 
equation 

]g C2 CA s CA 
A~ + = ~ ( l o )  

T T 

Solve Eq. (8) and obtain 

1 
CA = CA~ + (11) 

[(c~4 - -  r -1 -~ (k//~)] exp [/~(t -- t*)] -- (k//~) 

where c~4 and t* represent the concentration and time at the end of the filling 
period, respectively. 

7.12 For creeping flow, i.e., Re << 1, a relationship between the friction factor 
and the Reynolds number is given by Stokes' law, Eq. (4.3-7). 

a) Substitute EQ. (4.3-7)into EQ. (7.4-7) and show that 

v (pp - p) gD2P { l _ exp [ - 18#t ] }  
18 # (pp + 0.5 p) D~ (1) 

b) Show that the time required for the sphere to reach 99% of its terminal velocity, 
too, is given by 

too - - D2P (pp + 0.5 p) (2) 
3.9# 

and investigate the cases under which initial acceleration period is negligible. 

c) Show that the distance travelled by the particle during unsteady-state fall is 
given by 

s _ t vt _ vt (pp - p) D2p { l _ exp [ - 18#t ] }  
18 # (pp + 0.5 p) D~ (3) 

where vt is the terminal velocity of the falling particle and is defined by 

vt = (pP - p) gD2P (4) 
18# 
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7.13 When Newton's law is applicable, the friction factor is constant and is given 
by Eq. (4.3-9). 

a) Substitute Eq. (4.3-9) into Eq. (7.4-7) and show that 

v 1 - exp( -  vt) 
vt = 1 + exp( -  vt) (1) 

where the terminal velocity, vt, and V are given by 

vt -- 1.74 PP - p) gDp 
P 

(2) 

V_l=1.51(PP+O.5p)p  DPvt (3) 

b) Show that the distance travelled is 

2vt [1 + exp(-- 7t)] 
s = t vt + �9 In (4) 

V 2 

7.14 Consider two-dimensional motion of a spherical particle in a fluid. When 
the horizontal component of velocity is very large compared to the vertical compo- 
nent, the process can be modelled as a one-dimensional motion in the absence of a 
gravitational field. Using unsteady-state momentum balance show that 

4ppD 2 f e.o d Rep 
t = 3 ~ JRep  f Re2p (1) 

where Repo is the value of the Reynolds number at t - 0. 

a) When Stokes' law is applicable, show that the distance travelled by the particle 
is given by 

v~ [ 1 - e x p  ( -  18#_____~t ) ]  (2) 
s = 18 # ppD2p 

where Vo is the value of velocity at t - 0. 

b) When Newton's law is applicable, show that the distance travelled by the particle 
is given by 

3.03ppDp ( pvot ) 
s = In 1 + (3) 

p 3.03ppDp 

7.15 Coming home with a friend to have a cold beer after work, you find out that 
you had left the beer on the kitchen counter. As a result of the sunlight coming 
from the kitchen window, it was too warm to drink. 
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One way of cooling the beer is obviously putting it into a freezer. However, your 
friend insists that placing a can of beer in a pot in the kitchen sink, and letting 
cold water run over it into the pot and then into the sink shortens the cooling time. 
He claims that the overall heat transfer coefficient for this process is much greater 
than that for a can of beer sitting idly in the freezer in still air. He supports this 
idea by presenting the following data of Horwitz (1981): 

Freezer Tap Water 

Cooling medium temperature (~ - 21 
Initial temperature of beer (~ 29 
Final temperature of beer (~ 15 
Time elapsed (rain) 21.1 

13 
29 
15 

8.6 

Surface area of can = 0.03 m 2 
Quantity of beer in can = 0.355 kg 
Heat capacity of beer = 4.2k J /kg .  K 

a) Do you think that your friend is right? Show your work by calculating the heat 
transfer coefficient in each case. Ignore the cost and availability of water. 

b) Calculate the time required to cool the beer from 29 ~ to 4 ~ in the freezer. 

c) Suppose that you first cool the beer to 15 ~ by the running water and then 
place the beer in the freezer. Calculate the time required to cool the beer from 
29 ~ to 4 ~ in this case. 

(Answer:  a) (h} (freezer) = 12.9 W / m  2. K, (h) (tap water) = 200 W / m  2. K 
b) 44.5 min c) 32min) 

7.16 M kg of a liquid is to be heated from T1 to T2 in a well stirred, jacketed 
tank by steam condensing at T~ in the jacket. The heat transfer area, A, the 
heat capacity of tank contents per unit mass, dTp, and the overall heat transfer 
coefficient, U, are known. Show that the required heating time is given by 

t - U-----A Ts - T2 (1) 

Indicate the assumptions involved in the derivation of Eq. (1). 

7.17 In Problem 7.16, assume that hot water, with a constant mass flow rate rh 
and inlet temperature TiN, is used as a heating medium instead of steam. 

a) Show that the outlet temperature of hot water, To,~t, is given by 

T / n  - T 
To , - T + (1) 
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where 

a = exp ~ (2) 

in which T is the temperature of the tank contents at any instant and C is the 
heat capacity of hot water. 

b) Write down the unsteady-state energy balance and show that the time required 
to increase the temperature of the tank contents from T1 to T2 is given by 

(3) 
T2 

c) Bondy and Lippa (1983) argued that when the difference between the outlet 
and inlet jacket temperatures is less than 10% of the ATLM between the average 
temperature of the jacket and the temperature of the tank contents, Eq. (1) in 
Problem 7.16 can be used instead of Eq. (3) by replacing Ts by the average jacket 
temperature. Do you agree? For more information on this problem see Tosun and 
Ak~ahin (1993). 

7.18 600 kg of a liquid is to be heated from 15 ~ to 150 ~ in a well stirred, 
jacketed tank by steam condensing at 170 ~ in the jacket. The heat transfer surface 
area of the jacket is 4.5 m 2 and the heat capacity of the liquid is 1850 J /kg.  K. The 
overall heat transfer coefficient, U, varies with temperature as follows: 

T U 
(~ (W/m2.  K) 

15 390 
30 465 
60 568 
90 625 

120 664 
150 680 

a) Calculate the required heating time. 

b) Correlate the data in terms of the expression 

B 
U = A - - -  

T 

where T is in degrees Kelvin, and calculate the required heating time. 

(Answer: a) 11.7 min; b) 13.7 rain) 

7.19 500kg of a liquid is to be heated from 15~ to 150~ in a well stirred, 
jacketed tank by steam condensing at 170 ~ in the jacket. The heat transfer surface 
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area of the jacket is 4.5 m 2 and the heat capacity of the liquid is 1850J/kg.  K. 
Calculate the average overall heat transfer coefficient if the variation of liquid 
temperature as a function of time is recorded as follows: 

t T 
(min) (~ 

0 15 
2 59 
4 90 
6 112 
8 129 

10 140 
12 150 

(Answer :  564 W / m  2. K) 

7.20 An insulated rigid tank of volume 0.1 m 3 is connected to a large pipeline 
carrying air at 10 bar and 120 ~ The valve between the pipeline and the tank is 
opened and air is admitted to the tank at a constant mass flow rate. The pressure 
in the tank is recorded as a function of time as follows: 

t P 
(min) (bar) 

5 1.6 
10 2.1 
15 2.7 
20 3.3 
25 3.9 
30 4.4 

If the tank initially contains air at I bar and 20 ~ determine the mass flow 
rate of air entering the tank. Air may be assumed an ideal gas with a constant 0 p  
of 29 J /mol .  K. 

(Answer :  7.25 g /min)  

7.21 An insulated rigid tank of volume 0.2m u is connected to a large pipeline 
carrying nitrogen at 10 bar and 70~ The valve between the pipeline and the 
tank is opened and nitrogen is admitted to the tank at a constant mass flow rate 
of 4 g/s .  Simultaneously, nitrogen is withdrawn from the tank, also at a constant 
mass flow rate of 4 g/s .  Calculate the temperature and pressure within the tank 
after 1 minute if the tank initially contains nitrogen at 2 bar and 35 ~ Nitrogen 
may be assumed an ideal gas with a constant Cp of 30 J /mol .  K. 

(Answer :  326.8 K, 2.12 bar) 
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7.22 A rigid tank of volume 0.2 m 3 initially contains air at 2 bar and 35 ~ On 
one side it is connected to an air supply line at 10 bar and 70 ~ on the other side 
it is connected to an empty rigid tank of 0.8 m 3 as shown in the figure below. Both 
tanks are insulated and initially both valves are closed. The valve between the 
pipeline and the tank is opened and air starts to flow into the tank at a constant 
flow rate of 10 mol/min.  Simultaneously, the valve between the tanks is also opened 
so as to provide a constant flow rate of 6 mol /min  to the larger tank. Determine 
the temperature and pressure of air in the larger tank after 2 minutes. Air may be 
assumed an ideal gas with a constant Cp of 29 J /mol .  K. 

i V = 0 . 2  m 3 " ' 

r Air supply 
Line 

V = 0.8 m 3 

(Answer :  482.3 K, 0.6 bar) 

7.23 Metering pumps provide a constant liquid mass flow rate for a wide variety 
of scientific, industrial and medical applications. A typical pump consists of a 
cylinder fitted with a piston as shown in Figure 7.19. The piston is generally 
located on the end of a long screw which itself is driven at a constant velocity by 
a synchronous electric motor. 

a) Assume that  the manufacturer has calibrated the pump at some reference tem- 
perature, T~ey. Write down the unsteady-state mass balance and show that the 
reference mass flow rate, thee/, delivered by the pump is given by 

dV~e] 
rh..: = - Pre/ dt (1) 

where Pre1' and V,~e/ are the density and the volume of the liquid in the pump 
cylinder at the reference temperature, respectively. Integrate Eq. (1) and show 
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that the variation in the liquid volume as a function of time is given by 

Vr e f -- Vr~ f - ( ?~Z r e f ) t (2) 
P ~ f  

where V~~ I is the volume of the cylinder at t = O. 

b) If the pump operates at a temperature different from the reference temperature, 
show that the mass flow rate provided by the pump is given by 

d 
rh -- - -~ (pV)  (3) 

where p and V are the density and the volume of the pump liquid at temperature 
T, respectively. Expand p and V in a Taylor series in T about the reference 
temperature T~ I and show that 

p V  ~_ p ~ f  V ~ f  - p~ef V ~ f  (/9c - ~ L ) ( T  -- T~f) (4) 

where/3, the coefficient of volume expansion, is defined by 

- p 

P 

in which the subscripts L and C represent the liquid and the cylinder, respectively. 
Indicate the assumptions involved in the derivation of Eq. (4). 

c) Show that the substitution of Eq. (4) into Eq. (3) and making use of Eqs. (1) 
and (2) gives the fractional error in mass flow rate as 

rh - rh.ey = _ (~L -- ~C)(T - Tr~f) + -~o - t (~L -- ~C) -d~ (6) 
7h~f 

where 
Ro = dVre f 

dt (7) 

Note that the first and the second terms on the right-side of Eq. (6) represent, 
respectively, the steady-state and the unsteady-state contributions to the error 
term. 

d) Assume that at any instant the temperature of the pump liquid is uniform and 
equal to that of the surrounding fluid, i.e., the cylinder wall is diathermal, and 
determine the fractional error in mass flow rate for the following cases: 

�9 The temperature of the fluid surrounding the pump, Tf ,  is constant. Take 
/3 C - 4 x 10 -5 K- l ,  /~L ----- 1.1 x 10 -3 K -1, and TI - Tref : 5 K. 

�9 The temperature of the surrounding fluid changes at a constant rate of 1 K /h .  
Take Vr ~ : 500 cm 3 and Ro : 25 cm3/h. 
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�9 The surrounding fluid temperature varies periodically with time, i.e., 

T f  -- Tre f -{- A sin w t  

Take A -  1 ~ and w -  87r h -1 . 

(8) 

e) Now assume that the liquid temperature within the pump is uniform but dif- 
ferent from the surrounding fluid temperature as a result of a finite rate of heat 
transfer. If the temperature of the surrounding fluid changes as 

T f  -- Too + (Tre f  -- Too)e - r t  Too < T~f (9) 

where Too is the asymptotic temperature and T is the time constant, show that the 
fractional error in mass flow rate is given by 

{v:, ) 
r (e - ' t - e  - r  - r  \ Ro - t  ~ - f=r 

The terms f and r are defined as 

f = m -- T~re f 1 
- ffnref (ilL -- f l c ) (Tre f  - Too) (11) 

U A  

r  pvS  

where A is the surface area of the liquid being pumped, U is the overall heat 
transfer coefficient, and Cp is the heat capacity of the pump liquid. 

f) Show that the time, t*, at which the fractional error function f achieves its 
maximum absolute value is given by 

t * =  ln(r (13) 
r 

This problem is studied in detail by Eubank et al. (1985). 

7.24 A spherical salt, 5 cm in diameter, is suspended in a large, well-mixed tank 
containing a pure solvent at 25 ~ If the percent decrease in the mass of the sphere 
is found to be 5% in 12 minutes, calculate the average mass transfer coefficient. 
The solubility of salt in the solvent is 180 k g / m  3 and the density of the salt is 
2500 k g / m  3. 

(Answer:  8.2 x 10 -6 m/s )  

7.25 The phosphorous content of lakes not only depends on the external loading 
rate but also on the interactions between the sediments and the overlying waters. 
The model shown in Figure 7.6 is proposed by Chapra and Canale (1991) in which 
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the sediment layer gains phosphorous by settling and loses phosphorous by recycle 
and burial. 

thin ,..1 
y 

F i g u r e  7.6 

LAKE 

(P1) 

Qout 

Settling I l Recycle 

SEDIMENT LAYER 

!P2 ) 

Burial 

Schematic diagram for Problem 7.25 

Show that  the governing equations for the phosphorous concentrations in the 
lake, P1, and in the sediment layer, P2, are given as 

rhi,~ - QoutP1 - v~A2P1 + A2(k~),.P2 - V1 
dP1 
dt (1) 

dP2 
vsA2P1 - A2(kc)rP:  - A2(kc)bP2 - V2 dt (2) 

where 

thin - loading rate - 2000 kg/year  
Qo~t - outflow volumetric flow rate = 80 • 106 m 3/year 
vs - settling velocity of phosphorous - 40 m/year  
A2 - surface area of the sediment layer - 4.8 • 106 m 2 
(k~)r - recycle mass transfer coefficient - 2.5 • 10 -2 m/year  
(k~)b = burial mass transfer coefficient = 1 • 10 -3 m/year  
V1 - volume of the lake - 53 • 106 m 3 
V2 - volume of the sediment layer - 4.8 • 105 m 3 

and determine the variation of P1 in m g / m  3 as a function of time if the initial 
concentrations are given as P1 - 6 0  m g / m  3 and P2 - 500,000 r a g / m  3. 

( A n s w e r :  /91 = 2 2 . 9 -  165.4e -5"311t + 202.5e - ~ 1 7 6  



Chapter 8 

Steady-State Microscopic 
Balances Without 
Generation 

So far we have considered macroscopic balances in which quantities such as temper- 
ature and concentration varied only with respect to time. As a result, the inventory 
rate equations are written by considering the total volume as a system and the re- 
sulting governing equations turn out to be the ordinary differential equations in 
time. If the dependent variables such as velocity, temperature and concentration 
change as a function of both position and time, then the inventory rate equations 
for the basic concepts are written over a differential volume element taken within 
the volume of the system. The resulting equations at the microscopic level are 
called the equations of change. 

In this chapter we will consider steady-state microscopic balances without in- 
ternal generation. Therefore, the governing equations will be either ordinary or 
partial differential equations in position. It should be noted that  the treatment 
for heat and mass transport is different from the one for momentum transport. 
The main reasons for this are: (i) momentum is a vector quantity while heat and 
mass are scalar, (ii) in heat and mass transport the velocity appears only in the 
convective flux term, while it appears both in the molecular and convective flux 
terms for the case of momentum transfer. 

237 
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8.1 M O M E N T U M  T R A N S P O R T  

Momentum per unit mass, by definition, is the fluid velocity and changes in velocity 
can result in momentum transport. For fully developed flow I through conduits, 
velocity variations take place in the direction perpendicular to the flow since no- 
slip boundary conditions must be satisfied at the boundaries of the conduit. This 
results in the transfer of momentum in the direction perpendicular to the flow 
direction. 

The inventory rate equation for momentum at the microscopic level is called 
the equation of motion. It is a vector equation with three components. For steady 
transfer of momentum without generation, the conservation statement for momen- 
tum reduces to 

(Rate of momentum in) - (Rate of momentum out) = 0 (8.1-1) 

When there is no generation of momentum, this implies that both pressure and 
gravity terms are zero. Hence, flow can only be generated by the movement of 
surfaces enclosing the fluid and the resulting flow is called Couette flow. We will 
restrict our analysis to cases in which the following assumptions hold: 

1. Incompressible Newtonian fluid, 

2. One-dimensional 2, fully developed laminar flow, 

3. Constant physical properties. 

The last assumption comes from the fact that temperature rise as a result of viscous 
dissipation during fluid motion, i.e., irreversible degradation of mechanical energy 
into thermal energy, is very small and cannot be detected by ordinary measuring 
devices in most of the cases. Hence, for all practical purposes the flow is assumed 
isothermal. 

8.1.1 P lane  C o u e t t e  Flow 

Consider a Newtonian fluid between two parallel plates that are separated by a 
distance B as shown in Figure 8.1. The lower plate is moved in the positive 
z-direct ion with a constant velocity of V while the upper plate is held stationary. 

1 Fully developed flow means there is no variation of velocity in the axial direction. In this way, 
the flow development regions near the entrance and exit are not taken into consideration. 

2 One-dimensional flow indicates tha t  there is only one non-zero velocity component .  
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F igu re  8.1 Couette flow between two parallel plates. 

The first step in the translation of Eq. (8.1-1) into mathematical terms is to 
postulate the functional forms of the non-zero velocity components. This can be 
done by making reasonable assumptions and examining the boundary conditions. 
For the problem at hand, the simplification of the velocity components is shown in 
Figure 8.2. 

One-dimensional flow 
Vx - V y  = O 

Large aspect ratio 
W / B  >>1 

Steady-state 
aVz / ~t = 0 

Fully developed flow 
aVz / t3z - 0 

Vz = Vz (x, y, z, t) 

1 

"-i V z = V z ( X ' z ' O  

1 

v z = v z (x, z )  
, , ,  

,I 

v z = v z (x) 

Figu re  8.2 Simplification of the velocity components for Couette flow between 
two parallel plates. 

Since vz = vz(x)  and vx = vy = 0, Table C.1 in Appendix C indicates that the 
only non-zero shear-stress component is Txz. Therefore, the components of the 
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total momentum flux are expressed as 

d~) z 
7 r ~  - ~ ' ~  + (p  Vz ) v~ - ~-~z - - ~ "~z 

% ~  = ~-y~ + (p  v~ ) vy  = 0 

2 7r~  = 7z~ + ( p v ~ )  Vz - p v ~  

(8.1-2) 
(8.1.3) 
(8.1-4) 

For a rectangular differential volume element of thickness Ax, length Az and width 
W, as shown in Figure 8.1, Eq. (8.1-1) is expressed as 

(Tr:::~lz W A x  + 7~xz]x W A z )  - (Trzz :~+~ W A x  + 7rx~[x+Ax W A z )  -- 0 (8.1-5) 

Following the notation introduced by Bird et al. (1960), "in" and "out" directions 
for the fluxes are taken in the direction of positive x -  and z-axes .  Dividing Eq. 
(8.1-5) by W A x  A z  and taking the limit as Ax --, 0 and Az --, 0 gives 

lim 7rz~I~ - 7rzzl~+~ 7r~zl - 7rz~]x+a~ 
Az--,O Az + lim ~ = 0 (8.1-6) Ax--*0 A x  

or~ 

O~V zz dTrxz = 0  (8.i-7) 
Oz dx 

Substitution of Eqs. (8.1-2) and (8.1-4) into Eq. (8.1-7) and noting that cOvz/Oz = 0 
yields 

d---x dx ] = 0 (8.1-8) 

The solution of Eq. (8.1-8) is 

Vz - C1 x + C2 (8.1-9) 

where C1 and C2 are constants of integration. The use of the boundary conditions 

at x -- 0 Vz = V (8.1-10) 

at x - -  B v~ = 0 (8.1-11) 

gives the velocity distribution as 

V z X 
V - - 1 - - ~  (8.1-12) 

The use of the velocity distribution, Eq. (8.1-12), in Eq. (8.1-2) indicates that 
the shear stress distribution is uniform across the cross-section of the plate, i.e., 

T x z  = 
# V  
B 

(8.1-13) 
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The volumetric flow rate can be determined by integrating the velocity distri- 
bution over the cross-sectional area, i.e., 

/oWfo B Q = vzdxdy (8.1-14) 

Substitution of Eq. (8.1-12) into Eq. (8.1-14) gives the volumetric flow rate in the 
form 

W B V  
Q = 2 (8.1-15) 

Dividing the volumetric flow rate by the flow area gives the average velocity as 

Q V 
(8.1-16) 

8 . 1 . 2  A n n u l a r  C o u e t t e  F l o w  

Consider a Newtonian fluid in a concentric annulus as shown in Figure 8.3. The 
inner circular rod moves in the positive z-direction with a constant velocity of V. 

F igu re  8.3 Couette flow in a concentric annulus. 
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For the problem at hand, the simplification of the velocity components is shown 
in Figure 8.4. Since Vz = v~ ( r )  and v~ = vo = 0, Table C.2 in Appendix C indicates 
that the only non-zero shear-stress component is ~'rz. Therefore, the components 
of the total momentum flux are given by 

d v  z 
zrr= -- rr~ + (p v~ ) v~ = r~z  -- -- # dr  

7ro~ - r o ;  + (p  v~)  vo = 0 
2 

7 r =  = r ~ z  + ( p v ~ )  Vz - p v ~  

(8.1-17) 

(8.1-18) 

(8.1-19) 

One-dimensional flow 
v r = v 0 = 0 

Angular symmetry 
v z (r, O, z, t) - v  z (r, 0 + ~, z, t) 

Steady-state 
aVz / C~t = 0 

Fully developed flow 
OVz / C3z = 0 

r 

r 

v 

v z - v z (r, O, z, t) 

! 

v z = v z (r, z, t )  

I 

v z - v z (r, z )  

. . . . .  

v z = V z ( r  ) 

Figu re  8.4 Simplification of the velocity components for Couette flow in a 
concentric annulus. 

For a cylindrical differential volume element of thickness Ar  and length Az, as 
shown in Figure 8.3, Eq. (8.1-1) is expressed as 

+ + zx ) z] - 0  (s.1-20) 

Dividing Eq. (8.1-20) by 27rArAz and taking the limit as Ar ~ 0 and Az ~ 0 
gives 

( T r z z , - - T r z z l z + A z )  (rTrr~) 'r -- (rTr,~) [ r+A,~ 
lim r ~ + lim = 0 (8.1-21) 

/x~--,0 Az At--,0 Ar  

or~ 
07rz= d(rTrrz)  

r Oz + dr  = 0 (8.1-22) 
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Substitution of Eqs. (8.1-17) and (8.1-19) into Eq. (8.1-22) and noting that 
Ovz /Oz  - 0  gives the governing equation for velocity as 

~ ~r)]  0 /~ ~ ~/ 
The solution of Eq. (8.1-23) is 

Vz --  C1 in r + C2 (8.1-24) 

where C1 and C2 are integration constants. The use of the boundary conditions 

at 

at 

gives the velocity distribution as 

r = R Vz - 0 (8.1-25) 

r = ~/t vz - V (8.1-26) 

v~ l n ( r / R )  

V ln~ 
(8.1-27) 

The use of the velocity distribution, Eq. (8.1-27), in Eq. (8.1-17) gives the 
shear stress distribution as 

# V) 1 (8  -28) 

The volumetric flow rate is obtained by integrating the velocity distribution 
over the annular cross-sectional area, i.e., 

f027r ~R Q -- v~ r drdO 
R 

(8.1-29) 

Substitution of Eq. (8.1-27) into Eq. (8.1-29) and integration gives 

7rR2V [ 1 - ~ 2  ] 
Q - 2 ln(1/ ) - 2 

(8.1-30) 

Dividing the volumetric flow rate by the flow area gives the average velocity as 

Q V 
<v~>- ~rR2(1_ ~2) = -~ 

1 2n 2 ] 
ln(1/~) 1 - ~2 

(8.1-31) 

The drag force acting on the rod is 

FD = -- rrz]r=~R 27r~RL 

The use of Eq. (8.1-28) in Eq. (8.1-32) gives 

FD 
2 7r # L  V 

in 
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8.1.2.1 I n v e s t i g a t i o n  of t h e  l imi t ing  case 

Once the solution to a given problem is obtained, it is always advisable to in- 
vestigate the limiting cases if possible, and compare the results with the known 
solutions. If the results match, this does not necessarily mean that  the solution is 
correct, however, the chances of it being correct are fairly high. 

In this case, when the ratio of the radius of the inner pipe to that  of the outer 
pipe is close to unity, i.e., ~ -o 1, a concentric annulus may be considered to be a 
thin-plane slit and its curvature can be neglected. Approximation of a concentric 
annulus as a parallel plate requires the width, W, and the length, L, of the plate 
to be defined as 

W = 7rR (1 + ~) (8.1-34) 

B = R (1 - ~) (8.1-35) 

Therefore, the product WB is equal to 

WB = 7rR 2 (1 - ~2) , ~.R2 = WB 
1 - ~2 (8.1-36) 

so that  Eq. (8.1-30) becomes 

WBV lim 1 2 (8.1-37) 
Q = 2 ~-~1 - ln----~ - i=-=~2= 

Substitution of r = 1 -  ,~ into Eq. (8.1-37) gives 

WBV { 1 [ (1-r 1} (8.1-38) 
Q = ~ l i m 0  - l n ( 1 - 9 1 - 2  1 - ( 1 - r  

The Taylor series expansion of the term ln(1 - r is 

1 r 1 r 
I n ( 1 -  r 1 6 2  ~ - ~ - . . .  - 1 < r < 1 (8.1-39) 

Using Eq. (8.1-39) in Eq. (8.1-38) and carrying out the divisions yields 

WBV 1 1  )] / 140/ 
r 2 12 2 r  4 8 "'" 

or~ 

Q = W B V ( 2  ) W B V  (81-41) 
2 l im ~ 1 + ~ r  2 

Note that  Eq. (8.1-41) is equivalent to Eq. (8.1-15). 
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8.2  E N E R G Y  T R A N S P O R T  W I T H O U T  
C O N V E C T I O N  

The inventory rate equation for energy at the microscopic level is called the equation 
of  energy. For a steady transfer of energy without generation, the conservation 
statement for energy reduces to 

(Rate of energy in) = (Rate of energy out) 

The rate of energy entering and leaving the system is determined from the energy 
flux. As stated in Chapter 2, the total energy flux is the sum of the molecular 
and convective fluxes. In this case we will restrict our analysis to cases in which 
convective energy flux is either zero or negligible compared with the molecular flux. 
This implies transfer of energy by conduction in solids and stationary liquids. 

8 . 2 . 1  C o n d u c t i o n  i n  R e c t a n g u l a r  C o o r d i n a t e s  

Consider the transfer of energy by conduction through a slightly tapered slab as 
shown in Figure 8.5. If the taper angle is small and the lateral surface is insu- 
lated, energy transport  can be considered one-dimensional in the z-d i rec t ion  3, i.e., 
T : T ( z ) .  

F i g u r e  8.5 Conduction through a slightly tapered slab. 

Table C.4 in Appendix C indicates that  the only non-zero energy flux component 
is e z and it is given by 

ez - qz = - k  d T  
dz (s.2-2) 

The negative sign in Eq. (8.2-2) implies that  positive z -d i rec t ion  is in the direction 
of decreasing temperature.  If the answer turns out to be negative, this implies that  
the flux is in the negative z-di rec t ion  

For a differential volume element of thickness Az, as shown in Figure 8.5, 
Eq. (8.2-1) is expressed as 

(Aqz) lz  - (Aq~)I~+A~ = 0 (8.2-3) 

3The z-direction in the rectangular and cylindrical coordinate systems are equivalent to each 
other. 
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Dividing each term by Az and taking the limit as Az ~ 0 gives 

lim (Aq~)[~  - ()l.Aq~.,~+Az = 0 (8.2-4) 
Az--~0 AZ 

or, 

d(Aq~) 

dz 
= 0  (8.2-5) 

Since flux times area gives the heat transfer rate, (~, it is possible to conclude from 
Eq. (8.2-5) that  

A qz - constant = Q (8.2-6) 

in which the area A is perpendicular to the direction of energy flux. Substitution 
of Eq. (8.2-2) into Eq. (8.2-6) and integration gives 

fo T fo z dz k (T)  dT  -- - Q A(z )  + C (8.2-7) 

where C is an integration constant. The determination of (~ and C requires two 
boundary conditions. 

If the surface temperatures are specified, i.e., 

at z = 0  T - T o  
(8.2-8) 

at z =  L T -  TL 

the heat transfer rate as well as the temperature distribution as a function of 
position are given in Table 8.1. 

On the other hand, if one surface is exposed to a constant heat flux while the 
other one is maintained at a constant temperature, i.e., 

dT  
at z - O - k -d-~z = q o 

at z - L  T = T L  
(8.2-9) 

the resulting heat transfer rate and the temperature distribution as a function of 
position are given in Table 8.2. It should be noted that  the boundary conditions 
given by Eqs. (8.2-8) and (8.2-9) are not the only boundary conditions available for 
energy transport.  For different boundary conditions, Eq. (8.2-7) should be used to 
determine the constants. 
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Table 8.1 Heat transfer rate and temperature distribution for one-dimensional 
conduction in a plane wall for the boundary conditions given by Eq. (8.2-8). 

Heat Transfer 
Constants Rate 

Temperature Distribution 

k(T) dT k(T) dT A(z) 
None (A) = (E) 

A(z) k ( r ) d T  A(z) 

k(To - T~) 

~oo L dz 
A(z) 

0 z dz 
T o - T  A(z) 

(B) To - TL = L dz (F) 

o A(z) 

/// //o 
A k(T) dT k(T) dT 

z 

A n (C) /T~ ~ k ( T ) d T  = ~ (G) 

k k (To - TL)A To - T z 
(D)  = - (H)  

A L T o - T L  L 

Table 8.2 Heat transfer rate and temperature distribution for one-dimensional 
conduction in a plane wall for the boundary conditions given by Eq. (8.2-9). 

Heat Transfer 
Constants 

Rate 
Temperature Distribution 

None Al~=0 qo (A) 

k AI~=oqo (B) 

A Aqo (C) 

k 
A Aqo (D) 

/TT jfz L d z k(T) dT = AIz=o qo A(z)  

AIz=o qo s dz 
T -  TL = k A(z) 

/~ ( z )  
T6 k(T) dT = qoL 1 - --s 

qoL z ~- ~ -  T (1- ~) 

(E) 

(F)  

(C) 

(H) 
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E x a m p l e  8 .1  Consider a solid cone of circular cross-section as shown in Figure 
8.6. The diameter at z = 0 is 8 c m  and the diameter at z = L is 1 0 c m .  Calculate 
the steady rate of heat transfer if the lateral surface is well insulated and the therrnal 
conductivity of the solid material as a function of temperature is given by 

k(T) = 400 - 0 .07 T 

where k is in W~ m. K and T is in degrees Celsius. 

S o l u t i o n  

F i g u r e  8 . 6  C o n d u c t i o n  t h r o u g h  a sol id  cone.  

The diameter increases linearly in the z-direction, i.e., 

D(z) = 0.05 z + 0.08 

Therefore, the cross-sectional area perpendicular to the direction of heat flux is 
given as a function of position in the form 

A(z) = ~ D 2  - - r_ (0.05 z + 0.08) 2 
4 4 

The use of Eq. (A) in Table 8.1 with To = 8 0 ~  TL = 35 ~  and L = 0 . 4 m  gives 
the heat transfer rate as 

~ s~ (400 - T )  0.07 dT 

(~ = 5 = 280 W 

jr0 
0"4 dz 

: r (0 .05 z + 0 . 0 8 ) 2 / 4  

E x a m p l e  8 . 2  Consider the problem given in Example 2.2. Determine the tem- 
perature distribution within the slab. 
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Solution 

With TL = 35~ qo-- 1 0 0 , 0 0 0 W / m  2, k = 3 9 8 W / m .  K and L = 0.04m, Eq. (H) 
in Table 8.2 gives the temperature distribution as 

T - 35 - (100,000)(0.04)398 (1 - b--fi4)z 

or, 
T = 45.1 - 251.3 z 

E x a m p l e  8.3 In rivers ice begins to form when water is cooled to 0 ~ and con- 
tinues to lose heat to the atmosphere. The presence of ice on rivers not only causes 
transportation problems but also floods on its melting. Once the ice cover is formed, 
its thickening depends on the rate of heat transferred from the water, through the 
ice cover, to the cold atmosphere. As an engineer you are asked to estimate the 
increase in the thickness of the ice block as a function of time. 

Solution 

Assumptions 

1. Pseudo-steady-state behavior. 

2. River temperature is close to 0 ~ and the heat transferred from water to ice 
is negligible. This assumption implies that the major cause of ice thickening 
is the conduction of heat through the ice. 

Analysis 

System: Ice block 

Since the density of ice is less than that of water, it floats on the river as shown in 
Figure 8.7. The temperatures Tm and T~ represent the melting temperature (0 ~ 
and the top surface temperature, respectively. 

F i g u r e  8.7 Ice block on a river. 
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The temperature distribution in the ice block under steady conditions can be deter- 
mined from Eq. (H) in Table 8.1 as 

Tm - T z 
= -- (I) 

Tm-T~ L 

Therefore, the steady heat flux through the ice block is given by 

q~ - - k  dT 
dz 

k(Tm 
: L (2) 

For the ice block, the macroscopic inventory rate equation for energy is 

- R a t e  of energy out = Rate of energy accumulation (3) 

If the enthalpy of liquid water at Tm is taken as zero, then the enthalpy of solid ice 
is 

[{i~ : - i - Cp dT (4) 

Negligible 

Therefore, Eq. (3) is expressed as 

d [ALp ( -  i)] (5) - q ~ A - - ~  

For the unsteady-state problem at hand, pseudo-steady-state assumption implies 
that Eq. (2) holds at any given instant, i.e., 

k(Tm - T s )  (6) 
qz(t) : L(t) 

Substitution of Eq. (6) into Eq. (5) and rearrangement gives 

fo L k L d L  - ---= ( T m -  Ts) dt (7) 
pA 

Integration yields the thickness of the ice block in the form 

2k (T ,~-T~)dt  (8) 

8.2.1.1 E l ec t r i c a l  c i rcui t  ana logy  

Using the analogy with Ohm's law, i.e., current - voltage/resistance, it is custom- 
ary in the literature to express the rate equations in the form 

R a t e -  Driving force (8.2-10) 
Resistance 
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Note that Eq. (D) in Table 8.1 is expressed as 

Q = T o - T L  

L 

k A  

Comparison of Eq. (8.2-11) with Eq. (8.2-10) indicates that 

Driving force = To - TL 

(8.2-11) 

(8.2-12) 

L Thickness 
Resistance = = 

k A  (Transport property) (Area) 
(8.2-13) 

Hence, the electric circuit analog of the plane wall can be represented as shown 
in Figure 8.8. Note that the electrical circuit analogy holds only if the thermal 
conductivity is constant. In the case of a composite plane wall, the resulting 
electrical circuit analogs are shown in Figure 8.9. 

L 
R = m  

kA 

To O_ 

Figure  8.8 Electrical circuit analog of the plane wall. 

T/ 

Jt 

I 
r2 

R A R B 

rl ~ Q r2 

1 
T1 

l B 

I 
T2 

I 
A v 

T1 

R A 

RB 
TO_ 

r2 

Figure  8.9 Electrical circuit analogs of composite plane walls in series and 
parallel arrangement. 
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Example 8.4 For the composite wall shown in Figure 8.10, related thermal con- 
ductivities are given as kA = 35 W/m. K, kB = 12 W/m. K, kc = 23 W/m. K, 
and kD = 5 W~ m. K. 

a) Determine the steady-state heat transfer rate. 
b) Determine the effective thermal conductivity for the composite walls. This makes 
it possible to consider the composite wall as a single material of thermal conductivity 
k~f f , rather than four different materials with four different thermal conductivities. 

T 1 = 300~ 

10cm ----~ 

6 .cm B 

20 cm 8cm ~ ~  

Figure 8.10 Heat conduction through a composite wall. 

S o l u t i o n  

a) An analogous electrical circuit for this case is shown below: 

RA 

R B 

RC 

RD 7"2 

The equivalent resistance, Ro, of the two resistances in parallel is 

( 1  1 )  -1 
Ro= 

Thus, the electrical analog for the heat transfer process through the composite wall 
can be represented as shown below: 

R A R o R D 

'X/VW--. 
rl ..... ; Q r2 
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Using Eq. (8.2-13) the resistances are calculated as follows: 

LA 0.1 
R A -  kAA = (35)(0.09 • 1) = 0 . 0 3 2 K / W  

LB 0.2 
RB = kBA = (12)(0.06 • 1) = 0 . 2 7 8 K / W  

Lc  0.2 
R e  = = = 0.290 K / W  

k c A  (23)(0.03 • 1) 

LD 0.08 
RD = kDA = (5)(0.09 • 1) = 0 . 1 7 8 K / W  

( 1  ~_______.~) -1 

Ro - -~B + 
(1 1) 

- 0.278 + 0.290 

-1 
= 0 . 1 4 2 K / W  

The total resistance of the entire circuit is 

R - RA + Ro + RD = 0.032 + 0.142 + 0.178 -- 0.352 K / W  

Hence, the heat transfer rate is 

(~ = T1 - T2 _ _ 300 - 22 = 790 W 
E n  0.352 

b) Note tha t  

y~L ~ L  
~ R  = ~ k~:: = k~:: A A ~,  R 

Therefore, the effective thermal  conductivity is 

0.1 + 0.2 + 0.08 

k~:.: = (0.09 • 1)(0.352) 
= 1 2 W / m .  K 

8.2 .1 .2  T r a n s f e r  r a t e  in t e r m s  of  b u l k  f luid p r o p e r t i e s  

Consider the transfer of thermal  energy from fluid A, at a t empera ture  TA with 
an average heat transfer coefficient IhAi, through a solid plane wall with thermal  
conductivity k, to fluid B, at a tempera ture  TB with an average heat transfer 
coefficient (hB/, as shown in Figure 8.11. 
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TTT 
Hot fluid "A" 

~Z 

TL 
TTT 

Cold fluid "B" 
T8 

F i g u r e  8.11 Heat transfer through a plane wall. 

When the thermal conductivity and the area are constant, the heat transfer 
rate is calculated from Eq. (8.2-11). The use of this equation, however, requires 
the values of To and TL be known or measured. In common practice, it is much 
easier to measure the bulk fluid temperatures, TA and TB. It is then necessary to 
relate To and TL to TA and TB. 

The heat transfer rates at the surfaces z = 0 and z - L are given by Newton's 
law of cooling with appropriate heat transfer coefficients and expressed as 

Q = A(hA)(TA - To) = A(hB)(TL - TB) (8.2-14) 

Equations (8.2-11) and (8.2-14) can be rearranged in the form 

1 ) (8.2-15) TA -- To = Q A(hA} 

T o - T L  = Q (~----~) (8.2-16) 

(1) 
TL -- TB -- Q A(hB) (8.2-17) 

Addition of Eqs. (8.2-15)-(8.2-17) gives 

1 L 
TA -- TB -- Q A(hA) + ~ + 

1) 
A(hB) 

(8.2-18) 

or, 

TA-TB 
( ~ -  1 L 1 (8.2-19) 

in which the terms in the denominator indicate that  the resistances are in series. 
The electrical circuit analogy for this case is given in Figure 8.12. 
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1 L 
A <hA> kA 

TA ~ 0__. 

1 

A <hB> 

5/W  : 
rB 

F i g u r e  8 .12  Electr ical  circuit analogy. 

E x a m p l e  8 .5  A plane wall separates hot air (.4) at a temperature of 50 ~ from 
cold air (t3) at - 1 0 ~  as shown in Figure 8.13. Calculate the steady rate of heat 
transfer through the wall if the thermal conductivity of the wall is 

a) k - 0 . T W / m . K  

b)  k = 2 0 W / m . K  

3m 

Air Air 

/ / /  / / /  
T A = 50~ . ' "  TB = _ 10~ 

voo = 10 m/s lOm voo = 15 m/s 

v r 

z 
L ~t L = 20 cm 
i ~ ~ |  

F i g u r e  8 .13  Conduc t ion  t h rough  a plane wall. 

S o l u t i o n  

P h y s i c a l  p r o p e r t i e s  

For air at 50 ~ (323 K) 

u -  17.91 • 10 - 6 m 2 / s  

�9 k =  27.80 • 1 0 - 3 W / m . K  

Pr  - 0.708 

{ u -  12.44 x 10 - 6 m 2 / s  

For air at - 10 ~ (263 K) �9 k - 23.28 x 10 -3 W / m .  K 

Pr  - 0.72 
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For air at 33.5 ~ (306.5 K)" { 

For air at 0~ (273 K) �9 { 

- 16.33 x 10 -6 m2/s 
k - 26.59 • 10 -3 W / m .  K 
Pr = 0.711 

- 13.30 x 10 -6 m2/s 
k - 24.07 x 10 -3 W / m .  K 
Pr = 0.717 

Analys is  

The rate of heat loss can be calculated from Eq. (8.2-19), i.e., 

WH(TA - T B )  (1) 
Q =  1 L 1 

+ + <h.--7 

The average heat transfer coefficients, <hA) and <hB>, can be calculated from the 
correlations given in Table ~.2. However, the use of these equations require physical 
properties to be evaluated at the film temperature. Since the surface temperatures 
of the wall cannot be determined a priori, as a first approximation, the physical 
properties will be evaluated at the fluid temperatures. 

Left -s ide  of  the  wall  

Note that the characteristic length in the calculation of the Reynolds number is 
10 m. The Reynolds number is 

R e -  
Lch vc~ 

l] 

(10)(10) 
17.91 x 10 -6 

= 5.6 x 106 (2) 

Since this value is between 5 • 105 and 10 s, both laminar and turbulent conditions 
exist on the wall. The use of Eq. (E) in Table ~.2 gives the Nusselt number as 

( N u } -  (0.037Re 4/5 - 8 7 1 ) P r  1/3 

= [0.037 (5.6 x 108) 4/5 - 871 (0.708) 1/3~- 7480 (3) 

Therefore, the average heat transfer coefficient is 

k 

= ( 7 4 8 0 ) (  2780x10-3)10 - 20.8 W / m  2. K (4) 
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R i g h t - s i d e  of  t h e  wal l  

The Reynolds number is 

Re = 
Lch voo 

ly 

(10)(15) 
12.44 x 10 -6 

= 12.1 x 106 (5) 

The use of Eq. (E) in Table ~.2 gives 

<Nu> (0.037-- 4/5 = l-re L -- 871) Pr 1/3 

[0.037 (12.1 • 106) 4 / 5 -  871] (0.72) 1 / 3 -  14,596 (6) . . _ . _  

Therefore, the average heat transfer coefficient is 

<h.?- (Nul ~ 

10 - 34 w / m  2. K (7) 

a) Substitution of the numerical values into Eq. (1) gives 

Q _ ( 1 0 ) ( 3 ) [ 5 o -  ( -  10)] 
1 0.2 1 = 4956 W (8) 

20.8 +0--_7 + 3-4 

Now we have to calculate the surface temperatures and check whether it is appropri- 
ate to evaluate physical properties at the fluid temperatures. The electrical circuit 
analogy for this problem is shown below: 

1 L 1 

A <hA > Ak A <hB> 

TA T 1 r 2 T 8 

,0. 

The surface temperatures T1 and T2 can be calculated as 

T1-TA 

= 5 0 -  

A(hA> 
4956 

(30)(20.8) - 42~  (9) 

r 
T2-T~+  

A(hB> 
4956 

- - 1 0 +  ~ - 5 ~  (30)(34) - 

(i0) 
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Therefore, the film temperatures at the left- and right-sides of the wall are (42 + 
50)/2 = 46~ and ( - 1 0 -  5)/2 = -  7.5~ respectively. Since these temperatures 
are not very much different from the fluid temperatures, the heat transfer rate can 
be considered equal to 4956 W. 

b) For k - 20 W / m .  K, the use of Eq. (1) gives 

_ (10)(3)[50 - ( -  10)] 
1 0.2 1 = 20 ,574W (11) 

20.8 

The surface temperatures T1 and T2 can be calculated as 

0 TI=TA 
A<hA> 

20,574 
= 5 0 -  (30)(20.8) -~ 17~ (12) 

r 
T2 =TB+ 

A<hs> 
20,574 

= -  1 0 +  (30)(34) "~ 10~ (13) 

In this case, the film temperatures at the left- and right-sides are (17 + 50)/2 = 
33.5 ~ and ( - 1 0  + 10)/2 = 0~ respectively. Since these values are different 
from the fluid temperatures, it is necessary to recalculate the average heat transfer 
coefficients. 

Lef t - s ide  of  t h e  wall  

Using the physical properties evaluated at 33.5 ~ the Reynolds number becomes 

Lch vc~ 
Re = 

/2 

= (10)(10) = 6.1 x 106 
16.33 x 10 -6 

The Nusselt number is 

1-, 4/5 _ 871) Pr 1/3 (Nu> = (0.037 rte L 

= [0.037 (6.1 • 106) 4/5 - 871] (0.711) 1/3 - 8076 

Therefore, the average heat transfer coefficient is 

( h A ) -  {Nu) 

x lO 
21 .5W/m2.  K 

\ / i0 

(14) 

(15) 

(16) 
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R i g h t - s i d e  of  t h e  wal l  

Using the physical properties evaluated at 0 ~ the Reynolds number becomes 

R e -  
Lchv~ 

l] 

(10)(15) 
13.30 x 10 -6 

-- 11.3 x 106 (17) 

The use of Eq. (E) in Table 4.2 gives 

~-~ 4/5 1/3 (Nu} - (0.037rte L - 871) Pr 

= [0.037 (11.3 x 106) 4/5 -- 871] (0.717) 1/3 = 13,758 (18) 

Therefore, the average heat transfer coefficient is 

<h.) = <Nu> 

= ( 1 3 , 7 5 8 ) ( 2 4 " 0 7 x 1 0 - 3 )  
10 = 33.1 W / m  2. K (19) 

Substitution of the new values of the average heat transfer coe]ficients, Eqs. (16) 
and (19), into Eq. (1) gives the heat transfer rate as 

Q = (10 ) (3 ) [50 -  ( -  10)] 
1 0.2 1 

21-U/+ ~ + 33--i 

= 20, z56 w (20) 

The surface temperatures are 

T1 - T A -  A {hAl 

20,756 
= 5 0 -  (30)(21.5) ~- 18~ (21) 

0 T2=TB+ 
A(hB} 

20,756 
= - 10 + (30)(33.1) - 11 ~ (22) 

Since these values are almost equal to the previous values, then the rate of heat loss 
is 20,756W. 

Comment '  
follows: 

The Biot numbers, i.e., (h)Lch/k, for this problem are calculated as 
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Left Side Right Side 

Part (a) 5.9 9.7 

Part (b) 0.2 0.3 

Note that the physical significance of the Biot number was given by Eq. (7.1.1~), 
i.e., 

(Difference in driving force)solid 
B i -  

(Difference in driving force)/tuid 

Therefore, when Bi is large, the temperature drop between the surface of the wall 
and the bulk temperature is small and the physical properties can be calculated at the 
bulk fluid temperature rather than the film temperature in engineering calculations. 
On the other hand, when Bi is small, the temperature drop between the surface of 
the wall and the bulk fluid temperature is large and the physical properties must be 
evaluated at the film temperature. Evaluation of the physical properties at the bulk 
fluid temperature for small values of Bi may lead to erroneous results especially if 
the physical properties of the fluid are strongly dependent on temperature. 

8 . 2 . 2  C o n d u c t i o n  i n  C y l i n d r i c a l  C o o r d i n a t e s  

Consider a one-dimensional transfer of energy in the r -direct ion in a hollow cylin- 
drical pipe with inner and outer radii of R1 and R2, respectively, as shown in Figure 
8.14. Since T = T(r), Table C.5 in Appendix C indicates that the only non-zero 
energy flux component is er and it is given by 

dT 
e~ - q~ - - k dr (8.2-20) 

For a cylindrical differential volume element of thickness Ar, as shown in Figure 
8.14, Eq. (8.2-1) is expressed in the form 

(Aq~)lr - (Aq~)l~+~r = 0 (8.2-21) 

Dividing Eq. (8.2-21) by Ar and taking the limit as Ar  ~ 0 gives 

lim (Aqr)[~ - ( )l.Aqr,,~+A~ = 0 (8.2-22) 
At--.0 A r  

or~ 

d(Aqr) 

dr 
= 0 (8.2-23) 

Since flux times area gives the heat transfer rate, ~), it is possible to conclude that 

A qr =-- constant -- (~ (8.2-24) 



8.2. E N E R G Y  T R A N S P O R T  W I T H O U T  C O N V E C T I O N  261 

F i g u r e  8.14 Conduction in a hollow cylindrical pipe. 

The area A in Eq. (8.2-24) is perpendicular to the direction of energy flux in the 
r -d i r ec t ion  and is given by 

A = 27rrL (8.2-25) 

Substitution of Eqs. (8.2-20) and (8.2-25) into Eq. (8.2-24) and integration gives 

/o k ( T )  d T  - - In r + C (8.2-26) 

where C is an integration constant. 
If the surface temperatures are specified, i.e., 

at r = R 1  T = T 1  
(8.2-27) 

at r - R 2  T - T 2  

the heat transfer rate as well as the temperature distribution as a function of 
position are given in Table 8.3. 

On the other hand, if one surface is exposed to a constant heat flux while the 
other one is maintained at a constant temperature,  i.e., 

d T  
at r =  R1 - k --;- = ql 

a T  

at r =  R2 T - - T 2  

(8.2-28) 
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the resulting heat transfer rate and the temperature distribution as a function of 
position are given in Table 8.4. 

Table 8.3 Heat transfer rate and temperature distribution for one-dimensional 
conduction in a hollow cylinder for the boundary conditions given by Eq. (8.2-27). 

Heat Transfer 
Constants 

Rate 
Temperature Distribution 

None 

2~L k(T) dT k(T) dT In 

In ( - ~ )  (A) irT 2 k ( T ) d T - l n  ( - ~ )  
(c) 

k 27rLk(T2 - T1) (S) T2 - T _ _ R22 (D) 

l n ( - ~ )  T2-TI in <~__~12 ) 

Table 8.4 Heat transfer rate and temperature distribution for one-dimensional 
conduction in a hollow cylinder for the boundary conditions given by Eq. (8.2-28). 

Heat Transfer 
Constants Rate 

Temperature Distribution 

None 27cR1Lq1 (A) k(T) dT = qlR11n r (C) 

k 27rRiLql (B) T 2 - T = q l R l l n (  r ) 
R22 (D) 

8.2.2.1 Electrical  circuit analogy 

Equation (B) in Table 8.3 can be expressed as 

9"1 -T2  (8.2-29) 
Q= ln(R2/R1) 

2~Lk 
Comparison of Eq. (8.2-29) with Eq. (8.2-10) indicates that the resistance is given 
by 

Resistance = ln(R2/R1) (8.2-30) 
2~Lk 
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At first, it looks as if the resistance expression for the rectangular and the cylindrical 
coordinate systems are different from each other. However, the similarities between 
these two expressions can be shown by the following analysis. 

Note that  the logarithmic-mean area, ALM, call be defined as 

A2 - A1 27rL(R2 - R1) 
A L M  --- ln(A2/A1) = ln(R2/R1) (8.2-31) 

Substitution of Eq. (8.2-31) into Eq. (8.2-30) gives 

Resistance = 
R2 - R1 

kALM 
(8.2-32) 

Note that  Eqs. (8.2-13) and (8.2-32) have the same general form of 

Thickness 
R e s i s t a n c e -  (Transport property) (Area) (8.2-33) 

The electrical circuit analog of the cylindrical wall can be represented as shown in 
Figure 8.15. 

R2-R 1 
k ALM 

rA T, 

F i g u r e  8.15 Electrical circuit analog of the cylindrical wall. 

E x a m p l e  8.6 Heat flows through an annular wall of inside radius R1 - 10cm 
and outside radius R2 -- 15 cm. The inside and outside surface temperatures are 
60~ and 30~ respectively. The thermal conductivity of the wall is dependent 
on temperature as follows: 

T = 30~ k = 4 2 W / m .  K 
T = 60~ k = 4 9 W / m .  K 

Calculate the steady rate of heat transfer if the wall has a length of 2 m. 

Solution 

Assumption 

1. The thermal conductivity varies linearly with temperature. 
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Analys is  

The variation of the thermal conductivity with temperature can be estimated as 

(49 - 42)  ( T -  30) 
k = 4 2 +  6 0 - 3 0  

= 35 + 0.233 T 

The heat transfer rate is estimated from Eq. (A) in Table 8.3 with R1 - 10cm, 
R 2 = 1 5 c m ,  T l = 6 0  ~ a n d T 2 = 3 0  ~ 

m 

2 7~L k(T) dT 2 ~L k(T) dT 
1 

In (R1/R2) In (R2/R1) 

2 (2) f3 6~ (35 + 0.233 T ) d T  - 42,291 W 
In(15/10) 0 

8.2.2.2 Trans fe r  r a t e  in t e r m s  of bulk  fluid p rope r t i e s  

The use of Eq. (8.2-29) in the calculation of the heat transfer rate requires surface 
values T1 and T2 be known or measured. In common practice, the bulk tempera- 
tures of the adjoining fluids to the surfaces at R = Ra and R = R2, i.e., TA and 
TB, are known. It is then necessary to relate T1 and T2 to TA and TB. 

The heat transfer rates at the surfaces R = R1 and R = R2 are expressed in 
terms of the heat transfer coefficients by Newton's law of cooling as 

(~ = A1 (hA)(TA -- T1) = A2(hB)(T2 - TB) 

The surface areas A1 and A2 are expressed in the form 

(8.2-34) 

A1 = 27cR1L and A2 - 2~R2L (8.2-35) 

(8.2-36) 

Equations (8.2-29) and (8.2-34) can be rearranged in the form 

( 1 ) 
r A - T  1 -- Q AIIhA> 

T 1 -  T2 = Q ( R2 - R1)ALMk 

1 
T 2 - T B  - Q ( A2(hB) ) 

Addition of Eqs. (8.2-36)-(8.2-38) gives 

1 R2 - R1 
TA -- TB -- (~ AI(hA) + ALMk -~ 

(8.2-37) 

(8 2-38) 

1 ) (8.2-39) 
A2(hB> 
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or, 
TA-TB 

w = 1 R2 - -  R1 1 + + 
AI<hA} ALMk A2{hB> 

(8.2-40) 

in which the terms in the denominator indicate that the resistances are in series. 
The electrical circuit analogy for this case is given in Figure 8.16. 

1 R2-R1 1 
A 1 <hA> kALM A 2 <hB> 

,Vx/Vx,---. 
TA .0. rB 

Figure  8.16 Electrical circuit analogy for Eq. (8.2-40). 

In the literature, Eq. (8.2-40) is usually expressed in the form 

Q -- A1UA(TA - TB) -- A2UB(TA -- TB) (8.2-41) 

where the terms UA and UB are called the overall heat transfer coefficients. Com- 
parison of Eq. (8.2-41) with Eq. (8.2-40) gives UA and UB as 

1 (R2 - R1) A1 A1 ] -1 
UA = {hA> + ALMk + <hB>A2 

[ 1 R l l n ( R 2 / R , ) +  R1 ]-1 
-- (hA> + k (hs}R2 

(8.2-42) 

and 

A2 
UB-- <hA}A1 

R2 
(hA}R1 

+ ( R 2 - R 1 ) A 2  1 ]-1 

ALMk + (hB) 

R21n(R2/R1) + (~B)] -1 
+ k 

(8.2-43) 

E x a m p l e  8.7 Consider a cylindrical pipe of length L with inner and outer radii 
of R1 and R2, respectively, and investigate how the rate of heat loss changes as a 
function of insulation thickness. 

Solution 

The immediate reaction of most students after reading the problem statement is 
"What's the point of discussing the rate of heat loss as a function of insulation 
thickness? Adding insulation thickness obviously decreases the rate of heat loss." 
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This conclusion is true only for planar surfaces. In the case of curved surfaces, 
however, close examination of Eq. (8.2-32) indicates that while addition of insu- 
lation increases the thickness, i.e., R 2 -  R1, it also increases the heat transfer 
area, i.e., ALM. Hence, both numerator and denominator of Eq. (8.2-32) increase 
when the insulation thickness increases. If the increase in the heat transfer area is 
greater than the increase in thickness, then resistance decreases with a concomitant 
increase in the rate of heat loss. 

For the geometry shown in Figure 8.17, the rate of heat loss is given by 

~2 - T A  - T B  
1 ln(R2/R1) ln(R3/R2) 1 (1) + + + 

27rRIL<hA) 27rLkw 27rLki 27rR3L<hB) 

X 

where kw and ki are the thermal conductivities of the wall and the insulating 
material, respectively. 

Figure  8.17 Conduction through an insulated cylindrical pipe. 

Note that the term X in the denominator of Eq. (1) is dependent on the insulation 
thickness. Differentiation of X with respect to R3 gives 

1(1 1) 
dR3 = 2~L R 3 k i  <hB)R3 - 0  ~ R3 = <hB} (2) 

To determine whether this point corresponds to a minimum or a maximum value, 
it is necessary to calculate the second derivative, i.e., 

I dR3 R~ "-k~/<hB} 

1 <hB> 2 
= > 0 (3) 

3 2~L ki 



8.2. ENERGY TRANSPORT WITHOUT CONVECTION 267 

Therefore, at R3 = ki/(hBI, X has the minimum value. This implies that the 
rate of heat loss will reach the maximum value at R3 = Rcr = ki/<hs>, where 
Rcr is called the critical thickness of insulation. For R2 < R3 <_ Rcr, addition 
of insulation causes an increase in the rate of heat loss rather than a decrease. A 
representative graph showing the variation of the heat transfer rate with insulation 
thickness is given in Figure 8.18. 

R 2 Rcr R* R 3 

F i g u r e  8.18 Rate of heat loss as a function of insulation thickness. 

Another point of interest is to determine the value of R*, the point at which 
the rate of heat loss is equal to that of the bare pipe. The rate of heat loss through 
the bare pipe, (~o, is 

(~o - T A  - T B  
1 In (R2/R1) 1 (4) 

+ + 
2~R1L<hA> 2 7 ~ L k ~  27rR2L<hB} 

On the other hand, the rate of heat loss, (~*, when R3 - R* is 

TA - T B  

~* - 1 In (R2/R1) in (R*/R2) 1 
(5) 

+ + + 
2~R1L<hA> 2~Lk~ 2~Lki 2~R*L<hB> 

Equating Eqs. (~) and (5) gives 

(R,) R* <hB>R* In - 1 (6) 
R2 ki 

R* can be determined from Eq. (6) for the given values of R2, <hB}, and ki. 

C o m m e n t :  For insulating materials, the largest value of the thermal conductivity 
is in the order of 0 . 1 W / m . K .  On the other hand, the smallest value of <hB> is 
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around 3 W / m  2. K. Therefore, the maximum value of the critical radius is approx- 
imately 3.3cm, and in most practical applications, this will not pose a problem. 
Therefore, critical radius of insulation is of importance only for small diameter 
wires or tubes. 

E x a m p l e  8.8 Steam (fluid A) flows in a pipe of R1 = 30 cm and R2 - 45cm. 
The pipe is surrounded by fluid B. Calculate the overall heat transfer coefficients 
and sketch the representative temperature profiles for the following cases: 

a) (hA} -- 10 W / m  2. K; (hB} = 5000 W / m  2. K; k - 2000 W / m  2. K 

b) (hA} = 5000W/m2. K; (hs} -- 8000W/m2. K; k = 0.02W/m2. K 

c) (hAl = 5000 W / m  2. K; (hB} -- 10 W / m  2. K; k = 2000 W / m  2. K 

So lu t ion  

a) Note that the dominant resistance to heat transfer is that of fluid A. Therefore, 
one expects the largest temperature drop in this region. Hence Eqs. (8.2-~2) and 
(8.2-~3) give the overall heat transfer coefficients as 

1 ) - 1  
U A  - -  {hA} -- (hA} -- 10 W / m  2. K 

UB = {hA}R1 = (hA) ~ = 45 = 6.67 W / m  2. K 

The expected temperature profile for this case is shown below. 

rB 

b) In this case the dominant resistance to heat transfer is that of the pipe wall. 
The overall heat transfer coefficients are 

k 0.02 
U A  - -  R1 ln(R2/R1) = (0.3) ln(45/30) = 0.16 W / m  2. K 

k 0.02 
UB -- R2 ln(R2/R1) = (0.45)ln(45/30) = 0.11 W / m  2. K 

The expected temperature profile for this case is shown below: 
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,. T B 

c) The dominant resistance to heat transfer is the resistance of fluid B. Hence, the 
overall heat transfer coefficients are 

R1 

(1)1 
U B =  (hB} 

--1 
- - (hB)  ( -~1 )  - (10)(45)30 

- -  ( h B )  - -  10 W / m  2. K 

= 15W/m2 .  K 

The expected temperature profile for this case is shown below: 

TB 

Comment:  
perature drop. 

The region with the largest thermal resistance has the largest tern- 

8 . 2 . 3  C o n d u c t i o n  i n  S p h e r i c a l  C o o r d i n a t e s  

Consider one-dimensional transfer of energy in the r -d i rec t ion  through a hollow 
sphere of inner and outer radii of R1 and R2, respectively, as shown in Figure 8.19. 
Since T = T(r),  Table C.6 in Appendix C indicates that  the only non-zero energy 
flux component is e~ and it is given by 

dT 
er = qr = - k d---~ (8.2-44) 

For a spherical differential volume element of thickness Ar  as shown in Fig. 8.19, 
Eq. (8.2-1) is expressed in the form 

(Aq,-)[r - (Aqr)[~+~r - 0 (8.2-45) 
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qrlr+Ar 

qrlr ~--A --~ 

T B , <hB> 

F i g u r e  8.19 Conduction through a hollow sphere. 

Dividing Eq. (8.2-45) by Ar  and taking the limit as Ar  ~ 0 gives 

or, 

lira (Aqr) ,. - ( A  )],__q~,,~+A~ = 0 (8 .2 -46 )  
At---,0 AT 

d (Aqr) = 0 (8.2-47) 
dr 

Since flux times area gives the heat transfer rate, (~, it is possible to conclude tha t  

A qr = constant = (~ (8.2-48) 

The area A in Eq. (8.2-48) is perpendicular to the direction of energy flux in the 
r - d i r e c t i o n  and it is given by 

A = 47rr 2 (8.2-49) 

Subst i tut ion of Eqs. (8.2-44) and (8.2-49) into Eq. (8.2-48) and integration gives 

/0 k ( T )  dT  - - + C 
r 

(8.2-50) 

where C is an integration constant. 
If the surface temperatures  are specified, i.e., 

at r = R 1  T = T 1  
(8.2-51) 

at r = R2 T = T2 

the heat transfer rate as well as the tempera ture  distribution as a function of 
position are given in Table 8.5. On the other hand, if one surface is exposed to 
a constant  heat flux while the other one is maintained at a constant tempera ture ,  
i.e., 

dT  
at r = R1 - k ~ - ql (8.2-52) 

at r = R2 T = T2 
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the resulting heat transfer rate and the temperature distribution as a function of 
position are given in Table 8.6. 

Table 8.5 Heat transfer rate and temperature distribution for one-dimensional 
conduction in a hollow sphere for the boundary conditions given by Eq. (8.2-51). 

Heat Transfer 
Constants Rate 

Temperature Distribution 

4~ k(T) dT k(T) dT 1 1 
r R2 

None (A) = (C) 
1 1 f %  k(T)dT 1 1 

~I R2 JT2 R1 R2 

1 1 

4 k(T  - T2) T - T2 R2 
k (B) = (D) 

1 1 T 1 - T 2  1 1 

R1 R2 R1 R2 

Table 8.6 Heat transfer rate and temperature distribution for one-dimensional 
conduction in a hollow sphere for the boundary conditions given by Eq. (8.2-52). 

Heat Transfer 
Constants 

Rate 
Temperature Distribution 

None 47rR12 ql (A) k(r)  d r -  qlR~ 1 1 (C) 

k 47rR~q1 (B) T - T 2 - q l R 2 1  (1  1 )  
k r R2 (D) 

Example  8.9 A spherical metal ball of radius R is placed in an infinitely large 
volume of motionless fluid. The ball is maintained at a temperature of TR while 
the temperature of the fluid far from the ball is Too. 

a) Determine the rate of heat transferred to the fluid. 
b) Determine the temperature distribution within the fluid. 
c) Determine the Nusselt number. 

Solution 

Assumptions 

1. Steady-state conditions prevail. 
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2. The heat transfer from the ball to the fluid takes place only by conduction. 

3. The thermal conductivity of the fluid is constant. 

A n a l y s i s  

a) The use of Eq. (B) in Table 8.5 with T1 - TR, T2 -- Too, R1 = R and R2 = c~ 
gives the rate of heat transferred from the ball to the fluid as 

(~ = 4~k (TR -- Too) = 4 ~ R k  (TR -- Too) (1) 
1/R 

b) The temperature distribution can be obtained from Eq. (D) of Table 8.5 in the 
form 

T - Too R 
= -- (2) 

TR -- Too r 

c) The amount of heat transferred can also be calculated from Newton's law of 
cooling, Eq. (3.2-7), as 

(~ - 4~R 2 (h)(TR - Too) (3) 

Equating Eqs. (1) and (3) leads to 

(h> 
k 

Therefore, the Nusselt number is 

1 2 
= ~ = ~ (4) 

Nu = (h)D = 2 (5)  
k 

8.2.3.1 E lec t r i ca l  c i rcui t  ana logy  

Equation (B) in Table 8.5 can be rearranged in the form 

T1 - T 2  (8.2-53) 
(~= ln(R2/R1) 

47rkRi R2 

Comparison of Eq. (8.2-53) with Eq. (8.2-10) indicates that  the resistance is given 
by 

Res i s t ance -  R2 - R1 (8.2-54) 
47rkRiR2 

In order to express the resistance in the form given by Eq. (8.2-13), let us define a 
geometric mean area, AGM, as 

AOM = v/AI A2 

= , / ( 4 ~ R i i  (47rR 2 ) -  = 4~RaR2 (8.2-55) 
u - - -  
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so that  Eq. (8.2-54) takes the form 

R2 - R1 Thickness 
Resistance - = 

kAaM (Transport property)(Area) 
(8.2-56) 

The electrical circuit analog of the spherical wall can be represented as shown 
in Figure 8.20. 

R2-R 1 
k AGM 

- ' AAAAAA/ ......... -- 
T V V v V V Y 

h , o  7"2 

F i g u r e  8.20 Electrical circuit analog of the spherical wall. 

8.2.3.2 T r a n s f e r  r a t e  in t e r m s  of bu lk  fluid p r o p e r t i e s  

The use of Eq. (8.2-53) in the calculation of the transfer rate requires surface values 
T1 and 7"2 to be known or measured. In common practice, the bulk temperatures 
of the adjoining fluids to the surfaces at r = R1 and r = R2, i.e., TA and TB, are 
known. It is then necessary to relate T1 and T2 to TA and TB. 

