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FOREWORD 

In the foreword to the first edition of the VAX Architecture Reference Manual, Sam 
Fuller stated "Computer design continues to be a dynamic field; I expect we will see 
more rather than less change and innovation in the decades ahead." The Alpha AXP 
Architecture Reference Manual demonstrates the accuracy of that prediction. 

Alpha follows VAX by about fifteen years. The intervening years have witnessed an 
eruption in computer technology, one that shows no sign of abating: 

• More than a 1000-fold increase in the performance of microprocessors 

• More than a 1000-fold increase in the density of semiconductor memories 

• More than a 500-fold increase in the density of magnetic storage devices 

• More than a 100-fold increase in the speed of network connections 

During the same period, the internal organization of computer systems has changed 
as well, based on developments such as RISC architecture, symmetric multiprocess-
ing, and coherent distributed systems. Moreover, the fundamental paradigms of 
computing have been changed not once, but several times, with the introduction of 
personal computers, networked workstations, local area networks, and client/server 
computing. 

These developments present an enormous challenge for computing in the 21st cen-
tury. Future computers will be called upon to solve problems of great complexity, 
worldwide, in a distributed manner. They will have to provide unprecedented per-
formance, flexibility, reliability, and scalability in order to implement a global infras-
tructure of information, and to give users an untrammelled window on the world. 

Alpha is Digital's response to the challenge of 21st century computing. It represents 
the culmination of the company's knowledge and belief about how the next gener-
ation of computers should be built. Alpha is based on a decade's experimental and 
engineering work in RISC architecture, high-speed implementation, software com-
patibility and migration, and system serviceability. It provides the foundation for 
future implementations, from mobile computing units to massively parallel super-
computers. 

Alpha is designed to handle the largest computing problems of today and tomorrow. 
It represents a major advance over its predecessor, the VAX. Comparing Alpha to 
VAX, two differences stand out immediately. First, Alpha is a 64-bit architecture; 
VAX is a 32-bit architecture. This means that Alpha's virtual address capability 
extends to a 64-bit linear range of bytes in memory. Supporting this extended virtual 
address space are an extended maximum physical address range (up to 48 bits) 
and larger pages (8 KB to 64 KB). Alpha's extended virtual address range allows 
direct manipulation of the gigabytes and terabytes of data produced in electrical 
and mechanical design, database and transaction processing, and imaging. 

Second, Alpha is a RISC architecture, whereas VAX is a CISC architecture. RISC 
stands for Reduced Instruction Set Computer, a technique of computer organization 
researched at IBM, Stanford, and Berkeley in the early 1980s. RISC architectures 



are characterized by simple, fixed-length instruction formats; a small number of ad-
dressing modes; large register files; and a load-store instruction set architecture. In-
structions are typically decoded and executed directly by hardware. Alpha's stream-
lined organization allows high-speed implementation in a variety of technologies, 
while providing strong compatibility for programs and data with today's computers. 

CISC stands for Complex Instruction Set Computer. CISC architectures generally 
have variable length instruction formats; a large number of addressing modes; small 
to medium sized register files; and a full set of register-to-memory (or even memory-
to-memory) instructions. Instructions are typically decoded and interpreted by a 
microprogram. 

The following table contrasts the architectural differences between VAX and Alpha. 

Characteristic VAX Alpha 

Architecture 
Virtual address range 
Physical address range 
Page size 
Instruction length 
General registers 
Addressing modes 
Instruction set architecture 
Directly supported data types 

CISC 
32-bit 
Up to 32-bit 
512 bytes 
1-51 bytes 
16 32-bit 
21 
General 
Integer, floating, 
bit field, queue, 
character string, 
decimal string 

RISC 
Up to 64-bit 
Up to 48-bit 
8 KB-64 KB 
4 bytes 
64 64-bit 
3 
Load-store 
Integer, floating 

This book is the culmination of an effort that began in 1988. Since that time, Alpha 
has grown from a paper specification to a cohesive set of chips, systems, and software, 
spanning the computer spectrum. This achievement is due to the efforts of many 
hundreds of people in Engineering, Marketing, Sales, Service, and Manufacturing. 
This book is documentation of, and a tribute to, the outstanding work they have 
done. 

Bob Supnik 
Senior Corporate Consultant, 
Vice President 



A Note on the Structure of This Book 

The Alpha AXP Architecture Reference Manual is divided into 3 Parts, 4 appendixes, 
and an index. 

Each part or section of a part describes a major portion of the Alpha AXP 
architecture. Each contains its own Table of Contents. Additional sections will 
be incorporated as development proceeds on the architecture. 

The following table outlines the contents of the manual: 

Name Symbol Contents 

Part One 

Part Two 

(I) Common Architecture 
This part describes the architecture that is common to and 
required by all implementations. 

(II) Specific Operating System PALcode Architecture 
This part contains sections that describe how the following 
operating systems relate to the Alpha AXP architecture: 

Section Name and Contents Symbol 

Part Three (III) 

Appendixes 

Index 

OpenVMS AXP Software 
DEC OSF/1 Software 
Windows NT AXP Software 

(II-A) 
(Π-Β) 
(II-C) 

Console Interface Architecture 
This part describes an architected console firmware 
implementation. 
Because information in the appendixes can be shared by 
more than one section, appendixes are grouped together at 
the end of the manual. 
The index at the end of the manual is structured like 
a master index. Index entries are called out by the 
appropriate symbol, (I), (II), and so forth, associated with 
the corresponding part or section. Index entries for the 
appendixes are called out by appendix name and page 
number. 



Preface to the First Edition 

The Alpha architecture is a RISC architecture that was designed for high perfor-
mance and longevity. Following Amdahl, Blaauw, and Brooks1, we distinguish be-
tween architecture and implementation: 

• Computer architecture is defined as the attributes of a computer seen by a 
machine-language programmer. This definition includes the instruction set, in-
struction formats, operation codes, addressing modes, and all registers and mem-
ory locations that may be directly manipulated by a machine-language program-
mer. 

• Implementation is defined as the actual hardware structure, logic design, and 
data-path organization. 

This architecture book describes the required behavior of all Alpha implementations, 
as seen by the machine-language programmer. The architecture does not speak to 
implementation considerations such has how fast a program runs, what specific bit 
pattern is left in a hardware register after an unpredictable operation, how to sched-
ule code for a particular chip, or how to wire up a given chip; those considerations 
are described in implementation-specific documents. 

Various Alpha implementations are expected over the coming years, starting with 
the Digital 21064 chip. 

Goals 

When we started the Alpha project in the fall of 1988, we had a small number of 
goals: 

1. High performance 

2. Longevity 

3. Run VMS and UNIX 

4. Easy migration from VAX (and soon-to-be MIPS) customer base 

As principal architects, Rich Witek and I made design decisions that were driven 
directly by these goals. 

We assumed that high performance was needed to make a new architecture attrac-
tive in the marketplace, and to keep Digital competitive. 

We set a 15-25 year design horizon (longevity) and tried to avoid any design elements 
that we thought would become limitations during this time. The design horizon led 

Amdahl, G.M., G.A. Blaauw, and F.P. Brooks, Jr. "Architecture of the IBM System/360." IBM Journal of Research and 
Development, vol. 8, no. 2 (April 1964): 87-101. 



directly to the conclusion that Alpha could not be a 32-bit architecture: 32-bit ad-
dresses will be too small within 10 years. We thus adopted a full 64-bit architecture, 
with a minimal number of 32-bit operations for backward compatibility. Wherever 
possible, 32-bit operands are put in registers in a 64-bit canonical form and operated 
upon with 64-bit operations. 

The longevity goal also caused us to examine how the performance of implementa-
tions would scale up over 25 years. Over the past 25 years, computers have become 
about 1000 times faster. This suggested to us that Alpha implementations would 
need to do the same, or we would have to bet that the industry would fall off the 
historical performance curve. We were unwilling to bet against the industry, and 
were unwilling to ignore the issue, so we seriously examined the consequences of 
longevity. 

We thought that it would be realistic for implementors to improve clock speeds by 
a factor of 10 over 25 years, but not by a factor of 100 or 1000. (Clock speeds have 
improved by about a factor of 100 over the past 25 years, but physical limits are now 
slowing down the rate of increase.) 

We concluded that the remaining factor of 100 would have to come from other design 
dimensions. If you cannot make the clock faster, the next dimension is to do more 
work per clock cycle. So the Alpha architecture is focused on allowing implemen-
tations that issue many instructions every clock cycle. We thought that it would 
be realistic for implementors to achieve about a factor of 10 over 25 years by using 
multiple instruction issue, but not a factor of 100. Even a factor of 10 will require 
perhaps a decade of compiler research. 

We concluded that the remaining factor of 10 would have to come from some other 
design dimension. If you cannot make the clock faster, and cannot do more work per 
clock, the next dimension is to have multiple clocked instruction streams, that is, 
multiple processors. So the Alpha architecture is focused on allowing implementa-
tions that apply multiple processors to a single problem. We thought that it would 
be realistic for implementors to achieve the remaining factor of 10 over 25 years by 
using multiple processors. 

Overall, the factor-of-1000 increase in performance looked reasonable, but required 
factor-of-10 increases in three different dimensions. These three dimensions there-
fore formed part of our design framework: 

• Gracefully allow fast cycle time implementations 

• Gracefully allow multiple-instruction-issue implementations 

• Gracefully allow multiple-processor implementations 

The cycle-time goal encouraged us to keep the instruction definitions very sim-
ple, and to keep the interactions between instructions very simple. The multiple-
instruction-issue goal encouraged us to eliminate specialized registers, architected 
delay slots, precise arithmetic traps, and byte writes (with their embedded read-
modify-write bottleneck). The multiple-processor goal encouraged us to consider the 
memory model and atomic-update primitives carefully. We adopted load-locked/store-



conditional sequences as the atomic-update primitive, and eliminated strict read-
write ordering between processors. 

All of the above design decisions were driven directly by the performance and 
longevity goals. The lack of byte writes, precise arithmetic traps, and multipro-
cessor read/write ordering have been the most controversial decisions, so far. 

Clean Sheet of Paper 

To run both OpenVMS and UNIX without burdening the hardware implementa-
tions with elaborate (and sometimes conflicting) operating system underpinnings, 
we adopted an idea from a previous Digital RISC design. Alpha places the under-
pinnings for interrupt delivery and return, exceptions, context switching, memory 
management, and error handling in a set of privileged software subroutines called 
PALcode. PALcode subroutines have controlled entries, run with interrupts turned 
off, and have access to real hardware (implementation) registers. By having dif-
ferent sets of PALcode for different operating systems, the architecture itself is not 
biased toward a specific operating system or computing style. 

PALcode allowed us to design an architecture that could run OpenVMS gracefully 
without elaborate hardware and without massively rewriting the VMS synchroniza-
tion and protection mechanisms. PALcode lets the Alpha architecture support some 
complex VAX primitives (such as the interlocked queue instructions) that are heavily 
used by OpenVMS, without burdening a UNIX implementation in any way. 

Finally, we also considered how to move VAX and MIPS code to Alpha. We rejected 
various forms of "compatibility mode" hardware, because they would have severely 
compromised the performance and time-to-market of the first implementation. After 
some experimentation, we adopted the strategy of running existing binary code by 
building software translators. One translator converts OpenVMS VAX images to 
functionally identical OpenVMS Alpha images. A second translator converts MIPS 
ULTRIX images to functionally identical DEC OSF/1 Alpha images. 

Fundamentally, PALcode gave us a migration path for existing operating systems, 
and the translators (and native compilers) gave us a migration path for existing 
user-mode code. PALcode and the translators provided a clean sheet of design paper 
for the bulk of the Alpha architecture. Other than an extra set of VAX floating-point 
formats (included for good business reasons, but subsettable later), no specific VAX 
or MIPS features are carried directly into the Alpha architecture for compatibility 
reasons. 

These considerations substantially shaped the architecture described in the rest of 
this book. 

Organization 

The first part of this book describes the instruction-set architecture, and is largely 
self-contained for readers who are involved with compilers or with assembly lan-
guage programming. The second and third parts describe the supporting PALcode 



routines for each operating system—the specific operating system PALcode architec-
ture. 
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Preface to the Second Edition 

The Second Edition of the architecture manual continues to describe the required 
behavior for all Alpha implementations, as seen by the machine-level programmer. 

A number of Alpha CPU implementations have been produced to date, designed 
according to the dictates of this architecture. The first generation implementation, 
the DECchip 21064, set new standards for high performance and was the basis for 
several chips that followed. The DECchip 21066 increased the level of integration 
on the chip by including the PCI interface and memory interface control logic on the 
chip itself. The DECchip 21064A further enhanced the performance by shrinking 
to the next generation CMOS process, providing an increase in operating frequency 
and doubling the internal cache size. 

The second generation implementation, the DECchip 21164, has expanded beyond 
the DECchip 21064A in width of issue and operating frequency, and provides a much 
higher-performance memory interface. In fact, since its introduction, an Alpha has 
been the highest performance microprocessor on the market. The third generation 
chip, currently under development, will continue that trend. 

The first Alpha systems were workstations and midrange systems that were directed 
to the traditional VAX and MIPS customer base. Since then, the range of Alpha 
systems has been greatly expanded. Alpha systems have been designed in the PC 
price range to support Windows NT and X Window terminals. Alpha single-board 
computers have been introduced to cover the high-end embedded controller market. 
And Cray Research has introduced the Cray T3D, an Alpha based MPP, that can 
support up to 1024 Alpha CPU's in an MPP system. 

PALcode has made much of this variety possible. By having different sets of PALcode 
for different operating systems, the architecture itself is not biased toward a specific 
operating system or computing style. PALcode has provided a flexible means, for 
example, of supporting Windows NT and the Cray T3D without hardware changes. 

Organization 
The organization of the Second Edition is similar that of the first. Part One of this 
book describes the instruction-set architecture, and is largely self-contained for read-
ers who work with compilers or assembly-language programs. Part Two describes 
the supporting PALcode routines for three operating systems — the specific oper-
ating system PALcode architecture. PALcode for Windows NT on Alpha is covered 
in this edition. Part Three describes a particular console implementation that is 
specific to platforms that support the OpenVMS AXP or DEC OSF/1 operating sys-
tems. A discussion of console issues for Windows NT is included with its PALcode 
description. 
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Chapter 1 

Introduction (I) 

Alpha AXP is a 64-bit load/store RISC architecture that is designed with particular 
emphasis on the three elements that most affect performance: clock speed, multiple 
instruction issue, and multiple processors. 

The Alpha AXP architects examined and analyzed current and theoretical RISC 
architecture design elements and developed high-performance alternatives for the 
Alpha AXP architecture. The architects adopted only those design elements that 
appeared valuable for a projected 25-year design horizon. Thus, Alpha AXP becomes 
the first 21st century computer architecture. 

The Alpha AXP architecture is designed to avoid bias toward any particular 
operating system or programming language. Alpha AXP supports the OpenVMS 
AXP, DEC OSF/1, and Windows NT AXP operating systems and supports simple 
software migration for applications that run on those operating systems. 

This manual describes in detail how Alpha AXP is designed to be the leadership 
64-bit architecture of the computer industry. 

1.1 The Alpha AXP Approach to RISC Architecture 
Alpha AXP Is a True 64-Bit Architecture 
Alpha AXP was designed as a 64-bit architecture. All registers are 64 bits in 
length and all operations are performed between 64-bit registers. It is not a 32-
bit architecture that was later expanded to 64 bits. 

Alpha AXP Is Designed for Very High-Speed Implementations 
The instructions are very simple. All instructions are 32 bits in length. Memory 
operations are either loads or stores. All data manipulation is done between 
registers. 

The Alpha AXP architecture facilitates pipelining multiple instances of the same 
operations because there are no special registers and no condition codes. 

The instructions interact with each other only by one instruction writing a register 
or memory and another instruction reading from the same place. That makes it 
particularly easy to build implementations that issue multiple instructions every 
CPU cycle. (The first implementation issues two instructions per cycle.) 

Alpha AXP makes it easy to maintain binary compatibility across multiple 
implementations and easy to maintain full speed on multiple-issue implementations. 
For example, there are no implementation-specific pipeline timing hazards, no load-
delay slots, and no branch-delay slots. 
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The Alpha AXP Approach to Byte Manipulation 
The Alpha AXP architecture does byte shifting and masking with normal 64-bit 
register-to-register instructions, crafted to keep instruction sequences short. 

Alpha AXP does not include single-byte store instructions. This has several 
advantages: 

• Cache and memory implementations need not include byte shift-and-mask logic, 
and sequencer logic need not perform read-modify-write on memory locations. 
Such logic is awkward for high-speed implementation and tends to slow down 
cache access to normal 32-bit or 64-bit aligned quantities. 

• The Alpha AXP approach to byte manipulation makes it easier to build a high-
speed error-correcting write-back cache, which is often needed to keep a very fast 
RISC implementation busy. 

• The Alpha AXP approach can make it easier to pipeline multiple byte operations. 

The Alpha AXP Approach to Arithmetic Traps 
Alpha AXP lets the software implementor determine the precision of arithmetic 
traps. With the Alpha AXP architecture, arithmetic traps (such as overflow and 
underflow) are imprecise—they can be delivered an arbitrary number of instructions 
after the instruction that triggered the trap. Also, traps from many different 
instructions can be reported at once. That makes implementations that use 
pipelining and multiple issue substantially easier to build. 

However, if precise arithmetic exceptions are desired, trap barrier instructions can 
be explicitly inserted in the program to force traps to be delivered at specific points. 

The Alpha AXP Approach to Multiprocessor Shared Memory 
As viewed from a second processor (including an I/O device), a sequence of reads and 
writes issued by one processor may be arbitrarily reordered by an implementation. 
This allows implementations to use multibank caches, bypassed write buffers, write 
merging, pipelined writes with retry on error, and so forth. If strict ordering 
between two accesses must be maintained, explicit memory barrier instructions can 
be inserted in the program. 

The basic multiprocessor interlocking primitive is a RISC-style loadjocked, modify, 
store_conditional sequence. If the sequence runs without interrupt, exception, or 
an interfering write from another processor, then the conditional store succeeds. 
Otherwise, the store fails and the program eventually must branch back and retry 
the sequence. This style of interlocking scales well with very fast caches, and makes 
Alpha AXP an especially attractive architecture for building multiple-processor 
systems. 

Alpha AXP Instructions Include Hints for Achieving Higher Speed 
A number of Alpha AXP instructions include hints for implementations, all aimed 
at achieving higher speed. 

• Calculated jump instructions have a target hint that can allow much faster 
subroutine calls and returns. 
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• There are prefetching hints for the memory system that can allow much higher 
cache hit rates. 

• There are granularity hints for the virtual-address mapping that can allow much 
more effective use of translation lookaside buffers for large contiguous structures. 

PALcode—The Alpha AXP Very Flexible Privileged Software Library 
A Privileged Architecture Library (PALcode) is a set of subroutines that are specific 
to a particular Alpha AXP operating system implementation. These subroutines 
provide operating-system primitives for context switching, interrupts, exceptions, 
and memory management. PALcode is similar to the BIOS libraries that are 
provided in personal computers. 

PALcode subroutines are invoked by implementation hardware or by software 
CALL_PAL instructions. 

PALcode is written in standard machine code with some implementation-specific 
extensions to provide access to low-level hardware. 

PALcode lets Alpha AXP implementations run the full OpenVMS AXP, DEC OSF/1, 
and Windows NT AXP operating systems. PALcode can provide this functionality 
with little overhead. For example, the OpenVMS AXP PALcode instructions 
let Alpha AXP run OpenVMS with little more hardware than that found on a 
conventional RISC machine: the PAL mode bit itself, plus 4 extra protection bits 
in each translation buffer entry. 

Other versions of PALcode can be developed for real-time, teaching, and other 
applications. 

PALcode makes Alpha AXP an especially attractive architecture for multiple 
operating systems. 

Alpha AXP and Programming Languages 
Alpha AXP is an attractive architecture for compiling a large variety of programming 
languages. Alpha AXP has been carefully designed to avoid bias toward one or two 
programming languages. For example: 

• Alpha AXP does not contain a subroutine call instruction that moves a 
register window by a fixed amount. Thus, Alpha AXP is a good match for 
programming languages with many parameters and programming languages 
with no parameters. 

• Alpha AXP does not contain a global integer overflow enable bit. Such a bit would 
need to be changed at every subroutine boundary when a FORTRAN program 
calls a C program. 

1.2 Data Format Overview 

Alpha AXP is a load/store RISC architecture with the following data characteristics: 

• All operations are done between 64-bit registers. 
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• Memory is accessed via 64-bit virtual byte addresses, using the little-endian or, 
optionally, the big-endian byte numbering convention. 

• There are 32 integer registers and 32 floating-point registers. 

• Longword (32-bit) and quadword (64-bit) integers are supported. 

• Five floating-point data types are supported: 

— VAX F l o a t i n g (32-bit) 

— VAX G.floating (64-bit) 

— IEEE single (32-bit) 

— IEEE double (64-bit) 

— IEEE extended (128-bit) 

1.3 Instruction Format Overview 

As shown in Figure 1-1, Alpha AXP instructions are all 32 bits in length. As 
represented in Figure 1-1, there are four major instruction format classes that 
contain 0, 1, 2, or 3 register fields. All formats have a 6-bit opcode. 

Figure 1-1: Instruction Format Overview 

Opcode 

Opcode 

Opcode 

Opcode 

Number 

RA 

RA 

RA 

Disp 

RB 

RB 

Disp 

Function RC 

PALcode Format 

Branch Format 

Memory Format 

Operate Format 

PALcode instructions specify, in the function code field, one of a few dozen 
complex operations to be performed. 

Conditional branch instructions test register Ra and specify a signed 21-
bit PC-relative longword target displacement. Subroutine calls put the return 
address in register Ra. 

Load and store instructions move longwords or quadwords between register 
Ra and memory, using Rb plus a signed 16-bit displacement as the memory 
address. 

Operate instructions for floating-point and integer operations are both 
represented in Figure 1-1 by the operate format illustration and are as follows: 

— Floating-point operations use Ra and Rb as source registers, and write the 
result in register Re. There is an 11-bit extended opcode in the function field. 
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— Integer operations use Ra and Rb or an 8-bit literal as the source operand, 
and write the result in register Re. 

Integer operate instructions can use the Rb field and part of the function field 
to specify an 8-bit literal. There is a 7-bit extended opcode in the function 
field. 

1.4 Instruction Overview 
PALcode Instructions 
As described above, a Privileged Architecture Library (PALcode) is a set 
of subroutines that is specific to a particular Alpha AXP operating-system 
implementation. These subroutines can be invoked by hardware or by software 
CALL_PAL instructions, which use the function field to vector to the specified 
subroutine. 

Branch Instructions 
Conditional branch instructions can test a register for positive/negative or for zero 
/nonzero. They can also test integer registers for even/odd. 

Unconditional branch instructions can write a return address into a register. 

There is also a calculated jump instruction that branches to an arbitrary 64-bit 
address in a register. 

Load/Store Instructions 
Load and store instructions move either 32-bit or 64-bit aligned quantities from 
and to memory. Memory addresses are flat 64-bit virtual addresses, with no 
segmentation. 

The VAX floating-point load/store instructions swap words to give a consistent 
register format for floating-point operations. 

A 32-bit integer datum is placed in a register in a canonical form that makes 33 copies 
of the high bit of the datum. A 32-bit floating-point datum is placed in a register in 
a canonical form that extends the exponent by 3 bits and extends the fraction with 
29 low-order zeros. The 32-bit operates preserve these canonical forms. 

There are facilities for doing byte manipulation in registers, eliminating the need 
for 8-bit or 16-bit load/store instructions. 

Compilers, as directed by user declarations, can generate any mixture of 32-bit and 
64-bit operations. The Alpha AXP architecture has no 32/64 mode bit. 

Integer Operate Instructions 
The integer operate instructions manipulate full 64-bit values, and include the usual 
assortment of arithmetic, compare, logical, and shift instructions. 

There are just three 32-bit integer operates: add, subtract, and multiply. They 
differ from their 64-bit counterparts only in overflow detection and in producing 
32-bit canonical results. 
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There is no integer divide instruction. 

The Alpha AXP architecture also supports the following additional operations: 

• Scaled add/subtract instructions for quick subscript calculation 

• 128-bit multiply for division by a constant, and multiprecision arithmetic 

• Conditional move instructions for avoiding branch instructions 

• An extensive set of in-register byte and word manipulation instructions 

Integer overflow trap enable is encoded in the function field of each instruction, 
rather than kept in a global state bit. Thus, for example, both ADDQ/V and ADDQ 
opcodes exist for specifying 64-bit ADD with and without overflow checking. That 
makes it easier to pipeline implementations. 

Floating-Point Operate Instructions 
The floating-point operate instructions include four complete sets of VAX and 
IEEE arithmetic instructions, plus instructions for performing conversions between 
floating-point and integer quantities. 

In addition to the operations found in conventional RISC architectures, Alpha 
AXP includes conditional move instructions for avoiding branches and merge sign 
/exponent instructions for simple field manipulation. 

The arithmetic trap enables and rounding mode are encoded in the function field 
of each instruction, rather then kept in global state bits. That makes it easier to 
pipeline implementations. 

1.5 Instruction Set Characteristics 

Alpha AXP instruction set characteristics are as follows: 

• All instructions are 32 bits long and have a regular format. 

• There are 32 integer registers (RO through R31), each 64 bits wide. R31 reads 
as zero, and writes to R31 are ignored. 

• There are 32 floating-point registers (FO through F31), each 64 bits wide. F31 
reads as zero, and writes to F31 are ignored. 

• All integer data manipulation is between integer registers, with up to two 
variable register source operands (one may be an 8-bit literal), and one register 
destination operand. 

• All floating-point data manipulation is between floating-point registers, with up 
to two register source operands and one register destination operand. 

• All memory reference instructions are of the load/store type that move data 
between registers and memory. 

• There are no branch condition codes. Branch instructions test an integer or 
floating-point register value, which may be the result of a previous compare. 

• Integer and logical instructions operate on quadwords. 
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• Floating-point instructions operate on G_floating, F_floating, IEEE double, and 
IEEE single operands. D_floating "format compatibility," in which binary files 
of D_floating numbers may be processed, but without the last 3 bits of fraction 
precision, is also provided. 

• A minimal number of VAX compatibility instructions are included. 

1.6 Terminology and Conventions 

The following sections describe the terminology and conventions used in this book. 

1.6.1 Numbering 
All numbers are decimal unless otherwise indicated. Where there is ambiguity, 
numbers other than decimal are indicated with the name of the base in subscript 
form, for example, 1016. 

1.6.2 Security Holes 
A security hole is an error of commission, omission, or oversight in a system that 
allows protection mechanisms to be bypassed. 

Security holes exist when unprivileged software (that is, software running outside 
of kernel mode) can: 

• Affect the operation of another process without authorization from the operating 
system; 

• Amplify its privilege without authorization from the operating system; or 

• Communicate with another process, either overtly or covertly, without 
authorization from the operating system. 

The Alpha AXP architecture has been designed to contain no architectural security 
holes. Hardware (processors, buses, controllers, and so on) and software should 
likewise be designed to avoid security holes. 

1.6.3 UNPREDICTABLE and UNDEFINED 
The terms UNPREDICTABLE and UNDEFINED are used throughout this book. 
Their meanings are quite different and must be carefully distinguished. 

In particular, only privileged software (software running in kernel mode) can trigger 
UNDEFINED operations. Unprivileged software cannot trigger UNDEFINED 
operations. However, either privileged or unprivileged software can trigger 
UNPREDICTABLE results or occurences. 

UNPREDICTABLE results or occurences do not disrupt the basic operation of the 
processor; it continues to execute instructions in its normal manner. In contrast, 
UNDEFINED operation can halt the processor or cause it to lose information. 

The terms UNPREDICTABLE and UNDEFINED can be further described as follows: 
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UNPREDICTABLE 

• Results or occurrences specified as UNPREDICTABLE may vary from moment 
to moment, implementation to implementation, and instruction to instruction 
within implementations. Software can never depend on results specified as 
UNPREDICTABLE. 

• An UNPREDICTABLE result may acquire an arbitrary value subject to a few 
constraints. Such a result may be an arbitrary function of the input operands 
or of any state information that is accessible to the process in its current access 
mode. UNPREDICTABLE results may be unchanged from their previous values. 

Operations that produce UNPREDICTABLE results may also produce exceptions. 

• An occurrence specified as UNPREDICTABLE may happen or not based on an 
arbitrary choice function. The choice function is subject to the same constraints 
as are UNPREDICTABLE results and, in particular, must not constitute a 
security hole. 

Specifically, UNPREDICTABLE results must not depend upon, or be a function 
of, the contents of memory locations or registers which are inaccessible to the 
current process in the current access mode. 

Also, operations that may produce UNPREDICTABLE results must not: 

- Write or modify the contents of memory locations or registers to which the 
current process in the current access mode does not have access, or 

- Halt or hang the system or any of its components. 

For example, a security hole would exist if some UNPREDICTABLE result 
depended on the value of a register in another process, on the contents of 
processor temporary registers left behind by some previously running process, 
or on a sequence of actions of different processes. 

UNDEFINED 

• Operations specified as UNDEFINED may vary from moment to moment, 
implementation to implementation, and instruction to instruction within 
implementations. The operation may vary in effect from nothing, to stopping 
system operation. 

• UNDEFINED operations may halt the processor or cause it to lose information. 
However, UNDEFINED operations must not cause the processor to hang, that 
is, reach an unhalted state from which there is no transition to a normal state 
in which the machine executes instructions. 

1.6.4 Ranges and Extents 
Ranges are specified by a pair of numbers separated by a ".." and are inclusive. For 
example, a range of integers 0..4 includes the integers 0, 1, 2, 3, and 4. 
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Extents are specified by a pair of numbers in angle brackets separated by a colon 
and are inclusive. For example, bits <7:3> specify an extent of bits including bits 7, 
6, 5, 4, and 3. 

1.6.5 ALIGNED and UNALIGNED 
In this document the terms ALIGNED and NATURALLY ALIGNED are used 
interchangeably to refer to data objects that are powers of two in size. An aligned 
datum of size 2**N is stored in memory at a byte address that is a multiple of 2**N, 
that is, one that has N low-order zeros. Thus, an aligned 64-byte stack frame has a 
memory address that is a multiple of 64. 

If a datum of size 2**N is stored at a byte address that is not a multiple of 2**N, it 
is called UNALIGNED. 

1.6.6 Must Be Zero (MBZ) 
Fields specified as Must be Zero (MBZ) must never be filled by software with a non-
zero value. These fields may be used at some future time. If the processor encounters 
a non-zero value in a field specified as MBZ, an Illegal Operand exception occurs. 

1.6.7 Read As Zero (RAZ) 
Fields specified as Read as Zero (RAZ) return a zero when read. 

1.6.8 Should Be Zero (SBZ) 
Fields specified as Should be Zero (SBZ) should be filled by software with a zero 
value. Non-zero values in SBZ fields produce UNPREDICTABLE results and may 
produce extraneous instruction-issue delays. 

1.6.9 Ignore (IGN) 
Fields specified as Ignore (IGN) are ignored when written. 

1.6.10 Implementation Dependent (IMP) 
Fields specified as Implementation Dependent (IMP) may be used for implementation-
specific purposes. Each implementation must document fully the behavior of all 
fields marked as IMP by the Alpha AXP specification. 

1.6.11 Figure Drawing Conventions 
Figures that depict registers or memory follow the convention that increasing 
addresses run right to left and top to bottom. 

1.6.12 Macro Code Example Conventions 
All instructions in macro code examples are either listed in Chapter 4 or OpenVMS 
AXP Software II-A, Chapter 2, or are stylized code forms found in Appendix A. 
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Chapter 2 

Basic Architecture (I) 

2.1 Addressing 

The basic addressable unit in the Alpha AXP architecture is the 8-bit byte. Virtual 
addresses are 64 bits long. An implementation may support a smaller virtual address 
space. The minimum virtual address size is 43 bits. 

Virtual addresses as seen by the program are translated into physical memory 
addresses by the memory management mechanism. 

Although the data types in Section 2.2 are described in terms of little-endian byte 
addressing, implementations may also include big-endian addressing support, as 
described in Section 2.3. All current implementations have some big-endian support. 

2.2 Data Types 
Following are descriptions of the Alpha AXP architecture data types. 

2.2.1 Byte 
A byte is 8 contiguous bits starting on an addressable byte boundary. The bits are 
numbered from right to left, 0 through 7, as shown in Figure 2 -1 . 

Figure 2-1 : Byte Format 

7 0 

|:A 

A byte is specified by its address A. A byte is an 8-bit value. The byte is only 
supported in Alpha AXP by the extract, mask, insert, and zap instructions. 
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2.2.2 Word 
A word is 2 contiguous bytes starting on an arbitrary byte boundary. The bits are 
numbered from right to left, 0 through 15, as shown in Figure 2-2. 

Figure 2-2: Word Format 

15 0 

:A 

A word is specified by its address, the address of the byte containing bit 0. 

A word is a 16-bit value. The word is only supported in Alpha AXP by the extract, 
mask, and insert instructions. 

2.2.3 Longword 
A longword is 4 contiguous bytes starting on an arbitrary byte boundary. The bits 
are numbered from right to left, 0 through 31, as shown in Figure 2-3. 

Figure 2-3: Longword Format 

31 0 

:A 

A longword is specified by its address A, the address of the byte containing bit 0. A 
longword is a 32-bit value. 

When interpreted arithmetically, a longword is a two's-complement integer with bits 
of increasing significance from 0 through 30. Bit 31 is the sign bit. The longword is 
only supported in Alpha AXP by sign-extended load and store instructions and by 
longword arithmetic instructions. 

Note: 

Alpha AXP implementations will impose a significant performance penalty when 
accessing longword operands that are not naturally aligned. (A naturally aligned 
longword has zero as the low-order two bits of its address.) 

2.2.4 Quadword 
A quadword is 8 contiguous bytes starting on an arbitrary byte boundary. The bits 
are numbered from right to left, 0 through 63, as shown in Figure 2-4. 

2-2 Common Architecture (I) 



Figure 2-4: Quadword Format 

63 0 

:A 

A quadword is specified by its address A, the address of the byte containing bit 0. A 
quadword is a 64-bit value. When interpreted arithmetically, a quadword is either 
a two's-complement integer with bits of increasing significance from 0 through 62 
and bit 63 as the sign bit, or an unsigned integer with bits of increasing significance 
from 0 through 63. 

Note: 

Alpha AXP implementations will impose a significant performance penalty when 
accessing quadword operands that are not naturally aligned. (A naturally aligned 
quadword has zero as the low-order three bits of its address.) 

2.2.5 VAX Floating-Point Formats 
VAX floating-point numbers are stored in one set of formats in memory and in a 
second set of formats in registers. The floating-point load and store instructions 
convert between these formats purely by rearranging bits; no rounding or range-
checking is done by the load and store instructions. 

2.2.5.1 FJIoating 

An F_floating datum is 4 contiguous bytes in memory starting on an arbitrary 
byte boundary. The bits are labeled from right to left, 0 through 31, as shown 
in Figure 2-5. 

Figure 2-5: F_floating Datum 

31 161514 7 6 0 

Fraction Lo S Exp. Frac. Hi 

An F_floating operand occupies 64 bits in a floating register, left-justified in the 
64-bit register, as shown in Figure 2-6. 

Figure 2-6: F.floating Register Format 

63 62 52 51 29 28 0 

S Exp. Fraction 0 
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The F_floating load instruction reorders bits on the way in from memory, expands the 
exponent from 8 to 11 bits, and sets the low-order fraction bits to zero. This produces 
in the register an equivalent G_floating number suitable for either F_floating or G_ 
floating operations. The mapping from 8-bit memory-format exponents to 11-bit 
register-format exponents is shown in Table 2 -1 . 

Table 2 - 1 : F_floating Load Exponent Mapping (MAP_F) 

Memory <14:7> Register <62:52> 

1 1111111 1 000 1111111 
1 xxxxxxx 1 000 xxxxxxx (xxxxxxx not all l's) 
0 xxxxxxx 0 111 xxxxxxx (xxxxxxx not all 0's) 
0 0000000 0 000 0000000 

This mapping preserves both normal values and exceptional values. 

The F_floating store instruction reorders register bits on the way to memory and 
does no checking of the low-order fraction bits. Register bits <61:59> and <28:0> are 
ignored by the store instruction. 

An F_floating datum is specified by its address A, the address of the byte containing 
bit 0. The memory form of an F_floating datum is sign magnitude with bit 15 the 
sign bit, bits <14:7> an excess-128 binary exponent, and bits <6:0> and <31:16> 
a normalized 24-bit fraction with the redundant most significant fraction bit not 
represented. Within the fraction, bits of increasing significance are from 16 through 
31 and 0 through 6. The 8-bit exponent field encodes the values 0 through 255. 
An exponent value of 0, together with a sign bit of 0, is taken to indicate that the 
F_floating datum has a value of 0. 

If the result of a VAX floating-point format instruction has a value of zero, the 
instruction always produces a datum with a sign bit of 0, an exponent of 0, and 
all fraction bits of 0. Exponent values of 1..255 indicate true binary exponents of 
-127..127. An exponent value of 0, together with a sign bit of 1, is taken as a 
reserved operand. Floating-point instructions processing a reserved operand take 
an arithmetic exception. The value of an F_floating datum is in the approximate 
range 0.29*10**-38 through 1.7*10**38. The precision of an F_floating datum is 
approximately one part in 2**23, typically 7 decimal digits. See Section 4.7. 

Note: 

Alpha AXP implementations will impose a significant performance penalty when 
accessing F_floating operands that are not naturally aligned. (A naturally 
aligned F_floating datum has zero as the low-order two bits of its address.) 
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2.2.5.2 GJIoating 

A G_floating datum in memory is 8 contiguous bytes starting on an arbitrary byte 
boundary. The bits are labeled from right to left, 0 through 63, as shown in 
Figure 2-7. 

Figure 2-7: G.floating Datum 

31 161514 4 3 0 

Fraction Midh 

Fraction Lo 

S Exp. Frac.Hi 

Fraction Midi 

A G_floating operand occupies 64 bits in a floating register, arranged as shown in 
Figure 2-8. 

Figure 2-8: G_floating Format 

63 62 52 51 32 31 0 

Is Exp. Fraction Hi Fraction Lo 

A G_floating datum is specified by its address A, the address of the byte containing 
bit 0. The form of a G_floating datum is sign magnitude with bit 15 the sign bit, bits 
<14:4> an excess-1024 binary exponent, and bits <3:0> and <63:16> a normalized 53-
bit fraction with the redundant most significant fraction bit not represented. Within 
the fraction, bits of increasing significance are from 48 through 63, 32 through 47, 16 
through 31, and 0 through 3. The 11-bit exponent field encodes the values 0 through 
2047. An exponent value of 0, together with a sign bit of 0, is taken to indicate that 
the G_floating datum has a value of 0. 

If the result of a floating-point instruction has a value of zero, the instruction always 
produces a datum with a sign bit of 0, an exponent of 0, and all fraction bits 
of 0. Exponent values of 1..2047 indicate true binary exponents of -1023..1023. 
An exponent value of 0, together with a sign bit of 1, is taken as a reserved 
operand. Floating-point instructions processing a reserved operand take a user-
visible arithmetic exception. The value of a G_floating datum is in the approximate 
range 0.56*10**-308 through 0.9*10**308. The precision of a G_floating datum is 
approximately one part in 2**52, typically 15 decimal digits. See Section 4.7. 

Note: 

Alpha AXP implementations will impose a significant performance penalty when 
accessing G_floating operands that are not naturally aligned. (A naturally 
aligned G_floating datum has zero as the low-order three bits of its address.) 
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2.2.5.3 DJIoating 

A D_floating datum in memory is 8 contiguous bytes starting on an arbitrary byte 
boundary. The bits are labeled from right to left, 0 through 63, as shown in 
Figure 2-9. 

Figure 2-9: DJIoating Datum 

31 161514 7 6 0 

Fraction Midh 

Fraction Lo 

S Exp. Frac.Hi 

Fraction Midi 

A D_floating operand occupies 64 bits in a floating register, arranged as shown in 
Figure 2-10. 

Figure 2-10: DJIoating Register Format 

63 62 55 54 48 47 32 31 16 15 0 

S Exp. Frac. Hi Fraction Midh Fraction Midi Fraction Lo 

The reordering of bits required for a D_floating load or store are identical to those 
required for a G_floating load or store. The G_floating load and store instructions 
are therefore used for loading or storing D_floating data. 

A D_floating datum is specified by its address A, the address of the byte containing 
bit 0. The memory form of a D_floating datum is identical to an F_floating datum 
except for 32 additional low significance fraction bits. Within the fraction, bits of 
increasing significance are from 48 through 63, 32 through 47, 16 through 31, and 0 
through 6. The exponent conventions and approximate range of values is the same 
for D_floating as F_floating. The precision of a D_floating datum is approximately 
one part in 2**55, typically 16 decimal digits. 

Notes: 

• D_floating is not a fully supported data type; no D_floating arithmetic operations 
are provided in the architecture. For backward compatibility, exact D_ 
floating arithmetic may be provided via software emulation. D_floating "format 
compatibility,, in which binary files of D_floating numbers may be processed, but 
without the last 3 bits of fraction precision, can be obtained via conversions to 
G_floating, G arithmetic operations, then conversion back to D_floating. 

• Alpha AXP implementations will impose a significant performance penalty on 
access to D_floating operands that are not naturally aligned. (A naturally aligned 
D_floating datum has zero as the low-order three bits of its address.) 
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2.2.6 IEEE Floating-Point Formats 
The IEEE standard for binary floating-point arithmetic, ANSI/IEEE 754-1985, 
defines four floating-point formats in two groups, basic and extended, each having 
two widths, single and double. The Alpha AXP architecture supports the basic 
single and double formats, with the basic double format serving as the extended 
single format. The values representable within a format are specified by using three 
integer parameters: 

1. P—the number of fraction bits 

2. Emax—the maximum exponent 

3. Emin—the minimum exponent 

Within each format, only the following entities are permitted: 

1. Numbers of the form (-1)**S x 2**E x b(0).b(l)b(2)..b(P-l) where: 

a. S = 0 or 1 

b. E = any integer between Emin and Emax, inclusive 

c. b(n) = 0 or 1 

2. Two infinities—positive and negative 

3. At least one Signaling NaN 

4. At least one Quiet NaN 

NaN is an acronym for Not-a-Number. A NaN is an IEEE floating-point bit 
pattern that represents something other than a number. NaNs come in two forms: 
Signaling NaNs and Quiet NaNs. Signaling NaNs are used to provide values 
for uninitialized variables and for arithmetic enhancements. Quiet NaNs provide 
retrospective diagnostic information regarding previous invalid or unavailable data 
and results. Signaling NaNs signal an invalid operation when they are an operand 
to an arithmetic instruction, and may generate an arithmetic exception. Quiet 
NaNs propagate through almost every operation without generating an arithmetic 
exception. 

Arithmetic with the infinities is handled as if the operands were of arbitrarily large 
magnitude. Negative infinity is less than every finite number; positive infinity is 
greater than every finite number. 

2.2.6.1 S_Floating 

An IEEE single-precision, or S_floating, datum occupies 4 contiguous bytes in 
memory starting on an arbitrary byte boundary. The bits are labeled from right 
to left, 0 through 31, as shown in Figure 2-11. 
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Figure 2-11 : S.floating Datum 

3130 2322 0 

S Exp. Fraction 

An S_floating operand occupies 64 bits in a floating register, left-justified in the 
64-bit register, as shown in Figure 2-12. 

Figure 2-12: SJIoating Register Format 

63 62 52 51 29 28 0 

S Exp. Fraction 0 

The S_floating load instruction reorders bits on the way in from memory, expanding 
the exponent from 8 to 11 bits, and sets the low-order fraction bits to zero. This 
produces in the register an equivalent T_floating number, suitable for either S_ 
floating or T_floating operations. The mapping from 8-bit memory-format exponents 
to 11-bit register-format exponents is shown in Table 2-2. 

Table 2-2: SJIoating Load Exponent Mapping (MAP_S) 

Memory <30:23> Register <62:52> 

1 1111111 1 111 1111111 
1 xxxxxxx 1 000 xxxxxxx (xxxxxxx not all l's) 
0 xxxxxxx 0 111 xxxxxxx (xxxxxxx not all 0's) 
0 0000000 0 000 0000000 

This mapping preserves both normal values and exceptional values. Note that the 
mapping for all l's differs from that of F_floating load, since for S_floating all l's is 
an exceptional value and for F_floating all l's is a normal value. 

The S_floating store instruction reorders register bits on the way to memory and 
does no checking of the low-order fraction bits. Register bits <61:59> and <28:0> are 
ignored by the store instruction. The S_floating load instruction does no checking of 
the input. 

The S_floating store instruction does no checking of the data; the preceding operation 
should have specified an S_floating result. 

An S_floating datum is specified by its address A, the address of the byte containing 
bit 0. The memory form of an S_floating datum is sign magnitude with bit 31 the sign 
bit, bits <30:23> an excess-127 binary exponent, and bits <22:0> a 23-bit fraction. 
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The value (V) of an S_floating number is inferred from its constituent sign (S), 
exponent (E), and fraction (F) fields as follows: 

1. If E=255 and F o O , then V is NaN, regardless of S. 

2. If E=255 and F=0, then V = (-1)**S x Infinity. 

3. If 0 < E < 255, then V = (-1)**S x 2**(E-127) x (l.F). 

4. If E=0 and F o O , then V = (-1)**S x 2**(-126) x (0.F). 

5. If E=0 and F=0, then V = (-1)**S x 0 (zero). 

Floating-point operations on S_floating numbers may take an arithmetic exception 
for a variety of reasons, including invalid operations, overflow, underflow, division 
by zero, and inexact results. 

Note: 

Alpha AXP implementations will impose a significant performance penalty when 
accessing S_floating operands that are not naturally aligned. (A naturally 
aligned S_floating datum has zero as the low-order two bits of its address.) 

2.2.6.2 TJIoating 

An IEEE double-precision, or T_floating, datum occupies 8 contiguous bytes in 
memory starting on an arbitrary byte boundary. The bits are labeled from right 
to left, 0 through 63, as shown in Figure 2-13. 

Figure 2-13: T_floating Datum 

3130 2019 0 

Fraction Lo 

jS Exponent Fraction Hi 

:A 

:A+4 

A T_floating operand occupies 64 bits in a floating register, arranged as shown in 
Figure 2-14. 

Figure 2-14: T_floating Register Format 

s Exp. Fraction Hi Fraction Lo :Fx 

The T_floating load instruction performs no bit reordering on input, nor does it 
perform checking of the input data. 

The T_floating store instruction performs no bit reordering on output. This 
instruction does no checking of the data; the preceding operation should have 
specified a T_floating result. 
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A T_floating datum is specified by its address A, the address of the byte containing 
bit 0. The form of a T_floating datum is sign magnitude with bit 63 the sign bit, bits 
<62:52> an excess-1023 binary exponent, and bits <51:0> a 52-bit fraction. 

The value (V) of a T_floating number is inferred from its constituent sign (S), 
exponent (E), and fraction (F) fields as follows: 

1. If E=2047 and F o O , then V is NaN, regardless of S. 

2. If E=2047 and F=0, then V = (-1)**S x Infinity. 

3. If 0 < E < 2047, then V = (-1)**S x 2**(E-1023) x (l.F). 

4. If E=0 and F o O , then V = (-1)**S x 2**(-1022) x (0.F). 

5. If E=0 and F=0, then V = (-1)**S x 0 (zero). 

Floating-point operations on T_floating numbers may take an arithmetic exception 
for a variety of reasons, including invalid operations, overflow, underflow, division 
by zero, and inexact results. 

Note: 

Alpha AXP implementations will impose a significant performance penalty when 
accessing T_floating operands that are not naturally aligned. (A naturally 
aligned T_floating datum has zero as the low-order three bits of its address.) 

2.2.6.3 X_Floating 

Support for 128-bit IEEE extended-precision (X_float) floating-point is initially 
provided entirely through software. This section is included to preserve the intended 
consistency of implementation with other IEEE floating-point data types, should the 
X_float data type be supported in future hardware. 

An IEEE extended-precision, or X_floating, datum occupies 16 contiguous bytes in 
memory, starting on an arbitrary byte boundary. The bits are labeled from right to 
left, 0 through 127, as shown in Figure 2-15. 

Figure 2-15: X_Floating Datum 

63 62 48 47 0 

Fractionjow 

Is Exponent Fraction_high 

:A 

:A+8 

An X_floating datum occupies two consecutive even/odd floating-point registers (such 
as F4/F5), as shown in Figure 2-16. 
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Figure 2-16: X_Floating Register Format 

s Exponent 

^ 

 ̂ <v 

Fraction_high 

— ■ — ^ < — — j 

Fractionjow 

A ) 
Y 

FnOR 1 Fn 

An X_floating datum is specified by its address A, the address of the byte containing 
bit 0. The form of an X_floating datum is sign magnitude with bit 127 the sign bit, 
bits <126:112> an excess-16383 binary exponent, and bits <111:0> a 112-bit fraction. 

The value (V) of an X_floating number is inferred from its constituent sign (S), 
exponent (E) and fraction (F) fields as follows: 

1. If E=32767 and F o O , then V is a NaN, regardless of S. 

2. If E=32767 and F=0, then V = (-1)**S x Infinity. 

3. If 0 < E < 32767, then V = (-1)**S x 2**(E-16383) x (l.F). 

4. If E=0 and F o 0, then V = (-1)**S x 2**(-16382) x (0.F). 

5. If E = 0 and F = 0, then V = (-1)**S x 0 (zero). 

Note: 

Alpha AXP implementations will impose a significant performance penalty when 
accessing X_floating operands that are not naturally aligned. (A naturally 
aligned X_floating datum has zero as the low-order four bits of its address.) 

X.Floating Big-Endian Formats 
Section 2.3 describes Alpha AXP support for big-endian data types. It is intended 
that software or hardware implementation for a big-endian X_float data type comply 
with that support and have the following formats. 

Figure 2-17: X_Floating Big-Endian Datum 

Byte 
0 

S Exponent Fraction_high 

Byte 
15 

A+8: Fractionjow 
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Figure 2-18: X_Floating Big-Endian Register Format 
Byte 

0 

FnOR 1 Fn 

Byte 

15 

S Exponent 

^ 

ç. < 

Fraction_high 

C <v 

\ V I 

Fraction_low 

C <? 
A J 

2.2.7 Longword Integer Format in Floating-Point Unit 
A longword integer operand occupies 32 bits in memory, arranged as shown in 
Figure 2-19. 

Figure 2-19: Longword Integer Datum 

3130 0 

Integer 

A longword integer operand occupies 64 bits in a floating register, arranged as shown 
in Figure 2-20. 

Figure 2-20: Longword Integer Floating-Register Format 

63 62 61 59 58 

S I XXX Integer 0 :Fx 

There is no explicit longword load or store instruction; the S_floating load/store 
instructions are used to move longword data into or out of the floating registers. 
The register bits <61:59> are set by the S_floating load exponent mapping. They are 
ignored by S_floating store. They are also ignored in operands of a longword integer 
operate instruction, and they are set to 000 in the result of a longword operate 
instruction. 

The register format bit <62> "I" in Figure 2-20 is part of the Integer field in 
Figure 2-19 and represents the high-order bit of that field. 

Note: 

Alpha AXP implementations will impose a significant performance penalty 
when accessing longwords that are not naturally aligned. (A naturally aligned 
longword datum has zero as the low-order two bits of its address.) 
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2.2.8 Quadword Integer Format in Floating-Point Unit 
A quadword integer operand occupies 64 bits in memory, arranged as shown in 
Figure 2-21. 

Figure 2-21 : Quadword Integer Datum 

3130 

Integer Lo 

Integer Hi 

:A 

:A+4 

A quadword integer operand occupies 64 bits in a floating register, arranged as 
shown in Figure 2-22. 

Figure 2-22: Quadword Integer Floating-Register Format 

s Integer Hi Integer Lo :Fx 

There is no explicit quadword load or store instruction; the T_floating load/store 
instructions are used to move quadword data into or out of the floating registers. 

The T_floating load instruction performs no bit reordering on input. The T_floating 
store instruction performs no bit reordering on output. This instruction does no 
checking of the data; when used to store quadwords, the preceding operation should 
have specified a quadword result. 

Note: 

Alpha AXP implementations will impose a significant performance penalty when 
accessing quadwords that are not naturally aligned. (A naturally aligned 
quadword datum has zero as the low-order three bits of its address.) 

2.2.9 Data Types with No Hardware Support 
The following VAX data types are not directly supported in Alpha AXP hardware. 

• Octaword 

• H_floating 

• D_floating (except load/store and convert to/from G_floating) 

• Variable-Length Bit Field 

• Character String 

• Trailing Numeric String 
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• Leading Separate Numeric String 

• Packed Decimal String 

2.3 Big-endian Addressing Support 

Alpha AXP implementations may include optional big-endian addressing support. 

In a little-endian machine, the bytes within a quadword are numbered right to left: 

Figure 2-23: Little-Endian Byte Addressing 

7 6 5 4 3 2 1 0 

In a big-endian machine, they are numbered left to right: 

Figure 2-24: Big-Endian Byte Addressing 

0 1 2 3 4 5 6 7 

Bit numbering within bytes is not affected by the byte numbering convention (big-
endian or little-endian). 

The format for the X_float big-endian data type is shown in Section 2.2.6.3. 

The byte numbering convention does not matter when accessing complete aligned 
quadwords in memory. However, the numbering convention does matter when 
accessing smaller or unaligned quantities, or when manipulating data in registers, 
as follows: 

• A quadword load or store of data at location 0 moves the same eight bytes under 
both numbering conventions. However, a longword load or store of data at 
location 4 must move the leftmost half of a quadword under the little-endian 
convention, and the rightmost half under the big-endian convention. Thus, to 
support both conventions, the convention being used must be known and it must 
affect longword load/store operations. 

• A byte extract of byte 5 from a quadword of data into the low byte of a register 
requires a right shift of 5 bytes under the little-endian convention, but a right 
shift of 2 bytes under the big-endian convention. 

• Manipulating data in a register is almost the same for both conventions. In 
both, integer and floating-point data have their sign bits in the leftmost byte 
and their least significant bit in the rightmost byte, so the same integer and 

2-14 Common Architecture (I) 



floating-point instructions are used unchanged for both conventions. Big-endian 
character strings have their most significant character on the left, while little-
endian strings have their most significant character on the right. 

• The compare byte (CMPBGE) instruction is neutral about direction, doing eight 
byte compares in parallel. However, following the CMPBGE instruction, the code 
is different that examines the byte mask to determine which string is larger, 
depending on whether the rightmost or leftmost unequal byte is used. Thus, 
compilers must be instructed to generate somewhat different code sequences for 
the two conventions. 

Implementations that include big-endian support must supply all of the following 
features: 

• A means at boot time to choose the byte numbering convention. The 
implementation is not required to support dynamically changing the convention 
during program execution. The chosen convention applies to all code executed, 
both operating-system and user. 

• If the big-endian convention is chosen, the longword-length load/store 
instructions (LDF, LDL, LDL_L, LDS, STF, STL, STL_C, STS) invert bit va<2> 
(bit 2 of the virtual address). This has the effect of accessing the half of a 
quadword other than the half that would be accessed under the little-endian 
convention. 

• If the big-endian convention is chosen, the byte manipulation instructions 
(EXTxx, INSxx, MSKxx) invert bits Rbv<2:0>. This has the effect of changing a 
shift of 5 bytes into a shift of 2 bytes, for example. 

The instruction stream is always considered to be little-endian, and is independent 
of the chosen byte numbering convention. Compilers, linkers, and debuggers must 
be aware of this when accessing an instruction stream using data-stream load/store 
instructions. Thus, the rightmost instruction in a quadword is always executed first 
and always has the instruction-stream address 0 MOD 8. The same bytes accessed 
by a longword load/store instruction have data-stream address 0 MOD 8 under the 
little-endian convention, and 4 MOD 8 under the big-endian convention. 

Using either byte numbering convention, it is sometimes necessary to access data 
that originated on a machine that used the other convention. When this occurs, it 
is often necessary to swap the bytes within a datum. See Appendix A, Byte Swap, 
for a suggested code sequence. 
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Chapter 3 

Instruction Formats (I) 

3.1 Alpha AXP Registers 

Each Alpha AXP processor has a set of registers that hold the current processor 
state. If an Alpha AXP system contains multiple Alpha AXP processors, there are 
multiple per-processor sets of these registers. 

3.1.1 Program Counter 
The Program Counter (PC) is a special register that addresses the instruction stream. 
As each instruction is decoded, the PC is advanced to the next sequential instruction. 
This is referred to as the updated PC. Any instruction that uses the value of the PC 
will use the updated PC. The PC includes only bits <63:2> with bits <1:0> treated as 
RAZ/IGN. This quantity is a longword-aligned byte address. The PC is an implied 
operand on conditional branch and subroutine jump instructions. The PC is not 
accessible as an integer register. 

3.1.2 Integer Registers 
There are 32 integer registers (RO through R31), each 64 bits wide. 

Register R31 is assigned special meaning by the Alpha AXP architecture. When R31 
is specified as a register source operand, a zero-valued operand is supplied. 

For all cases except the Unconditional Branch and Jump instructions, results of 
an instruction that specifies R31 as a destination operand are discarded. Also, 
it is UNPREDICTABLE whether the other destination operands (implicit and 
explicit) are changed by the instruction. It is implementation dependent to what 
extent the instruction is actually executed once it has been fetched. It is also 
UNPREDICTABLE whether exceptions are signaled during the execution of such 
an instruction. Note, however, that exceptions associated with the instruction fetch 
of such an instruction are always signaled. 

There are some interesting cases involving R31 as a destination: 

• STx_C R31,disp(Rb) 

Although this might seem like a good way to zero out a shared location and reset 
the lock_flag, this instruction causes the lock_flag and virtual location {Rbv + 
SEXT(disp)} to become UNPREDICTABLE. 

• LDx_L R31,disp(Rb) 

This instruction produces no useful result since it causes both lock_flag and 
locked_physical_address to become UNPREDICTABLE. 
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Unconditional Branch (BR and BSR) and Jump (JMP, JSR, RET, and JSR_ 
COROUTINE) instructions, when R31 is specified as the Ra operand, execute 
normally and update the PC with the target virtual address. Of course, no PC 
value can be saved in R31. 

3.1.3 Floating-Point Registers 
There are 32 floating-point registers (FO through F31), each 64 bits wide. 

When F31 is specified as a register source operand, a true zero-valued operand is 
supplied. See Section 4.7.3 for a definition of true zero. 

Results of an instruction that specifies F31 as a destination operand are discarded 
and it is UNPREDICTABLE whether the other destination operands (implicit and 
explicit) are changed by the instruction. In this case, it is implementation-dependent 
to what extent the instruction is actually executed once it has been fetched. It is also 
UNPREDICTABLE whether exceptions are signaled during the execution of such an 
instruction. Note, however, that exceptions associated with the instruction fetch of 
such an instruction are always signaled. 

A floating-point instruction that operates on single-precision data reads all bits 
<63:0> of the source floating-point register. A floating-point instruction that 
produces a single-precision result writes all bits <63:0> of the destination floating-
point register. 

3.1.4 Lock Registers 
There are two per-processor registers associated with the LDx_L and STx_C 
instructions, the lock_flag and the locked_physical_address register. The use of these 
registers is described in Section 4.2. 

3.1.5 Processor Cycle Counter (PCC) Register 
The PCC register consists of two 32-bit fields. The low-order 32 bits (PCC<31:0>) 
are an unsigned, wrapping counter, PCC_CNT. The high-order 32 bits (PCC<63:32>), 
PCC_OFF, are operating system dependent in their implementation. 

PCC_CNT is the base clock register for measuring time intervals, and is suitable for 
timing intervals on the order of nanoseconds. 

PCC_CNT increments once per N CPU cycles, where N is an implementation-specific 
integer in the range 1..16. The cycle counter frequency is the number of times the 
processor cycle counter gets incremented per second. The integer count wraps to 
0 from a count of FFFF FFFF16. The counter wraps no more frequently than 1.5 
times the implementation's interval clock interrupt period (which is two thirds of 
the interval clock interrupt frequency), which guarantees that an interrupt occurs 
before PCC_CNT overflows twice. 

PCC_OFF need not contain a value related to time and could contain all zeros in 
a simple implementation. However, if PCC_OFF is used to calculate a per-process 
or per-thread cycle count, it must contain a value that, when added to PCC_CNT, 
returns the total PCC register count for that process or thread, modulo 2**32. 
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Implementation Note: 

OpenVMS AXP and DEC OSF/1 supply a per-process value in PCC_OFF. 

PCC is required on all implementations. It is required for every processor, and each 
processor on a multiprocessor system has its own private, independent PCC. 

The PCC is read by the RPCC instruction. See Section 4.11.5. 

3.1.6 Optional Registers 
Some Alpha AXP implementations may include optional memory prefetch or VAX 
compatibility processor registers. 

3.1.6.1 Memory Prefetch Registers 

If the prefetch instructions FETCH and FETCH_M are implemented, an 
implementation will include two sets of state prefetch registers used by those 
instructions. The use of these registers is described in Section 4.11. These registers 
are not directly accessible by software and are listed for completeness. 

3.1.6.2 VAX Compatibility Register 

The VAX compatibility instructions RC and RS include the intr_flag register, as 
described in Section 4.12. 

3.2 Notation 

The notation used to describe the operation of each instruction is given as a sequence 
of control and assignment statements in an ALGOL-like syntax. 

3.2.1 Operand Notation 
Tables 3 -1 , 3-2, and 3-3 list the notation for the operands, the operand values, and 
the other expression operands. 

Table 3-1 : Operand Notation 

Notation Meaning 

Ra An integer register operand in the Ra field of the instruction. 
Rb An integer register operand in the Rb field of the instruction. 
#b An integer literal operand in the Rb field of the instruction. 
Re An integer register operand in the Re field of the instruction. 
Fa A floating-point register operand in the Ra field of the instruction. 
Fb A floating-point register operand in the Rb field of the instruction. 
Fc A floating-point register operand in the Re field of the instruction. 
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Table 3-2: Operand Value Notation 

Notation Meaning 

Rav The value of the Ra operand. This is the contents of register Ra. 
Rbv The value of the Rb operand. This could be the contents of register Rb, or a 

zero-extended 8-bit literal in the case of an Operate format instruction. 
Fav The value of the floating point Fa operand. This is the contents of register Fa. 
Fbv The value of the floating point Fb operand. This is the contents of register Fb. 

Table 3-3: Expression Operand Notation 
Notation Meaning 

IPR_x Contents of Internal Processor Register x 
IPR_SP[mode] Contents of the per-mode stack pointer selected by mode 
PC Updated PC value 
Rn Contents of integer register n 
Fn Contents of floating-point register n 
X[m] Element m of array X 

3.2.2 Instruction Operand Notation 

The notation used to describe instruction operands follows from the operand specifier 
notation used in the VAX Architecture Standard. Instruction operands are described 
as follows: 

<name>.<access typexdata type> 

<name> 
Specifies the instruction field (Ra, Rb, Re, or disp) and register type of the operand 
(integer or floating). It can be one of the following: 

Name Meaning 

disp The displacement field of the instruction. 
fhc The PALcode function field of the instruction. 
Ra An integer register operand in the Ra field of the instruction. 
Rb An integer register operand in the Rb field of the instruction. 
#b An integer literal operand in the Rb field of the instruction. 
Re An integer register operand in the Re field of the instruction. 
Fa A floating-point register operand in the Ra field of the instruction. 

3-4 Common Architecture (I) 



Name Meaning 

Fb A floating-point register operand in the Rb field of the instruction. 
Fc A floating-point register operand in the Re field of the instruction. 

<access type> 
Is a letter denoting the operand access type: 

Access Type Meaning 

a The operand is used in an address calculation to form an effective 
address. The data type code that follows indicates the units of 
addressability (or scale factor) applied to this operand when the 
instruction is decoded. 
For example: 
".al" means scale by 4 (longwords) to get byte units (used in branch 
displacements); ".ab" means the operand is already in byte units 
(used in load/store instructions). 

i The operand is an immediate literal in the instruction. 
r The operand is read only. 
m The operand is both read and written. 
w The operand is write only. 

<data type> 
Is a letter denoting the data type of the operand: 

Data Type Meaning 

b Byte 
f F_floating 
g G_floating 
1 Longword 
q Quadword 
s IEEE single floating (S_floating) 
t IEEE double floating (T.floating) 
w Word 
x The data type is specified by the instruction 
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3.2.3 Operators 
Table 3-4 describes the operators: 

Table 3-4: Operators 

Operator Meaning 

*U 

0 
(x) 
x<m:n> 
x<m> 
ACCESS(x,y) 

AND 
ARITH_RIGHT_SHIFT(x,y) 

BYTE_ZAP(x,y) 

Comment delimiter 
Addition 
Subtraction 
Signed multiplication 
Unsigned multiplication 
Exponentiation (left argument raised to right argument) 
Division 
Replacement 
Bit concatenation 
Indicates explicit operator precedence 
Contents of memory location whose address is x 
Contents of bit field of x defined by bits n through m 
M'thbitofx 
Accessibility of the location whose address is x using the 
access mode y. Returns a Boolean value TRUE if the address 
is accessible, else FALSE. 
Logical product 
Arithmetic right shift of first operand by the second operand. 
Y is an unsigned shift value. Bit 63, the sign bit, is copied 
into vacated bit positions and shifted out bits are discarded. 
X is a quadword, y is an 8-bit vector in which each bit 
corresponds to a byte of the result. The y bit to x byte 
correspondence is y<n> «-► x<8n+7:8n>. This correspondence 
also exists between y and the result. 
For each bit of y from n = 0 to 7, if y <n> is 0 then byte <n> 
of x is copied to byte <n> of result, and if y <n> is 1 then byte 
<n> of result is forced to all zeros. 
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Table 3-4 (Cont.): Operators 

Operator Meaning 

CASE 

DIV 

LEFT_SHIFT(x,y) 

LOAD.LOCKED 

lg 

MAP_x 

MINU(x,y) 

x M O D y 

NOT 

OR 

PHYSICAL_ADDRESS 

PRIORITY.ENCODE 

The CASE construct selects one of several actions based on 
the value of its argument. The form of a case is: 

CASE argument OF 
argvaluel: action_l 
argvalue2: action_2 

argvaluen: action_n 
[otherwise: default_action] 

ENDCASE 

If the value of argument is argvaluel then action_l is 
executed; if argument = argvalue2, then action_2 is executed, 
and so forth. 
Once a single action is executed, the code stream breaks 
to the ENDCASE (there is an implicit break as in Pascal). 
Each action may nonetheless be a sequence of pseudocode 
operations, one operation per line. 
Optionally, the last argvalue may be the atom 'otherwise'. The 
associated default action will be taken if none of the other 
argvalues match the argument. 

Integer division (truncates) 

Logical left shift of first operand by the second operand. 
Y is an unsigned shift value. Zeros are moved into the vacated 
bit positions, and shifted out bits are discarded. 

The processor records the target physical address in a per-
processor locked_physical_address register and sets the per-
processor lock_flag. 

Log to the base 2 

F_float or S_float memory-to-register exponent mapping 
function. 

Returns the smaller of x and y, with x and y interpreted as 
unsigned integers 

x modulo y 

Logical (ones) complement 

Logical sum 

Translation of a virtual address 

Returns the bit position of most significant set bit, interpret-
ing its argument as a positive integer ( = int( lg( x ) ) ). 
For example: 

p r i o r i t y _ e n c o d e ( 255 ) = 7 

Instruction Formats (I) 3-7 



Table 3-4 (Cont.): Operators 
Operator Meaning 

Relational Operators 

Operator Meaning 

LT Less than signed 
LTU Less than unsigned 
LE Less or equal signed 
LEU Less or equal unsigned 
EQ Equal signed and unsigned 
NE Not equal signed and unsigned 
GE Greater or equal signed 
GEU Greater or equal unsigned 
GT Greater signed 
GTU Greater unsigned 
LBC Low bit clear 
LBS Low bit set 

RIGHT_SHIFT(x,y) Logical right shift of first operand by the second operand. Y 
is an unsigned shift value. Zeros are moved into vacated bit 
positions, and shifted out bits are discarded. 

SEXT(x) X is sign-extended to the required size. 
STORE_CONDITIONAL If the lock_flag is set, then do the indicated store and clear 

the lock_flag. 
TEST(x,cond) The contents of register x are tested for branch condition 

(cond) true. TEST returns a Boolean value TRUE if x bears 
the specified relation to 0, else FALSE is returned. Integer 
and floating test conditions are drawn from the preceding list 
of relational operators. 

XOR Logical difference 
ZEXT(x) X is zero-extended to the required size. 

3.2.4 Notation Conventions 
The following conventions are used: 

1. Only operands that appear on the left side of a replacement operator are modified. 

2. No operator precedence is assumed other than that replacement (<-) has the 
lowest precedence. Explicit precedence is indicated by the use of "{}". 
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3. All arithmetic, logical, and relational operators are defined in the context of their 
operands. For example, "+" applied to G_floating operands means a G_floating 
add, whereas "+" applied to quadword operands is an integer add. Similarly, "LT" 
is a G_floating comparison when applied to G_floating operands and an integer 
comparison when applied to quadword operands. 

3.3 Instruction Formats 

There are five basic Alpha AXP instruction formats: 

• Memory 

• Branch 

• Operate 

• Floating-point Operate 

• PALcode 

All instruction formats are 32 bits long with a 6-bit major opcode field in bits <31:26> 
of the instruction. 

Any unused register field (Ra, Rb, Fa, Fb) of an instruction must be set to a value 
of 31. 

Software Note: 

There are several instructions, each formatted as a memory instruction, that do 
not use the Ra and/or Rb fields. These instructions are: Memory Barrier, Fetch, 
Fetch_M, Read Process Cycle Counter, Read and Clear, Read and Set, and Trap 
Barrier. 

3.3.1 Memory Instruction Format 
The Memory format is used to transfer data between registers and memory, to 
load an effective address, and for subroutine jumps. It has the format shown in 
Figure 3-1 . 

Figure 3-1 : Memory Instruction Format 

31 26 25 2120 16 15 0 

Opcode Ra Rb Memory_disp 

A Memory format instruction contains a 6-bit opcode field, two 5-bit register address 
fields, Ra and Rb, and a 16-bit signed displacement field. 

The displacement field is a byte offset. It is sign-extended and added to the contents 
of register Rb to form a virtual address. Overflow is ignored in this calculation. 
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The virtual address is used as a memory load/store address or a result value, 
depending on the specific instruction. The virtual address (va) is computed as follows 
for all memory format instructions except the load address high (LDAH): 

va <— {Rbv + SEXT(Memory_disp)} 

For LDAH the virtual address (va) is computed as follows: 
va «- {Rbv + SEXT(Memory_disp*6553 6)} 

3.3.1.1 Memory Format Instructions with a Function Code 

Memory format instructions with a function code replace the memory displacement 
field in the memory instruction format with a function code that designates a set of 
miscellaneous instructions. The format is shown in Figure 3-2. 

Figure 3-2: Memory Instruction with Function Code Format 

31 26 25 2120 16 15 0 

Opcode Ra Rb Function 

The memory instruction with function code format contains a 6-bit opcode field and 
a 16-bit function field. Unused function codes produce UNPREDICTABLE but not 
UNDEFINED results; they are not security holes. 

There are two fields, Ra and Rb. The usage of those fields depends on the instruction. 
See Section 4.11. 

3.3.1.2 Memory Format Jump Instructions 

For computed branch instructions (CALL, RET, JMP, JSR_COROUTINE) the 
displacement field is used to provide branch-prediction hints as described in 
Section 4.3. 

3.3.2 Branch Instruction Format 
The Branch format is used for conditional branch instructions and for PC-relative 
subroutine jumps. It has the format shown in Figure 3-3. 

Figure 3-3: Branch Instruction Format 

31 26 25 2120 0 

Opcode Ra Branch_disp 

A Branch format instruction contains a 6-bit opcode field, one 5-bit register address 
field (Ra), and a 21-bit signed displacement field. 
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The displacement is treated as a longword offset. This means it is shifted left two bits 
(to address a longword boundary), sign-extended to 64 bits and added to the updated 
PC to form the target virtual address. Overflow is ignored in this calculation. The 
target virtual address (va) is computed as follows: 

va ^- PC + {4*SEXT(Branch_disp)} 

3.3.3 Operate Instruction Format 
The Operate format is used for instructions that perform integer register to integer 
register operations. The Operate format allows the specification of one destination 
operand and two source operands. One of the source operands can be a literal 
constant. The Operate format in Figure 3-4 shows the two cases when bit <12> of 
the instruction is 0 and 1. 

Figure 3-4: Operate Instruction Format 

31 2625 2120 16 15 13 12 11 5 4 0 

Opcode Ra Rb SBZ 0 Function Re 

31 2625 2120 13 12 11 5 4 0 

Opcode Ra LIT 1 Function Re 

An Operate format instruction contains a 6-bit opcode field and a 7-bit function field. 
Unused function codes for those opcodes defined as reserved in the Version 5 Alpha 
AXP architecture specification (May 1992) produce an illegal instruction trap. Those 
opcodes are 01, 02, 03, 04, 05, 06, 07, 0A, 0C, 0D, 0E, 14, 19, IB, 1C, ID, IE, and 
IF. For other opcodes, unused function codes produce UNPREDICTABLE but not 
UNDEFINED results; they are not security holes. 

There are three operand fields, Ra, Rb, and Re. 

The Ra field specifies a source operand. Symbolically, the integer Rav operand is 
formed as follows: 

IF inst<25:21> EQ 31 THEN 
Rav <- 0 

ELSE 
Rav «— Ra 

END 

The Rb field specifies a source operand. Integer operands can specify a literal or an 
integer register using bit <12> of the instruction. 

If bit <12> of the instruction is 0, the Rb field specifies a source register operand. 

If bit <12> of the instruction is 1, an 8-bit zero-extended literal constant is formed 
by bits <20:13> of the instruction. The literal is interpreted as a positive integer 
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between 0 and 255 and is zero-extended to 64 bits. Symbolically, the integer Rbv 
operand is formed as follows: 

IF inst<12> EQ 1 THEN 
Rbv <- ZEXT(inst<20:13>) 

ELSE 
IF inst<20:16> EQ 31 THEN 

Rbv «- 0 
ELSE 

Rbv *— Rb 
END 

END 

The Re field specifies a destination operand. 

3.3.4 Floating-Point Operate Instruction Format 
The Floating-point Operate format is used for instructions that perform floating-
point register to floating-point register operations. The Floating-point Operate 
format allows the specification of one destination operand and two source operands. 
The Floating-point Operate format is shown in Figure 3-5. 

Figure 3-5: Floating-Point Operate Instruction Format 

31 26 25 2120 16 15 5 4 0 

Opcode Fa Fb Function Fc 

A Floating-point Operate format instruction contains a 6-bit opcode field and an 11-
bit function field. Unused function codes for those opcodes defined as reserved in 
the Version 5 Alpha AXP architecture specification (May 1992) produce an illegal 
instruction trap. Those opcodes are 01, 02, 03, 04, 05, 06, 07, 0A, 0C, 0D, 0E, 
14, 19, IB, 1C, ID, IE, and IF. For other opcodes, unused function codes produce 
UNPREDICTABLE but not UNDEFINED results; they are not security holes. 

There are three operand fields, Fa, Fb, and Fc. Each operand field specifies either 
an integer or floating-point operand as defined by the instruction. 
The Fa field specifies a source operand. Symbolically, the Fav operand is formed as 
follows: 

IF inst<25:21> EQ 31 THEN 
Fav <- 0 

ELSE 
Fav <— Fa 

END 

The Fb field specifies a source operand. Symbolically, the Fbv operand is formed as 
follows: 
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I F i n s t < 2 0 : 1 6 > EQ 3 1 THEN 
Fbv <- 0 

ELSE 
Fbv <- Fb 

END 

Note 

Neither Fa nor Fb can be a literal in Floating-point Operate instructions. 

The Fc field specifies a destination operand. 

3.3.4.1 Floating-Point Convert Instructions 

Floating-point Convert instructions use a subset of the Floating-point Operate 
format and perform register-to-register conversion operations. The Fb operand 
specifies the source; the Fa field must be F31. 

3.3.5 PALcode Instruction Format 
The Privileged Architecture Library (PALcode) format is used to specify extended 
processor functions. It has the format shown in Figure 3-6. 

Figure 3-6: PALcode Instruction Format 

Opcode PALcode Function 

The 26-bit PALcode function field specifies the operation. 

The source and destination operands for PALcode instructions are supplied in fixed 
registers that are specified in the individual instruction descriptions. 

An opcode of zero and a PALcode function of zero specify the HALT instruction. 
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Chapter 4 

Instruction Descriptions (I) 

4.1 Instruction Set Overview 

This chapter describes the instructions implemented by the Alpha AXP architecture. 
The instruction set is divided into the following sections: 

Instruction Type Section 

Integer load and store 4.2 
Integer control 4.3 
Integer arithmetic 4.4 

Logical and shift 4.5 
Byte manipulation 4.6 
Floating-point load and store 4.8 
Floating-point control 4.9 
Floating-point operate 4.10 
Miscellaneous 4.11 

Within each major section, closely related instructions are combined into groups and 
described together. The instruction group description is composed of the following: 

• The group name 

• The format of each instruction in the group, which includes the name, access 
type, and data type of each instruction operand 

• The operation of the instruction 

• Exceptions specific to the instruction 

• The instruction mnemonic and name of each instruction in the group 

• Qualifiers specific to the instructions in the group 

• A description of the instruction operation 

• Optional programming examples and optional notes on the instruction 
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4.1.1 Subsetting Rules 
An instruction that is omitted in a subset implementation of the Alpha AXP 
architecture is not performed in either hardware or PALcode. System software may 
provide emulation routines for subsetted instructions. 

4.1.1.1 Floating-Point Subsets 

Floating-point support is optional on an Alpha AXP processor. An implementation 
that supports floating-point must implement the 32 floating-point registers, the 
Floating-point Control Register (FPCR) and the instructions to access it, floating-
point branch instructions, floating-point copy sign (CPYSx) instructions, floating-
point convert instructions, floating-point conditional move instruction (FCMOV), and 
the S_floating and T_floating memory operations. 

Software Note: 

A system that will not support floating-point operations is still required to provide 
the 32 floating-point registers, the Floating-point Control Register (FPCR) and 
the instructions to access it, and the T_floating memory operations if the system 
intends to support the OpenVMS AXP operating system. This requirement 
facilitates the implementation of a floating-point emulator and simplifies context-
switching. 

In addition, floating-point support requires at least one of the following subset 
groups: 

1. VAX Floating-point Operate and Memory instructions (F_ and G_floating). 

2. IEEE Floating-point Operate instructions (S_ and T_floating). Within this group, 
an implementation can choose to include or omit separately the ability to perform 
IEEE rounding to plus infinity and minus infinity. 

Note: if one instruction in a group is provided, all other instructions in that group 
must be provided. An implementation with full floating-point support includes 
both groups; a subset floating-point implementation supports only one of these 
groups. The individual instruction descriptions indicate whether an instruction can 
be subsetted. 

4.1.2 Software Emulation Rules 
General-purpose layered and application software that executes in User mode may 
assume that certain loads (LDL, LDQ, LDF, LDG, LDS, and LDT) and certain stores 
(STL, STQ, STF, STG, STL and STT) of unaligned data are emulated by system 
software. General-purpose layered and application software that executes in User 
mode may assume that subsetted instructions are emulated by system software. 
Frequent use of emulation may be significantly slower than using alternative code 
sequences. 

Emulation of loads and stores of unaligned data and subsetted instructions need 
not be provided in privileged access modes. System software that supports special-
purpose dedicated applications need not provide emulation in User mode if emulation 
is not needed for correct execution of the special-purpose applications. 
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4.1.3 Opcode Qualifiers 
Some Operate format and Floating-point Operate format instructions have several 
variants. For example, for the VAX formats, Add F_floating (ADDF) is supported 
with and without floating underflow enabled, and with either chopped or VAX 
rounding. For IEEE formats, IEEE unbiased rounding, chopped, round toward plus 
infinity, and round toward minus infinity can be selected. 

The different variants of such instructions are denoted by opcode qualifiers, which 
consist of a slash (/) followed by a string of selected qualifiers. Each qualifier is 
denoted by a single character as shown in Table 4 - 1 . The opcodes for each qualifier 
are listed in Appendix C. 

Table 4-1 : Opcode Qualifiers 

Qualifier Meaning 

c 
D 
M 
I 
S 

u 
V 

Chopped rounding 
Rounding mode dynamic 
Round toward minus infinity 
Inexact result enable 
Software completion enable 
Floating underflow enable 
Integer overflow enable 

The default values are normal rounding, software completion disabled, inexact result 
disabled, floating underflow disabled, and integer overflow disabled. 
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4.2 Memory Integer Load/Store Instructions 
The instructions in this section move data between the integer registers and memory. 

They use the Memory instruction format. The instructions are summarized in 
Table 4-2. 

Table 4-2: Memory Integer Load/Store Instructions 
Mnemonic Operation 

LDA Load Address 
LDAH Load Address High 

LDL Load Sign-Extended Longword 
LDL_L Load Sign-Extended Longword Locked 
LDQ Load Quadword 
LDQ_L Load Quadword Locked 
LDQ_U Load Quadword Unaligned 

STL Store Longword 
STL_C Store Longword Conditional 
STQ Store Quadword 
STQ_C Store Quadword Conditional 
STQJJ Store Quadword Unaligned 
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4.2.1 Load Address 

Format: 

LDAx Ra.wq,disp.ab(Rb.ab) ÎMemory format 

Operation: 

Ra <- Rbv + SEXT(disp) !LDA 

Ra <- Rbv + SEXT(disp*65536) !LDAH 

Exceptions: 

None 

Instruction mnemonics: 

LDA Load Address 
LDAH Load Address High 

Qualifiers: 

None 

Description: 

The virtual address is computed by adding register Rb to the sign-extended 16-bit 
displacement for LDA, and 65536 times the sign-extended 16-bit displacement for 
LDAH. The 64-bit result is written to register Ra. 
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4.2.2 Load Memory Data into Integer Register 

Format: 

LDx Ra.wq,disp.ab(Rb.ab) IMemory format 

Operation: 

v a «- {Rbv + S E X T ( d i s p ) } 

CASE ! LDL 
big_endian_data: va' <- va XOR IOO2 ! LDL 
little_endian_data: va' «— va ! LDL 

ENDCASE ! LDL 

Ra <- SEXT((va')<31:0>) ! LDL 
Ra <- (va)<63:0> ! LDQ 

Exceptions: 

Access Violation 
Alignment 
Fault on Read 
Translation Not Valid 

Instruction mnemonics: 

LDL Load Sign-Extended Longword from Memory to Register 

LDQ Load Quadword from Memory to Register 

Qualifiers: 

None 

Description: 

The virtual address is computed by adding register Rb to the sign-extended 16-bit 
displacement. For a big-endian longword access, va<2> (bit 2 of the virtual address) 
is inverted, and any memory management fault is reported for va (not va')· The 
source operand is fetched from memory, sign-extended, and written to register Ra. 
If the data is not naturally aligned, an alignment exception is generated. 
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4.2.3 Load Unaligned Memory Data into Integer Register 

Format: 

LDQ_U Ra.wq,disp.ab(Rb.ab) ÎMemory format 

Operation: 

va <- {{Rbv + SEXT(disp)} AND NOT 7} 

Ra <- (va)<63:0> 

Exceptions: 

Access Violation 
Fault on Read 
Translation Not Valid 

Instruction mnemonics: 

LDQ_U Load Unaligned Quadword from Memory to Register 

Qualifiers: 

None 

Description: 

The virtual address is computed by adding register Rb to the sign-extended 16-
bit displacement, then the low-order three bits are cleared. The source operand is 
fetched from memory and written to register Ra. 
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4.2.4 Load Memory Data into Integer Register Locked 

Format: 

LDx_L Ra.wq,disp.ab(Rb.ab) '.Memory format 

Operation: 

{Rbv + SEXT(disp)} 

CASE 
big_endian_data: 
little_endian_ 

ENDCASE 

lock_flag <— 1 
locked_physical_ 

Ra <- SEXT((va 
Ra <— (va)<63: 

_data: 

_addre 

,')<31: 
0> 

va' 
va' 

ss <— 

:0>) 

<— 
<— 

va 
va 

XOR 

PHYSICAL 

! 
1002 ! 

