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been increased to help students to get a better grasp of the basic concepts. Many new prob-
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and their role in attributing a physical significance to dimensionless numbers are introduced
in Chapter 3.
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PREFACE TO THE FIRST EDITION

During their undergraduate education, students take various courses on fluid flow, heat trans-
fer, mass transfer, chemical reaction engineering, and thermodynamics. Most of them, how-
ever, are unable to understand the links between the concepts covered in these courses and
have difficulty in formulating equations, even of the simplest nature. This is a typical example
of not seeing the forest for the trees.

The pathway from the real problem to the mathematical problem has two stages: perception
and formulation. The difficulties encountered at both of these stages can be easily resolved if
students recognize the forest first. Examination of the trees one by one comes at a later stage.

In science and engineering, the forest is represented by the basic concepts, i.e., conserva-
tion of chemical species, conservation of mass, conservation of momentum, and conservation
of energy. For each one of these conserved quantities, the following inventory rate equation
can be written to describe the transformation of the particular conserved quantity ¢:

Rate of Rate of Rate of ¢ \ Rate of ¢
( @ in ) B ( @ out ) + ( generation) - <accumulati0n>
in which the term ¢ may stand for chemical species, mass, momentum, or energy.

My main purpose in writing this textbook is to show students how to translate the inven-
tory rate equation into mathematical terms at both the macroscopic and microscopic levels.
It is not my intention to exploit various numerical techniques to solve the governing equa-
tions in momentum, energy, and mass transport. The emphasis is on obtaining the equation
representing a physical phenomenon and its interpretation.

I have been using the draft chapters of this text in my third year Mathematical Modelling
in Chemical Engineering course for the last two years. It is intended as an undergraduate
textbook to be used in an (Introduction to) Transport Phenomena course in the junior year.
This book can also be used in unit operations courses in conjunction with standard textbooks.
Although it is written for students majoring in chemical engineering, it can also be used as a
reference or supplementary text in environmental, mechanical, petroleum, and civil engineer-
ing courses.

An overview of the manuscript is shown schematically in the figure below.

Chapter 1 covers the basic concepts and their characteristics. The terms appearing in the
inventory rate equation are discussed qualitatively. Mathematical formulations of the “rate of
input” and “rate of output” terms are explained in Chapters 2, 3, and 4. Chapter 2 indicates
that the total flux of any quantity is the sum of its molecular and convective fluxes. Chapter 3
deals with the formulation of the inlet and outlet terms when the transfer of matter takes place
through the boundaries of the system by making use of the transfer coefficients, i.e., friction
factor, heat transfer coefficient, and mass transfer coefficient. The correlations available in the

literature to evaluate these transfer coefficients are given in Chapter 4. Chapter 5 briefly talks
about the rate of generation in transport of mass, momentum, and energy.

Xix
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Preface XXi

Traditionally, the development of the microscopic balances precedes that of the macro-
scopic balances. However, it is my experience that students grasp the ideas better if the reverse
pattern is followed. Chapters 6 and 7 deal with the application of the inventory rate equations
at the macroscopic level.

The last four chapters cover the inventory rate equations at the microscopic level. Once the
velocity, temperature, or concentration distributions are determined, the resulting equations
are integrated over the volume of the system to obtain the macroscopic equations covered in
Chapters 6 and 7.

I had the privilege of having Professor Max S. Willis of the University of Akron as my
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Gii¢cbilmez, and Ozge Oguzer, for proofreading and checking the numerical calculations.

Finally, without the continuous understanding, encouragement and tolerance shown by my
wife Ayse and our children Cigdem and Burcu, this book could not have been completed and
I am particularly grateful to them.
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1

INTRODUCTION

1.1 BASIC CONCEPTS

A concept is a unit of thought. Any part of experience that we can organize into an idea is
a concept. For example, man’s concept of cancer is changing all the time as new medical
information is gained as a result of experiments.

Concepts or ideas that are the basis of science and engineering are chemical species, mass,
momentum, and energy. These are all conserved quantities. A conserved quantity is one that
can be transformed. However, transformation does not alter the total amount of the quantity.
For example, money can be transferred from a checking account to a savings account but the
transfer does not affect the total assets.

For any quantity that is conserved, an inventory rate equation can be written to describe
the transformation of the conserved quantity. Inventory of the conserved quantity is based on
a specified unit of time, which is reflected in the term rate. In words, this rate equation for
any conserved quantity ¢ takes the form

Rateof | ([ Rateof n Rate of _ Rate of (11-1)
input of ¢ output of ¢ generation of ¢ / = \ accumulation of ¢ )

Basic concepts upon which the technique for solving engineering problems is based are
the rate equations for the

e Conservation of chemical species,
e Conservation of mass,

e Conservation of momentum,

e Conservation of energy.

The entropy inequality is also a basic concept but it only indicates the feasibility of a
process and, as such, is not expressed as an inventory rate equation.

A rate equation based on the conservation of the value of money can also be considered as
a basic concept, i.e., economics. Economics, however, is outside the scope of this text.

1.1.1 Characteristics of the Basic Concepts

The basic concepts have certain characteristics that are always taken for granted but seldom
stated explicitly. The basic concepts are

e Independent of the level of application,
e Independent of the coordinate system to which they are applied,
e Independent of the substance to which they are applied.

1



2 1. Introduction

Table 1.1. Levels of application of the basic concepts

Level Theory Experiment

Microscopic  Equations of Change  Constitutive Equations
Macroscopic  Design Equations Process Correlations

The basic concepts are applied at both the microscopic and the macroscopic levels as shown
in Table 1.1.

At the microscopic level, the basic concepts appear as partial differential equations in three
independent space variables and time. Basic concepts at the microscopic level are called the
equations of change, i.e., conservation of chemical species, mass, momentum, and energy.

Any mathematical description of the response of a material to spatial gradients is called a
constitutive equation. Just as the reaction of different people to the same joke may vary, the
response of materials to the variable condition in a process differs. Constitutive equations are
postulated and cannot be derived from the fundamental principles'. The coefficients appearing
in the constitutive equations are obtained from experiments.

Integration of the equations of change over an arbitrary engineering volume exchanging
mass and energy with the surroundings gives the basic concepts at the macroscopic level.
The resulting equations appear as ordinary differential equations, with time as the only inde-
pendent variable. The basic concepts at this level are called the design equations or macro-
scopic balances. For example, when the microscopic level mechanical energy balance is in-
tegrated over an arbitrary engineering volume, the result is the macroscopic level engineering
Bernoulli equation.

Constitutive equations, when combined with the equations of change, may or may not
comprise a determinate mathematical system. For a determinate mathematical system, i.e.,
the number of unknowns is equal to the number of independent equations, the solutions of
the equations of change together with the constitutive equations result in the velocity, tem-
perature, pressure, and concentration profiles within the system of interest. These profiles are
called theoretical (or analytical) solutions. A theoretical solution enables one to design and
operate a process without resorting to experiments or scale-up. Unfortunately, the number of
such theoretical solutions is small relative to the number of engineering problems that must
be solved.

If the required number of constitutive equations is not available, i.e., the number of un-
knowns is greater than the number of independent equations, then the mathematical descrip-
tion at the microscopic level is indeterminate. In this case, the design procedure appeals to
an experimental information called process correlation to replace the theoretical solution. All
process correlations are limited to a specific geometry, equipment configuration, boundary
conditions, and substance.

1.2 DEFINITIONS

The functional notation

p=¢(,x,y,2) (1.2-1)

IThe mathematical form of a constitutive equation is constrained by the second law of thermodynamics so as to
yield a positive entropy generation.



1.2 Definitions 3

indicates that there are three independent space variables, x, y, z, and one independent time
variable, t. The ¢ on the right side of Eq. (1.2-1) represents the functional form, and the ¢ on
the left side represents the value of the dependent variable, ¢.

1.2.1 Steady-State

The term steady-state means that at a particular location in space the dependent variable does
not change as a function of time. If the dependent variable is ¢, then

(99) =0 (1.2-2)
o )y

The partial derivative notation indicates that the dependent variable is a function of more
than one independent variable. In this particular case, the independent variables are (x, y, z)
and ¢. The specified location in space is indicated by the subscripts (x, y, z), and Eq. (1.2-2)
implies that ¢ is not a function of time, . When an ordinary derivative is used, i.e., d¢/dt =0,
then this implies that ¢ is a constant. It is important to distinguish between partial and ordinary
derivatives because the conclusions are very different.

Example 1.1 A Newtonian fluid with constant viscosity u and density p is initially at rest in
a very long horizontal pipe of length L and radius R. At ¢ = 0, a pressure gradient, |AP|/L,
is imposed on the system and the volumetric flow rate, Q, is expressed as

TR*|AP| > exp(—kzr)
= 7 13y 2
Q 8,lLL |: Z 24

n=1 Z

where 7 is the dimensionless time defined by

ut
T=——
pR?

and A; = 2.405, Xp = 5.520, A3 = 8.654, etc. Determine the volumetric flow rate under
steady conditions.

Solution

Steady-state solutions are independent of time. To eliminate time from the unsteady-state
solution, we have to let # — oo. In that case, the exponential term approaches zero and the
resulting steady-state solution is given by

TRY|AP
o TRYIAPI
8L

which is known as the Hagen-Poiseuille law.

Comment: If time appears in the exponential term, then the term must have a negative
sign to ensure that the solution does not blow as t — oo.
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Example 1.2 A cylindrical tank is initially half full with water. The water is fed into the
tank from the top and it leaves the tank from the bottom. The inlet and outlet volumetric
flow rates are different from each other. The differential equation describing the time rate of
change of water height is given by

dh
— =6-8vh
dt

where & is the height of water in meters. Calculate the height of water in the tank under
steady conditions.

Solution

Under steady conditions d//dt must be zero. Then

0=6—8Vh

or,
h=0.56 m

1.2.2 Uniform

The term uniform means that at a particular instant in time, the dependent variable is not
a function of position. This requires that all three of the partial derivatives with respect to

position be zero, i.e.,
0 0 0
(_‘/’) _ <_‘/’> _ <_<"> —0 (1.2-3)
8x v,2,t 8y X,Z,t BZ X,y,t

The variation of a physical quantity with respect to position is called gradient. Therefore,
the gradient of a quantity must be zero for a uniform condition to exist with respect to that
quantity.

1.2.3 Equilibrium

A system is in equilibrium if both steady-state and uniform conditions are met simultane-
ously. An equilibrium system does not exhibit any variation with respect to position or time.
The state of an equilibrium system is specified completely by the non-Euclidean coordinates?
(P, V,T). The response of a material under equilibrium conditions is called property corre-
lation. The ideal gas law is an example of a thermodynamic property correlation that is called
an equation of state.

1.2.4 Flux
The flux of a certain quantity is defined by

Flow of a quantity/Time  Flow rate
Flux = =

= (1.2-4)
Area Area

where area is normal to the direction of flow. The units of momentum, energy, mass, and molar
fluxes are Pa (N/m?, or kg/m-s%), W/m? (J/m?-s), kg/m?-s, and kmol/m?-s, respectively.

2A Euclidean coordinate system is one in which length can be defined. The coordinate system (P, V,T) is
non-Euclidean.
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1.3 MATHEMATICAL FORMULATION OF THE BASIC CONCEPTS

In order to obtain the mathematical description of a process, the general inventory rate equa-
tion given by Eq. (1.1-1) should be translated into mathematical terms.

1.3.1 Inlet and Outlet Terms

A quantity may enter or leave the system by two means: (i) by inlet and/or outlet streams,
(ii) by exchange of a particular quantity between the system and its surroundings through
the boundaries of the system. In either case, the rate of input and/or output of a quantity is
expressed by using the flux of that particular quantity. The flux of a quantity may be constant
or dependent on position. Thus, the rate of a quantity can be determined as

(Flux)(Area) if flux is constant

Inlet/Outlet rate = / / Flux dA  if flux is position dependent (1.3-1)
A

where A is the area perpendicular to the direction of the flux. The differential areas in cylin-
drical and spherical coordinate systems are given in Section A.1 in Appendix A.

Example 1.3 Velocity can be interpreted as the volumetric flux (m?/m?-s). Therefore, vol-
umetric flow rate can be calculated by the integration of velocity distribution over the cross-
sectional area that is perpendicular to the flow direction. Consider the flow of a very viscous
fluid in the space between two concentric spheres as shown in Figure 1.1. The velocity dis-
tribution is given by Bird et al. (2002) as

_ RIAP| 1L ,_R
”e—m[( ‘E)”( ‘7)}

Figure 1.1. Flow between concentric spheres.
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where
E(e) = ln(

Calculate the volumetric flow rate, O.

1+ cose
1 —cose

Solution

Since the velocity is in the 6-direction, the differential area that is perpendicular to the flow
direction is given by Eq. (A.1-9) in Appendix A as

dA =rsinfdrdeo (D)
Therefore, the volumetric flow rate is
2w R
Q:/ / vg rsinf dr d¢ 2
0 KR
Substitution of the velocity distribution into Eq. (2) and integration give
TR3(1 — k)3
o= IRU O\ p) 3)
6 E ()

1.3.2 Rate of Generation Term

The generation rate per unit volume is denoted by ) and it may be constant or dependent on
position. Thus, the generation rate is expressed as

(M) (Volume) if N is constant

Generation rate = / / / MdV  if N is position dependent (1.3-2)
14

where V is the volume of the system in question. It is also possible to have the depletion of
a quantity. In that case, the plus sign in front of the generation term must be replaced by the
minus sign, i.e.,

Depletion rate = — Generation rate (1.3-3)

Example 1.4 Energy generation rate per unit volume as a result of an electric current pass-
ing through a rectangular plate of cross-sectional area A and thickness L is given by

. (Tmx
NRN=N, sm(—)
L

where 9 is in W/m?>. Calculate the total energy generation rate within the plate.
Solution

Since N is dependent on position, energy generation rate is calculated by integration of N
over the volume of the plate, i.e.,

2AL N,
b4

. L (mx
Energy generation rate = AN, f sin A dx =
0
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1.3.3 Rate of Accumulation Term

The rate of accumulation of any quantity ¢ is the time rate of change of that particular quantity
within the volume of the system. Let p be the mass density and ¢ be the quantity per unit mass.
Thus,

Total quantity of ¢ = / / / ppdV (1.3-4)
v

and the rate of accumulation is given by

d
Accumulation rate = 7 / / / ppdV (1.3-5)
14

If ¢ is independent of position, then Eq. (1.3-5) simplifies to
. d
Accumulation rate = 7 (mo) (1.3-6)

where m is the total mass within the system.
The accumulation rate may be positive or negative depending on whether the quantity is
increasing or decreasing with time within the volume of the system.

1.4 SIMPLIFICATION OF THE RATE EQUATION

In this section, the general rate equation given by Eq. (1.1-1) will be simplified for two special
cases: (i) steady-state transport without generation, (ii) steady-state transport with genera-
tion.

1.4.1 Steady-State Transport Without Generation
For this case Eq. (1.1-1) reduces to

Rate of input of ¢ = Rate of output of ¢ (1.4-1)

Equation (1.4-1) can also be expressed in terms of flux as

// (Inlet flux of ) dA = // (Outlet flux of ) dA (1.4-2)
Ain Aout

For constant inlet and outlet fluxes Eq. (1.4-2) reduces to

Inlet flux \ / Inlet Outlet flux \ [ Outlet
= (1.4-3)
of ¢ area of ¢ area
If the inlet and outlet areas are equal, then Eq. (1.4-3) becomes

Inlet flux of ¢ = Outlet flux of ¢ (1.4-4)
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D (x)

—>x

Figure 1.2. Heat transfer through a solid circular cone.

It is important to note that Eq. (1.4-4) is valid as long as the areas perpendicular to the di-
rection of flow at the inlet and outlet of the system are equal to each other. The variation of the
area in between does not affect this conclusion. Equation (1.4-4) obviously is not valid for the
transfer processes taking place in the radial direction in cylindrical and spherical coordinate
systems. In this case either Eq. (1.4-2) or Eq. (1.4-3) should be used.

Example 1.5 Consider a solid cone of circular cross-section whose lateral surface is well
insulated as shown in Figure 1.2. The diameters at x =0 and x = L are 25 cm and 5 cm,
respectively. If the heat flux at x = 0 is 45 W/m? under steady conditions, determine the
heat transfer rate and the value of the heat flux at x = L.

Solution

For steady-state conditions without generation, the heat transfer rate is constant and can be
determined from Eq. (1.3-1) as

Heat transfer rate = (Heat flux),—o(Area)—q

Since the cross-sectional area of the cone is 7 D?/4, then

0.25)°
Heat transfer rate = (45) [%] =221 W

The value of the heat transfer rate is also 2.21 W at x = L. However, the heat flux does
depend on position and its value at x = L is

2.21

(Heat ﬂuX)x:L = m

= 1126 W/m?
Comment: Heat flux values are different from each other even though the heat flow rate is

constant. Therefore, it is important to specify the area upon which a given heat flux is based
when the area changes as a function of position.
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1.4.2 Steady-State Transport with Generation
For this case Eq. (1.1-1) reduces to

Rate of n Rate of _ Rate of (1.4-5)
input of ¢ generation of ¢ ]~ \ output of ¢ -

Equation (1.4-5) can also be written in the form

// (Inlet flux of ) dA + f// NdV = // (Outlet flux of ¢) dA (1.4-6)
Ain Vsys Auut

where N is the generation rate per unit volume. If the inlet and outlet fluxes together with the
generation rate are constant, then Eq. (1.4-6) reduces to

Inlet flux \ ( Inlet e System _ Outlet flux \ [ Outlet (1.4-7)

of ¢ area volume of ¢ area
Example 1.6 An exothermic chemical reaction takes place in a 20 cm thick slab and the
energy generation rate per unit volume is 1 x 10 W/m?>. The steady-state heat transfer rate
into the slab at the left-hand side, i.e., at x = 0, is 280 W. Calculate the heat transfer rate

to the surroundings from the right-hand side of the slab, i.e., at x = L. The surface area of
each face is 40 cm?.

Solution

At steady-state, there is no accumulation of energy and the use of Eq. (1.4-5) gives

(Heat transfer rate) ,_; = (Heat transfer rate),_y + 91 (Volume)

=280+ (1 x 109)(40 x 107%)(20 x 1072) = 1080 W

The values of the heat fluxes at x =0 and x = L are

280
Heat flux),_g= ———— =70 x 10> W/m?
(Heat flux),_ 10 < 10-2 X /m
1080
Heat flux),_; = ———— =270 x 10> W/m?
(Heat flux),—;, 10 102 X /m

Comment: Even though the steady-state conditions prevail, neither the heat transfer rate
nor the heat flux are constant. This is due to the generation of energy within the slab.
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PROBLEMS

1.1 One of your friends writes down the inventory rate equation for money as

Change in amount Service Dollars Checks
= (Interest) — + —

of dollars charge deposited written
Identify the terms in the above equation.

1.2 Determine whether steady- or unsteady-state conditions prevail for the following
cases:

a) The height of water in a dam during heavy rain,
b) The weight of an athlete during a marathon,
¢) The temperature of an ice cube as it melts.

1.3 What is the form of the function ¢(x, y) if 3%¢/9xdy = 0?
(Answer: ¢(x,y) = f(x) + h(y) + C, where C is a constant)

1.4 Steam at a temperature of 200 °C flows through a pipe of 5 cm inside diameter and
6 cm outside diameter. The length of the pipe is 30 m. If the steady rate of heat loss per unit
length of the pipe is 2 W /m, calculate the heat fluxes at the inner and outer surfaces of the

pipe.

(Answer: 12.7 W/m? and 10.6 W/m?)

1.5 Dust evolves at a rate of 0.3 kg/h in a foundry of dimensions 20 m x 8 m x 4 m. Ac-
cording to ILO (International Labor Organization) standards, the dust concentration should

not exceed 20 mg/m?> to protect workers’ health. Determine the volumetric flow rate of
ventilating air to meet the standards of ILO.

(Answer: 15,000 m? /h)

1.6 An incompressible Newtonian fluid flows in the z-direction in space between two par-
allel plates that are separated by a distance 2B as shown in Figure 1.3(a). The length and
the width of each plate are L and W, respectively. The velocity distribution under steady

conditions is given by
|AP|B? x\?
v, = 1—-| =
2uL B

a) For the coordinate system shown in Figure 1.3(b), show that the velocity distribution

takes the form
IAP|B2[ [ x x\?
v, = 2l =) - =
2uL B B
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1

: ——— —2B-—§
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(a)

1

2B

XLZ#

(b)

Figure 1.3. Flow between parallel plates.

b) Calculate the volumetric flow rate by using the velocity distributions given above. What
is your conclusion?

2|AP|B3W
(Answer: b) For both cases O = L)

3ul
1.7 An incompressible Newtonian fluid flows in the z-direction through a straight duct

of triangular cross-sectional area, bounded by the plane surfaces y = H, y = +/3x and
y = —/3 x. The velocity distribution under steady conditions is given by

|AP| ’ )
Uz AuLH (y )( X y )
Calculate the volumetric flow rate.
3H*|AP
Answer: O = u
180 L

1.8 For radial flow of an incompressible Newtonian fluid between two parallel circular
disks of radius R, as shown in Figure 1.4, the steady-state velocity distribution is (Bird

et al., 2002)
b2|AP| L (® 2
Ur e — — —
2ur In(R2/Ry) b

where R is the radius of the entrance hole. Determine the volumetric flow rate.

4 nb3|AP|>

(Answer: Q = 5 m
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Flow out

Flow in

Figure 1.4. Flow between circular disks.



2

MOLECULAR AND CONVECTIVE TRANSPORT

The total flux of any quantity is the sum of the molecular and convective fluxes. The fluxes
arising from potential gradients or driving forces are called molecular fluxes. Molecular fluxes
are expressed in the form of constitutive (or phenomenological) equations for momentum,
energy, and mass transport. Momentum, energy, and mass can also be transported by bulk
fluid motion or bulk flow, and the resulting flux is called convective flux. This chapter deals
with the formulation of molecular and convective fluxes in momentum, energy, and mass
transport.

2.1 MOLECULAR TRANSPORT

Substances may behave differently when subjected to the same gradients. Constitutive equa-
tions identify the characteristics of a particular substance. For example, if the gradient is
momentum, then the viscosity is defined by the constitutive equation called Newton’s law of
viscosity. If the gradient is energy, then the thermal conductivity is defined by Fourier’s law
of heat conduction. If the gradient is concentration, then the diffusion coefficient is defined
by Fick’s first law of diffusion. Viscosity, thermal conductivity, and diffusion coefficient are
called transport properties.

2.1.1 Newton’s Law of Viscosity

Consider a fluid contained between two large parallel plates of area A, separated by a very
small distance Y. The system is initially at rest but at time ¢ = O the lower plate is set in
motion in the x-direction at a constant velocity V by applying a force F in the x-direction
while the upper plate is kept stationary. The resulting velocity profiles are shown in Figure 2.1
for various times. At ¢t = 0, the velocity is zero everywhere except at the lower plate, which
has a velocity V. Then the velocity distribution starts to develop as a function of time. Finally,
at steady-state, a linear velocity distribution is obtained.

Experimental results show that the force required to maintain the motion of the lower plate
per unit area (or momentum flux) is proportional to the velocity gradient, i.e.,

F 4 (2.1-1)
- — m — -
A ~—— Y
M v Transport M
omentum property Velo?lty
flux gradient

13
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S

0 Velocity {/

Direction of
Momentum Flux

Figure 2.1. Velocity profile development in flow between parallel plates.

and the proportionality constant, u, is the viscosity. Equation (2.1-1) is a macroscopic equa-
tion. The microscopic form of this equation is given by

Tyx =—MH—— = _M)}yx (2.1-2)

which is known as Newton’s law of viscosity and any fluid obeying Eq. (2.1-2) is called a
Newtonian fluid. The term y,, is called rate of strain! or rate of deformation or shear rate.
The term 1y, is called shear stress. It contains two subscripts: x represents the direction of
force, i.e., F), and y represents the direction of the normal to the surface, i.e., Ay, on which
the force is acting. Therefore, 7y, is simply the force per unit area, i.e., Fy/Ay. It is also
possible to interpret 7y, as the flux of x-momentum in the y-direction.

Since the velocity gradient is negative, i.e., v, decreases with increasing y, a negative sign
is introduced on the right-hand side of Eq. (2.1-2) so that the stress in tension is positive.

In SI units, shear stress is expressed in N/m?(Pa) and velocity gradient in (m/s)/m. Thus,
the examination of Eq. (2.1-1) indicates that the units of viscosity in SI units are

N/m? _ Ns (kg-m/s?)-s _ kg

M:m: a‘_F_ m?2 m-s

Most viscosity data in the cgs system are usually reported in g/(cm-s), known as a poise (P),
or in centipoise (1 cP = 0.01 P), where

1Pas=10P=10° cP

Viscosity varies with temperature. While liquid viscosity decreases with increasing temper-
ature, gas viscosity increases with increasing temperature. Concentration also affects viscosity
for solutions or suspensions. Viscosity values of various substances are given in Table D.1 in
Appendix D.

Example 2.1 A Newtonian fluid with a viscosity of 10 cP is placed between two large
parallel plates. The distance between the plates is 4 mm. The lower plate is pulled in the
positive x-direction with a force of 0.5 N, while the upper plate is pulled in the negative

IStrain is defined as deformation per unit length. For example, if a spring of original length L, is stretched to a
length L, then the strainis (L — L) /L.
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x-direction with a force of 2 N. Each plate has an area of 2.5 m?. If the velocity of the lower
plate is 0.1 m/s, calculate:

a) The steady-state momentum flux,
b) The velocity of the upper plate.

F:2N<—*

Solution

Y =4mm
y
L’X + — F=05N
V; = 0.1m/s
a) The momentum flux (or force per unit area) is
F 05+2
AT s ‘
b) Let V> be the velocity of the upper plate. From Eq. (2.1-2)
Y %3 Tyx Y
Tyx dy=—npn dv, = W=V - (D
0 Vi 1%
Substitution of the values into Eq. (1) gives
14 x 1073
V=01 DG 65 )

10 x 103

The minus sign indicates that the upper plate moves in the negative x-direction. Note that
the velocity gradient is dv, /dy = —100s~!.

2.1.2 Fourier’s Law of Heat Conduction

Consider a slab of solid material of area A between two large parallel plates of a distance
Y apart. Initially the solid material is at temperature 7, throughout. Then the lower plate is
suddenly brought to a slightly higher temperature, 77, and maintained at that temperature.
The second law of thermodynamics states that heat flows spontaneously from the higher tem-
perature 77 to the lower temperature 7. As time proceeds, the temperature profile in the slab
changes, and ultimately a linear steady-state temperature is attained as shown in Figure 2.3.
Experimental measurements made at steady-state indicate that the rate of heat flow per unit
area is proportional to the temperature gradient, i.e.,
e _ 4 h-h 2.1-3)
A — Y
—~~—" Transport ~—~—"
Energy property Temperature
flux gradient
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Figure 2.3. Temperature profile development in a solid slab between two plates.

The proportionality constant, k, between the energy flux and the temperature gradient is called
thermal conductivity. In SI units, Q is in W(J/s), A in m?, dT /dx in K/m, and k in W/m-K.
The thermal conductivity of a material is, in general, a function of temperature. However,
in many engineering applications the variation is sufficiently small to be neglected. Thermal
conductivity values for various substances are given in Table D.2 in Appendix D.

The microscopic form of Eq. (2.1-3) is known as Fourier’s law of heat conduction and is
given by

gy = —k— (2.1-4)

in which the subscript y indicates the direction of the energy flux. The negative sign in
Eq. (2.1-4) indicates that heat flows in the direction of decreasing temperature.

Example 2.2 One side of a copper slab receives a net heat input at a rate of 5000 W due to
radiation. The other face is held at a temperature of 35 °C. If steady-state conditions prevail,
calculate the surface temperature of the side receiving radiant energy. The surface area of
each face is 0.05 m?, and the slab thickness is 4 cm.

Solution

5000 W 35°C
—>]

!

!

F—y

Physical Properties
For copper: k =398 W/m-K
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Analysis
System: Copper slab

Under steady conditions with no internal generation, the conservation statement for energy
reduces to

Rate of energy in = Rate of energy out = 5000 W

Since the slab area across which heat transfer takes place is constant, the heat flux through
the slab is also constant, and is given by
5000

= —100,000 W/m?
9= .05 /m

Therefore, the use of Fourier’s law of heat conduction, Eq. (2.1-4), gives

0.04 35
100,000/ dy = —398/ dT = T,=45.1°C
0 0

2.1.3 Fick’s First Law of Diffusion

Consider two large parallel plates of area A. The lower one is coated with a material, A, which
has a very low solubility in the stagnant fluid B filling the space between the plates. Suppose
that the saturation concentration of A is p4, and A undergoes a rapid chemical reaction at
the surface of the upper plate and its concentration is zero at that surface. At ¢t = 0 the lower
plate is exposed to B and, as time proceeds, the concentration profile develops as shown in
Figure 2.4. Since the solubility of A is low, an almost linear distribution is reached under
steady conditions.

Experimental measurements indicate that the mass flux of .4 is proportional to the concen-
tration gradient, i.e.,

nA PA
7 - D AB Yo (2 1 ‘5)
——
M“f‘ Transport c Y i
ass oncentration
Tt
flux of A PTOPEY gradient

where the proportionality constant, D4p, is called the binary molecular mass diffusivity (or
diffusion coefficient) of species A through B. The microscopic form of Eq. (2.1-5) is known

~

pa=10 @
o
¥ g
b
y { PA= P4, a}
* 0" Concentration N
Direction of °

Mass Flux

Figure 2.4. Concentration profile development between parallel plates.
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as Fick’s first law of diffusion and is given by

) dw
ja,=~Dasp—" 4 (2.1-6)
’ y

where ja, and w, represent the molecular mass flux of species A in the y-direction and
mass fraction of species A, respectively. If the total density, o, is constant, then the term
p(dwy/dy) can be replaced by dp4/dy and Eq. (2.1-6) becomes

Ja, =—Dap—— p = constant (2.1-7)

To measure D4 p experimentally, it is necessary to design an experiment (like the one given
above) in which the convective mass flux is almost zero.

In mass transfer calculations, it is sometimes more convenient to express concentrations
in molar units rather than in mass units. In terms of molar concentration, Fick’s first law of
diffusion is written as

N dxa
JAy = —DABCE (2.1-8)

where ij and x4 represent the molecular molar flux of species A in the y-direction and the
mole fraction of species A, respectively. If the total molar concentration, c, is constant, then
the term c(dx 4 /dy) can be replaced by dc4/dy, and Eq. (2.1-8) becomes

dc
J;"‘y =—Dyup d—yA ¢ = constant (2.1-9)

The diffusion coefficient has the dimensions of m? /s in SI units. Typical values of D4 p are
given in Appendix D. Examination of these values indicates that the diffusion coefficient of
gases has an order of magnitude of 10~ m?/s under atmospheric conditions. Assuming ideal
gas behavior, the pressure and temperature dependence of the diffusion coefficient of gases
may be estimated from the relation

T3/2

Diffusion coefficients for liquids are usually in the order of 10~ m?/s. On the other hand,
D 4p values for solids vary from 10710 to 10~14 m?/s.

Example 2.3 Air at atmospheric pressure and 95°C flows at 20 m/s over a flat plate of
naphthalene 80 cm long in the direction of flow and 60 cm wide. Experimental measure-
ments report the molar concentration of naphthalene in the air, c4, as a function of distance
x from the plate as follows:
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X CA

(cm) (mol/m?>)
0 0.117
10 0.093
20 0.076
30 0.063
40 0.051
50 0.043

Determine the molar flux of naphthalene from the plate surface under steady conditions.

Solution
Physical properties
Diffusion coefficient of naphthalene (A) in air (53) at 95°C (368 K) is

368

368 /2 S 32 5 2
D = (D — =(0.62 x 10~ — =0.84 x 10~
(DaB)zes = ( AB)300(300> ( X )(300) X m-/s

Assumptions

1. The total molar concentration, ¢, is constant.
2. Naphthalene plate is also at a temperature of 95 °C.

Analysis

The molar flux of naphthalene transferred from the plate surface to the flowing stream is

determined from
dca
=-D — 1
¥=0 AB< dx )x:O ( )

It is possible to calculate the concentration gradient on the surface of the plate by using one
of the several methods explained in Section A.5 in Appendix A.

*
Ja,

Graphical method

The plot of c4 versus x is given in Figure 2.5. The slope of the tangent to the curve at x = 0
is —0.0023 (mol/m?)/cm.

Curve fitting method

From semi-log plot of c4 versus x, shown in Figure 2.6, it appears that a straight line repre-
sents the data fairly well. The equation of this line can be determined by the method of least
squares in the form

y=mx+b @)
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where

0.12
0.10
o 5
g
“g 0.08
F slope = — 00023
0.06 [~
0.04 | | | |
0 10 20 30 40 50

x (cm)

Figure 2.5. Concentration of species A as a function of position.
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Figure 2.6. Concentration of species .4 as a function of position.

y=logca

3

To determine the values of m and b from Egs. (A.6-10) and (A.6-11) in Appendix A, the
required values are calculated as follows:

Vi Xi Xi Yi x,-2
—0.932 0 0 0
—1.032 10 —10.32 100
—1.119 20 —22.38 400
—1.201 30 —36.03 900
—1.292 40 —51.68 1600
—1.367 50 —68.35 2500

> yi =—6.943 > xi =150 > xiyi =—188.76 inz = 5500
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The values of m and b are

_ (6)(—188.76) — (150)(—6.943)

= —0.0087
(6)(5500) — (150)2
—6.943)(5500) — (150)(—188.76
b=( 943)( ) — (150)( ):_0.94
(6)(5500) — (150)2
Therefore, Eq. (2) takes the form
logeqg = —0.087x —0.94 = ¢4 =0.115¢7 %0 (4)

Differentiation of Eq. (4) gives the concentration gradient on the surface of the plate as

dCA 3 4
— — —(0.115)(0.02) = —0.0023 (mol/m?) /cm = —0.23 mol /m
X/ x=0

Substitution of the numerical values into Eq. (1) gives the molar flux of naphthalene from
the surface as

Ti | = (0.84 x 107)(0.23) = 19.32 x 10~ mol/m*-s

2.2 DIMENSIONLESS NUMBERS

Newton’s “law” of viscosity, Fourier’s “law” of heat conduction, and Fick’s first “law” of dif-
fusion, in reality, are not laws but defining equations for viscosity, u, thermal conductivity, &,
and diffusion coefficient, Dap. The fluxes (tyx, gy, ja,) and the gradients (dvy/dy, dT/dy,
dp4/dy) must be known or measurable for the experimental determination of u, k, and Dyp.

Newton’s law of viscosity, Eq. (2.1-2), Fourier’s law of heat conduction, Eq. (2.1-4), and
Fick’s first law of diffusion, Egs. (2.1-7) and (2.1-9), can be generalized as

(Molecular) _ (Transport) ( Gradient of ) (2.2-1)

flux property driving force

Although the constitutive equations are similar, they are not completely analogous because the
transport properties (i, k, D4 p) have different units. These equations can also be expressed
in the following forms:

d
Tyx = K d—(p Uyx) p = constant pvUy = momentum/volume  (2.2-2)
y
k d ~ ~ ~
gy =——=—(pCpT) pCp = constant pCpT = energy/volume (2.2-3)
pCp dy
. dpa
ja, = —DABE p = constant p4 = mass of A/volume (2.2-4)

The term w1/ p in Eq. (2.2-2) is called momentum diffusivity or kinematic viscosity, and the
term k/pCp in Eq. (2.2-3) is called thermal diffusivity. Momentum and thermal diffusivities
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Table 2.1. Analogous terms in constitutive equations for momentum, energy, and mass (or mole)
transfer in one-dimension

Momentum Energy Mass Mole
Molecular flux Tyx qy ja, Ji
) y
Transport property 7 k Dap Dap
d dT d d
Gradient of driving force dox — ara £ea
dy dy dy dy
Diffusivity v o Dap Dap
Quantity/Volume PUx pé\ pT PA cA
d d(pCpT d d
Gradient of Quantity/Volume 4(pvx) doCpT) era £ea
dy dy dy dy

are designated by v and «, respectively. Note that the terms v, «, and D 4p all have the same
units, m?/s, and Egs. (2.2-2)—(2.2-4) can be expressed in the general form as

(2.2-5)

Molecular
flux

Gradient of
Quantity/Volume

) = (Diffusivity) (

The quantities that appear in Egs. (2.2-1) and (2.2-5) are summarized in Table 2.1.

Since the terms v, «, and D4 g all have the same units, the ratio of any two of these diffu-
sivities results in a dimensionless number. For example, the ratio of momentum diffusivity to
thermal diffusivity gives the Prandtl number, Pr:

C
Prandtl number = Pr = A = %ﬂ (2.2-6)
o

The Prandtl number is a function of temperature and pressure. However, its dependence on
temperature, at least for liquids, is much stronger. The order of magnitude of the Prandtl
number for gases and liquids can be estimated as

3Y(10-3
pp— (100

102 =1 for gases
103)(1073
Pr= a"doT) =10 for liquids
10!
The Schmidt number is defined as the ratio of the momentum to mass diffusivities:
) i, m
Schmidt number = Sc = = (2.2-7)
Dap  pDas

The order of magnitude of the Schmidt number for gases and liquids can be estimated as
102
c=——1=1
(H(107)
1073
C=—F——
(103)(10-9)

for gases

=10° for liquids
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Finally, the ratio of « to D p gives the Lewis number, Le:

. o k Sc
Lewis number =Le = = —= = — (2.2-8)
Dap  pCpDyp Pr
2.3 CONVECTIVE TRANSPORT
Convective flux or bulk flux of a quantity is expressed as
Convective . Characteristic
( Aux > = (Quantity/Volume) ( velocity > (2.3-1)

When air is pumped through a pipe, it is considered a single phase and a single component
system. In this case, there is no ambiguity in defining the characteristic velocity. However, if
the oxygen in the air were reacting, then the fact that air is composed predominantly of two
species, O, and N>, would have to be taken into account. Hence, air should be considered
a single phase, binary component system. For a single phase system composed of n compo-
nents, the general definition of a characteristic velocity is given by

Ve =y _ Bivi (2.3-2)

where g; is the weighting factor and v; is the velocity of a constituent. The three most common
characteristic velocities are listed in Table 2.2. The term V; in the definition of the volume
average velocity represents the partial molar volume of a constituent. The molar average
velocity is equal to the volume average velocity when the total molar concentration, c, is
constant. On the other hand, the mass average velocity is equal to the volume average velocity
when the total mass density, p, is constant.

The choice of a characteristic velocity is arbitrary. For a given problem, it is more conve-
nient to select a characteristic velocity that will make the convective flux zero and thus yield a
simpler problem. In the literature, it is common practice to use the molar average velocity for
dilute gases, i.e., ¢ = constant, and the mass average velocity for liquids, i.e., o = constant.

It should be noted that the molecular mass flux expression given by Eq. (2.1-6) represents
the molecular mass flux with respect to the mass average velocity. Therefore, in the equation
representing the total mass flux, the characteristic velocity in the convective mass flux term is
taken as the mass average velocity. On the other hand, Eq. (2.1-8) is the molecular molar flux
with respect to the molar average velocity. Therefore, the molar average velocity is considered
the characteristic velocity in the convective molar flux term.

Table 2.2. Common characteristic velocities

Characteristic Velocity Weighting Factor Formulation
Mass average Mass fraction (w;) V=), wiv;
Molar average Mole fraction (x;) v =X

Volume average Volume fraction (c; V) - >oici Vivi
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2.4 TOTAL FLUX

Since the total flux of any quantity is the sum of its molecular and convective fluxes, then

Total Transport Gradient of Quantity \ [ Characteristic
_ ra po (= . (2.4-1)
flux property driving force Volume velocity
Molecular flux

Convective flux

or,

Total \ .. . . Gradient of Quantity Characteristic
( flux ) = (Diffusivity) (Quantity/Volume) + (W) < velocity ) (2.4-2)
Molecular flux

Convective flux

The quantities that appear in Eqgs. (2.4-1) and (2.4-2) are given in Table 2.3.

The general flux expressions for momentum, energy, and mass transport in different coor-
dinate systems are given in Appendix C.
From Eq. (2.4-2), the ratio of the convective flux to the molecular flux is given by

Convective flux _ (Quantity/Volume)(Characteristic velocity)

Molecular flux (Diffusivity)(Gradient of Quantity/Volume)

(2.4-3)

Table 2.3. Analogous terms in flux expressions for various types of transport in one-dimension
Type of Transport Total Flux Molecular Flux

Convective Flux Constraint
dvy
Momentum

- %
Tyx

None
(pvx) vy
v M 0 = const.
dy
X dT
dy
Energy ey

None
Je (pCpT)vy
_, d6CrT)

P C p = const.
dwy
Mass

None
PAVy
dpa

0 = const.
dx
Mole

None
CAV
dcy

¢ = const.
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Since the gradient of a quantity represents the variation of that particular quantity over a
characteristic length, the “Gradient of Quantity/Volume” can be expressed as

. . Difference in Quantity/Volume
Gradient of Quantity/Volume = — (2.4-4)
Characteristic length

The use of Eq. (2.4-4) in Eq. (2.4-3) gives

Convective flux . (Characteristic velocity)(Characteristic length)

= K (2.4-5)
Molecular flux Diffusivity

The ratio of the convective flux to the molecular flux is known as the Peclet number, Pe.
Therefore, Peclet numbers for heat and mass transfers are

L
Peyy = —chch (2.4-6)
(04
L
Pey = e (2.4-7)
Das
Hence, the total flux of any quantity is given by
Molecular flux Pe k1
Total flux = { Molecular flux 4+ Convective flux Pe~1 (2.4-8)
Convective flux Pe > 1

2.41 Rate of Mass Entering and/or Leaving the System

The mass flow rate of species i entering and/or leaving the system, 71;, is expressed as

. Mass Gradient of n Mass of i Characteristic Flow
mi = Diffusivity Mass of i/Volume Volume velocity area

Molecular mass flux of species i Convective mass flux of species i

(2.4-9)
In general, the mass of species i may enter and/or leave the system by two means:

e Entering and/or leaving conduits,
e Exchange of mass between the system and its surroundings through the boundaries of
the system, i.e., interphase transport.

When a mass of species i enters and/or leaves the system by a conduit(s), the characteristic
velocity is taken as the average velocity of the flowing stream and it is usually large enough to
neglect the molecular flux compared to the convective flux, i.e., Peys > 1. Therefore, Eq. (2.4-

9) simplifies to
M fi
i — ( ass o l) (Avera'ge) <Flow) (2.4-10)
Volume velocity area

i = pi(v)A = pi Q] (2.4-11)

or,
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Summation of Eq. (2.4-11) over all species leads to the total mass flow rate, 1, entering and/or
leaving the system by a conduit in the form

i =p(v)A=pQ| (2.4-12)

On a molar basis, Egs. (2.4-11) and (2.4-12) take the form

i =ci(v)A=c;Q| (2.4-13)

[ =c(v)A=cQ] (2.4-14)

On the other hand, when a mass of species i enters and/or leaves the system as a result
of interphase transport, the flux expression to be used is dictated by the value of the Peclet
number as shown in Eq. (2.4-8).

Example 2.4 Liquid B is flowing over a vertical plate as shown in Figure 2.7. The surface
of the plate is coated with a material, .4, which has a very low solubility in liquid 5. The
concentration distribution of species .A in the liquid is given by Bird ez al. (2002) as

1 e ;
faa_ / 67“} du
ca, 1'(4/3)J,

Surface coated with species A

Figure 2.7. Solid dissolution into a falling film.
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where cy, is the solubility of A in B, 7 is the dimensionless parameter defined by

< ,0g8 ) 1/3
n=X\on =
9uDapz

and I'(4/3) is the gamma function defined by

r(n)=/oo,3"—1e—ﬂdﬁ n>0
0

Calculate the rate of transfer of species A into the flowing liquid.
Solution
Assumptions

1. The total molar concentration in the liquid phase is constant.
2. In the x-direction, the convective flux is small compared to the molecular flux.

Analysis

The molar rate of transfer of species .4 can be calculated from the expression

W L
ﬁA:/O fo Na,|,_o dzdy ()

where the total molar flux of species .4 at the interface, N4, |x—o, is given by

Na,l,—o=JA|,_o=—Das (%)xzo (2
By the application of the chain rule, Eq. (2) takes the form
d dca
Na,|._o=—Das £ <E)nzo 3)
The term dn/0x is
o _ ('O%gb\)l/3 4)
0x 9uDapz

On the other hand, the term dc4/dn can be calculated by the application of the Leibnitz
formula, i.e., Eq. (A.4-3) in Appendix A, as

dc c 3
@ =Ty )
Substitution of Egs. (4) and (5) into Eq. (3) yields
Dagca, [ pgs \'"
['(4/3) <9MDABZ>
Finally, the use of Eq. (6) in Eq. (1) gives the molar rate of transfer of species A as

1 Wea, (3pgs\'? 2/3
== o (2o DagL)? 7
na 2F(4/3)(M) (DagL) (N

(6)

NAX |x:0 ==
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2.4.2 Rate of Energy Entering and/or Leaving the System

The rate of energy entering and/or leaving the system, E, is expressed as

b= Thermal Gradient of 4 Energy Characteristic Flow
- diffusivity / \ Energy/Volume Volume velocity area

Molecular energy flux Convective energy flux

(2.4-15)
As in the case of mass, energy may enter or leave the system by two means:

e By inlet and/or outlet streams,
e By exchange of energy between the system and its surroundings through the boundaries
of the system in the form of heat and work.

When energy enters and/or leaves the system by a conduit(s), the characteristic velocity is
taken as the average velocity of the flowing stream and it is usually large enough to neglect
the molecular flux compared to the convective flux, i.e., Peyy > 1. Therefore, Eq. (2.4-15)

simplifies to
. E
P < nergy> (Avera.ge) <Flow> (2.4-16)
Volume / \ velocity area
Energy per unit volume, on the other hand, is expressed as the product of energy per unit
mass, E, and mass per unit volume, i.e., density, such that Eq. (2.4-16) becomes

. E M ~
P ( nergy) ( ass ) (Average) (Flow) B 2.4-17)
Mass Volume velocity area

Mass flow rate

NOTATION

A area, m?

Cp heat capacity at constant pressure, kJ/kg-K
c total concentration, kmol /m>

Ci concentration of species i, kmol/m?>

Dap  diffusion coefficient for system A-B, m?/s
E rate of energy, W

e total energy flux, W/m?

F force, N

J* molecular molar flux, kmol/ m?.s
j molecular mass flux, kg/m?-s

k thermal conductivity, W/m-K

m total mass flow rate, kg/s

Wi mass flow rate of species i, kg/s

N total molar flux, kmol/m?-s



Notation

=.

total molar flow rate, kmol/s

molar flow rate of species i, kmol/s
pressure, Pa

heat transfer rate, W

volumetric flow rate, m3/s

heat flux, W/m?

temperature, °C or K

time, S
volume, m
partial molar volume of species i, m>/kmol
velocity, m/s

molar average velocity, m/s

volume average velocity, m/s

total mass flux, kg/m?-s

rectangular coordinate, m

X; mole fraction of species i

y rectangular coordinate, m

5.

3

<< TN 0O

~.

= §c.c*c

o thermal diffusivity, m?/s

y rate of strain, 1/s

7 viscosity, kg/m-s

v kinematic viscosity (or momentum diffusivity), m?/s
T total momentum flux, N/ m?

0 total density, kg/m>

Oi density of species i, kg/m?>

Tyx flux of x-momentum in the y-direction, N/m?
wj mass fraction of species i

Overlines

per unit mass
- partial molar

Bracket

(a) average value of a
Superscript

sat saturation

Subscripts

A, B species in binary systems

ch characteristic
i species in multicomponent systems
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Dimensionless Numbers

Le Lewis number

Pey Peclet number for heat transfer
Pem Peclet number for mass transfer
Pr Prandtl number

Sc Schmidt number
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PROBLEMS
2.1 Show that the force per unit area can be interpreted as the momentum flux.

2.2 A Newtonian fluid with a viscosity of 50 cP is placed between two large parallel plates
separated by a distance of 8 mm. Each plate has an area of 2 m?. The upper plate moves in
the positive x-direction with a velocity of 0.4 m/s while the lower plate is kept stationary.

a) Calculate the steady force applied to the upper plate.

b) The fluid in part (a) is replaced with another Newtonian fluid of viscosity 5 cP. If the
steady force applied to the upper plate is the same as that of part (a), calculate the velocity
of the upper plate.

(Answer: a) SN b)4 m/s)

2.3 Three parallel flat plates are separated by two fluids as shown in the figure below. What
should be the value of Y so as to keep the plate in the middle stationary?

V2=1m/S<7

Fluid B (ug = 0.8 cP) Y,

Y,=5
Fluid A (s = 1 cP) r=>cn
—>V;=2m/s

(Answer: 2 cm)
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2.4 The steady rate of heat loss through a plane slab, which has a surface area of 3 m” and
is 7 cm thick, is 72 W. Determine the thermal conductivity of the slab if the temperature
distribution in the slab is given as

T=5x+10

where T is temperature in °C and x is the distance measured from one side of the slab in cm.
(Answer: 0.048 W/m-K)
2.5 The inner and outer surface temperatures of a 20 cm thick brick wall are 30 °C and

—5°C, respectively. The surface area of the wall is 25 m?. Determine the steady rate of heat
loss through the wall if the thermal conductivity is 0.72 W/m-K.

(Answer: 3150 W)

2.6 Energy is generated uniformly in a 6 cm thick wall. The steady-state temperature dis-
tribution is

T = 145 + 3000z — 150022

where T is temperature in °C and z is the distance measured from one side of the wall in
meters. Determine the rate of heat generation per unit volume if the thermal conductivity of
the wall is 15 W/m-K.

(Answer: 45 kW/m?)

2.7 The temperature distribution in a one-dimensional wall of thermal conductivity
20 W/m-K and thickness 60 cm is

T =80+ 10e 2 sin(r &)

where T is temperature in °C, ¢ is time in hours, § = z/L is the dimensionless distance
with z being a coordinate measured from one side of the wall, and L is the wall thickness in
meters. Calculate the total amount of heat transferred in half an hour if the surface area of
the wall is 15 m?.

(Answer: 15,360 )

2.8 The steady-state temperature distribution within a plane wall 1 m thick with a thermal
conductivity of 8 W/m-K is measured as a function of position as follows:

z (m) 0 01 02 03 04 05 06 07 08 09 1.0
T¢C)|30 46 59 70 79 8 8 90 8 86 &0

where z is the distance measured from one side of the wall. Determine the uniform rate of
energy generation per unit volume within the wall.

(Answer: 1920 W/m?)
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2.9 The geothermal gradient is the rate of increase of temperature with depth in the earth’s
crust.

a) If the average geothermal gradient of the earth is about 25 °C/km, estimate the steady
rate of heat loss from the surface of the earth.

b) One of your friends claims that the amount of heat escaping from 1 m? in 4 days is
enough to heat a cup of coffee. Do you agree? Justify your answer.

Take the diameter and the thermal conductivity of the earth as 1.27 x 10* km and 3 W/mK,
respectively.

(Answer: a) 38 x 102 kW)

2.10 Estimate the earth’s age by making use of the following assumptions:

(i) Neglecting the curvature, the earth may be assumed to be a semi-infinite plane that
began to cool from an initial molten state of 7, = 1200 °C. Taking the interface tem-
perature at z = 0 to be equal to zero, the corresponding temperature distribution takes

the form
=T, erf( < ) (1)
NET
where erf(x) is the error function, defined by
erf(x) = % fo "o du )
(ii) The temperature gradient at z = 0 is equal to the geothermal gradient of the earth, i.e.,
25 °C/km.

(iii) The thermal conductivity, the density and the heat capacity of the earth are 3 W/m-K,
5500 kg/m> and 2000 J/kg-K, respectively.

Estimation of the age of the earth, based on the above model, was first used by Lord Kelvin
(1864). However, he knew nothing about radioactivity or heating of the earth’s crust by
radioactive decay at that time. As a result, his estimates, ranging from 20 to 200 million
years, were completely wrong. Today, geologists generally accept the age of the earth as
4.55 billion years.

(Answer: 85.3 x 10° year)

2.11 A slab is initially at a uniform temperature 7, and occupies the space from z = 0 to
z = 00. At time t = 0, the temperature of the surface at z = 0 is suddenly changed to T
(T > T,) and maintained at that temperature for ¢t > 0. Under these conditions the temper-
ature distribution is given by

T —T

Z
—Tl T, _erf<—2@) (1)
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If the surface area of the slab is A, determine the amount of heat transferred into the slab as
a function of time.

2kA(T — T,)
Ve ﬁ)

2.12 Air at 20°C and 1 atm pressure flows over a porous plate that is soaked in ethanol.
The molar concentration of ethanol in the air, c4, is given by

(Answer: 0=

CA :46—1.5Z

where ¢4 is in kmol/m? and z is the distance measured from the surface of the plate in
meters. Calculate the molar flux of ethanol from the plate.

(Answer: 0.283 kmol/m?-h)

2.13 The formal definition of the partial molar volume is given by
- A
Vi=(5- (1
nj T,P,njxi

n
V== )
c

Substitute

into Eq. (1) and show that the volume fraction is equal to the mole fraction for constant total
molar concentration, c, i.€.,

i Vi=xi (3)
This further implies that the molar average velocity is equal to the volume average velocity

when the total molar concentration is constant.

2.14 For a gas at constant pressure, why does the Schmidt number usually remain fairly
constant over a large temperature range, while the diffusion coefficient changes markedly?

2.15 Gas A dissolves in liquid B and diffuses into the liquid phase. As it diffuses, species
A undergoes an irreversible chemical reaction as shown in the figure below. Under steady
conditions, the resulting concentration distribution in the liquid phase is given by

P G )

ca, cosh A

in which
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where ¢4, is the surface concentration, k is the reaction rate constant and Dy p is the diffu-
sion coefficient.

Gas A

L Liquid B

a) Determine the rate of moles of .4 entering the liquid phase if the cross-sectional area of
the tank is A.
b) Determine the molar flux at z = L. What is the physical significance of this result?

AD A tanh A
(Answer: a)ny = ABcA, AN b) 0)

L
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INTERPHASE TRANSPORT AND TRANSFER
COEFFICIENTS

In engineering calculations, we are interested in the determination of the rate of momentum,
heat, and mass transfer from one phase to another across the phase interface. This can be
achieved by integrating the flux expression over the interfacial area. Equation (2.4-2) gives
the value of the flux at the interface as

Interphase \ e e Gradient of
( flux ) o |:(D1ffusw1ty) (Quantity/Volume)

4 Quantity Characteristic
Volume VelOCity interface

Note that the determination of the interphase flux requires the values of the quantity/volume
and its gradient to be known at the interface. Therefore, equations of change must be solved
to obtain the distribution of quantity/volume as a function of position. These analytical so-
lutions, however, are not possible most of the time. In that case we resort to experimental
data and correlate the results by the transfer coefficients, namely, the friction factor, the heat
transfer coefficient, and the mass transfer coefficient. The resulting correlations are then used
in designing equipment.

This chapter deals with the physical significance of these three transfer coefficients. In
addition, the relationships between these transfer coefficients will be explained by using di-
mensionless numbers and analogies.

3.1 FRICTION FACTOR

Let us consider a flat plate of length L and width W suspended in a uniform stream having
an approach velocity vs, as shown in Figure 3.1.

Voo

—
—

}’L
x

L }

-

Figure 3.1. Flow on a flat plate.

35



36 3. Interphase Transport and Transfer Coefficients

As engineers, we are interested in the determination of the total drag force, i.e., the com-
ponent of the force in the direction of flow, exerted by the flowing stream on the plate. This
force can be calculated by integrating the total momentum flux at the wall over the surface
area. The total momentum flux at the wall, 7y, |y—0, is

Tyx ‘y:O = Tyx ‘y:() + (PUny)‘yZO (31—1)

where Ty, |y—¢ is the value of the shear stress at the wall. Since the plate is stationary, the fluid
in contact with the plate is also stagnant! and both v, and vy are zero at y = 0. Therefore,
Eq. (3.1-1) reduces to

0Vy
”yX|y:o:TyX|y:0 =Ko

7 |, (3.1-2)

Note that the minus sign is omitted in Eq. (3.1-2) since the value of v, increases as the distance
y increases. The drag force, Fp, on one side of the plate is calculated from

W rL
Fp =/ / Tydxdz (3.1-3)
0 0

Evaluation of the integral in Eq. (3.1-3) requires the value of the velocity gradient at the
wall to be known as a function of position. Obtaining analytical expressions for the velocity
distribution from the solution of the equations of change, however, is almost impossible in
most cases. Thus, it is customary in engineering practice to replace 7, with a dimensionless
term called the friction factor, f, such that

1

Y= Epvgof (3.1-4)

Substitution of Eq. (3.1-4) into Eq. (3.1-3) gives

Fp —%pv f /fdxdz—(WL)( pv2 >(f) (3.1-5)

where (f) is the friction factor averaged over the area of the plate?, i.e

/ /fdxdz 1 W pL
WL/O /Ofdxdz (3.1-6)
/ /dxdz

Equation (3.1-5) can be generalized in the form

| Fp=AnKa(f)] (3.1-7)

IThis is known as the no-slip boundary condition.
2See Section A.2 in Appendix A.
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in which the terms A, characteristic area, and K, characteristic kinetic energy, are defined
by

A, Wetted surface area for flow in conduits (3.1-8)
= Projected area for flow around submerged objects '

1
Kon=3 pv2, (3.1-9)

where vy, is the characteristic velocity.
Power, W, is defined as the rate at which work is done. Therefore,

Work . (Force) (Distance)
Time Time

Power = = (Force) (Velocity) (3.1-10)

or,

W = Fpue (3.1-11)

Example 3.1 Advertisements for cars in magazines give a complete list of their features,
one of which is the friction factor (or drag coefficient), based on the frontal area. Sports
cars, such as the Toyota Celica, usually have a friction factor of around 0.24. If the car has a
width of 2 m and a height of 1.5 m,

a) Determine the power consumed by the car when it is going at 100 km/h.

b) Repeat part (a) if the wind blows at a velocity of 30 km/h opposite to the direction of
the car.

¢) Repeat part (a) if the wind blows at a velocity of 30 km/h in the direction of the car.

Solution
Physical properties
For air at 20°C (293 K): p = 1.2 kg/m’
Assumption
1. Airisat20°C.
Analysis
a) The characteristic velocity is

1000

= (100
Ven = ( )(3600

) =27.78 m/s
The drag force can be calculated from Eq. (3.1-7) as

I = Ache pvfh) (f) =2 x 1.5) B (1 .2)(27.78)2] (0.24) =333.4N

The use of Eq. (3.1-11) gives the power consumed as

W = Fpue, = (333.4)(27.78) = 9262 W
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b) In this case the characteristic velocity is

1000
Ven = ( 00+3O)<3600> 36.11 m/s

Therefore, the drag force and the power consumed are
1
Fp=(2x1.5) |:§ (1.2)(36.11)2i| (0.24) =563.3 N

W = (563.3)(36.11) = 20,341 W
¢) In this case the characteristic velocity is

1000

— (100 — 30) [ —=
Vol = ( )<3600

) =19.44m/s
Therefore, the drag force and the power consumed are
1
Fp=2x1.5) |:5 (1.2)(19.44)2i| (0.24) =163.3N

W = (163.3)(19.44) = 3175 W

3.1.1 Physical Interpretation of Friction Factor
Combination of Egs. (3.1-2) and (3.1-4) leads to
1 Mmoo 0vy

(3.1-12)

27 pvi, Ay y=0

The friction factor can be determined from Eq. (3.1-12) if the physical properties of the fluid
(viscosity and density), the approach velocity of the fluid, and the velocity gradient at the wall
are known. Since the calculation of the velocity gradient requires the velocity distribution in
the fluid phase to be known, the actual case is idealized as shown in Figure 3.2.

The entire resistance to momentum transport is assumed to be due to a laminar film of
thickness § next to the wall. The velocity gradient in the film is constant and is equal to

0Vy Voo
=— (3.1-13)
0 y y=0 )
CPS
Velocity y=0 8
distribution Laminar film
of thickness &
[ -
y [ \ )
X
a) Actual case b) Idealized case

Figure 3.2. The film model for momentum transfer.
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Substitution of Eq. (3.1-13) into Eq. (3.1-12) and multiplication of the resulting equation by
the characteristic length, L., yield

L rRe= Let (3.1-14)
— e = —— -
2 5

where the dimensionless term Re is the Reynolds number, defined by

L
Re = —<tTel (3.1-15)
I
Equation (3.1-14) indicates that the product of the friction factor with the Reynolds number
is directly proportional to the characteristic length and inversely proportional to the thickness
of the momentum boundary layer.

3.2 HEAT TRANSFER COEFFICIENT

3.2.1 Convection Heat Transfer Coefficient

Let us consider a flat plate suspended in a uniform stream of velocity v, and temperature 7o,
as shown in Figure 3.3. The temperature at the surface of the plate is kept constant at 7.

As engineers, we are interested in the total rate of heat transfer from the plate to the flowing
stream. This can be calculated by integrating the total energy flux at the wall over the surface
area. The total energy flux at the wall, ey|,—o, is

ey|y=0 = CIY|y=0 + (paPTvy)iy:o (3.2-1)

where gy |y—¢ is the molecular (or conductive) energy flux at the wall. As a result of the no-
slip boundary condition at the wall, the fluid in contact with the plate is stagnant and heat
is transferred by pure conduction through the fluid layer immediately adjacent to the plate.
Therefore, Eq. (3.2-1) reduces to

lco=ay|,—g=qw=—k or 3.2-2
€yly=0 =4yly=0 = 9w =" 3y o (3.2-2)
The rate of heat transfer, Q, from one side of the plate to the flowing stream is calculated
from
. W L
Q= f / quwdx dz (3.2-3)
o Jo
voo
TOO
- 4,
yI Ty
X
< L |

Figure 3.3. Flow over a flat plate.
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Evaluation of the integral in Eq. (3.2-3) requires the temperature gradient at the wall to be
known as a function of position. However, the fluid motion makes the analytical solution of
the temperature distribution impossible to obtain in most cases. Hence, we usually resort to
experimentally determined values of the energy flux at a solid-fluid boundary in terms of the
convection heat transfer coefficient, h, as

\quw="h (T — T) | (3.2-4)

which is known as Newton’s law of cooling. The convection heat transfer coefficient, %, has
the units of W/m?2-K. It depends on the fluid flow mechanism, fluid properties (density, vis-
cosity, thermal conductivity, heat capacity) and flow geometry.

Substitution of Eq. (3.2-4) into Eq. (3.2-3) gives the rate of heat transfer as

w L
0= (T, — Too)/ f hdxdz = (WL)(h)(Ty — Tso) (3.2-5)
0 0

where (h) is the heat transfer coefficient averaged over the area of the plate and is defined by

W pL
‘/(‘) ‘/0 hdde 1 w L
h) = - hdxd 3.2-6
(h) WL/O /0 xdz ( )

W oL
/ f dxdz
o Jo

Equation (3.2-5) can be generalized in the form

0 =Au(h)(AT)en (3.2-7)

where A is the heat transfer area and (AT)., is the characteristic temperature difference.

3.2.1.1 Physical interpretation of heat transfer coefficient Combination of Egs. (3.2-2)
and (3.2-4) leads to

k oT

h=——t 22
Tw_Too ay y=0

(3.2-8)

The convection heat transfer coefficient can be determined from Eq. (3.2-8) if the thermal
conductivity of the fluid, the overall temperature difference, and the temperature gradient at
the wall are known. Since the calculation of the temperature gradient at the wall requires the
temperature distribution in the fluid phase to be known, the actual case is idealized as shown
in Figure 3.4.

The entire resistance to heat transfer is assumed to be due to a stagnant film in the fluid
next to the wall. The thickness of the film, §;, is such that it provides the same resistance to
heat transfer as the resistance that exists for the actual convection process. The temperature
gradient in the film is constant and is equal to

oT _To—Ty (3.2-9)
Y ly=o Ly '
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Temperature
distribution Stagnant film
of thickness &,

i T

: [ *
' 5 | | Ty \ Tw
i :

a) Actual case b) Idealized case

Figure 3.4. The film model for energy transfer.

Substitution of Eq. (3.2-9) into Eq. (3.2-8) gives

heX (3.2-10)

t

Equation (3.2-10) indicates that the thickness of the film, §;, determines the value of /. For
this reason the term 4 is frequently referred to as the film heat transfer coefficient.

Example 3.2 Energy generation rate per unit volume as a result of fission within a spherical
reactor of radius R is given as a function of position as

nfi-(3)]

where r is the radial distance measured from the center of the sphere. Cooling fluid at a tem-
perature of T, flows over the reactor. If the average heat transfer coefficient () at the sur-
face of the reactor is known, determine the surface temperature of the reactor at steady-state.

Solution
System: Reactor
Analysis

The inventory rate equation for energy becomes
Rate of energy out = Rate of energy generation (1)

The rate at which energy leaves the sphere by convection is given by Newton’s law of cool-
ing as

Rate of energy out = (47 Rz)(h)(Tw — To) (2)

where T, is the surface temperature of the sphere. The rate of energy generation can be
determined by integrating ) over the volume of the sphere. The result is
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2r e pR r 2
Rate of energy generation = / / / No [1 = (E) ]r2 sinf drd6d¢
0 0 JO

81
= —%R,R> 3
15 o (3)

Substitution of Egs. (2) and (3) into Eq. (1) gives the surface temperature as

Ty = Mg e
YT N5 (k)

“)

3.2.2 Radiation Heat Transfer Coefficient

The heat flux due to radiation, ¢ %, from a small object to the surroundings wall is given as
g =eo (T} - 1)) (3.2-11)

where ¢ is the emissivity of the small object, o is the Stefan-Boltzmann constant (5.67 x

1078 W/mZ-K4), and 77 and T, are the temperatures of the small object and the wall in
degrees Kelvin, respectively.
In engineering practice, Eq. (3.2-11) is written in a fashion analogous to Eq. (3.2-4) as

g® =1 - Ty) (3.2-12)

where h® is the radiation heat transfer coefficient. Comparison of Egs. (3.2-11) and (3.2-12)
gives
eo(TH— T3
hR = eolly — 1)) ~4e0(T)> (3.2-13)
T —T,

provided that (T') > (T1 — T»)/2, where (T') = (T + T2) /2.

3.3 MASS TRANSFER COEFFICIENT

Let us consider a flat plate suspended in a uniform stream of fluid (species B) having a velocity
Voo and species A concentration c4_, as shown in Figure 3.5. The surface of the plate is also
coated with species .4 with concentration c4, .

le |
< L >

Figure 3.5. Flow over a flat plate.
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As engineers, we are interested in the total number of moles of species A transferred from
the plate to the flowing stream. This can be calculated by integrating the total molar flux at
the wall over the surface area. The total molar flux at the wall, N A, ly=0, is

Na

_ *
=J;,

vo+(car})] (3.3-1)

y

y=0
where ij ly=0 is the molecular (or diffusive) molar flux at the wall. For low mass transfer

rates Eq. (3.3-1) can be simplified to’

oca
Na, ‘y:() =Na, = ]Xy ‘y:() —Das E (3.3-2)

and the rate of moles of species .4 transferred, 7 4, from one side of the plate to the flowing

stream 1is
W L
ﬁA=/ / Ny, dxdz (3.3-3)
0o Jo

Evaluation of the integral in Eq. (3.3-3) requires the value of the concentration gradient at the
wall to be known as a function of position. Since this is almost impossible to obtain in most
cases, in a manner analogous to the definition of the heat transfer coefficient, the convection
mass transfer coefficient, k., is defined by the following expression

| Na, =ke(ca, —ca) | (3.3-4)

which may be called Newton’s law of mass transfer as suggested by Slattery (1999). The
mass transfer coefficient has the units of m/s. It depends on the fluid flow mechanism, fluid
properties (density, viscosity, diffusion coefficient) and flow geometry.

Substitution of Eq. (3.3-4) into Eq. (3.3-3) gives the rate of moles of species A transferred
as

W rL
na=I(ca, — CAOO)/ / kedxdz=(WL)(k:)(ca, —cay) (3.3-5)
0 0

where (k.) is the mass transfer coefficient averaged over the area of the plate and is defined
by

/ / k dxdz 1 W oL
kedxd 3.3-6
WL,/O ‘/0 cdxdaz ( )
//dxdz

3Note that v’y“ is the molar average velocity defined by

CAVA, +CBUB,
V= ——
Y c
Atthe wall, i.e., y =0, vg = 0 due to the no-slip boundary condition. However, v A, # 0 as a result of the transfer
of species .A from the surface to the flowing stream. Therefore, vy * y=07#0.
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Equation (3.3-5) can be generalized in the form

1A = Autke) (Aca)en | (3.3-7)

where Ay is the mass transfer area and (Ac4 ).y, 1s the characteristic concentration difference.

3.3.1 Physical Interpretation of Mass Transfer Coefficient

Combination of Eqgs. (3.3-2) and (3.3-4) leads to

D 9
k= ———AB A (3.3-8)
CAy — CAx Y |y=0

The convection mass transfer coefficient can be determined from Eq. (3.3-8) if the diffusion
coefficient, the overall concentration difference, and the concentration gradient at the wall are
known. Since the calculation of the concentration gradient at the wall requires the concentra-
tion distribution to be known, the actual case is idealized as shown in Figure 3.6.

The entire resistance to mass transfer is due to a stagnant film in the fluid next to the wall.
The thickness of the film, ., is such that it provides the same resistance to mass transfer
by molecular diffusion as the resistance that exists for the actual convection process. The
concentration gradient in the film is constant and equal to

a _
J€Al _ CAx T CAy (3.3-9)
ay y=0 8C
Substitution of Eq. (3.3-9) into Eq. (3.3-8) gives
D
ke = 28 (3.3-10)
8¢

Equation (3.3-10) indicates that the mass transfer coefficient is directly proportional to the
diffusion coefficient and inversely proportional to the thickness of the concentration boundary
layer.

ca,,
dc
slope = '
y y=0 )
Concentration
distribution Stagnant film
. of thickness 3,
H / €A,
y :
8¢ : “A,, \< A,
X
a) Actual case b) Idealized case

Figure 3.6. The film model for mass transfer.
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Interface

| S
Ef‘ : NAH/' = kC (CAW B CAOO)
Solid Fluid

Figure 3.7. Transfer of species .4 from the solid to the fluid phase.