The procedure for the spherical case is similar to that for the cylindrical case 
and left as an exercise to the students. If the procedure given in Section 8.2.2.2 is 
followed, the result is 

TA-TB 
(~ = 1 R2 - R1 1 + + 

AI(hA> AGMk A2(hB> 

(8.2-57) 

E x a m p l e  8.10 Consider a spherical tank with inner and outer radii of R1 and 
R2, respectively, and investigate how the rate of heat loss varies as a function of 
insulation thickness. 

Solut ion  

The solution procedure for this problem is similar to Example 8.7. For the geometry 
shown in Figure 8.21, the rate of heat loss is given by 

47~(TA -- TB ) 
(~ -- 1 R2 - R1 R3 - R2 1 (1) 

R~(hA> + R]R2kw + R2R3ki + R23<hB} 

X 

where kw and ki are the thermal conductivities of the wall and the insulating 
material, respectively. 
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Figure  8.21 Conduction through an insulated hollow sphere. 

Differentiation of X with respect to R3 gives 

dX 2 ki 
dR3 = 0 =~ R3 - (hB) (2) 

To determine whether this point corresponds to a minimum or a maximum value, 
it is necessary to calculate the second derivative, i.e., 

d2X I _ 1 (hs) 3 

Therefore, the critical thickness of insulation for the spherical geometry is given by 

2ki 
Rcr = (hB) (4) 

A representative graph showing the variation of heat transfer rate with insulation 
thickness is given in Figure 8.22. 

Another point of interest is to determine the value of R*, the point at which 
the rate of heat loss is equal to that of the bare pipe. Following the procedure given 
in Example 8. 7, the result is 

N = ki ~ 2 - 1  + 1  (5) 

R* can be determined from Eq. (5) for the given values of R2, (hB), and k~. 
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i , m  

R 2 Rcr R* R 3 

F i g u r e  8.22 Rate of heat loss as a function of insulation thickness. 

E x a m p l e  8.11 Consider a hollow steel sphere of inside radius R1 = 10cm and 
outside radius R2 = 20 cm. The inside surface is maintained at a constant temper- 
ature of 180 ~ and the outside surface dissipates heat to ambient temperature at 
20 ~ by convection with an average heat transfer coefficient of 11 W / m  2. K. To 
reduce the rate of heat loss, it is proposed to cover the outer surface of the sphere 
by two types of insulating materials X and Y in series. Each insulating material 
has a thickness of 3 cm. The the~nal conductivities of the insulating materials X 
and Y are 0.04 and 0 . 1 2 W / r e . K ,  respectively. One of your friends claims that 
the order in which the two insulating materials are put around the sphere does not 
make a difference in the rate of heat loss. As an engineer, do you agree? 

S o l u t i o n  

P h y s i c a l  p r o p e r t i e s  

For steel: k = 45 W / m .  K 

Analysis 

The rate of heat loss can be determined from Eq. (8.2-57). If  the surface is first 
covered by X and then Y,  the rate of heat loss is 

4 ~ (180 - 20) 
Q = 0.1 ....... 0.03 . . . .  0.03 . . . . .  1 

(45)(0.1)(0.2) + (0.04)(0.2)(0.23) + (0.12)(0.23)(0.26) + (0.26)2(11) 

= 91 .6W 

On the other hand, covering the surface first by Y and then X gives the rate of 
heat loss as 

(~  --- 4 ~ (180 - 20) 
0.1 0.03 0.03 - i -  - 

+ + + 
(45)(0.1)(0.2) (0.12)(0.2)(0.23) (0.04)(0.23)(0.26) (0.26)2(11) 

= 103.5W 

Therefore, the order of the layers with different thermal conductivities does make 
a difference. 
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8 . 2 . 4  C o n d u c t i o n  i n  a F i n  

in the previous sections we have considered one-dimensional conduction examples. 
The extension of the procedure for these problems to conduction in two- or three- 
dimensional cases is straightforward. The difficulty with multi-dimensional con- 
duction problems lies in the solution of the resulting partial differential equations. 
An excellent book by Carslaw and Jaeger (1959) gives the solutions of conduction 
problems with various boundary conditions. 

In this section first the governing equation for temperature distribution will be 
developed for three-dimensional conduction in a rectangular geometry. Then the 
use of area averaging 4 will be introduced to simplify the problem. 

Fins are extensively used in heat transfer applications to enhance the heat 
transfer rate by increasing heat transfer area. Let us consider a simple rectangular 
fin as shown in Figure 8.23. As an engineer we are interested in the rate of heat 
loss from the surfaces of the fin. This can be calculated if the temperature distri- 
bution within the fin is known. The problem will be analyzed with the following 
assumptions: 

1. Steady state conditions prevail. 

2. The thermal conductivity of the fin is constant. 

3. The average heat transfer coefficient is constant. 

4. There is no heat loss from the edges and the tip of the fin. 

F i g u r e  8.23 Conduction in a rectangular fin. 

4The first systematic use of the area averaging technique in a textbook can be attributed to 
Slattery (1972). 
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For a rectangular volume element of thickness Ax, width Ay and length Az, as 
shown in Figure 8.23, Eq. (8.2-1) is expressed as 

( qxlx Ay Az  + qyly Ax  ~ z  + qzl~ Ax  Ay) 

- (q~l~+Ax Ay Az  + qvly+Ay Ax  Az  + qzl~+A~ Ax  Ay) -- 0 ( 8 . 2 - 5 8 )  

Dividing by Ax Ay Az and taking the limit as Ax ~ 0, Ay --~ 0 and Az ~ 0 gives 

lim q~ l~ -  qxlx+A~ + lim qyl~-- qyly+~Xy q~l -- q~l~+ZX~ A~--,0 AX ay--,0 Ay + z~--,olim ~ Az = 0 (8.2-59) 

or~ 
cOq~ Oqy Oq~ 
0--~-t- ~ + ~ = 0 (8.2-60) 

From Table C.4 in Appendix C, the components of the conductive flux are given 
by 

qz - - k  OT 
Ox (8.2-61) 

- - k  O T  
Oy (8.2-62) 

TO 
- - k : = -  ( 8 . 2 - 6 a )  

Oz 

Substitution of Eqs. (8.2-61)-(8.2-63) into Eq. (8.2-60) gives the governing equation 
for temperature as 

c92T oq2T 02T 

The boundary conditions associated with Eq. (8.2-64) are 

(8.2-64) 

at z = 0 T = T~ (8.2-69) 

OT 
at z = L 0----~ = 0 (8.2-70) 

where Too is the temperature of the fluid surrounding the fin. 

0T 
at x = B /2  - k  ~ x  - ( h l ( T -  Too) (8.2-65) 

OT 
at x = - B/2 k ~ = (h}(T - Too) (8.2-66) 

OT 
at y -- 0 Oy = 0 (8.2-67) 

0T 
= = 0 ( 8 . 2 - 6 8 )  at y W Oy 
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If the measuring instrument, i.e., the temperature probe, is not sensitive enough 
to detect temperature variations in the x-direction, then it is necessary to change 
the scale of the problem to match that of the measuring device. In other words, it 
is necessary to average the governing equation up to the scale of the temperature 
measuring probe. 

The area-averaged temperature is defined by 

W IB/2  
T dxdy 

fo0 J--B~2 
T d x d y  (8.2-71) 

[ W B  J-B~2 ~- W -- 
f 

Bl2 

Jo J-B~2 dxdy 

Note that although the local temperature, T, is dependent on x, y and z, the 
area-averaged temperature, (T), depends only on z. 

Area averaging is performed by integrating Eq. (8.2-64) over the cross-sectional 
area of the fin. The result is 

~00 W 
B/2 02T fO W B/2 j~o W BI2 (~2 ./~ Ox~ exdy + [ o~r ~xey + [ r J--B~2 oqY 2 J-B~20Z2 dxdy = 0 (8.2-72) 

or~ 

 oW( T )d  r ,2(aT  T)dx 
-~x x=e12 Ox ~=-BI2 s-~12 -~Y y=w Oy y=o 

+ ~ J-B/2 Tdxdy  = 0 (8.2-73) 

The use of the boundary conditions defined by Eqs. (8.2-65)-(8.2-68) together with 
the definition of the average temperature, Eq. (8.2-71) in Eq. (8.2-73) gives 

w - (Tf~_~/~  - T ~ )  - (T  ~ _ _ ~ / ~  - T ~ )  + W B  = 0 (S .2 -74)  dz 2 

Since TI~=B/2 -- TI~--B/2 as a result of symmetry, Eq. (8.2-74) takes the form 

d2(T) 2 
k (h} (T[~=B/2 - Too) = 0 (8.2-75) 

dz 2 B 

Note that Eq. (8.2-75) contains two dependent variables, (T} and TIx=B/2, which 
are at two different scales. It is generally assumed, although not expressed explic- 
itly, that 

(T} ~ TI~=B/2 (8.2-76) 

This approximation is valid for Bill << 1. Substitution of Eq. (8.2-76) into Eq. 
(8.2-75) gives 

d2(T) 2 
k. = --(h)((T} - Too) (8.2-77) 

dz 2 B 
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Integration of Eqs. (8.2-69) and (8.2-70) over the cross-sectional area of the fin 
gives the boundary conditions associated with Eq. (8.2-77) as 

at z - 0 (T} - T~ (8.2-78) 

at z = L d(T} = 0 (8.2-79) 
dz 

It is important to note that  Eqs. (8.2-64) and (8.2-77) are at two different scales. 
Equation (8.2-77) is obtained by averaging Eq. (8.2-64) over the cross-sectional 
area perpendicular to the direction of energy flux. In this way the boundary condi- 
tion, i.e., the heat transfer coefficient, is incorporated into the governing equation. 
Accuracy of the measurements dictates the equation to work with since the scale 
of the measurements should be compatible with the scale of the equation. 

The term 2 / B  in Eq. (8.2-77) represents the heat transfer area per unit volume 
of the fin, i.e., 

2 2 L W Heat transfer area 
-B = B L W  = Fin volume (8.2-80) 

The physical significance and the order of magnitude 5 of the terms in Eq. (8.2-77) 
are given in Table 8.7. 

Table  8.7 The physical significance and the order of magnitude of the terms in 
Eq. (8.2-77). 

Term Physical Significance Order of Magnitude 

d 2 (T) k (Tw - T~)  
k Rate of conduction 

dz 2 L 2 

2(h} ((T} - T~)  Rate of heat transfer from 2{h}(T~ - Too) 
B the fin to the surroundings B 

Therefore, the ratio of the rate of heat transfer from the fin surface to the rate of 
conduction is given by 

Rate of heat transfer 2(h)(Tw - T ~ ) / B  2(h}L 2 

Rate of conduction k(Tw - T ~ ) / L  2 k B  
(8.2-81) 

5The order of magnitude or scale analysis is a powerful tool for those interested in mathe-  
matical  modelling. As s tated by Astar i ta  (1997), "Very often more than nine-tenths of what  one 
can ever hope to know about  a problem can be obtained from this tool, without  actual ly solving 
the problem; the remaining one-tenth requires painstaking algebra and /o r  lots of computer  time, 
it adds very little to our understanding of the problem, and if we have not done the first part  
right, all tha t  the algebra and the computer  will produce will be a lot of nonsense. Of course, 
when nonsense comes out of a computer  people have a lot of respect for it, and that  is exactly 
the problem." For more details on the order of magni tude analysis, see Bejan (1984), Whitaker  
(1976). 
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Before solving Eq. (8.2-77), it is convenient to express the governing equation 
and the boundary conditions in dimensionless form. The reason for doing this is 
the fact that  the inventory equations in dimensionless form represent the solution 
to the entire class of geometrically similar problems when they are applied to a 
particular geometry. 

Introduction of the dimensionless variables 

O -  ( T ) - T ~  
T~ -Too  (8.2-82) 

Z 

' ~ -  Z (8.2-83) 

(8.:-84) A - V  kB 

reduces Eqs. (S.2-77)-(8.2-79) to 

d20 
d~ 2 = A20 (8.2-85) 

at ~ = 0 0 = 1 (8.2-86) 

dO 
at ~ = 1 - -  = 0 (8.2-87) 

d~ 

The solution of Eq. (8.2-85) is 

0 - C1 sinh(A~) + 6'2 cosh(A~) (8.2-88) 

where C1 and C2 are constants. Application of the boundary conditions, Eqs. 
(8.2-86) and (8.2-87), gives the solution as 

= cosh A cosh(A~) - sinh A sinh(A~) (8.2-89) 
cosh A 

The use of the identity 

cosh(x - y) = cosh x cosh y - sinh x sinh y (8.2-90) 

reduces the solution to the form 

m 

cosh [A(1 - ~)] 

coshA 
(8.2-91) 
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8.2.4.1 Macroscop ic  equa t i on  

Integration of the governing differential equation, Eq. (8.2-77), over the volume of 
the system gives the macroscopic energy balance, i.e., 

k a~eyez  = <h> (<T> - Too) a~aye~ 
J- . /2  ~ J- . /2  

(8.2-92) 
Evaluation of the integrations yields 

d<T> BW (-  k -Z-l~=0) = 
�9 | | , ,  J 

Rate of energy entering into the 
fin through the surface at z=O 

~0 L 2 W(h> ((T}  - Too) dz  

Rate of energy loss from the top and bottom 
surfaces of the fin to the surroundings 

(8.2-93) 

Note that Eq. (8.2-93) is simply the macroscopic inventory rate equation for ther- 
mal energy by considering the fin as a system. The use of Eq. (8.2-91) in Eq. 
(8.2-93) gives the rate of heat loss from the fin as 

,.~"5tos s = B W k ( T ~ ,  - Too)A tanhA 
L 

(8.2-94) 

8.2.4.2 F in  efficiency 

The f in  eff iciency, 77, is defined as the ratio of the apparent rate of heat dissipation 
of a fin to the ideal rate of heat dissipation if the entire fin surface were at T~, i.e., 

/0 /0 2 W ( h )  ((T} - Too)dz  ( (T )  - T o o ) d z  

71 = 2 W ( h } ( T ~  - Too)L = (T,,, - Too)n  (8.2-95) 

In terms of the dimensionless quantities, Eq. (8.2-95) becomes 

Ji 1 
= 0 d~ (8.2-96) 

Substitution of Eq. (8.2-91) into Eq. (8.2-96) gives the fin efficiency as 

7 - ' -  

tanh A 

A 
(8.2-97) 

The variation of the fin efficiency as a function of A is shown in Figure 8.24. When 
A ~ 0, this means that the rate of conduction is much larger than the rate of heat 
dissipation. The Taylor series expansion of ~ in terms of A gives 

1 A2 1~ A4 17 A6 = 1 - 5 + - ~-~ + ... (8.2-98) 
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Therefore, 77 approaches unity as A ~ 0, indicating that  the entire fin surface is at 
the wall temperature. 

F i g u r e  8.24 Variation of the fin efficiency, U, as a function of A. 

On the other hand, large values of A corresponds to cases in which the heat 
transfer rate by conduction is very slow and the rate of heat transfer from the fin 
surface is very rapid. Under these conditions the fin efficiency becomes 

1 
= ~ (8.2-99) 

Equation (8.2-99) indicates that  77 approaches zero as A -~ exp. 
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Since the fin efficiency is inversely proportional to A, it can be improved either 
by increasing k and B, or by decreasing (h) and L. If the average heat transfer 
coefficient, (h), is increased due to an increase in the air velocity past the fin, the 
fin efficiency decreases. This means that the length of the fin, L, can be smaller 
for the larger (h) if the fin efficiency remains constant. In other words, fins are not 
necessary at high speeds of fluid velocity. 

8.2.4.3 C o m m e n t  

In general, the governing differential equations represent the variation of the de- 
pendent variables, such as temperature and concentration, as a function of position 
and time. On the other hand, the transfer coefficients, which represent the inter- 
action of the system with the surroundings, appear in the boundary conditions. If 
the transfer coefficients appear in the governing equations rather than the bound- 
ary conditions, this implies that these equations are obtained as a result of the 
averaging process. 

8.3 E N E R G Y  T R A N S  P O RT W I T H  
C O N V E C T I O N  

Heat transfer by convection involves both the equation of motion and the equation 
of energy. Since we restrict the analysis to cases in which neither momentum nor 
energy is generated, this obviously limits the problems we might encounter. 

Consider Couette flow of a Newtonian fluid between two large parallel plates 
under steady conditions as shown in Figure 8.25. Note that this geometry not only 
considers flow between parallel plates but also tangential flow between concentric 
cylinders. The surfaces at x = 0 and x - B are maintained at To and T1, re- 
spectively, with To > T1. It is required to determine the temperature distribution 
within the fluid. 

F igu re  8.25 Couette flow between parallel plates. 
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The velocity distribution for this problem is given by Eq. (8.1-12) as 

V =  l v z  BX (8.3-1) 

On the other hand, the boundary conditions for the temperature, i.e., 

at x -- 0 T - To (8.3-2) 

at x - B T -  T1 (8.3-3) 

suggest that  T = T(x) .  Therefore, Table C.4 in Appendix C indicates that  the 
only non-zero energy flux component is ex and it is given by 

dT 
ex - q~ - - k d-~ (8.3-4) 

For a rectangular volume element of thickness Ax, as shown in Figure 8.25, Eq. 
(8.2-1) is expressed as 

qxlx W L  - q~t~+A~ W L  = 0 (8.3-5) 

Dividing each term by W L  A x  and taking the limit as Ax - ,  0 gives 

lim qz[:~ - qxt~+A~ = 0 (8.3-6) 
Axe0 Ax 

or, 
dqx 
dx = 0 (8.3-7) 

Substitution of Eq. (8.3-4) into Eq. (8.3-7) gives the governing equation for tem- 
perature in the form 

d2T 
= 0 (8.3-8) 

dx 2 

The solution of Eq. (8.3-8) is 

T = C1 + C2 x (8.3-9) 

The use of boundary conditions defined by Eqs. (8.3-2) and (8.3-3) gives the linear 
temperature distribution as 

T - T o  x 
= --  (8.3-10) 

T1-  To B 

8.4 M A S S  T R A N S P O R T  W I T H O U T  
C O N V E C T I O N  

The inventory rate equation for transfer of species ,4 at the microscopic level is 
called the equation of continuity for species jr. Under steady conditions without 
generation, the conservation statement for the mass of species ,4 is given by 

(Rate of mass of A in) - (Rate of mass of A out) - 0 (8.4-1) 
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The rate of mass of +4 entering and leaving the system is determined from the 
mass (or, molar) flux. As stated in Chapter 2, the total flux is the sum of the 
molecular and convective fluxes. For a one-dimensional transfer of species Jt in the 
z-direction in rectangular coordinates, the total molar flux is expressed as 

d x A  
NAz = ,~- c VAB aJz + ~CAV z (8.4-2) 

Convective 
Molecular flux flux 

where v* is the molar average velocity defined by Eq. (2.3-2). For a binary system 
composed of species j t  and B, the molar average velocity is given by 

CAVAz -~- CBVB: NA: + N B z  (8.4-3) 
C A -~-C B C 

As we did for heat transfer, we will first consider the case of mass transfer without 
convection. For the transport of heat without convection, we focused our attention 
on conduction in solids and stationary liquids simply because energy is transferred 
by collisions of adjacent molecules and the migration of free electrons. In the case 
of mass transport, however, since species have individual velocities 6, the neglect 
of the convection term is not straightforward. It is customary in the literature 
to neglect the convective flux in comparison with the molecular flux when mass 
transfer takes place in solids and stationary liquids. The reason for this can be 
explained as follows. Substitution of Eq. (8.4-3) into Eq. (8.4-2) gives 

d x A  
NA= -- --c I)AB ~ + XA(NA= + NBz) (8.4-4) 

Since X A is usually very small in solids and liquids, the convective term is considered 
negligible. It should be kept in mind, however, that if XA is small, this does not 
imply that its gradient, i.e., dxA/dz,  is also small. 

Another point of interest is the equimolar counterdiffusion in gases. The term 
"equimolar counterdiffusion" implies that for every mole of species +4 diffusing 
in the positive z-direction, one mole of species B diffuses back in the negative 
z-direction, i.e., 

N A :  --  -- N B :  =4. CAVAz --  -- CBVBz ( 8 . 4 - 5 )  

Under these circumstances the molar average velocity, Eq. (8.4-3), becomes 

NA: + 
v* = = 0 (8.4-6) 

c 

and the convective flux automatically drops out in Eq. (8.4-2). 
6Transpor t  of mass by diffusion as a result  of r andom molecular  mot ion  is called a Brownian 

motion.  
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8.4.1 Diffusion in Rectangular  Coordinates  

Consider the transfer of species A by diffusion through a slightly tapered slab as 
shown in Figure 8.26. 

F igure  8.26 Diffusion through a slightly tapered conical duct. 

If the taper angle is small, mass transport can be considered one-dimensional in 
the z-direction. Since XA = XA(Z), Table C.7 in Appendix C indicates that the 
only non-zero molar flux component is NAz and it is given by 

dxA (8.4-7) NA. -- J~4z ----C:DAB dz 

Note that the negative sign in Eq. (8.4-7) implies that positive z-direction is in 
the direction of decreasing concentration. If the answer turns out to be negative, 
this implies that the flux is in the negative z-direction. 

Over a differential volume element of thickness Az, as shown in Figure 8.26, 
Eq. (8.4-1) is written as 

(ANA~)I~ - (ANA.)I~+A~ -- 0 (8.4-8) 

Dividing Eq. (8.4-8) by Az and taking the limit as Az ~ 0 gives 

or~ 

(ANA~)Iz ( ANAz,.z+Az _ 0 (8.4-9) lira 
A z ~ 0  A z  

d(ANAz) = 0 (8.4-10) 
dz 

Since flux times area gives the molar transfer rate of species ,4, hA, it is possible 
to conclude that 

ANAz = constant = rt A (8.4-11) 

in which the area A is perpendicular to the direction of mass flux. 
Substitution of Eq. (8.4-7) into Eq. (8.4-11) and integration gives 

C/oo ~ z dz 
~DAB(XA) dxA -- -- ~tA - . ~  + K (8.4-12) 
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where K is an integration constant. The determination of ~t A and K requires two 
boundary conditions. Depending on the type of the boundary conditions used, the 
molar transfer rate of species ,4 as well as the concentration distribution of species 
A as a function of position are determined from Eq. (8.4-12). 

If the surface concentrations are specified, i.e., 

at z --" 0 XA - -  XAo 

at z ~ L XA - -  XAL 
(8.4-13) 

the molar transfer rate and the concentration distribution of species A are given 
in Table 8.8. 

Table 8.8 Rate of transfer and concentration distribution for one-dimensional 
diffusion in rectangular coordinates for the boundary conditions given by 
Eq. (8.4-13). 

Molar Transfer 
Constants Rate Concentration Distribution 

foo dz c : D A B d X  A ~ ) A B d X  A 
AL .,~a A(z) 

None L dz (A) XAo -'~ L dz (E) 

f :DAB dXA /00 A(z) A(z) ., xaL 

o z dz 
c :DAB(ZAo -- XAL) XAo -- XA A(z) 

:DAB L dz (B) X A o - - X A L -  L dz (F) 

/oo A(z) /oo A(z) 

f X A o  f X A o  
A c :DAB d X A  :DAB d X A  

,1 XAL J X A Z 
A L (C) Xao = ~ (G) 

J~x ~D A B dx A 
A L 

Z AB C Z AB(XAo -- )A A L (D) XAo -- XA  __ Z 
ZAo -- XA,~ -- L (H) 

E x a m p l e  8.12 Two large tanks are connected by a truncated conical duct as 
shown in Figure 8.27. The diameter at z = 0 is 6mm and the diameter at 
z = 0.2m is 10mm. Gas compositions in the tanks are given in terms of mole 
percentages. The pressure and temperature throughout the system are i atm and 
25 ~ respectively, and DAB ----- 3 X 10 -5 m2/s.  
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a) Determine the initial molar flow rate of species ,,4 between the vessels. 
b)  What would be the initial molar flow rate of species ,4 if the conical duct were 
replaced with a circular tube of 8 m m  diameter? 

TANK 1 TANK 2 

90% A 25% A 

10% B 75% B 

F i g u r e  8 .27  Diffusion th rough  a conical duct.  

So lut ion  

Since the total pressure remains constant, the total number of moles in the conical 
duct does not change. This implies that equimolar counterdiffusion takes place 
within the conical duct and the molar average velocity is zero. Equation (B) in 
Table 8.8 gives the molar flow rate of species A as 

CZ)A.(XAo -- ZA ) 
= (1) 

?~A 0.2 dz 

fo A(z) 

The variation of the diameter as a function of position is represented by 

D(z) = 0.006 + 0.02 z (2) 

so that the area is 
7r 

A(z) - ~ (0.006 + 0.02 z) 2 

Substitution of Eq. (3) into Eq. (1) and integration gives 

(3) 

/~A -- 4244.1 (4) 

The total molar concentration is 

P 
C ~ m 

7~T 
101.325 x 103 

(8.314 x 103)(25 + 273) 
= 0.041 k m o l / m  3 (5) 
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Therefore, the initial molar flow rate of species A is 

~A--  
(41)(3 x 10-5)(0.9 - 0.25) 

4244.1 
= 1.88 x 10 -7 mol /s  

b) From Eq. (19) in Table 8.8 

irA-- 
CDAB(XAo -XAL)A 

L 
(41)(3 10- )(0 9 -  0.25)" - "  (0 008) /4] = • 10 too l / s  X 

0.2 

(6) 

(7) 

8.4.1.1 Elec t r ica l  circui t  ana logy 

The molar transfer rate of species A is given by Eq. (D) in Table 8.8 as 

i~A-- 
CAo - -  CAL 

L 

T)ABA 

Comparison of Eq. (8.4-14) with Eq. (8.2-10) indicates that 

Driving f o r c e -  CAo --CAL 

L Thickness 
Resistance - 

DABA (Transport property) (Area) 

(8.4-14) 

(8.4-16) 

8.4.1.2 Transfe r  r a t e  in t e r m s  of bu lk  fluid p r o p e r t i e s  

Since it is much easier to measure the bulk concentrations of the adjacent solu- 
tions to the surfaces at z = 0 and z -- L, it is necessary to relate the surface 
concentrations, XAo and XA~, to the bulk concentrations. 

For energy transfer, the assumption of thermal equilibrium at a solid-fluid 
boundary leads to the equality of temperatures and this condition is generally 
stated as, "temperature is continuous at a solid-fluid boundary." In the case of 
mass transfer, the condition of phase equilibrium for a nonreacting multicompo- 
nent system at a solid-fluid boundary implies the equality of chemical potentials 
or partial molar Gibbs free energies. Therefore, concentrations at a solid-fluid 
boundary are not necessarily equal to each other with a resulting discontinuity in 
the concentration distribution. For example, consider a homogeneous membrane 
which is chemically different from the solution it is separating. In that case, the 
solute may be more (or, less) soluble in the membrane than in the bulk solution. 
A typical distribution of concentration is shown in Figure 8.28. Under these condi- 
tions, a thermodynamic property H, called the partition coefficient, is introduced 
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which relates the concentration of species in the membrane at equilibrium to the 
concentration in bulk solution. For the problem depicted in Figure 8.28, the par- 
tition coefficients can be defined as 

CAo 
H -  = _ (8.4-17) 

CA~ 

H + = CAL 
CA+ (8.4-18) 

CA b 

F i g u r e  8 . 2 8  
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Concentration distribution across a membrane. 

The molar rate of transfer of species across the membrane under steady condi- 
tions can be expressed as 

~ - A k : ( c ? 4 ~  - C4~) = Ak+~ (~?4, - ~74~) (S.4-19) 

On the other hand, the use of Eqs. (8.4-17) and (8.4-18) in Eq. (8.4-14) leads to 

A ~3AB(H-CA~ -- H +c + A,) 
fiA = L (8.4-20) 

Equations (8.4-19)-(8.4-20) can be rearranged in the form 

(1) 
CAb -- CA~ -- i~A A k j  

H - C A , - - H + c + - - i ~ A (  L ) A ~  AT)AB 

II x H -  (8.4-21) 

(8.4-22) 

II • H+ (S.4-23) 
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Multiplication of Eqs. (8.4-21) and (8.4-23) by H -  and H +, respectively, and the 
addition of these equations with Eq. (8.4-22) gives 

= ( 8 . 4 - 2 4 )  

A k j  t A 1 ) A B H  - + 

8 . 4 . 2  D i f f u s i o n  in  Cylindrical Coordinates 

Consider one-dimensional diffusion of species A in the radial direction through a 
hollow circular pipe with inner and outer radii of R1 and R2, respectively, as shown 
in Figure 8.29. 

Figure  8.29 Diffusion through a hollow cylinder. 

Since X A --~ X A ( r ) ,  Table C.8 in Appendix C indicates that the only non-zero molar 
flux component is NAN and it is given by 

dxA 
N A .  = J~a. - - c ~ ) A B  dr (8.4-25) 

For a cylindrical differential volume element of thickness At, as shown in Figure 
8.29, Equation (8.4-1) is expressed in the form 

(ANA~)[~ - (ANA~)I~+A~ -- 0 (8.4-26) 
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Dividing Eq. (8.4-26) by Ar and taking the limit as Ar ~ 0 gives 

or, 

(ANA~)t~ ( )t.AgA~..r+zxr _ 0 lim - (8.4-27) 
Ar---*O i r  

d(ANA~) = 0  (8.4-28) 
dr 

Since flux times area gives the molar transfer rate of species A, /~A, it is possible 
to conclude that 

ANA~ = constant = r t  A (8.4-29) 

Note that the area A in Eq. (8.4-29) is perpendicular to the direction of mass flux, 
and is given by 

A = 27rrL (8.4-30) 

Substitution of Eqs. (8.4-25) and (8.4-30) into Eq. (8.4-29) and integration gives 

/0 C ~DAB(XA) dXA -- -- - ~  lnr + K 

where K is an integration constant. 
If the surface concentrations are specified, i.e., 

at r - R1 XA = XA1 (8.4-32) 

at r = R2 XA -7- X A  2 

the molar transfer rate and the concentration distribution of species ,4 are given 
in Table 8.9. 

Table 8.9 Rate of transfer and concentration distribution for one-dimensional 
diffusion in a hollow cylinder for the boundary conditions given by Eq. (8.4-32). 

Molar Transfer 
Constant Rate Concentration Distribution 

ixA  ixA  
27cLc "DAB dxA :DAB dXA In 

J XA1 ,l XA R 2  
None (A) = (C) 

In ( R ~ )  ~x:i 2 T)ABdxA ln (-~2 ) 

:DAB (B) = (D) 
- R1 In (~-~)  XA2 XA1 in ( ~ 2 )  
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8.4.3 Diffusion in Spherical Coordinates 

Consider one-dimensional diffusion of species A in the radial direction through a 
hollow sphere with inner and outer radii of R1 and R2, respectively, as shown in 
Figure 8.30. 

NA~r+Ar 

NA~ ~--Ar-~ 

Figure  8.30 Diffusion through a hollow sphere. 

Since X A --- X A(r) ,  Table C.9 in Appendix C indicates that the only non-zero molar 
flux component is NAt  and it is given by 

dxA 
NAr = -- c ~)AB dr (8.4-33) 

For a spherical differential volume element of thickness At,  as shown in Figure 
8.30, Eq. (8.4-1) is expressed in the form 

(ANA~)Ir -- (ANA~)Ir+Ar = 0 (8.4-34) 

Dividing Eq. (8.4-34) by Ar and taking the limit as Ar ~ 0 gives 

lim (ANA~)Ir - (ANA~)Ir+A~ = 0 (8.4-35) 
A r ~ 0  A r  

or~ 

d(ANA~) = 0 (8.4-36) 
dr 

Since flux times area gives the molar transfer rate of species ,4, nA, it is possible 
to conclude that 

ANA~ = constant = nA (8.4-37) 

Note that the area A in Eq. (8.4-37) is perpendicular to the direction of mass flux, 
and is given by 

A = 47rr 2 (8.4-38) 

Substitution of Eqs. (8.4-33) and (8.4-38) into Eq. (8.4-37) and integration gives 

f0 I - + K  c 79AB(XA) d Z A =  - ~  r (8.4-39) 
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where K is an integration constant. 
If the surface concentrations are specified, i.e., 

at r = R1 XA = XA1 (8.4-40) 

at r -  R2 XA ~-- XA 2 

the molar transfer rate and the concentration distribution of species Jt are given 
in Table 8.10. 

Table 8.10 Rate of transfer and concentration distribution for one-dimensional 
diffusion in a hollow sphere for the boundary conditions given by Eq. (8.4-40). 

Molar Transfer 
Constant Rate Concentration Distribution 

A 2 A 2 r t ~  2 
None (A) = (C) 

1 1 f xA1  1 1 
/ R1 R2 
�9 ] X A  2 

~)AB dXA ~)AB dxA 

R1 R2  
~)AB dX A 

1 1 

1 1 

47rCT)AB(XA~ -- XA~) XA -- XA: r R2 
T)AB (B) = (D) 

1 1 XA1 -- XA2 1 1 

R1 R2 R1 R2 

E x a m p l e  8.13 Consider the transfer of species .4 from a spherical drop or a 
bubble of radius R to a stationary fluid. 

a) Determine the molar rate of species ,A transferred to the fluid, 
b) Determine the concentration distribution of species r within the fluid. 
c) Determine the Sherwood number. 

Solut ion 

Assumptions 

1. Steady-state conditions prevail. 

2. The concentration at the surface of the sphere is constant at CAw. 

3. The concentration of species A far from the sphere is C A ,  
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A n a l y s i s  

a) The use of Eq. (B) in Table 8.10 with CA1 - -  CA~,, CA2 = CAoo, R 1  - R and 
R2--cxD gives the molar rate of transfer of species A to the fluid as 

47r VAB(CA~ -- CAoo) 
n A  = 1 = 4 7 r ~ ) A B R ( C A ~ "  -- CAts )  (1) 

R 

b) The concentration distribution is obtained from Eq. (D) of Table 8.10 in the 
form 

CA - - C A ~  R 
= - -  (2) 

CAw -- CA~ r 

c) The molar transfer rate can also be calculated from Eq. (3.3-7) as 

irA - 4 7rR2(kc}(CAw - CAoo) (3) 

Equating Eqs. (1) and (3) leads to 

(k~) 1 2 
: : (4) 

~)AB R D 

Therefore, the Sherwood number is 

Sh = {kc)D = 2 (5) 
~ ) A B  

8 . 4 . 4  D i f f u s i o n  a n d  R e a c t i o n  i n  a C a t a l y s t  P o r e  

At first, it may seem strange to a student to have an example on a reaction in 
a catalyst pore in a chapter which deals with "steady-state microscopic balances 
w i t h o u t  g e n e r a t i o n . "  In general, reactions can be classified as heterogeneous 
and homogeneous reactions. A heterogeneous reaction occurs on the surface and is 
usually a catalytic reaction. A homogeneous reaction, on the other hand, occurs 
throughout a given phase. In Chapter 5, the rate of generation of species i per 
unit volume as a result of a chemical reaction, ~i, was given by Eq. (5.3-26) in the 
form 

~ = ai r (8.4-41) 

in which the term r represents a homogeneous reaction rate. Therefore, a ho- 
mogeneous reaction rate appears in the inventory of chemical species, whereas a 
heterogeneous reaction rate appears in the boundary conditions. 

Consider an idealized single cylindrical pore of radius R and length L in a 
catalyst particle as shown in Figure 8.31. The bulk gas stream has a species .A 
concentration of CAb. Species A diffuses through the gas film and its concentration 
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at the pore mouth, i.e., z = 0, is CAo. As the species r diffuses into the catalyst 
pore, it undergoes a first-order irreversible reaction 

A ~ B  

on the interior surface of the catalyst. 

F i g u r e  8.31 Diffusion and reaction in a cylindrical pore. 

The problem will be analyzed with the following assumptions: 

1. Steady-state conditions prevail. 

2. The system is isothermal. 

3. The diffusion coefficient is constant. 

For a cylindrical differential volume element of thickness Ar and length Az, as 
shown in Figure 8.31, Eq. (8.4-1) is expressed as 

( NA~ [~ 27rr Az + NAz I~ 27rr Ar) 

- [NA~ Ir+~,r 27r(r + Ar)Az  + NA, ]z+~z 27rrAr] = 0 (8.4-42) 

Dividing Eq. (8.4-42) by 27rArAz and taking the limit as Ar  --+ 0 and Az --+ 0 
gives 

1 (rNA~)lr- (rNA~)[r+Ar NA, l z -  NA,.[z+Az 
- lim + lim - 0 (8.4-43) 
r/xr-~0 Ar  Az--+0 Az 

or, 

1 0 ONAz _ 0 (8.4-44) 
rOr (rNA~)+ 0 - - ~ -  
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Since the temperature is constant and there is no volume change due to reaction, 
the pressure and hence the total molar concentration, c, remains constant. Under 
these conditions, from Table C.8 in Appendix C, the components of the molar flux 

bec~ OCA 
NA,, -- - -  ~ D A B  (~r (8.4-45) 

OCA (8.4-46) 
NA, -- -- ~ ) A B  OZ 

Substitution of Eqs. (8.4-45) and (8.4-46) into Eq. (8.4-44) gives the governing 
equation for the concentration of species Jt as 

I O ( O C A )  02CA 
-; + = 0  (8.4-47) 

The boundary conditions associated with Eq. (8.4-47) are 

at r = 0 OcA = 0 (8.4-48) 
Or 

OCA -- k s (8.4-49) at r -- R - "DAB ~ CA 

at z = 0 CA -- CAo (8.4-50) 

at z = L COCA _ 0 (8.4-51) 
Oz 

The term k 8 in Eq. (8.4-49) is the first-order surface reaction rate constant. In 
writing Eq. (8.4-51) it is implicitly assumed that  no reaction takes place on the 
surface at z = L. Since there is no mass transfer through this surface, OCA/OZ = O. 

As we did in Section 8.2.4, this complicated problem will be solved by making 
use of the area averaging technique. The area-averaged concentration for species 
A is defined by 

~oo 21r fo R CA 7" drdO 

1/o  /o 7rR2 CA r drdO (8.4-52) ( AI= = 

/ 0 0 / o  rdrdO 

Although the local concentration, CA, is dependent on r and z, the area-averaged 
concentration, (CA/, depends only on z. 

Area averaging is performed by integrating Eq. (8.4-47) over the cross-sectional 
area of the pore. The result is 

r ~ r--~-r r drdO J~o 2 7r ~00 R 02 CA + OZ 2 r drdO -- 0 (8.4-53) 

7From the stoichiometry of the reaction, the molar average velocity is zero. 
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Since the limits of the integration are constant, the order of differentiation and 
integration in the second term of Eq. (8.4-53) can be interchanged to get 

) r drdO - Jo CA r drdO = 7rR 2 dz 2 (8.4-54) 

Substitution of Eq. (8.4-54) into Eq. (8.4-53) yields 

OCA 2~R 
r--R 

d2(cA) 
+ ~/~2 = 0 (8.4-55) 

dz 2 

The use of the boundary condition given by Eq. (8.4-49) leads to 

:DAB d2(CAIdz 2 = -R2 kS CAI~=R (8.4-56) 

Note that Eq. (8.4-56) contains two dependent variables, <CA> and CAIn=R, which 
are at two different scales. It is generally assumed, although not expressed explic- 
itly, that 

 AIr=R ( 8 . 4 - 5 7 )  

This approximation is valid for BiM << 1. Substitution of Eq. (8.4-57) into Eq. 
(8.4- 56 ) gives 

d2<cA) 2 
= - k ( 8 . 4 - 5 8 )  :DAB dz 2 R 

Integration of Eqs. (8.4-50) and (8.4-51) over the cross-sectional area of the 
pore gives the boundary conditions associated with Eq. (8.4-58) as 

at z - 0 (CAI = CAo (8.4-59) 

at z -- L d(cA) = 0 (8.4-60) 
dz 

Equations (8.4-47) and (8.4-58) are at two different scales. Equation (8.4-58) is ob- 
tained by averaging Eq. (8.4-47) over the cross-sectional area perpendicular to the 
direction of mass flux. As a result, the boundary condition, i.e., the heterogeneous 
reaction rate expression, appears in the conservation statement. 

Note that the term 2 / R  in Eq. (8.4-58) is the catalyst surface area per unit 
volume, i.e., 

2 2 7rRL Catalyst surface area 
-~ = ~rR2 L = av - Pore volume (8.4-61) 

Since heterogeneous reaction rate expression has the units of moles/(area)(time), 
multiplication of this term by a, converts the units to moles/(volume)(time). 

The physical significance and the order of magnitude of the terms in Eq. (8.4- 
58) are given in Table 8.11. 
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Table  8.11 The physical significance and the order of magnitude of the terms 
in Eq. (8.4-58). 

Term Physical Significance Order of Magnitude 

CAo 
d2(cA> Rate of diffusion ~)AB L2 

~)AB dz 2 

2 k ~ (CA} Rate of reaction 2 k ~ CAo 
R R 

Therefore, the ratio of the rate of reaction to the rate of diffusion is given by 

Rate of reaction 2 k s CAo/R 2 k ~ L 2 

Rate of diffusion ~:)ABCAo /L 2 R ~DAB 
(8.4-62) 

In the literature, this ratio is often referred to as the Thiele modulus or the DamkSh- 
ler number 8 and expressed as 

~2k sL 2 

A = R D A B  
(8.4-63)  

Before solving Eq. (8.4-58), it is convenient to express the governing equation 
and the boundary conditions in dimensionless form. Introduction of the dimen- 
sionless quantities 

0 = (CA> (8.4-64) 
CA o 

Z 
= (8.4-65)  

reduces Eqs. (8.4-58)-(8.4-60) to 

d20 
- -  - h20 (8.4-66) 
d~ 2 

at ~ = 0 O-- 1 (8.4-67) 

at 
dO 

= 1 ~-7 = 0 (8.4-68) 

Note that these equations are exactly equal to the equations developed for the fin 
problem in Section 8.2.4. Therefore, the solution is given by Eq. (8.2-91), i.e., 

_ _ _  

cosh [A(1 - ~)] 

cosh A 
(8.4-69) 

sWhile the Thiele modulus is preferred in the analysis of mass transport in a porous medium, 
the Damkohler number is used for packed bed analysis. 
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8.4.4.1 Macroscop ic  equa t ion  

Integration of the microscopic level equations over the volume of the system gives 
the equations at the macroscopic level. Integration of Eq. (8.4-58) over the volume 
of the system gives 

/0L/02 /0 R d2icA/ /0L/02 /0  2 ks :DAS dz 2 r drdOdz = -~ (CA) r drdOdz (8.4-70) 

Carrying out the integrations yields 

d{cA) ) 
7rR 2 - "DAB d z  z - 0  
�9 i 

Rate of moles of species ~4 entering 
into the pore through the surface at z--0 

~o L 2 7rR k ~ (cA) dz 

Rate of conversion of species ,4 
to species /3 at the catalyst surface 

(8.4-71) 

Note that Eq. (8.4-71) is simply the macroscopic inventory rate equation for the 
conservation of species A by considering the catalyst pore as a system. The use of 
Eq. (8.4-69) in Eq. (8.4-71) gives the molar rate of conversion of species .4, ~tA, as  

7r R 2 T)AB cAoA tanh A 
/tA-- 

L 
(s.4-72) 

8.4.4.2 Effect iveness  factor  

The effectiveness factor, U, is defined as the ratio of the apparent rate of conversion 
to the rate if the entire internal surface were exposed to the concentration CAo, i.e., 

27rRk 8 (cA) dz (cA) dz 

= (8.4-73) 
77 -- 27rR kS CAoL cmoL 

In terms of the dimensionless quantities, Eq. (8.4-73) becomes 

~0 
1 

7? -- 0 d~ (8.4-74) 

Substitution of Eq. (8.4-69) into Eq. (8.4-74) gives the effectiveness factor as 

U 
tanh A 

A 
(8.4-7s) 

Note that the effectiveness factor for a first-order irreversible reaction is exactly 
identical with the fin efficiency. Therefore, Figure 8.24, which shows the variation 
of U as a function of A, is also valid for this case. 
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When A ~ 0, this means that the rate of diffusion is much larger than the rate 
of reaction. The Taylor series expansion of ?7 in terms of A gives 

1 A2 2 A4 n-1-  + 
17 A6 + ... (8.4-76) 

Therefore, U approaches unity as A ~ 0, indicating that  the entire surface is 
exposed to a reactant. On the other hand, large values of A corresponds to cases 
in which diffusion rate is very slow and the surface reaction is very rapid. Under 
these conditions the effectiveness factor becomes 

1 
7/= -~ (8.4-77) 

As A --, c~, 7/approaches zero. This implies that a good part of the catalyst surface 
is starved for a reactant and hence not effective. 

8.5 M A S S  T R A N S P O R T  W I T H  
C O N V E C T I O N  

In the case of mass transfer, each species involved in the transfer has its own 
individual velocity. For a single phase system composed of the binary species A 
and B, the characteristic velocity for the mixture can be defined by several ways 
as stated in Section 2.3. If the mass transfer takes place in the z-direct ion,  the 
three characteristic velocities are given in Table 8.12. 

Tab le  8.12 Characteristic velocities in the z-di rect ion for a binary system. 

Velocity Definition 

flAVA~ + flB VB~ WA~ -[-)/VB. 
Mass average v~ = = (A) 

PA + PB P 

CAVA~ -~- CBVB~ NA~ + NBz 
Molar average v* = - (B) 

C A -~-C B C 

Volume average V z -- CAVAVAz -Jr-CB'VBVBz -- V A N A z  + V B N B z  ( C )  

Hence, the total mass or molar flux of species Jt can be expressed as 

do) A 
"~)Az -- -- P :DAB -~z + PA Vz 

s Convective 
Molecular flux flux 

dxA . 
N A .  = -- C I )AB  d z  + cav~ 

~ ~ '  Convective 
Molecular ilux flux 

(8.5-1) 

(8.5-2) 
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dcA �9 
NA~ - - ~ A B  --~z + cAv~ 

"r Convective 
Molecular flux flux 

(8.5-3) 

The tricky part of the mass transfer problems is that there is no need to have 
a bulk motion of the mixture as a result of external means, such as pressure drop, 
to have a non-zero convective flux term in Eqs. (8.5-1)-(8.5-3). Even in the case of 
the diffusion of species r through a stagnant film of B, non-zero convective term 
arises as can be seen from the following examples. 

It should also be noted that if one of the characteristic velocities is zero, this 
does not necessarily imply that the other characteristic velocities are also zero. For 
example, in Section 8.4, it was shown that the molar average velocity is zero for 
an equimolar counterdiffusion since NAz -- --NBz. The mass average velocity for 
this case is given by 

~VA~ -~- ~)B~ 
v~ = (8.5-4) 

P 

The mass and molar fluxes are related by 

W,z (8 .5-5)  
N i z - . h 4 i  

where ,h/[~ is the molecular weight of species i. The use of Eq. (8.5-5) in Eq. (8.5-4) 
gives 

. /~ A N Az + . /~ B N B~ N Az (.A/[ A -- .A/~ B ) 
= = (8 .5-6)  

P P 

which is non-zero unless M A - -  - / ~  B .  

8 . 5 . 1  D i f f u s i o n  T h r o u g h  a S t a g n a n t  G a s  

8.5.1.1 E v a p o r a t i o n  f rom a t a p e r e d  t a n k  

Consider a pure liquid ,4 in an open cylindrical tank with a slightly tapered top 
as shown in Figure 8.32. The apparatus is arranged in such a manner that the 
liquid-gas interface remains fixed in space as the evaporation takes place. As an 
engineer, we are interested in the rate of evaporation of A from the liquid surface 
into a mixture of ,4 and B. For this purpose, it is necessary to determine the 
concentration distribution of ~A in the gas phase. The problem will be analyzed 
with the following assumptions: 

1. Steady-state conditions prevail. 

2. Species A and B form an ideal gas mixture. 

3. Species B has a negligible solubility in liquid A. 
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Gas B 

~ Liquid A 

Y 

F i g u r e  8.32 Evaporation from a tapered tank. 

4. The entire system is maintained at a constant temperature  and pressure, i.e., 
the total molar concentration in the gas phase, c = P / ~ T ,  is constant. 

5. There is no chemical reaction between species Jt and 13. 

If the taper angle is small, mass transport  can be considered one-dimensional in 
the z -d i rec t ion  and the conservation statement for species ,4, Eq. (8.4-1), can be 
written over a differential volume element of thickness Az as 

( A N A . ) [ ~  - (ANA~)[~+A~ -- 0 

Dividing Eq. (8.5-7) by Az and letting Az ~ 0 gives 

(8.5-7) 

or, 

( A N A . ) [ ~  ( )[.ANAz..z+Az _ 0 
lim - (8.5-8) Az---~0 Az 

Equation (8.5-9) indicates that  

d(ANAz)  

dz 
= 0 (8.5-9) 

A NAz - -  r -- constant (8.5-10) 
In a similar way, the rate equation for the conservation of species B leads to 

A NBz - constant (8.5-ii) 
Since species B is insoluble in liquid ,4, i.e., NB;, Iz=0 -- 0, this implies that  

NB~ -- O for O <_ z <_ L 

From Table 8.12, the total molar flux of species A is given by 

dxA 
NA~ -- - c ~ 4 B  -~z  + cAr* 



304 CHAPTER 8. S T E A D Y  MICROSCOPIC BALANCES  WITHOUT GEN. 

in which the molar average velocity is given by 

NA. + NB~ gAz 
v: = = (8.5-14) 

C C 

which indicates non-zero convective flux. The use of Eq. (8.5-14) in Eq. (8.5-13) 
results in 

C ~ A B  dxA 
NA~ = 1 -- XA dz (8.5-15) 

Substitution of (8.5-15) into Eq. (8.5-10) and rearrangement gives 

~o L dz _ ~ ~ L  dxA (8.5-16) 
i~A A(z) - -  - -  C ~ ) A B  I __ X A  

Ao 

or~ 

j~o L dz 1 -  XAo 
A(z) 

(8.5-17) 

Since nA is constant, Eq. (8.5-17) holds for 0 < z _ L. 
Note that XAo, i.e., the value of XA at z -- 0, is the mole fraction of species 

.4 in the gas mixture that is in equilibrium with the pure liquid Jt at the existing 
temperature and pressure. The use of Dalton's and Raoult's laws at the gas-liquid 
interface indicates that 

XAo-- p (8.5-18) 

where P is the total pressure. 

E x a m p l e  8.14 One way of measuring the diffusion coefficients of vapors is to 
place a small amount of liquid in a vertical capillary, generally known as the Stefan 
diffusion tube, and to blow a gas stream of known composition across the top as 
shown in Figure 8.33. Show how one can estimate the diffusion coefficient by 
observing the decrease in the liquid-gas interface as a function of time. 

Gas B 

Liquid A 

Figure  8.33 The Stefan diffusion tube. 
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S o l u t i o n  

Assumptions 

1. Pseudo-steady-state behavior. 

2. The system is isothermal. 

3. The total pressure remains constant. 

4. The mole fraction of species Jt at the top of the tube is zero. 

5. No turbulence is observed at the top of the tube. 

Analysis 

System: Liquid in the tube 

The inventory rate equation for mass of A gives 

- Rate of moles of Jt out = Rate of accumulation of moles of A (1) 

or, 

d ( H -  L)A (2) 

where p~ is the density of species A in the liquid phase and A is the cross-sectional 
area of the tube. 

The rate of evaporation from the liquid surface, i~A, can be determined from Eq. 
(8.5-17). For A = constant and XAL = O, Eq. (8.5-17) reduces to 

~A -- -- A c DA__~B ln(1 -- XAo) (3) 
L 

It should be kept in mind that Eq. (8.5-17) was developed for a steady-state case. 
For the unsteady problem at hand, the pseudo-steady-state assumption implies that 
Eq. (3) holds at any given instant, i.e., 

i~A (t) = A C DAB ln(1 ) (4) - L(t) - Xno 

Substitution of Eq. (~) into Eq. (2) gives 

o r ~  

C DAB ln(1 - XAo) j['o t J~4 A L d L (5) 
o 

L2 - _ [ 2 M A  CDAB ln(1--  XAo)] 2 
p~ t +L o (6) 
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Therefore, the diffusion coefficient is determined from the slope of the L 2 versus t 
plot. Alternatively, rearrangement of Eq. (6) yields 

t pL (L - Lo) + 
L - Lo - - 2.A/IAC'~AB ln(1 - XAo) ./~AC~AB ln(1 - XAo ) ( 7 )  

In this case, the diffusion coefficient is determined from the slope of the t / (L  - Lo) 
versus ( L -  Lo) plot. What is the advantage of using Eq. (7) over Eq. (6)7 

Example 8.15 To decrease the evaporation loss from open storage tanks, it is 
recommended to use a tapered top as shown in Figure 8.3~. Calculate the rate of 
ethanol loss from the storage tank under steady conditions at 25 ~ 

J-L 1.5 m --'t 

L = O . 5 m  
a__ 

Ethano l  (A) 

2 m  

Figure 8.34 Evaporation from a tapered tank. 

Solution 

Physical properties 

Diffusion coefficient of ethanol (.4) in air (13) at 25 ~ (298 K)" 

(298) 3/2 
(~A-)298 = (~A-)313 5i5 

(298) 3/2 
= (1.45x 10 -5 ) ~ --1.35x 10 -Sm2/s 

p~at _ 58.6 mmHg 

Analysis 

In order to determine the molar flow rate of species A from Eq. (8.5-17), it is first 
necessary to express the variation of the cross-sectional area in the direction of z. 
The variation of the diameter as a function of z is 

D(z) = D~ - ( D~ - DL z (1) 
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where Do and DL are the tank diameters at z = 0  and z - L ,  respectively. There- 
fore, the variation of the cross-sectional area is 

A(z )  = 
n D 2 ( z )  

4 

[ 7r Do - DL 
-~ D o -  L z (2) 

Substitution of Eq. (2) into Eq. (8.5-17) and integration gives the molar rate of 
evaporation as 

inA -- -- 7~c T)AB(Do -- On)ln(1 -- XAo) (3) 

4L  Dc Do 

The numerical values are 

D o = 2 m  

DL -- 1.5 m 

L = 0 . 5 m  

P2 
X A o  - -  p 

P 
C . m  - - -  

T~T 

58.6 
= = 0.077 

760 

(0.08205)(25 + 273) 
= 41 x 10 - a  k m o l / m  a = 41 m o l / m  a 

Substitution of these values into Eq. (3) gives 

?~A "-" 
u(41)(1 .35  x 10-5) (2  - 1 .5) ln(1 - 0.077) (1 1) 

(4)(0.5) 1.5 2 

__ 2.1 • 10 -4  m o l / s  

C o m m e n t :  When DL ~ Do, application of L'Hopital's rule gives 

lim Do - D L _ lim -- 1 2 
D L - - - ~ D o  1 1 - -  D L - - - ~ D o  1 -- D~ 

DL Do D2L 

and Eq. (3) reduces to 

(TrD2o/4)C ~PAB 

L 
ln(1--XAo) 

which is Eq. (~) of Example 8.1~. 
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8.5.1.2 E v a p o r a t i o n  of a spher ica l  d rop  

A liquid (A) droplet of radius R is suspended in a stagnant gas B as shown in Figure 
8.35. We want to determine the rate of evaporation under steady conditions. 

NArIr+Ar 

NArl 

Figure  8.35 Mass transfer from a spherical drop. 

Over a differential volume element of thickness Ar, as shown in Figure 8.35, 
the conservation statement for species .4, Eq. (8.4-1), is written as 

(ANA~)J~ -- (ANA~)t~+zx~ = 0 

Dividing Eq. (8.5-19) by Ar and taking the limit as Ar ~ 0 gives 

(ANA~)]r (ANA~)I~+~ _ 0 lira 
A r ~ 0  A r  

or, 

(8.5-19) 

(8 .5-2o)  

( s .5 -24)  

Since species B is stagnant, the molar average velocity is expressed as 

NA,. + NB,. NA,. 
= = (8 5-25) 

c c 

dcA 
NA~ = - ~ 4 B  -~r + cAv~ 

d(ANA,.) = 0 (8.5-21) 
dr 

Since flux times area gives the molar transfer rate of species ,4, ftA, it is possible 
to conclude that 

A NA,. - constant = n A  (8.5-22) 

Note that the area A in Eq. (8.5-22) is perpendicular to the direction of mass flux 
and is given by 

A = 47rr 2 (8.5-23) 

Since the temperature and the total pressure remain constant, the total molar 
concentration, c, in the gas phase is constant. From Table C.9 in Appendix C, the 
total molar flux of species r in the r-direct ion is given by 
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which indicates non-zero convective flux. Using Eq. (8.5-25) in Eq. (8.5-24) results 
in 

C :DAB dcA 
= (8.5-26) 

C--CA dr 

Substitution of Eq. (8.5-26) into Eq. (8.5-22) and rearrangement gives 

~ o dcA J ~  dr 
- 4 ~TC DAB = i~A P (8.5-27) 

C -  CA 7.2 

where c~ is the saturation concentration of species A in B at r = R in the gas 
phase. Carrying out the integrations in Eq. (8.5-27) yields 

f~A = 4 7rC lgABRln ( c _-~A ) (s .5-28)  

E x a m p l e  8.16 A benzene droplet with a diameter of 8 mm is suspended by a wire 
in a laboratory. The temperature and pressure are maintained constant at 25 ~ 
and i atm, respectively. Estimate the diffusion coefficient of benzene in air if the 
variation of the droplet diameter as a function of time is recorded as follows: 

t D 
(min) (mm) 

5 7.3 
10 6.5 
15 5.5 
20 4.4 
25 2.9 

Solut ion 

Physical properties 

PA -- 879 kg /m 3 
For benzene (.4) �9 A/IA = 78 

p~at = 94.5 mmHg 

Assumptions 

1. Pseudo-steady-state behavior. 

2. Air is insoluble in the droplet. 



310 CHAPTER 8. S T E A D Y  MICROSCOPIC BALANCES  WITHOUT GEN. 

Analysis 

System: Benzene droplet 

The inventory rate equation for mass of ,4 gives 

- Rate of moles of A out = Rate of accumulation of moles of A (1) 

or, 

_ _ 4 7rp L R 2 dR 

.A/[A dt 
(2) 

where pL is the density of species r in the liquid phase. 
The rate of evaporation from the droplet surface, i~A, can be determined from 

Eq. (8.5-28). However, remember that Eq. (8.5-28) was developed for a steady- 
state case. For the unsteady problem at hand, the pseudo-steady-state assumption 
implies that Eq. (8.5-28) holds at any given instant, i.e., 

i~A(t) -- 4 ~ CDABR(t) ln ( c ) 
C - -  C* A 

(3) 

Substitution of Eq. (3) into Eq. (2) and rearrangement gives 

( )/o M A  R d R  -~ C ~DAB In c dt (4) 
o C - -  C* A 

where Ro is the initial radius of the liquid droplet. Carrying out the integrations 
in Eq. (4) yields 

R2=R2o - ---7 In t 
C-- C~4 

(5) 

Since 

Eq. (5) takes the form 

p ~ a t  

P and  * - (6) 
c -  ~ T  CA 7~T 

R~ _ n~o_ [ L p _  p~at 
PA 

t (7) 

The plot of R 2 versus t is shown below. 
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14 

12 

~ lO 

~ 8 

6 

| i t , 
, , , ! , 

) 300 600 900 1200 1500 

t(s) 

The slope of the straight line is -9.387 x 10 -9 m2/s .  Hence, 

2 C T ) A B ' M A l n ( P  ) 
L p _  p~ta t - 9.387 • 10-9  

PA 

The total molar concentration is 

(8) 

P 1 
c = T4T = (0.08205)(25 + 273) = 0 . 0 4 1 k m o l / m  3 (9) 

Substitution of the values into Eq. (8) gives the diffusion coefficient as 

~)AB - - ~  9.387 x 10-9 879 
( 7 6 0 )  

2 (0.041)(78)In 760 - 94.5 

= 9.72 x 10 . 6  m 2 / s  

8.5.2 Diffusion Through a Stagnant Liquid 

Consider a one-dimensional diffusion of liquid ,4 through a s tagnant  film of liquid 
B with a thickness L as shown in Figure 8.36. The mole fractions of ,4 at z = 0 
and z = L are known. As an engineer, we are interested in the number  of moles of 
species A transferring through the film of/3 under s teady conditions. 
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Figure  8.36 

-~ L ~ 
| | 

i | 
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| 
! | 

| | 
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| 

i i 

i i 
i i 
i i 

i 

i i 

~ ', ', r-- 

~Ao i i ~AL 
i i 
i i 
i i 
i i 
i i 

i i 

Diffusion of liquid .4 through a stagnant liquid film B. 

Over a differential volume of thickness Az, the conservation statement for 
species A, Eq. (8.4-1), is written as 

NAzI~A- NA~I~+~A--O (8.5-29) 

Dividing Eq. (8.5-29) by A Az and letting Az --, 0 gives 

NA~[~ NA I 
_ _ ~ , ~ + A ~  _ 0 lim - (8.5-30) 

Az--~0 Az 

or~ 

dNA 
dz 

= 0 => NAz -- constant (8.5-31) 

To proceed further, it is necessary to express the total molar flux of species A, i.e., 
NA~, either by Eq. (8.5-2) or by Eq. (8.5-3). 

8.5.2.1 Analysis  based on the  molar  average velocity 

From Eq. (8.5-2), the total molar flux of species A is given as 

dxA 
NA~ = - c ~ A B  - ~ z  + CAV; (8.5-32) 

It is important to note in this problem that the total molar concentration, c, is not 
constant but dependent on the mole fractions of species ,4 and B. Since species B 
is stagnant, the expression for the molar average velocity becomes 

NAz + NBz NAz 
v* = = (8.5-33) 

C C 
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Substitution of Eq. (8.5-33) into Eq. (8.5-32) gives the molar flux of species A as 

c :DAB dxA (8.5-34) 
NA; ,=  1 - - X A  dz 

Since the total molar concentration, c, is not constant, it is necessary to express 
c in terms of mole fractions. Assuming ideal solution behavior, i.e., the partial 
molar volume is equal to the molar volume of the pure substance, the total molar 
concentration is expressed in the form 

1 1 
c =  V~,x - XA?A + XBVB (8.5-35) 

Substitution of XB = 1 -- XA yields 

1 
c = _ (8.5-36) 

+ ( G  - G )xA 

Combining Eqs. (8.5-34) and (8.5-36) and rearrangement gives 

NA* foL dz -- -- Z A" [ ( G  dxA ] ( 1 - X A )  (8.5-37) 
�9 '~Ao LVB + -  VB)XAj 

Integration of Eq. (8.5-37) results in 

_ L - i n  _ 

N A .  - L-~A In 1--  XAo -~B + i-~AA -- VB)XAo 

= z G l n  - -  
CBo 

(8.5-38) 

8.5.2.2 Analys is  based  on the  vo lume  average  veloci ty  

The use of Eq. (8.5-3) gives the total molar flux of species r as 

dxA 
NAz -- -- c :DAB "~z + CAV~ 

From Eq. (C) in Table 8.12, the volume average velocity is expressed as 

�9 V A N A .  + V B N B z  V z  - - -  

= V A N A ~  - -  V A N A ~  

Using Eq. (8.5-40) in Eq. (8.5-39) yields 

~I~AB dcA 
N A  z .---.. m 

1 - VACA dz 

(8.5-39) 

(8.5-40) 

(8.5-41) 
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Rearrangement of Eq. (8.5.41) results in 

~0 L ~CA L dcA 
NA. dz - - - -~AS ~o 1--VACA 

Integration of Eq. (8.5-42) leads to 

~)AB In 
N A. -- L-~A 1-- VA C Ao 

The use of the identity from Eq. (8.5-35), i.e., 

1 -  ~/rA C A -- ~/rB C B 

simplifies Eq. (8.5-43) to 

NAz = L (7A CBo / 

which is identical with Eq. (8.5-38). 

(8.5-42) 

(8.5-43) 

(8.5.44) 

(8.5.45) 

E x a m p l e  8.17 Cyclohexane (A) is diffusing through a 1.5mm thick stagnant 
benzene (t3) film at 25 ~ I f  XAo -- 0.15 and XAL -- 0.05, determine the molar 
flux of cyclohexane under steady conditions. 

Solution 

P h y s i c a l  p r o p e r t i e s  

PA = 0.779 g / c m  3 
For cyclohexane (A) " .~A = 84 

�9 I PB -- 0.879 g / c m  3 
For benzene (13) .~B  -- 78 

Analysis 

The molar volumes of species A and 13 are 

~ r A _ J ~ A  
PA 
84 

0.779 
= 107.8 cm 3 / tool 

VB -/~B 
PB 
78 

0.879 
= 88.7 cm 3 / mol 



8.5. M A S S  T R A N S P O R T  W I T H  C O N V E C T I O N  315 

The values of the total molar concentration at z - 0 and z -- L are calculated from 
Eq. (8.5-36) as 

C 0 ~ 
+ ( - 

1 

88.7 + (107.8 - 88.7)(0.15) 
= 10.9 • 10 -3 m o l / c m  3 

C L  ~ 

y .  + ( - ) x 

1 

88.7 + (107.8 - 88.7)(0.05) 
= 11.2 x 10 -3 m o l / c m  3 

Therefore, the use of Eq. 
benzene layer as 

(8.5-38) gives the molar flux of cyclohexane through 

N A  z - -  
:DAB In (CBL ~ 

L VA CBo / 

2.09 X 10 -5 [ (11.2 X 10-3)(1 -- 0.05) 

(0.15)(107.8) In [ (10.9 x 1 0 - 3 ) ( 1 -  0.15) 
- 1.8 x 10 -7 m o l / c m  2. s 

8.5.3 Diffusion With  Heterogeneous Chemical  React ion 

An ideal gas A diffuses at steady-state in the positive z -d i rec t ion  through a flat 
gas film of thickness 5 as shown in Figure 8.37. At z - 5 there is a solid catalytic 
surface at which Jt undergoes a first-order heterogeneous dimerization reaction 

2 A ~ B  

As an engineer, we are interested in the determination of the molar flux of species 
,4 in the gas film under steady conditions. The gas composition at z = 0, i.e., XAo, 
is known. 

The conservation statement for species A, Eq. (8.4-1), can be writ ten over a 
differential volume element of thickness Az as 

NAz [~ A - NAz [~+Az A -- 0 

Dividing Eq. (8.5-46) by A A z  and letting Az ~ 0 gives 

(8.5-46) 

or, 
dN~z 

dz 
= 0 ~ NAz = constant (8.5-48) 

lim NA~I~--NA~ ~ + ~  = 0  (8.5-47) 
Az--,0 Az 
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Figure  8.37 Heterogeneous reaction on a catalyst surface. 