1 

1 

,_ADDRESS ( 

1 

1 

LDL. 
LDL_ 
LDL_ 
LDL. 

va) 

LDL_ 
LDQ_ 

_L 
_L 
_L 
_L 

_L 
_L 

Exceptions: 

Access Violation 
Alignment 
Fault on Read 
Translation Not Valid 

Instruction mnemonics: 

LDL_L Load Sign-Extended Longword from Memory to Register Locked 
LDQ_L Load Quadword from Memory to Register Locked 

Qualifiers: 

None 

Description: 

The virtual address is computed by adding register Rb to the sign-extended 16-bit 
displacement. For a big-endian longword access, va<2> (bit 2 of the virtual address) 
is inverted, and any memory management fault is reported for va (not va')· The 
source operand is fetched from memory, sign-extended for LDL_L, and written to 
register Ra. 
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When a LDx_L instruction is executed without faulting, the processor records the 
target physical address in a per-processor locked_physical_address register and sets 
the per-processor lock_flag. 

If the per-processor lock_flag is (still) set when a STx_C instruction is executed, the 
store occurs; otherwise, it does not occur, as described for the STx_C instructions. 

If processor As lock_flag is set and processor B successfully does a store within As 
locked range of physical addresses, then As lock_flag is cleared. A processor's locked 
range is the aligned block of 2**N bytes that includes the locked_physical_address. 
The 2**N value is implementation dependent. It is at least 16 (minimum lock 
range is an aligned quadword) and is at most the page size for that implementation 
(maximum lock range is one physical page). 

A processor's lock_flag is also cleared if that processor encounters a CALL_PAL REI, 
CALL_PAL rti, or CALL_PAL rfe instruction. It is UNPREDICTABLE whether or 
not a processor's lock_flag is cleared on any other CALL_PAL instruction. It is 
UNPREDICTABLE whether a processor's lock_flag is cleared by that processor's 
executing a normal load or store instruction. It is UNPREDICTABLE whether 
a processor's lock_flag is cleared by that processor's executing a taken branch 
(including BR, BSR, and Jumps); conditional branches that fall through do not clear 
the lock_flag. 

The sequence: 
LDx_L 
Modify 
STx_C 
BEQxxx 

when executed on a given processor, does an atomic read-modify-write of a datum 
in shared memory if the branch falls through. If the branch is taken, the store did 
not modify memory and the sequence may be repeated until it succeeds. 

Notes: 

• LDxJL instructions do not check for write access; hence a matching STx_C may 
take an access-violation or fault-on-write exception. 

Executing a LDx_L instruction on one processor does not affect any 
architecturally visible state on another processor, and in particular cannot cause 
a STx_C on another processor to fail. 

LDx_L and STx_C instructions need not be paired. In particular, an LDx_L may 
be followed by a conditional branch: on the fall-through path an STx_C is done, 
whereas on the taken path no matching STx_C is done. 

If two LDx_L instructions execute with no intervening STx_C, the second one 
overwrites the state of the first one. If two STx_C instructions execute with no 
intervening LDx_L, the second one always fails because the first clears lock_flag. 

• Software will not emulate unaligned LDx_L instructions. 
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• If any other memory access (LDx, LDQ_U, STx, STQ_U) is done on the given 
processor between the LDx_L and the STx_C, the sequence above may always 
fail on some implementations; hence, no useful program should do this. 

• If a branch is taken between the LDx_L and the STx_C, the sequence above may 
always fail on some implementations; hence, no useful program should do this. 
(CMOVxx may be used to avoid branching.) 

• If a subsetted instruction (for example, floating-point) is done between the LDx_L 
and the STx_C, the sequence above may always fail on some implementations, 
because of the Illegal Instruction Trap; hence, no useful program should do this. 

• If a large number of instructions are executed between the LDx_L and the STx_C, 
the sequence above may always fail on some implementations, because of a timer 
interrupt always clearing the lock_flag before the sequence completes; hence, no 
useful program should do this. 

• Hardware implementations are encouraged to lock no more than 128 bytes. 
Software implementations are encouraged to separate locked locations by at 
least 128 bytes from other locations that could potentially be written by another 
processor while the first location is locked. 

Implementation Notes: 

Implementations that impede the mobility of a cache block on LDx_L, such as 
that which may occur in a Read for Ownership cache coherency protocol, may 
release the cache block and make the subsequent STx_C fail if a branch-taken 
or memory instruction is executed on that processor. 

All implementations should guarantee that at least 40 non-subsetted operate 
instructions can be executed between timer interrupts. 
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4.2.5 Store Integer Register Data into Memory Conditional 

Format: 

STx_C Ra.mx,disp.ab(Rb.ab) IMemory format 

Operation: 

{Rbv + SEXT(disp)} 

CASE ! STL_C 
big_endian_data: va' <- va. XOR IOO2 ! STL_C 
little_endian_data: va' *- va ! STL_C 

ENDCASE ! STL_C 

IF lock_flag EQ 1 THEN 
(va')<31:0> <- Rav<31:0> ! STL_C 
(va) <- Rav ! STQ_C 

Ra <— lock_flag 
lock_flag <- 0 

Exceptions: 

Access Violation 
Fault on Write 
Alignment 
Translation Not Valid 

Instruction mnemonics: 

STL_C Store Longword from Register to Memory Conditional 
STQ_C Store Quadword from Register to Memory Conditional 

Qualifiers: 

None 

Description: 

The virtual address is computed by adding register Rb to the sign-extended 16-bit 
displacement. For a big-endian longword access, va<2> (bit 2 of the virtual address) 
is inverted, and any memory management fault is reported for va (not va'). 

If the lock_flag is set and the address meets the following constraints relative to 
the address specified by the preceding LDx_L instruction, the Ra operand is written 
to memory at this address. If the address meets the following constraints but the 

Instruction Descriptions (I) 4-11 

va «— 



lock_flag is not set, a zero is returned in Ra and no write to memory occurs. The 
constraints are: 

• The computed virtual address must specify a location within the naturally 
aligned 16-byte block in virtual memory accessed by the preceding LDx_L 
instruction. 

• The resultant physical address must specify a location within the naturally 
aligned 16-byte block in physical memory accessed by the preceding LDx_L 
instruction. 

If the lock_flag is set but the addressing constraints are not met, the outcome of the 
STx_C instruction is UNPREDICTABLE. In all cases, Ra is set to zero if the STx_C 
failed (memory was not written) and set to one if it succeeded (memory was written). 

If the addressing constraints were not met and the lock_flag was cleared by execution 
of a CALL_PAL REI, CALL.PAL rti, CALLJPAL rfe, or STx_C instruction since the 
most recent execution of a LDx_L instruction, a zero is returned in Ra and no write 
to memory occurs. (See the LDx_L description for conditions that clear the lock_ 
flag.) 

In all cases, the lock_flag is set to zero at the end of the operation. 

Notes: 

• Software will not emulate unaligned STx_C instructions. 

• Each implementation must do the test and store atomically, as illustrated in the 
following two examples. (See Section 5.6.1 for complete information.) 

— If two processors attempt STx_C instructions to the same lock range and that 
lock range was accessed by both processors' preceding LDx_L instructions, 
exactly one of the stores succeeds. 

— A processor executes a LDx_L/STx_C sequence and includes an MB between 
the LDx_L to a particular address and the successful STx_C to a different 
address (one that meets the constraints required for predictable behavior). 
That instruction sequence establishes an access order under which a store 
operation by another processor to that lock range occurs before the LDx_L or 
after the STx_C. 

• The following sequence should not be used: 

try_again: LDQ_L Rl, x 
<modify Rl> 
STQ_C Rl,x 
BEQ Rl, try_again 

That sequence penalizes performance when the STQ_C succeeds, because the 
sequence contains a backward branch, which is predicted to be taken in the 
Alpha AXP architecture. In the case where the STQ_C succeeds and the branch 
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will actually fall through, that sequence incurs unnecessary delay due to a 
mispredicted backward branch. Instead, a forward branch should be used to 
handle the failure case as shown in Section 5.5.2. 

Software Note: 

If the address specified by a STx_C instruction does not match the one given 
in the preceding LDx_L instruction, an MB is required to guarantee ordering 
between the two instructions. 

Hardware/Software Implementation Note: 

STQ_C is used in the first Alpha AXP implementations to access the MailBox 
Pointer Register (MBPR). In this special case, the effect of the STQ_C is well 
defined (that is, not UNPREDICTABLE) even though the preceding LDx_L did 
not specify the address of the MBPR. 

Implementation Notes: 

A STx_C must propagate to the point of coherency, where it is guaranteed to 
prevent any other store from changing the state of the lock bit, before its outcome 
can be determined. 
If an implementation could encounter a TB or cache miss on the data reference of 
the STx_C in the sequence above (as might occur in some shared I- and D-stream 
direct-mapped TBs/caches), it must be able to resolve the miss and complete the 
store without always failing. 
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4.2.6 Store Integer Register Data into Memory 

Format: 

STx Ra.rx,disp.ab(Rb.ab) ÎMemory format 

Operation: 

v a <— {Rbv + S E X T ( d i s p ) } 

CASE ! STL 
big_endian_data: va' ̂ - va XOR IOO2 ! STL 
little_endian_data: va' <- va ! STL 

ENDCASE ! STL 

(va')<31:0> «- Rav<31:0> ! STL 
(va) <— Rav ! STQ 

Exceptions: 

Access Violation 
Fault on Write 
Alignment 
Translation Not Valid 

Instruction mnemonics: 

STL Store Longword from Register to Memory 
STQ Store Quadword from Register to Memory 

Qualifiers: 

None 

Description: 

The virtual address is computed by adding register Rb to the sign-extended 16-bit 
displacement. For a big-endian longword access, va<2> (bit 2 of the virtual address) 
is inverted, and any memory management fault is reported for va (not va'). The Ra 
operand is written to memory at this address. If the data is not naturally aligned, 
an alignment exception is generated. 
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4.2.7 Store Unaligned Integer Register Data into Memory 

Format: 

STQ_U Ra.rq,disp.ab(Rb.ab) ÎMemory format 

Operation: 

va <- {{Rbv + SEXT(disp)} AND NOT 7} 

(va)<63:0> «- Rav<63:0> 

Exceptions: 

Access Violation 
Fault on Write 
Translation Not Valid 

Instruction mnemonics: 

STQ_U Store Unaligned Quadword from Register to Memory 

Qualifiers: 

None 

Description: 

The virtual address is computed by adding register Rb to the sign-extended 16-bit 
displacement, then clearing the low order three bits. The Ra operand is written to 
memory at this address. 
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4.3 Control Instructions 
Alpha AXP provides integer conditional branch, unconditional branch, branch to 
subroutine, and jump instructions. The PC used in these instructions is the updated 
PC, as described in Section 3.1.1. 

To allow implementations to achieve high performance, the Alpha AXP architecture 
includes explicit hints based on a branch-prediction model: 

1. For many implementations of computed branches (JSR/RET/JMP), there is a 
substantial performance gain in forming a good guess of the expected target I-
cache address before register Rb is accessed. 

2. For many implementations, the first-level (or only) I-cache is no bigger than a 
page (8 KB to 64 KB). 

3. Correctly predicting subroutine returns is important for good performance. Some 
implementations will therefore keep a small stack of predicted subroutine return 
I-cache addresses. 

The Alpha AXP architecture provides three kinds of branch-prediction hints: likely 
target address, return-address stack action, and conditional branch-taken. 

For computed branches, the otherwise unused displacement field contains a function 
code (JMP/JSR/RET/JSR_COROUTINE), and, for JSR and JMP, a field that 
statically specifies the 16 low bits of the most likely target address. The PC-
relative calculation using these bits can be exactly the PC-relative calculation used 
in unconditional branches. The low 16 bits are enough to specify an I-cache block 
within the largest possible Alpha AXP page and hence are expected to be enough for 
branch-prediction logic to start an early I-cache access for the most likely target. 

For all branches, hint or opcode bits are used to distinguish simple branches, 
subroutine calls, subroutine returns, and coroutine links. These distinctions allow 
branch-predict logic to maintain an accurate stack of predicted return addresses. 

For conditional branches, the sign of the target displacement is used as a taken 
/fall-through hint. The instructions are summarized in Table 4-3. 
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Table 4-3: Control Instructions Summary 

Mnemonic Operation 

BEQ 
BGE 
BGT 
BLBC 
BLBS 
BLE 
BLT 
BNE 

Branch if Register Equal to Zero 
Branch if Register Greater Than or Equal to Zero 
Branch if Register Greater Than Zero 
Branch if Register Low Bit Is Clear 
Branch if Register Low Bit Is Set 
Branch if Register Less Than or Equal to Zero 
Branch if Register Less Than Zero 
Branch if Register Not Equal to Zero 

BR 
BSR 

Unconditional Branch 
Branch to Subroutine 

JMP Jump 
JSR Jump to Subroutine 
RET Return from Subroutine 
JSR.COROUTINE Jump to Subroutine Return 
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4.3.1 Conditional Branch 

Format: 

Bxx Ra.rq,disp.al ÎBranch format 

Operation : 

{update PC} 
va +- PC + {4*SEXT(disp)} 
IF TEST(Rav, Condition_based_on_Opcode) THEN 

PC «— va 

Exceptions: 

None 

Instruction mnemonics: 

BEQ Branch if Register Equal to Zero 
BGE Branch if Register Greater Than or Equal to Zero 
BGT Branch if Register Greater Than Zero 
BLBC Branch if Register Low Bit Is Clear 
BLBS Branch if Register Low Bit Is Set 
BLE Branch if Register Less Than or Equal to Zero 
BLT Branch if Register Less Than Zero 
BNE Branch if Register Not Equal to Zero 

Qualifiers: 

None 

Description: 

Register Ra is tested. If the specified relationship is true, the PC is loaded with 
the target virtual address; otherwise, execution continues with the next sequential 
instruction. 

The displacement is treated as a signed longword offset. This means it is shifted 
left two bits (to address a longword boundary), sign-extended to 64 bits, and added 
to the updated PC to form the target virtual address. 

The conditional branch instructions are PC-relative only. The 21-bit signed 
displacement gives a forward/backward branch distance of +/- IM instructions. 
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The test is on the signed quadword integer interpretation of the register contents; 
all 64 bits are tested. 

Notes: 

• Forward conditional branches (positive displacement) are predicted to fall 
through. Backward conditional branches (negative displacement) are predicted 
to be taken. Conditional branches do not affect a predicted return address stack. 
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4.3.2 Unconditional Branch 

Format: 

BxR Ra.wq,disp.al '.Branch format 

Operation : 

{ u p d a t e PC} 
Ra <- PC 
PC <- PC + { 4 * S E X T ( d i s p ) } 

Exceptions: 

None 

Instruction mnemonics: 

BR Unconditional Branch 
BSR Branch to Subroutine 

Qualifiers: 

None 

Description: 

The PC of the following instruction (the updated PC) is written to register Ra, and 
then the PC is loaded with the target address. 

The displacement is treated as a signed longword offset. This means it is shifted 
left two bits (to address a longword boundary), sign-extended to 64 bits, and added 
to the updated PC to form the target virtual address. 

The unconditional branch instructions are PC-relative. The 21-bit signed 
displacement gives a forward/backward branch distance of +/- IM instructions. 

PC-relative addressability can be established by: 
BR R x , L l 

L I : 

Notes: 

• BR and BSR do identical operations. They only differ in hints to possible branch-
prediction logic. BSR is predicted as a subroutine call (pushes the return address 
on a branch-prediction stack), whereas BR is predicted as a branch (no push). 
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4.3.3 Jumps 

Format: 

mnemonic Ra.wq,(Rb.ab),hint ÎMemory format 

Operation: 

{ u p d a t e PC} 
v a «- Rbv AND {NOT 3} 
Ra <- PC 
PC ♦- v a 

Exceptions: 

None 

Instruction mnemonics: 

JMP 
JSR 
RET 
JSR.COROUTINE 

Qualifiers: 

None 

Description: 

The PC of the instruction following the Jump instruction (the updated PC) is written 
to register Ra, and then the PC is loaded with the target virtual address. 

The new PC is supplied from register Rb. The low two bits of Rb are ignored. Ra 
and Rb may specify the same register; the target calculation using the old value is 
done before the new value is assigned. 

All Jump instructions do identical operations. They only differ in hints to possible 
branch-prediction logic. The displacement field of the instruction is used to pass this 
information. The four different "opcodes" set different bit patterns in disp<15:14>, 
and the hint operand sets disp<13:0>. 

Jump 
Jump to Subroutine 
Return from Subroutine 
Jump to Subroutine Return 
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These bits are intended to be used as shown in Table 4-4. 

Table 4-4: Jump Instructions Branch Prediction 

disp<15:14> 

00 

01 

10 

11 

Meaning 

JMP 

JSR 

RET 

JSR_COROUTINE 

Predicted 
Target<15:0> 

PC + {4*disp<13:0>} 

PC + (4*disp<13:0>) 

Prediction stack 

Prediction stack 

Prediction 
Stack Action 

-

Push PC 

Pop 

Pop, push PC 

The design in Table 4-4 allows specification of the low 16 bits of a likely longword 
target address (enough bits to start a useful I-cache access early), and also allows 
distinguishing call from return (and from the other two less frequent operations). 

Note that the above information is used only as a hint; correct setting of these bits 
can improve performance but is not needed for correct operation. See Appendix A 
for more information on branch prediction. 

An unconditional long jump can be performed by: 
JMP R 3 1 , ( R b ) , h i n t 

Coroutine linkage can be performed by specifying the same register in both the Ra 
and Rb operands. When disp<15:14> equals Ί 0 ' (RET) or Ί Γ (JSR_COROUTINE) 
(that is, the target address prediction, if any, would come from a predictor 
implementation stack), then bits <13:0> are reserved for software and must be 
ignored by all implementations. All encodings for bits <13:0> are used by Digital 
software or Reserved to Digital, as follows: 

Encoding Meaning 

0000 iß Indicates non-procedure return 
000116 Indicates procedure return 

All other encodings are reserved to Digital. 
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4.4 Integer Arithmetic Instructions 
The integer arithmetic instructions perform add, subtract, multiply, and signed and 
unsigned compare operations. 

The integer instructions are summarized in Table 4-5. 

Table 4-5: Integer Arithmetic Instructions Summary 
Mnemonic Operation 

ADD Add Quadword/Longword 
S4ADD Scaled Add by 4 
S8ADD Scaled Add by 8 

CMPEQ Compare Signed Quadword Equal 
CMPLT Compare Signed Quadword Less Than 
CMPLE Compare Signed Quadword Less Than or Equal 

CMPULT Compare Unsigned Quadword Less Than 
CMPULE Compare Unsigned Quadword Less Than or Equal 

MUL Multiply Quadword/Longword 
UMULH Multiply Quadword Unsigned High 

SUB Subtract Quadword/Longword 
S4SUB Scaled Subtract by 4 
S8SUB Scaled Subtract by 8 

There is no integer divide instruction. Division by a constant can be done via 
UMULH; division by a variable can be done via a subroutine. See Appendix A. 
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4.4.1 Longword Add 

Format: 

ADDL Ra.rl,Rb.rl,Rc.wq IOperate format 
ADDL Ra.rl,#b.ib,Rcwq ÎOperate format 

Operation: 

Rc «- SEXT( (Rav + Rbv)<31:0>) 

Exceptions: 

Integer Overflow 

Instruction mnemonics: 

ADDL Add Longword 

Qualifiers: 

Integer Overflow Enable (/V) 

Description: 

Register Ra is added to register Rb or a literal, and the sign-extended 32-bit sum is 
written to Rc. 

The high order 32 bits of Ra and Rb are ignored. Rc is a proper sign extension 
of the truncated 32-bit sum. Overflow detection is based on the longword 
sum Rav<31:0> + Rbv<31:0>. 
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4.4.2 Scaled Longword Add 

Format: 

SxADDL Ra.rl,Rb.rq,Rcwq '.Operate format 
SxADDL Ra.rl,#b.ib,Rcwq !Operate format 

Operation: 

CASE 
S4ADDL: Re <- SEXT (((LEFT_SHIFT(Rav,2)) + Rbv)<31:0>) 
S8ADDL: Re <- SEXT (((LEFT_SHIFT(Rav,3)) + Rbv)<31:0>) 

ENDCASE 

Exceptions: 

None 

Instruction mnemonics: 

S4ADDL Scaled Add Longword by 4 
S8ADDL Scaled Add Longword by 8 

Qualifiers: 

None 

Description: 

Register Ra is scaled by 4 (for S4ADDL) or 8 (for S8ADDL) and is added to register 
Rb or a literal, and the sign-extended 32-bit sum is written to Re. 

The high 32 bits of Ra and Rb are ignored. Re is a proper sign extension of the 
truncated 32-bit sum. 
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4.4.3 Quadword Add 

Format: 

ADDQ Ra.rq,Rb.rq,Rc.wq !Operate format 
ADDQ Ra.rq,#b.ib,Rc.wq '.Operate format 

Operation: 

Re «— Rav + Rbv 

Exceptions: 

Integer Overflow 

Instruction mnemonics: 

ADDQ Add Quadword 

Qualifiers: 

Integer Overflow Enable (/V) 

Description: 

Register Ra is added to register Rb or a literal, and the 64-bit sum is written to Re. 

On overflow, the least significant 64 bits of the true result are written to the 
destination register. 

The unsigned compare instructions can be used to generate carry. After adding two 
values, if the sum is less unsigned than either one of the inputs, there was a carry 
out of the most significant bit. 
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4.4.4 Scaled Quadword Add 

Format: 

SxADDQ Ra.rq,Rb.rq,Rc.wq 
SxADDQ Ra.rq,#b.ib,Rc.wq 

! Operate format 
'.Operate format 

Operation: 

CASE 
S4ADDQ: Re 
S8ADDQ: Re 

ENDCASE 

LEFT_SHIFT(Rav,2) + Rbv 
LEFT_SHIFT(Rav,3) + Rbv 

Exceptions: 

None 

Instruction mnemonics: 

S4ADDQ Scaled Add Quadword by 4 
S8ADDQ Scaled Add Quadword by 8 

Qualifiers: 

None 

Description: 

Register Ra is scaled by 4 (for S4ADDQ) or 8 (for S8ADDQ) and is added to register 
Rb or a literal, and the 64-bit sum is written to Re. 
On overflow, the least significant 64 bits of the true result are written to the 
destination register. 
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4.4.5 Integer Signed Compare 

Format: 

CMPxx Ra.rq,Rb.rq,Rc.wq Operate format 
CMPxx Ra.rq,#b.ib,Rc.wq ÎOperate format 

Operation: 

IF Rav SIGNED_RELATION Rbv THEN 
Re <- 1 

ELSE 
Re <- 0 

Exceptions: 

None 

Instruction mnemonics: 

CMPEQ Compare Signed Quadword Equal 
CMPLE Compare Signed Quadword Less Than or Equal 
CMPLT Compare Signed Quadword Less Than 

Qualifiers: 

None 

Description: 

Register Ra is compared to Register Rb or a literal. If the specified relationship is 
true, the value one is written to register Re; otherwise, zero is written to Re. 

Notes: 

• Compare Less Than A,B is the same as Compare Greater Than B,A; Compare 
Less Than or Equal A,B is the same as Compare Greater Than or Equal B,A. 
Therefore, only the less-than operations are included. 
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4.4.6 Integer Unsigned Compare 

Format: 

CMPUxx Ra.rq,Rb.rq,Rc.wq !Operate format 
CMPUxx Ra.rq,#b.ib,Rc.wq '.Operate format 

Operation: 

IF Rav UNSIGNED_RELATION Rbv THEN 
Re *- 1 

ELSE 
Re 4- 0 

Exceptions: 

None 

Instruction mnemonics: 

CMPULE Compare Unsigned Quadword Less Than or Equal 
CMPULT Compare Unsigned Quadword Less Than 

Qualifiers: 

None 

Description: 

Register Ra is compared to Register Rb or a literal. If the specified relationship is 
true, the value one is written to register Re; otherwise, zero is written to Re. 
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4.4.7 Longword Multiply 

Format: 

MULL Ra.rl,Rb.rl,Rc.wq ÎOperate format 
MULL Ra.rl,#b.ib,Rc.wq ÎOperate format 

Operation: 

Rc <- SEXT ( ( R a v * R b v ) < 3 1 : 0 > ) 

Exceptions: 

Integer Overflow 

Instruction mnemonics: 

MULL Multiply Longword 

Qualifiers: 

Integer Overflow Enable (/V) 

Description: 

Register Ra is multiplied by register Rb or a literal, and the sign-extended 32-bit 
product is written to Rc. 

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension 
of the truncated 32-bit product. Overflow detection is based on the longword 
product Rav<31:0> * Rbv<31:0>. On overflow, the proper sign extension of the least 
significant 32 bits of the true result are written to the destination register. 

The MULQ instruction can be used to return the full 64-bit product. 
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4.4.8 Quadword Multiply 

Format: 

MULQ Ra.rq,Rb.rq,Rc.wq '.Operate format 
MULQ Ra.Rq,#b.ib,Rc.wq '.Operate format 

Operation: 

Re <— Rav * Rbv 

Exceptions: 

Integer Overflow 

Instruction mnemonics: 

MULQ Multiply Quadword 

Qualifiers: 

Integer Overflow Enable (/V) 

Description: 

Register Ra is multiplied by register Rb or a literal, and the 64-bit product is written 
to register Re. Overflow detection is based on considering the operands and the result 
as signed quantities. On overflow, the least significant 64 bits of the true result are 
written to the destination register. 

The UMULH instruction can be used to generate the upper 64 bits of the 128-bit 
result when an overflow occurs. 
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4.4.9 Unsigned Quadword Multiply High 

Format: 

UMULH Ra.rq,Rb.rq,Rcwq ÎOperate format 
UMULH Ra.Rq,#b.ib,Rc.wq ÎOperate format 

Operation: 

Re <- {Rav *U R b v } < 1 2 7 : 6 4 > 

Exceptions: 

None 

Instruction mnemonics: 

UMULH Unsigned Multiply Quadword High 

Qualifiers: 

None 

Description: 

Register Ra and Rb or a literal are multiplied as unsigned numbers to produce a 
128-bit result. The high-order 64-bits are written to register Re. 

The UMULH instruction can be used to generate the upper 64 bits of a 128-bit result 
as follows: 
Ra and Rb are unsigned: result of UMULH 
Ra and Rb are signed: (result of UMULH) - Ra<63>*Rb - Rb<63>*Ra 

The MULQ instruction gives the low 64 bits of the result in either case. 
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4.4.10 Longword Subtract 

Format: 

SUBL Ra.rl,Rb.rl,Rc.wq ÎOperate format 
SUBL Ra.rl,#b.ib,Rcwq ÎOperate format 

Operation: 

Rc <- SEXT ( ( R a v - R b v ) < 3 1 : 0 > ) 

Exceptions: 

Integer Overflow 

Instruction mnemonics: 

SUBL Subtract Longword 

Qualifiers: 

Integer Overflow Enable (/V) 

Description: 

Register Rb or a literal is subtracted from register Ra, and the sign-extended 32-bit 
difference is written to Rc. 

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the 
truncated 32-bit difference. Overflow detection is based on the longword difference 
Rav<31:0> - Rbv<31:0>. 
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4.4.11 Scaled Longword Subtract 

Format: 

SxSUBL Ra.rl,Rb.rl,Rcwq 

SxSUBL Ra.rl,#b.ib,Rcwq 

Operation: 

! Operate format 

!Operate format 

CASE 
S4SUBL: Re 
S8SUBL: Re 

ENDCASE 

SEXT (((LEFT_SHIFT(Rav, 2 ) ) 
SEXT (((LEFT_SHIFT<Rav,3)) 

- Rbv)<31:0>) 
- Rbv)<31:0>) 

Exceptions: 

None 

Instruction mnemonics: 

S4SUBL Scaled Subtract Longword by 4 

S8SUBL Scaled Subtract Longword by 8 

Qualifiers: 

None 

Description: 

Register Rb or a literal is subtracted from the scaled value of register Ra, which is 
scaled by 4 (for S4SUBL) or 8 (for S8SUBL), and the sign-extended 32-bit difference 
is written to Re. 

The high 32 bits of Ra and Rb are ignored. Re is a proper sign extension of the 
truncated 32-bit difference. 
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4.4.12 Quadword Subtract 

Format: 

SUBQ Ra.rq,Rb.rq,Rc.wq !Operate format 
SUBQ Ra.rq,#b.ib,Rc.wq !Operate format 

Operation: 

Re <— Rav - Rbv 

Exceptions: 

Integer Overflow 

Instruction mnemonics: 

SUBQ Subtract Quadword 

Qualifiers: 

Integer Overflow Enable (/V) 

Description: 

Register Rb or a literal is subtracted from register Ra, and the 64-bit difference is 
written to register Re. On overflow, the least significant 64 bits of the true result 
are written to the destination register. 
The unsigned compare instructions can be used to generate borrow. If the minuend 
(Rav) is less unsigned than the subtrahend (Rbv), there will be a borrow. 
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4.4.13 Scaled Quadword Subtract 

Format: 

SxSUBQ Ra.rq,Rb.rq,Rcwq '.Operate format 
SxSUBQ Ra.rq,#b.ib,Rcwq iOperate format 

Operation : 

CASE 
S4SUBQ: Re <- LEFT_SHIFT(Rav,2) - Rbv 
S8SUBQ: Re <- LEFT_SHIFT(Rav,3) - Rbv 

ENDCASE 

Exceptions: 

None 

Instruction mnemonics: 

S4SUBQ Scaled Subtract Quadword by 4 
S8SUBQ Scaled Subtract Quadword by 8 

Qualifiers: 

None 

Description: 

Register Rb or a literal is subtracted from the scaled value of register Ra, which is 
scaled by 4 (for S4SUBQ) or 8 (for S8SUBQ), and the 64-bit difference is written to 
Re. 
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4.5 Logical and Shift Instructions 
The logical instructions perform quadword Boolean operations. The conditional move 
integer instructions perform conditionals without a branch. The shift instructions 
perform left and right logical shift and right arithmetic shift. These are summarized 
in Table 4-6. 

Table 4-6: Logical and Shift Instructions Summary 
Mnemonic Operation 

AND 
BIC 
BIS 
EQV 
ORNOT 
XOR 

Logical Product 
Logical Product with Complement 
Logical Sum (OR) 
Logical Equivalence (XORNOT) 
Logical Sum with Complement 
Logical Difference 

CMOVxx Conditional Move Integer 

SLL Shift Left Logical 
SRA Shift Right Arithmetic 
SRL Shift Right Logical 

Software Note: 

There is no arithmetic left shift instruction. Where an arithmetic left shift would 
be used, a logical shift will do. For multiplying by a small power of two in address 
computations, logical left shift is acceptable. 

Integer multiply should be used to perform an arithmetic left shift with overflow 
checking. 

Bit field extracts can be done with two logical shifts. Sign extension can be done 
with left logical shift and a right arithmetic shift. 
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4.5.1 Logical Functions 

Format: 

mnemonic Ra.rq,Rb.rq,Rcwq 

mnemonic Ra.rq,#b.ib,Rcwq 

Operation: 

Re <-
Rc «-
Re <-
Rc <-
Rc <-
Rc <— 

Exceptions: 

None 

Rav AND 
Rav OR 
Rav XOR 
Rav AND 
Rav OR 
Rav XOR 

Rbv 
Rbv 
Rbv 
{NOT 
{NOT 
{NOT 

Rbv} 
Rbv} 
Rbv} 

! Operate format 
'.Operate format 

!AND 
!BIS 
!XOR 
!BIC 
!ORNOT 
!EQV 

Instruction mnemonics: 

AND 
BIC 
BIS 
EQV 
ORNOT 
XOR 

Qualifiers: 

None 

Description: 

Logical Product 
Logical Product with Complement 
Logical Sum (OR) 
Logical Equivalence (XORNOT) 
Logical Sum with Complement 
Logical Difference 

These instructions perform the designated Boolean function between register Ra and 
register Rb or a literal. The result is written to register Re. 

The "NOT" function can be performed by doing an ORNOT with zero (Ra = R31). 
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4.5.2 Conditional Move Integer 

Format: 

CMOVxx Ra.rq,Rb.rq,Rcwq 
CMOVxx Ra.rq,#b.ib,Rc.wq 

! Operate format 
'.Operate format 

Operation: 

IF TEST(Rav, Condition_based_on_Opcode) THEN 

Re <— Rbv 

Exceptions: 

None 

Instruction mnemonics: 

CMOVE if Register Equal to Zero 
CMOVE if Register Greater Than or Equal to Zero 
CMOVE if Register Greater Than Zero 
CMOVE if Register Low Bit Clear 
CMOVE if Register Low Bit Set 
CMOVE if Register Less Than or Equal to Zero 
CMOVE if Register Less Than Zero 
CMOVE if Register Not Equal to Zero 

CMOVEQ 
CMOVGE 
CMOVGT 
CMOVLBC 
CMOVLBS 
CMOVLE 
CMOVLT 
CMOVNE 

Qualifiers: 

None 

Description: 

Register Ra is tested. If the specified relationship is true, the value Rbv is written 
to register Re. 
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Notes: 
Except that it is likely in many implementations to be substantially faster, the 
instruction: 

CMOVEQ R a , R b , R c 

is exactly equivalent to: 

BNE Ra,label 
OR Rb,Rb,Rc 

label : ... 

For example, a branchless sequence for: 
R1=MAX(R1,R2) 

is: 

CMPLT R1,R2,R3 ! R3=l if Rl<R2 
CMOVNE R3,R2,R1 ! Move R2 to Rl if Rl<R2 
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4.5.3 Shift Logical 

Format: 

SxL Ra.rq,Rbrq,Rcwq ÎOperate format 
SxL Ra.rq,#b.ib,Rcwq IOperate format 

Operation: 

Re <- LEFT_SHIFT(Rav, Rbv<5:0>) !SLL 
Re <- RIGHT_SHIFT(Rav, Rbv<5:0>) !SRL 

Exceptions: 

None 

Instruction mnemonics: 

SLL Shift Left Logical 
SRL Shift Right Logical 

Qualifiers: 

None 

Description: 

Register Ra is shifted logically left or right 0 to 63 bits by the count in register Rb 
or a literal. The result is written to register Re. Zero bits are propagated into the 
vacated bit positions. 
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4.5.4 Shift Arithmetic 

Format: 

SRA Ra.rq,Rb.rq,Rcwq ÎOperate format 
SRA Ra.rq,#b.ib,Rcwq ÎOperate format 

Operation: 

Re <- ARITH_RIGHT_SHIFT(Rav, R b v < 5 : 0 > ) 

Exceptions: 

None 

Instruction mnemonics: 

SRA Shift Right Arithmetic 

Qualifiers: 

None 

Description: 

Register Ra is right shifted arithmetically 0 to 63 bits by the count in register Rb or 
a literal. The result is written to register Re. The sign bit (Rav<63>) is propagated 
into the vacated bit positions. 
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4.6 Byte-Manipulation Instructions 
Alpha AXP provides instructions for operating on byte operands within registers. 
These instructions allow full-width memory accesses in the load/store instructions 
combined with powerful in-register byte manipulation. 

The instructions are summarized in Table 4-7. 

Table 4-7: Byte-Manipulation Instructions Summary 

Mnemonic Operation 

CMPBGE 

EXTBL 

EXTWL 

EXTLL 

EXTQL 

EXTWH 

EXTLH 

EXTQH 

INSBL 

INSWL 

INSLL 

INSQL 

INSWH 

INSLH 

INSQH 

MSKBL 

MSKWL 

MSKLL 

MSKQL 

MSKWH 

MSKLH 

MSKQH 

Compare Byte 

Extract Byte Low 

Extract Word Low 

Extract Longword Low 

Extract Quadword Low 

Extract Word High 

Extract Longword High 

Extract Quadword High 

Insert Byte Low 

Insert Word Low 

Insert Longword Low 

Insert Quadword Low 

Insert Word High 

Insert Longword High 

Insert Quadword High 

Mask Byte Low 

Mask Word Low 

Mask Longword Low 

Mask Quadword Low 

Mask Word High 

Mask Longword High 

Mask Quadword High 
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Table 4-7 (Cont.): Byte-Manipulation Instructions Summary 
Mnemonic Operation 

ZAP Zero Bytes 
ZAPNOT Zero Bytes Not 
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4.6.1 Compare Byte 

Format: 

CMPBGE Ra.rq,Rb.rq,Rcwq ÎOperate format 
CMPBGE Ra.rq,#b.ib,Rcwq ÎOperate format 

Operation: 

FOR i FROM 0 TO 7 

t e m p < 8 : 0 > <- {0 | | R a v < i * 8 + 7 : i * 8 > } + 
{ 0 | | NOT R b v < i * 8 + 7 : i * 8 > } + 1 

R c < i > <— temp<8> 
END 
R c < 6 3 : 8 > <- 0 

Exceptions: 

None 

Instruction mnemonics: 

CMPBGE Compare Byte 

Qualifiers: 

None 

Description: 

CMPBGE does eight parallel unsigned byte comparisons between corresponding 
bytes of Rav and Rbv, storing the eight results in the low eight bits of Re. The 
high 56 bits of Re are set to zero. Bit 0 of Re corresponds to byte 0, bit 1 of Re 
corresponds to byte 1, and so forth. A result bit is set in Re if the corresponding byte 
of Rav is greater than or equal to Rbv (unsigned). 
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Notes: 
The result of CMPBGE can be used as an input to ZAP and ZAPNOT. 
To scan for a byte of zeros in a character string: 

LOOP: 
<initialize Rl to aligned QW address of string> 

Pick up 8 bytes 
Increment string pointer 
If NO bytes of zero, R3<7:0>=0 
Loop if no terminator byte found 
At this point, R3 can be used to 
determine which byte terminated 

LDQ 
LDA 
CMPBGE 
BEQ 

R2,0(R1) 
R1,8(R1) 
R31/R2/R3 
R3 ,LOOP 

To compare two character strings for greater/less: 

LOOP: 

<initialize Rl to aligned QW address of stringl> 
<initialize R2 to aligned QW address of string2> 

Pick up 8 bytes of stringl 
Increment stringl pointer 
Pick up 8 bytes of string2 
Increment string2 pointer 
Test for all equal bytes 
Loop if all equal 

At this point, R5 can be used to 
determine the first not-equal 
byte position. 

LDQ 
LDA 
LDQ 
LDA 
XOR 
BEQ 
CMPBGI 

R3,0(R1) 
R1,8(R1) 
R4,0(R2) 
R2,8(R2) 
R3,R4,R5 
R5,LOOP 

: R31,R5,R5 

To range-check a string of characters in Rl for Ό'..'9': 

LDQ R2,lit0s 

LDQ R3,lit9s 

CMPBGE R2,Rl,R4 
CMPBGE Rl,R3,R5 
BNE R4,ERROR 
BNE R5,ERROR 

Pick up 8 bytes of the character 
BELOW *0' V///////' 
Pick up 8 bytes of the character 
ABOVE x 9' * : : : : : : : : ' 
Some R4<i>=l if character is LT ' 
Some R5<i>=l if character is GT ' 
Branch if some char too low 
Branch if some char too high 
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4.6.2 Extract Byte 

Format: 

EXTxx Ra.rq,Rb.rq,Rcwq ÎOperate format 

EXTxx Ra.rq,#b.ib,Rcwq ÎOperate format 

Operation: 

CASE 
b i g _ e n d i a n _ d a t a : Rbv' <— Rbv XOR I I I 2 
l i t t l e _ e n d i a n _ d a t a : Rbv' <— Rbv 

ENDCASE 

CASE 

EXTBL 
EXTWx 
EXTLx 
EXTQx 

ENDCASE 

CASE 

EXTxL: 
byte_loc ♦- Rbv'<2:0>*8 
temp <- RIGHT_SHIFT(Rav, byte_loc<5:0>) 
Re ♦- BYTE_ZAP(temp, NOT(byte_mask) ) 

EXTxH: 
byte_loc <- 64 - Rbv'<2:0>*8 
temp 4- LEFT_SHIFT(Rav, byte_loc<5:0>) 
Re <- BYTE_ZAP(temp, NOT(byte_mask) ) 

ENDCASE 

Exceptions: 

None 

Instruction mnemonics: 

EXTBL 
EXTWL 

EXTLL 

EXTQL 
EXTWH 

EXTLH 

Extract Byte Low 
Extract Word Low 

Extract Longword Low 

Extract Quadword Low 

Extract Word High 

Extract Longword High 

byte_mask <- 0000 OOOI2 
byte_mask <- 0000 OOII2 
byte_mask <- 0000 11112 
byte_mask <- 1111 11112 
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EXTQH Extract Quadword High 

Qualifiers: 

None 

Description: 

EXTxL shifts register Ra right by 0 to 7 bytes, inserts zeros into vacated bit positions, 
and then extracts 1, 2, 4, or 8 bytes into register Re. EXTxH shifts register Ra left 
by 0 to 7 bytes, inserts zeros into vacated bit positions, and then extracts 2, 4, or 8 
bytes into register Re. The number of bytes to shift is specified by Rbv'<2:0>. The 
number of bytes to extract is specified in the function code. Remaining bytes are 
filled with zeros. 

Notes: 
The comments in the examples below assume that the effective address (ea) of 
X(R11) is such that (ea mod 8) = 5, the value of the aligned quadword containing 
X(R11) is CBAx xxxx, and the value of the aligned quadword containing X+7(R11) is 
yyyH GFED, and the datum is little-endian. 

The examples below are the most general case unless otherwise noted; if more 
information is known about the value or intended alignment of X, shorter sequences 
can be used. 

The intended sequence for loading a quadword from unaligned address X(R11) is: 

LDQ_U 
LDQ_U 
LDA 
EXTQL 
EXTQH 
OR 

R1,X(R11) 
R2,X+7(R11) 
R3,X(R11) 
R1,R3,R1 
R2 , R3 , R2 
R2,R1,R1 

Ignores va<2:0>, Rl 
Ignores va<2:0>, R2 
R3<2:0> = (X mod 8) 
Rl = 0000 OCBA 
R2 = HGFE DO00 
Rl = HGFE DCBA 

= CBAx xxxx 

= yyyH GFED 
= 5 

The intended sequence for loading and zero-extending a longword from unaligned 
address X is: 

LDQ_U 
LDQ_U 
LDA 
EXTLL 
EXTLH 
OR 

R1,X(R11) 
R2,X+3(R11) 
R3,X(R11) 
R1,R3,R1 
R2,R3, R2 
R2,R1,R1 

Ignores va<2:0>, Rl 
Ignores va<2:0>, R2 
R3<2:0> = (X mod 8) 
Rl = 0000 OCBA 
R2 = 0000 D000 
Rl = 0000 DCBA 

= CBAx xxxx 
= yyyy yyyD 
= 5 

The intended sequence for loading and sign-extending a longword from unaligned 
address X is: 
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Ignores va<2:0>, RI = CBAx xxxx 
Ignores va<2:0>, R2 = yyyy yyyD 
R3<2:0> = (X mod 8) = 5 
RI = 0000 OCBA 
R2 = 0000 D000 
RI = 0000 DCBA 
RI = ssss DCBA 

The intended sequence for loading and zero-extending a word from unaligned address 
Xis : 

LDQ_U 
LDQ_U 
LDA 
EXTLL 
EXTLH 
OR 
ADDL 

R1,X(R11) 
R2,X+3(Rll 
R3,X(R11) 
R1,R3,R1 
R2 , R3 , R2 
R2,R1/R1 
R31/R1/R1 

Ignores va<2:0>, Rl = yBAx xxxx 
Ignores va<2:0>, R2 = yBAx xxxx 
R3<2:0> = (X mod 8) = 5 
Rl = 0000 00ΒΑ 
R2 = 0000 0000 
Rl = 0000 00ΒΑ 

The intended sequence for loading and sign-extending a word from unaligned address 
Xis : 

LDQ_U 
LDQ_U 
LDA 
EXTWL 
EXTWH 
OR 

Rl 
R2 
R3 
Rl 
R2 
R2 

X(R11) 
,X+1(R11) 
X(R11) 
,R3,Rl 
, R3 , R2 
,R1,R1 

LDQ_U R1,X(R11) 
LDQ_U R2,X+1(R11) 
LDA R3,X+1+1(R11) 
EXTQL Rl,R3,Rl 
EXTQH R2,R3,R2 
OR R2,R1,R1 
SRA R1,#48,R1 

Ignores va<2:0>, 
Ignores va<2:0>, 
R3<2:0> = 5+1+1 
Rl = 0000 OOOy 
R2 = BAxx xxxO 
Rl = BAxx xxxy 
Rl = ssss ssBA 

Rl = yBAx xxxx 
R2 = yBAx xxxx 
= 7 

The intended sequence for loading and zero-extending a byte from address X is: 

LDQ_U 
LDA 
EXTBL 

R1,X(R11) 
R3/X(R11) 
R1,R3,R1 

Ignores va<2:0>, Rl = yyAx 
R3<2:0> = (X mod 8) = 5 
Rl = 0000 000A 

The intended sequence for loading and sign-extending a byte from address X is: 

LDQ_U R l , X(R11) 
LDA R 3 , X + K R 1 1 ) 

EXTQH R l , R 3 , R l 

SRA R l , # 5 6 , R l 

Optimized examples: 

Ignores va<2:0>, Rl = yyAx xxxx 
R3<2:0> = (X + 1) mod 8, i.e., 
convert byte position within 
quadword to one-origin based 
Places the desired byte into byte 7 
of Rl.final by left shifting 
Rl.initial by ( 8 - R3<2:0> ) byte 
positions 
Arithmetic Shift of byte 7 down 
into byte 0, 

Assume that a word fetch is needed from 10(R3), where R3 is intended to contain 
a longword-aligned address. The optimized sequences below take advantage of the 
known constant offset, and the longword alignment (hence a single aligned longword 
contains the entire word). The sequences generate a Data Alignment Fault if R3 does 
not contain a longword-aligned address. 
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The intended sequence for loading and zero-extending an aligned word from 10(R3) 
is: 

LDL R1,8(R3) ; Rl = ssss BAxx 
; Faults if R3 is not longword aligned 

EXTWL R1,#2,R1 ; Rl = 0000 00ΒΑ 

The intended sequence for loading and sign-extending an aligned word from 10(R3) 
is: 

LDL Rl,8(R3) ; Rl = ssss BAxx 
; Faults if R3 is not longword aligned 

SRA R1,#16,R1 ; Rl = ssss ssBA 

Big-endian examples: 

The intended sequence for loading and zero-extending a byte from address X is: 

LDQ_U R1,X(R11) 
LDA R3/X(R11) 
EXTBL Rl,R3,Rl 

Ignores va<2:0>, Rl = xxxx xAyy 
R3<2:0> = 5, shift will be 2 bytes 
Rl = 0000 000A 

The intended sequence for loading a quadword from unaligned address X(R11) is: 

LDQ_U 
LDQ_U 
LDA 
EXTQH 
EXTQL 
OR 

R1,X(R11) 
R2fX+7(Rll) 
R3,X+7(R11) 
R1,R3,R1 
R2 , R3 , R2 
R1,R2,R1 

Ignores va<2:0>, Rl = xxxxxABC 
Ignores va<2:0>, R2 = DEFGHyyy 
R3<2:0> = 4, shift will be 3 bytes 
Rl = ABC0 0000 
R2 = 000D EFGH 
Rl = ABCD EFGH 

Note that the address in the LDA instruction for big-endian quadwords is X+7, for 
longwords is X+3, and for words is X+1; for little-endian, these are all just X. Also 
note that the EXTQH and EXTQL instructions are reversed with respect to the 
little-endian sequence. 

4-50 Common Architecture (I) 



4.6.3 Byte Insert 

Format: 

INSxx Ra.rq,Rb.rq,Rcwq 

INSxx Ra.rq,#b.ib,Rcwq 

! Operate format 

! Operate format 

Operation: 

CASE 
big_endian_data: Rbv' 
little_endian_data: Rbv' 

ENDCASE 

Rbv XOR 1112 
Rbv 

CASE 
INSBL 
INSWx 
INSLx 
INSQx 

ENDCASE 
byte_mask 

byte_mask <- 0000 0000 0000 OOOI2 
byte_mask «- 0000 0000 0000 OOII2 
byte_mask <- 0000 0000 0000 11112 
byte_mask <- 0000 0000 1111 IIII2 

K- LEFT_SHIFT(byte_mask, Rbv'<2:0>) 

CASE 

INSxL: 
byte_loc <- Rbv'<2:0>*8 
temp 4- LEFT_SHIFT(Rav, byte_loc<5:0>) 
Re <- BYTE_ZAP(temp, NOT(byte_mask<7:0>)) 

INSxH: 
byte_loc <- 64 - Rbv'<2:0>*8 
temp 4- RIGHT_SHIFT(Rav, byte_loc<5:0>) 
Re <- BYTE_ZAP(temp, NOT(byte_mask<15:8>)) 

ENDCASE 

Exceptions: 

None 

Instruction mnemonics: 

INSBL Insert Byte Low 

INSWL Insert Word Low 

INSLL Insert Longword Low 

INSQL Insert Quadword Low 

INSWH Insert Word High 

INSLH Insert Longword High 
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INSQH Insert Quadword High 

Qualifiers: 

None 

Description: 

INSxL and INSxH shift bytes from register Ra and insert them into a field of zeros, 
storing the result in register Re. Register Rbv,<2:0> selects the shift amount, and the 
function code selects the maximum field width: 1, 2, 4, or 8 bytes. The instructions 
can generate a byte, word, longword, or quadword datum that is spread across two 
registers at an arbitrary byte alignment. 

4-52 Common Architecture (I) 



4.6.4 Byte Mask 

Format: 

MSKxx Ra.rq,Rb rq,Rcwq .'Operate format 

MSKxx Ra.rq,#b.ib,Rcwq '.Operate format 

Operation: 

CASE 
b i g _ e n d i a n _ d a t a : R b v ' - · - Rbv XOR I I I 2 
l i t t l e _ e n d i a n _ d a t a : Rbv'<— Rbv 

ENDCASE 

CASE 
MSKBL 
MSKWx 
MSKLx 
MSKQx 

ENDCASE 
b y t e _ m a s k 

CASE 
MSKxL 

MSKxH 
R 

ENDCASE 

Exceptions: 

None 

Instruction mnemonics: 

MSKBL 
MSKWL 

MSKLL 
MSKQL 

MSKWH 

MSKLH 

MSKQH 

Mask Byte Low 
Mask Word Low 

Mask Longword Low 

Mask Quadword Low 

Mask Word High 

Mask Longword High 

Mask Quadword High 

byte_mask <- 0000 0000 0000 OOOI2 
byte_mask <- 0000 0000 0000 OOII2 
byte_mask <- 0000 0000 0000 IIII2 
byte_mask <- 0000 0000 1111 IIII2 

H- LEFT_SHIFT(byte_mask, Rbv'<2:0>) 

c <- BYTE_ZAP(Rav/ byte_mask<7:0>) 

c <- BYTE_ZAP(Rav, byte_mask<15:8>) 
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Qualifiers: 

None 

Description: 

MSKxL and MSKxH set selected bytes of register Ra to zero, storing the result 
in register Re. Register Rbv'<2:0> selects the starting position of the field of zero 
bytes, and the function code selects the maximum width: 1, 2, 4, or 8 bytes. The 
instructions generate a byte, word, longword, or quadword field of zeros that can 
spread across two registers at an arbitrary byte alignment. 

Notes: 
The comments in the examples below assume that the effective address (ea) of X(R11) 
is such that (ea mod 8) = 5, the value of the aligned quadword containing X(R11) is 
CBAx xxxx, the value of the aligned quadword containing X+7(R11) is yyyH GFED, 
the value to be stored from R5 is HGFE DCBA, and the datum is little-endian. Slight 
modifications similer to those in Section 4.6.2 apply to big-endian data. 
The examples below are the most general case; if more information is known about 
the value or intended alignment of X, shorter sequences can be used. 
The intended sequence for storing an unaligned quadword R5 at address X(R11) is: 

LDA 
LDQ_U 
LDQ_U 
INSQH 
INSQL 
MSKQH 
MSKQL 
OR 
OR 
STQ_U 
STQ_U 

R6 
R2 
Rl 
R5 
R5 
R2 
Rl 
R2 
Rl 
R2 
Rl 

,X(R11) 
,X+7(R11) 
,X(R11) 
,R6,R4 
,R6,R3 
,R6,R2 
,R6,R1 
, R4, R2 
,R3,R1 
,X+7(R11) 
,X(R11) 

R6<2:0> = (X mod 8) 
Ignores va<2:0>, R2 
Ignores va<2:0>, Rl 
R4 = 00OH GFED 
R3 = CBAO 0000 
R2 = yyyO 0000 
Rl = 00Ox xxxx 
R2 = yyyH GFED 
Rl = CBAx xxxx 

= 5 
= yyyH 
= CBAx 

GFED 
xxxx 

Must store high then low for 
degenerate case of aligned QW 

The intended sequence for storing an unaligned longword R5 at X is: 

LDA 
LDQ_U 
LDQ_U 
INSLH 
INSLL 
MSKLH 
MSKLL 
OR 
OR 
STQ_U 
STQ_U 

R6, 
R2, 
Rl-
R5, 
R5, 
R2, 
Rl, 
R2, 
Rl, 
R2, 
Rl, 

X(R11) 
X+3(Rll) 
X(R11) 
R6,R4 
R6,R3 
R6,R2 
R6,Rl 
R4,R2 
R3,R1 
X+3(Rll) 
X(R11) 

R6<2:0> = (X mod 8) 
Ignores va<2:0> 
Ignores va<2:0> 
R4 
R3 
R2 
Rl 
R2 
Rl 

R2 
Rl 

yyyy yyyD 
CBAx xxxx 

Must 

0000 000D 
CBAO 0000 
yyyy yyyO 
00Ox xxxx 
yyyy yyyD 
CBAx xxxx 
store high then low for 

degenerate case of aligned 

4-54 Common Architecture (I) 



The intended sequence for storing an unaligned word R5 at X is: 

LDA 
LDQ_U 
LDQ_U 
INSWH 
INSWL 
MSKWH 
MSKWL 
OR 
OR 
STQ_U 
STQ_U 

R6#X(R11) 
R2#X+1(R11) 
RlfX(Rll) 
R5/R6/R4 
R5,R6,R3 
R2,R6,R2 
Rl,R6,Rl 
R2,R4, R2 
R1,R3,R1 
R2,X+1(R11) 
R1,X(R11) 

R6<2:0> = (X mod 8) = 5 
Ignores va<2:0>, R2 = yBAx xxxx 
Ignores va<2:0>, Rl = yBAx xxxx 

• R4 = 0000 0000 
• R3 = 0ΒΑ0 0000 
• R2 = yBAx xxxx 
Rl = yOOx xxxx 

• R2 = yBAx xxxx 
Rl = yBAx xxxx 
Must store high then low for 
degenerate case of aligned 

The intended sequence for storing a byte R5 at X is: 

LDA 
LDQ_U 
INSBL 
MSKBL 
OR 
STQ_U 

R6,X(R11) 
R1,X(R11) 
R5,R6,R3 
R1,R6,R1 
R1,R3,R1 
R1,X(R11) 

R6<2:0> = (X mod 8) = 5 
Ignores va<2:0>, Rl = yyAx xxxx 
R3 = 00A0 0000 
Rl = yyOx xxxx 
Rl = yyAx xxxx 
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4.6.5 Zero Bytes 

Format: 

ZAPx Ra.rq,Rb.rq,Rcwq !Operate format 
ZAPx Ra.rq,#b.ib,Rcwq !Operate format 

Operation: 

CASE 

ZAP: 
Re 

ZAPNOT 
Re 

ENDCASE 

Exceptions: 

None 

Instruction mnemonics: 

ZAP Zero Bytes 
ZAPNOT Zero Bytes Not 

Qualifiers: 

None 

Description: 

ZAP and ZAPNOT set selected bytes of register Ra to zero, and store the result in 
register Re. Register Rb<7:0> selects the bytes to be zeroed; bit 0 of Rbv corresponds 
to byte 0, bit 1 of Rbv corresponds to byte 1, and so on. A result byte is set to zero 
if the corresponding bit of Rbv is a one for ZAP and a zero for ZAPNOT. 

BYTE_ZAP(Rav, Rbv< 7 : 0 >) 

BYTE_ZAP(Rav, NOT Rbv<7:0>) 
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4.7 Floating-Point Instructions 
Alpha AXP provides instructions for operating on floating-point operands in each of 
four data formats: 

• F.floating (VAX single) 

• G_floating (VAX double, 11-bit exponent) 

• S_floating (IEEE single) 

• T_floating (IEEE double, 11-bit exponent) 

Data conversion instructions are also provided to convert operands between floating-
point and quadword integer formats, between double and single floating, and 
between quadword and longword integers. 

Note: 

D_floating is a partially supported datatype; no D_floating arithmetic operations 
are provided in the architecture. For backward compatibility, exact D_ 
floating arithmetic may be provided via software emulation. D_floating "format 
compatibility," in which binary files of D_floating numbers may be processed but 
without the last 3 bits of fraction precision, can be obtained via conversions to 
G_floating, G arithmetic operations, then conversion back to D_floating. 

The choice of data formats is encoded in each instruction. Each instruction also 
encodes the choice of rounding mode and the choice of trapping mode. 

All floating-point operate instructions (that is, not including loads or stores) that 
yield an F_ or G_floating zero result must materialize a true zero. 

4.7.1 Floating-Point Single-Precision Operations 
Single-precision values (F_floating or S_floating) are stored in the floating-point 
registers in canonical form, as subsets of double-precision values, with 11-bit 
exponents restricted to the corresponding single-precision range, and with the 29 
low-order fraction bits restricted to be all zero. 

Single-precision operations applied to canonical single-precision values give single-
precision results. Single-precision operations applied to non-canonical operands give 
UNPREDICTABLE results. 

Longword integer values in floating-point registers are stored in bits <63:62,58:29>, 
with bits <61:59> ignored and zeros in bits <28:0>. 

4.7.2 Floating Subsets and Floating Faults 
All floating-point operations may take floating disabled faults. Any subsetted 
floating-point instruction may take an Illegal Instruction Trap. These faults are 
not explicitly listed in the description of each instruction. 

All floating-point loads and stores may take memory management faults (access 
control violation, translation not valid, fault on read/write, data alignment). 
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The floating-point enable (FEN) internal processor register (IPR) allows system 
software to restrict access to the floating-point registers. 

If a floating-point instruction is implemented and FEN = 0, attempts to execute the 
instruction cause a floating disabled fault. 

If a floating-point instruction is not implemented, attempts to execute the instruction 
cause an Illegal Instruction Trap. This rule holds regardless of the value of FEN. 

An Alpha AXP implementation may provide both VAX and IEEE floating-point 
operations, either, or none. 

Some floating-point instructions are common to the VAX and IEEE subsets, some 
are VAX only, and some are IEEE only. These are designated in the descriptions 
that follow. If either subset is implemented, all the common instructions must be 
implemented. 

An implementation that includes IEEE floating-point may subset the ability 
to perform rounding to plus infinity and minus infinity. If not implemented, 
instructions requesting these rounding modes take Illegal Instruction Trap. 

An implementation that includes IEEE floating-point may implement any subset 
of the Trap Disable flags. If a flag is not implemented, it reads as zero and the 
corresponding trap occurs as usual. 

4.7.3 Definitions 
The following definitions apply to Alpha AXP floating-point support. 

Alpha AXP finite number 
A floating-point number with a definite, in-range value. Specifically, all numbers in 
the inclusive ranges -MAX through -MIN, zero, and +MIN through +MAX, where 
MAX is the largest non-infinite representable floating-point number and MIN is the 
smallest non-zero representable normalized floating-point number. 

For VAX floating-point, finîtes do not include reserved operands or dirty zeros (this 
differs from the usual VAX interpretation of dirty zeros as finite). For IEEE floating-
point, finîtes do not include infinites, NaNs, or denormals, but do include minus zero. 

denormal 
An IEEE floating-point bit pattern that represents a number whose magnitude lies 
between zero and the smallest finite number. 

dirty zero 
A VAX floating-point bit pattern that represents a zero value, but not in true-zero 
form. 

infinity 
An IEEE floating-point bit pattern that represents plus or minus infinity. 
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LSB 
The least significant bit. For a positive representable number A whose fraction is 
not all ones, A + 1 LSB is the next larger representable number, and A + 1/2 LSB 
is exactly halfway between A and the next larger representable number. 

non-finite number 
An IEEE infinity, NaN, denormal number, or a VAX dirty zero or reserved operand. 

Not-a-Number 
An IEEE floating-point bit pattern that represents something other than a number. 
This comes in two forms: signaling NaNs (for Alpha AXP, those with an initial 
fraction bit of 0) and quiet NaNs (for Alpha AXP, those with initial fraction bit of 1). 

representable result 
A real number that can be represented exactly as a VAX or IEEE floating-point 
number, with finite precision and bounded exponent range. 

reserved operand 
A VAX floating-point bit pattern that represents an illegal value. 

trap shadow 
The set of instructions potentially executed after an instruction that signals an 
arithmetic trap but before the trap is actually taken. 

true result 
The mathematically correct result of an operation, assuming that the input operand 
values are exact. The true result is typically rounded to the nearest representable 
result. 

true zero 
The value +0, represented as exactly 64 zeros in a floating-point register. 

4.7.4 Encodings 
Floating-point numbers are represented with three fields: sign, exponent, and 
fraction. The sign is 1 bit; the exponent is 8, 11, or 15 bits; and the fraction is 
23, 52, 55, or 112 bits. Some encodings represent special values: 

Vax VAX IEEE IEEE 
Sign Exponent Fraction Meaning Finite Meaning Finite 

x All-l's Non-zero Finite Yes +/-NaN No 
x All-l's 0 Finite Yes +/-Infinity No 
0 0 Non-zero Dirty zero No +Denormal No 
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Sign 

1 
0 
1 

X 

Exponent 

0 
0 
0 
Other 

Fraction 

Non-zero 
0 
0 
X 

Vax 
Meaning 

Resv. operand 
True zero 
Resv. operand 
Finite 

VAX 
Finite 

No 

Yes 
No 

Yes 

IEEE 
Meaning 

-Denormal 
+0 
- 0 
finite 

IEEE 
Finite 

No 
Yes 
Yes 
Yes 

The values of MIN and MAX for each of the five floating-point data formats are: 

Data 
Format MIN MAX 

F_floating 

G_floating 

S_floating 

T_floating 

X_floating 

2**-127 * 0.5 
(0.293873588e-38) 

2**_1023 * 0 5 
(0.5562684646268004e-308) 

2**-126 * 1.0 
(1.17549435e-38) 

2**-1022 * 1.0 
(2.2250738585072013e-308) 

2**-16382 * 1.0 
(3.36210314311209350626267781732175260e-4932) 

2**127 * (1.0 - 2**-24) 
(1.7014117e38) 

2**1023 * (1.0 - 2**-53) 
(0.89884656743115785407e308) 

2**127 * (2.0 - 2* 
(3.40282347e38) 

-23) 

2**1023 * (2.0 - 2**-52) 
(1.7976931348623158e308) 

2**16383 * (2.0 - 2**-112) 
(1.18973149535723176508575932662800702e4932) 

4.7.5 Floating-Point Rounding Modes 
All rounding modes map a true result that is exactly representable to that 
representable value. 

VAX Rounding Modes 
For VAX floating-point operations, two rounding modes are provided and are 
specified in each instruction: normal (biased) rounding and chopped rounding. 

Normal VAX rounding maps the true result to the nearest of two representable 
results, with true results exactly halfway between mapped to the larger in absolute 
value (sometimes called biased rounding away from zero); maps true results 
> MAX + 1/2 LSB in magnitude to an overflow; maps true results < MIN - 1/2 LSB 
in magnitude to an underflow. 

Chopped VAX rounding maps the true result to the smaller in magnitude of two 
surrounding representable results; maps true results > MAX + 1 LSB in magnitude 
to an overflow; maps true results < MIN in magnitude to an underflow. 

IEEE Rounding Modes 
For IEEE floating-point operations, four rounding modes are provided: normal 
rounding (unbiased round to nearest), rounding toward minus infinity, round toward 
zero, and rounding toward plus infinity. The first three can be specified in the 
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instruction. Rounding toward plus infinity can be obtained by setting the Floating-
point Control Register (FPCR) to select it and then specifying dynamic rounding 
mode in the instruction (See Section 4.7.7). Alpha AXP IEEE arithmetic does 
rounding before detecting overflow/underflow. 

Normal IEEE rounding maps the true result to the nearest of two representable 
results, with true results exactly halfway between mapped to the one whose 
fraction ends in 0 (sometimes called unbiased rounding to even); maps true results 
> MAX + 1/2 LSB in magnitude to an overflow; maps true results < MIN - 1/2 LSB 
in magnitude to an underflow. 

Plus infinity IEEE rounding maps the true result to the larger of two surrounding 
representable results; maps true results > MAX in magnitude to an overflow; maps 
positive true results < +MIN - 1 LSB to an underflow; and maps negative true 
results > -MIN to an underflow. 

Minus infinity IEEE rounding maps the true result to the smaller of two surrounding 
representable results; maps true results > MAX in magnitude to an overflow; maps 
positive true results < +MIN to an underflow; and maps negative true results 
> -MIN + 1 LSB to an underflow. 

Chopped IEEE rounding maps the true result to the smaller in magnitude of two 
surrounding representable results; maps true results > MAX + 1 LSB in magnitude 
to an overflow; and maps non-zero true results < MIN in magnitude to an underflow. 

Dynamic rounding mode uses the IEEE rounding mode selected by the FPCR register 
and is described in more detail in Section 4.7.7. 

The following tables summarize the floating-point rounding modes: 

VAX Rounding Mode 

Normal rounding 
Chopped 

Instruction Notation 

(No modifier) 
/C 

IEEE Rounding Mode Instruction Notation 

Normal rounding (No modifier) 
Dynamic rounding /D 
Plus infinity /D and ensure that FPCR<DYN> = 'IV 

Minus infinity /M 
Chopped /C 
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4.7.6 Floating-Point Trapping Modes 
There are six exceptions that can be generated by floating-point operate instructions, 
all signaled by an arithmetic exception trap. These exceptions are: 

• Invalid operation 

• Division by zero 

• Overflow 

• Underflow, may be disabled 

• Inexact result, may be disabled 

• Integer overflow (conversion to integer only), may be disabled 

For more detail on the information passed to an arithmetic exception handler, see 
Part II, Operating Systems. 

VAX Trapping Modes 
For VAX floating-point operations other than CVTxQ, four trapping modes are 
provided. They specify software completion and whether traps are enabled for 
underflow. 

For VAX conversions from floating-point to integer, four trapping modes are provided. 
They specify software completion and whether traps are enabled for integer overflow. 

IEEE Trapping Modes 
For IEEE floating-point operations other than CVTxQ, four trapping modes are 
provided. They specify software completion and whether traps are enabled for 
underflow and inexact results. 

For IEEE conversions from floating-point to integer, four trapping modes are 
provided. They specify software completion, and whether traps are enabled for 
integer overflow and inexact results. 

The modes and instruction notation are: 

VAX Trap Mode Instruction Notation 

Imprecise, underflow disabled (No modifier) 
Imprecise, underflow enabled /U 
Software, underflow disabled /S 
Software, underflow enabled /SU 

VAX Convert-to-Integer Trap Mode Instruction Notation 

Imprecise, integer overflow disabled (No modifier) 
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VAX Convert-to-Integer Trap Mode Instruction Notation 

Imprecise, integer overflow enabled 
Software, integer overflow disabled 
Software, integer overflow enabled 

/V 
/S 

/sv 

IEEE Trap Mode Instruction Notation 

Imprecise, unfl disabled, inexact disabled 
Imprecise, unfl enabled, inexact disabled 
Software, unfl enabled, inexact disabled 
Software, unfl enabled, inexact enabled 

(No modifier) 
/U 
/SU 
/SUI 

IEEE Convert-to-Integer Trap Mode Instruction Notation 

Imprecise, int.ovfl disabled, inexact disabled 
Imprecise, int.ovfl enabled, inexact disabled 
Software, int.ovfl enabled, inexact disabled 
Software, int.ovfl enabled, inexact enabled 

(No modifier) 
/V 
/SV 
/SVI 

4.7.6.1 Imprecise /Software Completion Trap Modes 

Floating-point instructions may be pipelined, and all hardware exceptions are 
imprecise traps: 

• For the floating overflow, divide by zero, and invalid operation exceptions, the 
trapping instruction may write an UNPREDICTABLE result value. 

• The trap PC is an arbitrary number of instructions past the one triggering 
the trap. The trigger instruction plus all intervening executed instructions are 
collectively referred to as the trap shadow of the trigger instruction. 

• The extent of the trap shadow is bounded only by an EXCB or TRAPB instruction 
(or the implicit TRAPB within a CALL_PAL instruction). 

• Input operand values may have been overwritten in the trap shadow. 

• Result values may have been overwritten in the trap shadow. 

• An UNPREDICTABLE result value may have been used as an input operand in 
the trap shadow. 

• Additional traps may occur in the trap shadow. 

• In general, it is not feasible to fix up the result value or to continue from the 
trap. 
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This behavior is ideal for operations on finite operands that give finite results. For 
programs that deliberately operate outside the overflow/underflow range, or use 
IEEE NaNs, software assistance is required to complete floating-point operations 
correctly. This assistance can be provided by a software arithmetic trap handler, 
plus constraints on the instructions surrounding the trap. 

For a trap handler to complete non-finite arithmetic, the conditions described below 
must hold: 

• Conditions 1-3 allow a software trap handler to emulate the trigger instruction 
with its original input operand values and then to reexecute the rest of the trap 
shadow. 

• Condition 4 prevents memory accesses at UNPREDICTABLE addresses. 

• Conditions 5-7 make it possible for a software trap handler to find the trigger 
instruction via a linear scan backwards from the trap PC. 

Conditions 

1. If the value in a register or memory location is used as input to some instruction 
in the trap shadow, then either the following condition a or condition b must be 
met. 

a. The register or memory location is not modified by the instruction that uses 
it or by any subsequent instruction in the trap shadow. 

b. The value was produced by an earlier instruction in the trap shadow, 
and no trapping instruction appears between the producing and consuming 
instructions. 

Condition a ensures that if the instruction is reexecuted, its inputs are 
unchanged. If condition a cannot be ensured, then condition b requires that the 
input values be created and hence valid when réexécution starts at the trigger 
instruction. 

2. If a conditional move (CMOVxx or FCMOVxx) instruction appears in the trap 
shadow, then the Ra/Fa and Rb/Fb operands of the instruction must satisfy 
condition 1 above and either the following condition a or condition b must be 
met. 

a. The Ra/Fa operand of the conditional move does not depend on any value 
produced earlier in the trap shadow by an instruction that might trap. 

b. The Rc/Fc operand of the instruction was produced by an earlier instruction in 
the trap shadow, and no trapping instruction appears between the producing 
instruction and the conditional move. 

Condition a ensures that the conditional move instruction will be reexecuted with 
the same condition in Ra/Fa. If condition a cannot be ensured, then condition 
b requires that the value that might be overlaid is valid when the conditional 
move is reexecuted. 
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3. If a value is produced in the trap shadow as the result of a floating-point 
instruction that might trap, that value may not contribute to any value that 
is subsequently used in the trap shadow as the input to an integer instruction 
that has the /V modifier. 

4. Within the trap shadow, the computation of the base register for a memory load 
or store instruction may not involve using the result of an instruction that might 
generate an UNPREDICTABLE result. 

5. Within the trap shadow, if a register is used as the destination register of an 
instruction that might cause a floating-point exception (and thus set a bit in 
the software implementation's exception summary), it may not be used as the 
destination of any other instruction in the trap shadow. 

6. The trap shadow may not include any branch instructions. 

7. Each floating-point instruction to be completed must be so marked, by specifying 
the /S software completion modifier. The /S modifier must not be used on any 
floating-point instruction that is not in a trap shadow that meets these conditions. 

Note: 

The /S modifier does not affect instruction operation or trap behavior; it is an 
informational bit passed to a software trap handler. It allows a trap handler 
to test easily whether an instruction is intended to be completed. (The /S 
bits of instructions signaling traps are carried into a software implementation's 
exception summary. The handler may then assume that the other conditions are 
met without examining the code stream. 

If a software trap handler is provided, it must handle the completion of all floating-
point operations marked /S that follow the rules above. In effect, one TRAPB 
instruction per basic block can be used. 

4.7.6.2 Invalid Operation (INV) Arithmetic Trap 

An invalid operation arithmetic trap is signaled if an operand is invalid for the 
operation to be performed. Invalid operations are: 

• Any operation on a signaling NaN. 

• Addition of unlike-signed infinities or subtraction of like-signed infinities, such 
as (+infinity + -infinity) or (-»-infinity - +infinity). 

• Multiplication of 0*infinity. 

• Division of 0/0 or infinity/infinity. 

• Conversion of an infinity or NaN to an integer. 

• CMPTLE or CMPTLT when either operand is a NaN. 

An implementation may also choose to signal an invalid operation when it encounters 
an operand that is non-finite. However, CMPTxy does not trap on plus or minus 
infinity. 
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The instruction cannot disable the trap. If the trap occurs, an UNPREDICTABLE 
value is stored in the result register. 

IEEE-compliant system software must also supply an invalid operation indication to 
the user for SQRT of a negative non-zero number, for x REM 0, and for conversions 
to integer that take an integer overflow trap. If an implementation does not support 
the division by zero disable bit (DZED), it may respond to the division of 0/0 by 
delivering a division by zero trap to the operating system, which IEEE compliant 
software must change to an invalid operation trap for the user. 

4.7.6.3 Division by Zero (DZE) Arithmetic Trap 

A division by zero arithmetic trap is taken if the numerator does not cause an invalid 
operation trap and the denominator is zero. 

The instruction cannot disable the trap. If the trap occurs, an UNPREDICTABLE 
value is stored in the result register. 

If an implementation does not support the division by zero disable bit (DZED), it may 
respond to the division of 0/0 by delivering a division by zero trap to the operating 
system, which IEEE compliant software must change to an invalid operation trap 
for the user. 

4.7.6.4 Overflow (OVF) Arithmetic Trap 

An overflow arithmetic trap is signaled if the rounded result exceeds in magnitude 
the largest finite number of the destination format. 

The instruction cannot disable the trap. If the trap occurs, an UNPREDICTABLE 
value is stored in the result register. 

4.7.6.5 Underflow (UNF) Arithmetic Trap 

An underflow occurs if the rounded result is smaller in magnitude than the smallest 
finite number of the destination format. 

If an underflow occurs, a true zero (64 bits of zero) is always stored in the result 
register, even if the proper IEEE result would have been -0 (underflow below the 
negative denormal range). 

If an underflow occurs and underflow traps are enabled by the instruction, an 
underflow arithmetic trap is signaled. 

4.7.6.6 Inexact Result (INE) Arithmetic Trap 

An inexact result occurs if the infinitely precise result differs from the rounded 
result. 

If an inexact result occurs, the normal rounded result is still stored in the result 
register. 

If an inexact result occurs and inexact result traps are enabled by the instruction, 
an inexact result arithmetic trap is signaled. 
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4.7.6.7 Integer Overflow (lOV) Arithmetic Trap 

In conversions from floating to quadword integer, an integer overflow occurs if the 
rounded result is outside the range -2**63..2**63-1. In conversions from quadword 
integer to longword integer, an integer overflow occurs if the result is outside the 
range -2**31..2**31-1. 

If an integer overflow occurs in CVTxQ or CVTQL, the true result truncated to the 
low-order 64 or 32 bits respectively is stored in the result register. 

If an integer overflow occurs and integer overflow traps are enabled by the 
instruction, an integer overflow arithmetic trap is signaled. 

4.7.6.8 Floating-Point Trap Disable Bits 

In the case of IEEE software completion trap modes, any of the traps described 
in Sections 4.7.6.2 through 4.7.6.7 may be disabled by setting the corresponding 
trap disable bit in the FPCR. The trap disable bits only affect the corresponding 
IEEE trap modes when the instruction is coupled with the /S (software completion) 
qualifier. The trap disable bits do not affect any of the VAX trap modes. 

If a trap disable bit is set and the corresponding trap condition occurs, the hardware 
implementation sets the result of the operation to the nontrapping result value as 
specified in the IEEE standard and Section 4.7.10 and modified by the underflow to 
zero (UNDZ) bit. If the implementation is unable to calculate the required result, it 
ignores the trap disable bit and signals a trap as usual. (When an implementation 
supports both the underflow disable bit and the underflow to zero bit, and both bits 
are set in the FPCR, the implementation sets the result of an underflow operation 
to an appropriately signed true zero value.) 

Note that a hardware implementation may choose to support any subset of the trap 
disable bits, including the empty subset. 

4.7.7 FPCR Register and Dynamic Rounding Mode 
When an IEEE floating-point operate instruction specifies dynamic mode (/D) in its 
function field (function field bits <12:11> = 11), the rounding mode to be used for 
the instruction is derived from the FPCR register. The layout of the rounding mode 
bits and their assignments matches exactly the format used in the 11-bit function 
field of the floating-point operate instructions. The function field is described in 
Section 4.7.9. 

In addition, the FPCR gives a summary of each exception type for the exception 
conditions detected by all IEEE floating-point operates thus far, as well as an 
overall summary bit that indicates whether any of these exception conditions has 
been detected. The individual exception bits match exactly in purpose and order 
the exceptions bits found in the exception summary quadword that is pushed for 
arithmetic traps. However, for each instruction, these exceptions bits are set 
independent of the trapping mode specified for the instruction. Therefore, even 
though trapping may be disabled for a certain exceptional condition, the fact that 
the exceptional condition was encountered by an instruction will still be recorded in 
the FPCR. 
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Floating-point operates that belong to the IEEE subset and CVTQL, which belongs 
to both VAX and IEEE subsets, appropriately set the FPCR exception bits. It is 
UNPREDICTABLE whether floating-point operates that belong only to the VAX 
floating-point subset set the FPCR exception bits. 

Alpha AXP floating-point hardware only transitions these exception bits from zero 
to one. Once set to one, these exception bits are only cleared when software writes 
zero into these bits by writing a new value into the FPCR. 

The five trap disable bits may be subsetted in the hardware implementation. Any 
unimplemented bits are read as zero and ignored when set; the hardware behaves 
as if unimplemented bits are zero. In addition: 

• If the UNFD bit is not implemented, the hardware may not implement the UNDZ 
bit. 

• If the DZED bit is implemented, division of 0/0 must be treated as an invalid 
operation instead of a division by zero. 

The format of the FPCR is shown in Figure 4-1 and described in Table 4-8. 

Figure 4-1 : Floating-Point Control Register (FPCR) Format 
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Table 4-8: Floating-Point Control Register (FPCR) Bit Descriptions 
Bit Description (Meaning When Set) 

63 Summary Bit (SUM). Records bitwise OR of FPCR exception bits. Equal to 
FPCR<57 | 56 | 55 | 54 | 53 | 52>. 

62 Inexact Disable (INED). Suppress INE trap and place correct IEEE nontrapping 
result in the destination register. 

61 Underflow Disable (UNFD). Suppress UNF trap and place correct IEEE 
nontrapping result in the destination register if the implementation is capable 
of producing correct IEEE nontrapping result. The correct result value is 
determined according to the value of the UNDZ bit. 

60 Underflow to Zero (UNDZ). When set together with UNFD, on underflow the 
hardware places a true zero (64 bits of zero) in the destination register rather 
than the denormal number specified by the IEEE standard. 
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Table 4-8 (Cont.): Floating-Point Control Register (FPCR) Bit Descriptions 

Bit Description (Meaning When Set) 

59-58 Dynamic Rounding Mode (DYN). Indicates the rounding mode to be used by 
an IEEE floating-point operate instruction when the instruction's function field 
specifies dynamic mode (/D). Assignments are: 

DYN IEEE Rounding Mode Selected 

00 Chopped rounding mode 
01 Minus infinity 
10 Normal rounding 
11 Plus infinity 

57 Integer Overflow (10V). An integer arithmetic operation or a conversion from 
floating to integer overflowed the destination precision. 

56 Inexact Result (INE). A floating arithmetic or conversion operation gave a result 
that differed from the mathematically exact result. 

55 Underflow (UNF). A floating arithmetic or conversion operation underflowed the 
destination exponent. 

54 Overflow (OVF). A floating arithmetic or conversion operation overflowed the 
destination exponent. 

53 Division by Zero (DZE). An attempt was made to perform a floating divide 
operation with a divisor of zero. 

52 Invalid Operation (INV). An attempt was made to perform a floating arithmetic, 
conversion, or comparison operation, and one or more of the operand values were 
illegal. 

51 Overflow Disable (OVFD). Suppress OVF trap and place correct IEEE 
nontrapping result in the destination register if the implementation is capable 
of producing correct IEEE nontrapping result. 

50 Division by Zero Disable (DZED). Suppress DZE trap and place correct IEEE 
nontrapping result in the destination register if the implementation is capable 
of producing correct IEEE nontrapping result. 

49 Invalid Operation Disable (INVD). Suppress INV trap and place correct IEEE 
nontrapping result in the destination register if the implementation is capable 
of producing correct IEEE nontrapping result. 

48-0 Reserved. Read As Zero; Ignored when written. 

FPCR is read from and written to the floating-point registers by the MTJFPCR and 
MF_FPCR instructions respectively, which are described in Section 4.7.7.1. 

FPCR and the instructions to access it are required for an implementation that 
supports floating-point (see Section 4.7.7). On implementations that do not support 
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floating-point, the instructions that access FPCR (MF_FPCR and MT.FPCR) take 
an Illegal Instruction Trap. 

Software Note: 

Support for FPCR is required on a system that supports the OpenVMS AXP 
operating system even if that system does not support floating-point. 

4.7.7.1 Accessing the FPCR 

Because Alpha AXP floating-point hardware can overlap the execution of a number 
of floating-point instructions, accessing the FPCR must be synchronized with other 
floating-point instructions. An EXCB instruction must be issued both prior to 
and after accessing the FPCR to ensure that the FPCR access is synchronized 
with the execution of previous and subsequent floating-point instructions; otherwise 
synchronization is not ensured. 

Issuing an EXCB followed by an MT_FPCR followed by another EXCB ensures that 
only floating-point instructions issued after the second EXCB are affected by and 
affect the new value of the FPCR. Issuing an EXCB followed by an MF_FPCR 
followed by another EXCB ensures that the value read from the FPCR only records 
the exception information for floating-point instructions issued prior to the first 
EXCB. 

Consider the following example: 
ADDT/D 
EXCB ; 1 
MT_FPCR F1,F1,F1 
EXCB ; 2 
SUBT/D 

Without the first EXCB, it is possible in an implementation for the ADDT/D to 
execute in parallel with the MT_FPCR. Thus, it would be UNPREDICTABLE 
whether the ADDT/D was affected by the new rounding mode set by the MT_ 
FPCR and whether fields cleared by the MT_FPCR in the exception summary were 
subsequently set by the ADDT/D. 

Without the second EXCB, it is possible in an implementation for the MT_FPCR to 
execute in parallel with the SUBT/D. Thus, it would be UNPREDICTABLE whether 
the SUBT/D was affected by the new rounding mode set by the MT.FPCR and 
whether fields cleared by the MT_FPCR in the exception summary field of FPCR 
were previously set by the SUBT/D. 

Specifically, code should issue an EXCB before and after it accesses the FPCR if that 
code needs to see valid values in FPCR bits <63> and <57:52>. An EXCB should 
be issued before attempting to write the FPCR if the code expects changes to bits 
<59:52> not to have dependencies with prior instructions. An EXCB should be issued 
after attempting to write the FPCR if the code expects subsequent instructions to 
have dependencies with changes to bits <59:52>. 
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4.7.7.2 Default Values of the FPCR 

Processor initialization leaves the value of FPCR UNPREDICTABLE. 

Software Note: 

Digital software should initialize FPCR<DYN> = 10 during program activation. 
Using this default, a program can be coded to use only dynamic rounding without 
the need to explicitly set the rounding mode to normal rounding in its start-up 
code. 