3.3.2 Concentration at the Phase Interface

Consider the transfer of species .A from the solid phase to the fluid phase through a flat inter-
face as shown in Figure 3.7. The molar flux of species A is expressed by Eq. (3.3-4). In the
application of this equation to practical problems of interest, there is no difficulty in defining
the concentration in the bulk fluid phase, ¢4, since this can be measured experimentally.
However, to estimate the value of ¢4, , one has to make an assumption about the conditions at
the interface. It is generally assumed that the two phases are in equilibrium with each other at
the solid-fluid interface. If T, represents the interface temperature, the value of cy4,, is given

by

P3/RT  (Assuming ideal gas behavior) fluid = gas

cA (3.3-11)

w

B Solubility of solid in liquid at T, fluid = liquid
The Antoine equation is widely used to estimate vapor pressures and it is given in Appendix D.
Example 3.3 0.5 L of ethanol is poured into a cylindrical tank of 2 L. capacity and the top is
quickly sealed. The total height of the cylinder is 1 m. Calculate the mass transfer coefficient

if the ethanol concentration in the air reaches 2% of its saturation value in 5 minutes. The
cylinder temperature is kept constant at 20 °C.

Solution
Physical properties

p =789 kg/m>
For ethanol (A) at 20°C (293 K): { M =46
P3%" =43.6 mmHg

Assumption
1. Ideal gas behavior.
Analysis

The mass transfer coefficient can be calculated from Eq. (3.3-4), i.e.,

Na, =kc(ca, —cay) (D
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The concentration difference in Eq. (1) is given as the concentration of ethanol vapor at
the surface of the liquid, ¢4, , minus that in the bulk solution, ¢4, . The concentration at the
liquid surface is the saturation concentration while the concentration in the bulk is essentially
zero at relatively short times so that c4,, — ca,, = ca, . Therefore Eq. (1) simplifies to

Na, =kcca, (@)

The saturation concentration of ethanol is

P 43.6/760

— — —2.39 x 102 kmol/m> 3
RT ~ (0.08205)(20 + 273) x mol/m )

ca,

Since the ethanol concentration within the cylinder reaches 2% of its saturation value in 5
minutes, the moles of ethanol evaporated during this period are

na=(0.02)(2.39 x 1073)(1.5 x 1073) =7.17 x 1078 kmol 4)

where 1.5 x 1073 m? is the volume of the air space in the tank. Therefore, the molar flux at
5 minutes can be calculated as

__ Number of moles of species .A

Na, = 5
Aw (Area)(Time) (%)
7.17 x 1078 5 3
= =1.2 x 10~ " kmol/m~-s 3.1)
(2 x 1073/1)(5 x 60)
Substitution of Egs. (3) and (5) into Eq. (2) gives the mass transfer coefficient as
1.2 x 1077 5 10-° my ©
= =) X m/S
€239 %1073
3.4 DIMENSIONLESS NUMBERS
Rearrangement of Eqs. (3.1-4), (3.2-4) and (3.3-4) gives
1
Tw=73 Sven A(pvch) A(pven) = p o — 0 (3.4-1)
h ~ ~ —~ ~
qw=p?A(pCpT) A(pCpT)=pCpTy —pCpT (3.4-2)
P
Na, =kcAcy Acgp=ca, —CAy (3.4-3)

Note that Egs. (3.4-1)—(3.4-3) have the general form

(Interphase) :< Transfer > ( Difference in ) (3.4-4)

flux coefficient / \ Quantity/Volume
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and the terms fve,/2, h/ ,oa p, and k. all have the same units, m/s. Thus, the ratio of these
quantities must yield dimensionless numbers:

h

Heat transfer Stanton number = Sty = —< (3.4-5)
pC pUch
Mass transfer Stanton number = Sty = — (3.4-6)
Uch

Since the term f/2 is dimensionless itself, it is omitted in Egs. (3.4-5) and (3.4-6).
Dimensionless numbers can also be obtained by taking the ratio of the fluxes. For example,
when the concentration gradient is expressed in the form

Difference in Quantity /Volume

Gradient of Quantity/Volume = — (3.4-7)
Characteristic length
the expression for the molecular flux, Eq. (2.2-5), becomes
Molecular flux — (Diffusivity) (Difference in Quantity /Volume) (3.4-8)

Characteristic length

Therefore, the ratio of the total interphase flux, Eq. (3.4-4), to the molecular flux, Eq. (3.4-8),
is

Interphase flux  (Transfer coefficient) (Characteristic length)

= L (3.4-9)
Molecular flux Diffusivity
The quantities in Eq. (3.4-9) for various transport processes are given in Table 3.1.
The dimensionless terms representing the ratio of the interphase flux to the molecular flux
in Table 3.1 are defined in terms of the dimensionless numbers as

| Lo 1
- pPUdhTeh _ ~ rRe (3.4-10)
2 7 2
hL
h _ Nu (3.4-11)
k
koL
c=ch _ Nup = Sh (3.4-12)
Dasp

Table 3.1. Transfer coefficient, diffusivity and flux ratio for the transport of momentum,
energy and mass

Interphase Flux

Process Transfer Coefficient Diffusivity Molecular Flux
1 1 v L
Momentum = foen £ 57 Pl
2 p 2 m
Energy = C =
pCp pCp k
koL,
Mass ke Das e

Dasp
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Table 3.2. Analogous dimensionless numbers in energy
and mass transfer

Energy Mass
Pr= K = @ Sc= v = #
o k Dap pDasp
hL keL
Nu = "= Nuy = Sh = —<=¢<h
Nu h Sh ke
Sty = = — Stp = ==
H= RePr o Cpush M= Resc Veh

where Nu is the heat transfer Nusselt number and Nuy is the mass transfer Nusselt num-
ber. The mass transfer Nusselt number is generally called the Sherwood number, Sh. Equa-
tions (3.4-10)—(3.4-12) indicate that the product (f Re /2) is more closely analogous to the
Nusselt and Sherwood numbers than f is itself. A summary of the analogous dimension-
less numbers for energy and mass transfer covered so far is given in Table 3.2. The Stanton
numbers for heat and mass transfer are designated by Stg and Styg, respectively.

3.4.1 Dimensionless Numbers and Time Scales

A characteristic time is the time over which a given process takes place. Consider, for exam-
ple, the free fall of a stone of mass 0.5 kg from the top of a skyscraper. If the height, L, of the
building is 250 m, how long does it take for the stone to reach the ground? Since the accelera-
tion of gravity, i.e., g = 9.8 m/s?, is responsible for the falling process, then the characteristic
time representing the free fall of a stone is given by

L (m)
g (m/s?)

1250
=,/ —=5.15s
9.8

From physics, the actual time of fall can be calculated from the formula

1
L:Egﬂ (3.4-14)

I U AP
9.8

which is different from 5.1 s. It should be kept in mind that the time scale gives a rough
estimate, or order-of-magnitude, of the characteristic time of a given process. As far as the
order-of-magnitude is concerned, the values 5.1 s and 7.1 s are almost equivalent.

Diffusivities (v, o, Dpg) all have the same units, m? /s. Therefore, the characteristic time
(or time scale) for molecular transport is given by

top = (3.4-13)

or,

(Characteristic Length)2

t = 3.4-15
(Gch)mol Diffusivity ( )
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Table 3.3. Time scales for different transport mechanisms

Type of Molecular Convective
Transport Time Scale Time Scale
L? L
Momentum —ch Zch
v Veh
L? Le
Heat ch Lﬁ
o h/pCp
L2 L
Mass _ch. Zch
Das ke

Note that each process experiences an unsteady-state period before reaching steady-state con-
ditions. Thus, Eq. (3.4-15) gives an idea of the time it takes for a given process to reach
steady-state. R

Transfer coefficients ( fve,/2, h/pCp, and k) all have the same units, m/s. Therefore, the
characteristic time (or time scale) for convective transport is given by

Characteristic Length
(3.4-16)

f, =
(Fch)conv Transfer Coefficient

Table 3.3 summarizes the molecular and convective time scales for the transport of momen-
tum, heat, and mass. The tricky issue in the estimation of order of magnitude is how to identify
the characteristic length. In general, the characteristic length used in the molecular time scale
may be different from that used in the convective time scale.

Since the f/2 term is dimensionless itself, it is omitted from the convective time scale for
momentum. Note that the convective time scale for momentum transport, L.,/ vcp, 1S the time
it takes for the fluid to move through the system, also known as the residence time.

It is possible to redefine the dimensionless numbers in terms of the time scales as follows:

Conductive time scale

v
— : . — (3.4-17)
Viscous time scale o
Diffusive time scale v
Sc=— - = (3.4-18)
Viscous time scale Dap
Diffusive time scale
Le= — —oc —— (3.4-19)
Conductive time scale  Dyp
Conductive time scale VenLen
Pey = — = (3.4-20)
Convective time scale for momentum transport o
Diffusive ti 1 L
Peys — iffusive time scale _ VenLen (3.421)

Convective time scale for momentum transport Dag

3.5 TRANSPORT ANALOGIES
Existing analogies in various transport processes depend on the relationship between the di-
mensionless numbers defined by Egs. (3.4-10)—(3.4-12). In Section 3.1.1 we showed that
Len

)

%fRe= (3.5-1)
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On the other hand, substitution of Egs. (3.2-10) and (3.3-10) into Egs. (3.4-11) and (3.4-12),
respectively, gives

Nu= Lg—jh (3.5-2)
and
Sh= l(’;h (3.5-3)
Examination of Egs. (3.5-1)—(3.5-3) indicates that
Interphase flux _ Char.acteristic l.ength (3.5.4)
Molecular flux  Effective film thickness
Comparison of Egs. (3.4-9) and (3.5-4) implies that
Effective film thickness = e VIt (3.5-5)

Transfer coefficient

Note that the effective film thickness is the thickness of a fictitious film that would be required
to account for the entire resistance if only molecular transport were involved.
Using Egs. (3.5-1)—(3.5-3), it is possible to express the characteristic length as

1
L= 3 fRed =Nué, =Shé, (3.5-6)

Substitution of Nu = Sty Re Pr and Sh = Sty Re Sc into Eq. (3.5-6) gives
1
7 f6 =Sty Pré; = Sty Scd, (3.5-7)

3.5.1 The Reynolds Analogy

Similarities between the transport of momentum, energy, and mass were first noted by
Reynolds in 1874. He proposed that the effective film thicknesses for the transfer of mo-
mentum, energy, and mass are equal, i.e.,

S = 81‘ = 50 (35_8)
Therefore, Eq. (3.5-7) becomes

(ST N

= Sty Pr = Sty Sc (3.5-9)

Reynolds further assumed that Pr = Sc = 1. Under these circumstances Eq. (3.5-9) reduces
to

g = Sty = Sty (3.5-10)

which is known as the Reynolds analogy. Physical properties in Eq. (3.5-10) must be evaluated
atT =Ty +Tx)/2.

The Reynolds analogy is reasonably valid for gas systems but should not be considered for
liquid systems.
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3.5.2 The Chilton-Colburn Analogy

In the Chilton-Colburn analogy the relationships between the effective film thicknesses are
expressed as

8 8
—=pl3 5= Sc!/3 (3.5-11)

1 c

Substitution of Eq. (3.5-11) into Eq. (3.5-7) yields

g =Sty Pr?3 = jy (3.5-12)

and

L =SS = juy (3.5-13)

where jg and jjs are the Colburn j-factors for heat and mass transfer, respectively. Physical
properties in Egs. (3.5-12) and (3.5-13) must be evaluated at T = (T, + T)/2. Note that
Egs. (3.5-12) and (3.5-13) reduce to the Reynolds analogy, Eq. (3.5-10), for fluids with Pr =1
and Sc=1.

The Chilton-Colburn analogy is valid when 0.6 < Pr < 60 and 0.6 < Sc < 3000. However,
even if these criteria are satisfied, the use of the Chilton-Colburn analogy is restricted by the
flow geometry. The validity of the Chilton-Colburn analogy for flow in different geometries
is given in Table 3.4.

Examination of Table 3.4 indicates that the term f/2 is not equal to the Colburn j-factors
in the case of flow around cylinders and spheres. The drag force is the component of the
force in the direction of mean flow and both viscous and pressure forces contribute to this
force*. For flow over a flat plate, the pressure always acts normal to the surface of the plate
and the component of this force in the direction of mean flow is zero. Thus, only viscous
force contributes to the drag force. In the case of curved surfaces, however, the component
of normal force to the surface in the direction of mean flow is not necessarily zero as shown

Table 3.4. Validity of the Chilton-Colburn analogy for various geometries

Flow Geometry Chilton-Colburn Analogy
;.
Flow over a flat plate 5= JH =M
Flow over a cylinder JH=JM
S . Nu>?2
Flow over a sphere JH=Jjm if { Sh 2

f =jg =jm if Re> 10,000 (Smooth pipe)

Flow in a pipe )

4The drag force arising from viscous and pressure forces is called friction (or skin) drag and form drag, respec-
tively.
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Pressure force

Curved surface

Direction of mean flow Pressure force

Flat surface

Figure 3.8. Pressure force acting on curved and flat surfaces.

in Figure 3.8. Therefore, the friction factor for flow over flat plates and for flow inside cir-
cular ducts includes only friction drag, whereas the friction factor for flow around cylinders,
spheres, and other bluff objects includes both friction and form drags. As a result, the f/2
term for flow around cylinders and spheres is greater than the j-factors.

Example 3.4 Water evaporates from a wetted surface of rectangular shape when air at 1 atm
and 35°C is blown over the surface at a velocity of 15 m/s. Heat transfer measurements
indicate that for air at 1 atm and 35 °C the average heat transfer coefficient is given by the
following empirical relation

(h) = 21025
where (k) is in W/m?-K and v, air velocity, is in m/s. Estimate the mass transfer coeffi-
cient and the rate of evaporation of water from the surface if the area is 1.5 m?.
Solution
Physical properties
For water at 35°C (308 K): P** = (0.0562 bar

p = 1.1460 kg/m’

v =16.47 x 1079 m?/s

Cp = 1.005 kI /kg-K

Pr=0.711

Diffusion coefficient of water (A) in air () at 35°C (308 K) is

For air at 35°C (308 K):

308 /2 308 ¥/?
D = (D — —(2.88 x 107°) — —2.81 x 107 m?
(Dap)3og = ( AB)313<313) ( X )(313) X m°/s
The Schmidt number is
v 16.47 x 107
Sc = = =0.586

Dsp  2.81 x 10-5
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Assumption
1. Ideal gas behavior.
Analysis
The use of the Chilton-Colburn analogy, jy = ju, gives

e (h) (Pr)2/3_21ug§<1>r)2/3
¢ pé,, Sc pé\P Sc

Substitution of the values into Eq. (1) gives the average mass transfer coefficient as

21)(15)%°  /0.711
() (21)(15) (

2/3
= =0.105m/s
(1.1460)(1005) \ 0.586

Saturation concentration of water is

o 0.0562

= = =2.19 x 103 kmol/m?
RT ~ (8.314 x 10~2)(35 + 273)

CA,

Therefore, the evaporation rate of water from the surface is

fia = Alke)(ca, — cay) = (1.5)(0.105)(2.19 x 102 — 0) = 3.45 x 10~* kmol/s

NOTATION

A area, m>

Ag  heat transfer area, m
Ay mass transfer area, m
Cp heat capacity at constant pressure, kJ/kg-K
Ci concentration of species i, kmol/m?>

Dap diffusion coefficient for system A-13, m?/s
Fp drag force, N

f friction factor

h heat transfer coefficient, W/m?-K

JjH Chilton-Colburn j-factor for heat transfer

M Chilton-Colburn j-factor for mass transfer
K kinetic energy per unit volume, J/m?>

k thermal conductivity, W/m-K
ke

L

M

N

nj

P

0

2
2

mass transfer coefficient, m/s
length, m

molecular weight, kg/kmol

total molar flux, kmol/mz-s

molar flow rate of species i, kmol/s
pressure, Pa

heat transfer rate, W

)
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heat flux, W/m?

heat flux due to radiation, W/m?
gas constant, J/mol-K

energy generation rate per unit volume, W/m?>
temperature, °C or K

time, s

velocity, m/s

rate of work, W

rectangular coordinate, m
rectangular coordinate, m
rectangular coordinate, m

R R L

thermal diffusivity, m?/s

difference

fictitious film thickness for momentum transfer, m
fictitious film thickness for mass transfer, m
fictitious film thickness for heat transfer, m
emissivity

viscosity, kg/m-s

kinematic viscosity (or momentum diffusivity), m?/s
total momentum flux, N/m?

density, kg/m?>

SIS

(=2}
~

Q™9 =T o

4
Stefan-Boltzmann constant, W/mz-K
Tyx flux of x-momentum in the y-direction, N/m?

Bracket

(a) average value of a
Superscript
sat saturation

Subscripts

A, B species in binary systems

ch characteristic

i species in multicomponent systems
w surface or wall

00 free-stream

Dimensionless Numbers

Nug Nusselt number for heat transfer
Nuy  Nusselt number for mass transfer
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Pr Prandtl number
Re Reynolds number
Sc Schmidt number
Sh Sherwood number

Stg Stanton number for heat transfer
Sty Stanton number for mass transfer
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PROBLEMS

3.1 Your friend claims that humid air causes an increase in the gas consumption of cars.
Do you agree?

3.2 Air at 20°C flows over a flat plate of dimensions 50 cm x 25 cm. If the average heat
transfer coefficient is 250 W/m? K, determine the steady rate of heat transfer from one side
of the plate to air when the plate is maintained at 40 °C.

(Answer: 625 W)

3.3 Airat 15°C flows over a spherical LPG tank of radius 4 m. The outside surface tem-
perature of the tank is 4 °C. If the steady rate of heat transfer from the air to the storage tank
is 62,000 W, determine the average heat transfer coefficient.

(Answer: 28 W/mz-K)

3.4 The volumetric heat generation in a hollow aluminum sphere of inner and outer radii
of 20 cm and 50 cm, respectively, is given by

N =4.5x 10*(1 +0.6r?)

in which 9t is in W/m? and r is the radial coordinate measured in meters. The inner surface
of the sphere is subjected to a uniform heat flux of 15,000 W /m?, while heat is dissipated by
convection to an ambient air at 25 °C through the outer surface with an average heat transfer
coefficient of 150 W/m?-K. Determine the temperature of the outer surface under steady
conditions.

(Answer: 92.3°C)
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3.5 In the system shown below, the rate of heat generation is 800 W/m?> in Region A,
which is perfectly insulated on the left-hand side. Given the conditions indicated in the
figure, calculate the heat flux and temperature at the right-hand side, i.e., at x = 100 cm,
under steady-state conditions.

Rate of heat generation = 800 W / m3

J <h>=15W/m2.K

Region A Region B

Tip = 20°C

[ 40cm 60cm —— >

’—»x

(Answer: 320 W/m?2, 41.3°C)

3.6 Uniform energy generation rate per unit volume at 9t = 2.4 x 10° W/m? is occurring
within a spherical nuclear fuel element of 20 cm diameter. Under steady conditions the
temperature distribution is given by

T =900 — 10,0002

where T is in degrees Celsius and r is in meters.

a) Determine the thermal conductivity of the nuclear fuel element.
b) What is the average heat transfer coefficient at the surface of the sphere if the ambient
temperature is 35 °C?

(Answer: a) 40 W/m-K  b) 104.6 W/m?-K)
3.7 A plane wall, with a surface area of 30 m? and a thickness of 20 cm, separates a hot

fluid at a temperature of 170°C from a cold fluid at 15°C. Under steady-state conditions,
the temperature distribution across the wall is given by

T = 150 — 600x — 50x>

where x is the distance measured from the hot wall in meters and 7 is the temperature in
degrees Celsius. If the thermal conductivity of the wall is 10 W/m-K:

a) Calculate the average heat transfer coefficients at the hot and cold surfaces.
b) Determine the rate of energy generation within the wall.

(Answer: a) (h) o =300 W/m2-K, (h)corq =477 W/m2-K  b) 6000 W)

3.8 Derive Eq. (3.2-13).
(Hint: Express 77 and 7> in terms of (7').)
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3.9 It is also possible to interpret the Nusselt and Sherwood numbers as dimensionless
temperature and concentration gradients, respectively. Show that the Nusselt and Sherwood
numbers can be expressed as

— T .
Ny —OT/0),0
(Tw - Too)/Lch
and
Sh —(9ca/0y)y=0

~ (ca, —cay)/Len
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EVALUATION OF TRANSFER COEFFICIENTS:
ENGINEERING CORRELATIONS

Since most engineering problems do not have theoretical solutions, a large portion of en-
gineering analysis is concerned with experimental information, which is usually expressed
in terms of engineering correlations. These correlations, however, are limited to a specific
geometry, equipment configuration, boundary conditions, and substance. As a result, the val-
ues obtained from correlations are not exact and it is possible to obtain two different answers
from two different correlations for the same problem. Therefore, one should keep in mind that
the use of a correlation introduces an error in the order of £25%.

Engineering correlations are given in terms of dimensionless numbers. For example, the
correlations used to determine the friction factor, heat transfer coefficient, and mass transfer
coefficient are generally expressed in the form

f=rfRe)
Nu = Nu(Re, Pr)
Sh = Sh(Re, Sc)

In this chapter, some of the available correlations for momentum, energy, and mass trans-
port in different geometries will be presented. Emphasis will be placed on the calculations of
force (or rate of work), heat transfer rate, and mass transfer rate under steady conditions.

4.1 REFERENCE TEMPERATURE AND CONCENTRATION

The evaluation of the dimensionless numbers that appear in the correlation requires the phys-
ical properties of the fluid to be known or estimated. These properties, such as density and
viscosity, depend on temperature and/or concentration. Temperature and concentration, on
the other hand, vary as a function of position. Two commonly used reference temperatures
and concentrations are the bulk temperature or concentration and the film temperature or
concentration.

4.1.1 Bulk Temperature and Concentration

For flow inside pipes, the bulk temperature or concentration at a particular location in the
pipe is the average temperature or concentration if the fluid were thoroughly mixed, some-
times called the mixing-cup temperature or concentration. The bulk temperature and the bulk

59
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concentration are denoted by 7} and cp, respectively, and are defined by

// v, T dA // vycdA
2 JIA (4.1-1)

Tp=—L— — and cp =
//vndA //vndA
A A

where vj, is the component of velocity in the direction of mean flow.

For the case of flow past bodies immersed in an infinite fluid, the bulk temperature and bulk
concentration become the free stream temperature and free stream concentration, respectively,
ie.,

} For flow over submerged objects (4.1-2)
Ch = Coo

4.1.2 Film Temperature and Concentration

The film temperature, Ty, and the film concentration, c y, are defined as the arithmetic average
of the bulk and surface values, i.e.,

_Tb+Tw

Cp + Cy
Tf > = —

and cr= 5

where subscript w represents the conditions at the surface or the wall.

(4.1-3)

4.2 FLOW PAST A FLAT PLATE

Let us consider a flat plate suspended in a uniform stream of velocity vy, and temperature
T as shown in Figure 3.1. The length of the plate in the direction of flow is L and its width
is W. The local values of the friction factor, the Nusselt number, and the Sherwood number
are given in Table 4.1 for both laminar and turbulent flow conditions. The term Re, is the
Reynolds number based on the distance x, and defined by

XVUsof  XVso
7 v

The expression for the friction factor under laminar flow conditions, Eq. (A) in Table 4.1,
can be obtained analytically from the solution of the equations of change. Blausius (1908) was

Re, =

4.2-1)

Table 4.1. The local values of the friction factor, the Nusselt number,
and the Sherwood number for flow over a flat plate

Laminar Turbulent
fe 0.664Re; /2 (A)  0.0592Re; /? (D)
Nuy  0332Rel?Pr!/3  (B)  0.0296Rer> prl/3 (E)
Shy  0332Re?sc!/3  (©  0.0296Rey’sc!/3 (B

Reyx <500,000

5x 10° < Rey < 107

0.6 <Pr<60

0.6 < Sc < 3000
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the first to obtain this solution using a mathematical technique called the similarity solution
or the method of combination of variables. Note that Eqgs. (B) and (C) in Table 4.1 can be
obtained from Eq. (A) by using the Chilton-Colburn analogy. Since analytical solutions are
impossible for turbulent flow, Eq. (D) in Table 4.1 is obtained experimentally. The use of this
equation in the Chilton-Colburn analogy yields Egs. (E) and (F).

The average values of the friction factor, the Nusselt number, and the Sherwood number
can be obtained from the local values by the application of the mean value theorem. In many
cases, however, the transition from laminar to turbulent flow will occur on the plate. In this
case, both the laminar and turbulent flow regions must be taken into account in calculating
the average values. For example, if the transition takes place at x., where 0 < x, < L, then
the average friction factor is given by

1 X L
(f)= Z |:/ (fx)iamdx +/ (fx)wurb dxi| (4.2-2)
0 Xe
Change of variable from x to Re, reduces Eq. (4.2-2) to
1 Re, Rey,
(f)=5— |:/ (fx)iam d Rey +/ (fx)turbdRex] (4.2-3)
Rer LJo Re,

where Re., the Reynolds number at the point of transition, and Rey, the Reynolds number
based on the length of the plate, are defined by

Re, = ~¢¥ (4.2-4)
V
L
Re; = —o° (4.2-5)
v

Substitution of Egs. (A) and (D) in Table 4.1 into Eq. (4.2-3) gives

1/2 4/5
0.074 1.328Re. " — 0.074Re,
f) = 1/5 + - ‘ (42'6)
Re,’ Rer
Taking Re. = 500,000 results in
0.074 1743
ReL ReL

The average values of the friction factor, the Nusselt number, and the Sherwood number
can be calculated in a similar way for a variety of flow conditions. The results are given in
Table 4.2. In these correlations all physical properties must be evaluated at the film tempera-
ture.

Once the average values of the Nusselt and Sherwood numbers are determined, the average
values of the heat and mass transfer coefficients are calculated from

(h) = <Nz>k (4.2-8)
(ko) = SN Pap (4.2-9)

L



Table 4.2. Correlations for flow past a flat plate

Laminar Laminar and Turbulent Turbulent
(f)y  1328Re;'/? (A 0074Re;'°—1743Re;! (D) 0.074Re, ' G)
(Nu)  0.664Re)/*Prl/3  (B)  (0.037Re}” —871)Pr!/3 (E) 0.037Re} Prl3 (H)
(Sh)  0.664Re)/*Scl3 (@  (0.037Re)” —871)Sc!/3 ) 0.037Re}’sc!A ()
Re; < 500,000 5x 10° <Re; < 108 Re; > 108
0.6 < Pr< 60 0.6 < Sc < 3000

c9
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On the other hand, the rate of momentum transfer, i.e., the drag force, the rate of heat
transfer, and the rate of mass transfer of species .A from one side of the plate are calculated as

Fp=(WL) (%pv&) (f) (4.2-10)
0 = (WL)(h)|Ty — Too| (4.2-11)
iia = WL)(ke)lea, —canl] (4.2-12)

Engineering problems associated with the flow of a fluid over a flat plate are classified as
follows:

o Calculate the transfer rate; given the physical properties, the velocity of the fluid, and
the dimensions of the plate.

e Calculate the length of the plate in the direction of flow; given the physical properties,
the velocity of the fluid, and the transfer rate.

e Calculate the fluid velocity; given the dimensions of the plate, the transfer rate, and the
physical properties of the fluid.

Example 4.1 Water at 20 °C flows over a 2 m long flat plate with a velocity of 3 m/s. The
width of the plate is 1 m. Calculate the drag force on one side of the plate.

Solution
Physical properties
For water at 20°C (293 K): Z j?:)fi/ T;_6 /s
Assumption
1. Steady-state conditions prevail.
Analysis

To determine which correlation to use for calculating the average friction factor (f), we
must first determine the Reynolds number:
_ Lup _ Q3)(999) _
n 1001 x 106
Therefore, both laminar and turbulent flow regions exist on the plate. The use of Eq. (D) in
Table 4.2 gives the friction factor as
_0.074 1743 0.074 1743
B Rei/S Re; (6 x 1091/5 6 x 10°

Re;, 6 x 10°

=3x1073

The drag force can then be calculated from Eq. (4.2-10) as

Fp= (WL)Gp U§O> (fy=(x 2)[%(999)(3)2](3 x 1073) =27N
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Example 4.2 Air at a temperature of 25 °C flows over a 30 cm wide electric resistance flat
plate heater with a velocity of 13 m/s. The heater dissipates energy into the air at a constant
rate of 2730 W/m?. How long must the heater be in the direction of flow for the surface
temperature not to exceed 155°C?

Solution
Physical properties
The film temperature is (25 + 155)/2 =90°C.

v =21.95x 107 m?/s
For air at 90°C (363 K) and 1 atm: { k = 30.58 x 1073 W/m-K
Pr=0.704

Assumptions

1. Steady-state conditions prevail.
2. Both laminar and turbulent flow regions exist over the plate.

Analysis

The average convection heat transfer coefficient can be calculated from Newton’s law of
cooling as

_qw 2730

CTw—Tx 155-25
To determine which correlation to use, it is necessary to calculate the Reynolds number.
However, the Reynolds number cannot be determined a priori since the length of the heater

is unknown. Therefore, a trial-and-error procedure must be used. Since we assumed that both
laminar and turbulent flow regions exist over the heater, the use of Eq. (E) in Table 4.2 gives

(h) =21 W/m?>-K (1)

h)L
(Nu) = % = (0.037Re;” — 871) Pr'/3
2L 1)L P
_CDL_osr| UIL 1T _gg (0.704)'/3 )
30.58 x 103 21.95 x 106
Simplification of Eq. (2) yields
F(Ly=L—199L*°+1.13=0 3)

The length of the heater can be determined from Eq. (3) by using one of the numerical
methods for root finding given in Section A.7.2 in Appendix A. The iteration scheme given
by Eq. (A.7-25) is expressed as
0.02L; 1 F(Lr—1)
F(1.01Lg—1) — F(0.99Ly—1)

“)

L= Lk

Assuming L*3 ~ L, a starting value can be estimated as L, = 1.141. The iterations are
given in the table below:
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k Ly

0 1.141
1 1.249
2 1.252
3 1.252

Thus, the length of the plate is approximately 1.25 m. Now it is necessary to check the
validity of the second assumption:

(1.25)(13)

= _74x10° Checks!
L= 3195 % 10-6 x = heeks

Example 4.3 A water storage tank open to the atmosphere is 12 m in length and 6 m in
width. The water and the surrounding air are at a temperature of 25°C, and the relative
humidity of the air is 60%. If the wind blows at a velocity of 2 m/s along the long side of
the tank, what is the steady rate of water loss due to evaporation from the surface?

Solution
Physical properties
For air at 25°C (298 K): v = 15.54 x 107° m?/s
Diffusion coefficient of water (A) in air (B) at 25°C (298 K):
3/2 208\ 3/2
(Dag)2os = (DAB)313<E) = (2.88 x 10_5)(%) =2.79 x 107> m?/s
The Schmidt number is

v 1554 % 10°°

Sc = =
‘= Dis 279x10-3

=0.56

For water at 25°C (298 K): P** =0.03165 bar
Assumptions

1. Steady-state conditions prevail.
2. Ideal gas behavior.

Analysis
To determine which correlation to use, we must first calculate the Reynolds number:

Lvs (122

— _ 6
v 1554 x 1076 X0

Re; =

Since both laminar and turbulent conditions exist, the use of Eq. (F) in Table 4.2 gives

(Sh) = (0.037Re;’> — 871) Sc!/3 = [0.037(1.54 x 106)*/ —871](0.56)"/> = 2000
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Therefore, the average mass transfer coefficient is

(Sh)Dap _ (2000)(2.79 x 107°)

=4.65x 1073 m/s
L 12

(kc> =

The number of moles of H,O (.A) evaporated in unit time is

na=Alke)[cX" = calair)] = Atke) (c" — 0.6¢%") = 0.4A (k) ¢

The saturation concentration of water, cSA‘” , 18

w PY 0.03165

SF — = =1.28 x 1072 kmol/m?
RT ~ (8.314 x 1072)(25 + 273)

Hence, the rate of water loss is
g =naMa=04Ak:) " Ma
= (0.4)(12 x 6)(4.65 x 107?)(1.28 x 1072)(18)(3600) = 11.1 kg/h

4.3 FLOW PAST A SINGLE SPHERE

Consider a single sphere immersed in an infinite fluid. We may consider two exactly equiva-
lent cases: (i) the sphere is stagnant, the fluid flows over the sphere, (i) the fluid is stagnant,
the sphere moves through the fluid.

According to Newton’s second law of motion, the balance of forces acting on a single
spherical particle of diameter D p, falling in a stagnant fluid with a constant terminal velocity
vy, is expressed in the form

Gravitational force = Buoyancy + Drag force (4.3-1)

D3 D3 D2\ (1
(”6P)ppg= (”6”)pg+ (ﬂ4p)<§pv?)f 43-2)

where pp and p represent the densities of the particle and fluid, respectively. In the literature,
the friction factor f is also called the drag coefficient and is denoted by Cp. Simplification
of Eq. (4.3-2) gives

or,

2 _48Dplpp —p)

fu; 3 p (4.3-3)

Equation (4.3-3) can be rearranged in dimensionless form as

4
fRep = S Ar (4.3-4)
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where the Reynolds number, Re p, and the Archimedes number, Ar, are defined by

D
Rep = —LtP (4.3-5)
7
D3 -
Ar = W (4.3-6)

Engineering problems associated with the motion of spherical particles in fluids are classified
as follows:

e Calculate the terminal velocity, v;; given the viscosity of fluid, w, and the particle diam-
eter, Dp.

e Calculate the particle diameter, Dp; given the viscosity of the fluid, u, and the terminal
velocity, v;.

e Calculate the fluid viscosity, u; given the particle diameter, D p, and the terminal veloc-
ity, v;.

The difficulty in these problems arises from the fact that the friction factor f in Eq. (4.3-4) is
a complex function of the Reynolds number and the Reynolds number cannot be determined
a priori.

4.3.1 Friction Factor Correlations

For flow of a sphere through a stagnant fluid, Lapple and Shepherd (1940) presented their
experimental data in the form of f versus Rep. Their data can be approximated as

24
= Rep <2 (4.3-7)
Rep
18.5 -
f= RS 2 <Rep <500 (4.3-8)
f=044 500 <Rep <2 x 10° (4.3-9)

Equations (4.3-7) and (4.3-9) are generally referred to as Stokes’ law and Newton’s law,
respectively.

In recent years, efforts have been directed to obtain a single comprehensive equation for the
friction factor that covers the entire range of Rep. Turton and Levenspiel (1986) proposed the
following five-constant equation, which correlates the experimental data for Rep <2 x 10°:

24 0.413
f=5 (140173 Re%07) + (4.3-10)

ep 1+16,300Re %

4.3.1.1 Solutions to the engineering problems Solutions to the engineering problems de-
scribed above can now be summarized as follows:
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B Calculate v;; given © and Dp
Substitution of Eq. (4.3-10) into Eq. (4.3-4) gives

0.31Re%
14 16,300Re ;"%

Ar= 18(Rep +0.173Re;*7) + (4.3-11)

Since Eq. (4.3-11) expresses the Archimedes number as a function of the Reynolds number,
calculation of the terminal velocity for a given particle diameter and fluid viscosity requires
an iterative solution. To circumvent this problem, it is necessary to express the Reynolds
number as a function of the Archimedes number. The following explicit expression relating
the Archimedes number to the Reynolds number is proposed by Turton and Clark (1987):

A
Rep = 1—;(1 +0.0579 Ar0412)-1214 (4.3-12)

The procedure to calculate the terminal velocity is as follows:

a) Calculate the Archimedes number from Eq. (4.3-6),

b) Substitute the Archimedes number into Eq. (4.3-12) and determine the Reynolds num-
ber,

¢) Once the Reynolds number is determined, the terminal velocity can be calculated from
the equation

uRep
Vy =
pDp

(4.3-13)

Example 4.4 Calculate the velocities at which a drop of water, 5 mm in diameter, would
fall in air at 20 °C and the same size air bubble would rise through water at 20 °C.

Solution
Physical properties

. . [p =999 kg/m’

For water at 20°C (293 K): {M =1001 x 107° kg/m-s
| . [ p=1.2047 kg/m’

For air at 20°C (293 K): {M =18.17 x 10~® kg/m-s

Analysis

Water droplet falling in air

To determine the terminal velocity of water, it is necessary to calculate the Archimedes
number using Eq. (4.3-6):

D3 — 5 x 1073)3(9.8)(1.2047 —1.2047
Are p&P (PP p)=( X )°(9.8)( )(999 )=4.46x106
u? (18.17 x 1079)2
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The Reynolds number is calculated from Eq. (4.3-12):

A
Rep = (1 +0.0579 Ar’412) 121

4.46 x 10° -
- %[1 +0.0579(4.46 x 106)0412] 71214 _ 353
Hence, the terminal velocity is
wRep  (18.17 x 1079)(3581)
b= = =10.8 m/S
oDp (1.2047)(5 x 1073)
Air bubble rising in water
In this case, the Archimedes number is
D3 — 5% 107%)3(9.8)(999)(1.2047 — 999
1 _ Dbspor = p) _ (5 x 107)°9.8)(999)( ) 1219 % 106

U2 (1001 x 106)2

The minus sign indicates that the motion of the bubble is in the direction opposite to gravity,
i.e., it is rising. The Reynolds number and the terminal velocity are

A
Rep = l—g(l +0.0579 A0412)—1.214

1219 x 10°
a 18

]—14214 — 1825

[1+0.0579(1.219 x 106)04!2

_ uRep (1001 x 1076)(1825)
~ pDp (999)(5 x 1073)

vy =0.37m/s

B Calculate Dp; given u and v,

In this case, Eq. (4.3-4) must be rearranged such that the particle diameter is eliminated. If
both sides of Eq. (4.3-4) are divided by Re3p, the result is

fo_
Re; =Y (4.3-14)

where Y, which is independent of Dp, is a dimensionless number defined by

4 _
Y =~ M (4.3-15)
3 o)
Substitution of Eq. (4.3-10) into Eq. (4.3-14) yields
24 0.413
Y = ——(1+0.173Re}*7) + (4.3-16)

Re?, Rep +16,300Re ;%
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Since Eq. (4.3-16) expresses Y as a function of the Reynolds number, calculation of the
particle diameter for a given terminal velocity and fluid viscosity requires an iterative solution.
To circumvent this problem, the following explicit expression relating Y to the Reynolds
number is proposed by Tosun and Aksahin (1992) as

(Y
Rep = ") (4.3-17)
(6 Y13/20 _ y6/11)17/20
where W (Y) is given by
0.052 0.007 0.00019
\IJ(Y):exp<3.15+ A + Y12~y ) (4.3-18)

The procedure to calculate the particle diameter is as follows:

a) Calculate Y from Eq. (4.3-15),

b) Substitute Y into Egs. (4.3-17) and (4.3-18) and determine Rep,

¢) Once the Reynolds number is determined, the particle diameter can be calculated from
the equation

_ Rep
PU;

Dp

(4.3-19)

Example 4.5 A gravity settling chamber is one of the diverse range of equipment used to
remove particulate solids from gas streams. In a settling chamber, the entering gas stream
encounters a large and abrupt increase in cross-sectional area as shown in the figure below.
As a result of the sharp decrease in the gas velocity, the solid particles settle down with
gravity. In practice, the gas velocity through the chamber should be kept below 3 m/s to
prevent the re-entrainment of the settled particles.

| L .

N

w
Gas inlet —> \ ——> Gas outlet

— T —

Spherical dust particles having a density of 2200 kg/m> are to be separated from an air
stream at a temperature of 25 °C. Determine the diameter of the smallest particle that can be
removed in a settling chamber 7 m long, 2 m wide, and 1 m high.

Solution
Physical properties

p = 1.1845 kg/m’>

For air at 25°C (298 K): _6
w=18.41 x 107° kg/m-s
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Analysis

For the minimum particle size that can be removed with 100% efficiency, the time required
for this particle to fall a distance H must be equal to the time required to move this particle
horizontally a distance L, i.e.,

_H_ L _(H
==t = w=(7)

where (v) represents the average gas velocity in the settling chamber. Taking (v) =3 m/s,
the settling velocity of the particles can be calculated as

vy = (3)(%) =043 m/s

The value of Y is calculated from Eq. (4.3-15) as

_Aglpp— P 4 (9.8)(2200 — 1.1845)(18.41 x 1079)

Y =
3 o2} 3 (1.1845)2(0.43)3

=4.74

Substitution of the value of Y into Eq. (4.3-18) gives

0.052 0.007 0.00019
lI’(Y):exp<3.15+ )

yl/4 + yl2 —  y3/4
0.052 n 0.007 0.00019 | 43
@.74H14 T @aH12 4434 T

= exp|:3.15 I

Therefore, the Reynolds number and the particle diameter are
_ v (Y) . 24.3
- (6yl3/20 _ Y6/11)17/20 - [6(4.74)13/20 _ (4.74)6/11]17/20

_ uRep  (18.41 x 1070)(2.55)
opue (1.1845)(0.43)

Rep =2.55

=92x10°%m

Dp

B Calculate u; given Dp and v,

In this case, Eq. (4.3-4) must be rearranged so that the fluid viscosity can be eliminated. If
both sides of Eq. (4.3-4) are divided by Re%), the result is

f=X (4.3-20)
where X, which is independent of p, is a dimensionless number defined by
4 ¢D -
X =2 Lf’zp) (4.3-21)
3 P
Substitution of Eq. (4.3-10) into Eq. (4.3-20) gives
24 0.413
X=——(140.173Re%*") + (4.3-22)

~ Rep 1+ 16,300Re ;%
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Since Eq. (4.3-22) expresses X as a function of the Reynolds number, calculation of the fluid
viscosity for a given terminal velocity and particle diameter requires an iterative solution. To
circumvent this problem, the following explicit expression relating X to the Reynolds number
is proposed by Tosun and Aksahin (1992):

24
Rep = Y(l + 120X ~20/11y4/11 X>0.5 (4.3-23)

The procedure to calculate the fluid viscosity is as follows:

a) Calculate X from Eq. (4.3-21),
b) Substitute X into Eq. (4.3-23) and determine the Reynolds number,

¢) Once the Reynolds number is determined, the fluid viscosity can be calculated from the
equation

D
p= 2P (4.3-24)
Rep

Example 4.6 One way of measuring fluid viscosity is to use a falling ball viscometer in
which a spherical ball of known density is dropped into a fluid-filled graduated cylinder and
the time of fall for the ball for a specified distance is recorded.

A spherical ball, 5 mm in diameter, has a density of 1000 kg/m?. It falls through a liquid
of density 910 kg/m?> at 25°C and travels a distance of 10 cm in 1.8 min. Determine the
viscosity of the liquid.

Solution

The terminal velocity of the sphere is

Distance 10 x 102
Time (1.8)(60)

The value of X is calculated from Eq. (4.3-21) as

v = =9.26 x 10™* m/s

_4gDplpp—p) 4 (98)(5x 1073)(1000 — 910)

X
3 o v? 3 (910)(9.26 x 10—4)2

=7536

Substitution of the value of X into Eq. (4.3-23) gives the Reynolds number as

24 24
Rep = (1 + 120x 20/ gl + 120(7536) 2/ =32 % 1073

Hence, the viscosity of the fluid is

Dpv;p (5% 1073)(9.26 x 1074)(910)
/_,L: =

Rep 3.2 % 103 = 1.32kg/ms
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4.3.1.2 Deviations from ideal behavior It should be noted that Eqgs. (4.3-4) and (4.3-10)
are only valid for a single spherical particle falling in an unbounded fluid. The presence of
container walls and other particles as well as any deviations from spherical shape affect the
terminal velocity of particles. For example, as a result of the upflow of displaced fluid in a
suspension of uniform particles, the settling velocity of particles in suspension is slower than
the terminal velocity of a single particle of the same size. The most general empirical equation
relating the settling velocity to the volume fraction of particles, w, is given by

v; (suspension) — (1 — )" (4.3-25)

vy (single sphere)

where the exponent n depends on the Reynolds number based on the terminal velocity of a
particle in an unbounded fluid. In the literature, values of n are reported as

_ {4.65—5.00 Rep <2 (4326)

2.30—12.65 500 <Rep <2x10°

Particle shape is another factor affecting terminal velocity. The terminal velocity of a non-
spherical particle is less than that of a spherical one by a factor of sphericity, ¢, i.e.,

vy (non-spherical) B

p <1 4.3-27)
vy (spherical)

Sphericity is defined as the ratio of the surface area of a sphere having the same volume as
the non-spherical particle to the actual surface area of the particle.
4.3.2 Heat Transfer Correlations

When a sphere is immersed in an infinite stagnant fluid, the analytical solution for steady-state
conduction is possible! and the result is expressed in the form

Nu=2 (4.3-28)

In the case of fluid motion, the contribution of the convective mechanism must be included
in Eq. (4.3-28). Correlations for including convective heat transfer are as follows:
Ranz-Marshall correlation

Ranz and Marshall (1952) proposed the following correlation for constant surface tempera-
ture:

Nu=2+0.6Re}/ > Pr!/3 (4.3-29)

All properties in Eq. (4.3-29) must be evaluated at the film temperature.

I'See Example 8.12 in Chapter 8.
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Whitaker correlation

Whitaker (1972) considered heat transfer from the sphere to be a result of two parallel
processes occurring simultaneously. He assumed that the laminar and turbulent contributions
are additive and proposed the following equation:

Nu =2+ (0.4Re}/* + 0.06Re? ) PrO (oo /1) /* (4.3-30)

All properties except (i, should be evaluated at 7. Equation (4.3-30) is valid for

35<Rep <7.6x10*  071<Pr<380  1.0< foo/fhw < 3.2

4.3.2.1 Calculation of the heat transfer rate  Once the average heat transfer coefficient is
estimated by using correlations, the rate of heat transferred is calculated as

0 = (7D3) ()| Ty — T (4.3-31)

Example 4.7 An instrument is enclosed in a protective spherical shell, 5 cm in diameter,
and submerged in a river to measure the concentrations of pollutants. The temperature and
the velocity of the river are 10°C and 1.2 m/s, respectively. To prevent any damage to the
instrument as a result of the low river temperature, the surface temperature is kept constant
at 32 °C by installing electrical heaters in the protective shell. Calculate the electrical power
dissipated under steady conditions.

Solution

Physical properties

p = 1000 kg/m?

= 1304 x 1076 kg/m-s

k=587 x 1073 W/m-K
Pr=9.32

For water at 10°C (283 K):

For water at 32 °C (305 K): u =769 x 10~° kg/m-s
Analysis

System: Protective shell

Under steady conditions, the electrical power dissipated is equal to the rate of heat loss from
the shell surface to the river. The rate of heat loss is given by

0 = (mD3)(h) (T — Two) (1)

To determine (A), it is necessary to calculate the Reynolds number

_ Dpvwep _ (5% 1072)(1.2)(1000) Gl

R 2
er 0 1304 x 10-6 @
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The Whitaker correlation, Eq. (4.3-30), gives

1/2 2/3
Nu =2+ (0.4Re}/* + 0.06Re? ) Pr* (puoo /p1w) /*
or,

Nu =2+ [0.4(4.6 x 10%)!/% +0.06(4.6 x 10%)*3](9.32)*

1304 x 1070\ /4
—_— =456 3
X<769x10—6) ©)
The average heat transfer coefficient is
(h)y =N £ (456) S 1 5353 W/m?>-K 4)
=] ulf — =] — = m--
Dp 5 % 1072

Therefore, the rate of heat loss is calculated from Eq. (1) as

0 =[n(5x107%?](5353)(32 — 10) =925 W (5)

4.3.3 Mass Transfer Correlations

When a sphere is immersed in an infinite stagnant fluid, the analytical solution for steady-state
diffusion is possible? and the result is expressed in the form

Sh=2 (4.3-32)

In the case of fluid motion, the contribution of convection must be taken into consideration.
Correlations for convective mass transfer are as follows:

Ranz-Marshall correlation

For constant surface composition and low mass transfer rates, Eq. (4.3-29) may be applied to
mass transfer problems simply by replacing Nu and Pr with Sh and Sc, respectively, i.e.,

Sh=2+0.6Re}/*Sc!/3 (4.3-33)

Equation (4.3-33) is valid for
2 < Rep <200 0.6 <Sc<27

Frossling correlation

Frossling (1938) proposed the following correlation:

Sh=2+0.552Re}/*Sc!/3 (4.3-34)

Equation (4.3-34) is valid for

2 <Rep <800 0.6 <Sc<2.7

2See Example 8.19 in Chapter 8.
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Steinberger and Treybal (1960) modified the Frossling correlation as

Sh =2+ 0.552Re%> Sc!/3 (4.3-35)

which is valid for
1500 < Rep < 12,000 0.6 <Sc<1.85

Steinberger-Treybal correlation

The correlation originally proposed by Steinberger and Treybal (1960) includes a correction
term for natural convection. The lack of experimental data, however, makes this term very
difficult to calculate in most cases. The effect of natural convection becomes negligible when
the Reynolds number is high, and the Steinberger-Treybal correlation reduces to

Sh = 0.347Re%%2 Sc!/3 (4.3-36)

Equation (4.3-36) is recommended for liquids when

2000 < Rep < 16,900

4.3.3.1 Calculation of the mass transfer rate  Once the average mass transfer coefficient is
estimated by using correlations, the rate of mass of species A transferred is calculated as

g = (D3 (ke)lea, — canlMa (4.3-37)

Example 4.8 A solid sphere of benzoic acid (p = 1267 kg/m>) with a diameter of 12 mm
is dropped into a long cylindrical tank filled with pure water at 25 °C. If the height of the
tank is 3 m, determine the amount of benzoic acid dissolved from the sphere when it reaches
the bottom of the tank. The saturation solubility of benzoic acid in water is 3.412 kg/m°.

Solution

Physical properties
p = 1000 kg/m>

For water (B) at 25°C (298 K): { v =892 x 107° kg/m-s
Dap =121 x 1072 m?/s

The Schmidt number is

1% 892 x 1076

pDap  (1000)(1.21 x 10~?)

Sc

Assumptions

1. Initial acceleration period is negligible and the sphere reaches its terminal velocity
instantaneously.

2. Diameter of the sphere does not change appreciably. Thus, the Reynolds number and
the terminal velocity remain constant.
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3. Steady-state conditions prevail.
4. Physical properties of water do not change as a result of mass transfer.

Analysis

To determine the terminal velocity of the benzoic acid sphere, it is necessary to calculate the
Archimedes number using Eq. (4.3-6):

3 D3go(pp — p) (12 x 107%)(9.8)(1000) (1267 — 1000)

A =5.68 x 10°
g o (892 x 10-5)2 .

The Reynolds number is calculated from Eq. (4.3-12):

A

Rep = 1—;(1 +0.0579 Ar0412)—1.214
5.68 x 106 _
= %[1 +0.0579(5.68 x 109°412] 7121 — 4056
Hence, the terminal velocity is
R 892 x 107)(4056
v,—M ep (892 x )( )=O.3m/s

~ pDp  (1000)(12 x 10-3)

Since the benzoic acid sphere falls the distance of 3 m with a velocity of 0.3 m/s, the falling
time is

Distance 3
t=—=—=10s
Time 0.3

The Sherwood number is calculated from the Steinberger-Treybal correlation, Eq. (4.3-36),
as

Sh =0.347Re%%? Sc!/3 = 0.347(4056)%0%(737) /3 = 541

The average mass transfer coefficient is

Dag 1.21 x 107° o
k) =Sh( == | = (541)[ =————- ) =5.46x 10
(ke) (DP) ( )( U)o 2 ) X m/s

The rate of transfer of benzoic acid (species .A) to water is calculated by using Eq. (4.3-37):
i = (7 D) (ke)(ca, — ca)Ma = (T Dp) (ke)(pa, — pa)
= [m(12 x 107%)?](5.46 x 107°)(3.412 — 0) = 8.43 x 10~® kg/s
The amount of benzoic acid dissolved in 10 s is

Ma=rmast=(843x107)(10) =8.43 x 10~ kg
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Verification of assumption # 2

The initial mass of the benzoic acid sphere, M,, is
12 x1073)3
M, = [%](1267) — 1.146 x 10~ kg

The percent decrease in the mass of the sphere is given by

8.43 x 1077
1.146 x 103

) x 100 =0.074%

Therefore, the assumed constancy of Dp and v, is justified.

4.4 FLOW NORMAL TO A SINGLE CYLINDER

4.4.1 Friction Factor Correlations

For cross flow over an infinitely long circular cylinder, Lapple and Shepherd (1940) presented
their experimental data in the form of f versus Rep, the Reynolds number based on the
diameter of the cylinder. Their data can be approximated as

6.18

f= R8/9 Rep <2 (4.4-1)
€

f=12  10*<Rep <1.5x 10° (4.4-2)

The friction factor f in Eqgs. (4.4-1) and (4.4-2) is based on the projected area of a cylinder,
i.e., diameter times length, and Rep is defined by

Dvusp
n

Rep = (4.4-3)

Tosun and Aksahin (1992) proposed the following single equation for the friction factor
that covers the entire range of the Reynolds number in the form

6.18

f=
e8/9

(1+0.36Rey,")"” Rep < 1.5 x 10° (4.4-4)
R

Once the friction factor is determined, the drag force is calculated from

Fp= (DL)(% 0 vgo) f (4.4-5)

Example 4.9 A distillation column has an outside diameter of 80 cm and a height of 10 m.
Calculate the drag force exerted by air on the column if the wind speed is 2.5 m/s.
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Solution
Physical properties

For air at 25°C (298 K): Z _ i';'i‘isxk% r_nz o
Assumption
1. Air temperature is 25 °C.
Analysis
From Eq. (4.4-3) the Reynolds number is

Dvsop  (0.8)(2.5)(1.1845)

_ 5
0 1841 x 106~ 122x10

Rep =

The use of Eq. (4.4-4) gives the friction factor as

6.18
f=—55(1+036Re}")*’
Re ),

6.18

= (35 syl +036(1.29 x 109 = 12
. X

Therefore, the drag force is calculated from Eq. (4.4-5) as

Fp= (DL)(%,O vgo>f = (0.8 x 10)[%(1.1845)(2.5)2}(1.2) —355N

4.4.2 Heat Transfer Correlations

As stated in Section 4.3.2, the analytical solution for steady-state conduction from a sphere
to a stagnant medium gives Nu = 2. Therefore, the correlations for heat transfer in spheri-
cal geometry require that Nu — 2 as Re — 0. In the case of a single cylinder, however, no
solution for the case of steady-state conduction exists. Hence, it is required that Nu — 0 as
Re — 0. The following heat transfer correlations are available in this case:

Whitaker correlation

Whitaker (1972) proposed a correlation in the form

Nu = (0.4Re})* + 0.06Re 7)) PrO (oo /) /4 (4.4-6)

in which all properties except (., are evaluated at T,. Equation (4.4-6) is valid for

1LOKRep <1.0x10°  0.67<Pr<300  0.25< fhoo/tw < 5.2
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Table 4.3. Constants of Eq. (4.4-7) for the circular
cylinder in cross flow

Rep C m

1-40 0.75 0.4
40-1000 0.51 0.5

1 x 103-2 x 10° 0.26 0.6
2 x 1091 x 100 0.076 0.7

Zhukauskas correlation

The correlation proposed by Zhukauskas (1972) is given by

Nu = CRe’; Pr" (Pro / Pr,)1/4 (4.4-7)

where

_ [0.37 if Pr<10
~10.36 if Pr> 10

and the values of C and m are given in Table 4.3. All properties except Pr,, should be evalu-
ated at T, in Eq. (4.4-7).

Churchill-Bernstein correlation

Churchill and Bernstein (1977) proposed a single comprehensive equation that covers the
entire range of Rep for which data are available, as well as for a wide range of Pr. This
equation is in the form

4/5
Nu=0.3+ 0.62Rey"Pr!” 14 (—2ep 1 (4.4-8)
T 0.4/ Pr)2B/A 282,000 s

where all properties are evaluated at the film temperature. Equation (4.4-8) is recommended
when

Rep Pr> 0.2

4.4.2.1 Calculation of the heat transfer rate  Once the average heat transfer coefficient is
estimated by using correlations, the rate of heat transferred is calculated as

Q= @DL){(h)|Ty — Teo (4.4-9)

Example 4.10 Assume that a person can be approximated as a cylinder of 0.3 m diameter
and 1.8 m height with a surface temperature of 30 °C. Calculate the rate of heat loss from
the body while this person is subjected to a 4 m/s wind with a temperature of —10°C.
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Solution

Physical properties

The film temperature is (30 — 10)/2 =10°C

w=16.7 x 107% kg/m-s
p=12.44 x 107 m?/s
k=23.28 x 1073 W/m-K
Pr=0.72

For air at —10°C (263 K):

v=14.18 x 107 m?/s
For air at 10°C (280 K): { k =24.86 x 1073 W/m-K
Pr=0.714

w=18.64 x 107° kg/m-s

For air at 30°C (303 K):
or air at 3 (303 K) Pr— 071

Assumption
1. Steady-state conditions prevail.
Analysis
The rate of heat loss from the body can be calculated from Eq. (4.4-9):

Q= @DL)(h)(Ty — Teo) (D

Determination of (k) in Eq. (1) requires the Reynolds number to be known. The Reynolds
numbers at 7o, and Ty are

Dv 0.3)4)

t Tw=-10°C Rep= = =9.65 x 10*
at oo °p 12.44 x 106 *
D 0.3)(4
at Ty =10°C Rep—2¥0_ _OIO 540, 10
14.18 x 106

Whitaker correlation
The use of Eq. (4.4-6) gives the Nusselt number as

Nu = (0.4Re}/* + 0.06Re ) Pr* (oo /ptw) /*

16.7 x 1076 )‘/4

= [0.4(9.65 x 1012 +0.06 (9.65 x 101)%/3](0.72)%4( ————
[049.65 > 1077 +0.06 (9.65 x 1097|072 Fo== =

=214

Hence, the average heat transfer coefficient is

-3
(h) = Nu(f) = (214)<M) —16.6 W/m2-K
D 03
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Substitution of this result into Eq. (1) gives the rate of heat loss as
0= x0.3x 1.8)(16.6)[30 — (—10)] =1126 W

Zhukauskas correlation

For Rep = 9.65 x 10% and Pr < 10, n = 0.37, and from Table 4.3 the constants are C = 0.26
and m = 0.6. Hence, the use of Eq. (4.4-7) gives

Nu = 0.26 Re%s® Pr%%7 (Pry / Pryy) /4

0.72
=0.26(9.65 x 10H26(0.72)%37 (ﬁ) =226

Therefore, the average heat transfer coefficient and the rate of heat loss from the body are
(h) = Nu(%) = (226) (%) =17.5W/m?>-K
0= (7 x 0.3 x 1.8)(17.5)[30 — (—10)] = 1188 W
Churchill-Bernstein correlation
The use of Eq. (4.4-8) gives

4/5
O.62Re;)/2 prl/3 Rep 587
Nu=0.3+ 1+

[1+ (0.4/Pr)2/3]1/4 282,000

4/5
62(8.46 x 1091/2(0.714)1/3 46 x 104\°/8
=03+ 0.62(8.46 x 107 /(0 ) (M) =193

[1+ (0.4/0.714)2/3]1/4 282,000

The average heat transfer coefficient and the rate of heat loss from the body are

-3
(h) = Nu(£> — (193)(M) =16 W/m?.K
D 0.3

0 = (7 x 0.3 x 1.8)(16)[30 — (—10)] = 1086 W

Comment: The rate of heat loss predicted by the Zhukauskas correlation is 9% greater
than that calculated using the Churchill-Bernstein correlation. It is important to note that no
two correlations will give exactly the same result.

4.4.3 Mass Transfer Correlations

Bedingfield and Drew (1950) proposed the following correlation for cross- and parallel-flow
of gases to the cylinder in which mass transfer to or from the ends of the cylinder is not
considered:

Sh=0.281Re} > ScO44 (4.4-10)
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Equation (4.4-10) is valid for
400 < Rep < 25,000 0.6<ScK2.6

For liquids the correlation obtained by Linton and Sherwood (1950) may be used:

Sh =0.281Re%° Sc!/? (4.4-11)

Equation (4.4-11) is valid for

400 < Rep < 25,000 Sc < 3000

4.4.3.1 Calculation of the mass transfer rate  Once the average mass transfer coefficient is
estimated by using correlations, the rate of mass of species .A transferred is calculated as

|rita = ( DL) (ke)lea, — can | Ma | (4.4-12)

where M 4 is the molecular weight of species A.

Example 4.11 A cylindrical pipe of 5 cm outside diameter is covered with a thin layer of
ethanol. Air at 30°C flows normal to the pipe with a velocity of 3 m/s. Determine the
average mass transfer coefficient.

Solution
Physical properties
Diffusion coefficient of ethanol (A) in air (83) at 30°C (303 K) is

303\ %/ 303\ /2
(DaB)303 = (DAB)m(m) = (1.45 x 10—5)(5) =1.38 x 107> m?/s

For air at 30°C (303 K): v =16 x 107 m2/s

The Schmidt number is

" 16 x 107°

DA B 1.38 x 10—5
Assumptions
1. Steady-state conditions prevail.
2. Isothermal system.
Analysis
The Reynolds number is
D 5x107)(3
Rep = 22ee _ OX1079G) _ 557

v 16 x10-6
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The use of the correlation proposed by Bedingfield and Drew, Eq. (4.4-10), gives
Sh=0.281Re}/> Sc®* = 0.281(9375)'/2(1.16)°* =29

Therefore, the average mass transfer coefficient is

D 1.38 x 1073

4.5 FLOW IN CIRCULAR PIPES

The rate of work done, W, to pump a fluid can be determined from the expression
W=n'1W=n’1</VdP) (4.5-1)

where 7 and V are the mass flow rate and the specific volume of the fluid, respectively.
Note that the term in parentheses on the right-hand side of Eq. (4.5-1) is known as the shaft
work in thermodynamics®. For an incompressible fluid, i.e., V = 1/p = constant, Eq. (4.5-1)
simplifies to

W = Q|AP| (4.5-2)

where Q is the volumetric flow rate of the fluid. Combination of Eq. (4.5-2) with Eq. (3.1-11)
gives

Fp(v) = Q|AP| (4.5-3)
or,
1
[(HDL)<§p(v)2)f](v) =Q|AP| (4.5-4)
Expressing the average velocity in terms of the volumetric flow rate
Q
- = 4.5-5
W=t (4.5-5)
reduces Eq. (4.5-4) to
32pLf Q?
|AP| 1D (4.5-6)

Engineering problems associated with pipe flow are classified as follows:

e Determine the pressure drop, |A P/, or the pump size, W; given the volumetric flow rate,
Q, the pipe diameter, D, and the physical properties of the fluid, p and .

e Determine the volumetric flow rate, Q; given the pressure drop, |A P|, the pipe diameter,
D, and the physical properties of the fluid, p and w.

e Determine the pipe diameter, D; given the volumetric flow rate, Q, the pressure drop,
|A P|, and the physical properties of the fluid, p and .

3Work done on the system is considered positive.
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4.5.1 Friction Factor Correlations

4.5.1.1 Laminar flow correlation For laminar flow in a circular pipe, i.e., Re = D{(v)p/u <

2100, the solution of the equations of change gives*
16
=— 4.5-7
f Re (4.5-7)

The friction factor f appearing in Egs. (4.5-6) and (4.5-7) is also called the Fanning fric-
tion factor. However, this is not the only definition for f available in the literature. Another
commonly used definition for f is the Darcy friction factor, fp, which is four times larger
than the Fanning friction factor, i.e., fp =4 f. Therefore, for laminar flow

64

= (4.5-8)

fp
4.5.1.2 Turbulent flow correlation Since no theoretical solution exists for turbulent flow,
the friction factor is usually determined from the Moody chart (1944) in which it is expressed
as a function of the Reynolds number, Re, and the relative pipe wall roughness, ¢/D. Moody
prepared this chart by using the equation proposed by Colebrook (1938)

I <8/D +1.2613> @59
J7 %8 37065 T Re /T >

where ¢ is the surface roughness of the pipe wall in meters.

4.5.1.3 Solutions to the engineering problems
I. Laminar flow

For flow in a pipe, the Reynolds number is defined by

D 4
Re= 2Wp _ 40Q (4.5-10)
m TuD
Substitution of Eq. (4.5-10) into Eq. (4.5-7) yields
4 uD
=K (4.5-11)
pQ
M Calculate |A P| or W; given Q and D
Substitution of Eq. (4.5-11) into Eq. (4.5-6) gives
128uLQ
AP|=——— 4.5-12
AP =3 (4.5-12)

4See Section 9.1.3.1 in Chapter 9.
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The pump size can be calculated from Eq. (4.5-2) as

. 128uLQ?
W= 7’“‘D 4Q (4.5-13)
T
B Calculate Q; given |AP| and D
Rearrangement of Eq. (4.5-12) gives
D* AP
o~ 1271 128|ML | (4.5-14)
B Calculate D; given Q and |AP|
Rearrangement of Eq. (4.5-12) gives
128uLQ\ "4
D— < |ZP|Q_) (4.5-15)
b4

I1. Turbulent flow
W Calculate |AP| or W; given Q and D

For the given values of Q and D, the Reynolds number can be determined using Eq. (4.5-10).
However, when the values of Re and ¢/D are known, determination of f from Eq. (4.5-9)
requires an iterative procedure since f appears on both sides of the equation. To avoid iterative
solutions, efforts have been directed to express the friction factor, f, as an explicit function
of the Reynolds number, Re, and the relative pipe wall roughness, ¢/D.

Gregory and Fogarasi (1985) compared the predictions of the twelve explicit relations with
Eq. (4.5-9) and recommended the use of the correlation proposed by Chen (1979):

1 D 5.0452
e EP log A (4.5-16)
JT 37065  Re
where
8/D 1.1098 7.1490 0.8981
A= (2 5497) + < Re ) (4.5-17)

Thus, in order to calculate the pressure drop using Eq. (4.5-16), the following procedure
should be followed through which an iterative solution is avoided:

a) Calculate the Reynolds number from Eq. (4.5-10),

b) Substitute Re into Eq. (4.5-16) and determine f,

¢) Use Eq. (4.5-6) to find the pressure drop. Finally, the pump size can be determined by
using Eq. (4.5-2).
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Example 4.12 What is the required pressure drop per unit length in order to pump water at
a volumetric flow rate of 0.03 m3/s at 20°C through a commercial steel pipe (¢ = 4.6 x
107> m) 20 cm in diameter?

Solution
Physical properties

o =999 kg/m>

For water at 20°C (293 K): _6
w=1001 x 107° kg/m-s

Analysis
The Reynolds number is determined from Eq. (4.5-10) as

_4pQ  (4)(999)(0.03)

— — =191 x 103
auD 71001 x 10-6)(0.2)

Re

Substitution of this value into Eqs. (4.5-17) and (4.5-16) gives

A 8/D 1.1098 N 7.1490 0.8981
~ \2.5497 Re

(4.6 x 1075/0.2)7"1%%® 7.1490 88! 4
= + =138 x 10

2.5497 191 x 103
1 e/D  5.0452
d g _ log A
JT 0g(3.7065 Re ' ° )
4.6x1075/02)  5.0452 »
— 41 . log(1.38 x 10~%) | = 15.14
[ 3.7065 191 x 108 0838 < 1075

Hence, the friction factor is
f=436x10"3
Thus, Eq. (4.5-6) gives the pressure drop per unit pipe length as

|AP|  32pfQ%  (32)(999)(4.36 x 107)(0.03)?
L  #’D5 72(0.2)5

=40 Pa/m

M Calculate Q; given |AP| and D

In this case, rearrangement of Eq. (4.5-6) gives

Yy 2
f= (é) (4.5-18)

T2D3|AP)|
Y= |—— (4.5-19)
32pL

where Y is defined by
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Substitution of Egs. (4.5-10) and (4.5-18) into Eq. (4.5-9) yields

e/D uD
— 411 et 4.5-20
Q Og(3.7065 i Y) (45-20)

Thus, the procedure to calculate the volumetric flow rate becomes:

a) Calculate Y from Eq. (4.5-19),
b) Substitute Y into Eq. (4.5-20) and determine the volumetric flow rate.

Example 4.13 What is the volumetric flow rate of water in m?/s at 20°C that can be de-
livered through a commercial steel pipe (¢ = 4.6 x 107> m) 20 cm in diameter when the
pressure drop per unit length of the pipe is 40 Pa/m?

Solution
Physical properties

0 =999 kg/m>

For water at 20°C (293 K): _6
@ =1001 x 107° kg/m-s

Analysis
Substitution of the given values into Eq. (4.5-19) yields

2D5 2 5
y— <D |AP| _ T (0.2)>(40) 199 % 10-2
32pL (32)(999)

Hence, Eq. (4.5-20) gives the volumetric flow rate as

e/D uD
=—4Y1 =
. Og(3.7065 + pY)
4.6 x 107°/0.2 1001 x 1079)(0.2
 _(4)(1.99 x 10~y log| &0 107/0-0) | (01 x 07O} _ 5 13
3.7065 (999)(1.99 x 10-3)

B Calculate D; given Q and |AP|

Swamee and Jain (1976) and Cheng and Turton (1990) presented explicit equations to solve
problems of this type. These equations, however, are unnecessarily complex. A simpler equa-
tion can be obtained by using the procedure suggested by Tosun and Aksahin (1993) as fol-
lows. Equation (4.5-6) can be rearranged in the form

f=(DN)’ (4.5-21)

where N is defined by

72|aP|\'?
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For turbulent flow, the value of f varies between 0.00025 and 0.01925. Using an average
value of 0.01 for f gives a relationship between D and N as

_ 04
Y

Substitution of Eq. (4.5-21) into the left-hand side of Eq. (4.5-9), and substitution of Eqs. (4.5-
10), (4.5-23), and f = 0.01 into the right-hand side of Eq. (4.5-9) give

0.574 m 2\~
D==1- {10g|:8N+5.875<pQ—N>i|—0.171} (4.5-24)

The procedure to calculate the pipe diameter becomes:

a) Calculate N from Eq. (4.5-22),
b) Substitute N into Eq. (4.5-24) and determine the pipe diameter.