The total molar flux can be calculated from Eq. (8.5-2) as 

dxA 
NA~ -- --CT)AB ~ + CAV* (8.5-49) 

in which the molar average velocity is given by 

NA. + NBz 
= (s.5-50) 

c 

The stoichiometry of the chemical reaction implies that for every 2 moles of ,4 
diffusing in the positive z-direction, 1 mole of B diffuses back in the negative 
z-direction. Therefore, the relationship between the fluxes can be expressed as 

1 
-~ NA, -- -- NB, (8.5-51) 

The use of Eq. (8.5-51) in Eq. (8.5-50) gives 

0.5 NAz 
= (8.5-52) 

c 

Substitution of Eq. (8.5-52) into Eq. (8.5-49) gives 

C~)AB dXA 
NAz = -- 1 -- 0.5 X A dz (s 5-53) 

Since NA~, is constant, Eq. (8.5-53) can be rearranged as 

fO fX x A 5 dX A 
NA, dz = - -c~As  1 --0.5XA 

Ao 
(8.5-54) 

or~ 

NAz ~" 2 C :DAB ln (1 - -  O'5 XA~ ) 
5 1 --0.5XAo 

(s. 55) 
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Note that although XAo is a known quantity, the mole fraction of species ,4 in 
the gas phase at the catalytic surface, X A~, is unknown and must be determined 
from the boundary condition. For heterogeneous reactions, the rate of reaction is 
empirically specified as 

at z = 5 NAz = k s c A -  k s c XA (8.5-56) 

where k s is the surface reaction rate constant. Therefore, XA5 is expressed from 
Eq. (8.5-56) as 

NAz (8.5-57) XA~ -- C k s 
Substitution of Eq. (8.5-57) into Eq. (8.5-55) results in 

-- [ (s.5-bs) 

which is a transcendental equation in NAz.  It is interesting to investigate two 
limiting cases of Eq. (8.5-58). 

Case  (i) k s is large 

Since ln(1 - x) _~ - x  for small values of x, then 

ln [ 1 -  O.5 (NA~/c  kS)] ,,~ - 0.5 (NA~/C k s) (8.5-59) 

so that Eq. (8.5-58) reduces to 

NAz 2 C T)AB I A2 I I 1 ) (8.5-60) 
-- (~ A 2 + l  In 1--0.bXAo 

in which A represents the ratio of the rate of heterogeneous reaction to the rate of 
diffusion and it is given by 

~k ~5 
A = (8.5-61) 

~)AB 
Case  (ii) k s - c~ 

This condition implies instantaneous reaction and Eq. (8.5-58) takes the form 

N A z - - 2 C I ) A B l n ( - -  5 1 --0.bxAol ) (8.5-62) 

When k s - c~, once species ,4 reaches the catalytic surface, it is immediately 
converted to species B so that XA~ -- O. Note that Eq. (8.5-62) can also be obtained 
from Eq. (8.5-55) by letting XA~ = O. 
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8.5 .3 .1  C o m m e n t  

The molar average velocity is given by Eq. (8.5-52) and since both NAz and c are 
constants, v~ remain constant for 0 _ z _ 5. On the other hand, from Eq. (8.5-6) 
the mass average velocity is 

.A4 A N Az + ./~ B N Bz 
vz = (8.5-63) 

P 

Expressing NBz in terms of NAz by using Eq. (8.5-51) reduces Eq. (8.5-63) to 

NA~(Ma - 0 .5MB)  
v~ = (8.5-64) 

P 

As a result of the dimerization reaction A/~A -- 0.5 M B and we get 

v~ = 0  (8.5-65) 

In this specific example, therefore, the mass average velocity can be determined 
on the basis of a solution to a diffusion problem rather than a conservation of 
momentum. 

N O T A T I O N  

A 
av 

c 

ci 

D 
"DAB 

e. 

FD 
H 
h 
j* 

k 
k~ 
L 

M 
N 

area~ m 2 
catalyst surface area per unit volume, I/m 
heat capacity at constant pressure, kJ/kg. K 
total concentration, kmol/m 3 
concentration of species i, kmol/m 3 
diameter, m 
diffusion coefficient for system A-B, m2/s 
total energy flux, W/m 2 
drag force, N 
entha|py, J; partition coemcient 
heat transfer coefficient, W/m 2. K 
molecular molar flux, k m o l / m  2. s 
thermal conductivity, W / m .  K 
surface reaction rate constant 
length, m 
mass flow rate, k g / s  
molecular weight, kg /kmol  
total molar flux, k m o l / m  2. s 
total molar flow rate, kmol / s  
molar flow rate of species i, kmol / s  
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P 

0 
Q 
q 
R 
7~ 
T 
t 
U 
V 
V 

V* 
v I 

W 
W 
Xi 

A 

A 
# 
l] 

7F 

P 
T i j  

O3 

Overlines 

A 

Bracket 

(a) 

pressure, Pa 
heat transfer rate, W 
volumetric flow rate, m 3/s 
heat flux, W / m  2 
radius, m; resistance, K / W  
gas constant, J/tool. K 
temperature, ~ or K 
time, s 
overall heat transfer coefficient, W / m  2. K 
velocity of the plate in Couette flow, m/s;  volume, m 3 
mass average velocity, m/ s  
molar average velocity, m / s  
volume average velocity, m/ s  
width, m 
total mass flux, kg /m 2. s 
mole fraction of species i 

difference 
fin efficiency; effectiveness factor 
latent heat of vaporization, J 
viscosity, kg/m. s 
kinematic viscosity, m 2 / s  

total momentum flux, N / m  2 
density, kg /m  3 
shear stress (flux of j - momentum in the i -  direction), N / m  2 
mass fraction 

per mole 
per unit mass 
partial molar 

average value of a 

Superscript 

sat saturation 

Subscripts 

A , B  
ch 
G M  
i 
in 
L M  
m i x  

species in binary systems 
characteristic 
geometric mean 
species in multicomponent systems 
inlet 
log-mean 
mixture 
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out out 
w wall or surface 
c~ free stream 

Dimensionless Numbers  

Bill 
BiM 
Nu 
Pr 
Re 
Sc 
Sh 

Biot number for heat transfer 
Biot number for mass transfer 
Nusselt number 
Prandtl number 
Reynolds number 
Schmidt number 
Sherwood number 
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P R O B L E M S  

8.1 When the ratio of the radius of the inner pipe to that of the outer pipe is 
close to unity, a concentric annulus may be considered to be a thin plate slit and its 
curvature can be neglected. Use this approximation and show that Eqs. (8.1-12) 
and (8.1-15) can be modified as 

1 ( r )  
V = 1  l _ n  ~ - 1  

Q m 
 R2V (1 - 

to determine the velocity distribution and volumetric flow rate for Couette flow in 
a concentric annulus with inner and outer radii of n R  and R, respectively. 

8.2 The composite wall shown below consists of materials A and B with thermal 
conductivities kA -- 10 W/m.  K and kB = 0.8 W/m.  K. If the surface area of the 
wall is 5 m 2, determine the interface temperature between A and B. 

40~ 

1. 

~--I0 cm 2 0 c m  

14~ 

l 

(Answer: 39 ~ 
~ - - ~ Z  
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8.3 A spherical tank containing liquid nitrogen at i atm pressure is insulated 
with a material having a thermal conductivity of 1.73 x 10 -3 W / m . K .  The inside 
diameter of the tank is 60 cm, and the insulation thickness is 2.5 cm. Estimate the 
kilograms of nitrogen vaporized per day if the outside surface of the insulation is 
at 21 ~ The normal boiling point of nitrogen is -196~  and its latent heat of 
vaporization is 200 k J /kg .  

(Answer:  7.95 kg/day) 

8.4 For a rectangular fin of Section 8.2.4 the parameters are given as: Too = 
175~ Tw - 260~ k -  105W/m.K,  L = 4cm, W = 30cm, B = 5mm. 

a) Calculate the average heat transfer coefficient and the rate of heat loss through 
the fin surface for A = 0.3, 0.6, 0.8, 1.0, 3.0, 6.0, and 8.0. 
b) One of your friends claims that as the fin efficiency increases, the process 
becomes more reversible. Do you agree? 

8.5 Show that the mass average velocity for the Stefan diffusion tube experiment, 
Example 8.16, is given by 

U Z  - - -  
"MADABln( 1 ) 

M L  1--XAo 

where A/[ is the molecular weight of the mixture. Note that this result leads to the 
following interesting conclusions: 

i) The mass average velocity is determined on the basis of a solution to a diffusion 
problem rather than a conservation of momentum. 
ii) No-slip boundary condition at the wall of the tube is violated. 

For a more thorough analysis of the Stefan diffusion tube problem, see Whitaker 
(1991). 

8.6  
following way: 

a) Show that the concentration distribution is given by 

0 -  l + A 2  ( ~ - ~ )  

Repeat the analysis given in Section 8.4.4 for a zero-order reaction in the 

(i) 

where 

CAo 

Z 

A _  i ~ 2 k ~ L 2  

:DAB CA o 

(2) 

(3) 

(4) 
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b) Plot 0 versus ~ for h - 1, x/~, and x/~. Show why the solution given by Eq. (1) 
is valid only for A < x/~. 

c) For A > x/~, only a fraction r (0 < r < 1) of the surface is available for 
the chemical reaction. Under these circumstances show that the concentration 
distribution is given by 

0 -  l + h 2  ( ~ - r  (5) 

8.7 Consider a spherical catalyst particle of radius R over which a first-order 
heterogeneous reaction 

A ~ B  

takes place. The concentration of species r at a distance far away from the catalyst 
particle is CA~. 

a) Show that the concentration distribution is 

A 2 ) R  CA = I - -  
CA~ I + A  2 r 

where A is defined by 

~/k sR  

A --- DAB 

b) Show that the molar rate of consumption of species ~A,/~A, is given by 

(A2) 
iZA = 4 7r DAB 1 + A 2 c A ~ R  

8.8 Consider a spherical carbon particle of initial radius Ro surrounded by an 
atmosphere of oxygen. A very rapid heterogeneous reaction 

2C + Oz ~ 2CO 

takes place on the surface of the carbon particle. Show that the time it takes for 
the carbon particle to disappear completely is 

t m 
1 R2o Pc 

48 in 2 c Do2-co 

where Pc is the density of carbon. 
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Chapter 9 

Steady-State Microscopic 
Balances With Generation 

This chapter is the continuation of Chapter 8 with the addition of the genera- 
tion term in the inventory rate equation. The breakdown of the chapter is the 
same as Chapter 8. Once the governing equations for the velocity, temperature 
or concentration are developed, the physical significance of the terms appearing in 
these equations are explained and the solutions are given in detail. Obtaining the 
macroscopic level design equations by integrating the microscopic level equations 
over the volume of the system is also presented. 

9.1 M O M E N T U M  T R A N S P O R T  

For steady transfer of momentum, the inventory rate equation takes the form 

( Rateof  ) ( Rateof ) _ 
momentum in momentum out 

+ momentum generation = 0 (9.1-1) 

In Section 5.1 it was shown that momentum is generated as a result of forces acting 
on a system, i.e., gravitational and pressure forces. Therefore, Eq. (9.1-1) may also 
be expressed as 

( R a t e o f )  ( Rate of ) ( Forces acting ) 
momentum in - momentum out + - 0  (9.1-2) on a system 

As in Chapter 8, our analysis will again be restricted to cases in which the following 
assumptions hold" 

325 
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1. Incompressible Newtonian fluid. 

2. One-dimensional, fully developed laminar flow, 

3. Constant physical properties. 

9 . 1 . 1  F l o w  B e t w e e n  P a r a l l e l  P l a t e s  

Consider the flow of a Newtonian fluid between two parallel plates under steady con- 
ditions as shown in Figure 9.1. The pressure gradient is imposed in the z-direction 
while both plates are held stationary. 

F igu re  9.1 Flow between two parallel plates. 

Velocity components are simplified according to Figure 8.2. Since vz - v z ( x )  

and vz -- vy = 0, Table C.1 in Appendix C indicates that the only non-zero shear- 
stress component is Txz. Hence, the components of the total momentum flux are 
given by 

dvz 

lry~ = ry~ + (p v~ ) vy = 0 
2 7r~ - rz~ + (pv~)  v~ - pv~ 

(9.1-3) 

(9.1-4) 

(9.1-5) 

The pressure, on the other hand, may depend on both x and z. Therefore, it is 
necessary to write the x -  and z-components of the equation of motion. 

x - c o m p o n e n t  of the  equa t ion  of m o t i o n  

For a rectangular differential volume element of thickness Ax, length Az and width 
W, as shown in Figure 9.1, Eq. (9.1-2) is expressed as 

(PI~ - PI~+A~) W A z  + pg W A x  A z  -- 0 (9.1-6) 
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Dividing Eq. (9.1-6) by W A x  Az and taking the limit as Ax ~ 0 gives 

lim P[~ - Pl~+zx~ 
zxx--,o A x  + pg -- 0 (9.1-7) 

or, 
OP 
Ox = pg (9.1-8) 

Note that Eq. (9.1-8) indicates the hydrostatic pressure distribution in the 
x-direction. 

z - c o m p o n e n t  of the  equa t ion  of mot ion  

Over the differential volume element of thickness Ax, length Az and width W, Eq. 
(9.1-2) takes the form 

w Az + w Az) - w zxx + w/x ) 

+ (PI~ - P I ~ + ~ ) W A x  = 0 (9.1-9) 

Dividing Eq. (9.1-9) by Ax Az W and taking the limit as Ax --~ 0 and Az --, 0 
gives 

lim 7rzz[~- 7r~lz+~ ~ + lira 7rx~l~- 7rx~l~+a~ 
/x~ ~o Az Ax--,0 Ax 

+ lim ~ = 0  (9.1-10) 
A z ~ 0  ~ Z  

or~ 
07rz~ dTrzz OP 

0--7 + T x  + T z  - o (9.1-Ii) 

Substitution of Eqs. (9.1-3) and (9.1-5) into Eq. (9.1-11) and noting that Ov~/Oz - 0  
yields 

d2vz OP 
It d x  2 = 0---ff (9.1-12) 

f(x) f(~,~) 

Since the dependence of P on x is not known, integration of Eq. (9.1-12) with 
respect to x is not possible at the moment. To circumvent this problem, the effects 
of the static pressure and the gravitational force are combined in a single term 
called the modif ied pressure,  79. According to Eq. (5.1-16), the modified pressure 
for this problem is defined as 

79 = P -  pgx  (9.1-13) 

so that 
OP OP 

= ~ - pg (9.1-14) 
Ox Ox 
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and 
O P  O P  
:i)z = 0--~- (9.1-15) 

Combination of Eqs. (9.1-8) and (9.1-14) yields 

O P  
= 0  (9.1-16) 

Ox 

which implies that :P - :P(z) only. Therefore, the use of Eq. (9.1-15) in Eq. 
(9.1-12) gives 

d2 v z d79 

# d x  2 = d z  (9.1-17) 

I(~) f(~) 

Note that while the right-side of Eq. (9.1-17) is a function of z only, the left-side 
is dependent only on x. This is possible if and only if both sides of Eq. (9.1-17) 
are equal to a constant, say A. Hence, 

d ~  ~D o - -  ~D L 

d z  = )~ ~ )~ = -  L (9.1-18) 

where Po and ~L are the values of 7 ~ at z = 0 and z = L, respectively. Substitution 
of Eq. (9.1-18) into Eq. (9.1-17) gives the governing equation for velocity in the 
form 

d2 v z "Po - -  ~i) L 
= (9.1-19) 

- # d x  2 L 

Integration of Eq. (9.1-19) twice results in 

~D o - -  ~D L X 2 vz = - + C1 x + C2 (9.1-20) 
2 #L 

where C1 and (72 are integration constants. 
The use of the boundary conditions 

at x = 0 vz = 0 (9.1-21) 

at 

gives the velocity distribution as 

x - B Vz - 0 (9.1-22) 

V Z  - -  (9.1-23) 

The use of the velocity distribution, Eq. (9.1-23), in Eq. (9.1-3) gives the shear 
stress distribution as 

T x z  = 
x 1] (9.1-24) 
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The volumetric flow rate can be determined by integrating the velocity distri- 
bution over the cross-sectional area, i.e., 

Q - v zdzdy  (9.1-25) 

Substitution of Eq. (9.1-23) into Eq. (9.1-25) gives the volumetric flow rate in the 
form 

Q = (7'0 - PL) W B  3 
12#L (9.1-26) 

Dividing the volumetric flow rate by the flow area gxves the average velocity as 

Q (Po - PL) B 2 

(v,} = W B  = 12>L (9.1-27) 

9.1.1.1 Macroscopic  balance  

Integration of the governing differential equation, Eq. (9.1-19), over the volume of 
the system gives the macroscopic momentum balance as 

~oL ~oW ~o0 B d2vz .~ooL ~oW ~oB']::)~ dxdydz (9.1-28) -- # ~ dxdydz = L 

o r  

(T~z[x=e -- r~z[~=o) L W = (Po - PL) W B  (9.1-29) 

Drag force Pressure and gravi ta t ional  
forces 

Note that Eq. (9.1-29) is nothing more than Newton's second law of motion. 
The interaction of the system, i.e., the fluid between the parallel plates, with the 
surroundings is the drag force, Fo, on the plates and is given by 

I FD = (Po -- W B  I (9.1-30) 

On the other hand, the friction factor is the dimensionless interaction of the 
system with the surroundings and is defined by Eq. (3.1-7), i.e., 

FD = A~hK~h<f} (9.1-31) 

or, 

Simplification of Eq. (9.1-32) gives 

(f)  _ (Po - PL) B 
pL(v~} 2 

(9.1-32) 

(9.1-33) 



330 CHAPTER 9. STEADY MICROSCOPIC BALANCES WITH GEN. 

Elimination of (7'o- PL) between Eqs. (9.1-27)and (9.1-33)leads to 

( # ) (9.1-34) <f} = 12 B<v~>p 

For flow in non-circular ducts, the Reynolds number based on the hydraulic equiv- 
alent diameter was defined in Chapter 4 by Eq. (4.5-37). Since Dh = 2B, the 
Reynolds number is 

2B<v >p 
Reh = (9.1-35) 

# 

Therefore, Eq. (9.1-34) takes the final form as 

24 
<f> = (9.1-36) 

9 . 1 . 2  F a l l i n g  F i l m  o n  a V e r t i c a l  P l a t e  

Consider a film of liquid falling down a vertical plate under the action of gravity 
as shown in Figure 9.2. Since the liquid is in contact with air, it is necessary to 
consider both phases. Let superscripts L and A represent the liquid and the air, 
respectively. 

Figure  9.2 Falling film on a vertical plate. 
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For the liquid phase the velocity components are simplified according to Figure 
8.2. Since v~ = v~(x) and vx = vy = 0, Table C.1 in Appendix C indicates that the 
only non-zero shear-stress component is Tx~. Hence, the components of the total 
momentum flux are given by 

L L L L L _ #L dvL 
7rxz -- 7"xz ~- (pL vz ) vx -- Txz -- dx 

L L L 0 

(9.1-37) 

(9.1-38) 

(9.1-39) 

The pressure, on the other hand, depends only on z. Therefore, only the 
z-component of the equation of motion should be considered. 

For a rectangular differential volume element of thickness Ax, length Az and 
width W, as shown in Figure 9.2, Eq. (9.1-2) is expressed as 

L L AZ)  ( L W A x +  L W A z )  - 

+ (PLl~ _ pL[~+~) W A x  + p l y  W/X:~ A z  -- 0 (9.1-40) 

Dividing each term by W A x  Az and taking the limit as Ax ~ 0 and Az ~ 0 gives 

L L 
l im 7rzz[z - 7 r z z l z + A z +  l im 

Az--*0 AZ Ax--*0 

or,  

L L 
7~xz [x -- 7rXZ lx+A x 

A x  

P L l z -  P L l z + A  z 
+ lim 

Az--,0 /kz 
+ p E g  = 0 (9.1-41) 

O~ z L dTrLz  oPL p i  
0---~ -F ~ + 0-----~ - g = 0 (9.1-42) 

Substitution of Eqs. (9.1-37) and (9.1-39) into Eq. (9.1-42) and noting that 
Oviz/Oz = 0 yields 

-- ]_t L d2vL d p  L 
dx 2 -" - d--"-~ -F pL g (9.1-43) 

Now, it is necessary to write down the z-component of the equation of motion 
for the stagnant air. Over a differential volume element of thickness Ax, length 
Az and width W, Eq. (9.1-2) is written as 

(pA[~ _ pA[~+~) W / X z  + pAg W ~x Az = 0 (9.1-44) 

Dividing each term by W Ax Az and taking the limit as Az --~ 0 gives 

P A [ z -  PA[z+A z 
lim + pA g _ 0 (9.1-45) 

Az--~0 Az 
or,  

d p  A 
dz = pA g (9.1-46) 
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At the liquid-air interface, the jump momentum balance I indicates that  the 
normal and tangential components of the total stress tensor are equal to each 
other, i.e., 

at x = 0 pL = pA for all z (9.1-47) 

(9.1-48) at x 0 L A for all z - -  T x z  ~ T x z  

Since both pL and pA depend only on z, then 

dp  n d p  A 

dz dz 

From Eqs. (9.1-46) and (9.1-49) one can conclude that 

dp  L _. pAg 
dz 

Substitution of Eq. (9.1-50) into Eq. (9.1-43) gives 

= _ p )g 
_ # L d 2  L 

dx 2 

Since pn :>> pm then pL _ pA ~ pn and Eq. (9.1-51) takes the form 

Vz _ pL _ ~ n d 2  L 

dx 2 g 

(9.1-49) 

(9.1-51) 

(9.1-52) 

This analysis shows the reason why the pressure term does not appear in the 
equation of motion when a fluid flows under the action of gravity. This point 
is usually overlooked in the literature by simply stating that  "free surface =a no 
pressure gradient." 

For simplicity, superscripts in Eq. (9.1-52) will be dropped for the rest of the 
analysis with the understanding that  properties are those of the liquid. Therefore, 
the governing equation takes the form 

d2vz 
(9.1-53) 

Integration of Eq. (9.1-53) twice leads to 

Pg x 2 v= = + C~ z + C2 (9. i-54) 
2# 

The boundary conditions are 

dvz 
at x - - 0  - 0  

dx 
at x -  5 vz - 0  

i For a thorough discussion on jump balances, see Slattery (1999). 

(9.1-55) 
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Note that Eq. (9.1-55) is a consequence of the jump condition given by Eq. (9.1- 
48). Application of the boundary conditions results in 

VZ pg522# [ 1 - ( 5 )  2 ] (9 ~-57) 

The maximum velocity takes place at the liquid-air interface, i.e., at x - 0, as 

Pg32 (9.1-58) Vmax - -  2 # 

The use of the velocity distribution, Eq. (9.1-57), in Eq. (9.1-37) gives the 
shear stress distribution as 

I T ~ ~ = pgx I (9.1-59) 

Integration of the velocity profile across the flow area gives the volumetric flow 
rate, i.e., 

/0 /0 Q = vz dxdy (9.1-60) 

Substitution of Eq. (9.1-57) into Eq. (9.1-60) yields 

Q p g s a w  

3it 
(9.1-61) 

Dividing the volumetric flow rate by the flow area gives the average velocity as 

Q pg52 
(v~) = w 5  = 3 ,  

(9.1-62) 

9.1.2.1 Macroscopic  balance 

Integration of the governing equation, Eq. (9.1-53), over the volume of the system 
gives the macroscopic equation as 

/0 /0w/0 /0L/0w/0 - # ~ dxdydz  - pg dxdydz  (9.1-63) 

or, 

Txz]x=~ W L  = p g 5 W L  

Drag force Mass of the 
liquid 

(9.1-64) 
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9.1 .3  F l o w  in a C i r c u l a r  T u b e  

Consider the flow of a Newtonian fluid in a vertical circular pipe under steady con- 
ditions as shown in Figure 9.3. The pressure gradient is imposed in the z-direction. 

F igure  9.3 Flow in a circular pipe. 

Simplification of the velocity components according to Figure 8.4 shows that 
vz  = v z ( r )  and vr  = vo = 0. Therefore, from Table C.2 in Appendix C, the only 
non-zero shear stress component is ~'rz and the components of the total momentum 
flux are given by 

dvz 
7rr~ --  r r z  + (p v~ ) v~ --  Trz  = -- # d r  

7ro~ = ro~ + ( p v ~ ) v o  

7rz; = r;~ + (pv~)  v~ 

(9.1-65) 

(9.1-66) 

(9.1-67) 

The pressure in the pipe depends on z. Therefore, it is necessary to consider only 
the z-component of the equation of motion. 

For a cylindrical differential volume element of thickness Ar and length Az, as 
shown in Figure 9.3, Eq. (9.1-2) is expressed as 

+ (Pl  - PIz+,, )2 rAr + pg2 ,-A,-Az = 0 (9.1-68) 
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Dividing Eq. (9.1-68) by 27rArAz and taking the limit as Ar ~ 0 and Az ~ 0 
gives 

lim r (Tr~]~ 
Az---,O 

- - 

Az ) + lim At---*0 A r  

+ lim r + r p g = O  
a.-~o /kz ] 

(9.1-69) 

or~ 

07rz~ 1 d(rTrr~) dP  
Oz t . . . .  (9 1-70) r dr dz ~- pg 

Substitution of Eqs. 
Ovz/Oz = 0 gives 

(9.1-65) and (9.1-67) into Eq. (9.1-70) and noting that 

. [ 
r dr r dr ,] dz + pg (9.1-71) 

The modified pressure is defined by 

T' = P - p g z  (9.1-72) 

so that 
dP dP  

dz dz Pg 

Substitution of Eq. (9.1-73) into Eq. (9.1-71) yields 

r dr r \ d r , ]  - dz 

I(r) I(~) 

(9.1-73) 

(9.1-74) 

Note that while the right-side of Eq. (9.1-74) is a function of z only, the left-side 
is dependent only on r. This is possible if and only if both sides of Eq. (9.1-74) 
are equal to a constant, say )~. Hence, 

dP T~o - -  ~[::~L 

dz = ,k ~ , k -  - L (9.1-75) 

where Po and ~O L a r e  the values of :P at z = 0 and z = L, respectively. Substitution 
of Eq. (9.1-75) into Eq. (9.1-74) gives the governing equation for velocity as 

[ - r - & r  r d r , /  L 
(9.1-76) 

Integration of Eq. (9.1-76) twice leads to 

(7)o - ~L)  r 2 + C~ In r + 62 (9.1-77) 
v~ = - 4#L 
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where C1 and C2 are integration constants. 

The center of the tube, i.e., r = 0, is included in the flow domain. However, 
the presence of the term In r makes Vz -~ - o o  as r --, O. Therefore, a physically 
possible solution exists only if C1 = 0. This condition is usually expressed as "vz is 
finite at r = 0." Alternatively, the use of the symmetry condition, i.e., d v z / d r  - 0 

at r = 0, also leads to C1 = 0. The constant C2 can be evaluated by using the 
no-slip boundary condition on the surface of the tube, i.e., 

at r = R v~ = 0 (9.1-78) 

so that  the velocity distribution becomes 

V Z  ---  
r 

4#L (9.1-79) 

The maximum velocity takes place at the center of the tube, i.e., 

(Po - PL) R 2 
Vmax -- 4#L (9.1-80) 

The use of Eq. (9.1-79) in Eq. (9.1-65) gives the shear stress distribution as 

7 " r z  z 
(Po - PL) 

2L 
(9.1-81) 

The volumetric flow rate can be determined by integrating the velocity distribution 
over the cross-sectional area, i.e., 

j~0 27r j~0 R Q - v ~ r d r d O  (9.1-82) 

Substitution of Eq. (9.1-79) into Eq. (9.1-82) and integration gives 

7r (:Po -- ~ L )  R 4 

8 #L 
(9.1-83) 

which is known as the H a g e n - P o i s e u i U e  law. Dividing the volumetric flow rate by 
the flow area gives the average velocity as 

Q (Po - R 2 

<v~) - ~R 2 = 8#L  (9.1-84) 
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9.1.3.1 Macroscopic balance 

Integration of the governing differential equation, Eq. (9.1-76), over the volume of 
the system gives 

[ r -~r r ~ r drdOdz 

or~ 

Trz lr=R2~RL = ~ R  2 (Po - PL) (9.1-86) 

Drag force Pressure and gravitational 
forces 

The interaction of the system, i.e., the fluid in the tube, with the surroundings 
manifests itself as the drag force, FD, on the wall and is given by 

. . . . . . . .  

(9.1-87) 

On the other hand, the dimensionless interaction of the system with the surround- 
ings, i.e., the friction factor, is given by Eq. (3.1-7), i.e., 

FD = AchKch(f> (9.1-88) 

or, 

Expressing the average velocity in terms of the volumetric flow rate by using Eq. 
(9.1-84) reduces Eq. (9.1-89) to 

~2D5 ( P o  - PL) 
(f} = 32 pLQ2 (9.1-90) 

which is nothing more than Eq. (4.5-76). 
Elimination of ( P o -  PL) between Eqs. (9.1-84) and (9.1-89)leads to 

i ( f > = 1 6  D(vz>p = Ree (9.1-91) 

9 . 1 . 4  A x i a l  F l o w  in  a n  A n n u l u s  

Consider the flow of a Newtonian fluid in a vertical concentric annulus under steady 
conditions as shown in Figure 9.4. A constant pressure gradient is imposed in the 
positive z-direction while the inner rod is stationary. 
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F i g u r e  9.4 Flow in a concentric annulus. 

The development of the velocity distribution follows the same lines for flow in 
a circular tube with the result 

[ - r --~r r d r ]  = L (9.1-92) 

integrat ion of Eq. (9.1-92) leads to 

(:Po - ~PL) r 2 + C1 l n r  + C2 (9.1-93) 
vz - - 4#L 

In this case, however, r - 0 is not within the flow field. The use of the boundary  
conditions 

at 

at 

gives the velocity distribution as 

r - n v~ - 0 (9.1-94) 

r - nR vz - 0 (9.1-95) 

V Z  ---" 

( P o - P L ) R  2 [ r 2 
4#L  1 - ( - ~ )  

_ ( 1 - - E  2 r 
l nn  ) In ( ~ ) ]  (9.1-96) 

The use of Eq. (9.1-96) in Eq. (9.1-65) gives the shear stress distr ibution as 

T r z  - -  
2L  + 21nn 

(9.1-97) 
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The volumetric flow rate can be determined by integrating the velocity distri- 
bution over the annular cross-sectional area, i.e., 

~02~r ~R 
Q = vz r drdO 

R 
(9.1-98) 

Substitution of Eq. (9.1-96) into Eq. (9.1-98) and integration gives 

Q=  (po-P )n4 [ (1- 1 
8 #L 1 - n4 + Inn (9.1-99) 

Dividing the volumetric flow rate by the flow area gives the average velocity as 

Q (Po- -7~L)R2 ( 1 - n 2 )  
(vz) -- 7rR2(1 _ n2 ) = 8 #L 1 + ~2 + ln---~ (9.1-100) 

9.1.4.1 Macroscopic balance 

Integration of the governing differential equation, Eq. (9.1-92), over the volume of 
the system gives 

- R ~r r -~r r drdOdz - r 
r n L 

(9.1-101) 
or, 

Trzl~=R 2~rRL - r~z[r=~R 27rnRL = 7rR2(1 - n2) (:Po - PL) 

Drag force Pressure and gravitational 
forces 

(9.1-102) 

Note that Eq. (9.1-102) is nothing more than Newton's second law of motion. 
The interaction of the system, i.e., the fluid in the concentric annulus, with the 
surroundings is the drag force, FD, on the walls and is given by 

{ F v ' - T r R 2 i l - n 2 ) ( T ' o . / 7 ~ L ) ]  (9.1-103) 

On the other hand, the friction factor is defined by Eq. (3.1-7) as 

FD -- AchKch( f }  (9.1-104) 

or~ 

7rR2(1 - ~2 ) (po_PL)=[27 rR( l+n )L ]  ( 2  P<Vz>2) {f} 
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Elimination of ( :Po-  PL) between Eqs. (9.1-100) and (9.1-105)gives 

<f>= R(vz>p l + s :  2H Inn 
1 - s: 2 

_ 

(9.1-I06) 

Since Dh = 2 R ( 1 -  a), the Reynolds number based on the hydraulic equivalent 
diameter is 

2R(I - ~)<v~}p 
Reh = (9.1-107) 

# 

so that  Eq. (9.1-106) becomes 

16 I ( 1 -  ~)2 

< f > = ~  l + s ~  2 +  Ins; 
1 - s: 2 (9.i-lOS) 

9.1.4.2 I n v e s t i g a t i o n  of t h e  l i m i t i n g  cases  

m Case  (i) t~ ~ 1 

When the ratio of the radius of the inner pipe to that of the outer pipe is close to 
unity, i.e., ~ ~ 1, a concentric annulus may be considered to be a thin-plane slit 
and its curvature can be neglected. Approximation of a concentric annulus as a 
parallel plate requires the width, W, and the length, L, of the plate to be defined 
a s  

W = 7rR (1 + to) (9.1-109) 

B = R (1 - ~) (9.1-110) 

Therefore, the product W B  3 is equal to 

W B  3 = rR4(1 _ t~2)(1 _ ~)2 

so that  Eq. (9.1-99) becomes 

W B  3 
===~ ~R4 = )2 (9.1-111) (1-~e)(1-~ 

Q _  (Po- PL) WB 3 
8 #L 

lira [ ] 
. - - , I  (1 - ~)2 + ( I  - ~ ) I n ~  

(9.1.112) 

Substitution of r = 1 -  ~ into Eq. (9.1-112) gives 

= (~o--~L) W B3 r 1 6 2  2 - r  ] 
lim ~22 -~- 8 #L r r ln(1 - r  J 

(9.1-113) 
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The Taylor series expansion of the term ln(1 - r is 

1 r 1 r 
l n ( 1 - r  = - r  ~ - ~ - (9.1-114) 

Using Eq. (9.1-114) in Eq. (9.1-113) and carrying out the divisions yields 

Q = (Po - P L )  W B  3 

or, 

Q_ (P~ WB31im (~ r ) 
8 #L r - 2 + "'" 

(Po-PL)WB 3 
12 #L 

Note that Eq. (9.1-116) is equivalent to Eq. (9.1-26). 

(9.1-115) 

(9.1-116) 

m Case (ii) ~-+ 0 

When the ratio of the radius of the inner pipe to that of the outer pipe is close to 
zero, i.e., ~ --~ 0, a concentric annulus may be considered to be a circular pipe of 
radius R. In this case Eq. (9.1-99) becomes 

Q 7r(Po--PL) R4 [ (1--t~2) 2 ] 
= lira 1 -- ~4 + (9.1-117) 

8 #L ~--,o In 

Since l n 0 -  -c~,  Eq. (9.1-117) reduces to 

Q __ 71" (Po -- PL) R 4 
8 #L 

which is identical with Eq. (9.1-83). 

(9.1-118) 

9.1.5 Physical Significance of the Reynolds Number 

The physical significance attributed to the Reynolds number for both laminar and 
turbulent flows is that it is the ratio of the inertial forces to the viscous forces. 
However, examination of the governing equations for fully developed laminar flow: 
(i) between parallel plates, Eq. (9.1-19), (ii)in a circular pipe, Eq. (9.1-76), 
and (iii) in a concentric annulus, Eq. (9.1-92), indicates that the only forces 
present are the pressure and the viscous forces. Inertial forces do not exist in 
these problems. Since both pressure and viscous forces are kept in the governing 
equation for velocity, they must, more or less, have the same order of magnitude. 
Therefore, the ratio of pressure to viscous forces, which is a dimensionless number, 
has an order of magnitude of unity. 
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1 2) On the other hand, the use of ~(p<vz> term instead of pressure is not appro- 
priate since this term comes from the Bernoulli equation, which is developed for 
no-friction (or, reversible) flows. 

Therefore, in the case of a fully developed laminar flow, attributing a physical 
significance to the Reynolds number is not correct. For a more thorough discussion 
on the subject, see Bejan (1984). 

9 .2  E N E R G Y  T R A N S P O R T  W I T H O U T  

C O N V E C T I O N  

For steady transport of energy, the inventory rate equation takes the form 

( R a t e o f )  ( R a t e o f ) (  Ra teof  ) 
energy in - energy out + energy generation = 0 (9.2-1) 

As stated in Section 5.2, generation of energy may occur as a result of chemical and 
nuclear reactions, absorption radiation, presence of magnetic fields, and viscous 
dissipation. It is of industrial importance to know the temperature distribution 
resulting from the internal generation of energy because exceeding of the maximum 
allowable temperature may lead to deterioration of the material of construction. 

9 . 2 . 1  C o n d u c t i o n  in  R e c t a n g u l a r  C o o r d i n a t e s  

Consider one-dimensional transfer of energy in the z-direction through a plane 
wall of thickness L and surface area A as shown in Figure 9.5. Let ~ be the rate 
of energy generation per unit volume within the wall. in general, ~ may depend 
Oil Z.  

Fluid A 

TTT 
T A , <h A> 

L 

| 
| 

- - ~  Az : | "* ' - - - -  

| 

i 

Fluid B 

TTT 
T B , <hB> 

Figu re  9.5 Conduction through a plane wall with generation. 
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Since T - T(z), Table C.4 in Appendix C indicates tha t  the only non-zero 
energy flux component is ez and it is given by 

d T  
ez = qz = - k d---z (9.2-2) 

For a rectangular volume element of thickness Az as shown in Figure 9.5, Eq. 
(9.2-1) is expressed as 

q~ [z A - q~ l~+~ A + 3~ A Az = 0 (9.2-3) 

Dividing each term by A Az and taking the limit as Az ~ 0 gives 

o r  

lim q z l z -  qzl~+z,~ 
a~-~o Az + N - 0 (9.2-4) 

dqz _ ~ (9.2-5) 
dz  

Substitution of Eq. (9.2-2) into Eq. (9.2-5) gives the governing equation for tem- 
perature as 

(9.2-6) 

Integration of Eq. (9.2-6) gives 

f0 z k d T  - - ~ ( u )  du -+- C1 (9.2-7) 
dz  

where u is a dummy variable of integration and C1 is an integration constant. 
Integration of Eq. (9.2-7) once more leads to 

k ( T )  d T  - - ~ ( u )  du dz  + C1 z -+- C2 (9.2-8) 

Evaluation of the constants C1 and (?2 requires the boundary conditions to be 
specified. The solution of Eq. (9.2-8) will be presented for two types of boundary 
conditions, namely, Type I and Type II. In the case of Type I boundary condi- 
tion, the temperatures at both surfaces are specified. On the other hand, Type Ii 
boundary condition implies that while the temperature is specified at one of the 
surfaces, the other surface is subjected to a constant wall heat flux. 

T y p e  I b o u n d a r y  condi t ion 

The solution of Eq. (9.2-8) subject to the boundary conditions 

at z = 0  T - T o  
(9.2-9) 

at z - L  T = T L  
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is given by 

/o [/o 
+ k(T) dT+ fo ~(u) dz } -~ [/o z (9.2-10) 

Note that  when ~ -  0, Eq. (9.2-10) reduces to Eq. (G) in Table 8.1. Equation 
(9.2-10) may be further simplified depending on whether the thermal conductivity 
and/or  energy generation per unit volume are constant. 

m Case  (i) k = c o n s t a n t  

In this case Eq. (9.2-10) reduces to 

k (T - To) - - fo z [~o ~' ~(u) du] dz 

+ k (TL-To)+ ~(u) du dz Z (9.2-11) 

When ~ = 0, Eq. (9.2-11) reduces to Eq. (H) in Table 8.1. 

R Case  (ii) k = c o n s t a n t ;  ~ = c o n s t a n t  

In this case Eq. (9.2-10) simplifies to 

T - T o +  =�89 - ~ - ( T o - T L ) ~  (9.2-12) 

The location of the maximum temperature can be obtained from dT/dz = 0 as 

(~) __, k (To-T~) (9.2-~3) 
T=Tm~,, 2 ~L  2 

Substitution of Eq. (9.2-13) into Eq. (9.2-12) gives the value of the maximum 
temperature as 

Tmax To + TL ~ L 2 k (To - TL)2 
= 2 + 8 k + 2 ~ L 2 (9.2-14) 

The representative temperature profiles depending on the values of To and TL are 
shown in Figure 9.6. 
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T o > T L To = T L To < T L 

I 

I 

I 
| 

I 
| 

I 

Figure 9.6 Representative temperature distributions in a rectangular wall with 
constant generation. 

Type  II boundary  condit ion 

The solution of Eq. (9.2-8) subject to the boundary conditions 

dT 
at z = O  - k - - ~ z - q o  

at z = L  T - T L  

is given by 

(9.2-15) 

k(T) dT - ~(u) du dz + qoL \ 1 -  L/~ (9.2-16) 

Note that when ~ = 0, Eq. (9.2-16) reduces to Eq. (G) in Table 8.2. Further 
simplification of Eq. (9.2-16) depending on whether k and/or ~ are constant are 
given below. 

m Case (i) k = constant  

In this case Eq. (9.2-16) reduces to 

c z k (T - TL) -- ~ (u )du  dz + qoL \1 - -L] ~ (9.2-17) 

When ~ - - 0 ,  Eq. (9.2-17) reduces to Sq. (H) in Table 8.2. 

m Case (ii) k -  constant;  ~ = constant  

In this case Eq. (9.2-16) reduces to 

T - T L +  2k 1 - ( ~ )  + ( 1 - ~ )  (9.2-18) 
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9.2.1.1 Macroscopic equation 

The integration of the governing equation, Eq. (9.2-6) over the volume of the 
system gives 

L W H d ( k d T  L W 

/0/0/0 
Integration of Eq. (9.2-19) yields 

%_ 

Net rate of energy out 

Z - - 0  

f 
H 

Jo ~dxdydz  (9.2-19) 

j~o L 
- W H  ~ d z  

Rate of energy 
generation 

(9.2-20) 

Equation (9.2-20) is simply the macroscopic energy balance under steady conditions 
by considering the plane wall as a system. Note that  energy must leave the system 
from at least one of the surfaces to maintain steady conditions. The "net rate of 
energy out" in Eq. (9.2-20) implies the rate of energy leaving the system in excess 
of the rate of energy entering into it. 

It is also possible to make use of Newton's law of cooling to express the rate of 
heat loss from the system. If the heat is lost from both surfaces to the surroundings, 
Eq. (9.2-20) can be written as 

(hA) (To - TA) + (hB) (TL -- TB) = ~ d z  (9.2-21) 

where To and TL are the surface temperatures at z -- 0 and z - L, respectively. 

E x a m p l e  9.1 Energy generation rate as a result of an exothermic reaction is 
1 • 1 0 4 W / m  3 in a 50cm thick wall of thermal conductivity 2 0 W / m . K .  The 
left-face of the wall is insulated while the right-side is held at 45 ~ by a coolant. 
Calculate the maximum temperature in the wall under steady conditions. 

Solution 

Let z be the distance measured from the left-face. The use of Eq. (9.2-18) with 
qo = 0 gives the temperature distribution as 

T = T L +  2k 1 -  7 

(1 x 104)(0'5)2 [ 2(20) ( ~ z ] (1) : 45 + 1 -  ,~_.~ 2 

Simplification of Eq. (1) leads to 

T = 107.5 - 250 z ~ (2) 

Note that dT /dz  = 0 at z = O. Therefore, the maximum temperature occurs at the 
insulated surface and its value is 107.5 ~ 
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9 .2 .2  C o n d u c t i o n  i n  C y l i n d r i c a l  C o o r d i n a t e s  

9.2.2.1 Hol low cyl inder  

Consider one-dimensional transfer of energy in the r -d i rec t ion  through a hollow 
cylinder of inner and outer radii of R1 and R2, respectively, as shown in Figure 
9.7. Let N be the rate of energy generation per unit volume within the cylinder. 

Figure 9.7 
generation. 

One-dimensional conduction through a hollow cylinder with internal 

Since T = T(r), Table C.5 in Appendix C indicates that the only non-zero 
energy flux component is er and it is given by 

dT 
er -- qr = - k d-7 (9.2-22) 

For a cylindrical differential volume element of thickness Ar as shown in Figure 
9.7, the inventory rate equation for energy, Eq. (9.2-1), is expressed as 

27rL ( r q r ) l r  --  2~rL (rq~)[~+A~ + 27rrArL ~---- 0 (9.2-23) 

Dividing each term by 27rL Ar and taking the limit as Ar --~ 0 gives 

lim ( r q r ) l r -  (rqr)[r+A,. 
At--.0 Ar + r ~ -  0 (9.2-24) 

or, 
1 d 

r dr 
(rq~) = N (9.2-25) 
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Substitution of Eq. (9.2-22) into Eq. (9.2-25) gives the governing equation for 
temperature as 

- r -~r r k  -~r - ~ (9.2-26) 

Integration of Eq. (9.2-26) gives 

f0 ~ C1 k dT__ 1 ~ ( u )  u d u  + (9.2-27) 
dr r r 

where u is a dummy variable of integration and C1 is an integration constant. 
Integration of Eq. (9.2-27) once more leads to 

/0 ~ /0~ 1[/0 ~ ] k ( T )  dT  = - - ~ ( u )  u du dr + C1 In r + C2 
r 

(9.2-28) 

Evaluation of the constants C1 and C2 requires the boundary conditions to be 
specified. 

T y p e  i b o u n d a r y  condi t ion  

The solution of Eq. (9.2-28) subject to the boundary conditions 

at r = R1 T = T1 

at r = R2 T = T2 
(9.2-29) 

is given by 

 21I/o r l}ln rJR21 
k ( T )  d T  -= k ( T )  d T  - - ~ ( u )  u d u  dr l n ( R 1 / R 2 )  

1 r 0 

/~ 1[/0~ ] + - ~ ( ~ ) ~ e ~  e~ (9.2-30) 
r 

Note that when N = 0, Eq. (9.2-30) reduces to Eq. (C) in Table 8.3. Equation 
(9.2-30) may be further simplified depending on whether the thermal conductivity 
and/or energy generation per unit volume are constant. 

m Case (i) k = cons tan t  

In this case Eq. (9.2-30) reduces to 

{ i } k ( T - T 2 ) -  k ( T 1 - T 2 ) -  ~ r 

+ - ~ ( u )  u du dr (9.2-31) 
7" 

When ~ = 0, Eq. (9.2-31) simplifies to Eq. (D) in Table 8.3. 
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m Case  (ii) k : cons t an t ;  ~ = c o n s t a n t  

In this case Eq. (9.2-30) reduces to 

T : T2 + -~- I- 

+ { T 1 -  T2 
4 k -~2 In(nl  /R2) 

(9.2-32) 

The location of maximum temperature can be obtained from dT/dr  = 0 as 

1/2 

(9.2-33) 

T y p e  II  b o u n d a r y  c o n d i t i o n  

The solution of Eq. (9.2-28) subject to the boundary conditions 

dT 
at r -  R1 -k-d--~- z - q l  

at r = R2 T = T2 
(9.2-34) 

is given by 

k(T) dT = - ~(u) u du dr 
r 

[/o ] + N(u) u du - ql R1 In R22 

Note that  when ~ = 0, Eq. (9.2-35) reduces to Eq. (C) in Table 8.4. 

(9.2-35) 

I Case  (i) k = c o n s t a n t  

In this case Eq. (9.2-35) reduces to 

  lljo 1[;o 1 ] (r) k (T - T2) = r N(u)u du dr + N(u)u du - qlR1 In 

(9.2-36) 
When N = 0, EQ. (9.2-36) simplifies to Eq. (D) in Table 8.4. 
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I Case  (ii) k = cons t an t ;  ~ -  c o n s t a n t  

In this case Eq. (9.2-35) simplifies to 

[ ( ) ( )  ~ R 2  2 r ~ R  2 qlR1 In r 
T - T2 + 4 k 1 - R22 + 2 k k ~ (9.2-37) 

M a c r o s c o p i c  e q u a t i o n  

The integration of the governing equation, Eq. (9.2-26) over the volume of the 
system gives the macroscopic energy balance as 

_ fon fo2, /RR21 d (rk  d T L 2, R~ 
r dr ~r ) r drdOdZ- fo fo /R 1 ~rdrdOdz (9.2-38) 

Integration of Eq. (9.2-38) yields 

dT 27rR1L - 27rL ~ r dr dT 27rR2L + k ~ r=R1 

Y 

Net  r a t e  of e n e r g y  ou t  R a t e  of e n e r g y  
generation 

(9.2-39) 

Equation (9.2-39) is simply the macroscopic energy balance under steady condition 
by considering the hollow cylinder as a system. 

It is also possible to make use of Newton's law of cooling to express the rate of 
heat loss from the system. If the heat is lost from both surfaces to the surroundings, 
Eq. (9.2-39) can be written as 

/R n~ 
t~1 (hA) (T1 - TA) + R2(hs} (T2 - TB) = ~ r  dr (9.2-40) 

1 

where T1 and T2 are the surface temperatures at r -- R1 and r = R2, respectively. 

E x a m p l e  9.2 A catalytic reaction is being carried out in a packed bed in the 
annular space between two concentric cylinders with inner radius R1 -- 1.5 cm and 
outer radius R2 = 1.8 cm. The entire surface of the inner cylinder is insulated. 
The rate of generation of energy per unit volume as a result of a chemical reaction 
is 5 x 106 W / m  3 and it is uniform throughout the annular reactor. The effective 
thermal conductivity of the bed is 0.5 W / m .  K. If the inner surface temperature is 
measured as 280 ~ calculate the temperature of the outer surface. 

Solut ion  

The temperature distribution is given by Eq. (9.2-37). Since ql -O ,  it reduces to 

(r/21 R ln(r) ,1, T = T 2 +  4k 1 -  ~ +~2k  
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The temperature, T1, at r = R1 is given by 

~}~R2 [ (R1) 2] ~R2 hi(R1 ) 
T 1 -  T2 + 4 k 1 -  -~2 + 2 k -~2 

Substitution of the numerical values into Eq. (2) gives 

or, 

280 = T2 + 
(5 • 106)(1.8 • 10-2) 2 

4(0.5) 

(5 • 106)(1.5 • 10-2) 2 
+ 

2(0.5) 

(2) 

1.5) 
In 1-~ (3) 

T2 = 237.6 ~ (4) 

9.2.2.2 Solid cyl inder  

Consider a solid cylinder of radius R with a constant surface temperature of TR. 
The solution obtained for a hollow cylinder, Eq. (9.2-28) is also valid for this case. 
However, since the temperature must have a finite value at the center, i.e., r - 0, 
then C1 must be zero and the temperature distribution becomes 

/0 1 [i ] k(T) dT - - - ~(u) udu  dr + C2 (9.2-41) 
r 

The use of the boundary condition 

at r = R T -  TR (9.2-42) 

gives the solution in the form 

k(T)  dT = - ~(u) u du dr (9.2-43) r 
II Case (i) k = c o n s t a n t  

Simplification of Eq. (9.2-43) gives 

R 1 ~ ( u ) u d u  dr (9.2-44) k(T- TR) - r 

1 C a s e  ( i i )  k = c o n s t a n t ;  ~ : c o n s t a n t  

In this case Eq. (9.2-43) simplifies to 

T - T R + ~ R 2  [ r 2] 
4k I - ( ~ )  (9.2-45) 

which implies that the variation of temperature with respect to the radial position 
is parabolic with the maximum temperature at the center of the pipe. 
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Macroscopic  equa t ion  

The integration of the governing equation, Eq. (9.2-26) over the volume of the 
system gives the macroscopic energy balance as 

r ~r r k r drdgdz = ~ r drdgdz (9.2-46) 

Integration of Eq. (9.2-46) yields 

/0 - k dT 2 r R L  = 2rL  ~ r dr 
r=-R 

Rate of energy out Rate  of energy generat ion 

(9.2-47) 

Equation (9.2-47) is the macroscopic energy balance under steady conditions by 
considering the solid cylinder as a system. It is also possible to make use of New- 
ton's law of cooling to express the rate of heat loss from the system to the sur- 
roundings at Too with an average heat transfer coefficient (h/. In this case Eq. 
(9.2-47) reduces to 

R (h) (TR -- Too) = ~ r dr (9.2-48) 

E x a m p l e  9.3 Rate of heat generation per unit volume, ~ ,  during the transmis- 
sion of an electric current through wires is given by 

where I is the current, k~ is the electrical conductivity, and R is the radius of the 
wire. 

a) Obtain an expression for the difference between the maximum and the surface 
temperatures of the wire. 
b) Develop a correlation that will permit the selection of the electric current and the 
wire diameter if the difference between the maximum and the surface temperatures 
is specified. I f  the wire must carry a larger current, should the wire have a larger 
or smaller diameter? 

Solution 

Assumption 

1. The thermal conductivity and the electrical conductivity of the wire are 
constant. 
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Analysis 

a) The temperature distribution is given by Eq. (9.2-45) as 

 n2[ r2] 
T = Ta + k i -  ( 5 )  (I) 

where TR is the surface temperature. The maximum temperature occurs at r = O, 
i.e., 

~ R 2 
T m ~ •  4---~ (2) 

or~ 
~e R 2 

Tmax - TR -- 4 k (3) 

b)  Expressing ~e in terms of I and ke gives 

1 ) 12 
Tm~ - TR = 47rkk~ - ~  (4) 

Therefore, if I increases, R must be increased in order to keep Tmax-  TR constant. 

Example 9.4 
R F at a rate of 

Energy is generated in a cylindrical nuclear fuel element of radius 

= ~o(I + # r 2) 

It is clad in a material of radius R c  and the outside surface temperature is kept 
constant at To by a coolant. Determine the steady temperature distribution in the 
fuel element. 

Solution 

The temperature distribution within the fuel element can be determined from Eq. 
(9.2-44), i.e., 

] kF(T F - Ti) - ~o - (1 + ~ u 2 ) u d u  dr (1) 
r 

or, 

T F = T ~ + - - ~ F -  1- -  ~ + - - ~ - 1 - -  ~ (2) 

in which the interface temperature Ti at r - RE is not known. To express Ti 
in terms of known quantities, consider the temperature distribution in a cladding. 
Since there is no internal generation within the cladding, the use of Eq. (D) in 
Table 8.3 gives 

To - T c 
- (3) 

To - T~ In(RE~Re) 



The energy flux at r = RF is continuous, i.e., 

dT F dT C 
- kF dr = - -  k c  d-- -r -  (4) 

Substitution of Eqs. (2) and (3) into Eq. (4) gives 

T~ = To + (5) 
zR~.) ~~ 1 +  

2kc ---5- 

2 

Therefore, the temperature distribution given by Eq. (2) becomes 

{ ( )2 ~OR2F r 
T F - T o -  4kF 1 -  -~F } 

~o R2F ln(Rc/RF)  ( 
1 +  

+ 2kc  
(6) 

T B , <hB> 

9 .2 .3  C o n d u c t i o n  in S p h e r i c a l  C o o r d i n a t e s  

9.2.3.1 Hol low sphere  

Consider one-dimensional transfer of energy in the r-direct ion through a hollow 
sphere of inner and outer radii of R1 and R2, respectively, as shown in Figure 9.8. 
Let ~ be the rate of generation per unit volume within the sphere. 

N ~  qr r+Ar 

~--Ar--~ 
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Figure 9.8 
generation. 

One-dimensional conduction through a hollow sphere with internal 

Since T = (r), Table C.6 in Appendix C indicates that the only non-zero energy 
flux component is e~ and it is given by 

er - qr - - k dT dr (9.2-49) 
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For a spherical differential volume of thickness Ar as shown in Figure 9.8, the 
inventory rate equation for energy, Eq. (9.2-1), is expressed as 

47r (r2q~)l~ - 47r (r2q~)[~+A~ + 47rr2Ar ~ = 0 (9.2-50) 

Dividing each term by 47tAr and taking the limit as Ar ~ 0 gives 

lim + N = 0 (9.2-51) 
At--+0 Ar 

or~ 
1 d 

r 2 dr (r2 qr) = R (9.2-52) 

Substitution of Eq. (9.2-49) into Eq. (9.2-52) gives the governing equation for 
temperature as 

l d ( r 2 k  d T )  
r 2 dr -~r -- ~ (9.2-53) 

Integration of Eq. (9.2-53) gives 

fo r -C--A1 (9.2-54) k dTdr - r 21 ~(u) u 2 dud  r2 

where u is the dummy variable of integration. Integration of Eq. (9.2-54) once 
more leads to 

/0 /0 [/0 T ~ 1 ~(u) u 2 C1 
k(T) dT "- - -~5 du dr - ~ + C2 

T 
(9.2-55) 

Evaluation of the constants C1 and C2 requires the boundary conditions to be 
specified. 

T y p e  I b o u n d a r y  condi t ion  

The solution of Eq. (9.2-55) subject to the boundary conditions 

at r - R 1  T = T1 
(9.2-56) 

at r - -  R2 T = T2 

is given by 

1 1 

k(T)  dT - k(T) dT - ~ -~ du dr 1 1 

R2 R1 

R 2 1  dul dr 

J 
(9.2-57) 

Note that when ~ = 0, Eq. (9.2-57) reduces to Eq. (C) in Table 8.5. Further 
simplification of Eq. (9.2-57) depends on the functional forms of k and ~. 
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m Case  (i) k = cons t an t  

In this case Eq. (9.2-57) reduces to 

1 1 

{ i/0  1 }R2 r k ( T - T 2 ) -  k ( T 1 - T 2 ) -  1 ~5 ~(u) u 2du dr 1 1 

R2 R1 

R2 1 du] dr 
J 

(9.2-58) 

When ~ = 0, Eq. (9.2-58) reduces to Eq. (D) in Table 8.5. 

m Case  (ii) k = cons tan t ;  ~ = cons t an t  

In this case Eq. (9.2-57) simplifies to 

1 1 

R2 R~ 

+ ---6k R2 
(9.2-59) 

T y p e  II b o u n d a r y  condi t ion  

The solution of Eq. (9.2-55) subject to the boundary conditions 

dT 
at r=R1 - k~z - - -q l  

at r = R2 T = T2 
(9.2-60) 

is given by 

T R2 1 du] dr / T 2 k ( T ) d T = ~  ~-~ [f0r ~(u) u2 

[ /0 ]( 1 + q ~ . ~  - ~ ( u )  u 2 au ~ 1)  (9.2-61) 
R~ 

Note that when ~ = 0, Eq. (9.2-61) reduces to Eq. (C) in Table 8.6. Further 
simplification of Eq. (9.2-61) depends on the functional forms of k and ~. 
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I Case (i) k = cons tan t  

In this case Eq. (9.2-61) reduces to 

Note that when ~ = 0, Eq. (9.2-62) reduces to Eq. (D) in Table 8.6 

1 

(9.2-62) 

I Case (ii) k = cons tant ;  ~ = cons tan t  

In this case Eq. (9.2-61) simplifies to 

T=T2+-~- 1- R2 + R2 ~ R 3 ) (  1 3  k r R21) (9.2-63) 

Macroscopic  equa t ion  

The integration of the governing equation, Eq. (9.2-53) over the volume of the 
system gives the macroscopic energy balance as 

1 d ( r 2 k d T )  r2 
r 2 dr -~r sin 0 drdOdr 

/o'/o"/." = N r 2 sin 0 drdOdr 
1 

(9.2-64) 

Integration of Eq. (9.2-64) yields 

47rR~ - 47r ~ r 2 dr dT 47r/~ + k -d--~r 
- ~=n2 , ' = n l  1 

~ , - -  I u. 

Net rate of energy out Rate of energy 
generation 

(9.2-65) 

Equation (9.2-65) is the macroscopic energy balance under steady conditions by 
considering the hollow sphere as a system. 

It is also possible to make use of the Newton's law of cooling to express the rate 
of heat loss from the system. If heat is lost from both surfaces, Eq. (9.2-65) can 
be written as 

f R  ~2 R~ (hA)(T1 - TA) + P~ (hs) (/12 -- TB) = ~ r  2 dr 
1 

(9.2-66) 

where T1 and T2 are the surface temperatures at r = R1 and r = R2, respectively. 
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9.2.3.2 Solid sphere  

Consider a solid sphere of radius R with a constant surface temperature of TR. 
The solution obtained for a hollow sphere, Eq. (9.2-55) is also valid for this case. 
However, since the temperature must have a finite value at the center, i.e., r = 0, 
then C1 must be zero and the temperature distribution becomes 

T r 1 du] dr + C2 L k ( T ) d T - - L  ~ [ L  ~ ( u ) u 2  (9.2-67) 

The use of the boundary condition 

at r = R  T = T R  

gives the solution in the form 

L" [L" ] k(T) d T =  ~(u) u 2 Tn -~ du dr 

m Case  (i) k - cons t an t  

(9.2-68) 

(9.2-69) 

Simplification of Eq. (9.2-69) gives 

R 1  [fo ~ 1 k(T - Tn) - -~ ~(u) u 2 du dr (9.2-70) 

m Case  (ii) k = cons tan t ;  ~ = cons t an t  

In this case Eq. (9.2-69) simplifies to 

T - T R +  6k 1 -  ~ (9.2-71) 

which implies that the variation of temperature with respect to the radial position 
is parabolic with the maximum temperature at the center of the sphere. 

Macroscop ic  equa t ion  

The integration of the governing equation, Eq. (9.2-53) over the volume of the 
system gives the macroscopic energy balance as 

/0/0/0 ( ) _ 2 .  . n 1 d dT r2 
r 2 dr r 2k -~r sin 9 drdgdr = ~ r 2 sin O drdOdr 

(9.2-72) 
Integration of Eq. (9.2-72) yields 

( ) /0 dT 41rR 2 = 47r N r 2 dr 

% j ~ i 

Rate  of energy out Rate  of energy 
generat ion 

(9.2-73) 
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Equation (9.2-73) is the macroscopic energy balance under steady conditions by 
considering the solid sphere as a system. It is also possible to make use of Newton's 
law of cooling to express the rate of heat loss from the system to the surroundings 
at Too with an average heat transfer coefficient (h>. In this case Eq. (9.2-73) 
reduces to 

R2(h> (TR - Too) - ~ r  2 dr (9.2-74) 

Example  9.5 Consider Example 3.2 in which energy generation as a result of 
fission within a spherical reactor of radius R is given as 

~ = ~ o [ 1 - ( R )  u] 

Cooling fluid at a temperature of Too flows over a reactor with an average heat 
transfer coefficient of <h}. Determine the temperature distribution and the rate of 
heat loss from the reactor surface. 

Solution 
The temperature distribution within the reactor can be calculated from Eq. (9.2-70). 
Note that 

/o /o[ u ~ ( u )  u 2 d u - ~ o  ~ 1 -  (-~) u 2 

r r 5 ) 
= No 3 5R 2 

du 

(i) 

Substitution of Eq. (1) into Eq. (9.2-70) gives 

i 
R 1 / r  3 

k ( T -  TR) = ~o -~ 3 
rs) 

5R 2 dr (2) 

Evaluation of the integration gives the temperature distribution as 

7 ~ ~  ~ ~  1 r 2 10 r 4] 

This result, however, contains an unknown quantity TR. Therefore, it is necessary 
to express TR in terms of the known quantities, i.e., Too and <h). 

One way of calculating the surface temperature, TR, is to use the macroscopic 
energy balance given by Eq. (9.2-7~), i.e., 

R 2 (h> (TR - T~) - ~o foo [1 lr2d  (4) 
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Equation (~) gives the surface temperature as 

2 ~oR 
Tn = Too ~ 15 (h) (5) 

Another way of calculating the surface temperature is to equate Newton's law of 
cooling and Fourier's law of heat conduction at the surface of the sphere, i.e., 

dT 
(h> (TR - T~)  = - k 

r = R  

(6) 

From Eq. (3) 
dT 
dr r - - R  

2 ~o R 2 

15k 
(7) 

Substituting Eq. (7) into Eq. (6) and solving for TR results in Eq. (5). 
Therefore, the temperature distribution within the reactor in terms of the known 

quantities is given by 

T - T ~  15 (h> t 60 k 2k ~ - ~ (8) 

The rate of heat loss can be calculated from Eq. (9.2-73) as 

(~to88 - 4~ ~o R 1 - ( - ~ )  r2 dr 

_ _ 8 7 r  ~ o  R 3 

15 
(9) 

Note that the calculation of the rate of heat loss does not require the temperature 
distribution to be known. 

9.3 H E A T  T R A N S F E R  W I T H  C O N V E C T I O N  

9 . 3 . 1  L a m i n a r  F l o w  F o r c e d  C o n v e c t i o n  in  a P i p e  

Consider the laminar flow of an incompressible Newtonian fluid in a circular pipe 
under the action of a pressure gradient as shown in Figure 9.9. The velocity 
distribution is given by Eqs. (9.1-79) and (9.1-84) as 

Vz=2(Vz> 1 -  ~ (9.3-1) 

Suppose that the fluid, which is at a uniform temperature of To for z < 0, is 
started to be heated for z > 0 and we want to develop the governing equation for 
temperature. 
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F i g u r e  9.9 Forced convection heat transfer in a pipe. 

In general, T = T(r ,  z) and from Table C.5 in Appendix C, the non-zero energy 
flux components are 

OT 
er = - k 0--r- (9.3-2) 

OT 
ez - - k  ~ + ( p C p T ) v z  (9.3-3) 

Since there is no generation of energy, Eq. (9.2-1) simplifies to 

(Rate of energy in) - (Rate of energy out) = 0 (9.3-4) 

For a cylindrical differential volume element of thickness Ar  and length Az, as 
shown in Figure 9.9, Eq. (9.3-4) is expressed as 

(9.3-5) 
Dividing Eq. (9.3-5) by 2~ Ar  Az and taking the limit as Ar  -~ 0 and Az ~ 0 
gives 

- 

lira ~ + lim r = 0 (9.3-6) 
Ar--*O Ar  Az-.O Az 

or, 
10(re,) 
r Or ~- ~ - 0 (9.3-7) 
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Substitution of Eqs. (9.3-2) and (9.3-3)into Eq. (9.3-7) yields 

p .v aT k a ( O T )  a:T  
- 0 r r + k O z 2 

Convect ion in Conduc t ion  in Conduc t ion  in 
z - d i r e c t i o n  r - d i r e c t i o n  z - d i r e c t i o n  

(9.3-8) 

Note that in the z-direction energy is transported both by convection and conduc- 
tion. As stated by Eq. (2.4-8), conduction can be considered negligible with respect 
to convection when Pert >> 1. Under these circumstances, Eq. (9.3-8) reduces to 

p~pv  OT k 0 ( O T )  
Oz = r  Or r-~r (9.3-9) 

As an engineer, we are interested in the variation of the bulk fluid temperature, 
Tb, rather than the local temperature, T. For forced convection heat transfer in a 
circular pipe of radius R, the bulk fluid temperature defined by Eq. (4.1-2) takes 
the form 

~o2~foRvzTrdrdO 
Tb = 

fo2~fonvzrdrdO 

Note that while the fluid temperature, T, depends on both the radial and the axial 
coordinates, the bulk temperature, Tb, depends only on the axial direction. 

To determine the governing equation for the bulk temperature, it is necessary 
to integrate Eq. (9.3-9) over the cross-sectional area of the pipe, i.e., 

p Cp v z -~z r dr dO - k - r -~r r -~r r d r d O  (9.3-11) 

Since vz ~ vz(z), the integral on the left-side of Eq. (9.3-11) can be rearranged as 

v~ ~ r drdO = O-z- r drdO 

= d---s v~ T r drdO (9.3-12) 

Substitution of Eq. (9.3-10) into Eq. (9.3-12) yields 

foo2~fon OT d f2 ,  f n  I Vz -~z r drdO - -~z TbJo ]o v~ r drdO} 

<~>~n~ / 

zh dTb 
= (9.3-13) 

p dz 



9.3. H E A T  T R A N S F E R  W I T H  C O N V E C T I O N  363 

where rh is the mass flow rate given by 

~h = p<v~)~R 2 (9.3-14) 

On the other hand, since OT/Or = 0 as a result of the symmetry condition at 
the center of the tube, the integral on the right-side of Eq. (9.3-11) takes the form 

j~02~~R 1 0 ( O T ]  OT (9.3-15) 
r -~r r -~r r d r d O = 2 7~ R -~r r = R 

Substitution of Eqs. (9.3-13) and (9.3-15) into Eq. (9.3-11) gives the governing 
equation for the bulk temperature in the form 

dTb OT 
(~p ~ = ~ D k -~r 

r - - R  

(9.3-16) 

The solution of Eq. (9.3-16) requires the boundary conditions associated with 
the problem to be known. The two most commonly used boundary conditions are 
the constant wall temperature and constant wall heat flux. 