Program activation normally clears all other fields in the FPCR. However, this 
behavior may depend on the operating system. 

4.7.7.3 Saving and Restoring the FPCR 

The FPCR must be saved and restored across context switches so that the FPCR 
value of one process does not affect the rounding behavior and exception summary 
of another process. 

The dynamic rounding mode put into effect by the programmer (or initialized by 
image activation) is valid for the entirety of the program and remains in effect until 
subsequently changed by the programmer or until image run-down occurs. 

Software Notes: 

The following software notes apply to saving and restoring the FPCR: 

1. The IEEE standard precludes saving and restoring the FPCR across 
subroutine calls. 

2. The IEEE standard requires that an implementation provide status flags 
that are set whenever the corresponding conditions occur and are reset 
only at the user's request. The exception bits in the FPCR do not satisfy 
that requirement, because they can be spuriously set by instructions in a 
trap shadow that should not have been executed had the trap been taken 
synchronously. 

The IEEE status flags can be provided by software (as software status bits) 
as follows: 

Trap interface software (usually the operating system) keeps a set of 
software status bits and a mask of the traps that the user wants to 
receive. Code is generated with the /SUI modifiers. For a particular 
exception, the software clears the corresponding trap disable bit if either 
the corresponding software status bit is 0 or if the user wants to receive 
such traps. If a trap occurs, the software locates the offending instruction 
in the trap shadow, simulates it and sets any of the software status bits 
that are appropriate. Then, the software either delivers the trap to the 
user program or disables further delivery of such traps. The user program 
must interface to this trap interface software to set or clear any of the 
software status bits or to enable or disable floating-point traps. 
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When such a scheme is being used, the trap disable bits should be modified 
only by the trap interface software. If the disable bits are spuriously cleared, 
unnecessary traps may occur. If they are spuriously set, the software may 
fail to set the correct values in the software status bits. Programs should call 
routines in the trap interface software to set or clear bits in the FPCR. 

Digital software may choose to initialize the software status bits and the 
trap disable bits to all l's to avoid any initial trapping when an exception 
condition first occurs. Or, software may choose to initialize those bits to all 
O's in order to provide a summary of the exception behavior when the program 
terminates. 

In any event, the exception bits in the FPCR are still useful to programs. A 
program can clear all of the exception bits in the FPCR, execute a single 
floating-point instruction, and then examine the status bits to determine 
which hardware-defined exceptions the instruction encountered. For this 
operation to work in the presence of various implementation options, the 
single instruction should be followed by a TRAPB or EXCB instruction, and 
software completion by the system software should save and restore the FPCR 
registers without other modifications. 

3. Because of the way the LDS and STS instructions manipulate bits <61:59> of 
floating-point registers, they should not be used to manipulate FPCR values. 

4.7.8 Floating-Point Computational Models 
There are three models of arithmetic available with the IEEE floating-point subset 
in the Alpha AXP architecture: 

• IEEE compliant arithmetic 

• IEEE compliant arithmetic without inexact exception 

• High-performance IEEE-format arithmetic 

IEEE Compliant Arithmetic 
This model provides floating-point arithmetic that fully complies with the IEEE 
standard. It provides all of the exception status flags that are in the standard and 
allows the user to specify which exceptional conditions should trap and which should 
proceed without trapping. 

This model is implemented in a program by using IEEE floating-point operates with 
the /SUI modifiers, with the help of the trap interface software described in Software 
Note 2 in Section 4.7.7.3. It provides acceptable performance on implementations 
of the Alpha AXP architecture that implement the inexact disable (INED) bit in 
the FPCR, as long as such programs do not turn on traps for the inexact condition. 
Performance under this model may be slow if the INED bit is not implemented. 

IEEE Compliant Arithmetic Without Inexact Exception 
This is similar to the previous model, but it does not provide the inexact exception 
status bit, nor does it allow a program to request traps when an inexact operation 
occurs. 
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This model is implemented in a program by using IEEE floating-point operates with 
the /SU modifiers, with the help of the trap interface software. 

High-Performance IEEE-Format Arithmetic 
This model provides arithmetic operations on IEEE format numbers, but does not 
allow operations on or generation of non-finite numbers. Any attempt to operate 
on a non-finite number may cause an unrecoverable trap, and any operation except 
underflow that would generate a non-finite number (according to the IEEE standard) 
may also cause an unrecoverable trap. Underflow results are set to zero. There are 
no reliable IEEE exception status flags available. 

This model is implemented in a program by using IEEE floating-point operates 
without the /SU or /SUI modifiers. It is the fastest of the three models. 

4.7.9 Floating-Point Instruction Function Field Format 
Bits <15..5> in floating-point instructions contain the function field, as shown in 
Figure 4-2 and described for IEEE floating-point in Table 4-9 and for VAX floating-
point in Table 4-10. The function field contains subfields that specify the trapping 
and rounding modes that are enabled for the instruction, the source datatype, and 
the instruction class. 

Figure 4-2: Floating-Point Instruction Function Field 
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Table 4-9: IEEE Floating-Point Function Field Bit Summary 

Bits Field Meaning 

15-13 TRP Trapping modes: 
000 Imprecise (default) 
001 Underflow enable (/U) — floating-point output 

Integer overflow enable (/V) — integer output 
010 Unsupported 
011 Unsupported 
100 Software completion enable (/S) 
101 /SU — floating-point output 

/SV — integer output 
110 Unsupported 
111 /SUI — floating-point output 

/SVI — integer output 
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Table 4-9 (Cont.): IEEE Floating-Point Function Field Bit Summary 

Bits Field Meaning 

12-11 RND Rounding modes: 

00 Chopped (/C) 
01 Minus infinity (/M) 
10 Normal (default) 
11 Dynamic (/D) 

10-9 SRC Source datatype: 

00 SJloating 
01 Reserved 
10 T_floating 
11 Q_fixed 

Instruction class: 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

ADDx 
SUBx 
MULx 
DIVx 
CMPxUN 
CMPxEQ 
CMPxLT 
CMPxLE 
Reserved 
Reserved 
Reserved 
Reserved 
CVTxS 
Reserved 
CVTxT 
CVTxQ 
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Table 4-10: VAX Floating-Point Function Field Bit Summary 

Bits Field Meaning 

15-13 TRP Trapping modes: 
000 Imprecise (default) 
001 Underflow enable (/U) — floating-point output 

Integer overflow enable (/V) — integer output 
010 Unsupported 
011 Unsupported 
100 Software completion enable (/S) 
101 /SU — floating-point output 

/SV — integer output 
110 Unsupported 
111 Unsupported 

12-11 RND Rounding modes: 

00 Chopped (/C) 
01 Unsupported 
10 Normal (default) 
11 Unsupported 

10-9 SRC Source datatype: 

00 F_floating 
01 D_floating 
10 G.floating 
11 Q_fixed 
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Table 4-10 (Cont.): VAX Floating-Point Function Field Bit Summary 

Meaning 

Instruction class: 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

ADDx 
SUBx 
MULx 
DIVx 
CMPxUN 
CMPxEQ 
CMPxLT 
CMPxLE 
Reserved 
Reserved 
Reserved 
Reserved 
CVTxF 
CVTxD 
CVTxG 
CVTxQ 

4.7.10 IEEE Standard 

The IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754-
1985) is included by reference. 

This standard leaves certain operations as implementation dependent. The 
remainder of this section specifies the behavior of the Alpha AXP architecture in 
these situations. Note that this behavior may be supplied by either hardware (if the 
invalid operation disable, or INVD, bit is implemented) or by software. See Sections 
4.7.6.8, 4.7.7, and 4.7.7.3. 

4.7.10.1 Conversion of NaN and Infinity Values 

Conversion of a NaN or an Infinity value to an integer gives a result of zero. 

Conversion of a NaN value from S_floating to T_floating gives a result identical to 
the input, except that the most significant fraction bit (bit 51) is set to indicate a 
quiet NaN. 

Conversion of a NaN value from T_floating to S_floating gives a result identical to 
the input, except that the most significant fraction bit (bit 51) is set to indicate a 
quiet NaN, and bits <28:0> are cleared to zero. 
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4.7.10.2 Copying NaN Values 

Copying a NaN value without changing its precision does not cause an invalid 
operation exception. 

4.7.10.3 Generating NaN Values 

When an operation is required to produce a NaN and none of its inputs are NaN 
values, the result of the operation is the quiet NaN value that has the sign bit set 
to one, all exponent bits set to one (to indicate a NaN), the most significant fraction 
bit set to one (to indicate that the NaN is quiet), and all other fraction bits cleared 
to zero. This value is referred to as the "canonical quiet NaN." 

4.7.10.4 Propagating NaN Values 

When an operation is required to produce a NaN and one or both of its inputs are 
NaN values, the IEEE standard requires that quiet NaN values be propagated when 
possible. With the Alpha AXP architecture, the result of such an operation is a NaN 
generated according to the first of the following rules that is applicable: 

1. If the operand in the Fb register of the operation is a quiet NaN, that value is 
used as the result. 

2. If the operand in the Fb register of the operation is a signaling NaN, the result is 
the quiet NaN formed from the Fb value by setting the most significant fraction 
bit (bit 51) to a one bit. 

3. If the operation uses its Fa operand and the value in the Fa register is a quiet 
NaN, that value is used as the result. 

4. If the operation uses its Fa operand and the value in the Fa register is a signaling 
NaN, the result is the quiet NaN formed from the Fa value by setting the most 
significant fraction bit (bit 51) to a one bit. 

5. The result is the canonical quiet NaN. 
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4.8 Memory Format Floating-Point Instructions 
The instructions in this section move data between the floating-point registers and 
memory. They use the Memory instruction format. They do not interpret the bits 
moved in any way; specifically, they do not trap on non-finite values. 

The instructions are summarized in Table 4-11. 

Table 4-11: Memory Format Floating-Point Instructions Summary 
Mnemonic Operation Subset 

LDF Load F.floating VAX 
LDG Load G_floating (Load D_floating) VAX 
LDS Load S_floating (Load Longword Integer) Both 
LDT Load T_floating (Load Quadword Integer) Both 

STF Store F_floating VAX 
STG Store G_floating (Store D_floating) VAX 
STS Store S_floating (Store Longword Integer) Both 
STT Store T_floating (Store Quadword Integer) Both 
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4.8.1 Load FJIoating 

Format: 

LDF Fa.wf,disp.ab(Rb.ab) ÎMemory format 

Operation: 

va «- {Rbv + SEXT(disp)} 

CASE 
big_endian_data: va' <- va XOR IOO2 
little_endian_data: va' <- va 

ENDCASE 

Fa <- (va')<15> || MAP_F((va')<14:7>) || 
(va')<6:0> || (va')<31:16> || 0<28:0> 

Exceptions: 

Access Violation 
Fault on Read 
Alignment 
Translation Not Valid 

Instruction mnemonics: 

LDF Load F_floating 

Qualifiers: 

None 

Description: 

LDF fetches an F_floating datum from memory and writes it to register Fa. If the 
data is not naturally aligned, an alignment exception is generated. 

The MAP_F function causes the 8-bit memory-format exponent to be expanded to an 
11-bit register-format exponent according to Table 2-1. 

The virtual address is computed by adding register Rb to the sign-extended 16-bit 
displacement. For a big-endian longword access, va<2> (bit 2 of the virtual address) 
is inverted, and any memory management fault is reported for va (not va'). The 
source operand is fetched from memory and the bytes are reordered to conform to 
the F_floating register format. The result is then zero-extended in the low-order 
longword and written to register Fa. 
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4.8.2 Load GJIoating 

Format: 

LDG Fa.wg,disp.ab(Rb.ab) IMemory format 

Operation: 

v a <- {Rbv + S E X T ( d i s p ) } 

Fa «- ( v a ) < 1 5 : 0 > | | ( v a ) < 3 1 : 1 6 > | | 
( v a ) < 4 7 : 3 2 > | | ( v a ) < 6 3 : 4 8 > 

Exceptions: 

Access Violation 
Fault on Read 
Alignment 
Translation Not Valid 

Instruction mnemonics: 

LDG Load GJloating (Load D.floating) 

Qualifiers: 

None 

Description: 

LDG fetches a G_floating (or D_floating) datum from memory and writes it to register 
Fa. If the data is not naturally aligned, an alignment exception is generated. 

The virtual address is computed by adding register Rb to the sign-extended 16-bit 
displacement. The source operand is fetched from memory, the bytes are reordered to 
conform to the G_floating register format (also conforming to the D_floating register 
format), and the result is then written to register Fa. 
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4.8.3 Load SJIoating 

Format: 

LDS Fa.ws,disp.ab(Rb.ab) ÎMemory format 

Operation: 

va ♦- {Rbv + SEXT(disp)} 

CASE 
big_endian_data: 
little_endian_data 

ENDCASE 

Fa «- (va')<31> || MAP_S((va')<30:23>) || 
(va')<22:0> || 0<28:0> 

Exceptions: 

Access Violation 
Fault on Read 
Alignment 
Translation Not Valid 

Instruction mnemonics: 

LDS Load S_floating (Load Longword Integer) 

Qualifiers: 

None 

Description: 

LDS fetches a longword (integer or S_floating) from memory and writes it to register 
Fa. If the data is not naturally aligned, an alignment exception is generated. The 
MAP_S function causes the 8-bit memory-format exponent to be expanded to an 
11-bit register-format exponent according to Table 2-2. 

The virtual address is computed by adding register Rb to the sign-extended 16-bit 
displacement. For a big-endian longword access, va<2> (bit 2 of the virtual address) 
is inverted, and any memory management fault is reported for va (not va'). The 
source operand is fetched from memory, is zero-extended in the low-order longword, 
and then written to register Fa. Longword integers in floating registers are stored 
in bits <63:62,58:29>, with bits <61:59> ignored and zeros in bits <28:0>. 

v a ' ^- va XOR IOO2 
v a ' ^- va 
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4.8.4 Load T_floating 

Format: 

LDT Fa.wt,disp.ab(Rb.ab) IMemory format 

Operation: 

va <- {Rbv + SEXT(disp)} 

Fa <- (va)<63:0> 

Exceptions: 

Access Violation 
Fault on Read 
Alignment 
Translation Not Valid 

Instruction mnemonics: 

LDT Load T_floating (Load Quadword Integer) 

Qualifiers: 

None 

Description: 

LDT fetches a quadword (integer or T_floating) from memory and writes it to register 
Fa. If the data is not naturally aligned, an alignment exception is generated. 

The virtual address is computed by adding register Rb to the sign-extended 16-bit 
displacement. The source operand is fetched from memory and written to register 
Fa. 
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4.8.5 Store FJIoating 

Format: 

STF Fa.rf,disp.ab(Rb.ab) '.Memory format 

Operation: 

va «- {Rbv + SEXT(disp)} 

CASE 
big_endian_data: va' 
little_endian_data: va' 

ENDCASE 

(va')<31:0> <- Fav<44:29> || Fav<63:62>|| Fav<58:45> 

Exceptions: 

Access Violation 
Fault on Write 
Alignment 
Translation Not Valid 

Instruction mnemonics: 

STF Store F_floating 

Qualifiers: 

None 

Description: 

STF stores an F_floating datum from Fa to memory. If the data is not naturally 
aligned, an alignment exception is generated. 

The virtual address is computed by adding register Rb to the sign-extended 16-bit 
displacement. For a big-endian longword access, va<2> (bit 2 of the virtual address) 
is inverted, and any memory management fault is reported for va (not va'). The bits 
of the source operand are fetched from register Fa, the bits are reordered to conform 
to F_floating memory format, and the result is then written to memory. Bits <61:59> 
and <28:0> of Fa are ignored. No checking is done. 

<- v a XOR IOO2 
<— v a 
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4.8.6 Store GJIoating 

Format: 

STG Fa.rg,disp.ab(Rb.ab) ÎMemory format 

Operation: 

va <- {Rbv + SEXT(disp)} 

(va)<63:0> <- Fav<15:0> || Fav<31:16> || 
Fav<47:32> || Fav<63:48> 

Exceptions: 

Access Violation 
Fault on Write 
Alignment 
Translation Not Valid 

Instruction mnemonics: 

STG Store G_floating (Store D_floating) 

Qualifiers: 

None 

Description: 

STG stores a G_floating (or D_floating) datum from Fa to memory. If the data is not 
naturally aligned, an alignment exception is generated. 

The virtual address is computed by adding register Rb to the sign-extended 16-
bit displacement. The source operand is fetched from register Fa, the bytes are 
reordered to conform to the G_floating memory format (also conforming to the D_ 
floating memory format), and the result is then written to memory. 
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4.8.7 Store SJIoating 

Format: 

STS Fa.rs,disp.ab(Rb.ab) ÎMemory format 

Operation: 

va <- {Rbv + SEXT(disp)} 

CASE 
big_endian_data: va' +— va XOR IOO2 
little_endian_data: va' <- va 

ENDCASE 

(va')<31:0> <- Fav<63:62>||Fav<58:29> 

Exceptions: 

Access Violation 
Fault on Write 
Alignment 
Translation Not Valid 

Instruction mnemonics: 

STS Store S_floating (Store Longword Integer) 

Qualifiers: 

None 

Description: 

STS stores a longword (integer or S_floating) datum from Fa to memory. If the data 
is not naturally aligned, an alignment exception is generated. 

The virtual address is computed by adding register Rb to the sign-extended 16-bit 
displacement. For a big-endian longword access, va<2> (bit 2 of the virtual address) 
is inverted, and any memory management fault is reported for va (not va'). The bits 
of the source operand are fetched from register Fa, the bits are reordered to conform 
to S_floating memory format, and the result is then written to memory. Bits <61:59> 
and <28:0> of Fa are ignored. No checking is done. 
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4.8.8 Store T_floating 

Format: 

STT Fa.rt,disp.ab(Rb.ab) IMemory format 

Operation: 

va «- {Rbv + SEXT(disp)} 

(va)<63:0> «- Fav<63:0> 

Exceptions: 

Access Violation 
Fault on Write 
Alignment 
Translation Not Valid 

Instruction mnemonics: 

STT Store T.floating (Store Quadword Integer) 

Qualifiers: 

None 

Description: 

STT stores a quadword (integer or T_floating) datum from Fa to memory. If the data 
is not naturally aligned, an alignment exception is generated. 

The virtual address is computed by adding register Rb to the sign-extended 16-bit 
displacement. The source operand is fetched from register Fa and written to memory. 
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4.9 Branch Format Floating-Point Instructions 
Alpha AXP provides six floating conditional branch instructions. These branch-
format instructions test the value of a floating-point register and conditionally 
change the PC. 

They do not interpret the bits tested in any way; specifically, they do not trap on 
non-finite values. 

The test is based on the sign bit and whether the rest of the register is all zero bits. 
All 64 bits of the register are tested. The test is independent of the format of the 
operand in the register. Both plus and minus zero are equal to zero. A non-zero 
value with a sign of zero is greater than zero. A non-zero value with a sign of one 
is less than zero. No reserved operand or non-finite checking is done. 

The floating-point branch operations are summarized in Table 4-12. 

Table 4-12: Floating-Point Branch Instructions Summary 
Mnemonic Operation Subset 

FBEQ Floating Branch Equal Both 

FBGE Floating Branch Greater Than or Equal Both 

FBGT Floating Branch Greater Than Both 

FBLE Floating Branch Less Than or Equal Both 

FBLT Floating Branch Less Than Both 

FBNE Floating Branch Not Equal Both 
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4.9.1 Conditional Branch 

Format: 

FBxx Fa.rq,disp.al IBranch format 

Operation: 

{update PC} 
va ^- PC + {4*SEXT(disp) } 
IF TEST(Fav, Condi t ion_based_on_Opcode) THEN 

PC «- va 

Exceptions: 

None 

Instruction mnemonics: 

FBEQ Floating Branch Equal 

FBGE Floating Branch Greater Than or Equal 

FBGT Floating Branch Greater Than 

FBLE Floating Branch Less Than or Equal 

FBLT Floating Branch Less Than 

FBNE Floating Branch Not Equal 

Qualifiers: 

None 

Description: 

Register Fa is tested. If the specified relationship is true, the PC is loaded with 
the target virtual address; otherwise, execution continues with the next sequential 
instruction. 

The displacement is treated as a signed longword offset. This means it is shifted 
left two bits (to address a longword boundary), sign-extended to 64 bits, and added 
to the updated PC to form the target virtual address. 

The conditional branch instructions are PC-relative only. The 21-bit signed 
displacement gives a forward/backward branch distance of +/- IM instructions. 
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• To branch properly on non-finite operands, compare to F31, then branch on the 
result of the compare. 

• The largest negative integer (8000 0000 0000 000016) is the same bit pattern as 
floating minus zero, so it is treated as equal to zero by the branch instructions. 
To branch properly on the largest negative integer, convert it to floating or move 
it to an integer register and do an integer branch. 
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4.10 Floating-Point Operate Format Instructions 
The floating-point bit-operate instructions perform copy and integer convert 
operations on 64-bit register values. The bit-operate instructions do not interpret 
the bits moved in any way; specifically, they do not trap on non-finite values. 

The floating-point arithmetic-operate instructions perform add, subtract, multiply, 
divide, compare, and floating convert operations on 64-bit register values in one of 
the four specified floating formats. 

Each instruction specifies the source and destination formats of the values, as well 
as the rounding mode and trapping mode to be used. These instructions use the 
Floating-point Operate format. 

The floating-point operate instructions are summarized in Table 4-13. 

Table 4-13: Floating-Point Operate Instructions Summary 
Mnemonic Operation Subset 

Bit and FPCR Operations 
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CPYS Copy Sign Both 
CPYSE Copy Sign and Exponent Both 
CPYSN Copy Sign Negate Both 

CVTLQ Convert Longword to Quadword Both 
CVTQL Convert Quadword to Longword Both 

FCMOVxx Floating Conditional Move Both 

MF_FPCR Move from Floating-point Control Register Both 
MT_FPCR Move to Floating-point Control Register Both 



Table 4-13 (Cont.): Floating-Point Operate Instructions Summary 

Mnemonic Operation Subset 

Arithmetic Operations 

ADDF 
ADDG 
ADDS 
ADDT 

CMPGxx 
CMPTxx 

CVTDG 
CVTGD 
CVTGF 
CVTGQ 
CVTQF 
CVTQG 
CVTQS 
CVTQT 
CVTST 
CVTTQ 
CVTTS 

DIVF 
DIVG 
DIVS 
DIVT 

MULF 
MULG 
MULS 
MULT 

Add F_floating 
Add G_floating 
Add S_floating 
Add T.floating 

Compare G_floating 
Compare T_floating 

Convert D_floating to G_floating 
Convert G_floating to D_floating 
Convert G_floating to F_floating 
Convert G_floating to Quadword 
Convert Quadword to F_floating 
Convert Quadword to G_floating 
Convert Quadword to S_floating 
Convert Quadword to T_floating 
Convert S_floating to T_floating 
Convert T_floating to Quadword 
Convert T_floating to S_floating 

Divide F_floating 
Divide G_floating 
Divide S_floating 
Divide T_floating 

Multiply F_floating 
Multiply G_floating 
Multiply S_floating 
Multiply T_floating 

VAX 
VAX 
IEEE 
IEEE 

VAX 
IEEE 

VAX 
VAX 
VAX 
VAX 
VAX 
VAX 
IEEE 
IEEE 
IEEE 
IEEE 
IEEE 

VAX 
VAX 
IEEE 
IEEE 

VAX 
VAX 
IEEE 
IEEE 
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Table 4-13 (Cont): Floating-Point Operate instructions Summary 

Mnemonic Operation Subset 

Arithmetic Operations 

SUBF Subtract F.floating VAX 
SUBG Subtract G.floating VAX 
SUBS Subtract S_floating IEEE 
SUBT Subtract T_floating IEEE 
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4.10.1 Copy Sign 

Format: 

CPYSy Fa.rq,Fb.rq,Fc.wq ! Floating-point Operate format 

Operation: 

CASE 
CPYS: Fc <-
CPYSN: Fc <-
CPYSE: Fc <-

ENDCASE 

Exceptions: 

None 

Instruction mnemonics: 

CPYS Copy Sign 

CPYSE Copy Sign and Exponent 

CPYSN Copy Sign Negate 

Qualifiers: 

None 

Description: 

For CPYS and CPYSN, the sign bit of Fa is fetched (and complemented in the case 
of CPYSN) and concatenated with the exponent and fraction bits from Fb; the result 
is stored in Fc. 

For CPYSE, the sign and exponent bits from Fa are fetched and concatenated with 
the fraction bits from Fb; the result is stored in Fc. 

No checking of the operands is performed. 

Notes: 

• Register moves can be performed using CPYS Fx,Fx,Fy. Floating-point absolute 
value can be done using CPYS F31,Fx,Fy. Floating-point negation can be done 
using CPYSN Fx,Fx,Fy. Floating values can be scaled to a known range by using 
CPYSE. 

Instruction Descriptions (I) 4-93 

Fav<63> || Fbv<62:0> 
NOT(Fav<63>) || Fbv<62:0> 
Fav<63:52> || Fbv<51:0> 



4.10.2 Convert Integer to Integer 

Format: 

CVTxy Fb.rq,Fc.wx 

Operation: 

CASE 

!Floating-point Operate format 

CVTQL: Fc 

CVTLQ: Fc 
ENDCASE 

Fbv<31:30> || 0<2:0> | 
Fbv<29:0> II 0<28:0> 

SEXT(Fbv<63:62> Fbv<58:29>) 

Exceptions: 

Integer Overflow, CVTQL only 

Instruction mnemonics: 

Convert Longword to Quadword 

Convert Quadword to Longword 

Software (/S) (CVTQL only) 

Integer Overflow Enable (/V) (CVTQL only) 

CVTLQ 

CVTQL 

Qualifiers: 

Trapping: 

Description: 

The two's-complement operand in register Fb is converted to a two's-complement 
result and written to register Fc. Register Fa must be F31. 

The conversion from quadword to longword is a repositioning of the low 32 bits of 
the operand, with zero fill and optional integer overflow checking. Integer overflow 
occurs if Fb is outside the range -2**31.-2**31-1. If integer overflow occurs, the 
truncated result is stored in Fc, and an arithmetic trap is taken if enabled. 

The conversion from longword to quadword is a repositioning of 32 bits of the 
operand, with sign extension. 
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4.10.3 Floating-Point Conditional Move 

Format: 

FCMOVxx Fa.rq,Fb.rq,Fc.wq 

Operation: 

IF TEST(Fav, Condition_based_on_Opcode) THEN 

Fc <— Fbv 

!Floating-point Operate format 

Exceptions: 

None 

Instruction mnemonics: 

FCMOVEQ FCMOVE if Register Equal to Zero 

FCMOVGE FCMOVE if Register Greater Than or Equal to Zero 

FCMOVGT FCMOVE if Register Greater Than Zero 

FCMOVLE FCMOVE if Register Less Than or Equal to Zero 

FCMOVLT FCMOVE if Register Less Than Zero 

FCMOVNE FCMOVE if Register Not Equal to Zero 

Qualifiers: 

None 

Description: 

Register Fa is tested. If the specified relationship is true, register Fb is written to 
register Fc; otherwise, the move is suppressed and register Fc is unchanged. The 
test is based on the sign bit and whether the rest of the register is all zero bits, as 
described for floating branches in Section 4.9. 
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Notes: 
Except that it is likely in many implementations to be substantially faster, the 
instruction: 

FCMOVxx F a , F b , F c 

is exactly equivalent to: 

FByy Fa,label ; yy = NOT xx 
CPYS Fb,Fb,Fc 

label : ... 

For example, a branchless sequence for: 
F1=MAX(F1 / F2) 

is: 

CMPxLT F1,F2,F3 ! F3=one if F1<F2; x=F/G/S/T 
FCMOVNE F3,F2,Fl ! Move F2 to Fl if Fl<F2 
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4.10.4 Move from/to Floating-Point Control Register 

Format: 

Mx_FPCR Fa.rq,Fa.rq,Fa.wq !Floating-point Operate format 

Operation: 

CASE 
MT_FPCR 
MF_FPCR 

ENDCASE 

Exceptions: 

None 

Instruction mnemonics: 

MF_FPCR Move from Floating-point Control Register 

MT_FPCR Move to Floating-point Control Register 

Qualifiers: 

None 

Description: 

The Floating-point Control Register (FPCR) is read from (MF_FPCR) or written 
to (MT_FPCR), a floating-point register. The floating-point register to be used is 
specified by the Fa, Fb, and Fc fields all pointing to the same floating-point register. 
If the Fa, Fb, and Fc fields do not all point to the same floating-point register, then 
it is UNPREDICTABLE which register is used. If the Fa, Fb, and Fc fields do not 
all point to the same floating-point register, the resulting values in the Fc register 
and in FPCR are UNPREDICTABLE. 

If the Fc field is F31 in the case of MT_FPCR, the resulting value in FPCR is 
UNPREDICTABLE. 

The use of these instructions and the FPCR are described in Section 4.7.7. 

FPCR <— F a v 
Fa <- FPCR 
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4.10.5 VAX Floating Add 

Format: 

ADDx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format 

Operation: 

Fc <— Fav + Fbv 

Exceptions: 

Invalid Operation 
Overflow 
Underflow 

Instruction mnemonics: 

ADDF Add F.floating 
ADDG Add G.floating 

Qualifiers: 

Rounding: Chopped (/C) 
Trapping: Software (/S) 

Underflow Enable (/U) 

Description: 

Register Fa is added to register Fb, and the sum is written to register Fc. 

The sum is rounded or chopped to the specified precision, and then the corresponding 
range is checked for overflow/underflow. The single-precision operation on canonical 
single-precision values produces a canonical single-precision result. 

An invalid operation trap is signaled if either operand has exp=0 and is not a true 
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are 
UNPREDICTABLE if this occurs. See Section 4.7.6 for details of the stored result 
on overflow or underflow. 
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4.10.6 IEEE Floating Add 

Format: 

ADDx Fa.rx,Fb.rx,Fc.wx 

Operation: 

Fc <— Fav + Fbv 

! Floating-point Operate format 

Exceptions: 

Invalid Operation 
Overflow 
Underflow 
Inexact Result 

Instruction mnemonics: 

ADDS 

ADDT 

Qualifiers: 

Rounding: 

Trapping: 

Add S_floating 

Add T_floating 

Dynamic (/D) 

Minus infinity (/M) 

Chopped (/C) 

Software (/S) 

Underflow Enable (/U) 

Inexact Enable (/I) 

Description: 

Register Fa is added to register Fb, and the sum is written to register Fc. 

The sum is rounded to the specified precision, and then the corresponding range is 
checked for overflow/underflow. The single-precision operation on canonical single-
precision values produces a canonical single-precision result. 

See Section 4.7.6 for details of the stored result on overflow, underflow, or inexact 
result. 
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4.10.7 VAX Floating Compare 

Format: 

CMPGyy Fa.rg,Fb.rg,Fc.wq .'Floating-point Operate format 

Operation: 

IF Fav SIGNED_RELATION Fbv THEN 
Fc <- 4000 0000 0000 0000χ6 

ELSE 
Fc <- 0000 0000 0000 0000i6 

Exceptions: 

Invalid Operation 

Instruction mnemonics: 

CMPGEQ Compare G.floating Equal 

CMPGLE Compare G_floating Less Than or Equal 

CMPGLT Compare G.floating Less Than 

Qualifiers: 

Trapping: Software (/S) 

Description: 

The two operands in Fa and Fb are compared. If the relationship specified by the 
qualifier is true, a non-zero floating value (0.5) is written to register Fc; otherwise, 
a true zero is written to Fc. 

Comparisons are exact and never overflow or underflow. Three mutually exclusive 
relations are possible: less than, equal, and greater than. 

An invalid operation trap is signaled if either operand has exp=0 and is not a true 
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are 
UNPREDICTABLE if this occurs. 

Notes: 

• Compare Less Than A,B is the same as Compare Greater Than B,A; Compare 
Less Than or Equal A,B is the same as Compare Greater Than or Equal B,A. 
Therefore, only the less-than operations are included. 
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4.10.8 IEEE Floating Compare 

Format: 

CMPTyy Fa.rx,Fb.rx,Fc.wq '.Floating-point Operate format 

Operation: 

IF Fav SIGNED_RELATION Fbv THEN 
Fc <- 4000 0000 0000 0000i6 

ELSE 
Fc 4- 0000 0000 0000 0000χ6 

Exceptions: 

Invalid Operation 

Instruction mnemonics: 

CMPTEQ Compare T_floating Equal 

CMPTLE Compare T_floating Less Than or Equal 

CMPTLT Compare T.floating Less Than 

CMPTUN Compare T_floating Unordered 

Qualifiers: 

Trapping: Software (/S) 

Description: 

The two operands in Fa and Fb are compared. If the relationship specified by the 
qualifier is true, a non-zero floating value (2.0) is written to register Fc; otherwise, 
a true zero is written to Fc. 

Comparisons are exact and never overflow or underflow. Four mutually exclusive 
relations are possible: less than, equal, greater than, and unordered. The unordered 
relation is true if one or both operands are NaN. (This behavior must be provided 
by a software trap handler, since NaNs trap.) Comparisons ignore the sign of zero, 
so +0 = -0 . 

Comparisons with plus and minus infinity execute normally and do not take an 
invalid operation trap. 
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Notes: 

• Compare Less Than A,B is the same as Compare Greater Than B,A; Compare 
Less Than or Equal A,B is the same as Compare Greater Than or Equal B,A. 
Therefore, only the less-than operations are included. 
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4.10.9 Convert VAX Floating to Integer 

Format: 

CVTGQ Fb.rx,Fc.wq !Floating-point Operate format 

Operation: 

Fc <— { c o n v e r s i o n of Fbv} 

Exceptions: 

Invalid Operation 
Integer Overflow 

Instruction mnemonics: 

CVTGQ Convert G_floating to Quadword 

Qualifiers: 

Rounding: Chopped (/C) 
Trapping: Software (/S) 

Integer Overflow Enable (/V) 

Description: 

The floating operand in register Fb is converted to a two's-complement quadword 
number and written to register Fc. The conversion aligns the operand fraction with 
the binary point just to the right of bit zero, rounds as specified, and complements 
the result if negative. Register Fa must be F31. 

An invalid operation trap is signaled if the operand has exp=0 and is not a true 
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are 
UNPREDICTABLE if this occurs. 

See Section 4.7.6 for details of the stored result on integer overflow. 
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4.10.10 Convert Integer to VAX Floating 

Format: 

CVTQy Fb.rq,Fc.wx !Floating-point Operate format 

Operation: 

Fc <— {conversion of Fbv<63:0>} 

Exceptions: 

None 

Instruction mnemonics: 

CVTQF Convert Quadword to F_floating 
CVTQG Convert Quadword to G_floating 

Qualifiers: 

Rounding: Chopped (/C) 

Description: 

The two's-complement quadword operand in register Fb is converted to a single-
or double-precision floating result and written to register Fc. The conversion 
complements a number if negative, normalizes it, rounds to the target precision, 
and packs the result with an appropriate sign and exponent field. Register Fa must 
be F31. 
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4.10.11 Convert VAX Floating to VAX Floating 

Format: 

CVTxy Fb.rx,Fc.wx 

Operation: 

Fc <— { c o n v e r s i o n of Fbv} 

!Floating-point Operate format 

Exceptions: 

Invalid Operation 
Overflow 
Underflow 

Instruction mnemonics: 

CVTDG 
CVTGD 
CVTGF 

Qualifiers: 

Convert D_floating to G_floating 
Convert G_floating to D_floating 
Convert G_floating to F_floating 

Rounding: Chopped (/C) 
Trapping: Software (/S) 

Underflow Enable (/U) 

Description: 

The floating operand in register Fb is converted to the specified alternate floating 
format and written to register Fc. Register Fa must be F31. 

An invalid operation trap is signaled if the operand has exp=0 and is not a true 
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are 
UNPREDICTABLE if this occurs. 

See Section 4.7.6 for details of the stored result on overflow or underflow. 
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Notes: 

• The only arithmetic operations on D_floating values are conversions to and from 
G_floating. The conversion to G_floating rounds or chops as specified, removing 
three fraction bits. The conversion from G_floating to D_floating adds three low-
order zeros as fraction bits, then the 8-bit exponent range is checked for overflow 
/underflow. 

• The conversion from G_floating to F_floating rounds or chops to single precision, 
then the 8-bit exponent range is checked for overflow/underflow. 

• No conversion from F_floating to G_floating is required, since F_floating values 
are always stored in registers as equivalent G_floating values. 
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4.10.12 Convert IEEE Floating to Integer 

Format: 

CVTTQ Fb.rx,Fc.wq 

Operation: 

Fc «— {conversion of Fbv} 

! Floating-point Operate format 

Exceptions: 

Invalid Operation 
Inexact Result 
Integer Overflow 

Instruction mnemonics: 

CVTTQ Convert T_floating to Quadword 

Qualifiers: 

Rounding: Dynamic (/D) 
Minus infinity (/M) 
Chopped (/C) 

Trapping: Software (/S) 
Integer Overflow Enable (/V) 
Inexact Enable (/I) 

Description: 

The floating operand in register Fb is converted to a two's-complement number and 
written to register Fc. The conversion aligns the operand fraction with the binary 
point just to the right of bit zero, rounds as specified, and complements the result if 
negative. Register Fa must be F31. 

See Section 4.7.6 for details of the stored result on integer overflow and inexact 
result. 
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4.10.13 Convert Integer to IEEE Floating 

Format: 

CVTQy Fb.rq,Fc.wx ! Floating-point Operate format 

Operation: 

Fc <— {conversion of Fbv<63:0>} 

Exceptions: 

Inexact Result 

Instruction mnemonics: 

CVTQS Convert Quadword to S_floating 
CVTQT Convert Quadword to T_floating 

Qualifiers: 

Rounding: Dynamic (/D) 
Minus infinity (/M) 
Chopped (JO 

Trapping: Software (/S) 
Inexact Enable (/I) 

Description: 

The two's-complement operand in register Fb is converted to a single- or double-
precision floating result and written to register Fc. The conversion complements 
a number if negative, normalizes it, rounds to the target precision, and packs the 
result with an appropriate sign and exponent field. Register Fa must be F31. 

See Section 4.7.6 for details of the stored result on inexact result. 
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4.10.14 Convert IEEE S_Floating to IEEE T_Floating 

Format: 

CVTST Fb.rx,Fc.wx ! Floating-point Operate format 

Operation: 

Fc <- {conversion of Fbv} 

Exceptions: 

Invalid Operation 

Instruction mnemonics: 

CVTST Convert S_floating to T_floating 

Qualifiers: 

Trapping: Software (/S) 

Description: 

The S_floating operand in register Fb is converted to T_floating format and written 
to register Fc. Register Fa must be F31. 

Notes: 

• The conversion from S_floating to T_floating is exact. No rounding occurs. No 
underflow, overflow, or inexact result can occur. In fact, the conversion for finite 
values is the identity transformation. 

• A trap handler can convert an S_floating denormal value into the corresponding 
T_floating finite value by adding 896 to the exponent and normalizing. 
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4.10.15 Convert IEEE T_Floating to IEEE S_Floating 

Format: 

CVTTS Fb.rx,Fc.wx !Floating-point Operate format 

Operation: 

Fc «— { c o n v e r s i o n of Fbv} 

Exceptions: 

Invalid Operation 
Overflow 
Underflow 
Inexact Result 

Instruction mnemonics: 

CVTTS Convert T_floating to S_floating 

Qualifiers: 

Rounding: Dynamic (/D) 
Minus infinity (/M) 
Chopped (/C) 

Trapping: Software (/S) 
Underflow Enable (/U) 
Inexact Enable (/I) 

Description: 

The T_floating operand in register Fb is converted to S_floating format and written 
to register Fc. Register Fa must be F31. 

See Section 4.7.6 for details of the stored result on overflow, underflow, or inexact 
result. 
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4.10.16 VAX Floating Divide 

Format: 

DIVx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format 

Operation: 

Fc <— Fav / Fbv 

Exceptions: 

Invalid Operation 
Division by Zero 
Overflow 
Underflow 

Instruction mnemonics: 

DIVF Divide F_floating 
DIVG Divide G.floating 

Qualifiers: 

Rounding: Chopped (/C) 
Trapping: Software (/S) 

Underflow Enable (/U) 

Description: 

The dividend operand in register Fa is divided by the divisor operand in register Fb, 
and the quotient is written to register Fc. 

The quotient is rounded or chopped to the specified precision and then the 
corresponding range is checked for overflow/underflow. The single-precision 
operation on canonical single-precision values produces a canonical single-precision 
result. 
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An invalid operation trap is signaled if either operand has exp=0 and is not a true 
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are 
UNPREDICTABLE if this occurs. 
A division by zero trap is signaled if Fbv is zero. The contents of Fc are 
UNPREDICTABLE if this occurs. 
See Section 4.7.6 for details of the stored result on overflow or underflow. 
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4.10.17 IEEE Floating Divide 

Format: 

DIVx Fa.rx,Fb.rx,Fc.wx ! Floating-point Operate format 

Operation: 

Fc <— Fav / Fbv 

Exceptions: 

Invalid Operation 
Division by Zero 
Overflow 
Underflow 
Inexact Result 

Instruction mnemonics: 

DIVS 
DIVT 

Qualifiers: 

Rounding: 

Trapping: 

Description: 

Divide S_floating 
Divide T_floating 

Dynamic (/D) 
Minus infinity (/M) 
Chopped (/C) 
Software (/S) 
Underflow Enable (/U) 
Inexact Enable (/I) 

The dividend operand in register Fa is divided by the divisor operand in register Fb, 
and the quotient is written to register Fc. 

The quotient is rounded to the specified precision, and then the corresponding range 
is checked for overflow/underflow. The single-precision operation on canonical single-
precision values produces a canonical single-precision result. 

See Section 4.7.6 for details of the stored result on overflow, underflow, or inexact 
result. 
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4.10.18 VAX Floating Multiply 

Format: 

MULx Fa.rx,Fb.rx,Fc.wx ! Floating-point Operate format 

Operation: 

Fc Fav * Fbv 

Exceptions: 

Invalid Operation 
Overflow 
Underflow 

Instruction mnemonics: 

MULF 
MULG 

Qualifiers: 

Rounding: 
Trapping: 

Description: 

Multiply F_floating 
Multiply G_floating 

Chopped (/C) 
Software (/S) 
Underflow Enable (/U) 

The multiplicand operand in register Fb is multiplied by the multiplier operand in 
register Fa, and the product is written to register Fc. 

The product is rounded or chopped to the specified precision, and then the 
corresponding range is checked for overflow/underflow. The single-precision 
operation on canonical single-precision values produces a canonical single-precision 
result. 

An invalid operation trap is signaled if either operand has exp=0 and is not a true 
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are 
UNPREDICTABLE if this occurs. 

See Section 4.7.6 for details of the stored result on overflow or underflow. 
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4.10.19 IEEE Floating Multiply 

Format: 

MULx Fa.rx,Fb.rx,Fc.wx ! Floating-point Operate format 

Operation: 

Fc <— Fav * Fbv 

Exceptions: 

Invalid Operation 
Overflow 
Underflow 
Inexact Result 

Instruction mnemonics: 

MULS 
MULT 

Qualifiers: 

Rounding: 

Trapping: 

Description: 

Multiply S_floating 
Multiply T_floating 

Dynamic (/D) 
Minus infinity (/M) 
Chopped (/C) 
Software (/S) 
Underflow Enable (/U) 
Inexact Enable (/I) 

The multiplicand operand in register Fb is multiplied by the multiplier operand in 
register Fa, and the product is written to register Fc. 

The product is rounded to the specified precision, and then the corresponding range 
is checked for overflow/underflow. The single-precision operation on canonical single-
precision values produces a canonical single-precision result. 

See Section 4.7.6 for details of the stored result on overflow, underflow, or inexact 
result. 
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4.10.20 VAX Floating Subtract 

Format: 

SUBx Fa.rx,Fb.rx,Fc.wx ! Floating-point Operate format 

Operation: 

Fc <— Fav - Fbv 

Exceptions: 

Invalid Operation 
Overflow 
Underflow 

Instruction mnemonics: 

SUBF Subtract F_floating 
SUBG Subtract G_floating 

Qualifiers: 

Rounding: Chopped (/C) 
Trapping: Software (/S) 

Underflow Enable (/U) 

Description: 

The subtrahend operand in register Fb is subtracted from the minuend operand in 
register Fa, and the difference is written to register Fc. 

The difference is rounded or chopped to the specified precision, and then the 
corresponding range is checked for overflow/underflow. The single-precision 
operation on canonical single-precision values produces a canonical single-precision 
result. 
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An invalid operation trap is signaled if either operand has exp=0 and is not a true 
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are 
UNPREDICTABLE if this occurs. 
See Section 4.7.6 for details of the stored result on overflow or underflow. 
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4.10.21 IEEE Floating Subtract 

Format: 

SUBx Fa.rx,Fb.rx,Fc.wx 

Operation: 

Fc <— Fav - Fbv 

Exceptions: 

Invalid Operation 
Overflow 
Underflow 
Inexact Result 

Instruction mnemonics: 

!Floating-point Operate format 

SUBS 
SUBT 

Qualifiers: 

Rounding: 

Trapping: 

Description: 

Subtract S_floating 
Subtract T_floating 

Dynamic (/D) 
Minus infinity (/M) 
Chopped (/C) 
Software (/S) 
Underflow Enable (/U) 
Inexact Enable (/I) 

The subtrahend operand in register Fb is subtracted from the minuend operand in 
register Fa, and the difference is written to register Fc. 

The difference is rounded to the specified precision, and then the corresponding 
range is checked for overflow/underflow. The single-precision operation on canonical 
single-precision values produces a canonical single-precision result. 

See Section 4.7.6 for details of the stored result on overflow, underflow, or inexact 
result. 
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4.11 Miscellaneous Instructions 

Alpha AXP provides the miscellaneous instructions shown in Table 4-14. 

Table 4-14: Miscellaneous Instructions Summary 
Mnemonic 

CALL.PAL 

EXCB 

FETCH 

FETCH_M 

MB 

RPCC 

TRAPB 

WMB 

Operation 

Call Privileged Architecture Library Routine 

Exception Barrier 

Prefetch Data 

Prefetch Data, Modify Intent 

Memory Barrier 

Read Processor Cycle Counter 

Trap Barrier 

Write Memory Barrier 
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4.11.1 Call Privileged Architecture Library 

Format: 

CALL_PAL fhc.ir !PAL format 

Operation: 

{Stall instruction issuing until all 
prior instructions are guaranteed to 
complete without incurring exceptions.} 
{Trap to PALcode.} 

Exceptions: 

None 

Instruction mnemonics: 

CALL_PAL Call Privileged Architecture Library 

Qualifiers: 

None 

Description: 

The CALL_PAL instruction is not issued until all previous instructions are 
guaranteed to complete without exceptions. If an exception occurs, the continuation 
PC in the exception stack frame points to the CALL_PAL instruction. The CALL_ 
PAL instruction causes a trap to PALcode. 
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4.11.2 Exception Barrier 

Format: 

EXCB ! Memory format 

Operation: 

{EXCB does not appear to issue until completion of all 
exceptions and dependencies on the Floating-point Control 
Register (FPCR) from prior instructions.} 

Exceptions: 

None 

Instruction mnemonics: 

EXCB Exception Barrier 

Qualifiers: 

None 

Description: 

The EXCB instruction allows software to guarantee that in a pipelined 
implementation, all previous instructions have completed any behavior related to 
exceptions or rounding modes before any instructions after the EXCB are issued. 

In particular, all changes to the Floating-point Control Register (FPCR) are 
guaranteed to have been made, whether or not there is an associated exception. Also, 
all potential floating-point exceptions and integer overflow exceptions are guaranteed 
to have been taken. EXCB is thus a superset of TRAPB. 

If a floating-point exception occurs for which trapping is enabled, the EXCB 
instruction acts like a fault. In this case, the value of the Program Counter reported 
to the program may be the address of the EXCB instruction (or earlier), but is never 
the address of an instruction following the EXCB. 

The relationship between EXCB and the FPCR is described in Section 4.7.7.1. 
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4.11.3 Prefetch Data 

Format: 

FETCHx O(Rb.ab) ÎMemory format 

Operation: 

va *— {Rbv} 
{ O p t i o n a l l y p r e f e t c h a l i g n e d 5 1 2 - b y t e b l o c k s u r r o u n d i n g v a . } 

Exceptions: 

None 

Instruction mnemonics: 

FETCH Prefetch Data 
FETCH_M Prefetch Data, Modify Intent 

Qualifiers: 

None 

Description: 

The virtual address is given by Rbv. This address is used to designate an aligned 
512-byte block of data. An implementation may optionally attempt to move all or 
part of this block (or a larger surrounding block) of data to a faster-access part of 
the memory hierarchy, in anticipation of subsequent Load or Store instructions that 
access that data. 

The FETCH instruction is a hint to the implementation that may allow faster 
execution. An implementation is free to ignore the hint. If prefetching is 
done in an implementation, the order of fetch within the designated block is 
UNPREDICTABLE. 

The FETCH_M instruction gives the additional hint that modifications (stores) to 
some or all of the data block are anticipated. 

No exceptions are generated by FETCHx. If a Load (or Store in the case of FETCH_ 
M) that uses the same address would fault, the prefetch request is ignored. It is 
UNPREDICTABLE whether a TB-miss fault is ever taken by FETCHx. 
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Implementation Note: 

Implementations are encouraged to take the TB-miss fault, then continue the 
prefetch. 

Software Note: 

FETCH is intended to help software overlap memory latencies on the order of 
100 cycles. FETCH is unlikely to help (or be implemented) for memory latencies 
on the order of 10 cycles. Code scheduling should be used to overlap such short 
latencies. 

The programming model for effective use of FETCH and FETCH_M is given in 
Appendix A. 
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4.11.4 Memory Barrier 

Format: 

MB '.Memory format 

Operation: 

{Guarantee that all subsequent loads or stores 
will not access memory until after all previous 
loads and stores have accessed memory, as 
observed by other processors.} 

Exceptions: 

None 

Instruction mnemonics: 

MB Memory Barrier 

Qualifiers: 

None 

Description: 

The use of the Memory Barrier (MB) instruction is required only in multiprocessor 
systems. 

In the absence of an MB instruction, loads and stores to different physical locations 
are allowed to complete out of order on the issuing processor as observed by other 
processors. The MB instruction allows memory accesses to be serialized on the 
issuing processor as observed by other processors. See Chapter 5 for details on using 
the MB instruction to serialize these accesses. Chapter 5 also details coordinating 
memory accesses across processors. 

Note that MB ensures serialization only; it does not necessarily accelerate the 
progress of memory operations. 
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4.11.5 Read Processor Cycle Counter 

Format: 

RPCC Ra.wq IMemory format 

Operation: 

Ra <— {cycle counter} 

Exceptions: 

None 

instruction mnemonics: 

RPCC Read Processor Cycle Counter 

Qualifiers: 

None 

Description: 

Register Ra is written with the processor cycle counter (PCC). The PCC register 
consists of two 32-bit fields. The low-order 32 bits (PCC<31:0>) are an unsigned, 
wrapping counter, PCC_CNT. The high-order 32 bits (PCC<63:32>), PCC.OFF, are 
operating-system dependent in their implementation. 

See Section 3.1.5 for a description of the PCC. 

If an operating system uses PCC_OFF to calculate the per-process or per-thread cycle 
count, that count must be derived from the 32-bit sum of PCC_OFF and PCC_CNT. 
The following example computes that cycle count, modulo 2**32, and returns the 
count value in RO. Notice the care taken not to cause an unwanted sign extension. 

RPCC RO ; Read the process cycle counter 
SLL RO, #32, Rl ; Line up the offset and count fields 
ADDQ RO, Rl, RO ; Do add 
SRL RO, #32, RO ; Zero extend the cycle count to 64 bits 

The following example code returns the value of PCC_CNT in R0<31:0> and all zeros 
in R0<63:32>. 

RPCC RO 
ZAPNOT R0,#15,R0 
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4.11.6 Trap Barrier 

Format: 

TRAPB IMemory format 

Operation: 

{TRAPB does not appear to issue until all prior instructions 
are guaranteed to complete without causing any arithmetic traps}. 

Exceptions: 

None 

Instruction mnemonics: 

TRAPB Trap Barrier 

Qualifiers: 

None 

Description: 

The TRAPB instruction allows software to guarantee that in a pipelined 
implementation, all previous arithmetic instructions will complete without incurring 
any arithmetic traps before the TRAPB or any instructions after it are issued. 

If an arithmetic exception occurs for which trapping is enabled, the TRAPB 
instruction acts like a fault. In this case, the value of the Program Counter reported 
to the program may be the address of the TRAPB instruction (or earlier) but is never 
the address of the instruction following the TRAPB. 

This fault behavior by TRAPB allows software, using one TRAPB instruction for 
each exception domain, to isolate the address range in which an exception occurs. 
If the address of the instruction following the TRAPB were allowed, there would be 
no way to distinguish an exception in the address range preceding a label from an 
exception in the range that includes the label along with the faulting instruction and 
a branch back to the label. This case arises when the code is not following software 
completion rules, but is inserting TRAPB instructions to isolate exceptions to the 
proper scope. 

Use of TRAPB should be compared with use of the EXCB instruction; see 
Section 4.11.2. 
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4.11.7 Write Memory Barrier 

Format: 

WMB ÎMemory format 

Operation: 

{Guarantee that all preceding stores have accessed 
memory before any subsequent stores access memory} 

Exceptions: 

None 

Instruction mnemonics: 

WMB Write Memory Barrier 

Qualifiers: 

None 

Description: 

The WMB instruction provides a way for software to control write buffers. It 
guarantees that writes preceding the WMB will not be aggregated with writes that 
follow the WMB. It also guarantees that all writes preceding the WMB instruction 
are completed before any writes that follow the WMB instruction. The WMB 
instruction effectively causes writes contained in buffers to be completed without 
unnecessary delay. It is particularly suited for batching writes to high-performance 
I/O devices. 

In the absence of a WMB instruction, stores to memory or non-memory-like regions 
can be aggregated and/or buffered and completed in any order. 

The WMB instruction provides for high-bandwidth write streams where order must 
be maintained between certain writes in that stream. It is the preferred means for 
programs to obtain this result. 
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4.12 VAX Compatibility Instructions 
Alpha AXP provides the instructions shown in Table 4-15 for use in translated VAX 
code. These instructions are not a permanent part of the architecture and will not be 
available in some future implementations. They are intended to preserve customer 
assumptions about VAX instruction atomicity in porting code from VAX to Alpha 
AXP. 

These instructions should be generated only by the VAX-to-Alpha AXP software 
translator; they should never be used in native Alpha AXP code. Any native code 
that uses them may cease to work. 

Table 4-15: VAX Compatibility Instructions Summary 
Mnemonic Operation 

RC Read and Clear 
RS Read and Set 
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4.12.1 VAX Compatibility Instructions 

Format: 

Rx Ra.wq !Memory format 

Operation: 

Ra <— intr_flag 
intr_flag <— 0 
intr_flag <— 1 

Exceptions: 

None 

Instruction mnemonics: 

RC Read and Clear 
RS Read and Set 

Qualifiers: 

None 

Description: 

The intr_flag is returned in Ra and then cleared to zero (RC) or set to one (RS). 

These instructions may be used to determine whether the sequence of Alpha AXP 
instructions between RS and RC (corresponding to a single VAX instruction) was 
executed without interruption or exception. 

Intr_flag is a per-processor state bit. The intr_flag is cleared if that processor 
encounters a CALL_PAL REI instruction. 

It is UNPREDICTABLE whether a processor's intr_flag is affected when that 
processor executes an LDx_L or STx_C instruction. A processor's intr_flag is not 
affected when that processor executes a normal load or store instruction. 

A processor's intr_flag is not affected when that processor executes a taken branch. 

Note: 

These instructions are intended only for use by the VAX-to-Alpha AXP software 
translator; they should never be used by native code. 

!RC 
!RS 
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Chapter 5 

System Architecture and Programming Implications 
(I) 

5.1 Introduction 
Portions of the Alpha AXP architecture have implications for programming, and 
the system structure, of both uniprocessor and multiprocessor implementations. 
Architectural implications considered in the following sections are: 

• Physical address space behavior 

• Caches and write buffers 

• Translation buffers and virtual caches 

• Data sharing 

• Read/write ordering 

• Arithmetic traps 

To meet the requirements of the Alpha AXP architecture, software and hardware 
implementors need to take these issues into consideration. 

5.2 Physical Address Space Characteristics 

Alpha AXP physical address space is divided into four equal-size regions. The regions 
are delineated by the two most significant, implemented, physical address bits. Each 
region's characteristics are distinguished by the coherency, granularity, and width 
of memory accesses, and whether the region exhibits memory-like behavior or non-
memory-like behavior. 

5.2.1 Coherency of Memory Access 
Alpha AXP implementations must provide a coherent view of memory, in which each 
write by a processor or I/O device (hereafter, called "processor") becomes visible to 
all other processors. No distinction is made between coherency of "memory space" 
and "I/O space". 

Memory coherency may be provided in different ways, for each of the four physical 
address regions. 

Possible per-region policies include, but are not restricted to: 

1. No caching 

System Architecture and Programming Implications (I) 5-1 



No copies are kept of data in a region; all reads and writes access the actual data 
location (memory or I/O register), but a processor may elide multiple accesses to 
the same data (see Section 5.2.3). 

2. Write-through caching 

Copies are kept of any data in the region; reads may use the copies, but writes 
update the actual data location and either update or invalidate all copies. 

3. Write-back caching 

Copies are kept of any data in the region; reads and writes may use the copies, 
and writes use additional state to determine whether there are other copies to 
invalidate or update. 

Software/Hardware Note: 

To produce separate and distinct accesses to a specific location, the location must 
be a region with no caching and a memory barrier instruction must be inserted 
between accesses. See Section 5.2.3. 

Part of the coherency policy implemented for a given physical address region may 
include restrictions on excess data transfers (performing more accesses to a location 
than is necessary to acquire or change the location's value), or may specify data 
transfer widths (the granularity used to access a location). 

Independent of coherency policy, a processor may use different hardware or different 
hardware resource policies for caching or buffering different physical address 
regions. 

5.2.2 Granularity of Memory Access 
For each region, an implementation must support aligned quadword access and may 
optionally support aligned longword access. 

For a quadword access region, accesses to physical memory must be implemented 
such that independent accesses to adjacent aligned quadwords produce the same 
results regardless of the order of execution. Further, an access to an aligned 
quadword must be done in a single atomic operation. 

For a longword access region, accesses to physical memory must be implemented 
such that independent accesses to adjacent aligned longwords produce the same 
results regardless of the order of execution. Further, an access to an aligned 
longword must be done in a single atomic operation, and an access to an aligned 
quadword must also be done in a single atomic operation. 

In this context, "atomic" means that if different processors do simultaneous reads 
and writes of the same data, it must not be possible to observe a partial write of the 
subject longword or quadword. This definition assumes that read and write accesses 
are the same size. See Section 5.6.1.5 for the possible results when they are not the 
same size. 
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Width of Memory Access 
Subject to the granularity, ordering, and coherency constraints given in Sections 
5.2.1, 5.2.2, and 5.6, accesses to physical memory may be freely cached, buffered, 
and prefetched. 

A processor may read more physical memory data (such as a full cache block) than 
is actually accessed, writes may trigger reads, and writes may write back more data 
than is actually updated. A processor may elide multiple reads and/or writes to the 
same data. 

Memory-Like and Non-Memory-Like Behavior 
Memory-like regions obeys the following rules: 

Each page frame in the region either exists in its entirety or does not exist in its 
entirety; there are no holes within a page frame. 

All locations that exist are read/write. 

A write to a location followed by a read from that location returns precisely the 
bits written; all bits act as memory. 

A write to one location does not change any other location. 

Reads have no side effects. 

Longword access granularity is provided. 

Instruction-fetch is supported. 

Load-locked and store-conditional are supported. 

Non-memory-like regions may have much more arbitrary behavior: 

Unimplemented locations or bits may exist anywhere. 

Some locations or bits may be read-only and others write-only. 

Address ranges may overlap, such that a write to one location changes the bits 
read from a different location. 

Reads may have side effects, although this is strongly discouraged. 

Longword granularity need not be supported. 

Instruction-fetch need not be supported. 

Load-locked and store-conditional need not be supported. 

Hardware/Software Coordination Note: 
The details of such behavior are outside the scope of the Alpha AXP 
architecture. Specific processor and I/O device implementations may choose 
and document whatever behavior they need. It is the responsibility of system 
designers to impose enough consistency to allow processors successfully to 
access matching non-memory devices in a coherent way. 
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5.3 Translation Buffers and Virtual Caches 
A system may choose to include a a virtual instruction cache (virtual I-cache) 
or a virtual data cache (virtual D-cache). A system may also choose to include 
either a combined data and instruction translation buffer (TB) or separate data and 
instruction TBs (DTB and ITB). The contents of these caches and/or translation 
buffers may become invalid, depending on what operating system activity is being 
performed. 

Whenever a non-software field of a valid page table entry (PTE) is modified, copies 
of that PTE must be made coherent. PALcode mechanisms are available to clear 
all TBs, both DTB and ITB entries for a given VA, either DTB or ITB entries for a 
given VA, or all entries with the address space match (ASM) bit clear. Virtual D-
cache entries are made coherent whenever the corresponding DTB entry is requested 
to be cleared by any of the appropriate PALcode mechanisms. Virtual I-cache entries 
can be made coherent via the CALL_PALL 1MB instruction. 

If a processor implements address space numbers (ASNs), and the old PTE has the 
Address Space Match (ASM) bit clear (ASNs in use) and the Valid bit set, then 
entries can also effectively be made coherent by assigning a new, unused ASN to 
the currently running process and not reusing the previous ASN before calling the 
appropriate PALcode routine to invalidate the translation buffer (TB). 

In a multiprocessor environment, making the TBs and/or caches coherent on only 
one processor is not always sufficient. An operating system must arrange to perform 
the above actions on each processor that could possibly have copies of the PTE or 
data for any affected page. 

5.4 Caches and Write Buffers 
A hardware implementation may include mechanisms to reduce memory access time 
by making local copies of recently used memory contents (or those expected to be 
used) or by buffering writes to complete at a later time. Caches and write buffers are 
examples of these mechanisms. They must be implemented so that their existence 
is transparent to software (except for timing, error reporting/control/recovery, and 
modification to the I-stream). 

The following requirements must be met by all cache/write-buffer implementations. 
All processors must provide a coherent view of memory. 

1. Write buffers may be used to delay and aggregate writes. From the viewpoint 
of another processor, buffered writes appear not to have happened yet. (Write 
buffers must not delay writes indefinitely. See Section 5.6.1.9.) 

2. Write-back caches must be able to detect a later write from another processor 
and invalidate or update the cache contents. 

3. A processor must guarantee that a data store to a location followed by a data 
load from the same location must read the updated value. 

4. Cache prefetching is allowed, but virtual caches must not prefetch from invalid 
pages. 
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5. A processor must guarantee that all of its previous writes are visible to all other 
processors before a HALT instruction completes. A processor must guarantee 
that its caches are coherent with the rest of the system before continuing from 
a HALT. 

6. If battery backup is supplied, a processor must guarantee that the memory 
system remains coherent across a powerfail/recovery sequence. Data that was 
written by the processor before the powerfail may not be lost, and any caches 
must be in a valid state before (and if) normal instruction processing is continued 
after power is restored. 

7. Virtual instruction caches are not required to notice modifications of the virtual 
I-stream (they need not be coherent with the rest of memory). Software that 
creates or modifies the instruction stream must execute a CALL_PAL 1MB before 
trying to execute the new instructions. 

For example, if two different virtual addresses, VA1 and VA2, map to the same 
page frame, a store to VA1 modifies the virtual I-stream fetched via VA2. 

However, the following sequence does not modify the virtual I-stream (this might 
happen in soft page faults). 

1. Change the mapping of an I-stream page from valid to invalid. 

2. Copy the corresponding page frame to a new page frame. 

3. Change the original mapping to be valid and point to the new page frame. 

8. Physical instruction caches are not required to notice modifications of the 
physical I-stream (they need not be coherent with the rest of memory), except for 
certain paging activity. (See Section 5.6.1.9.) Software that creates or modifies 
the instruction stream must execute a CALL_PAL 1MB before trying to execute 
the new instructions. 

In this context, to "modify the physical I-stream" means any Store to the same 
physical address that is subsequently fetched as an instruction. 

In this context, to "modify the virtual I-stream" means any Store to the same physical 
address that is subsequently fetched as an instruction via some corresponding 
(virtual address, ASN) pair, or to change the virtual-to-physical address mapping 
so that different values are fetched. 

5.5 Data Sharing 

In a multiprocessor environment, writes to shared data must be synchronized by the 
programmer. 

5.5.1 Atomic Change of a Single Datum 
The ordinary STL and STQ instructions can be used to perform an atomic change 
of a shared aligned longword or quadword. ("Change" means that the new value is 
not a function of the old value.) In particular, an ordinary STL or STQ instruction 
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can be used to change a variable that could be simultaneously accessed via an LDx_ 
L/STx_C sequence. 

5.5.2 Atomic Update of a Single Datum 
The load-locked/store-conditional instructions may be used to perform an atomic 
update of a shared aligned longword or quadword. ("Update" means that the new 
value is a function of the old value.) 

The following sequence performs a read-modify-write operation on location x. Only 
register-to-register operate instructions and branch fall-throughs may occur in the 
sequence: 
try_again: 

LDQ_L Rl,x 
<modify Rl> 
STQ_C Rl,x 
BEQ Rl,no_store 

no_store: 
<code to check for excessive iterations> 
BR try_again 

If this sequence runs with no exceptions or interrupts, and no other processor writes 
to location x (more precisely, the locked range including x) between the LDQ_L and 
STQ_C instructions, then the STQ__C shown in the example stores the modified value 
in x and sets R l to 1. If, however, the sequence encounters exceptions or interrupts 
that eventually continue the sequence, or another processor writes to x, then the 
STQ_C does not store and sets R l to 0. In this case, the sequence is repeated via 
the branches to no_store and try_again. This repetition continues until the reasons 
for exceptions or interrupts are removed, and no interfering store is encountered. 

To be useful, the sequence must be constructed so that it can be replayed an arbitrary 
number of times, giving the same result values each time. A sufficient (but not 
necessary) condition is that, within the sequence, the set of operand destinations 
and the set of operand sources are disjoint. 

Note: 

A sufficiently long instruction sequence between LDQ_L and STQ_C will never 
complete, because periodic timer interrupts will always occur before the sequence 
completes. The rules in Appendix A describe sequences that will eventually 
complete in all Alpha AXP implementations. 

This load-locked/store-conditional paradigm may be used whenever an atomic update 
of a shared aligned quadword is desired, including getting the effect of atomic byte 
writes. 
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5.5.3 Atomic Update of Data Structures 
Before accessing shared writable data structures (those that are not a single aligned 
longword or quadword), the programmer can acquire control of the data structure 
by using an atomic update to set a software lock variable. Such a software lock can 
be cleared with an ordinary store instruction. 

A software-critical section, therefore, may look like the sequence: 
stq_c_loop: 
spin_loop: 

LDQ_L Rl, 
BLBS Rl, 
OR Rl, 
STQ_C R2, 
BEQ R2, 

,lock_variable 
,already_set 
,#1,R2 
,lock_variable 
-stq_c_fail 

\ 
\ 
> Set lock bit 
/ 
/ 

MB 
<critical section: updates various data structures> 
WMB or MB 

STQ R31,lock_variable ; Clear lock bit 

already_set: 
<code to block or reschedule or test for too many iterations> 
BR spin_loop 

stq_c_fail: 
<code to test for too many iterations> 
BR stq_c_loop 

This code has a number of subtleties: 

1. If the lock_variable is already set, the spin loop is done without doing any stores. 
This avoidance of stores improves memory subsystem performance and avoids 
the deadlock described below. 

2. If the lock_variable is actually being changed from 0 to 1, and the STQ_C fails 
(due to an interrupt, or because another processor simultaneously changed lock_ 
variable), the entire process starts over by reading the lock_variable again. 

3. Only the fall-through path of the BLBS does a STx_C; some implementations 
may not allow a successful STx_C after a branch-taken. 

4. Only register-to-register operate instructions are used to do the modify. 

5. Both conditional branches are forward branches, so they are properly predicted 
not to be taken (to match the common case of no contention for the lock). 

6. The OR writes its result to a second register; this allows the OR and the BLBS 
to be interchanged if that would give a faster instruction schedule. 

7. Other operate instructions (from the critical section) may be scheduled into 
the LDQ_L..STQ_C sequence, so long as they do not fault or trap, and they 
give correct results if repeated; other memory or operate instructions may be 
scheduled between the STQ_C and BEQ. 
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8. The memory barrier instructions are discussed in Section 5.5.4. 

9. An ordinary STQ instruction is used to clear the lock_variable. 

It would be a performance mistake to spin-wait by repeating the full LDQ_L..STQ_C 
sequence (to move the BLBS after the BEQ) because that sequence may repeatedly 
change the software lock_variable from "locked" to "locked," with each write causing 
extra access delays in all other caches that contain the lock_variable. In the extreme, 
spin-wait s that contain writes may deadlock as follows: 

If, when one processor spins with writes, another processor is modifying (not 
changing) the lock_variable, then the writes on the first processor may cause the 
STx_C of the modify on the second processor always to fail. 

This deadlock situation is avoided by: 

• Having only one processor execute a store (no STx_C), or 

• Having no write in the spin loop, or 

• Doing a write only if the shared variable actually changes state (1 -> 1 does not 
change state). 

5.5.4 Ordering Considerations for Shared Data Structures 
A critical section sequence, such as shown in Section 5.5.3, is conceptually only three 
steps: 

1. Acquire software lock 

2. Critical section—read/write shared data 

3. Clear software lock 

In the absence of explicit instructions to the contrary, the Alpha AXP architecture 
allows reads and writes to be reordered. While this may allow more implementation 
speed and overlap, it can also create undesired side effects on shared data structures. 
Normally, the critical section just described would have two instructions added to it: 

<acquire software lock> 
MB (memory b a r r i e r #1) 
< c r i t i c a l sec t ion - - r ead /wr i t e shared data> 
WMB or MB (memory b a r r i e r #2) 
<clear software lock> 

The first memory barrier prevents any reads (from within the critical section) from 
being prefetched before the software lock is acquired; such prefetched reads would 
potentially contain stale data. 

The second memory barrier prevents any writes (and reads if MB is used instead of 
WMB) from within the critical section from being delayed past the clearing of the 
software lock. Such delayed accesses could interact with the next user of the shared 
data, defeating the purpose of the software lock entirely. 
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Hardware/Software Note: 

If a WMB is used as the second memory barrier, the programmer is probably 
relying on causal ordering. Causal ordering is established by cause and effect; 
the cause occurs before the effect in time order. A causal ordering is contained 
in the sequence of reading a location or set of locations, performing a calculation 
on that data, writing the result of that calculation, and then executing a WMB. 
See Section 5.6.1.2. 

Software Note: 

In the VAX architecture, many instructions provide noninterruptable read-
modify-write sequences to memory variables. Most programmers never regard 
data sharing as an issue. 

In the Alpha AXP architecture, programmers must pay more attention to 
synchronizing access to shared data; for example, to AST routines. In the VAX, 
a programmer can use an ADDL2 to update a variable that is shared between 
a "MAIN" routine and an AST routine, if running on a single processor. In the 
Alpha AXP architecture, a programmer must deal with AST shared data by using 
multiprocessor shared data sequences. 

5.6 Read/Write Ordering 
This section does not apply to programs that run on a single processor and do not 
write to the instruction stream. On a single processor, all memory accesses appear 
to happen in the order specified by the programmer. This section deals entirely with 
predictable read/write ordering across multiple processors. 

The order of reads and writes done in an Alpha AXP implementation may differ 
from that specified by the programmer. 

For any two memory accesses A and B, either A must occur before B in all Alpha 
AXP implementations, B must occur before A, or they are UNORDERED. In the 
last case, software cannot depend upon one occurring first: the order may vary from 
implementation to implementation, and even from run to run or moment to moment 
on a single implementation. 

If two accesses cannot be shown to be ordered by the rules given, they are 
UNORDERED and implementations are free to do them in any order that is 
convenient. Implementations may take advantage of this freedom to deliver 
substantially higher performance. 

The discussion that follows first defines the architectural issue sequence of memory 
accesses on a single processor, then defines the (partial) ordering on this issue 
sequence that all Alpha AXP implementations are required to maintain. 

The individual issue sequences on multiple processors are merged into access 
sequences at each shared memory location. The discussion defines the (partial) 
ordering on the individual access sequences that all Alpha AXP implementations 
are required to maintain. 
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The net result is that for any code that executes on multiple processors, one can 
determine which memory accesses are required to occur before others on all Alpha 
AXP implementations and hence can write useful shared-variable software. 

Software writers can force one access to occur before another by inserting a memory 
barrier instruction (CALL_PAL 1MB, MB or WMB) between the accesses. 

5.6.1 Alpha AXP Shared Memory Model 
An Alpha AXP system consists of a collection of processors, I/O devices (and possibly 
a bridge to connect remote I/O devices), and shared memories that are accessible by 
all processors. 

Note: 

An example of an unshared location is a physical address in I/O space that refers 
to a CSR that is local to a processor and not accessible by other processors. 

A processor is an Alpha AXP CPU. 

In most systems, DMA I/O devices or other agents can read or write shared memory 
locations. The order of accesses by those agents is not completely specified in this 
document. It is possible in some systems for read accesses by I/O devices or other 
agents to give results indicating some reordering of accesses. However, there are 
guarantees that apply in all systems. See Section 5.6.4.7. 

A shared memory is the primary storage place for one or more locations. 

A location is an aligned quadword, specified by its physical address. Multiple virtual 
addresses may map to the same physical address. Ordering considerations are based 
only on the physical address. This definition of location specifically includes locations 
and registers in memory mapped I/O devices and bridges to remote I/O (for example, 
Mailbox Pointer Registers, or MBPRs). 

Implementation Note: 

An implementation may allow a location to have multiple physical addresses, but 
the rules for accesses via mixtures of the addresses are implementation-specific 
and outside the scope of this section. Accesses via exactly one of the physical 
addresses follow the rules described next. 

Each processor may generate accesses to shared memory locations. There are six 
types of accesses: 

1. Instruction fetch by processor i to location x, returning value a, denoted Pi:I(x,a). 

2. Data read by processor i to location JC, returning value a, denoted Pi:R(x,a). 

3. Data write by processor i to location x9 storing value a, denoted Pi:W(x,a). 

4. Memory barrier instruction issued by processor i, denoted Pi:MB. 

5. Write memory barrier instruction issued by processor i, denoted Pi:WMB. 

6. I-stream memory barrier instruction issued by processor i, denoted Pi:IMB. 
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The first access type is also called an I-stream access or I-fetch. The next two are 
also called D-stream accesses. The first three types collectively are called read/write 
accesses, denoted Pi:*(x,a). The last three types collectively are called barriers or 
memory barriers. 

Instruction fetches are longword reads. Data reads and data writes are either 
aligned longword or aligned quadword accesses. Unless otherwise noted, it is 
assumed that each access to a given location has the same access size (that is, if a 
location is written as a longword it is read as a longword). Section 5.6.1.5 describes 
the effect of access size on the Alpha AXP shared memory model. 

All accesses in this chapter are naturally aligned accesses. 

During actual execution in an Alpha AXP system, each processor has a time-ordered 
issue sequence of all the memory accesses presented by that processor (to all memory 
locations), and each location has a time-ordered access sequence of all the accesses 
presented to that location (from all processors). 

5.6.1.1 Architectural Definition of Processor Issue Sequence 

The issue sequence for a processor is architecturally defined with respect to a 
hypothetical simple implementation that contains one processor and a single shared 
memory, with no caches or buffers. This is the instruction execution model: 

1. I-fetch: An Alpha AXP instruction is fetched from memory. 

2. ReadAVrite: That instruction is executed and runs to completion, including a 
single data read from memory for a Load instruction or a single data write to 
memory for a Store instruction. 

3. Update: The PC for the processor is updated. 

4. Loop: Repeat the above sequence indefinitely. 

If the instruction fetch step gets a memory management fault, the I-fetch is not done 
and the PC is updated to point to a PALcode fault handler. If the read/write step 
gets a memory management fault, the read/write is not done and the PC is updated 
to point to a PALcode fault handler. 

5.6.1.2 Definition of Processor Issue Order 

A partial ordering, called processor issue order, is imposed on the issue sequence 
defined in Section 5.6.1.1. 

For two accesses u and υ issued by processor Pi, u is said to PRECEDE υ IN ISSUE 
ORDER (<) if u occurs earlier than υ in the issue sequence for Pi, and either of the 
following applies: 

1. The access types are of the following issue order: 
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Table 5-1 : Processor Issue Order 
l s t j 2 n d - Pi:I(y,b) Pi:R(y,b) Pi:W(y,b) Pi:MB Pi:WMB Pi:IMB 

Pi:I(x,a) < if x=y < if x=y < < < 
Pi:R(x,a) < if x=y < if x=y < < 
Pi:W(x,a) < if x=y < if x=y < < < 
Pi:MB < < < < < 
Pi:WMB < < < < 
Pi:IMB < < < < < < 

2. Or, u is a TB fill, for example, a PTE read in order to satisfy a TB miss, and v is 
an I- or D-stream access using that PTE (see Section 5.6.2). 

Causal ordering is established by cause and effect; the cause occurs before the effect 
in time order. A causal ordering is contained in the processor issue sequence of 
reading a set of locations, performing a calculation on the data fetched by those 
reads, writing the result ofthat calculation, and then executing a WMB. The reads 
that produced the results used in the calculation precede (in issue order) the WMB. 

Hardware/Software Note: 

The issue order created by causality does not imply that a read precedes (in 
issue order) a write because of causality. The read is ordered with respect to 
a subsequent WMB. Also, issue order is not guaranteed in cases in which the 
result of a calculation on the read data is always independent of the actual value 
read. 

For example, in the following sequence, the LDQ does not necessarily precede 
the WMB in issue order: 

LDQ R l , 0 ( R l 0 ) 
XOR R 1 , R 1 , R 1 
STQ R 1 , 0 ( R 1 1 ) 
WMB 

But in the following sequence, both LDQ instructions precede the WMB in issue 
order even if one of the LDQ intructions reads zero: 

LDQ Rl,0(RIO) 
LDQ R2,104(RIO) 
AND Rl,R2,R2 
STQ R2,0(R11) 
WMB 

Issue order is thus a partial order imposed on the architecturally specified issue 
sequence. Implementations are free to perform memory accesses from a single 
processor in any sequence that is consistent with this partial order. 

Note that accesses to different locations are ordered only with respect to barriers 
and TB fill. The table asymmetry for I-fetch allows writes to the I-stream to be 
incoherent until a CALL_PAL 1MB is executed. 
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5.6.1.3 Definition of Memory Access Sequence 

The access sequence for a location cannot be observed directly, nor fully predicted 
before an actual execution, nor reproduced exactly from one execution to another. 
Nonetheless, some useful ordering properties must hold in all Alpha AXP 
implementations. 

5.6.1.4 Definition of Location Access Order 

A partial ordering, called location access order, is imposed on the memory access 
sequence defined above. 

As shown in Table 5-2, for two accesses u and v to location x, u is said to PRECEDE 
v IN ACCESS ORDER (<c) if u occurs earlier than v in the access sequence for x, 
and at least one of them is a write. Also note in Table 5-2 that processor Pi might 
or might not be the same processor as Pj. 

Table 5-2: Location Access Order 

l s t j 2nd^ Pj:I(x,b) Pj:R(x,b) Pj:W(x,b) 

Pi:I(x,a) < 
Pi:R(x,a) < 
Pi:W(x,a) -c <c <c 

Access order is thus a partial order imposed on the actual access sequence for a 
given location. Each location has a separate access order. There is no direct ordering 
relationship between accesses to different locations. 

Note that reads and I-fetches are ordered only with respect to writes. 

5.6.1.5 Effect of Access Size 

Typically, all accesses to a given location are the same size; a given location is 
accessed by longword or quadword accesses. Additional issue order and access order 
rules are imposed when accesses to a given location are not all the same size. The 
rules differ between aligned quadword read accesses and all other aligned accesses. 

The model access for all aligned accesses except an aligned quadword read access is 
an indivisible event in issue and access order. 

The model access for an aligned quadword read access is as two distinct aligned 
longword read accesses — one to the low-order part of the location and one to the 
high-order part. Those two longword read accesses are not necessarily identically 
ordered with respect to other accesses. However, the two model longword read 
accesses can be identically ordered with respect to other accesses and are then said 
to occur at the same time in issue order and access order as follows: 

• Two accesses, x and y, are said to occur at the same time in access order if for 
every access z: 

if z <c x then z «: y and 
if z < y then z < x and 
if x <c z then y « z and 
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if y < z then x « z. 

• Similarly, two accesses, x andy, are said to occur at the same time in issue order 
if for every access z: 

if z < x then z < y and 
if z < y then z < x and 
if x < z then y < z and 
if y < z then x < z. 

For model accesses on a given processor, an aligned longword access has an issue 
order with respect to a given aligned quadword access if the longword access is to a 
longword within the quadword. 

Table 5-3: Processor Issue Order With Access Size Effect 
1st! 2nd-, Pi:I(y,b) Pi:Rlong(y,b) Pi:Wlong(y,b) Pi:Wquad(y,b) Pi:MB Pi:WMB Pi:IMB 

Pi:I(x,a) 

Pi:Rlong(x,a) 

Pi:Wlong(x,a) 

Pi:Wquad(x,a) 

Pi:MB 
Pi:WMB 
Pi:IMB 

< 

< 

if x=y 

< if x=y 

< if x=y 

< if x=y or 
x+4=y 

< 

< 

< if x=y 

< if x=y 

< if x=y 

< if x=y or 
x+4=y 

< 
< 
< 

< if x=y or 
x=y+4 

< if x=y or 
X=y+4 

< if x=y or 
x=y+4 

< if x=y 

< 
< 
< 

< 

< 

< 

< 

< 
< 
< 

< 

< 

< 

< 
< 
< 

For model accesses, aligned longword accesses have an access order with respect 
to a given aligned quadword write access if the access is to a longword within the 
quadword. Of course, two model accesses have an access order if both have the same 
access size, both access the same location, and at least one is a write access. Note 
that in Table 5-4, processor Pi might or might not be the same processor as Pj. 

Table 5-4: Location Access Order With Access Size Effect 
l s t | 2nd-* 

Pi:I(x,a) 
Pi:Rlong(x,a) 

Pi:Wlong(x,a) 

Pi:Wquad(x,a) 

Pj:Ky,b) 

<C if x=y 

-c if x=y or 
x+4=y 

Pj:Rlong(y,b) 

< if x=y 

«C if x=y or 
x+4=y 

Pj:Wlong(y,b) 

< if x=y 
<c if x=y 

<c if x=y 

<C if x=y or 
x+4=y 

Pj:Wquad(y,b) 

«C if x=y 
<C if x=y or 

x=y+4 
«C if x=y or 

x=y+4 
<c if x=y 

If the following condition is true, the two model longword read accesses that 
represent a given aligned quadword read access are constrained to occur at the same 
time in access order and issue order. That is, for the model accesses Pi:Rlong(x,aO) 
and Pi:Rlong(x+4,al) modeling aligned quadword access Pi:Rquad(x,a), if the 
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following condition is true, any access that is ordered with respect to Pi:Rlong(x,aO) 
is identically ordered with respect to Pi:Rlong(x+4,al). 

The condition is that for every longword write access by Pi to x or x+4 that precedes 
the quadword read in processor issue order, one of the following is true: (1) There 
is an MB, 1MB, or a quadword write to x by Pi that follows the longword write and 
precedes the quadword read; or, (2) There is at least one write to part or all of the 
same quadword by another processor (processor j) that is after the longword write 
by processor i and before at least one of the model read accesses (where the order 
implied by after and before is the transitive closure described in Section 5.6.1.8). 

That is, for every 
Pi:Wlong(x or x+4,b) < Pi:Rquad(x,a) 

there is either an MB, an 1MB, or a quadword write to x by Pi, such that 
Pi:Wlong(x or x+4,b) < Pi : (MB or 1MB or Wquad(x,c)) < Pi :Rquad(x,a) 

or there is at least one write by processor j , such that 
Pi:Wlong(x or x+4,b)*i= Pj:W(x or x+4,c)<i= either Pi : (Rlong(x,aO) or Rlong (x+4, al) ) 

Otherwise, the two model longword accesses might not be identically ordered. 