D (4.5-23)

Example 4.14 Water at 20 °C is to be pumped through a commercial steel pipe (¢ = 4.6 x
107> m) at a volumetric flow rate of 0.03 m?/s. Determine the diameter of the pipe if the
allowable pressure drop per unit length of pipe is 40 Pa/m.

Solution
Physical properties

=999 ko /m3
For water at 20°C (293 K): | = 000 K&/
u=1001 x 10~° kg/m-s
Analysis
Equation (4.5-22) gives

(7T2|AP|)1/5 7T2(40) 1/5
e _ = 1.69
32pLQ? [(32)(999)(0-03)2}

Hence, Eq. (4.5-24) gives the pipe diameter as

~1/5
0.574 m 2
D=——11 N+5875| —— ) | —0.171
N <{ Og[g " (pQNﬂ } )

» 2\ —1/5
_ 0574 ({10g[(4.6 % 10-5)(1.69) 4 3791001 x 10 )} _ 0.171} )
1.69 (999)(0.03)(1.69)
=0.2m

4.5.2 Heat Transfer Correlations

For heat transfer in circular pipes, various correlations have been suggested depending on the
flow conditions, i.e., laminar or turbulent.
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4.5.2.1 Laminar flow correlation For laminar flow heat transfer in a circular tube with
constant wall temperature, Sieder and Tate (1936) proposed the following correlation:

1/3

Nu = 1.86[RePr(D/L)] """ (11/ ptu)* 1 (4.5-25)

in which all properties except u, are evaluated at the mean bulk temperature. Equa-
tion (4.5-25) is valid for

13 < Re <2030 0.48 < Pr<16,700 0.0044 < w/py <9.75

The analytical solution’ to this problem is only possible for very long tubes, i.e., L/ D — oc.
In this case the Nusselt number remains constant at 3.66.

4.5.2.2 Turbulent flow correlations The following correlations approximate the physical
situation quite well for the cases of constant wall temperature and constant wall heat flux:
Dittus-Boelter correlation

Dittus and Boelter (1930) proposed the following correlation in which all physical properties
are evaluated at the mean bulk temperature:

| Nu = 0.023Re*/3 Py (4.5-26)

where

_]0.4 for heating
"Z10.3 for cooling

The Dittus-Boelter correlation is valid when
0.7<Pr<160 Re > 10,000 L/D>10

Sieder-Tate correlation

The correlation proposed by Sieder and Tate (1936) is

Nu = 0.027Re*S Prl/3 (11 / p1,,) 014 (4.5-27)

in which all properties except (., are evaluated at the mean bulk temperature. Equation (4.5-
27) is valid for

0.7 < Pr<16,700 Re > 10,000 L/D>10

Whitaker correlation

The equation proposed by Whitaker (1972) is

Nu = 0.015Re* 83 PrO42 (11 / 1,) 014 (4.5-28)

3See Section 9.3.1.2 in Chapter 9.
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in which the Prandtl number dependence is based on the work of Friend and Metzner (1958),
and the functional dependence of w/u,, is from Sieder and Tate (1936). All physical proper-
ties except iy, are evaluated at the mean bulk temperature. The Whitaker correlation is valid
for

2300 <Re<1x10° 048<Pr<592 044 < pu/py <2.5
4.5.2.3 Calculation of the heat transfer rate Once the average heat transfer coefficient is

calculated from correlations by using Eqs. (4.5-25)—(4.5-28), then the rate of energy trans-
ferred is calculated as

Q=@ DL)(h)ATLm (4.5-29)

where ATy, logarithmic mean temperature difference, is defined by
(Tw - Tb)in - (Tw - Tb)out

1 [ (Ty — Tp)in }
n —_—
(Tw - Tb)out

The derivation of Eq. (4.5-29) is given in Section 9.3.1 in Chapter 9.

ATy = (4.5-30)

Example 4.15 Steam condensing on the outer surface of a thin-walled circular tube of
65 mm diameter maintains a uniform surface temperature of 100 °C. Oil flows through the
tube at an average velocity of 1 m/s. Determine the length of the tube in order to increase
oil temperature from 40 °C to 60 °C. Physical properties of the oil are as follows:

w=12.4 x 1073 kg/m-s
At50°C: {v=4.28 x 107> m?/s
Pr=143

At 100°C: © =9.3 x 1073 kg/m:s.
Solution

Assumptions

1. Steady-state conditions prevail.
2. Physical properties remain constant.
3. Changes in kinetic and potential energies are negligible.

Analysis
System: Oil in the pipe

The inventory rate equation for mass becomes
Rate of mass in = Rate of mass out =m = p(v)(nD2/4) (D)
On the other hand, the inventory rate equation for energy reduces to

Rate of energy in = Rate of energy out 2)
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The terms in Eq. (2) are expressed by

Rate of energy in = m ao(Tbin — Thef) + T DL(h) ATy 3)
Rate of energy out = m C P (T — Tref) (€))

Since the wall temperature is constant, the expression for ATy s, Eq. (4.5-30), becomes
Ty, — Tp,
bnut bm (5)
=
In| ——
Tw - Tbaut
Substitution of Egs. (1), (3), (4) and (5) into Eq. (2) gives

L 1({pCp (Tw—Tbm>
— In

D 4 () Tw — T,

ATy =

(6)
Noting that Sty = (h)/((v)pao) = Nu /(RePr), Eq. (6) becomes

L 11 Ty — Tp 1 RePr_ (T, —Tp,
e L qp 2o Y In o (7
D 4Sty \T,—Tp 4 Nu \T,—Tp

out out

To determine Nu (or (h)), first the Reynolds number must be calculated. The mean bulk
temperature is (40 + 60)/2 = 50°C and the Reynolds number is

D(v)  (65x1073)(1)

Re = =
v 428 x 10—3

=1519 = Laminar flow

Since the flow is laminar, Eq. (4.5-25) must be used, i.e.,

1/3

Nu = 1.86[RePr(D/L)] "~ (i/ 1tu)* (8)

Substitution of Eq. (8) into Eq. (7) yields

L —0.14 T, — T 3/2
Z —RePr (/ pw) In w bin
D (4)(1 86) Tw - Tbout
12.4 x 1073/9.3 x 10737014 /100 — 40\ 1>/
— (1519)(143)| {24103 10777 7 — 2602
(4)(1.86) 100 — 60
The tube length is then

L = (2602)(65 x 107%) =169 m

Example 4.16 Air at 20 °C enters a circular pipe of 1.5 cm internal diameter with a velocity
of 50 m/s. Steam condenses on the outside of the pipe so as to keep the surface temperature
of the pipe at 150°C.

a) Calculate the length of the pipe required to increase air temperature to 90 °C.
b) Discuss the effect of surface roughness on the length of the pipe.
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Solution
Physical properties
The mean bulk temperature is (20 4+ 90)/2 =55°C

For air at 20°C (293 K): p = 1.2047 kg/m’

w=19.8 x 107% kg/m-s
For air at 55°C (328 K): { v =18.39 x 107° m?/s
Pr=0.707
For air at 150°C (423 K): v = 23.86 x 1076 kg/m-s.
Analysis

a) System: Air in the pipe

The inventory rate equation for mass reduces to
Rate of mass of air in = Rate of mass of air out = m (D)

Note that for compressible fluids like air both density and average velocity depend on
temperature and pressure. Therefore, using the inlet conditions

7(0.015)2

m= (7TD2/4)(p<v>)inlet = |: 4

](1.2047)(50) =1.06 x 1072 kg/s

In problems dealing with the flow of compressible fluids, it is customary to define mass
velocity, G, as

G—m— 2
_Z_p(v) (2)

The advantage of using G is the fact that it remains constant for steady flow of compress-
ible fluids through ducts of uniform cross-section. In this case

G = (1.2047)(50) = 60.24 kg/m?-s
The inventory rate equation for energy is written as
Rate of energy in = Rate of energy out 3)

Equations (3)—(5) of Example 4.15 are also applicable to this problem. Therefore, we get

L 1Re Pr1 Ty — T,
—_— = = n
D 4 Nu Ty,—Ty

“4)

out

The Nusselt number in Eq. (4) can be determined only if the Reynolds number is known.
The Reynolds number is calculated as
_ DG (0.015)(60.24)

Re = = =45,636 = Turbulent flow
n 19.80 x 10-©

The value of L depends on the correlations as follows:
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Dittus-Boelter correlation

Substitution of Eq. (4.5-26) into Eq. (4) gives

L _Re™2PC (T, —Tp, | _ (45,630)%2(0.707)%0 (150 -20) _
D 0.092 Tw — Topy) 0.092 150—90/)

out

Therefore, the required length is

L =(58.3)(1.5) =87 cm
Sieder-Tate correlation

Substitution of Eq. (4.5-27) into Eq. (4) gives

£ B Re0-2 Pr2/3(M/Mw)—0.l4 ln( Ty — Tbin )

D 0.108 T — T
(45,636)22(0.707)2/3 /19.80 x 1076\ #7150 — 20 499
— n|f —— =
0.108 23.86 x 10—6 150 — 90
Therefore, the required length is
L =(49.9)(1.5) =75 cm
Whitaker correlation
Substitution of Eq. (4.5-28) into Eq. (4) gives
L B ReO.l7 PrOASS(M/Mw)—O.l4 | Ty — Tbin
D 0.06 Ty — Tp,,
(45,636)%17(0.707)%-58 /19.80 x 1070\ !4 /150 — 20 .
= ny ———— =
0.06 23.86 x 10—6 150 — 90

Therefore, the required length is

L =(67)(1.5) =101 cm
b) Note that Eq. (4) is also expressed in the form

L 11 Ty — Tp,
S P 8 (5)
D 4 Sty Ty — Ty,
The use of the Chilton-Colburn analogy, i.e., f/2 = Sty Pr*/3, reduces Eq. (5) to
L 1P?3 1 Lo = Tou 1 (0.707)%3 /150 —20\ 0.3068 ©
- = — n = — n =
D 2 f Ty — Tp,, 2 f 150 — 90 f

The friction factor can be calculated from the Chen correlation, Eq. (4.5-16)

e/D 5.0452
= —4log — log A
3.7065 Re

1
v
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where

(/D 1.1098Jr 7 1490 08981
~\2.5497 Re

For various values of ¢/ D, the calculated values of f, L/D and L are given as follows:

e/D f L/D L (cm)
0 0.0053 57.9 86.9
0.001 0.0061 50.3 75.5
0.002 0.0067 45.8 68.7
0.003 0.0072 42.6 63.9
0.004 0.0077 39.8 59.7

Comment: The increase in surface roughness increases the friction factor and hence
power consumption. On the other hand, the increase in surface roughness causes an increase
in the heat transfer coefficient with a concomitant decrease in pipe length.

4.5.3 Mass Transfer Correlations

Mass transfer in cylindrical tubes is encountered in a variety of operations, such as wetted
wall columns, reverse osmosis, and cross-flow ultrafiltration. As in the case of heat transfer,
mass transfer correlations depend on whether the flow is laminar or turbulent.

4.5.3.1 Laminar flow correlation For laminar flow mass transfer in a circular tube with a
constant wall concentration, an expression analogous to Eq. (4.5-25) is given by

Sh = 1.86[ReSc(D/L)]'"" (4.5-31)

Equation (4.5-31) is valid for
[ReSc(D/L)]'* =2

4.5.3.2 Turbulent flow correlations
Gilliland-Sherwood correlation

Gilliland and Sherwood (1934) correlated the experimental results obtained from wetted wall
columns in the form

\ Sh = 0.023 Re0-83 5044 (4.5-32)

which is valid for

2000 < Re < 35,000 0.6<Sc<25
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Linton-Sherwood correlation

The correlation proposed by Linton and Sherwood (1950) is given by

Sh = 0.023Re?83 5¢!1/3| (4.5-33)

Equation (4.5-33) is valid for
2000 < Re < 70,000 0.6 < Sc <2500

4.5.3.3 Calculation of the mass transfer rate  Once the average mass transfer coefficient is
calculated from correlations given by Eqgs. (4.5-31)—(4.5-33), then the rate of mass of species
A transferred is calculated as

|rita = (DL) (ke)(Aca) LuMa | (4.5-34)

where M 4 is the molecular weight of species A, and (Aca) Ly, logarithmic mean concen-
tration difference, is defined by

(Ac) Ly = (ca, —ca,)in— (€A, —Ca)om
{ [ (cA, —CAp)in ]
(CAw - CAb)out

(4.5-35)

The derivation of Eq. (4.5-34) is given in Section 9.5.1 in Chapter 9.

Example 4.17 A smooth tube with an internal diameter of 2.5 cm is cast from solid naph-
thalene. Pure air enters the tube at an average velocity of 9 m/s. If the average air pressure
is 1 atm and the temperature is 40°C, estimate the tube length required for the average
concentration of naphthalene vapor in the air to reach 25% of the saturation value.

Solution
Physical properties
Diffusion coefficient of naphthalene (A) in air (B) at 40°C (313 K) is

313\7/2 s (313\*? 6 o
D = (D — = (0.62 x 10~ — =6.61 x 10~
(Dap)313 = ( AB)300<3OO> ( X )(300) X m~/s

For air at 40°C (313 K): v = 16.95 x 107 m?/s

The Schmidt number is
v 1695%x107°

Sc = —
T D.s 66l x10F6

=2.56

Assumptions

1. Steady-state conditions prevail.
2. The system is isothermal.

Analysis

System: Air in the naphthalene tube
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If naphthalene is designated as species .A, then the rate equation for the conservation of
species A becomes

Rate of moles of A in = Rate of moles of A out (1

The terms in Eq. (1) are expressed by
Rate of moles of Ain=mDL{k.)(Aca)rLm 2)
Rate of moles of A out = Q(CAb)out = (7 D2/4)(v)(cAb)0m 3)

Since the concentration at the wall is constant, the expression for (Aca)rm, Eq. (4.5-35),
becomes

(ca B )out

(Aca)Lm =
CA,
ln[—“ i|
CA, — (CAh)out

4

Substitution of Egs. (2)—(4) into Eq. (1) gives

(v) 1 [1 B (CAb>om] 1
CA, B 4 (kc>

Note that Eq. (5) can also be expressed in the form

L—

1 (v)
= —— n
D 4 (k)

In(1 —0.25) = 0.072(k—) (5)

c

L 1 Re Sc
— =0.072{ — ) =0.072 (6)
D Stm Sh
The value of L depends on the correlations as follows:
Chilton-Colburn analogy
Substitution of Eq. (3.5-13) into Eq. (6) gives
L 2
— =0.072 = 8c*3 (7
D f
The Reynolds number is
D 2.5x107%)(9
Re = () = (2.5 x )©) =13,274 = Turbulent flow

v 16.95 x 10-6

The friction factor can be calculated from the Chen correlation, Eq. (4.5-16). Taking
e/D =0,

D 1.1098 7.1490 0.8981 7.1490 0.8981
A (2 n - (== =1.16 x 1073
2.5497 Re 13,274

5.0452
13,274

1
— = —410g|:— log(1.16 x 103)] = f=0.0072

vF
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Hence Eq. (7) becomes

L 072)(2)(2.56)2/3
L_ (0.072)(2)(2.56) _374
D 0.0072

The required length is then
L =(37.4)(2.5) =93.5 cm

Linton-Sherwood correlation

Substitution of Eq. (4.5-33) into Eq. (6) gives
L
== 3.13Re*17 S¢?3 =3.13(13,274)*17(2.56)*/3 = 29.4

The tube length is
L=(29.4)(2.5)=73.5cm

4.5.4 Flow in Non-Circular Ducts

The correlations given for the friction factor, heat transfer coefficient, and mass transfer co-
efficient are only valid for ducts of circular cross-section. These correlations can be used for
flow in non-circular ducts by introducing the concept of hydraulic equivalent diameter, Dy,

defined by
Flow area
D,=4 - (4.5-36)
Wetted perimeter

The Reynolds number based on the hydraulic equivalent diameter is
Dp(v)p
i

so that the friction factor, based on the hydraulic equivalent diameter, is related to Rey, in the
form

Reh = (45-37)

16
= — (4.5-38)
Rey,
where €2 depends on the geometry of the system. Since €2 = 1 only for a circular pipe, the
use of the hydraulic equivalent diameter is not recommended for laminar flow (Bird et al.,
2002; Fahien, 1983). The hydraulic equivalent diameter for various geometries is shown in
Table 4.4.

Example 4.18 Water flows at an average velocity of 5 m/s through a duct of equilateral
triangular cross-section with one side, a, being equal to 2 cm. Electric wires are wrapped
around the outer surface of the duct to provide a constant wall heat flux of 100 W /cm?. If
the inlet water temperature is 25 °C and the duct length is 1.5 m, calculate:

a) The power required to pump water through the duct,
b) The exit water temperature,
¢) The average heat transfer coefficient.
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Table 4.4. The hydraulic equivalent diameter for various geometries

Geometry Dy,

T 2ab

a+b

=
)

Solution
Physical properties
p =997 kg/m>
For water at 25°C (298 K): { © =892 x 10~ kg/m-s
Cp =4180J/kgK
Assumptions

1. Steady-state conditions prevail.
2. Changes in kinetic and potential energies are negligible.
3. Variations in p and Cp with temperature are negligible.

Analysis

System: Water in the duct
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a) The power required is calculated from Eq. (3.1-11)

. 1
W = Fp(v) = [(3aL>(5p<v>2> f}<v> (1)

The friction factor in Eq. (1) can be calculated from the modified form of the Chen
correlation, Eq. (4.5-16)

. —410g< @)

vF

4 S/D 1.1098 N 7.1490 0.8981 (3)
— \2.5497 Re;,

The hydraulic equivalent diameter and the Reynolds number are

e/D 5.0452
— log A
3.7065 Rey,

where

a 2
Dp=—=—=1.155cm

V3 3

Dp(v)p  (1.155 x 107%)(5)(997)

392 x 10-6 =64,548 = Turbulent flow
X

Rej, =

Substitution of these values into Egs. (3) and (2) and taking ¢/D ~ 0 give

A=[= == —28x107*
Re), 64,548

L 4log| - 292 28x107H| = f=0.0049
JT %8| Teasa8 B ke

Hence, the power required is calculated from Eq. (1) as
. 1
W= {(3)(2 x 1072)(1.5) [5(997)(5)2} (0.0049)} 6)=275W

b) The inventory rate equation for mass is

2
V3a ) @

Rate of mass in = Rate of mass out = m = p(v) ( 1

V32 x 107%)2

m= (997)(5)[ 7

] =0.863 kg/s

The inventory rate equation for energy reduces to

Rate of energy in = Rate of energy out 5)
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The terms in Eq. (5) are expressed by
Rate of energy in =m Cp (Ty;, — Thef) + Ou (6)
Rate of energy out = m C P (T — Thef) (7

where Q,, is the rate of heat transfer to water from the lateral surfaces of the duct. Sub-
stitution of Egs. (6) and (7) into Eq. (5) gives

~ 0w .. B@US0)100) _
Toou =Tou + 25 =2 F ~ 0363y @180) 0 ©

¢) The mean bulk temperature is (25 + 50)/2 = 37.5°C. At this temperature
k=628 x 107 W/m-K and  Pr=4.62

The use of the Dittus-Boelter correlation, Eq. (4.5-26), gives

Nu = 0.023Re}/” Pr¥* = 0.023(64,548)*/3(4.62)"* =299

Therefore, the average heat transfer coefficient is

(h) =N k (299) 2 10 16,257 W/m?-K
= ulf — = _— — .
Dy, 1.155 x 102 ’

4.6 FLOW IN PACKED BEDS

The chemical and energy industries deal predominantly with multiphase and multicompo-
nent systems in which considerable attention is devoted to increasing the interfacial contact
between the phases to enhance property transfers and chemical reactions at these extended
surface interfaces. As a result, packed beds are extensively used in the chemical process in-
dustries. Some examples are gas absorption, catalytic reactors, and deep bed filtration.

4.6.1 Friction Factor Correlations

The friction factor for packed beds, f)p, is defined by

€3 Dp|AP]

fpp= 1 (4.6-1)

—e pviL
where € is the porosity (or void volume fraction), Dp is the particle diameter, and v, is the
superficial velocity. The superficial velocity is obtained by dividing the volumetric flow rate
by the total cross-sectional area of the bed. Note that the actual flow area is a fraction of the
total cross-sectional area.

Example 4.19 Water flows through a concentric annulus at a volumetric flow rate of
5 m3/min. The diameters of the inner and the outer pipes are 30 cm and 50 cm, respec-
tively. Calculate the superficial velocity.
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Solution

If the inner and outer pipe diameters are designated by D; and D, respectively, the superfi-
cial velocity, v,, is defined by

- wD2/4  m(0.5)2/4

=25.5 m/min

Vo

The actual average velocity, (v),¢:, in the annulus is

(D2 D?)/4  w[(0.5)?%—(0.3)2]/4

(V)act =40 m/min

Comment: The superficial velocity is always lower than the actual average velocity by a
factor of porosity, which is equal to [1 — (D;/ D(,)z] in this example.

For packed beds, the Reynolds number is defined by

Re,p = (4.6-2)

For laminar flow, the relationship between the friction factor and the Reynolds number is
given by

fpb:

R 10 4.6-3
Reph Cpb < ( )

which is known as the Kozeny-Carman equation.
In the case of turbulent flow, i.e., Rep, > 1000, the relationship between Re,p, and fpp is
given by the Burke-Plummer equation in the form

fop = 1.75 Re,p > 1000 (4.6-4)

The so-called Ergun equation (1952) is simply the summation of the Kozeny-Carman and
the Burke-Plummer equations

For= 222 1175 (4.6-5)
pb_Repb ' '

Example 4.20 A column of 0.8 m? cross-section and 30 m height is packed with spherical
particles of diameter 6 mm. A fluid with p = 1.2 kg/m> and = 1.8 x 1073 kg/m-s flows
through the bed at a mass flow rate of 0.65 kg/s. If the pressure drop is measured as 3200 Pa,
calculate the porosity of the bed:

a) Analytically,
b) Numerically.
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Solution
Assumption
1. The system is isothermal.
Analysis
The superficial velocity through the packed bed is

0.65

Vo=———=0.677m/s
(1.2)(0.8)

Substitution of the values into Egs. (4.6-1) and (4.6-2) gives the friction factor and the
Reynolds number as a function of porosity in the form

3 3 -3 3
€3 Dp|AP| €3 [(6x 1073)(3200) €

i — = [ 2 ]:1.164( ) 1)

1—€¢ puviL 1 — e (1.2)(0.677)2(30) 1—¢

D 1 6 x 1073)(0.677)(1.2 1 1
Re,, = 22Uer _[6x107)(0.677)(1.2) 2708 @

1—¢ 1.8 x 10~° 1—¢ 1—¢
Substitution of Egs. (1) and (2) into Eq. (4.6-5) gives

€ —0.476€>+2.455¢ —1.979 =0 (3)

a) Equation (3) can be solved analytically by using the procedure described in Sec-
tion A.7.1.2 in Appendix A. In order to calculate the discriminant, the terms M and
N must be calculated from Egs. (A.7-5) and (A.7-6), respectively:

_(3)(2.455) — (0.476)?

M =0.793
9
— 3
N (9)(0.476)(2.455) + (521)(1.979) +(2)(0.476) 0799

Therefore, the discriminant is
A= M3+ N?=(0.793)° + (0.799)> = 1.137

Since A > 0, Eq. (3) has only one real root as given by Eq. (A.7-7). The terms S and T
in this equation are calculated as

S=(N++vA)"*=(0799+v1.137)* = 1.231
T=(N—-+vA)"?=(0799 - v1.137)'/* = —0.644

Hence the average porosity of the bed is

0.476
€ =1.231 —0.644 + = = 0.746
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b) Equation (3) is rearranged as
F(e) =€ —0.476€* 4+2.455¢ — 1.979 =0 (4)
From Eq. (A.7-25) the iteration scheme is
0.02€;_1 F(ex—1)

=€x—1 — 5
kT T (10l e1) — F(0.99¢_1) &
Assuming a starting value of €, = 0.7, the iterations are given in the table below:
k €k
0 0.7
1 0.746
2 0.745
3 0.745
4.6.2 Heat Transfer Correlation
Whitaker (1972) proposed the following correlation for heat transfer in packed beds:
1/2 2/3 ,
Nupy = (0.4Re ) + 0.2Re ;") Pr4 (4.6-6)
The Nusselt number in Eq. (4.6-6) is defined by
(h) Dp €
Nu,p, = 4.6-7
T T @D

Equation (4.6-6) is valid when
3.7 <Repp < 8000 0.34 <e<0.74 Pr~0.7
All properties in Eq. (4.6-6) are evaluated at the average fluid temperature in the bed.

4.6.2.1 Calculation of the heat transfer rate  Once the average heat transfer coefficient is
determined, the rate of heat transfer is calculated from

0 =a,V{h)ATLy (4.6-8)

where V is the total volume of the packed bed and a, is the packing surface area per unit
volume defined by

B 6(1 —¢)
=~5s

ay

(4.6-9)
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4.6.3 Mass Transfer Correlation

Dwivedi and Upadhyay (1977) proposed a single correlation for both gases and liquids in
packed and fluidized beds in terms of the j-factor as

0.765 n 0.365
(Re;b)O.SZ (Re;b)0.386

€M,y = (4.6-10)

\évhich is valid for 0.01 < Re;b < 15,000. The terms jMp;, and Re;b in Eq. (4.6-10) are defined
y

k
My, = (—< C>> Sc?/3 (4.6-11)
Vo
and
D
R, = ——2F (4.6-12)
"

4.6.3.1 Calculation of the mass transfer rate  Once the average mass transfer coefficient is
determined, the rate of mass transfer of species .4, ni 4, is given by

[rita =a,V (k) (Acp) LuMa | (4.6-13)

Example 4.21 Instead of using a naphthalene pipe as in Example 4.17, it is suggested to
form a packed bed of porosity 0.45 in a pipe, 2.5 cm in internal diameter, by using naph-
thalene spheres 5 mm in diameter. Pure air at 40 °C flows at a superficial velocity of 9 m/s
through the bed. Determine the length of the packed bed required for the average concentra-
tion of naphthalene vapor in the air to reach 25% of the saturation value.

Solution
Physical properties
Diffusion coefficient of naphthalene (A) in air (8) at 40°C (313 K) is

3132 s (313\*? 6 o
D = (D — =(0.62 x 107°) — =6.61 x 10~
(Dag)3iz = ( AB)300<300> (0.62 x )<300) X m-/s
For air at 40°C (313 K): v = 16.95 x 10~° mz/s
The Schmidt number is
16.95 x 107°
Se= 2 = 0P X7 _, 5

Dap  6.61 x 1070
Assumptions

1. Steady-state conditions prevail.
2. The system is isothermal.
3. The diameter of the naphthalene spheres does not change appreciably.
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Analysis

System: Air in the packed bed

Under steady conditions, the conservation statement for naphthalene, species .A, becomes
Rate of moles of A in = Rate of moles of A out (1)

The terms in Eq. (1) are expressed by

Rate of moles of Ain=a,V (k.)(Aca)Lm 2)
Rate of moles of A out = Q(ca,)our = (7 D2/4) Vo(CAp)our 3)

Since the concentration at the surface of the naphthalene spheres is constant, the expression
for (Aca)rm, Eq. (4.5-35), becomes

(ca,)
(Aca)Ly = — )

CA

ln[—w ]
CA, — (CAb)out
Substitution of Egs. (2)—(4) into Eq. (1) and noting that V = (7 D? /4L give
L —_ Vo 1I1|:1 _ (CA;,)out:| (5)
(ke)ay CA,

Note that for a circular pipe, i.e., a, = 4/D, the above equation reduces to Eq. (5) in Exam-
ple 4.17.

The interfacial area per unit volume, a,, is calculated from Eq. (4.6-9) as
_6(1—€) 6(1—-045)
~ Dp  0.005

To determine the average mass transfer coefficient from Eq. (4.6-10), first it is necessary to
calculate the Reynolds number

=660 m™!

ay

o Dpv, _ (0.005)(9)
Pb 16.95 x 10-6
Substitution of this value into Eq. (4.6-10) gives
0.765 0.365 0.765 0.365
(Re;b)O.SZ + (Re;b)0-386 = (2655)0-82 + (2655)0.386

= 2655

=0.0186

EjMpb =

in which €jy,, is given by Eq. (4.6-11). Therefore, the average mass transfer coefficient is

v (0.0186)(9)

k.) =0.0186 = =0.2
el 527~ (04525628 — A/
The length of the bed is calculated from Eq. (5) as
9
L=—————In(1-0.25)=0.02m

(0.2)(660)

Comment: The use of a packed bed increases the mass transfer area between air and solid
naphthalene. This in turn causes a drastic decrease in the length of the equipment.
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NOTATION

A area, m?2

ay packing surface area per unit volume, 1/m
Cp heat capacity at constant pressure, kJ/kg-K
Ci concentration of species i, kmol/m?>

D diameter, m

Dy, hydraulic equivalent diameter, m

Dp particle diameter, m

Dup  diffusion coefficient for system A-B, m?/s
Fp drag force, N

f friction factor

G mass velocity, kg/m?-s

g acceleration of gravity, m/s>

JjH Chilton-Colburn j-factor for heat transfer
M Chilton-Colburn j-factor for mass transfer
k thermal conductivity, W/m-K

ke mass transfer coefficient, m/s

L length, m

M mass, kg

M mass flow rate, kg/s

M molecular weight, kg/kmol

7 molar flow rate, kmol/s

P pressure, Pa

0 heat transfer rate, W

Q volumetric flow rate, m> /s

q heat flux, W/m?

R gas constant, J/mol-K

T temperature, °C or K

t time, s

Vv volume, m3

v velocity, m/s

Vo superficial velocity, m/s

vy terminal velocity, m/s

w work, J; width, m

W rate of work, W

X rectangular coordinate, m

A difference

€ porosity

e surface roughness of the pipe, m

7 viscosity, kg/m-s

v kinematic viscosity, m? /s

0 density, kg/m>
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Overlines

per mole
per unit mass

Bracket
(a) average value of a
Superscript

sat saturation

Subscripts

A, B species in binary systems

b bulk

c transition from laminar to turbulent
ch characteristic

f film

i species in multicomponent systems
in inlet

LM log-mean

out outlet

pb packed bed

w wall or surface
00 free-stream

Dimensionless Numbers

Ar Archimedes number
Pr Prandtl number

Nu Nusselt number

Re Reynolds number

Rep Reynolds number based on the diameter

Re;,  Reynolds number based on the hydraulic equivalent diameter
Re;  Reynolds number based on the length

Re,  Reynolds number based on the distance x

Sc Schmidt number

Sh Sherwood number

Sty Stanton number for heat transfer

Sty Stanton number for mass transfer
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PROBLEMS

4.1 A flat plate of length 2 m and width 30 cm is to be placed parallel to an air stream at a
temperature of 25 °C. Which side of the plate, i.e., length or width, should be in the direction
of flow so as to minimize the drag force if:

a) The velocity of airis 7 m/s,
b) The velocity of air is 30 m/s.

(Answer: a) Length b) Width)

4.2 Air at atmospheric pressure and 200 °C flows at 8 m/s over a flat plate 150 cm long in
the direction of flow and 70 cm wide.

a) Estimate the rate of cooling of the plate so as to keep the surface temperature at 30 °C.
b) Calculate the drag force exerted on the plate.
(Answer: a) 1589 W b) 0.058 N)

4.3 Water at 15°C flows at 0.15 m/s over a flat plate 1 m long in the direction of flow
and 0.3 m wide. If energy is transferred from the top and bottom surfaces of the plate to
the flowing stream at a steady rate of 3500 W, determine the temperature of the plate sur-
face.

(Answer: 35°C)

4.4 Fins are used to increase the area available for heat transfer between metal walls and
poorly conducting fluids such as gases. A simple rectangular fin is shown below.

XA B
vy
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If one assumes,

T =T (z) only,

No heat is lost from the end or from the edges,

The average heat transfer coefficient, (A1), is constant and uniform over the entire
surface of the fin,

The thermal conductivity of the fin, k, is constant,

The temperature of the medium surrounding the fin, T, is uniform,

The wall temperature, T, iS constant,

the resulting steady-state temperature distribution is given by

)

Ty —Too cosh A
where
2(h)L?
A 20
kB

If the rate of heat loss from the fin is 478 W, determine the average heat transfer coefficient
for the following conditions: To, = 175°C; T, = 260°C; k =105 W/m-K; L =4 cm;
W =30cm; B =5 mm.

(Answer: 400 W/m?-K)

4.5 Consider the rectangular fin given in Problem 4.4. One of the problems of practical
interest is the determination of the optimum values of B and L to maximize the heat transfer
rate from the fin for a fixed volume, V, and W. Show that the optimum dimensions are given

by
(nyv2\'7? kv '
Bopt ~ (W) and L()pt ~ (W)

4.6 Consider the rectangular fin given in Problem 4.4. If a laminar flow region exists over
the plate, show that the optimum value of W for the maximum heat transfer rate from the
fin for a fixed volume, V, and thickness, B, is given by

2/5
Wopr = 1.2 V43 p=6/5 [(%f) pr!'/3 /”ﬁ}
Vv

where k 7 is the thermal conductivity of the fluid.

4.7 A thin aluminum fin (k = 205 W/m-K) of length L = 20 cm has two ends attached
to two parallel walls with temperatures 7, = 100°C and 77 = 90 °C as shown in the figure
below. The fin loses heat by convection to the ambient air at 7, = 30°C with an average
heat transfer coefficient of (k) = 120 W/m?-K through the top and bottom surfaces (heat
loss from the edges may be considered negligible).



112 4. Evaluation of Transfer Coefficients: Engineering Correlations

One of your friends assumes that there is no internal generation of energy within the fin and
determines the steady-state temperature distribution within the fin as

T-T i
—— 2 — N2 _2Qsinh Nz
T, — Teo

in which N and 2 are defined as

eNL_(TL_TOO>

2(h =

N = 2{h) and Q= _TO Too
kB 2sinh NL

a) Show that there is indeed no internal generation of energy within the fin.
b) Determine the location and the value of the minimum temperature within the fin.

(Answer: z=0.1 cm, T = 30.14°C)

4.8 Rework Example 4.8 by using the Ranz-Marshall correlation, Eq. (4.3-33), the
Frossling correlation, Eq. (4.3-34), and the modified Frossling correlation, Eq. (4.3-35).
Why do the resulting Sherwood numbers differ significantly from 5417

4.9 In an experiment carried out at 20°C, a glass sphere of density 2620 kg/m?> falls
through carbon tetrachloride (p = 1590 kg/ m> and nw=9.58 x 10~* kg/m-s) with a termi-
nal velocity of 65 cm/s. Determine the diameter of the sphere.

(Answer: 21 mm)
4.10 A CO; bubble is rising in a glass of beer 20 cm tall. Estimate the time required for a

bubble 5 mm in diameter to reach the top if the properties of CO, and beer can be taken as
equal to those of air and water, respectively.

(Answer: 0.54 s)
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4.11 Show that the use of the Dittus-Boelter correlation, Eq. (4.5-26), together with the
Chilton-Colburn analogy, Eq. (3.5-12), yields

f ~0.046Re 2

which is a good power-law approximation for the friction factor in smooth circular pipes.
Calculate f for Re = 10°, 10° and 107 using this approximate equation and compare the
values with those obtained by using the Chen correlation, Eq. (4.5-16).

4.12 For laminar flow of an incompressible Newtonian fluid in a circular pipe, Eq. (4.5-12)
indicates that the pressure drop is proportional to the volumetric flow rate. For fully turbulent
flow show that the pressure drop in a pipe is proportional to the square of the volumetric flow
rate.

4.13 Determine the power to pump a fluid at a volumetric flow rate of 1.1 x 107> m3/s
through a 3 cm diameter horizontal smooth pipe 10 m long. The physical properties of the
fluid are given as p =935 kg/m> and ;. = 1.92 x 1073 kg/m:s.

(Answer: 10.4 W)

4.14 The purpose of blood pressure in the human body is to push blood to the tissues of
the organism so that they can perform their functions. Each time the heart beats, it pumps
out blood into the arteries. The blood pressure reaches its maximum value, i.e., systolic
pressure, when the heart contracts to pump the blood. In between beats, the heart is at rest
and the blood pressure falls to a minimum value, diastolic pressure. An average healthy
person has systolic and diastolic pressures of 120 and 80 mmHg, respectively. The human
body has about 5.6 L of blood. If it takes 20 s for blood to circulate throughout the body,
estimate the power output of the heart.

(Answer: 3.73 W)
4.15 Water is in isothermal turbulent flow at 20°C through a horizontal pipe of circular

cross-section with 10 cm inside diameter. The following experimental values of velocity are
measured as a function of radial distance r:

r(cm) | 0.5 1.5 2.5 3.5 4.5
v;(m/s) | 0.394 0.380 0.362 0.337 0.288

The velocity distribution is proposed in the form

- 1/n
V; = Umax | 1 — E

where v,y 1S the maximum velocity and R is the radius of the pipe. Calculate the pressure
drop per unit length of the pipe.

(Answer: 12.3 Pa/m)
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4.16 In Example 4.15, the length to diameter ratio is expressed as
L 11 Ty — Tp,,
S Y /S
D 48ty Ty — Tp,,

Use the Chilton-Colburn analogy, i.e.,
f

L =Sty Pr?/?
2 H
and evaluate the value of L/D. Is it a realistic value? Why/why not?

4.17 Water at 10°C enters a circular pipe of internal diameter 2.5 cm with an average
velocity of 1.2 m/s. Steam condenses on the outside of the pipe so as to keep the surface
temperature of the pipe at 82 °C. If the length of the pipe is 5 m, determine the outlet tem-
perature of water.

(Answer: 51°C)

4.18 Dry air at 1 atm pressure and 50 °C enters a circular pipe of 12 cm internal diameter
with an average velocity of 10 cm/s. The inner surface of the pipe is coated with a thin
absorbent material soaked with water at 20 °C. If the length of the pipe is 6 m, calculate the
amount of water vapor carried out of the pipe per hour.

(Answer: 0.067 kg/h)

4.19 A column with an internal diameter of 50 cm and a height of 2 m is packed with
spherical particles 3 mm in diameter so as to form a packed bed with € = 0.45. Estimate
the power required to pump a Newtonian liquid (1 =70 x 1073 kg/m-s; p = 1200 kg/m?)
through the packed bed at a mass flow rate of 1.2 kg/s.

(Answer: 39.6 W)

4.20 The drag force, Fp, is deﬁnpd as the interfacial transfer of momentum from the fluid
to the solid. In Chapter 3, power, W, is given by Eq. (3.1-11) as

W = Fpue )
For flow in conduits, power is also expressed by Eq. (4.5-2) in the form
W = Q|AP] 2)

a) For flow in a circular pipe, the characteristic velocity is taken as the average velocity. For
this case, use Eqgs. (1) and (2) to show that

Fp=A|AP| 3)

where A is the cross-sectional area of the pipe.
b) For flow through packed beds, the characteristic velocity is taken as the actual average
velocity or interstitial velocity, i.e.,
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v,
Ve = —= (4)
€

in which v, is the superficial velocity and € is the porosity of the bed. Show that
Fp =€A|AP] )

where A is the cross-sectional area of the packed bed.
¢) In fluidization, the drag force on each particle should support its effective weight, i.e.,
weight minus buoyancy. Show that the drag force is given by

Fp=AL(1 —¢€)(pp — p)ge (6)

where L is the length of the bed, and p and pp are the densities of the fluid and solid par-
ticle, respectively. Note that in the calculation of the buoyancy force the volume occupied
by solid particles should be multiplied by the density of suspension, i.e., ep + (1 — €)pp,
instead of by p.

Combine Egs. (5) and (6) to get

|AP]

—— =g =) pp —p) (7

which is a well-known equation in fluidization.

4.21 A 15 x 90 m lawn is covered by a layer of ice 0.15 mm thick at —4 °C. The wind
at a temperature of 0 °C with 15% relative humidity blows in the direction of the short side
of the lawn. If the wind velocity is 10 m/s, estimate the time required for the ice layer to
disappear by sublimation under steady conditions. The vapor pressure and the density of ice
at —4°C are 3.28 mmHg and 917 kg/m?, respectively.

(Answer: 41 min)
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RATE OF GENERATION IN MOMENTUM, ENERGY,
AND MASS TRANSPORT

In Chapter 1, the generation rate per unit volume is designated by J. Integration of this
quantity over the volume of the system gives the generation rate in the conservation statement.
In this chapter, explicit expressions for ;i will be developed for the cases of momentum,
energy, and mass transport.

5.1 RATE OF GENERATION IN MOMENTUM TRANSPORT

In general, forces acting on a particle can be classified as surface forces and body forces.
Surface forces, such as normal stresses (pressure) and tangential stresses, act by direct contact
on a surface. Body forces, however, act at a distance on a volume. Gravitational, electrical and
electromagnetic forces are examples of body forces.

For solid bodies Newton’s second law of motion states that

(Summation of forces) _ ( Time rate of change of )

) = (5.1-1)
acting on a system momentum of a system

in which forces acting on a system include both surface and body forces. Equation (5.1-1) can
be extended to fluid particles by considering the rate of flow of momentum into and out of the
volume element, i.e.,

Rate of _ Rate of n Summation of forces
momentum in momentum out acting on a system
_ ( Time rate of change of )

~ \ momentum of a system (5.1-2)

On the other hand, for a given system, the inventory rate equation for momentum can be

expressed as
Rate of _ Rate of n Rate of momentum
momentum in momentum out generation

_ (Rate of momgntum) (5.1-3)
accumulation
Comparison of Egs. (5.1-2) and (5.1-3) indicates that
Rate of momentum |  ( Summation of forces (5.1-4)
generation ~ \_ acting on a system )

117
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in which the forces acting on a system are the pressure force (surface force) and the gravita-
tional force (body force).

5.1.1 Momentum Generation as a Result of Gravitational Force

Consider a basketball player holding a ball in his/her hands. When (s)he drops the ball, it
starts to accelerate as a result of gravitational force. According to Eq. (5.1-4), the rate of
momentum generation is given by

Rate of momentum generation = M g (5.1-5)

where M is the mass of the ball and g is the gravitational acceleration. Therefore, the rate of
momentum generation per unit volume, N, is given by

51

5.1.2 Momentum Generation as a Result of Pressure Force

Consider the steady flow of an incompressible fluid in a pipe as shown in Figure 5.1. The rate
of mechanical energy required to pump the fluid is given by Eq. (4.5-3) as

W = Fp(v) = Q|AP] (5.1-7)

Since the volumetric flow rate, Q, is the product of average velocity, (v), with the cross-
sectional area, A, Eq. (5.1-7) reduces to

A|AP|— Fp=0 (5.1-8)

For the system whose boundaries are indicated by a dotted line in Figure 5.1, the conser-
vation of mass states that

Min = Mout (5.1-9)
or,
(pA), = (p()A),, = (©hin= o (5.1-10)
On the other hand, the conservation statement for momentum, Eq. (5.1-3), takes the form
(momentomin) ~ (momentamout ) (““soneraion™™ ) =0 51411

System boundary

Figure 5.1. Flow through a pipe.
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and can be expressed as
(i (v)),, = [((v),,, + Fp] + R(AL) =0 (5.1-12)

where )i is the rate of momentum generation per unit volume. Note that the rate of momentum
transfer from the fluid to the pipe wall manifests itself as a drag force. The use of Egs. (5.1-9)
and (5.1-10) simplifies Eq. (5.1-12) to

N(AL) — Fp =0 (5.1-13)

Comparison of Egs. (5.1-8) and (5.1-13) indicates that the rate of momentum generation per
unit volume is equal to the pressure gradient, i.e.,

_|AP]|
L

N (5.1-14)

5.1.3 Modified Pressure

Equations (5.1-6) and (5.1-14) indicate that the presence of pressure and/or gravity forces can
be interpreted as a source of momentum. In fluid mechanics, it is customary to combine these
two forces in a single term and express the rate of momentum generation per unit volume as

A
N = 1API (5.1-15)
L
where P is the modified pressure' defined by
P=P+pgh (5.1-16)

in which £ is the distance measured in the direction opposite to gravity from any chosen
reference plane.

5.1.3.1 Physical interpretation of the modified pressure Consider a stagnant liquid in a
storage tank open to the atmosphere. Let z be the distance measured from the surface of the
liquid in the direction of gravity. The hydrostatic pressure distribution within the fluid is given
by

P=Pyn+pgz (5.1-17)
For this case the modified pressure is defined as
P=P—pgz (5.1-18)
Substitution of Eq. (5.1-18) into Eq. (5.1-17) gives
P = P, = constant (5.1-19)

The simplicity of defining the modified pressure comes from the fact that it is always con-
stant under static conditions, whereas the hydrostatic pressure varies as a function of position.

IThe term P is also called equivalent pressure, dynamic pressure, and piezometric pressure.
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Table 5.1. Pressure difference in flow through a pipe with different orientation

Geometry Pas—Pp Py — Pp

b1 —

A B

FLOW —— > —o --

(om —p)gH (om — p)gH

T
H
a4

(om — p)gH (om — p)gH + pgL sinf

i (om —p)gH (om —p)gH + pgL

FLOW

Suppose that you measure a pressure difference over a length L of a pipe. It is difficult to esti-
mate whether this pressure difference comes from a flow situation or hydrostatic distribution.
However, any variation in P implies a flow. Another distinct advantage of defining modified
pressure is that the difference in P is independent of the orientation of the pipe as shown in
Table 5.1.

5.2 RATE OF GENERATION IN ENERGY TRANSPORT

Let us consider the following paradox: “One of the most important problems that the world
faces today is the energy shortage. According to the first law of thermodynamics, energy is
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converted from one form to another and transferred from one system to another but its total
is conserved. If energy is conserved, then there should be no energy shortage.”

The answer to this dilemma lies in the fact that although energy is conserved its ability
to produce useful work decreases steadily as a result of the irreversibilities associated with
the transformation of energy from one form into another?. These irreversibilities give rise
to energy generation within the system. Typical examples are the degradation of mechanical
energy into thermal energy during viscous flow and the degradation of electrical energy into
thermal energy during transmission of an electric current.

Generation of energy can also be attributed to various other factors such as chemical and
nuclear reactions, absorption radiation, and the presence of magnetic fields. Energy generation
as a result of a chemical reaction will be explained in detail in Chapter 6.

The rate of energy generation per unit volume may be considered constant in most cases.
If it is dependent on temperature, it may be expressed in various forms such as

bT
R = {“ + (5.2-1)

N, e

where a and b are constants.

5.3 RATE OF GENERATION IN MASS TRANSPORT

5.3.1 Stoichiometry of a Chemical Reaction

Balancing of a chemical equation is based on the conservation of mass for a closed thermo-
dynamic system. If a chemical reaction takes place in a closed container, the mass does not
change even if there is an exchange of energy with the surroundings.

Consider a reaction between nitrogen and hydrogen to form ammonia, i.e.,

N> + 3Hp = 2NHj3 (5.3-1)
If A; =Ny, A» = H», and A3z = NH3, Eq. (5.3-1) is expressed as
A1+ 3A, =2A3 (5.3-2)

It is convenient to write all the chemical species on one side of the equation and give a positive
sign to the species regarded as the products of the reaction. Thus,

243 — A1 =34, =0 (53-3)
or,
N
> aiAi=0 (5.3-4)
i=1

where «; is the stoichiometric coefficient of the ith chemical species (positive if the species is
a product, negative if the species is a reactant), s is the total number of species in the reaction,

2Note that 1000 J at 100 °C is much more valuable than 1000 J at 20°C.
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and A; is the chemical symbol for the ith chemical species, representing the molecular weight
of the species.
Each chemical species, A;, is the sum of the chemical elements, £, such that

t
A=) BjiE; (5.3-5)
j=1

where B;; represents the number of chemical elements E; in the chemical species A;, and ¢
is the total number of chemical elements. Substitution of Eq. (5.3-5) into Eq. (5.3-4) gives

Z“i (Z ﬁjiE/) = Z(Z ouﬂ,v) Ej=0 (5.3-6)
Jj=1 j=l1

i=1 j i=1

Since all the E; are linearly independent?, then

)
D aiBii=0|  j=12,....1 (5.3-7)

i=l

Equation (5.3-7) is used to balance chemical equations.

Example 5.1 Consider the reaction between N> and H to form NHj3
1Ny + apHy + a3NH3 =0

Show how one can apply Eq. (5.3-7) to balance this equation.
Solution

If A; =Ny, A, = Hp and A3z = NH3, the above equation can be expressed as
a1A1 +arAr +a3A3 =0 (1)
Ifwelet Ey=N (j=1) and E» = H (j =2), then Eq. (5.3-7) becomes
aipin +o2fip+a3fiz=0  for j=1 ()

a1po1 +arfn+azf3=0  for j=2 3)
3The expression

n
Z%‘xi = x| +axxy + - +opxy

i=1

where {ap,0p,..., ap} is a set of scalars, is called a linear combination of the elements of the set S =
{x1,x2,...,xn}. The elements of the set S are said to be linearly dependent if there exists a set of scalars
{o1, 2, ..., an} with elements «; not all equal to zero, such that the linear combination Z;’: 1 @i x; =0 holds. If

Z?:l a;jx; = 0 holds for all ¢; =0, then the set S is linearly independent.
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or,

a1(2) +a2(0) +a3(1) =0 4)
a1(0) +a2(2) +a3(3) =0 (5)
Solutions of Egs. (4) and (5) give

. 1 _ 3 ©)
o] = 20{3 oy = 2013

If we take a3 = 2, then oy = —1 and ap = —3. Hence, the reaction becomes
N, + 3H; = 2NH;3

Comment: Stoichiometric coefficients have units. For example, in the above equation the
stoichiometric coefficient of Hy indicates that there are 3 moles of H, per mole of N».

5.3.2 The Law of Combining Proportions

Stoichiometric coefficients have the units of moles of i per mole of basis species, where the
basis species is arbitrarily chosen. The law of combining proportions states that

moles of i reacted

- - —— = moles of basis species (5.3-8)
(moles of i/mole of basis species)

or,
i, _ (5.3-9)

o

where ¢ is called the molar extent of the reaction*. Rearrangement of Eq. (5.3-9) gives

n; =I’li0+(xl’8‘ (5.3-10)

Note that once ¢ has been determined, the number of moles of any chemical species partici-
pating in the reaction can be determined by using Eq. (5.3-10).

The molar extent of the reaction should not be confused with the fractional conversion
variable, X, which can only take values between 0 and 1. The molar extent of the reaction is
an extensive property measured in moles and its value can be greater than unity.

It is also important to note that the fractional conversion may be different for each reacting
species, i.e.,

ni, —n;
X; ==L (5.3-11)

nj,

On the other hand, molar extent is unique for a given reaction. Comparison of Egs. (5.3-10)
and (5.3-11) indicates that

— X (5.3-12)

4The term ¢ has been given various names in the literature, such as degree of advancement, reaction of coordi-
nate, degree of reaction, and progress variable.
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The total number of moles, nr, of a reacting mixture at any instant can be calculated by
the summation of Eq. (5.3-10) over all species, i.e.,

nr=nr,+oe (5.3-13)

where n7, is the initial total number of moles and o = ) ; ;.

Example 5.2 A system containing 1 mol Aj, 2 mol A, and 7 mol Az undergoes the fol-
lowing reaction

A1(g) + A2(g) +3/243(8) — A4(g) +3A5(g)
Determine the limiting reactant and fractional conversion with respect to each reactant if the
reaction goes to completion.
Solution

Since n; > 0, it is possible to conclude from Eq. (5.3-10) that the limiting reactant has the
least positive value of n; /(—c;). The values given in the following table indicate that the
limiting reactant is Aj.

Species n;, /(—o;)

Ay 1
Ar 2
Az 4.67

Note that the least positive value of n;,/(—«;) is also the greatest possible value of e. Since
the reaction goes to completion, species A; will be completely depleted and ¢ = 1. Using
Eq. (5.3-12), fractional conversion values are given as follows:

Species X
Aj 1
Aj 0.50
Az 0.21

Example 5.3 A system containing 3 mol A; and 4 mol A, undergoes the following reaction
2A1(8) +3A2(8) — A3(g) +2A4(g)

Calculate the mole fractions of each species if ¢ = 1.1. What is the fractional conversion
based on the limiting reactant?

Solution

Using Eq. (5.3-10), the number of moles of each species is expressed as

n=3—-2¢=3—(2)(1.1) =0.8 mol
np=4—-3¢=4—(3)(1.1) =0.7 mol
n3=¢&=1.1 mol

ng =2¢=(2)(1.1) = 2.2 mol
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Therefore, the total number of moles is 4.8 and the mole fraction of each species is

0.8
x| = -— =0.167
4.8
=27 0146
4.8
1.1
x3 = — =0.229
4.8
2.2
x4 == =0458
4.8

The fractional conversion, X, based on the limiting reactant A; is

4—-0.7
X = =0.825

The molar concentration of the ith species, ¢;, is defined by

ni
ci = v (5.3-14)
Therefore, division of Eq. (5.3-10) by the volume V gives
n; nj, &
V=7V +°"'V (5.3-15)

or,

531

where ¢;, is the initial molar concentration of the ith species and £ is the intensive extent of
the reaction in moles per unit volume. Note that & is related to conversion, X, by

°—X; (5.3-17)

The total molar concentration, c, of a reacting mixture at any instant can be calculated by
the summation of Eq. (5.3-16) over all species, i.e.,

5319

where ¢, is the initial total molar concentration.
When more than one reaction takes place in a reactor, Eq. (5.3-10) takes the form

‘nij:nijo-i-aijej (5.3-19)

where
n;j = number of moles of the ith species in the jth reaction
nij, = initial number of moles of the ith species in the jth reaction
a;j = stoichiometric coefficient of the ith species in the jth reaction

¢ = extent of the jth reaction
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Summation of Eq. (5.3-19) over all reactions taking place in a reactor gives
Z”ij = Z”ijo + Z“iﬁj (5.3-20)
J J J

or,

n; =n;, + Zaijej (5.3-21)
J

Example 5.4 The following two reactions occur simultaneously in a batch reactor:

C,Heg = CoHy +Hp
C,Hg + Hy =2CHy4

A mixture of 85 mol % C,Hg and 15% inerts is fed into a reactor and the reactions proceed
until 25% CyHy4 and 5% CHy4 are formed. Determine the percentage of each species in a
reacting mixture.

Solution
Basis: 1 mol of a reacting mixture

Let 1 and ¢; be the extents of the first and second reactions, respectively. Then the number
of moles of each species can be expressed as

nc,He =0.85 — 61 — &2
nc,Hy = €1
nH, = €1 — &2
ncy, =282
Ninerr = 0.15
The total number of moles, ny, is
nr=1+¢;

The mole fractions of C;H4 and CH4 are given in the problem statement. These values are
used to determine the extent of the reactions as

XCyH, = 1 f:gl =025 = & =0333
2
XCH, = —2 =005 = & =0.033

1+¢;
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Therefore, the mole fractions of CoHg, Hy, and the inerts are

0.85—¢; —& 0.85-0.333 —0.033

— —=0.363
C2He 1+e 140333
er—e_0333-0033
X = =] = 0.
S 1+0.333
0.15
Xinert = —1 +O 333 :0112

5.3.3 Rate of Reaction

The rate of a chemical reaction, r, is defined by

1 de

=— — 5.3-22
" V dt ( )

where V is the volume physically occupied by the reacting fluid. Since both V and de/dt
are positive, the reaction rate is intrinsically positive. Note that the reaction rate has the units
of moles reacted per unit time per unit volume of the reaction mixture. The reaction rate
expression, r, has the following characteristics:

e It is an intensive property,
e It is independent of the reactor type,
e It is independent of a process.

Changes in the molar extent of the reaction can be related to the changes in the number of
moles of species i by differentiating Eq. (5.3-10). The result is

1
de = —dn; (5.3-23)
o

Substitution of Eq. (5.3-23) into Eq. (5.3-22) gives

11 dl’l,'
r=——— (5.3-24)
o; V o dt
If the rate of generation of species i per unit volume, ;, is defined by
1 dn;
M= 5.3-25
TV oar ( )

then

53:26)

Therefore, N; is negative if i appears as a reactant; 3; is positive if i is a product.

Example 5.5 For the reaction
3A— B+C

express the reaction rate in terms of the time rate of change of species A, I3, and C.
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Solution
Application of Eq. (5.3-24) gives the rate as
1 ldnA_ 1 dnB_ 1 dnc

=——"= ()
3V dt V dt V dt

If V is constant, then Eq. (1) reduces to

1 dcy _ dcp . dcc

3 dt dt dt

)

Comment: The rate of reaction is equal to the time derivative of a concentration only
when the volume of the reacting mixture is constant.

In the case of several reactions, R; is defined by

Ni =D aijrj (5.3-27)
j

where r; is the rate of the jth reaction.

The reaction rate is a function of temperature and concentration and is assumed to be the
product of two functions; one is dependent only on the temperature and the other is dependent
only on the concentration, i.e.,

r(T,c;)=k(T) f(ci) (5.3-28)

The function k(T) is called the rate constant and its dependence on the temperature is given
by

k(T)= AT e €/RT (5.3-29)

where A is a constant, £ is the activation energy, R is the gas constant, and 7T is the absolute
temperature. The power of temperature, m, is given by

0  from the Arrhenius relation
m = 4{1/2 from the kinetic theory of gases (5.3-30)
1  from statistical mechanics

In engineering practice the Arrhenius relation, i.e.,
k(T)=Ae /7T (5.3-31)

is generally considered valid®, and the rate constant can be determined by running the same
reaction at different temperatures. The data from these experiments are found to be linear on
a semi-log plot of k versus 1/T.

The function f(c;) depends on the concentration of all the species in the chemical reaction.
Since the reaction rate is usually largest at the start of the reaction and eventually decreases

SDeviations from the Arrhenius relationship are discussed by Maheshwari and Akella (1988).
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to reach a zero-rate at equilibrium, the function f(c;) is taken to be a power function of the
concentration of the reactants.

If f(c;) were a power function of the products of the reaction, the reaction rate would
increase rather than decrease with time. These reactions are called autocatalytic.

For normal decreasing rate reactions

fen=]]¢ (5.3-32)

where ¢; is the concentration of a reactant. Thus, the constitutive equation for the reaction
rate is

r=k[]c (5.3-33)
i

The order of a reaction, n, refers to the powers to which the concentrations are raised, i.e.,

n=Y "y (5.3-34)

It should be pointed out that there is not necessarily a connection between the order and the
stoichiometry of the reaction.

NOTATION

A area, m’

c concentration, kmol/m?

& activation energy, kJ/kmol

Fp dragforce, N

acceleration of gravity, m/s”

elevation, m

reaction rate constant

length, m

mass, kg

mass flow rate, kg/s

number of moles, kmol

number of moles of the ith species in the jth reaction
pressure, Pa

modified pressure, Pa

volumetric flow rate, m>/s

rate of a chemical reaction, kmol/m?-s

rate of generation (momentum, energy, mass) per unit volume
temperature, °C or K

time, S
volume, m
velocity, m/s

W rate of work, W

S S . S0
FEEge

<TNHZETO9Y

3

<
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X fractional conversion

X; mole fraction of species i
z rectangular coordinate, m
o; stoichiometric coefficient of species i

a;j  stoichiometric coefficient of the ith species in the jth reaction

a Y

A difference

e molar extent of a reaction, kmol

& intensive extent of a reaction, kmol/m>
o density, kg/m>

om  density of manometer fluid, kg/m?

Bracket
(a) average value of a
Subscripts

atm  atmospheric

in inlet

o initial
out out

T total
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STEADY-STATE MACROSCOPIC BALANCES

The use of correlations in the determination of momentum, energy and mass transfer from
one phase to another under steady-state conditions is covered in Chapter 4. Although some
examples in Chapter 4 make use of steady-state macroscopic balances, systematic treatment
of these balances for the conservation of chemical species, mass, and energy is not presented.
The basic steps in the development of steady-state macroscopic balances are as follows:

e Define your system: A system is any region that occupies a volume and has a boundary.

e [f possible, draw a simple sketch: A simple sketch helps in the understanding of the
physical picture.

e List the assumptions: Simplify the complicated problem to a mathematically tractable
form by making reasonable assumptions.

o Write down the inventory rate equation for each of the basic concepts relevant to the
problem at hand: Since the accumulation term vanishes for steady-state cases, macro-
scopic inventory rate equations reduce to algebraic equations. Note that in order to have a
mathematically determinate system the number of independent inventory rate equations
must be equal to the number of dependent variables.

e Use engineering correlations to evaluate the transfer coefficients: In macroscopic mod-
eling, empirical equations that represent transfer phenomena from one phase to another
contain transfer coefficients, such as the heat transfer coefficient in Newton’s law of
cooling. These coefficients can be evaluated by using the engineering correlations given
in Chapter 4.

e Solve the algebraic equations.

6.1 CONSERVATION OF CHEMICAL SPECIES

The inventory rate equation given by Eq. (1.1-1) holds for every conserved quantity ¢. There-
fore, the conservation statement for the mass of the ith chemical species under steady condi-
tions is given by

Rate qf mass ) Rate c?f mass " Rate of gener.atlon —0 6.1-1)
of i in of i out of mass i

The mass of i may enter or leave the system by two means: (i) by inlet or outlet streams, (ii)
by exchange of mass between the system and its surroundings through the boundaries of the
system, i.e., interphase mass transfer.

131
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(M)ing

/

(m;); —— SYSTEM L

Figure 6.1. Steady-state flow system with fixed boundaries.

For a system with a single inlet and a single outlet stream as shown in Figure 6.1,
Eq. (6.1-1) can be expressed as

(mi)in — (Mi)our = (M )int + (Zaijrj)/\/li Viyps =0 (6.1-2)

J

in which the molar rate of generation of species i per unit volume, 3;, is expressed by
Eq. (5.3-27). The terms (#1;);;, and (m1;),, represent the inlet and outlet mass flow rates
of species i, respectively, and M; is the molecular weight of species i. The interphase mass
transfer rate, (#1; )iy, is expressed as

(M) ine = Am (ke) (ACi)en M (6.1-3)

where (Ac;)p is the characteristic concentration difference. Note that (m2;);,, is considered
positive when mass is added to the system.
As stated in Section 2.4.1, the mass flow rate of species i, n1;, is given by

lh,’ = Pi (v)A = piQ (6.1—4)
Therefore, Eq. (6.1-2) takes the form

(Q01)in — (20 our = Apt (k) (Aci)en M + (Zaijrj>MiVsys =0 (6.1-5)
J

Sometimes it is more convenient to work on a molar basis. Division of Eqgs. (6.1-2) and
(6.1-5) by the molecular weight of species i, M;, gives

()in — (i) our £ (1) int + <Zaij rj) Vsys =0 (6.1-6)
J

and

(Qci)in — (Qci)our = Apr{ke) (Aci)en + (Zaij l”j) Vsys =0 (6.1-7)
J

where 7n; and ¢; are the molar flow rate and molar concentration of species i, respectively.
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Example 6.1 The liquid phase reaction
A+2B— C+2D

takes place in an isothermal, constant-volume stirred tank reactor. The rate of reaction is
expressed by

r =kcacp with k =0.025 L/mol-min

The feed stream consists of equal concentrations of species .A and B at a value of 1 mol/L.
Determine the residence time required to achieve 60% conversion of species B under steady
conditions.

Solution
Assumption

1. Asaresult of perfect mixing, concentrations of species within the reactor are uniform,
e, (¢i)our = (Ci)sys-

Analysis
System: Contents of the reactor

Since the reactor volume is constant, the inlet and outlet volumetric flow rates are the
same and equal to Q. Therefore, the inventory rate equation for conservation of species
B, Eq. (6.1-7), becomes

Q(cB)in — Q(CB)sys - [2k(CA)sys(CB)sys] Vsys =0 (D

where (ca)sys and (cp)sys represent the molar concentration of species A and B in the
reactor, respectively. Dropping the subscript “sys” and defining the residence time, , as
7 =V /0O reduces Eq. (1) to

(cB)in —cB — (2kcacp)T =0 ()
or,
(cB)in —CB
— AP B 3
2kcacp ©)

Using Eq. (5.3-17), the extent of the reaction can be calculated as
_ Cniny, _ (DO6) _

§= Cap) B 5 0.3 mol/L 4)
Therefore, the concentrations of species A and B in the reactor are
ca=(cA)in+asé=1—0.3=0.7mol/L 5)
cg=(cp)in+apé =1—(2)(0.3) = 0.4 mol/L (6)
Substitution of the numerical values into Eq. (3) gives
04 = 42.9 min

e (2)(0.025)(0.7)(0.4)
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6.2 CONSERVATION OF MASS

Summation of Eq. (6.1-2) over all species gives the total mass balance in the form

‘ min - mout + mint =0 ‘ (62—1)

Note that the term

Z(ZO{U rj>./\/l,~ =0 (6.2-2)
J

i

since mass is conserved. Equation (6.2-2) implies that the rate of production of mass for
the entire system is zero. However, if chemical reactions take place within the system, an
individual species may be produced.

On the other hand, summation of Eq. (6.1-6) over all species gives the total mole balance
as

’;lin - ’;1’014[ :t ’;lint + [Z <Z 051] r‘])} Vsys - 0 (6.2—3)
J

i

In this case the generation term is not zero because moles are not conserved.

Example 6.2 A liquid phase irreversible reaction
A— B

takes place in a series of four continuous stirred tank reactors as shown in the figure below.

@)
R
| | | © |
O— 1 2 3 4 @
L | L | [ L 1. ®
@ ® @ ®

The rate of reaction is given by
4200
r=kcy  with k=3x10 exp(—T>

in which k is in h~! and 7 is in degrees Kelvin. The temperature and the volume of each
reactor are given as follows:
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Reactor Temperature Volume
No O @®)
1 35 800
2 45 1000
3 70 1200
4 60 900

Determine the concentration of species .4 in each reactor if the feed to the first reactor
contains 1.5 mol/L of A and the volumetric flow rates of the streams are given as follows:

Stream Volumetric Flow Rate
No (L/h)
1 500
200
50
11 100
Solution
Assumptions

1. Steady-state conditions prevail.
2. Concentrations of species within the reactor are uniform as a result of perfect mixing.
3. Liquid density remains constant.

Analysis
Conservation of total mass, Eq. (6.2-1), reduces to

min =S mout (1)
Since the liquid density is constant, Eq. (1) simplifies to

Qin = Qour 2)

Only four out of eleven streams are given in the problem statement. Therefore, it is necessary
to write the following mass balances to calculate the remaining seven streams:

Q1= Q=500
500+ 100 = @,
Q2+ Q10=93
Q3+50= Q4
Qg =0Qs

Qs = Qe + 200

200 =50+ Qo
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Simultaneous solution of the above equations gives the volumetric flow rate of each stream
as:

Stream Volumetric Flow Rate
No (L/h)
1 500
2 600
3 750
4 800
5 700
6 500
7 200
8 700
9 50
10 150
11 100

For each reactor, the reaction rate constant is

[ 4200 ]
k=3x10exp| ————— | =0.359 h~! for reactor # 1
| 35+273)
[ 4200
k=3x10exp| ——————— | =0.551 h~! for reactor # 2
| (45 +273)
5 [ 4200 ] -
k=3x100exp| —————=—|=1443h for reactor # 3
| (704-273) |
5 [ 4200 ] 1
k=3x100exp| —————| =0.999 h for reactor # 4
| (60+273)

For each reactor, the conservation statement for species A, Eq. (6.1-7), can be written in the
form

(500)(1.5) + 100c 45 — 600cs, — (0.359¢4,)(800) =0
600ca, + 150c4, — 750c4, — (0.551c4,)(1000) =0
750c4, 4+ 50ca, —800ca; — (1.443¢c4,)(1200) =0
700c 45 — 700c 4, — (0.999¢4,)(900) =0
Simplification gives
8.872ca, —cay; =75

4cp, —8.673cp, +ca, =0

1SCA2 = 50.632CA3 +cay, = 0

cay; —2.284cp, =0
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The above equations are written in matrix notation! as

8.872 0 =1 0 CA, 7.5
4 —8.673 0 1 ca, | | O
0 15 —50.632 1 ca; | | O
0 0 1 —2.284 CA, 0

Therefore, the solution is

ca, | [8872 0 | 0 7.5
ca, | | 4 -8673 0 1 0
cas || O 15  —50.632 1 0
ca, 0 0 1 —2.284 0

[0.115 —0.004 —0.002 —0.003 7.5
0.054 —-0.119 —-0.002 —-0.053 0
0.016 —-0.036 —-0.021 —-0.025 0

| 0.007 —0.016 —0.009 —0.449 0

The multiplication gives the concentrations in each reactor as

ca, 0.859
ca, | | 0.402
cay | = | 0.120
ca, 0.053

6.3 CONSERVATION OF ENERGY

The conservation statement for fotal energy under steady conditions takes the form

( Rate of ) B ( Rate of ) N (Rate of energy> _0 (6.3-1)

energy in energy out generation

The first law of thermodynamics states that total energy can be neither created nor destroyed.
Therefore, the rate of generation term in Eq. (6.3-1) equals zero.

Energy may enter or leave the system by two means: (i) by inlet and/or outlet streams, (ii)
by exchange of energy between the system and its surroundings through the boundaries of the
system in the form of heat and work.

For a system with a single inlet and a single outlet stream as shown in Figure 6.2,
Eq. (6.3-1) can be expressed as

(Ein+ Qint + W) — Eus =0 (6.3-2)
where the interphase heat transfer rate, Q int» 1 expressed as

Oint = A (h)(AT)en (6.3-3)

Matrix operations are given in Section A.9 in Appendix A.
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Ojnt /
[

E. —— SYSTEM N )

m out

14

Figure 6.2. Steady-state flow system with fixed boundaries interchanging energy in the form of heat and work with
the surroundings.

in which (AT)., is the characteristic temperature difference. Note that Q,-,,, is considered
positive when energy is added to the system. Similarly, W is also considered positive when
work is done on the system.