C o n s t a n t  wall t e m p e r a t u r e  

Constant wall temperature occurs in evaporators and condensers in which phase 
change takes place on one side of the surface. The heat flux at the wall can be 
represented either by Fourier's law of heat conduction or by Newton's law of cooling, 
i . e . ~  

OT - h (T~ - Tb) (9.3-17) 

It is implicitly implied in writing Eq. (9.3-17) that the temperature increases in the 
radial direction. Substitution of Eq. (9.3-17) into Eq. (9.3-16) and rearrangement 
yields 

dn Cp .. T ,  - Tb = •O h dz (9.3-18) 

Since the wall temperature, Tw, is constant, integration of Eq. (9.3-18) yields 

r h ~ p l n (  T~-TD~,.  ) T~ - Tb = ~D<h)zz (9.3-19) 

in which (h)z is the average heat transfer coefficient from the entrance to the point 
z defined by 

1 h d z  (9.3-20) - - - -  m 
(h)~ z 

If Eq. (9.3-19) is solved for Tb, the result is 

Tb -- T~ - (T~ - Tb,~)exp - = } z (9.3-21) 
~nCp j 
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which indicates that the bulk fluid temperature varies exponentially with the axial 
direction as shown in Figure 9.10. 

Y / 

F igu re  9.10 Variation of the bulk temperature with the axial direction for a 
constant wall temperature. 

Evaluation of Eq. (9.3-19) over the total length, L, of the pipe gives 

ThCp ln ( T~ - Tb~" ) - TDo~,~ 

where 

(9.3-22) 

lf0  < h ) -  ~ hdz (9.3-23) 

If Eq. (9.3-22) is solved for Tbo~t, the result is 

Tbo~t - Tw - (T~ - Tb~.)exp [- ( 7~D<h>m~P ) L] (9.3-24) 

Equation (9.3-24) can be expressed in terms of dimensionless numbers with the 
help of Eq. (3.4-5), i.e., 

Nu (h} 
Stn = a e P r  - p(v~)Cp 

(h) 
= [dn/(TrD2/4)] ~,p (9.3-25) 

The use of Eq. (9.3-25) in Eq. (9.3-24) gives 

Tbo,=.  T~ - ( T ~  - Tb,.)exp [ -  4Nu(L/D)]Re Pr (9.3-26) 

As an engineer, we are interested in the rate of heat transferred to the fluid, 
i.e., 

Q, = dn Op(Tbou, - Tb,,,) -- m OR [(Tw - Tb,~) - (T~ - Tbo,,,)] (9.3-27) 
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Substitution of Eq. (9.3-22) into Eq. (9.3-27) results in 

= (TrDL)(h) (Tw - Tb~,~) - ( T w  - Tbo~,~) (9.3-28) 

Note that Eq. (9.3-28) can be expressed in the form 

(~ = A H ( h ) ( A T ) c h  - ( 7 r D L ) ( h ) A T L M  

which is identical with Eqs. (3.2-7) and (4.5-29). 

(9.3-29) 

Cons t an t  wall heat  flux 

Constant wall heat flux type boundary condition is encountered when electrical 
resistance is wrapped around the pipe. Since the heat flux at the wall is constant, 
then 

0T 
= - q~ = constant (9.3-30) 

Substitution of Eq. (9.3-30) into Eq. (9.3-16) gives 

d Tb 7r D q ,~ 
d-~- - rhCp -- constant (9.3-31) 

Integration of Eq. (9.3-31) gives the variation of the bulk temperature in the axial 
direction as 

Tb -- Tb ~,~ 4r- rh 6'p z (9.3-32) 

Therefore, the bulk fluid temperature varies linearly in the axial direction as shown 
in Figure 9.11. 

Tb 

F igure  9.11 Variation of the bulk temperature with the axial direction for a 
constant wall heat flux. 
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Evaluation of Eq. (9.3-32) over the total length gives the bulk temperature at 
the exit of the pipe as 

Tbo~,,=Tb,,~+ ~nOp L 

4q~L 
: Tb,~ + k Re Pr (9.3-33) 

The rate of heat transferred to the fluid is given by 

(~ - {n O p ( Tb o u ~ -- Tb,,) (9.3-34) 

Substitution of Eq. (9.3-33) into Eq. (9.3-34) yields 

( ~ -  (TrDL)q~ (9.3-35) 

9.3.1.1 T h e r m a l l y  developed flow 

As stated in Section 8.1, when the fluid velocity is no longer dependent on the axial 
direction z, the flow is said to be hydrodynamically fully developed. In the case of 
heat transfer, if the ratio 

T - Tb 
T~ - Tb (9.3-36) 

does not vary along the axial direction, then the temperature profile is said to be 
fully developed. 

It is important to note that although the fluid temperature, T, bulk fluid tem- 
perature, Tb, and wall temperature, T~, may change along the axial direction, the 
ratio given in Eq. (9.3-36) is independent of the axial coordinate 2, i.e., 

0 ( T - T b ) = O  (9.3-37) 
0----~ ~ - T b  

Equation (9.3-37) indicates that 

O z : Z ,  - Tb -~z + Z ,  - Tb d z 

E x a m p l e  9.6 For a thermally developed flow of a fluid with constant physical 
properties, show that the heat transfer coefficient is constant. 

2In the literature, the condition for the thermally developed flow is also given in the form 

O--z Tw --Tb : 0  

Note that 
T. -T T-Tb 

:1-- 
T ~ - %  T ~ - %  
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Solut ion  

For a thermally developed flow, the ratio given in Eq. (9.3-36) depends only on the 
radial coordinate r, i. e., 

T - Tb 
= f(r) (I) 

T~o - Tb 
Differentiation of Eq. (1) with respect to r gives 

OT df 
o r  - (T~ - Tb) ~rr (2) 

which is valid at all points within the flow field. Evaluation of Eq. (2) at the surface 
of the pipe yields 

df 
~  - (T~ - Tb) ~rr (3) 
Or r=R r:R 

On the other hand, the heat flux at the wall is expressed as 

OT - h (Tw - Tb) (4) 

Substitution of Eq. (3) into Eq. (~) gives 

d: 
h - k -~r - constant (5) 

r ' - R  

E x a m p l e  9.7 For a thermally developed flow, show that the temperature gradient 
in the axial direction, OT/Oz, remains constant for a constant wall heat flux. 

Solut ion  

The heat flux at the wall is given by 

qrlr=R = h (T~ - Tb) -- constant (1) 

Since h is constant for a thermally developed flow, Eq. (1) implies that 

T~ - Tb = constant (2) 

or, 
dT~ 

dz 
Therefore, Eq. (9.3-38) simplifies to 

d% 

dz 
(3) 

OT dTb dT~ 
Oz = dz = dz (4) 

Since dTb/dz is constant according to Eq. (9.3-31), OT/Oz also remains constant, 
i.e., 

OT dTb dT~ ~Dq~ 
Oz = dz = dz = rhCp = c~ (5) 
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9.3.1.2 Nusse l t  n u m b e r  for a t he rma l ly  developed flow 

Substitution of Eq. (9.3-1)into Eq. (9.3-9) gives 

[ ( ) r ]OT k 0 ( O T )  (9.3-39) 2pCp{vz) 

It should always be kept in mind that the purpose of solving the above equation for 
temperature distribution is to obtain a correlation to use in the design of heat trans- 
fer equipment, such as, heat exchangers and evaporators. As shown in Chapter 4, 
heat transfer correlations are expressed in terms of the Nusselt number. Therefore, 
Eq. (9.3-39) will be solved for a thermally developed flow for two different types of 
boundary conditions, i.e., constant wall heat flux and constant wall temperature, 
to determine the Nusselt number. 

C o n s t a n t  wall heat  flux 

In the case of a constant wall heat flux, as shown in Example 9.7, the temperature 
gradient in the axial direction is constant and expressed in the form 

OT ~r D q~ 7r D q~ 
Oz = dn OF - [p(Vz)(TrR2)] Cp constant (9.3-40) 

Since we are interested in the determination of the Nusselt number, it is appropriate 
to express OT/Oz in terms of the Nusselt number. Note that the Nusselt number 
is given by 

hD [qw/(Tw - Tb)] D 
N u -  

k k 
Therefore, Eq. (9.3-40) reduces to 

OT Nu(T~ - Tb) k 

Substitution of Eq. (9.3-42) into Eq. (9.3-39) yields 

In terms of the dimensionless variables 

T - Tb O= 
T~ - Tb 

r 

Eq. (9.3-43) takes the form 

2 N u ( 1 - ~ 2 ) = ~ d - ~  ~d_~ 

I O ( O T )  
r Or r-~r 

(9.3-41) 

(9.3-42) 

(9.3-43) 

(9.3-44) 

(9.3-45) 

(9.3-46) 
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It is important to note that 0 depends only on ~ (or, r). 
The boundary conditions associated with Eq. (9.3-46) are 

dO 
at ~ -  0 m = 0 (9.3-47) 

d~ 

at ~ -- 1 0 -- 1 (9.3-48) 

Integration of Eq. (9.3-46) with respect to ~ gives 

d-~ ~2 _ (9.3-49) = ~- Nu +C1 

where C1 is an integration constant. Application of Eq. (9.3-47) indicates that 
C1 - 0. Integration of Eq. (9.3-49) once more with respect to ~ and the use of the 
boundary condition given by Eq. (9.3-48) gives 

Nu (3 - 4 ~2 0 = 1 - - T  + ~4) (9.3-50) 

On the other hand, the bulk temperature in dimensionless form can be expressed 
as 

Tb -- Tb fj01(1 _ (2) 0 ~ d~ 

Ob = Tw - Tb = 0 = 1 (9.3-51) 
0 (1 - ~ 2 ) ~ d ~  

Substitution of Eq. (9.3-50) into Eq. (9.3-51) and integration gives the Nusselt 
number as 

N u -  42 (9.3-52) 
11 

C o n s t a n t  wall  t e m p e r a t u r e  

When the wall temperature is constant, Eq. (9.3-38) indicates that 

O-Z-T = ( T~ - T ) z T~ - Tb dz (9.3-53) 

The variation of Tb as a function of the axial position can be obtained from Eq. 
(9.3-21) as 

dTb 7rD(h)z (T,, ' Tb,~)exp[ (TrD(h)~,) ] = ~ - - : z (9.3-54) 
dz mop  mCp 

(Tw-T~) 
Since the heat transfer coefficient is constant for a thermally developed flow, Eq. 
(9.3-54) becomes 

dTb 7tO h ( Tw - Tb) 4 h ( Tw - Tb) 
d-~= m C p  = D(vz)p(]p (9.3-55) 
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The use of Eq. (9.3-55) in Eq. (9.3-53) yields 

OT 4h (Tw - T) 
0 ---~= D(v~)pCp (9.3-56) 

Substitution of Eq. (9.3-56)into Eq. (9.3-39) gives 

8 r 2] 1 0 (rOT 
D___ 5 ( ~ ~ D _ ) [ 1 - ( ~ )  ( T w - T ) -  r Or -~r) (9.3-57) 

In terms of the dimensionless variables defined by Eqs. (9.3-44) and (9.3-45), Eq. 
(9.3-57) becomes 

2 Nu (1 - ~2)(1 - 0) - sr (9.3-58) 

The boundary conditions associated with Eq. (9.3-58) are 

dO 
at ~ = 0 d--~ = 0 (9.3-59) 

at ~ - - 1  

Note that the use of the substitution 

0 -  1 (9.3-60) 

u - 1 - 0 (9.3-61) 

reduces Eqs. (9.3-58)-(9.3-61)to 

l d ( d u )  - 2 Nu (1 - ~2)u = ~ ~-~ ~ ~-~ (9.3-62) 

du 
at ~ = 0  - - = 0  (9.3-63) 

d~ 

at ~ = 1  u = 0  (9.3-64) 

Equation (9.3-62) can be solved for Nu by the method of Stodola and Vianello as 
explained in Section B.3.4.1 in Appendix B. 

A reasonable first guess for u which satisfies the boundary conditions is 

ul - 1 - ~2 (9.3-65) 

Substitution of Eq. (9.3-65) into the left-side of Eq. (9.3-62) gives 

d ( d u )  ~3 ~5 =-2Nu( -2 + ) 

The solution of Eq. (9.3-66) is 

u=Nu( 11-18~2+9~4-2~6)36 
fl(O 

(9.3-66) 

(9.3-67) 
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Therefore, the first approximation to the Nusselt number is 

N u  (1) __ ~01 ~(1 - ~ 2 ) 2 f 1 ( ~ )  d~ 

~o 1~(1 -- ~2)f12 (~) d~ 
(9.3-68) 

Substitution of fl(~) from Eq. (9.3-67) into Eq. (9.3-68) and evaluation of the 
integrals gives 

Nu = 3.663 (9.3-69) 

On the other hand, the value of the Nusselt number, as calculated by Graetz (1883, 
1885) and later independently by Nusselt (1910), is 3.66. Therefore, for a thermally 
developed laminar flow in a circular pipe with constant wall temperature Nu = 3.66 
for all practical purposes. 

E x a m p l e  9.8 Water flows through a circular pipe of 5 cm internal diameter with 
an average velocity of 0.01 m/s .  Determine the length of the pipe to increase the 
water temperature from 20 ~ to 60 ~ for the following conditions: 

a) Steam condenses on the outer surface of the pipe so as to keep the surface 
temperature at 100 ~ 
b) Electrical wires are wrapped around the outer surface of the pipe to provide a 
constant wall heat flux of 1500 W / m  2. 

Solution 

Physica l  p rope r t i e s  

The mean bulk temperature is (20 + 60)/2 = 40~ (313 K). 

p = 992 kg /m 3 

For water at 313 K �9 # - 654 x 10 -6 kg/m. s 
k = 632 x 10 -3 W / m .  K 
Pr = 4.32 

Assumptions 

1. Steady-state conditions prevail. 

2. Flow is hydrodynamically and thermally fully developed. 

Analysis 

The Reynolds number is 

D(vz)p 
R e -  

# 

(0.05)(0.0 )(992) 
654 x 10 -6 

= 758 Laminar flow 
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a) Since the wall temperature is constant, from Eq. (9.3-26) 

L = DReP-------~rln( T~-Tb~" ) 
4Nu  T~ - Tbo~, 

(0.05)(758)(4.32) (lOO- 2o) _ 7.8m 
= 4(3.66) In 1 0 0 -  60 

b) For a constant heat flux at the wall, the use of Eq. (9.3-33) gives 

( Tbo~ - Tb~) k Re Pr 
L =  

4q~ 

= ( 6 0 -  20)(632 • 10-3)(758)(4.32) = 13.8 m 

4(1500) 

9 . 3 . 2  V i s c o u s  H e a t i n g  i n  a C o u e t t e  F l o w  

Viscous heating becomes an important  problem during flow of liquids in lubrica- 
tion, viscometry and extrusion. Let us consider Couette flow of a Newtonian fluid 
between two large parallel plates as shown in Figure 9.12. The surfaces at x = 0 
and x = B are maintained at To and T1, respectively, with To > T1. 

F i g u r e  9.12 Couette flow with heat transfer. 

Rate  of energy generation per unit volume as a result of viscous dissipation is 
given by 3 

(ev ) 
- # dx ] (9.3-70) 

ZThe origin of this term comes from --(T : Vv), which represents the irreversible degradation of 
mechanical energy into thermal energy in the equation of energy. For a more detailed discussion 
on the subject, see Bird et. al. (1960). 
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The velocity distribution for this problem is given by Eq. (8.1-12) as 

v z = l  x 
V B (9.3-71) 

The use of Eq. (9.3-71) in Eq. (9.3-70) gives the rate of energy generation per unit 
volume as 

~ _  # V2 
B2 (9.3-72) 

The boundary conditions for the temperature, i.e., 

at x - 0 T - To (9.3-73) 

at x -  B T -  T1 (9.3-74) 

suggest that T - T ( x ) .  Therefore, Table C.4 in Appendix C indicates that the 
only non-zero energy flux component is ex and it is given by 

d T  
ex - qx = - k d x  (9.3-75) 

For a rectangular volume element of thickness Ax, as shown in Figure 9.12, Eq. 
(9.2-1) is expressed as 

qx[~ W L  - q~l~+A~ W L  + W L  A x  --  0 (9.3-76) 

Dividing each term by W L  A x  and taking the limit as Ax ~ 0 gives 

lira q~ - qx [~+Ax [ # V 2 
A~--,0 Ax B2 = 0 (9.3-77) 

or, 
dqx # V 2 

+ = 0 (9.3-78) 
d x  B 2 

Substitution of Eq. (9.3-75) into Eq. (9.3-78) gives the governing equation for 
temperature as 

d 2 T  tt V 2 
k ~ +  B2 = 0  (9.3-79) 

Note that in the development of Eq. (9.3-79) both viscosity and thermal conduc- 
tivity are assumed independent of temperature. The physical significance and the 
order of magnitude of the terms in Eq. (9.3-79) are given in Table 9.1. Therefore, 
the ratio of the viscous dissipation to conduction, which is known as the B r i n k m a n  

number ,  is given by 

Viscous dissipation # V 2 / B  2 # V 2 

Br - Conduction = k (To - T 1 ) / B  2 = k (To - T1) (9.3-80) 
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Table 9.1 
Eq. (9.3-79). 

The physical significance and the order of magnitude of the terms in 

Term Physical Significance Order of Magnitude 

d2 T k (To - T1) 
k Conduction 

dx 2 B 2 

# V 2 # V 2 
B2 Viscous dissipation B2 

Before solving Eq. (9.3-79), it is convenient to express the governing equation 
and the boundary conditions in dimensionless form. Introduction of the dimen- 
sionless quantities 

T - T 1  
0 = (9.3-81) 

To-T1 
X 

= ~ (9.3-82) 

reduces Eqs. (9.3-79), (9.3-73) and (9.3-74)to 

d20 
d-- ~ = -  Br (9.3-83) 

at ~ = 0 0 - 1 (9.3-84) 

at ~ = 1 0 -  0 (9.3-85) 

Integration of Eq. (9.3-83) twice gives 

0 - Br ~2 + C1 ~ + C2 (9.3-86) 
2 

Application of the boundary conditions, Eqs. (9.3-84) and (9.3-85), gives the solu- 
tion as 

0 =  Br2 ~2+ ( B r _  1)~C+l  (9.3-87) 

Note that when Br - 0, i.e., no viscous dissipation, Eq. (9.3-87) reduces to Eq. 
(8.3-10). The variation of 0 as a function of ~ with Br as a parameter is shown in 
Figure 9.13. 

In engineering calculations, it is more appropriate to express the solution in 
terms of the Nusselt number. Calculation of the Nusselt number, on the other 
hand, requires the evaluation of the bulk temperature defined by 

]oW/oo B /o vz T dxdy v~, T dx 

Tb = = (9.3-88) 

/0 /0 ~ /0 ~ v~ dxdy v~ dx 
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F igu re  9.13 

1.2 

1 

0.8 

0 
0.6 

0.4 

0.2 

Br=4 

~ ' x  Br = 3 

_ 

~  o:~ o, o6 o~ , 

Variation of/9 as a function of ~ with Br as a parameter. 

In dimensionless form, Eq. (9.3-88) becomes 

Tb - T1 
Ob=To_T~ 

~00 1 r O d~ 

f0 ~ r 

where 
Vz r  

Substitution of Eqs. (9.3-71) and (9.3-87)into Eq. (9.3-89) gives 

0 b -- 
Br +8 

12 

(9.3-89) 

(9.3-90) 

(9.3-91) 

Ca lcu la t ion  of the  Nusse l t  n u m b e r  for the  b o t t o m  p la te  

The heat flux at the bottom plate is expressed as 

dT -k-~z 
x = 0  

- < h ) o ( T o  - T b )  

Therefore, the Nusselt number becomes 

N u  o - -  
<h)o(2B) 

= 2B 
-(dT/dx)x=o 

T o - %  

(9.3-92) 

(9.3-93) 



376 CHAPTER 9. S T E A D Y  MICROSCOPIC BALANCES  WITH GEN. 

Note that  the term 2B in the definition of the Nusselt number represents the 
hydraulic equivalent diameter for parallel plates. In dimensionless form Eq. (9.3- 
93) becomes 

2 (dO/dC~)~=o 
Nuo = 0 b -  1 (9.3-94) 

The use of Eq. (9.3-87)in Eq. (9.3-94) gives 

N u ~  Br-2)Br-4 (9.3-95) 

Note that Nuo takes the following values depending on the value of Br : 

: B r - 2  
N u o -  0 2 < Br < 4 

oc B r -  4 
(9.3-96) 

When Br = 2, the temperature gradient at the lower plate is zero, i.e., adiabatic 
surface. When 2 < Br < 4, as can be seen from Figure 9.13, temperature reaches a 
maximum within the flow field. For example, for Br = 3, 0 reaches the maximum 
value of 1.042 at ( = 0.167 and heat transfer takes place from the fluid to the lower 
plate. When Br = 4, 0b = 1 from Eq. (9.3-91) and, as a result of very high viscous 
dissipation, Tb becomes uniform at the value of To. Since the driving force, i.e., 
To - Tb, is zero, Nuo is undefined under these circumstances. 

Ca lcu la t ion  of the  Nusse l t  n u m b e r  for t he  u p p e r  p la te  

The heat flux at the upper plate is 

dT 

x--B 
= ( h ) l  (T1 - Tb) ( 9 . 3 - 9 7 )  

Therefore, the Nusselt number becomes 

N u  1 - -  
(h)l (2B) = 2B (dT/dx)x=s 

k T 1 - T b  
2 (dO/d~)r 

Ob 

Substitution of Eq. (9.3-87) into Eq. (9.3-98) gives 

N u l - 1 2 (  Br+2)Br+8 

(9.3-98) 

(9.3-99) 
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9.4  M A S S  T R A N S F E R  W I T H O U T  
C O N V E C T I O N  

Under steady conditions, the conservation statement for species .2, is expressed by 

(Rateof) (Rate of ) ( Rate of ) 
species ,4 in - species r out + species A generation --0 (9.4-I) 

In this section we restrict our analysis to cases in which convection is negligible 
and mass transfer takes place mainly by diffusion. 

9 . 4 . 1  D i f f u s i o n  i n  a L i q u i d  W i t h  H o m o g e n e o u s  R e a c t i o n  

Gas A dissolves in liquid B and diffuses into the liquid phase as shown in Figure 
9.14. As it diffuses, species r undergoes an irreversible chemical reaction with 
species B to form .AB, i.e., 

A + B  ~ A B  

The rate of reaction is expressed by 

r - - k C A  

We are interested in the determination of concentration distribution within the 
liquid phase and the rate of depletion of species ,4. 

L 

Figure 9.14 

GasA 

~ ._  ' ,, 

CA o 

Liquid B 

Tz 

Diffusion and reaction in a liquid. 

The problem will be analyzed with the following assumptions: 

1. Steady-state conditions prevail. 

2. The convective flux is negligible with respect to the molecular flux, i.e., 
}g 'm" O .  V z 

3. The total concentration is constant, i.e., 

C -~- C A -+- C B Jr- C A B  ""  C B 
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4. The concentration of .AB does not interfere with the diffusion of .A through 
B, i.e., r molecules, for the most part, hit molecules B and hardly ever hit 
molecules AB. This is known as the pseudo-binary behavior. 

Since CA = CA(Z), Table C.8 in Appendix C indicates that the only non-zero 
molar flux component is N Az and it is given by 

dcn 
NAz - -  J ~  - - :DAB ~ Z  (9.4-2) 

For a differential volume element of thickness Az, as shown in Figure 9.14, Eq. 
(9.4-1) is expressed as 

NAz [z A -  NA.  [z+Az A + ~ A  A Az = 0 (9.4-3) 

Dividing Eq. (9.4-3) by A Az and taking the limit as Az --. 0 gives 

lim + ~}~A -- 0 (9.4-4) 
Az-~0 Az 

or, 
dNA z 

dz 
t- ~A = 0 (9.4-5) 

The use of Eq. (5.3-26) gives the rate of depletion of species ,4 per unit volume as 

~A = -- k cA (9.4-6) 

Substitution of Eqs. (9.4-2) and (9.4-6) into Eq. (9.4-5) yields 

d2 cA 
"DAB dz 2 -- k cA = O (9.4-7) 

The boundary conditions associated with the problem are 

at z = 0 CA -- CAo (9.4-8) 

dcn 
at z - - L  "dz = 0  (9.4-9) 

The value of CAo in Eq. (9.4-8) can be determined from Henry's law. The boundary 
condition given by Eq. (9.4-9) indicates that since species A cannot diffuse through 
the bottom of the container, i.e., impermeable wall, then, the molar flux and the 
concentration gradient of species A are zero. 

The physical significance and the order of magnitude of the terms in Eq. (9.4-7) 
are given in Table 9.2. Therefore, the ratio of the rate of reaction to the rate of 
diffusion is given by 

Rate of reaction k CAo k L 2 
= = (9.4-10) 

Rate of diffusion :DABCAo / L  2 :DAB 
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Tab le  9.2 The physical significance and the order of magnitude of the terms in 
Eq. (9.4-7). 

Term Physical Significance Order of Magnitude 

d 2 CA CAo 
"DAB dz 2 Rate of diffusion "DAB L2: 

k C A Rate of reaction k CA., 

and the Thiele modulus, A, is defined by 

/ kL 2 
A -  ~/ 

V DAB 

Introduction of the dimensionless quantities 

_ _  

CA 

CAo 
(9.4-12) 

z 

reduces Eqs. (9.4-7)-(9.4-9) to the form 

(9.4-13) 

d20 
= A20 (9.4-14) 

d~ 2 

at ~ = 0 0 = 1 (9.4-15) 

dO 
at ~ = 1 ,-7 = 0 (9.4-16) 

q a  

Note that  Eqs. (9.4-14)-(9.4-16) are exactly equivalent to Eqs. (8.2-85)-(8.2-87). 
Therefore, the solution is 

cosh [A(1 - ~)] 
0 = coshA (9.4-17) 

It is interesting to observe how the Thiele modulus affects the concentration distri- 
bution. Figure 9.15 shows variation of 0 as a function of ~ with A being a parameter. 
Since the Thiele modulus indicates the rate of reaction with respect to the rate of 
diffusion, A = 0 implies no chemical reaction and hence, 0 = 1 (CA = CAo) for all 
~. Therefore, for very small values of A, 0 is almost unity throughout the liquid. 
On the other hand, for large values of A, i.e., rate of reaction >> rate of diffusion, 
as soon as species r enters the liquid phase, it undergoes a homogeneous reaction 
with species B. As a result, species .4 is depleted before it reaches the bot tom of 
the container. Note that  the slope of the tangent to the curve drawn at ~ = 1 has 
a zero slope, i.e., parallel to the ~-axis.  
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Figure  9.15 Variation of 0 as a function of ~ with A being a parameter. 

9.4.1.1 Macroscopic equat ion 

Integration of the microscopic level equations over the volume of the system gives 
the equations at the macroscopic level, integration of Eq. (9.4-7) over the volume 
of the system gives 

/0 /02 /0 R d2cA ~AB dz 2 r drdOdz - k C A r drdOdz (9.4-18) 

Carrying out the integrations yields 

dcA 

�9 % j 

Rate of moles of species ,4 
entering into the liquid 

~0 L ~R 2 k CA dz 

Rate of depletion of species r 
by homogeneous chem. rxn. 

(9.4-19) 

Note that Eq. (9.4-19) is the macroscopic inventory rate equation for species A by 
considering the liquid in the tank as a system. Substitution of Eq. (9.4-17) into 
Eq. (9.4-19) gives the molar rate of depletion of species ,4,/~A, as 

~ A - -  
~R2 ~AB CAo t a n h  A 

L 
(9.4-20) 
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9 . 4 . 2  D i f f u s i o n  in  a S p h e r i c a l  P a r t i c l e  W i t h  H o m o g e n e o u s  

R e a c t i o n  

Consider a homogeneous spherical aggregate of bacteria of radius R as shown in 
Figure 9.16. Species .4 diffuses into a bacteria and undergoes an irreversible first- 
order reaction. The concentration of species A at the surface of the bacteria, CAR is 
known. We want to determine the rate of consumption of species ,4. The problem 
will be analyzed with the following assumptions: 

1. Steady-state conditions prevail. 

2. Convective flux is negligible with respect to the molecular flux, i.e., v* ~_ 0. 

3. The total concentration is constant. 

%1 

Figure  9.16 Diffusion and homogeneous reaction inside a spherical particle. 

Since CA = cA(r), Table C.9 in Appendix C indicates that the only non-zero 
molar flux component is NA~ and it is given by 

dcA 
NA~ - -  J~4~ = - DAB dr (9.4-21) 

For a spherical differential volume element of thickness At, as shown in Figure 
9.16, Eq. (9.4-1) is expressed in the form 

NA,. [r 47rr2 -- NA,~ 47r(r + Ar) 2 + 47rr 2 Ar ~A : 0 (9.4-22) 

Dividing Eq. (9.4-22) by 47rAt and taking the limit as Ar --, 0 gives 

lim (r2NA~)I~--(~2NA~)[~+~ 
zx~o Ar + ~A = 0 (9.4-23) 

or~ 
d(r2NA~) 

dr 
+ r 2 ~A = 0 (9.4-24) 
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The use of Eq. (5.3-26) gives the rate of depletion of species ~4 per unit volume as 

~A ~-- - - k c A  (9.4-25) 

Substitution of Eqs. (9.4-21) and (9.4-25) into Eq. (9.4-24) gives 

:DAB d ( r  2 dcA~ 
r 2 dr ~ ] - k CA -- 0 (9.4-26) 

in which the diffusion coefficient is considered constant. The boundary conditions 
associated with Eq. (9.4-26) are 

at r -- 0 dcA = 0 (9.4-27) 
dr 

at r - R CA -- CA R (9.4-28) 

The physical significance and the order of magnitude of the terms in Eq. (9.4-26) 
are given in Table 9.3. 

Table 9.3 
Eq. (9.4-26). 

The physical significance and the order of magnitude of the terms in 

Term Physical Significance Order of Magnitude 

: D A B d ( d C A )  
r 2 dr r2--dT-r 

kCA 

Rate of diffusion 

Rate of reaction 

CAR 
:DAB R2 

CAn 

Therefore, the ratio of the rate of reaction to the rate of diffusion is given by 

Rate of reaction 
Rate of diffusion 

kCAR k R 2 

~)AB CAR/R 2 ~)AB 
(9.4-29) 

and the Thiele modulus, A, is defined by 

/k R2 
A- (9.4-30) 

Introduction of the dimensionless quantities 

0-- CA 
CAR 

(9.4-31) 

r 
(9.4-32) 
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reduces Eqs. (9.4-26)-(9.4-28) to 

l d ( d O )  
(2 d~ ~2d_~ - A  2 0 - 0  (9.4-33) 

dO 
at ~ - 0 d--~ = 0 (9.4-34) 

at ~ = 1 0 = 1 (9.4-35) 

Problems in spherical coordinates are converted to rectangular coordinates by 
the use of the following transformation 

0 = u(~c) (9.4-36) 

From Eq. (9.4-36), note that  

dO 1 du u 
d~ ~ d~ ~2 

~2 dO du 
= - 

d(do) d( ~2 __ u du 
- -  -~ -~ + ~ d~ 2 d~ = ~ d~ 2 

Substitution of Eqs. (9.4-36) and (9.4-39)into Eq. (9.4-33) yields 

d2u 
_ A 2 u = 0  

d~ 2 

On the other hand, the boundary conditions, Eqs. (9.4-34) and (9.4-35), become 

(9.4-37) 

(9.4-38) 

(9.4-39) 

(9.4-40) 

at ~ = 0 u = 0 (9.4-41) 

at ~ = 1 u = 1 (9.4-42) 

The solution of Eq. (9.4-40) is 

0 : ~ ' 1  sinh(A~) + / ( 2  cosh(A~) (9.4-43) 

where /(1 and /(2 are constants. Application of the boundary conditions, Eqs. 
(9.4-41) and (9.4-42), gives the solution as 

sinh(A() 
u - sinh A (9.4-44) 

or, 

CA R sinh [h(r/R)] 
CAR r sinh A 

(9.4-45) 
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9.4.2.1 Macroscopic  equa t ion  

Integration of the governing differential equation, Eq. (9.4-26), over the spherical 
aggregate of bacteria gives 

r 2 dr r2 r2 -~ r  sin 0 drdOdr 

k CA r2 sin 0 drdOdr (9.4-46) 

Carrying out the integrations yields 

dCA 
4 7rR 2 :DAB 

r--R 

Rate of moles of species r 
entering into the bacteria 

L 
R 

4 ~ k C A r 2 dr 

Rate of consumption of species A 
by homogeneous chem. rxn. 

(9.4-47) 

Substitution of Eq. (9.4-45) into Eq. (9.4-47) gives the molar rate of consumption 
of species j4,/tA, as 

hA -- - -47~R~t)ABCAn (1 AtanhA)]  (9.4-48) 

The minus sign in Eq. (9.4-48) indicates that the flux is in the negative r-direction, 
i.e., towards the center of the sphere. 

9.5 M A S S  T R A N S F E R  W I T H  C O N V E C T I O N  

9 . 5 . 1  L a m i n a r  F o r c e d  C o n v e c t i o n  in  a P i p e  

Consider the laminar flow of an incompressible Newtonian liquid (B) in a circular 
pipe under the action of a pressure gradient as shown in Figure 9.17. The velocity 
distribution is given by Eqs. (9.1-79) and (9.1-84) as 

(9.5-1) 

Suppose that the liquid has a uniform species A concentration of CAo for z < 0. For 
z > 0, species .4 concentration starts to change as a function of r and z as a result 
of mass transfer from the walls of the pipe. We want to develop the governing 
equation for species .4 concentration. Liquid viscosity is assumed to be unaffected 
by mass transfer. 
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Figure 9.17 Forced convection mass transfer in a pipe. 

From Table C.8 in Appendix C, the non-zero mass flux components for species 
A are 

00dA (9.5-2) 
~/~ A ~ - -  --  fl :D A B " O r  

OWA 
WA~ = --p ~AB ~ + pAV~ (9.5-3) 

For a dilute liquid solution, the total density is almost constant and Eqs. (9.5-2) 
and (9.5-3) become 

O P A  
WA~ : - -  :DAB O r  (9.5-4) 

OqpA 
WA~ = --:DAB ~ + PAV~ (9.5-5) 

Dividing Eqs. (9.5-4) and (9.5-5) by the molecular weight of species A, M A, gives 

OCA 
NA. -- -- :DAB (97" (9.5-6) 

OCA 
NAz = --:DAB ~ + CAV~ (9.5-7) 

Since there is no generation of species A, Eq. (9.4-1) simplifies to 

( R a t e o f ) _ (  Rate of ) = 0  (9.5-8) 
species .4 in species j4 out 
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For a cylindrical differential volume element of thickness Ar and length Az, as 
shown in Figure 9.17, Eq. (9.5-8) is expressed as 

( NA~ lr 2:rr A z  + NAz iz 27rr Ar) 

- [NA~ Ir+Ar 27r(r + Ar) Az + NA~ f~+A~ 27rr Ar] -- 0 (9.5-9) 

Dividing Eq. (9.5-9) by 27r Ar Az and taking the limit as Ar -+ 0 and Az -~ 0 
gives 

lira ( r N A ~ ) l r -  (rNA~)lr+Ar N A = I  - 
Ar-*0 Ar + A~-,01im r z Az = 0 (9.5-10) 

or, 
_ ONAz 10(rNA~)  t = 0 (9.5-11) 
r Or Oz 

Substitution of Eqs. (9.5-6) and (9.5-7)into Eq. (9.5-11) yields 

VA. 0 + 0 
OZ r Or Or ] ~)AB Oz 2 Vz 

Convection in Diffusion in r - -d i rec t ion  Diffusion in 
z - d i r e c t i o n  z - d i r e c t i o n  

(9.8-12) 

Note that in the z-direction mass of species .A is transported both by convection 
and diffusion. As stated by Eq. (2.4-8), diffusion can be considered negligible with 
respect to convection when PeM >> 1. Under these circumstances, Eq. (9.5-12) 
reduces to 

OCA ~)AB 0 ( O C A )  
Vz Oz -- r Or r -~r  (9.5-13) 

As an engineer, we are interested in the variation of the bulk concentration 
of species A, CAb, rather than the local concentration, CA. For forced convection 
mass transfer in a circular pipe of radius R, the bulk concentration defined by Eq. 
(4.1-3) takes the form 

fO0 27r fo R Vzr A r drdO 

(9.5-14) CAb -- 27r R 

In general, the concentration of species .,4, CA, may depend on both the radial and 
axial coordinates. However, the bulk concentration of species A, CAb, depends only 
on the axial direction. 

To determine the governing equation for the bulk concentration of species A, it 
is necessary to integrate Eq. (9.5-13) over the cross-sectional area of the tube, i.e., 

/0  /0 10 vz -~z r drdO = ~:)AB -r -~r r ~ r  r drdO (9.5-15) 
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Since vz :/: vz(z), the integral on the left-side of Eq. (9.5-15) can be rearranged as 

Vz -~z r drdO - Oz r drdO 

= -~z V~CA r drdO (9.5-16) 

Substitution of Eq. (9.5-14)into Eq. (9.5-16) yields 

~0 27r j~o R OCA d  2 /oR r drdO - -~z CAb Vz r drd 

Q 

dcAb 
=~2 dz (9.5-17) 

Substitution of Eqs. (9.5-17) and (9.5-18) into Eq. (9.5-15) gives the governing 
equation for the bulk concentration in the form 

dcAb __ 1rD ~)AB OcA 
Q dz r=R 

(9.5-19) 

The solution of Eq. (9.5-19) requires the boundary conditions associated with the 
problem to be known. 

Cons tan t  wall concent ra t ion  

If the inner surface of the pipe is coated with species A, the molar flux of species 
.4 on the surface can be represented by 

~ I = k~ (~A~ - ~ )  (9.5-20) 
VAB - ~ r  ~=R 

It is implicitly implied in writing Eq. (9.5-20) that the concentration increases in 
the radial direction. Substitution of Eq. (9.5-20) into Eq. (9.5-19) and rearrange- 
ment yields 

fCAb dcAb ~0 z 
Q = ~D kc dz (9.5-21) 

,., C A b i  n CAw - -  C A  b 

where Q is the volumetric flow rate. 
On the other hand, since OCA/Or -- 0 as a result of the symmetry condition at 

the center of the tube, the integral on the right-side of Eq. (9.5-15) takes the form 

~027r ~oR l O ( OcA ) OCA I (9.5-18) r Or r ~ r  rdrdO-- 7tO -~r r=R 
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Since the wall concentration, CAw, is constant, integration of Eq. (9.5-21) yields 

( cA~ -- CAbin ! 
Q In - 7rD(k~)~ z 

CAw -- CAb 
(9.5-22) 

in which (k~)z is the average mass transfer coefficient from the entrance to the 
point z defined by 

/o 1 kcdz  (9.5-23) 

If Eq. (9.5-22) is solved for CAb, the result is 

[ ] CAb = CAw -- (CAw -- CAbin) exp -- Q z (9.5-24) 

which indicates that the bulk concentration of species ,4 varies exponentially with 
the axial direction as shown in Figure 9.18. 

CAw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

CA b 

Figu re  9.18 Variation of the bulk concentration of species .t4 with the axial 
direction for a constant wall concentration. 

Evaluation of Eq. (9.5-22) over the total length, L, of the pipe gives 

( CA~, -- CAbi n I 
Q In - 7rD(k~)L 

CA~ -- CAbou t 

where 

(9.5-25) 

1/0L (kc) = ~ kc dz (9.5-26) 

If Eq. (9.5-25) is solved for CAhoot, the result is 

Cab~ = CA,~ -- (CAw -- CAbi,, ) exp [-- ( TrD(kr ) (9.5-27) 
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Equation (9.5-27) can be expressed in terms of dimensionless numbers with the 
help of Eq. (3.4-6). The result is 

Sh <k~> 
StM -- Re Sc = (vz) 

Q/(TrD2/4) 
(9.5-28) 

The use of Eq. (9.5-28)in Eq. (9.5-27) gives 

CA~o~, = CA~ -- (CA~ -- CAb'n ) exp [ - 4 S h ( L / D )  Sc (9.5-29) 

As an engineer, we are interested in the rate of moles of species A transferred 
to the fluid, i.e., 

(9.5-30) 

Substitution of Eq. (9.5-25) into Eq. (9.5-30) results in 

i~A --(TrDL)<kc) 
(CA~--CAb~,~) --(CAw--tAbour ) 

) 
CAw -- CAbout 

(9.5-31) 

Note that Eq. (9.5-31) can be expressed in the form 

iZA = AM<kc>(AcA)ch -- (TcDL)<kc} (ACA)LM (9.5-32) 

which is identical with Eqs. (3.3-7) and (4.5-34). 

C o n s t a n t  wall mass  flux 

Consider a circular pipe with a porous wall. If species A were forced through the 
porous wall at a specified rate per unit area, then the molar flux of species j t  on 
the pipe surface remains constant, i.e., 

~CA 
NA~]r=R = :DAB 

r--R 
= NA~ -- constant (9.5-33) 

Substitution of Eq. (9.5-33) into Eq. (9.5-19) gives 

dcnb 7rDNA~, 
= = constant (9.5-34) 

dz Q 
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Integration of Eq. (9.5-34) gives the variation of the bulk concentration of species 
A in the axial direction as 

CA~ = CA,,,~ + Q Z (9.5-35) 

Therefore, the bulk concentration of species .4 varies linearly in the axial direction 
as shown in Figure 9.19. 

CA b 

Figure  9.19 Variation of the bulk concentration of species A with the axial 
direction for a constant wall heat flux. 

Evaluation of Eq. (9.5-35) over the total length gives the bulk concentration of 
species A at the exit of the pipe as 

( TrDNA~ ) L 
C A b o u t  i CAbi,~ -Jr- Q 

4NA L 
- -  CAbi~ + 

I)AB Re Sc 
(9.5-36) 

The rate of moles of species A transferred is given by 

= Q (cA o < - ) (9.5-37) 

Substitution of Eq. (9.5-36) into Eq. (9.5-37) yields 

(9.5-38) 

9.5.1.1 Fully developed concentra t ion  profile 

If the ratio 
CA --  CAb (9.5-39) 

CAw --  CA b 

does not vary along the axial direction, then the concentration profile is said to be 
fully developed. 
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It is important to note that although the local concentration, CA, the bulk 
concentration, CAb, and the wall concentration, CA,., may change along the axial 
direction, the ratio given in Eq. (9.5-39) is independent of the axial coordinate 4, 
i.e., 

O ( C A - - C A b ) - - O  (9.5.40) 
OZ CA, " -- CAb 

Equation (9.5-40) indicates that 

OCA 

Oz 
m I CAw -- CA ! dCAb 

CAw ~ CAb -~Z 

Jr- ( CA -- CAb ! dcAw 

CA,. -- CAb dz 
(9.5-41) 

Example  9.10 Consider the flow of a fluid with constant physical properties. 
Show that the mass transfer coefficient is constant when the concentration profile 
is fully developed. 

Solut ion  

For a fully developed concentration profile, the ratio given in Eq. (9.5-39) depends 
only on the radial coordinate r, i.e., 

C A -- CAb 

CA,. -- CAb 
: f ( r )  (1) 

Differentiation of Eq. (1) with respect to r gives 

OC A d f  
Or = (CAw - CAb) ~ (2) 

which is valid at all points within the flow field. Evaluation of Eq. (2) at the surface 
of the pipe yields 

df (3) 

On the other hand, the molar flux of species .A at the pipe surface is expressed as 

OCA 
= V A B  

r--R 
= kr (CA~ - CA~) (4) 

4In the literature, the condition for the fully developed concentration profile is also given in 
the form 

Oz CAw -- CA b 

Note that 
CAw --c A CA --CAb 

CAw -- CAb CAw ~ CAb 
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Substitution of Eq. (3) into Eq. (4) gives 

= constant (5) 

E x a m p l e  9.11 When the concentration profile is fully developed, show that the 
concentration gradient in the axial direction, OCA/OZ, remains constant for a con- 
stant wall mass flux. 

Solut ion  

The molar flux of species A at the surface of the pipe is given by 

NA~ Ir=R -- kc (CAw -- CA~ ) = constant (1) 

Since kc is constant for a fully developed concentration profile, Eq. (1) implies that 

CAw -- CAb = constant (2) 

or, 
dcAw dcAb 

= ( 3 )  
dz dz 

Therefore, Eq. (9.5-~1) simplifies to 

OC A dcAb dcAw 
Oz = dz - dz (4) 

Since dcAb/dz is constant according to Eq. (9.5-3~), OCA/OZ also remains constant, 
i.e., 

OCA d c m b  dcAw 7rDNAw 
Oz dz dz Q -- constant (5) 

9.5.1.2 S h e r w o o d  n u m b e r  for a fully deve loped  c o n c e n t r a t i o n  profile 

Substitution of Eq. (9.5-1)into Eq. (9.5-13) gives 

[1 Oz = r Or r Or ] (9.5-42) 

It should always be kept in mind that the purpose of solving the above equation 
for concentration distribution is to obtain a correlation to calculate the number of 
moles of species ,4 transferred between the phases. As shown in Chapter 4, mass 
transfer correlations are expressed in terms of the Sherwood number. Therefore, 
Eq. (9.5-42) will be solved for a fully developed concentration profile for two 
different types of boundary conditions, i.e., constant wall mass flux and constant 
wall concentration, to determine the Sherwood number. 
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C o n s t a n t  wall  mass  flux 

As shown in Example 9.11, in the case of a constant wall mass flux, the concentra- 
tion gradient in the axial direction is constant and expressed in the form 

OCA 7rDNA~ 
= = constant (9.5-43) 

Oz Q 

Since we are interested in the determination of the Sherwood number, it is ap- 
propriate to express OCA/OZ in terms of the Sherwood number. Note that  the 
Sherwood number is given by 

k~ D [NA~/(CA~ -- CA~)] D 
Sh - = (9.5-44) 

"DAB ~) A B  

Therefore, Eq. (9.5-43) reduces to 

OCA Sh (CA,~, -- CAb ) "DAB 

O~ R2<v~) 
(9.5-45) 

Substitution of Eq. (9.5-45)into Eq. (9.5-42) yields 

n-- ~ 1 -  ~ Sh(CA,~--CAb)-- 
I O ( O C A ~  
r Or r Or J 

(9.5-46) 

In terms of the dimensionless variables 

m 
C A - -  C A b  

CA~, -- CAb 
(9.5-47) 

Eq. (9.5-46) takes the form 

r 
- ~ (9.5-48) 

2 S h ( 1 - ~ 2 )  = ~ ~-~ ~ - ~  

It is important to note that  0 depends only on ~ (or, r). 
The boundary conditions associated with Eq. (9.5-49) are 

(9.5-49) 

dO 
at ~ - 0 cd-- 7 = 0 (9.5-50) 

at ~ = 1 0 = 1 (9.5-51) 

Note that  Eqs.(9.5-49)-(9.5-51) are identical with Eqs. (9.3-46)-(9.3-48) with only 
exception that  Nu is replaced by Sh. Therefore, the solution is 

= 1 -  Sh ( 3 -  4 ~2 + ~a) (9.5-52) 0 
o 
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On the other hand, the bulk concentration in dimensionless form can be expressed 
aS 

CAb -- CAb f]o1(1 _ ~2) 0 ~ d~ 
Ob = = 0 -  ~ (9.5-53) 

CA~ - CAb fO (1 - ~2)~ d~ 

Substitution of Eq. (9.5-52) into Eq. (9.5-53) gives the Sherwood number as 

48 
S h =  i i  (9.5-54) 

C o n s t a n t  wall  c o n c e n t r a t i o n  

When the wall concentration is constant, Eq. (9.5-41) indicates that 

OC----~A=(CA~--CA) d c A b O z  CA~ - CAb dz (9.5-55) 

The variation of CAb as a function of the axial position can be obtained from Eq. 
(9.5-24) as 

dcAb 

dz 
Q (CA~ -- CAb~) exp -- Q (9.5-56) 

Since the mass transfer coefficient is constant for a fully developed concentration 
profile, Eq. (9.5-56) becomes 

dcAb 7rDkc(cA~ - CAb) 4 kc(cA~ - CAb) 
dz Q D(v~) 

(9.5-57) 

The use of Eq. (9.5-57)in Eq. (9.5-55)yields 

OCA 4 k~ (CA~ -- CA) 
Oz = D(v~) (9.5-58) 

Substitution of Eq. (9.5-58)into Eq. (9.5-42) gives 

8 2] __ D ~ ( k~D r r Or r ~ (9.5-59/ 

In terms of the dimensionless variables defined by Eqs. (9.5-47) and (9.5-48), Eq. 
(9.5-59) becomes 

1 d ( d O )  (9.5-60) 2Sh(1 - ~2)(1 - 0) = ~ d~ ~ 
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The boundary conditions associated with Eq. (9.5-60) are 

dO 
at ~ -  0 - -  = 0 (9.5-61) 

d~ 

The use of the substitution 

at ~- -  1 0 - -  1 (9.5-62) 

reduces Eqs. (9.5-60)-(9.5-62) to 

u = 1 - 0 (9.5-63) 

1 d ( d u )  
- 2 Sh (1 - ~2) u = ~ ~-~ ~ ~ (9.5-64) 

du 
at ~ - 0 - -  = 0 (9.5-65) 

d~ 

at ~ - 1 u = 0 (9.5-66) 

Equation (9.3-61) can be solved for Sh by the method of Stodola and Vianello as 
explained in Section B.3.4.1 in Appendix B. 

A reasonable first guess for u which satisfies the boundary conditions is 

?.t 1 - -  1 - ~2 (9.5-67) 

Substitution of Eq. (9.5-67) into the left-side of Eq. (9.5-64) gives 

d ( d u )  ~3 
d--~ ~ d-~ = - 2  Sh (~ - 2 + ~5) (9.5-68) 

The solution of Eq. (9.5-68) is 

u = Sh (11 - 18~2 + 9~4 - 2 ~ 6 )  
~_ 36 (9.5-69) 

y1(r 

Therefore, the first approximation to the Sherwood number is 

[ 1  ~ (1 - ~ 2 ) 2 f l  (~) d~ 

Sh (1) J U  
(9.5-70) 

j~0 
1 ~ 2  

( 1  - 

Substitution of fl(~) from Eq. (9.5-69) into Eq. (9.5-70) and evaluation of the 
integrals gives 

S h -  3.663 (9.5-71) 

On the other hand, the value of the Sherwood number, as calculated by Graetz 
(1883, 1885) and Nusselt (1910), is 3.66. Therefore, for a fully developed concen- 
tration profile in a circular pipe with a constant wall concentration Sh = 3.66 for 
all practical purposes. 
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9.5.1.3 S h e r w o o d  n u m b e r  for a fully d e v e l o p e d  ve loc i ty  profi le  

For water flowing in a circular pipe of diameter D at a Reynolds number of 100 
and at a temperature of 20~ Skelland (1974) calculated the length of the tube, 
L, required for the velocity, temperature and concentration distributions to reach 
a fully developed profile as 

5D 

L -  35D 

6000 D 

fully developed velocity profile 

fully developed temperature profile 

fully developed concentration profile 

(9.5-72) 

Therefore, a fully developed concentration profile is generally not attained for fluids 
with high Schmidt number and the use of Eqs. (9.5-54) and (9.5-71) may lead to 
erroneous results. 

When the velocity profile is fully developed, it is recommended to use the fol- 
lowing semi-empirical correlations suggested by Hausen (1943): 

Sh = 3.66 + 
0.668 [(D/L) ReSc] 

1 + 0.04 [(D/L) Re Sc] 2/3 
CAw = constant (9.5-73) 

Sh = 4.36 + 
0.023 [(D/L)Re Sc] 

1 + 0.0012 [(D/L) Re Sc] 
NA~, = constant (9.5-74) 

In the calculation of the mass transfer rates by the use of Eqs. (9.5-73) and (9.5-74), 
the appropriate driving force is the log-mean concentration difference. 

E x a m p l e  9.12 Pure water at 25 ~ flows through a smooth metal pipe of 6cm 
internal diameter with an average velocity of 1.5 x 10 -3 m / s .  Once the fully de- 
veloped velocity profile is established, the metal pipe is replaced by a pipe, cast from 
benzoic acid, of the same inside diameter. If the length of the pipe made of a ben- 
zoic acid is 2 m, calculate the concentration of benzoic acid in water at the exit of 
the pipe. 

Solut ion 

P h y s i c a l  p r o p e r t i e s  

From Example 4.8: 
p - 1000 k g / m  3 

For water (B) at 25 ~ (298 K ) '  # = 892 x 10 -6 kg /m.  s 
:DAB- 1.21 x 10 -9 m2 / s  

Sc = 737 

Saturation solubility of benzoic acid (,4) in water = 3 .412kg /m 3 
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Analysis 

The Reynolds number is 

Re = D(vz)p 
# 

= (6 • 10-2)(1.5 • 10-3)(1000) = 101 
892 • 10 -6 

Note that the term (D/L) ReSc becomes 

:=~ Laminar flow (1) 

D (v~) 

4L  Sh ) ]  
D ReSc 

Substitution of numerical values into Eq. (5) gives 

Comment: 
i.e.~ 

(CAb)o~t -- 3.412 {1 - -exp  [-- (6 

= 0.136 k g / m  3 

4(2)(22.7) ] }  
x 10-2)(101)(737) 

One could also use Eq. (~.5-31) to calculate the Sherwood number, 

Sh - 1.86 [ReSc(D/L)] 1/3 

= 1.86 (2233) 1/3 = 24.3 

which is not very much different from 22.7. 

(4) 

(5) 

Since (CA~),n- O, Eq. (4) simplifies to 

(CAb)out -- CA~ [l -- exp ( 

--CA~ [ 1 - - e x p (  

(o) (0x 10 2) 
-~- R e S c -  2 (101)(737) - 2233 (2) 

Since the concentration at the surface of the pipe is constant, the use of Eq. (9. 5-73) 
gives 

0.668 [(D/L)Re Sc] 
Sh - 3.66 + 

1 + 0.04 [(D/L)Re Sc] 2/3 

0.0668 (2233) 
= 3.66 + 1 + 0.04 (2233)2/3 = 22.7 (3) 

Considering the water in the pipe as a system, a macroscopic mass balance on 
benzoic acid gives 

"~~.---~(TrD2/4)(vz) [(CAb)out -- (CAb)in] = , ~ , ,  / [ ] 
Q AM In CAw -- (CA b)out 

% �9 

( A C A ) L M  
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9.5.2 Diffusion Into a Falling Liquid Fi lm 

Consider gas absorption in a wetted-wall column as shown in Figure 9.20. An 
incompressible Newtonian liquid (B) flows in laminar flow over a flat plate of width 
W and length L as a thin film of thickness 5 under the action of gravity. Gas Jt 
flows in a countercurrent direction to the liquid and we want to determine the 
amount of A absorbed by the liquid. 

F i g u r e  9.20 Diffusion into a falling liquid film. 

The fully developed velocity distribution is given by Eqs. (9.1-57) and (9.1-58) as [ (x) l 
vz = Vm~• 1 - -~ (9.5-7'5) 

where 

3 pg52 (9.5-76) 
Vmax-- 2 ( v z ) -  2 .  

Liquid viscosity is assumed to be unaffected by mass transfer. 
In general, the concentration of species ,4 in the liquid phase changes as a 

function of x and z. Therefore, from Table C.7 in Appendix C, the non-zero mass 
flUX components are 

OWA (9.5-77) 
WA~, -- -- p ~)AB OX 

OWA 
WA, = -- p 7?AB ~ + pA V~ (9.5-78) 
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For a dilute liquid solution, the total density is almost constant and Eqs. (9.5-77) 
and (9.5-78) become 

OPA 
WA~ -- -- ~DAB OX 

OPA 
~]A~ -- --~)AB ~ Jr- PAVz 

(9.5-79) 

(9.5-80) 

Dividing Eqs. (9.5-79) and (9.5-80) by the molecular weight of species .4, A//A, 
gives 

OCA 
NA~ -- -- "DAB Ox (9.5-81) 

OCA 
NAz -- --DAB ~ + CAV~ (9.5-82) 

Since there is no generation of species .4, Eq. (9.4-1) simplifies to 

( Rate~  ) _ (  Ra te~  ) -  0 
species A in species .4 out (9.5-83) 

For a rectangular differential volume element of thickness Ax, length Az and width 
W, as shown in Figure 9.20, Eq. (9.5-83) is expressed as 

( NAx Ix W Az+ NAz [z W Ax)-(NAx tx+ax W Az+ NAz I~+/x~ W A x )  = 0 (9.5-84) 

Dividing Eq. (9.5-84) by W A x  Az and taking the limit as Ax ~ 0 and Az ~ 0 
gives 

NA. I x -  NA~Ix+Ax NA.]z -  NA. lz+/,,z _ 0 lira + lira -- (9.5-85) 
A x ~ O  A x  Az--.0 A z  

or~ 

ONA~ ONA~ 
, = 0 (9.5-86) 

Ox Oz 
Substitution of Eqs. (9.5-81) and (9.5-82) into Eq. (9.5-86) yields 

OCA 02CA 02CA 
v~ Oz = Z~AB Ox2 + VA~ ,.,~-5-5~2 

Convection in Diffusion in Diffusion in 
z-direct ion x-di rec t ion  z--direction 

(9.5-87) 

In the z-direction, the mass of species ,4 is transported by both convection and 
diffusion. As stated by Eq. (2.4-8), diffusion can be considered negligible with 
respect to convection when PeM >:> 1. Under these circumstances, Eq. (9.5-87) 
reduces to 

[ X ] O 2 C A ( ~  OCA 
Vmax 1 -  ~,~/2 = :DAB (9.5-88) 

Oz Ox 2 
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The boundary conditions associated with Eq. (9.5-88) are 

at z --" 0 CA = CAo (9.5-89) 

* (9.5-90) at x = 0 CA = c A 

at x - 5 OCA = 0 (9.5-91) 
Ox 

It is assumed that  the liquid has a uniform concentration of CA,, for z < 0. At 
the liquid-gas interface, the value of c~ is determined from the solubility data, i.e., 
Henry's law. Equation (9.5-91) indicates that  species Jt cannot diffuse through the 
wall. 

The problem will be analyzed for two cases, namely, for long and short contact 
times. 

9.5.2.1 Long  c o n t a c t  t i m e s  

The solution of Eq. (9.5-88) subject to the boundary conditions given by Eqs. 
(9.5-89)-(9.5-91) is first obtained by Johnstone and Pigford (1942). Their series 
solution expresses the bulk concentration of species Jt at z - L as 

- 

C* A -- CAo 

where 

= 0.7857 e-  5.1213 n +0.1001 e-  39.31877 +0.03599 e -  105.64 77 _~_... (9.5-92) 

T)ABL 2 "DABL 
= (9.5-93) 

Z/ma x 3 (~)z) 

As an engineer we are interested in expressing the results in the form of a mass 
transfer correlation. For this purpose it is first necessary to obtain an expression 
for the mass transfer coefficient. 

For a rectangular differential volume element of thickness Ax, length Az and 
width W, as shown in Figure 9.20, the conservation statement given by Eq. (9.5-83) 
is also expressed as 

[Q CAb[~ + k~(C*A -- CAb)W m z ]  -- ~ CA.I~+~ = 0 (9.5-94) 

Dividing Eq. (9.5-94) by Az and taking the limit as Az ~ 0 gives 

Q lim cAt'lz -- CAblz+Az 
Az----*O n z  + kc (c*A -- cAb ) W "-- O (9.5-95) 

or~ 

dcAb = kc (C*A -- CAb) W 
Q dz 

Equation (9.5-96) is a separable equation and rearrangement gives 

f (cAb)L dcAb ~0 L 
Q - W kc dz 

J CAo C*A ~ CAb 

(9.5-96) 

(9.5-97) 
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Carrying out the integrations yields 

Q 
<kr - W L In ] (9.5.98) 

where the average mass transfer coefficient, {kc), is defined by 

= Z dz 

The rate of moles of species A transferred to the liquid is 

nA -- Q [(CAb)~ -- CAo] -- Q {(C~ -- CAo) -- [C*A -- (CAb),~]} (9.5-100) 

Elimination of Q between Eqs. (9.5-98) and (9.5-100) leads to 

(9.5-101) ] In c~ -(CAb)L 

(ACSLM 
When 77 > 0.1, all the terms in Eq. (9.5-92), excluding the first, become almost 

zero, i.e., 

=- 0.7857e- (9.5-102) 
C* A -- CAo 

The use of Eq. (9.5-102)in Eq. (9.5-98) gives 

Q (5 1213 +0.241) (9.5-103) 

Since we restrict our analysis to long contact times, i.e., 77 is large, then Eq. (9.5- 
103) simplifies to 

Q (5 .1213)  (9.5-104) 
= W Z  

Substitution of Eq. (9.5-93) into Eq. (9.5-104) and the use of Q- <v~)W5 gives 

"DAB <k~}- 3.41 6 (9.5-105) 

Therefore, the average value of the Sherwood number becomes 

(9.5-99) 

S h -  (k~)6 
~)AB 

=3.41 (9.5-106) 

It is also possible to arrive at this result using a different approach (see Problem 
9.17). Equation (9.5-106) is usually recommended when 

45<v~)p 4 m  
Re - = (9.5-107) # # W  <100  
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Note that  the term 45 in the definition of the Reynolds number represents the 
hydraulic equivalent diameter. 

9 .5.2.2 S h o r t  con t ac t  t imes  

If the solubility of species A in the liquid B is low, for short contact times, species 
j t  penetrates only a short distance into the falling liquid film. Under these circum- 
stances, species A, for the most part, has the impression that  the film is moving 
throughout with a velocity equal to Vmax. Furthermore, species Jt does not feel 
the presence of the solid wall at x = ~. Hence, if the film were of infinite thickness 
moving with the velocity Vm~x, species A would not know the difference. 

In the light of the above discussion, Eqs. (9.5-88)-(9.5-91) take the following 
form 

C~CA 02CA 
V m a x  02; - "  ~ A B  (~X2 (9.5-108) 

at z = 0 CA = CAo (9.5-109) 

at x = 0 CA = c* A (9.5-110) 

at x - -  (:x:) CA = C A o (9.5-111) 

Introduction of the dimensionless concentration r as 

r - -  CA - -  CA~ (9.5-112) 
C A ~ CAo 

reduces Eqs. (9.5-108)-(9.5-111) to 

0r 02r 
Vmax 0--~ = :DAB OX 2 (9.5-113) 

at z = 0 r = 0 (9.5-114) 

at x = 0 r = 1 (9.5-115) 

at x = c~ r = 0 (9.5-116) 

Since Eqs. (9.5-114) and (9.5-116) are the same and there is no length scale, this 
parabolic partial differential equation can be solved by the similarity solution as 
explained in Section B.3.6.2 in Appendix B. The solution is sought in the form 

r = f ( ~ )  (9.5-117) 

where 
x 

= V/4 ~ A B Z / V m a x  (9.5-118) 
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The chain rule of differentiation gives 

or df o~ 
Oz d~ Oz 

l ~  df 
2 z d ~  

(9.5-119) 

02r d2f (Oq~) 2 df 02~ 

Ox 2 = dq2 2 -~x "~ d~ Ox 2 

Vma~ d2 f 
4 D A B Z  dq2 2 

Substitution of Eqs. (9.5-119) and (9.5-120)into EQ. (9.5-113) yields 

d2f F_2qg df 
d~--- Z - - ~  - 0 

The boundary conditions associated with Eq. (9.5-121) are 

(9.5-120) 

(9.5-121) 

at �9 - 0 r = 1 (9.5-122) 

at @ - c~ r = 0 (9.5-123) 

The integrating factor for Eq. (9.5-121) is exp(@2). Multiplication of Eq. (9.5-121) 
by the integrating factor gives 

d~ e'~ 

which implies that 
m ~ 2  df = K1 e- (9.5-125) 
d@ 

Integration of Eq. (9.5-125) leads to 

~0 xI/ U 2 f = K1 e- du + K2 (9.5-126) 

where u is a dummy variable of integration. Application of the boundary condition 
defined by Eq. (9.5-122) gives/(2 - 1. On the other hand, the use of the boundary 
condition defined by Eq. (9.5-123) gives 

1 2 
/ ( 1  - -  - -  "~  (9.5-127) 

f0 e ~  d u  

Therefore, the solution becomes 

2 ~0 ~ u 2 f = 1 ~ e-  du (9.5-128) 
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or, 

C A -- CAo 

CA -- CAo 

( x ) 
where eft(x) is the error function defined by 

2 f o x  eft(x) = ~ e-~'~du 

(9.5-129) 

(9.5-130) 

Macroscopic equa t ion  

Integration of the governing equation, Eq. (9.5-108), over the volume of the system 
gives the macroscopic equation as 

/oo /oo /o /o /oo /oo Vma x ~ dxdydz = :DAB Ox 2 dxdydz (9.5-131) 

Evaluation of the integrations yields 

~0 5 ~ooL ( (~CA ) dz (9.5-132) V~axW (CA I~=L -- CAo) d z  = W - I ) A .  -'5-gz ~=0 

Net molar rate of species .4 Molar rate of species .4 entering 
entering into the liquid into the liquid through interface 

Note that Eq. (9.5-132) is the macroscopic inventory rate equation for the mass of 
species r by considering the falling liquid film as a system. The use of Eq. (9.5- 
129) in Eq. (9.5-132) gives the rate of moles of species A absorbed in the liquid 
a s  

izA = WL (c* A - CA,,)~/4-- ~DAB Vmax 
(9.5-133) 

The rate of moles of species ~4 absorbed by the liquid can be expressed in terms of 
the average mass transfer coefficient as 

i~A = WL<kc> [c~ - (CAb)L] -- (C*A ~ CA,,) 

] [ ~ - C~o 
Since ln(1 + x) ~ x for small values of x, the term in the denominator of Eq. 
(9.5-134) can be approximated as 

In ca (CA~)L = I n  1 +  

(9.5-135) 
c A -- CAo 
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The use of Eq. (9.5-135)in Eq. (9.5-134) gives 

i~A = WL(k~)(c*A - CAo) (9.5-136) 

The average mass transfer coefficient can be calculated from Eqs. (9.5-133) and 
(9.5-136) as 

( kc) = --~ / 4 ~)ABVmax (9.5-137) 
~L v 

Therefore, the Sherwood number is 

Sh I46~,~ (~) 1/2 
I)AB = 7~r ~AB-L = 0.691 Re 1/2 Sc '/2 (9.5-138) 

Equation (9.5-138) is recommended when 

1200 > Re = 4 6(v~)p = 4rh 
# W  > 100 

It should be kept in mind that the calculated mass of species ,4 absorbed by the 
liquid based on Eq. (9.5-133) usually underestimates the actual amount. This is 
due to the increase in the mass transfer area as a result of ripple formation even 
at a very small values of Re, i.e., Re > 20. 