5.6.1.6 Definition of Storage 

If u is Pi:W(x,a), and υ is either Pj:I(x,b) or Pj:R(x,b), and ucv , and no w Pk:W(x,c) 
exists such that u<cw<v, then the value b returned by v is exactly the value a 
written by u. 

Conversely, if u is Pi:W(x,a), and v is either Pj:I(x,b) or Pj:R(x,b), and b=a (and a is 
distinguishable from values written by accesses other than u), then u<cv and for any 
other w Pk:W(x,c) either w < u or v<ov. 

The only way to communicate information between different processors is for one to 
write a shared location and the other to read the shared location and receive the 
newly written value. (In this context, the sending of an interrupt from processor 
Pi to processor Pj is modeled as Pi writing to a location INTij, and Pj reading from 
INTij.) 

5.6.1.7 Relationship Between Issue Order and Access Order 

If u is Pi:*(x,a), and v is Pi:*(x,b), one of which is a write, and u<v in the issue order 
for processor Pi, then u<cv in the access order for location x. 

In other words, if two accesses to the same location are ordered on a given processor, 
they are ordered in the same way at the location. 

5.6.1.8 Definition of Before and After 

For two accesses u and v, u is said to be BEFORE v {<=) if: 
u < v or 
u « v o r 
there exists an access w such that: 

(u < w and w =̂ v) or 
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(u «: w and w <= v). 

In other words, "before" is the transitive closure over issue order and access order. 

If u <= v, then v is said to be AFTER u. 

Therefore, at most one of u <= v and v <= u is true. 

5.6.1.9 Timeliness 

Even in the absence of a barrier after the write, a write by one processor to a given 
location may not be delayed indefinitely in the access order for that location. 

5.6.2 Litmus Tests 
Many issues about writing and reading shared data can be cast into questions about 
whether a write is before or after a read. These questions can be answered by 
rigorously applying the ordering rules described previously to demonstrate whether 
the accesses in question are ordered at all. 

Assume, in the litmus tests below, that initially all memory locations contain 1. 

5.6.2.1 Litmus Test 1 (Impossible Sequence) 

Pi Pj 

[Ul] Pi:W(x,2) [VI] Pj:R(x,2) 
[V2] Pj:R(x,l) 

VI reading 2 implies U l < VI, by the definition of storage 
V2 reading 1 implies V2 «: U l , by the definition of storage 
VI < V2, by the definition of issue order 

The first two orderings imply that V2 <= VI, whereas the last implies that VI <= V2. 

Both implications cannot be true. Thus, once a processor reads a new value from a 
location, it must never see an old value—time must not go backward. V2 must read 
2. 

5.6.2.2 Litmus Test 2 (Impossible Sequence) 

Pi Pj 

[Ul] Pi:W(x,2) [VI] Pj:W(x,3) 
[V2] Pj:R(x,2) 
[V3] Pj:R(x,3) 

V2 reading 2 implies VI <= U l 
V3 reading 3 implies U l <= VI 

Both implications cannot be true. Thus, once a processor reads a new value written 
by Ul , any other writes that must precede the read must also precede Ul . V3 must 
read 2. 
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5.6.2.3 Litmus Test 3 (Impossible Sequence) 

Pi Pj Pk 

[Ul] Pi:W(x,2) [VI] Pj:W(x,3) [Wl] Pk:R(x,3) 
[U2] Pi:R(x,3) [W2] Pk:R(x,2) 

U2 reading 3 implies U l <= VI 
W2 reading 2 implies VI <= U l 

Both implications cannot be true. Again, time cannot go backward. If U2 reads 3 
then W2 must read 3. Alternately, if W2 reads 2, then U2 must read 2. 

5.6.2.4 Litmus Test 4 (Sequence Okay) 

Pi Pj 

[Ul] Pi:W(x,2) [VI] Pj:R(y,2) 
[U2] Pi:W(y,2) [V2] Pj:R(x,l) 

There are no conflicts in this sequence. U2 <= VI and V2 <= U l . U l and U2 are not 
ordered with respect to each other. VI and V2 are not ordered with respect to each 
other. There is no conflicting implication that U l <= V2. 

5.6.2.5 Litmus Test 5 (Sequence Okay) 

Pi Pj 

[Ul] Pi:W(x,2) [VI] Pj:R(y,2) 
[V2] Pj:MB 

[U2] Pi:W(y,2) [V3] Pj:R(x,l) 

There are no conflicts in this sequence. U2 <= VI <= V3 <= U l . There is no conflicting 
implication that U l <= U2. 

5.6.2.6 Litmus Test 6 (Sequence Okay) 

Pi Pj 

[Ul] Pi:W(x,2) [VI] Pj:R(y,2) 
[U2] Pi:MB or 

Pi:WMB 
[U3] Pi:W(y,2) [V2] Pj:R(x,l) 

There are no conflicts in this sequence. V2 <= U l <= U3 <= VI. There is no conflicting 
implication that VI <= V2. 

In scenarios 4, 5, and 6, writes to two different locations x and y are observed 
(by another processor) to occur in the opposite order than that in which they were 
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performed. An update to y propagates quickly to Pj, but the update to x is delayed, 
and Pi and Pj do not both have MBs. 

5.6.2.7 Litmus Test 7 (Impossible Sequence) 

Pi Pj 

[Ul] Pi:W(x,2) [VI] Pj:R(y,2) 

[U2] Pi:MB or [V2] Pj:MB 
Pi:WMB 

[U3] Pi:W(y,2) [V3] Pj:R(x,l) 

VI reading 2 implies U3 <= VI 
V3 reading 1 implies V3 <= U l 
But, by transitivity, U l <= U3 <= VI <= V3 

Both cannot be true, so if VI reads 2, then V3 must also read 2. 

5.6.2.8 Litmus Test 8 (Impossible Sequence) 

Pi 

[Ul] Pi:W(x,2) 

[U2] Pi:MB 

[U3] Pi:R(y,l) 

Pj 

[VI] Pj:W(y,2) 

[V2] Pj:MB 

[V3] Pj:R(x,l) 

U3 reading 1 implies U3 <= VI 
V3 reading 1 implies V3 <= U l 
But, by transitivity, U l ^ U3 «= VI <= V3 

Both cannot be true, so if U3 reads 1, then V3 must read 2, and vice versa. 

5.6.2.9 Litmus Test 9 (Impossible Sequence) 

Pi 

[Ul] Pi:W(x,2) 

[U2] Pi:R(x,2) 

[U3] Pi:R(x,3) 

Pj 

[VI] Pj:W(x,3) 

[V2] Pj:R(x,3) 

[V3] Pj:R(x,2) 

V3 reading 2 implies U l =̂ V3 
V2 <= V3 and V2 reading 3 implies V2 <= U l 
VI *= V2 and V2 <= U l implies VI <= U l 

U3 reading 3 implies VI <= U3 
U2 <= U3 and U2 reading 2 implies U2 <= VI 
U l «= U2 and U2 <= VI implies U l <= VI 

Both VI <= U l and U l <= VI cannot be true. Time cannot go backwards. If V3 reads 
2, then U3 must read 2. Alternatively, If U3 reads 3, then V3 must read 3. 
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5.6.2.10 Litmus Test 10 (Sequence Okay) 

For an aligned quadword location, x, initially 10000000116: 

Pi 

[Ul] Pi:Wquad(x,200000002i6) 

[U2] Pi:Rlong(x+4,3) 

Pj 

[VI] Pj:Wlong(x+4,3) 

[V2] Pj:Rquad(x,30000000116) 

Model that case as follows: 

Pi 

[Ul] Pi:Wquad(x,20000000216) 

[U2] Pi:Rlong(x+4,3) 

Pj 

[VI] Pj:Wlong(x+4,3) 

[V2·] Pj:Rlong(x,l) 

[V2"] Pj:Rlong(x+4,3) 

V2" returning 3 implies U l < VI < V2". That, in turn, implies that V2' and V2" are 
not constrained to occur at the same time in access order or issue order. The result 
of U2 implies U l <c VI <c U2, whereas the result of V2' implies V2' <c Ul . There 
are no inconsistencies because V2' and V2" can be in different order. 

5.6.2.11 Litmus Test 11 (Impossible Sequence) 

For an aligned quadword location, x, initially 100000001χ6: 

Pi 

[Ul] Pi:Wlong(x,2) 

[U2] Pi:WMB or Pi:MB 

[U3] Pi:Wlong(x+4,2) 

Pj 

[VI] Pj:MB 

[V2] Pj:Rquad(x,20000000116) 

Model that case as follows: 

Pi 

[Ul] Pi:Wlong(x,2) 

[U2] Pi:WMB or Pi:MB 

[U3] Pi:Wlong(x+4,2) 

Pj 

[VI] Pj:MB 

[V2'] Pj:Rlong(x,l) 

[V2"] Pj:Rlong(x+4,2) 

With no longword write access to x between VI and V2' or V2", V2' and V2" are 
constrained to occur at the same time in access and issue order. V2' reading 
1 implies V2' <c Ul , whereas V2" reading 2 implies U3 < V2". This leads to 
V2' «: U l < U2 < U3 <c V2", which violates the constraint that V2' and V2" occur 
at the same time. The sequence is impossible. 
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5.6.3 Implied Barriers 
In Alpha AXP, there are no implied barriers. If an implied barrier is needed 
for functionally correct access to shared data, it must be written as an explicit 
instruction. (Software must explicitly include any needed MB, WMB, or CALL_ 
PAL 1MB instructions.) 

Alpha AXP transitions such as the following have no built-in implied memory 
barriers: 

• Entry to PALcode 

• Sending and receiving interrupts 

• Returning from exceptions, interrupts, or machine checks 

• Swapping context 

• Invalidating the Translation Buffer (TB) 

Depending on implementation choices for maintaining cache coherency, some 
PALcode/cache implementations may have an implied CALL_PAL 1MB in the I-
stream TB fill routine, but this is transparent to the non-PALcode programmer. 

5.6.4 Implications for Software 
Software must explicitly include MB, WMB, or CALL_PAL 1MB instructions 
according to the following circumstances. 

5.6.4.1 Single-Processor Data Stream 

No barriers are ever needed. A read to physical address x will always return 
the value written by the immediately preceding write to x in the processor issue 
sequence. 

5.6.4.2 Single-Processor Instruction Stream 

An I-fetch from virtual or physical address x does not necessarily return the value 
written by the immediately preceding write to x in the issue sequence. To make 
the I-fetch reliably get the newly written instruction, a CALL_PAL 1MB is needed 
between the write and the I-fetch. 

5.6.4.3 Multiple-Processor Data Stream (Including Single Processor with DMA I/O) 

Generally, the only way to reliably communicate shared data is to write the shared 
data on one processor or DMA I/O device, execute an MB or WMB (or the logical 
equivalent if it is a DMA I/O device), then write a flag (equivalently, send an 
interrupt) signaling the other processor that the shared data is ready. Each receiving 
processor must read the new flag (equivalently, receive the interrupt), execute an 
MB, then read or update the shared data. In the special case in which data 
is communicated through just one location in memory, memory barriers are not 
necessary. 
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Software Note: 

Note that this section does not describe how to reliably communicate data from 
a processor to a DMA device. See Section 5.6.4.7. 

Leaving out the first MB or WMB removes the assurance that the shared data is 
written before the flag is written. 

Leaving out the second MB removes the assurance that the shared data is read or 
updated only after the flag is seen to change; in this case, an early read could see 
an old value, and an early update could be overwritten. 

This implies that after a DMA I/O device has written some data to memory (such as 
paging in a page from disk), the DMA device must logically execute an MB before 
posting a completion interrupt, and the interrupt handler software must execute an 
MB before the data is guaranteed to be visible to the interrupted processor. Other 
processors must also execute MBs before they are guaranteed to see the new data. 

An important special case occurs when a write is done (perhaps by an I/O device) to 
some physical page frame, then an MB is executed, and then a previously invalid 
PTE is changed to be a valid mapping of the physical page frame that was just 
written. In this case, all processors that access virtual memory by using the newly 
valid PTE must guarantee to deliver the newly written data after the TB miss, for 
both I-stream and D-stream accesses. 

5.6.4.4 Multiple-Processor Instruction Stream (Including Single Processor with DMA I/O) 

The only way to update the I-stream reliably is to write the shared I-stream on one 
processor or DMA I/O device, then execute a CALL_PAL 1MB (or an MB or WMB if 
the processor is not going to execute the new I-stream, or the logical equivalent of 
an MB if it is a DMA I/O device), then write a flag (equivalently, send an interrupt) 
signaling the other processor that the shared I-stream is ready. Each receiving 
processor must read the new flag (equivalently, receive the interrupt), then execute 
a CALL_PAL 1MB, then fetch the shared I-stream. 

Software Note: 

Note that this section does not describe how to reliably communicate I-stream 
from a processor to a DMA device. See Section 5.6.4.7. 

Leaving out the first CALL_PAL 1MB (MB or WMB) removes the assurance that the 
shared I-stream is written before the flag. 

Leaving out the second CALL_PAL 1MB removes the assurance that the shared I-
stream is read only after the flag is seen to change; in this case, an early read could 
see an old value. 

This implies that after a DMA I/O device has written some I-stream to memory (such 
as paging in a page from disk), the DMA device must logically execute a CALL_ 
PAL 1MB (or MB) before posting a completion interrupt, and the interrupt handler 
software must execute a CALL_PAL 1MB before the I-stream is guaranteed to be 
visible to the interrupted processor. Other processors must also execute CALL_PAL 
1MB instructions before they are guaranteed to see the new I-stream. 
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An important special case occurs under the following circumstances: 

1. A write (perhaps by an I/O device) is done to some physical page frame. 

2. A CALL_PAL 1MB (or MB) is executed. 

3. A previously invalid PTE is changed to be a valid mapping of the physical page 
frame that was written in step 1. 

In this case, all processors that access virtual memory by using the newly valid PTE 
must guarantee to deliver the newly written I-stream after the TB miss. 

5.6.4.5 Multiple-Processor Context Switch 

If a process migrates from executing on one processor to executing on another, the 
context switch operating system code must include a number of barriers. 

A process migrates by having its context stored into memory, then eventually having 
that context reloaded on another processor. In between, some shared mechanism 
must be used to communicate that the context saved in memory by the first processor 
is available to the second processor. This could be done by using an interrupt, by 
using a flag bit associated with the saved context, or by using a shared-memory 
multiprocessor data structure, as follows: 

First Processor Second Processor 

Save state of current process. 
MB or WMB[1] 
Pass ownership of process context => Pick up ownership of process context 
data structure memory. data structure memory. 

MB [2] 
Restore state of new process context data 
structure memory. 
Make I-stream coherent [3]. 
Make TB coherent [4]. 

Execute code for new process that 
accesses memory that is not common to 
all processes. 

MB or WMB [1] ensures that the writes done to save the state of the current process 
happen before the ownership is passed. 

MB [2] ensures that the reads done to load the state of the new process happen 
after the ownership is picked up and hence are reliably the values written by the 
processor saving the old state. Leaving this MB out makes the code fail if an old 
value of the context remains in the second processor's cache and invalidates from 
the writes done on the first processor are not delivered soon enough. 
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The TB on the second processor must be made coherent with any write to the page 
tables that may have occurred on the first processor just before the save of the process 
state. This must be done with a series of TB invalidate instructions to remove any 
nonglobal page mapping for this process, or by assigning an ASN that is unused on 
the second processor to the process. One of these actions must occur sometime before 
starting execution of the code for the new process that accesses memory (instruction 
or data) that is not common to all processes. A common method is to assign a new 
ASN after gaining ownership of the new process and before loading its context, which 
includes its ASN. 

The D-cache on the second processor must be made coherent with any write to the D-
stream that may have occurred on the first processor just before the save of process 
state. This is ensured by MB [2] and does not require any additional instructions. 

The I-cache on the second processor must be made coherent with any write to the 
I-stream that may have occurred on the first processor just before the save of process 
state. This can be done with a CALL_PAL 1MB sometime before the execution of 
any code that is not common to all processes, More commonly, this can be done by 
forcing a TB miss (via the new ASN or via TB invalidate instructions) and using the 
TB-fill rule (see Section 5.6.4.3). This latter approach does not require any additional 
instruction. 

Combining all these considerations gives: 

First Processor Second Processor 

Pick up ownership of process 
context data structure memory. 
MB 
Assign new ASN or invalidate TBs. 
Save state of current process. 
Restore state of new process. 
MB 
Pass ownership of process context 
data structure memory. 

=> Pickup ownership of new process context 
data structure memory. 
MB 
Assign new ASN or invalidate TBs. 
Save state of current process. 
Restore state of new process. 
MB 
Pass ownership of old process context 
data structure memory. 
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First Processor Second Processor 

Execute code for new process that 
accesses memory that is not common to 
all processes. 

Note that on a single processor there is no need for the barriers. 

5.6.4.6 Multiple-Processor Send/Receive Interrupt 

If one processor writes some shared data, then sends an interrupt to a second 
processor, and that processor receives the interrupt, then accesses the shared data, 
the sequence from Section 5.6.4.3 must be used: 

First Processor Second Processor 

Write data 
MB or WMB 
Send interrupt => Receive interrupt 

MB 
Access data 

Leaving out the MB or WMB at the beginning of the interrupt-receipt routine causes 
the code to fail if an old value of the context remains in the second processor's cache, 
and invalidates from the writes done on the first processor are not delivered soon 
enough. 

5.6.4.7 Implications for Memory Mapped I/O 

Sections 5.6.4.3 and 5.6.4.4 describe methods for communicating data from a 
processor or DMA I/O device to another processor that work reliably in all Alpha 
AXP systems. Special considerations apply to the communication of data or I-stream 
from a processor to a DMA I/O device. These considerations arise from the use of 
bridges to connect to I/O buses with devices that are accessible by memory accesses 
to non-memory-like regions of physical memory. 

The following communication method works in all Alpha AXP systems. 

To reliably communicate shared data from a processor to an I/O device: 

1. Write the shared data to a memory-like physical memory region on the 
processor. 

2. Execute an MB or WMB instruction. 

3. Write a flag (equivalently, send an interrupt or write a register location 
implemented in the I/O device). 
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The receiving I/O device must: 

1. Read the flag (equivalently, detect the interrupt or detect the write to the 
register location implemented in the I/O device). 

2. Execute the equivalent of an MB. 

3. Read the shared data. 

As shown in Section 5.6.4.3, leaving out the memory barrier removes the assurance 
that the shared data is written before the flag is. Unlike the case in Section 5.6.4.3, 
writing the shared data to a non-memory-like physical memory region removes 
the assurance that the I/O device will detect the writes of the shared data before 
detecting the flag write, interrupt, or device register write. 

This implies that after a processor has prepared a data buffer to be read from memory 
by a DMA I/O device (such as writing a buffer to disk), the processor must execute 
an MB or WMB before starting the I/O. The I/O device, after receiving the start 
signal, must logically execute an MB before reading the data buffer, and the buffer 
must be located in a memory-like physical memory region. 

There are methods of communicating data that may work in some systems but are 
not guaranteed in all systems. Two notable examples are: 

1. If an Alpha AXP processor writes a location implemented in a component located 
on an I/O bus in the system, then executes a memory barrier, then writes a flag 
in some memory location (in a memory-like or non-memory-like region), a device 
on the I/O bus may be able to detect (via read access) the result of the flag in 
memory write and the write of the location on the I/O bus out of order (that is, in 
a different order than the order in which the Alpha AXP processor wrote those 
locations). 

2. If an Alpha AXP processor writes a location that is a control register within an 
I/O device, then executes a memory barrier, then writes a location in memory (in 
a memory-like or non-memory-like region), the I/O device may be able to detect 
(via read access) the result of the memory write before receiving and responding 
to the write of its own control register. 

In almost every case, a mechanism that ensures the completion of writes to 
control register locations within I/O devices is provided. The normal and strongly 
recommended mechanism is to read a location after writing it, which guarantees 
that the write is complete. In any case, all systems that use a particular I/O device 
should provide the same mechanism for that device. 

5.6.5 Implications for Hardware 
The coherency point for physical address x is the place in the memory subsystem at 
which accesses to x are ordered. It may be at a main memory board, or at a cache 
containing x exclusively, or at the point of winning a common bus arbitration. 

The coherency point for x may move with time, as exclusive access to x migrates 
between main memory and various caches. 
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MB, WMB, and CALL_PAL 1MB force all preceding writes to at least reach their 
respective coherency points. This does not mean that main-memory writes have 
been done, just that the order of the eventual writes is committed. For example, on 
the XMI with retry, this means getting the writes acknowledged as received with 
good parity at the inputs to memory board queues; the actual RAM write happens 
later. 

MB and CALL_PAL 1MB also force all queued cache invalidates to be delivered to 
the local caches before starting any subsequent reads (that may otherwise cache hit 
on stale data) or writes (that may otherwise write the cache, only to have the write 
effectively overwritten by a late-delivered invalidate). 

Implementations may allow reads of x to hit (by physical address) on pending writes 
in a write buffer, even before the writes to x reach the coherency point for x. If this 
is done, it is still true that no earlier value of x may subsequently be delivered to 
the processor that took the hit on the write buffer value. 

Virtual data caches are allowed to deliver data before doing address translation, but 
only if there cannot be a pending write under a synonym virtual address. Lack of a 
write-buffer match on untranslated address bits is sufficient to guarantee this. 

Virtual data caches must invalidate or otherwise become coherent with the new value 
whenever a PALcode routine is executed that affects the validity, fault behavior, 
protection behavior, or virtual-to-physical mapping specified for one or more pages. 
Becoming coherent can be delayed until the next subsequent MB instruction or TB 
fill (using the new mapping) if the implementation of the PALcode routine always 
forces a subsequent TB fill. 

5.7 Arithmetic Traps 

Alpha AXP implementations are allowed to execute multiple instructions 
concurrently and to forward results from one instruction to another. Thus, when an 
arithmetic trap is detected, the PC may have advanced an arbitrarily large number 
of instructions past the instruction T (calculating result R) whose execution triggered 
the trap. 

When the trap is detected, any or all of these subsequent instructions may run to 
completion before the trap is actually taken. Instruction T and the set of instructions 
subsequent to T that complete before the trap is taken are collectively called the trap 
shadow of T. The PC pushed on the stack when the trap is taken is the PC of the 
first instruction past the trap shadow. 

The instructions in the trap shadow of T may use the UNPREDICTABLE result R 
of T, they may generate additional traps, and they may completely change the PC 
(branches, JSR). 

Thus, by the time a trap is taken, the PC pushed on the stack may bear no 
useful relationship to the PC of the trigger instruction T, and the state visible to 
the programmer may have been updated using the UNPREDICTABLE result R. If 
an instruction in the trap shadow of T uses R to calculate a subsequent register 
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value, that register value is UNPREDICTABLE, even though there may be no trap 
associated with the subsequent calculation. Similarly: 

• If an instruction in the trap shadow of T stores R or any subsequent 
UNPREDICTABLE result, the stored value is UNPREDICTABLE. 

• If an instruction in the trap shadow of T uses R or any subsequent 
UNPREDICTABLE result as the basis of a conditional or calculated branch, the 
branch target is UNPREDICTABLE. 

• If an instruction in the trap shadow of T uses R or any subsequent 
UNPREDICTABLE result as the basis of an address calculation, the memory 
address actually accessed is UNPREDICTABLE. 

Software that is intended to bound how far the PC may advance before taking a 
trap, or how far an UNPREDICTABLE result may propagate, must insert TRAPB 
instructions at appropriate points. 

Software that is intended to continue from a trap by supplying a well-defined result 
R within an arithmetic trap handler, can do so reliably by following the rules for 
software completion code sequences given in Section 4.7.6. 
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Chapter 6 

Common PALcode Architecture (I) 

6.1 PALcode 
In a family of machines, both users and operating system implementors require 
functions to be implemented consistently. When functions conform to a common 
interface, the code that uses those functions can be used on several different 
implementations without modification. 

These functions range from the binary encoding of the instruction and data to the 
exception mechanisms and synchronization primitives. Some of these functions can 
be implemented cost effectively in hardware, but others are impractical to implement 
directly in hardware. These functions include low-level hardware support functions 
such as Translation Buffer miss fill routines, interrupt acknowledge, and vector 
dispatch. They also include support for privileged and atomic operations that require 
long instruction sequences. 

In the VAX, these functions are generally provided by microcode. This is not seen as 
a problem because the VAX architecture lends itself to a microcoded implementation. 

One of the goals of Alpha AXP architecture is to implement functions consistently 
without microcode. However, it is still desirable to provide an architected interface 
to these functions that will be consistent across the entire family of machines. The 
Privileged Architecture Library (PALcode) provides a mechanism to implement these 
functions without microcode. 

6.2 PALcode Instructions and Functions 
PALcode is used to implement the following functions: 

• Instructions that require complex sequencing as an atomic operation 

• Instructions that require VAX style interlocked memory access 

• Privileged instructions 

• Memory management control, including translation buffer (TB) management 

• Context swapping 

• Interrupt and exception dispatching 

• Power-up initialization and booting 

• Console functions 

• Emulation of instructions with no hardware support 
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The Alpha AXP architecture lets these functions be implemented in standard 
machine code that is resident in main memory. PALcode is written in standard 
machine code with some implementation-specific extensions to provide access to low-
level hardware. This lets an Alpha AXP implementation make various design trade-
offs based on the hardware technology being used to implement the machine. The 
PALcode can abstract these differences and make them invisible to system software. 

For example, in a MOS VLSI implementation, a small (32-entry) fully associative 
TB can be the right match to the media, given that chip area is a costly resource. 
In an ECL version, a large (1024 entry) direct-mapped TB can be used because it 
will use RAM chips and does not have fast associative memories available. This 
difference would be handled by implementation-specific versions of the PALcode on 
the two systems, both versions providing transparent TB miss service routines. The 
operating system code would not need to know there were any differences. 

An Alpha AXP Privileged Architecture Library (PALcode) of routines and 
environments is supplied by Digital. Other systems may use a library supplied 
by Digital or architect and implement a different library of routines. Alpha AXP 
systems are required to support the replacement of PALcode defined by Digital with 
an operating system-specific version. 

6.3 PALcode Environment 

The PALcode environment differs from the normal environment in the following 
ways: 

• Complete control of the machine state. 

• Interrupts are disabled. 

• Implementation-specific hardware functions are enabled, as described below. 

• I-stream memory management traps are prevented (by disabling I-stream 
mapping, mapping PALcode with a permanent TB entry, or by other 
mechanisms). 

Complete control of the machine state allows all functions of the machine to be 
controlled. Disabling interrupts allows the system to provide multi-instruction 
sequences as atomic operations. Enabling implementation-specific hardware 
functions allows access to low-level system hardware. Preventing I-stream memory 
management traps allows PALcode to implement memory management functions 
such as translation buffer fill. 

6.4 Special Functions Required for PALcode 
PALcode uses the Alpha AXP instruction set for most of its operations. A small 
number of additional functions are needed to implement the PALcode. Five opcodes 
are reserved to implement PALcode functions: PAL19, PAL1B, PAL1D, PALIE, 
and PAL IF. These instructions produce an trap if executed outside the PALcode 
environment. 
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• PALcode needs a mechanism to save the current state of the machine and 
dispatch into PALcode. 

• PALcode needs a set of instructions to access hardware control registers. 

• PALcode needs a hardware mechanism to transition the machine from the 
PALcode environment to the non-PALcode environment. This mechanism loads 
the PC, enables interrupts, enables mapping, and disables PALcode privileges. 

An Alpha AXP implementation may also choose to provide additional functions to 
simplify or improve performance of some PALcode functions. The following are some 
examples: 

• An Alpha AXP implementation may include a read/write virtual function 
that allows PALcode to perform mapped memory accesses using the mapping 
hardware rather than providing the virtual-to-physical translation in PALcode 
routines. PALcode may provide a special function to do physical reads and writes 
and have the Alpha AXP loads and stores continue to operate on virtual address 
in the PALcode environment. 

• An Alpha AXP implementation may include hardware assists for various 
functions, such as saving the virtual address of a reference on a memory 
management error rather than having to generate it by simulating the effective 
address calculation in PALcode. 

• An Alpha AXP implementation may include private registers so it can function 
without having to save and restore the native general registers. 

PALcode Effects on System Code 

PALcode will have one effect on system code. Because PALcode may reside in main 
memory and maintain privileged data structures in main memory, the operating 
system code that allocates physical memory cannot use all of physical memory. 

The amount of memory PALcode requires is small, so the loss to the system is 
negligible. 

PALcode Replacement 

Alpha AXP systems are required to support the replacement of PALcode supplied 
by Digital with an operating system-specific version. The following functions must 
be implemented in PALcode, not directly in hardware, to facilitate replacement with 
different versions. 

1. Translation Buffer fill. Different operating systems will want to replace the 
Translation Buffer (TB) fill routines. The replacement routines will use different 
data structures. Page tables will not be present in these systems. Therefore, no 
portion of the TB fill flow that would change with a change in page tables may 
be placed in hardware, unless it is placed in a manner that can be overridden by 
PALcode. 
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2. Process structure. Different operating systems might want to replace the process 
context switch routines. The replacement routines will use different data 
structures. The HWPCB or PCB will not be present in these systems. Therefore, 
no portion of the context switching flows that would change with a change in 
process structure may be placed in hardware. 

PALcode can be viewed as consisting of the following somewhat intertwined 
components: 

• Chip/architecture component 

• Hardware platform component 

• Operating system component 

PALcode should be written modularly to facilitate the easy replacement or 
conditional building of each component. Such a practice simplifies the integration 
of CPU hardware, system platform hardware, console firmware, operating system 
software, and compilers. 

PALcode subsections that are commonly subject to modification include: 

• Translation Buffer fill 

• Process structure and context switch 

• Interrupt and exception frame format and routine dispatch 

• Privileged PALcode instructions 

• Transitions to and from console I/O mode 

• Power-up reset 

6.7 Required PALcode Instructions 
The PALcode instructions listed in Table 6-1 and Appendix C must be recognized 
by mnemonic and opcode in all operating system implementations, but the effect of 
each instruction is dependent on the implementation. Digital defines the operation 
of these PALcode instructions for operating system implementations supplied by 
Digital. 

Table 6-1 : PALcode Instructions that Require Recognition 
Mnemonic Name 

BPT Breakpoint trap 
BUGCHK Bugcheck trap 
CSERVE Console service 
GENTRAP Generate trap 
RDUNIQUE Read unique value 
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Table 6-1 (Cont.): PALcode Instructions that Require Recognition 

Mnemonic Name 

SWPPAL Swap PALcode 
WRUNIQUE Write unique value 

The PALcode instructions listed in Table 6-2 and described in the following sections 
must be supported by all Alpha AXP implementations: 

Table 6-2: Required PALcode Instructions 
Mnemonic Type Operation 

DRAINA Privileged Drain aborts 
HALT Privileged Halt processor 
1MB Unprivileged I-stream memory barrier 
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6.7.1 Drain Aborts 

Format: 

CALL.PAL DRAINA ÎPALcode format 

Operation: 

IF PS<CM> NE 0 THEN 
{privileged instruction exception} 

{Stall instruction issuing until all prior 
instructions are guaranteed to complete 
without incurring aborts.} 

Exceptions: 

Privileged Instruction 

Instruction mnemonics: 

CALL.PAL DRAINA Drain Aborts 

Description: 

If aborts are deliberately generated and handled (such as nonexistent memory aborts 
while sizing memory or searching for I/O devices), the DRAINA instruction forces 
any outstanding aborts to be taken before continuing. 

Aborts are necessarily implementation dependent. DRAINA stalls instruction issue 
at least until all previously issued instructions have completed and any associated 
aborts have been signaled, as follows: 

• For operate instructions, this usually means stalling until the result register has 
been written. 

• For branch instructions, this usually means stalling until the result register and 
PC have been written. 

• For load instructions, this usually means stalling until the result register has 
been written. 

• For store instructions, this usually means stalling until at least the first level in 
a potentially multilevel memory hierarchy has been written. 

For load instructions, DRAINA does not necessarily guarantee that the unaccessed 
portions of a cache block have been transferred error free before continuing. 

6-6 Common Architecture (I) 



For store instructions, DRAINA does not necessarily guarantee that the ultimate 
target location of the store has received error-free data before continuing. 
An implementation-specific technique must be used to guarantee the ultimate 
completion of a write in implementations that have multilevel memory hierarchies 
or store-and-forward bus adapters. 
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6.7.2 Halt 

Format: 

CALL_PAL HALT IPALcode format 

Operation: 

IF PS<CM> NE 0 THEN 
{privileged instruction exception} 

CASE {halt_action} OF 
! Operating System or 
halt: 
restart/boot/halt : 
boot/halt: 
debugger/halt : 
restart/halt: 

ENDCASE 

Exceptions: 

Privileged Instruction 

Instruction mnemonics: 

CALL_PAL HALT Halt Processor 

Description: 

The HALT instruction stops normal instruction processing and initiates some other 
operating system or platform-specific behavior, depending on the HALT action 
setting. The choice of behavior typically includes the initiation of a restart sequence, 
a system bootstrap, or entry into console mode. See Console Interface (III), Chapter 
3. 

Platform dependent choice 
{halt} 
{restart/boot/halt} 
{boot/halt} 
{debugger/halt} 
{restart/halt} 
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6.7.3 Instruction Memory Barrier 

Format: 

CALL_PAL 1MB IPALcode format 

Operation: 

{Make instruction stream coherent with Data stream} 

Exceptions: 

None 

Instruction mnemonics: 

CALL_PAL 1MB I-stream Memory Barrier 

Description: 

An 1MB instruction must be executed after software or I/O devices write into the 
instruction stream or modify the instruction stream virtual address mapping, and 
before the new value is fetched as an instruction. An implementation may contain 
an instruction cache that does not track either processor or I/O writes into the 
instruction stream. The instruction cache and memory are made coherent by an 
1MB instruction. 

If the instruction stream is modified and an 1MB is not executed before fetching an 
instruction from the modified location, it is UNPREDICTABLE whether the old or 
new value is fetched. 

Software Note: 

In a multiprocessor environment, executing an 1MB on one processor does not 
affect instruction caches on other processors. Thus, a single 1MB on one processor 
is insufficient to guarantee that all processors see a modification of the instruction 
stream. 

The cache coherency and sharing rules are described in Chapter 5. 
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Chapter 7 

Console Subsystem Overview (I) 

On an Alpha AXP system, underlying control of the system platform hardware is 
provided by a console subsystem. The console subsystem: 

1. Initializes, tests, and prepares the system platform hardware for Alpha AXP 
system software. 

2. Bootstraps (loads into memory and starts the execution of) system software. 

3. Controls and monitors the state and state transitions of each processor in a 
multiprocessor system. 

4. Provides services to system software that simplify system software control of and 
access to platform hardware. 

5. Provides a means for a console operator to monitor and control the system. 

The console subsystem interacts with system platform hardware to accomplish the 
first three tasks. The actual mechanisms of these interactions are specific to the 
platform hardware; however, the net effects are common to all systems. 

The console subsystem interacts with system software once control of the system 
platform hardware has been transferred to that software. 

The console subsystem interacts with the console operator through a virtual display 
device or console terminal. The console operator may be a person or a management 
application. 
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Chapter 8 

Input/Output Overview (I) 

Conceptually, Alpha AXP systems can consist of processors, memory, a processor-
memory interconnect (PMI), I/O buses, bridges, and I/O devices. 

Figure 8-1 shows the Alpha AXP system overview. 

Figure 8-1 : Alpha AXP System Overview 

Processor-Memory Interconnect 

I/O Device Processor Memory Bridge 

I/O Bus 

I/O Device I/O Device 

As shown in Figure 8-1, processors, memory, and possibly I/O devices, are connected 
by a PMI. 

A bridge connects an I/O bus to the system, either directly to the PMI or through 
another I/O bus. The I/O bus address space is available to the processor either 
directly or indirectly. Indirect access is provided through either an I/O mailbox or 
an I/O mapping mechanism. The I/O mapping mechanism includes provisions for 
mapping between PMI and I/O bus addresses and access to I/O bus operations. 

Alpha AXP I/O operations can include: 

• Accesses between the processor and an I/O device across the PMI 

• Accesses between the processor and an I/O device across an I/O bus 

• DMA accesses — I/O devices initiating reads and writes to memory 

• Processor interrupts requested by devices 

• Bus-specific I/O accesses 
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Specific Operating System PALcode 
Architecture (II) 

This part describes how operating systems supplied by Digital relate to the 
Alpha AXP architecture. It is made up of the following sections: 
• OpenVMS AXP Software (II-A) 
• DEC OSF/1 Software (II-B) 
• Windows NT AXP Software (II-C) 



Chapter 1 

Introduction to OpenVMS AXP (II-A) 

The goals of this design are to provide a hardware-implementation independent 
interface between the OpenVMS AXP operating system and the hardware. Further, 
the design provides the needed abstractions to minimize the impact between 
OpenVMS AXP and different hardware implementations. Finally, the design must 
contain only that overhead necessary to satisfy those requirements, while still 
supporting high-performance systems. 

1.1 Register Usage 

In addition to those registers described in Part I, Common Architecture, OpenVMS 
AXP defines the registers described in the following sections. 

1.1.1 Processor Status 
The Processor Status (PS) is a special register that contains the current status of the 
processor. It can be read by the CALL_PAL RD_PS instruction. The software field 
(PS<SW>) can be written by the CALL_PAL WR_PS_SW routine. See Chapter 6 for 
a description of the PS register. 

1.1.2 Stack Pointer (SP) 
Integer register R30 is the Stack Pointer (SP). 

The SP contains the address of the top of the stack in the current mode. 

Certain PALcode instructions, such as CALL_PAL REI, use R30 as an implicit 
operand. During such operations, the address value in R30, interpreted as an 
unsigned 64-bit integer, decreases (predecrements) when items are pushed onto the 
stack, and increases (postincrements) when they are popped from the stack. After 
pushing (writing) an item to the stack, SP points to that item. 

1.1.3 Internal Processor Registers (IPRs) 
The IPRs provide an architected mapping to internal hardware or provide other 
specialized uses. They are available only to privileged software through PALcode 
routines and allow OpenVMS AXP to interrogate or modify system state. The IPRs 
are described in Chapter 5. 

1.1.4 Processor Cycle Counter (PCC) 
The PCC register consists of two 32-bit fields. The low-order 32 bits (PCC<31:0>) 
are an unsigned, wrapping counter, PCC_CNT. The high-order 32 bits (PCC<63:32>) 
are an offset, PCC_OFF PCC_OFF is a value that, when added to PCC_CNT, gives 
the total PCC register count for this process, modulo 2**32. 
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Chapter 2 

OpenVMS AXP PALcode Instruction Descriptions 
(ll-A) 

This chapter describes the PALcode instructions that are implemented for the 
OpenVMS AXP environment. The PALcode instructions are a set of unprivileged 
and privileged CALL_PAL instructions that are used to match specific operating 
system requirements to the underlying hardware implementation. 

For example, privileged PALcode instructions switch the hardware context of a 
process structure. Unprivileged PALcode instructions implement the uninterruptible 
queue operations. Also, PALcode instructions provide mechanisms for standard 
interrupt and exception reporting that are independent of the underlying hardware 
implementation. 

Table 2-1 lists all the unprivileged and privileged OpenVMS AXP PALcode 
instructions and the section in this chapter in which they are described. 

Table 2-1 : OpenVMS AXP PALcode Instructions 

Unprivileged OpenVMS AXP PALcode Instructions 

Mnemonic 

AMOVRM 

AMOVRR 

BPT 

BUGCHK 

CHME 

CHMK 

CHMS 

CHMU 

GENTRAP 

1MB 

INSQxxx 

PROBER 

PROBEW 

Operation 

Atomic move register/memory 

Atomic move register/register 

Breakpoint 

Bugcheck 

Change mode to executive 

Change mode to kernel 

Change mode to supervisor 

Change mode to user 

Generate software trap 

I-stream memory barrier 

Insert in specified queue 

Probe read access 

Probe write access 

Section 

Section 2.4 

Section 2.4 

Section 2.1 

Section 2.1 

Section 2.1 

Section 2.1 

Section 2.1 

Section 2.1 

Section 2.1 

Common Architecture 
Chapter 6 

Section 2.3 

Section 2.1 

Section 2.1 
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Table 2-1 (Cont): OpenVMS AXP PALcode Instructions 

Unprivileged OpenVMS AXP PALcode Instructions 

Mnemonic Operation Section 

RD_PS Read processor status 

READJJNQ Read unique context 

REI Return from exception or interrupt 

REMQxxx Remove from specified queue 

RSCC Read system cycle counter 

SWASTEN Swap AST enable 

WRITE_UNQ Write unique context 

WR_PS_SW Write processor status software field 

Section 2.1 

Section 2.5 

Section 2.1 

Section 2.3 

Section 2.1 

Section 2.1 

Section 2.5 

Section 2.1 

Privileged OpenVMS AXP PALcode Instructions 

Mnemonic Operation Section 

CFLUSH 

CSERVE 

DRAINA 

HALT 

LDQP 

MFPR 

MTPR 

STQP 

SWPCTX 

SWPPAL 

Cache flush 

Console service 

Drain aborts 

Halt processor 

Load quadword physical 

Move from processor register 

Move to processor register 

Store quadword physical 

Swap privileged context 

Swap PALcode image 

Section 2.6 

Section 2.6 

Common Architecture 
Chapter 6 

Common Architecture 
Chapter 6 

Section 2.6 

Section 2.6 

Section 2.6 

Section 2.6 

Section 2.6 

Section 2.6 

OpenVMS AXP Software (II—A) 2-2 



2.1 Unprivileged General OpenVMS AXP PALcode Instructions 
The general unprivileged instructions in this section, together with those in Sections 
2.3, 2.4, and 2.5, provide support for the underlying OpenVMS AXP model. 

Table 2-2: Unprivileged General OpenVMS AXP PALcode Instruction Summary 
Mnemonic Operation 

BPT 
BUGCHK 
CHME 
CHMK 
CHMS 
CHMU 
GENTRAP 
1MB 

PROBER 
PROBEW 
RD_PS 
REI 
RSCC 
SWASTEN 
WR_PS_SW 

Breakpoint 
Bugcheck 
Change mode to executive 
Change mode to kernel 
Change mode to supervisor 
Change mode to user 
Generate software trap 
I-stream memory barrier 
See Common Architecture, Chapter 6 

Probe read access 
Probe write access 
Read processor status 
Return from exception or interrupt 
Read system cycle counter 
Swap AST enable 
Write processor status software field 
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2.1.1 Breakpoint 

Format: 

CALL.PAL BPT ! PALcode format 

Operation: 

{initiate BPT exception with new_mode=kernel} 

Exceptions: 

Kernel Stack Not Valid Halt 

Instruction mnemonics: 

CALL_PAL BPT Breakpoint 

Description: 

The BPT instruction is provided for program debugging. It switches to kernel mode 
and pushes R2..R7, the updated PC, and PS on the kernel stack. It then dispatches 
to the address in the Breakpoint SCB vector. See Section 6.3.3.2.1 
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2.1.2 Bugcheck 

Format: 

CALLJPAL BUGCHK ! PALcode format 

Operation: 

{initiate BUGCHK exception with new_mode=kernel} 

Exceptions: 

Kernel Stack Not Valid Halt 

Instruction mnemonics: 

CALL.PAL BUGCHK Bugcheck 

Description: 

The BUGCHK instruction is provided for error reporting. It switches to kernel mode 
and pushes R2..R7, the updated PC, and PS on the kernel stack. It then dispatches 
to the address in the Bugcheck SCB vector. See Section 6.3.3.2.2. 
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2.1.3 Change Mode Executive 

Format: 

CALL_PAL CHME ! PALcode format 

Operation: 

tmpl «- MINU( 1, PS<CM>) 
{initiate CHME exception with new_mode=tmpl} 

Exceptions: 

Kernel Stack Not Valid Halt 

Instruction mnemonics: 

CALL_PAL CHME Change Mode to Executive 

Description: 

The CHME instruction lets a process change its mode in a controlled manner. 

A change in mode also results in a change of stack pointers: the old pointer is saved, 
the new pointer is loaded. R2..R7, PC, and PS are pushed onto the selected stack. 
The saved PC addresses the instruction following the CHME instruction. Registers 
R22, R23, R24, and R27 are available for use by PALcode as scratch registers. The 
contents of these registers are not preserved across a CHME. 
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2.1.4 Change Mode to Kernel 

Format: 

CALLJPAL CHMK ! PALcode format 

Operation: 

{initiate CHMK exception with new_mode=kernel} 

Exceptions: 

Kernel Stack Not Valid Halt 

Instruction mnemonics: 

CALL.PAL CHMK Change Mode to Kernel 

Description: 

The CHMK instruction lets a process change its mode to kernel in a controlled 
manner. 
A change in mode also results in a change of stack pointers: the old pointer is saved, 
the new pointer is loaded. R2..R7, PC, and PS are pushed onto the kernel stack. 
The saved PC addresses the instruction following the CHMK instruction. Registers 
R22, R23, R24, and R27 are available for use by PALcode as scratch registers. The 
contents of these registers are not preserved across a CHMK. 
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2.1.5 Change Mode Supervisor 

Format: 

CALL.PAL CHMS ! PALcode format 

Operation: 

tmpl <- MINU( 2, PS<CM>) 
{initiate CHMS exception with new_mode=tmpl} 

Exceptions: 

Kernel Stack Not Valid Halt 

Instruction mnemonics: 

CALL_PAL CHMS Change Mode to Supervisor 

Description: 

The CHMS instruction lets a process change its mode in a controlled manner. 

A change in mode also results in a change of stack pointers: the old pointer is saved, 
the new pointer is loaded. R2..R7, PC, and PS are pushed onto the selected stack. 
The saved PC addresses the instruction following the CHMS instruction. 

2-8 OpenVMS AXP Software (II—A) 



2.1.6 Change Mode User 

Format: 

CALL.PAL CHMU ! PALcode format 

Operation: 

{initiate CHMU exception with new_mode=PS<CM>} 

Exceptions: 

Kernel Stack Not Valid Halt 

Instruction mnemonics: 

CALL.PAL CHMU Change Mode to User 

Description: 

The CHMU instruction lets a process call a routine via the change mode mechanism. 
R2..R7, PC, and PS are pushed onto the current stack. The saved PC addresses the 
instruction following the CHMU instruction. 
The CALL_PAL CHMU instruction is provided for VAX compatibility only. 
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2.1.7 Generate Software Trap 

Format: 

CALL_PAL GENTRAP ! PALcode format 

Operation: 

{initiate GENTRAP exception with new_mode=kernel} 
! R16 contains the value encoding of the software trap 

Exceptions: 

Kernel Stack Not Valid Halt 

Instruction mnemonics: 

CALL.PAL GENTRAP Generate Software Trap 

Description: 

The GENTRAP instruction is provided for reporting run-time software conditions. 
It switches to kernel mode, and pushes R2...R7, the updated PC, and PS on the 
kernel stack. It then dispatches to the address in the GENTRAP SCB Vector. See 
Section 6.6. 

The value in R16 identifies the particular software condition that has occurred. The 
encoding for the software trap values is given in the software calling standard for 
the system. 
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2.1.8 Probe Memory Access 

Format: 

CALL_PAL PROBE ! PALcode format 

Operation: 

R16 contains the base address 
R17 contains the signed offset 
R18 contains the access mode 
RO receives the completion status 

<— 1 if success 
<— 0 if failure 

first <— 
last <-

IF R18<1 
probe, 

ELSE 
probe, 

R16 
{R16+R17} 

0> GTU PS<CM> THEN 
_mode ♦- R18<1:0> 

_mode <— PS<CM>) 

IF ACCESS(first, probe_mode) AND ACCESS(last, probe_mode) THEN 
RO «- 1 

ELSE 
RO <- 0 

Exceptions: 

Translation Not Valid 

Instruction mnemonics: 

CALL.PAL PROBER Probe for Read Access 
CALL_PAL PROBEW Probe for Write Access 

Description: 

The PROBE instruction checks the read or write accessibility of the first and last 
byte specified by the base address and the signed offset; the bytes in between are 
not checked. 

System software must check all pages between the two bytes if they are to be 
accessed. If both bytes are accessible, PROBE returns the value 1 in RO; otherwise, 
PROBE returns 0. The Fault on Read and Fault on Write PTE bits are not checked. 
A Translation Not Valid exception is signaled only if the mapping structures cannot 
be accessed. A Translation Not Valid exception is signaled only if the first or second 
level PTE is invalid. 
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The protection is checked against the less privileged of the modes specified by 
R18<1:0> and the Current Mode (PS<CM>). See Section 6.2 for access mode 
encodings. 

PROBE is only intended to check a single datum for accessibility. It does not check 
all intervening pages because this could result in excessive interrupt latency. 
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2.1.9 Read Processor Status 

Format: 

CALL_PAL RD_PS ! PALcode format 

Operation: 

RO <- PS 

Exceptions: 

None 

Instruction mnemonics: 

CALL_PAL RD_PS Read Processor Status 

Description: 

The RD_PS instruction returns the Processor Status (PS) in register RO. The 
Processor Status is described in Section 6.2. The PS<SP_ALIGN> field is always 
a zero on a RD_PS. 
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2.1.10 Return from Exception or Interrupt 

Format: 

CALL.PAL REI ! PALcode format 

Operation: 

! See Chapter 6 
! for information on interrupted registers 

IF SP<5:0> NE 0 THEN 
{illegal operand } 

tmpl 
tmp2 
tmp3 
tmp4 
tmp5 
tmp6 
tmp7 
tmp8 

4— 

<— 
<— 
*-
<— 
<— 
<— 
<-

(SP) 
(SP+8) 
(SP+16) 
(SP+24) 
(SP+32) 
(SP+40) 
(SP+48) 
(SP+56) 

Get 
Get 
Get 
Get 
Get 
Get 
Get 
Get 

saved R2 
saved R3 
saved R4 
saved R5 
saved R6 
saved R7 
new PC 
new PS 

ps_chk <— tmp8 
ps_chk<cm> <— 0 
ps_chk<sp_align> «— 
ps_chk<sw> <— 0 
intr_flag <— 0 
{ clear lock_flag} 

! Copy new ps 
! Clear cm field 

0 ! Clear sp_align field 
! Clear Software Field 
! Clear except/inter/mcheck flag 

! If current mode is not kernel check the new ps is valid. 
IF {ps<cm> NE 0} AND 

{{tmp8<cm> LT ps<cm>} OR {ps_chk NE 0}} THEN 
BEGIN 
{illegal operand} 

END 

sp «— {sp + 8*8} OR tmp8<sp_align> 
IF {internal registers for stack pointers} THEN 

CASE ps<cm> BEGIN 
[0] 
[1] 
[2] 
[3] 

ipr_ksp <— sp 
ipr_esp *— sp 
ipr_ssp <— sp 
ipr_usp <<— sp 

ENDCASE 
CASE tmp8<cm> BEGIN 
[0] : sp <— ipr_ksp 
[ 1 ] : sp <- ipr_esp 
[2] : sp <— ipr_ssp 
[ 3 ] : sp <— ipr_usp 

ENDCASE 
ELSE 

(pcbb + 8*ps<cm>) <— sp 
sp <— (pcbb + 8*tmp8<cm>) 

ENDIF 
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R2 <- tmpl 
R3 <- tmp2 
R4 <— tmp3 
R5 <— tmp4 
R6 <— tmp5 
R7 «- tmp6 
PC <- tmp7 
PS <- tmp8 <12:00> 

{Initiate interrupts or AST interrupts that are now pending} 

Exceptions: 

Access Violation 
Fault on Read 
Illegal Operand 
Kernel Stack Not Valid Halt 
Translation Not Valid 

Instruction mnemonics: 

CALL_PAL REI Return from Exception or Interrupt 

Description: 

The REI instruction pops the PS, PC, and saved R2...R7 from the current stack and 
holds them in temporary registers. 

The new PS is checked for validity and consistency. If it is invalid or inconsistent, 
an illegal operand exception occurs; otherwise the operation continues. A kernel 
to nonkernel REI with a new PS<IPL> not equal to zero may yield UNDEFINED 
results. 

The current stack pointer is then saved and a new stack pointer is selected according 
to the new PS<CM> field. R2 through R7 are restored using the saved values held in 
the temporary registers. A check is made to determine if an AST or other interrupt 
is pending (see Section 6.7.6). 

If the enabling conditions are present for an interrupt or AST interrupt at the 
completion of this instruction, the interrupt or AST interrupt occurs before the next 
instruction. 
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When an REI is issued, the current stack must be writeable from the current mode 
or an Access Violation may occur. 

Implementation Note: 

This is necessary so that an implementation can choose to clear the lock_flag by 
doing a STx_C to above the top-of-stack after popping PS, PC, and saved R2..R7 
off the current stack. 
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2.1.11 Read System Cycle Counter 

Format: 

CALLJPAL RSCC ! PALcode format 

Operation: 

RO <— {System Cycle Counter} 

Exceptions: 

None 

Instruction mnemonics: 

CALL_PAL RSCC Read System Cycle Counter 

Description: 

The RSCC instruction writes register RO with the value of the system cycle counter. 
This counter is an unsigned 64-bit integer that increments at the same rate as the 
process cycle counter. The cycle counter frequency, which is the number of times 
the system cycle counter gets incremented per second rounded to a 64-bit integer, is 
given in the HWRPB. (See Console Interface (HI), Chapter 2). 

The system cycle counter is suitable for timing a general range of intervals to within 
10% error and may be used for detailed performance characterization. It is required 
on all implementations. SCC is required for every processor, and each processor in 
a multiprocessor system has its own private, independent SCC. 

Notes: 

1. Processor initialization starts the SCC at 0. 

2. SCC is monotonically increasing. On the same processor, the values returned 
by two successive reads of SCC must either be equal or the value of the second 
must be greater (unsigned) than the first. 

3. SCC ticks are never lost so long as the SCC is accessed at least once per each PCC 
overflow period (2**32 PCC increments) during periods when the hardware clock 
interrupt remains blocked. The hardware clock interrupt is blocked whenever 
the IPL is at or above CLOCKJPL or whenever the processor enters console I/O 
mode from program I/O mode. 

4. The 64-bit SCC may be constructed from the 32-bit PCC hardware counter and 
a 32-bit PALcode software counter. As part of the hardware clock interrupt 
processing, PALcode increments the software counter whenever a PCC wrap is 
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detected. Thus, SCC ticks may be lost only when PALcode fails to detect PCC 
wraps. In a machine where the PCC is incremented at a 1 ns rate, this may 
occur when hardware clock interrupts are blocked for greater than 4 seconds. 

5. An implementation-dependent mechanism must exist so that, when enabled, it 
causes the RSCC instruction, as implemented by standard PALcode, always to 
return a zero in RO. This mechanism must be usable by privileged system 
software. A similar mechanism must exist for RPCC. Implementations are 
allowed to have only a single mechanism, which when enabled causes both RSCC 
and RPCC to return zero. 
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2.1.12 Swap AST Enable 

Format: 

CALL_PAL SWASTEN ! PALcode format 

Operation: 

RO <- ZEXT(ASTEN<PS<CM>>) 
ASTEN<PS<CM» <- R16<0> 

{check for pending ASTs} 

Exceptions: 

None 

Instruction mnemonics: 

CALL_PAL SWASTEN Swap AST Enable for Current Mode 

Description: 

The SWASTEN instruction swaps the AST enable bit for the current mode. The 
new state for the enable bit is supplied in register R16<0> and previous state of the 
enable bit is returned, zero extended, in RO. 

A check is made to determine if an AST interrupt is pending (see Section 6.7.6.6). 

If the enabling conditions are present for an AST interrupt at the completion of this 
instruction, the AST occurs before the next instruction. 
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2.1.13 Write Processor Status Software Field 

Format: 

CALL.PAL WR_PS_SW ! PALcode format 

Operation: 

PS<SW> «- R 1 6 < 1 : 0 > 

Exceptions: 

None 

Instruction mnemonics: 

CALL_PAL WR_PS_SW Write Processor Status Software Field 

Description: 

The WR_PS_SW instruction writes the Processor Status software field (PS<SW>) 
with the low-order two bits of R16. The Processor Status is described in Section 6.2. 
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2.2 OpenVMS AXP Queue Data Types 
The following sections describe the queue data types that are manipulated by the 
OpenVMS AXP queue PALcode. Section 2.3 describes the PALcode instructions that 
perform the manipulation. 

2.2.1 Absolute Longword Queues 
A longword queue is a circular, doubly linked list. A longword queue entry is specified 
by its address. Each longword queue entry is linked to the next with a pair of 
longwords. A queue is classified by the type of link it uses. Absolute longword 
queues use absolute addresses as links. 

The first (lowest addressed) longword is the forward link; it specifies the address of 
the succeeding longword queue entry. The second (highest addressed) longword is 
the backward link; it specifies the address of the preceding longword queue entry. 

A longword queue is specified by a longword queue header, which is identical to a 
pair of longword queue linkage longwords. The forward link of the header is the 
address of the entry termed the head of the longword queue. The backward link of 
the header is the address of the entry termed the tail of the longword queue. The 
forward link of the tail points to the header. 

An empty longword queue is specified by its header at address H, as shown in 
Figure 2 -1 . If an entry at address B is inserted into an empty longword queue (at 
either the head or tail), the longword queue shown in Figure 2-2 results. Figures 
2-3, 2-4, and 2-5, respectively, illustrate the results of subsequent insertion of an 
entry at address A at the head, insertion of an entry at address C at the tail, and 
removal of the entry at address B. 

2.2.2 Self-Relative Longword Queues 
Self-relative longword queues use displacements from longword queue entries as 
links. Longword queue entries are linked by a pair of longwords. The first longword 
(lowest addressed) is the forward link; it is a displacement of the succeeding longword 
queue entry from the present entry. The second longword (highest addressed) is the 
backward link; it is the displacement of the preceding longword queue entry from 
the present entry. A longword queue is specified by a longword queue header, which 
also consists of two longword links. 

An empty longword queue is specified by its header at address H. Since the longword 
queue is empty, the self-relative links are zero, as shown in Figure 2-6. 

Four types of operations can be performed on self-relative queues: insert at head, 
insert at tail, remove from head, and remove from tail. Furthermore, these 
operations are interlocked to allow cooperating processes in a multiprocessor system 
to access a shared list without additional synchronization. A hardware-supported, 
interlocked memory-access mechanism is used to modify the queue header. Bit <0> 
of the queue header is used as a secondary interlock and is set when the queue is 
being accessed. 
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If an interlocked queue CALL_PAL instruction encounters the secondary interlock 
set, then, in the absence of exceptions, it terminates after setting RO to -1 to indicate 
failure to gain access to the queue. If the secondary interlock bit is not set, then 
it is set during the interlocked queue operation and is cleared upon completion of 
the operation. This prevents other interlocked queue CALL_PAL instructions from 
operating on the same queue. 
If both the secondary interlock is set and an exception condition occurs, it is 
UNPREDICTABLE whether the exception will be reported. 
Figures 2-7, 2-8, and 2-9, respectively, illustrate the results of subsequent insertion 
of an entry at address B at the head, insertion of an entry at address A at the tail, 
and insertion of an entry at address C at the tail. 
Figures 2-9, 2-8, and 2-7 (in that order) illustrate the effect of removal at the tail 
and removal at the head. 

Figure 2-1 : Empty Absolute Longword Queue 

:H 

:H+4 

Figure 2-2: Absolute Longword Queue with One Entry 
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Figure 2-3: Absolute Longword Queue with Two Entries 
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Figure 2-4: Absolute Longword Queue with Three Entries 
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Figure 2-5: Absolute Longword Queue with Three Entries After Removing the Second 
Entry 
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Figure 2-6: Empty Self-Relative Longword Queue 
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Figure 2-7: Self-Relative Longword Queue with One Entry 
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Figure 2-8: Self-Relative Longword Queue with Two Entries 
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Figure 2-9: Self-Relative Longword Queue with Three Entries 
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2.2.3 Absolute Quadword Queues 
A quadword queue is a circular, doubly linked list. A quadword queue entry is 
specified by its address. Each quadword queue entry is linked to the next with 
a pair of quadwords. A queue is classified by the type of link it uses. Absolute 
quadword queues use absolute addresses as links. 

The first (lowest addressed) quadword is the forward link; it specifies the address of 
the succeeding quadword queue entry. The second (highest addressed) quadword is 
the backward link; it specifies the address of the preceding quadword queue entry. 

A quadword queue is specified by a quadword queue header, which is identical to a 
pair of quadword queue linkage quadwords. The forward link of the header is the 
address of the entry termed the head of the quadword queue. The backward link of 
the header is the address of the entry termed the tail of the quadword queue. The 
forward link of the tail points to the header. 
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An empty quadword queue is specified by its header at address H, as shown in 
Figure 2-10. If an entry at address B is inserted into an empty quadword queue (at 
either the head or tail), the quadword queue shown in Figure 2-11 results. Figures 
2-12, 2-13, and 2-14, respectively, illustrate the results of subsequent insertion of 
an entry at address A at the head, insertion of an entry at address C at the tail, and 
removal of the entry at address B. 

2.2.4 Self-Relative Quadword Queues 
Self-relative quadword queues use displacements from quadword queue entries 
as links. Quadword queue entries are linked by a pair of quadwords. The 
first quadword (lowest addressed) is the forward link; it is a displacement of the 
succeeding quadword queue entry from the present entry. The second quadword 
(highest addressed) is the backward link; it is the displacement of the preceding 
quadword queue entry from the present entry. A quadword queue is specified by a 
quadword queue header, which also consists of two quadword links. 

An empty quadword queue is specified by its header at address H. Since the 
quadword queue is empty, the self-relative links are zero, as shown in Figure 2-15. 

Four types of operations can be performed on self-relative queues: insert at head, 
insert at tail, remove from head, and remove from tail. Furthermore, these 
operations are interlocked to allow cooperating processes in a multiprocessor system 
to access a shared list without additional synchronization. A hardware-supported, 
interlocked memory-access mechanism is used to modify the queue header. Bit <0> 
of the queue header is used as a secondary interlock and is set when the queue is 
being accessed. 

If an interlocked queue CALL_PAL instruction encounters the secondary interlock 
set, then, in the absence of exceptions, it terminates after setting R0 to - 1 to indicate 
failure to gain access to the queue. If the secondary interlock bit is not set, it 
is set during the interlocked queue operation and is cleared upon completion of 
the operation. This prevents other interlocked queue CALL_PAL instructions from 
operating on the same queue. 

If both the secondary interlock is set and an exception condition occurs, it is 
UNPREDICTABLE whether the exception will be reported. 

Figures 2-16, 2-17, and 2-18, respectively, illustrate the results of subsequent 
insertion of an entry at address B at the head, insertion of an entry at address 
A at the tail, and insertion of an entry at address C at the tail. 

Figures 2-18, 2-17, and 2-16, (in that order) illustrate the effect of removal at the 
tail and removal at the head. 
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Figure 2-10: Empty Absolute Quadword Queue 

Figure 2-11: Absolute Quadword Queue with One Entry 
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Figure 2-12: Absolute Quadword Queue with Two Entries 
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Figure 2-13: Absolute Quadword Queue with Three Entries 
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Figure 2-14: Absolute Quadword Queue with Three Entries After Removing the Second Entry 
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Figure 2-15: Empty Self-Relative Quadword Queue 
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Figure 2-16: Absolute Quadword Queue with One Entry 
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Figure 2-17: Self-Relative Quadword Queue with Two Entries 

Figure 2-18: Self-Relative Quadword Queue with Three Entries 
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2.3 Unprivileged OpenVMS AXP Queue PALcode Instructions 
The following unprivileged PALcode instructions perform atomic modification of the 
queue data types that are described in Section 2.2. 

Table 2-3: VAX Queue Palcode instruction Summary 
Mnemonic Operation 

INSQHIL Insert into longword queue at head, interlocked 
INSQHILR Insert into longword queue at head, interlocked, resident 
INSQHIQ Insert into quadword queue at head, interlocked 
INSQHIQR Insert into quadword queue at head, interlocked, resident 
INSQTIL Insert into longword queue at tail, interlocked 
INSQTILR Insert into longword queue at tail, interlocked, resident 
INSQTIQ Insert into quadword queue at tail, interlocked 
INSQTIQR Insert into quadword queue at tail, interlocked, resident 
INSQUEL Insert into longword queue 
INSQUEQ Insert into quadword queue 
REMQHIL Remove from longword queue at head, interlocked 
REMQHILR Remove from longword queue at head, interlocked, resident 
REMQHIQ Remove from quadword queue at head, interlocked 
REMQHIQR Remove from quadword queue at head, interlocked, resident 
REMQTIL Remove from longword queue at tail, interlocked 
REMQTILR Remove from longword queue at tail, interlocked, resident 
REMQTIQ Remove from quadword queue at tail, interlocked 
REMQTIQR Remove from quadword queue at tail, interlocked, resident 
REMQUEL Remove from longword queue 
REMQUEQ Remove from quadword queue 
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2.3.1 Insert Entry into Longword Queue at Head Interlocked 

Format: 

CALLJPAL INSQHIL ! PALcode format 

Operation: 

R16 contains the address of the queue header 
R17 contains the address of the new entry 
RO receives status: 

-1 if the secondary interlock was set 
0 if the queue was not empty before adding this entry 
1 if the queue was empty before adding this entry 

Must have write access to header and queue entries 
Header and entries must be quadword aligned. 
Header cannot be equal to entry. 

check entry and header alignment and 
that the header and entry not same location and 
that the header and entry are valid 32 bit addresses 

IF {R16<2:0> NE 0} OR {R17<2:0> NE 0} OR {R16 EQ R17} OR 
{SEXT(R16<31:0>) NE R16} OR {SEXT(R17<31:0>) NE R17} THEN 
BEGIN 

{illegal operand exception} 
END 

N <- {retry_amount} 
REPEAT 

LOAD_LOCKED (tmpO «- (Rl6)) 
IF tmp0<0> EQ 1 THEN 

RO ^ -1, {return} 
done <- STORE_CONDITIONAL ((R16 
N <- N - 1 

UNTIL {done EQ 1} OR {N EQ 0} 
IF done NEQ 1, RO «- -1, {return} 

! Implementation-specific 

! Acquire hardware interlock. 
! Try to set secondary interlock. 
! Already set 
) ♦- {tmpO OR 1} ) 

Retry exceeded 

! Check alignment 
! Release secondary interlock. 

MB 
tmpl «- SEXT(tmpO<31:0>) 
IF {tmpl<2:l> NE 0} THEN BEGIN 

BEGIN 
(R16) «- tmpO 
{illegal operand exception} 

END 

Check if following addresses can be written 
without causing a memory management exception: 

entry 
header + tmpl 

IF {all memory accesses can NOT be completed} THEN 
BEGIN ! Release secondary interlock. 
(R16) <- tmpO 
{initiate memory management fault} 

END 
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! All accesses can be done so enqueue the entry 

tmp2 «- SEXT({R16 - R17}<31:0>) 
(R17)<31:0> *- tmpl + tmp2 ! Forward link 
(R17 + 4)<31:0> «- tmp2 ! Backward link 
(R16 + tmpl + 4)<31:0> «— -tmpl - tmp2 ! Successor back link 

MB 

(R16)<31:0> <- -tmp2 ! Forward link of header 
! Release lock 

IF tmpl EQ 0 THEN 
RO <— 1 ! Queue was empty 

ELSE 
RO <— 0 ! Queue was not empty 

END 

Exceptions: 

Access Violation 

Fault on Read 

Fault on Write 

Illegal Operand 

Translation Not Valid 

Instruction mnemonics: 

CALL_PAL INSQHIL Insert into Longword Queue at Head Interlocked 

Description: 

If the secondary interlock is clear, INSQHIL inserts the entry specified in R17 into 
the self-relative queue following the header specified in R16. 

If the entry inserted was the first one in the queue, RO is set to 1; otherwise it is set 
to 0. The insertion is a non-interruptible operation. The insertion is interlocked to 
prevent concurrent interlocked insertions or removals at the head or tail of the same 
queue by another process, in a multiprocessor environment. Before the insertion, 
the processor validates that the entire operation can be completed. This ensures that 
if a memory management exception occurs, the queue is left in a consistent state 
(see Chapters 3 and 6). If the instruction fails to acquire the secondary interlock 
after "N" retry attempts, then (in the absence of exceptions) R<0> is set to a —1. The 
value "N" is implementation dependent. 
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2.3.2 Insert Entry into Longword Queue at Head Interlocked Resident 

Format: 

CALL_PAL INSQHILR ! PALcode format 

Operation: 

R16 contains the address of the queue header 
R17 contains the address of the new entry 
RO receives status: 

-1 if the secondary interlock was set 
0 if the queue was not empty before adding this entry 
1 if the queue was empty before adding this entry 

Must have write access to header and queue entries 
Header and entries must be quadword aligned. 
Header cannot be equal to entry. 
All parts of the Queue must be memory resident 

N <- {retry_amount} 
REPEAT 

LOAD_LOCKED (tmpO <- (Rl6)) 
IF tmpO<0> EQ 1 THEN 

RO «- -1, {return} 
done <- STORE_CONDITIONAL ((R16 
N ♦- N - 1 

UNTIL {done EQ 1} OR {N EQ 0} 
IF done NEQ 1, RO <- -1, {return} 

MB 

tmpl <- SEXT(tmpO<31:0>) 
tmp2 <- SEXT({R16 - R17}<31:0>) 
(R17)<31:0> «- tmpl + tmp2 
(R17 + 4)<31:0> <- tmp2 

! Implementation-specific 

! Acquire hardware interlock. 
! Try to set secondary interlock. 
! Already set 
) <- {tmpO OR 1} ) 

Retry exceeded 

! Enqueue the entry 
! Forward link of entry. 
! Backward link of entry. 

(R16 + tmpl + 4)<31:0> 

MB 
(R16)<31:0> -tmp2 

IF tmpl EQ 0 THEN 
RO <- 1 

ELSE 
RO <- 0 

END 

-tmpl - tmp2 ! Successor back link 

! Forward link of header 
! Release the lock 

! Queue was empty 

! Queue was not empty 

Exceptions: 

Illegal Operand 
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Instruction mnemonics: 

CALL_PAL INSQHILR Insert Entry into Longword Queue 
at Head Interlocked Resident 

Description: 

If the secondary interlock is clear, INSQHILR inserts the entry specified in R17 into 
the self-relative queue following the header specified in R16. 
If the entry inserted was the first one in the queue, RO is set to 1; otherwise, it is set 
to 0. The insertion is a non-interruptible operation. The insertion is interlocked to 
prevent concurrent interlocked insertions or removals at the head or tail of the same 
queue by another process, in a multiprocessor environment. If the instruction fails 
to acquire the secondary interlock after "N" retry attempts, then (in the absence of 
exceptions) R<0> is set to a - 1 . The value "N" is implementation dependent. 

This instruction requires that the queue be memory resident and that the queue 
header and elements are quadword aligned. No alignment or memory management 
checks are made before starting queue modifications to verify these requirements. 
Therefore, if any of these requirements are not met, the queue may be left in an 
unpredictable state and an illegal operand fault may be reported. 
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2.3.3 Insert Entry into Quadword Queue at Head Interlocked 

Format: 

CALL.PAL INSQHIQ ! PALcode format 

Operation: 

R16 contains the address of the queue header 
R17 contains the address of the new entry 
RO receives status: 

-1 if the secondary interlock was set 
0 if the entry was not empty before adding this entry 
1 if the entry was empty before adding this entry 

Must have write access to header and queue entries 
Header and entries must be octaword aligned. 
Header cannot be equal to entry. 

check entry and header alignment and 
that the header and entry not same location 

IF {R16<3:0> NE 0} OR {R17<3:0> NE 0} OR {R16 EQ R17} THEN 
BEGIN 
{illegal operand exception} 

END 

N <- {retry_amount} ! 
REPEAT 

LOAD_LOCKED (tmpl «- (R16)) ! 
IF tmpl<0> EQ 1 THEN ! 

RO «- -1, {return} ! 
done «- STORE_CONDITIONAL ((R16) 
N <- N - 1 

UNTIL {done EQ 1} OR {N EQ 0} 
IF done NEQ 1, RO +- -1, {return} 

Implementation-specific 

Acquire hardware interlock. 
Try to set secondary interlock. 
Already set 
<- {tmpl OR 1} ) 

Retry exceeded 

Check Alignment 
Release secondary interlock 

MB 

IF {tmpl<3:l> NE 0} THEN BEGIN 
BEGIN 
(R16) <- tmpl 
{illegal operand exception} 

END 

Check if following addresses can be written 
without causing a memory management exception: 

entry 
header + tmpl 

IF {all memory accesses can NOT be completed} THEN 
BEGIN ! Release secondary interlock 
(R16) <- tmpl 
{initiate memory management fault} 

END 
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! All accesses can be done so enqueue the entry 
tmp2 <- R16 - R17 
(R17) <- tmpl + tmp2 
(R17 + 8) <- tmpl 
(R16 + tmpl + 8) «- -tmpl - tmp2 

MB 

Forward link 
Backward link 
Successor back link 

(R16) <— -tmp2 ! Forward link of header 
! Release the lock. 

IF tmpl EQ 0 THEN 
RO <— 1 ! Queue was empty 

ELSE 
RO <— 0 ! Queue was not empty 

END 

Exceptions: 

Access Violation 
Fault on Read 
Fault on Write 
Illegal Operand 
Translation Not Valid 

Instruction mnemonics: 

CALL_PAL INSQHIQ Insert into Quadword Queue at Head Interlocked 

Description: 

If the secondary interlock is clear, INSQHIQ inserts the entry specified in R17 into 
the self-relative queue following the header specified in R16. 

If the entry inserted was the first one in the queue, RO is set to 1; otherwise it is set 
to 0. The insertion is a non-interruptible operation. The insertion is interlocked to 
prevent concurrent interlocked insertions or removals at the head or tail of the same 
queue by another process, in a multiprocessor environment. Before the insertion, 
the processor validates that the entire operation can be completed. This ensures that 
if a memory management exception occurs, the queue is left in a consistent state 
(see Chapters 3 and 6). If the instruction fails to acquire the secondary interlock 
after "N" retry attempts, then (in the absence of exceptions) R<0> is set to a - 1 . The 
value "N" is implementation dependent. 
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2.3.4 Insert Entry into Quadword Queue at Head Interlocked Resident 

Format: 

CALL.PAL INSQHIQR ! PALcode format 

Operation: 

R16 contains the address of the queue header 
R17 contains the address of the new entry 
RO receives status: 

-1 if the secondary interlock was set 
0 if the entry was not empty before adding this entry 
1 if the entry was empty before adding this entry 

Must have write access to header and queue entries 
Header and entries must be octaword aligned. 
Header cannot be equal to entry. 
All parts of the Queue must be memory resident 

N <- {retry_amount} ! Implementation-specific 
REPEAT 

LOAD_LOCKED (tmpl <— (R16)) ! Acquire hardware interlock. 
IF tmpl<0> EQ 1 THEN ! Try to set secondary interlock. 

RO <— -1, {return} ! Already set 
done «- STORE_CONDITIONAL ((R16) <- {tmpl OR 1} ) 
N <- N - 1 

UNTIL {done EQ 1} OR {N EQ 0} 
IF done NEQ 1, RO «— -1, {return} ! Retry exceeded 

MB 

tmp2 <- R16 - R17 
(R17) <- tmpl + tmp2 
(R17 + 8) <- tmp2 
(R16 + tmpl + 8) <- - tmpl - tmp2 

MB 
(R16) -tmp2 

IF tmpl EQ 0 THEN 
RO <- 1 

ELSE 
RO <- 0 

END 

! Enqueue the entry 
! Forward link of entry. 
! Backward link of entry. 
! Successor back link 

! Forward link of header, 
! Release the lock 

! Queue was empty 

! Queue was not empty 

Exceptions: 

Illegal Operand 
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Instruction mnemonics: 

CALL_PAL INSQHIQR Insert Entry into Quadword Queue 
at Head Interlocked Resident 

Description: 

If the secondary interlock is clear, INSQHIQR inserts the entry specified in R17 into 
the self-relative queue following the header specified in R16. 

If the entry inserted was the first one in the queue, RO is set to 1; otherwise, it is set 
to 0. The insertion is a non-interruptible operation. The insertion is interlocked to 
prevent concurrent interlocked insertions or removals at the head or tail of the same 
queue by another process, in a multiprocessor environment. If the instruction fails 
to acquire the secondary interlock after "N" retry attempts, then (in the absence of 
exceptions) R<0> is set to a - 1 . The value "N" is implementation dependent. 

This instruction requires that the queue be memory resident and that the queue 
header and elements are octaword aligned. No alignment or memory management 
checks are made before starting queue modifications to verify these requirements. 
Therefore, if any of these requirements are not met, the queue may be left in an 
unpredictable state and an illegal operand fault may be reported. 

2-38 OpenVMS AXP Software (II—A) 



2.3.5 Insert Entry into Longword Queue at Tail Interlocked 

Format: 

CALL.PAL INSQTIL ! PALcode format 

Operation: 

R16 contains the address of the queue header 
R17 contains the address of the new entry 
RO receives status: 

-1 if the secondary interlock was set 
0 if the entry was not empty before adding this entry 
1 if the entry was empty before adding this entry 

Must have write access to header and queue entries 
Header and entries must be quadword aligned. 
Header cannot be equal to entry. 

check entry and header alignment and 
that the header and entry not same location and 
that the header and entry are valid 32 bit addresses 

IF {R16<2:0> NE 0} OR {R17<2:0> NE 0} OR {R16 EQ R17} OR 
(SEXT(R16<31:0>) NE R16} OR {SEXT(R17<31:0>) NE R16} THEN 
BEGIN 
{illegal operand exception} 

END 

N <- {retry_amount} ! Implementation-specific 
REPEAT 

LOAD_LOCKED (tmpO «- (R16)) ! Acquire hardware interlock. 
IF tmp0<0> EQ 1 THEN ! Try to set secondary interlock. 

RO <— -1, {return} ! Already set 
done «- STORE_CONDITIONAL ((R16) ♦- {tmpO OR 1} ) 
N <- N - 1 

UNTIL {done EQ 1} OR {N EQ 0} 
IF done NEQ 1, RO «— -1, {return} ! Retry exceeded 

MB 

tmpl 
tmp2 

SEXT(tmpO<31:0>) 
SEXT(tmpO<63:32>) 

IF {tmpl<2:l> NE 0} OR {tmp2<2:0> NE 0} THEN ! Check Alignment 
BEGIN ! Release secondary interlock 
(R16) <- tmpO 
{illegal operand exception} 

END 
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Check if following addresses can be written 
without causing a memory management exception: 

entry-
header + (header + 4) 

IF {all memory accesses can NOT be completed} THEN 
BEGIN ! Release secondary interlock 
(R16) <- tmpO 
{initiate memory management fault} 

END 

! All Accesses can be done so enqueue entry 
tmp3 «- SEXT( {R16 - R17}<31:0>) 
(R17)<31:0> <- tmp3 ! Forward link 
(R17 + 4)<31:0> «-. tmp2 + tmp3 ! Backward link 
IF {tmp2 NE 0} THEN ! Forward link of predecessor 

(R16+tmp2)<31:0> «- -tmp3 - tmp2 
ELSE 

tmpl <- SEXT({-tmp3 - tmp2}<31:0>) 
(R16+4)<31:0> <- -tmp3 ! Backward link of header 

MB 

(R16)<31:0> <— tmpl ! Forward link, release lock 
IF tmpl EQ -tmp3 THEN 

R0 <— 1 ! Queue was empty 
ELSE 

R0 «— 0 ! Queue was not empty 
END 

Exceptions: 

Access Violation 
Fault on Read 
Fault on Write 
Illegal Operand 
Translation Not Valid 

Instruction mnemonics: 

CALL_PAL INSQTIL Insert into Longword Queue at Tail Interlocked 

Description: 

If the secondary interlock is clear, INSQTIL inserts the entry specified in R17 into 
the self-relative queue preceding the header specified in R16. 

If the entry inserted was the first one in the queue, R0 is set to 1; othewise it is set 
to 0. The insertion is a non-interruptible operation. The insertion is interlocked to 
prevent concurrent interlocked insertions or removals at the head or tail of the same 
queue by another process, in a multiprocessor environment. Before performing any 
part of the operation, the processor validates that the insertion can be completed. 
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This ensures that if a memory management exception occurs, the queue is left in 
a consistent state (see Chapters 3 and 6). If the instruction fails to acquire the 
secondary interlock after "N" retry attempts, then (in the absence of exceptions) 
R<0> is set to a - 1 . The value "N" is implementation dependent. 
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2.3.6 Insert Entry into Longword Queue at Tail Interlocked Resident 

Format: 

CALL.PAL INSQTILR ! PALcode format 

Operation: 

R16 contains the address of the queue header 
R17 contains the address of the new entry 
RO receives status: 

-1 if the secondary interlock was set 
0 if the entry was not empty before adding this entry 
1 if the entry was empty before adding this entry 

Must have write access to header and queue entries 
Header and entries must be quadword aligned. 
Header cannot be equal to entry. 
All parts of the Queue must be memory resident 

N <- {retry_amount} 
REPEAT 

LOAD_LOCKED (tmpO <- (R16)) 
IF tmpO<0> EQ 1 THEN 

RO <- -1, {return} 
done <- STORE_CONDITIONAL ((R16 
N <- N - 1 

UNTIL {done EQ 1} OR {N EQ 0} 
IF done NEQ 1, RO «- -1, {return} 

MB 

! Implementation-specific 

! Acquire hardware interlock. 
! Try to set secondary interlock. 
! Already set 
) <- {tmpO OR 1} ) 

Retry exceeded 

tmpl <- SEXT(tmpO<31:0>) 
tmp2 «- SEXT(tmpO<63:32>) 
tmp3 <- SEXT( {R16 - R17}<31:0>) 
(R17)<31:0> <- tmp3 
(R17 + 4)<31:0> <- tmp2 + tmp3 
IF {tmp2 NE 0} THEN ! 

(R16+tmp2)<31:0> «- -tmp3 - tmp2 
ELSE 

tmpl <- <- SEXT({-tmp3 - tmp2}<31:0> 

! Forward link 
! Backward link 
! Forward link of predecessor 

(R16+4)<31:0> 

MB 

(R16)<31:0> <-

-tmp3 

IF tmpl EQ 
RO <- 1 

ELSE 
RO <- 0 

END 

<— tmpl 

tmp3 THEN 

! Backward link of header 

! Forward link 
! Release the lock 

! Queue was empty 

! Queue was not empty 
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Exceptions: 

Illegal Operand 

Instruction mnemonics: 

CALL_PAL INSQTILR Insert Entry into Longword Queue 
at Tail Interlocked Resident 

Description: 

If the secondary interlock is clear, INSQTILR inserts the entry specified in R17 into 
the self-relative queue preceding the header specified in R16. 

If the entry inserted was the first one in the queue, RO is set to 1; otherwise, it is set 
to 0. The insertion is a non-interruptible operation. The insertion is interlocked to 
prevent concurrent interlocked insertions or removals at the head or tail of the same 
queue by another process, in a multiprocessor environment. If the instruction fails 
to acquire the secondary interlock after "N" retry attempts, then (in the absence of 
exceptions) R<0> is set to a - 1 . The value "N" is implementation dependent. 

This instruction requires that the queue be memory resident and that the queue 
header and elements are quadword aligned. No alignment or memory management 
checks are made before starting queue modifications to verify these requirements. 
Therefore, if any of these requirements are not met, the queue may be left in an 
unpredictable state and an illegal operand fault may be reported. 
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2.3.7 Insert Entry into Quadword Queue at Tail Interlocked 

Format: 

CALL.PAL INSQTIQ ! PALcode format 

Operation: 

R16 contains the address of the queue header 
R17 contains the address of the new entry 
RO receives status: 

-1 if the secondary interlock was set 
0 if the entry was not empty before adding this entry 
1 if the entry was empty before adding this entry 

Must have write access to header and queue entries 
Header and entries must be octaword aligned. 
Header cannot be equal to entry. 

check entry and header alignment and 
that the header and entry not same location 

IF {R16<3:0> NE 0} OR {R17<3:0> NE 0} OR {R16 EQ R17} THEN 
BEGIN 
{illegal operand exception} 

END 

N <- {retry_amount} 
REPEAT 

LOAD_LOCKED (tmpl <- (R16)) 
IF tmpl<0> EQ 1 THEN 

RO ♦- -1, {return} 
done «- STORE_CONDITIONAL ((R16 
N <- N - 1 

UNTIL {done EQ 1} OR {N EQ 0} 
IF done NEQ 1 , RO <- -1, {return} 

MB 

! Implementation-specific 

! Acquire hardware interlock. 
! Try to set secondary interlock. 
! Already set 
) <- {tmpl OR 1} ) 

Retry exceeded 

tmp2 «- (R16+8) 
IF {tmpl<3:l> NE 0} OR {tmp2<3:0> NE 0} THEN ! Check Alignment. 