As stated in Section 2.4.2, the rate of energy entering or leaving the system, E, is expressed
as

E=En (6.3-4)
Therefore, Eq. (6.3-2) becomes
(Erin)in — (Etit)ous + Qi + W =0 (6.3-5)

To determine the total energy per unit mass, E, consider an astronaut on the space shuttle
Atlantis. When the astronaut looks at the earth, (s)he sees that the earth has an external kinetic
energy due to its rotation and its motion around the sun. The earth also has an internal kinetic
energy as a result of all the objects, i.e., people, cars, planes, etc., moving on its surface that
the astronaut cannot see. A physical object is usually composed of smaller objects, each of
which can have a variety of internal and external energies. The sum of the internal and external
energies of the smaller objects is usually apparent as internal energy of the larger objects.

The above discussion indicates that the total energy of any system is expressed as the sum
of its internal and external energies. Kinetic and potential energies constitute the external
energy, while the energy associated with the translational, rotational, and vibrational motion
of molecules and atoms is considered the internal energy. Therefore, total energy per unit
mass can be expressed as

E=U+Ex+Ep (6.3-6)

where U, Ex, and Ep represent internal, kinetic, and potential energies per unit mass, re-
spectively. Substitution of Eq. (6.3-6) into Eq. (6.3-5) gives

[(ﬁ + E}( + Ep) m]in — [(ﬁ + EK + Ep) m]out + Qint +W=0 (6.3-7)
The rate of work done on the system by the surroundings is given by

W= W, +(PViit)iy— (PVit)ou (6.3-8)
—

Shaft work Flow work
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In Figure 6.2, when the stream enters the system, work is done on the system by the sur-
roundings. When the stream leaves the system, however, work is done by the system on the
surroundings. Note that the boundaries of the system are fixed in the case of a steady-state
flow system. Therefore, work associated with volume change is not included in Eq. (6.3-8).

Substitution of Eq. (6.3-8) into Eq. (6.3-7) and the use of the definition of enthalpy, i.e.,
H=U+PV, give

[(H+Ex +Ep)m], —[(H+Ex +Ep)m],, + Qi+ W;=0 (6.3-9)

out

which is known as the steady-state energy equation.
The kinetic and potential energy terms in Eq. (6.3-9) are expressed in the form

~ 1
Ex =5 v? (6.3-10)

and
Ep=gh (6.3-11)

where g is the acceleration of gravity and # is the elevation with respect to a reference plane.
Enthalpy, on the other hand, depends on temperature and pressure. Change in enthalpy is
expressed by

dH=CpdT +V(1 —BT)dP (6.3-12)

where S is the coefficient of volume expansion and is defined by
1[/oV 1/
B=—(22) =—2(2£ (6.3-13)
v \oT /p p \oT ] p

5= {0 for an incompressible fluid

Note that

1/T for an ideal gas (6.3-14)

When the changes in the kinetic and potential energies between the inlet and outlet of the
system are negligible, Eq. (6.3-9) reduces to

(Hri)in — (Hi) out + Qine + Wy =0 (6.3-15)

In terms of molar quantities, Eqs. (6.3-9) and (6.3-15) are written as

[(H+Ex +Ep)it), —[(H+ Ex + Ep)],,, + Qi+ W, =0 (6.3-16)

out

and

(ﬁfl)in - (ﬁﬁ)out + Qim‘ + Ws =0 (6-3-17)
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6.3.1 Energy Equation Without a Chemical Reaction

In the case of no chemical reaction, Egs. (6.3-9) and (6.3-16) are used to determine energy in-
teractions. If kinetic and potential energy changes are negligible, then these equations reduce
to Egs. (6.3-15) and (6.3-17), respectively. The use of the energy equation requires the en-
thalpy change to be known or calculated. For some substances, such as steam and ammonia,
enthalpy values are either tabulated or given in the form of a graph as a function of tempera-
ture and pressure. In that case enthalpy changes can be determined easily. If enthalpy values
are not tabulated, then the determination of enthalpy depending on the values of temperature
and pressure in a given process is given below.

6.3.1.1 Constant pressure and no phase change Since d P = 0, integration of Eq. (6.3-12)
gives

T
H:/ CpdT (6.3-18)
Tref

in which H is taken as zero at Tyr. Substitution of Eq. (6.3-18) into Eq. (6.3-15) gives
T[n o~ Tout o~ . .
i ( | e dT) — Tiou ( | e dT) + Qi + Wy =0 (6.3-19)
Tref Tfef

IfC p is independent of temperature, Eq. (6.3-19) reduces to
minaP(Tin - Tref) - moutaP(Tout - Tref) + Qim‘ + WS =0 (6-3'20)

Example 6.3 It is required to cool a gas composed of 75 mole % Nj, 15% CO,, and 10%
O, from 800°C to 350°C. Determine the cooling duty of the heat exchanger if the heat
capacity expressions are in the form

Cp(J/mol.K)=a+bT +cT?>+dT> T [=]K

where the coefficients a, b, ¢, and d are given by

Species a b x 10? ¢ x 10° d x 10°
N» 28.882 —0.1570 0.8075 —2.8706
(0)) 25.460 1.5192 —0.7150 1.3108
CO, 21.489 5.9768 —3.4987 7.4643
Solution
Assumptions

1. Ideal gas behavior.
2. Changes in kinetic and potential energies are negligible.
3. Pressure drop in the heat exchanger is negligible.
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Analysis
System: Gas stream in the heat exchanger
Since 7, = 0 and there is no chemical reaction, Eq. (6.2-3) reduces to
’:lin=7.lout=”.l (1)

Therefore, Eq. (6.3-19) becomes

. Tout~ Tin ~ Toul~
Ql-mzfl(/ deT—/ deT>=fl</ CPdT> (2)
Tt Tref T;

Tour
it = / CpdT 3)
T;

1.

or,

where Qjue = Qini/1t, Ty = 1073 K, and Ty = 623 K.
The molar heat capacity of the gas stream, Cp, can be calculated by multiplying the mole
fraction of each component by the respective heat capacity and adding them together, i.e.,

3
6}) =Zx,-(ai +biT+CiT2+d,'T3)
i=1

=27.431+0.931 x 10727 +0.009 x 10772 —0.902 x 107°7* 4)
Substitution of Eq. (4) into Eq. (3) and integration give
Oint = —15,662 J/mol

The minus sign indicates that heat must be removed from the gas stream.

6.3.1.2 Constant pressure with phase change When we start heating a substance at con-
stant pressure, a typical variation in temperature as a function of time is given in Figure 6.3.

T
P = const.

o - phase
T, y P

t

Figure 6.3. Temperature-time relationship as the substance transforms from the y-phase to the o -phase.
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Let T}er be the temperature at which phase change from the y-phase to the o -phase, or vice
versa, takes place. If we choose the y-phase enthalpy as zero at the reference temperature,
then enthalpies of the o- and y-phases at any given temperature 7 are given as

T
(Cp)edT o -phase
H=1{"T (6.3-21)

~ Tref
—A—/ (Cp)ydT  y-phase
T
where & = Hy — ﬁy at the reference temperature.

Example 6.4 One way of cooling a can of cola on a hot summer day is to wrap a piece
of wet cloth around the can and expose it to a gentle breeze. Calculate the steady-state
temperature of the can if the air temperature is 35 °C.

Solution
Assumptions

1. Steady-state conditions prevail.
2. Ideal gas behavior.

Analysis
System: Wet cloth and the cola can
The inventory rate equation for energy becomes
Rate of energy in = Rate of energy out (1)

Let the steady-state temperature of the cloth and that of cola be Ty,. The rate of energy
entering the system is given by

Rate of energy in= Ag (h)(Too — Ty) )

in which Ay and T, represent the heat transfer area and air temperature, respectively. On
the other hand, the rate of energy leaving the system is expressed in the form

Rate of energy out=ﬁA[XA + (GP)A(TOO — w)] 3)
where 714 represents the rate of moles of water, i.e., species A, evaporated and is given by
na=Apke)(ca, —cay) “4)

in which Aj; represents the mass transfer area. Substitution of Eqgs. (2), (3) and (4) into
Eq. (1) and using

Ag=Ay CAOOZO FXA > (6P)A(Too_ w)

give

o k)
Too—Tw_cAwAA(W) (%)
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The ratio (k.)/(h) can be estimated by the use of the Chilton-Colburn analogy, i.e., jg = jum,

as
Sty (Se\*’ Ltk _ 1 (P 2/ @
Sty \Pr (h) — pCp\Sc
The use of Eq. (6) in Eq. (5) yields
')‘: P 2/3
Too — Ty = —2224 (—r) (7)
(pCp)p \S¢

where the properties p, Cp, Pr,and Sc belong to air, species B. The concentration of species
A at the interface, cg,,, is given by

_ Pjat
RTy,

®)

CA,

It shgyld be remembered that the quantities ¢4, and x A must be evaluated at T,,, whereas
PB, Cpy, Prg, and Scg must be evaluated at Ty = (T, + To)/2. Since T, is unknown, a
trial-and-error procedure will be used in order to determine 7, as follows:

Step 1: Assume T,, = 15°C
Step 2: Determine the physical properties:

P35 =0.01703 bar
For water at 15°C (288 K): { ~
Aa = 2466 x 18 = 44,388 kJ /kmol

The saturation concentration is

R 0.01703
T RT,  (8.314 x 10-2)(15 4+ 273)

The film temperature is Tr = (35 + 15) /2 = 25°C.

ca, =7.11 x 10~* kmol/m’

p = 1.1845 kg/m’>
v=15.54 x 107 m?/s
Cp = 1.005 kI /kg-K
Pr=0.712

For air at 25°C (298 K):

The diffusion coefficient of water in air is

298\ /2
Dap = (2.88 x 10_5)(%) =2.68 x 107> mz/s

The Schmidt number is

v 1554%x107°

Sc = =
DAB 2.68 x 1075

=0.58
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Step 3: Substitute the values into Eq. (7) and check whether the right- and left-hand sides
are equal to each other:

Too — T =35 —15=20

ca,ha (Pr 2/3_(7.11><10—4)(44,388)<o,712 2/3_304
(pCp)p \S¢/ g T (1.1845)(1.005) 0.58 -

Since the left- and right-hand sides of Eq. (7) are quite different from each other, another
value of T,, should be assumed.

Assume T, = 11°C

Pj{” =0.01308 bar
For water at 11°C (284 K): {~
Aa =2475.4 x 18 = 44,557 kJ /kmol

The saturation concentration is

psat 0.01308

= =5.54 x 10~* kmol/m’
RT, (8314 x 10-2)(11 4 273)

CAy =

The film temperature is 7y = (35 + 11)/2 =23°C.

p =1.1926 kg/m>

v =15.36 x 107 m?/s
Cp = 1.005 kI /kg-K
Pr=0.713

For air at 23°C (296 K):

The diffusion coefficient of water in air is

296\ °/?
Dyap = (2.88 x 10_5)(%) =2.65x 107> m?/s

The Schmidt number is

v 1536x107°

= =0.58
DAB 2.65 x 10_5

Sc =

The left- and right-hand sides of Eq. (7) now become
Too—Ty=35—-11=24

caka (Pr\YP (554 x 107,557 (0713
(pCpp\Sc), —  (1.1926)(1.005) \058) ~—

Therefore, the steady-state temperature is 11 °C.




6.3 Conservation of Energy 145

Comment: Whenever a gas flows over a liquid, the temperature of the liquid decreases as
a result of evaporation. This process is known as evaporative cooling. The resulting steady-
state temperature, on the other hand, is called the wet-bulb temperature.

6.3.1.3 Variable pressure and no phase change Enthalpy of an ideal gas is dependent only
on temperature and is expressed by Eq. (6.3-18). Therefore, in problems involving ideal gases,
variation in pressure has no effect on the enthalpy change. In the case of incompressible fluids,
Eq. (6.3-12) reduces to

T
A :/ CpdT + V(P — Pry) (6.3-22)
Tref

in which the enthalpy is taken as zero at the reference temperature and pressure. At low
and moderate pressures, the second term on the right-hand side of Eq. (6.3-22) is usually
considered negligible.

Example 6.5 A certain process requires a steady supply of compressed air at 600 kPa and
50°C at the rate of 0.2 kg/s. For this purpose, air at ambient conditions of 100 kPa and
20°C is first compressed to 600 kPa in an adiabatic compressor, and then it is fed to a heat
exchanger where it is cooled to 50°C at constant pressure. As cooling medium, water is
used and it enters the heat exchanger at 15 °C and leaves at 40 °C. Determine the mass flow
rate of water if the rate of work done on the compressor is 44 kJ/s.

r System boundary

Compressor Heat Exchanger

Air @

100 kPa 600 kPa
20°C S0°C
W, = 44 k/s T,,=40°C  T;,=15°C
Solution
Assumptions
1. Steady-state conditions prevail.
2. Changes in kinetic and potential energies are negligible.
3. There is no heat loss from the heat exchanger to the surroundings.
4. Heat capacities of air and water remain essentially constant at the values of 1 kJ/kg-K
and 4.178 kJ /kg-K, respectively.
Analysis

System: Compressor and heat exchanger
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Conservation of total mass, Eq. (6.2-1), reduces to
My =y =m ey
Therefore, Eq. (6.3-15) becomes
tair(Hy — Hp)air — Qint + Wy =0 ()
in which the enthalpy change of the air and the interphase heat transfer rate are given by

(ﬁl - ﬁZ)air = (6P)air(Tl - TZ)air (3)

Qint = (MCp) 1,0 (Tour — Tin) 1,0 4)
Substitution of Egs. (3) and (4) into Eq. (2) and rearrangement give

(1 Cp)air(Ty — Tair + Wy (0.2)(1)(20 — 50) + 44
(CP o Tows — Tdmo  (4.178)(40 — 15)

M0 = —0.364kg/s ()

Comment: The definition of a system plays a crucial role in the solution of the problem.
Note that there is no need to find out the temperature or pressure at the exit of the compressor.
If, however, one chooses the compressor and heat exchanger as two separate systems, then
the pressure and temperature at the exit of the compressor must be calculated.

6.3.2 Energy Equation with a Chemical Reaction

6.3.2.1 Thermochemistry Thermochemistry deals with the changes in energy in chemical
reactions. The difference between the enthalpy of one mole of a pure compound and the total
enthalpy of the elements of which it is composed is called the heat of formation, AH f,of
the compound. The standard heat of formation, Aﬁj‘j, is the heat of formation when both the
compound and its elements are at standard conditions as shown in Figure 6.4. The superscript
? implies the standard state. Since enthalpy is a state function, it is immaterial whether or not
the reaction could take place at standard conditions.

The standard state is usually taken as the stable form of the element or compound at the
temperature of interest, 7', and under 1 atm (1.013 bar). Therefore, the word standard refers
not to any particular temperature, but to unit pressure of 1 atm. The elements in their standard
states are taken as the reference state and are assigned an enthalpy of zero. The standard heat
of formation of many compounds is usually tabulated at 25°C and can readily be found in
Perry’s Chemical Engineers’ Handbook (1997) and thermodynamics textbooks. For example,
the standard heat of formation of ethyl benzene, CgH g, in the gaseous state is 29,790 J/mol
at 298 K. Consider the formation of ethyl benzene from its elements by the reaction

8C(s) + SHa(g) = CgHio(g)
The standard heat of formation is given by

(AH?) ey, = Hegmy, — 8HE — SHij, = 29,790 J/mol
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Elements in their ~, 1 mole of compound in its
standard states AH f standard state
(T, 1 atm) (T, 1 atm)

Figure 6.4. Calculation of the standard heat of formation, Aﬁ;.

Reactants in their o Products in their
standard states AH .y, standard states
(T, 1 atm) (T, 1 atm)

Figure 6.5. Calculation of the standard heat of reaction, AH?, ,,.

Since HS = ~1?12 =0, it follows that

(AH;)Cngo = Hgngo = 297790 J/mOI

It is possible to generalize this result in the form

(AHY), =Hf (6.3-23)

The standard heat of formation of a substance is just the standard heat of reaction in which
one mole of it is formed from elementary species. Therefore, the standard heat of reaction,
AH?,, is the difference between the total enthalpy of the pure product mixture and that of
the pure reactant mixture at standard conditions as shown in Figure 6.5.

The standard heat of reaction can be calculated as

rxn

AHS, = ol HY (6.3-24)

Substitution of Eq. (6.3-23) into Eq. (6.3-24) gives

AHS, = oi(AHY), (6.3-25)

Note that the standard heat of formation of an element is zero.
If heat is evolved in the reaction, the reaction is called exothermic. If heat is absorbed, the
reaction is called endothermic. Therefore,

AH?

rxn

{ > 0 for an endothermic reaction (6.3-26)

< 0 for an exothermic reaction

If the standard heat of reaction is known at 298 K, then its value at any other tempera-
ture can be found as follows: The variation of the standard heat of reaction as a function of
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temperature under constant pressure is given by

dAH?,

rxn —

dAH?
= (ﬂ) dT (6.3-27)
0T ) p=y

The term (0AH/,,/dT) p can be expressed as

IAHS,, d ~ OH? ~ ~
__rxn —_ E OHO — E i L = E i 0' ZACO 6.3-28
( oT >p 8T(ia’ ’) ,.a<3T P iap’ ro :

Substitution of Eq. (6.3-28) into Eq. (6.3-27) and integration give

T
AH?. (T)=AH? (T =298 K)+/ ACLdT (6.3-29)

rxn rxn
298

6.3.2.2 Energy balance around a continuous stirred tank reactor An energy balance in a
continuous stirred tank reactor (CSTR) with the following assumptions is a good example of
the energy balance with a chemical reaction:

Steady-state conditions prevail.

Stirring does not contribute much energy to the system, i.e., Wy ~ 0.

Volume of the system is constant, i.e., inlet and outlet volumetric flow rates are equal.
As a result of perfect mixing, the temperature and concentration of the system are
uniform, i.e., Cour = Cgys and Ty = Tys.
5. Changes in kinetic and potential energies are negligible.

Ll e

Since a chemical reaction is involved in this case, it is more appropriate to work on a molar
basis. Therefore, Eq. (6.3-17) simplifies to

(Hn)in — (H) out + Qi =0 (6.3-30)

Any molar quantity of a mixture, 1; can be expressed in terms of partial molar quantities,

v, as
V=Y X (6.3-31)
i
Multiplication of Eq. (6.3-31) by molar flow rate, n, gives
Vi =i, (6.3-32)
i
Therefore, Eq. (6.3-30) is expressed as

[Zmﬁimn)} - [Zmﬁ,m] + Qi =0 (6.3-33)

in out

2partial molar quantities, unlike molar quantities of pure substances, depend also on the composition of the
mixture.
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On the other hand, the macroscopic mole balance for species i, Eq. (6.1-6), is

(ni)in — (i) our + Viys Zaijrj =0 (6.3-34)
J

Multiplication of Eq. (6.3-34) by H,(T') and summation over all species give

[Z niH; (T)} — [Z niH; (T)] — Vs O _1j(=AHygn j) =0 (6.3-35)
i in i out j
where the heat of reaction is defined by
AHppnj=Y oaijHi(T) (6.3-36)
i

Subtraction of Eq. (6.3-35) from Eq. (6.3-33) yields

{Zm[ﬁ,-mn) — Hi(T)] } + Qi+ Vigs 3 _1j(=AHygn j) =0 (6.3-37)

1243 ;

! J

Dividing Eq. (6.3-37) by the volumetric flow rate, Q, gives

{Zci [ﬁz(Tm) - ﬁl(T)]} + Qle +7 er (—AHyxn,j)=0 (6.3-38)
in j

i

where 7 is the residence time defined by

T=—= (6.3-39)
Q
The partial molar heat capacity of species i, C p;» is related to the partial molar enthalpy as
— dH,
Cp = (6.3-40)
' oT ) p
If C p, is independent of temperature, then integration of Eq. (6.3-40) gives
Hi(Ty) —Hi{(T)=Cp(Tin—T) (6.3-41)
Substitution of Egs. (6.3-40) and (6.3-41) into Eq. (6.3-38) yields
Qint
(Cpin(Tin = T) + =3 +7) rj(=AHpn j) =0 (6.3-42)
J

where

(Cpin= Z(Ci)inEP,- (6.3-43)
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It should be noted that the reaction rate expression in Eq. (6.3-42) contains a reaction rate
constant, k, expressed in the form

k=Ae ¢/RT (6.3-44)

Therefore, Eq. (6.3-42) is highly nonlinear in temperature.

Once the feed composition, stoichiometry and order of the chemical reaction, heat of re-
action, and reaction rate constant are known, conservation statements for chemical species
and energy contain five variables, namely, inlet temperature, 7;,; extent of reaction, &; reactor
temperature, 7T'; residence time, 7; and interphase heat transfer rate, Qin,. Therefore, three
variables must be known, while the remaining two can be calculated from the conservation of
chemical species and energy. Among these variables, Tj, is the variable associated with the
feed, £ and T are the variables associated with the product, and 7 and Q;,, are the variables
of design.

Example 6.6 A liquid feed to a jacketed CSTR consists of 2000 mol/m> A and 2400 mol /m>
B. A second-order irreversible reaction takes place as

A+ B —2C
The rate of reaction is given by
r=kcacp
where the reaction rate constant at 298 K is k = 8.4 x 10~ m3 /mol-min, and the activation
energy is 50,000 J/mol. The reactor operates isothermally at 65 °C. The molar heat capacity

at constant pressure and the standard heat of formation of species A, B, and C at 298 K are
given as follows:

. cs AHS
Species (J/mol-K) (kJ /mj(;l)
A 175 —60
B 130 -75
C 110 —90

a) Calculate the residence time required to obtain 80% conversion of species A.

b) What should be the volume of the reactor if species C are to be produced at a rate of
820 mol/min?

¢) If the feed enters the reactor at a temperature of 25 °C, determine the rate of heat that
must be removed from the reactor to maintain isothermal operation.

d) If the heat transfer coefficient is 1050 W/m?-K and the average cooling fluid tempera-
ture is 15 °C, estimate the required heat transfer area.

Solution
Assumptions

1. As a result of perfect mixing, concentrations of the species within the reactor are
uniform, i.e., (¢;)our = (Ci)sys-
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2. Solution nonidealities are negligible, i.e., C p, = C P AHpy =AH?
3. There is no heat loss from the reactor.

Analysis

System: Contents of the reactor

a) Since the reactor volume is constant, the inlet and outlet volumetric flow rates are
the same and equal to Q. Therefore, the inventory rate equation for conservation of
species A, Eq. (6.1-7), becomes

Q(ca)in — Q(CA)sys - [k(CA)sys(cB)sys] Vsys =0 (D

where (ca)sys and (cp)sys represent the molar concentrations of species A and B in the
reactor, respectively. Dropping the subscript “sys” and dividing Eq. (1) by the volumetric
flow rate, O, gives

CA)in—C
- ( I;C)CTZCB - (2)
Using Eq. (5.3-17), the extent of reaction can be calculated as
£ = w X4 = 7(2000) () = 1600 mol/m3 3)
(—oa)

Therefore, the concentrations of species A, B, and C in the reactor are
ca = (ca)in + aa€ = 2000 — 1600 = 400 mol/m> 4)
cg = (cB)in + g€ = 2400 — 1600 = 800 mol/m> (5)
cc = (co)in + act = (2)(1600) = 3200 mol/m> (6)

If k1 and k> represent the rate constants at temperatures of 77 and 73, respectively, then

o — k E (1 1 7
=kiexp| ——= — — —

2 1 €Xp R\7 T

Therefore, the reaction rate constant at 65 °C (338 K) is

50,000
8.314

1 1
k=28.4x10"%exp [— (— — —ﬂ =9.15x 10~ m?/mol-min  (8)

338 298
Substitution of numerical values into Eq. (2) gives

2000 — 400

T = =54.6 min
(9.15 x 1073)(400)(800)

b) The reactor volume, V, is given by

V=109
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The volumetric flow rate can be determined from the production rate of species C, i.e.,

820
ccQ=820 = Q=70=0256 m? /min

Hence, the reactor volume is
V = (54.6)(0.256) = 14 m®
¢) For this problem, Eq. (6.3-42) simplifies to
Qint = —=Q(Cp)in(Tin — T) = V (keacp) (= AH,) )
The standard heat of reaction at 298 K is

AHZ,,(298) =Y " ai(AHY); = (—1)(—60) + (—1)(=75) + (2)(=90) = —45 kJ /mol

The standard heat of reaction at 338 K is given by Eq. (6.3-29)
338

AH?,, (338) = AH?,, (298 K) + / AC%dT
298

where

ACH = "a;Ch = (—1)(175) + (= 1)(130) + (2)(110) = —85 ] /mol K

Hence

AH? . (338) = —45,000 + (—85)(338 — 298) = —48,400 J/mol

rxn

On the other hand, the use of Eq. (6.3-43) gives

(CP)in= Y _(c)inCp, = (2000)(175) + (2400)(130) = 662,000 J/m* K

1
Therefore, substitution of the numerical values into Eq. (9) yields
Qint = —(0.256)(662,000) (25 — 65)
— (14)[(9.15 X 10_5)(400)(800)](48,400) = —13 x 10° J/min

The minus sign indicates that the system, i.e., reactor, loses energy to the surroundings.
d) The application of Newton’s law of cooling gives

|Qint| = AH<h>(Treactor - coolant)
or,

13 x 10° >
(1050)(65 — 15)(60)

H
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NOTATION

A area, m?

Ag heat transfer area, m?

Ay mass transfer area, m?

Cp heat capacity at constant pressure, kJ/kg-K
c concentration, kmol/m?

Das diffusion coefficient for system .A-B, m?/s
E total energy, J

Ex kinetic energy, J

Ep potential energy, J

E rate of energy, J/s

& activation energy, J/mol

g acceleration of gravity, m/s?

H enthalpy, J

h elevation, m

k reaction rate constant

ke mass transfer coefficient, m/s

m mass flow rate, kg/s

M molecular weight, kg/kmol

n molar flow rate, kmol/s

P pressure, Pa

Q heat transfer rate, W

Q volumetric flow rate, m? /s

r rate of a chemical reaction, kmol/m?-s
R gas constant, J/mol-K

T temperature, °C or K

t time, s

U internal energy, J

\% volume, m3

v velocity, m/s

|14 rate of work, W

W, rate of shaft work, W

X fractional conversion

Xi mole fraction of species i

o; stoichiometric coefficient of species i
ajj stoichiometric coefficient of the ith species in the jth reaction
B coefficient of volume expansion, Eq. (6.3-13), K~!
A difference

AH f heat of formation, J/mol

AH,,, heatof reaction, J

A latent heat of vaporization, J

u viscosity, kg/m-s

v kinematic viscosity, m?/s

& intensive extent of a reaction, kmol /m3
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0 density, kg/m>

T residence time, s
Overlines

- per mole

- per unit mass

— partial molar
Bracket

{(a) average value of a
Superscripts

0 standard state

sat saturation
Subscripts

A, B species in binary systems
ch characteristic

f film

i species in multicomponent systems
in inlet

int interphase

j reaction number
out outlet

ref reference

sys system

Dimensionless Numbers

Pr Prandtl number

Sc Schmidt number

Sty Stanton number for heat transfer
Stm Stanton number for mass transfer
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PROBLEMS

6.1 Water at 20 °C is flowing at steady-state through a piping system as shown in the figure
below.

The velocity distribution (in m/s) in a pipe with D1 =4 cm is given by

7 1/7
Uz=3 1_R_1

where Ry = Dj/2 and r is the radial coordinate. If the volumetric flow rate of water through
a pipe with D3 = 1 cm is 0.072 m?/min, calculate the volumetric flow rate of water (in
cm?’/s) through a pipe with D =2 cm.

(Answer: 1880 cm?/s)

6.2 2520 kg/h of oil is to be cooled from 180°C to 110°C in a countercurrent heat ex-
changer as shown in the figure below. Calculate the flow rate of water passing through the
heat exchanger for the following cases:

a) The cooling water, which enters the heat exchanger at 15 °C, is mixed with water at 30 °C
at the exit of the heat exchanger to obtain 2415 kg/h of process water at 60 °C to be used
in another location in the plant.

b) The cooling water, which enters the heat exchanger at 30°C, is mixed with water at
30°C at the exit of the heat exchanger to obtain 2415 kg/h of process water at 60 °C to
be used in another location in the plant.
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0Oil
l H,0 at 30°C
H,O v
— > Heat Exchanger 2415 kg/h H,O
60°C

l

Assume that oil and water have constant heat capacities of 2.3 and 4.2 kJ /kg-K, respectively.

(Answer: a) 1610 kg/h)

6.3 The following parallel reactions take place in an isothermal, constant-volume CSTR:

A—>2B r=kicsy kj=13s"!
3A— C r=kycy kzIO.4S_l

Pure A is fed to the reactor at a concentration of 350 mol/m?>.

a) Determine the residence time required to achieve 85% conversion of species .4 under
steady conditions.
b) Determine the concentrations of species I3 and C.

(Answer: a) T =2.27 s b) cp =309.9 mol/m?>, cc = 47.7 mol/m?)
6.4 Species A undergoes the following consecutive first-order reactions in the liquid phase
in an isothermal, constant-volume CSTR:

A8 8¢

where k; = 1.5 s7! and k, = 0.8 s~!. If the feed to the reactor consists of pure A, deter-
mine the residence time required to maximize the concentration of species B under steady
conditions.

(Answer: 0.913 s)

6.5 An isomerization reaction

A=B
takes place in a constant-volume CSTR. The feed to the reactor consists of pure .A. The rate
of the reaction is given by

r = kch — kZCB

For the maximum conversion of species A at a given residence time, determine the reactor
temperature.

(Answer: T = &2/R )

In{Az7[(&2/&1) — 11}
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..............

12 cm | G ! B=025mm

T L=2cm

Figure 6.6. Schematic diagram for Problem 6.6.

6.6 Two electronic components (k = 190 W/m-K) are to be cooled by passing 0.2 m3/s
of air at 25°C between them. To enhance the rate of heat loss, it is proposed to install
equally spaced rectangular aluminum plates between the electronic components as shown in
Figure 6.6.

The rate of heat loss from the electronic component on the left, i.e., z = 0, must be 500 W
and the temperature should not exceed 80°C, while the other component must dissipate
2 kW with a maximum allowable temperature of 90 °C. Determine the number of plates that
must be placed per cm between the electronic components (use the temperature distribution
given in Problem 4.7).

(Answer: One possible solution is 10 fins per cm)

6.7 As shown in Example 6.4, the wet-bulb temperature can be calculated from

~ 2/3

ca,ha [ Pr

Too — Ty = f(_) (1)
(pCp)p \Sc

by a trial-and-error procedure because both c,, and XA must be evaluated at T,
whereas pp, Cpy, Prp and Scp must be evaluated at the film temperature. In engineer-
ing applications, an approximate equation used to estimate the wet-bulb temperature is
given by

Ty —ToTy+¢=0 2
where

P T Myda (Pr>2/3 .

= PooMBaPB Sc B

Develop Eq. (2) from Eq. (1) and indicate the assumptions involved in the derivation.
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6.8 An exothermic, first-order, irreversible reaction
A— B
takes place in a constant-volume, jacketed CSTR.
a) Show that the conservation equations for chemical species .A and energy take the form
Q(ca)in—ca] —keaV =0 (1)
[Q(CP)in+ At (h)|(Tn — T) + Vkca(—AHpcn) =0 (2)
where T, is a weighted mean temperature defined by

T — Q(CP)inTin =+ AH<h>Tc
" Q(Cp)in+ Ap (h)

3)

in which (k) is the average heat transfer coefficient, 7, is the cooling fluid temperature,
and Ay is the heat transfer area.
b) Show that the elimination of c4 between Eqgs. (1) and (2) leads to

kQV(CA)in _
[Q(CP)in+ Au (W) |(Ty — T) + ooy "AHm) =0 (4)

¢) In terms of the following dimensionless quantities

Q_E(L B 1) [Q(CPYin+ Au ()T,
DAV X T Q)= AHym)
B RTn 1 RT.Qx
Ap=AetRTn g RIn — o
e B z 14+ x) y cVA,

show that Eq. (4) takes the form
0
="
y(1—p6)

d) To determine the roots of Eq. (5) for given values of y and B, it is more convenient to
rearrange Eq. (5) in the form

&)

F(0) = 1n|: (6)

=21
y(1—pB0)
Examine the behavior of the function in Eq. (6) and conclude that

e At least one steady-state solution exists when g > 0.25,
e Two steady-state solutions exist when 8 < 0.25 and ¥ = Ymin < Ymax O Ymin <

Y = Vmax,
e Three steady-state solutions exist when 8 < 0.25 and ymin < ¥ < Ymax»
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where ymin and ymax are defined by

1+ VT=48\> 1+ JT—48
Vi = (T) e""[‘(T)] @

e lirim) o (is)]

The existence of more than one steady-state solution is referred to as multiple steady-states.
For more detailed information on this problem see Kauschus et al. (1978).
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UNSTEADY-STATE MACROSCOPIC BALANCES

In this chapter we will consider unsteady-state transfer processes between phases by assuming
no gradients within each phase. Since the dependent variables, such as temperature and con-
centration, are considered uniform within a given phase, the resulting macroscopic balances
are ordinary differential equations in time.

The basic steps in the development of unsteady macroscopic balances are similar to those
for steady-state balances given in Chapter 6. These can be briefly summarized as follows:

Define your system.

If possible, draw a simple sketch.

List the assumptions.

Write down the inventory rate equation for each of the basic concepts relevant to the

problem at hand.

e Use engineering correlations to evaluate the transfer coefficients.

e Write down the initial conditions: the number of initial conditions must be equal to the
sum of the order of differential equations written for the system.

e Solve the ordinary differential equations.

7.1 APPROXIMATIONS USED IN MODELING OF UNSTEADY-STATE PROCESSES

7.1.1 Pseudo-Steady-State Approximation

As stated in Chapter 1, the general inventory rate equation can be expressed in the form
Rate of Rate of Rate of Rate of
. - + . = . (7.1-1)
input output generation accumulation
Remember that the molecular and convective fluxes constitute the input and output terms.
Among the terms appearing on the left-hand side of Eq. (7.1-1), molecular transport is the

slowest process. Therefore, in a given unsteady-state process, the term on the right-hand side
of Eq. (7.1-1) may be considered negligible if

Rate of Rate of
> . (7.1-2)
molecular transport accumulation

or,

(7.1-3)

e e Gradient of Difference in quantity
Diffusivit .
(Diffusivity) (Quant1ty/Volume> (Area) > Characteristic time

161
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Note that the “Gradient of Quantity/Volume” is expressed in the form

. . Difference in Quantity/Volume
Gradient of Quantity/Volume = — (7.1-4)
Characteristic length

On the other hand, volume and area are expressed in terms of characteristic length as

Volume = (Characteristic length)3 (7.1-5)
Area = (Characteristic length)2 (7.1-6)

Substitution of Egs. (7.1-4)—(7.1-6) into Eq. (7.1-3) gives

(Diffusivity) (Characteristic time)
(Characteristic length)?2

> 1 (7.1-7)

In the literature, the dimensionless term on the left-hand side of Eq. (7.1-7) is known as the
Fourier number and designated by t.

In engineering analysis, the neglect of the unsteady-state term is often referred to as the
pseudo-steady-state (or quasi-steady-state) approximation. However, it should be noted that
the pseudo-steady-state approximation is only valid if the constraint given by Eq. (7.1-7) is
satisfied.

Example 7.1 We are testing a 2 cm thick insulating material. The density, thermal con-
ductivity, and heat capacity of the insulating material are 255 kg/m>, 0.07 W/m-K, and
1300 J/kg-K, respectively. If our experiments take 10 min, is it possible to assume pseudo-
steady-state behavior?

Solution
For the pseudo-steady-state approximation to be valid, Eq. (7.1-7) must be satisfied, i.e.,
Alcp

> 1
2
Lch

The thermal diffusivity, «, of the insulating material is

k 0.07
7=

= = =2.11x 107" m?
pC,  (255)(1300) e

Hence,

afep  (2.11 x 10=7)(10)(60)

_ —032<1
L2, 2 x 10-2)2 =

which indicates that we have an unsteady-state problem at hand.
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7.1.2 No Variation of Dependent Variable Within the Phase of Interest

In engineering analysis it is customary to neglect spatial variations in either temperature or
concentration within the solid. Although this approximation simplifies the mathematical prob-
lem, it is only possible under certain circumstances as will be shown in the following devel-
opment.

Let us consider the transport of a quantity ¢ from the solid phase to the fluid phase through
a solid-fluid interface. Under steady conditions without generation, the inventory rate equa-
tion, Eq. (1.1-1), for the interface takes the form

(7.1-8)

Rate of transport of ¢ from\  ( Rate of transport of ¢ from
the solid to the interface )~ \ the interface to the fluid

Since the molecular flux of ¢ is dominant within the solid phase, Eq. (7.1-8) reduces to

. Flux of ¢ from

N <the interface to the ﬂuid) (7.1-9)

Molecular flux of ¢ from
the solid to the interface

or,
[(Transport) ( Gradient of )] . |:< Transfer ) ( Difference in >i|
property driving force / | .. coefficient / \ Quantity/Volume fuid
(7.1-10)

The gradient of driving force is expressed in the form

Difference in driving force
Gradient of driving force = — vine (7.1-11)
Characteristic length

On the other hand, “Difference in Quantity/Volume” can be expressed as

( Difference in ) B (Transport property) (Difference in)

Quantity/Volume Diffusivity driving force (7.1-12)

Substitution of Eqgs. (7.1-11) and (7.1-12) into the left- and right-hand sides of Eq. (7.1-10),
respectively, gives

<Characteristic> ( Transfer ) (Transport)
length coefficient ropert
Bi = = /A POPEY (7.1-13)
( Transport ) Diffusivity
solid

property

fluid

in which Bi designates the Biot number defined by

. (Difference in driving force),,;;,

1= — - — (7.1-14)
(Difference in driving force) 4,4
Therefore, the Biot numbers for heat and mass transfer are defined as
h)L, ko)L
Biyy = (W Leh and | Biy = —kelLen (7.1-15)
ksol id (DA B ) solid
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It is important to distinguish the difference between the Biot and the Nusselt (or the Sher-
wood) numbers. The transport properties in the Biot numbers, Eq. (7.1-15), are referred to the
solid, whereas the transport properties in the Nusselt and the Sherwood numbers, Eqs. (3.4-
11) and (3.4-12), are referred to the fluid. Some textbooks define the characteristic length,
L, as the ratio of the volume to the surface area. In general, it should be the distance over
which significant changes in temperature or concentration take place.

When the Biot number is small, one can conclude from Eq. (7.1-14) that

Difference in <« Difference in (7.1-16)
driving force } .. driving force fuid '

Therefore, dependent variables may be considered uniform within the solid phase only if
Bi « 1. This approach is known as lumped-parameter analysis.

It is also possible to define the Biot numbers in terms of the time scales. Using the quantities
given in Table 3.3, the Biot numbers are given by

. Conductive time scale Lgh Ja hLcp
Big = — = — = (7.1-17)
Convective time scale for heat transport 1, ., /(h/ pCp) k
Bins = . Di.ffusive time scale _ Lgh /Dap _ keLep (7.1-18)
Convective time scale for mass transport Len/ ke Dap

7.2 CONSERVATION OF CHEMICAL SPECIES

The conservation statement for the mass of the ith chemical species is given by

Rate of mass '\ [ Rate of mass Rate of generation | _ ( Rate of accumulation
of i in of i out of mass i - of mass i
(7.2-1)

For a system with a single inlet and a single outlet stream as shown in Figure 7.1, Eq. (7.2-1)
can be expressed as

Ot i = () ous &= O Yins + Vi Mi Y otijry = — = (7.2-2)
j
()it
()i —— SYSTEM > (1)

Figure 7.1. Unsteady-state flow system exchanging mass with the surroundings.



7.3 Conservation of Total Mass 165

The interphase mass transfer rate, (#;);,s, is considered positive when mass is added to the
system and is expressed by

(mi)ine = Am (ke) (Aci) en M (7.2-3)
Substitution of Eq. (7.2-3) into Eq. (7.2-2) gives

d(m;)
(Qp1)in = (Qoidow % An tke) (Ac)an M + Viys Mi Y Zetijrj = —— =5 (7.2-4)
J
On a molar basis, Egs. (7.2-2) and (7.2-4) take the form
. . . d(n;)
Gi6)in = GioDous 2 (i )int + Viys )07 = — == (7.2-5)
J
and
d(”i)sys
(Qci)in — (Qci)our £ Amlke) (Aci)en + Vsyszaijrj = dt (7.2-6)
J
7.3 CONSERVATION OF TOTAL MASS
Summation of Eq. (7.2-2) over all species gives the total mass balance in the form
. . . dm
Min — Moys £ Mijpr = d;ys (7.3-1)

Note that the term ), «;; M; is zero since mass is conserved. On the other hand, summation
of Eq. (7.2-5) over all species gives the total mole balance as

dngys
dt

Rin — Rour = Nint + Vsyszajrj = (7.3-2)

J

where
Tj=) o (7.3-3)
i

The generation term in Eq. (7.3-2) is not zero because moles are not conserved. This term
vanishes only when o ; = 0 for all values of ;.

Example 7.2 An open cylindrical tank of height H and diameter D is initially half full of
a liquid. At time ¢ = 0, the liquid is fed into the tank at a constant volumetric flow rate of
Qin, and at the same time it is allowed to drain out through an orifice of diameter D, at the
bottom of the tank. Express the variation in the liquid height as a function of time.
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Solution
Assumptions

1. Rate of evaporation from the liquid surface is negligible.
2. Liquid is incompressible.
3. Pressure distribution in the tank is hydrostatic.

Q
1

Orifice of diameter D,,
Analysis
System: Fluid in the tank

The inventory rate equation for total mass, Eq. (7.3-1), reduces to

o _ d(Ahp)
PQin — P{Vo)Ap = T

1)

where (v,) is the average velocity through the orifice, i.e., the volumetric flow rate divided
by the cross-sectional area; A, and A are the cross-sectional areas of the orifice and the tank,
respectively. Since p and A are constant, Eq. (1) becomes

Qin — (vo)Ap = A E (2
In order to proceed further, (v,) must be related to 4.
For flow in a pipe of uniform cross-sectional area A, the pressure drop across an orifice

is given by
(V) = C, 2|AP| 3)
VTR

where B is the ratio of the orifice diameter to the pipe diameter, |AP| is the pressure
drop across the orifice, and C, is the orifice coefficient. The value of C, is generally de-
termined from experiments and given as a function of 8 and the Reynolds number, Re,,
defined by

ke,  Dolvo)o “

I
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For B < 0.25, the term /1 — B4 is almost unity. On the other hand, when Re, > 20,000,
experimental measurements show that C, >~ 0.61. Hence, Eq. (3) reduces to

(05} = 0.61 @ 5)

Since the pressure in the tank is hydrostatic, | A P| >~ pgh and Eq. (5) becomes
(vo) = 0.61y/2gh =2.7Vh (6)

Substitution of Eq. (6) into Eq. (2) gives the governing differential equation for the liquid
height in the tank as

A, _dh
2.7(7) (@-vi)=2" ™)
where
Qin
~ 274, ®)

Note that the system reaches steady-state when dh/dt = 0 at which point the liquid height,
hg, is given by

hy =Q? ©)
Now it is worthwhile to investigate two cases:
Case (i) Liquid level in the tank increases

At t = 0, the liquid level in the tank is H /2. Therefore, the liquid level increases, i.e.,
dh/dt > 0in Eq. (7), if

Q2> H/2 (10)
Rearrangement of Eq. (7) gives
! 1 /A
[ (2)
0 2.7\ A,

Integration of Eq. (11) yields

h
f dh an
H2Q—~h

z=0.74<§0)[ g_ﬁ+ an(%‘@?)} (12)

Equations (9) and (10) indicate that &y > H/2. When hy > H, the steady-state condition
can never be achieved in the tank. The time required to fill the tank, 77, is

rf=0.74<%>[ g—ﬁ+ﬂln<%f?>:| (13)
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If H/2 < hy < H, then the time, ¢, required for the level of the tank to reach 99% of the
steady-state value is

A H Q- JH/2 )
00 =074 — — —4/099Q+ QIn| ————— 14
; (fb)[ 2 et n(sz—\/o.99sz } ()

Case (ii) Liquid level in the tank decreases

The liquid level in the tank decreases, i.e., dh/dt < 0in Eq. (7), if
Q> <H/)2 (15)

Equation (12) is also valid for this case. Equations (9) and (15) imply that h; < H /2. Since
hg cannot be negative, this further implies that it is impossible to empty the tank under these
circumstances. The time required for the level of the tank to reach 99% of the steady-state
value is also given by Eq. (14).

The ratio i/ H is plotted versus ¢/[0.74(A/ A,)~/H] with Q/+/Has a parameter in the
figure below.

1.0
0ol D
o8] 09
0.7
T 06
~ /
<
0.5 F
044
®
0.2
0.1f (03)
©03)
0 1 1 1 | 1 | 1 | | |

0 1 2 3 4 5 6 7 8 9 10 11

0.74 (A/A )V H

Example 7.3 A liquid phase irreversible reaction
A— B

takes place in a CSTR of volume V7. The reactor is initially empty. At ¢t = 0, a solution of
species A at concentration ¢4, flows into the reactor at a constant volumetric flow rate of
Oin. No liquid leaves the reactor until the liquid volume reaches a value of V7. The rate of
reaction is given by

r=kcy
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If the reaction takes place under isothermal conditions, express the concentration of species
A within the reactor as a function of time.

Solution
Assumptions

1. Well-mixed system, i.e., the temperature and the concentration of the contents of the
reactor are uniform.
2. The density of the reaction mixture is constant.

Analysis
System: Contents of the reactor

The problem should be considered in three parts: the filling period, the unsteady-state period,
and the steady-state period.

i) The filling period

During this period, there is no outlet stream from the reactor. Hence, the conservation of

total mass, Eq. (7.3-1), is given by

dmsys
dt

pQin = )

Since Q;, and p are constant, integration of Eq. (1) and the use of the initial condition,
mgys =0att =0, give
Msys = Qinpt 2)
Since mgys = p Vys, EQ. (2) can also be expressed as
Vsys = Qint (3)

From Eq. (3), the time required to fill the reactor, ¢*, is calculated as t* = V7 /Q;,, where
Vr is the volume of the reactor.
The inventory rate equation based on the moles of species A, Eq. (7.2-6), reduces to

dny
QinCAo —kca Vsys === 4)
dt
where Viy;, the volume of the reaction mixture, is dependent on time. The molar concentra-

tion can be expressed in terms of the number of moles as

na
Vsys

&)

cA=

such that Eq. (4) can be rearranged in the form

na d t
/ A / dt (6)
0 Qinca, —kna 0
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Integration gives
_ QinCAo
kt

Substitution of Eq. (7) into Eq. (5) and the use of Eq. (3) give the concentration as a function
of time as

na [1 —exp(—kn)] (7

ca,

ca=—[l—exp(—kn]  0<i<Vr/Qu ®)
The concentration ¢’ at the instant the tank is full, i.e., at t =t* = V7 /Qy, is
Qinca [ ( kVT)]
= 211 —exp| — ©)
A kVT P Qin

ii) The unsteady-state period

Since the total volume of the reactor V7 is constant, then the inlet and outlet volumetric flow
rates are the same, i.e.,

Qin = Qouwr = Q (10)
The inventory rate equation for the moles of species A, Eq. (7.2-6), is
d(caV
Qcs, — Qe —keaVy = Z4T0 (a1
Equation (11) can be rearranged in the form
1 dca
— —ca(l +k1)| = — 12
T[CA,, ca(l +kr)] 7 (12)
where 7 is the residence time defined by
Vr
T=— (13)
Q
Equation (12) is a separable equation and can be written in the form
CA d t
T / ca - / dt (14)
¢t ca, —cal+kt)  Jp
Integration of Eq. (14) gives the concentration distribution as
ca, N ca, (1+kt)(@ —1t*)
_ _ — 15
ca 1+kr+(CA l—I—kr)eXp[ T (15)

iii) The steady-state period

The concentration in the tank reaches its steady-state value, c4,, as t — oo. In this case, the
exponential term in Eq. (15) vanishes and the result is

cA
cA, = ¢

=2 16
14kt (16)
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Note that Eq. (16) can also be obtained from Eq. (12) by letting dcs/dt = 0. The time
required for the concentration to reach 99% of its steady-state value, t~o, is

14k
Tk 1n{100[1—< = T>[1—exp(—kr)]“ 17)

1+ kt

foo =1% +

When k7 < 1, i.e., a slow first-order reaction, Eq. (17) simplifies to
too — T =4.61 (18)

Example 7.4 A sphere of naphthalene, 2 cm in diameter, is suspended in air at 90 °C. Es-
timate the time required for the diameter of the sphere to be reduced to one-half its initial
value if:

a) The air is stagnant,
b) The air is flowing past the naphthalene sphere with a velocity of 5 m/s.

Solution
Physical properties

p5 = 1145 kg/m’
For naphthalene (species A) at 90°C (363 K): { M4 =128
P =11.7 mmHg

Diffusion coefficient of species .A in air (species B) is

363\ /2
(Dap)363 = (0.62 x 10_5)(%) =8.25x107% m?/s

For air at 90°C (363 K): v =21.95 x 107 m?/s

The Schmidt number is
v 21.95%x107°

= =2.66
Dap 8.25 x 10~°

Sc =

Assumptions

1. Pseudo-steady-state behavior.
2. Ideal gas behavior.

Analysis

System: Naphthalene sphere

The terms appearing in the conservation of species A, Eq. (7.2-2), are
(ma)in=(mA)our =0

(i A)ine = — (7 D) (ke) (ca, — ca)Ma
r=0

(mA)sys = Vsyspi = (JTD?[’;/6)/O§
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Therefore, Eq. (7.2-2) reduces to

d (D3
—(7D3) (ke) (e, — ca)Ma = E<E6P’”§> v

Taking c4., = 0 and rearrangement give

t

~ 2Maca, Jp, 2 (ke)

where D, is the initial diameter of the naphthalene sphere.

The average mass transfer coefficient, (k.), can be related to the diameter of the sphere,
Dp, by using one of the mass transfer correlations given in Section 4.3.3. The use of the
Ranz-Marshall correlation, Eq. (4.3-33), gives

Sh=2+0.6Rey/* Sc!/3 3)

a) When air is stagnant, i.e., Rep = 0, Eq. (3) reduces to

{kc)Dp 2Dsp
Dip {ke) Dy “)
Substitution of Eq. (4) into Eq. (2) and integration give
3 AD?
f=— _FAZ0 5)
32 Muca,Dag
The saturation concentration of naphthalene, ¢4, , is
2 11.7/760
ca, =2 = / =5.17 x 10~* kmol/m’ (6)

 RT  (0.08205)(90 + 273)

Substitution of the values into Eq. (5) gives the required time as

3 (1145)(0.02)2

r=— =2.59 x 10° s >~ 3 days
32 (128)(5.17 x 10~4)(8.25 x 10-9)

b) When air flows with a certain velocity, the Ranz-Marshall correlation can be expressed
as

or,
1
(ke) = D—(OH'ﬁV Dp) (7
P
where the coefficients « and § are defined by

a=2Dsp =2(825x 107%) =1.65 x 107 (8)
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B =0.6Dap(veo/v)/?Sc!/3

5 1/2

= (0.6)(8.25 x 10—6)(

Substitution of Egs. (7)—(9) into Eq. (2) gives

1145 0.02 Dp
= dDP
(2)(128)(5.17 x 1074 Jo01 \1.65 x 10~5 +3.27 x 10-3/Dp

Analytical evaluation of the above integral is possible and the result is
t =3097 s >~ 52 min
Verification of the pseudo-steady-state approximation

Dapt  (8.25 x 107%)(3097)

= =64>1
D3 (2 x 1072)2 >

7.4 CONSERVATION OF MOMENTUM

According to Newton’s second law of motion, the conservation statement for linear momen-
tum is expressed as

( Time rate of change of ) _ (Forces acting> (7.4-1)

linear momentum of abody / — \ on a body

In Section 4.3, we considered the balance of forces acting on a single spherical particle of
diameter Dp, falling in a stagnant fluid with a constant terminal velocity v;. In the case
of an accelerating sphere, an additional force, called the fluid inertia force, acts besides the
gravitational, buoyancy, and drag forces. This force arises from the fact that the fluid around
the sphere is also accelerated from rest, resulting in a change in the momentum of the fluid.
The rate of change of fluid momentum shows up as an additional force acting on the sphere,
pointing in the direction opposite to the motion of the sphere. This additional force has a
magnitude equal to one-half the rate of change of momentum of a sphere of liquid moving at
the same velocity as the solid sphere. Therefore, Eq. (7.4-1) is written in the form

Time rate of change of _ ( Gravitational \  ( Buoyancy
linear momentum of a sphere / ~ force force

3 <Drag) 3 (Fluld 1nema> (7.4-2)

force force

and can be expressed as

nD} dv wD3 nD3 DI\ (1 , nD3 dv
— = - - = - — 7.4-3
¢ PP ¢ Pr8 c P8 ( ) >( pU )f TR (7.4-3)
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where pp and D p represent the density and diameter of the solid sphere, respectively, and p
is the fluid density. Simplification of Eq. (7.4-3) gives

dv 3
Dr(pp +0.50) = =Dr(pp = p)g = 7pv* f (7.4-4)
The friction factor, f, is usually given as a function of the Reynolds number, Re p, defined by
Dpvp
i

Therefore, it is much more convenient to express the velocity, v, in terms of Rep. Thus,
Eq. (7.4-4) takes the form

Rep =

(7.4-5)

D} dRep
nodt
where Ar is the Archimedes number defined by Eq. (4.3-6). Note that when the particle

reaches its terminal velocity, i.e., d Rep /dt = 0, Eq. (7.4-6) reduces to Eq. (4.3-4). Inte-
gration of Eq. (7.4-6) gives

+0.50) D3 [Rer 3 -
- u/ (Ar—ZfRe%,) dRep (7.4-7)
1% 0

A friction factor-Reynolds number relationship is required to carry out the integration. Sub-
stitution of the Turton-Levenspiel correlation, Eq. (4.3-10), into Eq. (7.4-7) gives

050002 [Rer 0.31 Re2 -
IZM/ <Ar—18Rep ~3.114Reb®" - - 109> dRep
m A 14 16,300Re "

(pp +0.5p)

3
=Ar—2 f Re?, (7.4-6)

(7.4-8)
Equation (7.4-8) should be evaluated numerically.
Example 7.5 Calculate the time required for a spherical lead particle, 1.5 mm in diameter,
to reach 60% of its terminal velocity in air at 50 °C.
Solution
Physical properties

p = 1.0928 kg/m’

For air at 50 °C (323 K): _6
©w=19.57 x 107° kg/m-s

For lead at 50°C: p = 11,307 kg/m>
Analysis

When the particle reaches its terminal velocity, the value of the Reynolds number can be
calculated from Eq. (4.3-12). The Archimedes number is

D3 — 1.5 x 107%)3(9.8)(1.0928) (11
ap Ppsplor —p) _ (1.5x107)°0.8)(1.0928)(A1,307) _ 0 6
e (19.57 x 10-9)2
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Substitution of this value into Eq. (4.3-12) gives the Reynolds number under steady condi-
tions as

A
Rep [umy, = (1 +0.0579 Ar%412) 71214

1067 x 10°
- 18

In this problem it is required to calculate the time for the particle to reach a Reynolds number
of

]—1.214 — 1701

[140.0579(1.067 x 10%)*412

Rep = (0.6)(1701) = 1021
Therefore, the required time can be calculated from Eq. (7.4-8) as

_ (11,307)(1.5 x 1073)2

1
19.57 x 10-6 M

where

—1
Rep 0.31Re?
1=/ 1.067 x 10® — 18 Rep —3.114Re ;7 — L] dRep
0 1+ 16,300Re "

The value of I can be determined by using one of the numerical techniques given in Sec-
tion A.8-4 in Appendix A. The use of the Gauss-Legendre quadrature is shown below. Ac-
cording to Eq. (A.8-13)

021
Rep = (u+1)
2
and the five-point quadrature is given by
1021 &
=== wnlile) 2)
i=0

where the function F(u) is given by

1

F(u) =
®) 80,789(u + 1)?

14+18.22(u +1)~"199

1.067 x 106 —9189(u + 1) — 95602 (u + 1)1:657 —

The values of w; and F'(u;) are given up to three decimals in the following table:

i u; w; F(u;) x 10° w; F(u;) x 10°
0 0.000 0.569 1.044 0.594
1 +0.538 0.479 1.187 0.569
2 —0.538 0.479 0.966 0.463
3 +0.906 0.237 1.348 0.319
4 —0.906 0.237 0.940 0.223

S owi F(u;) =2.17 x 107°




176 7. Unsteady-State Macroscopic Balances

Therefore, the value of I can be calculated from Eq. (2) as

1021

[= T(2.17 x107% =1.11x 1073

Substitution of this value into Eq. (1) gives

i (11,307)(1.5 x 1073)2(1.11 x 1073)

— 144
19.57 x 106 °

7.5 CONSERVATION OF ENERGY

The conservation statement for total energy under unsteady-state conditions is given by
Rateof \ ( Rateof \ _ (Rateof energy (7.5-1)
energy in energy out /  \ accumulation '
For a system shown in Figure 7.2, following the discussion explained in Section 6.3,
Eq. (7.5-1) is written as
[(ﬁ—i— Ex + EP)M]in — [(l7+ Ex + Ep)lh] + Qi+ W

out

d. ~ ~ ~
= E[(U + Ex + Ep)m]| (7.5-2)

%Y
Note that, contrary to the steady-state flow system, the boundaries of this system are not

fixed in space. Therefore, besides shaft and flow works, work associated with the expansion

or compression of the system boundaries must be included in W, thus resulting in the form

. stys . = . = .
W= _Psys— + Wy +(PVm)jy — (PVm)ou (7.5-3)
dt ~——
— :

where terms A, B, and C represent, respectively, work associated with the expansion or com-
pression of the system boundaries, shaft work, and flow work.

__Substitution of Eq. (7.5-3) into Eq. (7.5-2) and the use of the definition of enthalpy, i.e.,
H=U+ PV, give

= = f . = = = . . stys .
[(H+Eg + Epyn), —[(H+ Ex +Ep)i|,, + Qi — Pyys T Ws
di ~ =~ =
= E[(U +Ex + Ep)m] (7.5-4)
Qinr W
E, ——> SYSTEM ——E

m out

Figure 7.2. Unsteady-state flow system exchanging energy in the form of heat and work with the surroundings.
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which is known as the general energy equation. Note that under steady conditions Eq. (7.5-4)
reduces to Eq. (6.3-9). In terms of molar quantities, Eq. (7.5-4) is written as

d Vsys

+ Qint - PsysT + Ws

out

[(H + Ex + Ep)it], — [(H + Ex + Ep)i]
do~ ~ ~
=W+ Ex +Epn],, (7.5-5)

When the changes in the kinetic and potential energies between the inlet and outlet of the
system as well as within the system are negligible, Eq. (7.5-4) reduces to

. = . . dvsys ; d -
(Hm)in — (Hm)oyr + Qine — Psys 7 + W= E(Um)sys (7.5-6)
The accumulation term in Eq. (7.5-6) can be expressed in terms of enthalpy as
d ~ d, ~ ~ d ~ dv, d Py,
E(Um)sys = E[(H - Pv)m]sys = E(Hm)sys - Psys % - Vsys d;)S (7.5-7)
Substitution of Eq. (7.5-7) into Eq. (7.5-6) gives
= . . : dPsys : d -~
(Hm)in — (Hm)our + Qine + Viys 7 + W= E(Hm)sys (7.5-8)
On a molar basis, Eq. (7.5-8) can be expressed as
~ . ~ . . dPsys : d ~
(Hn)in — (HN) our + Qins + Vsys 7 + W, = E(Hn)s})s (7.5-9)

Example 7.6 Air at atmospheric pressure and 25 °C is flowing at a velocity of 5 m/s over
a copper sphere, 1.5 cm in diameter. The sphere is initially at a temperature of 50 °C. How
long will it take to cool the sphere to 30 °C? How much heat is transferred from the sphere
to the air?

Solution

Physical properties

w=18.41 x 107° kg/m-s
v =15.54 x 107 m?/s

k =125.96 x 1073 W/m-K
Pr=0.712

For air at 25 °C (298 K):

For air at 40°C (313 K): = 19.11 x 1076 kg/m-s

p = 8924 kg/m’
For copper at 40°C (313 K): ao =387 J/kg-K
k=397 W/m-K
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Assumptions

1. No temperature gradients exist within the sphere, i.e., Big < 1.

2. The average heat transfer coefficient on the surface of the sphere is constant.
3. The physical properties of copper are independent of temperature.

4. Pseudo-steady-state behavior.

Analysis
System: Copper sphere

For the problem at hand, the terms in Eq. (7.5-8) are

Mip = Moy =0

Wy =0
Qint = — (D3 (h)(T — Txo)
@ =0
dt

Msys = (ED%/6)pCu
ﬁsys = (6P)CM(T - Tref)

where 7 is the copper sphere temperature at any instant and T is the air temperature.
Therefore, Eq. (7.5-8) becomes

3 dT

D3\
—7 D (T — Too) = (nTP)U)Cp)cME (1)

Integration of Eq. (1) with the initial condition that 7 = 7; at t = 0 gives

1= PP e T I @)
_6(h)'0 PCun(T_Too

To determine the average heat transfer coefficient, (h), first it is necessary to calculate the
Reynolds number:

Dpvs  (0.015)(5)

= = 4826
v 15.54 x 10-6

Rep =

The use of the Whitaker correlation, Eq. (4.3-30), gives
Nu=2+ (0.4Re}/* + 0.06Re7") PO (oo /1) /*

18.41 x 10-6\ /4
22 ) =409
19.11 x 10—6)

=2+[0.4(4826)/% + 0.06(4826)2/3](0.712)0'4(

The average heat transfer coefficient is

k 25.96 x 1073
Wy =Nu — | = @0.9)( ———" ) =71 W/m?.K
() “(DP> ( )( 0.015 ) /m
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Therefore, the time required for cooling is

(0.015)(8924)(387) (50 — 25)
= In = 196 S
6)(71) 30 —25

The amount of energy transferred from the sphere to the air can be calculated from

t t
Q= [ Qundt =m D) [T - Ty at )
0 0
Substitution of Eq. (2) into Eq. (3) and integration yield
D3\~ 6 (h)t
Qint = (TP>(/0CP)CM(Ti —Tx) {1 - eXP[—iA} 4)
Dp(pCp)cu
Note that from Eq. (2)
6 (h)t T—-T
eXp[— b } = = (5)
Dp(pCp)cud Ti—Teo

Substitution of Eq. (5) into Eq. (4) gives

D\ = 7(0.015)
Qint = <—>(,0CP)Cu(Ti -T)= [7]

= [(8924)(387)](50 — 30) =122 (6)

Verification of assumptions
e Assumption # 1

_ (W ®Dp/2) _ (71)(0.015/2)

—134x 103 «1
ke 397 % =S

Big

e Assumption # 4

oe_t_[ 397 ](196) 00 1
D3 [ (8924)(387) | (0.015)2 >

Comment: Note that Eq. (6) can be simply obtained from the first law of thermodynamics
written for a closed system. Considering the copper sphere as a system,

AU=Qin+W = Qiu=AU=mCyAT ~mCpAT

Example 7.7 A solid sphere at a uniform temperature of 77 is suddenly immersed in a
well-stirred fluid of temperature 7, in an insulated tank (77 > T,).

a) Determine the temperatures of the sphere and the fluid as a function of time.
b) Determine the steady-state temperatures of the sphere and the fluid.

Solution

Assumptions

1. The physical properties of the sphere and the fluid are independent of temperature.
2. The average heat transfer coefficient on the surface of the sphere is constant.
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3. The sphere and the fluid have uniform but unequal temperatures at any instant, i.e.,
Big <« 1 and mixing is perfect.

Analysis

a) Since the fluid and the sphere are at different temperatures at a given instant, it is nec-
essary to write two differential equations: one for the fluid, and one for the sphere.

System: Solid sphere

The terms in Eq. (7.5-8) are
min = Vhom =0
W, =0
Qint = —( D) {h)(T; — Ty)
mays = (D} /6) s
Hiyys = Cp,(Ty — Trep)

where Dp is the diameter of the sphere, and subscripts s and f stand for the sphere and the
fluid, respectively. Therefore, Eq. (7.5-8) becomes

(T, — Ty = 25 )
! dt
where
6(h
gy =41 @)
DPCPs/OS

System: Fluid in the tank

The terms in Eq. (7.5-8) are
min = mout =0
Wy =0

Qi = (T D) (h)(Ty — Ty)
dPsys

dt

Mgys =N f

I/_\Isys = 6Pf-(Tf - Tref)
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Hence, Eq. (7.5-8) reduces to

(Ts —Ty) = Ty 3)
¢r (I = Tp) = dt
where
h)m D>
= U @)
myCp,

From Eq. (1), the fluid temperature, T, is given in terms of the sphere temperature, Ty, as

1 dT;

Tr=T,+— 5
f s+ ¢S dt ( )
Substitution of Eq. (5) into Eq. (3) gives
d*T; LTy ©
dr? dt
where
b=d5+ ¢s (7)

Two initial conditions are necessary to solve this second-order ordinary differential equation.
One of the initial conditions is

att =0 T, =T ®)
The other initial condition can be obtained from Eq. (5) as

d?=@m—n) )

atr =0

The solution of Eq. (6) subject to the initial conditions defined by Eqgs. (8) and (9) is

1= = 21— 1) [1 =~ exp(—91) (10)
The use of Eq. (10) in Eq. (5) gives the fluid temperature in the form
Tl - To
Ty=T — " [¢s + ¢ 5 exp(—o1)] (11)
b) Under steady conditions, i.e., t = oo, Egs. (10) and (11) reduce to
T s Ty
T =T =T =% (12)

Comment: Note that the final steady-state temperature, 7, can be simply obtained by
the application of the first law of thermodynamics. Taking the sphere and the fluid together
as a system, we get

3

JTDP = =
AU = 5 PsCp(Too —T1) +myCp;(Too — Tp) =0 (13)
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Noting that

D3 o.C

Os 6 mfapf

Equation (13) reduces to

i—f(Too—Tl)+(Too—To)=0 (15)

Solution of Eq. (15) results in Eq. (12).

Example 7.8 A spherical steel tank of volume 0.5 m? initially contains air at 7 bar and
50°C. A relief valve is opened and air is allowed to escape at a constant flow rate of
12 mol/min.

a) If the tank is well insulated, estimate the temperature and pressure of air within the tank
after 5 minutes.

b) If heating coils are placed in the tank to maintain the air temperature at 50 °C, estimate
the pressure of air and the amount of heat transferred after 5 minutes.

Air may be assumed to be an ideal gas with a constant Cpof29] /mol-K.
Solution
a) System: Contents of the tank

Assumptions

~

1. Properties of the tank contents are uniform, i.e., Hyy = Hyy.

2. Heat transfer between the system and its surroundings is almost zero. Note that the
insulation around the tank does not necessarily imply that Q;,; = 0. Since the tank
wall is in the surroundings, there will be heat transfer between the tank wall and
the air remaining in the tank during the evacuation process. Heat transfer may be
considered negligible when (i) the mass of the wall is small, (if) the process takes
place rapidly (remember that heat transfer is a slow process).