In the literature, Eq. (9.5-137) is also expressed in the form 

/ 4 ~)AB 
( k ~ ) -  V ~rt~xp (9.5-139) 

where the exposure time, or, gas-liquid contact time, is defined by 

L 
texp -- (9.5-140) 

Vmax 

Equation (9.5-139) is also applicable to gas absorption to laminar liquid jets and 
mass transfer from ascending bubbles, if the penetration distance of the solute is 
small. 

E x a m p l e  9.13 A laminar liquid jet issuing at a volumetric flow rate of Q is 
used for absorption of gas A. If  the jet has a diameter D and a length L, derive 
an expression for the rate of absorption of species .A. 

Solut ion  

The time of exposure can be defined by 

L 
texp -- (V--'}" 

L 
4 Q/ D2 

( i )  
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Therefore, Eq. (9.5-139) becomes 

4 ~/Q 7)AB 
(2) 

The rate of moles of species A absorbed by the jet is 

i~A -- (1rDL)(kc)(C* A - CAo) (3) 

where CAo is the initial concentration of species ,4 in the jet and c* A is the equi- 
librium solubility of species A in the liquid. Substitution of Eq. (2) into Eq. (3) 
gives 

izA = 4 (c* A - CAo)V/Q'DAB L (4) 

9.5.3 Analysis  of a Plug  Flow Reactor  

A plug flow reactor consists of a cylindrical pipe in which concentration, tempera- 
ture, and reaction rate are assumed to vary only along the axial direction. Analysis 
of these reactors are usually done with the following assumptions: 

�9 Steady-state conditions prevail. 

�9 Reactor is isothermal. 

�9 There is no mixing in the axial direction. 

rt_ 
r 

az-,t 

Figure  9.21 Plug flow reactor. 

The conservation statement for species i over a differential volume element of 
thickness Az, as shown in Figure 9.21, is expressed as 

( Q ci)l~ - ( Q ci)[~+Az + ai rA  A z  = 0 (9.5-141) 

where ai is the stoichiometric coefficient of species i and r is the chemical reaction 
rate expression. Dividing Eq. (9.5-141) by Az and taking the limit as Az ~ 0 
gives 

lim (Qci)lz - (Qci) lz+Az 
Az~O A z  + ai rA  - 0 (9.5-142) 
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or~ 

= ai r A  (9.5.143) 
dz 

It is customary to write Eq. (9.5-143) in terms of d V  = A d z  rather than dz, so 
that  Eq. (9.5-143) becomes 

d ( Q c i )  
= ai r (9.5-144) 

d V  

Equation (9.5-144) can also be expressed in the form 

dizi 
d V  = a i r  (9.5-145) 

where/~i is the molar flow rate of species i. 
The variation of the number of moles of species i as a function of the molar 

extent of the reaction is given by Eq. (5.3-10). It is also possible to express this 
equation as 

izi - iZio + ai ~ (9.5.146) 

Let us assume that  the rate of reaction has the form 

(9.5-147) 

Substitution of Eq. (9.5-147) into Eq. (145) gives 

(9.5-148) 

Integration of Eq. (9.5-148) depends on whether the volumetric flow rate is constant 
or not. 

9.5.3.1 C o n s t a n t  v o l u m e t r i c  f low r a t e  

When steady-state conditions prevail, the mass flow rate is constant. The volu- 
metric flow rate is the mass flow rate divided by the total mass density, i.e., 

rh 
Q = - -  (9.5-149) 

P 

For most liquid phase reactions the total mass density, p, and hence the volumetric 
flow rate are constant. 

For gas phase reactions, on the other hand, the total mass density is given by 
the ideal gas equation of state as 

P . M  
P - -  n T  (9.5-150) 



408 C H A P T E R  9. S T E A D Y  M I C R O S C O P I C  B A L A N C E S  W I T H  GEN.  

where AJ is the molecular weight of the reacting mixture. 
(9.5-150) into Eq. (9.5-149) gives 

Substitution of Eq. 

~T~T 
Q :  p 

Therefore, Q remains constant when/~ and P do not change along the reactor. 
The conditions for the constancy of Q are summarized in Table 9.4. 

Table  9.4 Requirements for the constant volumetric flow rate for a plug flow 
reactor operating under steady and isothermal conditions. 

Liquid Phase Reactions Gas Phase Reactions 

Constant total mass density 
m No change in the total number of moles 

during reaction (H = 0) 

m Negligible pressure drop across the reactor 

When Q is constant, Eq. (9.5-148) can be rearranged as 

f0 v Q~ /~ d/~i d Y  = ~ (9.5-152) 
O~i k ~o ni  

Depending on the values of n the results are 

g ~ _  

Q 
- n = O  

~-~ik In n -  1 

1 (1 1) 
1- -n  C 1 - n  ai k 1 - n c i ~o 

n > 2  m 

(9.5-153) 

9.5.3.2 Var iab le  vo lume t r i c  flow rate  

When the volumetric flow rate is not constant, integration of Eq. (9.5-148) is 
possible only after expressing bo th /~  and Q in terms of ~. The following example 
explains the procedure in detail. 

E x a m p l e  9.14 The irreversible gas phase reaction 

A - - - , B + C  
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is carried out in a constant pressure batch reactor at 400 ~ and 5 atm pressure. 
The reaction is first-order and the time required to achieve 60% conversion was 
found to be 50 min. 

Suppose that this reaction is to be carried out in a plug flow reactor which 
operates isothermally at 400 ~ and at a pressure of 10 atm. The volumetric flow 
rate of the feed entering the reactor is 0.05 m 3 / h  and it consists of pure ,4. Calculate 
the volume of the reactor required to achieve 80% conversion. 

Solut ion 

First, it is necessary to determine the rate constant by using the data given for the 
batch reactor. The conservation statement for the number of moles of species ,4, 
Eq. (7.2-5), reduces to 

dnn 
a A T V =  dt (1) 

or~ 
dnA 

- k c A Y =  dt (2) 

Substitution of the identity nA - -  CA V into Eq. (2) and rearrangement gives 

- k  dt = dt (3) 

Integration gives the rate constant, k, as 

k - - - t l l n ( n ~ o )  (4) 

The fractional conversion, X ,  is 

X = n A o -  nA = 1 nA 
nAo nAo 

Therefore, Eq. (~) can be expressed in terms of the fractional conversion as 

k - -1 (1 - x )  

t 

Substitution of the numerical values into Eq. (6) gives 

k - - ln(1 - 0.6) = 1.1 h -1 
(50/60) 

For a plug flow reactor, Eq. (9.5-148) takes the form 

d~zA = _ k n,4 
dV Q 

(5) 

(6) 

(7) 

(8) 
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Since the volumetric flow rate is not constant,  i.e., ~ = 1, it is necessary to express 
Q in terms of k. The use of Eq. (9.5-146) gives 

i~A - i~Ao -- k (9) 

~.  = ~ (1o) 

~c =~  (11) 

Therefore, the total molar flow rate, i~, is 

(~2) 

Substitution of Eq. (12) into Eq. (9.5-151) gives the volumetric flow rate as 

TiT 
Q = --P-- (~Ao + ~) 

= p 1 + - - -  - Q o  l + - -  
nAo nAo 

where Qo is the volumetric flow rate at the inlet of the reactor. 
Substitution of Eqs. (9) and (13) into Eq. (8) gives 

dk k i~A~ [1 -- (k/iZAo)] 
dV Qo (1 + k/i~Ao) 

(13) 

(14) 

The fractional conversion expression for a plug flow reactor is similar to Eq. (5), 
80 

~tA o - - h A  Tt A 
X -  = 1 - - -  (15) 

nAo ~tAo 

Substitution of Eq. (9) into Eq. (15) yields 

X = (16) 
r 

The use of Eq. (16) in Eq. (1~) and rearrangement gives 

Q O ~ o ~  ) v=--f- ~ dX 

= 2.42 ( - ~ )  (17) 

Substitution of the numerical values into Eq. (17) gives 

V = (2.42)(0.05) = 0.11 m 3 (18) 
1.1 
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N O T A T I O N  

A 
AH 
AM 
dp 
C, 

ei 

D 
"DAB 

e 

FI) 
/ 
g 
h 
j ,  

K 
k 
k~ 
L 

M 
N 

P 
P 

Q 
q 

7Z 

T 
t 
V 
"0 

W 
W 
X 
X 

Z 

Cti 

A 

area, m 2 
heat transfer area, m 2 
mass transfer area~ m 2 

heat capacity at constant pressure, k J/kg. K 
total concentration, kmol/m 3 
concentration of species i, kmol/m 3 
pipe diameter, m 
diffusion coefficient for system A-B, m2/s 
total energy flux, W / m  2 
drag force, N 
friction factor 
acceleration of gravity, m/s  2 
heat transfer coefficient, W / m  2. K 
molecular molar flux, kmol/m 2. s 
kinetic energy per unit volume, J / m  3 
reaction rate constant; thermal conductivity, W / m .  K 
mass transfer coefficient, m / s  
length, In 
mass flow rate, kg/s  
molecular weight, kg/kmol 
total molar flux, kmol/m 2. s 
molar flow rate, kmol/s 
pressure, Pa 
modified pressure, Pa 
heat transfer rate, W 
volumetric flow rate, m3/s 
heat flux, W / m  2 
rate of a chemical reaction, kmol/m 3. s 
Rate of generation per unit volume 
gas constant, J/mol.  K 
temperature, ~ or K 
time, s 
velocity of the plate in Couette flow, m/s;  volume, m 3 
velocity, m / s  
width, m 
total mass flux, kg /m 2. s 
fractional conversion 
rectangular coordinate, m 
rectangular coordinate, m 

stoichiometric coefficient of species i 
difference 
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AH• 

A 
/2 

# 

P 
Tij 

W 

Over l i ne s  

B r a c k e t  

heat of reaction, J 
time rate of change of molar extent, kmol / s  
latent heat of vaporization, J 
kinematic viscosity, m 2 / s  

viscosity, kg /m.  s 
total momentum flux, N / m  2 
density, k g / m  3 
shear stress (flux of j - momentum in the i - direction, N / m  2 
mass fraction 

per mole 
per unit mass 
partial molar 

(a) average value of a 

Superscripts 

A air 
L liquid 
o standard state 
sat saturation 

Subscripts 

A, B species in binary systems 
b bulk 
ch characteristic 
exp exposure 
i species in multicomponent systems 
in inlet 
in t  interphase 
L M  log-mean 
max maximum 
out out 
re f reference 
sys system 
w wall or surface 
oc free-stream 

Dimensionless Numbers 

Br Brinkman number 
Nu Nusselt number 
Pr Prandtl  number 
Re Reynolds number 
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aeh 
Sc 
Sh 
StH 
StM 

Reynolds number based on the hydraulic equivalent diameter 
Schmidt number 
Sherwood number 
Stanton number for heat transfer 
Stanton number for mass transfer 
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P R O B L E M S  

9.1 The hydrostatic pressure distribution in fluids can be calculated from the 
equation 

dP 
d--~ = Pg~ 

where 

gz = { g  
- g  

if positive z is in the direction of gravity 
if positive z is in the direction opposite to gravity 
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a) If the systolic pressure at the aorta is 120mmHg, what is the pressure in the 
neck 25 cm higher and at a position in the legs 90 cm lower? The density of blood 
is 1.05 g / c m  3. 

b) The lowest point on the earth's surface is located in the western Pacific Ocean, 
in the Marianas Trench. It is about 11 km below sea level. Estimate the pressure 
at the bottom of the ocean. Take the density of seawater as 1025 k g / m  3. 

c) The highest point on the earth's surface is the top of Mount Everest, located 
in the Himalayas on the border of Nepal and China. It is approximately 8900 m 
above sea level. If the average rate of decrease in air temperature with altitude is 
6.5 ~  estimate the air pressure at the top of Mount Everest. Assume that the 
temperature at sea level is 15 ~ Why is it difficult to breathe at high altitudes? 

(Answer:  a) Pneck -- 100.7 mmHg, Pl~9 = 189.5 mmHg b) 1090 atm c) 0.31 atm) 

9.2 Oil spills on water can be removed by lowering a moving belt of width W 
into the water. The belt moves upward and skims the oil into a reservoir aboard 
the ship as shown in the figure below. 

Air 

"; ~ ~ o~'~ 

Direction of gravity 

J 

a) Show that the velocity profile and the volumetric flow rate are given by 

v z =  2# ~ - V  

Q m 
Wpg53 cos 

3# 
- WV5  

b) Determine the belt speed that will give a zero volumetric flow rate and specify 
the design criteria for positive and negative flow rates. 

9.3 When the ratio of the radius of the inner pipe to that of the outer pipe 
is close to unity, a concentric annulus may be considered to be a thin plate slit 
and its curvature can be neglected. Use this approximation and show that the 
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modifications of Eqs. (9.1-23) and (9.1-26) for the axial flow in a concentric annulus 
with inner and outer radii of ~R and R, respectively, lead to 

(7)o - ~ L ) R  2 2 ( 1  - -  t ~ )  - -  t~ - -  t~ 

vz = 4ttL 1 - ~ 

9.4 For laminar flow of a Newtonian fluid in a circular pipe the velocity profile is 
parabolic and Eqs. (9.1-80) and (9.1-84) indicate that 

= 0 . 5  
Vmax 

In the case of a turbulent flow, experimentally determined velocity profiles can be 
represented in the form 

( r ) l /n  
Vz--Vmax 1--'-~ 

where n depends on the value of the Reynolds number. Show that the ratio 
(vz}/Vm~x is given as (Whitaker, 1968) 

Re n (Vz>/Vma x 

4 x 103 6 0.79 
1 x 105 7 0.82 
3 x 106 10 0.87 

This is the reason why the velocity profile for a turbulent flow is generally consid- 
ered "flat" in engineering analysis. 

9.5 The steady temperature distribution in a hollow cylinder of inner and outer 
radii of 50 cm and 80 cm, respectively, is given by 

T = 5000 (4.073 - 6 r 2 + In r) 

where T is in degrees Celsius and r is in meters. If the thermal conductivity is 
5 W / m .  K, find the rate of energy generation per unit volume. 

(Answer:  6 x 105 W / m  3) 

9.6 Energy generation within a hollow cylinder of inside and outside radii of 60 cm 
and 80 cm, respectively, is 106 W / m  3. If both surfaces are maintained at 55 ~ and 
the thermal conductivity is 15 W / m .  K, calculate the maximum temperature under 
steady conditions. 

(Answer:  389.6 ~ 
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9.7 The rate of generation per unit volume is sometimes expressed as a function of 
temperature rather than position. Consider the transmission of an electric current 
through a wire of radius R. If the surface temperature is constant at TR and the 
rate of generation per unit volume is given as 

~ = ~ o ( l + a T )  (1) 

a) Show that the governing equation for temperature is given by 

d-7 r -~r + --ff ( l + a T  )r = O (2) 

b) Use the transformation 

and reduce Eq. (2) to the form 

u - 1 + a T  (3) 

d(d ) 
d-T + r  (4) 

where 

c) Solve Eq. (4) to get 

~o a 
r  k (5) 

T + (1/a) Jo (x/~r) 
TR + ( l /a)  Jo (x/~ R)  

d) What happens to Eq. (6) when v ~  R -  2.4048? 

(6) 

9.8 For laminar flow forced convection in a circular pipe with a constant wall 
temperature, the governing equation for temperature, Eq. (9.3-9), is integrated 
over the cross-sectional area of the tube in Section 9.3.1 to obtain Eq. (9.3-18), 
i.e., 

dTb 
dn (~p ---~-~- z - ~ D h ( T~, - Tb ) (1) 

a) Now let us assume that the flow is turbulent. Over a differential volume ele- 
ment of thickness Az, as shown in the figure below, write down the inventory rate 
equation for energy and show that the result is identical with Eq. (1). 

Z. iiiii! 
~z-~  
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Integrate Eq. (1) to get 

~nCp ln ( T~ - Tb"~ ) = ~D ( h } - Tbo,. (2) 

b) Water enters the inner pipe (D = 23 mm) of a double-pipe heat exchanger at 
15 ~ with a mass flow rate of 0.3 kg/s. Steam condenses in the annular region so 
as to keep the wall temperature almost constant at 112~ Determine the length 
of the heat exchanger if the outlet water temperature is 35 ~ 

(Answer:  b) 1.13m) 

9.9 Consider the heating of fluid A by fluid B in a countercurrent double-pipe 
heat exchanger as shown in the figure below. 

I I 

FluidA TA1 
R 1 R 2 

_ . 2  1 

Fluid B 

...... ] ~ T82 

l 

-I I 
I I 

a) Show from the macroscopic energy balance that the rate of heat transferred is 
given by 

(~ = (mCp)A(TA~ -- TA1) = (ThOp)B(TB~ - TBI) (1) 

where TA and TB are the bulk temperatures of the fluids A and B, respectively. 
Indicate your assumptions. 

b) Over the differential volume element of thickness Az, write down the inventory 
rate equation for energy for the fluids A and B separately and show that 

dTA 
(m Cp)A- -~-  z -- TrD1UA(TB -- TA) (2) 

dTB 
(rb, Vp ) B--~z -- TrDI UA (TB - TA ) (3) 



PROBLEMS 419 

where UA is the overall heat transfer coefficient based on the inside radius of the 
inner pipe given by Eq. (8.2-42), i.e., 

UA 1 R1 ln(R2/R1) + (4) 
= + kw (hB)R2 

in which kw represents the thermal conductivity of the inner pipe. 

c) Subtract Eq. (2) from Eq. (3) to obtain 

d(TB - TA) [ 1 _ I ] ~rD1UA(TB _ TA ) (5) 

d) Combine Eqs. (1) and (5) to get 

d(TB -- TA) = [(TB2 - TA2) -- (TB1-  TA1)] 7rD1UA(TB - TA) 
dz Q 

e) Integrate Eq. (6) and show that the rate of heat transferred is given as 

O~ - (TrDIL)UAATLM 

where the logarithmic mean temperature difference is given by 

( 6 )  

(7) 

= - - - TA ) 
( 8 )  

In T B I _ T A  ' 

f) Consider the double-pipe heat exchanger given in Problem 9.8 in which oil is used 
as the heating medium instead of steam. Oil flows in a countercurrent direction 
to water and its temperature decreases from 130 ~ to 80 ~ If the average heat 
transfer coefficient for the oil in the annular region is 1100 W / m  2. K, calculate the 
length of the heat exchanger. 

(Answer:  f) 5.2 m) 

9.10 You are a design engineer in a petroleum refinery. Oil is cooled from 60 ~ 
to 40 ~ in the inner pipe of a double-pipe heat exchanger. Cooling water flows 
countercurrently to the oil, entering at 15 ~ and leaving at 35 ~ The oil tube 
has an inside diameter of 22 mm and an outside diameter of 25 mm with the inside 
and outside heat transfer coefficients of 600 and 1400 W / m  2. K, respectively. It is 
required to increase the oil flow rate by 40%. Estimate the exit temperatures of 
both oil and water at the increased flow rate. 

(Answer:  Toil -- 43 ~ Twater = 39 ~ 

9.11 Repeat the analysis given in Section 9.3.2 for laminar flow of a Newtonian 
fluid between two fixed parallel plates under the action of a pressure gradient. The 
temperatures of the surfaces at x - 0 and x = B are kept constant at To. 
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a) Obtain the temperature distribution as 

l~.k (~) -~(~) +~ (~) -(~) 
b) Show that the Nusselt number for the upper and lower plates are the same and 
equal to 

N u =  2B<h)__ 35 
k 2 

in which the term 2B represents the hydraulic equivalent diameter. 

9.12 Consider Couette flow of a Newtonian liquid between two large parallel 
plates as shown in the figure below. As a result of the viscous dissipation, liquid 
temperature varies in the x-direction. Although the thermal conductivity and 
density of the liquid are assumed to be independent of temperature, the variation 
of the liquid viscosity with temperature is given as 

#-#oexp[-~( T-T~ )] 

a) Show that the equations of motion and energy reduce to 

d---~ ~ dx ] - 0 (2) 

d2T ( dvz ~ 2 
k~Vx2 + #  ,-~-x] = 0  (3) 

b) Integrate Eq. (1) and obtain the velocity distribution in the form 

/o ~ dx 
Vz # 
- = ( 4 )  

V fo B d i#  

c) Substitute Eq. (4) into Eq. (3) to get 

d20 
d-- ~ + A e ~ - 0 (5) 
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where the dimensionless quantities are defined by 

o - ~ ( T  - To) (6) 
To 

X 

= N (7) 

Br = #~ 
kTo (S) 

Br/~ 
A - ~ (9) 

(/o 1 oo ~) 
d) Multiply Eq. (5) by 2(dO/d~) and integrate the resulting equation to get 

e_o = ~ v S X  v / C  - ~o (~o) 
d~ 

where C is an integration constant. 

e) Note that 0 reaches a maximum value at in C. Therefore, the plus sign must be 
used in Eq. (10) when 0 <_ 0 _< In C. On the other hand, the negative sign must 
be used when In C _ 0 < 1. Show that the integration of Eq. (10) leads to 

f0 lnC dO J(l~ dO ( 1 1 )  
VSX ~ = ~ / c  - e ~ - c v / C -  eO 

Solve Eq. (11) to obtain 

o =,n soch  - 1,1 } (12) 

where C is the solution of 

f) Substitute Eq. (12) into Eq. (4) and show that the velocity distribution is given 
by 

vz 1 tanh [ ~ / ~  (2~ - 1)] 
(~4) 

For more detailed information on this problem, see Gavis and Laurence (1968). 
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9.13 Two large porous plates are separated by a distance B as shown in the 
figure below. The temperatures of the lower and the upper plates are To and T1, 
respectively, with T1 > To. Air at a temperature of To is blown in the x-direct ion 
with a velocity of V. 

a) Show that the inventory rate equation for energy becomes 

dT d2T 
p C p V  -~x = k dx---y (1) 

b) Show that the introduction of the dimensionless variables 

T - T o  
o = (2) 

T 1 -  To 

= _x (3) 
B 

.X = p C p V B  
k (4) 

reduces Eq. (1) to 
d20 ,X dO ~ -~ = o 

c) Solve Eq. (5) and show that the velocity distribution is given as 

1 - e ~ r  0 =  
1 - e ~ 

d) Show that the heat flux at the lower plate is given by 

q . l . = 0  = ~k (T1 - To) 
B ( 1 - e  ~) 

(5) 

(6) 

(7) 

9.14 Rework the problem given in Section 9.4.1 for a zeroth-order chemical reac- 
tion, i.e., r = ko, and show that the concentration profile is given by 

ko 2 [(z 2 
CA -- CAo = 21)AB -L 
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9.15 For laminar flow forced convection in a circular pipe with a constant wall 
concentration, the governing equation for concentration of species A, Eq. (9.5-13), 
is integrated over the cross-sectional area of the tube in Section 9.5.1 to obtain Eq. 
(9.5-21), i.e., 

dCAb 
Q dz = 7rDkc(cA~ - CAb) (1) 

a) Now assume that the flow is turbulent. Over a differential volume element of 
thickness Az, as shown in the figure below, write down the inventory rate equation 
for the mass of species Jt and show that the result is identical with Eq. (1). 

z 

b) Instead of coating the inner surface of a circular pipe with species ,4, let us 
assume that the circular pipe is packed with species .4 particles. Over a differential 
volume element of thickness Az, write down the inventory rate equation for mass 
of species j[ and show that the result is 

dCAb 
Q d'--~ - ayAkc(CA,o - CAb) (2) 

where A is the cross-sectional area of the pipe and av is the packing surface area 
per unit volume. Note that for a circular pipe av = 4 / D  and A -- ~ D 2 / 4  so that 
Eq. (2)reduces to Eq. (1). 

9.16 A liquid is being transported in a circular plastic tube of inner and outer 
radii of R1 and R2, respectively. The dissolved 02 (species A) concentration in the 
liquid is CA.,. Develop an expression relating the increase in 02 concentration as a 
function the tubing length as follows: 

a) Over a differential volume element of thickness Az, write down the inventory 
rate equation for the mass of species r and show that the governing equation is 

dcAb __ 2 7r D A B  
Q dz - l n ( R 2 / R 1 )  (CA'~ -- CAb) (1) 

where "DAB is the diffusion coefficient of 02 in a plastic tube and CAoo is the 
concentration of 02 in air surrounding the tube. In the development of Eq. (1), 
note that the molar rate of 02 transfer through the tubing can be represented by 
Eq. (B) in Table 8.9. 

b) Show that the integration of Eq. (1) leads to 

27r"DAB Z 1 
C A  b - -  C A o o  - -  ( C A  m - -  CAo)eXp -- Q l n ( R 2 / R 1 )  (2) 
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9.17 Using the solution given by Johnstone and Pigford (1942), the Sherwood 
number is calculated as 3.41 for long contact times in Section 9.5.4.2. Obtain the 
same result by using an alternative approach as follows: 

a) In terms of the following dimensionless quantities 

r _ ~:4. - cA (i)  
c A - -  CAo 

x 
= -g (2) 

DABZ 
7 ] -  Ymax(~ 2 (3) 

show that Eqs. (9.5-88)-(9.5-91) reduce to 

0r 02r 
(1 - ~2) ~ = 0~ 2 (4) 

at 7]--0 r  (5) 

at ~ = 0  r  (6) 

0r  
at ~c-1  0~ c = 0  (7) 

b) Use the method of separation of variables by proposing a solution in the form 

r ~) - F(v) a(~) (8) 

and show that the solution is given by 

oo 

r  EAne-~'~ 'TGn(~) 
n--1 

(9) 

where 

fo 1(l - ~2) Gn(~) d~ 

f0 1(1 - (2) G~(~) d~ 

and Gn (~) are the eigenfunctions of the equation 

(~0) 

d2G~ 
d~ 2 

+ (1 - ~2))~2 G~ = 0 

c) Show that the Sherwood number is given by 

(ii) 

S h =  
k~ (or 

= (12) 
~AB Cb 
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in which Cb is the dimensionless bulk temperature defined by 

3fo Cb--  (13) 

d) Substitute Eq. (9)into Eq. (12) to get 

o o  

2 n=l 
Sh - - (14) (x)  

3 E ( A n / $ ~ ) e -  @" (dG~/@)~=o 
n--1 

For large values of r/show that Eq. (14) reduces to 

2 
Sh = ~ A~ (15) 

e) Use the method of Stodola and Vianello and show that the first approximation 
gives 

A2 _ 5.122 (16) 

Hint :  Use G1 -- ~(~ - 2) as a trial function. 

9.18 Use Eq. (9.5-129) and show that CA ~ CAo when 

V/4 DA~Z/Vma• 
= 2  

Therefore, conclude that the penetration distance for concentration, 5c, is given by 

5~(Z)--4~/DAB-- z 
V Vmax 

9.19 H2S is being absorbed by pure water flowing down a vertical wall with a 
volumetric flow rate of 6.5 • 10 -6 m3/s  at 20 ~ The height and the width of the 
plate are 2 m and 0.8 m, respectively. If the diffusion coefficient of H2S in water is 
1.3 • 10 -9 m2/s  and its solubility is 0.1 kmol /m 3, calculate the rate of absorption 
of H2 S into water. 

(Answer:  6.5 • 10 -7 kmol/s)  

9.20 Water at 25 ~ flows down a wetted wall column of 5 cm diameter and 1.5 m 
height at a volumetric flow rate of 8.5 • 10 -6 m3/s.  Pure CO2 at a pressure of I atm 
flows in the countercurrent direction. If the solubility of CO2 is 0.0336 kmol /m 3, 
determine the rate of absorption of CO2 into water. 

(Answer:  1.87 • 10 -7 kmol/s)  



426 C H A P T E R  9. S T E A D Y  M I C R O S C O P I C  B A L A N C E S  W I T H  GEN.  

9.21 Consider an industrial absorber in which gas bubbles (,4) rise through a 
liquid (B) column. Bubble diameters usually range from 0.2 to 0.6 cm while bubble 
velocities range from 15 to 35cm/s  (Astarita, 1967). Making use of Eq. (9.5-139) 
show that the range for the average mass transfer coefficient is 

0.018 < (kc) < 0.047 cm/s  

Hint :  A reasonable estimate for DAB is 10 -5 c m 2 / s .  

9.22 Consider a gas film of thickness 5, composed of species ,4 and B adjacent to a 
flat catalyst particle in which gas ,4 diffuses at steady-state through the film to the 
catalyst surface (positive z-direction) where the isothermal first-order heteroge- 
neous reaction A ~ B occurs. As B leaves the surface it decomposes by isothermal 
first-order heterogeneous reaction, B ~ A. The gas composition at z = 0, i.e., XAo 
and X Bo, is known. 

a) Show that the equations representing the conservation of mass for species j t  
and B are given by 

d N A z = ~}~ A (1) 
dz 

dNB~ = ~ B  (2) 
dz 

where 
~A =--~B =kcz z  (3) 

b) Using the heterogeneous reaction rate expression at the surface of the catalyst, 
conclude that 

NA.  = --NB~ 0 < z <_ 5 (4) 

c) Since XA + xB = 1 everywhere in 0 < z _< 5, solution of the one of the coaserva- 
tion equations is sufficient to determine the concentration distribution within the 
film. Show that the governing equation for the mole fraction of species B is 

d 2 x B (  k ) 
dz  2 ~DAB ZB -- 0 (5) 

subject to the boundary conditions 

at z = 0 XB -- XSo (6) 

NBz 
at z - - ~  X B -- 1 + (7) 

Ck s 

where k s is the surface reaction rate constant. 

d) Show that the solution of Eq. (5) is given by 

XB = XBo cosh(A~) + r sinh(A~) (8) 
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where 

~ _  

1 - XBo cosh A + 
X Bo - -  cosh A 

(A / A) sinh A + cosh A 
sinhA 

(9) 

A=~ k52 
"DAB 

ks5  

~ ) A B  
(11) 

e) For an instantaneous heterogeneous reaction, show that Eq. (8) reduces to 

1 - XBo coshA ) sinh(A~) 
X B - -  X B o  cosh(A~) + sinhA (12) 

f) If there is no homogeneous reaction, show that Eq. (8) takes the form 

X B = X B o +  A + I  (1--XBo) (13) 
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C hapt  er 10 

Unsteady-State Microscopic 
Balances Without 
Generation 

The presence of the accumulation term in the inventory rate equation complicates 
the mathematical problem since the resulting equation is a partial differential equa- 
tion even if the transport takes place in one-direction. The solution of partial dif- 
ferential equations not only depends on the structure of the equation itself, but 
also on the boundary conditions. Systematic treatment of momentum, energy, and 
mass transport based on the types of the partial differential equation as well as 
the boundary conditions is a formidable task and beyond the scope of this text. 
Therefore, only some representative examples on momentum, energy, and mass 
transport will be covered in this chapter. 

10.1 M O M E N T U M  T R A N S P O R T  

Consider an incompressible Newtonian fluid contained between two large parallel 
plates of area A, separated by a distance B as shown in Figure 10.1. The system is 
initially at rest but at time t = 0, the lower plate is set in motion in the z-direction 
at a constant velocity V while the upper plate is kept stationary. It is required to 
determine the development of velocity profile as a function of position and time. 

429 
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Figure  10.1 Unsteady Couette flow between parallel plates. 

Postulating vz - vz(t ,  x) and vx = vy - O, Table C.1 in Appendix C indicates that 
the only non-zero shear-stress component is Txz. Therefore, the components of the 
total momentum flux are expressed as 

OVz 
~ = r ~  + ( p v ~ )  v ~  - ~ = - ~ Ox 

~ = ~ + (p v~ ) vy = 0 
2 

7rzz -- Tzz + (pVz) Vz -- p v  z 

(10.1-1) 

(10.1.2) 

(10.1-3) 

The conservation statement for momentum is expressed as 

( Rateof  ) ( Rateof  ) ( Rate of momentum ) 
momentum in - momentum out - accumulation (10.1-4) 

For a rectangular differential volume element of thickness Ax, length Az and width 
W, as shown in Figure 10.1, Eq. (10.1-4) is expressed as 

(~~1~ W A x  + ~ 1 ~  W~Xz) - (~=1~+,~ wax + ~~1~+,,,~ w,",~) 
_ _ 0 [ W A x A z p v ~ ]  

Ot 
(lo.~-5) 

Dividing Eq. (10.1-5) by W A x  A z  and taking the limit as Ax -~ 0 and Az --, 0 
gives 

P --& A~O Ax ~ o  Az 

or, 
OVz OZrxz 01rzz 

= (~o.~-D 
P Ot dx Oz 
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Substitution of Eqs. (10.1-1) and (10.1-3)into Eq. (10.1-7) and noting that 
Ov~ /Oz = 0 yields 

Ov~ 02v~ 
p - - ~  = # Ox 2 (10.1-8) 

The initial and the boundary conditions associated with Eq. (10.1-8) are 

at t = 0 v. = 0 (10.1-9) 

at x = 0 v~ = V (10.1-10) 

at z = B v, = 0 (10.1-11) 

The physical significance and the order of magnitude of the terms in Eq. (10.1-8) 
are given in Table 10.1. 

Table 10.1 
Eq. (10.1-8). 

The physical significance and the order of magnitude of the terms in 

Term Physical Significance Order of Magnitude 

02vz # V 
# Ox 2 Viscous force B2 

Ovz Rate of momentum p V 
P Ot accumulation 

Therefore, the ratio of the viscous force to the rate of momentum accumulation is 
given by 

Viscous force tt V / B  2 u t 

Rate of momentum accumulation p V / t  B 2 
(10.1-12) 

Introduction of the dimensionless quantities 

0 ~  v_~z 
V 

reduces Eqs. (10.1-8)-(10.1-11) to 

x 

ut 
T - -  �9 

B 2 

(10.1-14) 

(10.1-15) 

O0 

Or 

020 
(lo.v16) 

at T = 0 0 - - 0  (10.1-17) 
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at ~ = 0 0 = 1 (10.1-18) 

at ~ -= 1 0 = 0 (10.1-19) 

Since the boundary condition at ~ = 0 is not homogeneous, the method of separa- 
tion of variables cannot be directly applied to obtain the solution. To circumvent 
this problem, propose a solution in the form 

in which 0oo(~) is the steady-state solution, i.e., 

(10.1-20) 

d20~ 
= 0  (10.1-21) @2 

with the following boundary conditions 

at ~ - 0 0oo - 1 (10.1-22) 

at ~ c - 1  0 o o - 0  (10.1-23) 

The steady-state solution is 
0oo = 1 - ~ (10.1-24) 

which is identical with Eq. (8.1-12). On the other hand, the transient contribution 
Ot(T,~) satisfies Eq. (10.1-16), i.e., 

0{9 t 02{9t 
= (10.1-25) 

0 r  0~ 2 

From Eqs. (10.1-20) and (10.1-24), O t -  1 -  ~ -  0. Therefore, the initial and the 
boundary conditions associated with Eq. (10.1-25) become 

at T = 0 Ot ---= 1 -- ~C (10.1-26) 

at ~ = 0 Ot = 0 (10.1-27) 

at ~ = 1 Ot = 0 (10.1-28) 

N o t e  that the boundary conditions at ~ - 0 and ~ - 1 are now homogeneous 
and this parabolic partial differential equation can be solved by the method of 
separation of variables as described in Section B.6.1 in Appendix B. 

The separation of variables method assumes that  the solution can be represented 
as a product of two functions of the form 

Or(T, () - F(T) a(~) 

Substitution of Eq. (10.1-29) into Eq. (10.1-25) and rearrangement gives 

1 dF 1 d2C 
= (10.1-30) 

F dT C d~ 2 
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While the left-side of Eq. (10.1-30) is a function of T only, the right-side is depen- 
dent only on ~. This is possible only if both sides of Eq. (10.1-30) are equal to a 
constant, say - A  2, i.e., 

1 dF 1 d2G 
- -  = - - A  2 (10.1-31) 
F dz G d~ 2 - 

The choice of a negative constant is due to the fact that  the solution will decay to 
zero as time increases. The choice of a positive constant would give a solution that  
becomes infinite as time increases. 

Equation (10.1-31) results in two ordinary differential equations. The equation 
for F is given by 

dF 
d---~ + A2F = 0 (10.1-32) 

The solution of Eq. (10.1-32) is 

F(T) = e-  "x2~ (10.1-33) 

On the other hand, the equation for G is 

d2G A2 
d~ 2 + G =  0 (10.1-34) 

and it is subject to the boundary conditions 

at ~ = 0 G = 0 (10.1-35) 

at ~ = 1 G = 0 (10.1-36) 

Note that  Eq. (10.1-34) is a Sturm-Liouville equation with a weight function of 
unity. The solution of Eq. (10.1-34)is 

G(~) = A sin(A~) + B cos(A~) 

where A and B are constants. Application of Eq. (10.1-35) gives B = 0. The use 
of the boundary condition defined by Eq. (10.1-36) results in 

A sin A = 0 (10.1-38) 

For a nontrivial solution, the eigenvalues are given by 

sin )~ = 0 ~ An = nTr n = 1, 2, 3, ... (10.1-39) 

Therefore, the transient solution is 

o o  

Ot =- ~ Cn e -'~2~2"r sin(nTr~) 
n - - 1  

( 0.1-40) 
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The unknown coefficients C,~ can be determined by using the initial condition in 
Eq. (10.1-26). The result is 

oo 

1 - ~ = E C,~ sin(nTr~) (10.1-41) 
n - - 0  

Since the eigenfunctions are simply orthogonal, multiplication of Eq. (10.1-41) by 
sin(m 7r~) and integration from ( = 0 to ~ = 1 gives 

/o 1 /01 ( 1  - ~)sin(m~r~) d~ - E Cn sin(m~r~) sin(nTr~) d~ (10.1-42) 
n=l 

Note that the integral on the right side of Eq. (10.1-42) is zero when n 5/= m and 
nonzero when n - m. Therefore, when n - m the summation drops out and Eq. 
(10.1-42) reduces to the form 

jr01 f01 ( 1  - ()sin(nTr()d~ = Cn sin2(nTr~) d~ (10.1-43) 

Evaluation of the integrals gives 

2 
C,~ = ~ (10.1-44) nTl- 

The transient solution takes the form 

Ot = _2 ~ _1 e -  n~'r2r sin(nlr~) (10.1-45) 
71" n 

r t - - 1  

Substitution of the steady-state and the transient solutions, Eqs. (10.1-24) and 
(10.1-45), into Eq. (10.1-20) gives the solution as 

0 1 ~ 2 ~ 1  . . . . .  e-n2~2r sin(n~r() (10.1-46) 
71" n 

r t - - 1  

The volumetric flow rate can be determined by integrating the velocity distri- 
bution over the cross-sectional area of the plate, i.e., 

f0wf0 B Q = v~ dxdy 

= W B V  0 d~ (t0.1-47) 

Substitution of Eq. (10.1-46)into Eq. (10.1-47) gives 

Q = W B V  2 7r 2 _ (2k + 1) 2 exp [ - (2k  + 1)27r2T] (10.1-48) 

Note that when r ~ oe, Q ~ W B V / 2  which is identical with Eq. (8.1-15). 
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1 0 . 1 . 1  S o l u t i o n  f o r  S h o r t  T i m e s  

Once the lower plate is set in motion, only the thin layer adjacent to the lower 
plate feels the motion of the plate during the initial stages. This thin layer does 
not feel the presence of the stationary plate at x = B at all. For a fluid particle 
within this layer, the upper plate is at infinity. Therefore, the governing equation 
together with the initial and boundary conditions are expressed as 

OV z 02Vz 
p ~ = # Ox 2 (10.1-49) 

at t = 0 v~ = 0 (10.1-50) 

at x -  0 v~ = V (10.1-51) 

at x = oc vz = 0 (10.1-52) 

In the literature, this problem is generally known as Stokes' first problem 1. Note 
that there is no length scale in this problem. Since the boundary condition at 
x = c~ is the same as the initial condition, the problem can be solved by the 
similarity analysis. The solution of this problem is given in Section B.3.6.2 in 
Appendix B and the solution is 

(x) 
-~ --- 1 - erf (10.1-53) 

The drag force exerted on the plate is given by 

F D = A ( -  

A#V 

(~V z 

(10.1-54) 

Finally, note that when x/4x/- f~- 2, Eq. (10.1-53) becomes 

V Z 
-:-: = 1 - erf(2) -- 1 - 0.995 - 0.005 
V 

indicating that v~ ~ 0. Therefore, the penetration distance for momentum, 5, is 
given by 

The penetration distance changes with the square root of the momentum diffusivity 
and is independent of the plate velocity. The momentum diffusivities for water and 
air at 20~ are 1 • 10 -6 and 15.08 • 10 -6 m2/s ,  respectively. The penetration 
distances for water and air after one minute are 3.1 cm and 12 cm, respectively. 

1 Some au thors  refer to this problem as the Rayleigh problem. 
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10.2 E N E R G Y  T R A N S P O R T  

The conservation statement for energy reduces to 

( Ra teof  ) ( Rateof  ) ( Rate of energy ) 
energy in - energy out -- accumulation (10.2-1) 

As in Section 8.2, our analysis will be restricted to the application of Eq. (10.2-1) 
to conduction in solids and stationary liquids. The solutions of almost all imagin- 
able conduction problems in different coordinate systems with various initial and 
boundary conditions are given by Carslaw and Jaeger (1959). For this reason, only 
some representative problems will be presented in this section. 

The Biot number is given by Eq. (7.1-14) as 

(Difference in driving force)solid 
B i -  (Difference in driving force)/l~id (10.2-2) 

In the case of heat transfer, the temperature distribution is considered uniform 
within the solid phase when Bill << 1. This obviously brings up the question, 
"What should the value of Bill be so that the condition Bill << 1 is satisfied?" In 
the literature, it is generally assumed that the internal resistance to heat transfer 
is negligible and the temperature distribution within the solid is almost uniform 
when Bin < 0.1. Under these conditions, the so-called lumped-parameter analysis 
is possible as can be seen in the solution of problems in Section 7.5. When 
0.1 < Bill < 40, the internal and external resistances to heat transfer have al- 
most the same order of magnitude. The external resistance to heat transfer is 
considered negligible when Bin > 40. 

1 0 . 2 . 1  H e a t i n g  o f  a R e c t a n g u l a r  S l a b  

Consider a rectangular slab of thickness 2L as shown in Figure 10.2. Initially the 
slab temperature is uniform at a value of To. At t -- 0, the temperatures of the 
surfaces at z - • L are increased to T1. To calculate the amount of heat transferred 
into the slab, it is first necessary to determine the temperature profile within the 
slab as a function of position and time. 

If 2 L / H  <<: 1 and 2 L / W  << 1, then it is possible to assume that the conduction 
is one-dimensional and postulate that T - T( t ,  z). In that case, Table C.4 in 
Appendix C indicates that the only non-zero energy flux component is ez and it is 
given by 

ez = q~ = - k OT 
Oz (10.2-3) 
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T1 ~L L~ ..... T1 i____~ 

z 

q ~ l z  

Az 

Figure  10.2 Unsteady-state conduction through a rectangular slab. 

For a rectangular differential volume element of thickness Az, as shown in 
Figure 10.2, Eq. (10.2-1) is expressed as 

0[ ] q:, 1~ W H  - q~ I~+/',: W H  = --~ W H A z  p Cp (T - T,.~I) (10.2-4) 

Following the notation introduced by Bird et al. (1960), "in" and "out" directions 
are taken in the + z-direction. Dividing Eq. (10.2-4) by W H A z  and letting 
Az -~ 0 gives 

P ~p ~OT _ A~--+olim q~l~--AzqZ[z+A~ (10.2-5) 

or, 
p S .  oT _ _ Oq~ (~0.2-6) 

Ot Oz 

Substitution of Eq. (10.2-3) into Eq. (10.2-6) gives the governing equation for 
temperature as 

OT 02T 
pOP N = k-Sj~ (~0.2-7) 

All physical properties are assumed to be independent of temperature in the devel- 
opment of Eq. (10.2-7). The initial and boundary conditions associated with Eq. 
(10.2-7) are 

at t = O  T = T o  for a l lz  
at z = L T = T1 t > 0 (10.2-8) 
at z = - L  T = T 1  t > 0  
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Note that  z - 0 represents a plane of symmetry across which there is no net flux, 
i.e., OT/Oz - O. Therefore, it is also possible to express the initial and boundary 
conditions as 

at t - - 0  T = T o  for a l lz  

OT 
at z -  0 0-~ = 0 t > 0 (10.2-9) 

at z = L  T = T ~  t > O  

The boundary condition at z - 0 can also be interpreted as an insulated surface. As 
a result, Eqs. (10.2-7) and (10.2-9) also represent the following problem statement: 
"A slab of thickness L is initially at a uniform temperature of To. One side of the 
slab is perfectly insulated while the other surface is kept at a constant temperature 
of T1 with T1 > To for t > 0." 

The physical significance and the order of magnitude of the terms in Eq. (10.2- 
7) are given in Table 10.2. 

Table  10.2 
Eq. (10.2-7). 

The physical significance and the order of magnitude of the terms in 

Term Physical Significance Order of Magnitude 

02 (T) k (T1 - To) 
k ~ Rate of conduction 

Cgz 2 L 2 

P ~p OT Rate of energy p Cp (T1 - To) 
Ot accumulation 

Therefore, the ratio of the rate of conduction to the rate of energy accumulation is 
given by 

Rate of conduction k (T1 - To)/L 2 c~ t 
= = - -  (10.2-10) 

Rate of energy accumulation pCp(T1 - To)/t  L2 

In the literature, the term a t / L  2 is usually referred to as the Fourier number, Fo. 
Introduction of the dimensionless quantities 

T 1 -  T 
- T1 - To (10.2-11) 

z 
- ~ (10.2-12) 

c~t 
T = L2 (10.2-13) 

reduces Eqs. (10.2-7)and (10.2-8)to 

0e0 
2 (10.2-14) 
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at T = 0  0 - -  1 
at ~ - -  1 0 = 0 (10.2-15) 
at ~ = - - 1  0 = 0  

Since the governing equation as well as the boundary conditions in the ~-direct ion 
are homogeneous, this parabolic partial differential equation can be solved by the 
method of separation of variables as explained in Section B.6.1 in Appendix B. 

The solution can be represented as a product of two functions of the form 

O(r, ~) = F(T) G(~) (10.2-16) 

so that  Eq. (10.2-14) reduces to 

1 dF 1 d2G 
= ( , 0 . 2 - 1 7 )  

F dT G d~ 2 

While the left-side of Eq. (10.2-17) is a function of 7 only, the right-side is depen- 
dent only on ~. This is possible only if both sides of Eq. (10.2-17) are equal to a 
constant, say - A 2 i.e. 

1 d F _  1 d 2 G _ _ A  2 (10.2-18) 
F dT - G  d~ 2 - 

The choice of a negative constant is due to the fact that  the solution will decay to 
zero as time increases. The choice of a positive constant would give a solution that  
becomes infinite as time increases. 

Equation (10.2-18) results in two ordinary differential equations. The equation 
for F is given by 

dF 
+ A2F = 0 (10.2-19) 

dr  

The solution of Eq. (10.2-19) is 

F(T) = e -  ~2r (10.2-20) 

On the other hand, the equation for G is 

d2G 
+ A 2 G -  0 (10.2-21) 

d~ 2 

and it is subject to the boundary conditions 

at ~ -  1 G = 0 (10.2-22) 

at ~ = - 1 G - 0 (10.2-23) 

Note that  Eq. (10.2-21) is a Sturm-Liouville equation with a weight function of 
unity. The solution of Eq. (10.2-21) is 

G(~) = A sin(A~) + B cos(A~) (10.2-24) 
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where A and B are constants. Since the problem is symmetric around the z-axis,  
then 0, and hence G, must be even functions 2 of ~. Therefore, A - 0. Application 
of the boundary condition defined by Eq. (10.2-22) gives 

B cos )~ = 0 (10.2-25) 

For a nontrivial solution, the eigenvalues are given by 

(1) 
cos A - 0 => )~ - n + ~ 7r n = 0, 1, 2, ... (10.2-26) 

Therefore, the general solution is 

0 = cos  + ( 0.2-27) 

rt---0 

The unknown coefficients Cn can be determined by using the initial condition in 
Eq. (10.2-15). The result is 

(1) ] 
l = E C n c o s  n + ~  ~r~ (10.2-28) 

r~--0 

Since the eigenfunctions are simply orthogonal, multiplication of Eq. (10.2-28) by 
cos [(m + �89 and integration from ~ = 0 to ~ = 1 gives 

1 ~ 1 1 
cos [ ( m +  2)7r , ]  d,  =n~__ 0 Cn ~ cos [ ( n +  2)7r , ]  cos [ ( m +  ~)7r , ]  d~ 

(10.2-29) 
Note that the integral on the right side of Eq. (10.2-29) is zero when n 7~ m and 
nonzero when n = m. Therefore, when n - m the summation drops out and Eq. 
(10.2-29) reduces to the form 

/01cos [ ( n +  2)7r~] d,=Cnfolcos2[(n+2) Tr~] d~ (10.2-30) 

Evaluation of the integrals gives 

sin [(n + �89 r] 
(10.2-31) Cn=2 (n+�89 

Since sin (n + �89 = ( -  1) n, the solution becomes 

( _ 1 )  '~ _(n+�89 
0--  2 E ( n +  �89 e cos [(n + �89 (10.2-32) 

rt--O 

2A f u n c t i o n  f(x) is sa id  to  be  an odd function if f ( - x )  = - f ( x )  a n d  an  even function if 

f ( - x ) - -  f(x). 
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E x a m p l e  10.1 A copper slab ( a  : 117x 10 -6  m2/s )  of 10 cm thick is initially at 
a temperature of 20 ~ If  it is dipped in a boiling water at atmospheric pressure, 
estimate the time it takes for the center of the slab to reach 40 ~ Repeat the 
problem also for a 10cm thick stainless steel slab (c~ = 3.91 x 10-6 m2/s) .  

Solution 
The use of Eq. (10.2-32) gives 

T1 - T c  = 2 E (~ 1)n exp - n + ~ =n2 (1) 
n--O 

where Tc is the temperature at the center, i.e., the value of T at ~ = O. 

Copper: 

Substitution of the values into Eq. (1) gives 

1,. [ (  
100 - 40 : 2 E (n ( + 2) ~" 2 (0"05)2 1 0 0 - 2 0  exp - n +  (2) 

n - - 0  

The value of t can be calculated as 4.5 s. 

Stainless steel: 

Substitution of the values into Eq. (1) gives 

1 0 0 - 4 0 : 2  E (n(+ 1)'~ exp - 
100 - 20 �89 

rt--O 

(~)2~r215 t] 
n + (0.05) 2 (3) 

The value of t can be calculated as 136s. 

C o m m e n t :  For an unsteady-state conduction problem, the ratio of the rate of 
accumulation to the rate of conduction is equal to the Fourier number. Let sub- 
scripts c and s represent copper and stainless steel, respectively. Then, it is possible 
to equate the Fourier numbers, i.e., 

- /T  : 7~- (4) 
Lch c Lch s 

Since Lch is the same for both cases, Eq. (~) simplifies to 

ts 
(11  10 ~ 

= 4 . 5  3 .91x10  . 6  = 135s 

which is almost equal to the exact value. 
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10.2.1.1 Macroscopic equat ion 

Integration of the governing equation, Eq. (10.2-7), over the volume of the system 
gives 

p o p  --~ dxdydz - k ~ dxdydz (10.2-33) 
L L 

Evaluation of the integrations yields 

d-t p dR (T - Tr~y) dxdydz = 2 W H  k -~z ~=n 

�9 " "  ~ v , ~ ' "  . . . . . . .  ' J 

Rate of accumulation of energy Rate of energy entering 
from surfaces at z -  4-L 

(10.2-34) 

Note that Eq. (10.2-34) is the macroscopic energy balance by considering the 
rectangular slab as a system. The rate of energy entering into the slab, (~, can be 
calculated from Eq. (10.2-34) as 

(0T ) 
Q - 2 W H  k ~z  ~:L 

_ _ 2 W H k  (T1 - To) 0__00[ 
L O~ ~=~ 

(10.2-35) 

Substitution of Eq. (10.2-32)into Eq. (10.2-35) gives 

Q = 4 W H k  ( T 1 - T ~  ~ e x p  [ - (2n + 4 

n'--O 

(10.2-36) 

The amount of heat transferred can be calculated from 

~0 t L2 j~O r Q = (~dt = - -  (~dT 

Substitution of Eq. (10.2-36) into Eq. (10.2-37) yields 

(10.2-37) 

= 1 - ~ - ~  (2n+1)2 exp - 4 (10.2-38) 

where Q~ is the amount of heat transferred to the slab when it reaches steady- 
state, i.e., 

Q ~  - 2 L W H  p Cp(T1 - To) (10.2-39) 

Mass of the slab 
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10.2.1.2 So lu t i on  for s h o r t  t i m e s  

Let s be the distance measured from the surface of the slab, i.e., 

s = L -  z (10.2-40) 

so that  Eq. (10.2-7) reduces to 

OT 02T 
= a - -  (10.2-41) 

Ot Os 2 

At small values of time, the heat does not penetrate very far into the slab. Under 
these circumstances, it is possible to consider the slab as a semi-infinite medium in 
the s-direct ion.  The initial and boundary conditions associated with Eq. (10.2-41) 
become 

at t = O  T = T o  
at s = O  T = T 1  (10.2-42) 
at s = o o  T = T o  

Introduction of the dimensionless temperature 

T-To 
r = T1 - To (10.2-43) 

reduces Eqs. (10.2-41)and (10.2-42)to 

0r 02r 
= ~ -  (10.2-44) 

Ot Os 2 

at t - 0  r  
at s -  0 r  1 (10.2-45) 
at s - c ~  r  

Since there is no length scale in the problem, this parabolic partial  differential 
equation can be solved by the similarity solution as explained in Section B.6.2 in 
Appendix B. The solution is sought in the form 

r = f(~) (10.2-46) 

where 
8 

- x/~at (10.2-47) 

The chain rule of differentiation gives 

0r 
Ot 

df OV 
d~ Ot 

l ~l df 

2 t d ~  
(10.2-48) 
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02r d2f(O~7) 2 df02~l 
Os 2 = drl2 ~ + &7 0s 2 

1 d2f 
4 at drl 2 

Substitution of Eqs. (10.2-48) and (10.2-49)into Eq. (10.2-44) gives 

d2f + 2 d r  
d~12 ~ -- 0 

The boundary conditions associated with Eq. (10.2-50) are 

(10.2-49) 

( o.2-5o) 

at 7/= 0 f - 1 (10.2-51) 
at ~=cx~ f - - O  

The integrating factor for Eq. (10.2-50) is expQ/2). Multiplication of Eq. (10.2-50) 
by the integrating factor yields 

which implies that 

&7 e'72 -- ~ -- 0 (10.2-52) 

_ _  - - -  ~7  2 df C1 e- (10.2-53) 

Integration of Eq. (10.2-53) gives 

f = C1 e-~2du + C2 (10.2-54) 

where u is a dummy variable of integration. Application of the boundary condition 
at 7 / -  0 gives C2 = 1. On the other hand, application of the boundary condition 
at 7/= 1 gives 

1 2 
Ca = - = (10.2-55) 

e-- du 

Therefore, the solution becomes 

or~ 

2 ~0 r/ u 2 f = l - - - ~  e- d u -  l-erf(7/) ( 0.2-56) 

T - T ~  = l _ e r f (  s ) 
T1 - To ~ (10.2-57) 

where erf(x) is the error function defined by 

~o ~ ~2 = ( 0.2-5s) 
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Further simplification of Eq. (10.2-57) gives 

T 1 - T  = e r f (  s ) (10.2-59) 

The rate of heat transfer into the semi-infinite slab of cross-sectional area A is 

( ) ( ~ = a  - k  -~s ~= ~ 

Ak(T1 - To) 
(10.2-60) 

The amount of heat transferred is 

J~O0 t Q - Qdt 

2Ak (T1 -To)v~  
(~o.2-6~) 

E x a m p l e  10.2 One of the surfaces of a thick wall is exposed to gases at 350 ~ 
If  the initial wall temperature is uniform at 20 ~ determine the time required for 
a point 5cm below the surface to reach 280 ~ The the~nal diffusivity of the wall 
is 4 x 10 -7 m2/s. 

S o l u t i o n  

A s s u m p t i o n  

1. The Biot number is large enough to neglect the external resistance to heat 
transfer so that the surface temperature of the wall is almost equal to the gas 
temperature. 

2. Since the wall thickness is large, it may be considered as a semi-infinite 
medium. 

A n a l y s i s  

The left-side of Eq. (10.2-59) is 

T1 - T 3 5 0 -  280 

T1 - To 3 5 0  - 2 0  

Therefore, 

=0.212 (1) 

( s )  8 
erf ~ -- 0.212 ~ ~ ---- 0.19 (2) 
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The time required is 

1 2 s 

_ 1 ( 0 . o 5 )  2 
- 4 ( 4  x 10 -7  ) \ 0 - ~  

= 43,283 s "~ 12 h (3) 

C o m m e n t :  Note that when s/v/-4-~ = 2, Eq. (10.2-59) becomes 

T~ - T 

T~-To 
= erf(2) = 0.995 

indicating that T "~ To. Therefore, the penetration distance for heat, St, is given by 

5t --  4 X / ~  

In this particular example, the penetration distance after 12 hours is 

5t = 4V/(4 x 10-7)(12)(3600) - 0.53 m 

10.2.2 Heat ing  of a Rectangular  Slab: Revis i ted 

In Section 10.2.1, the temperatures of the surfaces at z - 4- L are assumed constant 
at T1. This boundary condition is only applicable when the external resistance to 
heat transfer is negligible, i.e., Bill > 40. In practice, however, it is not the surface 
temperature but the temperature of the medium surrounding the slab, Too, that  is 
generally constant and the external resistance to heat transfer should be taken into 
consideration. The governing equation for temperature is given by Eq. (10.2-7). 
The initial and the boundary conditions are given by 

at t = 0 T = To for all z (10.2-62) 

OT 
at z = 0  - - = 0  t > 0  (10.2-63) 

Oz 
OT 

at z - L k -~z - (h}(To~ - T) t > 0 (10.2-64) 

Introduction of the dimensionless quantities 

T ~ - T  
9 = (10.2-65) 

T o o - T o  

z 
- ~ (10.2-66) 

T = L-- 5 (Iu.z-t~Y) 

B i n -  (h>L (10.%68) 
k 
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reduces Eqs. (10.2-7), (10.2-62), (10.2-63) and (10.2-64) to 

00 020 

0 r  0~ 2 
(10.2-69) 

at T -- 0 0 -- 1 (10.2-70) 

00 
at ~ - 0 0~ = 0 (10.2-71) 

00 
at ~ -  1 0~ = Bin 0 (10.2-72) 

The use of the method of separation of variables in which the solution is sought in 
the form 

0(T, ~) = F(T) G(~) (10.2-73) 

reduces the differential equation, Eq. (10.2-69) to 

1 d F _  1 d 2 a _ _ A  2 (10.2-74) 
F dT -- G d~ 2 - 

Equation (10.2-74) results in two ordinary differential equations: 

dF 

dT 
- -  + ~ F  = 0 ~ F (~ )  - ~ -  ~:~ (10.2-75) 

d2G 
-~- A2G - 0 

d~ 2 
G(~) = A sin(A~)+ B cos(A~) (10.2-76) 

Therefore, the solution becomes 

0 - e -  ~ r  [A sin(A~) + B cos(),~)] (10.2-77) 

The application of Eq. (10.2-71) indicates that A - 0. Application of the boundary 
condition defined by Eq. (10.2-72) gives 

A 2 A 2 
B A e -  ~ s i n A = B i H B e -  ~cosA (10.2-78) 

Solving for A yields 
An tanAn - Bill (10.2-79) 

The first five roots of Eq. (10.2-79) are given as a function of Bill in Table 10.3. 
The general solution is the summation of all possible solutions, i.e., 

o o  

e - ~ c ~  ~-~  c o ~ ( ~ )  (~0 2-80) 
n - - 1  
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Table  10.3 The roots of Eq. (10.2-79). 

BiH A1 A2 ),3 A4 A5 

0 0.000 3.142 6.283 9.425 12.566 
0.1 0.311 3.173 6.299 9.435 12.574 
0.5 0.653 3.292 6.362 9.477 12.606 
1.0 0.860 3.426 6.437 9.529 12.645 
2.0 1.077 3.644 6.578 9.630 12.722 

10.0 1.429 4.306 7.228 10.200 13.214 

The unknown coefficients Cn can be determined by using the initial condition given 
by Eq. (10.2-70). The result is 

C~ 

Therefore, the solution becomes 

f0 1 cos(A,~)d~ 

~0 1 ( ,~n ~) d~ COS 2 

2 sin An 
A,~ + sin A,~ cos A,~ 

(10.2-81) 

oo sin A,~ 

0 = 2 E A,~ + sin A,~ cos A,~ 
n--1 

e-  ~*  cos()~n~) (10.2-82) 

When T >_ 0.2, the series solution given by Eq. (10.2-82) can be approximated by 
the first term of the series. 

The rate of energy entering into the slab, Q, is given by 

(oT ) 
Q -  2 W H  k--~z z:L 

2 W H k  (Too - To) O0 
L O~ ~=1 

(10.2-83) 

Substitution of Eq. (10.2-S2)into Eq. (10.2-83) gives 

= 4 W H k  (Too - To) ~ An sin 2 A,~ 
L E A,~ + sin A, cos A,~ exp ( -  >2.r) 

n--1 
(10.2-84) 

The amount of heat transferred can be calculated from 

/0 Q = ( ~ d t -  - -  (~dv (10.2-85) 
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Substi tut ion of Eq. (10.2-84) into Eq. (10.2-85) yields 

oo 2 sin 2 An [1 (- A~ T)] 
i - :  + sin cos 

exp (10.2-86) 

where Q o is the amount of heat transferred to the slab when the driving force is 
constant and equal to its greatest (or, initial) value, i.e., 

Q o - 2 L W H p C p ( T ~ - T o )  (10.2-87) 

E x a m p l e  10.3 A cake baked at 175 ~ for half an hour is taken out of the oven 
and inverted on a rack to cool. The kitchen temperature is 20 ~ and the average 
heat transfer coefficient is 12 W / m  S. K. If  the thickness of the cake is 6cm, esti- 
mate the time it takes for the center to reach 40 ~ Take k - 0.18 W / m .  K and 
a = 1.2 x 10 -7 m 2 / s  for the cake. 

S o l u t i o n  

The Biot number is 

B i l l -  <h>L 
k 

(12)(0.03) 
-- (0.18) -- 2 (1) 

From Table 10.2 A1 = 1.077. Considering only the first term of the series in Eq. 
(10.2-82), the temperature at the center, To, is 

Too - Tc 2 sin )~1 
= exp ( -  A2n 7-) (2) 

Too - To )~1 + sin )~1 COS '~1 

Substitution of the values into Eq. (2) gives 

20 - 40 2 sin 61.7 
-- exp [-(1.077)2T] (3) 

20 -- 175 1.077 + sin61.Tcos 61.7 

in which 1.077 tad - 61.7 o. Solving for T yields 

Therefore, the time is 

T---- 1.907 (4) 

T L  2 
t---- 

OL 

(1.907)(0.03) 2 
- 1 . 2 x 1 0 - 7  = 1 4 , 3 0 3 s _ 4 h  

C o m m e n t :  The actual cooling time is obviously less than 4 h as a result of the 
heat loss from the edges as well as the heat transfer to the rack by conduction. 
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10.2.3 Heat ing  of  a Spherical  Particle  

A spherical particle of radius R is initially at a uniform temperature of To. At t = 0 
it is exposed to a fluid of temperature Too (T~ > To). It is required to determine 
the amount of heat transferred to the spherical particle. 

qrl 
~--Ar-q 

qrtr+Ar 

Figure  10.3 Heating of a spherical particle. 

Since the heat transfer takes place in the r-direction,  Table C.6 in Appendix 
C indicates that the only non-zero energy flux component is e~ and it is given by 

OT 
e~ - qr -- - k O--r (10.2-88) 

For a spherical differential volume of thickness Ar, as shown in Figure 10.3, Eq. 
(10.2-1) is expressed as 

0 [47rr2Arp~p(T_T~/)]  qrlr 47rr2 - qr]~+~ 41r(r + Ar) 2 = ~-~ (10.2-89) 

Dividing Eq. (10.2-89) by 4~rAr and letting Ar ~ 0 gives 

_ _  P ~p OT _ 1 lim ~ (10.2-90) 
0 t  r 2 At--.0 Ar 

or~ 

p~p  OT _ 1 O(r2qr) (10.2-91) 
Ot r 2 Or 

Substitution of Eq. (10.2-88) into Eq. (10.2-91) gives the governing differential 
equation for temperature as 

pop  O T _  1 0 (r  2 0 T )  
Ot - r 2 Or -~r 

(10.2-92) 
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The initial and the boundary conditions associated with Eq. (10.2-92) are 

at t = O  T = T o  

OT 
at r = O  ~ = 0  

Or 
OT 

at r - R  k ~ = ( h } ( T o ~ - T )  

(10.2-93) 

(10.2-94) 

(10.2-95) 

Introduction of the dimensionless quantities 

Too-T 
Too-To 

(10.2-96) 

reduces Eqs. (10.2-92)-(10.2-95) to 

a t  
R 2 

7. ~=-~ 

Bin = (h}R 
k 

(10.2-97) 

(~o.2-9s) 

(10.2-99) 

0O 
OT 

1 0 
(~o.2-1oo) 

at T = 0 

at ~ - 0  

at ~ - 1  

0 - 1  

0O 
~ - - 0  

0O 
= Bill0 0~ 

(10.2-101) 

(lO.2-1o2) 

(lO.2-1o3) 

10.2.2.1 Solut ion for 0.1 < Bill < 40 

Note that the transformation 
U 

0 = ~- (10.2-104) 

converts the spherical geometry into the rectangular geometry. Substitution of Eq. 
(10.2-104) into Eq. (10.2-100)leads to 

(~U 02U 
0~ = 0~ ---~ (10.2-~05) 

which is identical with Eq. (10.2-69). Therefore, the solution is 

- ~- "~ [A sin(,X~) + B cos(,X~)] (10.2-106) 
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or, 
sin(A~) 

0 = e  -~2~ A ~ + B  c~ ] ~ (10.2-107) 

The boundary condition defined by Eq. (10.2-102) indicates that B - 0 .  Applica- 
tion of Eq. (10.2-103) yields 

A 2 A 2 
Ae- ~(sinA- AcosA) - BiHAe- ~sinA (10.2-108) 

Solving for A gives 
An cot An = 1 - Bill (10.2-109) 

The first five roots of Eq. (10.2-109) are given as a function of Bill in Table 10.4. 

Table 10.4 The roots of Eq. (10.2-109). 