BEGIN ! Release secondary interlock. 
(R16) <- tmpl 
{illegal operand exception} 

END 

Check if following addresses can be written 
without causing a memory management exception: 

entry 
header + (header + 8) 

IF {all memory accesses can NOT be completed} THEN 
BEGIN ! Release secondary interlock. 
(R16) «- tmpl 
{initiate memory management fault} 

END 
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! All accesses can be done so enqueue the entry 
tmp3 <- R16 - R17 
(R17) <- tmp3 ! Forward link 
(R17 + 8) <— tmp2 + tmp3 ! Backward link 
IF {tmp2 NE 0} THEN ! Forward link of predecessor 

(R16 + tmp2) <- -tmp3 - tmp2 
ELSE 

tmpl <— {-tmp3 - tmp2} 
(R16+8) <— -tmp3 ! Backward link of header 

MB 

(R16) <— tmpl ! Forward link 
! Release the lock 

IF tmpl EQ -tmp3 THEN 
R0 <— 1 ! Queue was empty 

ELSE 
R0 <— 0 ! Queue was not empty 

END 

Exceptions: 

Access Violation 
Fault on Read 
Fault on Write 
Illegal Operand 
Translation Not Valid 

Instruction mnemonics: 

CALL_PAL INSQTIQ Insert into Quadword Queue at Tail Interlocked 

Description: 

If the secondary interlock is clear, INSQTIQ inserts the entry specified in R17 into 
the self-relative queue preceding the header specified in R16. 

If the entry inserted was the first one in the queue, R0 is set to 1; otherwise, it is set 
to 0. The insertion is a non-interruptible operation. The insertion is interlocked to 
prevent concurrent interlocked insertions or removals at the head or tail of the same 
queue by another process, in a multiprocessor environment. Before performing any 
part of the operation, the processor validates that the insertion can be completed. 
This ensures that if a memory management exception occurs, the queue is left in 
a consistent state (see Chapters 3 and 6). If the instruction fails to acquire the 
secondary interlock after "N" retry attempts, then (in the absence of exceptions) 
R<0> is set to a - 1 . The value "N" is implementation dependent. 
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2.3.8 Insert Entry into Quadword Queue at Tail Interlocked Resident 

Format: 

CALL.PAL INSQTIQR ! PALcode format 

Operation: 

R16 contains the address of the queue header 
R17 contains the address of the new entry 
RO receives status: 

-1 if the secondary interlock was set 
0 if the entry was not empty before adding this entry 
1 if the entry was empty before adding this entry 

Must have write access to header and queue entries 
Header and entries must be octaword aligned. 
Header cannot be equal to entry. 
All parts of the Queue must be memory resident 

N <- {retry_amount} ! Implementation-specific 
REPEAT 

LOAD_LOCKED (tmpl *- (R16)) ! Acquire hardware interlock. 
IF tmpl<0> EQ 1 THEN ! Try to set secondary interlock. 

RO <— -1, {return} ! Already set 
done «- STORE_CONDITIONAL ((R16) «- {tmpl OR 1} ) 
N «- N - 1 

UNTIL {done EQ 1} OR {N EQ 0} 
IF done NEQ 1, RO <— -1, {return} ! Retry exceeded 

MB 

tmp2 <- (R16+8) 
tmp3 <- R16 - R17 
(R17) <- tmp3 ! Forward link 
(R17 + 8) <- tmp2 + tmp3 ! Backward link 
IF {tmp2 NE 0} THEN ! Forward link of predecessor 

(R16 + tmp2) «- -tmp3 - tmp2 
ELSE 

tmpl «— {-tmp3 - tmp2} 
(R16+8) <— -tmp3 ! Backward link of header 

MB 

(R16) *— tmpl ! Forward link and release the lock 
IF tmpl EQ -tmp3 THEN 

RO «— 1 ! Queue was empty 
ELSE 

RO <— 0 ! Queue was not empty 
END 
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Exceptions: 

Illegal Operand 

Instruction mnemonics: 

CALL_PAL INSQTIQR Insert Entry into Quadword Queue 
at Tail Interlocked Resident 

Description: 

If the secondary interlock is clear, INSQTIQR inserts the entry specified in R17 into 
the self-relative queue preceding the header specified in R16. 
If the entry inserted was the first one in the queue, RO is set to 1; otherwise, it is set 
to 0. The insertion is a non-interruptible operation. The insertion is interlocked to 
prevent concurrent interlocked insertions or removals at the head or tail of the same 
queue by another process, in a multiprocessor environment. If the instruction fails 
to acquire the secondary interlock after "N" retry attempts, then (in the absence of 
exceptions) R<0> is set to a - 1 . The value "N" is implementation dependent. 
This instruction requires that the queue be memory resident and that the queue 
header and elements are octaword aligned. No alignment or memory management 
checks are made before starting queue modifications to verify these requirements. 
Therefore, if any of these requirements are not met, the queue may be left in an 
unpredictable state and an illegal operand fault may be reported. 
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2.3.9 Insert Entry into Longword Queue 

Format: 

CALL.PAL INSQUEL ! PALcode format 

Operation: 

! R16 contains the address of the predecessor entry 
! or the 32 bit address of the 32 bit address of the 
! predecessor entry for INSQUEL/D 
! R17 contains the address of the new entry 
! RO receives status: 
! 0 if the queue was not empty before adding this entry 
! 1 if the queue was empty before adding this entry 

! Must have write access to header and queue entries 
IF opcode EQ INSQUEL/D THEN 

tmp2 <— SEXT((R16)<31:0>) ! Address of predecessor 
ELSE 

tmp2 «- R16 

IF {all memory accesses can be completed} THEN 
BEGIN 
tmpl<31:0> <- SEXT((tmp2)<31:0>) ! Get Forward Link 
(R17)<31:0> <- tmpl ! Set forward link 
(R17 + 4)<31:0> <- tmp2 ! Backward link 
(SEXT((tmp2)<31:0>) + 4)<31:0> <- R17 

! Backward link of Successor 
(tmp2)<31:0> <— R17 ! Forward link of Predecessor 
IF tmpl EQ tmp2 THEN 

RO <- 1 
ELSE 

RO «- 0 
END 

ELSE 
BEGIN 
{initiate fault} 

END 
END 

Exceptions: 

Access Violation 
Fault on Read 
Fault on Write 
Translation Not Valid 
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Instruction mnemonics: 

CALL_PAL INSQUEL Insert Entry into Longword Queue 
CALL_PAL INSQUEL/D Insert Entry into Longword Queue Deferred 

Description: 

INSQUEL inserts the entry specified in R17 into the absolute queue following the 
entry specified by the predecessor addressed by R16. INSQUEL/D performs the 
same operation on the entry specified by the contents of the longword addressed by 
R16. 

In either case, if the entry inserted was the first one in the queue, a 1 is returned in 
RO; otherwise, a 0 is returned in RO. The insertion is a non-interruptible operation. 
Before performing any part of the insertion, the processor validates that the entire 
operation can be completed. This ensures that if a memory management exception 
occurs, the queue is left in a consistent state (see Chapters 3 and 6). 
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2.3.10 Insert Entry into Quadword Queue 

Format: 

CALL.PAL INSQUEQ ! PALcode format 

Operation: 

R16 contains the address of the predecessor entry 
or the address of the address of the 
predecessor entry for INSQUEQ/D 

R17 contains the address of the new entry 
R0 receives status: 

0 if the queue was not empty before adding this entry 
1 if the queue was empty before adding this entry 

Must have write access to header and queue entries 
Header and entries must be octaword aligned 

IF opcode EQ INSQUEQ/D THEN 
IF {R16<3:0> NE 0} THEN 
BEGIN 
{illegal operand exception} 

END 
tmp2 <— (R16) ! Address of predecessor 

ELSE 
tmp2 <- R16 

END 
IF {tmp2<3:0> NE 0} OR {R17<3:0> NE 0} THEN 

BEGIN 
{illegal operand exception} 

END 
IF {all memory accesses can be completed} THEN 

BEGIN 
tmpl «— (tmp2) ! Get forward link of entry 
IF {tmpl<3:0> NE 0} THEN 
BEGIN ! Check alignment 
{illegal operand exception} 

END 
(R17) ♦- tmpl 
(R17 + 8) ♦- tmp2 
(tmp + 8) «- R17 
(tmp2) «- R17 
IF tmpl EQ tmp2 THEN 
R0 4- 1 

ELSE 
R0 4- 0 

END 
ELSE 
BEGIN 
{initiate fault} 

END 
END 

Set forward link of entry 
Backward link of entry 
Backward link of successor 
Forward link of predecessor 
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Exceptions: 

Access Violation 
Fault on Read 
Fault on Write 
Translation Not Valid 
Illegal Operand 

Instruction mnemonics: 

CALL_PAL INSQUEQ Insert Entry into Quadword Queue 
CALL.PAL INSQUEQ/D Insert Entry into Quadword Queue Deferred 

Description: 

INSQUEQ inserts the entry specified in R17 into the absolute queue following the 
entry specified by the predecessor addressed by R16. INSQUEQ/D performs the 
same operation on the entry specified by the contents of the quadword addressed by 
R16. 

In either case, if the entry inserted was the first one in the queue, a 1 is returned 
in RO; otherwise, a 0 is returned in RO. The insertion is a non-interruptible 
operation. Before performing any part of the insertion, the processor validates that 
the entire operation can be completed. This ensures that if a memory management 
exception occurs, the queue is left in a consistent state (see Chapters 3 and 6). RO 
is unpredictable if an exception occurs. The relative order of reporting memory 
management and illegal operand exceptions is unpredictable. 
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2.3.11 Remove Entry from Longword Queue at Head Interlocked 

Format: 

CALL.PAL REMQHIL ! PALcode format 

Operation: 

R16 contains the address of the queue header 
RO receives status: 

-1 if the secondary interlock was set 
0 if the queue was empty 
1 if entry removed and queue still not empty 
2 if entry removed and queue empty 

Rl receives the address of the removed entry 

Must have write access to header and queue entries 
Header and entries must be quadword aligned. 

Check header alignment and 
that the header is a valid 32 bit address 

IF {R16<2:0> NE 0} OR {SEXT(R16<31:0>) NE R16} THEN 
BEGIN 
{illegal operand exception} 

END 

Implementation-specific 

(R16) 

N <- {retry_amount} 
REPEAT 

LOAD_LOCKED (tmpO <-
IF tmp0<0> EQ 1 THEN 

RO <- -1, {return} 
done <- STORE_CONDITIONAL ((R16) <- {tmpO OR 1} ) 
N <- N - 1 

UNTIL {done EQ 1} OR {N EQ 0} 
IF done NEQ 1, RO <- -1, {return} ! Retry exceeded 

! Acquire hardware interlock. 
! Try to set secondary interlock. 
! Already set 

! Check Alignment 
! Release secondary interlock 

MB 

tmpl <- SEXT(tmpO<31:0>) 
IF tmpl<2:0> NE 0 THEN 
BEGIN 
(R16) <- tmpO 
{illegal operand exception} 

END 

Check if the following can be done without 
causing a memory management exception: 
read contents of header + tmpl {if tmpl NE 0} 
write into header + tmpl + (header + tmpl) {if tmpl NE 0} 

IF {all memory accesses can NOT be completed} THEN 
BEGIN ! Release secondary interlock 
(R16) <- tmpO 
{initiate memory management fault} 

END 
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tmp2 <- SEXT({R16 + tmpl}<31:0>) 
IF {tmpl EQL 0} THEN 
tmp3 <- R16 

ELSE 
tmp3 «- SEXT({tmp2 + SEXT((tmp2)<31:0>)}) 

IF tmp3<2:0> NE 0 THEN 
BEGIN 
(R16) <- tmpO 
{illegal operand exception} 

END 

! Check Alignment 
! Release secondary interlock 

(tmp3 + 4)<31:0> «-

MB 

(R16)<31:0> <- tmp3 

R16 - tmp3 ! Backward link of successor 

R16 

IF tmpl EQ 0 THEN 
RO <- 0 

ELSE 
BEGIN 
IF {tmp3 - R16} EQ 0 THEN 
RO <- 2 
ELSE 
RO <- 1 

END 
END 
Rl <- tmp2 

! Forward link of header 
! Release lock 

! Queue was empty 

! Queue now empty 

! Queue not empty 

! Address of removed entry 

Exceptions: 

Access Violation 
Fault on Read 
Fault on Write 
Illegal Operand 
Translation Not Valid 

Instruction mnemonics: 

CALL_PAL REMQHIL Remove from Longword Queue at Head Interlocked 

Description: 

If the secondary interlock is clear, REMQHIL removes from the self-relative queue 
the entry following the header, pointed to by R16, and the address of the removed 
entry is returned in Rl . 

If the queue was empty prior to this instruction and secondary interlock succeeded, 
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at 
the start of the removal and the queue is empty after the removal, a 2 is returned 
in RO. If the instruction fails to acquire the secondary interlock after "N" retry 
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attempts, then (in the absence of exceptions) R<0> is set to a - 1 . The value "N" is 
implementation dependent. 

The removal is interlocked to prevent concurrent interlocked insertions or removals 
at the head or tail of the same queue by another process, in a multiprocessor 
environment. The removal is a non-interruptible operation. Before performing 
any part of the removal, the processor validates that the entire operation can be 
completed. This ensures that if a memory management exception occurs, the queue 
is left in a consistent state (see Chapters 3 and 6). 
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2.3.12 Remove Entry from Longword Queue at Head Interlocked Resident 

Format: 

CALL.PAL REMQHILR ! PALcode format 

Operation: 

R16 contains the address of the queue header 
RO receives status: 

-1 if the secondary interlock was set 
0 if the queue was empty 
1 if entry removed and queue still not empty 
2 if entry removed and queue empty 

Rl receives the address of the removed entry 

Must have write access to header and queue entries 
Header and entries must be quadword aligned. 
All parts of the Queue must be memory resident 

N <- {retry_amount} ! Implementation-specific 
REPEAT 

LOAD_LOCKED (tmpO <— (R16)) ! Acquire hardware interlock. 
IF tmpO<0> EQ 1 THEN ! Try to set secondary interlock. 

RO <— -1, {return} ! Already set 
done <- STORE_CONDITIONAL ((R16) «- {tmpO OR 1} ) 
N «- N - 1 

UNTIL {done EQ 1} OR {N EQ 0} 
IF done NEQ 1, RO <— -1, {return} ! Retry exceeded 

MB 

tmpl <- SEXT(tmpO<31:0>) 
tmp2 «- SEXT({R16 + tmpl}<31:0>) 
IF {tmpl EQL 0} THEN 

tmp3 <- R16 
ELSE 

tmp3 <- SEXT({tmp2 + SEXT((tmp2)<31:0>)}) 
END 

(tmp3 + 4)<31:0> 

MB 
(R16)<31:0> 

R16 tmp3 

tmp3 - R16 

IF tmpl EQ 0 THEN 
RO «- 0 

ELSE 
BEGIN 
IF {tmp3 - R16} EQ 0 THEN 
RO — 2 

ELSE 
RO 4- 1 

END 
END 
Rl <- tmp2 

! Backward link of successor 

! Forward link of header 
! Release lock 

! Queue was empty 

! Queue now empty 

! Queue not empty 

! Address of removed entry 
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Exceptions: 

Illegal Operand 

Instruction mnemonics: 

CALL_PAL REMQHILR Remove Entry from Longword Queue 
at Head Interlocked Resident 

Description: 

If the secondary interlock is clear, REMQHILR removes from the self-relative queue 
the entry following the header, pointed to by R16, and the address of the removed 
entry is returned in Rl . 

If the queue was empty prior to this instruction and secondary interlock succeeded, 
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at 
the start of the removal and the queue is empty after the removal, a 2 is returned 
in RO. If the instruction fails to acquire the secondary interlock after "N" retry 
attempts, then (in the absence of exceptions) R<0> is set to a - 1 . The value "N" is 
implementation dependent. 

The removal is interlocked to prevent concurrent interlocked insertions or removals 
at the head or tail of the same queue by another process, in a multiprocessor 
environment. The removal is a non-interruptible operation. 

This instruction requires that the queue be memory resident and that the queue 
header and elements are quadword aligned. No alignment or memory management 
checks are made before starting queue modifications to verify these requirements. 
Therefore, if any of these requirements are not met, the queue may be left in an 
unpredictable state and an illegal operand fault may be reported. 
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2.3.13 Remove Entry from Quadword Queue at Head Interlocked 

Format: 

CALL.PAL REMQHIQ ! PALcode format 

Operation: 

R16 contains the address of the queue header 
RO receives status: 

-1 if the secondary interlock was set 
0 if the queue was empty 
1 if entry removed and queue still not empty 
2 if entry removed and queue empty 

Rl receives the address of the removed entry 

Must have write access to header and queue entries 
Header and entries must be octaword aligned. 

Check header alignment 
IF {R16<3:0>ttE 0} THEN 

BEGIN 
{illegal operand exception} 

END 

N <- {retry_amount} ! Implementation-specific 
REPEAT 

LOAD_LOCKED (tmpl <— (R16)) ! Acquire hardware interlock. 
IF tmpl<0> EQ 1 THEN ! Try to set secondary interlock. 

RO *— -1, {return} ! Already set 
done <- STORE_CONDITIONAL ((R16) <- {tmpl OR 1} ) 
N <- N - 1 

UNTIL {done EQ 1} OR {N EQ 0} 
IF done NEQ 1, RO <— -1, {return} ! Retry exceeded 

! Check Alignment 
! Release secondary interlock 

MB 

IF tmpl<3:0> NE 0 THEN 
BEGIN 
(R16) «- tmpl 
{illegal operand exception} 

END 

Check if the following can be done without 
causing a memory management exception: 
read contents of header + tmpl {if tmpl NE 0} 
write into header + tmpl + (header + tmpl) {if tmpl NE 0} 

IF {all memory accesses can NOT be completed} THEN 
BEGIN ! Release secondary interlock 
(R16) <- tmpO 
{initiate memory management fault} 

END 
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tmp2 ♦- RI6 + tmpl 
IF {tmpl EQL 0} THEN 

tmp3 <- R16 
ELSE 

tmp3 «— tmp2 + ( tmp2 ) 

IF tmp3<3:0> NE 0 THEN ! Check Alignment 
BEGIN ! Release secondary interlock 
(R16) <- tmpl 
{illegal operand exception} 

END 

(tmp3 + 8) <— R16 - tmp3 ! Backward link of successor 

MB 

(R16) <- tmp3 - R16 ! Forward link of header 
! Release lock 

IF tmpl EQ 0 THEN 
RO «— 0 ! Queue was empty 

ELSE 
BEGIN 

IF {tmp3 - R16} EQ 0 THEN 
RO «— 2 ! Queue now empty 

ELSE * 
RO <♦— 1 ! Queue not empty 

END 
END 
Rl <— tmp2 ! Address of removed entry 

Exceptions: 

Access Violation 

Fault on Read 

Fault on Write 

Illegal Operand 

Translation Not Valid 

Instruction mnemonics: 

CALL_PAL REMQHIQ Remove from Quadword Queue at Head 
Interlocked 

Description: 

If the secondary interlock is clear, REMQHIQ removes from the self-relative queue 
the entry following the header, pointed to by R16, and the address of the removed 
entry is returned in Rl. 

If the queue was empty prior to this instruction and secondary interlock succeeded, 
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at 
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the start of the removal, and the queue is empty after the removal, a 2 is returned 
in RO. If the instruction fails to acquire the secondary interlock after "N" retry 
attempts, then (in the absence of exceptions) R<0> is set to a - 1 . The value "N" is 
implementation dependent. 
The removal is interlocked to prevent concurrent interlocked insertions or removals 
at the head or tail of the same queue by another process, in a multiprocessor 
environment. The removal is a non-interruptible operation. Before performing 
any part of the removal, the processor validates that the entire operation can be 
completed. This ensures that if a memory management exception occurs, the queue 
is left in a consistent state (see Chapters 3 and 6). 

OpenVMS AXP PALcode Instruction Descriptions (II—A) 2-59 



2.3.14 Remove Entry from Quadword Queue at Head Interlocked Resident 

Format: 

CALL.PAL REMQHIQR ! PALcode format 

Operation: 

R16 contains the address of the queue header 
RO receives status: 

-1 if the secondary interlock was set 
0 if the queue was empty 
1 if entry removed and queue still not empty 
2 if entry removed and queue empty 

Rl receives the address of the removed entry 

Must have write access to header and queue entries 
Header and entries must be octaword aligned. 
All parts of the Queue must be memory resident 

N <- {retry_amount} ! Implementation-specific 
REPEAT 

LOAD_LOCKED (tmpl <— (R16)) ! Acquire hardware interlock. 
IF tmpl<0> EQ 1 THEN ! Try to set secondary interlock. 

RO <— -1, {return} ! Already set 
done <- STORE_CONDITIONAL ((R16) «- {tmpl OR 1} ) 
N <- N - 1 

UNTIL {done EQ 1} OR {N EQ 0} 
IF done NEQ 1, RO <— -1, {return} ! Retry exceeded 

MB 

tmp2 <— R16 + tmpl 
IF {tmpl EQL 0} THEN 

tmp3 <- R16 
ELSE 

tmp3 <— tmp2 + ( tmp2 ) 
END 
(tmp3 + 8) «- R16 - tmp3 ! Backward link of successor 

MB 

(R16) tmp3 - R16 

IF tmpl EQ 0 THEN 
RO <- 0 

ELSE 
IF {tmp3 - R16} EQ 0 THEN 

RO «- 2 
ELSE 

RO <- 1 
END 
Rl ♦- tmp2 

! Forward link of header 
! Release lock 

! Queue was empty 

! Queue now empty 

! Queue not empty 

! Address of removed entry 
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Exceptions: 

Illegal Operand 

Instruction mnemonics: 

CALL_PAL REMQHIQR Remove Entry from Quadword Queue 
at Head Interlocked Resident 

Description: 

If the secondary interlock is clear, REMQHIQR removes from the self-relative queue 
the entry following the header, pointed to by R16, and the address of the removed 
entry is returned in Rl . 

If the queue was empty prior to this instruction and secondary interlock succeeded, 
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at 
the start of the removal, and the queue is empty after the removal, a 2 is returned 
in RO. If the instruction fails to acquire the secondary interlock after "N" retry 
attempts, then (in the absence of exceptions) R<0> is set to a - 1 . The value "N" is 
implementation dependent. 

The removal is interlocked to prevent concurrent interlocked insertions or removals 
at the head or tail of the same queue by another process, in a multiprocessor 
environment. The removal is a non-interruptible operation. 

This instruction requires that the queue be memory resident and that the queue 
header and elements are octaword aligned. No alignment or memory management 
checks are made before starting queue modifications to verify these requirements. 
Therefore, if any of these requirements are not met, the queue may be left in an 
unpredictable state and an illegal operand fault may be reported. 
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2.3.15 Remove Entry from Longword Queue at Tail Interlocked 

Format: 

CALL.PAL REMQTIL ! PALcode format 

Operation: 

R16 contains the address of the queue header 
RO receives status: 

-1 if the secondary interlock was set 
0 if the queue was empty 
1 if entry removed and queue still not empty 
2 if entry removed and queue empty 

Rl receives the address of the removed entry 

Must have write access to header and queue entries 
Header and entries must be quadword aligned. 

Check header alignment and 
that the header is a valid 32 bit address 

IF {R16<2:0> NE 0} OR {SEXT(R16<31:0>) NE R16} THEN 
BEGIN 
{illegal operand exception} 

END 

! Implementation-specific 

(R16)) 

N <- {retry_amount} 
REPEAT 

LOAD_LOCKED (tmpO 
IF tmp0<0> EQ 1 THEN 

RO <- -1, {return} 
done «- STORE_CONDITIONAL ((R16) «- {tmpO OR 1} 
N <- N - 1 

UNTIL {done EQ 1} OR {N EQ 0} 
IF done NEQ 1, RO <— -1, {return} ! Retry exceeded 

MB 

! Acquire hardware interlock. 
! Try to set secondary interlock. 
! Already set 

) 

Check alignment 
! Release secondary interlock 

tmpl <- SEXT(tmpO<31:0>) 
tmp5 <- SEXT(tmpO<63:32>) 
IF tmp5<2:0> NE 0 THEN 
BEGIN 
(R16) <- tmpO 
{illegal operand exception} 

END 

Check if the following can be done without 
causing a memory management exception: 
read contents of header + (header +4) {if tmpl NE 0} 
write into header + (header + 4) 
+ (header + 4 + (header + 4)){if tmpl NE 0} 

IF {all memory accesses can NOT be completed} THEN 
BEGIN ! Release secondary interlock 
(R16) ♦- tmpO 
{initiate memory management fault} 

END 
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addr ♦- SEXT( {R16 + tmp5}<31:0> ) 
tmp2 «- SEXT( {addr + SEXT( (addr+4)<31:0>)}<31:0> ) 
IF tmp2<2:0> NE 0 THEN ! Check alignment 
BEGIN ! Release secondary interlock 
(R16) <- tmpO 
{illegal operand exception} 

END 

! Forward link, release lock 

(R16 + 4)<31:0> <— tmp2 - R16 ! Backward link of header 
IF {tmp2 EQL R16} THEN 

(R16)<31:0> «- 0 
ELSE 

BEGIN 
(tmp2)<31:0> <- R16 - tmp2 

MB 
(R16)<31:0> «- tmpl 

END 
IF tmpl EQ 0 THEN 
RO -̂ 0 

ELSE 
BEGIN 
IF {tmp2 - R16} EQ 0 THEN 
RO «- 2 

ELSE 
RO -̂ 1 

END 
Rl <- addr 

! Forward link of predecessor 

! Release lock 

! Queue was empty 

! Queue now empty 

! Queue not empty 

! Address of removed entry 

Exceptions: 

Access Violation 

Fault on Read 

Fault on Write 

Illegal Operand 

Translation Not Valid 

Instruction mnemonics: 

CALL_PAL REMQTIL Remove from Longword Queue at Tail Interlocked 

Description: 

If the secondary interlock is clear, REMQTIL removes from the self-relative queue 
the entry preceding the header, pointed to by R16, and the address of the removed 
entry is returned in Rl. 

If the queue was empty prior to this instruction and secondary interlock succeeded, 
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at 
the start of the removal, and the queue is empty after the removal, a 2 is returned 
in RO. If the instruction fails to acquire the secondary interlock after "N" retry 
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attempts, then (in the absence of exceptions) R<0> is set to a - 1 . The value "N" is 
implementation dependent. 
The removal is interlocked to prevent concurrent interlocked insertions or removals 
at the head or tail of the same queue by another process, in a multiprocessor 
environment. The removal is a non-interruptible operation. Before performing 
any part of the removal, the processor validates that the entire operation can be 
completed. This ensures that if a memory management exception occurs, the queue 
is left in a consistent state (see Chapters 3 and 6). 
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2.3.16 Remove Entry from Longword Queue at Tail Interlocked Resident 

Format: 

CALLJPAL REMQTILR ! PALcode format 

Operation: 

R16 contains the address of the queue header 
RO receives status: 

-1 if the secondary interlock was set 
0 if the queue was empty 
1 if entry removed and queue still not empty 
2 if entry removed and queue empty 

Rl receives the address of the removed entry 

Must have write access to header and queue entries 
Header and entries must be quadword aligned. 
All parts of the Queue must be memory resident 

N <- {retry_amount} ! Implementation-specific 
REPEAT 

LOAD_LOCKED (tmpO «— (R16)) ! Acquire hardware interlock. 
IF tmpO<0> EQ 1 THEN ! Try to set secondary interlock. 

RO <— -1, {return} ! Already set 
done <- STORE_CONDITIONAL ((R16) «- {tmpO OR 1} ) 
N «- N - 1 

UNTIL {done EQ 1} OR {N EQ 0} 
IF done NEQ 1, RO «— -1, {return} ! Retry exceeded 

MB 

tmpl <- SEXT(tmp0<31:0>) 
tmp5 <- SEXT(tmp0<63:32>) 
addr <- SEXT ( {R16 + tmp5}<31:0> ) 
tmp2 <- SEXT( {addr + SEXT( (addr+4)<31:0>)}<31:0> ) 
(R16 + 4)<31:0> «- tmp2 - R16 
IF {tmp2 EQL R16} THEN 

(R16)<31:0> «- 0 
ELSE 
BEGIN 
(tmp2)<31:0> <- R16 - tmp2 
MB 
(R16)<31:0> <- tmpl 

END 
IF tmpl EQ 0 THEN 
R0 4- 0 

ELSE 
IF {tmp2 - R16} EQ 0 THEN 

R0 <- 2 
ELSE 

R0 -̂ 1 
END 

END 
Rl <- addr 

! Backward link of header 

! Forward link, release lock 

! Forward link of predecessor 

! Release lock 

! Queue was empty 

! Queue now empty 

! Queue not empty 

Address of removed entry 
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Exceptions: 

Illegal Operand 

Instruction mnemonics: 

CALL_PAL REMQTILR Remove Entry from Longword Queue 
at Tail Interlocked Resident 

Description: 

If the secondary interlock is clear, REMQTILR removes from the self-relative queue 
the entry preceding the header, pointed to by R16, and the address of the removed 
entry is returned in Rl . 

If the queue was empty prior to this instruction and secondary interlock succeeded, 
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at 
the start of the removal, and the queue is empty after the removal, a 2 is returned 
in RO. If the instruction fails to acquire the secondary interlock after "N" retry 
attempts, then (in the absence of exceptions) R<0> is set to a - 1 . The value "N" is 
implementation dependent. 

The removal is interlocked to prevent concurrent interlocked insertions or removals 
at the head or tail of the same queue by another process, in a multiprocessor 
environment. The removal is a non-interruptible operation. 

This instruction requires that the queue be memory resident and that the queue 
header and elements are quadword aligned. No alignment or memory management 
checks are made before starting queue modifications to verify these requirements. 
Therefore, if any of these requirements are not met, the queue may be left in an 
unpredictable state and an illegal operand fault may be reported. 
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2.3.17 Remove Entry from Quadword Queue at Tail Interlocked 

Format: 

CALL.PAL REMQTIQ ! PALcode format 

Operation: 

R16 contains the address of the queue header 
RO receives status: 

-1 if the secondary interlock was set 
0 if the queue was empty 
1 if entry removed and queue still not empty 
2 if entry removed and queue empty 

Rl receives the address of the removed entry 

Must have write access to header and queue entries 
Header and entries must be octaword aligned. 

Check header alignment 
IF {R16<3:0> NE 0} THEN 
BEGIN 
{illegal operand exception} 

END 

N <- {retry_amount} ! Implementation-specific 
REPEAT 

LOAD_LOCKED (tmpl <— (R16)) ! Acquire hardware interlock. 
IF tmpl<0> EQ 1 THEN ! Try to set secondary interlock. 

RO <— -1, {return} ! Already set 
done <- STORE_CONDITIONAL ((R16) «- {tmpl OR 1} ) 
N <- N - 1 

UNTIL {done EQ 1} OR {N EQ 0} 
IF done NEQ 1, RO 

MB 

-1, {return} ! Retry exceeded 

! Check Alignment 
! Release secondary interlock 

tmp5 <- (R16+8) 
IF tmp5<3:0> NE 0 THEN 

BEGIN 
(R16) <- tmpl 
{illegal operand exception} 

END 
Check if the following can be done without 
causing a memory management exception: 
read contents of header + (header +8) {if tmpl NE 0} 
write into header + (header + 8) 
+ (header + 8 + (header + 8)) {if tmpl NE 0} 

IF {all memory accesses can NOT be completed} THEN 
BEGIN ! Release secondary interlock 
(R16) <- tmpl 
{initiate memory management fault} 

END 
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addr <— RI6 + tmp5 
tmp2 «— addr + (addr + 8) 
IF tmp2<3:0> NE 0 THEN ! Check alignment 

BEGIN ! Release secondary interlock 
(R16) <- tmpl 
{illegal operand exception} 

END 

! Backward link of header 

! Forward link, release lock 

! Forward link of predecessor 

! Release lock 

! Queue was empty 

(R16 + 8) «-
IF {tmp2 EQL 

(R16) <-
ELSE 

BEGIN 
( tmp2 ) <-
MB 
(R16) <-

END 
END 
IF tmpl EQ 0 
RO 4- 0 

ELSE 
BEGIN 
IF {tmp2 -
RO -̂ 2 

ELSE 
RO 4- 1 

END 
END 
Rl «- addr 

Exceptions: 

tmp2 
R16} ' 
0 

R16 

tmpl 

THEN 

■ R16} 

- R16 ! 
ΓΗΕΝ 

1 

- tmp2 ! 

t 

1 

EQ 0 THEN 
! 

1 

1 

! Queue now empty 

Queue not empty 

! Address of removed entry 

Access Violation 

Fault on Read 

Fault on Write 

Illegal Operand 

Translation Not Valid 

Instruction mnemonics: 

CALL_PAL REMQTIQ Remove from Quadword Queue at Tail Interlocked 

Description: 

If the secondary interlock is clear, REMQTIQ removes from the self-relative queue 
the entry preceding the header, pointed to by R16, and the address of the removed 
entry is returned in Rl. 

If the queue was empty prior to this instruction and secondary interlock succeeded, 
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at 
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the start of the removal, and the queue is empty after the removal, a 2 is returned 
in RO. If the instruction fails to acquire the secondary interlock after "N" retry 
attempts, then (in the absence of exceptions) R<0> is set to a - 1 . The value "N" is 
implementation dependent. 
The removal is interlocked to prevent concurrent interlocked insertions or removals 
at the head or tail of the same queue by another process, in a multiprocessor 
environment. The removal is a non-interruptible operation. Before performing 
any part of the removal, the processor validates that the entire operation can be 
completed. This ensures that if a memory management exception occurs, the queue 
is left in a consistent state (see Chapters 3 and 6). 
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2.3.18 Remove Entry from Quadword Queue at Tail Interlocked Resident 

Format: 

CALL_PAL REMQTIQR ! PALcode format 

Operation: 

R16 contains the address of the queue header 
RO receives status: 

-1 if the secondary interlock was set 
0 if the queue was empty 
1 if entry removed and queue still not empty 
2 if entry removed and queue empty 

Rl receives the address of the removed entry 

Must have write access to header and queue entries 
Header and entries must be octaword aligned. 
All parts of the Queue must be memory resident 

N <- {retry_amount} ! Implementation-specific 
REPEAT 

LOAD_LOCKED (tmpl <— (R16)) ! Acquire hardware interlock. 
IF tmpl<0> EQ 1 THEN ! Try to set secondary interlock. 

RO ^ -1, {return} ! Already set 
done «- STORE_CONDITIONAL ((R16) <- {tmpl OR 1} ) 
N <- N - 1 

UNTIL {done EQ 1} OR {N EQ 0} 
IF done NEQ 1, RO <— -1, {return} ! Retry exceeded 

MB 

tmp5 <- (R16+8) 
addr «— R16 + tmp5 
tmp2 «— addr + (addr + 8) 
(R16 + 8) «- tmp2 - R16 
IF {tmp2 EQL R16} THEN 

(R16) <- 0 
ELSE 
BEGIN 
(tmp2) <- R16 - tmp2 
MB 
(R16) <- tmpl 

END 
END 
IF tmpl EQ 0 THEN 

RO «- 0 
ELSE 

IF {tmp2 - R16} EQ 0 THEN 
RO «- 2 

ELSE 
RO «- 1 

END 
Rl <— addr 

! Backward link of header 

! Forward link, release lock 

! Forward link of predecessor 

! Release lock 

! Queue was empty 

! Queue now empty 

! Queue not empty 

! Address of removed entry 
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Exceptions: 

Illegal Operand 

Instruction mnemonics: 

CALL_PAL REMQTIQR Remove Entry from Quadword Queue 
at Tail Interlocked Resident 

Description: 

If the secondary interlock is clear, REMQTIQR removes from the self-relative queue 
the entry preceding the header, pointed to by R16, and the address of the removed 
entry is returned in Rl . 

If the queue was empty prior to this instruction and secondary interlock succeeded, 
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at 
the start of the removal, and the queue is empty after the removal, a 2 is returned 
in RO. If the instruction fails to acquire the secondary interlock after "N" retry 
attempts, then (in the absence of exceptions) R<0> is set to a - 1 . The value "N" is 
implementation dependent. 

The removal is interlocked to prevent concurrent interlocked insertions or removals 
at the head or tail of the same queue by another process, in a multiprocessor 
environment. The removal is a non-interruptible operation. 

This instruction requires that the queue be memory resident and that the queue 
header and elements are octaword aligned. No alignment or memory management 
checks are made before starting queue modifications to verify these requirements. 
Therefore, if any of these requirements are not met, the queue may be left in an 
unpredictable state and an illegal operand fault may be reported. 
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2.3.19 Remove Entry from Longword Queue 

Format: 

CALL_PAL REMQUEL ! PALcode format 

Operation: 

R16 contains the address of the entry to remove 
or the address of the 32 bit address of the 
entry for REMQUEL/D 

RO receives status: 
-1 if the queue was empty 
0 if the queue is empty after removing an entry 
1 if the queue is not empty after removing an entry 

Rl receives the address of the removed entry 

Must have write access to header and queue entries 
IF opcode EQ REMQUEL/D THEN 

Rl «- SEXT((R16)<31:0>) 
ELSE 

Rl «- SEXT(R16<31:0>) 

IF {all memory accesses can be completed} THEN 
BEGIN 
tmpl «- (Rl)<31:0> 
((Rl+4)<31:0>)<31:0> «- tmpl 
tmp2 ♦- (Rl+4)<31:0> 
((Rl)<31:0>+4)<31:0> <- tmp2 
RO *- 1 
IF {tmpl EQ tmp2} THEN 
RO <- 0 

IF {Rl EQ tmp2} THEN 
RO «- -1 

END 
ELSE 
BEGIN 
{initiate fault} 

END 
END 

Forward Link of Predecessor 

Backward Link of Successor 

Queue not empty 

Queue now empty 

Queue was empty 

Exceptions: 

Access Violation 
Fault on Read 
Fault on Write 
Translation Not Valid 
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Instruction mnemonics: 

CALL_PAL REMQUEL Remove Entry from Longword Queue 
CALL_PAL REMQUEL/D Remove Entry from Longword Queue Deferred 

Description: 

REMQUEL removes the entry addressed by R16 from the longword absolute queue. 
The address of the removed entry is returned in Rl . REMQUEL/D performs the 
same operation on the queue entry addressed by the longword addressed by R16. 

In either case, if there was no entry in the queue to be removed, RO is set to - 1 . If 
there was an entry to remove and the queue is empty at the end of this instruction, 
RO is set to 0. If there was an entry to remove and the queue is not empty at the 
end of this instruction, RO is set to 1. The removal is a non-interruptible operation. 
Before performing any part of the removal, the processor validates that the entire 
operation can be completed. This ensures that if a memory management exception 
occurs, the queue is left in a consistent state (see Chapters 3 and 6). 
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2.3.20 Remove Entry from Quadword Queue 

Format: 

CALL.PAL REMQUEQ ! PALcode format 

Operation: 

! R16 contains the address of the entry to remove 
! or address of address of entry for REMQUEQ/D 
! R0 receives status: 
! -1 if the queue was empty 
! 0 if the queue is empty after removing an entry 
! 1 if the queue is not empty after removing an entry 
! Rl receives the address of the removed entry 
! Must have write access to header and queue entries 
! Header and entries must be octaword aligned 
IF opcode EQ REMQUEQ/D THEN 

IF {R16<3:0> NE 0} THEN 
BEGIN 

{illegal operand exception} 
END 

Rl «- (R16) 
ELSE 

Rl <- R16 
IF {Rl<3:0> NE 0} THEN ! Check alignment 

BEGIN 
{illegal operand exception} 

END 
IF {all memory accesses can be completed} THEN 

BEGIN 
tmpl «— (Rl) ! Forward link of Predecessor 
IF {tmpl<3:0> NE 0} THEN 
BEGIN ! Check alignment 
{illegal operand exception} 

END 
tmp2 <— (Rl+8) ! Find predecessor 
IF {tmp2<3:0> NE 0} THEN 
BEGIN ! Check alignment 
{illegal operand exception} 

END 
(tmp2) <— tmpl ! Update Forward link of predecessor 
((Rl)+8) <- tmp2 
R0 <— 1 ! Queue not empty 
IF {tmpl EQ tmp2} THEN 
R0 <— 0 ! Queue now empty 

IF {Rl EQ tmp2} THEN 
R0 <— -1 ! Queue was empty 

END 
ELSE 

BEGIN 
{initiate fault} 

END 
END 
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Exceptions: 

Access Violation 
Fault on Read 
Fault on Write 
Translation Not Valid 
Illegal Operand 

Instruction mnemonics: 

CALLJPAL REMQUEQ Remove Entry from Quadword Queue 
CALL_PAL REMQUEQ/D Remove Entry from Quadword Queue Deferred 

Description: 

REMQUEQ removes the queue entry addressed by R16 from the quadword absolute 
queue. The address of the removed entry is returned in RI. REMQUEL/D performs 
the same operation on the queue entry addressed by the quadword addressed by 
R16. 
In either case, if there was no entry in the queue to be removed, RO is set to —1. If 
there was an entry to remove and the queue is empty at the end of this instruction, 
RO is set to 0. If there was an entry to remove and the queue is not empty at the 
end of this instruction, RO is set to 1. The removal is a non-interruptible operation. 
Before performing any part of the removal, the processor validates that the entire 
operation can be completed. This ensures that if a memory management exception 
occurs, the queue is left in a consistent state (see Chapters 3 and 6). RO and Rl 
are unpredictable if an exception occurs. The relative order of reporting memory 
management and illegal operand exceptions is unpredictable. 
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2.4 Unprivileged VAX Compatibility PALcode Instructions 
The Alpha AXP architecture provides the following PALcode instructions for use in 
translated VAX code. These instructions are not a permanent part of the architecture 
and will not be available in some future implementations. They are provided to help 
customers preserve VAX instruction atomicity assumptions in porting code from VAX 
to Alpha AXP. These calls should be user mode. They must not be used by any code 
other than that generated by the VEST software translator and its supporting run-
time code (TIE). 
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2.4.1 Atomic Move Operation 

Format: 

AMOVRR ! PALcode format 
AMOVRM ! PALcode format 

Operation: 

R16 
R17 
R18 
R19 
R2 0 
R21 

contains 
contains 
contains 
contains 
contains 
contains 

the 
the 
the 
the 
the 
the 

first source 
first destination address 
first length 
second source 
second destination address 
second length 

CASE 
AMOVRR: 

I F i n t r _ f l a g EQ 0 THEN 
R18 <- 0 
{ r e t u r n } 

END 

i n t r _ f l a g «— 0 
(R17) «- R16 ! length specified by R18<1:0> 
(R20) <- R19 ! length specified by R21<1:0> 
IF {both moves successful} THEN 

R18 — 1 
ELSE 

R18 <- 0 
END 

AMOVRM: 
IF intr_flag EQ 0 THEN 

R18 «- 0 
{return} 

END 

intr_flag <— 0 
(R17) <- R16 ! length specified by R18<1:0> 
IF R21<5:0> NE 0 THEN 

BEGIN 
IF R19<1:0> NE 00 OR R20<1:0> NE 00 

{Illegal operand exception} 
ELSE 

(R20) «- (R19) ! length specified by R21<5:0> 
END 

IF {both moves successful} THEN 
R18 <- 1 

ELSE 
R18 ♦- 0 

END 
ENDCASE 
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Exceptions: 

AMOVRR: Access Violation 
Fault On Write 
Translation Not Valid 

AMOVRM: Access Violation 
Fault On Read 
Fault On Write 
Illegal Operand 
Translation Not Valid 

Instruction mnemonics: 

CALL_PAL AMOVRR Atomic Move Register/Register 
CALL_PAL AMOVRM Atomic Move Register/Memory 

Description: 

Note: 

The CALL_PAL AMOVxx instructions exist only for the support of translated 
VAX code. They will be removed from the architecture at some time in the 
future. They must be used only in translated VAX code and its support routines 
(TIE). 

CALL_PAL AMOVRR 
The CALL_PAL AMOVRR instruction specifies two multiprocessor safe register 
stores to arbitrary byte addresses. Either both stores are done or neither store 
is done. R18 is set to 1 if both stores are done, and 0 otherwise. The two source 
registers are R16 and R19. The two destination byte addresses are in R17 and R20. 
The two lengths are specified in R18<1:0> and R21<1:0>. The length encoding is: 00 
is store byte, 01 is store word, 10 is store longword, 11 is store quadword. The low 
1, 2, 4, or 8 bytes of the source register are used, respectively. The unused bytes of 
the source registers are ignored. The unused bits of the length registers (R18<63:2> 
and R21<63:2>) should be zero (SBZ). 

If, upon entry to the PALcode routine, the intr_flag is clear then the instruction 
sets R18 to zero and exits, doing no stores. Otherwise, intr_flag is cleared and the 
PALcode routine proceeds. This is the same per-processor intr_flag used by the RS 
and RC instructions. 

The AMOVRR memory addresses may be unaligned. If either store would result in 
a Translation Not Valid fault, Fault on Write, or Access Violation fault, neither store 
is done and the corresponding fault is taken. If both stores would result in faults, it 
is UNPREDICTABLE which one is taken. 
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Note: 

A fault does not set R18, since the instruction has not been completed. 

If both stores can be completed without faulting, they are both attempted 
using multiprocessor-safe LDQ_L..STQ_C sequences. If all the sequences store 
successfully with no interruption, the PALcode routine completes with R18 set to 
one. Otherwise, the PALcode routine completes with R18 set to zero. In addition, 
R16, R17, R19, R20 and R21 are UNPREDICTABLE upon return from the PALcode 
routine, even if an exception has occurred. 

If the destinations overlap, the stores must appear to be done in the order specified. 

CALL_PAL AMOVRM 
The CALL_PAL AMOVRM instruction specifies one multiprocessor safe register 
store to an arbitrary byte address, plus an atomic memory-to-memory move of 0 
to 63 aligned longwords. Either the store and the move are both done in their 
entirety or neither is done. R18 is set to one if both are done, and zero otherwise. 

The first source register is R16, the first destination address is in R17, and the first 
length is in R18. These three are specified exactly as in AMOVRR. 

The second source address is in R19, the second destination address is in R20, and 
the second length is in R21<5:0>. The length is a longword length, in the range 0 
to 63 longwords (0 to 252 bytes). The unused bytes of the source register R16 are 
ignored. The unused bits of the length registers (R18<63:2> and R21<63:6>) should 
be zero (SBZ). 

If, upon entry to the PALcode routine, the intr_flag is clear, the instruction sets R18 
to 0 and exits, doing no stores. Otherwise, intr_flag is cleared and the PALcode 
routine proceeds. This is the same per-processor intr_flag used by the RS and RC 
instructions. 

The memory address in R17 may be unaligned. 

If the length for the move is 0, no move is done, no memory accesses are made via 
R19 and R20, and no fault checking of these addresses is done. In this case, the 
move is always considered to have succeeded in determining the setting of R18. 

If the length in R21 is non-zero, the two addresses in R19 and R20 must be aligned 
longword addresses; otherwise, an Illegal Operand exception is taken. 

If either the store or the move would result in a Translation Not Valid, Fault on Read, 
Fault on Write, or Access Violation fault, neither is done and the corresponding fault 
is taken. If both would result in faults, it is UNPREDICTABLE which one is taken. 

Note: 

A fault does not set R18, since the instruction has not been completed. 

If both the store and the move can be completed without faulting, they are both 
attempted, using multiprocessor-safe LDQ_L..STQ_C sequences for the store. If 
all the operations store successfully with no interruption, the PALcode routine 
completes with R18 set to one. Otherwise, the PALcode routine completes with 
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R18 set to 0. In addition, R16, R17, R19, R20, and R21 are UNPREDICTABLE 
upon return from the PALcode routine, even if an exception has occurred. 
If the memory fields overlap, the store must appear to be done first, followed by the 
move. The ordering of the reads and writes of the move is unspecified. Thus, if the 
move destination overlaps the move source, the move results are UNPREDICTABLE. 
These instructions contain no implicit MB. 

Notes: 

• Typically, these instructions would be used in a sequence starting with CALL_ 
PAL RS and ending with CALL.PAL AMOVxx, Bxx R18,label. The failure path 
from the conditional branch would eventually go back to the RS instruction. 
When such a sequence succeeds, it has done everything from the RS up to and 
including the CALL_PAL AMOVxx completely with no interrupts or exceptions. 

• The CALL_PAL AMOVxx instruction is typically followed by a conditional branch 
on R18. If the CALL.PAL AMOVxx is likely to succeed, the conditional branch 
should be a forward branch on failure (BEQ R18,forward_label) or backward 
branch on success (BNE R18, backwardjabel), to match the architected branch-
prediction rule. 

• The CALL_PAL AMOVxx instruction must either do both stores or neither. If 
R18=0 upon return, then memory state must be unchanged. If the first STQ_ 
C inside AMOVRR succeeds (and thus has changed programmer-visible state 
in memory), the PALcode routine must complete the second STQ_C also, and 
exit with R18=l. In particular, if the failure loop around the second STQ_C is 
executed an excessive number of times (due to perverse interference from another 
processor), the PALcode may not "give up" and return with R18=0. 
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2.5 Unprivileged PALcode Thread Instructions 
The PALcode thread instructions provide support for multithread implementations, 
which require that a given thread be able to generate a reproduceable unique value 
in a "timely" fashion. This value can then be used to index into a structure or 
otherwise generate additional thread unique data. 

The two instructions in Table 2-4 are provided to read and write a process unique 
value from the process's hardware context. 

Table 2-4: Unprivileged PALcode Thread Instructions 
Mnemonic Operation 

READJJNQ Read unique context 
WRITEJJNQ Write unique Context 

The process-unique value is stored in the HWPCB at [HWPCB+72] when the process 
is not active. When the process is active, the process unique value can be cached in 
hardware internal storage or reside in the HWPCB only. 
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2.5.1 Read Unique Context 

Format: 

CALL.PAL READJJNQ ! PALcode format 

Operation: 

IF {internal storage for process unique context} THEN 
RO <— {process unique context} 

ELSE 
RO «- (HWPCB+72) 

Exceptions: 

None 

Instruction mnemonics: 

CALL.PAL READ_UNQ Read Unique Context 

Description: 

The READ_UNQ instruction causes the hardware process (thread) unique context 
value to be placed in RO. If this value has not previously been written using a CALL_ 
PAL WRITEJJNQ or stored into the quadword in the HWPCB at [HWPCB+72] 
while the thread was inactive, the result returned in RO is UNPREDICTABLE. 
Implementations can cache this unique context value while the hardware process is 
active. The unique context may be thought of as a "slow register." Typically, this 
value will be used by software to establish a unique context for a given thread of 
execution. 
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2.5.2 Write Unique Context 

Format: 

CALL.PAL WRITEJJNQ ! PALcode format 

Operation: 

!R16 contains value to be written to the hardware process 
! unique context 

IF {internal storage for process unique context} THEN 
{process unique context} *— R16 

ELSE 
(HWPCB+72) ♦- R16 

Exceptions: 

None 

Instruction mnemonics: 

CALL.PAL WRITE.UNQ Write Unique Context 

Description: 

The WRITE_UNQ instruction causes the value of R16 to be stored in internal storage 
for hardware process (thread) unique context, if implemented, or in the HWPCB 
at [HWPCB+72], if the internal storage is not implemented. When the process 
is context switched, SWPCTX ensures that this value is stored in the HWPCB at 
[HWPCB+72]. Implementations can cache this unique context value in internal 
storage while the hardware process is active. The unique context may be thought 
of as a "slow register." Typically, this value will be used by software to establish a 
unique context for a given thread of execution. 
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2.6 Privileged PALcode Instructions 
Privileged instructions can be called in kernel mode only; otherwise, a privileged 
instruction exception occurs. The following privileged instructions are provided: 

Table 2-5: PALcode Privileged Instructions Summary 
Mnemonic Operation 

CFLUSH Cache flush 
CSERVE Console service 
DRAINA Drain aborts 

See Common Architecture, Chapter 6 

HALT Halt processor 
See Common Architecture, Chapter 6 

LDQP Load quadword physical 
MFPR Move from processor register 
MTPR Move to processor register 
STQP Store quadword physical 
SWPCTX Swap privileged context 
SWPPAL Swap PALcode image 
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2.6.1 Cache Flush 

Format: 

CALL_PAL CFLUSH ! PALcode format 

Operation: 

! R16 contains the Page Frame Number (PFN) 
! of the page to be flushed 

IF PS<CM> NE 0 THEN 
{privileged instruction exception} 

{Flush page out of cache(s)} 

Exceptions: 

Privileged Instruction 

Instruction mnemonics: 

CALL.PAL CFLUSH Cache Flush 

Description: 

The CFLUSH instruction may be used to flush an entire physical page specified by 
the PFN in R16 from any data caches associated with the current processor. All 
processors must implement this instruction. 

On processors that implement a backup power option that maintains only the 
contents of memory during a powerfail, this instruction is used by the powerfail 
interrupt handler to force data written by the handler to the battery backed-up 
main memory. After a CFLUSH, the first subsequent load (on the same processor) 
to an arbitrary address in the target page is either fetched from physical memory or 
from the data cache of another processor. 

In some multiprocessor systems, CFLUSH is not sufficient to ensure that the 
data are actually written to memory and not exchanged between processor caches. 
Additional platform-specific cooperation between the powerfail interrupt handlers 
executing on each processor may be required. 

On systems that implement other backup power options (including none), CFLUSH 
may return without affecting the data cache contents. 

To order CFLUSH properly with respect to preceding writes, an MB instruction is 
needed before the CFLUSH; to order CFLUSH properly with respect to subsequent 
reads, an MB instruction is needed after the CFLUSH. 
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2.6.2 Console Service 

Format: 

CALLJPAL CSERVE ! PALcode format 

Operation: 

! Implementation specific 

IF PS<CM> NE 0 THEN 
{Privileged instruction exception} 

ELSE 
{Implementation-dependent action} 

Exceptions: 

Privileged Instruction 

Instruction Mnemonics: 

CALL_PAL CSERVE Console Service 

Description: 

This instruction is specific to each PALcode and console implementation and is not 
intended for operating system use. 
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2.6.3 Load Quadword Physical 

Format: 

CALL.PAL LDQP ! PALcode format 

Operation: 

! R16 contains the quadword-aligned physical address 
! RO receives the data from memory 

IF PS<CM> NE 0 THEN 
{Privileged Instruction exception} 

RO «— (R16) {physical access} 

Exceptions: 

Privileged Instruction 

Instruction mnemonics: 

CALL.PAL LDQP Load Quadword Physical 

Description: 

The LDQP instruction fetches and writes to RO the quadword-aligned memory 
operand, whose physical address is in R16. 

If the operand address in R16 is not quadword aligned, the result is 
UNPREDICTABLE. 
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2.6.4 Move From Processor Register 

Format: 

CALL_PAL MFPR_IPR_Name ! PALcode format 

Operation: 

IF PS<CM> NE 0 THEN 
{privileged instruction exception} 

! R16 may contain an IPR specific source operand 
{RO <— result of IPR specific function} 

Exceptions: 

Privileged Instruction 

Instruction mnemonics: 

CALL_PAL MFPR_xxx Move from Processor Register xxx 

Description: 

The MFPR_xxx instruction reads the internal processor register specified by the 
PALcode function field and writes it to RO. 
Registers RI, R16, and R17 contain unpredictable results after an MFPR. 
See Chapter 5 for a description of each IPR. 
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2.6.5 Move to Processor Register 

Format: 

CALL.PAL MTPR_IPR_Name ! PALcode format 

Operation: 

IF PS<CM> NE 0 THEN 
{privileged instruction exception} 

! R16 may contain an IPR specific source operand 

{RO +— result of IPR specific function} 
{IPR <— result of IPR specific function} 

Exceptions: 

Privileged Instruction 

Instruction mnemonics: 

CALL_PAL MTPR_xxx Move to Processor Register xxx 

Description: 

The MTPR_xxx instruction writes the IPR-specific source operands in integer 
registers R16 and R17 (R17 reserved for future use) to the internal processor register 
specified by the PALcode function field. The effect produced by loading a processor 
register is guaranteed to be active on the next instruction. 
Registers Rl, R16, and R17 contain unpredictable results after an MTPR. The MTPR 
may return results in RO. If the specific IPR being accessed does not return results 
in RO, then RO contains an unpredictable result after an MTPR. 
See Chapter 5 for a description of each IPR. 
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2.6.6 Store Quadword Physical 

Format: 

CALL_PAL STQP ! PALcode format 

Operation: 

! R16 contains the quadword aligned physical address 
! R17 contains the data to be written 

IF PS<CM> NE 0 then 
{Privileged Instruction exception} 

(R16) <— R17 {physical access} 

Exceptions: 

Privileged Instruction 

Instruction mnemonics: 

CALL_PAL STQP Store Quadword Physical 

Description: 

The STQP instruction writes the quadword contents of R17 to the memory location 
whose physical address is in R16. 

If the operand address in R16 is not quadword aligned, the result is 
UNPREDICTABLE. 
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2.6.7 Swap Privileged Context 

Format: 

CALL.PAL SWPCTX ! PALcode format 

Operation: 

! R16 contains the physical address of the new HWPCB. 

! check HWPCB alignment 

IF R16<6:0> NE 0 THEN 
{reserved operand exception} 

IF {PS<CM> NE 0} THEN 
{privileged instruction exception} 

! Store old HWPCB contents 

(IPR_PCBB + HWPCB_KSP) «- SP 
IF {internal registers for stack pointers} THEN 
BEGIN 
(IPR_PCBB + HWPCB_ESP) <- IPR_ESP 
(IPR_PCBB + HWPCB_SSP) <- IPR_SSP 
(IPR_PCBB + HWPCB_USP) <- IPR_USP 

END 

IF {internal registers for ASTxx} THEN 
BEGIN 
(IPR_PCBB + HWPCB_ASTSR) <- IPR_ASTSR 
(IPR_PCBB + HWPCB_ASTEN) <- IPR_ASTEN 

END 
tmpl <- PCC 
tmp2 <- ZEXT(tmpl<31:0>) 
tmp3 <- ZEXT(tmpl<63:32>) 
(IPR_PCBB + HWPCB_PCC) <- {tmp2 + tmp3}<31:0> 
IF {internal storage for process unique value} THEN 
BEGIN 
(IPR_PCBB + HWPCB_UNQ) <— process unique value 

END 

! Load new HWPCB contents 

IPR_PCBB <- R16 

IF {ASNs not implemented in virtual instruction cache} THEN 
{flush instruction cache} 

IF {ASNs not implemented in TB} THEN 
IF {IPR_PTBR NE (IPR_PCBB + HWPCB_PTBR)} THEN 

{invalidate trans, buffer entries with PTE<ASM> EQ 0} 
ELSE 

IPR_ASN <- (IPR_PCBB + HWPCB_ASN) 
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SP «- (IPR_PCBB + HWPCB_KSP) 
IF {internal registers for stack pointers} THEN 
BEGIN 
IPR_ESP <- (IPR_PCBB + HWPCB_ESP) 
IPR_SSP <- (IPR_PCBB + HWPCB_SSP) 
IPR_USP «- (IPR_PCBB + HWPCB_USP) 

END 

IPR_PTBR «- (IPR_PCBB + HWPCB_PTBR) 

IF {internal registers for ASTxx} THEN 
BEGIN 
IPR_ASTSR <- {IPR_PCBB + HWPCB_ASTSR) 
IPR_ASTEN <- (IPR_PCBB + HWPCB_ASTEN) 

END 

IPR_FEN <- (IPR_PCBB + HWPCB_FEN) 
tmp4 <- ZEXT((IPR_PCBB + HWPCB_PCC)<31:0>) 
tmp4 <— tmp4 - tmp2 
PCC<63:32> ♦- tmp4<31:0> 

IF {internal storage for process unique value} THEN 
BEGIN 
process unique value <— (IPR_PCBB + HWPCB_UNQ) 

END 
IF {internal storage for Data Alignment trap setting} THEN 
BEGIN 

DAT ♦- (IPR_PCBB + HWPCB_DAT) 
END 

Exceptions: 

Reserved Operand 
Privileged Instruction 

Instruction mnemonics: 

CALL_PAL SWPCTX Swap Privileged Context 

Description: 

The SWPCTX instruction returns ownership of the current Hardware Privileged 
Context Block (HWPCB) to the operating system and passes ownership of the new 
HWPCB to the processor. The HWPCB is described in Chapter 4. 

SWPCTX saves the privileged context from the internal processor registers into the 
HWPCB specified by the physical address in the PCBB internal processor register. 
It then loads the privileged context from the new HWPCB specified by the physical 
address in R16. The actual sequence of the save and restore operation is not specified 
so any overlap of the current and new HWPCB storage areas produces UNDEFINED 
results. 

The privileged context includes the four stack pointers, the Page Table Base Register 
(PTBR), the Address Space Number (ASN), the AST enable and summary registers, 
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the Floating-point Enable Register (FEN), the Performance Monitor (PME) register, 
the Data Alignment Trap (DAT) register, and the Charged Process Cycles; the 
number of PCC register counts that are charged to a process (modulo 2**32). 

PTBR is never saved in the HWPCB and it is UNPREDICTABLE whether or not 
ASN is saved. These values cannot be changed for a running process. The process 
integer and floating registers are saved and restored by the operating system. See 
Figure 4-1 for the HWPCB format. 

Notes: 

• Any change to the current HWPCB while the processor has ownership results in 
UNDEFINED operation. 

• All the values in the current HWPCB can be read through IPRs, except the 
Charged Process Cycles. 

• If the HWPCB is read while ownership resides with the processor, it is 
UNPREDICTABLE whether the original or an updated value of a field is read. 
The processor can update an HWPCB field at any time. The decision as to 
whether or not a field is updated is made individually for each field. 

• If the enabling conditions are present for an interrupt at the completion of this 
instruction, the interrupt occurs before the next instruction. 

• PALcode sets up the PCBB at boot time to point to the HWPCB storage area 
in the Hardware Restart Parameter Block (HWRPB). See Console Interface (III), 
Chapter 2. 

• The operation is UNDEFINED if SWPCTX accesses a non-memory-like region. 

• A reference to nonexistent memory causes a machine check. Unimplemented 
physical address bits are SBZ. The operation is UNDEFINED if any of these bits 
are set. 

Note: 
Processors may keep a copy of each of the per-process stack pointers in 
internal registers. In those processors, SWPCTX stores the internal registers 
into the HWPCB. Processors that do not keep a copy of the stack pointers in 
internal registers keep only the stack pointer for the current access mode in 
SP and switch this with the HWPCB contents whenever the current access 
mode changes. 
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2.6.8 Swap PALcode Image 

Format: 

CALL.PAL SWPPAL ! PALcode format 

Operation: 

! R16 contains the new PALcode identifier 
! R17:R21 contain implementation-specific entry parameters 
! RO receives status: 
! 0 Success (PALcode was switched) 
! 1 Unknown PALcode variant 
! 2 Known PALcode variant, but PALcode not loaded 

IF (PS<CM> NE 0) then 
{Privileged instruction exception} 

ELSE 
IF {R16 < 256} THEN 

BEGIN 
IF {R16 invalid} THEN 

RO «- 1 
{Return} 

ELSE IF {PALcode not loaded} THEN 
RO 4- 2 
{Return} 

ELSE 
tmpl <— {PALcode base} 

END 
ELSE 

tmpl = R16 
{Flush instruction cache} 
{Invalidate all translation buffers} 
{Perform additional PALcode variant-specific initialization} 
{Transfer control to PALcode entry at physical address = tmpl} 

Exceptions: 

Privileged Instruction 

Instruction mnemonics: 

CALL_PAL SWPPAL Swap PALcode Image 

Description: 

The SWPPAL instruction causes the current (active) PALcode to be replaced by the 
specified new PALcode image. This instruction is intended for use by operating 
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systems only during bootstraps and by consoles during transitions to console I/O 
mode. 

The PALcode descriptor contained in R16 is interpreted as either a PALcode variant 
or the base physical address of the new PALcode image. If a variant, the PALcode 
image must have been previously loaded. No PALcode loading occurs as a result of 
this instruction. 

After successful PALcode switching, the register contents are determined by the 
parameters passed in R17 through R21 or are UNPREDICTABLE. A common 
parameter is the address of a new HWPCB. In this case, the stack pointer register 
and PTBR are determined by the contents of that HWPCB; the contents of other 
registers such as R16 through R21 may be UNPREDICTABLE. 

See Part III, Console Interface for information on using this instruction. 
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Chapter 3 

OpenVMS AXP Memory Management (II—A) 

3.1 Introduction 

Memory management consists of the hardware and software that control the 
allocation and use of physical memory. Typically, in a multiprogramming system, 
several processes may reside in physical memory at the same time (see Chapter 4). 
OpenVMS AXP uses memory protection and multiple address spaces to ensure that 
one process will not affect either other processes or the operating system. 

To improve further software reliability, four hierarchical access modes provide 
memory access control. They are, from most to least privileged: kernel, executive, 
supervisor, and user. Protection is specified at the individual page level, where a 
page may be inaccessible, read-only, or read/write for each of the four access modes. 
Accessible pages can be restricted to have only data or instruction access. 

A program uses virtual addresses to access its data and instructions. However, before 
these virtual addresses can be used to access memory, they must be translated into 
physical addresses. Memory management software maintains tables of mapping 
information (page tables) that keep track of where each virtual page is located in 
physical memory. The processor utilizes this mapping information when it translates 
virtual addresses to physical addresses. 

Therefore, memory management provides mechanisms for both memory protection 
and memory mapping. The OpenVMS AXP memory management architecture is 
designed to meet several goals: 

• Provide a large address space for instructions and data 

• Allow programs to run on hardware with physical memory smaller than the 
virtual memory used 

• Provide convenient and efficient sharing of instructions and data 

• Allow sparse use of a large address space without excessive page table overhead 

• Contribute to software reliability 

• Provide independent read and write access protection 

3.2 Virtual Address Space 

A virtual address is a 64-bit unsigned integer that specifies a byte location within 
the virtual address space. Implementations subset the address space supported to 
one of four sizes (43, 47, 51, or 55 bits) as a function of page size. The minimal 
virtual address size supported is 43 bits. If an implementation supports less than 
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64-bit virtual addresses, it must check that all the VA<63:VA_SIZE> bits are equal 
to VA<VA_SIZE-1>. That gives two disjoint ranges for valid virtual addresses. 
For example, for a 43-bit virtual address space, valid virtual addresses ranges 
are 0..3FF FFFF FFFF1 6 and FFFF FCOO 0000 000016..FFFF FFFF FFFF FFFF1 6. 
Accesses to virtual addresses outside of the valid virtual address ranges for an 
implementation cause an access violation exception. 

The virtual address space is broken into pages, which are the units of relocation, 
sharing, and protection. The page size ranges from 8K bytes to 64K bytes. System 
software should, therefore, allocate regions with differing protection on 64K-byte 
virtual address boundaries to ensure image compatibility across all Alpha AXP 
implementations. 

Memory management provides the mechanism to map the active part of the virtual 
address space to the available physical address space. The operating system controls 
the virtual-to-physical address mapping tables, and saves the inactive parts of the 
virtual address space on external storage media. 

3.2.1 Virtual Address Format 
The processor generates a 64-bit virtual address for each instruction and operand 
in memory. The virtual address consists of three level-number fields, and a byte_ 
within_page field (Figure 3-1). 

Figure 3-1 : Virtual Address Format 

63 0 

Sext(Level1<Level Size-1>) Levell Level2 Level3 byte_within_page 

The byte_within_page field can be either 13, 14, 15, or 16 bits depending on a 
particular implementation. Thus, the allowable page sizes are 8K bytes, 16K bytes, 
32K bytes, and 64K bytes. Each level-number field contains 0-n bits, where n is, for 
example, 9 with an 8K-byte page size. The level-number fields are the same size for 
a given implementation. 

The level number fields are a function of the page size; all page table entries at any 
given level do not exceed one page. The PFN field in the PTE is always 32 bits 
wide. Thus, as the page size grows the virtual and physical address size also grows 
(Table 3-1). 
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Table 3-1 : Virtual Address Options 

Page 
Size 
(bytes) 

Byte 
Offset 
(bits) 

Level 
Size 
(bits ) 

Virtual 
Address 
(bits) 

Physical 
Address 
(bits) 

8K 

16 K 

32 K 

64 K 

13 

14 

15 

16 

10 

11 

12 

13 

43 

47 

51 

55 

45 

46 

47 

48 

3.3 Physical Address Space 

Physical addresses are at most 48 bits. A processor may choose to implement a 
smaller physical address space by not implementing some number of high order 
bits. 

The two most significant implemented physical address bits delineate the four 
regions in the physical address space. Implementations use these bits as appropriate 
for their systems. For example, in a workstation with a 30-bit physical address space, 
bit <29> might select between memory and non-memory-like regions, and bit <28> 
could enable or disable cacheing. (See Common Architecture, Chapter 5.) 

3.4 Memory Management Control 

Memory management is always enabled. Implementations must provide an 
environment for PALcode to service exceptions and to initialize and boot the 
processor. For example PALcode might run with I-stream mapping disabled and 
use the privileged CALL_PAL LDQP and STQP instructions to access data stored in 
physical addresses. 

3.5 Page Table Entries 

The processor uses a quadword Page Table Entry (PTE), as shown in Figure 3-2, 
to translate virtual addresses to physical addresses. A PTE contains hardware and 
software control information and the physical Page Frame Number. 

Figure 3-2: Page Table Entry 

1 6 1 5 1 4 1 3 1 2 1110 9 8 7 6 5 4 3 2 1 0 

PFN 
Reserved 

for 
Software 

** 

wwww GH 
EN 
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Fields in the page table entry are interpreted as shown in Table 3-2. 

Table 3-2: Page Table Entry 
Bits Description 

63-32 Page Frame Number (PFN) 
The PFN field always points to a page boundary. If V is set, the PFN is 
concatenated with the byte_within_page bits of the virtual address to obtain the 
physical address (see Section 3.7). If V is clear, this field may be used by software. 

31-16 Reserved for software. 
15 User Write Enable (UWE) 

This bit enables writes from user mode. If this bit is a 0 and a STORE is attempted 
while in user mode, an Access Violation occurs. This bit is valid even when V=0. 

Note: 

If a write-enable bit is set and the corresponding read-enable bit is not, the 
operation of the processor is UNDEFINED. 

14 Supervisor Write Enable (SWE) 
This bit enables writes from supervisor mode. If this bit is a 0 and a STORE is 
attempted while in supervisor mode, an Access Violation occurs. This bit is valid 
even when V=0. 

13 Executive Write Enable (EWE) 
This bit enables writes from executive mode. If this bit is a 0 and a STORE is 
attempted while in executive mode, an Access Violation occurs. This bit is valid 
even when V=0. 

12 Kernel Write Enable (KWE) 
This bit enables writes from kernel mode. If this bit is a 0 and a STORE is 
attempted while in kernel mode, an Access Violation occurs. This bit is valid even 
when V=0. 

11 User Read Enable (URE) 
This bit enables reads from user mode. If this bit is a 0 and a LOAD or instruction 
fetch is attempted while in user mode, an Access Violation occurs. This bit is valid 
even when V=0. 

10 Supervisor Read Enable (SRE) 
This bit enables reads from supervisor mode. If this bit is a 0 and a LOAD or 
instruction fetch is attempted while in supervisor mode, an Access Violation occurs. 
This bit is valid even when V=0. 

9 Executive Read Enable (ERE) 
This bit enables reads from executive mode. If this bit is a 0 and a LOAD or 
instruction fetch is attempted while in executive mode, an Access Violation occurs. 
This bit is valid even when V=0. 
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Table 3-2 (Cont.): Page Table Entry 

Bits Description 

8 Kernel Read Enable (KRE) 
This bit enables reads from kernel mode. If this bit is a 0 and a LOAD or 
instruction fetch is attempted while in kernel mode, an Access Violation occurs. 
This bit is valid even when V=0. 

7 Reserved for future use by Digital. 

Programming Note: 

The reserved bit will be used by future hardware systems and should not be 
used by software even if PTE<V> is clear. 

6-5 Granularity hint (GH) 
Software may set these bits to a non-zero value to supply a hint to translation 
buffer implementations that a block of pages can be treated as a single larger 
page: 

1. The block is an aligned group of 8**N pages, where N is the value of PTE<6:5>, 
that is, a group of 1, 8, 64, or 512 pages starting at a virtual address with page_ 
size + 3*N low-order zeros. 

2. The block is a group of physically contiguous pages that are aligned both 
virtually and physically. Within the block, the low 3*N bits of the PFNs 
describe the identity mapping and the high 32-3*N PFN bits are all equal. 

3. Within the block, all PTEs have the same values for bits <15:0>, that is, 
protection, fault, granularity, and valid bits. 

Hardware may use this hint to map the entire block with a single TB entry, instead 
of 8, 64, or 512 separate TB entries. 
It is UNPREDICTABLE which PTE values within the block are used if the 
granularity bits are set inconsistently. 

Programming Note: 

A granularity hint might be appropriate for a large memory structure such as 
a frame buffer or nonpaged pool that in fact is mapped into contiguous virtual 
pages with identical protection, fault, and valid bits. 

4 Address Space Match (ASM) 
When set, this PTE matches all Address Space Numbers. For a given VA, 
ASM must be set consistently in all processes, otherwise the address mapping 
is UNPREDICTABLE. 

3 Fault on Execute (FOE) 
When set, a Fault on Execute exception occurs on an attempt to execute an 
instruction in the page. 
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Table 3-2 (Cont.): Page Table Entry 
Bits Description 

2 Fault on Write (FOW) 
When set, a Fault on Write exception occurs on an attempt to write any location 
in the page. 

1 Fault on Read (FOR) 
When set, a Fault on Read exception occurs on an attempt to read any location in 
the page. 

0 Valid (V) 
Indicates the validity of the the PFN field. When V is set, the PFN field is valid for 
use by hardware. When V is clear, the PFN field is reserved for use by software. 
The V bit does not affect the validity of PTE<15:1> bits. 

3.5.1 Changes to Page Table Entries 
The operating system changes PTEs as part of its memory management functions. 
For example, the operating system may set or clear the valid bit, change the PFN 
field as pages are moved to and from external storage media, or modify the software 
bits. The processor hardware never changes PTEs. 

Software must guarantee that each PTE is always internally consistent. Changing 
a PTE one field at a time may give incorrect system operation, for example, 
setting PTE<V> with one instruction before establishing PTE<PFN> with another. 
Execution of an interrupt service routine between the two instructions could use an 
address that would map using the inconsistent PTE. Software can solve this problem 
by building a complete new PTE in a register and then moving the new PTE to the 
page table using a Store Quadword instruction (STQ). 

Multiprocessing complicates the problem. Another processor could be reading (or 
even changing) the same PTE that the first processor is changing. Such concurrent 
access must produce consistent results. Software must use some form of software 
synchronization to modify PTEs that are already valid. Once a processor has 
modified a valid PTE, it is possible that other processors in a multiprocessor system 
may have old copies of that PTE in their Translation Buffer. Software must notify 
other processors of changes to PTEs. 

Software may write new values into invalid PTEs using quadword store instructions 
(STQ). Hardware must ensure that aligned quadword reads and writes are atomic 
operations. The following procedure must be used to change any of the PTE bits 
<15:0> of a shared valid PTE (PTE<0>=1) such that an access that was allowed 
before the change is not allowed after the change. 

1. The PTE<0> is cleared without changing any of the PTE bits <63:32> and <15:l>. 

2. All processors do a TBIS for the VA mapped by the PTE that changed. The VA 
used in the TBIS must assume that the PTE granularity hint bits are zero. 
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3. After all processors have done the TBIS, the new PTE may be written changing 
any or all fields. 

Programming Note: 

The procedure above allows queue instructions that have probed in order to check 
that all can complete, to service a TB miss. The queue instructions use the PTE 
even though the V bit is clear, if the V bit was set during the instruction's initial 
probe flow. 

3.6 Memory Protection 

Memory protection is the function of validating whether a particular type of access 
is allowed to a specific page from a particular access mode. Access to each page is 
controlled by a protection code that specifies, for each access mode, whether read or 
write references are allowed. 

The processor uses the following to determine whether an intended access is allowed: 

• The virtual address, which is used to index page tables 

• The intended access type (read data, write data, or instruction fetch) 

• The current access mode from the Processor Status 

If the access is allowed and the address can be mapped (the Page Table Entry is 
valid), the result is the physical address that corresponds to the specified virtual 
address. 

For protection checks, the intended access is read for data loads and instruction 
fetch, and write for data stores. 

If an operand is an address operand, then no reference is made to memory. Hence, 
the page need not be accessible nor map to a physical page. 

3.6.1 Processor Access Modes 
There are four processor modes: 

• Kernel 

• Executive 

• Supervisor 

• User 

The access mode of a running process is stored in the Current Mode bits of the 
Processor Status (PS) (see Section 6.2). 

3.6.2 Protection Code 
Every page in the virtual address space is protected according to its use. A program 
may be prevented from reading or writing portions of its address space. Each page 
has an associated protection code that describes the accessibility of the page for 
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each processor mode. The code allows a choice of read or write protection for each 
processor mode. 

• Each mode's access can be read/write, read-only, or no-access. 

• Read and write accessibility are specified independently. 

• The protection of each mode can be specified independently. 

The protection code is specified by 8 bits in the PTE (see Table 3-2). 

The OpenVMS AXP architecture allows a page to be designated as execute only by 
setting the read enable bit for the access mode and by setting the fault on read and 
write bits in the PTE. 

3.6.3 Access Violation Fault 
An Access Violation fault occurs if an illegal access is attempted, as determined by 
the current processor mode and the page's protection field. 

3.7 Address Translation 

The page tables can be accessed from physical memory, or (to reduce overhead) 
through a mapping to a linear region of the virtual address space. All 
implementations must support the virtual access method and are expected to use it 
as the primary access method to enhance performance. 

The following sections describe both access methods. 

3.7.1 Physical Access for Page Table Entries 
Physical address translation is performed by accessing entries in a three-level page 
table structure. The Page Table Base Register (PTBR) contains the physical Page 
Frame Number of the highest level (Level 1) page table. Bits <levell> of the virtual 
address are used to index into the first level page table to obtain the physical page 
frame number of the base of the second level (Level 2) page table. Bits <level2> of 
the virtual address are used to index into the second level page table to obtain the 
physical page frame number of the base of the third level (Level 3) page table. Bits 
<level3> of the virtual address are used to index the third level page table to obtain 
the physical Page Frame Number (PFN) of the page being referenced. The PFN is 
concatenated with virtual address bits <byte_within_page> to obtain the physical 
address of the location being accessed. 

If part of any page table resides in I/O space, or in nonexistent memory, the operation 
of the processor is UNDEFINED. 

If the first-level or second-level PTE is valid, the protection bits are ignored; the 
protection code in the third-level PTE is used to determine accessibility. If a first-
level or second-level PTE is invalid, an Access Violation occurs if the PTE<KRE> 
equals zero. An Access Violation on a first-level or second-level PTE implies that all 
lower-level page tables mapped by that PTE do not exist. 
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Programming Note: 

This mapping scheme does not require multiple contiguous physical pages. There 
are no length registers. With a page size of 8K bytes, 3 pages (24K bytes) map 
8M bytes of virtual address space; 1026 pages (approximately 8M bytes) map an 
8G-byte address space; and 1,049,601 pages (approximately 8G bytes) map the 
entire 8T byte 2**43 byte address space. 

The algorithm to generate a physical address from a virtual address follows: 

IF {SEXT(VA<63:VA_SIZE>) NEQ SEXT(VA<VA_SIZE-1>) THEN 
{initiate Access Violation fault} 

! Read Physical 

levell_pte <— ({PTBR * page_size} + {8 * VA<levell_number>}) 

IF levell_pte<V> EQ 0 THEN 
IF levell_pte<KRE> EQ 0 THEN 

{initiate Access Violation fault} 
ELSE 

{initiate Translation Not Valid fault} 

! Read Physical 

level2_pte *— 
({levell_pte<PFN> page_size} + {8 * VA<level2_number>}) 

IF level2_pte<V> EQ 0 THEN 
IF level2_pte<KRE> EQ 0 THEN 

{initiate Access Violation fault} 
ELSE 

{initiate Translation Not Valid fault} 

! Read Physical 

level3_pte <— 
({level2_pte<PFN> ' 

IF {{{level3_pte<UWE> 
{{level3_pte<URE> 
{{level3_pte<SWE> 
{{level3_pte<SRE> 
{{level3_pte<EWE> 
{{level3_pte<ERE> 
{{level3_pte<KWE> 
{{level3_pte<KRE> 

k page. 

EQ 
EQ 
EQ 
EQ 
EQ 
EQ 
EQ 
EQ 

0} 
0} 
0} 
0} 
0} 
0} 
0} 
0} 

_size} + {8 

AND 
AND 
AND 
AND 
AND 
AND 
AND 
AND 

{write 
{read 
{write 
{read 
{write 
{read 
{write 
{read 

* VA<level3_ 

access} 
access} 
access} 
access} 
access} 
access} 
access} 
access} 

AND 
AND 
AND 
AND 
AND 
AND 
AND 
AND 

_number>; 

{PS<CM> 
{PS<CM> 
{PS<CM> 
{PS<CM> 
{PS<CM> 
{PS<CM> 
{PS<CM> 
{PS<CM> 

M 
EQ 
EQ 
EQ 
EQ 
EQ 
EQ 
EQ 
EQ 

3}} 
3}} 
2}} 
2}} 
1}} 
1}} 
0}} 

OR 
OR 
OR 
OR 
OR 
OR 
OR 

0}}} 
THEN 

{initiate Access Violation fault} 
ELSE 

IF level3_pte<V> EQ 0 THEN 
{initiate Translation Not Valid fault} 

IF {level3_pte<FOW> EQ 1} AND { write access} THEN 
{initiate Fault On Write fault} 

IF {level3_pte<FOR> EQ 1} AND { read access} THEN 
{initiate Fault On Read fault} 

IF {level3_pte<FOE> EQ 1} AND { execute access} THEN 
{initiate Fault On Execute fault} 

Physical_Address ♦— 
{level3_pte<PFN> page_size} OR VA<byte_within_page> 
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3.7.2 Virtual Access for Page Table Entries 
To reduce the overhead associated with the address translation in a three-level page 
table structure, the page tables are mapped into a linear region of the virtual address 
space. The virtual address of the base of the page table structure is set on a system 
wide basis and is contained in the VPTB IPR. 

When a native mode DTB or ITB miss occurs, the TBMISS flows attempt to load the 
Level 3 page table entry using a single virtual mode load instruction. 

The algorithm involving the manipulation of the missing VA is: 

tmp «- l e f t _ s h i f t ( V A , {64 - { { l g ( P a g e S i z e ) *4} -9 }} ) 
tmp <— 

r i g h t _ s h i f t ( t m p , { 6 4 - { { l g ( P a g e S i z e ) * 4 } -9} + l g ( P a g e S i z e ) -3}) 
tmp «- VPTB OR tmp 
tmp<2:0> «- 0 

At this point, tmp contains the VA of the Level 3 page table entry. A LDQ from that 
VA will result in the acquistion of the PTE needed to satisfy the initial TBMISS 
condition. 

However, in the PALcode environment, if a TBMISS occurs during an attempt to 
fetch the Level 3 PTE, then it is necessary to use the longer sequence of three 
dependent loads described in Section 3.7. 

Chapter 5 contains the description of the VPTB IPR used to contain the virtual 
address of the base of the page table structure. 