Analysis

Since 7, = ijp; = 0 and there is no chemical reaction, Eq. (7.3-2) reduces to

dnsys dnsys
— = —12=—= 1
Nout dt dt (D
Integration of Eq. (1) yields
Ngys =No — 12 2)

where n, is the number of moles of air initially present in the tank, i.e.,

PyV (7)(0.5)
Ny = =
RT, (8.314 x 1073)(50 + 273)

=130.3 mol
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On the other hand, the inventory rate equation for energy, Eq. (7.5-5), takes the form

= d(n fj)sys d ﬁsys =2 dnsys

— Hoyt Nour = T = nsysT sys? 3)
Substitution of Eqgs. (1) and (2) into Eq. (3) gives
=2 =2 dﬁsys
—12(Hour — Usys) = (no, — 121) 7 4)

Since H=U + PV = U + RT, the use of the first assumption enables us to express the
left-hand side of Eq. (4) as

~

Hoyur — ﬁsys = ﬁsys - ﬁsys = (ﬁsys + RTsys) - ﬁsys = RTsys (5)

On the other hand, the right-hand side of Eq. (4) is expressed in terms of temperature as

dﬁsys = deys
=C 6
dt Y ar ©)
Hence, substitution of Egs. (5) and (6) into Eq. (4) gives
o~ deys
—12R Ty = (n, — 121)Cy e (7
For an ideal gas
~ o~ C
Cp=Cv+R = %=y—1 ®)
where
c 29
y==L= 1.4 ©)

G, 29-8314

Note that Eq. (7) is a separable equation. Substitution of Eq. (8) into Eq. (7) and rearrange-

ment yield
todt Tos dT,
—12(y—1>/ —=f — (10)
0 No— 12¢ T, Tsys

Integration gives

—120\7 7!
n"—) (11)

Tsys = To( n,

The variation of pressure as a function of time can be estimated by using the ideal gas law,
1.€.,
. nsysRTsys

=y (12)
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Substitution of Egs. (2) and (11) into Eq. (12) gives

RT, ny — 1267 !
Py = —— — 12t —— 13
sys v (no )< - ) (13)
Since RT,/V = P,/n,, Eq. (13) reduces to
n, — 12t \”
Psys = Po(oi) (14)
no

Substitution of the numerical values into Eqs. (11) and (14) gives Ty and Py, respectively,
after 5 minutes as

130.3 — (12)(5)

1.4-1
=2524K
130.3

Tyys = (50 +273) [

130.3 — (12)(5) '
Psys:7 —( )() = 2.95 bar
130.3

Comment: Note that Eq. (11) can be rearranged in the form

Loys _ (@)H (15)

T, no

The use of the ideal gas law to express the number of moles gives

k — <@>y—1( T, )y_l N Tsys _ <@)(V—1)/y 6
TO PO Tsys To Po

which is a well-known equation for a closed system undergoing a reversible adiabatic (or
isentropic) process. Therefore, the gas remaining in the tank at the end of 5 min undergoes
reversible adiabatic expansion throughout the process.

b) System: Contents of the tank
Assumption
1. Properties of the tank contents are uniform, i.e., ﬁgm = ﬁsys.
Analysis
Equation (7.3-2) becomes

dnsys .
dt dt

(17)

—Nout =

Integration of Eq. (17) yields

Mgys = 1o — 121 (18)
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where n, is the number of moles of air initially present in the tank, i.e.,

A (1)(0.5)

Ny = = = 130.3 mol
RT, (8.314 x 1073)(50 4 273)

In this case, the process is isothermal and, as a result, the pressure of the system can be
directly calculated from the ideal gas law, i.e.,

RT,
Psys = (%)nsys (19)
The use of Eq. (18) in Eq. (19) results in
RT, RT.
Pyys = ( Vsys)(n(, —12)=P, — 12(%); (20)

Substitution of the numerical values gives

12)(8.314 x 1073 27
P=7—( )(8.314 x (())5)(50+ 3)(5):3.78bar

The amount of heat supplied by the heating coils is determined from the inventory rate

equation for energy, Eq. (7.5-5). Simplification of this equation gives

d(n ﬁ )sys
dt

dngys

=U
Sys dt

_ﬁom‘ ".lout + Qint = (21)

Since the process is isothermal, ﬁsys remains constant. Substituting Eq. (17) into Eq. (21)
and using the fact that H,,; = H,ys yield

Oint = 12(Hyys — Usys) = 12R Tyys = (12)(8.314) (50 + 273) = 32,225 J/min
Therefore, the amount of heat transferred is

Qint = Qimt = (32,225)(5) = 161,125 J

7.5.1 Unsteady-State Energy Balance Around a Continuous Stirred Tank Reactor

An unsteady-state energy balance in a continuous stirred tank reactor (CSTR) follows the
same line as the steady-state case given in Section 6.3.2.2. Using the same assumptions, the
resulting energy balance becomes

[Zmﬁi('nﬂ)] —[Zfliﬁi(T)}

in out

. d —
+ Qin = E[Z n,-H,-<T>] (7.5-10)

Sys
On the other hand, the macroscopic mole balance for species i, Eq. (7.2-5), is

d(ni)sys
dt

(ni)in — (i) our + Viys Zolijrj = (7.5-11)

J
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Multiplication of Eq. (7.5-11) by H;(T) and summation over all species give

[anﬁl(T)] — [anﬁ,(T)} - Vsyszl”j(—Aern,j) = [Zﬁz(T)%]
- ; - ; Sys

in out j
(7.5-12)
Subtraction of Eq. (7.5-12) from Eq. (7.5-10) yields
R _ . dH(T)
Z(nmn[H,-(nn) —Hi(T)]+ Qint + Viys Zr,(—AHm, )= [Z ni(T) — ]M
i J i
(7.5-13)

Dividing Eq. (7.5-13) by the volumetric flow rate, Q, gives

— — Din dH (T
> (€[ Hi(Tiw) — Hi(T)] + QQ’ + 1Y rj(—AHemj) =r[2c,-<T> dt( )
i j i

] sys

(7.5-14)

where 7 is the residence time. Expressing the partial molar enthalpy of species i in terms of
the partial molar heat capacity by Eq. (6.3-41) gives

Qin aT
(CPin(Tin—T) + Q’ + r;r,(—AHm,_,o =1(Cplys —- (7.5-15)
where
(CP)in=)_(€)inCPp, (7.5-16)
(CP)sys = Z(Q)sysaPi (7.5-17)

Note that Eq. (7.5-15) reduces to Eq. (6.3-42) under steady conditions. On the other hand, for
a batch reactor, i.e., no inlet or outlet streams, Eq. (7.5-15) takes the form

ar

— 7.5-18
T ( )

Qint + Vsyszrj(_Aern,j) = Vsys(CP)sys
J

It is important to note that Egs. (7.5-15) and (7.5-18) are valid for systems in which pressure
remains constant.

Example 7.9 The reaction described in Example 6.6 is to be carried out in a batch reactor
that operates adiabatically. The reactor is initially charged with 2000 moles of species A
and 2400 moles of species B at a temperature of 25°C. Determine the time required for
80% conversion of A if the reactor volume is 1 m°.
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Solution
System: Contents of the reactor

The conservation statement for species A, Eq. (7.2-5), is

dn
—keacpV = d—tA (1)
or,
dny
—k =V — 2
nAng o (2)

The number of moles of species A and B in terms of the molar extent of the reaction, &, is
given by

nA:nAn—{—OtAS:ZOOO—S 3)
ngp=np, +oape =2400 — ¢ €]
The molar extent of the reaction can be calculated from Eq. (5.3-12) as

o na, X :(2000)(0.8)
(—aa)

= 1600 mol (5)

Substitution of Egs. (3) and (4) into Eq. (2) and rearrangement give

1600 de
iy / ©6)
o k(2000 — £)(2400 — ¢)

Note that Eq. (6) cannot be integrated directly since the reaction rate constant, k, is depen-
dent on ¢ via temperature.

The energy equation must be used to determine the variation of temperature as a function
of the molar extent of the reaction. For an adiabatic reactor, i.e., Qin, =0, Eq. (7.5-18)
reduces to

dT
r(_AHroxn) = (CP)sys E (7)

Substitution of Eqgs. (5.3-22) and (7.5-17) into Eq. (7) yields

de ~ ~ daT
(—AH},OXH) E = |:(Zn,-0Cpi> o AC%E)} Z (8)
In this problem

ACY = —85 J/mol-K ©9)

Zniafpi = (2000)(175) + (2400)(130) = 662,000 (10)

AH’ = —45,000— 85(T — 298) (11)

rxn
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Substitution of Egs. (9)—(11) into Eq. (8) and rearrangement give

/8 de B /T dT 12
o 662,000 —85¢  J)9345,000 + 85(T — 298)
Integration gives
45,000
T=298+— " 13
+ 662,000 — 85¢ (13)

Now it is possible to evaluate Eq. (6) numerically. The use of Simpson’s rule with n = 8,
i.e., Ae =200, gives

(mof/m3) (12) [£(2000 — £)(2400 — £)] " x 10*
0 298 248
200 312 121.9
400 326.7 63.3
600 342.2 34.9
800 358.6 205
1000 376 12.9
1200 394.4 8.9
1400 414 6.9
1600 434.9 6.5

The application of Eq. (A.8-12) in Appendix A reduces Eq. (6) to

200
= T[248 +4(121.9 +34.9 + 12.9 + 6.9) + 2(63.3 +20.5 +8.9) + 6.5] x 10~*

— 7.64 min (14)

7.6 DESIGN OF A SPRAY TOWER FOR THE GRANULATION OF MELT

The purpose of this section is to apply the concepts covered in this chapter to a practical de-
sign problem. A typical tower for melt granulation is shown in Figure 7.3. The dimensions of
the tower must be determined such that the largest melt particles solidify before striking the
walls or the floor of the tower. Mathematical modeling of this tower can be accomplished by
considering the unsteady-state macroscopic energy balances for the melt particles in conjunc-
tion with their settling velocities. This enables one to determine the cooling time and thus the
dimensions of the tower.

It should be remembered that mathematical modeling is a highly interactive process. It is
customary to build the initial model as simple as possible by making assumptions. Experience
gained in working through this simplified model gives a feeling for the problem and builds
confidence. The process is repeated several times, each time relaxing one of the assumptions
and thus making the model more realistic. In the design procedure presented below, the fol-
lowing assumptions are made:
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Figure 7.3. Schematic diagram of a spray cooling tower.

The particle falls at a constant terminal velocity.

. Energy losses from the tower are negligible.

3. Particles do not shrink or expand during solidification, i.e., solid and melt densities
are almost the same.

4. The temperature of the melt particle is uniform at any instant, i.e., Bi < 1.

The physical properties are independent of temperature.

6. Solid particles at the bottom of the tower are at temperature Ty, the solidification

temperature.

N =

b

7.6.1 Determination of Tower Diameter

The mass flow rate of air can be calculated from the energy balance around the tower:

Rate of energy \ ([ Rate of energy lost (7.6-1)
gained by air / = \ by the melt particles -

or,
nig (6Pa>[(Ta)0ut - (Ta)in] = {6Pm [(Tm)in - Ts] +’):} (7.6-2)

where the subscripts a and m stand for the air and the melt particle, respectively, and 7 is the
latent heat of fusion per unit mass.

Once the air mass flow rate, n1,, is calculated from Eq. (7.6-2), the diameter of the tower
is calculated as

. 7 D? 4my,
Mg = Vepa = D= (7.6-3)
4 TTPaVa

7.6.2 Determination of Tower Height

Tower height, H, is determined from
H =t (7.6-4)

The terminal velocity of the falling particle, v;, is determined by using the formulas given
in Section 4.3. The required cooling time, ¢, is determined from the unsteady-state energy
balance around the melt particle.
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7.6.2.1 Terminal velocity The Turton-Clark correlation is an explicit relationship between
the Archimedes and the Reynolds numbers as given by Eq. (4.3-12), i.e.,

A
Rep = 1—;(1 +0.0579 Ar0412)-1214 (7.6-5)

The Archimedes number, Ar, can be calculated directly when the particle diameter and
the physical properties of the fluid are known. The use of Eq. (7.6-5) then determines the
Reynolds number. In this case, however, the definition of the Reynolds number involves the
relative velocity, v,, rather than the terminal velocity of the melt particle, i.e.,

. Dpvrpg
Ha

Since the air and the melt particle flow in countercurrent direction to each other, the relative
velocity, vy, is

Rep

(7.6-6)

v =V + Vg (7.6-7)

7.6.2.2 Cooling time The total cooling time consists of two parts: the cooling period dur-
ing which the melt temperature decreases from the temperature at the inlet to 7, and the
solidification period during which the temperature of the melt remains at 7.

i) Cooling period: Considering the melt particle as a system, the terms appearing in Eq. (7.5-
8) become

Mip = Moy =0

W, =0
Qi = —(mD3)(h) (T — (T))
dPys _
dt

My = (7 D3 /6) om
ﬁsys = /C\Pm (Tm - Tref)

where (T,) is the average air temperature, i.e., [(T,)in + (T3)our] /2. Hence, Eq. (7.5-8) takes
the form

. dT,
—6 () (Tn — (Ta)) = DppnCr,—= (7.6-8)

Equation (7.6-8) is a separable equation and rearrangement yields

n DpomC Ty dT,,
/ dr = — 2LPmS P / _4im (7.6-9)
0 6(h) To)in I — (Ta)

Integration of Eq. (7.6-9) gives the cooling time, 71, as

_ DppuCh, ln[<Tm>,-n - <Ta>} (7.6-10)

= wm) T, — (Ta)
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The average heat transfer coefficient, (4) in Eq. (7.6-10) can be calculated from the Whitaker
correlation, Eq. (4.3-30), i.e.,

Nu=2+ (0.4Re}/* +0.06Re7>) PO (oo /1) /4 (7.6-11)

ii) Solidification period: During the solidification process, solid and liquid phases coexist and

temperature remains constant at 7. Considering the particle as a system, the terms appearing
in Eq. (7.5-8) become

min =m0ut =0
W, =0

Qine = — (D3 (h)(Ty — (Tw))
dPsys

dt

Msys = M| + M

l =

H =0 —~ —~ —~ —~
Tref:Ts:{I’_I\ _ /)::(mH)sys:mlHl'i‘msHs:_)\ms
= —

where m; and m; represent the liquid and solidified portions of the particle, respectively.
Therefore, Eq. (7.5-8) reduces to

7 D% () (T, — (T4)) =§dzs (7.6-12)

Integration of Eq. (7.6-12) gives the time required for solidification, #,, as

/)tmeP
— srmE 7.6-13
2= ST, — () .

Therefore, the total time, 7, in Eq. (7.6-4) is

t=t1+1t (7.6-14)

Example 7.10 Determine the dimensions of the spray cooling tower for the following con-
ditions:

Production rate = 3000 kg/h Dp =2 mm om = 1700 kg /m3
(Tw)in = 10°C (Ta) our = 20°C (Tw)in = 110°C Ty = 70°C

o~

v.=2m/s A=186kl/kg Cp, =1.46kl/kgK
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Solution

Physical properties

The average air temperature is (10 + 20)/2 = 15°C.
o =12kg/m?
w=17.93 x 1076 kg/m-s

For air at 15°C (288 K): { k =25.22 x 1073 W/m-K
Cp = 1.004 kI /kg-K
Pr=0.714

Analysis
The mass flow rate of air, r,, is calculated from Eq. (7.6-2) as
_ mm{aPm [(Tm)in - Ts] +/)“\}
(Cp M(Ta)our — (Ta)in]

_(3000)[(1.46)(110 — 70) + 186]
a (1.004)(20 — 10)

=73,028 kg/h

The use of Eq. (7.6-3) gives the tower diameter as

D:\/4mu :\/ @3.028)
Toava  \ 7(1.2)(2)(3600)

The use of Eq. (4.3-6) gives the Archimedes number as

_ D}gpa(om — pa) (2% 1073)3(9.8)(1.2)(1700 — 1.2)
B u2 - (17.93 x 100)2

Ar —=4.97 x 10°

Hence, the Reynolds number and the relative velocity are

A
Rep = 1—§(1 +0.0579 Ar%412)~=1.214

4.97 x 10°
~ 18
taRep  (17.93 x 1076)(1134)
T aDp . (12)2 x 1073

]—1.214

[1+0.0579(4.97 x 10°)°412 =1134

=8.5m/s

Therefore, the terminal velocity of the particle is
V=0 —v,=85—-2=65m/s
The use of the Whitaker correlation, Eq. (7.6-11), with @ /@y =~ 1, gives
Nu =2+ (0.4Re}/* +0.06 Re? ) Pr* (oo /1) /*

=2+ [0.4(1134)'/% +0.06(1134)*°](0.714)** = 19.5
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Hence, the average heat transfer coefficient is

k 2522 x 1073
(h) =Nu[ — ) = (19.5)( 2222~ ) — 246 W/m2.K
Dp 2x 1073

The time required for cooling and solidification can be calculated from Egs. (7.6-10) and
(7.6-13), respectively:

Dppmapm |:(Tm)l~n — (Ta):| (2 x 1073)(1700)(1460) <110 — 15)
= In = In =1.8s

n=—cm T, — (T,) (6)(246) 70— 15
o RomDp _ (186,000)(1700)(2 x 1073) g
*T6 (h)(Ty —(Tz)) (6)(246)(70 — 15) - o8

Therefore, the tower height is

H=(65)(18+7.8)=624m

NOTATION

A area, m”

Ay mass transfer area, m
Cy  heat capacity at constant volume, kJ/kg-K
Cp heat capacity at constant pressure, kJ/kg-K
c concentration, kmol/m?

Dp particle diameter, m

Dap diffusion coefficient for system .4-5, m? /s
k  kinetic energy, J

p  potential energy, J

rate of energy, J/s

activation energy, J/mol

friction factor

acceleration of gravity, m/s?

enthalpy, J

elevation, m; heat transfer coefficient, W/ m2.K
thermal conductivity, W/m-K

mass transfer coefficient, m/s

length, m

mass flow rate, kg/s

molecular weight, kg/kmol

molar flow rate, kmol/s

pressure, Pa

heat transfer rate, W

volumetric flow rate, m3/s

rate of a chemical reaction, kmol/m?>-s

2

y I

%@(Q_ws-is.hév»wm%\mm.
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R gas constant, J/mol-K

T temperature, °C or K

t time, s

U internal energy, J

Vv volume, m>

v velocity, m/s

w rate of work, W

WS rate of shaft work, W

X fractional conversion

X; mole fraction of species i
o thermal diffusivity, m?/s
a;j stoichiometric coefficient of the ith species in the jth reaction
Y Cp/Cy

A difference

AH,,, heatof reaction, J

e molar extent of a reaction, kmol

A latent heat, J

v kinematic viscosity (or momentum diffusivity), m?/s
) density, kg/m>

T residence time, s

Overlines
per mole

per unit mass
— partial molar

Bracket

(a) average value of a
Superscripts

0 standard state

S solid

sat saturation

Subscripts

A, B species in binary systems
a air

ch characteristic

i species in multicomponent systems
in inlet

int interphase

Jj reaction number



Problems 195

m melt

out  outlet

P particle

Sys system

w surface or wall

00 free-stream
Dimensionless Numbers

Ar Archimedes number

Big Biot number for heat transfer
Bint  Biot number for mass transfer
Pr Prandtl number

Re  Reynolds number

Sc Schmidt number

Sh Sherwood number
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PROBLEMS

7.1 Purging is the addition of an inert gas, such as nitrogen or carbon dioxide, to a piece of
process equipment that contains flammable vapors or gases to provide the space nonignitable
for a certain period of time. One of the purging methods is sweep-through purging (Kinsley,
2001) in which a purge gas is introduced into a vessel at one opening and the mixed gas
is withdrawn at another opening and vented either to the atmosphere or to an air-pollution
control device.
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A 80 m? tank is initially charged with air at atmospheric pressure. Determine the volume
of nitrogen that must be swept through it in order to reduce the oxygen concentration to 1%
by volume.

(Answer: 243.6 m>)

7.2 Two perfectly stirred tanks with capacities of 1.5 and 0.75 m> are connected in such
a way that the effluent from the first passes into the second. Both tanks are initially filled
with salt solution 0.5 kg/L in concentration. If pure water is fed into the first tank at a rate
of 75 L/min, determine the salt concentration in the second tank after 10 minutes?

(Answer: 0.423 kg/L)

7.3 Two vertical tanks placed on a platform are connected by a horizontal pipe 5 cm in
diameter as shown in Figure 7.4. Each tank is 2 m deep and 1 m in diameter. At first, the
valve on the pipe is closed and one tank is full while the other is empty. When the valve is
opened, the average velocity through the pipe is given by

() =2vh

where (v) is the average velocity in m/s and /4 is the difference between the levels in the
two tanks in meters. Calculate the time for the levels in the two tanks to become equal.

(Answer: 4.7 min)

7.4 a) A stream containing 10% species A by weight starts to flow at a rate of 2 kg/min
into a tank originally holding 300 kg of pure B. Simultaneously, a valve at the bottom
of the tank is opened and the tank contents are also withdrawn at a rate of 2 kg/min.
Considering perfect mixing within the tank, determine the time required for the exit
stream to contain 5% species .A by weight.

b) Consider the problem in part (a). As a result of the malfunctioning of the exit valve, tank
contents are withdrawn at a rate of 2.5 kg/min instead of 2 kg/min. How long does it
take for the exit stream to contain 5% species .4 in this case?

(Answer: a) 104 min b) 95.5 min)

7.5 The following levels were measured for the flow system shown in Figure 7.5. The
cross-sectional area of each tank is 1.5 m?.

| - |

Figure 7.4. Schematic diagram for Problem 7.3.
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Q;, = constant

Figure 7.5 Schematic diagram for Problem 7.5.

t hq hy
(min) (cm) (cm)
0 50 30
1 58 35
2 67 40
3 74 46
4 82 51
5 89 58
6 96 64

a) Determine the value of Qjj,.
b) If the flow rate of the stream leaving the first tank, Q, is given as

Q=8

determine the value of 8.

(Answer: a) 0.2 m3/min b) 0.1 m>/?/min)

7.6 Time required to empty a vessel is given for four common tank geometries by Foster
(1981) as shown in Table 7.1. In each case, the liquid leaves the tank through an orifice of
cross-sectional area A,. The orifice coefficient is C,. Assume that the pressure in each tank
is atmospheric. Verify the formulas in Table 7.1.

7.7 For steady flow of an incompressible fluid through a control volume whose boundaries
are stationary in space, show that Eq. (6.3-9) reduces to

AP A(v)?
— +
o)

+g Ah+ (AU — Qi) = W, (1)

where A represents the difference between the outlet and inlet values.

a) Using the thermodynamic relations

dU=TdS — PdV )



198 7. Unsteady-State Macroscopic Balances

Table 7.1 Time required to empty tanks of different geometries

Geometry Time

—o—
—_—

N - ey
h '~ zcons
N

ﬂ z_\/?nhs/ztanze
" Ve 5C.A

t_\/? L[D3/2 —(D _h)3/2]
B 8 3CoA,

e =of

«—D—

T \/§ 7h3/2(D — 0.6h)
g

=
i 3C,A,
Pl

and

show that

dE, =T dSgn=dU —d Qi

3)

4

where E, v, the friction loss per unit mass, represents the irreversible degradation of me-
chanical energy into thermal energy, and Sg,, is the entropy generation per unit mass.
b) Substitute Eq. (4) into Eq. (1) to obtain the engineering Bernoulli equation (or macro-

scopic mechanical energy equation) for an incompressible fluid as

AP Av)?
T+
Jo)

+gAh+E,—W,=0

&)
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¢) To estimate the friction loss for flow in a pipe, consider steady flow of an incompressible
fluid in a horizontal pipe of circular cross-section. Simplify Eq. (5) for this case to get

~ _|AP|

Ey (6)
0

Compare Eq. (6) with Eq. (4.5-6) and show that the friction loss per unit mass, EU, for
pipe flow is given by

~  2fL(v)?
E, = fT (7)
7.8 A cylindrical tank, 5 m in diameter, discharges through a mild steel pipe system (¢ =
4.6 x 107 m) connected to the tank base as shown in the figure below. The drain pipe
system has an equivalent length of 100 m and a diameter of 23 cm. The tank is initially
filled with water to an elevation of H with respect to the reference plane.

Reference l T | ‘

pPlane oo @

a) Apply the Bernoulli equation, Eq. (5) in Problem 7.7, to the region between planes “1”
and “2” and show that

>2 2gh

47 Leg
1 S —— T
* d

where L., is the equivalent length of the drain pipe.
b) Consider the tank as a system and show that the application of the unsteady-state macro-
scopic mass balance gives

(D)1 4 fLey\ dh
“=(3) J@(” )7 o

Analytical integration of Eq. (2) is possible only if the friction factor f is constant.

¢) Atany instant, note that the pressure drop in the drain pipe system is equal to pg(h— H™).
Use Egs. (4.5-18)—(4.5-20) to determine f as a function of liquid height in the tank. Take
H* =1 m, H=4m, and the final value of 4 as 1.5 m.
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d) If f remains almost constant, then show that the integration of Eq. (2) yields

2
z:(e) \/3<1+M>(«/ﬁ—«/ﬁ) 3)
d g d

Calculate the time required for 4 to drop from 4 m to 1.5 m.

e) Plot the variations of (v;) and & as a function of time on the same plot. Show that dh /dt
is negligible at all times in comparison with the liquid velocity through the drain pipe
system.

(Answer: c) 0.0039 d) 7.7 min)

7.9 Consider the draining of a spherical tank of diameter D with associated drain piping
as shown in the figure below. The tank is initially filled with water to an elevation of H with
respect to the reference plane.

a) Repeat the procedure given in Problem 7.8 and show that

4 /2 4fLeg 2 H? 2
t=— =1+ —L)| V| ==Xih+ X2 | -vVH|—-X1H+X
7 g( +— )[«f(5 3 X1h+ X3 = — 3 X1H+ X

where
Xi=H*+R and Xp=X;—-R’

b) A spherical tank, 4 m in diameter, discharges through a mild steel pipe system (¢ =
4.6 x 107> m) with an equivalent length of 100 m and a diameter of 23 cm. Determine
the time to drain the tank if H* =1 m and H =4.5 m.

(Answer: b) 4.9 min)

7.10 Suspended particles in agitated vessels are frequently encountered in the chemical
process industries. Some examples are mixer-settler extractors, catalytic slurry reactors, and
crystallizators. The design of such equipment requires the mass transfer coefficient to be
known. For this purpose, solid particles (species .4) with a known external surface area, A,,
and total mass, M,, are added to an agitated liquid of volume V and the concentration of
species A is recorded as a function of time.
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a) Consider the liquid as a system and show that the unsteady-state macroscopic mass bal-
ance for species A is

M\ dea
<kc>Ao(E> (UAr_CA):v7 (1)

sat

where M is the total mass of solid particles at any instant and ¢’} is the equilibrium
solubility. Rearrange Eq. (1) in the form

% d ln(cff’ — CA)
Ao(M/M,)2/3 dt

(ke) = — 2)
and show how one can obtain the average mass transfer coefficient from the experimental
data.

b) Another way of calculating the mass transfer coefficient is to choose experimental con-
ditions so that only a small fraction of the initial solids is dissolved during a run. Under
these circumstances, show that the average mass transfer coefficient can be calculated
from the following expression:

sat
(ke) = — 1n< G ) 3)

(At Cy —cCA

where (A) is the average surface area of the particles. Indicate the assumptions involved
in the derivation of Eq. (3).

7.11 Consider Problem 7.10 in which the average mass transfer coefficient of suspended
particles is known. Estimate the time required for the dissolution of solid particles as follows:

a) Write down the total mass balance for species A and relate the mass of the particles, M,
to the concentration of species A, ca, as

M \%

b) Substitute Eq. (1) into Eq. (1) in Problem 7.10 to get

do
dr = 2
CT—+pHePA(1—06) @
where
174 174 sat
p=SA 4= gi= LA 3)
Cy (ke)Ao M,

¢) Show that the integration of Eq. (2) leads to

t_iln[<u+5)2<l—,3+ﬁ2 )]+ 1 tan_l{ V3w —1) }
- 682 1+ 8 u? —up + p2 V3B2 28— 1+ul(2/B) — 1]

4
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where
WwW=1-—1+p8>0 5)
7.12 Rework Example 7.3 if the rate of reaction is given by
r= kc% ey

a) For the filling period show that the governing differential equation is given by

d
tﬂ+ktci+cA:cAo 2)
dt
Using the substitution
1 du
=—— 3
cA ku dt ®)
show that Eq. (1) reduces to
d ( du
—(t— ) —ca ku=0 4
dt ( dt) ca0kH )

Solve Eq. (4) and obtain the solution as
CA, 11(2,/CAokl‘)
cA = ey
TN ke 1,2 /ea k)

Note that Eq. (2) indicates that c4 = c4, at t = 0. Obtain the same result from Eq. (5).
b) Show that the governing differential equation for the unsteady-state period is given in

&)

the form
dcy » CA €A
Ak £ = 6
dt TG T T ©
where 7 is the residence time. Using
1
CA=CA,+ = (7)
z
show that Eq. (6) reduces to
dz
— —Bz=k 8
o pz (€))
where
1
B=2kea, + - ©)

Note that ¢4, in Eq. (7) represents the steady-state concentration satisfying the equation

kel 4 Lo = o (10)
5 -[ T
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Solve Eq. (8) and obtain
1
[(c —ca) ™!+ (k/B)]explB(t — )] — (k/B)

where ¢’ and * represent the concentration and time at the end of the filling period,
respectively.

(1D

CA=CaA, +

7.13 For creeping flow, i.e., Re < 1, a relationship between the friction factor and the
Reynolds number is given by Stokes’ law, Eq. (4.3-7).

a) Substitute Eq. (4.3-7) into Eq. (7.4-7) and show that

_ 2
b (op — p)gD% {1 _exp[_ 18t “ 1)
18 (pp +0.5,0)D%,

b) Show that the time required for the sphere to reach 99% of its terminal velocity, 7, is
given by
2

DP
too = —(pp +0.5p) )
3.9u

and investigate the cases in which the initial acceleration period is negligible.
¢) Show that the distance traveled by the particle during unsteady-state fall is given by

S=tvt_vtw{l_exp|:_$i|} 3)
18 (pp +0.5p) D%

where v; is the terminal velocity of the falling particle and is defined by

_ (pr—p)gD}

I8 4

Uy

7.14 When Newton’s law is applicable, the friction factor is constant and is given by
Eq. (4.3-9).

a) Substitute Eq. (4.3-9) into Eq. (7.4-7) and show that

v _ l—exp(=yD) (0
v 1+exp(—yi)

where the terminal velocity, v;, and y are given by

- D 050\ D
v, =1.74 /M and y = 1.51('01’4_—’0)_}) 2)
1Y 1Y Uy

b) Show that the distance traveled is

3)

2 1 —yt
s:twﬁln[M]
Y

2
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7.15 Consider the two-dimensional motion of a spherical particle in a fluid. When the
horizontal component of velocity is very large compared to the vertical component, the
process can be modeled as one-dimensional motion in the absence of a gravitational field.
Using the unsteady-state momentum balance, show that

4ppDy (Rero dR
§— 2P P/ ° (1)

3u Rep [ Re%,
where Rep, is the value of the Reynolds number at 1 = 0.

a) When Stokes’ law is applicable, show that the distance traveled by the particle is given

by
S = LpPD% [1 — exp(— 18ut )i| 2)
181 pp D%

where v, is the value of velocity at t = 0.
b) When Newton’s law is applicable, show that the distance traveled by the particle is given

by
3.03ppD t
s=#ln(l+L) (3)

1Y 3.03,0pr

7.16 Coming home with a friend to have a cold beer after work, you find out that you had
left the beer on the kitchen counter. As a result of the sunlight coming through the kitchen
window, it was too warm to drink.

One way of cooling the beer is obviously to put it in the freezer. However, your friend
insists that placing a can of beer in a pot in the kitchen sink, and letting cold water run over it
into the pot and then into the sink shortens the cooling time. He claims that the overall heat
transfer coefficient for this process is much greater than that for a can of beer sitting idly
in the freezer in still air. He supports this idea with the following data reported by Horwitz
(1981):

Freezer Tap Water
Cooling medium temperature (°C) —21 13
Initial temperature of beer (°C) 29 29
Final temperature of beer (°C) 15 15
Time elapsed (min) 21.1 8.6
Surface area of can =0.03 m?

Quantity of beer in can = 0.355 kg
Heat capacity of beer =4.2 kJ/kg-K

a) Do you think that your friend is right? Show your work by calculating the heat transfer
coefficient in each case. Ignore the cost and availability of water.
b) Calculate the time required to cool the beer from 29 °C to 4 °C in the freezer.
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¢) Suppose that you first cool the beer to 15 °C in the running water and then place the beer
in the freezer. Calculate the time required to cool the beer from 29 °C to 4 °C in this case.

(Answer: a) (h) (freezer) = 12.9 W/m?-K, (h) (tap water) = 200 W/m?-K b) 44.5 min
¢) 32 min)

7.17 M kg of a liquid is to be heated from 77 to 75 in a well-stirred, jacketed tank by steam
condensing at 7y in the jacket. The heat transfer area, A; the heat capacity of tank contents
per unit mass, Cp; and the overall heat transfer coefficient, U, are known. Show that the

required heating time is given by
MCp (T, —T
r=—-L ln< : 1) (1)

UA )

Indicate the assumptions involved in the derivation of Eq. (1).

7.18 In Problem 7.17, assume that hot water, with a constant mass flow rate m and inlet
temperature Tj,, is used as a heating medium instead of steam.

a) Show that the outlet temperature of hot water, T,,;, is given by

T, —T
Tout=T+ 2

UA
Q= exp(R) 2)

in which T is the temperature of the tank contents at any instant and C is the heat capacity
of hot water.

b) Write down the unsteady-state energy balance and show that the time required to increase
the temperature of the tank contents from 77 to 73 is given by

MCp ([ € T — T
f=—"F In( 22— "1 3)

mC \2—1 T,—T
¢) Bondy and Lippa (1983) argued that when the difference between the outlet and inlet
jacket temperatures is less than 10% of the ATy, between the average temperature of
the jacket and the temperature of the tank contents, Eq. (1) in Problem 7.17 can be used

instead of Eq. (3) by replacing Ty with the average jacket temperature. Do you agree?
For more information on this problem see Tosun and Aksahin (1993).

(D

where

7.19 600 kg of a liquid is to be heated from 15°C to 150°C in a well-stirred, jacketed
tank by steam condensing at 170°C in the jacket. The heat transfer surface area of the
jacket is 4.5 m? and the heat capacity of the liquid is 1850 J/kg-K. The overall heat transfer
coefficient, U, varies with temperature as follows:
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T (°C) 15 30 60 90 120 150
UW/m?>K) | 390 465 568 625 664 680

a) Calculate the required heating time.
b) Correlate the data in terms of the expression

B
U=A——
T

where T is in degrees Kelvin, and calculate the required heating time.

(Answer: a) 11.7 min b) 13.7 min)

7.20 500 kg of a liquid is to be heated from 15 °C to 150 °C in a well-stirred, jacketed tank
by steam condensing at 170 °C in the jacket. The heat transfer surface area of the jacket is
4.5 m? and the heat capacity of the liquid is 1850 J/kg-K. Calculate the average overall heat
transfer coefficient if the variation of liquid temperature as a function of time is recorded as
follows:

t(min) | 0 2 4 6 8§ 10 12
T¢CC) | 15 59 90 112 129 140 150

(Answer: 564 W/m?-K)

7.21 A copper sphere (k =353 W/m-K, p = 8924 kg/m’, Cp =387 J/kg-K) of diameter
10 cm is placed in an evacuated enclosure with the enclosure walls at a very low temperature.
It is heated uniformly throughout the volume by an electrical resistance heater at a rate of
1000 W.

a) Calculate the steady-state temperature of the sphere if the emissivity of the surface is
0.85.

b) If the heater is turned off, calculate the time required for the sphere to cool to 600 K by
radiation alone.

Hint: First calculate the Biot number at the steady-state temperature to check the applica-
bility of the lumped-parameter analysis. The heat transfer coefficient can be estimated with
the help of Eq. (3.2-13).

(Answer: a) 901.5 K b) 1300 s)

7.22 A thermocouple is a sensor for measuring temperature. Its principle is based on the
fact that an electric current flows in a closed circuit formed by two dissimilar metals if the
two junctions are at different temperatures. The voltage produced by the flow of an electric
current is converted to temperature. The measuring junction (or hot junction) is exposed
to the medium whose temperature is to be measured and the reference junction (or cold
junction) is connected to the measuring instrument.
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The tip of the measuring junction may be approximated as a sphere. Its temperature must
be the same as that of the medium in which it is placed. In other words, the sphere must
reach thermal equilibrium with the medium. In practical applications, however, it takes time
for the thermocouple to record the changes in the temperature of the medium. The so-called
response time of a thermocouple is defined as the time required for a thermocouple to record
63% of the applied temperature difference.

a) Show that the response time of a thermocouple is given by

f— D,Oap
— 6(h)

where p and Cp are the density and heat capacity of the thermocouple material, respec-
tively, and D is the tip diameter.
b) Calculate the response time for the following values:

D=1cm (h)=230W/m>K Cp=1050J/kgK  p=1900 kg/m’

(Answer: b) 14.5 s)

7.23 A copper slab (k =401 W/m-K, « = 117 x 107° m?/s) of thickness 2 cm is initially
at a temperature of 25°C. At t = 0, one side of the slab starts receiving a net heat flux of
5000 W/m?, while the other side dissipates heat to the surrounding fluid at a temperature of
25°C with an average heat transfer coefficient of 80 W/m?-K.

a) How long does it take for the slab temperature to reach 70 °C?
b) Calculate the steady-state temperature.

(Answer: a) 1091 s b) 87.5°C)

7.24 An insulated rigid tank of volume 0.1 m? is connected to a large pipeline carrying
air at 10 bar and 120°C. The valve between the pipeline and the tank is opened and air is
admitted to the tank at a constant mass flow rate. The pressure in the tank is recorded as a
function of time as follows:

¢t (min) 5 10 15 20 25 30
P (bar) 1.6 2.1 2.7 3.3 3.9 4.4

If the tank initially contains air at 1 bar and 20°C, determine the mass flow rate of air
entering the tank. Air may be assumed to be an ideal gas with a constant Cp of 29 J/mol-K.

(Answer: 7.25 g/min)

7.25 An insulated rigid tank of volume 0.2 m> is connected to a large pipeline carrying
nitrogen at 10 bar and 70°C. The valve between the pipeline and the tank is opened and
nitrogen is admitted to the tank at a constant mass flow rate of 4 g/s. Simultaneously, ni-
trogen is withdrawn from the tank, also at a constant mass flow rate of 4 g/s. Calculate the
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temperature and pressure within the tank after 1 minute if the tank initially contains nitrogen
at 2 bar and 35°C. Nitrogen may be assumed to be an ideal gas with a constant Cp of
30 J/mol-K.

(Answer: 326.8 K, 2.12 bar)

7.26 A rigid tank of volume 0.2 m? initially contains air at 2 bar and 35°C. On one side
it is connected to an air supply line at 10 bar and 70°C, and on the other side it is con-
nected to an empty rigid tank of 0.8 m> as shown in the figure below. Both tanks are in-
sulated and initially both valves are closed. The valve between the pipeline and the tank
is opened and air starts to flow into the tank at a constant flow rate of 10 mol/min. Si-
multaneously, the valve between the tanks is also opened so as to provide a constant flow
rate of 6 mol/min to the larger tank. Determine the temperature and pressure of air in the
larger tank after 2 minutes. Air may be assumed to be an ideal gas with a constant Cp of
29 J/mol-K.

— V=02m3

Airsupply| | — >

line
V=0.8m3

(Answer: 482.3 K, 0.6 bar)

7.27 Metering pumps provide a constant liquid mass flow rate for a wide variety of sci-
entific, industrial, and medical applications. A typical pump consists of a cylinder fitted
with a piston as shown in the figure below. The piston is generally located on the end
of a long screw, which itself is driven at a constant velocity by a synchronous electric
motor.

Pump cylinder

Drive

—N—» Flow

a) Assume that the manufacturer has calibrated the pump at some reference temperature,
Tyer. Write down the unsteady-state mass balance and show that the reference mass flow
rate, ri,f, delivered by the pump is given by

d Vref

dt

where p,.r and V. are the density and the volume of the liquid in the pump cylinder at
the reference temperature, respectively. Integrate Eq. (1) and show that the variation in

”href = —Pref (D
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b)

¢)

d)

the liquid volume as a function of time is given by

m
Vref = Vr(;f - <pre;)t 2
re,

where Vr‘éf is the volume of the cylinder at ¢t = 0.
If the pump operates at a temperature different from the reference temperature, show that
the mass flow rate provided by the pump is given by

. d
m——E(PV) ©)

where p and V are the density and the volume of the pump liquid at temperature 7,
respectively. Expand p and V in a Taylor series in 7 about the reference temperature
T}er and show that

pV x~ prerref - prerref(ﬁC — BT — Tref) “4)
where 8, the coefficient of volume expansion, is defined by
1oV 1(dp
p==(=) =—-(:= 5)
Vv \aoT /) p p\oT ) p

in which the subscripts L and C represent the liquid and the cylinder, respectively. Indi-
cate the assumptions involved in the derivation of Eq. (4).

Show that the substitution of Eq. (4) into Eq. (3) and making use of Egs. (1) and (2) give
the fractional error in mass flow rate as

M (8 — Be)(T —T, >+( f —t)(ﬂ _ gL 6)
mref = L C ref R, L C dt
where
_ _dVrgf
Ro=—— (7

Note that the first and the second terms on the right-hand side of Eq. (6) represent, re-
spectively, the steady-state and the unsteady-state contributions to the error term.
Assume that at any instant the temperature of the pump liquid is uniform and equal to that
of the surrounding fluid, i.e., the cylinder wall is diathermal, and determine the fractional
error in mass flow rate for the following cases:

o The temperature of the fluid surrounding the pump, T, is constant. Take B¢ =4 X
109K, B =1.1x 103K}, and Ty — Ty =5 K.

e The temperature of the surrounding fluid changes at a constant rate of 1 K/h. Take
Vr‘;f =500 cm? and R, = 25 cm?/h.

e The surrounding fluid temperature varies periodically with time, i.e.,

Ty =T + Asinot (8)
Take A=1°Cand w =87 h~!.
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e) Now assume that the liquid temperature within the pump is uniform but different from the
surrounding fluid temperature as a result of a finite rate of heat transfer. If the temperature
of the surrounding fluid changes as

Ty =Tw+ (Trer — Too)e ™ Too < Thref ©)

where T, is the asymptotic temperature and 7 is the time constant, show that the frac-
tional error in mass flow rate is given by

V()

The terms f and ¢ are defined as

f= T 1 an
B mref (,BL - IBC)(Tref - Too)
UA
¢=—= (12)
pVCp

where A is the surface area of the liquid being pumped, U is the overall heat transfer
coefficient, and Cp is the heat capacity of the pump liquid.

f) Show that the time, #*, at which the fractional error function f achieves its maximum
absolute value is given by

o In@/o)
o—1
This problem was studied in detail by Eubank ez al. (1985).

(13)

7.28 A spherical salt, 5 cm in diameter, is suspended in a large, well-mixed tank containing
a pure solvent at 25 °C. If the percent decrease in the mass of the sphere is found to be 5%
in 12 minutes, calculate the average mass transfer coefficient. The solubility of salt in the
solvent is 180 kg/m?> and the density of the salt is 2500 kg/m>.

(Answer: 8.2 x 107% m/s)

7.29 The phosphorous content of lakes not only depends on the external loading rate but
also on the interactions between the sediments and the overlying waters. The model shown
in Figure 7.6 is proposed by Chapra and Canale (1991) in which the sediment layer gains
phosphorous by settling and loses phosphorous by recycle and burial.

a) Show that the governing equations for the phosphorous concentrations in the lake, Py,
and in the sediment layer, P,, are given as

: dP
Mip — Qautpl — v A P + A2<kc>rP2 =V d—tl (1)
ap,
Vs A2 Py — Az(ke)r Po — Ax(ke)p P2 =V W (2)
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b)

m;, Qous
—>
LAKE
(P
]
Settling Recycle
4
SEDIMENT LAYER
(Py)

Burial

Figure 7.6 Schematic diagram for Problem 7.29.

where

mi, = loading rate = 2000 kg/year

Qour = outflow volumetric flow rate =80 x 10° m? /year
vy = settling velocity of phosphorous = 40 m/year

A, = surface area of the sediment layer = 4.8 x 10% m?

(k.), = recycle mass transfer coefficient =2.5 x 1072 m/year
(kc)p = burial mass transfer coefficient =1 x 1073 m/year
Vi = volume of the lake =53 x 10° m?

Vo = volume of the sediment layer =4.8 x10° m?

Determine the variation of P in mg/m? as a function of time if the initial concentrations
are given as P; = 60 mg/m> and P> = 500,000 mg/m>.

(Answer: b) P; =22.9 — 165.4¢ 723111 1.202.5¢~0-0811)
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STEADY MICROSCOPIC BALANCES WITHOUT
GENERATION

In the previous chapters, we have considered macroscopic balances in which quantities such
as temperature and concentration varied only with respect to time. As a result, the inven-
tory rate equations are written by considering the total volume as a system, and the resulting
governing equations turn out to be ordinary differential equations in time. If the dependent
variables such as velocity, temperature, and concentration change as a function of both po-
sition and time, then the inventory rate equations for the basic concepts are written over a
differential volume element taken within the volume of the system. The resulting equations
at the microscopic level are called equations of change.

In this chapter, we will consider steady-state microscopic balances without internal gen-
eration, and the resulting governing equations will be either ordinary or partial differential
equations in position. It should be noted that the treatment for heat and mass transport is dif-
ferent from that for momentum transport. The main reasons for this are: (i) momentum is a
vector quantity, while heat and mass are scalar, (i7) in heat and mass transport the velocity
appears only in the convective flux term, while in momentum transfer it appears both in the
molecular and in convective flux terms.

8.1 MOMENTUM TRANSPORT

Momentum per unit mass, by definition, is the fluid velocity, and changes in velocity can re-
sult in momentum transport. For fully developed flow' through conduits, velocity variations
take place in the direction perpendicular to the flow since no-slip boundary conditions must
be satisfied at the boundaries of the conduit. This results in the transfer of momentum perpen-
dicular to the flow direction.

The inventory rate equation for momentum at the microscopic level is called the equation
of motion. It is a vector equation with three components. For steady transfer of momentum
without generation, the conservation statement for momentum reduces to

(Rate of momentum in) — (Rate of momentum out) = 0 (8.1-1)

When there is no generation of momentum, it is implied that both pressure and gravity terms
are zero. Hence, flow can only be generated by the movement of surfaces enclosing the fluid,
and the resulting flow is called Couette flow. We will restrict our analysis to cases in which
the following assumptions hold:

IF ully developed flow means there is no variation in velocity in the axial direction. In this way, the flow devel-
opment regions near the entrance and exit are not taken into consideration, i.e., end effects are neglected.

213
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1. Incompressible Newtonian fluid,
2. One-dimensional®, fully developed laminar flow,
3. Constant physical properties.

The last assumption comes from the fact that temperature rise as a result of viscous dissipation
during fluid motion, i.e., irreversible degradation of mechanical energy into thermal energy,
is very small and cannot be detected by ordinary measuring devices in most cases. Hence, for
all practical purposes the flow is assumed to be isothermal.

8.1.1 Plane Couette Flow

Consider a Newtonian fluid between two parallel plates separated by a distance B as shown
in Figure 8.1. The lower plate is moved in the positive z-direction with a constant velocity
of V, while the upper plate is held stationary.

The first step in the translation of Eq. (8.1-1) into mathematical terms is to postulate the
functional forms of the nonzero velocity components. This can be done by making reasonable
assumptions and examining the boundary conditions. For the problem at hand, the simplifi-
cation of the velocity components is shown in Figure 8.2.

Since v; = v,;(x) and v, = vy, =0, Table C.1 in Appendix C indicates that the only nonzero
shear-stress component is ;. Therefore, the components of the total momentum flux are
expressed as

dv
Txz = Txz + (PV)Vx = Ty = _Md—xz (8.1-2)
Ty, = Tyz + (pv)vy =0 (8.1-3)
Tz = Tgz + (pU)v, = /OUZZ (8.1-4)

For a rectangular differential volume element of thickness Ax, length Az, and width W, as
shown in Figure 8.1, Eq. (8.1-1) is expressed as

(2| WAX + 7 |k WAZ) — (T2l 40 WAX + Tz |x+ax WAZ) =0 (8.1-5)

Following the notation introduced by Bird et al. (2002), “in” and “out” directions for the
fluxes are taken in the direction of positive x- and z-axes. Dividing Eq. (8.1-5) by WAx Az

'

Figure 8.1. Couette flow between two parallel plates.

2 One-dimensional flow indicates that there is only one nonzero velocity component.
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One-dimensional flow
Vy =0y = 0

Y

Large aspect ratio
W/B >>1

v

Steady-state
Ov,/0t=0

y

Fully developed flow
Ovy/0z=10 vz = vz (%)

V=0, (X )% 1)

Y

V,=V,(x, 7 1)

> Vv, = Uy (x, z)

Figure 8.2. Simplification of the velocity components for Couette flow between two parallel plates.

and taking the limit as Ax — 0 and Az — 0 give

lim Tzzlz — Tozlz+Az 4 1im Txzlx — Txzlx+Ax —0 (8.1-6)
Az—0 Az Ax—0 Ax
or,
o | M _ (8.1-7)
0z dx
Substitution of Egs. (8.1-2) and (8.1-4) into Eq. (8.1-7) and noting that dv,;/dz = 0 yield
d (dv,
—|—1]=0 8.1-8
dx ( dx ) ( )
The solution of Eq. (8.1-8) is
v,=C1x+C; (8.1-9)

where C1 and C; are constants of integration. The use of the boundary conditions

at x=0 v, =V (8.1-10)
at x=2B v, =0 (8.1-11)
gives the velocity distribution as
Vg X
Z_1-= 8.1-12
v B ( )

The use of the velocity distribution, Eq. (8.1-12), in Eq. (8.1-2) indicates that the shear
stress distribution is uniform across the cross-section of the plate, i.e.,

uv
Tyy = 5 (8.1-13)
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The volumetric flow rate can be determined by integrating the velocity distribution over

the cross-sectional area, i.e.,
w B
Q=/ f v.dxdy (8.1-14)
0 0

Substitution of Eq. (8.1-12) into Eq. (8.1-14) gives the volumetric flow rate in the form

Q= @ (8.1-15)

Dividing the volumetric flow rate by the flow area gives the average velocity as

Q Vv
(vz) = WB- 2 (8.1-16)

8.1.2 Annular Couette Flow

Consider a Newtonian fluid in a concentric annulus as shown in Figure 8.3. The inner circular
rod moves in the positive z-direction with a constant velocity of V.

For the problem at hand, the simplification of the velocity components is shown in Fig-
ure 8.4. Since v, = v,(r) and v, = vg = 0, Table C.2 in Appendix C indicates that the only
nonzero shear-stress component is 7. Therefore, the components of the total momentum flux

Fluid at P, Fluid at P,

=

Rod of radius kR

Figure 8.3. Couette flow in a concentric annulus.
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One-dimensional flow
’Ur = ’I)e =0

!

Angular symmetry
V(50,2 ) =v,(rb0+m,z 1)

!

Y

v, =0, (56,21

Y

V=0, (12, 1)

Steady-state v = (r2)

ov, /0t =0 Loree
Fully developed flow - _

v, /0z=0 7 b=t

Figure 8.4. Simplification of the velocity components for Couette flow in a concentric annulus.

are given by
dv,
Trz =Trz + (PVIVr = Tpp = _ME (8.1-17)
7oz = Tz + (pvz)vg =0 (8.1-18)
oo = Toe + (PV)v; = pv; (8.1-19)

For a cylindrical differential volume element of thickness Ar and length Az, as shown in
Figure 8.3, Eq. (8.1-1) is expressed as

(22| 27 Ar + 702 | 2707 AZ) = [Tzl e 2P Ar 4+ Tz ar 2 (r + Ar) Azl =0 (8.1-20)

Dividing Eq. (8.1-20) by 27 Ar Az and taking the limit as Ar — 0 and Az — 0 give

lim r<7TZZ|Z - nzz|z+Az> © lim (re)lr — ) lr+ar —0 (8.1-21)

Az—0 Az Ar—0 Ar
or,

omz;  drmz)
0z dr

Substitution of Egs. (8.1-17) and (8.1-19) into Eq. (8.1-22) and noting that dv,/dz = 0 give
the governing equation for velocity as

(%)
—|(rl—)[=0 (8.1-23)
dr dr

v, =CiInr +C, (8.1-24)

0 (8.1-22)

The solution of Eq. (8.1-23) is
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where C1 and C; are integration constants. The use of the boundary conditions

at r=R v, =0 (8.1-25)
at r=«R v, = (8.1-26)
gives the velocity distribution as
In(r/R
vz _ In(r/R) (8.1-27)
Vv Ink

The use of the velocity distribution, Eq. (8.1-27), in Eq. (8.1-17) gives the shear stress

distribution as
Vi1
Ty, = _<"_)_ (8.1-28)
Ink /r

The volumetric flow rate is obtained by integrating the velocity distribution over the annu-
lar cross-sectional area, i.e.,

2 R
Q =/ / v,rdrdf (8.1-29)
0 KR
Substitution of Eq. (8.1-27) into Eq. (8.1-29) and integration give
RV 1—«?
0=" S P (8.1-30)
2 In(1/x)

Dividing the volumetric flow rate by the flow area gives the average velocity as

Q 1% 1 2«2
(Vi) =—F7T——F5=7% - (8.1-31)
TR2(1—«2) 2 |In(1/k) 1—«2
The drag force acting on the rod is
Fp=—1;|,=«R27KkRL (8.1-32)
The use of Eq. (8.1-28) in Eq. (8.1-32) gives
2nulV
p =Tk (8.1-33)
Ink

8.1.2.1 [Investigation of the limiting case ~ Once the solution to a given problem is obtained,
it is always advisable to investigate the limiting cases if possible, and to compare the results
with the known solutions. If the results match, this does not necessarily mean that the solution
is correct; however, the chances of it being correct are fairly high.

When the ratio of the radius of the inner pipe to that of the outer pipe is close to unity,
i.e., k — 1, a concentric annulus may be considered a thin-plane slit and its curvature can be
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neglected. Approximation of a concentric annulus as a parallel plate requires the width, W,
and the length, L, of the plate to be defined as

W=nmR(l+«) (8.1-34)
B=R(l—«x) (8.1-35)

Therefore, the product W B is equal to

WB
WB=7R*(1-«?) = nR’= - (8.1-36)
—K
so that Eq. (8.1-30) becomes
WBV 1 K2
=——Ilm|—— -2 ——= 8.1-37
°= Klml[ Ink (1—K2>i| (8.1-37)
Substitution of ¥ = 1 — « into Eq. (8.1-37) gives
WBYV 1 1—y)?
Q=——lim{— -2 d=v) (8.1-38)
2 y—o| In(1—1v) 1 —(1—1)2
The Taylor series expansion of the term In(1 — ) is
1 o 13
ln(l—lﬂ)=—1ﬁ—§¢ —gw — - —-l<y <1 (8.1-39)
Using Eq. (8.1-39) in Eq. (8.1-38) and carrying out the divisions yield
WBV 1 1 1 3 3
= lim ————K—i—--- -2 —————w—--- (8.1-40)
2 y—o|ly 2 12 2y 4 8
or,
WBV 2 WBV
= 1 1+ - =— 8.1-41
e== 13%( e ) 2 (8.1-41)

which is equivalent to Eq. (8.1-15).

8.2 ENERGY TRANSPORT WITHOUT CONVECTION

The inventory rate equation for energy at the microscopic level is called the equation of en-
ergy. For a steady transfer of energy without generation, the conservation statement for energy
reduces to

(Rate of energy in) = (Rate of energy out) (8.2-1)

The rate of energy entering and leaving the system is determined from the energy flux. As
stated in Chapter 2, the total energy flux is the sum of the molecular and convective fluxes. In
this case, we will restrict our analysis to cases in which convective energy flux is either zero
or negligible compared with the molecular flux. This implies transfer of energy by conduction
in solids and stationary liquids.
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Figure 8.5. Conduction through a slightly tapered slab.

8.2.1 Conduction in Rectangular Coordinates

Consider the transfer of energy by conduction through a slightly tapered slab as shown in
Figure 8.5. If the taper angle is small and the lateral surface is insulated, energy transport can
be considered one-dimensional in the z-direction®, i.e., T = T'(z).

Under these circumstances, Table C.4 in Appendix C indicates that the only nonzero energy
flux component is e, and it is given by

dT

e (8.2-2)

€:=q;=—
The negative sign in Eq. (8.2-2) implies that the positive z-direction is in the direction of
decreasing temperature. In a given problem, if the value of the heat flux is negative, it is
implied that the flux is in the negative z-direction.
For a differential volume element of thickness Az, as shown in Figure 8.5, Eq. (8.2-1) is
expressed as

(Ag)|: — (Ag) |40 =0 (8.2-3)

Dividing each term by Az and taking the limit as Az — 0 give

li (Ag)|; — (Aq) |+ Az
1m

=0 (8.2-4)
Az—0 Az

or,

d(A
dldgs) _ (8.2-5)
dz
Since flux times area gives the heat transfer rate, Q, it is possible to conclude from Eq. (8.2-5)
that

A g, = constant = Q (8.2-6)

in which the area A is perpendicular to the direction of energy flux. Substitution of Eq. (8.2-2)
into Eq. (8.2-6) and integration give

ka(T)dT——Q/Zd—Z+C (8.2-7)
0 7)o A®) '

3The z-direction in the rectangular and cylindrical coordinate systems are equivalent to each other.
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Table 8.1. Heat transfer rate and temperature distribution for one-dimensional conduction
in a plane wall for the boundary conditions given by Eq. (8.2-8)

Constants Heat Transfer Rate Temperature Distribution
T, I z d
[ “kryar [keyar [T
None T (A) r _Jo A® (E)
dz To L 4z
— k(T)dT —
0 A T, 0 A®
/Z dz
k(To — T, T,—T
k o~ 1) ®) oL _ N0 AR (F)
/ dz T, —TL [ dz
0 A 0o AQ)
T, 7,
A/T k(T)dT / k(T)dT .
L T —
A A © T == ©)
/ k(T)dT
TL
k(To — Tr)A T,—T
z (Ty L) (D) 4 _ z (H)
L T,—Tp L

where C is an integration constant. The determination of Q and C requires two boundary
conditions.
When the surface temperatures are specified as

at z=0 T=T, (8.2-8a)
at z=1L T=Ty (8.2-8b)

the resulting temperature distribution as a function of position and the heat transfer rate are
given as in Table 8.1.

On the other hand, if one surface is exposed to a constant heat flux while the other is
maintained at a constant temperature, i.e.,

dTr

at z=0 —k—=q, (8.2-9a)
dz

at z=1L T=Ty (8.2-9b)

the resulting temperature distribution as a function of position and the heat transfer rate are
given as in Table 8.2.

The boundary conditions given by Egs. (8.2-8) and (8.2-9) are not the only boundary con-
ditions encountered in energy transport. For different boundary conditions, temperature dis-
tribution and heat transfer rate can be obtained from Eq. (8.2-7).
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Table 8.2. Heat transfer rate and temperature distribution for one-dimensional conduction
in a plane wall for the boundary conditions given by Eq. (8.2-9)

Constants Heat Transfer Rate Temperature Distribution
T L dz
None  Aloge W) [ kDT =Alcon [ 45 ®
Tr . A(2)

Alz=090 /L dz
k Al,— B T-Tp = — F
lz=090 B) L 2 . AR (F)

T z
A Ago © / K(T)dT = qoL<1 - —) )

T L

k _ qoL 4

i Ago D) T-T =% (1 - Z) H)

Example 8.1 Consider a solid cone of circular cross-section as shown in Figure 8.6. The
diameter at z = 0 is 8 cm and the diameter at z = L is 10 cm. Calculate the steady rate of
heat transfer if the lateral surface is well insulated and the thermal conductivity of the solid
material as a function of temperature is given by

k(T)=400—0.07T
where k is in W/m-K and 7 is in degrees Celsius.
Solution
The diameter increases linearly in the z-direction, i.e.,

D(z) =0.05z + 0.08

Therefore, the cross-sectional area perpendicular to the direction of heat flux is given as a
function of position in the form

2

D T 2
A(z) = e = Z(O.OSZ + 0.08)

I« L =40 cm—>|

80°C 35°C

>z

Figure 8.6. Conduction through a solid cone.
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The use of Eq. (A) in Table 8.1 with 7, = 80°C, Ty, = 35°C, and L = 0.4 m gives the heat

transfer rate as
80
(400 —0.07T)dT

Q=25 — 280 W

0.4 dz
/0 (7r/4)(0.05z + 0.08)2

Example 8.2 Consider the problem given in Example 2.2. Determine the temperature dis-
tribution within the slab.

Solution

With T; = 35°C, g, = 100,000 W/m?, k = 398 W/m-K, and L = 0.04 m, Eq. (H) in Ta-
ble 8.2 gives the temperature distribution as

100,000)(0.04
T—35=" O (- Y ) o r—451-2513y
398 0.04

Example 8.3 In rivers ice begins to form when the water cools to 0°C and continues to
lose heat to the atmosphere. The presence of ice on rivers not only causes transportation
problems but also floods when it melts. Once the ice cover is formed, its thickening depends
on the rate of heat transferred from the water, through the ice cover, to the cold atmosphere.
As an engineer, you are asked to estimate the increase in the thickness of the ice block as a
function of time.

Solution
Assumptions

1. Pseudo-steady-state behavior.

2. River temperature is close to 0 °C and the heat transferred from water to ice is negligi-
ble. This assumption implies that the major cause of ice thickening is the conduction
of heat through the ice.

Analysis
System: Ice block

Since the density of ice is less than that of water, it floats on the river as shown in Figure 8.7.
The temperatures 7, and 7 represent the melting temperature (0°C) and the top surface
temperature, respectively.
The temperature distribution in the ice block under steady conditions can be determined
from Eq. (H) in Table 8.1 as
T,—T Z

== 1
Tn—T; L M

Therefore, the steady heat flux through the ice block is given by
dT k(T —T;)

g:=—k == @)
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Air, T,

=~

Water

River bottom

Figure 8.7. Ice block on a river.

For the ice block, the macroscopic inventory rate equation for energy is
—Rate of energy out = Rate of energy accumulation 3)

If the enthalpy of liquid water at T, is taken as zero, then the enthalpy of solid ice is

Ty
Hice=—)»—/ CpdT )
T

—_——
Negligible

Therefore, Eq. (3) is expressed as
d =
—q:A = T [ALp(=)] )

For the unsteady-state problem at hand, the pseudo-steady-state assumption implies that
Eq. (2) holds at any given instant, i.e.,

k(T — Ty)

q:(t) = T (6)

Substitution of Eq. (6) into Eq. (5) and rearrangement give

L k t
/ LdL=—A/(Tm—TS)dt @)
0 pArJo
Integration yields the thickness of the ice block in the form
2k (1 1/2
L= [—A/ (T — Ts)dt] 8)
pAJo

8.2.1.1 Electrical circuit analogy  Using the analogy with Ohm’s law, i.e., current = volt-
age/resistance, it is customary in the literature to express the rate equations in the form

Driving force
Rate = —— 8 01¢€ (8.2-10)
Resistance
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L
R=—
kA
T, 0 Tp

Figure 8.8. Electrical circuit analog of the plane wall.

Note that Eq. (D) in Table 8.1 is expressed as

. T,—T
0="7 L (8.2-11)

kA
Comparison of Eq. (8.2-11) with Eq. (8.2-10) indicates that

Driving force =T, — T (8.2-12)
. L Thickness
Resistance = — = (8.2-13)
kA  (Transport property)(Area)

Hence, the electric circuit analog of the plane wall can be represented as shown in Figure 8.8.
Note that the electrical circuit analogy holds only if the thermal conductivity is constant.

Example 8.4 Heat is conducted through a composite plane wall consisting of two different
materials, A and B, as shown in Figure 8.9 (71 > T>). Develop an expression to calculate
the heat transfer rate under steady conditions.

Solution
Assumptions

1. Thermal conductivities of materials A and B, i.e., k4 and kp, are constant.
2. Conduction takes place only in the z-direction.

>z

Figure 8.9. Composite plane wall in series arrangement.
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Analysis

Since the area is constant, the governing equation for temperature in slab A can be easily
obtained from Eq. (8.2-5) as

quA dZTA
= =0 1
dz = S
The solution of Eq. (1) gives
Ty =Ciz+ (2)

Similarly, the governing equation for temperature in slab B is given by

dq? d*Tp
dz dz? 2
The solution of Eq. (3) yields
Tp=C3z+Cy 4)

Evaluation of the constants Cy, C, C3, and Cy requires four boundary conditions. They are
expressed as

at z=-—Lyu To=T 5)

at Z=LB TB:TZ (6)

at z7=0 Ta=Tg (7
dTy dTp

t z=0 kg —2 =k —2 8

* e 4 dz B dz ®)

The boundary condition defined by Eq. (7) represents the condition of thermal equilibrium
at the A-B interface. On the other hand, Eq. (8) indicates that the heat fluxes are continuous,
i.e., equal to each other, at the A-B interface.

Application of the boundary conditions leads to the following temperature distributions
within slabs A and B

A D) 2+ Ly

Ta=T1 — 9
T ke | La, Ls ©
ka kp
T, — T — L
Tp—1, D=2 2=Ls (10)

ka kg
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Thus, the heat fluxes through slabs A and B are calculated as
dTx T — T

A
=—k = 11
q; 43z Ia . Ly (1)
ka  kp
dT hn—T
B B 1 2
=—k = 12
T e T La Ls ()
ka kg
The heat transfer rate through the composite plane wall is given by
. -1
— AN By _
Q_qu_qu_ LA LB (13)
kaA  kpA
Note that Eq. (13) can be expressed in the form
: T — T,
Q= (14)
Rey
where the equivalent resistance, R,g, is defined by
Reg=—A 1 L8 _p. 1k (15)
““T kA kA 4P

The resulting electrical circuit analog of Eq. (14), shown in Figure 8.10, indicates that the
resistances are in series arrangement.

Example 8.5 Heat is conducted through a plane wall consisting of material A on the top
and material B on the bottom as shown in Figure 8.11 (77 > 73). Develop an expression to
calculate the heat transfer rate under steady conditions.

Solution
Assumptions

1. Thermal conductivities of materials A and B, i.e., k4 and kp, are constant.
2. Conduction takes place only in the z-direction.

Analysis

Since the area is constant, the governing equation for temperature in slab A is obtained from
Eq. (8.2-5) as

dg d*Ty
=0 =0 1
dz = dz? )
Ry Ry
T, o i

Figure 8.10. Electrical circuit analog of a plane wall in series arrangement.
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o
. |
L B

-

Figure 8.11. Composite plane wall in parallel arrangement.

The solution of Eq. (1) gives
Ty = C 12 + C2

Similarly, the governing equation for temperature in slab B is given by

dq? d*Tg
dz dz?
The solution of Eq. (3) yields
Tp=C3z+Cy

The boundary conditions are given as
at z=0 Tao=Tp=T
at z=1L Tao=Tp=1T,

Evaluation of the constants leads to the following temperature distributions

T — T,
Ta=Tp=T — 7 Z

The heat fluxes through slabs A and B are given by

dl T — T
A A 1 2
q; = —ka—— lz:kA( / )

dTp -1
B

=—kp—— =k

q; de B( 2 )

)

3)

“)

)
(6)

(7

®)

®
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Therefore, the heat transfer rate through the composite plane wall is given by

: A B 1 1
Q=q;Ax+q; Ap=(T1 — 1) +
L L
kaAa  kpAp
Note that Eq. (10) is represented in the form
- =1
Q =
Req
where the equivalent resistance, R,,, is defined by
1 I 11 I 1
Ry, L L Ry Rp

kaAs  kpAp

(10)

(11)

(12)

The resulting electrical circuit analog of Eq. (11), shown in Figure 8.12, indicates that the

resistances are in parallel arrangement.

Example 8.6 For the composite wall shown in Figure 8.13, related thermal conductivities

are given as kg, =35 W/m-K, kg = 12 W/m-K, k¢ =23 W/m:K, and kp =5 W/m-K.

a) Determine the steady-state heat transfer rate.

Ry
o— ——e
1; I,
Rp

Figure 8.12. Electrical circuit analog of a plane wall in parallel arrangement.

f
T} =300°C 6 cm B T,=22°C
LA % PR —
3cm C /
1m
F—lOcm F 20 cm ’1‘ SCm%‘/

Figure 8.13. Heat conduction through a composite wall.
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b) Determine the effective thermal conductivity for the composite walls. This makes it
possible to consider the composite wall as a single material of thermal conductivity K.,
rather than as four different materials with four different thermal conductivities.

Solution
a) An analogous electrical circuit for this case is shown below:
Rp

_/\/\/\/_
—"WV— —VW—s,
& —\VW—

Rc

The equivalent resistance, R,, of the two resistances in parallel is

Thus, the electrical analog for the heat transfer process through the composite wall can
be represented as shown below:

Ry R Rp

- 5 Q
Using Eq. (8.2-13) the resistances are calculated as follows:

La 0.1

Rj= - —0.032 K/W
kaA  (35)(0.09 x 1)
Rp= LB _ 0.2 = 0278 K/W
B= kA~ 12006 x1)
L 0.2
o= = — —=0.290 K/W
kcA  (23)(0.03 x 1)
L5 0.08
Rp —0.178 K/W

“kpA  (5)(0.09 x 1)

R, = 1+1 _1— ! + ! _]—0142K/W
"\ R  Rc ~\0.278  0.290 -

The equivalent resistance of the entire circuit is
Reg=Ra+ R, + Rp =0.032+0.142 + 0.178 = 0.352 K/W

Hence, the heat transfer rate is

T]—T2_300—22

= =790 W
Req 0.352

Q:
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b) Note that
> L > L

R, = k =
T hgA T T AR,

Therefore, the effective thermal conductivity is

_0.14+0.2+0.08
4= 0.09 x 1)(0.352)

=12 W/mK

Example 8.7 One side of a plane wall receives a uniform heat flux of 500 W/m? due to ra-
diation. The other side dissipates heat by convection to ambient air at 25 °C with an average
heat transfer coefficient of 40 W/m?-K. If the thickness and the thermal conductivity of the
wall are 15 cm and 10 W/m-K, respectively, calculate the surface temperatures under steady
conditions.

Solution

N Air

A\

Assumption
1. Conduction takes place only in the z-direction.
Analysis

Since the area and the thermal conductivity of the wall are constant, Eq. (8.2-5) reduces to

dq. d*T
— =0 — =0 1
dz dz? &
The solution of Eq. (1) is given by
T=Ciz+C; 2)
The boundary conditions are given as
dT
at z=0 —k—=¢qo 3)
dz
dT
at z=1L —kd—:<h>(T—Too) “4)
Z

Evaluation of the constants C; and C, leads to

A (LY PR
T_Too+<h>+ - (1 L) 5)
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Therefore, the surface temperatures can be calculated from Eq. (5) as

1 L 1 015 .
TO:T|Z=O:TOO+q0 —+— =25+ %‘FW =45°C

(h) Kk
Ty = Tlor = Top + 32 =25+ 22 _37.5°¢
L =Tl =Too b 115 = o o

Alternate solution: The electrical circuit analog of the system is shown in the figure below.

1

L
A<h>
Ak
To TL T,
s AN\ ——e—— AN —
f ;

The heat transfer rate through the wall can be expressed in various forms as

0=q,A= % (6a)
kA T mA
_ T, Z Ty, (6b)
kA
(h)A

Solving Eq. (6a) for T, yields

Ty=Too+go( =+~ ) =25+ (22 + L) —asec
o= feo o\ Ty ) T 10 "40)”

Solving either Eq. (6b) or Eq. (6¢) for T, gives

(500)(0.15)
- 10

o 500 .

8.2.1.2 Transfer rate in terms of bulk fluid properties Consider the transfer of thermal
energy from fluid A, at temperature 74 with an average heat transfer coefficient (% 4), through
a solid plane wall with thermal conductivity k, to fluid B, at temperature 7p with an average
heat transfer coefficient (hp), as shown in Figure 8.14.

When the thermal conductivity and the area are constant, the heat transfer rate is calcu-
lated from Eq. (8.2-11). The use of this equation, however, requires the values of 7, and T
to be known or measured. In common practice, it is much easier to measure the bulk fluid
temperatures, T4 and T'g. It is then necessary to relate T, and 7, to T4 and Tp.

L
T, =T, — 2= — 45 —137.5°C
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Hot fluid “A”

B

‘\

11

L cold fluid “B”

N

Figure 8.14. Heat transfer through a plane wall.