BiH A1 A2 A3 A4 A5 

0 0.000 4.493 7.725 10.904 14.066 
0.1 0.542 4.516 7.738 10.913 14.073 
0.5 1.166 4.604 7.790 10.950 14.102 
1.0 1.571 4.712 7.854 10.996 14.137 
2.0 2.029 4.913 7.979 11.086 14.207 

10.0 2.836 5.717 8.659 11.653 14.687 

The complete solution is 

oo sin(An~) 
0 -- ~ Cn e - ~  (10.2-110) 

n=l 

The unknown coefficients Cn can be determined from Eq. (10.2-101). The result 
is 

o' ~ sin(An{) d~ 

r01 sin2(An~)d~ 

cos  ) 
,~n Ar~ - sin Ar~ cos An 

(10.2-111) 

Therefore, the solution becomes 

oo 1 (sinAn-AncosAn) a~rSin(An{) 
0=2n=1 ~ ~ An - sin An cos An e- 

(10.2-112) 
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The rate of energy entering into the sphere, Q, is given by 

= 4 ~ R  2 k - ~ r  ~ = ~  

00 
= - 4 ~ n  k (Too - To) 

~=1 

Substitution of Eq. (10.2-112) into Eq. (10.2-113) results in 

(10.2-113) 

oo 1 ( s in  A,~ - An cos An)2 
Q - 81rRk (Too - To) E ~ (An - sinAn cosAn) exp ( -  A27 -) 

n- -1  

(10.2-114) 

The amount of heat transferred can be calculated from 

Q = Qdt  - - -  QdT 
(2 

Substitution of Eq. (10.2-114) into Eq. (10.2-115) yields 

(10.2-115) 

Q ~ 6 (sin An - An cos An)2 
Qoo = A--~ (A~ - sin A~ cos A,) 

n - - 0  

[ 1 -  exp ( -  A2nw)] (10.2-116) 

where Qo is the amount of heat transferred to the sphere when the driving force is 
constant and equal to its greatest (or, initial) value, i.e., 

4 
qo  = -5~n3 p~p(Too  - To) (10.2-117) 

Example  10.4 Due to an unexpected cold spell, air temperature drops down to 
- 3  ~ accompanied by a wind blowing at a velocity of 3 m~ s in Florida. Farmers 
have to take precautions in order to avoid frost in their orange orchards. If frost 
formation starts when the surface temperature of the orange reaches 0 ~ use your 
engineering judgement to estimate the time the farmers have to take precautions. 
Assume the oranges are spherical in shape with a diameter of 10 cm and at an 
initial uniform temperature of 10~ The thermal conductivity and the thermal 
diffusivity of an orange are 0.51 W/m.  K and 1.25 • 10- 7 m2/s, respectively. 

S o l u t i o n  

Physical  proper t ies  

Initially the film temperature is ( -3  + 10)/2 = 3.5 ~ 

u -  13.61 • 10 -6m2/ s  
For air at 3.5 ~ (276.5 K)" k = 24.37 • 10 -3 W/m.  K 

Pr = 0.716 
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A n a l y s i s  

It is first necessary to calculate the average heat transfer coefficient. The Reynolds 
number is 

Dpvcr 
R e p  = 

/2 

= (10 x 10-2)(3)  = 22,043 (1) 
13.61 x 10 -6 

The use of the Ranz-Marshall correlation, Eq. (~.3-29), gives 

~-~ 1/2 / 3  Nu = 2 + 0 . 6 ~ e p  Pr  1 

= 2 + 0.6 (22, 043)1/2(0.716)1/3 

= 8 1 . 7  (2) 

The average heat transfer coefficient is 

m . lo 
The Biot number is 

(3) 

(h)R 
B i l l  = 

k 

= (19.9)(5 x 10 -2)  = 1.95 (4) 
0.51 

From Eq. (10.2-109), the first root is A1 = 2.012. Considering only the first term 
of the series in Eq. (10. 2-112) gives 

0-  Too-T 2 ( s i n ~ l ~ l C O S , ~ l }  A~r sin(Al~) 
Too - To = A'-~- \ A1 - sin A1 cos A, _ e -  ~ (5) 

The time required for the surface of the orange, i.e., ~ = 1, to reach 0 ~ is 

- 3 - 0  2 ( s i n l 1 5 . 3 - 2 . 0 1 2 c o s l 1 5 . 3 ) ( 2 . o 1 2 ) 2  
- 3 - 10 = 2.012 2.012 - sin 115.3cos 115.3 e -  T sin 115.3 (6) 

in which 2 .012rad  = 115.3 ~ Solving for T yields 

T = 0.26 (7) 

Therefore, the time is 

t 
TR 2 

OL 

(0.26)(5 x 10-2)  2 

1.25 x 10 - 7  
= 5200 s "~ 1 h 27 min 



10.2. E N E R G Y  T R A N S P O R T  455 

E x a m p l e  10.5 A 2-kg spherical rump roast is placed into a 175 ~ oven. How 
long does it take for the center to reach 80 ~ if the initial temperature is 5 ~ ? 
The average heat transfer coefficient in the oven is 1 5 W / m  2. K and the physical 
properties of meat are given as: p = 1076 k g / m  3, k = 0.514 W / m .  K, Cp = 
3 .431kJ /kg .  K. 

S o l u t i o n  

The diameter of the roast is 

= 

The Biot number is 

B i l l  : 

-- 0.153m (1) 

(h>R 
k 

= (15)(0.153/2) = 2.23 
0.514 

(2) 

8 -- T o o - T  = __2 (sinA1 - AlCOSAl~ e -  A~r sin(Al~) (3) 
Too - To "~I k ] ) ~ I  - sin A1 cos ,~I 

sin(Al~) 
lim 
r 

the temperature at the center, To, is given by 

= 11 (4) 

T~-% 
Too-To 

sin A1 - AI cos ,~1 ) A2-r 
= 2 A1 - sin A1 cos ,,~1 e- 

Substitution of the values into Eq. (5) gives 

175 - 80 

1 7 5 -  5 
= 2 (  sin 120.4 - 2.101 cos 120.41 ) ( 2 . 1 0 1 )  2 

2.101 - sin120.4 cos120.4 e -  

in which 2.101 rad = 120.4 ~ Solving for T yields 

T = 0.226 

Therefore, the time is 

t ___ 
~-R 2 

OL 

(0.226)(0.153/2) 2 

0.514/[(1076)(3431)] 
= 9500 s __ 2.64 h (8) 

(5) 

(6) 

(7) 

Since 

From Eq. (10.2-109), the first root is /~1 - -  2.101. Considering only the first term 
of the series in Eq. (10.2-112) gives 
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E x a m p l e  10.63 A hen's egg of mass 50 grams requires 5 minutes to hard boil. 
How long will it take to hard boil an ostrich's egg of mass 3 kg? 

S o l u t i o n  

For an unsteady-state conduction problem, the ratio of the rate of accumulation 
to the rate of conduction is equal to the Fourier number. Let subscripts h and o 
represent hen and ostrich, respectively. Then, it is possible to equate the Fourier 
numbers as we did in Example 10.1: 

(o') 
-- "FT (1) 

h Lch o 

I f  both eggs are chemically similar, then Ol  h - - -  O~ o . Since volume and hence mass, 
M ,  is proportional to L3h, Eq. (1) reduces to 

Substitution of the numerical values into Eq. (2) gives the time required to hard 
boil ostrich's egg as 

(3000 )  2/3 
to = (5) 50 - 76.6 min (3) 

10.2.2.2 So lu t ion  for Bill < 0.1 

When Bill < 0.1, internal resistance to heat transfer is negligible. Considering the 
sphere as a system, the inventory rate equation for thermal energy can be written 
as 

Rate of energy in = Rate of energy accumulation (10.2-118) 

or~ 
d 

47rR 2 (h)(Too - T) - 
4 
-~ TrR3pCp(T - Tr~f ) 

Rearrangement of Eq. (10.2-119) gives 

/ T f  dT 
Too-T 

Evaluation of the integrations leads to 

_ 3 (h) f0  t - pS R (10.2- 20) 

Too - T - (Too - To)exp ( 
3 =(h)t ) 

p C p R  
( 0.2-121) 

3This problem is taken from Konak (1994). 
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The amount of heat transferred to the sphere can be calculated as 

~0 t Q = 4~rR2(h> (Too - T)dt  

Substitution of Eq. (10.2-121) into Eq. (10.2-122) gives 

4 [ ( 
Q = -~ zrR3pCp(Too - To) 1 - exp 

3 (h}t 

or, 

~oo -- 1 - exp( -  3 Bill r) (10.2-124) 

The exact values of Q/Qo obtained from Eq. (10.2-86) are compared with the 
approximate results obtained from Eq. (10.2-124) for different values of Bill in 
Table 10.5. As expected, when Bill = 0.1, the approximate values are almost equal 
to the exact ones. For Bin :> 0.1, the use of Eq. (10.2-124) overestimates the exact 
values. 

Table  10.5 
(10.2-124). 

Comparison of Q/Qo values obtained from Eqs. (10.2-86) and 

Q/Qo 

T Bill ----0.1 T Bill = 1 7- Bill -- 10 

Exact Approx. Exact Approx. Exact Approx. 

0 0.000 0.000 0 0.000 0.000 0 0.000 0.000 
1 0.255 0.259 0.1 0.229 0.259 0.01 0.157 0.259 
2 0.444 0.451 0.2 0.398 0.451 0.02 0.259 0.451 
3 0.586 0.593 0.3 0.530 0.593 0.03 0.337 0.593 
4 0.691 0.699 0.4 0.633 0.699 0.04 0.402 0.699 
5 0.770 0.777 0.5 0.713 0.777 0.05 0.457 0.777 
6 0.828 0.835 0.6 0.776 0.835 0.06 0.505 0.835 
7 0.872 0.878 0.7 0.825 0.878 0.07 0.548 0.878 
8 0.905 0.909 0.8 0.863 0.909 0.08 0.586 0.909 
9 0.929 0.933 0.9 0.893 0.933 0.09 0.620 0.933 

10 0.947 0.950 1.0 0.916 0.950 0.10 0.650 0.950 

10.3 M A S S  T R A N S P O R T  

The conservation statement for species A is expressed as 

( R a t e o f ) _ (  Rate of ) ( Rate of species r ) 
species .4 in species .A out = accumulation (10.3-1) 
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As in Section 8.4, our analysis will be restricted to the application of Eq. (10.3-1) 
to diffusion in solids and stationary liquids. The solutions of almost all imaginable 
diffusion problems in different coordinate systems with various initial and boundary 
conditions are given by Crank (1956). As will be shown later, conduction and 
diffusion problems become analogous in dimensionless form. Therefore, solutions 
given by Carslaw and Jaeger (1959) can also be used for diffusion problems. 

The Biot number is given by Eq. (7.1-14) as 

(Difference in driving force)solid 
Bi = (10.3-2) 

(Difference in driving force)fluid 

In the case of mass transfer, when BiM << 1 the internal resistance to mass transfer 
is negligible and the concentration distribution is considered uniform within the 
solid phase. When BiM )> 1, the external resistance to mass transfer is considered 
negligible and the concentration in the fluid at the solid surface is almost the same 
as in the bulk fluid. 

1 0 . 3 . 1  M a s s  T r a n s f e r  I n t o  a R e c t a n g u l a r  S l a b  

Consider a rectangular slab of thickness 2L as shown in Figure 10.4. Initially 
the concentration of species ,4 within the slab is uniform at a value of CAo. At 
t - 0 the surfaces at z - • L are kept at a concentration of CA1. To calculate the 
amount of species ,4 transferred into the slab, it is first necessary to determine the 
concentration distribution of species r within the slab as a function of position 
and time. 

Z 

j_ 

-~Az  

I 

NAzI ': ~ NAz [z+~ 

Figure  10.4 Mass transfer into a rectangular slab. 
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If 2 L / H  << 1 and 2 L / W  << 1, then it is possible to assume that  the diffusion 
is one-dimensional and postulate that CA = cA(t, z). In that  case, Table C.7 in 
Appendix C indicates that the only non-zero molar flux component is NAz and it 
is given by 

d c A  
NA~ = J~4z = - ~ ) A B  d z  (10.3-3) 

For a rectangular differential volume element of thickness Az, as shown in Figure 
10.4, Eq. (10.3-1) is expressed as 

0 ( W H A z  CA) (10.3-4) NA~ I~ W H  - NA~ [~+Az W H  -- -~ 

Dividing Eq. (10.3-4) by W H  A z  and letting Az --. 0 gives 

OCA = lim NAztz -- NA.  Jz+A~ (10.3-5) 
Ot A~4o A z  

or, 
OCA 

Ot 

Substitution of Eq. (10.3-3) into Eq. 
concentration of species A as 

O N A  z 

Oz 
(10.3-6) 

(10.3-6) gives the governing equation for 

OCA 02CA (10.3-7) 

in which the diffusion coefficient is considered constant. The initial and the bound- 
ary conditions associated with Eq. (10.3-7) are 

at t - -  0 C A  = CA~ for all z 
at z -- L CA --- CA 1 t > 0 

at z = - L  CA - -  CA1 t > 0 

flux, i.e., OCA/OZ = O. 
boundary conditions as 

Note that z - 0 represents a plane of symmetry across which there is no net 
Therefore, it is also possible to express the initial and 

t = 0 for all z at CA - -  CA o 

at z - O OcA = 0  t > 0  (10.3-9) 
Oz 

at z = L  CA=CA1 t : > 0  

The boundary condition at z = 0 can also be interpreted as an impermeable sur- 
face. As a result, Eqs. (10.3-7) and (10.3-9) also represent the following problem 
statement: "Initially the concentration of species ,4 within a slab of thickness L is 
uniform at a value of CAo. While one of the surfaces is impermeable to species A, 
the other side is kept at a constant concentration of CA1 with CA1 > CAo for t > 0. 'I 
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The physical significance and the order of magnitude of the terms in Eq. (10.3-7) 
are given in Table 10.6. 

T a b l e  1 0 . 6  
Eq. (10.3-7). 

The physical significance and the order of magnitude of the terms in 

Term Physical Significance Order of Magnitude 

(9 2 CA :DAB (CA1 -- CAo) 
:DAB (9Z2 Rate of diffusion L2 

OCA Rate of accumulation CA~ -- CAo 
Ot of mass A 

Therefore, the ratio of the rate of diffusion to the rate of accumulation of mass r 
is given by 

Rate of diffusion :DAB ( C A  1 - -  CAo)/L 2 :DAB t 

Rate of mass Jt accumulation (CA1 --CAo)/ / t  L 2 

which is completely analogous to the Fourier number, Fo. 
Introduction of the dimensionless quantities 

CA1 -- C A 

CA1 -- CAo 

z 

"DAB t 
T =  

L 2 

reduces Eqs. (10.3-7) and (10.3-8) to 

(10.3-13) 

00 020 

Or O~ 2 
(10.3-14) 

at T - - 0  0 =  1 
at ~ - -1  0 = 0  
at ~ = - - 1  0 = 0  

Note that Eqs. (10.3-14) and (10.3-15) are identical with Eqs. (10.2-14) and (10.2- 
15). Therefore, the solution given by Eq. (10.2-32) is also valid for this case, 
i.e., 

o~ 1) '~ _ ( , , + � 8 9  
0 -  2 E ((~_.o__ � 8 9  cos [(n + 1)lr~] (10.3-16) 

rt=0 
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Example  10.7 A i mm thick membrane in the form of a fiat sheet is immersed 
in a well-stirred 0.15 M solution of species ,4. I f  species ,4 has the diffusion 
coefficient of 0.65 x 10 -9 m2/s and the partition coefficient of 0.4, determine the 
concentration distribution as a function of position and time. 

Solut ion 

Using Eq. (10.3-16), the concentration distribution is given as 

CA 

0.06 

oo (_1) ~ 
- - 1 - - 2 E  ( n §  

n=O 2 ) 7[ 
exp [ -  ( n §  ~ )  i (1)  1 (0 .5x10-3)  2 t cos n + ~  7r~ 

The variation of CA as a function of the dimensionless distance, ~, at various 
values of time is given in the table below. Note that ~ - 0  and ~ = 1 represent the 
center and the surface of the sheet, respectively. 

CA X 102 M 

t - - l m i n  t - - 2 m i n  t = 5 m i n  t - - 10min  

0 0.881 2.465 4.885 5.837 
0.1 0.936 2.510 4.889 5.839 
0.2 1.103 2.637 4.940 5.845 
0.3 1.381 2.848 5.007 5.855 
0.4 1.770 3.137 5.098 5.868 
0.5 2.268 3.497 5.212 5.885 
0.6 2.869 3.918 5.345 5.904 
0.7 3.561 4.391 5.494 5.926 
0.8 4.329 4.905 5.656 5.950 
0.9 5.151 5.445 5.826 5.975 
1.0 6.000 6.000 6.000 6.000 

10.3.1.1 Macroscopic equat ion 

Integration of the governing equation, Eq. (10.3-7), over the volume of the system 
gives 

n - ~  dxdydz -- n 
jr0 H (~2r ~)AB OZ 2 dxdydz 

Evaluation of the integrations yields 

] ( d~ CA dxdydz - 2 W H  DAB ~ z--L 

% s 
y ' J Y 

Rate of accumulation of species .4 Rate of species ,4 entering 
from surfaces at z -- 4- L 

(10.3-17) 

(10.3-18) 
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Note that Eq. (10.3-18) is the macroscopic mass balance for species ~4 by consid- 
ering the rectangular slab as a system. 

The molar rate of species .4 entering into the slab,/~A, can be calculated from 
Eq. (10.3-18) as 

i~A = 2 W H  :DAB ~ z=C 

2 WH~DAB(CA1 - CA.,) O0 
= - - -  ( l o . 3 - 1 9 )  

L 0~ ~=1 

Substitution of Eq. (10.3-16) into Eq. (10.3-19) gives 

4WH~DAB(CA~--CAo)~-~exp[_ (2n + 1) 27r2T 
hA= L 4 

n - ' 0  

( o.3-2o) 

The number of moles of species A transferred can be calculated from 

- / ~ A  dr nA n A  dt = :DAB 

Substitution of Eq. (10.3-20) into Eq. (10.3-21) yields 

(10.3-21) 

M A  

MAoo 

8 ~ 1 [ (2n+l)27r2T] 
= 1 - - ~ 5 ~ ~ 0 ( 2 n + 1 ) 2  exp -- 4 (10.3-22) 

where MA is the mass of species transferred into the slab and MAoo is the maximum 
amount of species j[ transferred into the slab, i.e., 

MAoo = 2 LWH(cA1 - CAo)~4A 

10.3.1.2 Solut ion for shor t  t imes  

(10.3-23) 

Let s be the distance measured from the surface of the slab, i.e., 

s = L -  z (10.3-24) 

SO that Eq. (10.3-7) reduces to 

(~CA 02CA 
Ot = :DAB OS 2 (10.3-25) 

At small values of time, species ,4 does not penetrate very far into the slab. Under 
these circumstances, it is possible to consider the slab as a semi-infinite medium 
in the s-direction. The initial and the boundary conditions associated with Eq. 
(10.3-25) become 

at t - -  0 CA - -  CAo 

at s = 0 CA = CA1 (10.3-26) 
at s = (X) C A --- CAo 
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Introduction of the dimensionless concentration 

~ . .  

CA ~ CAo 

CA, ~ CAo 

reduces Eqs. (10.3-25)and (10.3-26)to 

(10.3-27) 

02r 
0r  _ :DAB (10.3-28) 
0--7- 

at t = 0  r  
at s = 0 r = 1 (10.3-29) 
at s=cx)  r  

Note that Eqs. (10.3-28) and (10.3-29) are identical with Sqs. (10.2-44) and (10.2- 
45) with the exception that a is replaced by :DAB. Therefore, the solution is given 
by Eq. (10.2-56), i.e., 

C CAo:ie,,(') 
CA1 --  CAo v/4 : D A B t  

(10.3-30) 

The molar rate of transfer of species ,4 into the semi-infinite slab of cross-sectional 
area A is 

~t A -~ A - : D A B  - ~ 8  s - -0  

i 

' V 'Trt (10.3-31) 

The number of moles of species A transferred is 

na = hA dt 

= 2 A (CA, -- CAo)~/:DAB t (10.3-32) 
u 7~ 

The maximum amount of species ,4 transferred to the slab is 

MA~ = A L ( c A ,  - CAo)A4A (10.3-33) 

Hence, the ratio of the uptake of species A relative to the maximum is given by 

MA 2 /T)ABt 
M,.  = V - - P -  

( 0.3-34) 

The values of M A / M A ~  calculated from Eqs. (10.3-22) and (10.3-34) are com- 
pared in Table 10.7. Note that the values obtained from the short time solution 
are almost equal to the exact values up to V'DABt /L2  = 0.6. 
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Table  10.7 
solution. 

Comparison of the exact fractional uptake values with a short time 

MA/MA~ 

- ~ t  Exact Approx. 
nq. (10.3-22) nq. (10.3-34) 

0.1 0.113 0.113 
0.2 0.226 0.226 
0.3 0.339 0.339 
0.4 0.451 0.451 
0.5 0.562 0.564 
0.6 0.667 0.677 
0.7 0.758 0.790 
0.8 0.833 0.903 
0.9 0.890 1.016 
1.0 0.931 1.128 

E x a m p l e  10.8 For a semi-infinite medium, penetration distances for the mo- 
mentum and heat transfer are estimated as 

Develop an analogous equation for the mass transfer. 

Solut ion 

When 8/V/4~)AB t - - 2 ,  Eq. (10.3-30) becomes 

C A --  CAo 

CA1 --  CAo 
= 1 - erf (2) - 0.005 

indicating that CA ~-- CAo. Therefore, the penetration distance for mass transfer, 
5c, is given by 

5~  - 4~/t )A. t  

10.3.2 Gas Absorption Into a Spherical Droplet 

Consider a liquid droplet (B) of radius R surrounded by gas A as shown in Figure 
10.5. We are interested in the rate of absorption of species .4 into the liquid. The 
problem will be analyzed with the following assumptions: 

1. Convective flux is negligible with respect to the molecular flux, i.e., v* ~ 0. 

2. The total concentration is constant. 
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Figure  10.5 Gas absorption into a droplet. 

Since CA --  CA(r) ,  Table C.9 in Appendix C indicates that the only non-zero molar 
flux component is NA,. and it is given by 

d c A  
NA~ = J~a~ = - :DA, dr (10.3-35) 

For a spherical differential volume element of thickness At, as shown in Figure 
10.5, Eq. (10.3-1) is expressed in the form 

0 [4nr2A r (CA -- CAo)] (10.3-36) NA~ I~ 47rr2 -- NA~ Ir+Ar 47r(r + Ar) 2 = ~-~ 

Dividing Eq. (20.3-36) by 47rAt and taking the limit as Ar ~ 0 gives 

or~ 

__1 (r2NA~)lr -- (r2NA~) [r+Ar 
OCA= lim (10.3-37) 

0 t  r 2 A r ~ 0  A r  

OCA 10(r2NA~) 
Ot r 2 Or (x0.3-38) 

Substitution of Eq. (10.3-35) into Eq. (10.3-38) gives the governing differential 
equation for the concentration of species ,4 as 

O t -  r 2 Or (10.3-39) 

The initial and the boundary conditions associated with Eq. (10.3-39) are 

at t = 0  

at r = 0 

at r = R  

CA - -  eAo 

OCA 
= 0  

Or 
C A ~- C* A 

( 0.3-40) 

(10.3-42) 

where c~ is the equilibrium solubility of species A in liquid B. 
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Introduction of the dimensionless quantities 

C A --  CA 
0 - (10.3-43) 

C* A - -  CAo 

Z 
= ~ (10.3-44) 

~ ) A B  t 
T -- R2 (10.3-45) 

reduces Eqs. (10.3-39)-(10.3-42) to 

00 

0 r  
~2 0~ ~2 0-~ (10.3-46) 

at 

at 

at 

~- = 0 0 = 1 (10.3-47) 

00 
= 0 0--E = 0 (10.3-4S) 

~c = 1 0 = 0 (10.3-49) 

The transformation 
U 

0 -  ~- (10.3-50) 

converts the spherical geometry into the rectangular geometry. Subst i tut ion of Eq. 
(10.3-50) into Eq. (10.3-46)leads to 

(0U 0 2 U  
= (10.3-51) 

0~ 0~ 2 

which is identical with Eq. (10.2-69). Therefore, the solution is 

_ A2.r u = e [Asin(A~) + B cos(A~)] (10.3-52) 

or~ 

0 - e -  ~ ~ [A sin ( ~ )  

L 

+ B cos(,~),l 
(10.3-53) ] 

The boundary condition defined by Eq. (10.3-48) indicates that  B - 0. Application 
of Eq. (10.3-49) yields 

sin ~ = 0 ~ )~ - nTr n = 1, 2, 3, ... (10.3-54) 

Therefore, the general solution is 

,~2r2 sin(nTrr 
0 = ~ c~ ~- ~ (10~55) 

n--1 
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The unknown coefficients C,~ can be determined from the initial condition defined 
by Eq. (10.3-47). The result is 

C n  "-- 
if0 1 ~ sin(nTr~) d~ 

r01 sin2(n~) d~ 

2 cos(n ~) 
n T r  

2 ( - 1 )  ~ 
n71" 

(10.3-56) 

Hence, the solution becomes 

0 = _ _2 _~~ ~ ( - 1 )  n e_ n ~ T  sin(n~~) 
7r n ~ 

n = l  

(10.3-57) 

o r ~  

c A - CA 2 R ( -  1)n 

CA -- CAo 7F r n n--1 

n27r2~)ABt ) 
exp - R2 sin (__~_)nTrr (~0.3-58) 

The molar rate of absorption of species j t  is given by 

OC A ) 
Y t  A - -  4 7rR 2 DAB ~ ~=n 

O0 
= - 4 ~ n  v A .  (c*~ - ~ o )  

~=1 

Substitution of Eq. (10.3-57) into Eq. (10.3-59) results in 

(X) 

iZA -- 8 7rR:DAB (c* A -- CAo) E exp (-- n27r2T) 
n - - 1  

The moles of species ,A absorbed can be calculated from 

jfo t nA -- nA dt - R2 ~OOr ~tA dT 
I~) A B 

Substitution of Eq. (10.3-60) into Eq. (10.3-61) yields 

r t  A - -  

n--1 

(10.3-59) 

(10.3-60) 

(10.3-61) 

(10.3-62) 
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The maximum amount of species A absorbed by the droplet is given by 

4 
MAo,, -- -glrR a (C*A -- CA,,).s A 

,7, 
(,o.3-63) 

Therefore, the mass of species ,4 absorbed by the droplet relative to the maximum 
is 

MA 

MA~ 
6 ~ 1 exp(_n2rr2T) =1-7  

n - - I  

(10.3-64) 

N O T A T I O N  

A 

Ci 

DR 
~ ) A B  

e 

FD 
h 
j .  

kc 

L 
M 
rh 
M 
N 
iz 

Q 
q 
R 
T 
t 
V 
"0 

W 

C~ 

~c 

area, m 2 

heat capacity at constant pressure, k J/kg. K 
concentration of species i, kmol/m 3 
particle diameter, m 
diffusion coefficient for system A-B, m2/s 
total energy flux, W/m 2 
drag force, N 
heat transfer coefficient, W/m 2. K 
molecular molar flux, kmol/m 2. s 
mass transfer coefficient, m/s  
length, m 
mass, kg 
mass flow rate, kg/s  
molecular weight, kg/kmol 
total molar flux, kmol/m 2. s 
molar flow rate, kmol/s 
heat transfer rate, W 
volumetric flow rate, m3/s 
heat flux, W / m  2 
radius, m 
temperature, ~ or K 
time, s 
velocity of the plate in Couette flow, m/s; volume, m 3 
velocity, m/s  
width, m 

thermal diffusivity, m2/s 
penetration distance for momentum, m 
penetration distance for mass, m 
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tt 
/2 

P 
7r 

T 

Tij  

Bracket  

(a) 

penetration distance for heat, m 
viscosity, kg/m. s 
kinematic viscosity, m 2 / s 

density, kg /m 3 
total momentum flux, N / m  2 
dimensionless time 
shear stress (flux of j - momentum in the i - direction, N / m  2 

average value of a 

Subscr ip ts  

A, B species in binary systems 
c center 
ch characteristic 
re f reference 

Dimensionless  N u m b e r s  

Bill 
BiM 
Fo 
Nu 
Pr 
Re 

Biot number for heat transfer 
Biot number for mass transfer 
Fourier number 
Nusselt number 
Prandtl number 
Reynolds number 
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P R O B L E M S  

10.1 A spherical material of 15 cm in radius is initially at a uniform temperature 
of 60 ~ It is placed in a room where the temperature is 23 ~ Estimate the 
average heat transfer coefficient if it takes 42min for the center temperature to 
reach 30 ~ Take k - 0.12 W / m .  K and a - 2.7 • 10 -6 m2/s. 

(Answer:  6.5 W / m  2. K) 

10.2 The fuel oil pipe that supplies the heating system of a house is laid 1 m below 
the ground. Around a temperature of 2 ~ the viscosity of the fuel oil increases 
to a point that pumping becomes almost impossible. When the air temperature 
drops to -15  ~ how long does it take to have problems in the heating system? 
Assume that the initial ground temperature is 10~ and the physical properties 
are: k = 0.38 W / m .  K and a = 4 x 10 -7 m2/s  

(Answer:  351.3 h) 

10.3 Two semi-infinite solids A and B, initially at TAo and TBo with TAo :> TBo, 
are suddenly brought into contact at t = 0. The contact resistance between the 
metals is negligible. 

a) Equating the heat fluxes at the interface, show that the interface temperature, 
Ti, is given by 

Ti - TBo Vra--B kA 

T,4o - TBo k A + k B 

b) Consider two slabs made of copper and wood which are at a temperature of 
80~ You want to check if they are hot by touching them with your finger. 
Explain why you think the copper slab feels hotter. The physical properties are 
given as follows" 

W / m . K  m2/s  

Skin 0.3 1.5 x 10 -7 
Copper 401 117 • 10 -6 
Wood 0.15 1.2 x 10 -7 
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10.4 In Section 10.3.1-2, the number of moles of species Jt transferred into the 
semi-infinite medium, n A ,  is determined by integrating the molar transfer rate over 
time, i.e., Eq. (10.3-32). It is also possible to determine n A  from 

jr0 ~176 n A  -- A (CA -- CAo) ds  

Show that the substitution of Eq. (10.3-30) into the above equation leads to Eq. 
(10.3-32). 

10.5 A polymer sheet with the dimensions of 2 x 50 • 50 mm is exposed to chlo- 
roform vapor at 20 ~ and 5 mmHg. The weight of the polymer sheet is recorded 
with the help of a sensitive electrobalance and the following data are obtained: 

Time Weight of polymer sheet 
(h) (g) 

0 6.0000 
54 6.0600 

6.1200 

Assuming that the mass transport of chloroform in the polymer sheet is described 
by a Fickian type diffusion process, estimate the diffusion coefficient of chloroform 
in the polymer sheet. 

(Answer:  1.01 • 10-12m2/s) 

10.6 Consider an unsteady-state diffusion of species ,4 through a plane slab with 
the following initial and boundary conditions: 

OCA (~25 A 
= D A B  (1) 

Ot Oz 2 

at t - O  c A - - O  (2) 

at z - -  0 CA = CAo (3) 

at z - L cA = O (4) 

a) In terms of the dimensionless quantities 

0 ~ cA~ -- CA 

CAo 

z 

L 

~)AB t 
T - -  

L 2 

(5) 

(7) 
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show that Eqs. (1)-(4) become 
00 020 

= (8) 
Or 0~ 2 

at T -- 0 9 -  1 (9) 

at ~ - - 0  9 - - 0  (10) 

at ~ - - 1  0 - - 1  (11) 

b) Note that the boundary condition at r = 1 is not homogeneous and, as a 
result, the method of separation of variables cannot be applied. To circumvent this 
problem, propose a solution in the form 

0(T, ~) = 0oo(~) - Ot(T,~) (12) 

in which 0~(~) is the steady-state solution, i.e., 

d20cr 
= 0  (13) 

d~ 2 

with the following boundary conditions 

at ~ - 0  0 ~ = 0  (14) 

at ~ = 1  0oo=1  (15) 

Show that the steady-state solution is 

0oo - ~ ( 1 6 )  

On the other hand, the transient contribution 0t(T,~) satisfies Eq. (8), i.e., 

OOt 020t 
= (17) 

Or O~ 2 

with the following initial and boundary conditions 

at r = 0  Ot =~c_ 1 (18) 

at ~ - 0  Ot-O (19) 

at ~ - 1 Ot = 0 (20) 

c) Use the method of separation of variables and show that the solution of Eq. 
(17) is given as 

Ot-- 2 Z _1 e-  ~ 2 ~  sin(nTr~) (21) 
o o  

71" n 
n - -1  

d) Show that the concentration distribution is given by 

- 1 ~ 2 ~ 1 _~2~2. sin(nzr() (22) CA 

CAo 7r n 
n--1  



Chapter 11 

Unsteady-State Microscopic 
Balances With Generation 

This chapter briefly considers the cases in which all the terms in the inventory rate 
equation are non-zero. The resulting governing equations for velocity, temperature 
and concentration are obviously partial differential equations. Nonhomogeneity 
introduced either by the governing equation itself or by the boundary conditions 
further complicates the problem. 

11.1 U N S T E A D Y  L A M I N A R  F L O W  IN A T U B E  

A horizontal tube of radius R is filled with a stationary incompressible Newtonian 
fluid as shown in Figure 11.1. At time t = 0, a constant pressure gradient is 
imposed and the fluid begins to flow. It is required to determine the development 
of velocity profile as a function of position and time. 

Postulating vz = vz(t,  r) and vr = v0 = 0, Table C.2 in Appendix C indicates 
that  the only non-zero shear stress component is Tr~ and the components of the 
total momentum flux are given by 

~Vz 
7r~z = T~z + (pv~) v~ = Wrz = - # Or (ii.i-i) 
~e~ = we~ + (pv~)ve (il.i-2) 
7 ~  = 7"~ + (pvz)v~  (11.1-3) 

473 
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Figure 11.1 Unsteady-state flow in a circular pipe. 

The conservation statement for momentum is expressed as 

( Rateof  ) ( _ Rate of 
momentum in momentum out 

) ( Forces acting ) + 
on a system 

_ _ ( Rate of momentum ) 
accumulation (11.1-4) 

The pressure in the pipe depends on z. Therefore, it is necessary to consider only 
the z-component of the equation of motion. For a cylindrical differential volume 
element of thickness Ar and length Az, as shown in Figure 11.1, Eq. (11.1-4) is 
expressed as 

( Tr~l~ 27rrAr + 7r~l~ 27rrAz) - [~=1=+~= 2~A~ + ~=1~+~ 27r(r + Ar)Az]  

0 
+ ( PI~ - P l~+~)27rrAr  + 27rrArAz pg -- -~ p 

Dividing Eq. (11.1-5) by 27rArAz and taking the limit as Ar -~ 0 and Az ~ 0 
gives 

O v z  lira (PI~ 
P-~ Az--,o 

or~ 

- PIz+Az'~ 1 (rTrrz)l --(rTrrz)[r+hr 
Az J + -  lim r r Ar--,0 A r  

+ lim (7rzz lz -TrzzIz+Az)  
A,_~o Az  + pg 

cgvz dP 10( r r r z )  c 9 ~  
P Ot dz r Or Oz F pg 

(11.1-6) 

(11.1-7) 
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Substitution of Eqs. (I I . I- I)  and (11.1-3) into Eq. (11.1-7) and noting that 
OVz /OZ - 0 gives 

O v z _  dP # 0 ( O v z )  
P Ot - dz + -r-~r r -~r + pg (11.1-8) 

The modified pressure is defined by 

:P = P -  pgz (11.1-9) 

so that 
dP dP 

= pg (11.I-i0) 
dz dz 

Substitution of Eq. (11.1-10) into Eq. (11.1-8) yields 

,0(Ov ) dP 
P O t  r Or r--~-r -- dz 

$(t,r) f ( z )  

( I I . I - I i )  

Note that while the right-side of Eq. (11.1-11) is a function of z only, the left-side 
is dependent on r and t. This is possible if and only if both sides of Eq. (11.1-11) 
are equal to a constant, say A. Hence, 

d:P Po - -  ~DL 
dz ---- A ~ A = L (11.1-12) 

where Po and ~)L are the values of :P at z = 0 and z = L, respectively. Substitution 
of Eq. (11.1-12) into Eq. (11.1-11) gives the governing equation for velocity as 

P O t  = L + -  r (ii.1-i3) 

The initial and the boundary conditions associated with Eq. (11.1-13) are 

at t - - O  v , - - O  for a l l r  (11.1-14) 

(~V z 
at r - - 0  = 0  f o r t > 0  

Or 

at r - R  v ~ - 0  for t_>0 

(ii.1-15) 

(11.1-16) 

11.1.1 Exact  Solut ion 

Introduction of the following dimensionless quantities 

4#v~ 

L ) R2 

(11.1-17) 
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r 
= ~ (11.1-18) 

# t  
T = (11.1-19) pR  2 

reduces EQ. (11.1-13)-(11.1-16) to the form 

00 I t ) ( 0 0 )  
0----~ = 4 + ~ ~-~ ~ ~-~ (11.1-20) 

at T = 0 0--  0 (11.1-21) 

00 
at ~ -- 0 0-~ = 0 (11.1-22) 

at ~ = I 0 - -  0 ( I i . I -23)  
Since Eq. (11.1-20) is not homogeneous, the solution is proposed in the form 

0 ( . .  ~) - 0oo(~)  - 0 ~ ( . .  ~) 

in which 0oo is the steady-state solution, i.e., 

with the following boundary conditions 

dOoo 
at ~ = 0  = 0  d~ 

(11.i-24) 

( I i . I -25)  

(11.1-26) 

at ~ -- I 0oo = 0 (11.1-27) 
Integration of Eq. (11.1-25) gives 

dO~r ~2 
d~ = - 2  +C1 (11.1-28) 

The use of EQ. (11.1-26) gives 6'1 = 0. Integration of Eq. (11.1-28) once more 
and the application of the boundary condition defined by Eq. (11.1-27) gives the 
steady-state solution as 

0oo - 1 - ~ 2  (11.1-29) 

which is identical with Eq. (9.1-79). 
The use of Eq. (11.1-29)in Eq. (11.1-24)gives 

O(T, C~) - 1 - ~2 _ Ot(T, ~) (11.1-30) 

Substitution of Eq. (11.1-30) into Eqs. (11.1-20)-(11.1-23) leads to the following 
governing equation for the transient problem together with the initial and the 
boundary conditions 

OOt 1 0 ( 0o~ 
07 = ~ 0~ c \~c _ ~ /  (11.1-31) 
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at 7 = 0  O t = l - ~ 2  

OOt 
at ~c--O = 0  

0~ 

at ~ - - 1  Ot--O 

which can be solved by the method of separation of variables. 
Representing the solution as a product of two functions of the form 

( I I . i -32) 

(11.1-33) 

(11.I-34) 

Ot(T , ~) -- F (T)  G(~) ( I I . I -35) 

reduces Eq. (11.1-31) to 

l d F  1 d ( d G )  
F d~- = G ~ d~ c ~ -~- (11.1-36) 

While the left side of Eq. (11.1-36) is a function of T only, the right side is dependent 
only on ~. This is possible if both sides of Eq. (11.1-36) are equal to a constant, 
say - A 2, i.e., 

1 dF 1 d (d_~~) A2 
F d~- = G~ d~ ~c - _  (11.1-37) 

Equation (11.1-37) results in two ordinary differential equations. The equation for 
F is given by 

dF + A2F = 0 (11.1-38) 
dT 

The solution of Eq. (11.1-38) is 

F(T) -- e- ~2r (11.1-39) 

On the other hand, the equation for G is 

d--~ ~d-(  + AZ~G=O 

and it is subject to the boundary conditions 

(11.1-40) 

dG 
at ~ -  0 - 0 (11.1-41) 

d~ c 

at ~ - 1 G -  0 (11.1-42) 

Note that Eq. (11.1-40) is a Sturm-Liouville equation with a weight function of (. 
The solution of Eq. (11.1-40) is given in terms of the Bessel functions as 

G(~) = A Jo(A~) + B Yo(A~) (11.1-43) 

where A and B are constants. Since ]f"o(0) = - c o ,  B = 0. Application of the Eq. 
(11.1-42) gives 

Jo(A) - 0 ~ A = A1, A2, ... (11.1-44) 
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Therefore, the transient solution is 

c ~  

0~ - ~ c~ ~- Jo()~,~) (11.1-45) 
n---I 

The unknown coefficients Cn can be determined by using the initial condition given 
by Eq. (11.1-32). The result is 

O<9 

1 - ~2 _ E Cn Jo(An~) (11.1-46) 
n = l  

Since the eigenfunctions are orthogonal to each other with respect to the weight 
function w(~) = ~, multiplication of EQ. (11.1-46) by ~ Jo(Am~) and integration 
from ~ -  0 to ~ = 1 gives 

fo ~01 (1 -- ~2) ~ Jo(Am~)d~ ~ Cn ~ Jo(An~)Jo(Am~)d~ (11.1-47) 
n = l  

Note that the integral on the right-side of Eq. (11.1-47) is zero when n # m and 
nonzero when n = m. Therefore, when n = m the summation drops out and Eq. 
(11.1-47) reduces to the form 

/01 /01 (1 - ) ~ Jo(An~) d~ = Cn ~ [Jo(An~)] 2 d~ (11.1-48) 

Evaluation of the integrals gives 

8 
C,~= 3 A n J l ( A n )  (11.1-49) 

The transient solution takes the form 

oo 1 _ ~ .  
0t -- 8 E 3 e Jo(A,~) (11.1-50) 

.=~ ~. gi (~.) 

Substitution of the steady-state and the transient solutions, Eqs. (11.1-29) and 
(11.1-50), into Eq. (11.1-24) gives the solution as 

0 = i - ~2 _ S ~ 3 e Jo(A~c~) (11.i-51) 
n=l '~n Jl (A,) 

The volumetric flow rate can be determined by integrating the velocity distri- 
bution over the cross-sectional area of the tube, i.e., 

Q = v~ r drdO 

7r(Po - P L ) R  4 
= (11.1-52) 2 #L 
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Substitution of Eq. (11.1-51) into Eq. (11.1-52) gives 

Q -- Tr(P~ - PL)R4 [ ~ 32 ] 
8 . L  1 - E (- 

n--1 )in 
(11.1-53) 

Note that when T ~ c~, 
Eq. (9.1-83). 

Q ~ ~( :Po-  P L ) R 4 / 8 # L  which is identical with 

1 1 . 1 . 2  A p p r o x i m a t e  S o l u t i o n  b y  t h e  A r e a  A v e r a g i n g  
T e c h n i q u e  I 

It should be kept in mind that the purpose of obtaining the velocity distribution 
is to get a relationship between the volumetric flow rate and the pressure drop in 
order to estimate the power required to pump the fluid. 

The area averaging technique enables one to calculate the average velocity, 
and hence the volumetric flow rate, without determining the velocity distribution. 
Multiplication of Eq. (11.1-13) by r drdO and integration over the cross-sectional 
area of the pipe gives 

./o fo ~Ov~ foSSil - -~  r dr dO = L r drdO 

/o"/o ( + ~_ 0 Ov~ 
r drdO (11.1-54) 

The term on the left side of Eq. (11.1-54) can be rearranged in the form 

j~O 2 7r j~o R O V z p - -~  r drdO = p 

~R2<v~> I 

_ pTct:t 2 d(v~> 
dt 

Therefore, Eq. (11.1-54) becomes 

pTrR2 d(vz> __ TrR2 ( ~ o  -- ~L ) OVz 
dt L + 2~#R -~r r--R 

(11.1-56) 

Note that the area averaging technique transforms a partial differential equation 
to an ordinary differential equation. However, one has to pay the price for this 
simplification. That is, to proceed further, it is necessary to express the velocity 
gradient at the wall, (Ov~/Or)r=a, in terms of the average velocity, (vz>. If it is 

1 This development is taken from Slattery (1972). 
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assumed that the velocity gradient at the wall is approximately equal to that for 
the steady-state case, from Eqs. (9.1-79) and (9.1-84) 

(~V z 

Or r----R 

4<v > 
R (11.1-57) 

Substitution of Eq. (11.1-57) into Eq. (11.1-56) yields the following linear ordinary 
differential equation 

8# l (Po--PL)  d<vz> F (Vz> = (11 1-58) 

The initial condition associated with Eq. (11.1-58) is 

at t = 0 <vz) = 0 (11.1-59) 
The integrating factor is 

Integrating factor = exp \ ~ - ~  (11.1-60) 

Multiplication of Eq. (11.1-58) by the integrating factor gives 

d 1 dt [<vz)exp(8#th - ('P~ 
- -  p-R2]] p L ) e x p (  8#t  ~ 5 )  (11.1-61) 

Integration of Eq. (11.1-61) leads to 

[iex  (v~> = 8#L \p-R -~ (11.1-62) 

Therefore, the volumetric flow rate is 

Q - Tr('P~ - 79L )R4 [1- exp ( s #t #L - ~  ] ] (11.1-(i3) 

Slattery (1972) compared Eq. (11.1-63) with the exact solution, Eq. (11.1-53), and 
concluded that the error introduced is less than 20% when #t/(pR ~) > 0.05. 

11.2 U N S T E A D Y  C O N D U C T I O N  W I T H  H E A T  
G E N E R A T I O N  

Consider a slab of thickness L with a uniform initial temperature of To. At t - 0 
heat starts to generate within the slab at a uniform rate of ~ and to avoid the 
excessive heating of the slab, the surfaces at z = 0 and z - L are maintained at T1, 
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T1 < To as shown in Figure 11.2. We are interested in obtaining the temperature 
distribution within the slab. 

r/ 
I I ii 
x_ ._ .  

z 

qzEz  

Az 

- qzlz§ 

Figure  11.2 Unsteady-state conduction with generation. 

If L / H  << 1 and L / W  << 1, then it is possible to assume that the conduction 
is one-dimensional and postulate that T - T(t, z). In that case, Table C.4 in 
Appendix C indicates that the only non-zero energy flux component is e~ and it is 
given by 

OT 
e, = q~ = - k 0---~ (11.2-1) 

The conservation statement for energy is expressed as 

( Rate of ) ( _  Rate of. ) ( Rate of energy _ ( Rate of energy ) 
energy in energy m generation accumulation 

(11.2-2) 
For a differential volume element of thickness Az, as shown in Figure 11.2, Eq. 
(11.2-2) is expressed as 

o[ ] 
q ~ I , A -  q ~ l ~ + z ~ A + A A z N -  -~ A A z p C p ( T - T r , I )  (11.2-3) 

Dividing Eq. (11.2-3) by A Az and taking the limit Az --, 0 gives 

OT lim qz l z -  q.l~+/xz 
pCp - ~  = ,Xz~O Az + ~ (11.2-4) 

or~ 
p~p OT Oqz 

Ot = Oz + ~ (11.2-5) 
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Substitution of Eq. (11.2-1) into Eq. (11.2-5) gives the governing equation for 
temperature as 

OT 02T 
p(~p -~- = k ~ + R (11.2-6) 

All physical properties are assumed to be independent of temperature in the devel- 
opment of Eq. (11.2-6). The initial and boundary conditions associated with Eq. 
(11.2-6) are 

at t = 0 T = To (11.2-7) 

at z = 0 T = T1 (11.2-8) 

at z = L T = T1 (11.2-9) 

Introduction of the dimensionless quantities 

T - T 1  
0 =  

T o - T 1  

z 

a t  
T -  

L 2 

reduces Eqs. (11.2-6)-(11.2-9) to 

00 020 

0-~ = 0~ 2 + ~  

(11.2-10) 

(11.2-11) 

(11.2-12) 

(11.2-13) 

at ~- -- 0 

at ~ = 0  

at ~ = 1  

0 = 1  

0 = 0  

0 = 0  

(11.2-14) 

(11.2-16) 

where 
RL 2 

k(To - T~) 
(11.2-17) 

Since Eq. (11.2-13) is not homogeneous, the solution is proposed in the form 

(11.2-18) 

in which 0oo is the steady-state solution, i.e., 

d20oo 

d~ 2 

with the following boundary conditions 

~-fl = 0 (11.2-19) 

at ~ = 0  0oo=0 (11.2-20) 
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at ~ = 1  0 ~ = 0  

The solution of Eq. (11.2-19) is 

(11.2-21) 

~2 0oo -- ~ ( ~ - )  (11.2-22) 

The use of Eq. (11.2-22) in Eq. (11.2-18) gives 

e(~, ~) = y ( ~  - ) - o~(~, ~) (11.2-23) 

Substitution of Eq. (11.2-23) into Eqs. (11.2-13)-(11.2-16) leads to the following 
governing equation for the transient problem together with the initial and the 
boundary conditions 

OOt 020t 
0--~-= 0~ 2 (11.2-24) 

t2 
at • = 0 Ot -- -~ (~ - ~2) _ 1 (11.2-25) 

at ~c = 0 Ot = 0 (11.2-26) 

at ~ -- t 0t -- 0 (11.2-27) 

which can be solved by the method of separation of variables. 
Representing the solution as a product of two functions of the form 

o~(~, ~) = F ( ~ )  a ( ~ )  (11.2-28) 

reduces Eq. (11.2-24) to 

1 d F  

F dT 
1 

G ~ d~ ~ -~- (11.2-29) 

While the left side of Eq. (11.2-29) is a function of T only, the right side is dependent 
only on ~. This is possible if both sides of Eq. (11.2-29) are equal to a constant, 
say - ~2, i.e., 

1 d F  1 d2G = _ _)~2 
F dT G d~ 2 - (11.2-30) 

Equation (11.2-30) results in two ordinary differential equations. The equation for 
F is given by 

d F  
d T +  )~2F -- 0 ~ F ( 7 )  -- e -  ~ ~  (11.2-31) 

On the other hand, the equation for G is 

d2G 
d~ ----~ + ~2 G = 0 (11.2-32) 
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and it is subject to the boundary conditions 

at ~ = 0  G = 0  (11.2-33) 

at ~ = 1  G = 0  (11.2-34) 

Equation (11.2-32) is a Sturm-Liouville equation with a weight function of unity. 
The solution of Eq. (11.2-32) is 

G(~) = A sin(A~)+ B cos(A~) (11.2-35) 

where A and B are constants. From Eq. (11.2-33), B = 0. Application of the 
boundary condition defined by Eq. (11.2-34) gives 

A sin A = 0 (11.2-36) 

~2 4 ~ 1 (  
0 = - ~ ( ~ -  )+-rr -n 1 

n--1,3,5 

/ n2 71"2 
n27r 2 e- r sin(nrr~) (11.2-42) 

For a nontrivial solution, the eigenvalues are given by 

sinA = 0 =~ A,~ - nlr n - 1,2, ... (11.2-37) 

Therefore, the general solution is 
or 

Ot - E Cn e-,~2~2~ sin(nTr~) (11.2-38) 
n--1 

The unknown coefficients C,~ can be determined by using the initial condition, Eq. 
(11.2-25), with the result 

1 ~ ~2 

/o 
c n =  

fo (nTr~) a~ sin 2 

2[(--1)~--1] (1 f~ ) 
= n~r n27r 2 (11.2-39) 

Note that 

Cr~ = n~r n2~r 2 n = 1,3, 5, ... (11.2-40) 
0 n - 2, 4, 6, ... 

Therefore, the transient solution is given by 

9 t -  - -7r4 ~ 1 (  1 - n  n27r 2gt ) e-  n2 ~2 r sin(nTr~) (11.2-41) 
n--1,3,5 

Substitution of the steady-state and the transient solutions, Eqs. (11.2-22) and 
(11.2-41), into Eq. (11.2-18) gives the solution as 
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11.3 G A S A B S O R P T I O N  I N T O  A L I Q U I D  
D R O P L E T  W I T H  R E A C T I O N  

A liquid droplet (B) of radius R is initially A-free. At t = 0 it is surrounded by gas 
,4 as shown in Figure 11.3. As species ,4 diffuses into B, it undergoes an irreversible 
chemical reaction with B to form A B ,  i.e., 

A + B  ~ A B  

The rate of reaction is expressed by 

r = k c A  

We are interested in the rate of absorption of species A into the liquid during the 
unsteady-state period. The problem will be analyzed with the following assump- 
tions: 

1. Convective flux is negligible with respect to the molecular flux, i.e., v* ~ 0. 

2. The total concentration is constant. 

3. Pseudo-binary behavior. 

NA~r+Ar 

Figure  11.2 Unsteady-state absorption with chemical reaction. 

Since CA = CA(t, r), Table C.9 in Appendix C indicates that the only non-zero 
molar flux component is NAt  and it is given by 

OcA 
NAr -- J~A~ -- -- DAB Or (11.3-1) 

The conservation statement for species ,4 is expressed as 

( Rate~ 1 ( Rate~ ) ( Rate~ 1 
species j[ in - species ,4 in -F generation 

_ ( Rate of species A ) 
- accumulation 

(11.3-2) 
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For a spherical differential volume element of thickness Ar, as shown in Figure 
11.3, Eq. (11.3-2) is expressed in the form 

c9 (47rr2ArcA) (11.3-3) NA,] ,  47rr 2 -  NA,[~+a~4~r(r + At) 2 -  ( k c A ) 4 7 r r 2 A r -  -~ 

Dividing Eq. (11.3-3) by 4~Ar and taking the limit as Ar ~ 0 gives 

- -  (r2NA~)[r -- ( r 2 N A r ) [ r + ~  -- k c A  (11.3-4) O c A =  1 lim 
Ot r 2 A~-+O A r  

or, 
OCA 1 0 ( r 2 N A ~ )  

Ot r 2 Or 
--kCA (11.3-5) 

Substitution of Eq. (11.3-1) into Eq. (11.3-5) gives the governing differential 
equation for the concentration of species .A as 

(~CA :DAB (~ (r2OCA I 
Ot = r 2 Or - ~ r  - k cA 

The initial and the boundary conditions associated with Eq. (11.3-6) are 

(11.3-6) 

at t = 0 CA -- 0 (11.3-7) 

at r - - O  OCA = 0  (11.3-8) 
Or 

at r = R CA -- c~4 (11.3-9) 

where c:4 is the equilibrium solubility of species A in liquid B. 
Danckwerts (1951) showed that the partial differential equation of the form 

Oc 02c 
0----{ = 13 ~x  2 - kc (11.3-10) 

with the following initial and the boundary conditions 

at t -  0 c = 0 (11.3-11) 

Oc 
at r -  0 - -  = 0 (11.3-12) 

Or 

at r = R CA = c* A (11.3-13) 

has the solution 

~ t c -- k r x) e-  k~ dr/+ r x) e-  kt (11.3-14) 

where r x) is the solution of Eq. (11.3-10) without the chemical reaction, i.e., 

or = z~ ~ ( ~ . 3 - ~ 5 )  
Ot Ox 2 
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and is subject to the same initial and boundary conditions given by Eqs. (11.3- 
11)-(11.3-13). Note that 77 is a dummy variable of the integration in Eq. (11.3-14). 

The solution of Eq. (11.3-6) without the chemical reaction is given by Eq. 
(10.3-58), i.e., 

c*C--Aa = 1 + 7r r n exp - R2 sin \ R (11.3-16) 
n = l  

Substitution of Eq. (11.3-16) into Eq. (11.3-14) gives 

CA 

c*A 
f o t [  2 R ~ ( - 1 )  n ( n 2 7 r 2 : D A B ~ ) ( n T r r ) ]  k,7 

= k  1+  ~-r n exp -- R2 sin - ~  e- &? 
r~= l  

[ 2 R ~ ( - 1 )  n (n27r2:l)ABt)tt ~ (n~-r)]  t t  kt + 1 + ~ exp -- ,-,o sin ---w- e-  (11.3-17) 
7 1 r  n 

n - 1  

Carrying out the integration gives the solution as 

2 R ~  ( -1 )  n CA = 1 + ~  
c~4 ~r r n (1 + X) 

n = l  

sin (n  zcr ( 1 + x ) k t ]  --R--) [1 + X e- (11.3-18) 

where 
n27r2~)AB 

X = k R 2 
The molar rate of absorption of species A is given by 

/~A -- 4 7rR 2 Z)aB ~ r=R 

Substitution of Eq. (11.3-18) into Eq. (11.3-20) results in 

(11.3-19) 

(11.2-20) 

1 [ l + x e  7t A = 8 7r R :DAB C* A 1 + X 
n = l  

- ( 1 + x ) k t ]  (11.3-21) 

The moles of species A absorbed can be calculated from 

na - i~a dt 

Substitution of Eq. (11.3-21) into Eq. (11.3-22) yields 

(11.3--22) 

�9 oo t { X -  1 
nA -- 8 7rRT)AB c A E 1 + X (1 + )kt 

n----1 

(11. 23) 

Example  11.1 
10). 

Show that the solution given by Eq. (11.3-1~) satisfies Eq. (11.3- 
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Solut ion 

Differentiation of Eq. (11.3-1~) with respect to t by using Leibnitz's rule gives 

OC 

Ot 
0 r  - kt --" k r  x)  e - k t  - k r  x)  e -  kt + _ ~  e 

0 r  - k t  
-~  ~ e  

Ot 

Differentiation of Eq. (11.3-14) twice with respect to x yields 

fo 02r t 02r x) k, 02c = k e- d~ + 
Ox 2 Ox 2 Ox 2 

- -  k t  

e 

The use of Eq. (11.2-15) in Eq. (2) leads to 

02c f0' 0r x) 
v ~  =k ov ~ e - k ~  dr 1 + 

ar - k ,  
~ e  

Ot 

Substitution of Eq. (1) into Eq. (3) yields 

02c fot Oc Oc 
9 ~ = k  N e~+ 0-7 

or, 
02c Oc 

v-g-~z~ = k c  + o-i 

which is identical with Eq. (11.3-10). 

(i) 

(2) 

(3) 

(4) 

(5) 

N O T A T I O N  

A 

ci 

~)AB 
e 

J ,  
L 
rh 
34 
N 

area, m 2 

heat capacity at constant pressure, k J/kg. K 
concentration of species i, kmol/m 3 
diffusion coefficient for system A-~, m2/s 
total energy flux, W/m 2 
molecular molar flux, kmol/m 2. s 
length, m 
mass flow rate, kg/s 
molecular weight, kg/kmol 
total molar flux, kmol/m 2. s 
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n 

Q 
q 
R 

T 
t 
V 
V 

# 
/2 

P 
71" 

Tij 

Bracket  

number of moles, kmol 
molar flow rate, kmol/s 
heat transfer rate, W 
volumetric flow rate, m3/s 
heat flux, W / m  2 
radius, m 
rate of generation (momentum, energy, mass) per unit volume 
temperature, ~ or K 
time, s 
volume, m 3 
velocity, m / s  

thermal diffusivity, m2/s 
viscosity, kg/m. s 
kinematic viscosity, m 2/s 
density, kg /m a 
total momentum flux, N / m  2 
shear stress (flux of j - momentum in the i - direction), N / m  2 

<a) average value of a 

Subscr ip ts  

A, B species in binary systems 
i species in multicomponent systems 
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Appendix A 

Mathemat i ca l  Prel iminaries  

A.1 T H E  C Y L I N D R I C A L  A N D  S P H E R I C A L  
C O O R D I N A T E  S Y S T E M S  

For cylindrical coordinates, the variables (r, ~, z) are related to the rectangular 
coordinates (x, y, z) as follows: 

X - -  r c o s  

y -- r sin 0 

Z - - Z  

r = y/x 2 + y2 (A.I-1) 

0 = arc tan(y /x )  (A.1-2) 

z = z (A.1-3) 

The ranges of the variables (r, ~, z) are 

O < r < o c  O < O < 2 ~ r  --oo < z < cx~ 

For spherical coordinates the variables (r, 0, r are related to the rectangular 
coordinates (x, y, z) as follows: 

x - r sin 0 cos r r = h//x 2 + y2 + Z 2 (A.1-4) 

sin 0 sin r 0 - arctan ( ~  + y 2 / z )  (A.1-5) Y r 

z -- r cos 0 r -- arc tan(y /x )  (A.1-6) 

The ranges of the variables (r, 0, r are 

0___r<_cc 0 < 0 < r  0 < r  

The cylindrical and the spherical coordinate systems are shown in Figure A.1. 
The differential volumes in these coordinate systems are given by 

r drdOdz cylindrical (A. 1-7) 
dV  = r 2 sin 0 drdOdr spherical 

491 
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The application of Eq. (1.3-1) to determine the rate of a quant i ty  requires the 
integration of the flux of a quanti ty over a differential area. The differential areas 
in the cylindrical and spherical coordinate systems are given as follows" 

R d O d z  flux is in the r -  direction 
dAcytind~ical = d r d z  flux is in the 0 -  direction 

r drdO flux is in the z -  direction 
(A.1-8) 

R sin 0 dOdr flux is in the r -  direction 
dAsphe~icat = r sin 0 d r d r  flux is in the 0 - direction 

r drdO flux is in the r  direction 

| 

 iii.ii. ....... 

I 

~r 

r S  
r - d i r e c t i o n ~  

( x , y , z )  or  (r ,O,z)  z - direction 

z 

, y  

~ . . ~  ..... x 

I 

I r- d i r e c t i o ~  

,-direction . ~  ] , ' , , , , , ./  

I 0 - direction 
0 

z t (x,y,z) or (r,O,~) 

' Z 
,y 

(A.1-9) 

F i g u r e  A.1  The cylindrical and spherical coordinate systems. 
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A.2  M E A N  V A L U E  T H E O R E M  

If f(x) is continuous in the interval a < x < b, then the value of the integration of 
f (x)  over an interval x = a to x - b is 

I - f(x) dx - (f> dx = (f)(b - a) (A.2-1) 

where (f) is the average value of f in the interval a < x _ b. 

In Figure A.2 note tha t  f:  f(x)dx is the area under the curve between a and 
b. On the other hand, ( f ) ( b -  a) is the area under the rectangle of height (f)  and 
width ( b -  a). The average value of f ,  (f) ,  is defined such tha t  these two areas are 
equal to each other. 

f(x) 

<f> 

F i g u r e  A . 2  

| 

t 

a b 
x 

The mean value of the function f(x). 

It is possible to extend the definition of mean value to two- and three-dimensional 
cases as 

l l ( x ,  y)dxdy / j J  f (x, y, z) dxdydz 

(f} = A and ( f ) =  v (A.2-2) 

/ /  dxdy / f  f d dydz 
A V 

P R O B L E M S  

A.1 Two rooms have the same average temperature ,  (T}, defined by 

/ ]  T(x, y, z) dxdydz 

<T)- v 

/ /  dxdydz 
V 
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However, while one of the rooms is very comfortable, the other is very uncomfort- 
able. With the mean value theorem in mind, how would you explain the difference 
in comfort levels of the two rooms? What design alterations would you suggest to 
make the room that is uncomfortable comfortable? 

A.2 Wind speed is measured by anemometers placed at an altitude of 10 m from 
the ground. Buckler (1969) carried out series of experiments to determine the effect 
of height above ground level on wind speed and proposed the following equation 
for the winter months 

V~--Vl0 (~60) 0'21 

where z is the vertical distance measured from the ground in meter and vl0 is the 
measured wind speed. 

Estimate the average wind speed encountered by a person of height 1.7 m at 
the ground level if the wind speed measured by an anemometer 10m above the 
ground is 30 km/h .  

(Answer :  17.1km/h)  

A.3  S L O P E S  O N  L O G - L O G  A N D  S E M I - L O G  
G R A P H  P A P E R S  

A mathematical transformation that converts the logarithm of a number to a length 
in the x-direct ion is given by 

t~ = Lx log x (A.3-1) 

where t~ is the distance in the x-direct ion and Lx is the cycle length for the 
x-coordinate.  Therefore, if the cycle length is taken as 10 cm, the distances in the 
x-direct ion for various values of x are given in Table A.1. 

Table  A.1 Distances in the x-direct ion for a logarithmic x-axis .  

x ~x 

1 0 
2 3.01 
3 4.77 
4 6.02 
5 6.99 
6 7.78 
7 8.45 
8 9.03 
9 9.54 
10 10.00 



A.4. LEIBNITZ'S RULE FOR DIFFERENTIATION OF INTEGRALS 495 

The slope of a straight line, m, on a l o g -  log graph paper is 

l o g y 2 -  logyl _ ( g u 2 - g y ~ ) L ~  (A.3-2) 
m =  l o g x 2 - 1 o g x l  - g ~ 2 - g ~  

On the other hand, the slope of a straight line, m, on a semi - log  graph paper 
(y-axis  is logarithmic) is 

logy2--1ogyl (gy2--gy~)  1 
m - = (A.3-3) 

X2 -- Xl X2 - - X l  ~ y  

A.4 LEIBNITZ'S  RULE F O R  
D I F F E R E N T I A T I O N  OF I N T E G R A L S  

Let f(x, t) be continuous and have a continuous derivative af/Ot in a domain of the 
xt plane which includes the rectangle a _< x _< b, tl _< t _< t2. Then for tl _< t _< t2 

d~ f(x, t)dx = -~  dx (A.4-1) 

In other words, differentiation and integration can be interchanged if the limits of 
the integration are fixed. 

On the other hand, if the limits of the integral in Eq. (A.4-1) are dependent on 
time, then 

d fb(t) fb(t) Of db da 
d-t an(t) f (x, t) dx - Ja(t) -~  dx + f [b(t), t] ~-~ - f [a(t), t] ~-  (A.4-2) 

If f -  f(x) only, then Eq. (A.4-2) reduces to 

d fb(t) db da 
d~ ]ya(t) f(x) dx - f [b(t)] ~-~ - f [a(t)] -~- (A.4-3) 

A.5 N U M E R I C A L  D I F F E R E N T I A T I O N  OF 
E X P E R I M E N T A L  DATA 

The determination of a rate requires the differentiation of the original experimental 
data. As explained by De Nevers (1966), given a table of x - y data, the value of 
dy/dx can be calculated by: 

1. Plotting the data on graph paper, drawing a smooth curve through the points 
with the help of a French curve, and then drawing a tangent to this curve. 

2. Fitting the entire set of data with an empirical equation, such as a polynomial, 
and then differentiating the empirical equation. 
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3. Fitting short sections of the data by arbitrary functions. 

4. Using the difference table method, i.e., plotting the differences and smoothing 
the differences graphically. 

De Nevers also points out the fact that although the value of dy/dx obtained 
by any of the above four methods is approximately equal, the value of d2y/dx 2 is 
extremely sensitive to the method used. 

In the case of the graphical method, there are infinite number of ways of drawing 
the curve through the data points. As a result, the slope of the tangent will be 
affected by the mechanics of drawing the curved line and the tangent. 

The availability of computer programs makes the second and the third methods 
highly attractive. However, since the choice of the functional form of the equation 
is highly arbitrary, the final result is almost as subjective and biased as the use of 
a French curve. 

Two methods, namely, Douglass-Avakian (1933) and Whitaker-Pigford (1960) 
methods, are worth mentioning among the third approach. Both of these methods 
require the values of the independent variable, x, be equally spaced by an amount 
Ax. 

A.5.1 Douglass-Avakian Method 

In this method, the value of dy/dx is determined by fitting a fourth-degree polyno- 
mial to seven consecutive data points, with the point in question as the mid-point, 
by least squares. If the mid-point is designated by xc, then the value of dy/dx at 
this particular location is given by 

dy = 397 (~-'~ Xy) - 49 (~-~ X3y) (A.5-1) 
dx 1512 Ax 

where 
X = x -  xc (A.5-2) 

Ax 

A.5.2 Whitaker-Pigford Method 

In this case, a parabola is fitted to five consecutive data points, with the point in 
question as the mid-point, by least squares. The value of dy/dx at xc is given by 

dy ~_,Xy 
d--~ = 10 Ax (A.5-3) 

where X is defined by Eq. (A.5-2). 