The mapping of the page tables necessary for the correct function of the algorithm 
is done as follows: 

1. Select a 2(3*^(Page-size/8))+3) byte-aligned region (an address with 3*lg(page_size 
/8)+3 low order zeros) in the virtual address space. This value will be written 
into the VPTB register. 

2. Create a Level 1 PTE to map the page tables as follows: 

Level l_PTE ♦- 0 ! I n i t a l l f i e l d s t o 0 
Level l_PTE<63:32> ♦- PFN of L e v e l l P a g e t a b l e 

! Se t PFN t o PFN of l e v e l l p a g e t a b l e 
Levell_PTE<8> ♦- 1 ! Kerne l Read Enable (KRE) 
Levell_PTE<0> ♦- l ! V a l i d b i t 

3. Write the created Level 1 PTE into the Level 1 page table entry that corresponds 
to the VPTB value. 

4. Set all Level 1 and Level 2 Valid PTEs to allow kernel read access. 

5. Write the VPTB register with the selected base value. 

Note: 

No validity checks need be made on the value stored in the VPTB in a running 
system. Therefore, if the VPTB contains an invalid address, the operation is 
UNDEFINED. 
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3.8 Translation Buffer 
In order to save actual memory references when repeatedly referencing the 
same pages, hardware implementations include a translation buffer to remember 
successful virtual address translations and page states. 

When the process context is changed, a new value is loaded into the Address 
Space Number (ASN) internal processor register with a Swap Privileged Context 
instruction (CALL_PAL SWPCTX); see Section 2.6 and Chapter 4. This causes 
address translations for pages with PTE<ASM> clear to be invalidated on a processor 
that does not implement address space numbers. Additionally, when the software 
changes any part (except for the Software field) of a valid Page Table Entry, it must 
also move a virtual address within the corresponding page to the Translation Buffer 
Invalidate Single (TBIS) internal processor register with the MTPR instruction (see 
Chapter 5). 

Implementation Note: 

Some implementations may invalidate the entire Translation Buffer on an MTPR 
to TBIS. In general, implementations may invalidate more than the required 
translations in the TB. 

The entire Translation Buffer can be invalidated by doing a write to Translation 
Buffer Invalidate All register (CALL.PAL MTPR_TBIA), and all ASM=0 entries can 
be invalidated by doing a write to Translation Buffer Invalidate All Process register 
(CALL.PAL MTPR.TBIAP). (See Chapter 5.) 

The Translation Buffer must not store invalid PTEs. Therefore, the software is not 
required to invalidate Translation Buffer entries when making changes for PTEs 
that are already invalid. 

After software changes a valid first- or second-level PTE, software must flush the 
translation for the corresponding page in the virtual page table. Then software must 
flush the translations of all valid pages mapped by that page. In the case of a change 
to a first-level PTE, this action must be taken through a second iteration. 

The TBCHK internal processor register is available for interrogating the presence 
of a valid translation in the Translation Buffer (see Chapter 5). 

Implementation Note: 

Hardware implementors should be aware that a single, direct-mapped TB has a 
potential problem when a load/store instruction and its data map to the same TB 
location. If TB misses are handled in PALcode, there could be an endless loop 
unless the instruction is held in an instruction buffer or a translated physical 
PC is maintained by the hardware. 

OpenVMS AXP Memory Management (II—A) 3-11 



3.9 Address Space Numbers 
The Alpha AXP architecture allows a processor to optionally implement address 
space numbers (process tags) to reduce the need for invalidation of cached address 
translations for process specific addresses when a context switch occurs. The 
supported ASN range is O..MAX_ASN. 

Note: 

If an ASN outside of the range O..MAX_ASN is assigned to a process, the 
operation of the processor is UNDEFINED. 

The address space number for the current process is loaded by software in the 
Address Space Number (ASN) internal processor register with a Swap Privileged 
Context instruction. ASNs are processor specific and the hardware makes no attempt 
to maintain coherency across multiple processors. In a multiprocessor system, 
software is responsible for ensuring the consistency of TB entries for processes that 
might be rescheduled on different processors. 

Programming Note: 

System software should not assume that the number of ASNs is a power of two. 
This allows, for example, hardware to use N TB tag bits to encode (2**N)-3 ASN 
values, one value for ASM=1 PTEs, and one for invalid. 

There are several possible ways of using ASNs that result from several 
complications in a multiprocessor system. Consider the case in which a process 
that executed on processor 1 is rescheduled on processor 2. If a page is deleted 
or its protection is changed, the TB in processor 1 has stale data. One solution 
is to send an interprocessor interrupt to all the processors on which this process 
could have run and cause them to invalidate the changed PTE. That results in 
significant overhead in a system with several processors. Another solution is to 
have software invalidate all TB entries for a process on a new processor before 
it can begin execution, if the process executed on another processor during its 
previous execution. That ensures the deletion of possibly stale TB entries on the 
new processor. A third solution is to assign a new ASN whenever a process is 
run on a processor that is not the same as the last processor on which it ran. 

3.10 Memory Management Faults 
Five types of faults are associated with memory access and protection: 

• Access Control Violation (ACV) 

Taken when the protection field of the third-level PTE that maps the data 
indicates that the intended page reference would be illegal in the specified access 
mode. An Access Control Violation fault is also taken if the KRE bit is zero in 
an invalid first or second level PTE. 

• Fault on Read (FOR) 

Occurs when a read is attempted with PTE<FOR> set. 
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• Fault on Write (FOW) 

Occurs when a write is attempted with PTE<FOW> set. 

• Fault on Execute (FOE) 

Occurs when instruction execution is attempted with PTE<FOE> set. 

• Translation Not Valid (TNV) 

Taken when a read or write reference is attempted through an invalid PTE in a 
first-, second-, or third-level page table. 

See Chapter 6 for a detailed description of these faults. 

Those five faults have distinct vectors in the System Control Block. The Access 
Violation (ACV) fault takes precedence over the faults TNV, FOR, FOW, and FOE. 
The Translation Not Valid (TNV) fault takes precedence over the faults FOR, FOW, 
and FOE. 

The faults FOR and FOW can occur simultaneously in the CALL_PAL queue 
instructions, in which case the order that the exceptions are taken is 
UNPREDICTABLE (see Section 2.1). 
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Chapter 4 

OpenVMS AXP Process Structure (II—A) 

4.1 Process Definition 
A process is the basic entity that is scheduled for execution by the processor. A 
process represents a single thread of execution and consists of an address space and 
both hardware and software context. 

The hardware context of a process is defined by: 

• Thirty-one integer registers and 31 floating-point registers 

• Processor Status (PS) 

• Program Counter (PC) 

• Four stack pointers 

• Asynchronous System Trap Enable and summary registers (ASTEN, ASTSR) 

• Process Page Table Base Register (PTBR) 

• Address Space Number (ASN) 

• Floating Enable Register (FEN) 

• Charged Process Cycles 

• Process Unique value 

• Data Alignment Trap (DAT) 

• Performance Monitoring Enable Register (PME) 

The software context of a process is defined by operating system software and is 
system dependent. 

A process may share the same address space with other processes or have an address 
space of its own. There is, however, no separate address space for system software, 
and therefore, the operating system must be mapped into the address space of each 
process (see Chapter 3). 

In order for a process to execute, its hardware context must be loaded into the integer 
registers, floating-point registers, and internal processor registers. When a process 
is being executed, its hardware context is continuously updated. When a process is 
not being executed, its hardware context is stored in memory. 

Saving the hardware context of the current process in memory, followed by loading 
the hardware context for a new process, is termed context switching. Context 
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switching occurs as one process after another is scheduled by the operating system 
for execution. 

4.2 Hardware Privileged Process Context 
The hardware context of a process is defined by a privileged part that is context 
switched with the Swap Privileged Context instruction (SWPCTX) (see Section 2.6), 
and a nonprivileged part that is context switched by operating system software. 

When a process is not executing, its privileged context is stored in a 128-byte 
naturally aligned memory structure called the Hardware Privileged Context Block 
(HWPCB). (See Figure 4-1.) 

Figure 4-1: Hardware Privileged Context Block 

Kernel Stack Pointer (KSP) :HWPCB 

:+8 

:+16 

:+24 

:+32 

:+40 

:+48 

:+56 

:+64 

:+72 

:+80 

Executive Stack Pointer (ESP) 

Supervisor Stack Pointer (SSP) 

User Stack Pointer (USP) 

Page Table Base Register (PTBR) 

ASN 

AST 
SR 

AST 
EN 

Charged Process Cycles 

Process Unique Value 

PALcode Scratch Area of 6 Quadwords 

The Hardware Privileged Context Block (HWPCB) for the current process is specified 
by the Privileged Context Block Base register (PCBB). (See Chapter 5.) 

The Swap Privileged Context instruction (SWPCTX) saves the privileged context of 
the current process into the HWPCB specified by PCBB, loads a new value into 
PCBB, and then loads the privileged context of the new process into the appropriate 
hardware registers. 

The new value loaded into PCBB, as well as the contents of the Privileged Context 
Block, must satisfy certain constraints or an UNDEFINED operation results: 
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1. The physical address loaded into PCBB must be 128-byte aligned and describes 
16 contiguous quadwords that are in a memory-like region. (See Common 
Architecture, Chapter 5.) 

2. The value of PTBR must be the Page Frame Number of an existent page that is 
in a memory-like region. 

It is the responsibility of the operating system to save and load the nonprivileged 
part of the hardware context. 

The SWPCTX instruction returns ownership of the current HWPCB to operating 
system software and passes ownership of the new HWPCB from the operating system 
to the processor. Any attempt to write a HWPCB while ownership resides with the 
processor has UNDEFINED results. If the HWPCB is read while ownership resides 
with the processor, it is UNPREDICTABLE whether the original or an updated 
value of a field is read. The processor can update an HWPCB field at any time. The 
decision as to whether or not a field is updated is made individually for each field. 

If ASNs are not implemented, the ASN field is not read or written by PALcode. 

The FEN bit reflects the setting of the FEN IPR. 

Setting the PME bit alerts any performance hardware or software in the system to 
monitor the performance of this process. 

The DAT bit controls whether data alignment traps that are fixed up in PALcode 
are reported to the operating system. If the bit is clear, the trap is reported. If the 
bit is set, after the fixup, return is to the user. See Section 6.6. 

The Charged Process Cycles is the total number of PCC register counts that are 
charged to the process (modulo 2**32). When a process context is loaded by the 
SWPCTX instructions, the contents of the PCC count field (PCC_CNT) is subtracted 
from the contents of HWPCB [64] <31:0> and the result is written to the PCC offset 
field (PCC.OFF): 

PCC<63:32> «- (HWPCB[64]<31:0> PCC<31:0>) 

When a process context is saved by the SWPCTX instruction, the charged process 
cycles is computed by performing an unsigned add of PCC<63:32> and PCC<31:0>. 
That value is written to HWPCB[64]<31:0>. 

Software Programming Note: 

The following example returns in RO the current PCC register count (modulo 
2**32) for a process. Care is taken not to cause an unwanted sign extension. 

RPCC RO ; Read the processor cycle counter 
SLL RO, #32, Rl ; Line up the offset and count fields 
ADDQ RO, Rl, RO ; Do add 
SRL RO, #32, RO ; Zero extend the cycle count to 64 bits 

The Process Unique value is that value used in support of multithread 
implementations. The value is stored in the HWPCB when the process is not active. 
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When the process is active, the value may be cached in hardware internal storage 
or kept in the HWPCB only. 

4.3 Asynchronous System Traps (AST) 

Asynchronous System Traps (ASTs) are a means of notifying a process of events that 
are not synchronized with its execution but that must be dealt with in the context 
of the process with minimum delay. 

Asynchronous System Traps (ASTs) interrupt process execution and are controlled by 
the AST Enable (ÄSTEN) and AST Summary (ASTSR) internal processor registers. 
(See Chapter 5.) 

The AST Enable register (ÄSTEN) contains an enable bit for each of the four 
processor access modes. When the bit corresponding to an access mode is set, 
ASTs for that mode are enabled. The AST enable bit for an access mode may be 
changed by executing a Swap AST Enable instruction (SWASTEN; see Section 2.6), 
or by executing a Move to Processor Register instruction specifying ASTEN (MTPR 
ÄSTEN; see Chapter 5). 

The AST Summary Register (ASTSR) contains a pending bit for each of the four 
processor access modes. When the bit corresponding to an access mode is set, an 
AST is pending for that mode. 

Kernel mode software may request an AST for a particular access mode by executing 
a Move to Processor Register instruction specifying ASTSR (MTPR ASTSR; see 
Chapter 5). 

Hardware or PALcode monitors the state of ÄSTEN, ASTSR, PS<CM>, and 
PS<IPL>. If PS<IPL> is less than 2, and there is an AST pending and enabled 
for an access mode that is less than or equal to PS<CM> (that is, an equal or more 
privileged access mode), an AST is initiated at IPL 2. 

ASTs that are pending and enabled for a less privileged access mode are not allowed 
to interrupt execution in a more privileged access mode. 

4.4 Process Context Switching 

Process context switching occurs as one process after another is scheduled for 
execution by operating system software. Context switching requires the hardware 
context of one process to be saved in memory followed by the loading of the hardware 
context for another process into the hardware registers. 

The privileged hardware context is swapped with the CALL_PAL Swap Privileged 
Context instruction (SWPCTX). Other hardware context must be saved and restored 
by operating system software. 

The sequence in which process context is changed is important because the SWPCTX 
instruction changes the environment in which the context switching software itself 
is executing. Also, although not enforced by hardware, it is advisable to execute the 
actual context switching software in an environment that cannot be context switched 
(that is, at an IPL high enough that rescheduling cannot occur). 
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The SWPCTX instruction is the only method provided for loading certain internal 
processor registers. The SWPCTX instruction always saves the privileged context of 
the old process and loads the privileged context of a new process. Therefore, a valid 
HWPCB must be available to save the privileged context of the old process as well 
as load the privileged context of the new process. 
At system initialization, a valid HWPCB is constructed in the Hardware Restart 
Parameter Block (HWRPB) for the primary processor. (See Console Interface (III), 
Chapter 2.) Thereafter, it is the responsibility of operating system software to ensure 
a valid HWPCB when executing a SWPCTX instruction. 
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Chapter 5 

OpenVMS AXP Internal Processor Registers (ll-A) 

5.1 Internal Processor Registers 
This chapter describes the OpenVMS AXP Internal Processor Registers (IPRs). 
These registers are read and written with Move from Processor Register (MFPR) 
and Move to Processor Register (MTPR) instructions; see Section 2.6. 

Those instructions accept an input operand in R16 and return a result, if any, in 
RO. Registers RI, R16, and R17 are UNPREDICTABLE after a CALL_PAL MxPR 
routine. If a CALL_PAL MxPR routine does not return a result in RO, then RO is 
also UNPREDICTABLE on return. 

Some IPRs (for example, ASTSR, ASTEN, IPL) may be both read and written in a 
combined operation by performing an MTPR instruction. 

Internal Processor Registers may or may not be implemented as actual hardware 
registers. An implementation may choose any combination of PALcode and hardware 
to produce the architecturally specified function. 

Internal Processor Registers are only accessible from kernel mode. 

5.2 Stack Pointer Internal Processor Registers 

The stack pointers for user, supervisor, and executive stacks are accessible as IPRs 
through the CALL_PAL MTPR and MFPR instructions. An implementation may 
retain some or all of these stack pointers only in the HWPCB. In this case, MTPR and 
MFPR for these registers must access the corresponding PCB locations. However, 
implementations that have these stack pointers in internal hardware registers are 
not required to access the corresponding HWPCB locations for MTPR and MFPR. 
The HWPCB locations get updated when a SWPCTX instruction is executed. 

An implementation may also choose to keep the kernel stack pointer (KSP) in an 
internal hardware register (labelled IPR_KSP); however, this register is not directly 
accessible through MTPR and MFPR instructions. Because access to the KSP 
requires kernel mode, the actual KSP is the current mode stack pointer (R30); thus 
access to KSP is provided through R30, and no MTPR or MFPR access is required. 
PALcode routines can directly access IPRJKSP as needed. 

At system initialization, the value of the KSP is taken from the initial HWPCB (see 
Chapter 4). Table 5-1 summarizes the IPRs. 
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5.3 IPR Summary 

Table 5-1: Internal Processor Register (IPR) Summary 

Register Name 

Address Space Number 

AST Enable 

AST Summary Register 

Data Align Trap Fixup 

Exec Stack Pointer 

Floating-point Enable 

Interprocessor Int. Request 

Interrupt Priority Level 

Kernel Stack Pointer 

Machine Check Error Summary 

Performance Monitor 

Privileged Context Block Base 

Processor Base Register 

Page Table Base Register 

System Control Block Base 

Software Int. Request Register 

Software Int. Summary Register 

Supervisor Stack Pointer 

TB Check 

TB Invalid. All 

TB Invalid. All Process 

TB Invalid. Single 

TB Invalid. Single Data 

TB Invalid. Single Instruct. 

User Stack Pointer 

Virtual Page Table Base 

Who-Am-I 

Mnemonic Access1 

ASN 

ÄSTEN 

ASTSR 

DATFX 

ESP 

FEN 

IPIR 

IPL 

KSP 

MCES 

PERFMON 

PCBB 

PRBR 

PTBR 

SCBB 

SIRR 

SISR 

SSP 

TBCHK 

TBIA 

TBIAP 

TBIS 

TBISD 

TBISI 

USP 

VPTB 

WHAMI 

R 

R/W* 

R/W* 

W 

R/W 

R/W 

W 

R/W* 

None 

R/W 

W* 

R 

R/W 

R 

R/W 

W 

R 

R/W 

R 

W 

W 

W 

W 

W 

R/W 

R/W 

R 

Input 
R16 

— 

mask 

mask 

value 

address 

value 

number 

value 

— 

value 

IMP 

— 

value 

— 

frame 

level 

— 

address 

number 

— 

-

address 

address 

address 

address 

address 

— 

Output 
RO 

number 

mask 

mask 

— 

address 

value 

— 

value 

— 

value 

IMP 

address 

value 

frame 

frame 

— 

mask 

address 

status 

— 

-

— 

— 

— 

address 

address 

number 

Context 
Switched 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

Yes 

No 

No 

No 

No 

Yes 

No 

No 

No 

Yes 

No 

No 

No 

No 

No 

No 

Yes 

No 

No 

a c c e s s symbols are defined in Table 5-2. 
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Table 5-2: Internal Processor Register (IPR) Access Summary 

Access 
Type Meaning 

R Access by MFPR only. 

W Access by MTPR only. 

R/W Access by MFPR or MTPR. 

W* Read and Write access accomplished by MTPR. See Section 5.1 for details. 

R/W* Access by MFPR or MTPR. Read and Write access accomplished by MTPR. See Section 5.1 for details. 

None Not accessible by MTPR or MFPR; accessed by PALcode routines as needed. 
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5.3.1 Address Space Number (ASN) 

Access: 

Read 

Operation: 

IF {ASN are implemented} THEN 
RO <- ZEXT(ASN) 

ELSE 
RO «- 0 

Value at System Initialization: 

Zero 

Format: 

Figure 5-1 : Address Space Number Register (ASN) 

63 0 

Address Space Number 

RO 

Description: 

Address Space Numbers (ASNs) are used to further qualify Translation Buffer 
references. See Chapter 3. If ASNs are implemented, the current ASN may be 
read by executing an MFPR instruction specifying ASN. 

As processes are scheduled for execution, the ASN for the next process to execute is 
loaded using the Swap Privileged Context (SWPCTX) instruction. See Section 2.6.7 
and Chapter 4. 

The ASN register is an implicit operand to the CALL_PAL MFPRJPR, TBCHK, 
and TBISx PALcode instructions, in which it is used to qualify the virtual address 
supplied in R16. 
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5.3.2 AST Enable (ASTEN) 

Access: 

Read 
Write* 

Operation: 

RO <- ZEXT (ASTEN<3:0>) ! Read (MFPR) 
RO <- ZEXT(ASTEN<3:0>) ! Write* (MTPR) 
ASTEN<3:0> <- {{ASTEN<3:0> AND R16<3:0>} OR R16<7:4>} 
{check for pending ASTs} 

Value at System Initialization: 

Zero 

Format: 

Figure 5-2: AST Enable Register (ÄSTEN) 

63 8 7 6 5 4 3 2 1 0 

IGN 
U 
O 
N 

S 
0 
N 

E 
0 
N 

K 
0 
N 

U 
C 
L 

S 
C 
L 

E 
C 
L 

K 
C 
L 

Format of RO 

63 4 3 2 1 0 

RAZ 
U 
E 
N 

S 
E 
N 

E 
E 
N 

K 
E1 

N 

Description: 

The AST Enable Register records the AST enable state for each of the modes: 
kernel (KEN), executive (EEN), supervisor (SEN) and user (UEN). By writing R16 
appropriately and then executing an MTPR instruction specifying ÄSTEN, the value 
of ÄSTEN may be simultaneously read and modified. R16 contains bit masks used 
to determine the new value of ÄSTEN: 

• Bits R16<0> and R16<4> control the new state of kernel enable. 

• Bits R16<1> and R16<5> control the new state of executive enable. 
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• Bits R16<2> and R16<6> control the new state of supervisor enable. 
• Bits R16<3> and R16<7> control the new state of user enable. 
An MFPR to ÄSTEN reads the current value of the ÄSTEN and returns this value 
inRO. 
An MTPR to ÄSTEN begins by reading the current value of ÄSTEN and returning 
this value in RO. The current value of ÄSTEN is then ANDed with bits R16<3:0>; 
these bits preserve (if set to 1) or clear (if equal to 0) the current state of their 
corresponding enable modes. The value produced by this operation is then ORed 
with bits R16<7:4>; these bits turn on (if set to 1) or do not affect (if equal to 0) their 
corresponding enable modes. The resulting value is then written to the ÄSTEN. 

Note: 

All AST enables can be cleared by loading a zero into R16 and executing an MTPR 
instruction specifying ÄSTEN. To enable an AST for a given mode, load R16 with 
a mask that has bits <3:0> set and one of the bits <7:4> corresponding to the 
AST mode to be set. Then execute an MTPR instruction specifying ÄSTEN. 

As processes are scheduled for execution, the state of the AST enables for the 
next process to execute is loaded using the Swap Privileged Context (SWPCTX) 
instruction. The Swap AST Enable (SWASTEN) instruction can be used to change 
the enable state for the current access mode. See Section 2.1.12 and Chapter 4. 
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5.3.3 AST Summary Register (ASTSR) 

Access: 

Read 
Write* 

Operation: 

RO <- ZEXT(ASTSR<3:0>) ! Read (MFPR) 
RO <- ZEXT(ASTSR<3:0>) ! Write* (MTPR) 
ASTSR<3:0> +- {{ASTSR<3:0> AND R16<3:0>} OR R16<7:4>} 
{check for pending ASTs} 

Value at System Initialization: 

Zero 

Format: 

Figure 5-3: AST Summary Register (ASTSR) 

63 8 7 6 5 4 3 2 1 0 

IGN 
U 
O 
N 

S 
0 
N 

E 
O 
N 

K 
0 
N 

U 
C 
L 

S 
C 
L 

E 
C 
L 

K 
c 
L 

R16 

63 4 3 2 1 0 

RAZ 
U 
P 
D 

S 
P 
D 

E 
P 
D 

K 
P 
D 

RO 

Description: 

The AST Summary Register records the AST pending state for each of the modes: 
kernel (KPD), executive (EPD), supervisor (SPD), and user (UPD). 
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By writing R16 appropriately and then executing an MTPR instruction specifying 
ASTSR, the value of ASTSR may be simultaneously read and modified. R16 contains 
bit masks used to determine the new value of ASTSR: 

• Bits R16<0> and R16<4> control the new state of kernel pending. 

• Bits R16<1> and R16<5> control the new state of executive pending. 

• Bits R16<2> and R16<6> control the new state of supervisor pending. 

• Bits R16<3> and R16<7> control the new state of user pending. 

An MFPR reads the current value of ASTSR and returns this value in RO. 

An MTPR to ASTSR begins by reading the current value of ASTSR and returning 
this value in RO. The current value of ASTSR is then ANDed with bits R16<3:0>; 
these bits preserve (if set to 1) or clear (if equal to 0) the current state of their 
corresponding pending modes. The value produced by this operation is then ORed 
with bits R16<7:4>; these bits turn on (if set to 1) or do not affect (if equal to 0) their 
corresponding pending modes. The resulting value is then written to the ASTSR. 

Note: 

All AST requests can be cleared by loading a zero in R16 and executing an MTPR 
instruction specifying ASTSR. To request an AST for a given mode, load R16 with 
a mask that has bits <3:0> set and one of the bits <7:4> corresponding to the 
AST mode to be set. Then execute an MTPR instruction specifying ASTSR. 

As processes are scheduled for execution, the pending AST state for the next process 
to execute is loaded using the Swap Privileged Context (SWPCTX) instruction. See 
Section 2.6.7 and Chapter 4. 

When the processor IPL is less than 2, and proper enabling conditions are present, 
an AST interrupt is initiated at IPL 2 and the corresponding access mode bit in 
ASTSR is cleared. See Section 6.7.6. 
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5.3.4 Data Alignment Trap Fixup (DATFX) 

Access: 

Write 

Operation: 

DATFX «- R16<0> 
(HWPCB+56)<63> <- DATFX 

Value at System Initialization: 

Zero 

Format: 

Figure 5-4: Data Alignment Trap Fixup (DATFX) 

63 2 1 0 

D 
A 

T 

Description: 

Data Alignment traps are fixed up in PALcode and are reported to the operating 
system under the control of the DAT bit. If the bit is zero, the trap is reported. 
For the LDx_L and STx_C instructions, no fixup is possible and an illegal operand 
exception is generated. For the description of the data alignment traps, see 
Section 6.6. 
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5.3.5 Executive Stack Pointer (ESP) 

Access: 

Read/Write 

Operation: 

IF {internal registers for stack pointers} THEN ! Read 
RO <- ESP 

ELSE 
RO <- (IPR_PCBB + HWPCB_ESP) 

IF {internal registers for stack pointers} THEN ! Write 
ESP <- R16 

ELSE 
(IPR_PCBB + HWPCB_ESP) 4- R16 

Value at System Initialization: 

Value in the initial HWPCB 

Format: 

Figure 5-5: Executive Stack Pointer (ESP) 

63 0 

Stack Address 

Description: 

This register allows the stack pointer for executive mode (ESP) to be read and written 
via MFPR and MTPR instructions that specify ESP. 

The current stack pointer may be read and written directly by specifying scalar 
register SP (R30). 

As processes are scheduled for execution, the stack pointers for the next process to 
execute are loaded using the Swap Privileged Context (SWPCTX) instruction. See 
Section 2.6.7 and Chapter 4. 

5-10 OpenVMS AXP Software (II—A) 



5.3.6 Floating Enable (FEN) 

Access: 

Read/Write 

Operation: 

RO <- ZEXT(FEN) ! R e a d 

FEN «- R16<0> ! W r i t e 
(HWPCB+56)<0> <- FEN ! U p d a t e PCB on W r i t e 

Value at System Initialization: 

Zero 

Format: 

Figure 5-6: Floating Enable (FEN) Register 

63 2 1 0 

E 

N 

Description: 

The floating-point unit can be disabled. If the Floating Enable Register (FEN) is 
zero, all instructions that have floating registers as operands cause a floating-point 
disabled fault. See Section 6.3.1.1. 
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5.3.7 Interprocessor Interrupt Request (IPIR) 

Access: 

Write 

Operation: 

I P I R <- R16 

Value at System Initialization: 

Not applicable 

Format: 

Figure 5-7: Interprocessor Interrupt Request Register (IPIR) 

63 0 

Processor Number 

R16 

Description: 

An interprocessor interrupt can be requested on a specified processor by writing 
that processor's number into the IPIR register through an MTPR instruction. The 
interrupt request is recorded on the target processor and is initiated when proper 
enabling conditions are present. 

Programming Note: 

The interrupt need not be initiated before the next instruction is executed on the 
requesting processor, even if the requesting processor is also the target processor 
for the request. 

For additional information on interprocessor interrupts, see Section 6.4.5.1. 
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5.3.8 Interrupt Priority Level (IPL) 

Access: 

Read/Write* 

Operation: 

RO «- ZEXT(PS<IPL>) ! Read 
RO «- ZEXT(PS<IPL>) ! Write* 
PS<IPL> <- R16<4:0> ! Write 
{check for pending ASTs or interrupts} 

Value at System Initialization: 

31 

Format: 

Figure 5-8: Interrupt Priority Level (IPL) 

SBZ IPL 

Description: 

An MFPR IPL returns the current interrupt priority level in RO. An MTPR IPL 
returns the current interrupt priority level in RO and sets the interrupt priority 
level to the value in R16. If proper enabling conditions are present, an interrupt or 
AST is initiated prior to issuing the next instruction. See Sections 6.4.1 and 6.7.6. 
R16<63:5> are defined as RAZ/SBZ. Therefore, the presence of nonzero bits upon 
write in R16<63:5> may cause UNDEFINED results. 
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5.3.9 Machine Check Error Summary Register (MCES) 

Access: 

Read/Write 

Operation: 

RO ♦- ZEXT(MCES) ! Read 

IF {R16<0> EQ 1} THEN MCES<0> «- 0 ! Write 
IF {R16<1> EQ 1} THEN MCES<1> «- 0 
IF {R16<2> EQ 1} THEN MCES<2> <- 0 
MCES<3> «- R16<3> 
MCES<4> <- R16<4> 

Value at System Initialization: 

Zero 

Format: 

Figure 5-9: Machine Check Error Summary Register (MCES) 

63 32 31 5 4 3 2 1 0 

IMP Reserved 
D 
S 
C 

D 
P 
C 

P 
C 
E 

S 
C 
E 

M 
C 
K 

Description: 

The use of the MCES IPR is described in Section 6.5. 

MCK (MCES<0>) is set by the hardware or PALcode when a processor or system 
machine check occurs. SCE (MCES<1>) is set by the hardware or PALcode when a 
system correctable error occurs. PCE (MCES<2>) is set by the hardware or PALcode 
when a processor correctable error occurs. 

Setting the corresponding bit(s) in R16 clears MCK, SCE, and PCE. MCK is cleared 
by the operating system machine check error handler and used by the hardware or 
PALcode to detect double machine checks. SCE and PCE are cleared by the operating 
system or processor system correctable error handlers; these bits are used to indicate 
that the associated correctable error logout area may be reused by hardware or 
PALcode. In the event of double correctable errors, PALcode does not overwrite 
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the logout area and does not force the processor to enter console I/O mode. See 
Section 6.5.1. 
DPC (MCES<3>) and DSC (MCES<4>) are used to disable reporting of correctable 
errors to system software. The generation and correction of the machine check are 
not affected; only the report to system software is disabled. Setting DPC disables 
reporting of processor-correctable machine checks. Setting DSC disables reporting 
of system-correctable machine checks. 

Implementation dependent (IMP) bits may be used to report implementation-specific 
errors. 
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5.3.10 Performance Monitoring Register (PERFMON) 

Access: 

Write* 

Operation: 

! R16 contains implementation specific input values 
! R17 contains implementation specific imput values 
! R0 may return implementation specific values 
! Operations and actions taken are implementation specific 

Value at System Initialization: 

Implementation Dependent 

Format: 

Figure 5-10: Performance Monitoring Register (PERFMON) 

63 0 

IMP 

Description: 

The arguments and actions of this performance monitoring function are platform and 
chip dependent. The functions, when defined for an implementation, are described 
in Appendix D. 

R16 and R17 contain implementation dependent input values. Implementation 
specific values may be returned in R0. 
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5.3.11 Privileged Context Block Base (PCBB) 

Access: 

Read 

Operation: 

RO <- ZEXT(PCBB) 

Value at System Initialization: 

Address of processor's bootstrap HWPCB 

Format: 

Figure 5-11: Privileged Context Block Base Register (PCBB) 

RAZ Physical Address 

RO 

Description: 

The Privileged Context Block Base Register contains the physical address of the 
privileged context block for the current process. It may be read by executing an 
MFPR instruction specifying PCBB. 

PCBB is written by the Swap Privileged Context (SWPCTX) instruction. See 
Section 2.6.7 and Chapter 4. 
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5.3.12 Processor Base Register (PRBR) 

Access: 

Read/Write 

Operation: 

RO <- PRBR ! Read 

PRBR <- R16 ! Write 

Value at System Initialization: 

UNPREDICTABLE 

Format: 

Figure 5-12: Processor Base Register (PRBR) 

63 0 

Operating System-Dependent Value 

Description: 

In a multiprocessor system, it is desirable for the operating system to be able to 
locate a processor-specific data structure in a simple and straightforward manner. 
The Processor Base Register provides a quadword of operating system-dependent 
state that can be read and written via MFPR and MTPR instructions that specify 
PRBR. 
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5.3.13 Page Table Base Register (PTBR) 

Access: 

Read 

Operation: 

RO <- PTBR 

Value at System Initialization: 

Value in the bootstrap HWPCB 

Format: 

Figure 5-13: Page Table Base Register (PTBR) 

RAZ Page Frame Number 

RO 

Description: 

The Page Table Base Register contains the page frame number of the first-level page 
table for the current process. It may be read by executing an MFPR instruction 
specifying PTBR. See Chapter 3. 
As processes are scheduled for execution, the PTBR for the next process to execute is 
loaded using the Swap Privileged Context (SWPCTX) instruction. See Section 2.6.7 
and Chapter 4. 
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5.3.14 System Control Block Base (SCBB) 

Access: 

Read/Write 

Operation: 

RO <- ZEXT(SCBB) ! Read 

SCBB ♦- R16 ! Write 

Value at System Initialization: 

UNPREDICTABLE 

Format: 

Figure 5-14: System Control Block Base Register (SCBB) 

IGN/RAZ Page Frame Number 

Description: 

The System Control Block Base Register holds the Page Frame Number (PFN) of 
the System Control Block, which is used to dispatch exceptions and interrupts, and 
may be read and written by executing MFPR and MTPR instructions that specify 
SCBB. See Section 6.6. 
When SCBB is written, the specified physical address must be the PFN of a page 
that is neither in I/O space nor nonexistent memory, or UNDEFINED operation will 
result. 
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5.3.15 Software Interrupt Request Register (SIRR) 

Access: 

Write 

Operation: 

IF R16<3:0> NE 0 THEN 
SISR<R16<3:0>> <- 1 

Value at System Initialization: 

Not applicable 

Format: 

Figure 5-15: Software Interrupt Request Register (SIRR) 

4 3 0 

IGN LVL 

R16 

Description: 

A software interrupt may be requested for a particular Interrupt Priority Level 
(IPL) by executing an MTPR instruction specifying SIRR. Software interrupts may 
be requested at levels 0 through 15 (requests at level 0 are ignored). 

An MTPR SIRR sets the bit corresponding to the specified interrupt level in the 
Software Interrupt Summary Register (SISR). 

If proper enabling conditions are present, a software interrupt is initiated prior to 
issuing the next instruction. See Sections 6.4.1 and 6.7.6. 
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5.3.16 Software Interrupt Summary Register (SISR) 

Access: 

Read 

Operation: 

RO «- Z E X T ( S I S R < 1 5 : 0 > ) 

Value at System Initialization: 

Zero 

Format: 

Figure 5-16: Software Interrupt Summary Register (SISR) 

63 161514 1312 1110 9 8 7 6 5 4 3 2 1 0 

RAZ 
I 
R 
F 

I 
R 
E 

I 
R 
D 

I 
R 
C 

I 
R 
B 

I 
R 
A 

I 
R 
9 

I 
R 
8 

I 
R 
7 

I 
R 
6 

I 
R 
5 

I 
R 
4 

I 
R 
3 

I 
R 
2 

I 
R 
1 

R 
A! 
z 

R0 

Description: 

The Software Interrupt Summary Register records the interrupt pending state for 
each of the interrupt levels 1 through 15. The current interrupt pending state may 
be read by executing an MFPR instruction specifying SISR. 
MTPR SIRR (see SIRR) requests an interrupt at a particular interrupt level and 
sets the corresponding pending bit in SISR. 
When the processor IPL falls below the level of a pending request, an interrupt is 
initiated and the corresponding bit in SISR is cleared; see Sections 6.4.1 and 6.7.6. 
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5.3.17 Supervisor Stack Pointer (SSP) 

Access: 

Read/Write 

Operation: 

IF {internal registers for stack pointers} THEN ! Read 
RO ♦- SSP 

ELSE 
RO <- (IPR_PCBB + HWPCB_SSP) 

IF {internal registers for stack pointers} THEN ! Write 
SSP <- R16 

ELSE 
(IPR_PCBB + HWPCB_SSP) «- R16 

Value at System Initialization: 

Value in the initial HWPCB 

Format: 

Figure 5-17: Supervisor Stack Pointer (SSP) 

63 0 

Stack Address 

Description: 

The Supervisor Stack Pointer register allows the stack pointer for supervisor mode 
(SSP) to be read and written via MFPR and MTPR instructions that specify SSP. 

The current stack pointer may be read and written directly by specifying scalar 
register SP (R30). 

As processes are scheduled for execution, the stack pointers for the next process to 
execute are loaded using the Swap Privileged Context (SWPCTX) instruction. See 
Section 2.6.7 and Chapter 4. 
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5.3.18 Translation Buffer Check (TBCHK) 

Access: 

Read 

Operation: 

RO < - 0 
IF {implemented} THEN 

R0<0> <- {entry in TB for VA in R16} 
ELSE 

R0<63> <- 1 

Value at System Initialization: 

Correct results are always returned 

Format: 

Figure 5-18: Translation Buffer Check Register (TBCHK) 

Virtual Address 

R16 
63 62 

I 
M 
P 

2 

RAZ 

1 0 

p 
R 
s 

RO 

Description: 

The Translation Buffer Check Register provides the capability to determine if 
a virtual address is present in the Translation Buffer by executing an MFPR 
instruction specifying TBCHK. See Chapter 3. 

The virtual address to be checked is specified in R16 and may be any address within 
the desired page. If ASNs are implemented, only those Translation Buffer entries 
that are associated with the current value of the ASN IPR will be checked for the 
virtual address. The value read contains an indication of whether the function is 
implemented and whether the virtual address is present in the Translation Buffer. 
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If the function is not implemented, a value is returned with bit <63> set and bit <0> 
clear. Otherwise, a value is returned with bit <63> clear, and with bit <0> indicating 
whether the virtual address is present in (1) or absent from (0) the Translation 
Buffer. 
The TBCHK register can be used by system software for working set management. 
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5.3.19 Translation Buffer Invalidate All (TBIA) 

Access: 

Write 

Operation: 

{Invalidate all TB entries} 

Value at System Initialization: 

Not applicable 

Format: 

Figure 5-19: Translation Buffer Invalidate All Register (TBIA) 

63 0 

Unused 

R16 

Description: 

The Translation Buffer Invalidate All Register provides the capability to invalidate 
all entries in the Translation Buffer by executing an MTPR instruction specifying 
TBIA. See Chapter 3. 
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5.3.20 Translation Buffer Invalidate All Process (TBIAP) 

Access: 

Write 

Operation: 

{Invalidate all TB entries with PTE<ASM> clear} 

Value at System Initialization: 

Not applicable 

Format: 

Figure 5-20: Translation Buffer Invalidate All Process Register (TBIAP) 

63 0 

Unused 

R16 

Description: 

The Translation Buffer Invalidate All Process Register provides the capability to 
invalidate all entries in the Translation Buffer that do not have the ASM bit set by 
executing an MTPR instruction specifying TBIAP. See Chapter 3. 

Notes: 
More entries may be invalidated by this operation. For example, some 
implementations may flush the entire TB on a TBIAP. 
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5.3.21 Translation Buffer Invalidate Single (TBISx) 

Access: 

Write 

Operation: 

TBIS: 
{Invalidate single Data TB entry using R16} 
{Invalidate single Instruction TB entry using R16} 

TBISD: 
{Invalidate single Data TB entry using R16} 

TBISI: 
{Invalidate single Instruction TB entry using R16} 

Value at System Initialization: 

Not applicable 

Format: 

Figure 5-21: Translation Buffer Invalidate Single (TBIS) 

63 0 

Virtual Address 

RÎ6 

Description: 

The Translation Buffer Invalidate Single Registers provide the capability to 
invalidate a single entry in the Instruction Translation Buffer (TBISI), the Data 
Translation Buffer (TBISD), or both translation buffers (TBIS). The virtual address 
to be invalidated is passed in R16 and may be any address within the desired page. 

Notes: 
More than the single entry may be invalidated by this operation. For example some 
implementations may flush the entire TB on a TBIS. As a result, if the specified 
address does not match any entry in the Translation Buffer, then it is implementation 
dependent whether the state of the Translation Buffer is affected by the operation. 
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5.3.22 User Stack Pointer (USP) 

Access: 

Read/Write 

Operation: 

IF {internal registers for stack pointers} THEN ! Read 
RO «- USP 

ELSE 
RO «- (IPR_PCBB + HWPCB_USP) 

IF {internal registers for stack pointers} THEN ! Write 
USP «- R16 

ELSE 
(IPR_PCBB + HWPCB_USP) <- R16 

Value at System Initialization: 

Value in the initial HWPCB 

Format: 

Figure 5-22: User Stack Pointer (USP) 

63 0 

Stack Address 

Description: 

This register allows the stack pointer for user mode (USP) to be read and written 
via MFPR and MTPR instructions that specify USP 

The current stack pointer may be read and written directly by specifying scalar 
register SP (R30). 

As processes are scheduled for execution, the two stack pointers for the next process 
to execute are loaded using the Swap Privileged Context (SWPCTX) instruction. See 
Section 2.6.7 and Chapter 4. 
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5.3.23 Virtual Page Table Base (VPTB) 

Access: 

Read/Write 

Operation: 

RO <- VPTB ! Read 

VPTB <- R16 ! Write 

Value at System Initialization: 

Initialized by the console in the bootstrap address space. 

Format: 

Figure 5-23: Virtual Page Table Base Register (VPTB) 

63 0 

VA of Page Table Structure 

RO 

Description: 

The Virtual Page Table Base Register contains the virtual address of the base of 
the entire three-level page table structure. It may be read by executing an MFPR 
instruction specifying VPTB. It is written at system initialization using an MTPR 
instruction specifying VPTB. See Section 3.7.2 and Console Interface (III), Chapter 
3 for initialization considerations. 
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5.3.24 Who-Am-I (WHAMI) 

Access: 

Read 

Operation: 

RO * - WHAMI 

Value at System Initialization: 

Processor number 

Format: 

Figure 5-24: Who-Am-I Register (WHAMI) 

63 0 

Processor Number 

RO 

Description: 

The Who-Am-I Register provides the capability to read the current processor number 
by executing an MFPR instruction specifying WHAMI. The processor number 
returned is in the range 0 to the number of processors minus one that can be 
configured in the system. Processor number FFFF FFFF FFFF FFFF16 is reserved. 

The current processor number is useful in a multiprocessing system to index 
arrays that store per processor information. Such information is operating system 
dependent. 
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Chapter 6 

OpenVMS AXP Exceptions, Interrupts, and Machine 
Checks (ll-A) 

6.1 Introduction 
At certain times during the operation of a system, events within the system require 
the execution of software outside the explicit flow of control. When such an 
exceptional event occurs, an Alpha AXP processor forces a change in control flow 
from that indicated by the current instruction stream. The notification process for 
such events is of one of three types: 

• Exceptions 

These events are relevant primarily to the currently executing process and 
normally invoke software in the context of the current process. The three types 
of exceptions are faults, arithmetic traps, and synchronous traps. Exceptions are 
described in Section 6.3. 

• Interrupts 

These events are primarily relevant to other processes, or to the system as a 
whole, and are typically serviced in a systemwide context. 

Some interrupts are of such urgency that they require high-priority service, while 
others must be synchronized with independent events. To meet these needs, each 
processor has priority logic that grants interrupt service to the highest priority 
event at any point in time. Interrupts are described in Section 6.4. 

• Machine Checks 

These events are generally the result of serious hardware failure. The registers 
and memory are potentially in an indeterminate state such that the instruction 
execution cannot necessarily be correctly restarted, completed, simulated, or 
undone. Machine checks are described in Section 6.5. 

For all such events, the change in flow of control involves changing the Program 
Counter (PC), possibly changing the execution mode (current mode) and/or interrupt 
priority level (IPL) in the Processor Status (PS), and saving the old values of the 
PC and PS. The old values are saved on the target stack as part of an Exception, 
Interrupt, or Machine Check Stack Frame. Collectively, those elements are described 
in Section 6.2. 

The service routines that handle exceptions, interrupts, and machine checks are 
specified by entry points in the System Control Block (SCB), described in Section 6.6. 
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Return from an exception, interrupt, or machine check, is done via the CALL_PAL 
REI instruction. As part of its work, CALL_PAL REI restores the saved values of 
PC and PS and pops them off the stack. 

6.1.1 Differences Between Exceptions, Interrupts, and Machine Checks 
Generally, exceptions, interrupts, and machine checks are similar. However, there 
are four important differences: 

1. An exception is caused by the execution of an instruction. An interrupt is caused 
by some activity in the system that may be independent of any instruction. A 
machine check is associated with a hardware error condition. 

2. The IPL of the processor is not changed when the processor initiates an exception. 
The IPL is always raised when an interrupt is initiated. The IPL is always 
raised when a machine check is initiated, and for all machine checks other than 
system correctable, is raised to 31 (highest priority level). (For system correctable 
machine checks, the IPL is raised to 20.) 

3. Exceptions are always initiated immediately, no matter what the processor IPL 
is. Interrupts are deferred until the processor IPL drops below the IPL of the 
requesting source. Machine checks can be initiated immediately or deferred, 
depending on error conditions. 

4. Some exceptions can be selectively disabled by selecting instructions that do 
not check for exception conditions. If an exception condition occurs in such an 
instruction, the condition is totally ignored and no state is saved to signal that 
condition at a later time. 

If an interrupt request occurs while the processor IPL is equal to or greater than 
that of the interrupting source, the condition will eventually initiate an interrupt 
if the interrupt request is still present and the processor IPL is lowered below 
that of the interrupting source. 

Machine checks cannot be disabled. Machine checks can be initiated immediately 
or deferred, depending on the error condition. Also, they can be deliberately 
generated by software. 

6.1.2 Exceptions, Interrupts, and Machine Checks Summary 
Table 6-1 summarizes the actions taken on an exception, interrupt, or machine 
check. The remaining sections in this chapter describe those actions in greater 
detail. 

• The "SavedPC" column describes what is saved in the "PC" field of the exception 
or interrupt or machine check stack frame. 

1. "Current" indicates the PC of the instruction at which the exception or 
interrupt or machine check was taken, 

2. "Next" indicates the PC of the successor instruction. 
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• The "NewMode" column specifies the mode and stack that the exception or 
interrupt or machine check routine will start with. For change mode traps, 
"MostPrv" indicates the more privileged of the current and new modes. 

• The "R2" column specifies the value with which R2 is loaded, after its original 
value has been saved in the exception or interrupt or machine check stack frame. 
The SCB vector quadword, "SCBv", is loaded into R2 for all interrupts and 
exceptions and machine checks. 

• The "R3" column specifies the value with which R3 is loaded, after its original 
value has been saved in the exception or interrupt or machine check stack frame. 
The SCB parameter quadword, "SCBp", is loaded into R3 for all interrupts and 
exceptions and machine checks. 

• The "R4" column specifies the value with which R4 is loaded, after its original 
value has been saved in the exception or interrupt or machine check stack frame. 
If the "R4" column is blank the value in R4 is UNPREDICTABLE on entry to an 
interrupt or exception. 

1. "VA" indicates the exact virtual address that triggered a memory management 
fault or data alignment trap. 

2. "Mask" indicates the Register Write Mask. 

3. "LAOfP indicates the offset from the base of the logout area in the HWRPB 
(see Section 6.5.2). 

• The "R5" column specifies the value with which R5 is loaded, after its original 
value has been saved in the exception or interrupt or machine check stack frame. 
If the "R5" column is blank the value in R5 is UNPREDICTABLE on entry to an 
interrupt or exception or machine check. 

1. "MMF" indicates the Memory Management Flags. 

2. "Exc" indicates the Exception Summary parameter. 

3. "RW" indicates Read/Load =0 Write/Store =1 for data alignment traps 
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Table 6-1 : Exceptions, Interrupts, and Machine Checks Summary 

SavedPC NewMode R2 R3 R4 R5 

Exceptions - Faults 

Floating Disabled Fault Current Kernel SCBv SCBp 

Memory Management Faults 

Access Control Violation Current Kernel SCBv SCBp VA MMF 
Translation Not Valid Current Kernel SCBv SCBp VA MMF 
Fault on Read Current Kernel SCBv SCBp VA MMF 
Fault on Write Current Kernel SCBv SCBp VA MMF 
Fault on Execute Current Kernel SCBv SCBp VA MMF 

Exceptions - Arithmetic Traps 

Arithmetic Traps Next Kernel SCBv SCBp Mask Exc 

Exceptions - Synchronous Traps 

Breakpoint Trap Next 
Bugcheck Trap Next 
Change Mode to K/E/S/U Next 
Illegal Instruction Next 
Illegal Operand Next 
Data Alignment Trap Next 

Interrupts 

Asynch System Trap (4) Current 
Interval Clock Current 
Interprocessor Interrupt Current 
Software Interrupts Current 
Performance Current 
monitor 
Passive Release Current 
Powerfail Current 
I/O Device Current 
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Kernel SCBv SCBp 
Kernel SCBv SCBp 
MostPrv SCBv SCBp 
Kernel SCBv SCBp 
Kernel SCBv SCBp 
Kernel SCBv SCBp VA RW 

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 
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Table 6-1 (Cont.): Exceptions, Interrupts, and Machine Checks Summary 

SavedPC NewModeR2 R3 R4 

Machine Checks 

Processor Correctable 
System Correctable 
System 
Processor 

Current Kernel 
Current Kernel 
Current Kernel 
Current Kernel 

SCBv SCBp LAOff 
SCBv SCBp LAOff 
SCBv SCBp LAOff 
SCBv SCBp LAOff 

OpenVMS AXP Exceptions, Interrupts, and Machine Checks (ll-A) 6-5 



6.2 Processor State and Exception/Interrupt/Machine Check Stack 
Frame 

Processor state consists of a quadword of privileged information called the Processor 
Status (PS) and a quadword containing the Program Counter (PC), which is the 
virtual address of the next instruction. 
When an exception, interrupt, or machine check is initiated, the current processor 
state during the exception, interrupt, or machine check must be preserved. This is 
accomplished by automatically pushing the PS and the PC on the target stack. 
Subsequently, instruction execution can be continued at the point of the exception, 
interrupt, or machine check by executing a CALL_PAL REI instruction (see 
Section 2.1.10). 
Process context such as memory mapping information is not saved or restored on 
each exception, interrupt, or machine check. Instead, it is saved and restored when 
process context switching is performed. Other processor status is changed even less 
frequently (see Chapter 4). 

6.2.1 Processor Status 
The PS can be explicitly read with the CALL.PAL RD_PS instruction. The PS<SW> 
field can be explicitly written with the CALL_PAL WR_PS_SW instruction. See 
Section 2.1. 
The terms current PS and saved PS are used to distinguish between this status 
information when it is stored internal to the processor and when copies of it are 
materialized in memory. 

Figure 6-1: Current Processor Status (PS Register) 
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Figure 6-2: Saved Processor Status (PS on Stack) 
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Table 6-2: Processor Status Register Summary 
Bits Description 

63-62 Reserved to Digitial, MBZ. 
61-56 Stack alignment (SP_ALIGN). The previous stack byte alignment within a 64 byte 

aligned area, in the range 0 to 63. This field is set in the saved PS during the act 
of taking an exception or interrupt; it is used by the CALL_PAL REI instruction to 
restore the previous stack byte alignment. 

55-13 Reserved to Digital, MBZ. 
12-8 Interrupt priority level (IPL). The current processor priority, in the range 0 to 31. 
7 Virtual machine monitor (VMM). When set, the processor is executing in a virtual 

machine monitor. When clear, the processor is running in either real or virtual 
machine mode. 

Programming Note: 

This bit is only meaningful when running with PALcode that implements virtual 
machine capabilities. 

6-5 Reserved to Digital, MBZ. 
4-3 Current mode (CM). The access mode of the currently executing process as follows: 

0 Kernel 
1 Executive 
2 Supervisor 
3 User 

2 Interrupt pending (IP). Set when an interrupt (software or hardware but not AST) 
is initiated; indicates an interrupt is in progress. 

1-0 Reserved for Software (SW). These bits are reserved for software use and can be 
read and written at any time by the software, regardless of the current mode. The 
value of these bits is ignored by the hardware. The software field is set to zero at 
the initiation of either an exception or an interrupt. 

At bootstrap, the initial value of PS is set to 1F0016. Previous stack alignment is 
zero, IPL is 31, VMM is clear, CM is kernel, and the SW and IP fields are zero. 

6.2.2 Program Counter 
The PC (Figure 6-3) is a 64-bit virtual address. All instructions are aligned on 
longword boundaries and, therefore, hardware can assume zero for the two low-
order PC bits. 

The PC can be explicitly read with the Unconditional Branch (BR) instruction. All 
branching instructions also load a new value into the PC. 

The PC is discussed in Section 6.2.6. 
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Figure 6-3: Program Counter (PC) 

Instruction Virtual Address <63:2> 

6.2.3 Processor Interrupt Priority Level (IPL) 
Each processor has 32 interrupt priority levels (IPLs) divided into 16 software levels 
(numbered 0 to 15), and 16 hardware levels (numbered 16 to 31). User applications 
and most operating system software run at IPL 0, which may be thought of as 
process level. Higher numbered interrupt levels have higher priority; that is, any 
request at an interrupt level higher than the processor's current IPL will interrupt 
immediately, but requests at lower or equal levels are deferred. 

Interrupt levels 0 to 15 exist solely for use by software. No hardware event can 
request an interrupt on these levels. Conversely, interrupt levels 16 to 31 exist 
solely for use by hardware. Serious system failures, such as a machine check abort, 
however, raise the IPL to the highest level (31), to minimize processor interruption 
until the problem is corrected, and execute in kernel mode on the kernel stack. 

6.2.4 Protection Modes 
Each processor has four protection modes: kernel, executive, supervisor, and user. 
Per-page memory protection varies as a function of mode (for example, a page can 
be made read-only in user mode, but read-write in supervisor, executive, or kernel 
mode). 

For each process, a separate stack is associated with each mode. Corruption of one 
stack does not affect use of the other stacks. 

Some instructions, termed privileged instructions, may be executed only in kernel 
mode. 

6.2.5 Processor Stacks 
Each processor has four stacks. There are four process-specific stacks associated 
with the four modes of the current process. At any given time, only one of these 
stacks is actively used as the current stack. 

6.2.6 Stack Frames 
When an exception, interrupt, or machine check occurs, a stack frame (Figure 6-4) 
is pushed on the target stack. Regardless of the type of event notification, this 
stack frame consists of a 64-byte-aligned structure that contains the saved contents 
of registers R2..R7, the Program Counter (PC), and the Processor Status (PS). 
Registers R2 and R3 are then loaded with vector and parameter from the SCB for the 
exception, interrupt, or machine check. Registers R4 and R5 may be loaded with data 
pertaining to the exception, interrupt, or machine check. The specific data loaded is 
described below in conjunction with each exception, interrupt, or machine check; if 
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no specific data is specified, the contents of R4 and R5 are UNPREDICTABLE. After 
the stack is built, the contents of registers R6 and R7 are UNPREDICTABLE. 

The Program Counter value that is saved in the stack frame is: 

• For faults, the instruction that encountered the exception. 

• For traps, the next instruction. 

• For interrupts and (on a best-effort basis) machine checks, the instruction that 
would have been issued if the interrupt or machine-check condition had not 
occurred. 

Return from an exception, interrupt, or machine check is done via the CALL_PAL 
REI instruction, which restores the saved values of PC, PS, and R2..R7. Thus, the 
CALL_PAL REI instruction: 

• For faults, re-executes the faulting instruction. 

• For traps, executes the next instruction. 

• For interrupts, executes the instruction that would have been executed if the 
interrupt had not occurred. 

• For machine checks, continues execution from the point at which the machine 
check was taken. 

Figure 6-4: Stack Frame 
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6.3 Exceptions 
Exception service routines execute in response to exception conditions caused by 
software. Most exception service routines execute in kernel mode, on the kernel 
stack; all exception service routines execute at the current processor IPL. Change 
mode exception routines for CHMU/CHMS/CHME execute in the more privileged 
of the current mode or the target mode (U/S/E), on the matching stack. Exception 
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service routines are usually coded to avoid exceptions; however, nested exceptions 
can occur. 

Types of Exceptions 
There are three types of exceptions: 

• A fault is an exception condition that occurs during an instruction and leaves 
the registers and memory in a consistent state such that elimination of the fault 
condition and subsequent re-execution of the instruction will give correct results. 
Faults are not guaranteed to leave the machine in exactly the same state it was 
in immediately prior to the fault, but rather in a state such that the instruction 
can be correctly executed if the fault condition is removed. The PC saved in the 
exception stack frame is the address of the faulting instruction. A CALL_PAL 
REI instruction to this PC will reexecute the faulting instruction. 

• An arithmetic trap is an exception condition that occurs at the completion of 
the operation that caused the exception. Because several instructions may be 
in various stages of execution at any point in time, it is possible for multiple 
arithmetic traps to occur simultaneously. The PC that is saved in the exception 
frame on traps is that of the next instruction that would have been issued if the 
trapping condition(s) had not occurred. This is not necessarily the address of the 
instruction immediately following the one(s) encountering the trap condition, and 
intervening instructions may have changed operands or other state used by the 
instruction(s) encountering the trap condition(s). A CALL_PAL REI instruction 
to this PC will not reexecute the trapping instruction(s), nor will it reexecute 
any intervening instructions; it will simply continue execution from the point at 
which the trap was taken. 

In general, it is difficult to fix up results and continue program execution at the 
point of an arithmetic trap. Software can force a trap to be continued more easily 
without the need for complicated fixup code. This is accomplished by following 
a set of code-generation restrictions in code that could cause arithmetic traps 
that are to be completed by a software trap handler, including specifying the /S 
software completion modifier in each such instruction. See Common Architecture, 
Chapter 4, Imprecise /Software Completion Trap Modes. 

The AND of all the software completion modifiers for trapping instructions is 
provided to the arithmetic trap handler in the exception summary SWC bit. If 
SWC is set, a trap handler may find the trigger instruction by scanning backward 
from the trap PC until each register in the register write mask has been an 
instruction destination. The trigger instruction is the first instruction in I-stream 
order to get a trap within a trap shadow (See Common Architecture, Chapter 4, 
Imprecise /Software Completion Trap Modes for the definition of trap shadow). 
If the SWC bit is clear, no fixup is possible. (The trigger instruction may have 
been followed by a taken branch, so the trap PC cannot be used to find it.) 

• A synchronous trap is an exception condition that occurs at the completion of 
the operation that caused the exception (or, if the operation can only be partially 
carried out, at the completion of that part of the operation), and no subsequent 
instruction is issued before the trap occurs. 
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Synchronous traps are divided into data alignment traps and all other 
synchronous traps. 

6.3.1 Faults 
The six types of faults signal that an instruction or its operands are in some way 
illegal. These faults are all initiated in kernel mode and push an exception stack 
frame onto the stack. Upon entry to the exception routine, the saved PC (in the 
exception stack frame) is the virtual address of the faulting instruction. 

The six faults include the Floating Disable Fault described in the next section and 
five memory management faults. 

Memory management faults occur when a virtual address translation encounters an 
exception condition. This can occur as the result of instruction fetch or during a load 
or store operation. 

Immediately following a memory management fault, register R4 contains the exact 
virtual address encountering the fault condition. 

The register R5 contains the "MM Flag" quadword. 

"MM Flag" is set as follows: 

0000 0000 0000 OOOOie for a faulting data read 

0000 0000 0000 000 l i 6 for a faulting I-fetch operation 

8000 0000 0000 000016 for a faulting write operation 

The faulting instruction is the instruction whose fetch faulted, or the load, store, or 
PALcode instruction that encountered the fault condition. 

Chapter 3 describes the Alpha AXP memory management architecture in more 
detail. 

6.3.1.1 Floating Disabled Fault 

A Floating Disabled Fault is an exception that occurs when an attempt is made to 
execute a floating-point instruction and the floating-point enable (FEN) bit in the 
HWPCB is not set. 

6.3.1.2 Access Control Violation (ACV) Fault 

An ACV fault is a memory management fault that indicates that an attempted access 
to a virtual address was not allowed in the current mode. 

ACV faults usually indicate program errors, but in some cases, such as automatic 
stack expansion, can indicate implicit operating system functions. 

ACV faults take precedence over Translation Not Valid, Fault on Read, Fault on 
Write, and Fault on Execute faults. 

ACV faults take precedence over Translation Not Valid faults so that a malicious 
user could not degrade system performance by causing spurious page faults to pages 
for which no access is allowed. 
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6.3.1.3 Translation Not Valid (TNV) 

A TNV fault is a memory management fault that indicates that an attempted access 
was made to a virtual address whose Page Table Entry (PTE) was not valid. 

Software may use TNV faults to implement virtual memory capabilities. 

6.3.1.4 Fault on Read (FOR) 

An FOR fault is a memory management fault that indicates that an attempted data 
read access was made to a virtual address whose Page Table Entry (PTE) had the 
Fault on Read bit set. 

As a part of initiating the FOR fault, the processor invalidates the Translation Buffer 
entry that caused the fault to be generated. 

Implementation Note: 

This allows an implementation only to invalidate entries from the Data-stream 
Translation Buffer on Fault On Read faults. 

The Translation Buffer may reload and cache the old PTE value between the time 
the FOR fault invalidates the old value from the Translation Buffer and the time 
software updates the PTE in memory. Software that depends on the processor-
provided invalidate must thus be prepared to take another FOR fault on a page 
after clearing the page's PTE<FOR> bit. The second fault will invalidate the stale 
PTE from the Translation Buffer, and the processor cannot load another stale copy. 
Thus, in the worst case, a multiprocessor system will take an initial FOR fault and 
then an additional FOR fault on each processor. In practice, even a single repetition 
is unlikely. 

Software may use FOR faults to implement watchpoints, to collect page usage 
statistics, and to implement execute-only pages. 

6.3.1.5 Fault on Write (FOW) 

A FOW fault is a memory management fault that indicates that an attempted data 
write access was made to a virtual address whose Page Table Entry (PTE) had the 
Fault On Write bit set. 

As a part of initiating the FOW fault, the processor invalidates the Translation 
Buffer entry that caused the fault to be generated. 

Implementation Note: 

This allows an implementation only to invalidate entries from the Data-stream 
Translation Buffer on Fault On Write faults. 

Note that the Translation Buffer may reload and cache the old PTE value between 
the time the FOW fault invalidates the old value from the Translation Buffer and the 
time software updates the PTE in memory. Software that depends on the processor-
provided invalidate must thus be prepared to take another FOW fault on a page 
after clearing the page's PTE<FOW> bit. The second fault will invalidate the stale 
PTE from the Translation Buffer, and the processor cannot load another stale copy. 
Thus, in the worst case, a multiprocessor system will take an initial FOW fault and 
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then an additional FOW fault on each processor. In practice, even a single repetition 
is unlikely. 

Software may use FOW faults to maintain modified page information, to implement 
copy on write and watchpoint capabilities, and to collect page usage statistics. 

6.3.1.6 Fault on Execute (FOE) 

An FOE fault is a memory management fault that indicates that an attempted 
instruction stream access was made to a virtual address whose Page Table Entry 
(PTE) had the Fault On Execute bit set. 

As a part of initiating the FOE fault, the processor invalidates the Translation Buffer 
entry that caused the fault to be generated. 

Implementation Note: 

This allows an implementation only to invalidate entries from the Instruction-
stream Translation Buffer on Fault On Execute faults. 

Note that the Translation Buffer may reload and cache the old PTE value between 
the time the FOE fault invalidates the old value from the Translation Buffer and the 
time software updates the PTE in memory. Software that depends on the processor-
provided invalidate must thus be prepared to take another FOE fault on a page after 
clearing the page's PTE<FOE> bit. The second fault will invalidate the stale PTE 
from the Translation Buffer, and the processor cannot load another stale copy. Thus, 
in the worst case, a multiprocessor system will take an initial FOE fault and then 
an additional FOE fault on each processor. In practice, even a single repetition is 
unlikely. 

Software may use FOE faults to implement access mode changes and protected entry 
to kernel mode, to collect page usage statistics, and to detect programming errors 
that try to execute data. 

6.3.2 Arithmetic Traps 
An arithmetic trap is an exception that occurs as the result of performing an 
arithmetic or conversion operation. 

If integer register R31 or floating-point register F31 is specified as the destination of 
an operation that can cause an arithmetic trap, it is UNPREDICTABLE whether the 
trap will actually occur, even if the operation would definitely produce an exceptional 
result. If the operation causes an arithmetic trap, the bit that corresponds to R31 
or F31 in the Register Write Mask is UNPREDICTABLE. 

Arithmetic traps are initiated in kernel mode and push the exception stack frame 
on the kernel stack. The Register Write Mask is saved in R4, and the Exception 
Summary parameter is saved in R5. These are described below. 

When an arithmetic exception condition is detected, several instructions may be 
in various stages of execution. These instructions are allowed to complete before 
the arithmetic trap can be initiated. Some of these instructions may themselves 
cause further arithmetic traps. Thus, it is possible for several arithmetic traps to 
be reported simultaneously. 
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It is also possible for the result of an instruction that causes an arithmetic trap to 
be used as an operand in a subsequent instruction before the trap is taken. If this 
would produce undesired behavior, software is responsible for inserting appropriate 
TRAPB or EXCB instructions to cause the trap to be recognized before the result is 
used. 

Integer exceptional results (integer overflow) can be forwarded to the address 
calculation for load and store instructions, to the address calculation for jump 
instructions, as the source data for a store instruction, or as the source data for a 
conditional branch instruction. This can result in the generation of an inappropriate 
address, the storing of exceptional results in memory, or an unintended branch. 
If this would produce undesired behavior, software is responsible for inserting 
appropriate TRAPB instructions to cause the trap to be recognized before the result 
is used. 

6.3.2.1 Exception Summary Parameter 

The Exception Summary parameter shown in (Figure 6-5) and described in Table 6-3 
records the various types of arithmetic traps that can occur together. These types of 
traps are described in subsections below. 

Figure 6-5: Exception Summary 
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Table 6-3: Exception Summary 

Bit Description 

63-7 Zero. 
6 Integer Overflow (IOV) 

An integer arithmetic operation or a conversion from floating to integer overflowed the 
destination precision. 

5 Inexact Result (INE) 
A floating arithmetic or conversion operation gave a result that differed from the 
mathematically exact result. 

4 Underflow (UNF) 
A floating arithmetic or conversion operation underflowed the destination exponent. 

3 Overflow (OVF) 
A floating arithmetic or conversion operation overflowed the destination exponent. 
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Table 6-3 (Cont.): Exception Summary 

Bit Description 

2 Division by Zero (DZE) 
An attempt was made to perform a floating divide operation with a divisor of zero. 

1 Invalid Operation (INV) 
An attempt was made to perform a floating arithmetic, conversion, or comparison 
operation, and one or more of the operand values were illegal. 

0 Software Completion (SWC) 
Is set when all of the other arithmetic exception bits were set by floating-operate 
instructions with the /S software completion trap modifier set. See Common 
Architecture, Chapter 4, Imprecise /Software Completion Trap Modes, for rules about 
setting the /S modifier in code that may cause an arithmetic trap, and Section 6.3 for 
rules about using the SWC bit in a trap handler. 

6.3.2.2 Register Write Mask 

The Register Write Mask parameter records all registers that were targets of 
instructions that set the bits in the exception summary register. There is a one-
to-one correspondence between bits in the Register Write Mask quadword and the 
register numbers. The quadword records, starting at bit 0 and proceeding right 
to left, which of the registers RO through R31, then FO through F31, received an 
exceptional result. 

Note: 

For a sequence such as: 
ADDF F 1 , F 2 , F 3 
MULF F 4 , F 5 , F 3 

if the add overflows and the multiply does not, the OVF bit is set in the exception 
summary, and the F3 bit is set in the register mask, even though the overflowed 
sum in F3 can be overwritten with an in-range product by the time the trap is 
taken. (This code violates the destination reuse rule for software completion. See 
Common Architecture, Chapter 4, Imprecise /Software Completion Trap Modes, 
for the destination reuse rules.) 

The PC value saved in the exception stack frame is the virtual address of the next 
instruction. This is defined as the virtual address of the first instruction not executed 
after the trap condition was recognized. 

6.3.2.3 Invalid Operation (INV) Trap 

An INV trap is reported for most floating-point operate instructions with an input 
operand that is a VAX reserved operand, VAX dirty zero, IEEE NaN, IEEE infinity, 
or IEEE denormal. 

Floating INV traps are always enabled. If this trap occurs, the result register is 
written with an UNPREDICTABLE value. 
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6.3.2.4 Division by Zero (DZE) Trap 

A DZE trap is reported when a finite number is divided by zero. Floating DZE 
traps are always enabled. If this trap occurs, the result register is written with an 
UNPREDICTABLE value. 

6.3.2.5 Overflow (OVF) Trap 

An OVF trap is reported when the destination's largest finite number is exceeded in 
magnitude by the rounded true result. Floating OVF traps are always enabled. If 
this trap occurs, the result register is written with an UNPREDICTABLE value. 

6.3.2.6 Underflow (UNF) Trap 

A UNF trap is reported when the destination's smallest finite number exceeds in 
magnitude the non-zero rounded true result. Floating UNF trap enable can be 
specified in each floating-point operate instruction. If underflow occurs, the result 
register is written with a true zero. 

6.3.2.7 Inexact Result (INE) Trap 

An INE trap is reported if the rounded result of an IEEE operation is not exact. 
INE trap enable can be specified in each IEEE floating-point operate instruction. 
The unchanged result value is stored in all cases. 

6.3.2.8 Integer Overflow (IOV) Trap 

An IOV trap is reported for any integer operation whose true result exceeds the 
destination register size. IOV trap enable can be specified in each arithmetic integer 
operate instruction and each floating-point convert-to-integer instruction. If integer 
overflow occurs, the result register is written with the truncated true result. 

6.3.3 Synchronous Traps 
A synchronous trap is an exception condition that occurs at the completion of the 
operation that caused the exception (or, if the operation can only be partially carried 
out, at the completion of that part of the operation), but no successor instruction is 
allowed to start. All traps that are not arithmetic traps are synchronous traps. 

Some synchronous traps are caused by PALcode instructions: BPT, BUGCHK, 
CHMU, CHMS, CHME, and CHMK. For synchronous traps, the PC saved in the 
exception stack frame is the address of the instruction immediately following the one 
causing the trap condition. A CALL_PAL REI instruction to this PC will continue 
without reexecuting the trapping instruction. The following subsections describe the 
synchronous traps in detail. 

6.3.3.1 Data Alignment Trap 

All data must be naturally aligned or an alignment trap may be generated. Natural 
alignment means that data bytes are on byte boundaries, data words are on word 
boundaries, data longwords are on longword boundaries, and data quadwords are 
on quadword boundaries. 
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A Data Alignment trap is generated by the hardware when an attempt is made to 
load or store a longword or quadword to/from a register using an address that does 
not have the natural alignment of the particular data reference. 

Data alignment traps are fixed up by the PALcode and are optionally reported to the 
operating system under the control of the DAT bit. If the bit is zero, the trap will 
be reported. If the bit is set, after the alignment is corrected, control is returned to 
the user. In either case, if the PALcode detects a LDx_L or STx_C instruction, no 
correction is possible and an illegal operand exception is generated. 

Note: 

In the case of concurrently pending data alignment and arithmetic traps, it is 
assumed that the arithmetic trap is reported before PALcode data alignment 
fixup is performed. Otherwise, it would not be possible to back up the PC for the 
synchronous data alignment trap as required by Section 6.7.4. 

The system software is notified via the generation of a kernel mode exception through 
the Unaligned_Access SCB vector (280ιβ) The virtual address of the unaligned data 
being accessed is stored in R4. R5 indicates whether the operation was a read or a 
write (0 = read/load 1 = write/store). 

PALcode may write partial results to memory without probing to make sure all 
writes will succeed when dealing with unaligned store operations. 

If a memory management exception condition occurs while reading or writing part 
of the unaligned data, the appropriate memory management fault is generated. 

Software should avoid data misalignment whenever possible since the emulation 
performance penalty may be as large as 100-to-l. 

The Data Alignment trap control bit is included in the HWPCB at offset HWPCB[56], 
bit 63. In order to change this bit for the currently executing process, the DATFX 
IPR may be written via a CALL_PAL MTPR_DATFX instruction. This operation 
will also update the value in the HWPCB. 

6.3.3.2 Other Synchronous Traps 

With the traps described in this subsection, the SCB vector quadword is saved in 
R2 and the SCB parameter quadword is saved in R3. The change mode traps are 
initiated in the more privileged of the current mode and the target mode, while the 
other traps are initiated in kernel mode. 

6.3.3.2.1 Breakpoint Trap 

A Breakpoint trap is an exception that occurs when a CALL_PAL BPT instruction 
is executed (see Section 2.1.1). Breakpoint traps are intended for use by debuggers 
and can be used to place breakpoints in a program. 

Breakpoint traps are initiated in kernel mode so that system debuggers can capture 
breakpoint traps that occur while the user is executing system code. 
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6.3.3.2.2 Bugcheck Trap 

A Bugcheck trap is an exception that occurs when a CALL_PAL BUGCHK 
instruction is executed (see Section 2.1.2). Bugchecks are used to log errors detected 
by software. 

6.3.3.2.3 Illegal Instruction Trap 

An Illegal Instruction trap is an exception that occurs when an attempt is made to 
execute an instruction when: 

• It has an opcode that is reserved to Digital or reserved to PALcode. 

• It is a subsetted opcode that requires emulation on the host implementation. 

• It is a privileged instruction and the current mode is not kernel. 

• It has an unused function code for those opcodes defined as reserved in the 
Version 5 Alpha AXP architecture specification (May 1992). 

6.3.3.2.4 Illegal Operand Trap 

An Illegal Operand trap occurs when an attempt is made to execute PALcode with 
operand values that are illegal or reserved for future use by Digital. 

Illegal operands include: 

• An invalid combination of bits in the PS restored by the CALL_PAL REI 
instruction. 

• An unaligned operand passed to PALcode. 

6.3.3.2.5 Generate Software Trap 

A Generate Software trap is an exception that occurs when a CALL_PAL GENTRAP 
instruction is executed (see Section 2.1.7). The intended use is for low-level compiler-
generated code that detects conditions such as divide-by-zero, range errors, subscript 
bounds, and negative string lengths. 

6.3.3.2.6 Change Mode to Kernel Trap 

A Change Mode to Kernel trap is an exception that occurs when a CALL_PAL CHMK 
instruction is executed (see Section 2.1.4). Change Mode to Kernel traps are initiated 
in kernel mode and push the exception frame on the kernel stack. 

6.3.3.2.7 Change Mode to Executive Trap 

A Change Mode to Executive trap is an exception that occurs when a CALL_PAL 
CHME instruction is executed (see Section 2.1.3). Change Mode to Executive traps 
are initiated in the more privileged of the current mode and Executive mode, and 
push the exception frame on the target stack. 
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6.3.3.2.8 Change Mode to Supervisor Trap 

A Change Mode to Supervisor trap is an exception that occurs when a CALL_PAL 
CHMS instruction is executed (see Section 2.1.5). Change Mode to Supervisor traps 
are initiated in the more privileged of the current mode and supervisor mode, and 
push the exception frame on the target stack. 

6.3.3.2.9 Change Mode to User Trap 

A Change Mode to User trap is an exception that occurs when a CALL_PAL CHMU 
instruction is executed (see Section 2.1.6). Change Mode to User traps are initiated 
in the more privileged of the current mode and user mode, and push the exception 
frame on the target stack. 

6.4 Interrupts 

The processor arbitrates interrupt requests according to priority. When the priority 
of an interrupt request is higher than the current processor IPL, the processor will 
raise the IPL and service the interrupt request. The interrupt service routine is 
entered at the IPL of the interrupting source, in kernel mode, and on the kernel 
stack. Interrupt requests can come from I/O devices, memory controllers, other 
processors, or the processor itself. 

The priority level of one processor does not affect the priority level of other 
processors. Thus, in a multiprocessor system, interrupt levels alone cannot be used 
to synchronize access to shared resources. 

Synchronization with other processors in a multiprocessor system involves a 
combination of raising the IPL and executing an interlocking instruction sequence. 
Raising the IPL prevents the synchronization sequence itself from being interrupted 
on a single processor while the interlock sequence guarantees mutual exclusion 
with other processors. Alternately, one processor can issue explicit interprocessor 
interrupts (and wait for acknowledgment) to put other processors in a known 
software state, thus achieving mutual exclusion. 

In some implementations, several instructions may be in various stages of execution 
simultaneously. Before the processor can service an interrupt request, all active 
instructions must be allowed to complete without exception. Thus, when an 
exception occurs in a currently active instruction, the exception is initiated and 
the exception stack frame built immediately before the interrupt is initiated and its 
stack frame built. 

The following events will cause an interrupt: 

• Software interrupts — IPL 1 to 15 

• Asynchronous System Traps — IPL 2 

• Passive Release interrupts — IPL 20 to 23 

• I/O Device interrupts — IPL 20 to 23 

• Interval Clock interrupt — IPL 22 
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• Interprocessor interrupt — IPL 22 

• Performance Monitor interrupt — IPL 29 

• Powerfail interrupt — IPL 30 

Interrupts are initiated in kernel mode and push the interrupt stack frame of eight 
quadwords onto the kernel stack. The PC saved in the interrupt stack frame is 
the virtual address of the first instruction not executed after the interrupt condition 
was recognized. A CALL_PAL REI instruction to the saved PC/PS will continue 
execution at the point of interrupt. 

Each interrupt source has a separate vector location (offset) within the System 
Control Block (SCB). (See Section 6.6.) With the exception of I/O device interrupts, 
each of the above events has a unique fixed vector. I/O device interrupts occupy a 
range of vectors that can be both statically and dynamically assigned. Upon entry to 
the interrupt service routine, R2 contains the SCB vector quadword and R3 contains 
the SCB parameter quadword. For Corrected Error interrupts, R4 optionally locates 
additional information (see Section 6.5.2). 

In order to reduce interrupt overhead, no memory mapping information is changed 
when an interrupt occurs. Therefore, the instructions, data, and the contents of the 
interrupt vector for the interrupt service routine must be present in every process 
at the same virtual address. 

Interrupt service routines should follow the discipline of not lowering IPL below 
their initial level. Lowering IPL in this way could result in an interrupt at an 
intermediate level, which would cause the stack nesting to be incorrect. 

Kernel mode software may need to raise and lower IPL during certain instruction 
sequences that must synchronize with possible interrupt conditions (such as 
powerfail). This can be accomplished by specifying the desired IPL and executing 
a CALL_PAL MTPR_IPL instruction or by executing a CALL_PAL REI instruction 
that restores a PS that contains the desired IPL (see Section 2.6.5). 

6.4.1 Software Interrupts — IPLs 1 to 15 
6.4.1.1 Software Interrupt Summary Register 

The architecture provides fifteen priority interrupt levels for use by software (level 
0 is also available for use by software but interrupts can never occur at this level). 
The Software Interrupt Summary Register (SISR) stores a mask of pending software 
interrupts. Bit positions in this mask that contain a 1 correspond to the levels on 
which software interrupts are pending. 

When the processor IPL drops below that of the highest requested software interrupt, 
a software interrupt is initiated and the corresponding bit in the SISR is cleared. 

The SISR is a read-only internal processor register that may be read by kernel mode 
software by executing a CALL_PAL MFPR_SISR instruction (see Section 5.3). 
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6.4.1.2 Software Interrupt Request Register 

The Software Interrupt Request Register (SIRR) is a write-only internal processor 
register used for making software interrupt requests. 

Kernel mode software may request a software interrupt at a particular level by 
executing a CALL_PAL MTPR_SIRR instruction (see Section 5.3). 

If the requested interrupt level is greater than the current IPL, the interrupt will 
occur before the execution of the next instruction. If, however, the requested level is 
equal to or less than the current processor IPL, the interrupt request will be recorded 
in the Software Interrupt Summary Register (SISR) and deferred until the processor 
IPL drops to the appropriate level. 

Note that no indication is given if there is already a request at the specified level. 
Therefore, the respective interrupt service routine must not assume that there is a 
one-to-one correspondence between interrupts requested and interrupts generated. 
A valid protocol for generating this correspondence is: 

1. The requester places information in a control block and then inserts the control 
block in a queue associated with the respective software interrupt level. 

2. The requester uses CALLJPAL MTPR_SIRR to request an interrupt at the 
appropriate level. 

3. When enabling conditions arise, processor HW clears the appropriate SISR bit 
as part of initiating the software interrupt. 

4. The interrupt service routine attempts to remove a control block from the request 
queue. If there are no control blocks in the queue, the interrupt is dismissed with 
a CALL_PAL REI instruction. 

5. If a valid control block is removed from the queue, the requested service is 
performed and step 3 is repeated. 

6.4.2 Asynchronous System Trap — IPL 2 
Asynchronous System Traps (ASTs) are a means of notifying a process of events that 
are not synchronized with its execution, but that must be dealt with in the context 
of the process. An AST is initiated in kernel mode at IPL 2 when the current mode 
is less privileged than or equal to a mode for which an AST is pending and not 
disabled, with PS<IPL> less than 2 (see Sections 6.7.6 and 4.3). 

There are four separate per-mode SCB vectors, one for each of kernel, executive, 
supervisor, and user modes. 

On encountering an AST, the interrupt stack frame is pushed on the kernel stack; 
the value of the PC saved in this stack frame is the address of the next instruction 
to have been executed if the interrupt had not occurred. The SCB vector quadword 
is saved in R2 and the SCB parameter quadword in R3. 
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6.4.3 Passive Release Interrupts — IPLs 20 to 23 
Passive releases occur when the source of an interrupt granted by a processor cannot 
be determined. This can happen when the requesting I/O device determines that it 
no longer requires an interrupt after requesting one, or when a previously requested 
interrupt has already been serviced by another processor in some multiprocessor 
configurations. The interrupt handler for passive releases executes at the priority 
level of the interrupt request. 

6.4.4 I/O Device Interrupts — IPLs 20 to 23 
The architecture provides four priority levels for use by I/O devices. I/O device 
interrupts are requested when the device encounters a completion, attention, or 
error condition and the respective interrupt is enabled. See Console Interface (III), 
Chapter 2 for more information. 

6.4.5 Interval Clock Interrupt — IPL 22 
The interval clock requests an interrupt periodically. 

At least 1000 interval clock interrupts occur per second. An entry in the HWRPB 
contains the number of interval clock interrupts per second that occur in an actual 
Alpha AXP implementation, scaled up by 4096, and rounded to a 64-bit integer. (See 
Console Interface (HI), Chapter 2.) 

The accuracy of the interval clock must be at least 50 parts per million (ppm). 

Hardware/Software Note: 

For example, an interval of 819.2 usec derived from a 10 MHz Ethernet clock 
and a 13-bit counter is acceptable. 

To guarantee software progress, the interval clock interrupt should be no more 
frequent than the time it takes to do 500 main memory accesses. Over the life 
of the architecture, this interval may well decrease much more slowly than CPU 
cycle time decreases. 

Other constraints may apply to secure kernel systems. 

6.4.5.1 Interprocessor Interrupt — IPL 22 

Interprocessor interrupts are provided to enable operating system software running 
on one processor to interrupt activity on another processor and cause operating 
system-dependent actions to be performed. 

6.4.5.1.1 Interprocessor Interrupt Request Register 

The Interprocessor Interrupt Request Register (IPIR) is a write-only internal 
processor register used for making a request to interrupt a specific processor. 

Kernel mode software may request to interrupt a particular processor by executing 
a CALL_PAL MTPRJPIR instruction (see Section 5.3.) 
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If the specified processor is the same as the current processor and the current IPL is 
less than 22, then the interrupt may be delayed and not initiated before the execution 
of the next instruction. 