1
A <hp>

Figure 8.15. Electrical circuit analogy.

The heat transfer rates at the surfaces z = 0 and z = L are given by Newton’s law of cooling
with appropriate heat transfer coefficients and expressed as

O = Alha)(Ts — T,) = Alhp)(Ty, — T5)

Equations (8.2-11) and (8.2-14) can be rearranged in the form

. 1
TA_T”:Q(A<hA>)

. (L
To - TL - Q(E)

. 1
TL_TB:Q(A<hB>)

Addition of Egs. (8.2-15)—(8.2-17) gives

. L 1
Th —Th = —
AT B Q<A<hA>+Ak+A<hB>)
or,
. Ta —Tg
Q= 1 n L n 1
At Ak T Ay

(8.2-14)

(8.2-15)

(8.2-16)

(8.2-17)

(8.2-18)

(8.2-19)

in which the terms in the denominator indicate that the resistances are in series. The electrical
circuit analogy for this case is given in Figure 8.15.
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Example 8.8 A plane wall separates hot air (A) at a temperature of 50 °C from cold air (B)
at —10°C as shown in Figure 8.16. Calculate the steady rate of heat transfer through the

wall if the thermal conductivity of the wall is

a) k=0.7W/mK
b) k=20 W/mK

Solution
Physical properties

v=17.91 x 107 m?/s
For air at 50°C (323 K): k=27.80x 1073 W/m-K

Pr=0.708

v =12.44 x 107 m?/s
For air at — 10°C (263 K): { k=23.28 x 1073 W/m-K
Pr=0.72

v=16.33 x 1079 m?/s
For air at 33.5°C (306.5 K): { k =26.59 x 1073 W/m-K

Pr=0.711
v =13.30 x 1079 m?/s
For air at 0°C (273 K): k=24.07 x 1073 W/m-K
Pr=0.717
Analysis

The rate of heat loss can be calculated from Eq. (8.2-19), i.e.,

_ WH(Ts — Tp)
O=—7—"7 1

AR

3 H=3m
Air |
T, = 50°C T
Vo = 10 m/s W=10m
Xy /
M— L=20cm

Figure 8.16. Conduction through a plane wall.

Air
/'/'/
Tg =-10°C

Voo = 156 m/s

)
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The average heat transfer coefficients, (4 4) and (/ g), can be calculated from the correlations
given in Table 4.2. Howeyver, the use of these equations requires the physical properties to
be evaluated at the film temperature. Since the surface temperatures of the wall cannot be
determined a priori, as a first approximation, the physical properties will be evaluated at the
fluid temperatures.

Left side of the wall

Note that the characteristic length in the calculation of the Reynolds number is 10 m. The
Reynolds number is
Lepvo — (10)(10)

v 1791 x 107°

Re = =5.6 x 10° )

Since this value is between 5 x 10° and 108, both laminar and turbulent conditions exist on
the wall. The use of Eq. (E) in Table 4.2 gives the Nusselt number as

(Nu) = [0.037(5.6 x 10°)*° — 871](0.708)"/* = 7480 (3)
Therefore, the average heat transfer coefficient is
k 27.80 x 1073 >
(ha) = (Nu) — )= (7480) —0 )= 20.8 W/m?.K (4)
ch

Right side of the wall

The Reynolds number is
Loy (10)(15)

Re = = =12.1 x 10° (5)
v 12.44 x 106
The use of Eq. (E) in Table 4.2 gives

(Nu) = [0.037(12.1 x 10%)*° — 871](0.72)"/* = 14,596 (6)

Therefore, the average heat transfer coefficient is

k 23.28 x 1073
(hp) = (Nu) — (14,596 ( 222X 7 ) 34 w/mPK 7
Lep 10

a) Substitution of the numerical values into Eq. (1) gives

. (10)(3)[50 — (=10)]
0= I 0o 1 = 4956 W ®)

208 707 " 34
Now we have to calculate the surface temperatures and check whether it is appropriate to

evaluate the physical properties at the fluid temperatures. The electrical circuit analogy
for this problem is shown below:

1 L 1
A<hy> Ak A<hp>
T, T, T, Ty



236 8. Steady Microscopic Balances Without Generation

The surface temperatures 77 and 73 can be calculated as

T, =T —L—SO—ﬂNMC’C )
P= AT Ay~ (30)(20.8)

0 4956
Ty=Tp+——— =—10+ ——_ ~ _5°C 10
2= ) MEEOTEN &

Therefore, the film temperatures at the left and right sides of the wall are (42 4-50)/2 =
46°C and (—10 — 5)/2 = —7.5°C, respectively. Since these temperatures are not very
different from the fluid temperatures, the heat transfer rate can be considered equal to
4956 W.

b) For k =20 W/m-K, the use of Eq. (1) gives

o= (10)(3) [50 — (—10)]
1 02, 1
20.8 20 34

The surface temperatures 77 and 75 can be calculated as

=20,574 W 11)

T\ =T 0 _ 50— 20574 170c (12)
Y= AT Ay (30)(20.8) —
) 20,574
=T — 10+ =" ~10°C 13
2= Whg) T G064 (1)

In this case, the film temperatures at the left and right sides are (17 + 50)/2 = 33.5°C
and (—10 4+ 10)/2 = 0°C, respectively. Since these values are different from the fluid
temperatures, it is necessary to recalculate the average heat transfer coefficients.

Left side of the wall
Using the physical properties evaluated at 33.5 °C, the Reynolds number becomes
Lenveo  (10)(10)

Re= =2 = 33105 = 6.1 x 10° (14)
The Nusselt number is
(Nu) = [0.037(6.1 x 10°)*° —871](0.711)!/* = 8076 (15)
Therefore, the average heat transfer coefficient is
(ha) = (Nu) (L]ih> = (8076)(%) =21.5 W/m>K (16)

Right side of the wall

Using the physical properties evaluated at 0 °C, the Reynolds number becomes

Lawoo __ANAS 475 406 (17)

Re = = =
v 13.30 x 10—
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The use of Eq. (E) in Table 4.2 gives
(Nu) = [0.037(11.3 x 10°)*° — 871](0.717)"/* = 13,758 (18)

Therefore, the average heat transfer coefficient is

k 24.07 x 1073
) = (13,758)(172> —33.1 W/m2.K (19)
ch

(hp) = <Nu><

Substitution of the new values of the average heat transfer coefficients, Eqgs. (16) and (19),
into Eq. (1) gives the heat transfer rate as

. 10)(3) [50 — (—10
o= JOG 50— (-10)]

1 N 02 . T =20,756 W (20)
21,5 20  33.1
The surface temperatures are
2
T1=TA—A<%A>=5O—%:18OC (21)
T2=T3+L=—IO+M:11°C (22)
A (hp) (30)(33.1)

Since these values are almost equal to the previous ones, then the rate of heat loss is
20,756 W.

Comment: The Biot numbers, i.e., (h)L/k, for this problem are calculated as follows:

Left Side Right Side
Part (a) 5.9 9.7
Part (b) 0.2 0.3

The physical significance of the Biot number for heat transfer, Biy, is given by Eq. (7.1-14).
Therefore, when Biy is large, the temperature difference between the surface of the wall and
the bulk temperature is small, and the physical properties can be calculated at the bulk fluid
temperature rather than at the film temperature in engineering calculations. On the other
hand, when Big is small, the temperature difference between the surface of the wall and
the bulk fluid temperature is large, and the physical properties must be evaluated at the film
temperature. Evaluation of the physical properties at the bulk fluid temperature for small
values of Big may lead to erroneous results, especially if the physical properties of the fluid
are strongly dependent on temperature.

8.2.2 Conduction in Cylindrical Coordinates

Consider a one-dimensional transfer of energy in the r-direction in a hollow cylindrical pipe
with inner and outer radii of R; and R», respectively, as shown in Figure 8.17. Since T =
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Figure 8.17. Conduction in a hollow cylindrical pipe.
T (r), Table C.5 in Appendix C indicates that the only nonzero energy flux component is e,
and it is given by
daTr
er = qr = —K — (82'20)
dr
For a cylindrical differential volume element of thickness Ar, as shown in Figure 8.17,
Eq. (8.2-1) is expressed in the form

(Agr)lr — (Agr)|r4ar = 0 (8.2-21)
Dividing Eq. (8.2-21) by Ar and taking the limit as Ar — 0 give

I (Agr)lr — (Agr)lr+ar
1m

Ar—0 Ar

—0 (8.2-22)

or,

d(Aqyr)
dr

=0 (8.2-23)

Since flux times area gives the heat transfer rate, Q, it is possible to conclude that
A g, = constant = Q (8.2-24)

The area A in Eq. (8.2-24) is perpendicular to the direction of energy flux in the r-direction
and is given by

A=2nrL (8.2-25)

Substitution of Egs. (8.2-20) and (8.2-25) into Eq. (8.2-24) and integration give

r 0
fo k(T)dT = _(27T_L> Inr+C (8.2-26)

where C is an integration constant.
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Table 8.3. Heat transfer rate and temperature distribution for one-dimensional conduction
in a hollow cylinder for the boundary conditions given by Eq. (8.2-27)

Constants Heat Transfer Rate Temperature Distribution
b3 T, r
27rL/ k(T)dT / k(T)dT ln(—)
None S ) (A) r __\R ©)
() aer ()
n| — n| —
Ry _/;wl (1) Ry
r
2w Lk(T, — Ty) T,—T 1“(13_)
2— 1 2
k e (B) =R (D)
() G
Ry Ry

Table 8.4. Heat transfer rate and temperature distribution for one-dimensional conduction
in a hollow cylinder for the boundary conditions given by Eq. (8.2-28)

Constants Heat Transfer Rate Temperature Distribution
T, R
None 2r R1Lqq (A) / k(T)dT=q1R11n<R—> ©)
T 2
R r
k 2w R1Lq (B) Th—T=——In| — D)
k Ry

When the surface temperatures are specified as

at r=R; T=T (8.2-27a)
at r=Rp T=T (8.2-27b)
the resulting temperature distribution as a function of radial position and the heat transfer rate

are as given in Table 8.3. On the other hand, if one surface is exposed to a constant heat flux
while the other is maintained at a constant temperature, i.e.,

dT

at r=R —k—=gq (8.2-28a)
dr

at r=Rp T="T (8.2-28b)

the resulting temperature distribution as a function of radial position and the heat transfer rate
are as given in Table 8.4.

8.2.2.1 Electrical circuit analogy  Equation (B) in Table 8.3 can be expressed as
T — T,
O=— ~_
In(Ry/Ry)
2n Lk

(8.2-29)
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Ry-R;
kALM
TA . TB

—>Q

Figure 8.18. Electrical circuit analog of the cylindrical wall.

Comparison of Eq. (8.2-29) with Eq. (8.2-10) indicates that the resistance is given by

. In(R2/Ry)
Resistance = ——— 8.2-30
2w Lk ( )
At first, it looks as if the resistance expressions for the rectangular and the cylindrical co-
ordinate systems are different from each other. However, the similarities between these two
expressions can be shown by the following analysis.
The logarithmic-mean area, Ay, is defined as

Ay—A;  2nL(R,—Ry)

Ay = = (8.2-31)
In(A2/Ay) In(R2/Ry)
Substitution of Eq. (8.2-31) into Eq. (8.2-30) gives
. Ry — Ry
Resistance = —— (8.2-32)
ALm
Note that Egs. (8.2-13) and (8.2-32) have the same general form:
. Thickness
Resistance = (8.2-33)

(Transport property) (Area)

The electrical circuit analog of the cylindrical wall can be represented as shown in Fig-
ure 8.18.

Example 8.9 Heat flows through an annular wall of inside radius R = 10 cm and out-
side radius R, = 15 cm. The inside and outside surface temperatures are 60°C and 30°C,
respectively. The thermal conductivity of the wall is dependent on temperature as follows:

T =30°C k=42 W/m-K

T =60°C k=49 W/m-K
Calculate the steady rate of heat transfer if the wall has a length of 2 m.
Solution
Assumption

1. The thermal conductivity varies linearly with temperature.
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Analysis

The variation in the thermal conductivity with temperature can be estimated as

k=42 + 49— 42 (T —30) =35+ 0.233T
a 60 — 30 - ’

The heat transfer rate is estimated from Eq. (A) in Table 8.3 with Ry = 10 cm, R, =15 cm,
T =60°C, and T, = 30°C:

T
onL | k(T)dT
oo i /n @ _ 2@ [ s 00337y aT —42.291 W
T nR/R) In(15/10) Sy ' o

8.2.2.2 Transfer rate in terms of bulk fluid properties The use of Eq. (8.2-29) in the calcu-
lation of the heat transfer rate requires the surface values 77 and 73 to be known or measured.
In common practice, the bulk temperatures of the adjoining fluids to the surfaces at R = R;
and R = R, i.e., T4 and Tp, are known. It is then necessary to relate 77 and 7> to T4 and Tp.

The heat transfer rates at the surfaces R = R; and R = R; are expressed in terms of the
heat transfer coefficients by Newton’s law of cooling as

Q = A1 (ha)(Ta — T1) = Ay (hp)(Tr — Tp) (8.2-34)
The surface areas A; and A, are expressed in the form
A] = 27‘[R1L and A2 =27 RQL (8.2—35)

Equations (8.2-29) and (8.2-34) can be rearranged in the form

(1
Ty—T = Q(A1 (hA>> (8.2-36)
T —1=o =k (8.2-37)
Aruk
T — Ty = Q<A2<h3>> (8.2-38)

Addition of Egs. (8.2-36)—(8.2-38) gives

Ty—T Q( L (Ro-Ri, 1 ) (8.2-39)
A—Tp= 2.
Aq(ha) Ak Ax(hp)

or,

. Ta—Tp
Q= 1 . Rr — R; n 1
Ai(ha) Armk — Ax(hp)

(8.2-40)

in which the terms in the denominator indicate that the resistances are in series. The electrical
circuit analogy for this case is given in Figure 8.19.
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1 Ry-Rj 1
Ay <hy> kAry A, <hg>
AAA——AMA—AMA—
Ty 0O Ty
Figure 8.19. Electrical circuit analogy for Eq. (8.2-40).
In the literature, Eq. (8.2-40) is usually expressed in the form
0 =AUs(Tp — Tp) = A2Up(Tp — Tp) (8.2-41)

where the terms Uy and Up are called the overall heat transfer coefficients. Comparison of
Eq. (8.2-41) with Eq. (8.2-40) gives U4 and Up as

Ur— [ 1 (R2—RDA Ay :|_1
A7 Liha) ALwk (hp)As
[ RinR/R) R T
= _(hA) + X + (hB)R2:| (8.2-42)
and
Ay (Rh—RpA; 1 ]‘1
Up =
| (ha)Ay ApLmk (hp)
[ R RyIn(R,/R)) 1 17!
~ |tk PR <h3>] (8249

Example 8.10 Consider a cylindrical pipe of length L with inner and outer radii of R; and
R», respectively, and investigate how the rate of heat loss changes as a function of insulation
thickness.

Solution

The immediate reaction of most students after reading the problem statement is “What’s
the point of discussing the rate of heat loss as a function of insulation thickness? Adding
insulation thickness obviously decreases the rate of heat loss.” This conclusion is true only
for planar surfaces. In the case of curved surfaces, however, close examination of Eq. (8.2-
32) indicates that while the addition of insulation increases the thickness, i.e., Ry — Ry, it
also increases the heat transfer area, i.e., Ay . Hence, both the numerator and denomina-
tor of Eq. (8.2-32) increase when the insulation thickness increases. If the increase in the
heat transfer area is greater than the increase in thickness, then resistance decreases with a
concomitant increase in the rate of heat loss.
For the geometry shown in Figure 8.20, the rate of heat loss is given by

- Ta —Tg 1
Q= 1 + In(R>/R1) i In(R3/R>) 1 a
2 R1L{ha) 27 Lky, 2w Lk; 2w R3L{hp)
X
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TB, <hE>

Figure 8.20. Conduction through an insulated cylindrical pipe.

R, R, R* Ry

Figure 8.21. Rate of heat loss as a function of insulation thickness.

where k,, and k; are the thermal conductivities of the wall and the insulating material, re-
spectively. Note that the term X in the denominator of Eq. (1) is dependent on the insulation
thickness. Differentiation of X with respect to Rz gives

dx 1 < 1 1
dRy  2mL\R3ki (hp)R?

ki
=0 R: = 2
) BT &

To determine whether this point corresponds to a minimum or a maximum value, it is nec-
essary to calculate the second derivative, i.e.,

d*X
dR?

1 (hp)?

-2 -9 3)
Re=ki/thg)  2TL K

Therefore, at R3 = k; /(hp), X has the minimum value. This implies that the rate of heat
loss will reach the maximum value at R3 = R, = k; /(hp), where R, is called the critical
thickness of insulation. For Ry < R3 < R.,, the addition of insulation causes an increase in
the rate of heat loss rather than a decrease. A representative graph showing the variation in
the heat transfer rate with insulation thickness is given in Figure 8.21.
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Another point of interest is to determine the value of R*, the point at which the rate of
heat loss is equal to that of the bare pipe. The rate of heat loss through the bare pipe, Q,, is

. Th—Tg
Qo= 1 In(R2/Ry) 1 @)
2m R1L{hA) 27 Lky, 2n RoL{hpg)
On the other hand, the rate of heat loss, O*, when R3 = R* is
; Th—Tpg
*
o = 1 In(R2/Ry) In(R*/R») 1 )
2n RiL{hy) 27 Lky, 2 Lk; 27 R*L{hp)
Equating Egs. (4) and (5) gives
R* (hp)R* R*
- Inf — ) =1 6
Rk T\ R ©)

R* can be determined from Eq. (6) for the given values of R;, (hp), and k;.

Comment: For insulating materials, the largest value of the thermal conductivity is in the
order of 0.1 W/m-K. On the other hand, the smallest value of (hp) is around 3 W/m?-K.
Therefore, the maximum value of the critical radius is approximately 3.3 cm, and in most
practical applications this will not pose a problem. Therefore, the critical radius of insulation
is of importance only for small diameter wires or tubes.

Example 8.11 Hot fluid A flows in a pipe with inner and outer radii of R and R;, respec-
tively. The pipe is surrounded by cold fluid B. If R; =30 cm and R, = 35 cm, calculate the
overall heat transfer coefficients and sketch the representative temperature profiles for the
following cases:

a) (ha) =10 W/m?K; (hg) = 5000 W/m?-K; k = 2000 W/m-K
b) (ha)=5000 W/m?K; (hg) =8000 W/m?K; k =0.02 W/m-K
¢) (ha) =5000 W/m?K; (hg) =10 W/m?-K; k = 2000 W/m-K

Solution

a) Note that the dominant resistance to heat transfer is that of fluid A. Therefore, one
expects the largest temperature drop in this region. Hence Eqs. (8.2-42) and (8.2-43)
give the overall heat transfer coefficients as

1 —1
Uy = (W) = (hy) =10 W/m?.K

[ R\ R\  (10)(30) 2
o= () =) = -be W




8.2 Energy Transport Without Convection 245

The expected temperature profile for this case is shown below.

Ty

T;

T

b) In this case, the dominant resistance to heat transfer is that of the pipe wall. The overall
heat transfer coefficients are

_ k B 0.02
" RiIn(R2/R1)  (0.3)In(35/30)
_ k B 0.02
" RyIn(Ry/Ry)  (0.45)In(35/30)

Ua =0.43 W/m*K

=0.29 W/m*K

Up

The expected temperature profile for this case is shown below:

¢) The dominant resistance to heat transfer is that of fluid B. Hence, the overall heat trans-
fer coefficients are

=i
UA:( R ) :(hg)(&):M:HﬂW/mzK

(hB)R> R 30
1 \! )
UB—(@> = (hp)=10W/m~-K

The expected temperature profile for this case is shown below:

Ty

iy
1 T,

Tp
Comment: The region with the largest thermal resistance has the largest temperature drop.

8.2.3 Conduction in Spherical Coordinates

Consider one-dimensional transfer of energy in the r-direction through a hollow sphere of
inner and outer radii R; and R;, respectively, as shown in Figure 8.22. Since T = T (r),
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A ir
=

r+Ar

TB N <hB>

Figure 8.22. Conduction through a hollow sphere.

Table C.6 in Appendix C indicates that the only nonzero energy flux component is e, and it
is given by
dT
er=qr =—k — (8.2-44)
dr

For a spherical differential volume element of thickness Ar as shown in Figure 8.22, Eq. (8.2-
1) is expressed in the form

(Ag)lr — (Ag)|r+ar =0 (8.2-45)

Dividing Eq. (8.2-45) by Ar and taking the limit as Ar — 0 give

li (Agr)lr — (Agr)lr+ar
1im

=0 (8.2-46)
Ar—0 Ar

or,

d(Aqy)
dr

=0 (8.2-47)

Since flux times area gives the heat transfer rate, Q, it is possible to conclude that
A g, = constant = Q (8.2-48)

The area A in Eq. (8.2-48) is perpendicular to the direction of energy flux in the r-direction
and it is given by

A=dxr? (8.2-49)
Substitution of Egs. (8.2-44) and (8.2-49) into Eq. (8.2-48) and integration give
T Q 1
k(TYdTr=—)-+C (8.2-50)
0 4

r

where C is an integration constant.
When the surface temperatures are specified as

at r=R T=T (8.2-51a)
at r=Rp T=T, (8.2-51b)
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Table 8.5. Heat transfer rate and temperature distribution for one-dimensional conduction
in a hollow sphere for the boundary conditions given by Eq. (8.2-51)

Constants Heat Transfer Rate Temperature Distribution
Ty T 1 1
471/ k(T)dT / k(T)dT il
T Ip) _r 2
None 01 W 7 =T ©
> T o k(TYdT - — 5o
R R /Tz 1) R R
1 1
Ak(T] — Tr) T-T, r Ry
k =% (B) T D)
Ri Ry Ry Ry

Table 8.6. Heat transfer rate and temperature distribution for one-dimensional conduction
in a hollow sphere for the boundary conditions given by Eq. (8.2-52)

Constants Heat Transfer Rate Temperature Distribution

2 ! o1 1
None 4T Ry q1 (A) / K(T)dT =q1 Ry - — — ©

T r Ry

2
q1R 1/(1 1

k 4m R? B T-Th=—2L(--— D
T q1 (B) 2 X <r R, (D)

the resulting temperature distribution as a function of radial position and the heat transfer rate
are as given in Table 8.5.

On the other hand, if one surface is exposed to a constant heat flux while the other is
maintained at a constant temperature, i.e.,

dT

at r=R —k—=gq (8.2-52a)
dr

at r=Rp T=" (8.2-52b)

the resulting temperature distribution as a function of radial position and the heat transfer rate
are as given in Table 8.6.

Example 8.12 A spherical metal ball of radius R is placed in an infinitely large volume of
motionless fluid. The ball is maintained at a temperature of T, while the temperature of the
fluid far from the ball is 7.

a) Determine the temperature distribution within the fluid.

b) Determine the rate of heat transferred to the fluid.

¢) Determine the Nusselt number.

d) Calculate the heat flux at the surface of the sphere for the following values:

R=2cm k=0.025 W/m-K Tr =60°C Too =25°C
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Solution
Assumptions

1. Steady-state conditions prevail.
2. The heat transfer from the ball to the fluid takes place only by conduction.
3. The thermal conductivity of the fluid is constant.

Analysis

a) The temperature distribution can be obtained from Eq. (D) of Table 8.5 in the form
T-T R
= ‘e = (1)
Tr — To r

b) The use of Eq. (B) in Table 8.5 with 71 = Tg, T» = T, R1 = R, and R, = oo gives the
rate of heat transferred from the ball to the fluid as
. A4mk(Tg — T,
Q:M=4ﬂRk(TR_Too) 2)
1/R
¢) The amount of heat transferred can also be calculated from Newton’s law of cooling,
Eq. (3.2-7), as
Q =47 R*(h)(Tg — Tx) 3)

Equating Egs. (2) and (3) leads to

(hy 1 2
T x=3 “
R D
Therefore, the Nusselt number is
h)D
Nu= 2 s 5)
k
d) One way of expressing the heat flux at the surface of the sphere is
dT
rir=R — —k — 6
qrlr=r ar | s (6)
The use of Eq. (1) in Eq. (6) gives
k(Tgr — T 0.025)(60 — 25
ol g K r = Toe) _ (0.025)( ) et o

R 2x 1072

It is also possible to evaluate the heat flux at the surface of the sphere from Newton’s law
of cooling, i.e.,

grlr=r = (N)(Tr — Teo) ®)

Since Nu = 2, the average heat transfer coefficient is expressed as

2% _k o
h=7=2 ©)

Substitution of Eq. (9) into Eq. (8) leads to Eq. (7).
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R,-R,
kAgy

Figure 8.23. Electrical circuit analog of the spherical wall.

8.2.3.1 Electrical circuit analogy  Equation (B) in Table 8.5 can be rearranged in the form

__h-h 8.2-53
CTR-R (6239
47TkR1R2

Comparison of Eq. (8.2-53) with Eq. (8.2-10) indicates that the resistance is given by

. Ry — Ry
Resistance = ——— (8.2-54)
AdnkR{ Ry

In order to express the resistance in the form given by Eq. (8.2-13), note that a geometric
mean area, Agyy, is defined as

Aoy =+ A1Ar = /(47 R (47 R3) =47 R\ Ry (8.2-55)

so that Eq. (8.2-54) takes the form

Rr, — Ry B Thickness

Resistance = =
kAGym (Transport property) (Area)

(8.2-56)

The electrical circuit analog of the spherical wall can be represented as shown in Fig-
ure 8.23.

8.2.3.2 Transfer rate in terms of bulk fluid properties The use of Eq. (8.2-53) in the calcu-
lation of the transfer rate requires the surface values 77 and 7> to be known or measured. In
common practice, the bulk temperatures of the adjoining fluids to the surfaces at r = Ry and
r = Ry, i.e., T4 and Tpg, are known. It is then necessary to relate 71 and 75 to T4 and Tp.

The procedure for the spherical case is similar to that for the cylindrical case and is left
as an exercise for the students. If the procedure given in Section 8.2.2.2 is followed, the
result is

. Ty —Tg
0=—7 R, — R, 0 (8.2-57)

+ +
Aq(ha) Agmk — Ax(hp)

Example 8.13 Consider a spherical tank with inner and outer radii of R; and R;,respec-
tively, and investigate how the rate of heat loss varies as a function of insulation thick-
ness.
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R
1
)R>>\\
Rj’
T, <h,> T,, <h,>
' ' /y% ’ ’

Figure 8.24. Conduction through an insulated hollow sphere.

Solution

The solution procedure for this problem is similar to that for Example 8.10. For the geometry
shown in Figure 8.24, the rate of heat loss is given by

4 (Tp — Tp)

Q= 1 +R2—R1+R3—R2+ 1 M
Ri(ha) RiRoky  RoR3ki ~ R3(hp)
X
where k,, and k; are the thermal conductivities of the wall and the insulating material, re-
spectively.
Differentiation of X with respect to R3 gives
X0 5 R=2 )
_— 3=
dR3 (hp)

To determine whether this point corresponds to a minimum or a maximum value, it is nec-
essary to calculate the second derivative, i.e.,
d*x 1 (hp)3
— =-—"
ARy | Ry=o;/np) 8 K;
Therefore, the critical thickness of insulation for the spherical geometry is given by

P 2k; @
cr =
(hB)
A representative graph showing the variation in heat transfer rate with insulation thickness
is given in Figure 8.25.
Another point of interest is to determine the value of R*, the point at which the rate of

heat loss is equal to that of the bare pipe. Following the procedure given in Example 8.10,

the result is
R*\?> (hg)R* [ R*
— | = — —1 1 5
<R2) ki (Rz >+ 2

The value of R* can be determined from Eq. (5) for the given values of R, (hp), and k;.

>0 3)
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0

Ry Re, R* Ry

Figure 8.25. Rate of heat loss as a function of insulation thickness.

Example 8.14 Consider a hollow steel sphere of inside radius R; = 10 cm and outside
radius Ry = 20 cm. The inside surface is maintained at a constant temperature of 180°C
and the outside surface dissipates heat to ambient temperature at 20 °C by convection with
an average heat transfer coefficient of 11 W/m?-K. To reduce the rate of heat loss, it is
proposed to cover the outer surface of the sphere with two types of insulating materials, X
and Y, in series. Each insulating material has a thickness of 3 cm. The thermal conductivities
of X and Y are 0.04 and 0.12 W /m-K, respectively. One of your friends claims that the order
in which the two insulating materials are put around the sphere does not make a difference
to the rate of heat loss. As an engineer, do you agree?

Solution

Physical properties

For steel: k =45 W/m-K
Analysis

The rate of heat loss can be determined from Eq. (8.2-57). If the surface is first covered by
X and then by Y, the rate of heat loss is

. 47 (180 — 20)
0= 0.1 0.03 0.03 1
@5)(0.D02)  (0.08(02)(0.23)  (0.12)(0.23)(026) | 0.26)2(11)
—91.6 W

On the other hand, covering the surface first by ¥ and then by X gives the rate of heat loss as
- 47 (180 — 20)
Q= 0.1 o 0.03 I 0.03 I 1
(45)(0.1)(0.2) = (0.12)(0.2)(0.23) ~ (0.04)(0.23)(0.26) ~ (0.26)2(11)
=103.5W

Therefore, the order of the layers with different thermal conductivities does make a differ-
ence.

8.2.4 Conduction in a Fin

In the previous sections, we considered one-dimensional conduction examples. The exten-
sion of the procedure for these problems to conduction in two- or three-dimensional cases is
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Figure 8.26. Conduction in a rectangular fin.

straightforward. The difficulty with multi-dimensional conduction problems lies in the solu-
tion of the resulting partial differential equations. An excellent book by Carslaw and Jaeger
(1959) gives solutions to conduction problems with various boundary conditions.

In this section, first the governing equation for temperature distribution will be developed
for three-dimensional conduction in a rectangular geometry. Then the use of area averaging®
will be introduced to simplify the problem.

Fins are extensively used in heat transfer applications to enhance the heat transfer rate
by increasing the heat transfer area. Let us consider a simple rectangular fin as shown in
Figure 8.26. As engineers, we are interested in the rate of heat loss from the surfaces of the
fin. This can be calculated if the temperature distribution within the fin is known. The problem
will be analyzed with the following assumptions:

1. Steady-state conditions prevail.

2. The thermal conductivity of the fin is constant.

3. The average heat transfer coefficient is constant.

4. There is no heat loss from the edges or the tip of the fin.

For a rectangular volume element of thickness Ax, width Ay, and length Az, as shown in
Figure 8.26, Eq. (8.2-1) is expressed as

(@x1x Ay Az +qylyAx Az +q:|:Ax Ay)
— (@xlx+axAY Az + qyly+ay AX AZ+ qzl4a:Ax Ay) =0 (8.2-58)
Dividing Eq. (8.2-58) by Ax Ay Az and taking the limit as Ax — 0, Ay — 0, and Az — 0
give

Gxlx — Gxlx+ax CIy|y - Qy|y+Ay qzlz — qzlz4A7

I I I =0 (8259
A;Iilo Ax + A;IBO Ay + AzIEO Az ( )
or,
dqx gy
x| By g B (8.2-60)

ax ay 0z

4The first systematic use of the area averaging technique in a textbook can be attributed to Slattery (1972).



8.2 Energy Transport Without Convection 253

From Table C.4 in Appendix C, the components of the conductive flux are given by

aT aT oT
=—k— =—k— =—k— 8.2-61
o qy 3y qz Py ( )
Substitution of the flux expressions given by Eq. (8.2-61) into Eq. (8.2-60) leads to the gov-
erning equation for temperature

82T N 32T N 92T
axz  9y? 972

=0 (8.2-62)

The boundary conditions associated with Eq. (8.2-62) are

aT
at x=B/2 —k = (hW\(T — Two) (8.2-63)
X
aT
at x=—B/2 k = (h)W(T — Tso) (8.2-64)
X
T
at y=0 — =0 (8.2-65)
dy
T
at y=W — =0 (8.2-66)
dy
at z=0 T =T, (8.2-67)
oT
at z=1L — =0 (8.2-68)
0z

where T is the temperature of the fluid surrounding the fin.

If the measuring instrument, i.e., the temperature probe, is not sensitive enough to detect
temperature variations in the x-direction, then it is necessary to change the scale of the prob-
lem to match that of the measuring device. In other words, it is necessary to average the
governing equation up to the scale of the temperature measuring probe.

The area-averaged temperature is defined by

Tdxdy (8.2-69)

B/2
Tdxdy
L
B/2 ~WB
S
Note that although the local temperature, 7', is dependent on x, y, and z, the area-averaged
temperature, (T'), depends only on z.

Area averaging is performed by integrating Eq. (8.2-62) over the cross-sectional area of
the fin. The result is

W rB/2 g7 B2 27 B2 27
/ [ dxdy—l—/ / dxdy—l—/ / ——dxdy=0 (8.2-70)
0 B2 0x2 B2 0y? B2 022

—B)2



254 8. Steady Microscopic Balances Without Generation
or,
aT

w oT B/2 oT
= dy + ] )ax
0 \0x|,—pp Ox|—_pp ~B2\3Y lyew Y |y—0

2 /(W B2
+ —2</ / dedy) =0 (8.2-71)
dzz\Jo J-pp

The use of the boundary conditions defined by Egs. (8.2-63)—(8.2-66) together with the defi-
nition of the average temperature, Eq. (8.2-69), in Eq. (8.2-71) gives

oT

d*(T)
dz?

(h) (h)
Wi ——(T|x=2 — Txo) — 7(T|x:—B/2 —Tx) |+ WB

=0 8.2-72
. ( )

Since T'|x=p/2 = T |x=—p/2 as aresult of symmetry, Eq. (8.2-72) takes the form

axry 2
— —(h)(T|x=B2 — Txo) =0 (8.2-73)

k
dz? B

Note that Eq. (8.2-73) contains two dependent variables, (T') and T |,—pg /2, which are at two
different scales. It is generally assumed, although not expressed explicitly, that

(T) = Tlx=p/2 (8.2-74)
This approximation is valid when
h)(B/2
Big = %{# <« 1 (8.2-75)

Substitution of Eq. (8.2-74) into Eq. (8.2-73) gives

da*ry 2
k ==
dz? B

(M) ((T) = Teo) (8.2-76)

Integration of Egs. (8.2-67) and (8.2-68) over the cross-sectional area of the fin gives the
boundary conditions associated with Eq. (8.2-76) as

at z=0 (TY=T, (8.2-77)
d(T

at z=1L L =0 (8.2-78)
dz

It should be kept in mind that Eqgs. (8.2-62) and (8.2-76) are at two different scales. Equation
(8.2-76) is obtained by averaging Eq. (8.2-62) over the cross-sectional area perpendicular
to the direction of energy flux. In this way, the boundary condition, i.e., the heat transfer
coefficient, is incorporated into the governing equation. The accuracy of the measurements
dictates the equation to work with since the scale of the measurements should be compatible
with the scale of the equation.
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Table 8.7. The physical significance and the order of magnitude of the terms in

Eq. (8.2-76)
Term Physical Significance Order of Magnitude
dX(T k(Ty —T.
k <2 ) Rate of conduction M
dz L2
2(h) ((T) = Too) Rate of heat transfer from 2(h)(Ty — Too)
B o the fin to the surroundings B

The term 2/B in Eq. (8.2-76) represents the heat transfer area per unit volume of the fin,
1.e.,
2 2LW  Heat transfer area

Z — i (8.2-79)
B BLW Fin volume

The physical significance and the order of magnitude® of the terms in Eq. (8.2-76) are given
in Table 8.7.

Therefore, the ratio of the rate of heat transfer from the fin surface to the rate of conduction
is given by

Rate of heat transfer  2(h)(Tyy — To)/B 2(h)L?
Rate of conduction k(T — Two)/L?2 kB

(8.2-80)

Before solving Eq. (8.2-76), it is convenient to express the governing equation and the
boundary conditions in dimensionless form. The reason for doing this is that the inventory
equations in dimensionless form represent the solution to the entire class of geometrically
similar problems when they are applied to a particular geometry. Introduction of the dimen-
sionless variables

T)—T 2(h)L2
gL~ T =2 A= L7 (8.2-81)
Ty — Too L kB

reduces Eqgs. (8.2-76)—(8.2-78) to

d%o
T — A% 8.2-82
dE? ( )
at £€=0 0=1 (8.2-83)
do
t =1 — =0 8.2-84
at & dE ( )

5The order of magnitude or scale analysis is a powerful tool for those interested in mathematical modeling. As
stated by Astarita (1997), “Very often more than nine-tenths of what one can ever hope to know about a problem
can be obtained from this tool, without actually solving the problem; the remaining one-tenth requires painstaking
algebra and/or lots of computer time, it adds very little to our understanding of the problem, and if we have not
done the first part right, all that the algebra and the computer will produce will be a lot of nonsense. Of course,
when nonsense comes out of a computer people have a lot of respect for it, and that is exactly the problem.” For
more details on the order of magnitude analysis, see Bejan (1984), and Whitaker (1976).
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The solution of Eq. (8.2-82) is
0 = Cpsinh(A€) + C2 cosh(A€) (8.2-85)

where C; and C, are constants. Application of the boundary conditions defined by
Eqgs. (8.2-83) and (8.2-84) leads to

__cosh A cosh(A§) — sinh A sinh(A§)

8.2-86
cosh A ( )
The use of the identity
cosh(x — y) = coshx coshy — sinhx sinh y (8.2-87)
reduces Eq. (8.2-86) to the form
h[A(l —
_ cosh[A( —§)] (8.2-88)
cosh A

8.2.4.1 Macroscopic equation Integration of the governing differential equation, Eq.
(8.2-76), over the volume of the system gives the macroscopic energy balance, i.e.,

B/2 dz B/2 9
/ / / dxdydz— / / / —Two)dxdydz  (8.2-89)
g dz? B/zB

Evaluation of the integrations yields

d(T) L
BW(—k——l.—0) = 2W(h) | ((T)—Tx)dz (8.2-90)
dZ 0
Rate of energy entering the Rate of energy loss from the top and bottom
fin through the surface at z =0 surfaces of the fin to the surroundings

which is the macroscopic inventory rate equation for thermal energy by considering the fin as
a system. The use of Eq. (8.2-88) in Eq. (8.2-90) gives the rate of heat loss, Q, from the fin as

. BWk(T, — To)A tanh A
0= (T L°°) a (8.2-91)

8.2.4.2 Fin efficiency The fin efficiency, n, is defined as the ratio of the apparent rate of
heat dissipation of a fin to the ideal rate of heat dissipation if the entire fin surface were at T,
ie.,

L L
2W(h)/ ((T) — To) dz / ((T) — Two) dz
0 _J0

W) (Ty —To)L  (Ty — Tx)L

n= (8.2-92)

In terms of the dimensionless quantities, Eq. (8.2-92) becomes

1
n= / 0 d& (8.2-93)
0
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Figure 8.27. Variation in the fin efficiency, n, as a function of A.

Substitution of Eq. (8.2-88) into Eq. (8.2-93) gives the fin efficiency as

_tanhA
="

(8.2-94)

The variation in the fin efficiency as a function of A is shown in Figure 8.27. When A — 0,
the rate of conduction is much larger than the rate of heat dissipation. The Taylor series
expansion of 7 in terms of A gives
a2y Eat o T ey (8.2-95)
(S T TE '
Therefore, n approaches unity as A — 0, indicating that the entire fin surface is at the wall
temperature.
On the other hand, large values of A correspond to cases in which the heat transfer rate by
conduction is very slow and the rate of heat transfer from the fin surface is very rapid. Under
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these conditions, the fin efficiency becomes

1
n=_ (8.2-96)
indicating that n approaches zero as A — oo.

Since the fin efficiency is inversely proportional to A, it can be improved either by in-
creasing k and B, or by decreasing (k) and L. If the average heat transfer coefficient, (h),
is increased due to an increase in the air velocity past the fin, the fin efficiency decreases.
This means that the length of the fin, L, can be smaller for the larger (4) if the fin efficiency

remains constant. In other words, fins are not necessary at high speeds of fluid velocity.

8.2.4.3 Comment In general, the governing differential equations represent the variation
in the dependent variables, such as temperature and concentration, as a function of position
and time. On the other hand, the transfer coefficients, which represent the interaction of the
system with the surroundings, appear in the boundary conditions. If the transfer coefficients
appear in the governing equations rather than in the boundary conditions, it is implied that
these equations are obtained as a result of the averaging process.

Example 8.15 A plane wall of thickness 2.5 mm is made of aluminum (k = 200 W /m-K)
and separates an air stream flowing at 40°C from a water stream flowing at 75°C. The
average heat transfer coefficients on the air side and the water side are 20 W/m?-K and
500 W/m?-K, respectively.

a) Calculate the rate of heat transfer per m? of plane wall from the water stream to the air
stream under steady conditions.

b) It is proposed to increase the rate of heat transfer by attaching aluminum fins of rectan-
gular profile to the plane wall. To which side do we have to add fins?

¢) Calculate the steady rate of heat transfer per m? of plane wall if the fins have the dimen-
sions of B =1 mm and L = 10 mm and are placed with a fin spacing of 125 fins/m.

Solution
Assumptions

1. Heat losses from the edges and the tip of the fin are negligible.
2. Addition of fins does not affect the heat transfer coefficient.

Analysis
a) The electrical circuit analogy of the overall system is shown below:
. Lwall !
<h>water k <h>a‘n‘

T

water Q /A Tai'r

Therefore, the steady rate of heat transfer between water and air streams is

; 75 — 40
Q_ — 673 W/m?
A 1 25x1073 1

500 T 200 20
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b) From the electrical circuit analogy we see that the air-side resistance is controlling the
rate of heat transfer between the streams. Therefore, fins must be added to the air side,
where the heat transfer coefficient is lower.

¢) When fins are attached to the air side, the steady rate of heat transfer from the wall to the
air stream is given by

©_ A

Z = Ap(M)air(Tw — Tair) + Af<h>air(Tw — Tair)n

= (Ap + A n){h)air(Tw — Tair) (D

where A; and A ¢ represent the area of bare wall surface and the total surface area of the
fins, respectively, per m? of plane wall. The term T, represents the surface temperature of
the plane wall on the air side. The electrical resistance analogy for this case is represented
as follows:

1 L 1
wall _—
<h>water k (Ab i Ale) <h>air
Twater Tw T«m

Q/A

Therefore, the steady rate of heat transfer between the water and air streams becomes

g _ : LTw;ter - Tair : (2)
+ wa

(M) water k (Ap + Af m(h)air

The area of bare wall surface, A, per m? of plane wall is

Ap=1—(125)(1 x 10~3)(1) = 0.875 m2/m"
The total surface area of the fins, A ¢, per m? of plane wall is

Ap=(129[2)(10 x 1073)(1)] =2.5 m?/m”
From Eq. (8.2-81)

A [20ar? \/ @O0 x 1032 _
kB (200)(1 x 10—3)

The fin efficiency, 7, is given by Eq. (8.2-94)
_ tanh A _ tanh(0.141)

= =0.993
=74 0.141
Substitution of the numerical values into Eq. (2) yields
' 75 — 40
Q_ . — 2070 W/m?
A 1 2.5x 10~ 1

500 T 200 +[O.875+(2.5)(0.993)](20)

indicating approximately a threefold increase in the rate of heat transfer.
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Figure 8.28. Couette flow between parallel plates.

8.3 ENERGY TRANSPORT WITH CONVECTION

Heat transfer by convection involves both the equation of motion and the equation of energy.
Since we restrict the analysis to cases in which neither momentum nor energy is generated,
this obviously limits the problems we might encounter.

Consider Couette flow of a Newtonian fluid between two large parallel plates under steady
conditions as shown in Figure 8.28. Note that this geometry not only considers flow between
parallel plates but also tangential flow between concentric cylinders. The surfaces at x =0
and x = B are maintained at T, and T, respectively, with T, > T7. It is required to determine
the temperature distribution within the fluid.

The velocity distribution for this problem is given by Eq. (8.1-12) as

v, X

—=1—-—= 8.3-1
v B (8.3-1)
On the other hand, the boundary conditions for the temperature, i.e.,
at x=0 T=T, (8.3-2)
at x=B T=T (8.3-3)

suggest that T = T (x). Therefore, Table C.4 in Appendix C indicates that the only nonzero
energy flux component is ey, and it is given by

dT
ex=qy=—k Ic (8.3-4)

For a rectangular volume element of thickness Ax, as shown in Figure 8.28, Eq. (8.2-1) is
expressed as

qxlxWL — qx|x+axWL =0 (8.3-5)
Dividing Eq. (8.3-5) by W L Ax and taking the limit as Ax — 0 give

fim Tl T drhrar (8.3-6)
Ax—0 Ax

or,

dqy

=0 8.3-7
o (8.3-7)
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Substitution of Eq. (8.3-4) into Eq. (8.3-7) gives the governing equation for temperature in
the form

a°1 =0 (8.3-8)
dx?2 '
The solution of Eq. (8.3-8) is
T=C;+Cx (8.3-9)

The use of the boundary conditions defined by Eqs. (8.3-2) and (8.3-3) gives the linear tem-
perature distribution as

T-T,

X
T,—T, B

(8.3-10)

indicating pure conduction across the fluid layer.

8.4 MASS TRANSPORT WITHOUT CONVECTION

The inventory rate equation for transfer of species A at the microscopic level is called the
equation of continuity for species A. Under steady conditions without generation, the conser-
vation statement for the mass of species 4 is given by

(Rate of mass of A in) — (Rate of mass of A4 out) =0 (8.4-1)

The rate of mass of A entering and leaving the system is determined from the mass (or molar)
flux. As stated in Chapter 2, the total flux is the sum of the molecular and convective fluxes.
For a one-dimensional transfer of species A in the z-direction in rectangular coordinates, the
total molar flux is expressed as

dxa
Na, =—cDpap—— + CAU: (8.4-2)
h dz ———
— .
Convective
Molecular flux flux

where v} is the molar average velocity defined by Eq. (2.3-2). For a binary system composed
of species A and B, the molar average velocity is given by

« cava, tcpvp,  Na + Np,
V., = - = - -
z cA+cp c

(8.4-3)

As we did for heat transfer, we will first consider the case of mass transfer without convection.
For the transport of heat without convection, we focused our attention on conduction in solids
and stationary liquids simply because energy is transferred by collisions of adjacent molecules
and the migration of free electrons. In the case of mass transport, however, since species
have individual velocities®, the neglect of the convection term is not straightforward. It is

6Transport of mass by diffusion as a result of random molecular motion is called Brownian motion.
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customary in the literature to neglect the convective flux in comparison with the molecular
flux when mass transfer takes place in solids and stationary liquids. The reason for this can
be explained as follows. Substitution of Eq. (8.4-3) into Eq. (8.4-2) gives

dx

Na, = —cDag dZA +x4(Na, + Np) (8.4-4)
—

—_—— .
Molecular flux Convective flux
Since x4 is usually very small in solids and liquids, the convective flux term is considered
negligible. It should be kept in mind, however, that if x 4 is small, it is not necessarily implied
that its gradient, i.e., dx4/dz, is also small.

Another point of interest is the equimolar counterdiffusion in gases. The term “equimolar
counterdiffusion” implies that for every mole of species .4 diffusing in the positive z-direction
one mole of species B diffuses back in the negative z-direction, i.e.,

Ny =_NBZ = CAVA, = —CBUB, (8.4-5)

z

Under these circumstances, the molar average velocity, Eq. (8.4-3), becomes

or = Na+ (=Na,)

Z

0 (8.4-6)

C

and the convective flux automatically drops out of Eq. (8.4-2).

8.4.1 Diffusion in Rectangular Coordinates

Consider the transfer of species .4 by diffusion through a slightly tapered slab as shown in
Figure 8.29. If the taper angle is small, mass transport can be considered one-dimensional in
the z-direction. Since x4 = x4(z), Table C.7 in Appendix C indicates that the only nonzero
molar flux component is N4, and it is given by

Ny, = sz =—cDup e (8.4-7)
The negative sign in Eq. (8.4-7) implies that the positive z-direction is in the direction of
decreasing concentration. In a given problem, if the value of the mass (or molar) flux turns
out to be negative, it is implied that the flux is in the negative z-direction.
Over a differential volume element of thickness Az, as shown in Figure 8.29, Eq. (8.4-1)
is written as

(AN )|z = (ANA)|z+2: =0 (8.4-8)

Figure 8.29. Diffusion through a slightly tapered conical duct.
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Dividing Eq. (8.4-8) by Az and taking the limit as Az — 0 give

i (AN )|z = (ANa)|z4 4z
mm
Az—0 Az

=0 (8.4-9)

or,
d(ANy,) _
dz N

Since flux times area gives the molar transfer rate of species A, 74, it is possible to conclude
that

0 (8.4-10)

AN, = constant =74 (8.4-11)

in which the area A is perpendicular to the direction of mass flux. Substitution of Eq. (8.4-7)
into Eq. (8.4-11) and integration give

XA Z dZ
Cf Dap(xa)dxp = —ﬁA/ —+4+K (8.4-12)
0 0 A(2)

where K is an integration constant. The determination of n4 and K requires two boundary
conditions. Depending on the type of the boundary conditions used, the molar transfer rate
of species A and the concentration distribution of species .4 as a function of position are
determined from Eq. (8.4-12). When the surface concentrations are specified as

at z=0 XA =2X4, (8.4-13a)
at z=1L XA=2X4, (8.4-13b)
the resulting concentration distribution as a function of radial position and the molar transfer

rate are given as in Table 8.8.

Table 8.8. Rate of transfer and concentration distribution for one-dimensional diffusion in
rectangular coordinates for the boundary conditions given by Eq. (8.4-13)

Constants Molar Transfer Rate Concentration Distribution
XA, XA z
C/ Dypdxg ODAdeA / %
XA Z
None e (A) e SELE ( (E)
/‘ dz ”D / dz
kil ABdXA i
0o A®@ XA 0o A®@)
tdz
cDpp(xa, —xa.) XA, — XA Az
L ) )
/ dz XA, —XAL / dz
0o A®) 0o AQ)
R XA
AC/ Dyppdxa Dapdxa
A e © e (©
Dapdxy
XA
Dag cDaplxa, —xa)A XA, — XA

Z
D — =
A L D) XA, — X4, L

(H)
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20 cm
TANK 1 / TANK 2
90% A 25% A
10% B 75% B
—

Figure 8.30. Diffusion through a conical duct.

Example 8.16 Two large tanks are connected by a truncated conical duct as shown in Fig-
ure 8.30. The diameter at z = 0 is 6 mm and the diameter at z = 0.2 m is 10 mm. Gas
compositions in the tanks are given in terms of mole percentages. The pressure and temper-
ature throughout the system are 1 atm and 25 °C, respectively, and D4z =3 x 107> m?/s.

a) Determine the initial molar flow rate of species .A between the vessels.
b) What would be the initial molar flow rate of species A if the conical duct were replaced
with a circular tube of 8 mm diameter?

Solution

Since the total pressure remains constant, the total number of moles in the conical duct does
not change. This implies that equimolar counterdiffusion takes place within the conical duct
and the molar average velocity is zero. Equation (B) in Table 8.8 gives the molar flow rate
of species A as

_ cDap(xa, —xa;)

nap= 1
A /0.2 e (1)
0o AQ)
The variation in the diameter as a function of position is represented by
D(z) =0.006 + 0.02z 2)
so that the area is
A@) = 7(0.006 +0.022)? 3)
Substitution of Eq. (3) into Eq. (1) and integration give
) cDap(xa, —xa,)
= 2 4
' 42441 e
The total molar concentration is
P 101.325 x 10° 3
c=— =0.041 kmol/m (5)

RT — (8314 x 103)(25 + 273)
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Therefore, the initial molar flow rate of species A is

_ (4D x 107°)(0.9 — 0.25)

=1. 10~7 mol
na YLYVR] 88 x 10~ mol/s (6)
b) From Eq. (D) in Table 8.8
cDap(xa, —xa,)A
ng=
L
41)(3 x 1077)(0.9 — 0.25) [ (0.008)% /4
WD )t QO 01 x 107 mols (@)

0.2

8.4.1.1 Electrical circuit analogy =~ The molar transfer rate of species A4 is given by Eq. (D)
in Table 8.8 as

jig = A AL (8.4-14)
Comparison of Eq. (8.4-14) with Eq. (8.2-10) indicates that
Driving force =c4, —ca, (8.4-15)
. Thickness
Resistance = = (8.4-16)
DapA  (Transport property) (Area)

8.4.1.2 Transfer rate in terms of bulk fluid properties Since it is much easier to measure
the bulk concentrations of the adjacent solutions to the surfaces at z =0 and z = L, it is
necessary to relate the surface concentrations, x4, and x4, , to the bulk concentrations.

For energy transfer, the assumption of thermal equilibrium at a solid-fluid boundary leads
to the equality of temperatures, and this condition is generally stated as “temperature is con-
tinuous at a solid-fluid boundary.” In the case of mass transfer, the condition of phase equilib-
rium for a nonreacting multicomponent system at a solid-fluid boundary implies the equality
of chemical potentials or partial molar Gibbs free energies. Therefore, concentrations at a
solid-fluid boundary are not necessarily equal to each other with a resulting discontinuity in
the concentration distribution. For example, consider a homogeneous membrane chemically
different from the solution it is separating. In that case, the solute may be more (or less)
soluble in the membrane than in the bulk solution. A typical distribution of concentration is
shown in Figure 8.31. Under these conditions, a thermodynamic property H, called the par-
tition coefficient, is introduced, which relates the concentration of species in the membrane
at equilibrium to the concentration in bulk solution. For the problem depicted in Figure 8.31,
the partition coefficients can be defined as

(8.4-17)

Ht = AL (8.4-18)
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CAL

.

Figure 8.31. Concentration distribution across a membrane.

The molar rate of transfer of species A across the membrane under steady conditions can
be expressed as

fia=A kD) ey, —cp)=A KD (cx — cjb) (8.4-19)
On the other hand, the use of Egs. (8.4-17) and (8.4-18) in Eq. (8.4-14) leads to

. ADap(H ¢, —H* cl)
fia = - (8.4-20)

Equations (8.4-19)—(8.4-20) can be rearranged in the form

- . 1 _
CAb_CAi:nA(A(kC_)) || x H (8.4-21)
L
H e, —HYeh =ia (ADAB ) (8.4-22)
_ 1
cp—ch = nA<A <kc+>) | xH* (8.4-23)

Multiplication of Egs. (8.4-21) and (8.4-23) by H~ and H, respectively, and the addition of
these equations with Eq. (8.4-22) give the transfer rate as

_ HT
CAIJ - (F)Ci{b

o+ e () ()
Alksy  ADagH~  \H~ )\ AK)

Example 8.17 A membrane separating a liquid e-phase from a liquid 8-phase is permeable
to species .A. The concentrations of species A in the a- and B-phases are 1.4 mg/cm’
and 1 mg/cm?, respectively. The (a-phase/membrane) partition coefficient of species A,
HjM , is 2 and the («-phase/B-phase) partition coefficient of species A, HP ,1s 1.7. If the
average mass transfer coefficients on both sides of the membrane are very large, sketch a
representative concentration distribution of species A.

(8.4-24)
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Solution

The concentration of species A in the membrane at the o-phase—membrane interface is

c 1.4
T = C—;}I = M= 5= 0.7 mg/cm®
A

The (membrane/B-phase) partition coefficient of species .4, Hf‘/[’g , can be calculated as

Hiﬂ . c%/cﬁ . ci“” 1

7
=0.85

Mp

B H%M - %/ c% cy
Therefore, the concentration of species A in the membrane at the f-phase—membrane in-
terface is

M = (0.85)(1) = 0.85 mg/cm?>

A representative concentration distribution of species .4 is shown in the figure below. Since
the mass transfer coefficients are very large, i.e., the Biot number for mass transfer is very
large, there is no variation in concentration in the «- and S-phases.

o-phase Membrane B-phase
1.4 mg/cm3

1 rng/cm3

/ <085 mg/cm3
0.7 mg/cm3—>

Direction of
mass flux

Example 8.18 Develop an expression for the transfer of species i from the concentrated
a-phase to the dilute a-phase through two nonporous membranes, A and B, as shown in the
figure below. Let D4 and Dp be the effective diffusion coefficients of species i in mem-
branes A and B, respectively.

a-phase Membrane |Membrane| o-phase
A B
(), (i),
L, Ly, —>

-
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Solution
Assumption

1. Diffusion takes place only in the z-direction.
Analysis

Since the area is constant, the governing equation for the concentration of species i in mem-
brane A can be easily obtained from Eq. (8.4-10) as

N ey 1
= = = =
dz dz? &
The solution of Eq. (1) gives
A _
c; =Kiz+ Ky )

Similarly, the governing equation for the concentration of species i in membrane B is given
by

N o T’y 3
T a2 T ®)

The solution of Eq. (3) yields
=Kzt Ka @)

Evaluation of the constants K1, K7, K3, and K4 requires four boundary conditions. They
are expressed as

at z=—Lyu ’]—({4"‘: clA (5)
! (e
at z=Lp ppe = 0 ©6)
' (cf)2
AB CzA
at z=0 H; =7 7
¢
dciA dclB
at z=0 Da iz =7Dp e (8)

The boundary conditions defined by Egs. (5)—(7) assume thermodynamic equilibrium be-
tween the phases at the interfaces. On the other hand, Eq. (8) indicates that the molar fluxes
are continuous, i.e., equal to each other, at the A-B interface.
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Application of the boundary conditions leads to the following concentration distribution
of species i within membranes A and B

| ()1 — ()

= () HA -5 | T T [@+La) ©)
_|_

| DaHM*  DpHP”

()1 — (¢

B _ .« Boa ~ _
¢; = (ci')2H; Dy I . Lz (z—Lp) (10)
| DamE " Dy |
The flux expressions are given by
dch dcB
N =-Dy NE=-Dp— 11
) A 5 B4 (11)

Thus, the molar flux of species i through membrane A is the same as that through membrane
B, and is given by

NA_NB__ Gn—(h
2z Ly Lp
DaHM™  DpHP®

(12)

8.4.2 Diffusion in Cylindrical Coordinates

Consider one-dimensional diffusion of species A in the radial direction through a hollow
circular pipe with inner and outer radii of R; and R», respectively, as shown in Figure 8.32.

Ny

V‘ r+Ar

Figure 8.32. Diffusion through a hollow cylinder.
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Since x4 = x4(r), Table C.8 in Appendix C indicates that the only nonzero molar flux
component is N4, , and it is given by

NA’, = er = —CDAB F (84-25)

For a cylindrical differential volume element of thickness Ar, as shown in Figure 8.32,
Eq. (8.4-1) is expressed in the form

(AN |r = (ANA)r4ar =0 (8.4-26)
Dividing Eq. (8.4-26) by Ar and taking the limit as Ar — 0 give

i (ANa ) — (ANg ) r+Ar
m

=0 8.4-27
Ar—0 Ar ( )

or,

d(ANa,)

=0 8.4-28
dr ( )

Since flux times area gives the molar transfer rate of species .4, 714, it is possible to conclude
that

ANy, = constant =714 (8.4-29)

Note that the area A in Eq. (8.4-29) is perpendicular to the direction of mass flux, and is given
by

A=2nrL (8.4-30)

Substitution of Egs. (8.4-25) and (8.4-30) into Eq. (8.4-29) and integration give

XA .
c/ DAB(xA)dxA:—<n—A)lnr+K (8.4-31)
0 2n L

where K is an integration constant.
When the surface concentrations are specified as

at r=~R; XA =2X4, (8.4-32a)
at r=Rp XA =XA, (8.4-32b)

the resulting concentration distribution as a function of radial position and the molar transfer
rate are as given in Table 8.9.
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Table 8.9. Rate of transfer and concentration distribution for one-dimensional diffusion in a
hollow cylinder for the boundary conditions given by Eq. (8.4-32)

Constant Molar Transfer Rate Concentration Distribution
XAy XA, r
2rLc Dapdxy Dapdxy 1n(R—>
X
None o A S =22 ©)
1 2 Ry
In| — Dapdxgy In| —
Ry x4 Ry
r
2 LcDag(xa, —xa,) X X 1n<R_>
AB - Ay — XA
Das e T T (D)
In( =L 42 AL g 2L
Ry Ry
NAr‘r+Ar
A Na
r‘r }eAr{
Ry

Figure 8.33. Diffusion through a hollow sphere.

8.4.3 Diffusion in Spherical Coordinates

Consider one-dimensional diffusion of species A in the radial direction through a hollow
sphere with inner and outer radii of Ry and Ry, respectively, as shown in Figure 8.33. Since
x4 = x4(r), Table C.9 in Appendix C indicates that the only nonzero molar flux component
is N4, , and it is given by

d

Na =—cDap A (8.4-33)

dr
For a spherical differential volume element of thickness Ar, as shown in Figure 8.33, Eq. (8.4-
1) is expressed in the form

(ANAr)lr - (ANA,-)|r+Ar =0 (8.4-34)
Dividing Eq. (8.4-34) by Ar and taking the limit as Ar — 0 give

. (ANg )|y — (AN ) |r4Ar
lim

=0 (8.4-35)
Ar—0 Ar

or,

d(ANy,)

=0 8.4-36
dr ( )
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Table 8.10. Rate of transfer and concentration distribution for one-dimensional diffusion in
a hollow sphere for the boundary conditions given by Eq. (8.4-40)

Constant Molar Transfer Rate Concentration Distribution
i “ 11
4mc Dapdxyp Dapdxy I,
X4, X4y _r R
None T I (A) Y, o = i O
= T o ABdXgA oo = -
R R XA, Ry R
1 1
4ncDap(xa, —XA,) XA — XA r R,
Dap =2 (B) 2 = = (D)
1 1 xa —xa, 11
Ry Ry Ry Ry

Since flux times area gives the molar transfer rate of species A, 74, it is possible to
that

AN,, =constant =174

conclude

(8.4-37)

Note that the area A in Eq. (8.4-37) is perpendicular to the direction of mass flux, and is given

by
A =4mr?
Substitution of Egs. (8.4-33) and (8.4-38) into Eq. (8.4-37) and integration give

*a n 1
C/ DAB(xA)dxA:(—A>—+K
0

4 ) r

where K is an integration constant.
When the surface concentrations are specified as

at r=R; XA = XA,
at r=Rp XA =Xa,

(8.4-38)

(8.4-39)

(8.4-40a)
(8.4-40b)

the resulting concentration distribution as a function of radial position and the molar transfer

rate are as given in Table 8.10.

Example 8.19 Consider the transfer of species .4 from a spherical drop or a bubble of

radius R to a stationary fluid having a concentration of c4 .

a) Determine the concentration distribution of species A within the fluid.
b) Determine the molar rate of species A transferred to the fluid.
¢) Determine the Sherwood number.

Solution
Assumptions

1. Steady-state conditions prevail.
2. The concentration at the surface of the sphere is constant at cy4,, .
3. Mass transfer does not affect the radius R.
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Analysis

a) The concentration distribution is obtained from Eq. (D) of Table 8.10 in the form

— R
fA7C _ 1 (1)

CAyp — CAg r

b) The use of Eq. (B) in Table 8.10 with ca, =ca,,, ca, =ca., R1 = R, and R, = o0 gives
the molar rate of transfer of species A to the fluid as

na=4rDapR(ca, —cay) (2)
¢) The molar transfer rate can also be calculated from Eq. (3.3-7) as
fia = 4w R*(ke)(ca, — Cau) 3)

Equating Egs. (2) and (3) leads to

k 1 2
éa:_:_ o
A R D
Therefore, the Sherwood number is
kYD
Das

Note that this problem is exactly analogous to that in Example 8.12.

8.4.4 Diffusion and Reaction in a Catalyst Pore

At first, it may seem strange to a student to see an example concerning a reaction in a catalyst
pore in a chapter that deals with “steady-state microscopic balances without generation.”
In general, reactions can be classified as heterogeneous and homogeneous. A heterogeneous
reaction occurs on the surface and is usually a catalytic reaction. A homogeneous reaction,
on the other hand, occurs throughout a given phase. In Chapter 5, the rate of generation of
species i per unit volume as a result of a chemical reaction, );, was given by Eq. (5.3-26) in
the form

N =a;r (8.4-41)

in which r represents a homogeneous reaction rate. Therefore, a homogeneous reaction rate
appears in the inventory of chemical species, whereas a heterogeneous reaction rate appears
in the boundary conditions.

Consider an idealized single cylindrical pore of radius R and length L in a catalyst particle
as shown in Figure 8.34. The bulk gas stream has a species .A concentration of c4,. Species
A diffuses through the gas film and its concentration at the pore mouth, i.e., z =0, is c4,. As
species A diffuses into the catalyst pore, it undergoes a first-order irreversible reaction

A— B

on the interior surface of the catalyst. The problem will be analyzed with the following as-
sumptions:
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o
R s

Gas A i CA

0

Figure 8.34. Diffusion and reaction in a cylindrical pore.

1. Steady-state conditions prevail.
2. The system is isothermal.
3. The diffusion coefficient is constant.

For a cylindrical differential volume element of thickness Ar and length Az, as shown in
Figure 8.34, Eq. (8.4-1) is expressed as

(N, |, 27r Az + N |:27r Ar) — [Na, lr4ar27(r + AP)AZ + Ny |4 a2nrAr] =0
(8.4-42)

Dividing Eq. (8.4-42) by 27w Ar Az and taking the limit as Ar — 0 and Az — 0 give

1 N —(rN N — N
1 i ONa)lr = Na)lr+ar . Ale = Naleraz _ (8.4-43)
r Ar—0 Ar Az—0 Az
or,
10 ONa,
L (rNp) + —22 =0 (8.4-44)
r or 0z

Since the temperature is constant and there is no volume change due to reaction, the pres-
sure and hence the total molar concentration, ¢, remain constant. Under these conditions, from
Table C.8 in Appendix C, the components of the molar flux become’

3

Na = —Dyp A (8.4-45)
ar
3

Na, = —Dag aLzA (8.4-46)

7From the stoichiometry of the reaction, the molar average velocity is zero.
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Substitution of Eqs. (8.4-45) and (8.4-46) into Eq. (8.4-44) gives the governing equation for
the concentration of species A as

10 8CA 32CA
-—\r— —- =0 8.4-47
r8r<r 8r)+812 ( )

The boundary conditions associated with Eq. (8.4-47) are

9
at r=0 A_j (8.4-48)
ar
aca
at r=R  —Dap =k (8.4-49)
r
at z=0 caA=ca, (8.4-50)
9
at z=L Aoy (8.4-51)
9z

The term k° in Eq. (8.4-49) is the first-order surface reaction rate constant and has the dimen-
sions of m/s. In writing Eq. (8.4-51) it is implicitly assumed that no reaction takes place on
the surface at z = L, and the term dc4/9dz = O implies that there is no mass transfer through
this surface.

As done in Section 8.2.4, this complicated problem will be solved by making use of the
area averaging technique. The area-averaged concentration for species A is defined by

2
/ /cArdrdQ 1 or AR

T nRZ/(; /OcArdrdQ (8.4-52)
/ /rdrd@

Although the local concentration, c4, is dependent on r and z, the area-averaged concentra-
tion, (c4), depends only on z.

Area averaging is performed by integrating Eq. (8.4-47) over the cross-sectional area of
the pore. The result is

2w R 1 9 86‘A 2w R 2
/ / 5 < )rdrd@-i—/ / rdrd9 0 (8.4-53)
r or

Since the limits of the integration are constant, the order of differentiation and integration in
the second term of Eq. (8.4-53) can be interchanged to obtain

27 R 32 2 d2
f / CArdrdQ_ (/ /cArdrde g2 4tea) (8.4-54)
o Jo 022 dz?

Substitution of Eq. (8.4-54) into Eq. (8.4-53) yields

d*(ca)
dz?

9
2w R A 7 R?

=0 8.4-55
or ( )

r=R
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The use of the boundary condition given by Eq. (8.4-49) leads to

d*(ca) 2

Dap— 3~ = keal—r (8.4-56)

in which the dependent variables, i.e., (c4) and c4|,—g, are at two different scales. It is gen-
erally assumed, although not expressed explicitly, that

calr=r = {(ca) (8.4-57)

This approximation is valid for Biy = (k) R/Dsp < 1. Substitution of Eq. (8.4-57) into
Eq. (8.4-56) gives

Dap ——— = —k*(ca) (8.4-58)

Integration of Eqs. (8.4-50) and (8.4-51) over the cross-sectional area of the pore gives the
boundary conditions associated with Eq. (8.4-58) as

at z=0 (ca) =ca, (8.4-59)
d
at z=1L fea) _ g (8.4-60)
dz

Equations (8.4-47) and (8.4-58) are at two different scales. Equation (8.4-58) is obtained by
averaging Eq. (8.4-47) over the cross-sectional area perpendicular to the direction of mass
flux. As a result, the boundary condition, i.e., the heterogeneous reaction rate expression,
appears in the conservation statement.

Note that the term 2/ R in Eq. (8.4-58) is the catalyst surface area per unit volume, i.e.,

2 27 RL Catalyst surface area
—_—= — =, =
R =R

8.4-61
Pore volume ( )
Since the heterogeneous reaction rate expression has the units of moles/(area)(time), multi-
plication of this term by a, converts the units to moles/(volume)(time).