E x a m p l e  A.1 Given the enthalpy of steam at P = 0.01 MPa as a function of 
temperature as follows, determine the heat capacity at constant pressure at 500 ~ 
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T / t  
(~ ( J /g)  

100 2687.5 
200 2879.5 
300 3076.5 
400 3279.6 
500 3489.1 
600 3705.4 
700 3928.7 
800 4159.0 
90O 4396.4 

1000 4640.O 
1100 4891.2 

Solution 

The heat capacity at constant pressure, Cp, is defined as 

P 

Therefore, determination of @ requires numerical differentiation of the I2I versus 
T data. 

Graphical method 

The plot of H versus T is given in the figure shown below. The slope of the tangent 
to the curve at T = 500 ~ gives Cp = 2.12 J~ g. K. 
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Douglass-Avakian method 

The required values to use Eq. (A.5-1) are given in the table shown below: 

x - T y - _f-I X X y  X3 y 

200 2879.5 - 3 - 8638.5 - 77746.5 
300 3076.5 - 2 - 6 1 5 3  - 24612 

400 3279.6 - 1 - 3279.6 - 3279.6 

500 3489.1 0 0 0 

600 3705.4 1 3705.4 3705.4 

700 3928.7 2 7857.4 31429.6 

800 4159.0 3 12477 112293 

= 5968.7 ~ -  41789.9 

Therefore, the heat capacity at constant pressure at 500 ~ is given by 

Cg 397 ( E  Xy)  - 49 ( E X3Y) 

1512 Ax  
(397)(5968.7) - (49)(41,789.9) 

W h i t a k e r - P i g f o r d  m e t h o d  

(1512)(100) 
= 2 . 1 3 J / g . K  

By taking X = T and y = tI ,  the parameters in Eq. (A.5-3) are given in the 
following table" 

X =  T y -  I?-I X X y  

300 3076.5 - 2 - 6153 
400 3279.6 - 1 - 3279.6 
500 3489.1 0 0 
600 3705.4 1 3705.4 
700 3928.7 2 7857.4 

E = 2130.2 

Therefore, the use of Eq. (A.5-3) gives the heat capacity at constant pressure as 

Exy  
10 A x  

2130.2 
= (10)(100) = 2.13 J / g .  K 

T h e  difference table m e t h o d  

The use of the difference table method is explained by Churchill (197~) in detail. 
To smooth the data by using this method, the divided differences A H / A T  shown 
in the table below are plotted versus temperature in the figure. 



T [-I AT AfI  Af-I/AT 

100 2687.5 

200 2879.5 

300 3076.5 

400 3279.6 

500 3489.1 

600 3705.4 

700 3928.7 

800 4159.0 

900 4396.4 

1 0 0 0  4640.0 

1100 4891.2 

2.6 

2.5 

2.4 

~ 2.3 

2.2 

2.1 

2.0 

1.9 

100 192 1.92 

100 197 1.97 

100 203.1 2.031 

100 209.5 2.095 

100 216.3 2.163 

100 223.3 2.233 

100 230.3 2.303 

100 237.4 2.374 

100 243.6 2.436 

100 251.2 2.512 
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E a c h  l ine represen t s  the average value  o f  d [ - I / d T  over  the speci f ied t e m p e r a t u r e  

range.  T h e  s m o o t h  curve  shou ld  be drawn so as to equalize the area u n d e r  the 

group o f  bars. F r o m  the f igure,  the heat  capaci ty  at cons tan t  pressure  at 500 ~ is 

2.15 J / g .  K. 

A.6 R E G R E S S I O N  A N D  C O R R E L A T I O N  

To predict the mechanism of a process, we often need to know the relationship of 
one process variable to another, i.e., how the reactor yield depends on pressure. A 
relationship between the two variables x and y, measured over a range of values, can 
be obtained by proposing linear relationships first, because they are the simplest. 
The analyses we use for this are correlat ion,  which indicates whether there is indeed 
a linear relationship, and regression,  which finds the equation of a straight line that  
best fits the observed x - y  data. 

A . 6 . 1  S i m p l e  L i n e a r  R e g r e s s i o n  

The equation describing a straight line is 

y = a x + b  (A.6-1) 

where a denotes the slope of the line and b denotes the y -ax i s  intercept. Most 
of the time the variables x and y do not have a linear relationship. However, 
transformation of the variables may result in a linear relationship. Some examples 
of transformation are given in Table A.2. Thus, linear regression can be applied 
even to nonlinear data. 

Tab le  A.2 Transformation of nonlinear equations to linear forms. 

Nonlinear Form Linear Form 

a x  

Y -  b + c x  

y - -  a x  n 

x c b x 
- = - x  + -  - v s x is linear 
y a a y 

1 b l  c 1 1 
- = I - v s - is linear 
y a x  a y x 

log y = n log x + log a log y v s  log x is linear 

A . 6 . 2  S u m  o f  S q u a r e d  D e v i a t i o n s  

Suppose we have a set of observations Xl, x2, x3, ..., xn. The sum of the squares 
of their deviations from some mean value, Xm, is 

N 

S -  ~ ( x i -  xm) 2 (A.6-2) 
i--1 
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Now suppose we wish to minimize S with respect to the mean value xm ,  i.e., 

or, 

Oxm = O = E -  2 (xi  - Xm) = 2 N x m  - xi  (A.6-3) 
i = l  i - - 1  

1 
X m - -  - ~  E x i  - -  ~ (A.6-4) 

i 

Therefore, the mean value which minimizes the sum of the squares of the deviations 
is the arithmetic mean, ~. 

A . 6 . 3  T h e  M e t h o d  o f  L e a s t  S q u a r e s  

The parameters a and b in Eq. (A.6-1) are estimated by the method of least 
squares. These values have to be chosen such that the sum of the squares of the 
deviations 

N 

S = E [yi - (a xi + b)] 2 (A.6-5) 
i - - 1  

is minimum. This is accomplished by differentiating the function S with respect 
to a and b, and setting these derivatives equal to zero: 

0 S  
Oa = 0 = - 2 E (yi - a xi  - b ) x i  (A.6-6) 

i 

OS 
O---b = 0 = - 2 E (Yi - a xi  - b) (A.6-7) 

i 

Equations (A.6-6) and (A.6-7) can be simplified as 

2 
a ~ x i + b ~ z i  = ~ x iy i  

i i i 
(A.6-S) 

a E xi  + N b  = E yi (A.6-9) 
i i 

Simultaneous solution of Eqs. (A.6-8) and (A.6-9) gives 

N ( E i  xiyi) - ( E i  x i ) ( E i  Yi ) (A 6-10) a = N (E~ x2) - ( E i  xi ) 

2 

N ( E ,  x~) - ( E ,  x,) ~ 
(A.6-11) 

E x a m p l e  A.2 Exp er i men t a l  m e a s u r e m e n t s  of  the dens i ty  o f  benzene vapor at 
563 K are given as fol lows: 
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P 9 
(atm) (cm3/mol) 
30.64 1164 
31.60 1067 
32.60 1013 
33.89 956 
35.17 900 
36.63 842 
38.39 771 
40.04 707 
41.79 646 
43.59 591 
45.48 506 
47.07 443 
48.07 386 

Assume that the data obey the virial equation of state, i.e., 

Z ___ 
PV B C 

= l + ~ - t - - -  
7~T V 1 ~2 

and determine the virial coefficients B and C. 

So lu t ion  

The equation of state can be rearranged as 

( P V  ) C 
~--~-1 V - B - ~  

Note that this equation has the form 

y - B + C x  

where 

( P V  ) ~ 1 
y -  ~ - 1  V and x -  =- 

V 

Taking T~- 82.06 cm 3. a tm/mol .  K, the required values are calculated as follows: 
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2 Yi xi • 103 x~y~ x i • 106 

- 265.4 0.859 - 0.2280 0.738 

- 288.3 0.937 - 0.2702 0.878 

- 288.9 0.987 - 0.2852 0.975 

- 285.6 1.046 - 0.2987 1.094 

- 283.4 1.111 - 0.3149 1.235 

- 279.9 1.188 - 0.3324 1.411 

- 277 1.297 - 0.3593 1.682 

- 273.8 1.414 - 0.3873 2.001 

- 268.5 1.548 - 0.4157 2.396 

- 261.4 1.692 - 0.4424 2.863 

- 254 1.976 - 0.5019 3.906 

- 243.1 2.257 - 0.5487 5.096 

- 231 2.591 - 0.5984 6.712 

2 _ 30.99 • 10 -6  E Y i = - 3 5 0 0 - 3  E x i = 0 . 0 1 8 9  E x i Y i = - 4 - 9 8 3 1  E x ~  

The values of B and C are 

B __ 
(E,  y,) (E~ x~) - (E,  x,) (E,  x~y,) 

2 2 
N (E l  xi ) - (E~ x~) 

( - 3 5 0 0 . 3 ) ( 3 0 . 9 9  • 10 -6 )  - ( 0 . 0 1 8 9 ) ( - 4 . 9 8 3 1 )  

(13)(30.99 • 10 -6 )  - ( 0 . 0 1 8 9 )  2 
= - 313 c m 3 / m o l  

C 
N (E~ x~y~) - (E~ x,) (E~ y~) 

N (E~ x~) - (E~ z,)~ 
( 1 3 ) ( -  4.9831) - ( 0 . 0 1 8 9 ) ( -  3500.3) 

(13)(30.99 • 10 -6 )  - ( 0 . 0 1 8 9 )  2 
= 30, 122 (cm3/mol)  2 

T h e  m e t h o d  of leas t  squa res  can  also be  app l ied  to  h igher  o rde r  po lynomia l s .  

For  example ,  cons ider  a second-o rde r  p o l y n o m i a l  

y = a x 2 + b x + c (A.6-12) 

To find t h e  c o n s t a n t s  a, b, and  c, t he  sum of t he  s q u a r e d  d e v i a t i o n s  

N 
2 2 

S = E [Yi -  (ax~ + b xi + c)] (A.6-13) 
i = 1  

m u s t  be  m i n i m u m .  Hence,  

OS OS OS 
= - -  = 0  (A.6-14) 

Oa Ob Oc 
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Part ia l  differentiation of Eq. (A.6-13) gives 

4 3 2 2 a E xi + b E xi + c E xi = E x~ Yi (A.6-15) 
i i i i 

3 2 (A.6-16) a E x ~  + b E x ~  + c E x ~ - E x ~ y ~  
i i i i 

2 (A.6-17) a~-~x i +b~.~xi + c N -  ~ Y i  
i i i 

These equations may then be solved for the constants a, b, and c. 
If the equation is of the form 

y = ax  n + b (A.6-18) 

then the parameters  a, b, and n can be determined as follows" 

1. Least squares values of a and b can be found for a series of chosen values of 
n.  

2. The sum of the squares of the deviations can then be calculated and plotted 
versus n to find the minimum and, hence, the best value of n. The corre- 
sponding values of a and b are readily found by plotting the calculated values 
versus n and interpolating. 

Alternatively, Eq. (A.6-18) might first be arranged as 

log(y - b) = n log x + log a (A.6-19) 

and least squares values of n and log a are determined for a series of chosen values 
of b, etc. 

E x a m p l e  A.31 It is proposed to correlate the data for forced convection heat 
transfer to a sphere in terms of the equation 

N u -  2 + a R e  ~ 

The following values were obtained from McAdams (195~) for heat transfer from 
air to spheres by forced convection: 

Re Nu 

10 2.8 
100 6.3 

1000 19.0 

1 This problem is taken from Churchill (1974). 
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S o l u t i o n  

The equation can be rearranged as 

l o g ( N u  - 2) = n log Re + log a 

Note that this equation has the form 

y - n x + b  

where 
y = l o g ( N u  - 2) x = log Re b = log a 

2 Yi xi xiyi x~ 

- 0.09691 1 - 0.09691 1 

0.63347 2 1.26694 4 

1.23045 3 3.69135 9 

2 - - 1 4  E y ~  - 1.76701 E x~ = 6 E ~y~ = 4.s~13s E ~ 

The values of n and b are 

(3)(4.86138) - (6)(1.76701) _ 0.66368 n - 
(31(14) - ( ~ ) ~  

b = (14)(1.76701) - (6)(4.86138) = _ 0.73835 
( 3 ) ( 1 4 ) - ( 6 )  2 

a = 0.1827 

A.6.4  Correlation Coefficient 

If two variables,  x and  y, are re la ted  in such a way t h a t  the  poin ts  of a sca t te r  
plot  t end  to fall in a s t ra igh t  line, t h e n  we say t h a t  the re  is an  associa t ion  be tween  

the  variables  and  t h a t  t hey  are l inearly corre la ted.  T h e  mos t  c o m m o n  measu re  

of the  s t r e n g t h  of the  associa t ion be tween  the  var iables  is t he  Pearson correlation 
coefficient, r. It  is defined by 

E x~ E y~ 
xiy~ - 

r =  : n .... (A.6-20) 

T h e  value of r can  range  f rom - 1 to + 1. A value of - 1 means  a perfect negative 
correlation. Perfect  nega t ive  corre la t ion  implies t h a t  y = ax  + b where  a < O. 

Perfect positive correlation (r = + 1) implies t h a t  y = ax + b where  a > O. W h e n  

r = O, the  var iables  are uncorre la ted .  This ,  however,  does  not  imply  t h a t  the  

var iables  are unre la ted .  It  s imply indicates  t h a t  if a re la t ionsh ip  exists,  t h e n  it is 
not  linear. 
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A.7 THE ROOT OF A N  E Q U A T I O N  

In engineering problems, we frequently encounter with equations of the form 

f ( x )  = 0  (A.7-1) 

and want to determine the values of x satisfying Eq. (A.7-1). These values are 
called the roots of f ( x )  and may be real or imaginary. Since imaginary roots appear 
as complex conjugates, the number of imaginary roots must always be even. 

The function f ( x )  may be a polynomial in x or, it may be a transcendental 
equation involving trigonometric and/or logarithmic terms. 

A . 7 . 1  R o o t s  o f  a P o l y n o m i a l  

If f ( x )  is a polynomial, then Descartes '  rule of  sign determines the maximum 
number of real roots: 

�9 The maximum number of real positive roots is equal to the number of sign 
changes in f (x) = O. 

�9 The maximum number of real negative roots is equal to the number of sign 
changes in f ( -  x) = 0. 

In applying the sign rule, zero coefficients are regarded as positive. 

A.7.1.1  Q u a d r a t i c  e q u a t i o n  

The roots of a quadratic equation 

a x  2 -~ bx  + c = 0 

are given as 

- b ~= x/b 2 - 4 ac 
X l , 2  - "  2 a 

If a, b, c are real and if A = b 2 - 4  ac is the discriminant, then 

�9 A > 0; the roots are real and unequal, 

�9 z~ = 0; the roots are real and equal, 

�9 A < 0; the roots are complex conjugate. 

(A.7-2) 

(A.7-3) 
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A.7.1 .2  Cub ic  e q u a t i o n  

Consider the cubic equation 

x 3 + p x  2 + q x + r - O  

Let us define the terms M and N as 

3q _p2  
M =  

9 

9 p q -  2 7 r -  2p 3 
N =  

54 

If p, q, r are real and if A - M 3 + N 2 is the discriminant, then 

. A > 0; one root is real and two complex conjugate, 

. A -- 0; all roots are real and at least two are equal, 

�9 A < 0; all roots are real and unequal. 

Case  (i) S o l u t i o n s  for A > 0 

In this case the roots are given by 

where 

1 
X l  - -  S + T - ~ p  

1 1 1 
x2 - - ~ ( S + T)  - -z p + -~ i v/3 ( S - T )  

1 1 1 
x3 = - [ ( S + T ) - ~ p - [ i v / 3 ( S - T )  

Case  (ii) Solu t ions  for A < 0 

The roots are given by 

S= ~N + ~/~ 

T= ~N-  ~/-~ 

1 
xl = • 2v/Z-M cos - ~ p 

1 
- ~ P  

( 0 ) ,  
z a - •  g+240 ~ - 5  p 

(A.7-4) 

(A.7-5) 

(A.7-6) 

(A.7-7) 

(A.7-8) 

(A.7-9) 

(A.7-10) 

(A.7-11) 

(A.7-12) 

(A.7-13) 

(A.7-14) 
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where ~ N2 
0 = arccos i _ ~ )  a (0 is in degrees) (A.7-15) 

In Eqs. (A.7-12)-(A.7-14) the upper sign applies if N is positive, the lower sign 
applies if N is negative. 

E x a m p l e  A.4  Cubic equations of state are frequently used in the~nodynamics to 
describe the P V T  behavior of liquids and vapors. These equations are expressed in 
the form 

TiT a(T) 
P = - ~ - (A.7-16) 

V - b  + ~ V + , ~  

where the terms a, ~, 7, and a(T) for different types of equations of state are given 
by 

Eqn. of State a ~ 7 a(T) 

van der Waals 2 0 0 

Redlich-Kwong 2 b 0 

Peng-Robinson 2 2b - b 2 

a 

a/J-  

a(T) 

When Eq. (A.7-16) has three real roots, the largest and the smallest roots cot- 
respond to the molar volumes of the vapor and liquid phases, respectively. The 
intermediate root has no physical meaning. 

Predict the density of saturated methanol vapor at 10.84 a tm and 140 ~ using 
the van der Waals equation of state. The coefficients a and b are given as 

a -- 9.3424 m 6. a t m / k m o l  2 

b = 0.0658 m3 /kmol  

The experimental value of the density of saturated methanol vapor is 0.01216 g / c m  3. 

S o l u t i o n  

For the van der Waals equation of state, Eq. (A. 7-16) takes the form 

( ~ T }  a ab fz 3 -  b + fz 2 + fz p = o  

Substitution of the values of a, b, R, and P into Eq. (1) gives 

~3 _ 3.1923 ~2 + 0.8618 V - 0.0567 - 0 (2) 
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Application of the sign rule indicates that the maximum number of real positive 
roots is equal to three. The terms M and N are 

3q - p2 
M -  

9 
(3)(0 .8618)-  (3.1923) 2 = = - 0.845 (3) 

9 

N -  9 p q -  2 7 r -  2p 3 
54 

(9)(-3.1923)(0.8618) - ( 2 7 ) ( - 0 . 0 5 6 7 )  + (2)(3.1923) 3 
54 

= 0.775 (4) 

The discriminant, A, is 

A = M 3 + N 2 

= (-- 0.845) 3 -4- (0.775) 2 -- -- 0.003 (5) 

Therefore, all the roots of Eq. (2) are real and unequal. Before calculating the roots 
by using Eqs. (A.7-12)-(A.7-14), 0 must be determined. From Eq. (A.7-15) 

0 = arccos ( _ M )  a 

I ( o . 7 7 5 )  
= arccos (0.845)3 = 3.85 ~ (6) 

Hence, the roots are 

V1 - (2) v/0.845 cos + 3 

(3.85 ) 3 . 1 9 2 3 = 0 . 1 0 9  (8) f~2 - (2)v/0:845cos ---5- + 120 + 3 

(3.85 ) 3 . 1 9 2 3 = 0 1 8 1  (9) IY3 = (2)v/0:845 cos ~ + 240 + 3 " 

The molar volume of saturated vapor, Vg, corresponds to the largest root, i.e., 
2.902m3/kmol.  Since, the molecular weight, M,  of methanol is 32, the density of 
saturated vapor, pg, is given by 

A/[ 
P g =  Vg 

(32/ 
(2.902)(1 x 103) 

-- 0.01103 g//cm 3 (10) 
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A.7 .2  Numer ica l  M e t h o d s  

Numerical methods should be used when the equations to be solved are complex 
and do not have direct analytical solutions. Various numerical methods have been 
developed for solving Eq. (A.7-1). Some of the most convenient techniques to solve 
the chemical engineering problems are summarized by Serghides (1982), Gjumbir 
and Olujic (1984), and Tao (1988). The gewton-Raphson method and the Secant 
method are the two most widely used techniques and will be explained below. 

One of the most important problems in the application of numerical techniques 
is convergence. It can be promoted by finding a good starting value and/or a 
suitable transformation of the variable, or the equation. 

When using numerical methods, it is always important to use the engineering 
common sense. The following advice of Tao (1989) should always be remembered 
in the application of numerical techniques: 

�9 To err is digital, to catch the error is divine. 

�9 An ounce of theory is worth 100 lb of computer output. 

�9 Numerical methods are like political candidates; they'll tell you anything you 
want to hear. 

A.7.2.1 N e w t o n - R a p h s o n  m e t h o d  

Expansion of the function f (x)  by Taylor series around an estimate xk gives 

d/ 
f(x) -- f(xk) + (x- xk) ~x 

(x - xk) 2 d 2 /  
+ 

2! dx 2 
Xk  Xk  

+ ... (A.7-17) 

If we neglect the derivatives higher than the first order and let x = Xk+l be the 
value of x that makes f (x)  -- 0, then Eq. (A.7-17) becomes 

f (xk)  (A.7-18) 
X k + l  --- X k  df 

dx 
Xk 

The convergence is achieved when Ixk+l -  xkl < c, where ~ is a small number 
determined by the desired accuracy. 

The Newton-Raphson method proceeds as shown in Figure A.3. Note that the 
method breaks down if (df/dx)x k = 0 at some point. 

A.7.2.2 Secant  m e t h o d  

Application of the Newton-Raphson method, Eq. (A.7-18), requires the evaluation 
of the first derivative of the function. Unfortunately, this is not always easily found. 
The secant method, on the other hand, requires only the evaluation of the function. 
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f (x) 

Tangent 

Root 

J x2 Xl 

line 

Figure  A.3 The Newton-Raphson method. 

To evaluate the derivative in Eq. (A.7-18), linear interpolation between two 
points, xk and Xk-1, on the function is applied in the form 

df I _ f ( x k ) - -  f(xk-1) 
(A.7-19) 

I d x  xk Xk -- Xk--1 

Substitution of Eq. (A.7-19) into Eq. (A.7-18) gives 

Xk+ 1 -- Xk Xk -- Xk--1 I f(Xk) (A.7-20) 
f ( x k ) -  f(xk-1) 

Note that the secant method requires two initial guesses. The secant method is 
illustrated in Figure A.4. 

f (x) 

Root 

Secant 
line 

I 

Y 
g ~  ...... 

x3 x2 Xl 

Figure  A.4 The Secant method. 
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P R O B L E M S  

A.3 Caffeine is extracted from coffee grains by means of a crossflow extractor. 
The standard error of the exit concentration versus time curve was found as ~ - 
1.31, where standard deviation, cr 2, is given as 

0.2__ P----e2 -k- ~e 22 (l_e_Pe) 

Solve this equation and determine the Peclet number, Pe, which is a measure of 
axial dispersion in the extractor. 

(Answer :  1.72) 

A.4  The roof of a building absorbs energy at a rate of 225 kW due to solar 
radiation. The roof loses energy by radiation and convection. The loss of energy 
flux as a result of convection from the roof to the surrounding air at 25 ~ is 
expressed as 

q - 2.5 (T - Too) 1"25 

where T and Too are the temperatures of roof and air in degrees Kelvin, respectively, 
and q is in W / m  2. Calculate the steady-state temperature of the roof if it has the 
dimensions of 10 m • 30m and its emissivity is 0.9. 

(Answer :  352K) 

A.8 M E T H O D S  OF I N T E G R A T I O N  

Analytical evaluation of a definite integral 

~a b 
I = f ( x ) d x  (A.S-1) 

is possible only for limited cases. When analytical evaluation is impossible, then 
the following techniques can be used to estimate the value of the integral. 

A . 8 . 1  M e a n  V a l u e  T h e o r e m  

As stated in Section A.2, if f ( x )  is continuous in the interval a _ x < b, then the 
value of I is 

I -- f ( x )  dx  -- ( f ) ( b  - a) (A.8-2) 

where (f) is the average value of f in the interval a _ x _ b. 
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If f ( x )  is a monotonic function, then the value of I is bounded by /min and 
/max such that  

Imin = f (a ) (b  - a) 
Monotonically increasing function /max -- f ( b ) ( b -  a) (A.8-3) 

f (x) = Im~n - f (b)(b - a) 
Monotonically decreasing function / m a x -  f ( a ) ( b -  a) 

In some cases, only part of the integrand may be approximated to permit analytical 
integration, i.e., 

b (:> g(x) dx i" 
I = / f ( x ) g ( x ) d x  = (A.8-4) 

Ja 
(g} f (x) dx 

E x a m p l e  A.5 

S o l u t i o n  

Evaluate the integral 

foo I - x 2 ~ l x  + 2 dx 

Analytical evaluation of the integral is possible and the result is 

~0 
1~ 

I - x 2 x/O. 1 x + 2 dx 

2(0.15 :- 24x  + 32) . / rn l   :1o 
= v ~ - -  - 552.4 

0.105 x=o 

The same integral can be evaluated approximately as follows: Note that the inte- 
grand is the product of two terms and the integral can be written as 

where 

~a b 
I = f ( x )  g ( x ) d x  (1) 

f ( x )  = x 2 and g(x) = v/O,lx + 2 (2) 

The value of g(x) is 1.732 and 1.414 at x = 10 and x = O, respectively. Since the 
value of g(x) does not change drastically over the interval 0 <_ x < 10, Zq. (1) 
can be expressed in the forth 

f0 
1~ 

I = (g) f ( x )  dx (3) 
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As a rough approximation, the average value of the function g, (g), can be taken 
as the arithmetic average, i.e., 

1.732 + 1.414 
( g ) -  2 = 1.573 (4) 

Therefore, Eq. (3) becomes 

f0 1~ 1.573 X3 
I - 1.573 x 2 dx - 3 

x--10 

x--0 
= 524.3 (5) 

with a percent error of approximately 5%. 

A . 8 . 2  G r a p h i c a l  I n t e g r a t i o n  

In order to evaluate the integral given by Eq. (A.8-1) graphically, first f ( x )  is 
plotted as a function of x. Then, the area under this curve in the interval In, b] is 
determined. 

A . 8 . 3  N u m e r i c a l  I n t e g r a t i o n  o r  Q u a d r a t u r e  

Numerical integration or quadrature 2 is an alternative to graphical and analytical 
integration. In this method, the integrand is replaced with a polynomial and this 
polynomial is integrated to give a summation: 

I = f ( x )  dx - F(u) du = wiF(ui)  (A.8-5) 
i--O 

Numerical integration is preferred for the following cases: 

�9 The function f ( x )  is not known but the values of f ( x )  is known at equally 
spaced discrete points. 

�9 The function f ( x )  is known, but too difficult to integrate analytically. 

A.8.3.1 N u m e r i c a l  i n t eg ra t i on  wi th  equal ly  spaced  base po in t s  

Consider Figure A.5 in which f ( x )  is known only at 5 equally spaced base points. 
The two most frequently used numerical integration methods for this case are the 
trapezoidal rule and the Simpson's rule. 

2The word quadrature is used for approximate integration. 
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f(a) 

f (a+Ax) 

f (a+ 2Ax) 
f (a+3Ax) 

f(b) 

~ 
p 

, j , ; I 

a b 
X 

Figure A.5 Values of the function f (x )  at five equally spaced points. 

Trapezoidal rule 

In this method, the required area under the solid curve is approximated by the 
area under the dotted straight line (the shaded trapezoid) as shown in Figure A.6. 

Figure A.6 The trapezoidal rule. 

The area of the trapezoid is then 

A r e a  : [ f ( x l ) - t -  f ( x 2 ) ]  (x2 - Xl )  (A.8-6) 

If this procedure is repeated at 4 equally spaced intervals given in Figure A.5, the 
value of the integral is 

f b If(a) + f (a  + Z~x)] Ax 
I -- f ( x )  dx = 2 + 

[f(a + 2Ax) + f (a  + 3Ax)] Ax 
+ 2 

[f (a + Ax)  -+- f (a + 2Ax)] Ax 

+ 

2 

[f(a + 3Ax)+ f(b)] Ax 
(A.8-7) 
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or~ 

fa 
b 

I -- f(x)dx 

= Ax [f(__~~) + f(a + Ax) + f(a + 2Ax) + f(a + 3Ax) + f~b)__] (A.8-8) 

This result can be generalized as 

~a b 
I = f(x)dx 

= 2 f(a) + 2 E f(a + iAx) + f(b) 
i=1 

(A.8-9) 

where 

b - a  
n = 1 + A"--~ (A.8-10) 

S i m p s o n ' s  ru le  

The trapezoidal rule fits a straight line (first-order polynomial) between the two 
points. Simpson's rule, on the other hand, fits a second-order polynomial between 
the two points. In this case the general formula is 

b 
1= ~ f(x)dx 

n--1 n--2 Ax 
= 3 f (a )+4  E f ( a + i A x ) + 2  E f ( a + i A x ) + f ( b )  (A.8-11) 

i=1,3,5 i=-2,4,6 

where 

b - a  
n =  Ax (A.8-12) 

Note that  this formula requires the division of the interval of integration into an 
even number of subdivisions. 

E x a m p l e  A.6 Determine the heat required to increase the temperature of benzene 
vapor from 300 K to 1000 K at atmospheric pressure. The heat capacity of benzene 
vapor varies as a function of temperature as follows: 
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T Cp 
(K) ( cal /mol.  K) 

300 19.65 
400 26.74 
500 32.80 
600 37.74 
700 41.75 
800 45.06 
900 47.83 
1000 50.16 

Solut ion 

The amount of heat necessary to increase the temperature of benzene vapor from 
300 K to 1000 K under constant pressure is calculated from the formula 

1 0 0 0  

0 = AI:I = Cp dT 
J 3 0 0  

The variation of Cp as a function of temperature is shown in the figure below: 

50 

45 

40 

35 

Cp 30 

25 

20 

15 J ~ �9 q ~ , 
300 400 500 600 700 800 900 1000 

T ( K )  

Since the function is monotonically increasing, the bounding values are 

Q m i n  ----- (19.65)(1000 - 300) - 13,755 ca l /mol  

Q m a x  - -  (50.16)(1000 - 300) - 35,112 ca l /mol  

T r a p e z o i d a l  ru le  w i t h  n -  8 

From Eq. (A.8-10) 

A T =  
1 0 0 0 -  300 

8 - 1  
= 100 
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The value of the integral can be calculated from Eq. (A.8-9) as 

100 
(~ = - ~  [19.65 + 2(26.74 + 32.80 + 37.74 + 41.75 + 45.06 + 47.83) + 50.16] 

= 26,683 cal/tool 

Simpson ' s  rule  wi th  n = 4 

From Eq. (A.8-12) 
1000-  3OO 

AT = = 175 
4 

Therefore, the values of Cp at 5 equally spaced points are given in the following 
table: 

T 
(K) ( cal/mol. K) 

300 19.65 
475 31.50 
650 39.50 
825 45.75 
1000 50.16 

The value of the integral using Eq. (A.8-11) is 

175 [19.65 + 4(31.50 + 45.75) + 2(39.50) + 50.16] 
- - 5 - -  

= 26,706 cal /mol 

A.8.4  Numerica l  Integration W h e n  the Integrand is a 
Continuous Function 

A.8.4.1 G a u s s - L e g e n d r e  q u a d r a t u r e  

The evaluation of an integral given by Eq. (A.8-1), where a and b are arbitrary but 
finite, using the Gauss-Legendre quadrature requires the following transformation: 

( ~ _ a )  a + b (A.8-13) z -  u + - - ~  

Then Eq. (A.8-1) becomes 

jfa b 
I = f(x) dx 

b - a / 1 _  
= ~ F(u) du - 

2 1 

b - a  n 

2 E wiF(ui) (A.8-14) 
i--0 



A.8. METHODS OF INTEGRATION 519 

where the roots and weight factors for n -  1, 2, 3, and 4 are given in Table A.3. 

Table A.3 Roots and weight factors for Gauss-Legendre quadrature (Abramowitz 
and Stegun, 1970). 

n Roots (ui) Weight Factors (wi) 

+0.57735 02691 89626 

0.00000 00000 00000 
+0.77459 66692 41483 

+0.33998 10435 84856 
+0.86113 63115 94053 

0.00000 00000 00000 
• 93101 05683 
• 98459 38664 

1.00000 00000 00000 

0.88888 88888 88889 
0.55555 55555 55556 

0.65214 51548 62546 
0.34785 48451 37454 

0.56888 88888 88889 
0.47862 86704 99366 
0.23692 68850 56189 

Example  A.7 Evaluate 

fa 1 I = ~ dx 

using the five-point ( n -  4) Gauss-Legendre quadrature formula and compare with 
the analytical solution. 

Solut ion  

Since b = 2 and a -  1, from Eq. (A.8-13) 

u + 3  
X - -  

2 

Then 

= 

2 + 2  

The five-point quadrature is given by 

2 

u + 7  

f l  1 1 i I -- dx - wiF(ui) 
x + 2  2i=0 

The values of wi and F(ui) are given in the table below: 
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U i  
2 

wi F(u i )  - u~ + 7 w iF(u i )  

0 0.00000000 0.56888889 0.28571429 0.16253969 
1 +0.53846931 0.47862867 0.26530585 0.12698299 
2 -0.53846931 0.47862867 0.30952418 0.14814715 
3 +0.90617985 0.23692689 0.25296667 0.05993461 
4 -0.90617985 0.23692689 0.32820135 0.07775973 

i----4 
~-~i=o w iF(u i )  - 0.57536417 

Therefore 

I = (0.5)(0.57536417) = 0.28768209 

Analytically, 

]~=1 - In - 0.28768207 

A.8.4.2 G a u s s - L a g u e r r e  q u a d r a t u r e  

The Gauss-Laguerre quadrature can be used to evaluate integrals of the form 

~a (X) --xf I = e (x) dx (A.8-15) 

where a is arbitrary and finite. The transformation 

x = u + a  (A.8-16) 

reduces Eq. (A.8-15) to 

/o i = e - X f ( x )  dx = e -~ e -UF(u)  du = e -~ w iF(u i )  
i - -0  

(A.8-17) 

where the wi and ui are given in Table A.4. 

E x a m p l e  A.8 The gamma function, F(n), is defined by 

F ( n )  - ]~ n - l e - fl  d ]~ 

where the variable ~ in the integrand is the dummy variable of integration. Est imate  
F(1.5) by using the Gauss-Laguerre quadrature with n = 3. 
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Table A.4 Roots and weight factors for Gauss-Laguerre quadrature (Abramowitz 
and Stegun, 1970). 

n Roots (ui) Weight Factors (wi) 

0.58578 64376 27 0.85355 33905 93 
1 

3.41421 35623 73 0.14644 66094 07 

0.41577 45567 83 
2.29428 03602 79 
6.28994 50829 37 

0.71109 30099 29 
0.27851 77335 69 
0.01038 92565 02 

0.32254 76896 19 
1.74576 11011 58 
4.53662 02969 21 
9.39507 09123 01 

0.60315 41043 42 
0.35741 86924 38 
0.03888 79085 15 
0.00053 92947 06 

0.26356 03197 18 
1.41340 30591 07 
3.59642 57710 41 
7.08581 00058 59 

12.64080 08442 76 

0.52175 56105 83 
0.39866 68110 83 
0.07594 24496 82 
0.00361 17586 80 
0.00002 33699 72 

S o l u t i o n  

Since a = O, then 

and 

~"- ' -U  

- 

The four-point quadrature is given by 

c,o 3 

r(1.5) - fo x/~ e-~ dZ - ~ w~F(u~) 
i --0 

The values of wi and F(ui) are given in the table below: 

0 0.32254769 0.60315410 0.56793282 0.34255101 
1 1.74576110 0.35741869 1.32127253 0.47224750 
2 4.53662030 0.03888791 2.12993434 0.08282869 
3 9.39507091 0.00053929 3.06513799 0.00165300 

F ( 1 . 5 )  = E i=3 wiF(ui) = 0.8992802 
i = 0  

The exact value of F(1.5) is 0.8862269255. 
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A.8.4 .3  G a u s s - H e r m i t e  q u a d r a t u r e  

The Gauss-Hermite quadrature can be used to evaluate integrals of the form 

F I = e - ~ f ( x ) d x  = w,f(x~) 
c~ i--O 

(A.8-18) 

The weight factors and appropriate roots for the first few quadrature formulas are 
given in Table A.5. 

Tab le  A.5 Roots and weight factors for Gauss-Hermite quadrature (Abramowitz 
and Stegun, 1970). 

n Roots (xi) Weight Factors (wi) 

1 + 0.70710 67811 0.88622 69255 

+ 1.22474 48714 0.29540 89752 
2 

0.00000 00000 1.18163 59006 

+ 1.65068 01239 0.08131 28354 
3 

+0.52464 76233 0.80491 40900 

+ 2.02018 28705 
+ 0.95857 24646 
0.00000 00000 

0.01995 32421 
0.39361 93232 
0.94530 87205 

A.9 M A T R I C E S  

A rectangular array of elements or functions is called a matrix. If the array has m 
rows and n columns, it is called an m x n matrix and expressed in the form 

a l l  a12 a13 . . .  a l n  

A - a21 a22 a 2 3  . . .  a 2 n  (A.9-1) 
o . o o ,  o o , o o  . , . . .  o . o  . . . .  . 

a m l  a m 2  a m 3  . . .  a m n  

The numbers or functions aij are called the elements of a matrix. Equation (A.9-1) 
is also expressed as 

A = (aij) (A.9-2) 

in which the subscripts i and j represent the row and the column of the matrix, 
respectively. 

A matrix having only one row is called a row matrix (or, row vector) while 
a matrix having only one column is called a column matrix (or, column vector). 
When the number of rows and the number of columns are the same, i.e., m - n, 
the matrix is called a square matrix or a matrix of order n. 
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A . 9 . 1  F u n d a m e n t a l  A l g e b r a i c  O p e r a t i o n s  

1. Two matrices A -- (ar and B -- (bi j)  of the same order are equal if and 
only if aij = b~j. 

2. If A -- (a i j )  and B -- (bij) have the same order, the sum of A and B is 
defined as 

A + B = (aij  + bij)  (A.9-3) 

If A, B, and C are the matrices of the same order, addition is commutative 
and associative, i.e., 

A + B = B + A (A.9-4) 

A + (B + C) -- (A + B) + C (A.9-5) 

3. If A = (a~j) and B = (b~j) have the same order, the difference of A and B is 
defined as 

A - B = (a~y - bij)  (A.9-6) 

E x a m p l e  A.9  I f  [2 1] [2 4] 
A = 1 0 and B - 3 0 

3 5 0 1 

d e t e r m i n e  A + B a n d  A - B .  

Solution 

A + B  -- 

A - B  

[ ] [ ] 2 + 2  - 1 - 4  4 - 5  
1 + 3  0 + 0  - 4 0 
3 + 0  5 + 1  3 6 [0 
1 - 3  0 - 0  = - 2  0 
3 - 0  5 - 1  3 4 

4. If A = (aij) and ,k is any number, the product  of A by ~ is defined as 

AA = AA = (A aij) (A.9-7) 

5. The product  of two matrices A and B, A B, is defined only if the number 
of columns in A is equal to the number of rows in B. In this case, the two 
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matrices are said to be conformable in the order stated. For example, if A is 
of order 4 x 2 and B is of order 2 x 3, then the product A B is 

all a12 

A B  = a21 a22 I bll b12 b13 ] (A.9-8) 
a31 a32 b21 b22 b23 
a41 a42 

allbll  + a12b21 alibi2 4- a12b22 alibi3 4- a12b23 
_ a21bll + a22b21 a21b12 + a22b22 a21b13 + a22b23 
- -  a31bll + a32b21 a31b12 4- a32b22 a31b13 -+- a32b23 

a41b11 + a42b21 a41b12 + a42b22 a41b13 + a42b23 

In general, if a matrix of order (m, r) is multiplied by a matrix of order (r, n), 
the product is a matrix of order (m, n). Symbolically, this may be expressed 
as 

(m, r) x (r, n) = (m, n) (A.9-9) 

E x a m p l e  A.10 I f  

determine A B.  

Solut ion  

[i_i] Eli A = 2 0 and B - 2 
- 1  5 

AB 
[1 1] 11 

= 2 0 2 
- 1  5 

= (2)(1)+(0)(2)  - 
( -1 ) (1 )+ (5 ) (2 )  9 

6. A matrix A can be multiplied by itself if and only if it is a square matrix. The 
product A A can be expressed as A 2. If the relevant products are defined, 
multiplication of matrices is associative, i.e., 

and distributive, i.e., 

A (B C) - (A B) C 

A (B + C ) = A B + A C  

( B + C ) A = B A + C A  

but, in general, not commutative. 

(A.9-10) 

(A.9-11) 

(A.9-12) 
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A . 9 . 2  D e t e r m i n a n t s  

For each square matrix A, it is possible to associate a scalar quantity called the 
determinant of A, IAI. If the matrix A in Eq. (A.9-1) is a square matrix, then the 
determinant of A is given by 

1At = 

a l l  a12 a13 ... a l n  

a21 a22 a23 ... a2n 

o 0 , o  . . . . .  0 , o ,  . . . . . . . . . .  

a n l  an2 an3 ... a n n  

(A.9-13) 

If the row and column containing an element aij in a square matrix A are deleted, 
the determinant of the remaining square array is called the minor  of aij and denoted 
by Mij. The cofactor of aij, denoted by A~j, is then defined by the relation 

Aij -- ( -  1)~+JMij (A.9-14) 

Thus, if the sum of the row and column indices of an element is even, the cofactor 
and the minor of that  element are identical; otherwise they differ in sign. 

The determinant of a square matrix A can be calculated by the following for- 
mula: 

n n 

k = l  k--1 

where i and j may stand for any row and column, respectively. Therefore, the 
determinant of 2 • 2 and 3 • 3 matrices are 

a l l  

a21 

a31 

a l l  a12 

a21 a22 

a12 a13 

a22 a23 

a32 a33 

= alia22 - a12a21 (A.9-16) 

- -  a11a22a33 �9 a12a23a31 �9 a13a21a32  

- - a l l a 2 3 a 3 2  - -  a12a21 a33 - -  a13a22a31  (A.9-17) 

E x a m p l e  A. 11 

Solut ion  

Determine  IAI i f  

A __._ 

1 

3 
- 1  

Expanding on the f irst  row, i.e., i - 1, gives 

I h l  = 
2 1 

1 0 
- 0  

3 1 
- 1  0 

+ 1  

1] 
1 
0 

3 
- 1  

= - 1 + 5 - 4  
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A.9 .2 .1  S o m e  p r o p e r t i e s  of  d e t e r m i n a n t s  

1. If all elements in a row or column are zero, the determinant  is zero, i.e., 

al  bl cl 
a2 b2 c2 
0 0 0 

= 0  
0 bl cl 
0 b2 c2 
0 b3 c3 

= 0  (A.9-18) 

2. The value of a determinant  is not altered when the rows are changed to 
columns and the columns to rows, i.e., when the rows and columns are inter- 
changed. 

3. The interchange of any two columns or any two rows of a determinant  changes 
the sign of the determinant .  

4. If two columns or two rows of a determinant  are identical, the determinant  
is equal to zero. 

5. If each element in any column or row of a determinant  is expressed as the 
sum of two quantities, the determinant  can be expressed as the sum of two 
determinants  of the same order, i.e., 

al  + dl bl cl 
a2 + d2 b2 c2 
a3 + d3 b3 c3 

al bl cl 
a2 b2 c2 
a3 bu c3 

+ 
dl bl cl 
d2 b2 c2 
d3 b3 c3 

(A.9-19) 

6. Adding the same multiple of each element of one row to the corresponding 
element of another row does not change the value of the determinant .  The 
same holds true for the columns. 

al  bl cl 
a2 b2 C2 

a3 b3 C3 

(al + nbl ) bl cl 
( a 2 + n b 2 )  b2 c2 
( a 3 + n b 3 )  b3 c3 

(A.9-20) 

This result follows immediately from Properties 4 and 5. 

7. If all the elements in any column or row are multiplied by any factor, the 
determinant  is multiplied by tha t  factor, i.e., 

Aal bl cl 
~a2 b2 c2 
Aa3 b3 c3 

= A  
al bl cl 
a2 b2 c2 
a3 b3 c3 

(A.9-21) 

bl 
b2 
b3 

C1 
C2 
C3 

1 al  
a2 
a3 

bl 
b2 
b3 

C1 
C2 
C3 

(A.9-22) 
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A . 9 . 3  T y p e s  o f  M a t r i c e s  

A.9.3 .1  T h e  t r a n s p o s e  of  a m a t r i x  

The matrix which is obtained from A by interchanging rows and columns is called 
the transpose of A and denoted by A T. 

The transpose of the product A B is the product of the transposes in the form 

(A B) w - B T A T (A.9-23) 

A.9 .3 .2  U n i t  m a t r i x  

The unit matrix I of order n is the square n • n matrix having ones in its principal 
diagonal and zeros elsewhere, i.e., 

1 0 ... 0 

I -  0 1 ... 0 (A.9-24) 

0 0 ... 1 

For any matrix 

A I - I A = A  (A.9-25) 

A.9 .3 .3  S y m m e t r i c  a n d  s k e w - s y m m e t r i c  m a t r i c e s  

A square matrix A is said to be symmetric if 

A - A T or aij = aji (A.9-26) 

A square matrix A is said to be skew-symmetric (or, antisymmetric) if 

A - - A  T or a i j - - a j i  (A.9-27) 

Equation (A.9-27) implies that  the diagonal elements of a skew-symmetric matrix 
are all zero. 

A.9 .3 .4  S i n g u l a r  m a t r i x  

A square matrix A for which the determinant IAI of its elements is zero, is termed 
a singular matrix. If IAt =fi 0, then A is nonsingular. 

A.9.3 .5  T h e  inverse  m a t r i x  

If the determinant IAI of a square matrix A does not vanish, i.e., nonsingular 
matrix, it then possesses an inverse (or, reciprocal) matrix A -1 such that  

A A -1 = A -1 A = I (A.9-28) 
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The inverse of a matrix A is defined by 

A_ 1 = Ad jA  
]A] (A.9-29) 

where Adj A is called the adjoint of A. It is obtained from a square matrix A by 
replacing each element by its cofactor and then interchanging rows and columns. 

E x a m p l e  A.12 

S o l u t i o n  

Find the inverse of the matrix A given in Example A.11. 

The minor of A is given by 

Mij  = 

2 
1 

0 1 
1 0 

0 
2 

The cofactor matrix is 

3 1 
- 1  0 

1 1 
- 1  0 

1 1 
3 1 

3 2 
- 1  1 

1 0 
- 1  1 

1 0 
3 2 

[ J 
-1 1 5 

- - I  1 1 

-2 -2 2 

- 1  - 1  5 ] 
A~j - 1 1 - 1  

- 2  2 2 

The transpose of the cofactor matrix gives the adjoint of A as [11 
Adj A = - 1  1 2 

5 - 1  2 

Since fA[ = 4, the use of Eq. (A.9-29) gives the inverse of A in the form 

[ = - -0 .25 0.25 
- 0 2 5  05  

A . 9 . 4  S o l u t i o n  o f  S i m u l t a n e o u s  A l g e b r a i c  E q u a t i o n s  

Consider the system of n nonhomogeneous algebraic equations 

a11xl  + a12x2 + ... -+- alnxn -- Cl 

a21xl  -~- a22x2 + ... + a2nXn -- c2 

o o . , . o o o o o o . . o o . o . . o o o o o . o o o o . o , o . . o o . o . o , .  ~ ~ 1 7 6 1 7 6  

anlXl + an2x2 + ... + annXn -- Cn 

(A.9-30) 
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in which the coefficients aij and the constants c~ are independent of x l, x2, .... , x~ 
but are otherwise arbitrary. In matrix notation, Eq. (A.9-30) is expressed as 

or, 

a l l  a 1 2  . . .  a l n  X l  Cl 

a 2 1  a 2 2  . . .  a 2 n  x 2  _ c 2  

a n  l a n 2  . . .  a n n  X n  Cn 

(A.9-31) 

A X = C (A.9-32) 

Multiplication of Eq. (A.9-32) by the inverse of the coefficient matrix A gives 

X = A - 1 C  (A.9-33) 

A.9.4.1 C r a m e r ' s  rule 

Cramer's rule states that, if the determinant of A is not equal to zero, the system 
of linear algebraic equations has a solution given by 

[AJl (A.9-34) 
xj = IAi 

where IAI and IAjl are the determinants of the coefficient and substituted matrices, 
respectively. The substituted matrix, Aj, is obtained by replacing the jth column 
of A by the column of c's, i.e., 

a l l  a 1 2  . . .  Cl  . . .  a l n  

A~ = a21 a22 ... c2 ... a2~ (A.9-35~ 
d 

\ _ _  _ w _ ]  

�9 . . o .  . . . .  . . . . . .  . . . . .  . . . . .  . . o . .  
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Appendix B 

Solutions of Differential 
Equations 

A differential equation is an equation involving derivatives or differentials of one 
or more dependent variables with respect to one or more independent variables. 

The order of a differential equation is the order of the highest derivative in the 
equation. 

The degree of a differential equation is the power of the highest derivative after 
the equation has been rationalized and cleared of fractions. 

A differential equation is linear when: (i) every dependent variable and every 
derivative involved occurs to the first-degree only, (ii) neither products nor powers 
of dependent variables nor products of dependent variables with differentials exist. 

B.1 T Y P E S  OF F I R S T - O R D E R  E Q U A T I O N S  
W I T H  E X A C T  S O L U T I O N S  

There are 5 types of differential equations for which solutions may be obtained by 
exact methods. These are: 

�9 Separable equations, 

�9 Exact equations, 

�9 Homogeneous equations, 

�9 Linear equations, 

�9 Bernoulli equations. 

531 
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B.I.1 Separable Equations 

An equation of the form 

f l ( x ) g l ( y ) d x  § f2(x)g2(y)dy -- 0 (B.1-1) 

is called a separable equation. Division of Eq. (B.I-1) by gl (y)f2(x) results in 

f l  (x) dx + g2(Y) 
f2(x) gl (Y) dy - 0 (B.1-2) 

Integration of Eq. (B.1-2) gives 

f f ~ (X) dz + / g2(Y) dy = C (B.1-3) 
f2(x) gl(y) 

where C is the integration constant. 

E x a m p l e  B.1 Solve the following equation 

(2 x + xy 2) dx + (3 y + x2y ) dy - 0 

Solut ion  

The differential equation can be rewritten in the form 

x (2 + y2) dx + y (3 + x 2) dy = 0 

Note that Eq. (1) is a separable equation and can be expressed as 

x y 
3 + x 2 dx + 2 +y2 dy - 0 

Integration of Eq. (2) gives 

(3 + x2)(2 + y 2 ) =  C 

(1) 

(2) 

(3) 

A necessary and sufficient condition for the expression M dx + N dy to be expressed 
as a total differential is that  

OM ON 
= (B.1-5) 

Oy Ox 

z In thermodynamics, an exact differential is called a state function. 

M dx § N dy - de (B.1-4) 

B.1.2 Exact Equations 

The expression M dx § N dy is called an exact differential I if there exists some 
r = r y) for which this expression is the total differential de, i.e., 
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If M dx § N dy is an exact differential, then the differential equat ion 

M dx + N dy - 0 (B.1-6) 

is called an exact differential equation. Since an exact  differential can be expressed 
in the form of a tota l  differential de, then 

M dx + N dy = de  = 0 (B.1-7) 

and the solution can easily be obtained as 

r = c 

where C is a constant .  

E x a m p l e  B .2  Solve the following differential equation 

( 4 x -  3y)dx § (1 - 3x)dy - 0 

S o l u t i o n  

Note that M = 4 x - 3 y and N = l - 3 x. Since 

OM ON 
= = - 3  (1) 

Oy Ox 

the differential equation is exact and can be expressed in the form of a total differ- 
ential de, 

or or 
(4 x - 3 y) dx + (1 - 3 x) dy - de  -- ~ x  dx § ~y  dy - 0 (2) 

From Eq. (2) we see that 

or 
0---~ = 4 x  - 3 y  (3) 

0r 
- -  = 1 - 3 x  ( a )  
Oy 

Partial integration of Eq. (3) with respect to x gives 

r -- 2 x 2 - 3 xy  § h(y) (5) 

Substi tut ion of Eq. (5) into Eq. (4) yields 

dh 
- - - " 1  
dy 

(6) 
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Integration of Eq. (6) gives the function h as 

h = y + C  (7) 

where C is a constant. Substitution of Eq. (7) into Eq. (5) gives the function r 
a s  

Hence, the solution is 

where C* is a constant. 

r -- 2x  2 -- 3xy + y + C (8) 

2 x 2 - 3 xy + y - C* (9) 

If the equation M dx + N dy is not exact, multiplication of it by some function 
#, called an integrating factor, may make it an exact equation, i.e., 

#M dx + #N dy = 0 
O(#M) O(#N) 

= (B.1-9) 
Oy Ox 

For example, all thermodynamic  functions except heat and work are s tate  functions. 
Although dQ is a path  function, dQ/T is a s tate function. Therefore, 1/T is an 
integrating factor in this case. 

B.1.3 Homogeneous Equations 

A function f (x ,  y) is said to be homogeneous of degree n if 

f(Ax, Ay) = A'~ f(x ,  y) (B.I-10) 

for all )~. For an equation 
M dx + N dy = 0 (B.I-ll) 

if M and N are homogeneous of the same degree, the t ransformation 

y - u x  (B.l-12) 

will make the equation separable. 
For a homogeneous function of degree n, Euler's theorem states tha t  

nS(xl ,x2, . . . ,x~) = E x, 
i--1 

(B.1-13) 

Note tha t  the extensive properties in thermodynamics  can be regarded as homo- 
geneous functions of order unity. Therefore, for every extensive property  we can 
write 

f ( x l , x2 , . . . , x~ )=  ~ 1 = x, (S. 1-14) 
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On the other hand, the intensive properties are homogeneous functions of order 
zero and can be expressed as 

E x a m p l e  B . 3  

S o l u t i o n  

Solve the following differential equation 

xy d x -  (x 2 + y2)dy = 0 

Since both of the functions 

M = xy (1) 
N = - ( x  2 + y2) (2) 

are homogeneous of degree 2, the transformation 

y = u x  

reduces the equation to the form 

Integration of Eq. (~) gives 

and dy -- u dx + x du (3) 

dx 1 + u  2 
- -  + .... -~=::  d u -  0 (4)  

x u o 

(1) 
xu---- Cexp ~ (5) 

where C is an integration constant. Substitution of u = y / x  into Eq. (5) gives the 
solution as 

y = C e x p  (6) 

B.1.4 Linear Equations 

In order to solve an equation of the form 

dy 
d---x + P (x ) y  - Q(x) (B.l-16) 

the first step is to find out an integrating factor, #, which is defined by 

tt - exp [ /  P(x) dx] (B.1-17) 
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Mult ipl icat ion of Eq. (B.1-16) by the integrat ing factor gives 

d(ity) 
dx 

= Q it (B.1-18) 

In tegra t ion  of Eq. (B.1-18) gives the solution as 

_1/Q~dx + _c 
Y - i t  it 

where C is an integrat ion constant .  

(B.1-19) 

E x a m p l e  B . 4  Solve the following differential equation 

dy x3 x ~ 2 y = sin x 

S o l u t i o n  

The differential equation can be rewritten as 

dy 2 x2 - -  - - y - sin x 
d x  x 

The integrating factor, it, is 

i t = e x p  - - dx = x -2 
x 

Multiplication of Eq. (1) by the integrating factor gives 

1 dy 2 
x 2 dx x 3 y - sin x 

Note that Eq. (3) can also be expressed in the form 

~ x  ~ = s in  x 

Integration of Eq. (~) gives 

y = - x  2 cosx  + C x  2 

(1) 

(2) 

(3) 

(4) 

(5) 

B.1.5 Bernoulli Equations 

Bernoulli equation has the form 

The  t rans format ion  

d__yy _ 
dx ~- P(x) y - Q(x) yn n ~ O, 1 

Z ---- y l - n  

reduces Bernoulli  equat ion to a linear equation,  Eq. (B.l-16).  

(B.1-20) 

(B.1-21) 
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B.2 S E C O N D - O R D E R  L I N E A R  
D I F F E R E N T I A L  E Q U A T I O N S  

A general second-order linear differential equation with constant  coefficients is writ- 
ten as 

d2y dy 
ao ~ + al ~ + a2 y = R(x )  (B.2-1) 

If R(x) - 0, t he  equation 

d2y dy 
ao ~ + a l ~xx + a2 y -- O (B.2-2) 

is called a homogeneous equation. 

The second-order homogeneous equation can be solved by proposing a solution 
of the form 

y = e mx (B.2-3) 

where m is a constant. Substi tut ion of Eq. (B.2-3) into  Eq. (B.2-2) gives 

(B.2-4) ao m 2 + a l m + a2 - -  0 

which is known as the characteristic or auxiliary equation. Solution of the given 
differential equation depends on the roots of the characteristic equation. 

D i s t i n c t  r e a l  r o o t s  

When the roots of Eq. (B.2-4), m l and m2, are real and distinct, then the solution 
is 

y = C1 e m i x  + C2  e m2x  (B.2-5) 

R e p e a t e d  r ea l  r o o t s  

When  the roots of Eq. (B.2-4), ml  and m2, are real and equal to each other, i.e., 
m l - m2 - m, then the solution is 

C o n j u g a t e  c o m p l e x  r o o t s  

y - (C1 + C2 x) e mx (B.2-6) 

When the roots of Eq. (B.2-4), ml  and m2, are complex and conjugate, i.e., 
m 1,2 - a + ib, then the solution is 

y = e ax (C1 cos bx + C2 sin bx) (B.2-7) 
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B.2.1 Special Case of a Second-Order Equation 

A second-order ordinary differential equation of the form 

d2Y )~2y = 0 (B.2-8) 
dx  2 

where A is a constant, is frequently encountered in heat and mass transfer problems. 
Since the roots of the characteristic equation are 

ml,2 = • ), (B.2-9) 

y = C1 e ~ + C2 e - ~  (B.2-10) 
the solution becomes 

Using the identities 

e ~x ~- e - ~ x  e~x _ e - -~x  
cosh Ax = and sinh Ax - (B. 2-11) 

2 2 

Equation (B.2-10) can be rewritten as 

y = C~* sinh ~x + C~ cosh Ax (8.2-12) 

B . 2 . 2  S o l u t i o n  o f  a N o n - H o m o g e n o u s  D i f f e r e n t i a l  

Equation 
Consider the second-order differential equation 

d2y dy 
dz 2 + P(z) ~ + Q(x) y = R(x) (B.2-13) 

If one solution of the homogeneous solution is known, i.e., say y - Yl (x), then the 
complete solution is (Murray, 1924) 

r ( s r ( s C1 (~) Y Yl + C2 (~) y~ dx + y~ j y~ yl J 

x [ J~Yl  exp du)]dx  14) (u)R(u) ( / P ( u )  (B.2- 

E x a m p l e  B.5 Obtain the complete solution of the following non-homogeneous 
differential equation if one of the solutions of the homogeneous part is Yl = e 2~. 

d2y dy 
dx  2 dx  

2y = 3e -~ + 1 0 s i n x -  4x 
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Solution 

Comparison of the equation with Eq. (B.2-13) indicates that 

P ( x )  = -: 

Q(x) = - 2  

R(x)  = 3e  -x  + 1 0 s i n x - 4 x  

Therefore, Eq. (B.2-1~) takes the form 

/ / [/" 1 y = C: e 2x + C2 e 2x e-3Xdx + e 2x e -3x eU(3e -~ + 10 s inu  - 4u) du dx 

The use of the integral formulas 

/ .,.(1) 
x e ax dx = x - - 

a a 

f f  e~X sin bx dx - e~X ( a sin bx - b c~ bx + b 2 

/ e~X cos bx dx = e ~  ( a c~ bx + b sin bx + b 2 

gives the complete solution as 

y - C1 e 2x + C~ e -x  - x e -x  1 e -  ~ - ~ - 3 s i n x  + cosx  + 2 x -  1 

B.2.3 Bessel 's  Equation 

There  is large class of ordinary differential equations tha t  cannot  be solved in 
closed form in terms of e lementary functions. Over certain intervals, the differential 
equat ion may possess solutions in power series or Frobenius series. 

An expression of the form 

OG 

ao + al (x - Xo) + a2(x - Xo) 2 + ... + an(x - Xo) n = E an(X -- Xo) n 
n---O 

(B.2-15) 

is called a power series in powers of ( x -  Xo) with xo being the center of expansion. 
Such a series is said to converge if it approaches a finite value as n approaches 

infinity. 
An ordinary differential equation given in the general form 

d----x xP-~x + (axj + bxk )y - 0 j > k (B.2-16) 
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with either k = p -  2 or b = 0, is known as the Bessel's equation. Solutions to 
Bessel's equations are expressed in the form of power series. 

E x a m p l e  B.6 Show that the equation 

x2d2y dy (x  2 1 )  

is reducible to Bessel's equation. 

S o l u t i o n  

A second-order differential equation 

d2y dy 
ao(X) ~ + al (x) -~x + a2(x) y -- 0 (1) 

can be expressed in the form of Eq. (B.2-16) as follows. Dividing each term in Eq. 
(1) by ao(X) gives 

d2y al(x) dy a2(x) 
dx 2 + + y = 0 (2) ao(X) dx a - ~  

The integrating factor, #, is 

Iz-exp(/al(x)dx)ao(x) (3) 

Multiplication of Eq. (2) with the integrating factor results in 

+ q y - O  (4) 

q -  ao(x) # (5) 

To express the given equation in the form of Eq. (13.2-16), the first step is to divide 
each term by x 2 to get 

dx 2 ~ 1 + x-  = 0 x dx -~ Y (6) 

Note that the integrating factor is 

( / 1 }  
# - e x p  - dx = x (7) 

X 

Multiplication of Eq. (6) by the integrating factor and rearrangement gives 

d ( d y )  ( 1 1 )  
d---~ X~x - x + - ~ x -  y = 0  (8) 
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Comparison of Eq. (8) with Eq. (B.2-16) gives p = 1; a -  -1;  b = - 1 ;  j = 1; 
and k = -  1. Since k = p -  2, then Eq. (8) is Bessel's equation. 

B . 2 . 3 . 1  S o l u t i o n  o f  B e s s e l ' s  e q u a t i o n  

If an ordinary differential equation is reducible to the Bessel's equation, then the 
constants c~,/~, and n are defined by 

a = 2 - p + j (B.2-17) 
2 

1 -p (B.2-18)  
/~= 2 - p + j  

n = V/(1 - p)2 _ 4b (B.2-19)  
2 - p + j  

The solution depends on whether the term a is positive or negative. 

Case  (i) a :> 0 

In this case the solution is given by 

y = [c1J ( z + c2J_ (ax")] n # integer (B.2-20) 

y = [ciJ.( x + n = integer (B. 2- 21 ) 

where C1 and C2 are constants, and ~ is defined by 

i2 = x/~ (B.2-22) 
OL 

The term Jn (x) is known as the Bessel function of the first kind of order n and is 
given by 

(-1)i(x/2)2i+n (B.2-23) 

i = 0  

J_,~(x) is obtained by simply replacing n in Eq. (B.2-23) with - n. When n is not 
an integer, the functions J,~(x) and J_~(x) are linearly independent solutions of 
Bessel's equation as given by Eq. (B.2-20). When n is an integer, however, these 
two functions are no longer linearly independent. In this case, the solution is given 
by Eq. (B.2-21) in which Y~(x) is known as Weber's Bessel function of the second 
kind of order n and is given by 

Y~(x) = (cosn~)J,~(x)-  J_,~(x) (B.2-24) 
sin n~ 
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Case (i i)  a < 0 

In this case the solution is given by 

y '- x a~ [Cl.[n(aX ~ -Jr- C2.[_n(aX~ n # integer (B.2-25) 

v = z [ C i l n ( a z  + n = integer (B. 2- 26) 

where C1 and C2 are constants, and ~ is defined by 

~t = - i  ~ (B.2-27) 
OL 

The term In (x) is known as the modified Bessel function of the first kind of order 
n and is given by 

(x/2)2'+~ (B.2-28) 
I~(x) = E i! F(i + n + 1) 

i - -0  

I_n(x)  is obtained by simply replacing n in Eq. (B.2-28) with - n .  When n is 
not an integer, the functions I,~(x) and L ~ ( x )  are linearly independent solutions 
of Bessel's equation as given by Eq. (B.2-25). However, when n is an integer, the 
functions I,~(x) and I_,~(x) axe linearly dependent. In this case, the solution is 
given by Eq. (B.2-26) in which K~(x)  is known as the modified Bessel function of 
the second kind of order n and is given by 

7r I_~ (x) - I,~ (x) (B.2-29) 
K,~(x) = ~ sinnTr 

E x a m p l e  B.7 Obtain the general solution of the following equations in terms of 
Bessel functions: 

d2y dy 
a) x ~-~x 2 - 3 ~ x  x + z y - O  

b) d2y 
- x2y - 0 

Solut ion 

a) Note that the integrating factor is x -3 and the equation can be rewritten as 

d (x-3  dY) 
d---x -~x + x-3  y - 0 (1) 

Therefore, p = -  3; a -  1; j = - 3 ;  b = O. Since b = O, the equation is reducible 
to Bessel's equation. The terms a, /3, and n are calculated from Eqs. (B.2-17)- 
(B.2-19) as 

2 - p + j  
C~ ~ 

2 
2 + 3 - 3  

. _ . _  _ . _  

2 1 (2) 
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1 - p  
/ 3 =  2 _ p +  j 

1 + 3  
2 + 3 - 3  

= 2 (3) 

V/(1 _p )2  - 4 b  
n - -  

2 - p + j  

= X/r(1 + 3) 2 - ( 4 ) ( 0 )  = 2 (4) 
2 + 3 - 3  

Note that a > 0 and ~t is calculated from Eq. (13.2-22) as 

,5 
= = 1 (5) 

1 

Since n is an integer, the solution is given in the form of Eq. (B.2-21) 

v = + (6) 

b)  The equation can be rearranged in the form 

d---x -~x - x2 y = 0 (7) 

Therefore, p - O; a = - 1; j = 2; b = O. Since b = O, the equation is reducible to 
Bessel's equation. The terms a, /3 ,  and n are calculated from Eqs. (B.2-17)-(B.2- 
19) as 

2 - p + j  

2 
2 - 0 + 2  

= 2 = 2 (8) 

1 - p  

~ =  2 - p + j  
1 - 0  

2 - 0 + 2  

1 
(9) 

n m 
V/(1 p)2 - 4b 

2 - p + j  

V/(1 - 0) 2 - (4)(0) 

2 - 0 + 2  
1 

= ~ (10) 
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Note that a < 0 and ~ is calculated from Eq. (B.2-27) as 

= _ i  x/~ 
o~ 

.,/-2-1 

2 

1 
= -~ (11) 

Since n is not an integer, the solution is given in the form of Eq. (t3.2-25) 

y -- v/X [C1 I1/4(x2/2) + C2 I_1/4(x2/2)] 

The properties of the Bessel functions are summarized in Table B.1. 