Note that, as with software interrupts, no indication is given as to whether there 
is already an interprocessor interrupt pending when one is requested. Therefore, 
the interprocessor interrupt service routine must not assume there is a one-to-one 
correspondence between interrupts requested and interrupts generated. A valid 
protocol similar to the one for software interrupts for generating this correspondence 
is: 

1. The requester places information in a control block and then inserts the control 
block in a queue associated with the target processor. 

2. The requester uses CALL_PAL MTPRJPIR to request an interprocessor 
interrupt on the target processor. 

3. The interprocessor interrupt service routine on the target processor attempts to 
remove a control block from its request queue. If there are no control blocks 
remaining, the interrupt is dismissed with a CALL_PAL REI instruction. 

4. If a valid control block is removed from the queue, the specified action is 
performed and step 3 is repeated. 

6.4.6 Performance Monitor Interrupts — IPL 29 
These interrupts provide some of the support for processor or system performance 
measurements. The implementation is processor or system specific. 

6.4.7 Powerfail Interrupt — IPL 30 
If the system power supply backup option permits powerfail recovery, a powerfail 
interrupt is generated to each processor when power is about to fail. See Console 
Interface (HI), Chapter 3 for a description of powerfail recovery requirements, and 
for a description of the interactions between system software and the console during 
system restarts. 

In systems in which the backup option maintains only the contents of memory and 
keeps system time with the BB_WATCH, the power supply requests a powerfail 
interrupt to permit volatile system state to be saved. Prior to dispatching to the 
powerfail interrupt service routine, PALcode is responsible for saving all system 
state that is not visible to system software. Such state includes, but is not limited 
to, processor internal registers and PALcode temporary variables. 

PALcode is also responsible for saving the contents of any write-back caches 
or buffers, including the powerfail interrupt stack frame. System software is 
responsible for saving all other system state. Such state includes, but is not limited 
to, processor registers and write-back cache contents. State can be saved by forcing 
all written data to a backed-up part of the memory subsystem; software may use 
the CALL_PAL CFLUSH instruction. 

The powerfail interrupt will not be initiated until the processor IPL drops below 
30. Thus, critical code sequences can block the power-down sequence by raising the 
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IPL to 31. Software, however, must take extra care not to lock out the power-down 
sequence for an extended period of time. 

Explicit state is not provided by the architecture for software to directly determine 
whether there were outstanding interrupts when powerfail occurred. It is the 
responsibility of software to leave sufficient information in memory so that it may 
determine the proper action on power-up. 

6.5 Machine Checks 

A machine check, or mcheck, indicates that a hardware error condition was detected 
and may or may not be successfully corrected by hardware or PALcode. Such 
error conditions can occur either synchronously or asynchronously with respect to 
instruction execution. There are four types: 

1. System Machine Check (IPL 31) 

These machine checks are generated by error conditions that are detected 
asynchronously to processor execution but are not successfully corrected by 
hardware or PALcode. Examples of system machine check conditions include 
protocol errors on the processor-memory-interconnect (PMI) and unrecoverable 
memory errors. 

System machine checks are always maskable and deferred until processor IPL 
drops below IPL 31. 

2. Processor Machine Check (IPL 31) 

These machine checks indicate that a processor internal error was detected 
and not successfully corrected by hardware or PALcode. Examples of processor 
machine check conditions include processor internal cache errors, translation 
buffer parity errors, or read access to a nonexistent local I/O space location 
(NXM). 

Processor machine checks may be nonmaskable or maskable. If nonmaskable, 
they are initiated immediately, even if the processor IPL is 31. If maskable, they 
are deferred until processor IPL drops below IPL 31. 

3. System Correctable Machine Check (IPL 20) 

These machine checks are generated by error conditions that are detected 
asynchronously to processor execution and are successfully corrected by 
hardware or PALcode. Examples of system correctable machine check conditions 
include single bit errors within the memory subsystem. 

System correctable machine checks are always maskable and deferred until 
processor IPL drops below IPL 20. 

4. Processor Correctable Machine Check (IPL 31) 

These machine checks indicate that a processor internal error was detected 
and successfully corrected by hardware or PALcode. Examples of processor 
correctable machine check conditions include corrected processor internal cache 
errors and corrected translation buffer tab errors. 
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Processor correctable machine checks may be nonmaskable or maskable. If 
nonmaskable, they are initiated immediately, even if the processor IPL is 31. 
If maskable, they are deferred until processor IPL drops below IPL 31. 

Machine checks are initiated in kernel mode, on the kernel stack, and cannot be 
disabled. 

Correctable machine checks permit the pattern and frequency of certain errors to be 
captured. The delivery of these machine checks to system software can be disabled 
by setting IPR MCES<4:3>, as described in Section 5.3.9. Note that setting IPR 
MCES<4:3> does not disable the generation of the machine check or the correction 
of the error, but rather suppresses the reporting ofthat correction to system software. 

The PC in the machine check stack frame is that of the next instruction that would 
have issued if the machine check condition had not occurred. This is not necessarily 
the address of the instruction immediately following the one encountering the error, 
and intervening instructions may have changed operands or other state used by the 
instruction encountering the error condition. A CALL_PAL REI instruction to this 
PC will simply continue execution from the point at which the machine check was 
taken. 

Note: 

On machine checks, a meaningful PC is delivered on a best-effort basis. 
The machine state, processor registers, memory, and I/O devices may be 
indeterminate. 

Machine checks may be deliberately generated by software, such as by probing 
nonexistent memory during memory sizing or searching for local I/O devices. In 
such a case, the DRAINA PALcode instruction can be called to force any outstanding 
machine checks to be taken before continuing. 

6.5.1 Software Response 
The reaction of system software to machine checks is specific to the characteristics 
of the processor, platform, and system software. System software must determine if 
operation should be discontinued on an implementation-specific basis. 

To assist system software, PALcode provides a retry flag in the machine check logout 
frame (see Figure 6-6). If set, the state of the processor and platform hardware has 
not been compromised; system software operation should be able to continue. 

If the retry flag is clear, the state of the processor is either unknown or is known to 
have been updated during partial execution of one or more instructions. System 
software operation can continue only after system software determines that the 
hardware state change permits and/or takes corrective action. 

PALcode should take appropriate implementation-specific actions prior to setting 
the retry flag. PALcode should also attempt to ensure that each encountered error 
condition generates only one machine check. 
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Implementation Note: 

An important example of using the retry flag is read NXM. 

Also, a read NXM should not generate both a Processor Machine Check and a 
System Machine Check. 

PALcode sets an internal Machine-Check-In-Progress flag in the Machine Check 
Error Summary (MCES) register prior to initiating a system or processor machine 
check. System software must clear that flag to dismiss the machine check. If 
a second uncorrectable machine check hardware error condition is detected while 
the flag is set, or if PALcode cannot deliver the machine check, PALcode forces 
the processor to enter console I/O mode, and subsequent actions, such as processor 
restart, are taken by the console. The REASON FOR HALT code is "double error 
abort encountered." See Console Interface (III), Chapter 3. 

Similiarly, PALcode sets an internal correctable Machine-Check-In-Progress flag in 
the Machine Check Error Summary (MCES) register prior to initiating a system-
correctable error interrupt or processor-correctable machine check. System software 
must clear that flag to dismiss the condition and permit the reuse of the logout area. 
If a second correctable hardware error condition is detected while the flag is set, the 
error is corrected, but not reported. PALcode does not overwrite the logout area and 
the processor remains in program I/O mode. 

6.5.2 Logout Areas 
When a hardware error condition is encountered, PALcode optionally builds a logout 
frame prior to passing control to the machine check service routine. The logout 
frame is shown in Figure 6-6 and described in Table 6-4. The logout frame is built 
in the logout area located by the processor's per-CPU slot in the HWRPB (see Console 
Interface (III), Chapter 2). 

Figure 6-6: Corrected Error and Machine Check Logout Frame 
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Table 6-4: Corrected Error and Machine Check Logout Frame Fields 

Offset Description 

FRAME FRAME SIZE — Size in bytes of the logout frame, including the FRAME 
SIZE longword. 

+04 FRAME FLAGS — Informational flags. 

Bit Description 

31 RETRY FLAG — Indicates whether execution can be 
resumed after dismissing this machine check. Set on 
Corrected Error interrupts; may be set on machine checks. 

30 SECOND ERROR FLAG — Indicates that a second correctable 
error was encountered. Set on Corrected Error interrupts 
when a correctable error was encountered while the relevant 
correctable error bit (PCE or SCE) is set in the MCES register. 
Clear on machine checks. 

29-0 SBZ. 

+08 CPU OFFSET — Offset in bytes from the base of the logout frame to the 
CPU-specific information. If CPU OFFSET is equal to 16, the frame contains 
no PALcode-specific information. If CPU OFFSET is equal to SYS OFFSET, 
the frame contains no CPU-specific information. 

+12 SYS OFFSET — Offset in bytes from the base of the logout frame to the 
system-specific information. If SYS OFFSET is equal to FRAME SIZE, the 
frame contains no system-specific information. 

+16 PALCODE INFORMATION — PALcode-specific logout information. 
+CPU OFFSET CPU INFORMATION — CPU-specific logout information. 
+SYS OFFSET SYS INFORMATION — System platform-specific logout information. 

The logout frame is optional; the service routine uses R4 to locate the frame, if 
any. Upon entry to the service routine, R4 contains the byte offset of the logout 
frame from the base of the logout area. If no frame was built, R4 contains - 1 
(FFFF FFFF FFFF FFFF16). 

6.6 System Control Block 
The System Control Block (SCB) specifies the entry points for exception, interrupt, 
and machine check service routines. The block is from 8K to 32K bytes long, must 
be page aligned, and must be physically contiguous. The PFN is specified by the 
value of the System Control Block Base (SCBB) internal register. 

The SCB, shown in Figure 6-7, consists of from 512 to 2048 entries, each 16 bytes 
long. The first eight bytes of an entry, the vector, specify the virtual address of the 
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service routine associated with that entry. The second eight bytes, the parameter, 
are an arbitrary quadword value to be passed to the service routine. 

Figure 6-7: System Control Block Summary 
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The SCB entries are grouped as follows: 

1. Faults 

2. Arithmetic traps 

3. Asynchronous system traps 

4. Data alignment trap 

5. Other synchronous traps 

6. Processor software interrupts 

7. Processor hardware interrupts and machine checks 

8. I/O device interrupts 

The first 512 entries (offsets 0000 through 800i6) contain all architecturally defined 
and any statically allocated entries. All remaining SCB entries, if any, are used 
only for those I/O device interrupt vectors that are assigned dynamically by system 
software. It is the responsibility of that software to ensure the consistency of the 
assigned vector and the SCB entry. 

6.6.1 SCB Entries for Faults 
The exception handler for a fault executes with the IPL unchanged, in kernel mode, 
on the kernel stack. Table 6-5 lists the SCB entries for faults. 
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Table 6-5: SCB Entries for Faults 
Byte 
offset 16 

000 

010 

020-070 

080 

090 

0A0 

0B0 

OCO 

0A0-0F0 

Entry name 

Unused 

Floating Disabled fault 

Unused 

Access Control Violation fault 

Translation Not Valid fault 

Fault on Read fault 

Fault on Write fault 

Fault on Execute fault 

Unused 

6.6.2 SCB Entries for Arithmetic Traps 

The exception handler for an arithmetic trap executes with the IPL unchanged, in 
kernel mode, on the kernel stack. Table 6-6 lists the SCB entries for arithmetic 
traps. 

Table 6-6: SCB Entries for Arithmetic Traps 
Byte 
offset i6 Entry name 

200 Arithmetic Trap 
210-230 Unused 

6.6.3 SCB Entries for Asynchronous System Traps (ASTs) 

The interrupt handler for an asynchronous system trap executes at IPL 2, in kernel 
mode, on the kernel stack. Table 6-7 lists the SCB entries for asynchronous system 
traps. 

Table 6-7: SCB Entries for Asynchronous System Traps 
Byte 
offsetie 

240 

250 

260 

270 

Entry name 

Kernel Mode AST 

Executive Mode AST 

Supervisor Mode AST 

User Mode AST 
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6.6.4 SCB Entries for Data Alignment Traps 

The exception handler for a data alignment trap executes with the IPL unchanged in 
kernel mode, on the kernel stack. Table 6-8 lists the SCB entries for data alignment 
traps. 

Table 6-8: SCB Entries for Data Alignment Trap 
Byte 
offset ig Entry name 

280 Unaligned_Access 
290-3F0 Unused 

6.6.5 SCB Entries for Other Synchronous Traps 

The exception handler for a synchronous trap, other than those described above, 
executes with the IPL unchanged, in the mode and on the stack indicated below. 
"MostPriv" indicates that the handler executes in either the original mode or the 
new mode, whichever is the most privileged. Table 6-9 lists the SCB entries for 
other synchronous traps. 

Table 6-9: SCB Entries for Other Synchronous Traps 
Byte 
Offsetie 

400 

410 

420 

430 

440 

450 

460 

470 

480 

490 

4A0 

4B0 

Entry Name 

Breakpoint Trap 

Bugcheck Trap 

Illegal Instruction Trap 

Illegal Operand Trap 

Generate Software Trap 

Unused 

Unused 

Unused 

Change Mode to Kernel 

Change Mode to Executive 

Change Mode to Supervisor 

Change Mode to User 

Mode 

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

MostPriv 

MostPriv 

Current 

4C0-4F0 Reserved for Digital 
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6.6.6 SCB Entries for Processor Software Interrupts 

The exception handler for a processor software interrupt executes at the target IPL, 
in kernel mode, on the kernel stack. Table 6-10 lists the SCB entries for processor 
software interrupts. 

Table 6-10: SCB Entries for Processor Software Interrupts 
Byte 
Offset16 Entry Name Target IPL 10 

500 Unused 
510 

520 

530 

540 

550 

560 

570 

580 

590 

5A0 

5B0 

5C0 

5D0 

5E0 

5F0 

Software interrupt level 1 

Software interrupt level 2 

Software interrupt level 3 

Software interrupt level 4 

Software interrupt level 5 

Software interrupt level 6 

Software interrupt level 7 

Software interrupt level 8 

Software interrupt level 9 

Software interrupt level 10 

Software interrupt level 11 

Software interrupt level 12 

Software interrupt level 13 

Software interrupt level 14 

Software interrupt level 15 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

6.6.7 SCB Entries for Processor Hardware Interrupts and Machine Checks 

The interrupt handler for a processor hardware interrupt executes at the target IPL, 
in kernel mode, on the kernel stack. 

The handler for machine checks executes in kernel mode, on the kernel stack. The 
handler for system-correctable machine checks executes at IPL 20; the handler for 
all other machine checks executes at IPL 31. Table 6-11 lists the SCB entries for 
processor hardware interrupts and machine checks. 

Table 6-11 : SCB Entries for Processor Hardware Interrupts and Machine Checks 
Byte 
Offseti6 Entry name Target IPL^o 

600 Interval clock interrupt 22 
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Table 6-11 (Cont.): SCB Entries for Processor Hardware Interrupts and Machine 
Checks 

Byte 
Offset16 

610 

620 

630 

640 

650 

660 

670 

680-6E0 

6F0 

Entry name 

Interprocessor interrupt 

System correctable machine check 

Processor correctable machine check 

Powerfail interrupt 

Performance monitor 

System machine check 

Processor machine check 

Reserved — processor specific 

Passive release 

Target IPL1 0 

22 

20 

31 

30 

29 

31 

31 

20-23 

Processor-specific SCB entries include those used by console devices (if any) or other 
peripherals dedicated to system support functions. 

6.6.8 SCB Entries for I/O Device Interrupts 

The interrupt handler for an I/O device interrupt executes at the target IPL, in 
kernel mode, on the kernel stack. SCB entries for offsets of 80016 through 7FF0i6 
are reserved for I/O device interrupts. 

6-32 OpenVMS AXP Software (II—A) 



6.7 PALcode Support 

6.7.1 Stack Writeability 

In response to various exceptions, interrupts, and machine checks, PALcode pushes 
information on the kernel stack. PALcode may write this information without 
first probing to ensure that all such writes to the kernel stack will succeed. If a 
memory management exception occurs while pushing information, PALcode forces 
the processor to enter console I/O mode, and subsequent actions, such as processor 
restart, are taken by the console. The REASON FOR HALT code is "processor halted 
due to kernel-stack-not-valid." See Console Interface (III), Chapter 3. 

6.7.2 Stack Residency 
The user, supervisor, and executive stacks for the current process do not need to be 
resident. Software running in kernel mode can bring in or allocate stack pages as 
TNV faults occur. However, since this activity is taking place in kernel mode, the 
kernel stack must be fully resident. 

When the faults TNV, ACV, FOR, and FOW occur on kernel mode references to the 
kernel stack, they are considered serious system failures from which recovery is not 
possible. If any of those faults occur, PALcode forces the processor to enter console I/O 
mode, and subsequent actions, such as processor restart, are taken by the console. 
The REASON FOR HALT code is "processor halted due to kernel-stack-not-valid." 
See Console Interface (III), Chapter 3. 

6.7.3 Stack Alignment 
Stacks may have arbitrary byte alignment, but performance may suffer if at least 
octaword alignment is not maintained by software. 

PALcode creates stack frames in response to exceptions and interrupts. Before doing 
so, the target stack is aligned to a 64-byte boundary by setting the six low bits of the 
target SP to 0000002. The previous value of these bits is stored in the SP_ALIGN 
field of the saved PS in memory, for use by a CALL_PAL REI instruction. 

Software-constructed stack frames must be 64-byte aligned and have SP_ALIGN 
properly set; otherwise, a CALL_PAL REI instruction will take an illegal operand 
trap. 

6.7.4 Initiate Exception or Interrupt or Machine Check 
Exceptions, interrupts, and machine checks are initiated by PALcode with interrupts 
disabled. When an exception, interrupt, or machine check, is initiated, the associated 
SCB vector is read to determine the address of the service routine. PALcode then 
attempts to push the PC, PS, and R2..R7 onto the target stack. When an interrupt 
(software or hardware but not AST) is initiated, PS<IP> is set to 1 to indicate an 
interrupt is in progress. Additional parameters may be passed in R4 and R5 on 
exceptions and machine checks. 

During the attempt to push this information, the exceptions (faults) TNV, ACV, and 
FOW can occur: 
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• If any ofthose faults occur when the target stack is user, supervisor, or executive, 
then the fault is taken on the kernel stack. 

• If any of those faults occur when the target stack is the kernel stack, PALcode 
forces the processor to enter console I/O mode, and subsequent actions, such 
as processor restart, are taken by the console. The REASON FOR HALT code 
is "processor halted due to kernel-stack-not-valid." See Console Interface (III), 
Chapter 3. 

6.7.5 Initiate Exception or Interrupt or Machine Check Model 
check_for_exception_or_interrupt_or_mcheck: 

IF NOT {ready_to_initiate_exception OR 
ready_to_initiate_interrupt OR 
ready_to_initiate_mcheck} THEN 

BEGIN 
{fetch next instruction} 
{decode and execute instruction} 

END 
ELSE 
BEGIN 

{wait for instructions in progress to complete} 
! clear interrupt pending 

tmp <— 0 
IF {exception pending} THEN 
BEGIN 

{back up implementation specific state if necessary, 
this includes the PC if synchronous trap pending} 
new_ipl <— PS<IPL> 
new_mode <— Kernel 

END 

ELSE IF {unmaskable mcheck pending} THEN 
BEGIN 

{back up implementation specific state if necessary} 
{attempt correction if appropriate} 
IF {uncorrectable AND MCES<0> = 1} THEN 

{enter console} 
ELSE IF {uncorrectable} THEN 

new_mode «— Kernel 
new_ipl «— 31 

! set mcheck error flag 
MCES<0> <- 1 

ELSE IF {reporting enabled} THEN 
new_mode <— Kernel 
new_ipl «— 31 
MCES<2> <- 1 

END 
END 

ELSE IF {data alignment trap} THEN 
new_mode ♦- Kernel 
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ELSE IF {synchronous trap} THEN 
CASE {opcode} OF 

{back up implementation specific state if necessary} 
CHME: new_mode <— min(PS<CM>,Executive) 
CHMS: new_mode <— min(PS<CM>/Supervisor) 
CHMU: new_mode «— min(PS<CM>,User) 
otherwise: new_mode <— Kernel 

ENDCASE 

ELSE IF {maskable uncorrectable mcheck pending and IPL < 31} THEN 
BEGIN 

{back up implementation specific state if necessary} 
IF {MCES<0> = 1} THEN 

{enter console} 
ELSE 

new_mode <— Kernel 
new_ipl <— 31 
MCES<0> 4- 1 ! set mcheck error flag 

END 
END 

ELSE IF {interrupt pending} THEN 
new_ipl «— {interrupt source IPL} 
tmp i— 1 ! set interrupt pending 
new_mode «— Kernel 

ELSE IF {maskable correctable mcheck pending AND 
reporting enabled} THEN 

new_ipl «— 2 0 
MCES<1> <- 1 
new_mode <— Kernel 

END 

IPR_SP[PS<CM>] «- SP 
new_sp ♦— IPR_SP[new_mode] 

save_align <— new_sp<5:0> 
new_sp<5:0> <— 0 

PUSH(PS OR LEFT_SHIFT(save_align,56), old_pc, new_mode) 
PUSH(R7, R6, new_mode) 
PUSH(R5, R4f new_mode) 
PUSH(R3, R2, new_mode) 

PS<SW> <- 0 
PS<CM> <— new_mode 
PS<IP> «— tmp 
PS<IPL> <·— new_ipl 
SP *— new_sp 

IF {memory management fault} THEN 
R4 4- VA 
R5 <- MMF 

END 

IF {data alignment trap} THEN 
R4 <- VA 
R5 4— { 0 i f r e a d / l o a d 1 i f w r i t e / s t o r e } 

END 
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IF {mcheck or correctable error interrupt} THEN 
IF {logout frame built} 

R4 <— logout_area_offset 
ELSE 

R4 <- -1 
END 

END 

IF {arithmetic Trap} THEN 
R4 <— register write mask 
R5 <— exception summary 

END 

IF {software interrupt} THEN 
SISR <- SISR AND NOT{ 2**{ PRIORITY_ENCODE(SISR) } } 

END 

vector «— {exception or interrupt or mcheck SCB offset} 

R2 <— (SCBB + vector) 
R3 <- (SCBB + vector + 8) 
PC <- R2 

END 

GOTO check_for_exception_or_interrupt_or_mcheck 

PROCEDURE PUSH(first, last, mode) 
BEGIN 

IF ACCESS(new_sp - 16, mode) THEN 
BEGIN 

(new_sp - 8) <— first 
(new_sp - 16) <— last 
new_sp «— new_sp - 16 
RETURN 

END 
ELSE 

{initiate ACV, TNV, or FOW fault, or 
Kernel Stack Not Valid restart sequence} 

END 
END 

6.7.6 PALcode Interrupt Arbitration 
The following sections describe the logic for the interrupt conditions produced by the 
specified operation. 

6.7.6.1 Writing the AST Summary Register 

Writing the ASTSR internal processor register (Section 5.3) requests an AST for any 
of the four processor modes. This may request an AST on a formerly inactive level 
and thus cause an AST interrupt. 

The logic required to check for this condition is: 

ASTSR<3:0> «- {ASTSR<3:0> AND R16<3:0>} OR R16<7:4> 
IF ASTEN<0> AND ASTSR<0> AND {PS<IPL> LT 2} THEN 

{initiate AST interrupt at IPL 2} 
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6.7.6.2 Writing the AST Enable Register 

Writing the ÄSTEN internal processor register (Section 5.3) enables ASTs for any of 
the four processor modes. This may enable an AST on a formerly inactive level and 
thus cause an AST interrupt. 

The logic required to check for this condition is: 

ASTEN<3:0> <- {ASTEN<3:0> AND Rl6<3:0>} OR R16<7:4> 
IF ASTEN<0> AND ASTSR<0> AND {PS<IPL> LT 2} THEN 

{ i n i t i a t e AST i n t e r r u p t a t IPL 2} 

6.7.6.3 Writing the IPL Register 

Writing the IPL internal processor register (Section 5.3) changes the current IPL. 
This may enable an AST or software interrupt on a formerly inactive level and thus 
cause an AST or software interrupt. 

The logic required to check for this condition is: 
PS<IPL> ♦- R16<4:0> 

! check for software interrupt at level 2..15 

IF {RIGHT_SHIFT({SISR AND FFFCig }, PS<IPL> + 1) NE 0} THEN 
{initiate software interrupt at IPL of high bit set in SISR} 

! check for AST 

IF ASTEN<0> AND ASTSR<0> AND {PS<IPL> LT 2} THEN 
{ i n i t i a t e AST i n t e r r u p t a t IPL 2} 

! check fo r s o f t w a r e i n t e r r u p t a t l e v e l 1 

IF SISR<1> AND {PS<IPL> EQ 0} THEN 
{ i n i t i a t e s o f t w a r e i n t e r r u p t a t IPL 1} 

6.7.6.4 Writing the Software Interrupt Request Register 

Writing the SIRR internal processor register (Section 5.3) requests a software 
interrupt at one of the fifteen software interrupt levels. This may cause a formerly 
inactive level to cause a software interrupt. 

The logic required to check for this condition is: 
SISR<level> «- 1 
IF l e v e l GT PS<IPL> THEN 

{ i n i t i a t e s o f t w a r e i n t e r r u p t a t IPL l e v e l } 

6.7.6.5 Return from Exception or Interrupt 

The CALL_PAL REI instruction (Section 2.1.10) writes both the Current Mode and 
IPL fields of the PS (see Section 6.2). This may enable a formerly disabled AST or 
software interrupt to occur. 

The logic required to check for this condition is: 
PS <- New PS 

! check fo r s o f t w a r e i n t e r r u p t a t l e v e l 2 . . 1 5 
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IF {RIGHT_SHIFT({SISR AND FFFC16 }, PS<IPL> + 1) NE 0} THEN 
{initiate software interrupt at IPL of high bit set in SISR} 

! check for AST 

tmp «- NOT LEFT_SHIFT(1110(bin), PS<CM>) 
IF {{tmp AND ÄSTEN AND ASTSR}<3:0> NE 0} AND {PS<IPL> LT 2} THEN 

{initiate AST interrupt at IPL 2} 

! check for software interrupt at level 1 

IF SISR<1> AND {PS<IPL> EQ 0} THEN 
{initiate software interrupt at IPL 1} 

6.7.6.6 Swap AST Enable 

Swapping the AST enable state for the Current Mode results in writing the ÄSTEN 
internal processor register (see Section 5.3). This may enable a formerly disabled 
AST to cause an AST interrupt. 

The logic required to check for this condition is: 
R0 «- ZEXT(ASTEN<PS<CM») 
ASTEN<PS<CM» <- R16<0> 

IF ASTEN<PS<CM>> AND ASTSR<PS<CM>> AND {PS<IPL> LT 2} THEN 
{initiate AST interrupt at IPL 2} 

6.7.7 Processor State Transition Table 
Table 6-12 shows the operations that can produce a state transition and the specific 
transition produced. For example, if a processor's initial state is supervisor mode, it 
is not possible for the processor to transition to a program halt condition. A processor 
can only transition to program halt from kernel mode. 
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In Table 6-12: 

• "REP increases mode or lowers IPL. 

• "MTPR" changes IPL, or is a CALL.PAL MTPR.ASTSR 
or CALL_PAL MTPR_ASTEN instruction that causes an interrupt request. 

• "Exc" is a state change caused by an exception. 

• "Int" is a state change caused by an interrupt. 

• "Mcheck" is a state change caused by a machine check. 



Table 6-12: Processor State Transitions 

Initial State: 

User 

Supervisor 

Executive 

Kernel 

Final State: 

User 

CHMU 
REI 

REI 

REI 

REI 

Super. 

CHMS 

CHMS 
REI 

REI 

REI 

Exec. 

CHME 

CHME 

CHME 
REI 

REI 

Kernel 

CHMK 
Exc 
Int 
Mcheck 
SWASTEN 
CHMK 
Exc 
Int 
Mcheck 
SWASTEN 
CHMK 
Exc 
Int 
Mcheck 
SWASTEN 
CHMK 
REI 
Int 
Exc 
Mcheck 
MTPR 
SWASTEN 

Program 
Halt 

Not 
Possible 

Not 
Possible 

Not Possible 

HALT 
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Chapter 1 

Introduction to DEC OSF/1 (II—B) 

The goals of this design are to provide a hardware interface between the hardware 
and DEC OSF/1 that is implementation independent. The interface needs to 
provide the required abstractions to minimize the impact of different hardware 
implementations on the operating system. The interface also needs to be low in 
overhead to support high-performance systems. Finally, the interface needs to only 
support the features used by DEC OSF/1. 

The register usage in this interface is based on the current calling standard used 
by DEC OSF/1. If the calling standard changes, this interface will be changed 
accordingly. The current calling standard register usage is shown in Table 1-1. 

Table 1-1: DEC OSF/1 Register Usage 
Register 
Name 

Software 
Name 

Use and 
Linkage 

rO vO Used for expression evaluations and to hold integer function 
results. 

rl..r8 t0..t7 Temporary registers; not preserved across procedure calls. 
r9..rl4 s0..s5 Saved registers; their values must be preserved across 

procedure calls. 
r l5 FP or s6 Frame pointer or a saved register. 
rl6..r21 a0..a5 Argument registers; used to pass the first six integer type 

arguments; their values are not preserved across procedure 
calls. 

r22..r25 t8..tll Temporary registers; not preserved across procedure calls. 
r26 ra Contains the return address; used for expression evaluation. 
r27 pv or tl2 Procedure value or a temporary register. 
r28 at Assembler temporary register; not preserved across procedure 

calls. 
r29 GP Global pointer. 
r30 SP Stack pointer. 
r31 zero Always has the value 0. 
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1.1 Programming Model 
The programming model of the machine is the combination of the state visible either 
directly via instructions, or indirectly via actions of the machine. Tables 1-2, 1-3, 
and 1-4 define code flow constants, state variables, terms, subroutines, and code 
flow terms that are used in the rest of the document. 

1.1.1 Code Flow Constants 

Table 1-2: Code Flow Constants 
Term Meaning and value 

IPL = 2:0 

maxCPU 
mode = 3 
pageSize 
vaSize 

The range 2:0 used in the PS to access the IPL field of the PS 
(PS<IPL>). 
The maximum number of processors in a given system. 
Used as a subscript in PS to select current mode (PS<mode>). 
Size of a page in an implementation in bytes. 
Size of virtual address in bits in a given implementation. 

1.1.2 Machine State Terms 

Table 1-3: Machine State Terms 
Term Meaning 

ASN An implementation-dependent size register to hold the current 
address space number (ASN). The size and existence of ASN is an 
implementation choice. 

entArith<63:0> The arithmetic trap entry address register. The entArith is an 
internal processor register that holds the dispatch address on an 
arithmetic trap. There can be a hardware register for the entArith 
or the PALcode can use private scratch memory. 

entIF<63:0> The instruction fault or synchronous trap entry address register. The 
entIF is an internal processor register that holds the dispatch address 
on an instruction fault or synchronous trap. There can be a hardware 
register for the entIF or the PALcode can use private scratch memory. 

entlnt<63:0> The interrupt entry address register. The entlnt is an internal 
processor register that holds the dispatch address on an interrupt. 
There can be a hardware register for the entlnt or the PALcode can 
use private scratch memory. 

entMM<63:0> The memory-management fault entry address register. The entMM 
is an internal processor register that holds the dispatch address on 
a memory-management fault. There can be a hardware register for 
the entMM or the PALcode can use private scratch memory. 
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Table 1-3 (Cont.): Machine State Terms 

Term Meaning 

entSys<63:0> 

entUna<63:0> 

FEN<0> 

instruction<31:0> 

intr_flag 

KGP<63:0> 

KSP<63:0> 

lock_flag<0> 

MCES<2:0> 

PC<63:0> 

PCB 

PCBB<63:0> 

PCC 

The system call entry address register. The entSys is an internal 
processor register that holds the dispatch address on an callsys 
instruction. There can be a hardware register for the entSys or the 
PALcode can use private scratch memory. 

The unaligned fault entry address register. The entUna is an internal 
processor register that holds the dispatch address on an unaligned 
fault. There can be a hardware register for the entUna or the PALcode 
can use private scratch memory. 

The floating-point enable register. The FEN is a one-bit register, 
located at bit 0 of PCB [40], that is used to enable or disable floating-
point instructions. If a floating-point instruction is executed with 
FEN equal to zero, a FEN fault is initiated. 

The current instruction being executed. This is a fake register used 
in the flows to CASE on different instructions. 

A per-processor state bit. The intr_flag bit is cleared if that processor 
executes an rti or retsys instruction. 

The kernel global pointer. The KGP is an internal processor register 
that holds the kernel global pointer that is loaded into R15, the GP, 
when an exception is initiated. There can be a hardware register for 
the KGP or the PALcode can use private scratch memory. 

The kernel stack pointer. The KSP is an internal processor register 
that holds the kernel stack pointer while in user mode. There can be 
a hardware register for the KSP or the storage space in the PCB can 
be used. 

A one-bit register that is used by the load locked and store conditional 
instructions. 

The machine check error summary register. The MCES is a 3-
bit register that contains controls for machine check and system-
correctable error handling. 

The program counter. The PC is a pointer to the next instruction in 
the flows. The low-order two bits of the PC always read as zero and 
writes to them are ignored. 

The process control block. The PCB holds the state of the process. 

The process control block base address register. The PCBB holds the 
address of the PCB for the current process. 

The PCC register consists of two 32-bit fields. The low-order 32 
bits (PCC<31:0>) are an unsigned, wrapping counter, PCC_CNT. The 
high-order 32 bits (PCC<63:32>) are an offset, PCC_OFF. PCC.OFF 
is a value that, when added to PCC_CNT, gives the total PCC register 
count for this process, modulo 2**32. 
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Table 1-3 (Cont.): Machine State Terms 
Term Meaning 

PME<62> The performance monitoring enable bit. The PME is a one-bit 
register, located at bit 62 of PCB[40], that alerts any performance 
monitoring software/hardware in the system that this process is to 
have its performance monitored. The implementation mechanism for 
this bit is not specified; it is implementation dependent (IMP). 

PS<3:0> The processor status. The PS is a four-bit register that stores the 
current mode in bit <3> and stores the three-bit IPL in bits <2:0>. 
The mode is 0 for kernel and 1 for user. 

PTBR<63:0> The page table base register. The PTBR contains the physical page 
frame number (PFN) of the highest level (level 1) page table. 

SP<63:0> Another name for R30. The SP points to the top of the current stack. 
PALcode only accesses the kernel stack. The kernel stack must 
be quadword aligned whenever PALcode reads or writes it. If the 
PALcode accesses the kernel stack and the stack is not aligned, a 
kernel-stack-not-valid halt is initiated. Although PALcode does not 
access the user stack, that stack should also be at least quadword 
aligned for best performance. 

sysvalue<63:0> The system value register. The sysvalue holds the per-processor 
unique value. There can be a hardware register for the sysvalue 
register or the storage space in the PALcode scratch memory can be 
used. 
The sysvalue register can only be accessed by kernel mode code and 
there is one sysvalue register per CPU. 

unique<63:0> The process unique value register. The unique register holds the 
per-process unique value. There can be a hardware register for the 
unique register or the storage space in the PCB can be used. 
The unique register can be accessed by both user and kernel code and 
there is one unique register per process. 

USP<63:0> The user stack pointer. The USP is an internal processor register 
that holds the user stack pointer while in kernel mode. There can be 
a hardware register for the USP or the storage space in the PCB can 
be used. 

VPTPTR<63:0> The virtual page table pointer. The VPTPTR holds the virtual address 
of the first level page table. 

whami<63:0> The processor number of the current processor. This number is in the 
range 0. .maxCPU-l . 
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1.1.3 Code Flow Terms 

Table 1-4: Code Flow Ternis 
Term Meaning 

opDec An attempt was made to execute a reserved instruction or execute a 
privileged instruction in user mode. 
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Chapter 2 

DEC OSF/1 PALcode Instruction Descriptions (II—B) 

2.1 Unprivileged PALcode Instructions 

Table 2-1 lists the DEC OSF/1 PALcode unprivileged instruction mnemonics, names, 
and the environment from which they can be called. 

Table 2-1 : Unprivileged DEC OSF/1 PALcode Instructions 
Mnemonic 

bpt 
bugchk 
callsys 
gentrap 
imb 

rdunique 
wrunique 

Name 

Breakpoint trap 
Bugcheck trap 
System call 
Generate trap 
I-stream memory barrier 

Read unique 
Write unique 

Calling environment 

Kernel and user modes 
Kernel and user modes 
User mode 
Kernel and user modes 
Kernel and user modes 
Described in Common Architecture, Chap-
ter 6 

Kernel and user modes 
Kernel and user modes 
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2.1.1 Breakpoint Trap 

Format: 

bpt 

Operation: 

t e m p «— PS 
i f ( p s<mode 

e n d i f 

USP 
SP 
PS 

SP «- SP -
(SP+00) 
(SP+08) 
(SP+16) 
(SP+24) 
(SP+32) 
(SP+40) 
aO <- C 

i— 

<— 
<— 
<— 
«— 
«— 

) 
GP «- KGP 

> NE 
<— 
<— 
<— 
{6 ' 

0) 
SP 
KSP 
0 

* 8} 
t e m p 
PC 
GP 
aO 
a l 
a2 

PC «- e n t I F 

Exceptions: 

Kernel stack not valid 

! PALcode format 

then 
! Mode is user so switch to kernel 

Instruction mnemonics: 

bpt Breakpoint trap 

Description: 

The breakpoint trap (bpt) instruction switches mode to kernel, builds a stackframe 
on the kernel stack, loads the GP with the KGP, loads a value of 0 into aO, and 
dispatches to the breakpoint code pointed to by the entIF register. The registers 
al..a2 are UNPREDICTABLE on entry to the trap handler. The saved PC at (SP+08) 
is the address of the instruction following the trap instruction that caused the trap. 

Notes: 

• The opcode and function code for the bpt instruction are the same in the 
OpenVMS AXP and the DEC OSF/1 PALcode. 
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2.1.2 Bugcheck Trap 

Format: 

bugchk ! PALcode format 

Operation: 

temp ♦- PS 
if (PS<mode 

USP 
SP 
PS 

endif 
SP <- SP -
(SP+00) <-
(SP+08) «-
(SP+16) <-
(SP+24) «-
(SP+32) «-
(SP+40) <-
aO <- 1 
GP «- KGP 

> NE 0) 
«- SP 
<- KSP 
<- 0 

{6 * 8} 
temp 
PC 
GP 
aO 
al 
a2 

PC <- entIF 

Exceptions: 

Kernel stack not valid 

then 
! Mode is user so switch to kernel 

Instruction mnemonics: 

bugchk Bugcheck trap 

Description: 

The bugcheck trap (bugchk) instruction switches mode to kernel, builds a stackframe 
on the kernel stack, loads the GP with the KGP, loads a value of 1 into aO, and 
dispatches to the breakpoint code pointed to by the entIF register. The registers 
al. .a2 are UNPREDICTABLE on entry to the trap handler. The saved PC at (SP+08) 
is the address of the instruction following the trap instruction that caused the trap. 

Notes: 

The opcode and function code for the bugchk instruction are the same in the 
OpenVMS AXP and the DEC OSF/1 PALcode. 
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2.1.3 System Call 

Format: 

callsys ! PALcode format 

Operation: 

if (PS<mode> EQ 0) then 
machineCheck 

endif 
USP <- SP 
SP <- KSP 
PS <- 0 
SP <- SP - {6*8} 
(SP+00) «- 8 
(SP+08) <- PC 
(SP+08) «- GP 
GP <- KGP 
PC <— entSys 

Exceptions: 

Machine check—invalid kernel mode callsys 
Kernel stack not valid 

Instruction mnemonics: 

callsys System call 

Description: 

The system call (callsys) instruction is supported only from user mode. (Issuing a 
callsys from kernel mode causes a machine check exception.) 

The callsys instruction switches mode to kernel and builds a callsys stack frame. 
The GP is loaded with the KGP. The exception then dispatches to the system call 
code pointed to by the entsys register. On entry to the callsys code, the scratch 
registers tO and t8 . . t l l are UNPREDICTABLE. 

! Mode=kernel 

! PS of mode=user, IPL=0 
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2.1.4 Generate Trap 

Format: 

gentrap ! PALcode format 

Operation: 

temp <— PS 
if (PS<mode 

USP 
SP 
PS 

endif 
SP <- SP -
(SP+00) +-
(SP+08) <-
(SP+16) <-
(SP+24) <-
(SP+32) ♦-
(SP+40) <-
aO — 2 
GP <- KGP 

> NE 0) 
<- SP 
<- KSP 
<- 0 

{6 * 8} 
temp 
PC 
GP 
aO 
al 
a2 

PC <- entIF 

Exceptions: 

Kernel stack not valid 

then 
! Mode is user so switch to kernel 

Instruction mnemonics: 

gentrap Generate trap 

Description: 

The generate trap (gentrap) instruction switches mode to kernel, builds a stackframe 
on the kernel stack, loads the GP with the KGP, loads a value of 2 into aO, and 
dispatches to the breakpoint code pointed to by the entIF register. The registers 
al. .a2 are UNPREDICTABLE on entry to the trap handler. The saved PC at (SP+08) 
is the address of the instruction following the trap instruction that caused the trap. 

Notes: 

• The opcode and function code for the gentrap instruction are the same in the 
OpenVMS AXP and the DEC OSF/1 PALcode. 
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2.1.5 Read Unique Value 

Format: 

rdunique ! PALcode format 

Operation: 

vO <— u n i q u e 

Exceptions: 

None 

Instruction mnemonics: 

rdunique Read unique value 

Description: 

The read unique value (rdunique) instruction returns the process unique value in 
vO. The write unique value (wrunique) instruction, described in Section 2.1.6, sets 
the process unique value register. 

Notes: 

• The opcode and function code for the rdunique instruction are the same in the 
OpenVMS AXP and the DEC OSF/1 PALcode. 
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2.1.6 Write Unique Value 

Format: 

wrunique ! PALcode format 

Operation: 

u n i q u e ♦— aO 

Exceptions: 

None 

Instruction mnemonics: 

wrunique Write unique value 

Description: 

The write unique value (wrunique) instruction sets the process unique register to 
the value passed in aO. The read unique value (rdunique) instruction, described in 
Section 2.1.5, returns the process unique value. 

Notes: 

• The opcode and function code for the wrunique instruction are the same in the 
OpenVMS AXP and the DEC OSF/1 PALcode. 
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2.2 Privileged DEC OSF/1 PALcode Instructions 
The Privileged DEC OSF/1 PALcode ins t ruc t ions (Table 2-2) provide an abstracted 
interface to control t h e privileged s t a t e of t h e machine . 

Table 2-2: Privileged DEC OSF/1 PALcode Instructions 
Mnemonic Name 

cflush 
cserve 
draina 

Cache flush 
Console service 
Drain aborts 
Described in Common Architecture, Chapter 6 

halt Halt the processor 
Described in Common Architecture, Chapter 6 

rdmces Read machine check error summary register 

rdps Read processor status 

rdusp Read user stack pointer 

rdval Read system value 

retsys Return from system call 

rti Return from trap, fault, or interrupt 

swpctx Swap process context 

swppal Swap PALcode image 

swpipl Swap IPL 

tbi TB (translation buffer) invalidate 

whami Who am I 

wrent Write system entry address 

wrfen Write floating-point enable 

wripir Write interprocessor interrupt request 

wrkgp Write kernal global pointer 

wrmces Write machine check error summary register 

wrperfmon Performance monitoring function 

wrusp Write user stack pointer 

wrval Write system value 

wrvptptr Write virtual page table pointer 
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2.2.1 Cache Flush 

Format: 

cflush ÎPALcode format 

Operation: 

! aO contains the page frame number (PFN) 
! of the page to be flushed 

IF PS<mode> EQ 1 THEN 
{Initiate opDec fault} 

{Flush page out of cache(s)} 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

cflush Cache flush 

Description: 

The cflush instruction may be used to flush an entire physical page specified by the 
PFN in aO from any data caches associated with the current processor. All processors 
must implement this instruction. 

On processors that implement a backup power option that maintains only the 
contents of memory if a powerfail occurs, this instruction is used by the powerfail 
interrupt handler to force data written by the handler to the battery backed-up 
main memory. After a cflush, the first subsequent load (on the same processor) to 
an arbitrary address in the target page is either fetched from physical memory or 
from the data cache of another processor. 

In some multiprocessor systems, cflush is not sufficient to ensure that the data are 
actually written to memory and not exchanged between processor caches. Additional 
platform-specific cooperation between the powerfail interrupt handlers executing on 
each processor may be required. 

On systems that implement other backup power options (including none), cflush may 
return without affecting the data cache contents. 

To order cflush properly with respect to preceding writes, an MB instruction is needed 
before the cflush; to order cflush properly with respect to subsequent reads, an MB 
instruction is needed after the cflush. 
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2.2.2 Console Service 

Format: 

cserve ! PALcode format 

Operation: 

! implementation specific 

if PS<mode> EQ 1 then 
{initiate opDec fault} 

else 
{implementation-dependent action} 

Exceptions: 

Opcode reserved to Digital 

Instruction Mnemonics: 

cserve Console service 

Description: 

This instruction is specific to each PALcode and console implementation and is not 
intended for operating system use. 
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2.2.3 Read Machine Check Error Summary 

Format: 

rdmces ! PALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

endif 
vO <- MCES 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

rdmces Read machine check error summary 

Description: 

The read machine check error summary (rdmces) instruction returns the MCES 
(machine check error summary) register in vO. On return from the rdmces 
instruction, registers tO and t8 . . t l l are UNPREDICTABLE. 
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2.2.4 Read Processor Status 

Format: 

rdps ! PALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

endif 
vO <- PS 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

rdps Read processor status 

Description: 

The read processor status (rdps) instruction returns the PS in vO. On return from 
the rdps instruction, registers tO and t8..tll are UNPREDICTABLE. 
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2.2.5 Read User Stack Pointer 

Format: 

rdusp ! PALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

end if 
vO «- USP 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

rdusp Read user stack pointer 

Description: 

The read user stack pointer (rdusp) instruction returns the user stack pointer 
in vO. The user stack pointer is written by the wrusp instruction, described in 
Section 2.2.20. On return from the rdusp instruction, registers tO and t8..tll are 
UNPREDICTABLE. 
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2.2.6 Read System Value 

Format: 

rdval iPALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

endif 
vO «— sysvalue 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

rdval Read system value 

Description: 

The read system value (rdval) instruction returns the sysvalue in vO, allowing access 
to a 64-bit per-processor value for use by the operating system. On return from the 
rdval instruction, registers tO and t8..tll are UNPREDICTABLE. 
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2.2.7 Return from System Call 

Format: 

retsys 

Operation: 

! PALcode format 

if {PS<mode> EQ 1} then 
{ I n i t i a t e opDec faul t} 

e n d i f 
tmp <— 
GP < -
K S P « -
S P < -

(SP+ 
(SP+ 
SP + 
U S P 

i n t r _ f l a g = 
l o c k _ f l a g = 
P S <-
PC « -

Exceptions: 

8 
tmp 

08) 
■16) 

{6 

0 
0 

! Clear the i n t e r r u p t f lag 
! Clear the load lock flag 
! Mode=user 

Opcode reserved to Digital 
Kernel stack not valid (halt) 

Instruction mnemonics: 

retsys Return from system call 

Description: 

The return from system call (retsys) instruction pops the return address and the user 
mode global pointer from the kernel stack. It then saves the kernel stack pointer, 
sets the mode to user, sets the IPL to zero, and enters the user mode code at the 
address popped off the stack. On return from the retsys instruction, registers tO and 
t8 . . t l l are UNPREDICTABLE. 
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2.2.8 Return from Trap, Fault or Interrupt 

Format: 

rti ! PALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

endif 
tempps <— (SP+0) 
temppc <— (SP+8) 
GP ♦- (SP+16) 
aO <- (SP+24) 
al «- (SP+32) 
a2 <- (SP+40) 
SP 4- SP + {6 * 8} 
if { tempps<3> EQ 1} then 

KSP <- SP 
SP «- USP 
tempps <— 8 

endif 
intr_flag = 0 
lock_flag = 0 
PS <— tempps<3:0> 
PC <— temppc 

Exceptions: 

! New mode is user 

! Clear the interrupt flag 
! Clear the load lock flag 
! Set new PS 

Opcode reserved to Digital 
Kernel stack not valid (halt) 

Instruction mnemonics: 

rti Return from trap, fault, or interrupt 

Description: 

The return from fault, trap, or interrupt (rti) instruction pops registers (a0..a3, and 
GP), the PC, and the PS, from the kernel stack. If the new mode is user, the kernel 
stack is saved and the user stack is restored. 
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2.2.9 Swap Process Context 

Format: 

swpctx ! PALcode format 

Operation: 

! Save current state 

Return old PCBB 
Switch PCBB 
Restore new state 

if (PS<mode> EQ 1) 
{Initiate opDec fault} 

endif 
(PCBB) «- SP 
(PCBB+8) <- USP 
tmp «— PCC 
tmpl <— tmp<31:0> + tmp<63:32> 
(PCBB+24)<31:0> «- tmpl<31:0> 
vO <- PCBB 
PCBB <- aO 
SP <- (PCBB) 
USP «- (PCBB+8) 
oldPTBR <- PTBR 
PTBR «- (PCBB+16) 
tmpl 4- (PCBB+24) 
PCC<63:32> <- {tmpl - tmp}<31:0> 
FEN <- (PCBB+40) 
if {process unique register implemented} then 

(vO+32) <— unique 
unique <- (PCBB+32) 

endif 
if {ASN implemented} 

ASN ♦- tmpl<63:32> 
else 

if (oldPTBR NE PTBR) 
{Invalidate all TB entries with ASM=0} 

endif 
endif 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

swpctx Swap process context 
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Description: 

The swap process context (swpctx) instruction saves the current process data in the 
current PCB. Then swpctx switches to the PCB passed in aO and loads the new 
process context. The old PCBB is returned in vO. 

The process context and the PCB are described in Chapter 4. 

On return from the swpctx instruction, registers tO, t8. . t l l , and aO are 
UNPREDICTABLE. 
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2.2.10 Swap IPL 

Format: 

swpipl ! PALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

endif 
vO <- PS<IPL> 
PS<IPL> <- a0<2:0> 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

swpipl Swap IPL 

Description: 

The swap IPL (swpipl) instruction returns the current value of the PS<IPL> bits in 
vO and sets the IPL to the value passed in aO. On return from the spwipl instruction, 
registers tO, t8..tll, and aO are UNPREDICTABLE. 
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2.2.11 Swap PALcode Image 

Format: 

swppal ! PALcode format 

Operation: 

! aO contains the new PALcode identifier 
! al:a5 contain implementation-specific entry parameters 
! vO receives the following status: 
! 0 success (PALcode was switched) 
! 1 unknown PALcode variant 
! 2 known PALcode variant, but PALcode not loaded 

if (PS<mode> EQ 1) then 
(Initiate opDec fault) 

else 
if {aO < 256} then 

begin 
if {aO invalid} then 

vO — 1 
{return} 

else if {PALcode not loaded} then 
vO <- 2 
{return} 

else 
tmpl <— {PALcode base} 

end 
else 

tmpl = aO 
{flush instruction cache} 
{invalidate all translation buffers} 
{perform additional PALcode variant-specific initialization} 
{transfer control to PALcode entry at physical address = tmpl} 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

swppal Swap PALcode image 

Description: 

The swap Palcode image (swppal) instruction causes the current (active) PALcode 
to be replaced by the specified new PALcode image. The swppal instruction is 
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intended for use by operating systems only during bootstraps and by consoles during 
transitions to console I/O mode. 

The PALcode descriptor contained in aO is interpreted as either a PALcode variant 
or the base physical address of the new PALcode image. If a variant, the PALcode 
image must have been loaded previously. No PALcode loading occurs as a result of 
this instruction. 

After successful PALcode switching, the register contents are determined by the 
parameters passed in al . .a5 or are UNPREDICTABLE. A common parameter is 
the address of a new PCB. In this case, the stack pointer register and PTBR are 
determined by the contents of that PCB; the contents of other registers such as 
a0..a5 may be UNPREDICTABLE. 

See Part III, Console Interface, for information on using this instruction. 
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2.2.12 TB Invalidate 

Format: 

tbi ! PALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

end if 
case aO begin 

1: ! tbisi 
{Invalidate ITB entry for va=al} 
break; 

2: ! tbisd 
{Invalidate DTB entry for va=al} 
break; 

3: ! tbis 
{Invalidate both ITB and DTB entry for va=al} 
break; 

-1: ! tbiap 
{Invalidate all TB entries with ASM=0} 
break; 

-2: ! tbia 
{Flush all TBs} 
break; 

otherwise: 
break; 

endcase 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

tbi TB (translation buffer) invalidate 

Description: 

The TB invalidate (tbi) instruction removes specified entries from the I and D 
translation buffers (TBs) when the mapping changes. The tbi instruction removes 
specific entry types based on a CASE selection of the value passed in register 
aO. On return from the tbi instruction, registers tO, t8. . t l l , aO, and a l are 
UNPREDICTABLE. 
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2.2.13 Who Ami 

Format: 

whami ! PALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

endif 
vO ♦— whami 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

whami Who am I 

Description: 

The who am I (whami) instruction returns the processor number for the current 
processor in vO. The processor number is in the range 0 to the number of processors 
minus one (0..maxCPU-l) that can be configured in the system. On return from the 
whami instruction, registers tO and t8..tll are UNPREDICTABLE. 
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2.2.14 Write System Entry Address 

Format: 

wrent ! PALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

endif 
case al begin 

0: ! Write the Entlnt: 
entlnt <- aO 
break; 

1: ! Write the EntArith: 
entArith <— aO 
break; 

2: ! Write the EntMM: 
entMM <— aO 
break; 

3 : ! Write the EntIF: 
entIF <- aO 
break; 

4: ! Write the EntUna: 
entUna «— aO 
break; 

5: ! Write the EntSys: 
entSys <— aO 
break; 

otherwise : 
break; 

endcase; 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

wrent Write system entry address 

Description: 

The write system entry address (wrent) instruction determines the specific system 
entry point based on a CASE selection of the value passed in register a l . The wrent 
instruction then sets the virtual address of the specified system entry point to the 
value passed in aO. 
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For best performance, all the addresses should be kseg addresses. (See Chapter 3 
for a definition of kseg addresses.) 
On return from the wrent instruction, registers tO, t8..tll, aO, and al are 
UNPREDICTABLE. 
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2.2.15 Write Floating-Point Enable 

Format: 

wrfen ! PALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

endif 
FEN «- a0<0> 
(PCBB+40)<0> «- aO AND 1 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

wrfen Write floating-point enable 

Description: 

The write floating-point enable (wrfen) instruction writes bit zero of the value passed 
in aO to the floating-point enable register. The wrfen instruction also writes the value 
for FEN to the PCB at offset (PCBB+40)<0>. On return from the wrfen instruction, 
registers tO, t8 . . t l l , and aO are UNPREDICTABLE. 
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2.2.16 Write Interprocessor Interrupt request 

Format: 

wripir ! PALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

end if 
IPIR «- aO 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

wripir Write interprocessor interrupt request 

Description: 

The write interprocessor interrupt request (wripir) instruction generates an 
interprocessor interrupt on the processor number passed in register aO. The 
interrupt request is recorded on the target processor and is initiated when the proper 
enabling conditions are present. On return from wripir, registers tO, t8 . . t l l , and aO 
are UNPREDICTABLE. 

Programming Note: 

The interrupt need not be initiated before the next instruction is executed on the 
requesting processor, even if the requesting processor is also the target processor 
for the request. 
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2.2.17 Write Kernel Global Pointer 

Format: 

wrkgp ! PALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

endif 
KGP <- aO 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

wrkgp Write kernal global pointer 

Description: 

The write kernel global pointer (wrkgp) instruction writes the value passed in aO to 
the kernel global pointer (KGP) internal register. The KGP is used to load the GP 
on exceptions. On return from the wrkgp instruction, registers tO, t8..tll, and aO 
are UNPREDICTABLE. 
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2.2.18 Write Machine Check Error Summary 

Format: 

wrmces ! PALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

endif 
if (a0<0> EQ 1} then MCES<0> <- 0 
if (a0<0> EQ 1) then MCES<0> <- 0 
if (a0<0> EQ 1) then MCES<0> <- 0 
MCES<3> «- a0<3> 
MCES<4> «- a0<4> 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

wrmces Write machine check error summary 

Description: 

The write machine check error summary (wrmces) instruction clears the machine 
check in progress bit and clears the processor- or system-correctable error in progress 
bit in the MCES register. The instruction also sets or clears the processor- or system-
correctable error reporting enabled bit in the MCES register. On return from the 
wrmces instruction, registers tO, t8 . . t l l are UNPREDICTABLE. 
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2.2.19 Performance Monitoring Function 

Format: 

wrperfmon ! PALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

! aO contains implementation specific input values 
! al contains implementation specific output values 
! vO may return implementation specific values 
! Operations and actions taken are implementatin specific 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

wrperfmon Performance monitoring 

Description: 

The performance monitoring instruction (wrperfmon) alerts any performance 
monitoring software/hardware in the system to monitor the performance of this 
process. The wrperfmon function arguments and actions are platform and chip 
dependent, and when defined for an implementation, are described in Appendix D. 

Registers aO and a l contain implementation-specific input values. Implementation-
specific values may be returned in register vO. On return from the wrperfmon 
instruction, registers aO, a l , tO, and t8 . . t l l are UNPREDICTABLE. 
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2.2.20 Write User Stack Pointer 

Format: 

wrusp ! PALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

endif 
USP <- aO 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

wrusp Write user stack pointer 

Description: 

The write user stack pointer (wrusp) instruction writes the value passed in aO to the 
user stack pointer. On return from the wrusp instruction, registers tO, t8 . . t l l , and 
aO are UNPREDICTABLE. 
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2.2.21 Write System Value 

Format: 

wrval ÎPALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

endif 
sysvalue <— aO 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

wrval Write system value 

Description: 

The write system value (wrval) instruction writes the value passed in aO to a 64-
bit system value register. The combination of wrval with the rdval instruction, 
described in Section 2.2.6, allows access by the operating system to a 64-bit per-
processor value. On return from the wrval instruction, registers tO, t8..tll, and aO 
are UNPREDICTABLE. 
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2.2.22 Write Virtual Page Table Pointer 

Format: 

wrvptptr ! PALcode format 

Operation: 

if (PS<mode> EQ 1) then 
{Initiate opDec fault} 

endif 
VPTPTR <- aO 

Exceptions: 

Opcode reserved to Digital 

Instruction mnemonics: 

wrvptptr Write virtual page table pointer 

Description: 

The write virtual page table pointer (wrvptptr) instruction writes the pointer passed 
in aO to the virtual page table pointer register (VPTPTR). The VPTPTR is described 
in Section 3.6.2. On return from the wrvptptr instruction, registers tO, t8 . . t l l , and 
aO are UNPREDICTABLE. 
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Chapter 3 

DEC OSF/1 Memory Management (II—B) 

3.1 Virtual Address Spaces 
A virtual address is a 64-bit unsigned integer that specifies a byte location within the 
virtual address space. Implementations subset the supported address space to one 
of four sizes (43, 47, 51, or 55 bits) as a function of page size. The minimal supported 
virtual address size is 43 bits. If an implementation supports less than 64-bit virtual 
addresses, it must check that all the VA<63:vaSize> bits are equal to VA<vaSize-l>. 
This gives two disjoint ranges for valid virtual addresses. For example, for a 
43-bit virtual address space, valid virtual address ranges are 0..3FFFFFFFFFF16 
and FFFFFC000000000016..FFFFFFFFFFFFFFFF16. Access to virtual addresses 
outside an implementation's valid virtual address range cause an access-violation 
fault. 

The virtual address space is divided into three segments. The two bits 
va<vaSize-l:vaSize-2> select a segment as shown in Table 3 -1 . 

Table 3-1 : Virtual Address Space Segments 
VA<vaSize-l:vaSize-2> Name Mapping Access Control 

Ox segO Mapped via TB Programmed in PTE 

10 kseg PA <- sext(VA<vaSize-3:0>) Kernel Read/Write 

11 segl Mapped via TB Programmed in PTE 

For kseg, the relocation, sharing, and protection are fixed. For segO and segl, the 
virtual address space is broken into pages, which are the units of relocation, sharing, 
and protection. The page size ranges from 8K bytes to 64K bytes. Therefore, system 
software should allocate regions with differing protection on 64K-byte virtual address 
boundaries to ensure image compatibility across all Alpha AXP implementations. 

Memory management provides the mechanism to map the active part of the virtual 
address space to the available physical address space. The operating system controls 
the virtual-to-physical address mapping tables and saves the inactive (but used) 
parts of the virtual address space on external storage media. 

3.1.1 Segment SegO and Segl Virtual Address Format 
The processor generates a 64-bit virtual address for each instruction and operand in 
memory. A segO or segl virtual address consists of three level-number fields and a 
byte_within_page field, as shown in Figure 3-1 . 
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Figure 3-1 : Virtual Address Format 

SEXT (leveh <level size-1>) leveh Ievel2 Ievel3 byte_within_page 

The byte_within_page field can be either 13, 14, 15, or 16 bits depending on a 
particular implementation. Thus, the allowable page sizes are 8K bytes, 16K bytes, 
32K bytes, and 64K bytes. The low-order bit in each level-number field is 0 and each 
field is 0..n bits, where for example, n is 9 for an 8K page size. Level-number fields 
are the same size for a given implementation. 

The level-number fields are a function of the page size; all page table entries at any 
given level do not exceed one page. The PFN field in the PTE is always 32 bits wide. 
Thus, as the page size grows, the virtual and physical address size also grows. 

Table 3-2 shows the virtual address options and physical address size (in bits) 
calculations. The physical address (bits) column is the maximum physical address 
allowed by the smaller of the kseg size or available physical address bits for a given 
page size (segO/segl). The available physical address bits is calculated by combining 
the number of bits in the PFN (always 32) with the number of bits in the byte_ 
within_page field. The kseg segment is calculated from the virtual address size 
minus 2. 

Table 3-2: Virtual Address Options 
Page 
Size 
(bytes) 

8K 

16K 

32K 

64K 

Byte_within_ 
page 
(bits) 

13 

14 

15 

16 

Level 
Size 
(bits) 

10 

11 

12 

13 

Virtual 
Address 
(bits) 

43 

47 

51 

55 

Physical 
Address 
(bits) 

41 

45 

47 

48 

Physical 
Address 
Limited by 

kseg 

kseg 

segO/segl 

segO/segl 

3.1.2 Kseg Virtual Address Format 
The processor generates a 64-bit virtual address for each instruction and operand 
in memory. A kseg virtual address consists of segment select field with a value 
of 102 and a physical address field. The segment select field is the two bits 
va<vaSize-l:vaSize-2>. The physical address field is va<vaSize-3:0>. 
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Figure 3-2: Kseg Virtual Address Format 

SEXT (segment_select<1>) Segment Select=102 Physical Address 

Figure 3-3: Page Table Entry (PTE) 

PFN SW 

161514 1312 1110 9 8 7 6 5 4 3 2 1 0 

ww GH 

3.2 Physical Address Space 

Physical addresses are at most vaSize-2 bits. This allows all of physical memory 
to be accessed via kseg. A processor may choose to implement a smaller physical 
address space by not implementing some number of high-order bits. 

The two most significant implemented physical address bits delineate the four 
regions in the physical address space. Implementations use these bits as appropriate 
for their systems. For example, in a workstation with a 30-bit physical address space, 
bit<29> might select between memory and non-memory-like regions, and bit <28> 
could enable or disable cacheing (see Common Architecture, Chapter 5). 

3.3 Memory Management Control 

Memory management is always enabled. Implementations must provide an 
environment for PALcode to service exceptions and to initialize and boot the 
processor. For example PALcode might run with I-stream mapping disabled. 

3.4 Page Table Entries 

The processor uses a quadword page table entry (PTE) to translate segO and segl 
virtual addresses to physical addresses. A PTE contains hardware and software 
control information and the physical page frame number (PFN). A PTE is a quadword 
with fields as shown in Figure 3-3 and described in Table 3-3. 
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Table 3-3: Page Table Entry (PTE) Bit Summary 

Bits Name Meaning 

63-32 PFN 

31-16 SW 
15-14 RSVO 
13 UWE 

Page frame number 
The PFN field always points to a page boundary. If V is set, the PFN 
is concatenated with the byte_within_page bits of the virtual address to 
obtain the physical address. 
Reserved for software. 
Reserved for hardware; SBZ. 
User write enable. 
This bit enables writes from user mode. If this bit is 0 and a store is 
attempted while in user mode, an access-violation fault occurs. This bit 
is valid even when V=0. 

Note: 

If a write enable bit is set and the corresponding read enable bit is 
not, the operation of the processor is UNDEFINED. 

12 KWE Kernel write enable. 
This bit enables writes from kernel mode. If this bit is 0 and a store is 
attempted while in kernel mode, an access-violation fault occurs. This 
bit is valid even when V=0. 

11-10 RSV1 Reserved for hardware; SBZ. 
9 URE User read enable. 

This bit enables reads from user mode. If this bit is 0 and a load or 
instruction fetch is attempted while in user mode, an Access Violation 
occurs. This bit is valid even when V=0. 

8 KRE Kernel read enable. 
This bit enables reads from kernel mode. If this bit is 0 and a load or 
instruction fetch is attempted while in kernel mode, an access-violation 
fault occurs. This bit is valid even when V=0. 

RSV2 Reserved for hardware; SBZ. 
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Table 3-3 (Cont.): Page Table Entry (PTE) Bit Summary 
Bits Name Meaning 

6-5 GH Granularity hint. 
Software may set these bits to a non-zero value to supply a hint to 
translation buffer implementations that a block of pages can be treated 
as a single larger page: 

1. A block is an aligned group of 8**N pages, where N is the value of 
PTE<6:5>, for example, a group of 1, 8, 64, or 512 pages starting at 
a virtual address with page_size + 3*N low-order zeros. 

2. The block is a group of physically contiguous pages that are aligned 
both virtually and physically. Within the block, the low 3*N bits of 
the PFNs describe the identity mapping and the high 32-3*N PFN 
bits are all equal. 

3. Within the block, all PTEs have the same values for bits <15:0>. 
Hardware may use this hint to map the entire block with a single 
TB entry, instead of 8, 64, or 512 separate TB entries. 

4 ASM Address space match. 
When set, this PTE matches all address space numbers. For a given VA, 
ASM must he set consistently in all processes; otherwise, the address 
mapping is UNPREDICTABLE. 

3 FOE Fault on execute. 
When set, a Fault on Execute exception occurs on an attempt to execute 
any location in the page. 

2 FOW Fault on write. 
When set, a Fault on Write exception occurs on an attempt to write any 
location in the page. 

1 FOR Fault on read. 
When set, a Fault on Read exception occurs on an attempt to read any 
location in the page. 

0 V Valid. 
Indicates the validity of the PFN field. When V is set, the PFN field is 
valid for use by hardware. When V is clear, the PFN field is reserved 
for use by software. The V bit does not affect the validity of PTE<15:1> 
bits. 

3.4.1 Changes to Page Table Entries 
The operating system changes PTEs as part of its memory management functions. 
For example, the operating system may set or clear the V bit, change the PFN field 
as pages are moved to and from external storage media, or modify the software bits. 
The processor hardware never changes PTEs. 

Software must guarantee that each PTE is always internally consistent. Changing a 
PTE one field at a time can cause incorrect system operation, such as setting PTE<V> 
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with one instruction before establishing PTE<PFN> with another. Execution of an 
interrupt service routine between the two instructions could use an address that 
would map using the inconsistent PTE. Software can solve this problem by building 
a complete new PTE in a register and then moving the new PTE to the page table 
by using an STQ instruction. 

Multiprocessing complicates the problem. Another processor could be reading (or 
even changing) the same PTE that the first processor is changing. Such concurrent 
access must produce consistent results. Software must use some form of software 
synchronization to modify PTEs that are already valid. Whenever a processor 
modifies a valid PTE, it is possible that other processors in a multiprocessor system 
may have old copies of that PTE in their translation buffer. Software must inform 
other processors of changes to PTEs. Hardware must ensure that aligned quadword 
reads and writes are atomic operations. Hardware must not cache invalid PTEs 
(PTEs with the V bit equal to 0) in translation buffers. See Section 3.7 for more 
information. 

3.5 Memory Protection 

Memory protection is the function of validating whether a particular type of access 
is allowed to a specific page from a particular access mode. Access to each page is 
controlled by a protection code that specifies, for each access mode, whether read or 
write references are allowed. The processor uses the following to determine whether 
an intended access is allowed: 

• The virtual address, which is used to either select kseg mapping or provide the 
index into the page tables. 

• The intended access type (read or write). 

• The current access mode base on processor mode. 

For protection checks, the intended access is read for data loads and instruction 
fetches, and write for data stores. 

3.5.1 Processor Access Modes 
There are two processor modes, user and kernel. The access mode of a running 
process is stored in the processor status mode bit (PS<mode>). 

3.5.2 Protection Code 
Every page in the virtual address space is protected according to its use. A program 
may be prevented from reading or writing portions of its address space. A protection 
code associated with each page describes the accessibility of the page for each 
processor mode. 

For segO and segl, the code allows a choice of read or write protection for each 
processor mode. For each mode, access can be read/write, read-only, or no-
access. Read and write accessibility and the protection for each mode are specified 
independently. 

For kseg, the protection code is kernel read/write, user no-access. 
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3.5.3 Access-Violation Faults 
An access-violation memory-management fault occurs if an illegal access is 
attempted, as determined by the current processor mode and the page's protection. 

3.6 Address Translation for SegO and Seg1 

The page tables can be accessed from physical memory, or (to reduce overhead) can 
be mapped to a linear region of the virtual address space. The following sections 
describe both access methods. 

3.6.1 Physical Access for SegO and Seg1 PTEs 
SegO and segl address translation can be performed by accessing entries in a three-
level page table structure. The page table base register (PTBR) contains the physical 
page frame number (PFN) of the highest level (level 1) page table. Bits <levell> of 
the virtual address are used to index into the first level page table to obtain the 
physical PFN of the base of the second level (level 2) page table. Bits <level2> of 
the virtual address are used to index into the second level page table to obtain the 
physical PFN of the base of the third level (level 3) page table. Bits <level3> of the 
virtual address are used to index the third level page table to obtain the physical 
PFN of the page being referenced. The PFN is concatenated with virtual address bits 
<byte_within_page> to obtain the physical address of the location being accessed. 

If part of any page table does not reside in a memory-like region, or does reside in 
nonexistent memory, the operation of the processor is UNDEFINED. 

If the first-level or second-level PTE is valid, the protection bits are ignored; the 
protection code in the third-level PTE is used to determine accessibility. If a first 
level or second level PTE is invalid, an access-violation fault occurs if the PTE<KRE> 
equals zero. An access-violation fault on a first-level or second-level PTE implies that 
all lower-level page tables mapped by that PTE do not exist. 

The algorithm to generate a physical address from a segO or segl virtual address 
follows: 
IF {SEXT(VA<vaSize-l:0>) neq VA} THEN 

{ initiate access-violation fault} 

levell_PTE <— ({PTBR * page_size} + {8 * VA<levell>} ) 
IF levell_PTE<v> EQ 0 THEN 

IF level1_PTE<KRE> eq 0 THEN 
{ initiate access-violation fault} 

ELSE 
{ initiate translation-not-valid fault} 

level2_PTE <— ({levell_PTE<PFN> * page_size} + {8 * VA<level2>} ) 
IF level2_PTE<v> EQ 0 THEN 

IF level2_PTE<KRE> eq 0 THEN 
{ initiate access-violation fault} 

ELSE 
{ initiate translation-not-valid fault} 

level3_PTE «— ({level2_PTE<PFN> * page_size} + {8 * VA<level3>} ) 

! Read physical 

! Read physical 

! Read physical 
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IF {{{level3_PTE<UWE> eq 0} AND {write access} AND {ps<mode> EQ 1} } OR 
{{level3_PTE<URE> eq 0} AND {read access} AND {ps<mode> EQ 1} } OR 
{{level3_PTE<KWE> eq 0} AND {write access} AND {ps<mode> EQ 0} } OR 
{{level3_PTE<KRE> eq 0} AND {read access} AND {ps<mode> EQ 0} } } 

THEN 
{initiate memory-management fault} 

ELSE 
IF level3_PTE<v> EQ 0 THEN 

{initiate memory-management fault} 

IF { level3_PTE<FOW> eq 1} AND {write access} THEN 
{initiate memory-management fault} 

IF { level3_PTE<FOR> eq 1} AND {read access} THEN 
{initiate memory-management fault} 

IF { level3_PTE<FOE> eq 1} AND {execute access} THEN 
{initiate memory-management fault} 

Physical_address «— {level3_PTE<PFN> * page_size} OR VA<byte_within_page> 

3.6.2 Virtual Access for SegO or Seg1 PTEs 
The page tables can be mapped into a linear region of the virtual address space, 
reducing the overhead for segO and segl PTE accesses. The mapping is done as 
follows: 

1. Select a 2(3*te(PaseStW8))+3 byte-aligned region (an address with 3 * \g(pageSize/S) + 3 
low-order zeros) in the segO or segl address space. 

2. Create a level 1 PTE to map the page tables as follows. 
levell_PTE = 0 ! Initialize all fields to 0 
level1_PTE<63:32> = pfn_of_Level_l_pagetable 

Set the PFN to the PFN of the level one pagetable 
Set the kernel read enable bit 
Set the valid bit 

level1_PTE<8> = 1 
levell_PTE<0> = l 

3. Set the level 1 page table entry that corresponds to the VPTPTR to the created 
levell_PTE. 

4. Set all level 1 and level 2 valid PTEs to allow kernel read access. With this setup 
in place, the algorithm to fetch a segO or segl PTE is: 
tmp <— left_shift (va, {64 - {{lg (pageSize) *4} - 9}} ) 
tmp <— right_shift (tmp, {64 - {{lg (pageSize) *4} - 9} + lg(pageSize) - 3} ) 
tmp «— VPTB OR tmp 
tmp<2:0> «— 0 
level3_PTE, «— (tmp) ! Load PTE using it's virtual address 

5. Set the virtual page table pointer (VPTPTR) with a write virtual page table 
pointer instruction (wrvptptr) to the selected value. 

The virtual access method is used by PALcode for most TB fills. 

3.7 Translation Buffer 
In order to save actual memory references when repeatedly referencing the 
same pages, hardware implementations include a translation buffer to remember 
successful virtual address translations and page states. When the process context 
is changed, a new value is loaded into the address space number (ASN) internal 
processor register with a swap process context (swpctx) instruction. This causes 
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address translations for pages with PTE<ASM> clear to be invalidated on a processor 
that does not implement address space numbers. 

Additionally, when the software changes any part (except the software field) of a 
valid PTE, it must also execute a CALL_PAL tbi instruction. The entire translation 
buffer can be invalidated by tbia, and all ASM=0 entries can be invalidated by tbiap. 
The translation buffer must not store invalid PTEs. Therefore, the software is not 
required to invalidate translation buffer entries when making changes for PTEs that 
are already invalid. 

After software changes a valid first- or second-level PTE, software must flush the 
translation for the corresponding page in the virtual page table. Then software must 
flush the translations of all valid pages mapped by that page. In the case of a change 
to a first-level PTE, this action must be taken through a second iteration. 

3.8 Address Space Numbers 

The Alpha AXP architecture allows a processor to optionally implement address 
space numbers (process tags) to reduce the need for invalidation of cached address 
translations for process-specific addresses when a context switch occurs. The 
supported address space number (ASN) range is O..MAX_ASN; MAX_ASN is 
provided in the HWRPB MAX.ASN field. 

The address space number for the current process is loaded by software in the 
address space number (ASN) with a swpctx instruction. ASNs are processor 
specific and the hardware makes no attempt to maintain coherency across multiple 
processors. In a multiprocessor system, software is responsible for ensuring the 
consistency of TB entries for processes that might be rescheduled on different 
processors. 

Programming Note: 

System software should not assume that the number of ASNs is a power of two. 
This allows hardware, for example, to use N TB tag bits to encode (2**N)-3 ASN 
values, one value for ASM=1 PTEs, and one for invalid. 

There are several possible ways of using ASNs that result from several 
complications in a multiprocessor system. Consider the case where a process 
that executed on processor-1 is rescheduled on processor-2. If a page is deleted 
or its protection is changed, the TB in processor-1 has stale data. 

• One solution is to send an interprocessor interrupt to all the processors on 
which this process could have run and cause them to invalidate the changed 
PTE. That results in significant overhead in a system with several processors. 

• Another solution is to have software invalidate all TB entries for a process 
on a new processor before it can begin execution, if the process executed on 
another processor during its previous execution. This ensures the deletion of 
possibly stale TB entries on the new processor. 

• A third solution is to assign a new ASN whenever a process is run on a 
processor that is not the same as the last processor on which it ran. 
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3.9 Memory-Management Faults 
On a memory-management fault, the fault code (MMCSR) is passed in a l to specify 
the type of fault encountered, as shown in Table 3-4. 

Table 3-4: Memory-Management Fault Type Codes 
Fault MMCSR value 

Translation not valid 0 
Access-violation 1 
Fault on read 2 
Fault on execute 3 
Fault on write 4 

• A translation-not-valid fault is taken when a read or write reference is attempted 
through an invalid PTE in a first, second, or third-level page table. 

• An access-violation fault is taken on a reference to a segO or segl address when 
the protection field of the third-level PTE that maps the data indicates that the 
intended page reference would be illegal in the specified access mode. An access-
violation fault is also taken if the KRE bit is a zero in an invalid first or second 
level PTE. An access-violation fault is generated for any access to a kseg address 
when the mode is user (PS<mode> EQ 1). 

• A fault-on-read (FOR) fault occurs when a read is attempted with PTE<FOR> 
set. 

• A fault-on-execute (FOE) fault occurs when an instruction fetch is attempted 
with PTE<FOE> set. 

• A fault-on-write (FOW) fault occurs when a write is attempted with PTE<FOW> 
set. 
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Chapter 4 

DEC OSF/1 Process Structure (II—B) 

4.1 Process Definition 
A process is a single thread of execution. It is the basic entity that can be scheduled 
and is executed by the processor. A process consists of an address space and both 
software and hardware context. The hardware context of a process is defined by the 
the following: 

• Thirty integer registers (excludes R31 and SP) 

• Thirty-one floating-point registers (excludes F31) 

• The program counter (PC) 

• The two per-process stack pointers (USP/KSP) 

• The processor status (PS) 

• The address space number (ASN) 

• The charged process cycles 

• The page table base register (PTBR) 

• The process unique value (unique) 

• The floating-point enable register (FEN) 

• The performance monitoring enable bit (PME) 

This information must be loaded if a process is to execute. 

While a process is executing, some of its hardware context is being updated in the 
internal registers. When a process is not being executed, its hardware context is 
stored in memory in a software structure called the process control block (PCB). 
Saving the process context in the PCB and loading new values from another PCB 
for a new context is called context switching. Context switching occurs as one process 
after another is scheduled for execution. 

4.2 Process Control Block (PCB) 
As shown in Figure 4 -1 , the PCB holds the state of a process. 

The contents of the PCB are loaded and saved by the swap process context (swpctx) 
instruction. The PCB must be quadword aligned and lie within a single page of 
physical memory. It should be 64-byte aligned for best performance. 
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Figure 4-1 : Process Control Block (PCB) 
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The PCB for the current process is specified by the process control block base address 
register (PCBB); see Table 1-3. 

The swap privileged context instruction (swpctx) saves the privileged context of the 
current process into the PCB specified by PCBB, loads a new value into PCBB, and 
then loads the privileged context of the new process into the appropriate hardware 
registers. 

The new value loaded into PCBB, as well as the contents of the PCB, must satisfy 
certain constraints or an UNDEFINED operation results: 

1. The physical address loaded into PCBB must be quadword aligned and describes 
eight contiguous quadwords that are in a memory-like region (see Common 
Architecture, Chapter 5). 

2. The value of PTBR must be the page frame number (PFN) of an existent page 
that is in a memory-like region. 

It is the responsibility of the operating system to save and load the non-privileged 
part of the hardware context. 

The swpctx instruction returns ownership of the current PCB to operating system 
software and passes ownership of the new PCB from the operating system to the 
processor. Any attempt to write a PCB while ownership resides with the processor 
has UNDEFINED results. If the PCB is read while ownership resides with the 
processor, it is UNPREDICTABLE whether the original or an updated value of a 
field is read. The processor is free to update a PCB field at any time. The decision 
as to whether or not a field is updated is made individually for each field. 

The charged process cycles is the total number of PCC register counts that are 
charged to the process (modulo 2**32). When a process context is loaded by the 
swpctx instructions, the contents of the PCC count field (PCC_CNT) is subtracted 
from the contents of PCB[24]<31:0> and the result is written to the PCC offset field 
(PCC_OFF): 
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PCC<63:32> <- (PCB[24]<31:0> - PCC<31:0>) 

When a process context is saved by the swpctx instruction, the charged process cycles 
is computed by performing an unsigned add of PCC<63:32> and PCC<31:0>. That 
value is written to PCB[24]<31:0>. 

Software Programming Note: 

The following example returns in RO the current PCC register count (modulo 
2**32) for a process. Notice the care taken not to cause an unwanted sign 
extension. 

RPCC RO ; Read the processor cycle counter 
SLL RO, #32, Rl ; Line up the offset and count fields 
ADDQ RO, Rl, RO ; Do add 
SRL RO, #32, RO ; Zero extend the cycle count to 64 bits 

If ASNs are not implemented, the ASN field is not read or written by PALcode. 

The process unique value is that value used in support of multithread 
implementations. The value is stored in the PCB when the process is not active. 
When the process is active, the value may be cached in hardware internal storage 
or kept in the PCB only. 

The FEN bit reflects the setting of the FEN IPR. 

Setting the PME bit alerts any performance hardware or software in the system to 
monitor the performance of this process. 

Kernel mode code must use the rdusp/wrusp instructions to access the USP Kernel 
mode code can read the PTBR, the ASN, the FEN, and the PME for the current 
process from the PCB. The unique value can be accessed with the rdunique and 
wrunique instructions. 
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Chapter 5 

DEC OSF/1 Exceptions and Interrupts (II—B) 

5.1 Introduction 
At certain times during the operation of a system, events within the system require 
the execution of software outside the explicit flow of control. When such an event 
occurs, an Alpha AXP processor forces a change in control flow from that indicated by 
the current instruction stream. The notification process for such an event is either 
an exception or an interrupt. 

5.1.1 Exceptions 
Exceptions occur primarily in relation to the currently executing process. Exception 
service routines execute in response to exception conditions caused by software. All 
exception service routines execute in kernel mode on the kernel stack. Exception 
conditions consist of faults, arithmetic traps, and synchronous traps: 

• A fault occurs during an instruction and leaves the registers and memory in 
a consistent state such that elimination of the fault condition and subsequent 
réexécution of the instruction gives correct results. Faults are not guaranteed to 
leave the machine in exactly the same state it was in immediately prior to the 
fault, but rather in a state such that the instruction can be correctly executed if 
the fault condition is removed. The PC saved in the exception stack frame is the 
address of the faulting instruction. An rti instruction to that PC reexecutes the 
faulting instruction. 

• An arithmetic trap occurs at the completion of the operation that caused the 
exception. Since several instructions may be in various stages of execution at any 
point in time, it is possible for multiple arithmetic traps to occur simultaneously. 

The PC that is saved in the exception frame on traps is that of the next 
instruction that would have been issued if the trapping conditions had not 
occurred. However, that PC is not necessarily the address of the instruction 
immediately following the instructions that encountered the trap condition. 
Further, intervening instructions may have changed operands or other state used 
by the instructions encountering the trap conditions. 

An rti instruction to that PC does not reexecute the trapping instructions, nor 
does it reexecute any intervening instructions; it simply continues execution from 
the point at which the trap was taken. 