The physical significance and the order of magnitude of the terms in Eq. (8.4-58) are given
in Table 8.11. Therefore, the ratio of the rate of reaction to the rate of diffusion is given by

Rate of reaction  2k’ca,/R 2kSL?

cocon - (8.4-62)
Rate of diffusion  Dapca,/L?> RDap

In the literature, this ratio is often referred to as the Thiele modulus®, A, and expressed as

A= 2517 (8.4-63)
"\ RDap '

8Note that the characteristic time for the surface reaction can be expressed as (R/2)/k%. Therefore, the Thiele
modulus can also be interpreted as the ratio of the diffusive time scale to the reaction time scale.
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Table 8.11. The physical significance and the order of magnitude of the
terms in Eq. (8.4-58)

Term Physical Significance Order of Magnitude
d*(ca) cA
D Rate of diffusion Dap —~
AB = 2 AB 7
2k5{c 2k%c
Y Rate of reaction ;"
R R

Before solving Eq. (8.4-58), it is convenient to express the governing equation and the
boundary conditions in dimensionless form. Introduction of the dimensionless quantities

PG (8.4-64)
ca, L
reduces Egs. (8.4-58)—(8.4-60) to
aze
— = A“H 8.4-65
i (8.4-65)
at £=0 0=1 (8.4-66)
do
t =1 — =0 8.4-67
at § dE ( )

Since these equations are exactly the same as those developed for the fin problem in Sec-
tion 8.2.4, the solution is given by Eq. (8.2-88), i.e.,

g— cosh[A(1 —&)]

8.4-68
cosh A ( )

8.4.4.1 Macroscopic equation Integration of the microscopic level equations over the vol-
ume of the system gives the equations at the macroscopic level. Integration of Eq. (8.4-58)
over the volume of the system gives

L 2 R dz(CA) L 2 R 2
/ / / Dap rdrd@dz:/ / / 2 eayrdrdodz  (8.4-69)
o Jo Jo dz? o Jo Jo R

Carrying out the integrations yields

d{ca) L
JTR2<—DAB 4 =  27RK | (ca)dz (8.4-70)
dz z=0 0
Rate of moles of species .4 entering Rate of conversion of species A to
the pore through the surface at z=0 species B at the catalyst surface

which is the macroscopic inventory rate equation for the conservation of species A by con-
sidering the catalyst pore as a system. The use of Eq. (8.4-68) in Eq. (8.4-70) gives the molar
rate of conversion of species A, 714, as

. JTRZDAB CA”A'[al‘lhA
B L

A (8.4-71)
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8.4.4.2 Effectiveness factor  The effectiveness factor, 7, is defined as the ratio of the ap-
parent rate of conversion to the rate if the entire internal surface were exposed to the concen-
tration c4,, i.€.,

L L
271Rk“/ {ca)dz / {ca)dz
0 0

= = 8.4-72
7 2w RkSca, L ca, L ( )
In terms of the dimensionless quantities, Eq. (8.4-72) becomes
1
n= / 0dg (8.4-73)
0
Substitution of Eq. (8.4-68) into Eq. (8.4-73) gives the effectiveness factor as
_ tanh A (8.4-74)
n= A .

Note that the effectiveness factor for a first-order irreversible reaction is identical to the fin
efficiency. Therefore, Figure 8.27, which shows the variation in 7 as a function of A, is also
valid for this case.

When A — 0, the rate of diffusion is much larger than the rate of reaction. The Taylor
series expansion of 7 in terms of A gives

4. (8.4-75)

Therefore, n approaches unity as A — 0, indicating that the entire surface is exposed to a
reactant. On the other hand, large values of A correspond to cases in which diffusion is very
slow and the surface reaction is very rapid. Under these conditions, the effectiveness factor
becomes

=— 8.4-76
n=_ ( )

As A — 00, n approaches zero. This implies that a good part of the catalyst surface is starved
of a reactant and hence not effective.

8.5 MASS TRANSPORT WITH CONVECTION

In the case of mass transfer, each species involved in the transfer has its own individual ve-
locity. For a single phase system composed of the binary species A and B, the characteristic
velocity for the mixture can be defined in several ways as stated in Section 2.3. If the mass
transfer takes place in the z-direction, the three characteristic velocities are as given in Ta-
ble 8.12.
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Table 8.12. Characteristic velocities in the z-direction for a binary system

Velocity Definition

PAVA, + oy, Wi, +Wp,
Mass average v, = =
oA+ 0B P

CAVA, +cpUv Ny, + Np.
ot = AVA; T CBVB, _ Na; B, B)
cpA+cp c

A

Molar average

Volume average vz. =CAVAUAZ +CBVBUBZ =VANAZ +VBNBZ ©)

Hence, the total mass or molar flux of species .4 can be expressed as

dwa
Wa, =—pDap—— + pav; (8.5-1)
dZ —
S——

Molecular flux

Convective
flux

dxa X
Na,=—cDap—— + cav; (8.5-2)
Z—/ —_———
—_—— .
Molecular flux Conﬁfs)c(tlve

dc
Na, =—Dasp =44 cav®

d Z S —
—_— .
Convective

Molecular flux flux

(8.5-3)

The tricky part of mass transfer problems is that there is no need to have a bulk motion of
the mixture as a result of external means, such as pressure drop, to have a nonzero convective
flux term in Egs. (8.5-1)—(8.5-3). Even in the case of the diffusion of species .4 through
a stagnant film of B, a nonzero convective term arises as can be seen from the following
examples.

It should also be noted that, if one of the characteristic velocities is zero, this does not nec-
essarily imply that the other characteristic velocities are also zero. For example, in Section 8.4,
it was shown that the molar average velocity is zero for an equimolar counterdiffusion since

N4, = —Np,. The mass average velocity for this case is given by
Wa, +Wp,
v, = M (8.5—4)
Jo;

The mass and molar fluxes are related by
N; = —=% (8.5-5)

where M; is the molecular weight of species i. The use of Eq. (8.5-5) in Eq. (8.5-4) gives

N N N —
_ MuNp, + MpNp, _ A, (Mg — Mp) (8.5-6)
P P

Uz

which is nonzero unless M4 = Mjp.
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I ------- -Ai --------- z
v fFoo 1

Liquid A

Figure 8.35. Evaporation from a tapered tank.

8.5.1 Diffusion Through a Stagnant Gas

8.5.1.1 Evaporation from a tapered tank Consider a pure liquid A in an open cylindrical
tank with a slightly tapered top as shown in Figure 8.35. The apparatus is arranged in such a
manner that the liquid-gas interface remains fixed in space as the evaporation takes place. As
engineers, we are interested in the rate of evaporation of .4 from the liquid surface into a gas
mixture of .4 and . For this purpose, it is necessary to determine the concentration distribu-
tion of A in the gas phase. The problem will be analyzed with the following assumptions:

Steady-state conditions prevail.
Species A and B form an ideal gas mixture.
Species B has a negligible solubility in liquid A.

Ll e

molar concentration in the gas phase, c = P/RT, is constant.
5. There is no chemical reaction between species A and B.

The entire system is maintained at a constant temperature and pressure, i.e., the total

If the taper angle is small, mass transport can be considered one-dimensional in the z-
direction, and the conservation statement for species .4, Eq. (8.4-1), can be written over a

differential volume element of thickness Az as

(ANa )|z = (ANa)|z4a: =0
Dividing Eq. (8.5-7) by Az and letting Az — 0 give

. (AN = (ANA )|z 4Az
lim
Az—0 AZ

=0

or,

d(ANa)
dz N

0

Equation (8.5-9) indicates that
A N4, =na = constant
In a similar way, the rate equation for the conservation of species B leads to

A Np, = constant

(8.5-7)

(8.5-8)

(8.5-9)

(8.5-10)

(8.5-11)
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Since species B is insoluble in liquid A, i.e., Np,|,—0 =0, it is implied that
Np, =0 for 0<z<L (8.5-12)

The total molar flux of species A is given by Eq. (8.5-2), i.e.,

dxa
Na, =—cDap ——

) ot cavt (8.5-13)

where the molar average velocity is given by

*

vz

_ Na, +Np,  Na,
o C o C

(8.5-14)

which indicates nonzero convective flux. Although there is no bulk motion in the region 0 <
z < L, diffusion creates its own convection®. The use of Eq. (8.5-14) in Eq. (8.5-13) results
in

cDpp dxa

Np =— 8.5-15
A, [ xx dz ( )

Substitution of (8.5-15) into Eq. (8.5-10) and rearrangement give

; /L dz D /XAL dxa (8.5-16)
7 —=—c .5-
o A AB ) T—xa

Thus, the rate of evaporation of liquid A is given by

. cDyp 1 —xa,
= In 8.5-17
na / L 4. ( [, ( )
0o A®2)
The value of x4 at z =0, x4,, is the mole fraction of species A in the gas mixture that is

in equilibrium with the pure liquid 4 at the existing temperature and pressure. The use of
Dalton’s and Raoult’s laws at the gas-liquid interface indicates that

sat
P A

xXp, = (8.5-18)

where P is the total pressure.
When x is small, then In(1 —x) ~ —x. Therefore, for small values of x4, and x4, , Eq. (8.5-
17) reduces to

_ Dyplxa, —x4,)

A= e
|36

Note that Eq. (8.5-19) corresponds to the case when there is no convection, i.e., v} >~ 0.

(8.5-19)

9In the literature, this phenomenon is also called diffusion-induced convection. This is a characteristic of mass
transfer. In the case of heat transfer, for example, conduction does not generate its own convection.
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Gas B—— 7

L(t)

LiquidA—|

Figure 8.36. The Stefan diffusion tube.

Example 8.20 One way of measuring the diffusion coefficients of vapors is to place a small
amount of liquid in a vertical capillary, generally known as the Stefan diffusion tube, and
to blow a gas stream of known composition across the top as shown in Figure 8.36. Show
how one can estimate the diffusion coefficient by observing the decrease in the liquid-gas
interface as a function of time.

Solution

Assumptions

Pseudo-steady-state behavior.

The system is isothermal.

The total pressure remains constant.

The mole fraction of species A at the top of the tube is zero.
5. No turbulence is observed at the top of the tube.

= 8 =

Analysis

System: Liquid in the tube

The inventory rate equation for mass of A gives

— Rate of moles of A out = Rate of accumulation of moles of A (1)
or,
. d L
—nA= E[(H - L)A(/OA/MA)] (2)

where ,01{; is the density of species .4 in the liquid phase and A is the cross-sectional area
of the tube. The rate of evaporation from the liquid surface, 714, can be determined from
Eq. (8.5-17). For A = constant and x4, =0, Eq. (8.5-17) reduces to

AcDyp

ng=

In(1 —x4,) (3)

It should be kept in mind that Eq. (8.5-17) was developed for a steady-state case. For the
unsteady problem at hand, the pseudo-steady-state assumption implies that Eq. (3) holds at
any given instant, i.e.,

AcDyp
L(z)

nat) =— In(l —x4,) “)
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F 1.5 m4>{
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Ethanol (A)
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Figure 8.37. Evaporation from a tapered tank.

Substitution of Eq. (4) into Eq. (2) gives

t pL L
—cDABln(l—on)f dt=-4 [ LdL (5)
0 Ma Ji,
or,
2 DaplIn(l —
L2:_[ Myc ABLH( XA")]tJrLg ©)
P4

Therefore, the diffusion coefficient is determined from the slope of the L? versus ¢ plot.
Alternatively, rearrangement of Eq. (6) yields

t X Pk Lo
=— (L—Lo)+ (7)
L—-L, 2MacDyapIn(l —x4,) MacDppIn(l —x4,)

In this case, the diffusion coefficient is determined from the slope of the ¢ /(L — L,) versus
(L — L,) plot. What is the advantage of using Eq. (7) over Eq. (6)?

Example 8.21 To decrease the evaporation loss from open storage tanks, it is recommended
to use a tapered top as shown in Figure 8.37. Calculate the rate of ethanol loss from the
storage tank under steady conditions at 25 °C.

Solution
Physical properties
Diffusion coefficient of ethanol (A) in air (B) at 25°C (298 K) is

298

32 3/2
D — (D - =(1.45x 107 =— =1.35 x 107> m?
(DaB)29s = ( AB)313<313) ( X )(313) X m-/s

P =58.6 mmHg
Analysis

In order to determine the molar flow rate of species .A from Eq. (8.5-17), it is first necessary
to express the variation in the cross-sectional area in the direction of z. The variation in the
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diameter as a function of z is

D@ =D, (2= 1
(z) = 0_(T)Z (1)

where D, and Dy are the tank diameters at z = 0 and z = L, respectively. Therefore, the
variation in the cross-sectional area is

nD*(z) w D,—Dr\ 1*

=—|D, - 2—= 2
4 Al L )° @
Substitution of Eq. (2) into Eq. (8.5-17) and integration give the molar rate of evaporation
as

A(2) =

JTCDAB(DO — DL)ln(l —xAU)

na= 1 1
4L — - —
<DL D0>

The numerical values are

3)

D,=2m Dr=15m L=05m

P 586
Xp, =4 =—2-0077
=P 760
P 1

=41x1073 kmol/m3 =41 mol/m3

“TRT T (0.08205)(25 + 273)

Substitution of these values into Eq. (3) gives

41)(1.35 x 1072)(2 — 1.5) In(1 — 0.077
na =_rr( ) X ) ) In( ) ~2.1x107* mol/s

1 1
(4)(0-5)<§ - 5)

Comment: When Dy — D,, application of I.’Hopital’s rule gives

D, — Dy, —1

DLh—1>nD0 11 DLh—rPDU 1 Do
Dy D, D%
and Eq. (3) reduces to
D2/4)cD
A= _—(n O/L)c AB In(1 —xa,)

which is Eq. (4) in Example 8.20.
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’ l NAr‘r PA”%

r‘ r+Ar

Figure 8.38. Mass transfer from a spherical drop.

8.5.1.2 Evaporation of a spherical drop A liquid (A) droplet of radius R is suspended in
a stagnant gas I3 as shown in Figure 8.38. We want to determine the rate of evaporation under
steady conditions.

Over a differential volume element of thickness Ar, as shown in Figure 8.38, the conser-
vation statement for species A, Eq. (8.4-1), is written as

(ANg)lr — (ANa)lr+ar =0 (8.5-20)
Dividing Eq. (8.5-20) by Ar and taking the limit as Ar — 0 give

. (ANg )|y — (AN ) |r4Ar
lim
Ar—0 Ar

=0 (8.5-21)

or,

d(AN,) _

0 8.5-22
dr ( )

Since flux times area gives the molar transfer rate of species A, 714, it is possible to conclude
that

ANy, =constant =714 (8.5-23)

Note that the area A in Eq. (8.5-23) is perpendicular to the direction of mass flux and is given
by

A=4nr? (8.5-24)

Since the temperature and the total pressure remain constant, the total molar concentration, c,

in the gas phase is constant. From Table C.9 in Appendix C, the total molar flux of species A
in the r-direction is given by

d
N4y = —Dag % +eav? (8.5-25)
r

Since species B is stagnant, the molar average velocity is expressed as

Ni +Ng N
«_ Na +Np _ Na, (8.5-26)
C C

v,
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which indicates nonzero convective flux. Using Eq. (8.5-26) in Eq. (8.5-25) results in

D
Ny, = —DaB dea (8.5-27)
c—cy dr

Substitution of Eqs. (8.5-27) and (8.5-24) into Eq. (8.5-23) and rearrangement give

0

d g
—4wcDyp f A i / < (8.5-28)
ck C—CA R T

where c7 is the saturation concentration of species A in B at r = R in the gas phase. Carrying
out the integrations in Eq. (8.5-28) yields

r'zA:4rrcDABRln< ‘ *> (8.5-29)

C—CA

Example 8.22 A benzene droplet with a diameter of 8 mm is suspended by a wire in a
laboratory. The temperature and pressure are maintained constant at 25 °C and 1 atm, re-
spectively. Estimate the diffusion coefficient of benzene in air if the variation in the droplet
diameter as a function of time is recorded as follows:

7 (min) 5 10 15 20 25
D(mm) | 73 65 55 44 29

Solution
Physical properties

pa =879 kg/m?>
For benzene (A): { M4 =78
P3%" =94.5 mmHg

Assumptions

1. Pseudo-steady-state behavior.
2. Air is insoluble in the droplet.

Analysis

System: Benzene droplet

The inventory rate equation for mass of A gives

— Rate of moles of A out = Rate of accumulation of moles of A (1)
or,
d[4 ok dwpl  dR
—np=—|-aR| A )|=—AR— 2
A dt[3n (MA)j| My dt @

where ,oﬁ is the density of species A in the liquid phase.
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The rate of evaporation from the droplet surface, 7 4, can be determined from Eq. (8.5-29).
However, remember that Eq. (8.5-29) was developed for a steady-state case. For the unsteady
problem at hand, the pseudo-steady-state assumption implies that Eq. (8.5-29) holds at any
given instant, i.e.,

fia () :4ncDABR(t)ln< - ) 3)
Cc — CA

Substitution of Eq. (3) into Eq. (2) and rearrangement give

pi R c t
—— RdAR =cDypln dt 4
MA/R,, AB (C—le)/o &
where R, is the initial radius of the liquid droplet. Carrying out the integrations in Eq. (4)
yields
2¢DypM
RzzRg—[C A Aln( C*ﬂz 5)
P4 C—Cy
Since
P sat
e=— and ¢} = RAT (6)
Eq. (5) takes the form
2¢DppM P
R2=R2— [ BT A ln< m,)]r (7)
Pa P—Py

The plot of R? versus 7 is shown below.

0 ! ! ! |
0 300 600 900 1260 1500

t(s)

The slope of the straight line is —9.387 x 10~ m?/s. Hence,

2cDapM P
AT A ln( m,) —9.387 x 10~° (8)
Pa P—Py
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The total molar concentration is

P 1
“TRT T (0.08205)(25 +273)

= 0.041 kmol/m> 9)

Substitution of the values into Eq. (8) gives the diffusion coefficient as

879

Dap =9.387 x 1077 =9.72 x 107% m?/s

8.5.2 Diffusion Through a Stagnant Liquid

Consider a one-dimensional diffusion of liquid .4 through a stagnant film of liquid B with a
thickness L as shown in Figure 8.39. The mole fractions of .4 at z =0 and z = L are known.
As engineers, we are interested in the number of moles of species .A transferring through the
film of BB under steady conditions.

Over a differential volume of thickness Az, the conservation statement for species A,
Eq. (8.4-1), is written as

NAzle - NAZ|z+AzA =0 (85-30)
Dividing Eq. (8.5-30) by A Az and letting Az — 0 give

Na.l; — Na,lz+az

lim =0 (8.5-31)
Az—0 Az
or,
dNa,
y ==0 = Ny =constant (8.5-32)
z z

To proceed further, it is necessary to express the total molar flux of species A, i.e., N4_, either
by Eq. (8.5-2) or by Eq. (8.5-3).

u

Figure 8.39. Diffusion of liquid .A through a stagnant liquid film 5.
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8.5.2.1 Analysis based on the molar average velocity ~ From Eq. (8.5-2), the total molar
flux of species A is given as

dxa N
Na, =—cDap —— +cav; (8.5-33)
dz
It is important to note in this problem that the total molar concentration, c, is not constant
but dependent on the mole fractions of species A and B. Since species B is stagnant, the
expression for the molar average velocity becomes

_ Ny, +Np, Na,

v} =— (8.5-34)
c c
Substitution of Eq. (8.5-34) into Eq. (8.5-33) gives the molar flux of species .A as
Dap d
Na, = —~—A8 224 (8.5-35)
¢ 1 —x4 dz

Since the total molar concentration, c, is not constant, it is necessary to express ¢ in terms of
mole fractions. Assuming ideal solution behavior, i.e., the partial molar volume is equal to the
molar volume of the pure substance, the total molar concentration is expressed in the form

1 1
c= = (8.5-36)

|7 B XAVA +XBVB

Substitution of xp =1 — x4 yields

1
c= (8.5-37)

VB +(Va— Vp)xa

Combining Eqgs. (8.5-35) and (8.5-37) and rearrangement give

L XA d
Na, / dz=—Dap / L A (8.5-38)
0 21, [V 4+ (Va— Vp)xa](1 —xa)

Integration of Eq. (8.5-38) results in

D 1— Vg +(Vya—V D
Ny, = DA ln< XAL> | VB + (NA ~B)XAL _Das ln(cﬂ> (8.5-39)
LV, 1 —xa, Ve + (Va— Vp)xa, LV, \cs,

8.5.2.2 Analysis based on the volume average velocity — The use of Eq. (8.5-3) gives the
total molar flux of species .4 as

dc
N, =—Dap——+ cav

8.5-40
dz ( )

From Eq. (C) in Table 8.12, the volume average velocity is expressed as

UZ.:VANAZ‘FVBNBZ:VANAZ:VANAZ (8.5—41)
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Using Eq. (8.5-41) in Eq. (8.5-40) yields

Dap d
Ny =———28 204 (8.5-42)
1-V,ca dz

Rearrangement of Eq. (8.5-42) results in

L cA d

Na. f dz=—Dap / o (8.5-43)
0 CAp 1— VACA

Integration of Eq. (8.5-43) leads to

D 1-V
Na, = —28 1n< fCAL) (8.5-44)
LV, \1-V,ca,

The use of the identity from Eq. (8.5-36), i.e.,

1 — Vaca = Vgep (8.5-45)
simplifies Eq. (8.5-44) to
D
Ny, = A8 1n(cﬂ) (8.5-46)
LV, \c¢s,

which is identical to Eq. (8.5-39).

Example 8.23 Cyclohexane (A) is diffusing through a 1.5 mm thick stagnant benzene (53)
film at 25°C. If x4, = 0.15 and x4, = 0.05, determine the molar flux of cyclohexane under
steady conditions. Take Dgp = 2.09 x 1073 cm? /S.

Solution
Physical properties

pa =0.779 g/cm?

For cyclohexane (A): { M 84
A p—v

pp =0.879 g/cm?

For benzene (B): { M 78
B =

Analysis

The molar volumes of species A and B are

- 84

pooMa_ 8 ors cm? /mol
pa 0779

. 78

Vg = & =——=288.7 cm3/mol

os _ 0.879
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The values of the total molar concentration at z = 0 and z = L are calculated from Eq.
(8.5-37) as
1 1
Cop =

== — = =10.9 x 1072 mol/cm?
Vo+ (Va— Vg)xs, 887+ (107.8—88.7)(0.15) /

1 1 3 3
cL = =11.2 x 107 mol/cm

V4 (Va—Vg)xs, 887+ (107.8 —88.7)(0.05)

Therefore, the use of Eq. (8.5-39) gives the molar flux of cyclohexane through the benzene
layer as

_2.09x107° [(11.2 x 1073)(1 — 0.05)
= (0.15)(107.8) | (10.9 x 10-3)(1 — 0.15)

] =1.8 x 1077 mol/cm>s

8.5.3 Diffusion With a Heterogeneous Chemical Reaction

An ideal gas A diffuses at steady-state in the positive z-direction through a flat gas film of
thickness § as shown in Figure 8.40. At z = § there is a solid catalytic surface at which A
undergoes a first-order heterogeneous dimerization reaction

2A — B

As engineers, we are interested in the determination of the molar flux of species .4 in the gas
film under steady conditions. The gas composition at z =0, i.e., x4, is known.

The conservation statement for species A, Eq. (8.4-1), can be written over a differential
volume element of thickness Az as

Na,l:A—=Na,l;40:A=0 (8.5-47)

4>‘AZ ‘4—

XAO 2A—>B

NAZ ‘z NAZ ‘z+Az

f«——— 3

Figure 8.40. Heterogeneous reaction on a catalyst surface.
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Dividing Eq. (8.5-47) by A Az and letting Az — 0 give

NAZ |z — NA;|z+Az

lim =0 (8.5-48)
Az—0 Az
or,
dNy,
y -=0 = N4, =constant (8.5-49)
p ,
The total molar flux can be calculated from Eq. (8.5-2) as
d
Na, = —cDan =2 +cau} (8.5-50)
¢ Z
in which the molar average velocity is given by
Na, + N,
pi= A TP (8.5-51)
c

The stoichiometry of the chemical reaction implies that for every 2 moles of A diffusing in
the positive z-direction, 1 mole of B diffuses back in the negative z-direction. Therefore, the
relationship between the fluxes can be expressed as

1
5 Na. =N, (8.5-52)

The use of Eq. (8.5-52) in Eq. (8.5-51) yields

0.5N
v = (8.5-53)
c
Substitution of Eq. (8.5-53) into Eq. (8.5-50) gives
D d
Ny = __CtYAB dXa (8.5-54)
‘ 1—-0.5x4 dz
Since N, is constant, Eq. (8.5-54) can be rearranged as
8 XA d
Na, / dz=—cDap / P4 (8.5-55)
“Jo xa, 1—0.5xa
or,
ZCDAB 1 —O.SXA(S
.= 1 8.5-56
AT n(l—O.Son> (8.5-56)

Note that, although x 4, is a known quantity, the mole fraction of species .A in the gas phase at
the catalytic surface, x 4,, is unknown and must be determined from the boundary condition.
For heterogeneous reactions, the rate of reaction is empirically specified as

at z=9§ Ny =klca=Kcxy (8.5-57)

Z
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where k° is the surface reaction rate constant. Therefore, x4, is expressed from Eq. (8.5-57)
as

_ Na (8.5-58)
XAy = T .
Substitution of Eq. (8.5-58) into Eq. (8.5-56) results in
2c¢Dap 1 —0.5(Ng4,/ck®)
= 1 3 8.5-59
AT n[ 1—05xa, (8:3-59)

which is a transcendental equation in N4, . It is interesting to investigate two limiting cases of
Eq. (8.5-59).

Case (i) £° is large
Since In(1 — x) >~ —x for small values of x, then
In[1—0.5(Na,/ck®)] ~—0.5(Ng4,/ck’) (8.5-60)

so that Eq. (8.5-59) reduces to

2¢Dap [ A? 1
Na = I 8.5-61
AT (A2+ 1) n(l —0.5xAD) (8.5-61)

in which A represents the ratio of the rate of heterogeneous reaction to the rate of diffusion,
i.e., Thiele modulus, and it is given by

A= ks (8.5-62)
"~ \ Das '
Case (ii) k* = o0
This condition implies an instantaneous reaction and Eq. (8.5-59) takes the form
2¢D 1
Na, = 2248y, (8.5-63)
‘ 8 1 —0.5x4,

When k¥ = oo, once species A reaches the catalytic surface, it is immediately converted to
species B so that x4; = 0. Note that Eq. (8.5-63) can also be obtained either from Eq. (8.5-56)
by letting x4, = 0 or from Eq. (8.5-61) by letting A = oo.

8.5.3.1 Comment The molar average velocity is given by Eq. (8.5-53) and, since both N4,

and c are constants, v;‘ remains constant for 0 < z < 6. On the other hand, from Eq. (8.5-6)

the mass average velocity is

B MaNp, + MpNp,
)

(8.5-64)

Uz
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Expressing Np, in terms of N4, by using Eq. (8.5-52) reduces Eq. (8.5-64) to

W:N&M“;OiMw (8.5-65)

As a result of the dimerization reaction M4 = 0.5M p and we get

v, =0 (8.5-66)

In this specific example, therefore, the mass average velocity can be determined on the basis
of a solution to a diffusion problem rather than conservation of momentum.

NOTATION

A area, m2

ay catalyst surface area per unit volume, 1/m
Cp heat capacity at constant pressure, kJ/kg-K
c total concentration, kmol/m>

¢ concentration of species i, kmol/m?>

D diameter, m

Dap diffusion coefficient for system A-B, m?/s
total energy flux, W/m?

drag force, N

enthalpy, J

partition coefficient

heat transfer coefficient, W/m?-K
molecular molar flux, kmol/m?-s
thermal conductivity, W/m-K
surface reaction rate constant, m/s
length, m

mass flow rate, kg/s

molecular weight, kg/kmol

total molar flux, kmol/ m?-s

total molar flow rate, kmol/s
molar flow rate of species i, kmol/s
pressure, Pa

heat transfer rate, W

volumetric flow rate, m> /s

heat flux, W/m?

radius, m; resistance, K/W

gas constant, J/mol-K
temperature, °C or K

time, s

T NARS ORI IZLIEATS T IasS
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U overall heat transfer coefficient, W/m?-K
\% velocity of the plate in Couette flow, m/s; volume, m3
v mass average velocity, m/s
v* molar average velocity, m/s
o™ volume average velocity, m/s
w width, m
w total mass flux, kg/m?-s
Xi mole fraction of species i
A difference
n fin efficiency; effectiveness factor
A latent heat of vaporization, J
7 viscosity, kg/m-s
v kinematic viscosity, m?/s
T total momentum flux, N/ m?
0 density, kg/m>
Tjj shear stress (flux of j-momentum in the i-direction), N/m?
1) mass fraction
Overlines
per mole
- per unit mass
— partial molar
Bracket
(a) average value of a
Superscript

sat saturation

Subscripts

A, B species in binary systems

ch characteristic

GM  geometric mean

i species in multicomponent systems
in inlet

LM  log-mean

mix  mixture

out outlet

wall or surface
00 free stream

S



296 8. Steady Microscopic Balances Without Generation

Dimensionless Numbers

Big Biot number for heat transfer
Biy  Biot number for mass transfer
Nu  Nusselt number

Pr Prandtl number

Re  Reynolds number

Sc Schmidt number

Sh Sherwood number
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PROBLEMS

8.1 When the ratio of the radius of the inner pipe to that of the outer pipe is close to unity,
a concentric annulus may be considered a thin plate slit and its curvature can be neglected.
Use this approximation and show that Eqgs. (8.1-12) and (8.1-15) can be modified as

Vg 1 r
==1- ——1
Vv 1—x\R

_ ARV —«?)
B 2

Q

to determine the velocity distribution and volumetric flow rate for Couette flow in a concen-
tric annulus with inner and outer radii of ¥ R and R, respectively.

8.2 The composite wall shown below consists of materials A and B with thermal con-
ductivities k4 = 10 W/m-K and kg = 0.8 W/m-K. If the surface area of the wall is 5 m?,
determine the interface temperature between A and B.
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40°C A B 14°C

l«—10 cm 20 cm

>z
(Answer: 39°C)

8.3 A composite wall consists of a brick of thickness 5 cm with thermal conductivity
1 W/m-K and an insulation of thickness 3 cm with thermal conductivity 0.06 W/m-K.
The brick surface is subjected to a uniform heat flux of 400 W/m?. The surface of the in-
sulation layer dissipates heat by convection to ambient air at 25°C with an average heat
transfer coefficient of 20 W/m?.K. Determine the surface temperatures under steady condi-
tions.

(Answer: 45°C and 265 °C)
8.4 A printed circuit board (PCB) is a thin plate on which chips and other electronic com-
ponents are placed. The thin plate is a layered composite consisting of copper foil and a

glass-reinforced polymer (FR-4). A cross-sectional view of such a laminated structure is
shown in the figure below.

L, Layer 1
L, Layer 2
L RIS, Layer i

Y
T Lol JTTLLCTTTTTTONTTTTTTTITTITINT - Zovern

xX

In engineering calculations, it is convenient to treat such a layered structure as a homo-
geneous material with two different effective thermal conductivities: one describing heat
flow within the plane, i.e., in the x-direction, and the other describing heat flow through the
thickness of the plate, i.e., in the y-direction.

a) Show that

n

Z kiL;
(ke = =—— and  (ky)oy =
> L

i=1

M:
i

I
o

i

'M=
Bl

I
i,
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b) Assume that the total PCB thickness is 1.5 mm and that the layers consist only of cop-
per and FR-4, with thermal conductivities 390 and 0.25 W/m-K, respectively. Calculate
(kx)efr and (ky )¢ if the thickness of the copper plate is 30 um. Repeat the calculations
for when the thickness of the copper plate is 100 xm. What is your conclusion?

(Answer: (k)5 = 8.05 W/m-K, (ky)efr = 0.26 W/m-K when Loy = 30 pum; (ky)ey =
26.23 W/m-K, (ky).5 = 0.27 W/m-K when Lc, = 100 zm)

8.5 Calculate the steady-state temperature distribution in a long cylindrical rod of thermal
conductivity k£ and radius R. Cooling fluid at a temperature of T, flows over the surface of
the cylinder with an average heat transfer coefficient (h).

(Answer: T = T,)

8.6 A spherical tank containing liquid nitrogen at 1 atm pressure is insulated with a mate-
rial having a thermal conductivity of 1.73 x 10> W/m-K. The inside diameter of the tank
is 60 cm, and the insulation thickness is 2.5 cm. Estimate the kilograms of nitrogen vapor-
ized per day if the outside surface of the insulation is at 21 °C. The normal boiling point of
nitrogen is —196 °C and its latent heat of vaporization is 200 kJ/kg.

(Answer: 7.95 kg/day)

8.7 For a rectangular fin in Section 8.2.4 the parameters are given as: T, = 175°C, Ty, =
260°C, k=105 W/m-K, L =4 cm, W =30 cm, B =5 mm.

a) Calculate the average heat transfer coefficient and the rate of heat loss through the fin
surface for A =0.3,0.6,0.8, 1.0, 3.0, 6.0, and 8.0.

b) One of your friends claims that as the fin efficiency increases the process becomes more
reversible. Do you agree?

8.8 If the length of the rectangular fin described in Section 8.2.4 is infinitely long, then the
temperature at the tip of the fin approaches the temperature of the surrounding fluid.

a) Under these circumstances, show that the dimensionless temperature distribution and the
rate of heat loss are given by

0 =exp(—A£) (1)
Q = W (T, — Too)y/2k B (h) 2)

b) Note that Eq. (8.2-94) reduces to Eq. (2) for large values of A. Thus, conclude that the
“infinitely long” fin assumption is valid when A > 3.

8.9 Copper fins of rectangular profile are attached to a plane wall maintained at 180 °C. It
is estimated that the heat is transferred to ambient air at 35 °C with an average heat transfer
coefficient of 60 W/m?-K. Calculate the steady rate of heat loss if the fins have the dimen-
sions of B =1 mm and L = 8 mm and are placed with a fin spacing of 200 fins/m. Heat
losses from the edges and the tip of the fin may be considered negligible.

(Answer: 34.6 kW/mz)
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8.10 Repeat the analysis given in Section 8.2.4 by considering heat losses from the edges
as well as from the tip with an average heat transfer coefficient (h).

a) Show that the temperature distribution is given by

0 — Qsinh[A(1 —&)] + Acosh[A(1 —§&)]

1
Qsinh A + A cosh A M

where the dimensionless quantities are defined as

M -Tw , z o 2w L
S E e & A_\/(E+W) k =S @

b) Show that the rate of heat loss from the fin is given by

3

o= kBW(Ty — Txo) A ( Q2cosh A 4+ A sinh A
- L Qsinh A + A cosh A

¢) An aluminum fin with thickness B = 0.5 cm, width W = 3 cm, and length L = 20 cm
is attached to a plane wall maintained at 170°C. The fin dissipates heat to ambient air
at 25°C with an average heat transfer coefficient of 40 W/m?-K. Plot the temperature
distribution as a function of position. Also calculate the rate of heat loss from the fin to
ambient air.

d) Plot the fin temperature as a function of position and calculate the rate of heat loss if the
fin in part (c) is covered with 3 mm thick plastic (k = 0.07 W/m:-K).

Hint: In this case, Egs. (1) and (3) are still valid. However, the average heat transfer co-
efficient (k) in the definitions of A and 2 must be replaced by the overall heat transfer
coefficient U (Why?) defined by

U <Lplastic o L)_l
kplastic (h>

e) Calculate the temperature of the plastic surface exposed to air at £ = (.3.

(Answer: c)45. 75 W d)22.9W e)68.3°C)

8.11 A copper fin of rectangular profile is attached to a plane wall maintained at 250°C
and has the dimensions of B =3 mm and W =5 cm. The fin dissipates heat from all of
its surfaces to ambient air at 25 °C with an average heat transfer coefficient of 70 W/m?-K.
Estimate the length of the fin if the temperature at the tip of the fin should not exceed 40°C
to avoid burns.

(Answer: 30 cm)
8.12 A fin with thickness B = 6 mm, width W = 3 cm, and length L = 10 cm is attached

to a plane wall maintained at 200 °C. The fin dissipates heat to ambient air at 25 °C with an
average heat transfer coefficient of 50 W/m?-K. What should be the thermal conductivity of
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the fin material if the temperature at a point 4 cm from the wall should not exceed 120°C?
Assume no heat losses from the sides or the tip of the fin.

(Answer: 54.9 W/m-K)
8.13 A solid cylindrical rod of radius R and length L is placed between two walls as shown
in the figure below. The surface temperatures of the walls at z =0 and z = L are kept at 7,

and T, respectively. The rod dissipates heat by convection to ambient air at 7, with an
average heat transfer coefficient (&).

A R

a) Consider a cylindrical differential element of thickness Ar and length Az within the rod
and show that the conservation statement for energy leads to

13 [ aT\ 9T
= — =0 1
rE)r(rar)—'_E)z2 L
with the following boundary conditions
aT
at r=0 — =0 (2)
ar
oT
at r=R —k—=(h)(T — Tx) 3)
ar
at z=0 T=T, 4
at z=1L T=T, (5)

b) The area-averaged temperature is defined by

27 rR
/ f Tr dr d@ ) R
_J0 0 _
- 27 rR - ﬁ/o Trdr (6)
/ / rdrdf
0 0

Show that the multiplication of Egs. (1), (4) and (5) by r dr and integration from r = 0
tor = R give

(T)

d*(T) 2(h)
2z~ g \Tlr=k =T =0 (7)
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at z=0 (Ty=T1, ®)
at z=1L (TY=T; )

¢) When Big = (h)R/k < 1, T|,—g = (T). Under these circumstances, show that Egs. (7)-
(9) become

e,

d—sz—A 6=0 (10)
at £=0 6=1 (11)
at £=1 6=6, (12)

where the dimensionless quantities are defined by

(T) — To T — T
f=—" 2 g =t
Tp — T Tp — T

(13)

What is the physical significance of A?
d) Solve Eq. (10) and show that the temperature distribution within the rod is given by

o O sinh(A&) + sinh[A(1 — §)]

14
sinh A (14
e) Show that the rate of heat loss from the rod to the surrounding fluid is given by
. 2nRL{h)(T, — T hA—-1)(146
o= (h)(To — Teo) (cos )1 +61) (15)

A sinh A

f) Calculate the rate of heat loss when 7, = 120°C, T;, = 40°C, T, = 25°C, (h) =
125 W/m? K, k =270 W/m-K, R = 1 mm, and L = 50 mm.

(Answer: f) 1.82 W)

8.14 Consider Problem 8.13 with the following boundary conditions

at z=0 —k@:qo (1)
dz
at z=1L (T)=T;, (2

a) Show that the temperature distribution is given by

cosh(A&) + % sinh[A(1 — &)]

6= 3
cosh A 3)

where the dimensionless quantities are defined by

(1) — T
TL_Too

2(h)L? goL

0 : N=_T~
L kR K(TL — Too)

S:

4
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b) Show that the rate of heat loss from the rod to the surrounding fluid is given by either

. 2TRL() (T, — Tao) N 1

o= ¢ [tanhA—i— X(l _ CoshA)] )
or,

O=nR |:qO+T(AtanhA—COShA>i| ©)

¢) Calculate the rate of heat loss when g, = 8 x 10* W/mz, T =40°C, Too = 25°C,
(h) =125 W/mz-K, k=270 W/m-K, R =1 mm, and L = 50 mm.

(Answer: c) 0.5 W)

8.15 Repeat the analysis given in Section 8.4.4 for a zero-order reaction in the following
way:

a) Show that the concentration distribution is given by
%-2
9:1+A2(5—§) (1)

where the dimensionless quantities are defined by

Z 2kS L2
E=— A== 2)
cA, L RDypca,

b) Plot @ versus & for A = 1, +/2, and +/3. Show why the solution given by Eq. (1) is valid
only for A < «/5

¢) For A > /2, only a fraction ¢ (0 < ¢ < 1) of the surface is available for the chemical
reaction. Under these circumstances, show that the concentration distribution is given
by

2
9=1+A2<%—¢s) 0<t<o 3)

8.16 Show that the mass average velocity for the Stefan diffusion tube experiment, Exam-

ple 8.20, is given by
v, = MaDag In !
ML I —xa,

where M is the molecular weight of the mixture. Note that this result leads to the following
interesting conclusions:

i) The mass average velocity is determined on the basis of a solution to a diffusion problem
rather than conservation of momentum.
ii) The no-slip boundary condition at the wall of the tube is violated.
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For a more thorough analysis of the Stefan diffusion tube problem, see Whitaker (1991).

8.17 Consider diffusion with a heterogeneous chemical reaction as described in Sec-
tion 8.5.3.

a) Rewrite Eq. (8.5-59) in terms of the dimensionless flux, Nf‘, defined by

Ny
N* — ¥4
AT ks

and calculate its value for x4, = 0.7 and A2 = 6.
b) Show that the concentration distribution is given by

[ NiA?
x4 =2 1—(1—0.5xA0)exp( > 5)

where & is the dimensionless distance, i.e., § = z/§. Plot x4 versus & when x4, = 0.7
and A? =6.

(Answer: a) N% =0.123)

8.18 Consider a spherical catalyst particle of radius R over which a first-order heteroge-
neous reaction

A— B

takes place. The concentration of species A at a distance far from the catalyst particle
iSca,-

a) Show that the concentration distribution is
A _, A? \R
cA. 1+A2)r

k* R
Dasp

where A is defined by

A=

b) Show that the molar rate of consumption of species A, 714, is given by

AZ
14 =47 D —_— R
na /8 AB(1+A2)CAOO

8.19 Consider a spherical carbon particle of initial radius R, surrounded by an atmosphere
of oxygen. A very rapid heterogeneous reaction

2C+ 0O, — 2CO
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takes place on the surface of the carbon particle. Show that the time it takes for the carbon
particle to disappear completely is

L Ripc
481In2 c¢Do,-co

where pc is the density of carbon.
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STEADY MICROSCOPIC BALANCES WITH
GENERATION

This chapter is the continuation of Chapter 8, with the addition of the generation term to the
inventory rate equation. The breakdown of the chapter is the same as that of Chapter 8. Once
the governing equations for the velocity, temperature, or concentration are developed, the
physical significance of the terms appearing in these equations is explained and the solutions
are given in detail. The obtaining of macroscopic level design equations by integrating the
microscopic level equations over the volume of the system is also presented.

9.1 MOMENTUM TRANSPORT

For steady transfer of momentum, the inventory rate equation takes the form

Rate of Rate of Rate of
. )= + . =0 9.1-1)
momentum in momentum out momentum generation

In Section 5.1, it was shown that momentum is generated as a result of forces acting on a
system, i.e., gravitational and pressure forces. Therefore, Eq. (9.1-1) may also be expressed

as
( Rate of - > 3 ( Rate of ) N (Forces actmg) _0 9.1-2)
momentum 1n momentum out on a system
As in Chapter 8, our analysis will again be restricted to cases in which the following assump-
tions hold:

1. Incompressible Newtonian fluid,
2. One-dimensional, fully developed laminar flow,
3. Constant physical properties.

9.1.1 Flow Between Parallel Plates

Consider the flow of a Newtonian fluid between two parallel plates under steady conditions
as shown in Figure 9.1. The pressure gradient is imposed in the z-direction while both plates
are held stationary.

Velocity components are simplified according to Figure 8.2. Since v, = v,(x) and vy =
vy =0, Table C.1 in Appendix C indicates that the only nonzero shear-stress component is

305
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XL’ZA

Figure 9.1. Flow between two parallel plates.

T,;. Hence, the components of the total momentum flux are given by

dv
Txz = Txz + (V) Uy = Taz = —1 d—xz 9.1-3)
Ty; = Tyz + (pvz) vy =0 9.1-4)
Tzz = Tz + (V) vz = /OUZZ (9.1-5)

The pressure, on the other hand, may depend on both x and z. Therefore, it is necessary to
write the x- and z-components of the equation of motion.

x-component of the equation of motion

For a rectangular differential volume element of thickness Ax, length Az, and width W, as
shown in Figure 9.1, Eq. (9.1-2) is expressed as

(Ply — Plyyax) WAz + pgWAxAz =0 (9.1-6)
Dividing Eq. (9.1-6) by W Ax Az and taking the limit as Ax — 0 give
Plx - P|x+Ax

lim ——— =0 9.1-7
A;Iilo Ax trg ( )
or,
oP
9~ P8 (9.1-8)
X

Note that Eq. (9.1-8) indicates the hydrostatic pressure distribution in the x-direction.
z-component of the equation of motion

Over the differential volume element of thickness Ax, length Az, and width W, Eq. (9.1-2)
takes the form

(7TZZ|ZWAX + 7xzlx WAZ) - (nzz|z+AzWAx + 7sz|x+AxWAZ)
+ (Pl; — Pl4az) WAX =0 (9.1-9)
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Dividing Eq. (9.1-9) by AxAzW and taking the limit as Ax — 0 and Az — 0 give

Tozl: — Tozlz+az Txzlx — Tazlx+ax Pl; — Plya;

I I I —0 (9.1-10
AZIEO Az + A;IEO Ax + AZI,TO Az ( )
or,
9 d P
Tz | Pz 0 (9.1-11)

Substitution of Egs. (9.1-3) and (9.1-5) into Eq. (9.1-11) and noting that dv,;/dz = 0 yield

d*v, 9P ©.1-12)
Hax2 = 2 '
—_ =

fx) f(x,2)

Since the dependence of P on x is not known, integration of Eq. (9.1-12) with respect to x
is not possible at the moment. To circumvent this problem, the effects of the static pressure
and the gravitational force are combined in a single term called the modified pressure, P.
According to Eq. (5.1-16), the modified pressure for this problem is defined as

P=P—pgx (9.1-13)
so that
P OP
= - _ 9.1-14
or —ax P8 ( )
and
aP oP
- = 9.1-15
0z 0z ( )

Combination of Egs. (9.1-8) and (9.1-14) yields
P
ax

which implies that P = P(z) only. Therefore, the use of Eq. (9.1-15) in Eq. (9.1-12) gives

0 (9.1-16)

d*v, _dP
Hax2 = dz
—_—— =

fx) f@

9.1-17)

Note that, while the right-hand side of Eq. (9.1-17) is a function of z only, the left-hand side
is dependent only on x. This is possible if and only if both sides of Eq. (9.1-17) are equal to
a constant, say A. Hence,

dP Po—PL

—=A A=——7—— 9.1-18
dz = L ( )
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where P, and P;, are the values of P at z =0 and z = L, respectively. Substitution of

Eq. (9.1-18) into Eq. (9.1-17) gives the governing equation for velocity in the form

dzvz 7)0 - PL

R T T L

Integration of Eq. (9.1-19) twice results in

Py—PL
V; = —027)(32 + Clx + C2

where C| and C» are integration constants.
The use of the boundary conditions

gives the velocity distribution as

. (Po—PL)B*[ x x\?
-]

9.1-19)

(9.1-20)

(9.1-21)
(9.1-22)

(9.1-23)

The use of the velocity distribution, Eq. (9.1-23), in Eq. (9.1-3) gives the shear stress dis-

tribution as

om PP (1 ]
2L B

(9.1-24)

The volumetric flow rate can be determined by integrating the velocity distribution over

the cross-sectional area, i.e.,

W B
Q=/ / v, dx dy
o Jo

(9.1-25)

Substitution of Eq. (9.1-23) into Eq. (9.1-25) gives the volumetric flow rate in the form

_ (P, —PL)WB?

< 12uL

Dividing the volumetric flow rate by the flow area gives the average velocity as

Q  (P,—PL)B?

W) = W T T 1L

(9.1-26)

(9.1-27)
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9.1.1.1 Macroscopic balance Integration of the governing differential equation, Eq. (9.1-
19), over the volume of the system gives the macroscopic momentum balance as

L (W (B 2 L oW (Bp _p
—/ / / " vzzdxdydz=/ f / 0 "L gxdydz (9.1-28)
o Jo Jo = dx o Jo Jo L
or
(sz|x=B - sz|x=0)LW = (P,—PL)WB (9.1-29)
\_\,_-J
Drag force Pressure and gravitational

forces

Note that Eq. (9.1-29) is nothing more than Newton’s second law of motion. The interaction
of the system, i.e., the fluid between the parallel plates, with the surroundings is the drag
force, Fp, on the plates and is given by

| Fp= (P, —PL)WB] (9.1-30)

On the other hand, the friction factor is the dimensionless interaction of the system with
the surroundings and is defined by Eq. (3.1-7), i.e.,

Fp=AmnKcn(f) (9.1-31)
or,
1
(Po —PL)WB=(2WL) (5 p<vz>2> (f) (9.1-32)
Simplification of Eq. (9.1-32) gives
_ (Po - PL)B
(f)= W (9.1-33)

Elimination of (P, — Pr) between Eqgs. (9.1-27) and (9.1-33) leads to

(f) = 12( - <ff >p) (9.1-34)

For flow in noncircular ducts, the Reynolds number based on the hydraulic equivalent diam-
eter was defined in Chapter 4 by Eq. (4.5-37). Since Dj;, = 2B, the Reynolds number is

2B
Rej, = 224200 (9.1-35)
w

Therefore, Eq. (9.1-34) takes the final form as

—ﬁ (9.1-36)
N= e 1-
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Figure 9.2. Falling film on a vertical plate.

9.1.2 Falling Film on a Vertical Plate

Consider a film of liquid falling down a vertical plate under the action of gravity as shown in
Figure 9.2. Since the liquid is in contact with air, it is necessary to consider both phases. Let
superscripts L and A represent the liquid and the air, respectively.

For the liquid phase, the velocity components are simplified according to Figure 8.2. Since
v; = v;(x) and vy = vy =0, Table C.1 in Appendix C indicates that the only nonzero shear-
stress component is 7y;. Hence, the components of the total momentum flux are given by

dvl
T =tk + (PR oy =T =—pt =% 9.1-37)
nh =1k + (ptvF)k =0 (9.1-38)
2
wL =<k 4 (ptol)ol = pt(ul) (9.1-39)

The pressure, on the other hand, depends only on z. Therefore, only the z-component of the
equation of motion should be considered. For a rectangular differential volume element of
thickness Ax, length Az, and width W, as shown in Figure 9.2, Eq. (9.1-2) is expressed as

(2. WAx +

Xz

kW AZ) = (] acWAX + 7 xrax WAZ)
+ (P, = PElya) WAX + plgWAXAZ=0 (9.1-40)

Dividing each term by W Ax Az and taking the limit as Ax — 0 and Az — 0 give

L L L L L L
. Tl = A LA P ol PRV . PYl; = P%l 4
lim —%&° LR 4 |im X2 X2 + lim : raz olg=0
Az—0 Az Ax—0 Ax Az—0 Az

(9.1-41)
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or,
ant dnl  9pPL
L4 —plg=0 (9.1-42)
0z dx 90z

Substitution of Egs. (9.1-37) and (9.1-39) into Eq. (9.1-42) and noting that 8sz /9z =0 yield

d*vl  aprt
L 4 L
-t —= =t 9.1-43
ne—a i 08 ( )

Now, it is necessary to write down the z-component of the equation of motion for the
stagnant air. Over a differential volume element of thickness Ax, length Az, and width W,
Eq. (9.1-2) is written as

(PA, — PAya) WAX + pgWAXAZ =0 (9.1-44)
Dividing each term by W Ax Az and taking the limit as Az — 0 give

A A
P |z_P |z+Az A

li =0 9.1-45
Adim A +0o7g ( )
or,
d P4
— =plg (9.1-46)
dz

At the liquid-air interface, the jump momentum balance! indicates that the normal and
tangential components of the total stress tensor are equal to each other, i.e.,

at x=0 PL=pPA forallz (9.1-47)
at x=0 thZ = rfz for all z (9.1-48)

Since both P and P4 depend only on z, then
N
dz  dz
From Eqgs. (9.1-46) and (9.1-49), one can conclude that

(9.1-49)

art
— =plg (9.1-50)
dz

Substitution of Eq. (9.1-50) into Eq. (9.1-43) gives
d*vl
Fo =0t —phe (9.1-51)

X

Since pL > pA, then p~ — pA =~ pL and Eq. (9.1-51) takes the form

—

d*vL
L Wg =plyg (9.1-52)

IFor a thorough discussion on jump balances, see Slattery (1999).

—
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This analysis shows the reason why the pressure term does not appear in the equation of
motion when a fluid flows under the action of gravity. This point is usually overlooked in the
literature by simply stating that “free surface = no pressure gradient.”

For simplicity, the superscripts in Eq. (9.1-52) will be dropped for the rest of the analysis
with the understanding that the properties are those of the liquid. Therefore, the governing
equation takes the form

v _ 9.1-53)
Ho 3 =p8 :
Integration of Eq. (9.1-53) twice leads to
v.=-2 2L cix+ G (9.1-54)
2u
The boundary conditions are
dv,
at x=0 — =0 (9.1-55)
dx
at x=394 v, =0 (9.1-56)

Note that Eq. (9.1-55) is a consequence of the equality of shear stresses at the liquid-air
interface. Application of the boundary conditions results in

2 2
v, = '05—8[1 — (%) } (9.1-57)
m

The maximum velocity takes place at the liquid-air interface, i.e., at x =0, as

pgs*
2p
The use of the velocity distribution, Eq. (9.1-57), in Eq. (9.1-37) gives the shear stress
distribution as

(9.1-58)

Umax =

©.1-59)

Integration of the velocity profile across the flow area gives the volumetric flow rate, i.e.,

w 1)
Q= / f v, dxdy (9.1-60)
0 0

Substitution of Eq. (9.1-57) into Eq. (9.1-60) yields

83w
o="8 (9.1-61)
3u
Dividing the volumetric flow rate by the flow area gives the average velocity as
82
(vz) = R (9.1-62)
wWé 3u
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9.1.2.1 Macroscopic balance Integration of the governing equation, Eq. (9.1-53), over the
volume of the system gives the macroscopic equation as

L W pé d2v L W pé
—f / f n— ;dxdydzzf f f pg dxdydz (9.1-63)
0 JO 0 X 0 JO 0
or,
Tezlems WL = pg SWL (9.1-64)
[ — ——
Drag force Mass of the
liquid

9.1.3 Flow in a Circular Tube

Consider the flow of a Newtonian fluid in a vertical circular pipe under steady conditions as
shown in Figure 9.3. The pressure gradient is imposed in the z-direction.

Simplification of the velocity components according to Figure 8.4 shows that v, = v,(r)
and v, = vg = 0. Therefore, from Table C.2 in Appendix C, the only nonzero shear stress
component is 7, and the components of the total momentum flux are given by

dv,
Try =Tz + (PVIVr = Tz = — U dr (9.1-65)
Toz = Toz + (pvz)vg =0 (9.1-66)
oo = Tez + (pV)v, = pv2 (9.1-67)

Since the pressure in the pipe depends on z, it is necessary to consider only the z-component
of the equation of motion. For a cylindrical differential volume element of thickness Ar and

______________________ —) "

Figure 9.3. Flow in a circular pipe.
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length Az, as shown in Figure 9.3, Eq. (9.1-2) is expressed as
(722|270 AF + 700212708 AZ) — [Tzl o a2 AT + Tzl ar 27 (r + Ar) Az]
+ (Pl; — Plegaz)27r Ar + pg2mr ArAz =0 (9.1-68)
Dividing Eq. (9.1-68) by 27 Ar Az and taking the limit as Ar — 0 and Az — 0 give

. Togly — Wozleyar 1 (rar)lr — rr) lr+ar . Pl;— Pl:4az
1 -1 lim ————= =0
AZIEO Az + r A:glo Ar + Azlgo Az trs
(9.1-69)
or,
on,, 1d@m.;) dP
—_ —_———— 9.1'70
0z + rodr dz Trg ( )
Substitution of Eqgs. (9.1-65) and (9.1-67) into Eq. (9.1-70) and noting that dv,/dz = 0 give
w d dv, dP
- — — ) |=— 9.1-71
rdr|:r<dr )] dz +og ( )
The modified pressure is defined by
P=P—pgz (9.1-72)
so that
dP dP
—_— = 9.1-73
PR ( )
Substitution of Eq. (9.1-73) into Eq. (9.1-71) yields
d d d
pdl (dv)| 2 9P (9.1-74)
r dr dr dz
—
f(r) f @)

Note that, while the right-hand side of Eq. (9.1-74) is a function of z only, the left-hand side
is dependent only on . This is possible if and only if both sides of Eq. (9.1-74) are equal to a
constant, say A. Hence,

Ty = A=l TE (9.1-75)

where P, and Py, are the values of P at z = 0 and z = L, respectively. Substitution of Eq. (9.1-
75) into Eq. (9.1-74) gives the governing equation for velocity as

d d —
kA (dv\| _Po—PL (9.1-76)
r dr dr L
Integration of Eq. (9.1-76) twice leads to
Pg - 73
=P =P o e tc, (9.1-77)
4L

where C| and C» are integration constants.
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The center of the tube, i.e., » = 0, is included in the flow domain. However, the presence
of the term Inr makes v, - —oo as r — 0. Therefore, a physically possible solution exists
only if C; = 0. This condition is usually expressed as “v; is finite at r = 0.” Alternatively, the
use of the symmetry condition, i.e., dv,;/dr =0 at r =0, also leads to C1 = 0. The constant
C», can be evaluated by using the no-slip boundary condition on the surface of the tube, i.e.,

at r=R v, =0 (9.1-78)

so that the velocity distribution becomes

R 2
v, = %[1 - (%) ] (9.1-79)

The maximum velocity takes place at the center of the tube, i.e.,

o —PL)R?
Umax = * PL) (9.1-80)
4L

The use of Eq. (9.1-79) in Eq. (9.1-65) gives the shear stress distribution as

T = @ (9.1-81)

The volumetric flow rate can be determined by integrating the velocity distribution over the
cross-sectional area, i.e.,

2w R
Q=/ / v.rdrdf (9.1-82)
0 0

Substitution of Eq. (9.1-79) into Eq. (9.1-82) and integration give

_ (P, —PL)R*
R (9.1-83)

which is known as the Hagen-Poiseuille law. Dividing the volumetric flow rate by the flow
area gives the average velocity as

Q  (P,—PLR?
TR? 8L

(vz) = (9.1-84)

9.1.3.1 Macroscopic balance Integration of the governing differential equation, Eq. (9.1-
76), over the volume of the system gives

2 2
/ / / [ <dvz)]rdrd9dz—/ / / w rdrdfdz (9.1-85)
r dr
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or,
Trelr—r2TRL = 7R*(P,—PL) (9.1-86)
— N—
Drag force Pressure and gravitational
forces

The interaction of the system, i.e., the fluid in the tube, with the surroundings manifests itself
as the drag force, Fp, on the wall and is given by

Fp=nR%(P,—Pr) (9.1-87)

On the other hand, the dimensionless interaction of the system with the surroundings, i.e., the
friction factor, is given by Eq. (3.1-7), i.e.,

Fp=AcnKcn(f) (9.1-88)

or,
TR* (P, —Pr) = (anL)<%p<UZ>2><f> (9.1-89)

Expressing the average velocity in terms of the volumetric flow rate by using Eq. (9.1-84)
reduces Eq. (9.1-89) to

_7*D> (P, —PL)

= 9.1-90
(f) L (9.1-90)
which is nothing more than Eq. (4.5-6).
Elimination of (P, — Pr) between Egs. (9.1-84) and (9.1-89) leads to
7 16
=16 =— 9.1-91
R ) 019

9.1.4 Axial Flow in an Annulus

Consider the flow of a Newtonian fluid in a vertical concentric annulus under steady con-
ditions as shown in Figure 9.4. A constant pressure gradient is imposed in the positive z-
direction while the inner rod is stationary.

The development of the velocity distribution follows the same lines for flow in a circular
tube with the result

d d —
_ra r(ﬁ) _Po—PL (9.1-92)
r dr dr L
Integration of Eq. (9.1-92) twice leads to
P() - ,P
vzz—grz—i—cl Inr +Cy (9.1-93)

4L
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Figure 9.4. Flow in a concentric annulus.

In this case, however, r = 0 is not within the flow field. The use of the boundary conditions

at r=R v, =0 (9.1-94)
at r=«R v, =0 (9.1-95)

gives the velocity distribution as

. 2 2 _ 2
v, = M[l _ (L) _ (1 © )m(i)] (9.1-96)
4L R Inx R

The use of Eq. (9.1-96) in Eq. (9.1-65) gives the shear stress distribution as

_ _ 2
Trz:w[iﬂ « (E)] 9.1-97)

2L R 2lnk \ r

The volumetric flow rate can be determined by integrating the velocity distribution over
the annular cross-sectional area, i.e.,

2w R
Q=/ / v,rdrdf (9.1-98)
0 KR

Substitution of Eq. (9.1-96) into Eq. (9.1-98) and integration give

Q (9.1-99)

8L Inx

_(Po =~ PL)R* [1 e a —KZ)Q}
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Dividing the volumetric flow rate by the flow area gives the average velocity as

B Q _ (Po—PL)R? 1 —«?
<vz>—nR2(1_K2)— SiL (1+ +1K> (9.1-100)

9.1.4.1 Macroscopic balance Integration of the governing differential equation, Eq.
(9.1-92), over the volume of the system gives

L LR e [ [ 2

(9.1-101)
or,
TrelreR2TRL — Tyl —er27k RL = T R*(1 — k2)(P, — PL) (9.1-102)
Drag force Pressure and gravitational
forces

Note that Eq. (9.1-102) is nothing more than Newton’s second law of motion. The interaction
of the system, i.e., the fluid in the concentric annulus, with the surroundings is the drag force,
Fp, on the walls and is given by

Fp=nR2(1 — k3 (P, —Pr) (9.1-103)

On the other hand, the friction factor is defined by Eq. (3.1-7) as

Fp=AcnKen(f) (9.1-104)
or,
2 2 1 2
TR* (1 —k*)(Py — Pr) = [27R(1 +K)L](5 o(v;) )(f) (9.1-105)
Elimination of (P, — Pr) between Egs. (9.1-100) and (9.1-105) gives
(f) = —H (1) - (9.1-106)

R{v;)p <1+K2+ 1—« )
Ink

Since Dy = 2R(1 — k), the Reynolds number based on the hydraulic equivalent diameter is

2R(1 — k) {vz)p

Rey = ————~— (9.1-107)
u
so that Eq. (9.1-106) becomes
16 (1 —«)?

f)=rze 5 (9.1-108)

en 11—«

1412+
Ink
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9.1.4.2 Investigation of the limiting cases
M Case (i) k —> 1

When the ratio of the radius of the inner pipe to that of the outer pipe is close to unity, i.e.,
k — 1, a concentric annulus may be considered a thin-plane slit and its curvature can be
neglected. Approximation of a concentric annulus as a parallel plate requires the width, W,
and the length, L, of the plate to be defined as

W=nR(+k) (9.1-109)
B=R(l—x) (9.1-110)

Therefore, the product W B> is equal to

W B3
WB? =7 RY (1 —k?) (1 — k)? R'= 9.1-111
S R L e e (9.1-111)
so that Eq. (9.1-99) becomes
(Po—P)WB> T 1+« 1+«
=— 1 9.1-112
< Sl | =02 T =0k ( )
Substitution of ¥ =1 — « into Eq. (9.1-112) gives
—PL)WB? 22y 42 2—
o= (Po —Pr) im [ L2 2 4 (9.1-113)
8uL Y—0 Y2 Y in(l — )
The Taylor series expansion of the term In(1 — ) is
1o 1.3
ln(l—lﬁ)=—‘ﬂ—§1ﬂ —gxp — . (9.1-114)

Using Eq. (9.1-114) in Eq. (9.1-113) and carrying out the divisions yield

_ (Po—PL)WB? 2 2 2 2 1 vy

or,

(Po —PLYWB? . (i ‘g ...>=m (9.1-116)

Q=——" lim
8L Yv—0 12uL

which is equivalent to Eq. (9.1-26).
M Case (ii)xk — 0

When the ratio of the radius of the inner pipe to that of the outer pipe is close to zero, i.e.,
k — 0, a concentric annulus may be considered a circular pipe of radius R. In this case,
Eq. (9.1-99) becomes

Q

_ 4 L 2\2
=Mlim[l— 4 u} (9.1-117)

SuL k=0 ot Ink
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Since In0 = —oo, Eq. (9.1-117) reduces to

_ 7(P,—PL)R*

< SuL

(9.1-118)

which is identical to Eq. (9.1-83).

9.1.5 Physical Significance of the Reynolds Number

The physical significance attributed to the Reynolds number for both laminar and turbu-
lent flows is that it is the ratio of the inertial forces to the viscous forces. However, exam-
ination of the governing equations for fully developed laminar flow: (i) between parallel
plates, Eq. (9.1-19), (ii) in a circular pipe, Eq. (9.1-76), and (iii) in a concentric annulus,
Eq. (9.1-92), indicates that the only forces present are the pressure and the viscous forces.
Inertial forces do not exist in these problems. Since both pressure and viscous forces are kept
in the governing equation for velocity, they must, more or less, have the same order of mag-
nitude. Therefore, the ratio of pressure to viscous forces, which is a dimensionless number,
has an order of magnitude of unity.

On the other hand, the use of the %(p(vz)z) term instead of pressure is not appropriate
since this term comes from the Bernoulli equation, which is developed for no-friction (or
reversible) flows.

Therefore, in the case of a fully developed laminar flow, attributing a physical significance
of “inertial force/viscous force” to the Reynolds number is not correct. A more appropriate
approach may be given in terms of the time scales discussed in Section 3.4.1. For the flow of
a liquid through a circular pipe of length L with an average velocity of (v;), the convective
time scale for momentum transport is the mean residence time, i.e.,

L
(teh)conv = — (9.1-119)
(vz>

On the other hand, the viscous time scale is given by

L2
(ten)mot = - (9.1-120)
Therefore, the Reynolds number is given by
Viscous time scale L{v;)
Re = — = 9.1-121)
Convective time scale for momentum transport v

For a more thorough discussion on the subject, see Bejan (1984).

9.2 ENERGY TRANSPORT WITHOUT CONVECTION

For steady transport of energy, the inventory rate equation takes the form

( Rate of ) B ( Rate of ) 4 ( Rate of ) _0 ©92-1)
energy 1n energy out energy generation
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As stated in Section 5.2, generation of energy may occur as a result of chemical and nu-
clear reactions, absorption radiation, presence of magnetic fields, and viscous dissipation. It
is of industrial importance to know the temperature distribution resulting from the internal
generation of energy because exceeding of the maximum allowable temperature may lead to
deterioration of the material of construction.

9.2.1 Conduction in Rectangular Coordinates

Consider one-dimensional transfer of energy in the z-direction through a plane wall of thick-
ness L and surface area A as shown in Figure 9.5. Let %t be the position-dependent rate of
energy generation per unit volume within the wall.
Since T = T (z), Table C.4 in Appendix C indicates that the only nonzero energy flux
component is e;, and it is given by
dT
e;=q:=—k— (9.2-2)
dz
For a rectangular volume element of thickness Az as shown in Figure 9.5, Eq. (9.2-1) is
expressed as

4z1:A — qzlz4aA+NAAZ=0 (9.2-3)
Dividing each term by AAz and taking the limit as Az — 0 give

1i qzlz — qzlz+Az
m ——

N=0 9.2-4
Az—0 Az + ( )
or,
dq, ’
= =% 9.2-5
dz ( )
Substitution of Eq. (9.2-2) into Eq. (9.2-5) gives the governing equation for temperature as
d( d
—|k— =0 9.2-6
dz ( dz ) ( )
o L —
Fluid A Fluid B
T = I
TA , <hA> E E TB' <hB>

-

Figure 9.5. Conduction through a plane wall with generation.
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Integration of Eq. (9.2-6) gives

dT -
k— = —f Rwu)du + Cy (9.2-7)
dz 0

where u is a dummy variable of integration and Cj is an integration constant. Integration of
Eq. (9.2-7) once more leads to

T z b4
/ k(T)dT:—/ [f Eﬁ(u)du:| dz+Ciz4+ Cy (9.2-8)
0 0 0

Evaluation of the constants Cy and C; requires the boundary conditions to be specified. The
solution of Eq. (9.2-8) will be presented for two types of boundary conditions, namely, Type I
and Type II. In the case of the Type I boundary condition, the temperatures at both surfaces
are specified. On the other hand, the Type II boundary condition implies that while the tem-
perature is specified at one of the surfaces the other surface is subjected to a constant wall
heat flux.

Type I boundary condition
The solution of Eq. (9.2-8) subject to the boundary conditions

at z=0 T=T, (9.2-9a)
at z=1L T=T, (9.2-9b)
is given by
T z z Tr, L z z
/ k(T)dT:—/ [/ St(u)du}dz+{/ k(T)dT+/ [/ ?)’t(u)du]dz}—
0 0 LJo p o LJo L
(9.2-10)

Note that, when i = 0, Eq. (9.2-10) reduces to Eq. (G) in Table 8.1. Equation (9.2-10) may
be further simplified depending on whether the thermal conductivity and/or energy generation
per unit volume are constant.

B Case (i) k = constant
In this case, Eq. (9.2-10) reduces to

z z L z
k(T —-T, = —/ [/ N(u) du:| dz + {k(TL -7, +/ |:f N(u) dui| dz} £ (9.2-11)
o LJo o LJo L

When 91 =0, Eq. (9.2-11) reduces to Eq. (H) in Table 8.1.
H Case (ii) kK = constant; )i = constant
In this case, Eq. (9.2-10) simplifies to

RL2T 7 Z 2 Z
T=T,+ [— — (Z) } — (7T, — TL)Z (9.2-12)
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) N
N

s

Figure 9.6. Representative temperature distributions in a rectangular wall with constant generation.

The location of the maximum temperature can be obtained from d7/dz = 0 as

< Lok (9.2-13)
L)y_p —2 wmrz ot '

Substitution of Eq. (9.2-13) into Eq. (9.2-12) gives the value of the maximum temperature as

T,+T, NRL> k(T,—T.)>
2 8k 20 L2

9.2-14)

Tmax =

The representative temperature profiles depending on the values of 7, and 7 are shown in
Figure 9.6.

Type II boundary condition

The solution of Eq. (9.2-8) subject to the boundary conditions

dT

at z=0 —k—=¢q, (9.2-15a)
dz

at z=1L T=Ty (9.2-15b)

is given by

T L z z
/ k(T)dT :/ |:/ N(u) dui| dz + qoL(l — —) (9.2-16)
TL Z 0 L

When 9 = 0, Eq. (9.2-16) reduces to Eq. (G) in Table 8.2. Further simplifications of Eq. (9.2-
16) depending on whether k and/or ) are constant are given below.