B.2 .4  N u m e r i c a l  Solut ion of Initial Value P r o b l e m s  

Consider an initial value problem of the type 

dy 
d--t = f ( t ,  y) (B.2-30) 

y(0) = a = given (B.2-31) 

Among the various numerical methods available for the integration of Eq. (B.2-30), 
fourth-order Runge-Kutta method is the most frequently used one. It is expressed 
by the following algorithm: 

1 
1 (k + k4) + (k2 + k3) (B.2-32) Y n + l - - Y n + - ~  1 5 

The terms kl, k2, k3, and k4 in Eq. (B.2-32) are defined by 

kl = h f ( t ~ , y n )  (1 1) 
k2 = h f t,~ + -~h, yn + -~kl 

(1 1) 
k3 = h f t~ + -~ h, yn + -~ k2 

k4 - h f ( t~  + h, y,~ + k3) 

(B.2-33) 

(B.2-34) 

(B.2-35) 

(B.2-36) 

in which h is the time step used in the numerical solution of the differential equation. 

E x a m p l e  B.8 An irreversible chemical reaction 

A --~ B 

takes place in an isothermal batch reactor. The rate of reaction is given by 

r = k c A  
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Tab l e  B.1 Properties of the Bessel functions. 

B E H A V I O R  N E A R  T H E  O R I G I N  

Jo(O) = Io(O) = 1 

--Yn(O) = K n ( O ) =  cx~ for all n 

Jn(0) = In(0) = 0 for n > 0 

Note that  if the origin is a point in the calculation field, then 
J,~(x) and In (x )  are the only physically permissible solutions. 

B E S S E L  F U N C T I O N S  OF N E G A T I V E  O R D E R  

J_,~(Ax) = ( -  1)nJ~(Ax) F_~(Ax) = ( -  1)nY~(Ax) 

z_~(~z) = z~(~x) K _ , ~ ( ~ x )  = K , , ( ) , z )  

R E C U R R E N C E  F O R M U L A S  

yn(),z) = ,~x ~nn [Jn+l (Ax) + J,~-I (Ax)] 

y~ ( ~ x ) -  ~ ~nn [Y~+,(Ax)+ Y~_l (,kx)] 

/~(~z) _ ~x [z~+~ (~x) - ~_~ (~z)] 

K,,(),x) = 2n:~x [g~+~ (~x) - g~_~  (~x)] 

I N T E G R A L  P R O P E R T I E S  

J "~xnJn-l( '~x)  dx -- xnJn(/~x) / "~xnyn-l( '~x)  dx = Xnyn(,~X) 

/ ,~ xn i n -  l (,~x ) ax -- xn Zn (/~x ) / ~ xn g n _  l (,,~x ) ax : - xn g n  (,~x ) 

D I F F E R E N T I A L  R E L A T I O N S  

d n 
d :  J , , ( ) , x )  - ), J, ,_~ ( ) , z )  - ~ J , , ( ) , x )  - - : ~ J n + l ( ) , x ) +  - J n ( ) , z )  

X X 
d n n 

dxr ,~ (Ax)  = A Vn-1 (Ax) - - Y~ (Ax) = - A r,~+l (Ax) + - r,~ (Ax) 
X X 

d _ AIn_l(Ax) - _n n "-f ~ Xn ( ,'~ X ) In ( ,~ X ) -- ,~ In + i ( )~ X ) + -- In ( ,,~ X ) 
X T, 

n 
-5-:,~x (~x) = -  ,k Kn_l  (,kx) - nx Kn  (,kx ) = - )~ K n  + l (,kx ) + -x K n  ( ~x ) 
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with a rate constant of k = 2 h -1 .  If  the initial number of moles of species J[ is 
1.5 mol, determine the variation in the number of moles of ,4 during the first one 
hour of the reaction. Compare your results with the analytical solution. 

Solut ion 

The inventory rate equation based on the moles of species A is 

or, 

A n a l y t i c a l  s o l u t i o n  

dnA 
- (kcA)V = dt (1) 

dnA 
dt 

= - - k n A  (2) 

Equation (2) is a separable equation with the solution 

nA = nAo exp(--  kt) (3) 

in which nAo is the initial number of moles of species A. 

N u m e r i c a l  s o l u t i o n  

In terms of the notation of the Runge-Kutta method, Eq. (2) is expressed as 

dy 
d--t = - 2 y (4) 

with an initial condition of 
y(O) = 1.5 (5) 

Therefore, 

Integration of Eq. 
method with a time step of h = 0.1 is given as follows: 

C a l c u l a t i o n  o f  y a t  t = 0.1 h o u r  
First, it is necessary to determine kl, k2, k3, and k4: 

f ( t , y )  = - 2 y  (6) 

Yo = 1.5 (7) 

(~) from t = 0 to t -- 1 by using fourth-order Runge-Kutta 

kl --- h f (Yo) 

= ( 0 . 1 ) ( -  2)(1.5) - - 0 . 3 0 0 0  (8) (1)  
k2 - h f yo + -~kl 
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k 3 - h f ( Y o + 2 k 2  ) 

(0.2700) 
= (0 .1) ( -  2) 1.5 2 

k,  4 " -  h f(yo + k3) 

= (0 .1) ( -  2)(1.5 - 0.2730) = - 0 . 2 4 5 4  

= - 0 . 2 7 3 0  (10) 

(11) 

Substi tut ion of these values into Eq. (B.2-32) gives the value of y at t - 0.1 hour 
as 

1 1 (0.2700 + 0.2730) -- 1.2281 (12) Yl ----- 1 . 5 -  ~ (0.3 -[-- 0.2454) - 

C a l c u l a t i o n  of  y a t  t = 0.2 h o u r  

The constants kl, k2, k3, and k4 are calculated as 

kl --  h f ( y l )  

-- (0 .1) ( -  2)(1.2281) = - 0 . 2 4 5 6  (13) (1)  
k2 - h f Yl -[-~kl 

= (0 .1 ) ( -2 )  (1.2281 0.24562 ) : -0"2211 (14) 

(1)  
k 3 -  h f Yl + ~k2 

= ( 0 . 1 ) ( - 2 ) ( 1 . 2 2 8 1  0.2211)2 = - 0 . 2 2 3 5  (15) 

k 4 -  h f (Yl + k3) 
- (0 .1) ( -  2)(1.2281 - 0.2235) - - 0 . 2 0 0 9  (16) 

Substitution of these values into Eq. (t7.2-32) gives the value of y at t -  0.2 hour 
a 8  

1 1 
Y2 -- 1.2281 -- ~(0.2456 + 0.2009) -- 5(0.2211 + 0.2235) -- 1.0055 (17) 

Repeated application of this procedure gives the value of y at every 0.1 hour. The 
results of such calculations are given in Table 1. The last column of Table I gives the 
analytical results obtained from Eq. (3). In this case, the numerical and analytical 
results are equal to each other. However, this is not always the case. The accuracy 
of the numerical results depends on the time step chosen for the calculations. For 
example, for a time step of h = 0.5, the numerical results are slightly different 
from the exact ones as shown in Table 2. 
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Table  1 
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Comparison of numerical and exact values for h - 0.1. 

t ( h )  kl k2 k3 ]g4 y (num.) y (exact) 

0.1 -0 .3000 -0.2700 -0.2730 -0.2454 1.2281 1.2281 
0.2 -0 .2456 -0.2211 -0.2235 -0.2009 1.0055 1.0055 
0.3 -0.2011 -0.1810 -0.1830 -0.1645 0.8232 0.8232 
0.4 -0.1646 -0.1482 -0.1498 -0.1347 0.6740 0.6740 
0.5 -0.1348 -0.1213 -0.1227 -0.1103 0.5518 0.5518 
0.6 -0 .1104 -0.0993 -0.1004 -0.0903 0.4518 0.4518 
0.7 -0 .0904 -0.0813 -0.0822 -0.0739 0.3699 0.3699 
0.8 -0 .0740 -0.0666 -0.0673 -0.0605 0.3028 0.3028 
0.9 -0.0606 -0.0545 -0.0551 -0.0495 0.2479 0.2479 
1.0 - 0.0496 - 0.0446 - 0.0451 - 0.0406 0.2030 0.2030 

Table  2 Comparison of numerical and exact values for h -  0.5. 

t ( h )  kl k2 k3 k4 y (num.) y (exact) 

0.5 - 1.5000 -0.7500 - 1.1250 -0.3750 0.5625 0.5518 
1.0 -0.5625 -0.2813 -0.4219 -0.1406 0.2109 0.2030 

B.2 .5  So lu t ion  of  S i m u l t a n e o u s  Di f ferent ia l  E q u a t i o n s  

The solution procedure presented for a single ordinary differential equation can be 
easily extended to solve sets of simultaneous differential equations. For example, 
for the case of two simultaneous ordinary differential equations 

dy 
d---x = f (t, y, z) (B.2-37) 

d z  
d--[ = g(t, y, z) (B.2-38) 

the fourth-order Runge-Kutta solution algorithm is given by 

1 1 
Y n + l  --- Yn  -~- ~(kl -[- k4) + -~(k2 -~ k3) (B.2-39) 

and 
1 1(~1- -~- ~4) ~- (~2 -~- ~3) Zn+l  - -  Zn -~- 6 

The terms kl ~ k4 and t~l -~ t~4 are defined by 

(B.2-40) 

kl = h f ( tn ,  y~, z~) 

~1 - h g(t~, y~, zn) 

(B.2-41) 

(B.2-42) 
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1 1 1 ) 
k2 - h f t,~ + ~h, y,~ + ~]gl, Zn + ~el (B.2-43) 

( 1 l 1 )  
e2 = hg  t,~ + -~h, yn + -~kl,Zn + ~el (B.2-44) 

( 1 1 1 ) 
k3 = h f t~ + ~h, y~ + ~ k2, z~ + ~t~2 (B.2-45) 

( 1 1 le) (B.2-46) s - hg  t~ +-~h, yn +-~k2, zn +-~ 2 

k4 = h f(t,~ + h,y~ + k3, z~ + Q) (8.2-47) 
~4 - h g(tn + h, y,~ + k3, z,~ + e3) (B.2-48) 

Example B.9 The following liquid phase reactions are carried out in a batch 
reactor under isothermal conditions" 

A ~ B r = klCA kl ----0.4h -1 
B + C -+ D r - -  k2CBCc k2 --0.7 m3/mol, h 

I f  the initial concentration of species ,4 and C are i mol/m 3, determine the con- 
centration of species 79 after 18 rain. Compare your results with the analytical 
solution. 

Solution 
The inventory rate expression for species ~4 and 73 are given by 

dcA 
dt 

- -  - - k l C A  (1) 

d c D  

dt 
= k2cscc  (2) 

From the stoichiometry of the reactions, the concentrations of 13 and C are ex- 
pressed in terms of ,4 and 7) as 

CB - -  CAo - -  C A  - -  r  (3) 
CC --- CC o - -  CD (4) 

Substitution of Eqs. (3) and (~) into Eq. (2) yields 

d c D  

dt = k~ (~Ao - ~A - r  - ~ )  (5) 

Analytical solution 

Equation (1) is a separable equation with the solution 

~ a  - -  ~Ao ~xp(- kit) (6) 
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in which CAo is the initial concentration of species .A. Substitution of Eq. (6) into 
Eq. (5) gives 

d a D  = k2c2  D n t- k2 ( c A o e  - k i t  -- CAo -- cCo)  CD n t- k2CAoCCo(1 -- e -k~t) (7) 
dt 

In terms of numerical values, Eq. (7) becomes 

dcD 

dt 
-- 0.7 C~) -~- 0.7 (e -0.4t - 2)CD + 0.7 (1 - e -0.4t) (8 )  

The non-linear first-order differential equation 

dy = a(x) y2 + b(x) y + c(x) 
dx 

is called a Riccati equation. I f  yl (x) is any known solution of the given equation, 
then the transformation 

1 
y = y~ (~) + - 

u 

leads to a linear equation in u. Equation (8) is in the form of a Riccati equation 
and note that CD -- 1 is a solution. Therefore, the solution is 

( ~1e_1.75~ 7 )--1 
CD = 1 -- e -1"75~ 1.75 ~ dr] + e -1"75 (9) 

where 
T -  e -OAt (10) 

When t -  0.3 h, Eq. (9) gives CD = 0 . 0 1 1 2 m o l / m  3. 

Numerica l  solut ion 

In terms of the notation of the Runge-Kutta method, Eqs. (1) and (5) are expressed 
in the form 

with initial conditions of 

dy 
d'-'t = - 0 . 4 y  (11) 
dz 
d---t = 0.7 (1 - y - z)(1 - z) (12) 

y(O) = l and z(O) - O (13) 

Therefore, 

f ( t , y , z )  - - 0 . 4 y  

g ( t ,  y ,  ~)  - 0 . 7 ( 1  - y - ~ ) ( 1  - ~) 
(14) 

( 1 5 )  
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with the initial conditions 
y o -  1 

Z o ~ 0 

Choosing h = 0.05, the values of Yl and Zl are calculated as follows: 

hi = h f (yo, Zo) 
= ( 0 . 0 5 ) ( - 0 . 4 ) ( 1 ) - - 0 . 0 2 0 0  

(16) 

(18) 

g, = h g(Yo, zo) 
= (0.05)(0.7)(1 - 1 - 0)(1 - O) - 0 (~9) 

( 1 1) 
k2 = h f Yo + ~ka,zo +-~gl 

- ( 0 . 0 5 ) ( - 0 . 4 )  (1 0.0200)2 = -0 .0198 (20) 

g2 = hg (Yo + ~k, ,zo + 2gl ) 

[ ( 0"0200) - O] ( 1 -  O) = 3"5 x 10-4 = (0.05)(0.7) 1 -  1 2 (21) 

( 1 1) 
k3 = h f yo + ~ k2, zo + ~ g2 

= (0 .05 ) ( -0 .4 ) (1  0.0198) 2 - -0 .0198  (22) 

1 l g )  
g3 = h g yo + ~ k2, zo +-~ 2 

-(oo~/(o~/[1- (1 o.o19~~ )_~.~ 
= 3.4032 x 10 .4 

 1o-41(  
(23) 

k4 - h f (Yo + k3, Zo + g3) 
= (0.05)(-0.4)(1 - 0.0198) - -0 .0196  (24) 

~.4 ~--- h g(yo + k3, Zo + g3) 
= (0.05)(0.7) [1 - ( 1  - 0.0198) - 3.4032 x 10 -4] (1 - 3.4032 x 10 -4) 

= 6.8086 x 10 -4 (25) 
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Substitution of k 1 --+ ]g4 and ~ --, e4 into Eqs. (B.2-39) and (B.2-40), respectively, 
gives the values of Yl and Zl as 

1 
1 (0.0200 + 0.0196) - ~(0.0198 + 0.0198) = 0.9802 y l - l - g  (26) 

1 1 
Zl - 0 -~- ~ (0 -~- 6.8086 • 10 -4) -~- ~(3.5 • 10 -4 -~- 3.4032 • 10 -4) 

= 3.4358 • 10 -4 (27) 

Repeated application of this procedure gives the values of y and z at every 0.05 h. 
The results are given in Tables 1 and 2. 

Tab le  1 Values of y as a function of time. 

t (h) k I k 2 k 3 k 4 y 

0.05 -0 .0200  -0 .0198 -0 .0198  -0 .0196 0.9802 
0.10 -0 .0196  -0 .0194  -0 .0194  -0 .0192 0.9608 
0.15 -0 .0192  -0 .0190  -0 .0190  -0 .0188 0.9418 
0.20 -0 .0188  -0 .0186 -0 .0186 -0 .0185 0.9232 
0.25 -0 .0185  -0 .0183 -0 .0183 -0 .0181 0.9049 
0.30 -0 .0181 -0 .0179  -0 .0179 -0 .0177  0.8870 

Tab le  2 Values of z as a function of time. 

t (h) t~l t~2 g3 t~4 z 

0.05 0.0000 0.0004 0.0003 0.0007 0.0003 
0.10 0.0007 0.0010 0.0010 0.0013 0.0013 
0.15 0.0013 0.0016 0.0016 0.0019 0.0029 
0.20 0.0019 0.0022 0.0022 0.0025 0.0051 
0.25 0.0025 0.0028 0.0028 0.0030 0.0079 
0.30 0.0030 0.0033 0.0033 0.0035 0.0112 

B.3 S E C O N D - O R D E R  PARTIAL 
DIFFERENTIAL EQUATIONS 

B.3.1 Classification of Partial  Differential Equations 

As a function of two independent variables, x and y, the most general form of a 
second-order linear partial differential equation has the form 

02u 02u 02u Ou 
A(x, y) ~x 2 + 2 B(x, y) OxOy + C(x, y) ~ + D (x, y) ~xx 

Ou 
+ E(z,  y) -~y + F(x, y)u  - G(x, y) (8.3-1) 
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It is assumed that the coefficient functions and the given function G are real-valued 
and twice continuously differentiable on a region l~ of the x, y plane. 

When G - 0, the equation is homogeneous, otherwise the equation is non- 
homogeneous. 

The criteria, B 2 - AC,  that will indicate whether the second-order equation is 
a graph of a parabola, ellipse or hyperbola is called the discriminant, A, i.e., 

> 0 Hyperbolic 
A = B 2 - A C  - 0 Parabolic 

< 0 Elliptic 

B.3.2 Orthogonal Functions 

Let f ( x )  and g(x) be real-valued functions defined on the interval a <_ x _ b. The 
inner product of f ( x )  and g(x) with respect to w(x) is defined by 

(:, g} -- w(x) f (x) g(x) dx (B.3-2) 

in which the weight function w(x) is considered positive on the interval (a, b). 

E x a m p l e  B.10 Find the inner product of f ( x )  -- x and g(x) = 1 with respect 
to the weight function w(x) = x 1/2 on the interval 0 < x < 1. 

Solu t ion  

Application of Eq. (B.3-2) gives the inner product as 

~0 1 2 X5/2 I1 2 
(f,g) = 4- xd - g o -  5 

The inner product has the following properties: 

(f, g) = (g, f) 

(f, g + h) = (f, g) + (f, h) 

(a f,  g) = a ( f  , g) a is a scalar 

The inner product of f with respect to itself is 

(:, f )  = w(x) f2(x)dx = II/(x)ll 2 :> 0 

in which norm of f ( x )  is defined as 

llf(x) l[ = v/(f, f} 

(B.3-3) 

(B.3-4) 

(B.3-5) 

(B.3-6) 

(B.3-7) 
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When (f, g} = 0 on (a, b), then f (x )  is orthogonal to g(x) with respect to the 
weight function w(x) on (a, b), and when (f, f ) =  1, then f (x )  is an orthonormal 
function. In the special case where w(x) = 1 for a < x < b, f ( z )  and g(x) are said 
to be simply orthogonal. 

A sequence of functions {fn}~ is an orthogonal set of functions if n--0 

(f,~, fro) = 0 n 7~ m (B.3-8) 

The orthogonal set is a linearly independent set. If 

(fn, fro) -- { 0 if n 7~ m (B.3-9) 
1 if n = m  

such a set is called an orthonormal set. Note that  an orthonormal set can be 
obtained from an orthogonal set by dividing each function by its norm on the 
interval under consideration. 

E x a m p l e  B.11 Let r  sin(n~rx)for n = 1,2,3,. . .  and for 0 < x < 1. 
Show that the sequence {r176 1 is simply orthogonal on (0, 1). Find the norms of 
the functions r 

Solut ion  

The inner product is 

/o (r era) = sin(n~'x) sin(m~rx) dx (1) 

The use of the identity 

1 [cos(A-  B) - c o s ( A  + B)] (2) sin A sin B - 

reduces Eq. (1) to the form 

(r Cm) = ~ {cos [(n - m)~rx] - cos [(n + m)Trx]} dx 

= _1 { s i n [ ( n - m ) r x ]  _ sin[(n+m)~rx] }1 (3) 

2 ( n -  m)rr ( n -  m)~" 0 

On the other hand, 

j~0 
1 

(r r = sin2(nTrx)dx 

- 0  

1/01 1[ sin( n x)]a 1 
[ ( 1 -  cos(2nTrx)] dx = ~ x -  2nTr 0 2 (4) 

Therefore, the norm is 
1 

Hence, 

(5) 
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B . 3 . 3  S e l f - A d j o i n t  P r o b l e m s  

Consider a second-order ordinary differential equation of the form 

d2y dy 
Co(X) ~ + al (x) ~x + a2(x) y = 0 (B.3-10) 

Multiplication of Eq. (8.3-10) by p(x)/ao(x) in which p(x) is the integrating factor 
defined by 

p(x) -- exp a--~ du (B.3-11) 

gives 
d2Y F al (x) dy a2(x) 
d x---~ - a - ~  ; ( ~ ) ~z  + a - ~  ; ( ~ ) y - 0 

Equation (B.3-12) can be rewritten as 

d2y dp(x) dy 
P(X) -d~x2 -~ dx dx ~ q(x) y = O 

where 
q(x) = a2(x) 

ao(~) 
Rearrangement of Eq. (B.3-13) yields 

(B.3-12) 

d 
dx 

(B.3-13) 

~ p ( x )  (B.3-14) 

dy] 
p(~) ~ + q(z)y = o (B.3-15) 

A second-order differential equation in this form is said to be in self-adjoint form. 

Example B.12 Write the following differential equation in self-adjoint form: 

x2 d2y dy 
dx 2 x -~x + (x - 3)y = 0 

3) 
x2 y -- 0 

Solution 

Dividing the given equation by x 2 gives 

d2y 1 dy ['1 
dx 2 x dx ~ ~ x 

Note that 
( ~o~dU) 1 p(x) = exp . . . .  

u x 

Multiplication of Eq. (1) by p(x) gives 

(1 
X d x  2 x 2 dx ~- x 2 X3 y = 0 

Note that Eq. (3) can be rearranged as 

3) 
x3 y - 0 dx x-~x + x 2 

(1) 

(2) 

(3) 

(4) 
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B . 3 . 4  T h e  S t u r m - L i o u v i l l e  P r o b l e m  

The linear, homogeneous, second-order equation 

1 
w(x) dx (x) -~x + q(x) y : - )~ y 

on some interval a < x < b satisfying boundary conditions of the form 

(B.3-16) 

dy 
Ol I y(a) + ~2 -~x = 0  (B.3-17) 

dy - 0 (B.3-18) /~1 y(b) + /~2 -~x x=b 

where Oil, o~2,/~1,2~2 a r e  given constants; p(x), q(x), w(x) are given functions which 
are differentiable and/k is an unspecified parameter independent of x, is called the 
Sturm-L iouville equation. 

The values of A for which the problem given by Eqs. (B.3-16)-(B.3-18) has a 
nontrivial solution, i.e., a solution other than y - 0, are called the eigenvalues. 
The corresponding solutions are the eigenfunctions. 

Eigenfunctions corresponding to different eigenvalues are orthogonal with re- 
spect to the weight function w(x). All the eigenvalues are positive. In particular, 
)~ ---0 is not an eigenvalue. 

E x a m p l e  B.13 Solve 
d2y 
dx 2 F/k y = 0 

subject to the boundary conditions 

at x - - O  y = 0  

at x--Tr y = O  

Solut ion 

The equation can be rewritten in the form 

d--~ ~ - - ~ y (1) 

Comparison of Eq. (1) with Eq. (B.3-16) indicates that this is a Sturm-Liouville 
problem with p ( x ) =  1, q ( x ) -  0 and w ( x ) =  1. 

The solution of Eq. (1) is 

y = A s i a  B c o s  (2) 
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Application of the boundary condition at x = 0 implies that B --O. On the other 
hand, the use of the boundary condition at x = 77 gives 

A sin ( x / ~ T r ) - 0  (3) 

In order to have a nontrivial solution 

sin (x/A 77) -- 0 =~ v/A 77 - n77 n - 1, 2, 3, ... (4) 

or, 
x/~ = n ==~ An = n 2 n = 1, 2, 3, ... (5) 

Equation (5) represents the eigenvalues of the problem. The corresponding eigen- 
functions are 

Yn = An sin(nx) n = 1, 2, 3, ... (6) 

where An is an arbitrary non-zero constant. 
Since the eigenfunctions are orthogonal to each other with respect to the weight 

function w(x),  it is possible to write 

fo r sin(nx) s in (mx)dx  = 0 n # m (7) 

B .3 .4 .1  T h e  m e t h o d  of  S t o d o l a  a n d  V i a n e l l o  

The method of Stodola and Vianello (Bird et al., 1987; Hildebrand, 1976) is an 
iterative procedure which makes use of successive approximation to estimate A 
value in the following differential equation 

d i p  dy 
d-~ (x)-~x = - A w(x) y (B.3-19) 

with appropriate homogeneous boundary conditions at x = a and x = b. 
The procedure is as follows: 

1. Assume a trial function for Yl (x) which satisfies the boundary conditions 
x = a and x = b. 

2. On the right side of Eq. (B.3-19), replace y(x) by yl (x). 

3. Solve the resulting differential equation and express the solution in the form 

y(x) = Afl  (x) (B.3-20) 

4. Repeat  step (2) with a second trial function y2(x) defined by 

y2(x) = f~ (x) (B.3-21) 
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5. Solve the resulting differential equation and express the solution in the form 

y(x) = A f2(x) (B.3-22) 

6. Continue the process as long as desired. The n t h  approximation to the small- 
est permissible value of )~ is given by 

fa D W(X) fn (x) y~ (x) dx 

A~ - b (B.3-23) 

~ w(x) [f,~(x)] 2 dx 

B.3.5  Fourier Series 

Let f(x) be an arbitrary function defined on a _ x < b and let {r }n--1 be an 
orthogonal set of functions over the same interval with weight function w(x). Let 
us assume that  f(x) can be represented by an infinite series of the form 

co 
f(x) = E C~r (B.3-24) 

n----1 

The series ~'~ C~r is called the Fourier series of f(x), and the coefficients Cn 
are called the Fourier coefficients of f(x) with respect to the orthogonal functions 

To determine the Fourier coefficients, multiply both sides of Eq. (B.3-24) by 
w(x)r  m (x) and integrate from x =- a to x -  b, 

~a b oo ~a b 
f (x) w(x) r (x) dx = E Cn Cn (x) r (X) W(x) dx 

n - - 1  

(B.3-25) 

Because of the orthogonality, all the integrals on the right-side of Eq. (B.3-25) are 
zero except when n -- m. Therefore, the summation drops and Eq. (B.3-25) takes 
the form 

/a f (x) w(x) Cn(x)dx - Cn r w(x) dx (B.3-26) 

or~ 
- <f' Cn> (B.3-27) 

E x a m p l e  B .14  Let f(x) = x for 0 < x <_ ~. Find the Fourier series of f(x) 
with respect to the simply orthogonal set {sin(nx)}n~__l . 
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Solut ion 

The function f (x)  -- x is represented in the form of a Fourier series 

X - "  

o o  

E C n s i n ( n x )  
n - - 1  

(1) 

The Fourier coefficients can be calculated from Eq. (B.3-27) as 

f0 " x sin(nx) dx 
cos(nTr) 

C~= = - 2  

fo sin 2 (nx) dx 

(2) 

Since 

the coefficients Ca become 

cos(n~) = ( -  1) ~ 

C. 2 ( -  1)'~ ( - 1 )  '~+1 
- - -  - -  - -  2 

n n 

Substitution of Eq. (~) into Eq. (1) yields 

(3) 

(4) 

(x)  

x = 2 E ( -  1)"+1 sin(nx) (5) 
n 

n - - 1  

B.3.6 Solution of Partial Differential Equations 

Various analytical methods are available to solve partial differential equations. In 
the determination of the method to be used, the structure of the equation is not 
the only factor that should be taken into consideration as in the case for ordinary 
differential equations. The boundary conditions are almost as important as the 
equation itself. 

B.3.6 .1  The  m e t h o d  of separat ion of variables 

The method of separation of variables requires the partial differential equation to 
be homogeneous and the boundary conditions be defined over a limited interval, 
i.e., semi-infinite and infinite domains do not permit the use of the separation of 
variables method. Besides, boundary conditions must be homogeneous in at least 
one dimension. 

Let us apply the method of separation of variables to an unsteady-state heat 
transfer problem. Consider a slab which is initially at temperature To. At time 
t - 0, both surfaces are suddenly subjected to a constant temperature T1 with 
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T1 :> To. The governing differential equation together with the initial and boundary  
conditions are 

OT 02T 
O--t = ~ Ot ---Y (B.3-28) 

at t = 0 T = To for all x (B.3-29) 

at x = 0 T - T1 t > 0 (B.3-30) 

at x = L T -  T1 t > 0 (B.3-31) 

Note tha t  the differential equation is linear and homogeneous. On the other 
hand, the boundary conditions, al though linear, are not homogeneous. The bound- 
ary conditions in the x -d i r ec t ion  become homogeneous by introducing the dimen- 
sionless quantit ies 

T 1 -  T 
- (B.3-32) 

T 1 -  To 
Z 

= ~ (B.3-33) 

at 
T = L--- ~ (B.3-34) 

In dimensionless form, Eqs. (B.3-28)-(B.3-31) become 

00 020 
= (B.3-35) 

0~ 0~ 2 

at T = 0 0 -  1 (B.3-36) 

at ~ = 0 0 = 0 (B.3-37) 

at ~ = 1 t? - 0 (B.3-38) 

The separation of variables method assumes tha t  the solution can be represented 
as a product  of two functions of the form 

(B.3-39) 

Subst i tut ion of Eq. (B.3-39) into Eq. (B.3-35) and rearrangement  gives 

1 dF 1 d2G 
= (8.3-40) 

F dT G d~ 2 

While the left side of Eq. (B.3-40) is a function of T only, the right side is dependent  
only on ~. This is possible only if both sides of Eq. (B.3-40) are equal to a constant,  
say - A 2 i.e. 

1 dF 1 d2G 
= --  - - A 2 (8.3-41) 

F &- G d~ 2 - 
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The choice of a negative constant is due to the fact that the solution will decay to 
zero as time increases. The choice of a positive constant would give a solution that 
becomes infinite as time increases. 

Note that Eq. (B.3-41) results in two ordinary differential equations. The 
equation for F is given by 

dF 
d--r- + ~2F - 0 (B.3-42) 

The solution of Eq. (B.3-42) is 

F(T) - e -~2~ (B.3-43) 

On the other hand, the equation for G is 

d2G 
d{2 + A 2 G -  0 

subject to the boundary conditions 

(B.3-44) 

at { = 0 G = 0 (B.3-45) 

at { = 1  G = 0  (B.3-46) 

Note that Eq. (B.3-44) is a Sturm-Liouville equation with a weight function of 
unity. The solution of Eq. (B.3-44) is 

G(~) = A sin(,k~) + B cos(,k~) (B.3-47) 

where A and B are constants. The use of the boundary condition defined by Eq. 
(B.3-45) implies B - 0. Application of the boundary condition defined by Eq. 
(B.3-46) gives 

A sin )~ = 0 (B.3-48) 

For a nontrivial solution, the eigenvalues are given by 

sin k = 0 => A,~ = nTr n = 1, 2, 3, ... (B.3-49) 

The corresponding eigenfunctions are 

O~({) = sin(nTr{) (B.3-50) 

Note that each of the product functions 

_ n  2 
~(T,  ~) -- e ~2~ sin(nTr~) n -  1, 2, 3,... (B.3-51) 

is a solution of Eq. (B.3-35) and satisfies the initial and boundary conditions, Eqs. 
(B.3-36)-(B.3-38). 

If 81 and ~2 are the solutions satisfying the linear and homogeneous partial 
differential equation and the boundary conditions, then the linear combination of 
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the solutions, i.e., C101 -~-6292, also satisfies the partial differential equation and 
the boundary conditions. Therefore, the complete solution is 

c~ 

0 = E C~ e -~2'~2~ sin(nTr~) (B.3-52) 
n----1 

The unknown coefficients C~ can be determined by using the initial condition. The 
use of Eq. (B.3-36) results in 

c<) 

1 - E C,~ s in (n~  c) (B.3-53) 
n--1 

Since the eigenfunctions are simply orthogonal, multiplication of Eq. (B.3-53) by 
sin mr~ and integration from ~ -  0 to ~ = 1 gives 

~01 oo ~01 sin(mTr~) d~ - E Cn sin(nTr~) sin(m~r~)d~ 
n--1 

(B.3-54) 

Note that the integral on the right side of Eq. (B.3-54) is zero when m -fi n and 
nonzero when m - n. Therefore, when m - n the summation drops out and Eq. 
(B.3-54) reduces to the form 

fo I fo 1 sin(n~r~) d~ - Cn sin2(nTr~) d~ (B.3-55) 

Evaluation of the integrals show that 

C~ = 2 [1 - ( -  1) '~] (B.3-56) 
7rn 

The coefficients Cn take the following values depending on the value of n" 

0 n - 2, 4, 6, ... 
C,~= 4 

n = 1, 3, 5, ... 
Irn 

(B.3-57) 

Therefore, the solution becomes 

0 = 4 ~~  sin(nTrr m e -  rt2 7r2T 
7~ n 

n-1 ,3 ,5  
(B.3-58) 

Replacing n by 2k + 1 gives 

4 ~-, _ (2k+1)2== sin [(2k + 1)Try] 
0 C "r 

7r A.~ 2 k + l  
k--O 

(B.3-59) 
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B.3.6 .2  S imi l a r i t y  so lut ion  

This is also known as the method of combination of variables. Similarity solutions 
are a special class of solutions used to solve parabolic second-order partial differ- 
ential equations when there is no geometric length scale in the problem, i.e., the 
domain must be either semi-infinite or infinite. Besides, the initial condition should 
match the boundary condition at infinity. 

The basis of this method is to combine the two independent variables in a single 
variable so as to transform the second-order partial differential equation into an 
ordinary differential equation. 

Let us consider the following parabolic second-order partial differential equation 
together with the initial and boundary conditions: 

OVz O2Vz 
= v ~ (8.3-60) Ot Ox 2 

at t < 0 v~ = 0 for all x (B.3-61) 

at x = 0 v~ = V for t > 0 (B.3-62) 

at x -  oo v~ = 0 for t > 0 (B.3-63) 

Such a problem represents the velocity profile in a fluid adjacent to a wall suddenly 
set in motion and is also known as Stokes' first problem. 

The solution is sought in the form 

Vz 
V = f(~) (B.3-64) 

where 
= ~ t mx ~ (B.3-65) 

The term r / is called the similarity variable. The proportionality constant ~ is 
included in Eq. (B.3-65) so as to make 7/dimensionless. 

The chain rule of differentiation gives 

Ot 
df On 
d~ Ot 

=/~mtm_lx ~ df 
d~ (B.3-66) 

02(Vz/V) d2f (O~) 2 df 02~ 
Ox 2 = d~ 2 -~x + m d~ Ox 2 

=/~2n2t2mx2(n-1) d2---~f +/~n(n - 1)tmx '~-2 df 
d772 d~ 

Substitution of Eqs. (B.3-66) and (B.3-67) into Eq. (8.3-60) gives 

(v/~n2tm+l ) d2 f [pn(n -1 ) t  ] df 
rex2_ n ~ + mx 2 - 1 -~ - 0  

(B.3-67) 

(B.3-68) 
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or, 

[(un2rl) tx-2 ] m  d~-2~2 + ( [ u n ( ~  d2f 1) ] t x -  2 d r - 1  ) ~ - ~ - 0  (B. 3-69) 

It should be kept in mind that the purpose of introducing the similarity variable 
is to reduce the order of the partial differential equation by one. Therefore, the 
coefficients of d2f/drI 2 and df/drl in Eq. (B.3-69) must depend only on 7. This 
can be achieved if 

tx -2 ~ tmx n (B.3-70) 

which implies that 
n= - 2 m  

If n - 1, then m - - 1 / 2  and the similarity variable defined by Eq. 
becomes 

X 

(B.3-71) 

(B.3-65) 

(B.3-72) 

Note that x/v/t has the units of m/s  1/2. Since the kinematic viscosity, u, has 
the units of m2/s, 7/becomes dimensionless if ~ = 1/x/~. It is also convenient to 
introduce a factor 2 in the denominator so that the similarity variable takes the 
form 

X 

= 2 ~ (8.3-73) 

Hence, Eq. (B.3-69) becomes 

d2f +2rldf 
dr/2 ~ -- 0 (B.3-74) 

The boundary conditions associated with Eq. (B.3-74) are 

at r /=  0 f = 1 (B.3-75) 

at r /=  cr f = 0 (B.3-76) 

The integrating factor for Eq. (B.3-74) is exp(r/2). Multiplication of Eq. (B.3-74) 
by the integrating factor yields 2 

dr I en2 - -  ~ = 0 (B.3-77) 

which implies that 

df = C1 e -v2 (8.3-78) 
d~ 

2The advantage of including the term 2 in the denominator of the similarity variable can be 
seen here. Without it, the result would have been 

d (e~2/2 df 
=0  
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Integration of Eq. (B.3-78) gives 

f - C1 e -~2 du + 62 (B.3-79) 

where u is a dummy variable of integration. Application of the boundary condition 
defined by Eq. (B.3-75) gives C2 - 1. On the other hand, the use of the boundary 
condition defined by Eq. (B.3-76) gives 

1 2 
C1 = - o~ = (B.3-80) 

f0 du 

Therefore, the solution becomes 

2f0  f = 1 - - ~  e -~2 du = 1 -  erf(~) (B.3-81) 

where erf(x) is the error function defined by 

2 jr0 x u 2 erf(x)-- ~ e- du (B.3-82) 

Finally, the velocity distribution as a function of t and x is given by 

-~ -- 1 - e r f  (B.3-83) 
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Appendix C 

Flux Expressions for Mass, 
Momentum, and Energy 

Table C.1 Components of the stress tensor for Newtonian fluids in rectangular 
coordinates. 

[ O v ~  2 (V �9 v)] (A) 
T ~  = -- # 2 0 X  3 

Ovy 2 (V �9 v)] (B) 
7"yy - - tt 2 0 y  3 

[0.~ 2(V.v)] (c) 
T:,z -- -- # 2 0 z  3 

(D) 

0% Ova) 
T y z = T z y --" - -  ]-t - - ~ Z  "lt- ~ (E) 

T~ ~ = "r~ = - - #  \ O X + --~Z (F) 

(V,v)-Ov~ Ovy Ov~ 

567 
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T a b l e  C . 2  

coordinates. 
Components of the stress tensor for Newtonian fluids in cylindrical 

[ Ov~ 2 (V �9 v)] (A) 
r r r - - - - t t  2 Or 3 

~ o o _ _ ~ [ 2 ( ~ o ~ o  ~ )  2 ] -O-g + - - (v �9 ~) - r 
(B) 

Ov~ 2 ] 
Tz~ -- -- # 2 0 z  3(V'V)  (C) 

[ oN(~) l a i r  1 
Tro = r o ~ - - t ~  r ~ + -  

r o o j  
(D) 

(Ovo l Ov~'~ 
TOz = TzO -- -- # -~Z + - 

r 0 0 ]  
(E) 

~0~ Ova) (F) 
10vo  Ov~ ( V . v ) =  1 0 ( r v ~ ) + -  + (G) 7 ~  ~ -b-O- o~ 
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Table C.3 
coordinates. 

Components of the stress tensor for Newtonian fluids in spherical 

Ov~ 2 ] 
rrr = - # 2 Or 3 ( V ' v )  (A) 

] roo = - ~  2 ~ + --r - 5 ( V  " v )  

r r 1 6 2  1 Ovr 
r sin 0 0r 

(B) 

v ~ v o c o t O )  2 )] 
- + - ( v  �9 v ( c )  
r r 

[ 0 r rlOV~]oOJ ~ + r~o = ro~ - ~ r - a -  

1 Ovo ] 
rsinO 0r 

[sinO 0 ( v r  ) 
ror = rr = - ~ r O0 ~ -~ 

~ ~  7 -  

1 0vr 
T c r : r ~ r  rsin0 0r 

1 (9 
r sin 0 O0 (vo sin O) -} 

1 Ovr 
rsinO 0r 

1 O (r2v~)_t 
(V �9 v) = r2 Or 

(D) 

(E) 

(F) 

(G) 
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T a b l e  C .4  Flux expressions for energy t ransport  in rectangular coordinates. 

Total  Molecular Convective 
Constraint  

Flux Flux Flux 

qx - - k ~OT None 
Ox 

ex ( p d p T ) v x  

O ( p V p T )  p V p  = constant 
q~ - - a Ox 

OT 
- ~ None qy - k Oy 

ey ( p O p T ) v y  

O ( p C p T )  p(~p = constant  
q~ = - a Oy 

q~ = - k ~OT None 
Oz 

O(pC,'p T )  p V p  = constant  
qz = - ~  Oz 

T a b l e  C.5  Flux expressions for energy t ransport  in cylindrical coordinates. 

Total Molecular Convective 
Constraint  

Flux Flux Flux 

qr - - k OT None 
Or 

e~ ( p O p T ) v ~  

O ( p C p T )  p C p  - constant  
qr - - a Or 

k O T  

q o -  r O0 

eo ( p C p T ) v o  
a O ( p C p T )  

qo = 
r O0 

None 

p C p  = constant 

qz - - k  OT  
Oz 

ez ( p C p T ) v z  

O(pC'pT)  
qz : - a  

Oz 

None 

pVp - constant 
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T a b l e  C .6  Flux expressions for energy t ranspor t  in spherical coordinates.  

Total Molecular Convective 
Constra int  

Flux Flux Flux 

OT 
q r - - k  0---7 

er (pdpT)v~ 
O(pCpT) 

qr = --OL 
Or 

None 

pCp - constant 

k OT 
qo = r O0 

eo (pOpT)vo 
0(pd r) 

q0 = - - - -  
r 00 

None 

pCg -- constant 

qr = 
k OT 

r sin 0 0r  
er (p(~pT)vr 

a O(pCpT) 
q Z  - -  " - -  

r sin 0 0r  

None 

flCp = constant 
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T a b l e  C . 7  F l u x  express ions  for mass  t r a n s p o r t  in r e c t a n g u l a r  coord ina te s .  

T o t a l  Molecu la r  Convec t ive  
C o n s t r a i n t  

F l u x  F l u x  F l u x  

O~ A None  jA. = - -  P : D A B  0----~ 

)/VA~ PA Vx 
OPA 

jA~ = -- ~DAB OX fl = c o n s t a n t  

OWA 
None  jA~, -- -- P ~ A B  Oy 

WAy PAW 
OPA 

jAy --- - -  ~ A B  (~y  p = c o n s t a n t  

OWA None  
jAz = -- P "DAB 02; 

~VA. PA Vz 
OPA 

JAz -- -- ~)AB OZ p -- constant 

OXA N o n e  j ,  - -  
A~ --C~)AB OX 

NA~ CAV~ 
OCA 

J* - ~ ) A B  - -  Ax -- aX c = c o n s t a n t  

NAu 

OXA 
J* = Au -- C :DAB Oy 

J~4 u -~ - ~) A B 
OCA 

Oy 

CAV; 

None  

c -- constant 

N A  ~. 

~XA 
J~ =--C~AB Oz 

~CA 
J~ = --:PAR 

Oz 

CA'O z 

None  

c - -  c o n s t a n t  
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Table  C.8 Flux expressions for mass transport  in cylindrical coordinates. 

Total Molecular Convective 
Constraint 

Flux Flux Flux 

jA~ --  -- fl T)AB 
(~03A None 

Or 
~ ) A r  P A v r  

(OP A 
jA~ --  -- ~)AB Or p --  constant 

WA~ 

JAe 
P ~)AB (~03A None 

r O0 
pAVe 

T)AB OpA 
JAo -- p -  constant 

r 00 

~4;Az 

(%3A 
j A z  --  -- P :DAB OZ 

pAVz 

N o n e  

OPA 
JAz -- -- ~)AB Oz p --  constant 

NA~ 

(~X A None J* ~_ A~ -- c ~)AB Or 

~CA 
J* = -- ~DAB 

A~ Or 

CAV r 

c = c o n s t a n t  

NAo  

J ~ 9  --- 
C ~:)AB OXA None 

r O0 
CAV~ 

~)AB OCA 
J~0  = r 0 0  c -  c o n s t a n t  

NAz 

j .  _ C~X A None 
Az -- C ~)AB OZ 

CAV z 
~CA 

J *  --  - ~DAB C --  constant  Az 0z 
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T a b l e  C.9 F l u x  express ions  for m a s s  t r a n s p o r t  in  spher ica l  coo rd ina t e s .  

Total Molecular Convective 
Constraint 

Flux Flux Flux 

O~d A N o n e  
jA~ -- -- P DAB 07" 

)41A~ PA Vr 
OPA 

jA~ =- -DAB Or p -- constant 

JAo -- 
p DAB OWA N o n e  

r O0 
~Ao PAVO 

DAB Op A 
JAo - -  p = c o n s t a n t  

r 00 

W A  s 

fl DAB O~dA N o n e  
JA4" = r sin 0 0 r  

PAVe 
DAB OPA 

JAm = - -  p - -  c o n s t a n t  
r sin 0 0 r  

NAt  

OXA None  
J~4'~----Cl~)AB Or 

j ,  ~DA OCA 
A r  - - m  B Or 

CAV~ 

c -- constant 

NAo 

J ~ o  ~ "  
C ~DAB OXA 

r O0 
CAV~ 

None 

~)AB OaA J* -- Ao r 0 0  c -  c o n s t a n t  

NA~ 

a'DAB OXA 
* None  

JAz = r sin 0 0 r  

cav$ 
~)AB OCA 

J~l~ z ~ - . -  r sin 0 0 r  c c o n s t a n t  



Appendix D 

Physical Properties 

This appendix contains physical properties of some frequently encountered mate- 
rims in the transport of momentum, energy and mass. The reader should refer to 
either Perry's Chemical Engineers' Handbook (1997) or CRC Handbook of Chem- 
istry and Physics (2001) for a more extensive list of physical properties. 

Table D.1 contains viscosities of gases and liquids, as taken from Reid et al. 
(1977). Table D.2 contains thermal conductivities of gases, liquids and solids. 
While gas and liquid thermal conductivities are compiled from Reid et al. (1977), 
solid thermal conductivity values are taken from Perry's Chemical Engineers' Hand- 
book (1997). The values of the diffusion coefficients given in Table D.3 are com- 
piled from Reid et al. (1977), Perry's Chemical Engineers' Handbook (1997) and 
Geankoplis (1972). 

Table D.4 contains the physical properties of dry air at standard atmospheric 
pressure. The values are taken from Kays and Crawford (1980) who obtained the 
data from the three volumes of Touloukian et al. (1970). The physical properties 
of saturated liquid water, given in Table D.5, are taken from Incropera and DeWitt 
(1996) who adapted the data from Liley (1984). 

A widely used vapor pressure correlation over limited temperature ranges is the 
Anto ine  equation expressed in the form 

In psat  __ A 
B 

T + C  

where psat  is in mmHg and T is in degrees Kelvin. The Antoine constants A, B 
and C, given in Table D.6 for various substances, are taken from Reid et al. (1977). 
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Table  D.1 Viscosities of various substances. 

Substance T tt x 10 4 
K kg/m.  s 

Gases  

Ammonia 
273 0.9 

373 1.31 

303 1.51 
Carbon dioxide 

373.5 1.81 

Ethanol 
383 1.11 

423 1.23 

313 1.35 
Sulfur dioxide 

373 1.63 

Liquids  

Benzene 

Carbon tetrachloride 

Ethanol 

313 4.92 

353 3.18 

303 8.56 

343 5.34 

313 8.26 

348 4.65 
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Table D.2 Thermal conductivities of various substances. 

T k 
Substance K W/ m .  K 

Gases 

273 0.0221 
Ammonia 373 0.0320 

300 0.0167 
Carbon dioxide 

473 0.O283 

Ethanol 
293 0.0150 

375 0.0222 

Sulfur dioxide 273 0.0083 

Liquids 

Benzene 
293 0.148 

323 0.137 

Carbon tetrachloride 293 0.103 

293 0.165 
Ethanol 

313 0.152 

Solids 

Aluminum 300 273 

Brick 300 0.72 

Copper 300 398 

Glass Fiber 300 0.036 

Steel 300 45 
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T a b l e  D.3  Experimental values of binary diffusion coefficients at 101.325 kPa. 

T "DAB 
Substance 

K m 2 / s  

G a s e s  

Ai r -  CO2 317.2 1.77 • 10 -5 

Ai r -  Ethanol 313 1.45 • 10 - 5  

Ai r -  Naphthalene 300 0.62 • 10 - 5  

A i r -  H20 313 2.88 • 10 - 5  

H2-  Acetone 296 4.24 • 10-5 

N2 - SO2 263 1.04 • 10-5 

L iqu ids  

NH3-  H20 288 1.77 x 10 - 9  

Benzoic ac id-  H20 298 1.21 • 10 - 9  

CO2-  H20 298 1.92 x 10 -9  

Ethano l -  H20 283 0.84 x 10-9 

Sol ids  

B i -  Pb 293 1.1 x 10-20 

H2 - Nickel 358 1.16 x 10-12 

0 2 -  Vulc. Rubber 298 0.21 x 10 -9  
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Table D.4 Properties of air at P -  101.325 kPa. 

T p # x 10 6 v x 10 6 
K k g / m  3 kg/m. s m2/s kJ /kg.  K 

k • 103 
W / m . K  

Pr 

100 3.5985 7.060 1.962 1.028 9.220 0.787 
150 2.3673 10.38 4.385 1.011 13.75 0.763 
200 1.7690 13.36 7.552 1.006 18.10 0.743 
250 1.4119 16.06 11.37 1.003 22.26 0.724 
263 1.3421 16.70 12.44 1.003 23.28 0.720 
273 1.2930 17.20 13.30 1.004 24.07 0.717 
275 1.2836 17.30 13.48 1.004 24.26 0.716 
280 1.2607 17.54 13.92 1.004 24.63 0.715 
283 1.2473 17.69 14.18 1.004 24.86 0.714 
285 1.2385 17.79 14.36 1.004 25.00 0.714 
288 1.2256 17.93 14.63 1.004 25.22 0.714 
290 1.2172 18.03 14.81 1.004 25.37 0.714 
293 1.2047 18.17 15.08 1.004 25.63 0.712 
295 1.1966 18.27 15.27 1.005 25.74 0.713 
298 1.1845 18.41 15.54 1.005 25.96 0.712 
300 1.1766 18.53 15.75 1.005 26.14 0.711 
303 1.1650 18.64 16.00 1.005 26.37 0.710 
305 1.1573 18.74 16.19 1.005 26.48 0.711 
308 1.1460 18.88 16.47 1.005 26.70 0.711 
310 1.1386 18.97 16.66 1.005 26.85 0.710 
313 1.1277 19.11 16.95 1.005 27.09 0.709 
315 1.1206 19.20 17.14 1.006 27.22 0.709 
320 1.1031 19.43 17.62 1.006 27.58 0.709 
323 1.0928 19.57 17.91 1.006 27.80 0.708 
325 1.0861 19.66 18.10 1.006 27.95 0.708 
330 1.0696 19.89 18.59 1.006 28.32 0.707 
333 1.0600 20.02 18.89 1.007 28.51 0.707 
343 1.0291 20.47 19.89 1.008 29.21 0.706 
350 1.0085 20.81 20.63 1.008 29.70 0.706 
353 1.0000 20.91 20.91 1.008 29.89 0.705 
363 0.9724 21.34 21.95 1.009 30.58 0.704 
373 0.9463 21.77 23.01 1.010 31.26 0.703 
400 0.8825 22.94 26.00 1.013 33.05 0.703 
450 0.7844 24.93 31.78 1.020 36.33 0.700 
500 0.7060 26.82 37.99 1.029 39.51 0.699 
550 0.6418 28.60 44.56 1.039 42.60 0.698 
600 0.5883 30.30 51.50 1.051 45.60 0.699 
650 0.5431 31.93 58.80 1.063 48.40 0.701 
700 0.5043 33.49 66.41 1.075 51.30 0.702 
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Table D.5 Properties of saturated liquid water. 

T psat l l x103  ~ Cp # x 1 0 6  kx103  Pr 

273 0.00611 1.000 2502 4.217 1750 569 
275 0.00697 1.000 2497 4.211 1652 574 
280 0.00990 1.000 2485 4.198 1422 582 
285 0.01387 1.000 2473 4.189 1225 590 
288 0.01703 1.001 2466 4.186 1131 595 
290 0.01917 1.001 2461 4.184 1080 598 
293 0.02336 1.001 2454 4.182 1001 603 
295 0.02617 1.002 2449 4.181 959 606 
298 0.03165 1.003 2442 4.180 892 610 
300 0.03531 1.003 2438 4.179 855 613 
303 0.04240 1.004 2430 4.178 800 618 
305 0.04712 1.005 2426 4.178 769 620 
308 0.05620 1.006 2418 4.178 721 625 
310 0.06221 1.007 2414 4.178 695 628 
313 0.07373 1.008 2407 4.179 654 632 
315 0.08132 1.009 2402 4.179 631 634 
320 0.1053 1.011 2390 4.180 577 640 
325 0.1351 1.013 2378 4.182 528 645 
330 0.1719 1.016 2366 4.184 489 650 
335 0.2167 1.018 2354 4.186 453 656 
340 0.2713 1.021 2342 4.188 420 660 
345 0.3372 1.024 2329 4.191 389 664 
350 0.4163 1.027 2317 4.195 365 668 
355 0.5100 1.030 2304 4.199 343 671 
360 0.6209 1.034 2291 4.203 324 674 
365 0.7514 1.038 2278 4.209 306 677 
370 0.9040 1.041 2265 4.214 289 679 
373 1.0133 1.044 2257 4.217 279 680 
375 1.0815 1.045 2252 4.220 274 681 
380 1.2869 1.049 2239 4.226 260 683 
385 1.5233 1.053 2225 4.232 248 685 
390 1.794 1.058 2212 4.239 237 686 
400 2.455 1.067 2183 4.256 217 688 

12.99 
12.22 
10.26 
8.70 
7.95 
7.56 
6.94 
6.62 
6.11 
5.83 
5.41 
5.20 
4.82 
4.62 
4.32 
4.16 
3.77 
3.42 
3.15 
2.88 
2.66 
2.45 
2.29 
2.14 
2.02 
1.91 
1.80 
1.76 
1.70 
1.61 
1.53 
1.47 
1.34 

T -  K; psat= bar; V = mU/kg; A -  kJ/kg; C p -  kJ/kg.K; 
# -  kg/m.s;  k -  W / m . K  



Table D.6 Antoine equation constants. 

Substance Range (K) A B C 

Acetone 241 - 350 16.6513 2940.46 - 35.93 
Benzene 2 8 0 -  377 15.9008 2788.51 - 52.36 
Benzoic acid 4 0 5 -  560 17.1634 4190.70 - 125.2 
Chloroform 260 - 370 15.9732 2696.79 - 46.16 
Ethanol 2 7 0 -  369 18.9119 3803.98 -41.68 
Methanol 2 5 7 -  364 18.5875 3626.55 -34.29 
Naphthalene 3 6 0 -  525 16.1426 3992.01 -71.29 
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Appendix  E 

Constants  and 
Convers ion  Factors 

P H Y S I C A L  C O N S T A N T S  

Gas  c o n s t a n t  (T~) 

Acce le ra t ion  of g rav i ty  (g) 

S t e f a n - B o l t z m a n n  cos t an t  (cr) 

= 82.05 cm 3. a t m / m o l .  K 

= 0.08205 m a. a t m / k m o l .  K 
= 1.987 c a l / t o o l .  K 

= 8.314 J / t o o l .  K 
= 8.314 x 1 0 -  3 kPa .  m 3 / t o o l .  K 

= 8.314 x 1 0 -  5 bar .  m 3 / tool. K 
= 8.314 x 1 0 -  2 bar .  m 3 / kmol .  K 
= 8.314 x 10 - 6  M P a .  m 3 / t o o l .  K 

= 9 .8067  m / s  2 

= 32.1740 f t / s  2 

= 5.67051 x 10 - s  W / m  2. K 4 

= 0.1713 x 1 0 -  s B t u / h .  f t2 .~  4 
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C O N V E R S I O N  F A C T O R S  

Densi ty  

Diffusivity 
(Kinemat ic ,  Mass, Thermal )  

Energy, Heat ,  Work 

Heat  capaci ty  

Force 

Heat  flux 

Heat  t ransfer  coefficient 

Length  

Mass 

Mass flow ra te  

Mass flux 

Mass t ransfer  coefficient 

Power 

Pressure  

T e m p e r a t u r e  

1 k g / m  ~ = 10- 3 g / c m  3 = 10-  3 k g / L  

1 k g / m  3 - 0.06243 lb / i f3  

1 m 2 / s  = 104 c m 2 / s  

1 m 2 / s  = 10.7639 f t 2 / s  - 3.875 x 104 f t 2 / h  

1J  = 1 W . s =  1 N . m  = 10-3  kJ  

1 cal = 4.184 J 
1 kJ  - 2.7778 x 10 - 4  kW. h = 0.94783 B tu  

1 k J / k g .  K = 0.239 c a l / g .  K 
1 k J / k g .  K - 0.239 B t u / l b . ~  

1 N - 1 kg. m / s  2 - 105 g. c m / s  2 (dyne) 

1 N - 0.2248 lbf - 7.23275 lb. f t / s  2 (poundals)  

l W / m  2 -  1 J / s . m  2 

1 W / m  2 = 0.31709 B t u / h .  ft 2 

l W / m 2 .  K = 1 J / s .  m2. K 

1 W / m  2. K - 2.39 x 10- 5 ca l / s ,  cm 2. K 

1 W / m  2. K = 0 . 1 7 6 1 B t u / h .  f t2.~ 

1 m = 100 cm - 106 # m  

1 m = 39.370 in - 3.2808 ft 

1 kg - 1000g 
1 kg = 2.2046 lb 

1 k g / s  = 2.2046 l b / s  = 7936.6 l b / h  

1 k g / s .  m 2 - 0.2048 l b / s .  ft 2 - 737.3 l b / h .  ft 2 

1 m / s  - 3.2808 f t / s  

l W  = 1 J / s =  10-3  k W  

1 kW = 3412.2 B t u / h  - 1.341 hp 

1 Pa  = 1 N / m  2 
1 kPa  - 103 Pa  = 10-  3 M P a  

1 a t m -  101.325 k P a -  1.01325bar = 760 m m H g  
1 a t m  - 14.696 l b f / i n  2 

1 K -  1 . 8 ~  

T ( ~  = 1.8 T ( ~  + 32 



T h e r m a l  Conduct iv i ty  

Velocity 

Viscosity 

Volume 

Volumetr ic  flow ra te  
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l W / m . K  = 1 J / s . m . K  = 2.39 x 10 -3  c a l / s ,  cm. K 
1 W / m .  K = 0.5778 B t u / h .  ft. ~  

I m / s  = 3.60 k m / h  
1 m / s  = 3.2808 f t / s  - 2.237 m i / h  

1 k g / m .  s = 1 Pa. s 
1 P (poise) = I g / c m .  s 
l k g / m . s  = 10 P - -  103 cP 
1 P (poise) - 241.9 l b / f t ,  h 

1 m 3 -- 1000 L 

1 m ~ - 6.1022 • 104 in 3 - 35.313 ft 3 - 264.17 gal 

1 m 3 / s  = 1000 L / s  
1 m 3 / s  - 35.313 f t 3 / s  = 1.27127 • 105 f t 3 / h  



Index  

Analogy 
between diffusivities, 25 
between transfer coefficients, 54 
ChiltomColburn analogy, 57 
Reynolds analogy, 56 

Annulus 
axial laminar flow, 337 
flow with inner cylinder moving 

axially, 241 
Antoine equation, 575 
Archimedes number, 74 
Area averaging 

diffusion and reaction in catalyst, 
297 

fin, 278 
forced convection heat transfer, 

362 
forced convection mass transfer, 

386 
unsteady flow in tube, 479 

Arrhenius rate constant, definition, 146 
Average concentration 

area, 297 
bulk or mixing-cup, 66 
film, 66 

Average temperature 
Area, 278 
bulk or mixing-cup, 66 
film, 66 

Average velocity 
between parallel plates, 329 
in annular Couette flow, 243 
in annulus, 339 
in falling film, 333 
in plane Couette flow, 241 

in tube flow, 336 

Biot number (heat transfer), 184 
Biot number (mass transfer), 184 
Brinkman number, 373 
Bulk concentration, 66 
Bulk temperature, 66 

Chemical reaction 
autocatalytic, 146 
Effectiveness factor for, 300 
heterogeneous, 295 
homogeneous, 295 

Chilton-Colburn analogy, 57 
Circular tube, s e e  Tube 
Coefficient of volume expansion, 158 
Composite walls, heat conduction in, 

252 
Conduction, s e e  Heat conduction 
Conductivity, thermal, s e e  Thermal 

conductivity 
Conservation of chemical species 

steady-state, 150 
unsteady-state, 185 

Conservation of energy 
steady-state, 156 
unsteady-state, 198 

Conservation of mass 
steady-state, 152 
unsteady-state, 186 

Conservation of momentum, 194 
Constitutive equation, 2 
Conversion factors, 584 
Couette flow 

between parallel plates, 238 
heat transfer, 283 

586 
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in concentric annulus, 241 
unsteady-state, 429 
viscous heating, 372 

Critical insulation thickness 
cylinder, 267 
sphere, 274 

Cylindrical coordinates, 491 

Damk6hler number, 299 
Determinants, 525 

Cramer's rule, 529 
properties, 526 

Differential equations, ordinary 
Bernoulli equation, 536 
Bessel's equation, 539 
exact equation, 532 
homogeneous equation, 534 
linear equation, 535 
numerical solution, 544 
second-order, 537 
separable equation, 532 

Differential equations, partial 
classification, 552 
solution by separation of variables, 

559 
solution by similarity analysis, 563 

Differentiation of experimental data, 
495 

Douglass-Avakian method, 496 
Whitaker-Pigford method, 496 

Diffusion 
equimolar counterdiffusion, 285 
in hollow cylinder, 291 
in hollow sphere, 293 
in slab, 286 
into falling film from gas phase, 

398 
through stagnant gas, 302 
through stagnant liquid, 311 
unsteady-state, 458 
with heterogeneous reaction, 295, 

315 
with homogeneous reaction, 377, 

381 

Diffusion coefficient 
definition, 21 
of various substances, 578 

Double pipe heat exchanger, 418 
Drag coefficient, s e e  Friction factor 
Drag force 

between parallel plates, 329 
definition, 42 
in annular Couette flow, 243 
in annulus, 339 
in tube flow, 337 

Effectiveness factor, s e e  Chemical re- 
action 

Electrical analogy 
diffusion, 289 
heat conduction, 250, 262, 272 

Energy balance, s e e  Conservation of 
energy 

Energy equation 
steady-state, 158 

Enthalpy, 158 
Equilibrium 

definition, 5 
thermal, 289 

Error function, 37 
Evaporation of droplet, 308 
Evaporative cooling, 164 
Extent of reaction 

intensive, 142 
molar, 140 

Falling film 
diffusion into from gas phase, 398 
laminar flow, 330 

Fanning friction factor, s e e  Friction 
factor 

Fick's first law, 20 
Film concentration, 66 
Film temperature, 66 
Fin 

efficiency, 281 
heat conduction, 276 

Flux 
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convective, 26 
definition, 5 
interphase, 54 
molecular, 25 
of energy, 570 
of mass, 572 
of momentum, 567 

Forced convection heat transfer, 360 
constant wall heat flux, 365 
constant wall temperature, 363 

Forced convection mass transfer, 384 
constant wall concentration, 387 
constant wall mass flux, 389 

Fourier number, 438 
Fourier's law, 18 
Friction factor 

definition, 42 
for flat plate, 69 
for flow across a cylinder, 87 
for packed beds, 114 
for sphere, 75 
for tube, 95 

Fully developed concentration profile, 
390 

Gamma function, 30 
Gas absorption into droplet 

with chemical reaction, 485 
without reaction, 464 

Heat conduction 
in cooling fin, 276 
in hollow cylinder with genera- 

tion, 347 
in hollow cylinder without gen- 

eration, 260 
in hollow sphere with generation, 

354 
in hollow sphere without genera- 

tion, 269 
in slab with generation, 342 
in slab without generation, 245 
in solid cylinder with generation, 

351 

in solid sphere with generation, 
358 

through composite walls, 252 
unsteady-state with generation, 

48O 
unsteady-state without generation, 

436, 446, 450 
Heat transfer coefficient 

definition, 46 
for flat plate, 69 
for flow across a cylinder, 89 
for packed beds, 117 
for sphere, 82 
for tube, 100 
overall, 265 

Heat transfer correlations, s e e  Heat 
transfer coefficient 

Heterogeneous reaction, s e e  Chemi- 
cal reaction 

Homogeneous reaction, s e e  Chemical 
reaction 

Hydraulic equivalent diameter, 110 

Integration, 512 
Gauss-Hermite quadrature, 522 
Gauss-Laguerre quadrature, 520 
Gauss-Legendre quadrature, 518 
Simpson's rule, 516 
trapezoidal rule, 515 

j-factors, 57 

Law of combining proportions, 140 
Leibnitz formula for differentiating an 

integral, 495 
Lewis number, 26 
Log-mean concentration difference, 108 
Log-mean temperature difference, 102 

Mass average velocity, 27, 302 
Mass balance, s e e  Conservation of mass 
Mass transfer coefficient 

definition, 50 
for flat plate, 69 
for flow across a cylinder, 92 
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for packed beds, 118 
for sphere, 84 
for tube, 107 

Mass Transfer correlations, s e e  Mass 
transfer coefficient 

Matrices 
algebraic operations, 523 
inverse, 527 
singular, 527 
skew-symmetric, 527 
symmetric, 527 

Mean value theorem, 493 
Method of Stodola and Vianello, 557 
Modified pressure, 135 
Molar average velocity, 27, 312 
Momentum diffusivity, s e e  Viscosity, 

kinematic 
Momentum generation, 133 

Newton's law 
of cooling, 46 
of viscosity, 15 

Newton's second law, 133 
Newton-Raphson method, 510 
Newtonian fluid, 16 
Nusselt number (heat transfer), 55 

thermally developed flow, 368 
Nusselt number (mass transfer), s e e  

Sherwood number 

Overall heat transfer coefficient, s e e  

Heat transfer coefficient 

Parallel plates 
Couette flow, 238 
laminar flow, 326 
relation to annulus, 244, 340 

Partition coefficient, 289 
Peclet number, 29 
Physical constants, 583 
Plug flow reactor, 406 
Prandtl number, 25 
Pseudo-steady-state, 182 

Quasi-steady-state, s e e  Pseudo-steady- 
state 

Rate equation, 1 
Rate of reaction 

definition, 144 
Regression and correlation, 500 

correlation coefficient, 505 
method of least squares, 501 

Reynolds analogy, 56 
Reynolds number 

for flat plate, 45 
for sphere, 74 
physical significance, 341 

Root finding, 506 
cubic equation, 507 
Newton-Raphson method, 510 
quadratic equation, 506 
secant method, 510 

Runge-Kutta method, 544 

Schmidt number, 26 
Secant method, 510 
Sherwood number, 55 

fully developed concentration pro- 
file, 392 

Simultaneous heat and mass transfer, 
161 

Spherical coordinates, 491 
Steady-state, definition, 3 
Stefan diffusion tube, 304 
Sturm-Liouville problem, 556 
Superficial velocity, 114 

Tank reactor 
steady-state energy balance, 168 
unsteady-state energy balance, 208 

Thermal conductivity 
definition, 19 
of various substances, 577 

Thermal diffusivity, 25 
Thermally developed flow, 366 
Thiele modulus, 299 
Tube 

laminar flow, 334 
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laminar unsteady flow, 473 

Uniform, definition, 5 

Viscosity 
definition, 16 
kinematic, 25 
of various substances, 576 

Viscous heating, 372 
Volume average velocity, 27, 313 
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