M Case (i) kK = constant
In this case, Eq. (9.2-16) reduces to

L z
k(T — Ty) =/ [/ ﬂt(u)du:| dz + q0L<1 - %) (9.2-17)
z 0

When 91 = 0, Eq. (9.2-17) reduces to Eq. (H) in Table 8.2.
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B Case (ii) kK = constant; )i = constant

In this case, Eq. (9.2-16) reduces to

% L2 2 L
T=Ti+— [1—(%) }+q2 <1—%> (9.2-18)

9.2.1.1 Macroscopic equation The integration of the governing equation, Eq. (9.2-6), over
the volume of the system gives

L oW (H g/ 4T L W rH
—/ / / —(k —) dxdydz:/ / / Ndxdydz (9.2-19)
o Jo Jo dz\ dz o Jo Jo

Integration of Eq. (9.2-19) yields

dT dT L
WH | —k— + [k =— =WH | Wdz (9.2-20)
dz z=L dz z=0 0
—_——
Net rate of energy out Rate of energy
generation

which is simply the macroscopic energy balance under steady conditions by considering the
plane wall as a system. Note that energy must leave the system from at least one of the surfaces
to maintain steady conditions. The “net rate of energy out” in Eq. (9.2-20) implies that the
rate of energy leaving the system is in excess of the rate of energy entering it.

It is also possible to make use of Newton’s law of cooling to express the rate of heat loss
from the system. If heat is lost from both surfaces to the surroundings, Eq. (9.2-20) can be

written as
L

(ha)(Ty — Ta) + (hg)(Ty, — Tg) = / R dz ©9.221)
0

where T, and T, are the surface temperatures at z =0 and z = L, respectively.

Example 9.1 Energy generation rate as a result of an exothermic reaction is 1 x 10* W/m?
in a 50 cm thick wall of thermal conductivity 20 W /m-K. The left face of the wall is insulated
while the right side is held at 45 °C by a coolant. Calculate the maximum temperature in the
wall under steady conditions.

Solution

Let z be the distance measured from the left face. The use of Eq. (9.2-18) with g, = 0 gives
the temperature distribution as

O RL? Z\T o (1x10Y(0.5) z \’
renatr[1-(3) [+ P () ] o

Simplification of Eq. (1) leads to
T =107.5 — 2507 @

Since dT /dz = 0 at z = 0, the maximum temperature occurs at the insulated surface and its
value is 107.5°C.
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Example 9.2 Consider a composite solid of materials A and B, shown in the figure below.
An electrical resistance heater embedded in solid B generates heat at a constant volumet-
ric rate of N (W/m3). The composite solid is cooled from both sides to avoid excessive
heating.

LA LB—>
A e
Tp < h1> TZ, < h2>
>z

a) Obtain expressions for the steady temperature distributions in solids A and B.
b) Calculate the rate of heat loss from the surfaces located at 7 = —L 4 and z = Lp.
¢) For the following numerical values

T\ =-5°C T,=25°C (h;)=500W/m>K (hy)=10W/m*K
ka=180 W/m-K kp=12W/mK Ljp=36cm Lp=3cm

calculate the value of ) to keep the surface temperature of the wall at z = —L 4 constant
at 15°C.

d) Obtain the temperature distribution in solid A when the thickness of solid B is very
small, and draw the electrical analog. A practical application of this case is the use of
a surface heater, i.e., a very thin plastic film containing electrical resistance, to clear
condensation and ice from the rear window of your car or condensation from the mirror
in your bathroom.

Solution

a) Since area is constant, the governing equation for temperature in solid A can be easily
obtained from Eq. (8.2-5) as

dq? d*Ty
dz dz? U
The solution of Eq. (1) gives
Ta=Ciz+ (2)

The governing equation for temperature in solid B is obtained from Egs. (9.2-5) and
(9.2-6) as

dq? d’Tp N
- R=0 =—= 3
dz * = dz? kg ©)
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The solution of Eq. (3) yields

"o,
Tp=———2"4+C3z2+C4 )
2kp

Evaluation of the constants C1, C», C3, and C4 requires four boundary conditions. They
are expressed as

dTy
at z=—Lgy kAd_Z:<hl>(TA_Tl) )
dT,
at z=1Lg — kg d—zB = (h2)(Tp — T2) (6)
at z=0 Ty=Tp (7
dTy dTp
t =0 kg —— =kp —— 8
ab A dz B dz 8

Application of the boundary conditions leads to the following temperature distributions
within solids A and B

Rip(—— + ZE) 117
D\ () T 2k) T ka
Ty=T + 24— 4Ly )
k(l +LA+LB+ 1) (h1)
(— A 2B
()~ ka kg = (h2)
Rip(—— + ZE) 41— T
%o, |7 P\ ) " 2k 2T ks ka
Tp=T — 7+ —z+——+La| (10)
2kp - ( 1 +LA+LB+ 1 ) kp (h1)
(— pZA 2B
(h1)  ka kg = (h2)

b) The rate of heat transfer per unit area through the surface at z = —L 4 is given by

g —— + LB\ 47
AT T A

- 1T Li Lg 1 (L)

0y ks ks T ()

Q|Z=—LA k dTA
= KA
A dz

z=—0Ly

On the other hand, the rate of heat transfer per unit area through the surface at z = L g is

given by

9 L ( . ) +Ty—T

NLp\ 7+ 75— 2— 1
(h2) — 2kp

1 L L 1

(h1) ~ ka kg (h2)

Note that the addition of Egs. (11) and (12) results in

L'Z:LB = —kg dTp

=NLpg—
A dz 5

(12)

z=Lp

Oli=—1, +Ol:=1; = NRALp (13)
——
Rate of energy out Rate of energy

generation
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which is nothing more than the steady-state macroscopic energy balance by considering
a composite solid as a system.

¢) Evaluation of Eq. (9) at z = —L 4 leads to

%L ( ! +LB)+T T
B\ 77 -~ 2 — 1]
(h2) ~ 2kp

1 Ly, Lp 1
AV — 24y =B,
( ‘>(<h1> T ks (h2)>

(14)

Tpl;=—r,=T1 +

Solving Eq. (14) for % leads to

(T4l T (k1) Ly e, Viqor
Ale=ba =AU ks ke () T

L 1 Lpg

1 036 003 1
(15+5)(500)(% +ﬁ+ﬁ+ﬁ) —5-25
— : =3.73 x 10° W/m?

1 0.03
0.03| — + ——
10 2(1.2)
d) When the thickness of solid B is very small, then it is possible to assume that the temper-
ature in solid B is constant and equal to the temperature in solid A at z = 0. Moreover,

the heat generation is expressed in terms of the heat generation rate per unit area, i.e.,
N =NRLp. Thus, Eq. (9) becomes

N =

Ta=h+1 0
ka ——+ La(h2) +ka
(h1)

R+ (ho) (T — T1) (
(hy)

ka
Z2+—+1Lga (15)

The electrical circuit analog of this case is shown in the figure below:

1 L, 1
<h >A T k,A <h.>A
T I A‘z=—LA A T4, 2 T,
0, RA 6,

Comment: When Eq. (3) is integrated in the z-direction, the result is

Lp dZTB Lp
/ kp 5 dZ-l-/ NRNdz=0 (16)
0 dz 0
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or,
dT dT,
kg —2 — kg =Bl 49Lp=0 (17)
dZ z=Lp dZ z=0 e -
— —— §
—(h2)(Talz=0 — T2) k dTy
A——
dz z=0

Thus, the solution of Eq. (1) with the following boundary conditions

dTy
at z=-—Ly kAd—Z=(hl>(TA—Tl) (18)

dTy —
at z=0 —kAd—ZA—l—S)%z(hz)(TA —T) (19)
also results in Eq. (15).

9.2.2 Conduction in Cylindrical Coordinates

9.2.2.1 Hollow cylinder  Consider one-dimensional transfer of energy in the r-direction
through a hollow cylinder of inner and outer radii of R; and Rj, respectively, as shown in
Figure 9.7. Let 9 be the rate of energy generation per unit volume within the cylinder.
Since T = T (r), Table C.5 in Appendix C indicates that the only nonzero energy flux
component is e,, and it is given by
dT
e, =qr =—k — (9.2-22)
dr
For a cylindrical differential volume element of thickness Ar as shown in Figure 9.7, the
inventory rate equation for energy, Eq. (9.2-1), is expressed as

2n L(rgr)lr — 2 L(rqp)lr+ar +27rArL R =0 (9.2-23)
Dividing each term by 2w L Ar and taking the limit as Ar — 0 give

. (rgr)lr — (rgr)lr+ar
m

li +rR=0 (9.2-24)

Ar—0 Ar

Figure 9.7. One-dimensional conduction through a hollow cylinder with internal generation.
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or,
1d
——(rg) =N (9.2-25)
r dr
Substitution of Eq. (9.2-22) into Eq. (9.2-25) gives the governing equation for temperature as
1d dT
—— —\rk— =N (9.2-26)
r dr dr
Integration of Eq. (9.2-26) gives
dT 1 [ C
k= :——/ R (u) udu + — 9.2-27)
dr r Jo r

where u is a dummy variable of integration and C7 is an integration constant. Integration of
Eq. (9.2-27) once more leads to

T | r
/ k(T)dT = —/ —[/ Eﬁ(u)udu] dr+Cilnr +C, (9.2-28)
0 0 0

r

Evaluation of the constants C and C; requires the boundary conditions to be specified.
Type I boundary condition
The solution of Eq. (9.2-28) subject to the boundary conditions
at r=Ry T=T (9.2-29a)
at r=R; T=T (9.2-29b)

is given by

T T R ’
f k(T)dT={f lk(T)dT—/ 21[/ ?H(u)udu]dr}w
I 1 R, TLJO In(R{/R2)

Ry 1 r
4 / - [/ Rw)u du] dr (9.2-30)
r r 0

When 9 = 0, Eq. (9.2-30) reduces to Eq. (C) in Table 8.3. Equation (9.2-30) may be further
simplified depending on whether the thermal conductivity and/or energy generation per unit
volume are constant.

M Case (i) k = constant
In this case, Eq. (9.2-30) reduces to

k(T—T)—{k(T —T)—fRzl[/r%(u)udu}dr}M
v e Ry TLJo In(R1/R2)

1

Ry r
+/ l[[ Eﬁ(u)udu] dr (9.2-31)
r r 0

When 9t = 0, Eq. (9.2-31) simplifies to Eq. (D) in Table 8.3.
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330
B Case (ii) kK = constant; )i = constant

In this case, Eq. (9.2-30) reduces to

T_T+mR§ | r\? - R R3 (R 1 n@/Ry) ©.2:32)
Y R> PR g ) In(R/R)
The location of maximum temperature can be obtained from d7T /dr = 0 as
12
2k(Ty —T») 1 [1 (R1> :|
r R R3 2 Ry
= — 7 (9.2-33)
2 T:Tmax 1n<—l>
Ry
Type II boundary condition
The solution of Eq. (9.2-28) subject to the boundary conditions
dT
(9.2-34a)

at r=R —k—=
1 dz q1

at r=~Rp T=17 (9.2-34b)

is given by

T Ry 1 r Ry r
f k(T)dT =/ —|:f Eﬂ(u)udu] dr + |:/ Nw)udu — q1R1i| ln(—> (9.2-35)
T r r 0 0 R2

2

When 9 = 0, Eq. (9.2-35) reduces to Eq. (C) in Table 8.4.

M Case (i) k = constant
In this case, Eq. (9.2-35) reduces to

Ry r Ry
KT - T») :/ %UO Eﬁ(u)udu]dr—i— [/0 R (u)u du —qlkl]ln(RLz) (9.2-36)

When R = 0, Eq. (9.2-36) simplifies to Eq. (D) in Table 8.4.
H Case (ii) kK = constant; )1 = constant
In this case, Eq. (9.2-35) simplifies to

T T+mR§ (Y n WRE qiRiY, (7 (9.2-37)
= Y —— > )Inl — 2-
2 4k R 2k k Ry

Macroscopic equation
The integration of the governing equation, Eq. (9.2-26), over the volume of the system gives

2 Ry 1 d 21
/ / / <rk —)rdrd@dz-/ / / Rrdrdbdz (9.2-38)
R R

rdr
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Integration of Eq. (9.2-38) yields

dT dT Ra
—k — 2RO L+ [ k— 2rRI\L=2nL Nrdr (9.2-39)
dr J,_g, dr ) ,_g, Ry
Net rate of energy out Rate of energy
generation

which is the macroscopic energy balance under steady conditions by considering the hollow
cylinder as a system.

It is also possible to make use of Newton’s law of cooling to express the rate of heat loss
from the system. If heat is lost from both surfaces to the surroundings, Eq. (9.2-39) can be
written as

Ry

Ri(ha)(T1 — Ta) + Rolhp)(Tr — Tp) = / Rrdr (9.2-40)
R

where 71 and T3 are the surface temperatures at ¥ = R| and r = R», respectively.

Example 9.3 A catalytic reaction is being carried out in a packed bed in the annular
space between two concentric cylinders with inner radius R; = 1.5 cm and outer radius
R> = 1.8 cm. The entire surface of the inner cylinder is insulated. The rate of generation of
energy per unit volume as a result of a chemical reaction is 5 x 10 W/m? and it is uniform
throughout the annular reactor. The effective thermal conductivity of the bed is 0.5 W/m-K.
If the inner surface temperature is measured as 280 °C, calculate the temperature of the outer
surface.

Solution

The temperature distribution is given by Eq. (9.2-37). Since g1 = 0, it reduces to

rore BB ()RR (1)
= —_— — — —— Inl —
2T T4k R 2k \ R,
The temperature, 71, at r = Ry is given by
=+ DR (RO 0RE (R )
= —_— = e —In|y —
P27 g Ry 2%  \ Ry

Substitution of the numerical values into Eq. (2) gives

(5 x 109)(1.8 x 1072)2 . (1.5)2 (5><106)(1.5><10—2)21 (1.5)
40.5) [ 13 ] 2(0.5) "N1s
(3)

280=T, +

or,

T> =237.6°C “4)
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9.2.2.2 Solid cylinder  Consider a solid cylinder of radius R with a constant surface tem-
perature of Tg. The solution obtained for a hollow cylinder, Eq. (9.2-28), is also valid for this
case. However, since the temperature must have a finite value at the center, i.e., r = 0, then
C| must be zero and the temperature distribution becomes

T r r
/ k(T)dT = —/ 1[/ 9t(u)udu] dr + C, (9.2-41)
0 o rLJo

The use of the boundary condition
at r=R T=Tg (9.2-42)

gives the solution in the form

T R 1 r
/ k(T)dT = / - [/ N(u)u du] dr (9.2-43)
TR r T 0

M Case (i) kK = constant
Simplification of Eq. (9.2-43) gives

R r
k(T —Tg) =/ %[[) N(u) udu] dr (9.2-44)

M Case (ii) kK = constant; )1 = constant
In this case, Eq. (9.2-43) simplifies to

T=T +mR2 1—(Z ’ (9.2-45)
T R u

which implies that the variation in temperature with respect to the radial position is parabolic
with the maximum temperature at the center of the cylinder.

Macroscopic equation

The integration of the governing equation, Eq. (9.2-26), over the volume of the system gives

2 R 1 d 2
/ / f (rk—)rdrd@dz-f f / Nrdrdbdz (9.2-46)
o rdr

Integration of Eq. (9.2-46) yields

dTr R
—k — 2rRL = 2nlL Nrdr (9.2-47)
dr r=R 0
Rate of energy out Rate of energy generation

which is the macroscopic energy balance under steady conditions by considering the solid
cylinder as a system. It is also possible to make use of Newton’s law of cooling to express
the rate of heat loss from the system to the surroundings at T, with an average heat transfer
coefficient (k). In this case, Eq. (9.2-47) reduces to

R

R () (Tg — Tao) = / Rrdr (9.2-48)
0
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Example 9.4 Rate of heat generation per unit volume, N., during the transmission of an
electric current through wires is given by

oo L( ! 2
T ko \ T R2

where [ is the current, k. is the electrical conductivity, and R is the radius of the wire.

a) Obtain an expression for the difference between the maximum and the surface temper-
atures of the wire.

b) Develop a correlation that will permit the selection of the electric current and the wire
diameter if the difference between the maximum and the surface temperatures is spec-
ified. If the wire must carry a larger current, should the wire have a larger or smaller
diameter?

Solution
Assumption

1. The thermal and electrical conductivities of the wire are constant.
Analysis

a) The temperature distribution is given by Eq. (9.2-45) as

e tes NRT (1Y (1)
T <R>

where T is the surface temperature. The maximum temperature occurs at r = 0, i.e.,

N, R2
Tmax —Tr= 4k (2)
b) Expressing 9, in terms of / and k, gives
Tnax — TR = ( ! >I_2 (3)
4rkk, ) R?

Therefore, if I increases, R must be increased in order to keep Timax — T constant.
Example 9.5 Energy is generated in a cylindrical nuclear fuel element of radius Ry at a
rate of

N =R, (1+Br?)

It is clad in a material of radius R¢ and the outside surface temperature is kept constant at
T, by a coolant. Determine the steady temperature distribution in the fuel element.

Solution

The temperature distribution within the fuel element can be determined from Eq. (9.2-44),
i.e.,

RF r
kp(TF—T,-):ERO/ %UO (1+,Bu2)udui|dr (1)
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R R2 2 R2 4
TF =1+ 2 F 11— ! _|_ﬂ_F]_ - 2)
dkp Rp 4 RFp
in which the interface temperature 7; at r = Rp is not known. To express 7; in terms of

known quantities, consider the temperature distribution in the cladding. Since there is no
internal generation within the cladding, the use of Eq. (D) in Table 8.3 gives

or,

T,—T¢  In(r/Rc)

= (3)
To,—T; In(Rr/Rc)
The energy flux at »r = R is continuous, i.e.,
Tt dT°¢
kr — =k 4
Far ©ar @
Substitution of Egs. (2) and (3) into Eq. (4) gives
NRoR%In(Rc/RF) B R%
T, =T, 1+ — 5
i=T,+ T t— (5)
Therefore, the temperature distribution given by Eq. (2) becomes
n p2 2 2 4
TF_T(,:&”RF 1— (= _,_&1_ L
4kp RF 4 RF
RoRZIn(Rc/RF) B R
14+ — 6
+ e + 5 (6)

9.2.3 Conduction in Spherical Coordinates

9.2.3.1 Hollow sphere  Consider one-dimensional transfer of energy in the r-direction
through a hollow sphere of inner and outer radii of R; and Rj, respectively, as shown in
Figure 9.8. Let ) be the rate of generation per unit volume within the sphere.
Since T = T (r), Table C.6 in Appendix C indicates that the only nonzero energy flux
component is e,, and it is given by
dT

e =g, =~k (9.2-49)

qr‘

A 4,
fe-r—]

r+Ar

TB N <hB>

Figure 9.8. One-dimensional conduction through a hollow sphere with internal generation.
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For a spherical differential volume of thickness Ar as shown in Figure 9.8, the inventory rate
equation for energy, Eq. (9.2-1), is expressed as

A (riqy)|, — 4w (2q,)|, A, +ATIPAF R =0 (9.2-50)
Dividing each term by 47 Ar and taking the limit as Ar — 0 give

. (gl — (g s
m

1 (=0 9.2-51
A}}—>O Ar T ( )
or,
1 d ,
3 d—r(r gr) =N (9.2-52)
Substitution of Eq. (9.2-49) into Eq. (9.2-52) gives the governing equation for temperature as
1 d dT
—=—|r*k—|=n 9.2-53
r2dr (r dr ) ( )
Integration of Eq. (9.2-53) gives
dT 1 [ C
ko= =—— [ %) uldu+ — (9.2-54)
dr r2 Jo r?

where u is the dummy variable of integration. Integration of Eq. (9.2-54) once more leads to

T 1 r 5 Cl
k(T)dT = — — Nwu)u~du |dr — — + C> (9.2-55)
0 or 0 r

Evaluation of the constants Cy and C» requires the boundary conditions to be specified.

Type I boundary condition
The solution of Eq. (9.2-55) subject to the boundary conditions

at r=R T=T (9.2-56a)
at r=Ry, T=0D (9.2-56b)
is given by
11
T T Ry r R
/ k(T)dT:{/ k(T)dT—/ —2[/ ETt(u)uzdu]dr}Z—
T T R T 0 L — L
R, R,
Ry 1 r
+ / —2[ / Sﬁ(u)uzdu] dr (9.2-57)
r r 0

When it =0, Eq. (9.2-57) reduces to Eq. (C) in Table 8.5. Further simplification of Eq. (9.2-
57) depends on the functional forms of k£ and ).
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M Case (i) k£ = constant

In this case, Eq. (9.2-57) reduces to

1 1
Ry | r - ==
k(T = Ty) = {k(T1 ~ 1) —/ _2[/ m(u)uzdu] dr} fy
R T 0 L _ i
R, R
Ry 1 r
+ / = [ f N(u) uzdui| dr (9.2-58)
r r 0
When 91 = 0, Eq. (9.2-58) reduces to Eq. (D) in Table 8.5.
B Case (ii) kK = constant; )i = constant
In this case, Eq. (9.2-57) simplifies to
1 1
%R R2 RN\l & ~ 5 9R? r\?
T=T+{T1-Th——2[1—-(— 2 21— — 9.2-59
”{1 ’ 6k[ (Rzﬂ 1T 6k[ (RZH O3
R, R

Type II boundary condition

The solution of Eq. (9.2-55) subject to the boundary conditions

dT

at r=R = —k—=q (9.2-60a)
dz
at r=Ry T=D (9.2-60b)
is given by
! A Ry 11
/ k(T)dT 2/ —2[/ R(u) uzdu] dr + |:qu12 —f NR(u) uzdu] <_ - _)
T r r 0 0 r R2

(9.2-61)

When 91 =0, Eq. (9.2-61) reduces to Eq. (C) in Table 8.6. Further simplification of Eq. (9.2-
61) depends on the functional forms of k and ).

M Case (i) kK = constant

In this case, Eq. (9.2-61) reduces to

Ry 1 r ) ) R ) 1 1
k(T—Tz):/ r—z[/o R(u)u du}dr-l—[qul —/0 R(u)u du}(;—R—2> (9.2-62)

When 91 = 0, Eq. (9.2-62) reduces to Eq. (D) in Table 8.6.
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B Case (ii) kK = constant; )i = constant

In this case, Eq. (9.2-61) simplifies to

T_T+‘)1R21 r\? N @R} %R 1 ©0.2:63)
— 2T ek R, I EETACE u

Macroscopic equation

The integration of the governing equation, Eq. (9.2-53), over the volume of the system gives

2 Ry 1 dT 2
2 2.
/ f / ( k— )r sinfdrdbfdep = f / f Nrosin@drdbdeo
R I" dr R;

(9.2-64)
Integration of Eq. (9.2-64) yields
dT dT Ra
(—k —) AT RS + <k —) 47 R} =4 f Rr2dr (9.2-65)
dr r=R» dr r=R; Ry
Net rate of energy out Rate of energy
generation

which is the macroscopic energy balance under steady conditions by considering the hollow
sphere as a system.

It is also possible to make use of Newton’s law of cooling to express the rate of heat loss
from the system. If heat is lost from both surfaces, Eq. (9.2-65) can be written as

Ry
RY0) (T = )+ (b (T~ Ty = [ 2 (9.2-66)
Ry

where 71 and 75 are the surface temperatures at ¥ = R| and r = R», respectively.

9.2.3.2 Solid sphere  Consider a solid sphere of radius R with a constant surface tempera-
ture of Tg. The solution obtained for a hollow sphere, Eq. (9.2-55), is also valid for this case.
However, since the temperature must have a finite value at the center, i.e., r = 0, then C| must
be zero and the temperature distribution becomes

T r r
/ k(T)dT = —/ iz[/ ?H(u)uzdu] dr +C, (9.2-67)
0 or 0

The use of the boundary condition
at r=R T=Tg (9.2-68)

gives the solution in the form

T R 1 r
/ k(T)dT =/ —2|:/ N(u) u? du] dr (9.2-69)
Tr r r 0
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M Case (i) k£ = constant
Simplification of Eq. (9.2-69) gives

R r
k(T—TR):/ riZUO ‘ﬁ(u)uzdui|dr (9.2-70)

M Case (ii) kK = constant; )1 = constant

In this case, Eq. (9.2-69) simplifies to

?RRZ[ (r)z]
T =Tg+ 1—(= (9.2-71)

6k R

which implies that the variation in temperature with respect to the radial position is parabolic
with the maximum temperature at the center of the sphere.

Macroscopic equation

The integration of the governing equation, Eq. (9.2-53), over the volume of the system gives

2 dT 2
/ / / 2 ( )r sinfdrdfdep = / / f R r2 sinfdrdfd¢
o r r dr

(9.2-72)
Integration of Eq. (9.2-72) yields
dT R
<—k —) 47 R* =4m / Nrldr (9.2-73)
r/Jr=R 0
Rate of energy out Rate of energy

generation

which is the macroscopic energy balance under steady conditions by considering the solid
sphere as a system. It is also possible to make use of Newton’s law of cooling to express
the rate of heat loss from the system to the surroundings at T, with an average heat transfer
coefficient (k). In this case, Eq. (9.2-73) reduces to

R
R>(h)(Tr — Tso) = / Rredr (9.2-74)
0

Example 9.6 Consider Example 3.2 in which energy generation as a result of fission within
a spherical reactor of radius R is given as

ool (2)]

Cooling fluid at a temperature of T, flows over a reactor with an average heat transfer
coefficient of (k). Determine the temperature distribution and the rate of heat loss from the
reactor surface.
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Solution

The temperature distribution within the reactor can be calculated from Eq. (9.2-70). Note

Substitution of Eq. (1) into Eq. (9.2-70) gives

R q r3 rS
k(T —Tg) = mO[ 2 (? — 5?) dr 2)
Evaluation of the integration gives the temperature distribution as
T=TR+1M_M[1(1)2_L(:)‘*] o
60 k 2k |3\ R 10\ R

This result, however, contains an unknown quantity, Tg. Therefore, it is necessary to express
Tr in terms of the known quantities, i.e., T, and (k).

One way of calculating the surface temperature, 7, is to use the macroscopic energy
balance given by Eq. (9.2-74), i.e.,

R2(h) (T — Too) = T (Y]
R oo)—fﬁool = redr 4)

Equation (4) gives the surface temperature as

Ty = e e

R=710T 15 ")

Another way of calculating the surface temperature is to equate Newton’s law of cooling
and Fourier’s law of heat conduction at the surface of the sphere, i.e.,

&)

dT
(h)(Tg — Too) = —k ar (6)
T lr=r
From Eq. (3)
dT 20, R?
- = @)
rl—g 15k

Substituting Eq. (7) into Eq. (6) and solving for Tk result in Eq. (5).
Therefore, the temperature distribution within the reactor in terms of the known quantities

is given by
S +2 910R+7 RNoRE RR2|1/r\> 1 /r\* o
TIN5 (60 k 2k |3\R 10\ R

The rate of heat loss can be calculated from Eq. (9.2-73) as

R 2
. 8
Qlass =4r mo/ |:1 - <%) ]r2 dr = %EROR3 (9)
0
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Note that the calculation of the rate of heat loss does not require the temperature distribution
to be known.

9.3 ENERGY TRANSPORT WITH CONVECTION

9.3.1 Laminar Flow Forced Convection in a Pipe

Consider the laminar flow of an incompressible Newtonian fluid in a circular pipe under the
action of a pressure gradient as shown in Figure 9.9. The velocity distribution is given by

Egs. (9.1-79) and (9.1-84) as
1\ 2
v, = 2(vz)[1 — (E) :| (9.3-1)

Suppose that the fluid, which is at a uniform temperature of 7, for z < 0, is started to be
heated for z > 0 and we want to develop the governing equation for temperature.

In general, T = T (r, z) and, from Table C.5 in Appendix C, the nonzero energy flux com-
ponents are

oT
e, = —k— (9.3-2)
or
oT ~
e;=—k—+ (pCpT) v, (9.3-3)

a9z

Since there is no generation of energy, Eq. (9.2-1) simplifies to

(Rate of energy in) — (Rate of energy out) =0 (9.3-4)

I

_______________________ )"

Figure 9.9. Forced convection heat transfer in a pipe.
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For a cylindrical differential volume element of thickness Ar and length Az, as shown in
Figure 9.9, Eq. (9.3-4) is expressed as

(erlr2mr Az + €| 27r Ar) — [erlrpar2m(r + Ar)Az + ezl o4a27r Ar] =0 (9.3-5)

Dividing Eq. (9.3-5) by 27w Ar Az and taking the limit as Ar — 0 and Az — 0 give

lim (re))lr — (reg)lr+ar + Lim r ezlz —ezlz+az -0 (9.3-6)
Ar—0 Ar Az—0 Az
or,
10 ad
= (;:”) + 8% =0 9.3-7)
Substitution of Eqgs. (9.3-2) and (9.3-3) into Eq. (9.3-7) yields
~ AT k3 [ T 3T
C —r— k— 9.3-8
PPt = r8r<r8r)+ 922 ©-3-8)
Convection in Conduction in Conduction in
z-direction r-direction z-direction

In the z-direction, energy is transported by both convection and conduction. As stated
by Eq. (2.4-8), conduction can be considered negligible with respect to convection when
Peyy > 1. Under these circumstances, Eq. (9.3-8) reduces to

~ 0T k 0 oT
pCpv,— ( —) (9.3-9)

9z r or ar

As engineers, we are interested in the variation in the bulk fluid temperature, 7}, rather
than the local temperature, 7. For forced convection heat transfer in a circular pipe of radius
R, the bulk fluid temperature defined by Eq. (4.1-1) takes the form

2

/ / v, T rdrd6
2

/ / v,rdrdf

Note that, while the fluid temperature, 7', depends on both the radial and the axial coordinates,
the bulk temperature, 73, depends only on the axial direction.

To determine the governing equation for the bulk temperature, it is necessary to integrate
Eq. (9.3-9) over the cross-sectional area of the pipe, i.e.,

2 2 R 1 9 oT
pCp/ / v, —r drdf = k/ / 5 ( >rdr do (9.3-11)
r or

Since v; # v,(z), the integral on the left-hand side of Eq. (9.3-11) can be rearranged as

27 R oT 2 R a(v T) d 2 R
/ / v, —rdrd@:/ / z rdrd9=_(/ f vZTrdrdG) (9.3-12)
0 0 0z 0 0 0z dz \Jo 0

(9.3-10)
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Substitution of Eq. (9.3-10) into Eq. (9.3-12) yields

2 R 2
oT dT,
/ / v, —rdrd@—— Tb/ / vrdrde | =™ (9.3-13)
o Jo 0z p dz
(v,) R?
where m is the mass flow rate given by
= p(v,)w R? (9.3-14)

On the other hand, since d7'/dr = 0 as a result of the symmetry condition at the center of
the tube, the integral on the right-hand side of Eq. (9.3-11) takes the form

2 Rl T
/ / 9 ( 9 )rdrd@ 27TR8—T
o Fr or or

Substitution of Egs. (9.3-13) and (9.3-15) into Eq. (9.3-11) gives the governing equation for
the bulk temperature in the form

(9.3-15)

r=R

~ dTy oT
mCp — =n Dk —

9.3-16
1z or |, ( )

The solution of Eq. (9.3-16) requires the boundary conditions associated with the prob-
lem to be known. The two most commonly used boundary conditions are the constant wall
temperature and constant wall heat flux.

Constant wall temperature

Constant wall temperature occurs in evaporators and condensers in which phase change takes
place on one side of the surface. The heat flux at the wall can be represented either by Fourier’s
law of heat conduction or by Newton’s law of cooling, i.e.,

=h(Ty, — Tp) 9.3-17)
r=R

aT
grlr=r =k 8_}"

It is implicitly implied in writing Eq. (9.3-17) that the temperature increases in the radial
direction. Substitution of Eq. (9.3-17) into Eq. (9.3-16) and rearrangement yield

R Ty dT, b4
ch/ ZJTD/ hdz (9.3-18)
Ty, Tw = Tb 0
Since the wall temperature, T,,, is constant, integration of Eq. (9.3-18) yields
Cpmnf o= Tou ) _ o pipy (9.3-19)
m P T — Tb =TT zZ I

in which (&), is the average heat transfer coefficient from the entrance to the point z defined
by

(h); = ! / ) hdz (9.3-20)
z Jo
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Tp

Z

Figure 9.10. Variation in the bulk temperature with the axial direction for a constant wall temperature.

If Eq. (9.3-19) is solved for Tp, the result is

Ty =Ty — (Ty — Tp,,) exp[—(nD,(\mz)z] (9.3-21)

mCp

which indicates that the bulk fluid temperature varies exponentially with the axial direction
as shown in Figure 9.10.
Evaluation of Eq. (9.3-19) over the total length, L, of the pipe gives

e~ Ty — Tp,
mCpin( =20 ) — 2 D)L (9.3-22)
Tw - Tbnut
where
1 L
(h) = — / hdz (9.3-23)
LJo

If Eq. (9.3-22) is solved for Tp_ ., the result is

out >

Tbout = Tw - (Tw - Tb[n) exp[_(nD/Sl/w)L] (93-24)
Cp

Equation (9.3-24) can be expressed in terms of dimensionless numbers with the help of
Eq. (3.4-9), 1i.e.,

N h h
Sty = - ( >A = — ) — (9.3-25)
RePr  p.)C,  [m/(xD?/4)]Cp
The use of Eq. (9.3-25) in Eq. (9.3-24) gives
4Nu(L/D
Tpyy = Tw — (T — Tp,,) €Xp _4Nu(L/D) (9.3-26)
RePr

As engineers, we are interested in the rate of heat transferred to the fluid, i.e.,

Q = Cp(Thyy — Try) = mCp[(Tw — Thy) — (T — Thy)] (9.3-27)
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Substitution of Eq. (9.3-22) into Eq. (9.3-27) results in

. (Tw - Tb,‘n)(Tw - Tbout)

Q=@ DL)(h) ( - ) (9.3-28)
In{ —
Tw - Tbout
Note that Eq. (9.3-28) can be expressed in the form
Q = Ap(h)(AT)en = (x DL)(h) ATy (9.3-29)

which is identical to Egs. (3.2-7) and (4.5-29).
Constant wall heat flux

The constant wall heat flux type boundary condition is encountered when electrical resistance
is wrapped around the pipe. Since the heat flux at the wall is constant, then

oT
qrlr=R =k — = gy = constant (9.3-30)
ar r=R
Substitution of Eq. (9.3-30) into Eq. (9.3-16) gives
dT, D
2 il ACIw = constant (9.3-31)
dz. mC,

Integration of Eq. (9.3-31) gives the variation in the bulk temperature in the axial direction as

D
Ty =Ty, + <” f"’)z (9.3-32)
G,

Therefore, the bulk fluid temperature varies linearly in the axial direction as shown in Fig-
ure 9.11.

Evaluation of Eq. (9.3-32) over the total length gives the bulk temperature at the exit of the
pipe as

D 4q., L
Ty = T + (” v )L = Ty, + —2 (9.3-33)
n'1CP kRePr

Ty

Z

Figure 9.11. Variation in the bulk temperature with the axial direction for a constant wall heat flux.
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The rate of heat transferred to the fluid is given by
O =mCp(Ty,, — Tp,) (9.3-34)
Substitution of Eq. (9.3-33) into Eq. (9.3-34) yields

Q=@ DL)qu (9.3-35)

9.3.1.1 Thermally developed flow  As stated in Section 8.1, when the fluid velocity is
no longer dependent on the axial direction z, the flow is said to be hydrodynamically fully
developed. In the case of heat transfer, if the ratio

T-—T,
Ty — Tp

(9.3-36)

does not vary along the axial direction, then the temperature profile is said to be thermally
fully developed.

It is important to note that, although the fluid temperature, T, bulk fluid temperature, 7p,
and wall temperature, T, may change along the axial direction, the ratio given in Eq. (9.3-36)
is independent of the axial coordinate?, i.e.,

o ([ T—-Tp
— =0 (9.3-37)
0z\ Ty — Tp
Equation (9.3-37) indicates that
oT Ty — T \dT, T —Tp, \dT,
A (i =4 b (9.3-38)
07 Ty —Tp ) dz T, —Tp ) dz

Example 9.7 For a thermally developed flow of a fluid with constant physical properties,
show that the local heat transfer coefficient is a constant.

Solution

For a thermally developed flow, the ratio given in Eq. (9.3-36) depends only on the radial
coordinate r, 1.€.,

T—T,

Tw — Tp

— ) (M
Differentiation of Eq. (1) with respect to r gives

oT df
5, = Tw—Tp) == 2

21n the literature, the condition for thermally developed flow is also given in the form
A (Tw=T\_,
az\Ty —Tp

Ty —T 1 T —T,
Tw—Tp Tw—Tp

Note that
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which is valid at all points within the flow field. Evaluation of Eq. (2) at the surface of the
pipe yields

oT df
— = (Ty — Tp)— 3
5| = To=Tog] 3)
On the other hand, the heat flux at the wall is expressed as
oT
grlr=kr =k — =h(Ty —Tp) “)
ar r=R
Substitution of Eq. (3) into Eq. (4) gives
df
h=k— = constant 5)
dr r=R

Example 9.8 For a thermally developed flow, show that the temperature gradient in the
axial direction, 07 /dz, remains constant for a constant wall heat flux.

Solution

The heat flux at the wall is given by
qrlr=r = h(Ty, — Tp) = constant (1)

Since 4 is constant for a thermally developed flow, Eq. (1) implies that

T,, — Tp, = constant 2)
or,
daT, dT;
w2 3)
dz dz

Therefore, Eq. (9.3-38) simplifies to
or dT, dT,

— = = — 4
0z dz dz 5
Since dTj/dz is constant according to Eq. (9.3-31), 07 /dz also remains constant, i.e.,
oT dT, dT, D
O N | = constant 5)

9z dz  dz mCp

9.3.1.2 Nusselt number for a thermally developed flow  Substitution of Eq. (9.3-1) into

Eq. (9.3-9) gives
20Cp(v:)| 1 r\3T _k 8 (o7 (9.3-39)
v —| = —=——r— 3-
PPz R 0z r or d or

It should always be kept in mind that the purpose of solving the above equation for temper-
ature distribution is to obtain a correlation to use in the design of heat transfer equipment,
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such as heat exchangers and evaporators. As shown in Chapter 4, heat transfer correlations
are expressed in terms of the Nusselt number. Therefore, Eq. (9.3-39) will be solved for a
thermally developed flow for two different types of boundary conditions, i.e., constant wall
heat flux and constant wall temperature, to determine the Nusselt number.

Constant wall heat flux

In the case of a constant wall heat flux, as shown in Example 9.8, the temperature gradient in
the axial direction is constant and expressed in the form

oT D D
_ TV w T2 qw = constant (9.3-40)

0z iCp  [plu)(TRAIC,

Since we are interested in the determination of the Nusselt number, it is appropriate to express
dT /dz in terms of the Nusselt number. Note that the Nusselt number is given by

_ h_D _ [gw/(Tw — Tp)1D
Tk k

Nu (9.3-41)

Therefore, Eq. (9.3-40) reduces to

oT Nuw(Ty, —Tpk

T _ Nu(Ty —Tp)k (9.3-42)
92 pCpRv;)

Substitution of Eq. (9.3-42) into Eq. (9.3-39) yields

21 erT my=12(L 9.3-43
1= (7) pua-m=23(5) O34

In terms of the dimensionless variables

T—-T,
0= (9.3-44)
Ty —Tp
r
=— 9.3-45
§=% ( )
Eq. (9.3-43) takes the form
2Nu(l —£%) = L d (5 de) (9.3-46)
§dE\" d§ '
It is important to note that 6 depends only on & (or r).
The boundary conditions associated with Eq. (9.3-46) are
do
t £€=0 —=0 9.3-47
at § 4t ( )
at &=1 6=1 (9.3-48)

Integration of Eq. (9.3-46) with respect to & gives

do , &
§—= (é‘ - ?) Nu+C (9.3-49)
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where Cj is an integration constant. Application of Eq. (9.3-47) indicates that C1 = 0. Inte-
gration of Eq. (9.3-49) once more with respect to & and the use of the boundary condition
given by Eq. (9.3-48) give
Nu 2 g4
9:1—?(3—45 +&7) (9.3-50)

On the other hand, the bulk temperature in dimensionless form can be expressed as

1
2
— _Aa £2)60¢ d

Op = =0="1
/o (1-&2)¢Edg

Ty —Tp

(9.3-51)

Substitution of Eq. (9.3-50) into Eq. (9.3-51) and integration give the Nusselt number as

48
Nu=— (9.3-52)
11
Constant wall temperature
When the wall temperature is constant, Eq. (9.3-38) indicates that
aoT T, — T \dT,
= =L (9.3-53)
0z Ty—T,) dz

The variation in 7} as a function of the axial position can be obtained from Eq. (9.3-21) as

dT D(h D{h
@l _ 7 <A )z (T — Tbin)exp[—(n i >Z)zi| (9.3-54)
dz mCp mCp

(Tw_Th)

Since the heat transfer coefficient is constant for a thermally developed flow, Eq. (9.3-54)
becomes

dT, wDh(T, —Ty)  4h(Ty —Tp)

— — — (9.3-55)
dz mCp D(v)pCp
The use of Eq. (9.3-55) in Eq. (9.3-53) yields
T _ 4w —-1) (9.3-56)

9z D(v)pCp

Substitution of Eq. (9.3-56) into Eq. (9.3-39) gives

8 (hD\T, r2T LD aT 93.57
(7)1 (7) Jo-n=15(5) 037
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In terms of the dimensionless variables defined by Egs. (9.3-44) and (9.3-45), Eq. (9.3-57)
becomes

1 d [/ do
2Nu(l —£2)(1—0) = ——(é—) (9.3-58)
§ d§\ " d§
The boundary conditions associated with Eq. (9.3-58) are
do
at £=0 —=0 (9.3-59)
dé§
at £=1 =1 (9.3-60)
Note that the use of the substitution
u=1-6 (9.3-61)
reduces Eqgs. (9.3-58)—(9.3-60) to
—2Nm1—g%u——lfi<s——) (9.3-62)
§ d§\" d§ '
¢ e=0 T _o (9.3-63)
al = _— = -
dé§
at £€=1 u=0 (9.3-64)

Equation (9.3-62) can be solved for Nu by the method of Stodola and Vianello as explained
in Section B.3.4.1 in Appendix B.
A reasonable first guess for u that satisfies the boundary conditions is

u=1-—¢g? (9.3-65)

Substitution of Eq. (9.3-65) into the left-hand side of Eq. (9.3-62) gives
— ) = —2Nu(g — 283 +&° 9.3-66
dg(gdg) ug —28°+§7) ( )

The solution of Eq. (9.3-66) is

11— 1852 4 954 — 2¢©
u=Nu 57+ 9% d (9.3-67)
36
fi®)
Therefore, the first approximation to the Nusselt number is
1
[ ea-grneas
NuD = 40 (9.3-68)

1
Asa—éﬁﬁ@&
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Substitution of (&) from Eq. (9.3-67) into Eq. (9.3-68) and evaluation of the integrals give
Nu = 3.663 (9.3-69)

On the other hand, the value of the Nusselt number, as calculated by Graetz (1883, 1885)
and later independently by Nusselt (1910), is 3.66. Therefore, for a thermally developed
laminar flow in a circular pipe with constant wall temperature, Nu = 3.66 for all practical
purposes.

Example 9.9 Water flows through a circular pipe of 5 cm internal diameter with an average
velocity of 0.01 m/s. Determine the length of the pipe to increase the water temperature
from 20 °C to 60 °C for the following conditions:

a) Steam condenses on the outer surface of the pipe so as to keep the surface temperature
at 100°C.

b) Electrical wires are wrapped around the outer surface of the pipe to provide a constant
wall heat flux of 1500 W/m?.

Solution

Physical properties

The mean bulk temperature is (20 4+ 60)/2 =40°C (313 K).
p =992 kg/m>

=654 x 107° kg/m-s

k=632 %1073 W/m-K
Pr=4.32

For water at 313 K:

Assumptions

1. Steady-state conditions prevail.
2. Flow is hydrodynamically and thermally fully developed.

Analysis
The Reynolds number is

D(v)p  (0.05)(0.01)(992)

Re = L 65ax106 758 = Laminar flow

a) Since the wall temperature is constant, from Eq. (9.3-26)

DRePr Ty — Tp, (0.05)(758)(4.32) 100 — 20
I — In n )= In =7.8m
4Nu T, —1Tp 4(3.66) 100 — 60

out

b) For a constant heat flux at the wall, the use of Eq. (9.3-33) gives

_ (Ty,,, — Tp,) kRePr (60 —20)(632 x 1073)(758)(4.32)
- 4q., a 4(1500)

L =13.8 m
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T;

B
X
Lok
Z — >y

Figure 9.12. Couette flow with heat transfer.

9.3.2 Viscous Heating in a Couette Flow

Viscous heating becomes an important problem during flow of liquids in lubrication, viscom-
etry, and extrusion. Let us consider Couette flow of a Newtonian fluid between two large
parallel plates as shown in Figure 9.12. The surfaces at x =0 and x = B are maintained at 7T,
and T1, respectively, with 7, > T.

Rate of energy generation per unit volume as a result of viscous dissipation is given by>

dv.\2
9% = M<ﬁ) (9.3-70)
dx
The velocity distribution for this problem is given by Eq. (8.1-12) as
LA (9.3-71)
Vv B

The use of Eq. (9.3-71) in Eq. (9.3-70) gives the rate of energy generation per unit volume as

N = M—Vz (9.3-72)

B2

The boundary conditions for the temperature, i.e.,
at x=0 T=T, (9.3-73)
at x=B T=T (9.3-74)

suggest that T = T (x). Therefore, Table C.4 in Appendix C indicates that the only nonzero
energy flux component is e,, and it is given by

dT

— 9.3-75
I ( )

€x =(4x = —

3The origin of this term comes from —(7 : Vv), which represents the irreversible degradation of mechanical
energy into thermal energy in the equation of energy. For a more detailed discussion on the subject, see Bird ef al.
(2002).
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For a rectangular volume element of thickness Ax, as shown in Figure 9.12, Eq. (9.2-1) is
expressed as

V2
G WL = gulosas WL + (%) WLAx =0 (9.3-76)

Dividing each term by W L Ax and taking the limit as Ax — 0 give

. dxlx — gxlx+ax 28 V2
lim =

0 9.3-77
Ax—0 Ax + 32 ( )
or,
dgy  mV2_, (9.3-78)
dx B2 '

Substitution of Eq. (9.3-75) into Eq. (9.3-78) gives the governing equation for temperature as

d*T  npv?

k rr-
dx? + B2

=0 (9.3-79)

in which both viscosity and thermal conductivity are assumed to be independent of temper-
ature. The physical significance and the order of magnitude of the terms in Eq. (9.3-79) are
given in Table 9.1. Therefore, the ratio of the viscous dissipation to conduction, which is
known as the Brinkman number, is given by

Viscous dissipation R V2/B2 Rz V2 (9.3-80)

Br= . = =
Conduction k(T,—T))/B* k(T,—Ty)

Before solving Eq. (9.3-79), it is convenient to express the governing equation and the
boundary conditions in dimensionless form. Introduction of the dimensionless quantities

T-T

X
0 = == 9.3-81
T T, £ B ( )
reduces Eqgs. (9.3-79), (9.3-73), and (9.3-74) to
d’6
—— =—Br (9.3-82)
dg?

Table 9.1. The physical significance and the order of magnitude of the
terms in Eq. (9.3-79)

Term Physical Significance Order of Magnitude
d*T k(T, —T:

k— Conduction Ko —T1)
dx? B2

w2 w2

Y Viscous dissipation Y
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at £=0 0=1 (9.3-83)
at E=1 0=0 (9.3-84)

Integration of Eq. (9.3-82) twice gives
Br ,
0= —75 +CiE+C (9.3-85)

Application of the boundary conditions, Egs. (9.3-83) and (9.3-84), gives the solution as

g—_Breo (B N\ (9.3-86)
AR S o

Note that, when Br = 0, i.e., no viscous dissipation, Eq. (9.3-86) reduces to Eq. (8.3-10). The
variation in 6 as a function of £ with Br as a parameter is shown in Figure 9.13.

In engineering calculations, it is more appropriate to express the solution in terms of the
Nusselt number. Calculation of the Nusselt number, on the other hand, requires the evaluation
of the bulk temperature defined by

W B B
/ /vadxdy /vadx
T, = J0_Jo _Jo
b_ =

WooB 3 (9.3-87)
/ / v dxdy / v dx
o Jo 0
In dimensionless form, Eq. (9.3-87) becomes
1
0d
o | o0ds
Op = = (9.3-88)
T, — T 1
/ ¢pd§
0
1.2
Br=4
1
Br=3
0.8 - Br=2
e Br=1
06 [ Breo
04
02
0 0 0‘2 0‘.4 0‘6 (;8 1

Figure 9.13. Variation in 8 as a function of & with Br as a parameter.



354 9. Steady Microscopic Balances with Generation

where
Uz
=— 9.3-89
¢ v ( )
Substitution of Egs. (9.3-71) and (9.3-86) into Eq. (9.3-88) gives
Br+8
Op = 9.3-90
b B ( )
Calculation of the Nusselt number for the bottom plate
The heat flux at the bottom plate is expressed as
ar
—kd— = (h)o(Tp — Tp) (9.3-91)
X x=0
Therefore, the Nusselt number becomes
h)o(2B —dT/dx)x=
Nu, = (M0CB) _ 5 p —(dT/dX)=0 (9.3-92)

k T, —Tp

The term 2B in the definition of the Nusselt number represents the hydraulic equivalent di-
ameter for parallel plates. In dimensionless form, Eq. (9.3-92) becomes

_ 2(d0/d§)g=0

9.3-93
o= (9.3-93)
The use of Eq. (9.3-86) in Eq. (9.3-93) gives
Nu, = 12( 212 (9.3-94)
u, = 3-
© Br—4
Note that Nu, takes the following values depending on the value of Br:
0 Br=2
Nuy,=1<0 2<Br<4 (9.3-95)
oo Br=4

When Br = 2, the temperature gradient at the lower plate is zero, i.e., it is an adiabatic surface.
When 2 < Br < 4, as can be seen from Figure 9.13, temperature reaches a maximum within
the flow field. For example, for Br = 3, 6 reaches the maximum value of 1.042 at £ =0.167
and heat transfer takes place from the fluid to the lower plate. When Br =4, 6, = 1 from
Eq. (9.3-90) and, as a result of very high viscous dissipation, 7;, becomes uniform at the
value of T,. Since the driving force, i.e., T, — Tp, is zero, Nu, is undefined under these
circumstances.
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Calculation of the Nusselt number for the upper plate

The heat flux at the upper plate is

ar

o = (h)1(T1 — Tp) (9.3-96)
X |x=B

Therefore, the Nusselt number becomes

_hh@B) _,  dT/dx),—p _  2(d0/d§);

Nu; = 2 = (9.3-97)
k T, —Tp Op
Substitution of Eq. (9.3-86) into Eq. (9.3-97) gives
Br+2
Nu; =12 (9.3-98)
Br+8

9.4 MASS TRANSPORT WITHOUT CONVECTION

Under steady conditions, the conservation statement for species A is expressed by

Rate of B Rate of " Rate of —0 9.4-1)
species A in species A out species .4 generation | ~ -

In this section, we restrict our analysis to cases in which convection is negligible and mass
transfer takes place mainly by diffusion.

9.4.1 Diffusion in a Liquid with a Homogeneous Reaction

Gas A dissolves in liquid B and diffuses into the liquid phase as shown in Figure 9.14. As it
diffuses, species .4 undergoes an irreversible chemical reaction with species B to form AB,
ie.,

A+B— AB
The rate of reaction is expressed by
r=kca
Gas A
L CAO T7
Liquid B
L
S
BT
f

Figure 9.14. Diffusion and reaction in a liquid.
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We are interested in the determination of the concentration distribution within the liquid phase
and the rate of depletion of species .A.
The problem will be analyzed with the following assumptions:

1. Steady-state conditions prevail.
2. The convective flux is negligible with respect to the molecular flux.
3. The total concentration is constant, i.e.,

C=CA+CB+CABCB

4. The concentration of A does not interfere with the diffusion of A through B, i.e.,
A molecules, for the most part, hit 3 molecules and hardly ever hit A8 molecules.
This is known as pseudo-binary behavior.

Since c4 = c4(z), Table C.8 in Appendix C indicates that the only nonzero molar flux
component is N4_, and it is given by

d
Na,=J; =—Dag szA (9.4-2)

For a differential volume element of thickness Az, as shown in Figure 9.14, Eq. (9.4-1) is
expressed as

Na,l;:A—=Na |40 A+NRaAAZz=0 (9.4-3)
Dividing Eq. (9.4-3) by AAz and taking the limit as Az — 0 give

NAz|z - NAZ|z+Az

li Na=0 9.4-4
AZIEO Az + 9 ( )
or,
dNg, )
— =+ R a2=0 (9.4-5)
dz

The use of Eq. (5.3-26) gives the rate of depletion of species .A per unit volume as
Na=—kca (9.4-6)
Substitution of Egs. (9.4-2) and (9.4-6) into Eq. (9.4-5) yields

d*cy

dz?

Dag

—kca=0 9.4-7)

The boundary conditions associated with the problem are

at z=0 CA =C4, (9.4-8)
d

at z=1L A _y (9.4-9)
dz

The value of c4, in Eq. (9.4-8) can be determined from Henry’s law. The boundary condition
given by Eq. (9.4-9) indicates that since species .A cannot diffuse through the bottom of the
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Table 9.2. The physical significance and the order of magnitude of the
terms in Eq. (9.4-7)

Term Physical Significance Order of Magnitude
d%c A CA
D Rate of diffusion Dap —~
AB 3 AB 75
kca Rate of reaction kca

o

container, i.e., impermeable wall, then the molar flux and the concentration gradient of species

A are zero.

The physical significance and the order of magnitude of the terms in Eq. (9.4-7) are given
in Table 9.2. Therefore, the ratio of the rate of reaction to the rate of diffusion is given by

Rate of reaction kca, kL?

Rate of diffusion  Dagca, /L2 Dag

and the Thiele modulus?, A, is defined by

kL2
A= [——
Dap

Introduction of the dimensionless quantities

CA Z
0 = — = —
ca, 5 L
reduces Eqgs. (9.4-7)—(9.4-9) to the form
e
— =A“0
d&?
at £=0 0=
do
at £=1 — =0
d§

(9.4-10)

9.4-11)

(9.4-12)

(9.4-13)
(9.4-14)

(9.4-15)

Note that Egs. (9.4-13)—(9.4-15) are similar to Eqs. (8.2-82)—(8.2-84). Therefore, the solution

is given by Eq. (8.2-88), i.e.,

g— cosh[A(1 —&)]
N cosh A

(9.4-16)

It is interesting to observe how the Thiele modulus affects the concentration distribution.
Figure 9.15 shows variation in 6 as a function of £ with A being a parameter. Since the Thiele

4Since the reaction rate constant, k, has the unit of s—1 , the characteristic time, or time scale, for the reaction is

given by

1
(ten)rxn = X

Thus, the Thiele modulus can also be interpreted as the ratio of diffusive time scale to reaction time scale.
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: @
A=05
0.8
(A=10
0.6
0
0.4
A=5
0.2f
A=10
0 1 ) 1
0 0.2 0.4 0.6 0.8 1

Figure 9.15. Variation in 6 as a function of & with A being a parameter.

modulus indicates the rate of reaction with respect to the rate of diffusion, A = 0 implies no
chemical reaction and hence 6 =1 (cs4 = ca,) for all &. Therefore, for very small values of
A, 0 is almost unity throughout the liquid. On the other hand, for large values of A, i.e., rate
of reaction > rate of diffusion, as soon as species A enters the liquid phase, it undergoes a
homogeneous reaction with species B. As a result, species A is depleted before it reaches the
bottom of the container. Note that the slope of the tangent to the curve drawn at £ =1 has a
zero slope, i.e., parallel to the &-axis.

9.4.1.1 Macroscopic equation Integration of the governing equation, Eq. (9.4-7), over the
volume of the system gives

L 2 R dch L 2 R
/ / / Das — rdrdfdz = / f / kcardrdfdz (9.4-17)
o Jo Jo dz o Jo Jo

Carrying out the integrations yields

dca L
nR2<—DAB— = 7Rk | cadz (9.4-18)
dz z=0 0
Rate of moles of species A Rate of depletion of species A
entering the liquid by homogeneous chem. rxn.

which is the macroscopic inventory rate equation for species .4 by considering the liquid in
the tank as a system. Substitution of Eq. (9.4-16) into Eq. (9.4-18) gives the molar rate of
depletion of species A, 714, as

_ nR2DABcAUA tanh A
B L

i (9.4-19)
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For slow reactions, the Thiele modulus, A, goes to zero. Under these circumstances,
tanh A — A and Eq. (9.4-19) reduces to

fia =nmR*ca kL (9.4-20)

indicating that the rate of depletion of species A is independent of the diffusion coefficient,
D g, and depends on the reaction rate constant, k.

For very fast reactions, the Thiele modulus, A, goes to infinity. In this case, tanh A — 1
and Eq. (9.4-19) becomes

na IJTRZCAO\/'DAB]C (9.4-21)

indicating that the rate of depletion of species A is dependent on both D4 p and k.

9.4.2 Diffusion in a Spherical Particle with a Homogeneous Reaction

Consider a homogeneous spherical aggregate of bacteria of radius R as shown in Figure 9.16.
Species A diffuses into the bacteria and undergoes an irreversible first-order reaction. The
concentration of species A at the surface of the bacteria, c4,, is known. We want to deter-
mine the rate of consumption of species .A. The problem will be analyzed with the following
assumptions:

1. Steady-state conditions prevail.
2. Convective flux is negligible with respect to the molecular flux.
3. The total concentration is constant.

Since c4 = ca(r), Table C.9 in Appendix C indicates that the only nonzero molar flux
component is N4, , and it is given by

d
Na, =1}, =—Dap —= (9.4-22)

For a spherical differential volume element of thickness Ar, as shown in Figure 9.16, Eq. (9.4-
1) is expressed in the form

N, |47r% — N, s ardm(r + Ar)? +4nr2 Arfig =0 (9.4-23)
Dividing Eq. (9.4-23) by 47 Ar and taking the limit as Ar — 0 give

i (r*Na)lr — F*Na)lr+ar
Ar—0 Ar

+ 7290, =0 (9.4-24)

NA},‘

” NAV‘// ‘eArg,‘

r+Ar

Figure 9.16. Diffusion and homogeneous reaction inside a spherical particle.
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or,

_d(r*Na,)
dr

The use of Eq. (5.3-26) gives the rate of depletion of species A per unit volume as

+ 2R, =0 (9.4-25)

Na=—kca (9.4-26)

Substitution of Eqgs. (9.4-22) and (9.4-26) into Eq. (9.4-25) gives

Dap d [ ydca
—kca=0 9.4-27
r2 dr (r dr ) A ( )

in which the diffusion coefficient is considered constant. The boundary conditions associated
with Eq. (9.4-27) are

dca

at r=0 — =0 (9.4-28)
dr

at r=R CA =CAg (9.4-29)

The physical significance and the order of magnitude of the terms in Eq. (9.4-27) are given in
Table 9.3. Therefore, the ratio of the rate of reaction to the rate of diffusion is given by

Rate of reaction kcag k R?
= = (9.4-30)
Rate of diffusion  Dppcar/R?> Dasp
Introduction of the dimensionless quantities
CA r k R?
0=— E=— A= |— (9.4-31)
CAg R Dag
reduces Eqgs. (9.4-27)—(9.4-29) to
1 d( ,do 2
——[& — ) —-A0=0 (9.4-32)
E2dE\” dE
t £€=0 d6 0 (9.4-33)
a = —_— = 4-
dé§
at £=1 =1 (9.4-34)

Table 9.3. The physical significance and the order of magnitude of the
terms in Eq. (9.4-27)

Term Physical Significance Order of Magnitude
D d dc c
réB o <r2 %) Rate of diffusion Dap %

kca Rate of reaction kcag
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Problems in spherical coordinates are converted to rectangular coordinates by the use of
the following transformation

o= &) (9.4-35)
£
From Eq. (9.4-35), note that
do _ 1 du u (9.4-36)
ds & dé £2 '
249 —g — - (9.4-37)
ds dé ’
5 _du+§d2u du_gdzu (9.4-38)
ds ds S d§ " dgr dEC dE? '
Substitution of Eqgs. (9.4-35) and (9.4-38) into Eq. (9.4-32) yields
Pu_ 2, g (9.4-39)
- u = ST
dg?
On the other hand, the boundary conditions, Egs. (9.4-33) and (9.4-34), become
at £=0 u=0 (9.4-40)
at £=1 u=1 (9.4-41)
The solution of Eq. (9.4-39) is
u = Kjsinh(A§) + K> cosh(A€) (9.4-42)

where K| and K7 are constants. Application of the boundary conditions, Egs. (9.4-40) and
(9.4-41), gives the solution as

sinh(A&)
=—" 9.4-43
sinh A ( )
or,
R sinh[A(r/R
ca _ RsinhlAG/R)] (9.4-44)
Carp T sinh A

9.4.2.1 Macroscopic equation Integration of the governing differential equation, Eq. (9.4-
27), over the spherical aggregate of bacteria gives

2 D d d 2
/ // 48 r2sinddrdo dg = / //kcAr sinf dr do de
P2 dr dr

(9.4-45)
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Carrying out the integrations yields

d
47TR2DAB ﬂ

R
— ank / cardr (9.4-46)
dl" 0

r=R

Rate of moles of species A Rate of consumption of species A
entering the bacteria by homogeneous chem. rxn.

Substitution of Eq. (9.4-44) into Eq. (9.4-46) gives the molar rate of consumption of species
A, 7y, as

nga=—4m RDyp CAp (1 — AcothA) (9.4-47)

The minus sign in Eq. (9.4-47) indicates that the flux is in the negative r-direction, i.e., to-
wards the center of the sphere.

9.5 MASS TRANSPORT WITH CONVECTION

9.5.1 Laminar Forced Convection in a Pipe

Consider the laminar flow of an incompressible Newtonian liquid (B) in a circular pipe under
the action of a pressure gradient as shown in Figure 9.17. The velocity distribution is given

by Egs. (9.1-79) and (9.1-84) as
A\ 2
v, = 2(vz)[1 — (E) } (9.5-1)

Suppose that the liquid has a uniform species .A concentration of c4, for z < 0. For z > 0,
species A concentration starts to change as a function of » and z as a result of mass trans-
fer from the walls of the pipe. We want to develop the governing equation for species A
concentration. Liquid viscosity is assumed to be unaffected by mass transfer.

I

______________________ )"

Figure 9.17. Forced convection mass transfer in a pipe.



9.5 Mass Transport with Convection 363

From Table C.8 in Appendix C, the nonzero mass flux components for species .4 are

0
Wi, = —pDap 2 9.5-2)
or
dwy
Wa, =—pDagp ? + paAv; (9.5-3)

For a dilute liquid solution, the total density is almost constant and Eqs. (9.5-2) and (9.5-3)
become

Wa, = —Dap — (9.5-4)
ar
0pA

Wa, =—Das N + pAv; (9.5-5)

Dividing Eqgs. (9.5-4) and (9.5-5) by the molecular weight of species A, M4, gives

0

Na, = —Dap =2 (9.5-6)
or
acap

NAz = —Duap a—Z +cAvy (9.5-7)

Since there is no generation of species .4, Eq. (9.4-1) simplifies to

Rate of Rate of
(species A in) B <species A out) =0 ©.5-8)

For a cylindrical differential volume element of thickness Ar and length Az, as shown in
Figure 9.17, Eq. (9.5-8) is expressed as

(NA, |r2mr Az + Na, |z27rrAr)
— [N, lr+ar27(r + Ar)Az + Ny o4 a27r Ar] =0 (9.5-9)
Dividing Eq. (9.5-9) by 27w Ar Az and taking the limit as Ar — 0 and Az — 0 give

1 N — (rN N — N
1 im (rNa)lr — (rNa)lr+ar + lim A.lz Azlz+Az _0 (9.5-10)
r Ar—0 Ar Az—0 Az

or,

1 d(rNa,) ONa,
— + h
r or 0z

=0 (9.5-11)

Substitution of Egs. (9.5-6) and (9.5-7) into Eq. (9.5-11) yields

dca  Dap 9 [ 0ca 9%ca
v, _ Z(r S 1 Dap 2 (9.5-12)
0z r or or 0z
N ——’ ——
Convection in  Diffusion in r-direction Diffusion in

z-direction z-direction
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In the z-direction, the mass of species .A is transported by both convection and diffusion. As
stated by Eq. (2.4-8), diffusion can be considered negligible with respect to convection when
Pen > 1. Under these circumstances, Eq. (9.5-12) reduces to

aca DAB 0 dca
= —\r—
07 r or ar

(9.5-13)

Vz

As engineers, we are interested in the variation in the bulk concentration of species A, c4,,
rather than the local concentration, c4. For forced convection mass transfer in a circular pipe
of radius R, the bulk concentration defined by Eq. (4.1-1) takes the form

2
/ / v,cardrdf

ca (9.5-14)

2
/ / v.rdrdf

In general, the concentration of species A, ¢4, may depend on both the radial and axial coordi-
nates. However, the bulk concentration of species A, c4,, depends only on the axial direction.

To determine the governing equation for the bulk concentration of species .4, it is necessary
to integrate Eq. (9.5-13) over the cross-sectional area of the tube, i.e.,

2 2 R
19/ o
/ /vz—rdrde DABf / a( CA)rdrdG (9.5-15)
r r

Since v; # v,(z), the integral on the left-hand side of Eq. (9.5-15) can be rearranged as

2 2 R 2r rR
a d d
/ / v, ﬂr drdf = / / (UZCA)rdr do = — / / vcardrdf
0 0 0z dz 0 0

(9.5-16)

Substitution of Eq. (9.5-14) into Eq. (9.5-16) yields

2 R 2 R
0 d d
/ / v, —cArdr do = — CA,,/ f vrdrdf | =Q Ay (9.5-17)
0 0 0z dZ 0 0 dZ

where Q is the volumetric flow rate.
On the other hand, since dc4/dr = 0 as a result of the symmetry condition at the center of
the tube, the integral on the right-hand side of Eq. (9.5-15) takes the form

R 19 acA dca
rdrdfd =nD——
ot ar ar

Substitution of Egs. (9.5-17) and (9.5-18) into Eq. (9.5-15) gives the governing equation for
the bulk concentration in the form

(9.5-18)

r=R

(9.5-19)
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The solution of Eq. (9.5-19) requires the boundary conditions associated with the problem to
be known.

Constant wall concentration

If the inner surface of the pipe is coated with species A, the molar flux of species .A on the
surface can be represented by

Dap—

=ke(ca, —cap) (9.5-20)
or

r=R

It is implicitly implied in writing Eq. (9.5-20) that the concentration increases in the radial
direction. Substitution of Eq. (9.5-20) into Eq. (9.5-19) and rearrangement yield

d Zz
o) / CA" —7D / ke dz (9.5-21)
CAU) - O
Since the wall concentration, ¢4, , is constant, integration of Eq. (9.5-21) yields
CA, — CAy,
0 1n(7”'") =7 D(k.).z (9.5-22)
CAw - CAb

in which (k.); is the average mass transfer coefficient from the entrance to the point z defined
by

1 Z
o=+ [ kedz 9.5-23)
2Jo
If Eq. (9.5-22) is solved for c4,, the result is
7 D{ke),
ca, =ca, — (ca, — cAhm)exp — T Z (9.5-24)

which indicates that the bulk concentration of species .A varies exponentially with the axial
direction as shown in Figure 9.18.
Evaluation of Eq. (9.5-22) over the total length, L, of the pipe gives

CA, — CAp,
0 ln<—’”) = 7 D(k)L (9.5-25)
CA

w CAbnut

CAb

Z

Figure 9.18. Variation in the bulk concentration of species .A with the axial direction for a constant wall concentra-
tion.
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where

1 L
(k) = —/ kedz (9.5-26)
L Jo

If Eq. (9.5-25) is solved for c4, . the result is

CAb(m; =CAy, — (CAw - CAbm) exp|:_ <7TDQ<kL> )L} (95'27)

Equation (9.5-27) can be expressed in terms of dimensionless numbers with the help of
Eq. (3.4-6). The result is

Sh (k) (ke)

Sty = = =5~ 9.5-28
M~ ReSc (v.)  Q/(mD?*/4) ( )
The use of Eq. (9.5-28) in Eq. (9.5-27) gives
4Sh(L/D)
CAbom‘ =CAy — (CAw - CAbm) exp[_W} (9.5'29)

As engineers, we are interested in the rate of moles of species A transferred to the fluid,
ie.,

ia=Q(ca,, —ca, ) =Q[(ca, —ca, ) —(ca, —ca,,)] (9.5-30)
Substitution of Eq. (9.5-25) into Eq. (9.5-30) results in

(CAU,, - CAb,‘n) B (CAw - cAbout)

nia = (mDL)(k.) ( A —ca ) (9.5-31)
ln mn
CA“’ - CAbout
Note that Eq. (9.5-31) can be expressed in the form
na = Apmke)(Aca)en = (T DL)(ke)(Aca)Lm (9.5-32)

which is identical to Egs. (3.3-7) and (4.5-34).
Constant wall mass flux

Consider a circular pipe with a porous wall. If species A is forced through the porous wall
at a specified rate per unit area, then the molar flux of species .4 on the pipe surface remains
constant, i.e.,

d
Na,lr=r =Das oea = N4, = constant (9.5-33)
ar r=R
Substitution of Eq. (9.5-33) into Eq. (9.5-19) gives

dCAb i 7TDNAw
dz  Q

= constant (9.5-34)
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(‘Ab

a

Figure 9.19. Variation in the bulk concentration of species .A with the axial direction for a constant wall heat flux.

Integration of Eq. (9.5-34) gives the variation in the bulk concentration of species A in the
axial direction as

DN
”—A“’)z (9.5-35)

Therefore, the bulk concentration of species A varies linearly in the axial direction as shown
in Figure 9.19.

Evaluation of Eq. (9.5-35) over the total length gives the bulk concentration of species .4
at the exit of the pipe as

T DNy 4N4, L
CAppy = CAp, T (TW)L =ca, + m (9.5-36)
The rate of moles of species .A transferred is given by
na=Q(ca,, —Cay) (9.5-37)
Substitution of Eq. (9.5-36) into Eq. (9.5-37) yields
iia=(@DL)N,, | (9.5-38)
9.5.1.1 Fully developed concentration profile  If the ratio
AT A (9.5-39)
CA, — CAy

does not vary along the axial direction, then the concentration profile is s