In general, it is difficult to fix up results and continue program execution at the 
point of an arithmetic trap. Software can force a trap to be continued more easily 
without the need for complicated fixup code. This is accomplished by following a 
set of code generation restrictions in the code that could cause arithmetic traps 
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• 

that are to be completed by a software trap handler (see Common Architecture, 
Chapter 4, Imprecise /Software Completion Trap Modes), including specifying 
the /S software completion modifier in each such instruction. 
The AND of all the software completion modifiers for trapping instructions is 
provided to the arithmetic trap handler in the exception summary SWC bit. If 
the SWC is set, a trap handler may find the trigger instruction by scanning 
backward from the trap PC until each register in the register write mask has 
been an instruction destination. The trigger instruction is the first instruction in 
the I-stream order to get a trap within a trap shadow. (See Common Architecture, 
Chapter 4, Imprecise /Software Completion Trap Modes, for a definition of trap 
shadow.) If the SWC bit is clear, no fixup is possible. 
A synchronous trap occurs at the completion of the operation that caused the 
exception. No instructions can be issued between the completion of the operation 
that caused the exception and the trap. 

5.1.2 Interrupts 
The processor arbitrates interrupt requests. When the interrupt priority level (IPL) 
of an outstanding interrupt is greater than the current IPL, the processor raises 
IPL to the level of the interrupt and dispatches to entlnt, the interrupt entry to 
the OS. Interrupts are serviced in kernel mode on the kernel stack. Interrupts 
can come from one of five sources: interprocessor interrupts, I/O devices, the clock, 
performance counters, or machine checks. 

5.2 Processor Status 

The processor status (PS) is a four-bit register that contains the current mode 
(PS<mode>) in bit <3> and a three-bit interrupt priority level (PS<IPL>) in bits 
<2..0>. The PS<mode> bit is zero for kernel mode and one for user mode. The 
PS<IPL> bits are always zero if the mode is user and can be zero to 7 if the mode 
is kernel. The PS is changed when an interrupt or exception is initiated and by the 
rti, retsys, and swpipl instructions. 

The uses of the PS values are shown in Table 5-1. 

Table 5-1 : Processor Status Summary 
PS<mode> 

1 

0 

0 

0 

0 

0 

PS<IPL> 

0 

0 

1 

2 

3 

4 

Mode 

User 

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

Use 

User software 

System software 

System software 

System software 

Low priority device interrupts 

High priority device interrupts 
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Table 5-1 (Cont.): Processor Status Summary 

PS<mode> PS<IPL> Mode Use 

0 

0 

0 

0 

5 

6 

6 

7 

Kernel 

Kernel 

Kernel 

Kernel 

Clock, and interprocessor interrupts 

Real-time devices 

Correctable error reporting 

Machine checks 

5.3 Stack Frames 

There are two types of system entries: entries for the callsys instruction and entries 
for exceptions and interrupts. Both types use the same stack frame layout, as shown 
in Figure 5-1 . The stack frame contains space for the PC, the PS, the saved GP, and 
the saved registers aO, a l , a2. On entry, the SP points to the saved PS. 

The callsys entry saves the PC, the PS, and the GP The exception and interrupt 
entries save the PC, the PS, the GP, and also save the registers a0..a2. 

Figure 5-1 : Stack Frame Layout 
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5.4 System Entry Addresses 
All system entries are in kernel mode. The interrupt priority PS bits (PS<IPL>) are 
set as shown in the following table. The system entry point address is set by the 
CALL_PAL wrent instruction, as described in Section 2.2.14. 

Table 5-2: Entry Point Address Registers 

Entry Point 

entArith 

entIF 

ent lnt 

entMM 

entSys 

entUna 

Value in aO 

Exception 
summary 

Fault or trap 
type code 

Interrupt type 

VA 

ρθ 

VA 

Value in a l 

Register mask 

UNPREDICT-
ABLE 

Vector 

MMCSR 

Pi 
Opcode 

Value in a2 

UNPREDICT-
ABLE 

UNPREDICT-
ABLE 

Interrupt 
parameter 

Cause 

p2 

Src/Dst 

PS<IPL> 

Unchanged 

Unchanged 

Priority of interrupt 

Unchanged 

Unchanged 

Unchanged 

5.4.1 System Entry Arithmetic Trap (entArith) 
The arithmetic trap entry, entArith, is called when an arithmetic trap occurs. On 
entry, aO contains the exception summary register and a l contains the exception 
register write mask. Section 5.4.1.1 describes the exception summary register and 
Section 5.4.1.2 describes the register write mask. 

5.4.1.1 Exception Summary Register 

The exception summary register, shown in Figure 5-2 and described in Table 5-3, 
records the various types of arithmetic exceptions that can occur together. Those 
types of exceptions are listed and described in Table 5-3. 

Figure 5-2: Exception Summary Register 
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Table 5-3: Exception Summary Register Bit Definitions 
Bit Description 

63-7 Zero. 

6 Integer overflow (IOV) 
An integer arithmetic operation or a conversion from floating to integer overflowed the 
destination precision. 
An IOV trap is reported for any integer operation whose true result exceeds the 
destination register size. Integer overflow trap enable can be specified in each 
arithmetic integer operate instruction and each floating-point convert-to-integer 
instruction. If integer overflow occurs, the result register is written with the truncated 
true result. 

5 Inexact result (INE) 
A floating arithmetic or conversion operation gave a result that differed from the 
mathematically exact result. 
An INE trap is reported if the rounded result of an IEEE operation is not exact. Inexact 
result t rap enable can be specified in each IEEE floating-point operate instruction. The 
rounded result value is stored in all cases. 

4 Underflow (UNF) 
A floating arithmetic or conversion operation underflowed the destination exponent. 
An UNF trap is reported when the destination's smallest finite number exceeds in 
magnitude the non-zero rounded true result. Floating underflow trap enable can be 
specified in each floating-point operate instruction. If underflow occurs, the result 
register is written with a true zero. 

3 Overflow (OVF) 
A floating arithmetic or conversion operation overflowed the destination exponent. 
An OVF trap is reported when the destination's largest finite number is exceeded in 
magnitude by the rounded true result. Floating overflow traps are always enabled. If 
this trap occurs, the result register is written with an UNPREDICTABLE value. 

2 Division by zero (DZE) 
An attempt was made to perform a floating divide operation with a divisor of zero. 
A DZE trap is reported when a finite number is divided by zero. Floating divide by 
zero traps are always enabled. If this trap occurs, the result register is written with 
an UNPREDICTABLE value. 

1 Invalid operation (INV) 
An attempt was made to perform a floating arithmetic, conversion, or comparison 
operation, and one or more of the operand values were illegal. 
An INV trap is reported for most floating-point operate instructions with an input 
operand that is an IEEE NaN, IEEE infinity, or IEEE denormal. 
Floating invalid operation traps are always enabled. If this trap occurs, the result 
register is written with an UNPREDICTABLE value. 
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Table 5-3 (Cont.): Exception Summary Register Bit Definitions 

Bit Description 

0 Software completion (SWC) 
Is set when all of the other arithmetic exception bits were set by floating-operate 
instructions with the /S software completion trap modifier set. See Common 
Architecture, Chapter 4, Imprecise /Software Completion Trap Modes, for rules about 
setting the /S modifier in code that may cause an arithmetic trap, and Section 5.1.1 
for rules about using the SWC bit in a trap handler. 

5.4.1.2 Exception Register Write Mask 

The exception register write mask parameter records all registers that were targets 
of instructions that set the bits in the exception summary register. There is a one-
to-one correspondence between bits in the register write mask quadword and the 
register numbers. The quadword, starting at bit 0 and proceeding right to left, 
records which of the registers rO through r31, then fO through £31, received an 
exceptional result. 

Note: 

For a sequence such as: 

ADDF F 1 , F 2 , F 3 
MULF F 4 , F 5 , F 3 

if the add overflows and the multiply does not, the OVF bit is set in the exception 
summary, and the F3 bit is set in the register mask, even though the overflowed 
sum in F3 can be overwritten with an in-range product by the time the trap is 
taken. (This code violates the destination reuse rule for software completion. See 
Common Architecture, Chapter 4, Imprecise /Software Completion Trap Modes, 
for the destination reuse rules.) 

The PC value saved in the exception stack frame is the virtual address of the next 
instruction. This is defined as the virtual address of the first instruction not executed 
after the trap condition was recognized. 

5.4.2 System Entry Instruction Fault (entIF) 

The instruction fault or synchronous trap entry is called for bpt, bugchk, gentrap, 
and opDec synchronous traps, and for a FEN fault (floating-point instruction when 
the floating-point unit is disabled, FEN EQ 0). On entry, aO contains a 0 for a bpt, 
a 1 for bugchk, a 2 for gentrap, a 3 for FEN fault, and a 4 for opDec. No additional 
data is passed in al. .a2. The saved PC at (SP+00) is the address of the instruction 
that caused the fault for FEN faults. The saved PC at (SP+00) is the address of the 
instruction after the instruction that caused the bpt, bugchk, gentrap, and opDec 
synchronous traps. 
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5.4.3 System Entry Hardware Interrupts (entlnt) 

The interrupt entry is called to service a hardware interrupt or a machine check. 
Table 5-4 shows what is passed in a0..a2 and the PS<IPL> setting for various 
interrupts. 

Table 5-4: System Entry Hardware Interrupts 
Entry Type 

Interprocessor 
interrupt 
Clock 

Correctable 
error 
Machine check 

I/O device 
interrupt 
Performance 
counter 

Value in aO 

0 

1 

2 

2 

3 

4 

Value in al 

UNPREDICT-
ABLE 

UNPREDICT-
ABLE 

Interrupt 
vector 
Interrupt 
vector 
Interrupt 
vector 
Interrupt 
vector 

Value in a2 

UNPREDICT-
ABLE 

UNPREDICT-
ABLE 

Pointer to 
Logout Area 
Pointer to 
Logout Area 
UNPREDICT-
ABLE 

UNPREDICT-
ABLE 

PS<IPL> 

5 

5 

7 

7 

Level of device 

6 

On entry to the hardware interrupt routine, the IPL has been set to the level of the 
interrupt. For hardware interrupts, register a l contains a platform-specific interrupt 
vector. That platform-specific interrupt vector is typically the same value as the 
SCB offset value that would be returned if the platform was running OpenVMS 
AXP PALcode. 
For a correctable error or machine check interrupt, a l contains a platform-specific 
interrupt vector and a2 contains the kseg address of the platform-specific logout 
area. The interrupt vector value and logout area format are typically the same as 
those used by the platform when running OpenVMS AXP PALcode. 
The machine check error summary (MCES) register, shown in Figure 5-3 and 
described in Table 5-5, records the correctable error and machine check interrupts 
in progress. 

Figure 5-3: Machine Check Error Status (MCES) Register 
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Table 5-5: Machine Check Error Status (MCES) Register Bit Definitions 

Bit Symbol Description 

63-32 IMP. 
31-5 Reserved. 
4 DSC Disable system correctable error in progress. 

Set to disable system correctable error reporting. 
3 DPC Disable processor correctable error in progress. 

Set to disable processor correctable error reporting. 
2 PCE Processor correctable error in progress. 

Set when a processor correctable error is detected. Should be cleared by the 
processor correctable error handler when the logout frame may be reused. 

1 SCE System correctable error in progress. 
Set when a system correctable error is detected. Should be cleared by the 
system correctable error handler when the logout frame may be reused. 

0 MIP Machine check in progress. 
Set when a machine check occurs. Must be cleared by the machine check 
handler when a subsequent machine check can be handled. Used to detect 
double machine checks. 

The MIP flag in the MCES register is set prior to invoking the machine check 
handler. If the MIP flag is set when a machine check is being initiated, a double 
machine check halt is initiated instead. The machine check handler needs to clear 
the MIP flag when it can handle a new machine check. 

Similiarly, the SCE or PCE flag in the MCES register is set prior to invoking 
the appropriate correctable error handler. That error handler should clear the 
appropriate correctable error in progress when the logout area can be reused by 
hardware or PALcode. PALcode does not overwrite the logout area. 

Correctable processor or system error reporting may be suppressed by setting the 
respective DPC or DSC flag in the MCES register. When the DPC or DSC flag is set, 
the corresponding error is corrected, but no correctable error interrupt is generated. 

5.4.4 System Entry MM Fault (entMM) 

The memory-management fault entry is called when a memory management 
exception occurs. On entry, aO contains the faulting virtual address and a l contains 
the MMCSR (see Section 3.9). On entry, a2 is set to a minus one (-1) for an 
instruction fetch fault, to a plus one (+1) for a fault caused by a store instruction, 
or to a 0 for a fault caused by a load instruction. 
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5.4.5 System Entry Call System (entSys) 

The system call entry is called when a callsys instruction is executed in user mode. 
On entry, only registers (t8..tll) have been modified. The PC+4 of the callsys 
instruction, the user global pointer, and the current PS are saved on the kernel 
stack. Additional space for a0..a2 is allocated. After completion of the system service 
routine, the kernel code executes a CALL_PAL retsys instruction. 

5.4.6 System Entry Unaligned Access (entUna) 
The unaligned access entry is called when a load or store access is not aligned. On 
entry, aO contains the faulting virtual address, a l contains the zero extended six-bit 
opcode (bits <31:26>) of the faulting instruction, and a2 contains the zero extended 
data source or destination register number (bits<25:21> of the faulting instruction. 

5.5 PALcode Support 

5.5.1 Stack Writeability and Alignment 
PALcode only accesses the kernel stack. Any PALcode accesses to the kernel stack 
that would produce a memory-management fault will result in a kernel-stack-not-
valid halt. The stack pointer must always point to a quadword-aligned address. If 
the kernel stack is not quadword aligned on a PALcode access, a kernel-stack-not-
valid halt is initiated. 
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Chapter 1 

Introduction to Windows NT AXP Software (II—C) 

The primary goal of the Windows NT AXP PALcode implementation is total 
compatibility with the base operating system design and existing implementations 
of Windows NT for all processor architectures. Maintaining compatibility with 
Windows NT and software portability between versions of Windows NT requires the 
stipulations mentioned in the introduction to this section. It is important that all 
software developers read those stipulations. 

The PALcode mechanism, coupled with the Windows NT AXP design, provides 
binary compatibility for native system components across different processor 
implementations. The PALcode also provides a clean abstracted processor model 
that matches Windows NT requirements, requires minimal porting effort for new 
platforms, and provides the best possible performance while offering those features. 

Windows NT AXP is a 32-bit operating system. Therefore, the PALcode is a 32-
bit implementation, with, for example, a 32-bit virtual address space. The internal 
processor registers are 32 bits, in canonical longword format. The page table entry 
(PTE) format is also 32 bits. The PALcode manages any required transformation 
between the 32-bit processor-independent formats and the 64-bit internal processor. 

A Windows NT AXP PALcode image is processor specific and platform independent. 
A single version of the PALcode (for a particular processor implementation) runs on 
all systems. The difference between processors is entirely hidden by the PALcode 
for each implementation. Thus, the PALcode interface allows the Windows NT 
AXP operating system images to be binary-compatible across different processor 
implementations. 

The PALcode image is read from the disk during the boot process, like all other 
components of the running operating system. The boot environment PALcode need 
only support the common swppal instruction to allow the operating system to load 
and initialize the PALcode. 

Some functions and parameters must be implemented on a per-platform basis. 
Platform-dependent functions are implemented in the HAL (hardware abstraction 
layer), which is a system-specific library, loaded and dynamically linked at boot time. 

The basic Windows NT AXP design, therefore, consists of a platform-independent 
PALcode definition and binary-compatible kernel with system-dependent functions 
in the HAL. 

The PALcode was designed to work smoothly and quickly with the Windows NT AXP 
kernel. For example, the PALcode builds Windows NT AXP trap frames and passes 
Windows NT AXP status codes. Wherever possible, parameters and return values 
are passed in registers between the kernel and the PALcode. 
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The PALcode was also designed to keep dependencies on the kernel to a minimum. 
For example, only the processor control region and the kernel trap frame definition 
are shared between the PALcode and the Windows NT AXP kernel. 

1.1 Overview of System Components 

The kernel is a binary-compatible image that can run on any Alpha AXP processor, 
platform, or system. The kernel is binary compatible because of cooperation between 
it and other system components that provide the processor- and system-specific 
functions. Those cooperating components are the firmware, the OS Loader, the HAL 
(hardware abstraction layer), and the PALcode. 

The firmware and OS Loader are the first components in the boot sequence and are 
responsible for establishing the environment in which the kernel, HAL, and PALcode 
execute. The kernel reads the configuration information provided by the firmware 
through the OS Loader, and uses the standard interfaces provided by the HAL and 
the PALcode. 

Firmware 
The firmware contributes the following components to the boot sequence: 

1. Establishes the privileged environment in which the OS Loader executes and the 
kernel begins executing (that is, provides memory management support and the 
swppal instruction). 

2. Provides platform- and configuration-dependent services to the OS loader (such 
as I/O services) via ARC call-back routines. 

3. Creates the configuration database: devices, memory size, and so forth. 

4. Reads the OS Loader from the disk and executes it. 

OS Loader 
The OS Loader is a linking loader that reads the component operating system images 
from the disk, performs necessary relocation, and binds the dynamically linked 
images together. The OS Loader loads the appropriate HAL and PALcode, based 
on the configuration information provided by the firmware. 

The OS Loader loads the appropriate boot drivers as read from the operating system 
configuration files. The OS Loader also builds the loader parameter block structure 
by using information provided by the firmware. The loader parameter block includes 
configuration information (processor, system, device, and memory configuration) and 
per-processor data structures. 

Once the operating system components are loaded, the OS Loader jumps to the 
beginning of the kernel to begin execution of the operating system. The OS Loader 
loads the operating system PALcode on a 64K-byte-aligned address. The kernel 
activates the operating system PALcode by executing the swppal instruction. 

Hardware Abstraction Layer (HAL) 
The HAL provides the system-specific layer between the kernel and the system 
hardware. The HAL provides interfaces for the following types of functions: 
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1. Interrupt handling, including dispatch and acknowledge 

2. DMA control 

3. Timer support 

4. Low-level I/O support 

5. Cache coherency 

If a processor implementation requires PALcode intervention to support any of those 
functions, then the PALcode must support those processor-specific functions in a 
system-independent manner. 

PALcode 
The PALcode is specific to a particular processor implementation and must hide the 
internal workings of the processor from the kernel. The PALcode for a particular 
processor may include per-processor functions, but they must be called only by the 
HAL. 

1.2 Calling Standard Register Usage 

Table 1-1: General Purpose Integer Registers 

Register Number Symbolic Name Volatility Description 

rO 
rl -
r9 -
rl5 
rl6 
r22 
r26 
r27 
r28 
r29 
r30 
r31 

r8 
rl4 

- r21 
- r25 

vO 
tO - t7 
sO - s5 
s6/fp 
aO - a5 
t8 - t i l 
ra 
t l 2 
at 
gp 
sp 
zero 

Volatile 
Volatile 
Nonvolatile 
Nonvolatile 
Volatile 
Volatile 
Volatile 
Volatile 
Volatile 
Nonvolatile 
Nonvolatile 
Constant 

Return value register 
Temporary registers 
Saved registers 
Saved register/frame pointer 
Argument registers 
Temporary registers 
Return address register 
Temporary register 
Assembler temporary register 
Global pointer 
Stack pointer 
RAZ / writes ignored 

Table 1-2: General Purpose Floating-Point Registers 

Register Number Volatility Description 

fl) 
fl 
£2 -
flO 
fl6 
f22 
Î31 

f9 
- fl5 
- f21 
- f30 

Volatile 
Volatile 
Nonvolatile 
Volatile 
Volatile 
Volatile 
Constant 

Return value register (real part) 
Return value register (imaginary part) 
Saved registers 
Temporary registers 
Argument registers 
Temporary registers 
RAZ / writes ignored 
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1.3 Code Flow Conventions 
The code flows are shown as an ordered sequence of instructions. The instructions in 
the sequence may be reordered so long as the results of the sequence of instructions 
are not altered. In particular, if an instruction^ is listed subsequent to an instruction 
i and i writes any data that is used by j , then i must be executed before j . 
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Chapter 2 

Processor, Process, and Thread Structures and 
Registers (II—C) 

This chapter describes structures and registers that support the processor, process, 
and thread environment. 

2.1 Processor Status 

The processor status register (PSR) defines the processor status. The PSR is shown 
in Figure 2-1 and described in Tables 2 -1 , 2-2, and 2-3. 

Figure 2-1 : Processor Status Register 
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Table 2-1 : Processor Status Register Fields 
Field Type Description 

IRQL RW Interrupt request level, in the range 0 - 7, as described in Table 2-2. Any 
interrupt disabled at a lower priority level is also disabled at a higher priority 
level. 

IE RW Interrupt enable: 0 = interrupts disabled 
1 = interrupts enabled 

A global interrupt enable to turn interrupts on and off without changing the 
IRQL. 

MODE RW Processor mode: 0 = kernel mode 
1 = user mode 

Describes the current processor privilege mode: user (unprivileged) or kernel 
(privileged). The processor privilege mode defines the instructions that can be 
executed and the memory protection that is used, as described in Table 2-3. 
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Table 2-2: Processor Status Register IRQL Field Summary 

IRQL Name Description 

0 

1 

2 

3 

4 

5 

6 

7 

PASSIVE.LEVEL 

APC.LEVEL 

DISPATCHJLEVEL 

DEVICE.LEVEL 

DEVICE_HIGH_LEVEL 

CLOCK.LEVEL 

IPIJLEVEL 

HIGH LEVEL 

All interrupts enabled. 
APC software interrupts disabled. 
Dispatch software interrupts disabled. 
Low-priority device hardware interrupts disabled. 
High-priority device hardware interrupts disabled. 
Clock hardware interrupts disabled. 
Interprocessor hardware interrupts disabled. 
All maskable interrupts disabled. 

Table 2-3: Processor Privilege Mode Map 

Operation Privileged Unprivileged 

Superpage access 
Page protection 

Privileged PALcode instructions 

Yes No 
Access to all Access to only those pages with 
pages the Owner bit = 1 
Yes No 

2.2 Internal Processor Register Summary 

The following internal processor registers are defined across all implementations. 
Implementation of these registers within the processor is implementation 
dependent. 

Table 2-4: Internal Processor Register Summary 

Name Initial Value Description 

ASN 0 

GENERAL_ENTRY 

IKSP 

INTERRUPT.ENTRY 

ISP 

ISP.FLAG 

KGP 

0 

0 

0 

0 

0 

0 

Address space number of owning process of current 
thread 
General exception class kernel handler address 
Initial kernel stack pointer 
Interrupt exception class kernel handler address 
Interrupt stack pointer 
On interrupt stack flag 
Kernel global pointer 
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Table 2-4 (Cont.): Internal Processor Register Summary 
Name Initial Value Description 

MCES 
MEM_MGMT_ENTRY 

PAL_BASE 
PANIC_ENTRY 
PCR 
PDR 
PSR 
RESTART_ADDRESS 
SIRR 
SYSCALL.ENTRY 
TEB 
THREAD 

t 
0 

t 
0 

t 
0 

t 
t 
0 
0 
0 
0 

Machine check error summary 

Memory management exception class kernel handler 
address 

PALcode image base address 

Panic exception class kernel handler address 

Processor control region base address 

Page directory base address 

Processor status register 

Restart execution address 

Software interrupt request register 

System service exception class kernel handler address 

Thread environment block base address 

Thread unique value (kernel thread address) 

tThe register has an architected initial value. See the register description in Table 2-5. 

2.3 Internal Processor Registers 

Table 2-5: Internal Processor Registers 

Name Description 

ASN 

GENERAL_ENTRY 

Address space number of owning process of current thread 
Bits <15:0> of the ASN register contain the address space number 
for the current process. Bits <31:16> are RAZ. 
The ASN is a process tag that may be used by the processor to 
qualify each virtual translation. When translations are qualified, 
it is not necessary for the processor to flush all virtual translations 
for previous processes when performing a context swap or process 
swap. The swpctx and swpprocess instructions provide the ASN. 

General exception class kernel handler address 
The GENERAL_ENTRY register contains the entry address (in 
32-bit superpage format) for the kernel exception handler for 
the General class of exceptions. The wrentry instruction writes 
GENERAL.ENTRY. 
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Table 2-5 (Cont.): Internal Processor Registers 
Name Description 

IKSP Initial kernel stack pointer 
The IKSP register contains the initial kernel stack address. IKSP 
points to the top of the kernel stack for the currently executing 
thread. The rdksp instruction reads IKSP and the swpksp 
instruction writes IKSP. IKSP is also written by swpctx and during 
system initialization by initpal. 

INTERRUPT_ENTRY Interrupt exception class kernel handler address 
The INTERRUPT_ENTRY register contains the entry address (in 
32-bit superpage format) of the kernel exception handler for the 
Interrupt class of exceptions. The wrentry instruction writes 
INTERRUPT.ENTRY. 

ISP Interrupt stack pointer 
The ISP register contains the interrupt stack pointer address (in 
32-bit superpage format). ISP points to the top of the interrupt 
stack. The initpal instruction establishes the ISP. 

ISP_FLAG On interrupt stack flag 
The ISP_FLAG register indicates, when nonzero, that the code is 
executing on the interrupt stack. 

KGP Kernel global pointer 
The KGP register contains the kernel global pointer, the gp value. 
The PALcode restores the kernel global pointer to the general-
purpose register gp whenever dispatching to a kernel exception 
handler. The initpal instruction writes KGP. 

MCES Machine check error summary 
The MCES register is used to report and control the current state 
of machine check handling. The MCES register contains multiple 
fields that are described in Section 4.3. The initial values for the 
MCES register fields DSC, DPC, and DMK are implementation 
specific, and all other fields set to 0. The recommended initial 
values are DMK = 0, DPC = 1, and DSC = 1. 

MEM_MGMT_ENTRY Memory management exception class 
The MEM_MGMT_ENTRY register contains the entry address (in 
32-bit superpage format) of the kernel exception handler for the 
Memory Management class of exceptions. The wrentry instruction 
writes MEM_MGMT_ENTRY. 

PAL_BASE PALcode image base address 
The PAL_BASE register contains the physical address of the base 
of the currently active PALcode image. Its initial value is the 
address of the PALcode entry point. PAL_BASE controls which 
PALcode image is currently active and is written during PALcode 
initialization. The PAL_BASE register is illustrated and described 
in Section 6.2. 
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Table 2-5 (Cont.): Internal Processor Registers 
Name Description 

PANIC JENTRY Panic exception class kernel handler address 
The PANICJENTRY register contains the entry address (in 32-
bit superpage format) of the kernel exception handler for the 
Panic class of exceptions. The wrentry instruction writes PANIC_ 
ENTRY. 
Processor control region base address 
The PCR register contains the base address (in 32-bit superpage 
format) of the processor control region page. The processor control 
region is a page of per-processor data. The PCR is passed as an 
initialization parameter and the rdpcr instruction reads it. 
Page directory base address 
The PDR register contains the base physical address of the page 
directory page. The page directory page contains all of the first-
level page table entries (the page directory entries or PDEs). As 
such, the page directory page defines an address space for a process. 
The swpctx and swpprocess instructions write the PDR when the 
address space is swapped. The initpal instruction also writes the 
PDR. 
Processor status register 
The PSR controls the privilege state and interrupt priority of the 
processor. The PSR register contains multiple fields that are 
described in Section 2.1. The initial values for the fields in the 
PSR are IRQL=7, IE=1, and MODE=0 (kernel). 

RESTART_ADDRESS Restart execution address 
The RESTART_ADDRESS register contains the address where 
the processor resumes execution when the PALcode exits. For 
example, upon entry to each of the PALcode instructions, the 
RESTART_ADDRESS register contains the virtual address + 4 of 
that instruction. The initial value of the RESTART_ADDRESS 
register is the kernel initialization continuation address, passed 
as a parameter to the initialization routine. 

SIRR Software interrupt request register 
The SIRR register indicates requested software interrupts. SIRR 
contains multiple fields that are defined in Section 4.2.7. 

SYSCALL_ENTRY System service exception class kernel handler address 
The SYSCALL_ENTRY register contains the entry address (in 
32-bit superpage format) of the kernel exception handler for the 
System Service class of exceptions. The wrentry instruction writes 
SYSCALL.ENTRY. 
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Table 2-5 (Cont.): Internal Processor Registers 
Name Description 

TEB Thread environment block base address 
The TEB register contains the address of the user thread 
environment block. Each swpctx instruction writes the TEB; the 
rdteb instruction reads it. 

THREAD Thread unique value (kernel thread address) 
The THREAD register contains the address of the currently 
executing kernel thread structure. Each swpctx instruction writes 
the THREAD register; the rdthread instruction reads it. 

2.4 Processor Data Areas 
The operating system per-processor data structure is the processor control region. 
The processor control region is a one-page (superpage) data structure that stores 
information that may be specific to a particular architecture. This information is 
data that is shared between the PALcode, the HAL, and/or the architecture-specific 
portions of the kernel. See Section 3.1 for information on the superpage. 

2.4.1 Processor Control Region 
The processor control region contains a number of data structures that are of 
importance to the PALcode, including: 

• A 3K-byte region that is reserved for the PALcode and is the only per-processor 
data region available to the PALcode. 

• The interrupt level table (ILT), which maps the interrupt enable masks for each 
possible interrupt request level. The PALcode may continually read these masks 
or may read them once and cache them inside the processor. 

• The interrupt dispatch table (IDT), which contains the address of an interrupt 
handler for each possible interrupt vector. 

• The interrupt mask table (IMT), which maps each possible pattern of interrupt 
requests to the highest priority interrupt vector and the corresponding 
synchronization level. 

• The panic stack pointer. 

• The restart block pointer. 

• The firmware restart address. 

The PALcode is responsible for initializing the PALcode base address field and 
several PALcode revision fields within the processor control region. 

The rdpcr instruction returns the base address of the processor control region. 
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2.4.2 PALcode Version Control 
The PALcode is responsible for writing version information in the processor 
control region. The PalMajorVersion, PalMinorVersion, and PalSequenceVersion are 
provided for maintenance and debugging. The PALcode writes these fields, but the 
values are implementation specific. 

The kernel may use the PalMajorSpecification and PalMinorSpecification fields for 
check-pointing with the PALcode. 

The PALcode writes the specification fields with version numbers that correspond 
to the version of the specification to which the PALcode image complies. Minor 
revisions within the same major revision are backwards compatible. The kernel may 
read the PalMajorSpecification and determine if it is compatible with the version of 
the PALcode. If the kernel is not compatible (if the PalMajorSpecification is greater 
than the kernel's expected PALcode major specification), the kernel runs down in a 
controlled manner. 

The version agreement between the PALcode and the kernel is a private agreement 
between these two system components. No other system component, including the 
HAL and device drivers, may depend on any values from those fields. 

2.5 Caches and Cache Coherency 

Implementations may include caches that are not kept coherent with main memory. 
The imb instruction provides an architected common way to make the instruction 
execution stream coherent with main memory. The imb instruction guarantees 
that subsequently executed instructions are fetched coherently with respect to main 
memory on only the current processor. 

User-mode code that directly modifies the instruction stream, either through writes 
or by DMA from an I/O device, must call the appropriate Windows NT API to ensure 
I-cache coherency. User-mode code that uses standard APIs to modify the instruction 
stream works as expected and is handled by the APIs themselves. 

2.6 Stacks 
There are five stacks: 

• Interrupt Stack 

A processor-wide stack upon which all hardware interrupts are executed. An 
interrupt stack is allocated for each processor and must remain valid for the life 
of the system. The initpal instruction establishes the interrupt stack pointer 
(ISP). The ISP points to the top of the interrupt stack. On return from a 
hardware interrupt, the rfe instruction causes an exit from the interrupt stack 
and execution resumes on the appropriate previous stack. 

• Kernel stack 
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Each thread is allocated its own pages for a kernel stack. The kernel stack is 
the two pages of virtual address space below the IKSP for a thread, where the 
IKSP points to the byte beyond the top of the two pages. The initial kernel 
stack pointer (IKSP) points to the top of the currently active kernel stack for the 
current thread. Two PALcode instructions provide access to the IKSP: rdksp to 
read the IKSP and swpksp to atomically read the current IKSP and write a new 
one. 

Must remain valid for the currently executing thread. Software must guarantee 
that the kernel stack pointer remains 16-byte aligned. 

• User Stack 

A per-thread stack on which all user-mode components are executed. 

• Deferred procedure call (DPC) stack 

A processor-wide stack upon which all deferred procedure calls are executed. 
Must remain valid for the lifetime of the system. 

• Panic stack 

Allows the operating system to remain coherent through a system crash. Must 
remain valid for the lifetime of the system. 

The interrupt, kernel, DPC, and panic stacks execute in kernel mode; the user stack 
executes in user mode. 

2.7 Processes and Threads 

Windows NT AXP is designed as a multithread operating system with multiple 
threads executing within the same process. Each thread has its own processor 
context, user-mode stack, and kernel stack. Memory and the address space are 
shared across all threads in the same process. 

The PALcode "knows" nothing about the structure of threads or processes. The 
PALcode implements the means to swap from one thread context to another and to 
allow a thread to attach to the address space of another process. 

The state to accomplish these operations is passed entirely in registers. The PALcode 
maintains the THREAD and TEB internal processor registers. They allow threads 
to query about the state of the currently executing thread. 

The THREAD register, a unique value identifying the current thread, is written 
when the thread context is swapped. The privileged instruction rdthread reads the 
THREAD register. 

The TEB register, a user-accessible pointer to the thread environment block for the 
new thread, is written when thread context is swapped. The unprivileged rdteb 
instruction reads the TEB register. Again, the PALcode knows nothing about the 
structure of the thread environment block; the PALcode simply maintains the TEB 
register value when context is switched. 
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2.7.1 Swapping Thread Context to Another Thread 
The swpctx instruction swaps the context from one thread to another thread. The 
following parameters are passed to swpctx: 

Initial kernel stack pointer 
Swpctx must switch to the new kernel stack for the new thread. The initial kernel 
stack pointer is written to the internal processor register IKSP. 

THREAD internal processor register (unique thread value) 
TEB internal processor register (thread environment block pointer) 
These registers are maintained by the kernel and only written during a context 
switch. Implicitly, the values in these registers for a particular thread cannot change 
while that thread is executing. 

PFN of the directory table base page for the new process 
ASN for the new process 
ASN_wrap_indicator 
The PFN and ASN allow switching to a new process address space. The PFN of the 
directory table base page is an overloaded parameter; it is used to indicate if the 
process needs to be swapped. 

• The PFN is set to a negative value in the kernel if the previous thread and the 
new thread are in the same process (address space). There is no need to swap 
the address space if the two threads are in the same process. The values for the 
ASN parameters are then UNPREDICTABLE. 

• If the two threads are in different processes, the PFN is greater than or equal 
to zero and is used to write the PDR internal processor register. When the PFN 
is valid (greater than zero), the ASN must also be valid and is used to write the 
ASN internal processor register. 

Swapping to a new process address space involves establishing a new directory 
pointer to the page table base page for the new process and possibly performing 
translation buffer operations. A set ASN_wrap_indicator signals that the PALcode 
must perform an invalidation operation for each cached translation in the translation 
buffers and virtual caches that does not have the address space match (ASM) bit set. 

2.7.2 Swapping Thread Context to Another Process 
The swpprocess (swap process) instruction allows a thread to attach to another 
process (in another address space). Swpprocess requires the PFN of the new 
directory table base page and the new ASN as input. Swpprocess performs the 
same address space swapping operation as does swpctx when the PFN of the page 
directory is valid. 
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Chapter 3 

Memory Management (II—C) 

3.1 Virtual Address Space 

Windows NT AXP is a 32-bit implementation with a 32-bit virtual address space, as 
represented in Table 3 -1 . 

Table 3-1 : Virtual Address Map 

Address Range 16 (32 bits) 

00000000-7FFFFFFF 
80000000-BFFFFFFF 

C0000000-C1FFFFFF 
C2000000-FFFFFFFF 

Permission 

User and Kernel 
Kernel 

Kernel 
Kernel 

Description 

General user address space 
Nonmapped kernel space (32-bit 
superpage) 
Mapped, page table space 
Mapped, general kernel space 

The address map takes advantage of the 32-bit superpage feature of the Alpha 
AXP architecture. If the implementation of the 32-bit superpage is not done in 
hardware, it must be implemented in software (PALcode). The entire 1-GB address 
space mapped by the 32-bit superpage must be valid at all times for both instruction 
fetch and data access. 

Implementation Note (Hardware): 

It is strongly recommended that implementations include a hardware mapping 
of the 32-bit superpage for both instruction and data stream. 

3.2 I/O Space Address Extension 
The Windows NT AXP kernel implementation takes advantage of the architecture's 
64-bit address space to provide a nonmapped extended address for I/O space. The 
extended address space uses the 43-bit superpage that is available in the Alpha 
AXP architecture. The superpage allows kernel mode access to an address space 
with a predetermined translation. Therefore, those accesses never require page 
table mapping or cause a translation buffer miss. 

The extended superpage provides nonmapped access to a 41-bit physical address 
space. The extended address space is important because the bus mapping scheme 
that has been designed for industry-standard buses uses a shifted physical address, 
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where the lower address bits are used to determine the byte enables. Therefore, the 
effective page size is smaller. 

The nonmapped superpage I/O accesses provide Alpha AXP systems with a 
performance advantage because there is no need to write as many page table entries 
and to fill as many translation buffer misses as would be necessary without it. The 
extended address space is desirable because the likely physical address space is 34 
bits or more and the 32-bit superpage can only allow accesses to 30 bits of physical 
address space. The extended address space is the only exception to the 32-bit virtual 
address map shown in Table 3-1 . The extended address space is intended for I/O 
access only and can only be used in kernel mode. The address mapping for the 
extended address space is shown in Table 3-2. 

Table 3-2: I/O Address Extension Address Map 
Address Range 16 (64 bits) Permission Description 

FFFFFC0000000000- Kernel Nonmapped kernel mode I/O extension 
FFFFFDFFFFFFFFFF 

3.3 Canonical Virtual Address Format 
All virtual addresses, with the exception of the large superpage addresses, must be 
in canonical longword form. The PALcode must check the faulting virtual addresses 
in the first level miss flows and raise an exception if the addresses are not canonical 
longwords. The check is required because the processor may generate 64-bit 
addresses that are not canonical longwords, but the common memory management 
code only knows about 32-bit addresses and so cannot necessarily identify or signal 
the exception to the offending code. The PALcode cannot simply resolve the miss 
by using only the lower 32 bits. When the faulting instruction is re-executed, it 
attempts again to access the noncanonical address. If a virtual address fails the 
canonical form test, the PALcode raises a general exception (see Section 4.1.7.) 

3.4 Page Table Entries 

Page table entries (PTEs) provide the translation from virtual addresses to their 
physical addresses. The PTE includes the physical address in the form of a page 
frame number (PFN), protection information, and performance hints. The virtual 
address is related to a page table entry based solely upon the position of the PTE 
within a set of page tables. 

Two methods may be used to traverse the page tables to retrieve the corresponding 
PTE for a given virtual address. The first is to view the page tables as a single-
level virtually contiguous table. The second is to view the page tables as a two-level 
physical table. 
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3.4.1 Single-Level Virtual Traversal of the Page Tables 
For a single-level virtual traversal, a virtual address must be viewed as shown in 
Figure 3-1 , where 2**ΛΓ is the implementation page size: 

Figure 3-1: Virtual Address (Virtual View) 

Virtual Page Number (VPN) Byte offset within page 

To access the corresponding PTE for a VA (virtual address) using the single-level 
virtual method, use the following algorithm. 

! In the algorithm: 
! VIRTUAL_PTE_BASE = COOOOOOO16 
! PAGE_SHIFT = N 
! Clear upper bits in case va is sign-extended: 

va 4- BYTE_ZAP( va, F0 ) 
! Get virtual page number: 

vpn <- RIGHT_SHIFT( va, PAGE_SHIFT ) 
! 4 bytes per pte, offset + base: 

pte_va <- VIRTUAL_PTE_BASE + ( vpn * 4) 
! Do a virtual load of pte: 

pte <— (pte_va) 

3.4.2 Two-Level Physical Traversal of the Page Tables 
The two-level physical method can be used to find the corresponding PTE for a 
virtual address when the virtual access method cannot be used (for example, if the 
PTE address is not valid). The key to physically traversing the page tables is the 
PDR internal processor register. The PDR is maintained on a per-process basis 
whenever process context is swapped. The PDR is the physical address of the page 
directory page that forms the first level of the page tables. The first level of the 
page tables easily fits within a single page. Each entry in the page directory page 
is called a PDE (page directory entry). One PDE maps one page of PTEs. 

A virtual address must be viewed as shown in Figure 3-2 for a two-level, physical 
traversal of the page tables. In Figure 3-2, 2**N is the implementation page size, 
and 2**P is (PTEs per page = page size / 4). 

Figure 3-2: Virtual Address (Physical View) 

Page Directory 
Index (PDI) 

Page Table 
Index (PTI) 

Byte offset 
within page 
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The following algorithm uses the two-level physical traversal method to access the 
corresponding PTE for a VA (virtual address). 

! In the algorithm: 
! PDE_SHIFT = N + P 
! PAGE_SHIFT = N 

! Clear upper bits in case va is sign-extended: 
va <- BYTE_ZAP( va, F0 ) 

! Get pde number : 
pde_index <- RIGHT_SHIFT( va, PDE_SHIFT ) 

! 4 bytes per pde, index * 4 byte offset: 
pde_offset <— pde_index * 4 

! Offset + base: 
pde_pa <— PDR + pde_offset 

! Do a physical load of the page directory entry: 
pde <— (pde_pa) 

! Get PFN of pte page from pde: 
pte_pfn «— pde<PFN> 

! Get physical address of pte page: 
pte_page <- LEFT_SÜIFT( pte_pfn, PAGE_SHIFT) 

! Extract page table index from virtual address: 
pte_index «— va<pti> 

! Calculate offset, 4 bytes per pte: 
pte_offset <— pte_index * 4 

! Address base + offset: 
pte_pa <— pte_page + pte_offset 

! Do a physical load to read the pte: 
pte «— (pte_pa) 

Page directory entries are themselves page table entries and so they have the same 
format. There are some implications for DTB implementation because the PDEs 
establish a recursive mapping for addresses within the PTE address space. The 
implications and a description of the recursive mapping are described in Section 3.6. 

3-4 Windows NT AXP Software (II—C) 



3.4.3 Page Table Entry Summary 
The format for a PTE is shown in Figure 3-3 and described in Table 3-3. 

Figure 3-3: Page Table Entry 

31 9 8 7 6 5 4 3 2 1 0 

PFN 
S 
F 
W 

GH G R D O V 

Table 3-3: Page Table Entry Fields 
Field Description 

PFN Page frame number 
SFW Reserved for software (operating system) 
GH Granularity hints 

Optional hint that provides for mapping translations larger than the standard 
implementation page size. These large pages must be both virtually and physically 
aligned. Defines the translation in terms of a multiple of the page size, where the 
multiplier equals 8**N, where N is the granularity hint value in the range 0-3. 

G Global translation hint (address space match) 
Optional hint that the indicated translation is global for all processes. 
Reserved R 

D 

O 

Dirty: 0 = page is not dirty 
1 = page is dirty 

Implemented as the inverse of fault on write (FOW). Serves double duty by causing 
faults for the first write to a page. Serves as a write-protect bit and as a marker that 
allows the operating system to track dirty pages. 
Owner: 0 = kernel access only 

1 = user access permitted 
Indicates whether user-mode is allowed across this page, either for instruction fetch 
or data access. Kernel mode code has implied access to all pages that have a valid 
translation. 
Valid: 0 = translation not valid 

1 = valid translation 

3.5 Translation Buffer Management 
As shown in Table 3-4, the PALcode provides the tbis, tbisasn, dtbis, and tbia 
instructions to manage the cached virtual translations maintained in the translation 
buffers and virtual caches. 
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Table 3-4: Translation Buffer Management Instructions 

Instruction Operation 

tbis Invalidates a single translation for a specific virtual address, passed as a 
parameter. Tbis invalidates the translation for both instruction and data stream 
access. 

tbisasn Invalidates a translation for a single virtual address for a specified address space 
number (ASN). The address space number may or may not be for the currently 
executing thread. Tbisasn invalidates the translation for both instruction and 
data stream access. 

dtbis Invalidates a single data stream translation for a specified address. It is 
designed for those cases when the operating system can determine that the 
translation is not used in the instruction stream. Implementations may 
advantageously use dtbis to avoid needing to invalidate instruction stream 
translations in both, potentially, an instruction TB and a virtual I-cache. 

tbia Invalidates all page table translations for both instruction and data stream 
access. The translations invalidated are limited to "page table translations" 
because it is possible that an implementation has used fixed TB entries to 
implement one or more of the required superpages. These fixed translations 
are considered "hard-wired" by the operating system and must be valid at all 
times. 

On processors that implement physical, noncoherent instruction caches, instructions 
that invalidate I-stream translations must also invalidate instruction cache blocks 
from the physical pages that correspond to the invalidated virtual translations. 

3.6 Implications of Recursive TB Mapping 

The recursive virtual mapping has an implication for data translation buffer 
implementations: it is possible for two identical translations to be written in the DTB 
during the same miss handling sequence. If the DTB cannot correctly operate with 
two identical translations, the PALcode must include additional checks to prevent 
the condition from occurring. 

The page tables can be viewed either as a virtual contiguous single-level table or 
as a two-level table that must be traversed physically. When viewed as a two-level 
table, the first level is a single page called the page directory page. Each page 
directory page entry, called a PDE, provides the first-level translation so that the 
TB-fill code can find the page table page that contains the PTE with the translation 
for the faulted virtual address. All page table pages are mapped by a PDE in the 
page directory page. 

The page tables are recursive. The page directory page is a standard page table page 
and it is virtually mapped in the single-level virtual page table. Therefore, there 
exists one PDE that maps the page directory page. The PDE that maps the page 
directory page in a two-level lookup is also the PTE that maps the page directory 
page for the single-level virtual mapping. This special PDE is called the root PTE 
or RPTE. 
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Assume that the processor implementation has two data stream TB miss flows — 
one for the misses taken in native mode and one for the misses taken in the PALcode 
environment. For the case when a native-mode virtual access is made to the page 
directory page, PALcode takes the following flows: 

Native Miss Flow PALcode Environment Miss Flow 

1. {get va for PTE that maps 
the faulted va: VA} 

2. {get the PTE using its va) 
ldl rx, 0(ry) 
where ry <-va of PTE 

3. { ldl rx, 0(ry) from 
PALcode environment faulted } 

4. { resolve this fault by making the va 
of the missed PTE valid } 

5. { translation for RPTE is written 
into the DTB } 

6. {re-execute the load that failed 
since the va of the PTE is now valid) 

7. { load completes, rx <-RPTE } 
8. { write the translation for the 

faulting va, VA, into the DTB ) 
9. { RPTE is now in the DTB twice } 
10. { Re-execute the original native-mode 

instruction that faulted when 
accessing VA } 

Since there is only one PTE, RPTE, that exhibits this behavior, the PALcode can 
check the faulting PTE address in the second-level fill routine to special case for 
RPTE. It is preferable not to slow down even the second-level fill flow. However, this 
is a processor implementation decision. 
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Chapter 4 

Exceptions, Interrupts, and Machine Checks (ll-C) 

At certain times during the operation of a system, events within the system require 
the execution of software outside the explicit flow of control. When such an 
exceptional event occurs, an Alpha AXP processor forces a change in control flow 
from that indicated by the current instruction stream. The notification process for 
such events is an exception, an interrupt, or a machine check. 

4.1 Exceptions 

4.1.1 Exception Dispatch 
When the processor encounters an exception, it traps to PALcode that provides 
preliminary exception dispatch for the operating system. Some exceptions, such 
as TB miss, may be handled entirely by the PALcode without the intervention of the 
operating system. 

The PALcode provides a simple and efficient method of dispatching to the operating 
system for those exceptions that require operating system action. In general, the 
following operations characterize exception dispatch: 

1. Switch to kernel mode (if in user mode). 

2. Allocate a trap frame on the kernel stack. 

3. Save the necessary processor state in the trap frame. 

4. Prepare arguments to the kernel exception handler using the standard argument 
registers where possible. 

5. Set the processor state for executing the kernel (establish the stack pointer so 
it points to the kernel stack, establish the global pointer to point to the kernel 
global area, and mark that not on the interrupt stack). 

6. Restart execution at the address of the kernel exception handler registered for 
the class of exception that was encountered. 

4.1.2 Exception Classes 
The PALcode classifies each exception into one of the following catagories: 

• Memory management exceptions 

Memory management exceptions, described in Section 4.1.5 are raised for: 

— Translation not valid faults: accesses to addresses that do not have a valid 
translation for the currently executing context 
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— Access violations: accesses to addresses for which the currently executing 
context does not have permission for the access 

• System service call exceptions 

Although not really exceptions, system service calls are handled as exceptions 
to allow unprivileged code to request and receive privileged services. System 
services may be requested from both unprivileged and privileged modes (user and 
kernel mode respectively). System service calls are described in Section 4.1.6. 

• General exceptions 

The general exception class, described in Section 4.1.7, is the catchall category 
for all of the other exceptions that may be raised by unprivileged code: 

— Arithmetic exceptions 

— Unaligned memory access 

— Illegal instruction execution 

— Invalid (non-canonical virtual) address exceptions 

— Software exceptions 

— Breakpoints 

— Subsetted instruction execution 

• Panic exceptions 

The panic exception class, described in Section 4.1.8, is reserved for conditions 
from which execution cannot reliably be continued. The following general cases 
of panic exceptions are anticipated: 

— Invalid kernel stack (including overflow and underflow) 

— Unexpected exceptions from PALcode 

4.1.3 Returning from Exceptions 
The rfe and retsys instructions are provided for returning from exceptions. 

The rfe (return from exception or interrupt) instruction allows the operating system 
to return from an exception. Rfe may also be used to transition from kernel mode 
to user-mode startup code. 

The rfe instruction reverses the effect of an exception by restoring the original 
processor state from the trap frame on the kernel stack. In addition, rfe accepts a 
parameter that allows it to set software interrupt requests for the execution context 
that is about to be reestablished. 

Two exception classes do not use rfe to return to the previously executing context: 
system service call and panic exceptions. The retsys instruction is used for returning 
from system service call exceptions because a system service call has different 
semantics with regard to the saved processor state than the other exceptions. 
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Panic exceptions do not return because they precipitate a controlled crash of the 
operating system. 

4.1.4 Trap Frames 
Trap frames are allocated on the kernel stack for all classes of exceptions in PALcode. 
The PALcode also partially writes the trap frame; the fields written are based upon 
the exception being handled. The kernel stack must be guaranteed to remain aligned 
on a 16-byte boundary, as specified in the Windows NT AXP calling standard. The 
trap frame itself is guaranteed in size to be a multiple of 32 bytes. The PALcode 
may over-align the kernel stack pointer when allocating the trap frame in order 
to improve memory throughput, with consideration for the extra memory being 
consumed. The trap frame is structured so that writes aggregate. The register 
values stored in the trap frame are 64-bit values. This is required as the register 
set is 64 bits and may contain 64-bit values (as opposed to canonical longwords). 

Trap frame definitions are shown in Table 4 - 1 . 

Table 4-1 : Trap Frame Definitions 

Symbolic Name Size Description 

TrlntSp 
TrPsr 
TrFir 
TrPreviousKsp 
TrlntAO 
TrlntAl 
TrIntA2 
TrIntA3 
TrlntFp 
TrlntGp 
TrlntRa 

Quadword 
Longword 
Quadword 
Longword 
Quadword 
Quadword 
Quadword 
Quadword 
Quadword 
Quadword 
Quadword 

Stack pointer register at point of exception 
Processor status register at point of exception 
Exception program counter 
Initial ksp if first dispatch on ISP 
Register aO at point of exception 
Register al at point of exception 
Register a2 at point of exception 
Register a3 at point of exception 
Frame pointer register at point of exception 
Global pointer register at point of exception 
Return address register at point of exception 

4.1.5 Memory Management Exceptions 
PALcode recognizes two classes of memory management exceptions: translation not 
valid faults and access violations. Translation not valid faults are detected when a 
page table entry for a virtual address has the valid bit cleared. The invalid page 
table entry can be either a first- or second-level table entry. Access violations are 
detected by the hardware when the processor attempts to access a virtual address 
and that type of access is not permitted according to the protection mask in the page 
table entry that maps the translation for the virtual address. 

The PALcode dispatches to the kernel in the same manner for each of these two 
classes of exceptions, according to the following description: 
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p r e v i o u s P S R *- PSR 
i f ( PSR<Mode> EQ U s e r ) t h e n 

PSR<Mode> ♦— k e r n e l 
t p <— (IKSP - T r a p F r a m e L e n g t h ) ! E s t a b l i s h t r a p p o i n t e r 

e l s e 
t p <— ( s p - T r a p F r a m e L e n g t h ) ! E s t a b l i s h t r a p p o i n t e r 

e n d i f 
T r l n t S p ( t p ) <— s p 
T r l n t F p ( t p ) <— f p 
T r l n t R a ( t p ) <— r a 
T r l n t G p ( t p ) <— g p 
T r l n t A O ( t p ) <- aO 
T r l n t A l ( t p ) <- a l 
T r I n t A 2 ( t p ) <- a 2 
T r I n t A 3 ( t p ) <- a 3 
T r F i r ( t p ) +- E x c e p t i o n P C 
T r P s r ( t p ) ♦- p r e v i o u s P S R 
s p <— t p 
T r P r e v i o u s K S P ( t p ) -«—0 ; No s w i t c h t o i n t e r r u p t s t a c k 
RESTART_ADDRESS <- MEM_MGMT_ENTRY 
fp «- s p 
g p <- KGP 
aO +- 1 i f s t o r e ; 0 i f l o a d 
a l <— f a u l t i n g v i r t u a l a d d r e s s 
a2 <— p r e v i o u s P S R < M o d e > 
a 3 ♦— p r e v i o u s P S R 

All other general-purpose registers must be preserved across the memory 
management exception dispatch. 

If the kernel can resolve the fault, it uses the rfe instruction to restart the faulting 
thread, thus reissuing the instruction that faulted. Otherwise, the kernel raises the 
appropriate exception. 

4.1.6 System Service Calls 
System service calls are initiated from both user and kernel modes via the callsys 
instruction. The privileged retsys instruction returns from a system service back to 
the caller. The callsys and retsys instructions are described in Sections 5.2.3 and 
5.1.18, respectively. 

4.1.7 General Exceptions 
General exceptions are those exceptions, other than memory management exceptions 
and system service call exceptions, that can be raised by hardware or software. All 
general exceptions are handled in approximately the same manner in the PALcode 
and in exactly the same manner in the lowest level kernel exception dispatch. 

The following exceptions are grouped together as general exceptions: 

1. Arithmetic exceptions 

2. Unaligned access exceptions 

3. Illegal instruction exceptions 

4. Invalid (non-canonical virtual) address exceptions 
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5. Software exceptions 

6. Breakpoints 

7. Subsetted IEEE instruction exceptions 

A general exception builds a trap frame on the kernel stack and populates the 
exception record within the trap frame and then dispatches to the kernel general 
exception entry point. The common dispatch for general exceptions is shown in 
Section 4.1.7.8. 

The differences between each type of exception are the population of the exception 
record and the meaning of the faulting instruction field within the trap frame. The 
values for each specific exception are detailed in the sections that follow. 

4.1.7.1 Arithmetic Exceptions 

Arithmetic exceptions for the Alpha AXP architecture are imprecise; the processor 
might not signal an exception until some arbitrary number of instructions after the 
instruction that caused the exception. Special handling is required in the kernel 
and compiler to deterministically raise the appropriate exceptions to user programs. 
Important to this discussion is the definition of the ExceptionPC that is written to 
the TrFir offset of the trap frame. The exception PC written into the trap frame is 
the virtual address of the first instruction after the faulting instruction that has not 
yet executed. 

Arithmetic traps write the following information into the exception record of the trap 
frame, where er is the exception record pointer: 

ErExceptionCode(er) <- STATUS_ALPHA_ARITHMETIC 
ErExceptionlnformation<0>(er) +- FLOATING_REGISTER_MASK 
ErExceptionlnformation<l>(er) 4- INTEGER_REGISTER_MASK 
ErExceptionInformation<2>(er) «- EXCEPTION_SUMMARY 
ErNumberParameters(er) <— 3 
ErExceptionFlags(er) «— 0 
ErExceptionRecord(er) <— 0 

The floating register masks indicate which floating-point registers were destinations 
of instructions that caused an exception. A one in the corresponding position for a 
register indicates that the register was the destination of an instruction that faulted. 
A zero indicates that the register was not the destination of an instruction that 
faulted. The definition of the correspondence between the floating registers and the 
bits in the mask is shown in Figure 4 - 1 . 

Figure 4-1 : Floating-Point Register Mask (FLOAT_REGISTER_MASK) 
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The integer register masks indicate which integer registers were destinations of 
instructions that caused an exception. A one in the corresponding position for a 
register indicates that the register was the destination of an instruction that faulted. 
A zero indicates that the register was not the destination of an instruction that 
faulted. The definition of the correspondence between the integer registers and the 
bits in the mask is shown in Figure 4-2. 

Figure 4-2: Integer Register Mask (INTEGER_REGISTER_MASK) 
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The format of the exception summary register (EXCEPTION JSUMMARY) is shown 
in Figure 4-3 and the fields are defined in Table 4-2. 

Figure 4-3: Exception Summary Register (EXCEPTION_SUMMARY) 
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Table 4-2: Exception Summary Register Fields 

Field Name Description 

RAZ 
IOV Integer overflow 

INE Inexact result 

UNF Underflow 

OVF Overflow 

DZE Division by zero 

Read as zero. 
Result of integer operation overflowed the destina-
tion's precision. 
Result of floating operation caused loss of precision. 
Result of floating operation underflowed the destina-
tion exponent. 
Result of floating operation overflowed the destina-
tion exponent. 
Floating-point divide attempt with a divisor of zero. 
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Table 4-2 (Cont.): Exception Summary Register Fields 

Field Name Description 

INV Invalid operation One or more of the operands of a floating-point 
operation was an illegal value. 

SWC Software completion The software completion option /S was selected for 
all of the faulting instructions. 

4.1.7.2 Unaligned Access Exceptions 

Unaligned access exceptions are reported to and handled by the kernel and are 
precise. Therefore, the address written to the faulting instruction offset of the 
trap frame is the virtual address of the load or store instruction that accessed the 
unaligned address. 

The PALcode writes the following information into the exception record of the trap 
frame for an unaligned access exception, where er is the exception record pointer. 

ErExceptionCode(er) <- STATUS_DATATYPE_MISALIGNMENT 
ErExceptionInformation<0>(er) <— Faulting opcode 
ErExceptionlnformation<l>(er) <— Destination register 
ErExceptionlnformation<2>(er) «— Unaligned virtual address 
ErNumberParameters(er) <— 3 
ErExceptionFlags(er) <— 0 
ErExceptionRecord(er) <— 0 

4.1.7.3 Illegal Instruction Exceptions 

PALcode raises the following types of illegal operations as illegal instruction 
exceptions: 

1. Attempt to execute an instruction with an opcode reserved to Digital. 

2. Attempt to execute an instruction with an unimplemented PALcode function code. 

3. Attempt to execute a privileged PALcode instruction from user (unprivileged) 
mode. 

4. Attempt to execute an instruction with an illegal operand. 

5. Attempt to execute an unimplemented/subsetted instruction. 

Note: 

Instructions with illegal operands cause illegal instruction exceptions to be raised 
only if the processor raises an exception for these operations. 

Illegal instruction exceptions are precise; the faulting address written into the trap 
frame is the virtual address of the instruction that caused the exception. 

The PALcode writes the following information into the exception record of the trap 
frame for an illegal instruction exception, where er is the exception record pointer. 
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ErExcep t ionCode (e r ) <- STATUS_ILLEGAL_INSTRUCTION 
ErNumberParamete r s (e r ) <— 0 
E r E x c e p t i o n F l a g s ( e r ) <— 0 
E r E x c e p t i o n R e c o r d ( e r ) <— 0 

4.1.7.4 Invalid (Non-Canonical Virtual) Address Exceptions 

The PALcode raises a general exception if the PALcode detects an invalid faulting 
virtual address, that is, a faulting virtual address that is not a canonical longword. 
The implementation must test for the non-canonical format for both data stream 
and instruction stream translation buffer fills. 

For data stream faults, the faulting address written to the trap frame is the virtual 
address of the instruction that caused the reference to the invalid address. 

Instruction stream invalid addresses present a more difficult problem because the 
exception address itself is invalid and cannot be properly interpreted by a 32-bit 
operating system. In the case of instruction stream virtual addresses, the ra (return 
address) register minus 4 (ra-4) is written to the faulting address field of the trap 
frame. The ra register is used because it probably yields a sane address within the 
correct program that faulted. Also, the (ra-4) is the most probable faulting address, 
as the most likely instruction to have caused the fault is: jsr ra, (rx). 

The PALcode writes the following information into the exception record of the trap 
frame for a non-canonical virtual address fault, where er is the exception record 
pointer. 

ErExceptionCode(er) <- STATUS_INVALID_ADDRESS 
ErExceptionInformation<0> (er) <— l if store; 0 otherwise 
ErExceptionInformation<l>(er) <— invalid va<63..32> 
ErExceptionInformation<2>(er) <— invalid va<31..0> 
ErNumberParameters(er) <— 3 
ErExceptionFlags(er) <— 0 
ErExceptionRecord(er) <— 0 

4.1.7.5 Software Exceptions 

Software may raise exceptions via the unprivileged gentrap (generate trap) 
instruction. The gentrap instruction is used to raise exceptions recognized (possibly) 
in user-mode software for conditions such as divide by zero. (The Alpha AXP 
architecture does not provide an integer divide instruction; division is accomplished 
by specialized divide routines.) 

The gentrap instruction takes a single parameter that is preserved but not 
interpreted by the PALcode. The gentrap parameter is written into the exception 
record where it is interpreted by the kernel exception handler. Gentrap uses the 
STATUS_ALPHA_GENTRAP status as an exception code. The kernel exception 
dispatcher interprets the gentrap parameter to determine the appropriate Windows 
NT AXP status to raise to the currently executing thread. 

The faulting address for a gentrap exception is the virtual address of the executed 
gentrap instruction. 
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The PALcode writes the following information into the exception record for a gentrap 
instruction, where er is the exception record pointer: 

ErExceptionCode(er) «- STATUS_ALPHA_GENTRAP 
ErExceptionInformation<0>(er) <— gentrap parameter 

(a0<31..0> upon 
execution of gentrap) 

ErExceptionInformation<l>(er) «— gentrap parameter 
(a0<63..32> upon 

execution of gentrap) 
ErNumberParameters(er) <— 2 
ErExceptionFlags(er) <— 0 
ErExceptionRecord(er) <— 0 

4.1.7.6 Breakpoints and Debugger Support 

There are several breakpoint instructions and each raises a general exception. 
Several of these breakpoints are implemented to support the kernel debugger and 
are essentially special subroutine calls. The exact semantics of these calls are not 
important to the PALcode; all breakpoints are handled in the same manner and are 
distinguished only by the breakpoint type that is written into the exception record. 

All breakpoints are implemented as unprivileged PALcode instructions, which allows 
the kernel to decide whether the breakpoint can be taken in the current mode. 

Table 4-3 lists the breakpoint mnemonics and their corresponding breakpoint types: 

Table 4-3: Breakpoint Types 

Mnemonic Type Description 

bpt USER_BREAKPOINT User breakpoint 
kbpt KERNEL.BREAKPOINT Kernel breakpoint 
callkd Passed in vO Call kernel debugger 

The faulting instruction address for all breakpoints is the virtual address of the 
breakpoint instruction. 

PALcode completes the exception record for breakpoints as follows, where er is the 
exception record pointer: 

ErExceptionCode(er) ♦- STATUS_BREAKPOINT 
ErExceptionlnformation<0>(er) <— breakpoint type 
ErNumberParameters(er) <— 1 
ErExceptionFlags(er) <— 0 
ErExceptionRecord(er) «— 0 

4.1.7.7 Subsetted IEEE Instruction Exceptions 

Floating-point instructions are always enabled. Therefore, FEN (floating enable) 
faults are not supported. 
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Hardware Implementation Note: 

Windows NT AXP requires implementation of IEEE floating point in each 
processor implementation. 

VAX floating-point format is not supported. 

The PALcode raises an illegal instruction exception for any subsetted IEEE floating-
point instruction—that is, for any IEEE floating-point instruction not implemented 
in hardware. 

4.1.7.8 General Exceptions: Common Operations 

The common operations for all general exceptions are as follows. 

previousPSR <— PSR 
if ( PSR<Mode> EQ User ) then 

PSR<Mode> <— kernel 
tp ♦- (IKSP - TrapFrameLength) ! Establish trap pointer 

else 
tp <- (sp - TrapFrameLength) ! Establish trap pointer 

endif 
TrlntSp(tp) <— sp 
TrlntFp(tp) <— fp 
TrlntGp(tp) <— gp 
TrlntRa(tp) «- ra 
TrlntAO(tp) <- aO 
TrlntAl(tp) <- al 
TrIntA2(tp) <- a2 
TrIntA3(tp) «- a3 
TrPsr(tp) <— previousPSR 
TrFir(tp) <— ExceptionPC 
sp <- tp 
TrPreviousKSP(tp) <— 0 ; no switch to interrupt stack 
RESTART_ADDRESS «- GENERAL_ENTRY 
fp <- sp 
gp <- KGP 
aO <— tp + TrExceptionRecord ; pointer to exception record 
a3 <— previousPSR 

All other general-purpose registers must be preserved across the general exception 
dispatch. 

4.1.8 Panic Exceptions 

Severe problems produce panic exceptions. Severe problems are not recoverable; the 
operating system cannot continue executing normally. Panic exception handling 
shuts down the machine in a controlled manner that assists in debugging the 
problem. With the exception of hardware errors, panic exceptions are not expected 
to occur in the production operating system. 

The PALcode raises a panic exception to the kernel and describes the condition that 
causes the panic with a bugcheck code. When the kernel receives a panic exception, 
it enters the kernel debugger if it is enabled. 
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The classes of panic exceptions are: 

1. Kernel stack corruption 

2. Unexpected exceptions in PALcode 

4.1.8.1 Kernel Stack Corruption 

The PALcode can recognize the following types of kernel stack corruption: invalid 
kernel stack, kernel stack overflow, and kernel stack underflow. The kernel stack for 
an executing thread must always be valid. The PALcode raises a panic exception if 
the processor faults when accessing the kernel stack and the page tables indicate that 
the kernel stack address is not valid. The PALcode may also check for kernel stack 
underflow and overflow and raise a panic exception if either condition is detected. 

The kernel stack is the two pages of virtual address space below the IKSP for a 
thread, where the IKSP points to the byte beyond the top of the two pages. When 
raising a kernel stack corruption exception, the PALcode sets the bugcheck code to 
PANIC_STACK_SWITCH. 

4.1.8.2 Unexpected Exceptions 

The PALcode may raise a panic exception when it detects an unexpected condition 
caused by PALcode. Such unexpected conditions are implementation dependent. 
It is anticipated that those conditions indicate a bug in the PALcode or that the 
processor is no longer executing correctly. The PALcode raises the bugcheck code 
TRAP_CAUSE_UNKNOWN. 

4.1.8.3 Panic Exception Trap Frame and Dispatch 

The PALcode builds a trap frame for the kernel before it dispatches. The PALcode 
also fills in the exception record that exists within the trap frame. The PALcode 
attempts to maintain all possible register state in order to assist in debugging. 

The PALcode performs the following operations when dispatching a panic exception 
to the kernel: 

! Get t h e p a n i c s t a c k 
! A l l o c a t e t r a p frame 
! on p a n i c s t a c k 

prev iousPSR <— PSR 
i f ( PSR<Mode> EQ User ) t h e n 

PSR<Mode> <— Kerne l 
e n d i f 
p a n i c S t a c k <— PcPanicStack(PCR) 
t p <— ( p a n i c S t a c k - TrapFrameLength) 

TrlntSp(tp) 
TrlntFp(tp) 
TrlntGp(tp) 
TrlntRa(tp) 
TrlntAO(tp) 
TrlntAl(tp) 
TrIntA2(tp) 
TrIntA3(tp) 
TrPsr(tp) <— 
TrFir(tp) <— 
sp <- tp 

<- s p 

- fp 
*- gp 
<— r a 

<- aO 
<- al 
<- a2 
<- a3 
previousPSR 
ExceptionPC 
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fp «- sp 
gp <- KGP 
aO «— NT bugcheck code 
al «— PALcode error code 
a2, a3 , a4 <— Bugcheck parameters 
RestartAddress <- PANIC_ENTRY 

All other general-purpose registers must be preserved across the panic exception 
dispatch. 

4.2 Interrupts 

The PALcode supports two software interrupt levels and an implementation-specific 
limit of hardware interrupt sources. The Windows NT AXP PALcode supports eight 
levels of interrupt priority known as interrupt request levels (IRQL). The supported 
IRQLs are numbered 0-7. 

The platform independence of interrupt dispatch is accomplished via three tables: 
Interrupt Level Table, Interrupt Mask Table, and Interrupt Dispatch Table. 

4.2.1 Interrupt Level Table (ILT) 
The Interrupt Level Table consists of eight entries, indexed 0-7. The index values 
and symbols for the entries are described in Table 2 -1 . Each table entry corresponds 
to an IRQL by its index within the table. The value of each entry is an enable value 
that indicates which interrupt sources are to be enabled within the processor for 
the corresponding IRQL. One full longword is reserved for each table entry. The 
interpretation of the bits within the enable mask is processor specific. 

Implementation Note (Software): 

The Interrupt Level Table is probably the most important optional set of data 
that can be cached within the processor. Implementations should consider 
implementing a PALcode instruction that causes the ILT to be reread and 
recached within the processor. Some processors may have an effectively 
hardwired ILT. In such a case, the HAL has no influence over which interrupts 
are enabled for each IRQL. 

4.2.2 Interrupt Mask Table (IMT) 
The Interrupt Mask Table relates a mask value of requested interrupts to both an 
interrupt vector and a synchronization IRQL. The table resolves implicit interrupt 
priorities because only one interrupt vector can be assigned for each request mask. 
The IMT is divided into two sub-tables as described in Table 4-4. 

Table 4-4: Interrupt Mask Table (IMT) 

Index Range Interrupt Source Description 

0-3 Software (2 sources) 
4-131 Hardware 
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Each entry in the table is a longword that consists of two word values: the interrupt 
vector number and the synchronization level. The use of the software portion of the 
table is strictly defined and consistent across all processor implementations. 

Implementation Note: 

In an implementation, the relation between pending interrupts and their 
interrupt vectors and synchronization levels may be hardwired. In that case, 
the IMT is not used and the HAL is not able to influence the setting of priority 
or assignment of interrupts. 

The software entries are used only if no hardware interrupts are pending. The 
entries must be initialized so that deferred procedure call (DPC) software interrupts 
are higher priority than asynchronous procedure call (APC) software interrupts. The 
expected initialization of the software portion of the IMT is defined in Table 4-5. 

Table 4-5: Software Entries of the IMT 
Index Synchronization Level Vector 

0 PASSIVEJLEVEL = 0 Passive release vector 
1 APC_LEVEL = 1 APC dispatch vector 
2 DISPATCH.LEVEL = 2 DPC dispatch vector 
3 DISPATCH.LEVEL = 2 DPC dispatch vector 

The hardware portion of the IMT is designed for flexible use. Each implementation 
must define a relation f that defines a mapping of requested and enabled hardware 
interrupt sources to entries in the IMT. The relation f is implementation specific, 
but f must be a function in the mathematical sense (for each input there is a single 
unambiguous result). All interrupts other than software interrupts are considered 
hardware interrupts. Hardware interrupts can include external interrupt signals, 
performance counter interrupts, and correctable read interrupts. 

4.2.3 Interrupt Dispatch Table (IDT) 
The Interrupt Dispatch Table (IDT) has an entry for each possible interrupt vector. 
The possible interrupt vectors are in the range 0-255. Each entry is a longword 
pointer, which is the virtual address of the interrupt dispatch routine for the vector 
that corresponds to the index of the entry within the table. The PALcode does not 
read or write the IDT; it is maintained and used entirely by the kernel and HAL. 

4.2.4 Interrupt Dispatch 
Interrupt dispatch within the PALcode goes through the following steps: 
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irr <— currently requested interrupt mask 
(from internal processor state) 

ier <— currently enabled interrupt mask 
(from current IRQL) 

! Mask of requested and enabled interrupt sources: 
irm <— irr AND ier 

! Retrieve value from interrupt mask table: 
CASE 

Hardware Interrupt Pending : 
index = f(irm) 
sirql «— (IMT<{index*4}>)<SynchronizationIRQL> 
vector <— (IMT<{index*4}>)<InterruptVector> 

Software Interrupt Pending: 
sirql «— (IMT<{irm*4}>)<SynchronizationIRQL> 
vector 4— (IMT<{irm*4}>)<InterruptVector> 

Otherwise: 
Passive release, restart execution 

ENDCASE 
Set processor to sirql IRQL 
if ( processor interrupt ) then 
{ acknowledge the interrupt } 
endif 

If a hardware interrupt, check if already on the interrupt stack (the on-interrupt 
stack indicator is nonzero). If on the interrupt stack, zero out TrPreviousKSP. If not 
on the interrupt stack, save the IKSP in TrPreviousKSP for return from interrupt. 
In either case, set the on-interrupt stack indicator and place the interrupt stack 
address (ISP) in the IKSP. 
Once synchronization level has been set and the interrupt service routine has been 
determined, the PALcode builds a trap frame and dispatches to the kernel interrupt 
exception handler passing in the interrupt vector. 
In the case of software interrupts: 

previousPsr <— PSR 
if ( PSR<Mode> EQ User ) then 

PSR<Mode> <— Kernel 
! Establish trap pointer 

! Establish trap pointer 

tp « 
else 

tp « 
endif 
TrlntSp(tp) 
TrlntFp(tp) 
TrlntGp(tp) 
TrlntAO(tp) 
TrlntAl(tp) 
TrIntA2(tp) 
TrIntA3(tp) 
TrFir(tp) «-
TrPsr(tp) «-
TrlntRa(tp) 
sp <- tp 

- (IKSP 

- (sp -

<- sp 
«- fp 
«- gp 
<- aO 
«- al 
«- a2 
«- a3 

- TrapFj rameLength 

TrapFrameLength) 

■ ExceptionPC 
• previousPSR 
<— ra 

TrPreviousKSP ( tp ) «-
fp <— sp 
gp <- KGP 

- 0 
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aO <— interrupt vector 
al «- PCR 
a2 <— synchronization IRQL 
a3 <— previousPSR 
RestartAddress <- INTERRUPT_ENTRY 

In the case of hardware interrupts: 

PreviousPSR«*— PSR 

if ( PSR<Mode> EQ User ) then 
PSR<Mode> <— Kernel 

endif 
if ( ISP_FLAG EQ 0 ) then 

PreviousKsp «— IKSP 
IKSP <- ISP 
ISP_FLAG <— nonzero value 
tp<— IKSP - TrapFrameLength ! Establish trap pointer 

else 
PreviousKSP «— 0 
tp <— (sp - TrapFrameLength) ! Establish trap pointer 

endif 
TrlntSp(tp) <— sp 
TrlntFp(tp) <— fp 
TrlntGp(tp) <— gp 
TrlntAO(tp) «- aO 
TrlntAl(tp) <- al 
TrIntA2(tp) <- a2 
TrIntA3(tp) <- a3 
TrFir(tp) ■*- ExceptionPC 
TrPsr(tp) <— previousPSR 
TrlntRa(tp) <— ra 
sp <- tp 
TrPreviousKSP(tp) ♦- PreviousKSP 
fp <- sp 
gp <- KGP 
aO «— interrupt vector 
al <- PCR 
a2 <— synchronization IRQL 
a3 <— previousPSR 
RestartAddress -̂ INTERRUPT_ENTRY 

All other general-purpose register values must be preserved across interrupt 
dispatch. 

The kernel uses the rfe instruction to restart the interrupted code sequence. 

4.2.5 Interrupt Acknowledge 
Interrupts are acknowledged according to their origin. Internal processor interrupts, 
such as software interrupts and performance counters, are acknowledged by the 
PALcode. System-level interrupts are acknowledged in the native interrupt dispatch 
routines. 
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4.2.6 Synchronization Functions 

The swpirql, di, and ei instructions allow the kernel to affect the processor's current 
interrupt enable state: 

• Swpirql swaps the current interrupt request level (IRQL) of the processor. 
Swpirql takes the new IRQL as a parameter and returns the previous IRQL. 

• Di disables all interrupts without changing the current IRQL. 

• Ei enables interrupts at the currently set IRQL. 

Those instructions and the existence of the interrupt enable bit in the PSR are used 
as a global interrupt enable for all interrupts. 

4.2.7 Software Interrupt Requests 

The PALcode includes the software interrupt request register (SIRR), an architected 
internal processor register, for controlling software interrupt requests. The PALcode 
also includes two instructions, ssir and csir, to control the state of the SIRR register. 

The format of the SIRR is shown in Figure 4-4 and the fields are defined in 
Table 4-6. 

Figure 4-4: Software Interrupt Request Register 

RAZ 

Table 4-6: Software Interrupt Request Register Fields 
Field Type Description 

DPC RW DPC software interrupt requested 
APC RW APC software interrupt requested 

The ssir and csir instructions affect the state of software interrupt requests. 

The ssir instruction sets software interrupt requests by taking as a parameter the 
interrupt request levels to be set. Setting the appropriate bit in SIRR indicates 
that the corresponding software interrupt is requested. The csir instruction clears 
software interrupt requests by taking as a parameter the interrupt request level 
to be cleared. Setting the appropriate bit in SIRR indicates that the corresponding 
software interrupt request must be cleared. 
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4.3 Machine Checks 

Machine checks are initiated when the hardware detects a hardware error condition. 
However, machine checks are not the only way that detected hardware errors are 
reported. Hardware error conditions can be reported from three sources: 

• At the pin level. Hardware may choose to signal errors via hardware interrupts. 
PALcode delivers such hardware error interrupts to the kernel as standard 
interrupts, where they may be hooked by the HAL for system-specific processing. 
Such interrupts are not processed by the PALcode as machine checks and are not 
described in this section. 

• From an implementation-dependent internal error interrupt. It is an 
implementation decision whether to deliver such an interrupt as a standard 
interrupt or as a machine check. If delivered as a machine check, processing 
the interrupt is described in this section. 

• At the machine check hardware vector. Hardware errors that are signalled by 
the processor through a specific machine check hardware vector are considered 
machine checks and are described in this section. 

The machine check condition may be correctable or uncorrectable. If uncorrectable, 
the hardware may choose to retry the operation that returned the error. 

The PALcode recognizes the following types of machine checks: 

1. Correctable errors 

2. Uncorrectable errors 

3. Catastrophic errors 

4.3.1 Correctable Errors 
Processor correctable errors are data errors that are detected by the processor and 
can be reliably corrected. System correctable errors are detected and corrected by 
the system hardware; incorrect data is not read into the processor. 

Correctable errors are maskable via the MCES internal processor register 
(Figure 4-5). It is recommended that correctable errors be disabled during PALcode 
initialization and subsequently be explicitly enabled by the HAL. Correctable errors 
are delivered from the PALcode to allow the HAL to log the errors. The PALcode 
builds a logout frame with per-processor information that assists the HAL in logging 
the error. 

4.3.2 Uncorrectable Errors 
Uncorrectable errors from the processor are detected by the processor and exhibit 
data errors that cannot be reliably corrected. Actual processor uncorrectable errors 
are defined by the processor implementation. Uncorrectable errors from the system 
are detected but not corrected by the system hardware. 

Although uncorrectable errors are likely to be also unrecoverable, a mechanism 
exists in the exception record to allow one or more retries when appropriate. The 
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HAL controls the retry count. For example, a parity error in the I-cache, although 
uncorrectable, may disappear after an operation retry. 

The machine check exception is raised to the HAL to allow per-platform error 
handling. Uncorrectable errors are delivered immediately upon detection. The 
PALcode creates a logout frame with per-processor information to assist the HAL 
in handling the error condition. 

4.3.3 Machine Check Error Handling 

The general model for machine check handling has the following flow: 

1. The PALcode corrects the error, if possible. 

2. The PALcode sets the machine to a known state from which restart is possible. 

3. The PALcode builds a logout frame describing the detected error. 

4. The PALcode sets processor IRQL appropriately (see below). 

5. The PALcode dispatches a general exception to the kernel. 

6. In the case of a catastrophic error, PALcode returns control to the firmware, as 
described in Section 4.3.4. 

The machine check error summary (MCES) register, Figure 4-5, indicates and 
controls the current state of the machine check handler for the processor. Table 4-7 
describes the MCES register. 

Figure 4-5: Machine Check Error Summary 
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Table 4-7: Machine Check Error Summary Fields 
Field Type Description 

DMK 
DSC 
DPC 
PCE 
SCE 
MCK 

RW 
RW 
RW 
RW 
RW 
RW 

Disable all machine checks 
Disable system correctable error reporting 
Disable processor correctable error reporting 
Processor correctable error reported 
System correctable error reported 
Machine check (uncorrectable) reported 
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All machine checks (correctable and uncorrectable) are maskable via the DMK bit 
in the MCES register. This bit is provided only for debugging systems. 

The initial value in MCES is implementation specific but, wherever possible, 
PALcode attempts to preserve the state of machine check enables from the previous 
PALcode environment during initialization. 

PALcode writes the exception record with the following values for a machine check, 
where er is the exception record pointer. 

E r E x c e p t i o n C o d e ( e r ) <— DATA_BUS_ERROR 
E r E x c e p t i o n l n f o r m a t i o n < 0 > ( e r ) <— machine 
E r E x c e p t i o n l n f o r m a t i o n < l > ( e r ) <— p o i n t e r 
ErNumberParamete r s (e r ) *— 2 
E r E x c e p t i o n F l a g s ( e r ) <— 0 
E r E x c e p t i o n R e c o r d ( e r ) ♦— 0 

The two-bit mask that shows the machine check type is shown in Table 4-8. 

Table 4-8: Machine Check Types 
Machine Check Type Mask Value (Bits 0:1) 

Uncorrectable with no retries 00 

Correctable 01 

Uncorrectable with retries 10 

Reserved 11 

The virtual address of the logout frame is a 32-bit superpage address, and the logout 
frame has a per-processor format. 

Machine checks differ from all other general exceptions in that they affect and are 
affected by the current processor IRQL. Corrected machine checks raise IRQL to 
6 before dispatching to the kernel. Uncorrected machine checks raise IRQL to 7. 
Where possible, corrected machine checks are delivered only if the current processor 
IRQL is below 7. Correctable machine checks that are recognized when IRQL 
equals 7 or when interrupts are disabled, are deferred until IRQL falls below 7 and 
interrupts are enabled. Uncorrectable machine checks are delivered immediately, 
regardless of the current IRQL. 

The draina instruction, when coupled with appropriate implementation-specific 
native code, can allow software to force completion of all previously executed 
instructions, such that the previous instructions cannot cause machine checks to 
be signalled while any instructions subsequent to the draina are executed. 

4.3.4 Catastrophic Errors 
Although particular catastrophic conditions are specific to the processor 
implementation, such conditions indicate that the machine is left in a state where 
execution cannot be reliably restarted. They also indicate that the hardware cannot 

check type 
to logout frame 
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be trusted to execute properly or the state of data within the system cannot be 
determined. 
An example of a catastrophic condition is a machine check taken while machine check 
handling is progress, as indicated by a set MCK bit in the MCES register. Taking 
a machine check while in the PALcode environment is also considered catastrophic. 
In those cases, control is returned to the firmware as follows: 
1. Further machine check acknowledgement is turned off and a logout frame is 

generated. 
2. The restart block is verified: 

• If the restart block is good, the current state in the restart block is saved, 
the previous state is restored, and control is returned to the firmware at the 
restart address. 

• If the restart block is bad, the alternate path is used to re-execute the previous 
PALcode image at its entry address. See Section 6.2.1. 
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Chapter 5 

Windows NT AXP PALcode Instruction Descriptions 
(ll-C) 

The PALcode instructions generally follow the Windows NT AXP calling standard. 
Arguments are passed in the argument (aO—a5) registers and return values are 
returned in the value (vO) register. The PALcode instructions also incorporate the 
following conventions into their own calling standard: 

1. Unless specific temporary registers are required, only the argument registers 
aO—a5 are considered volatile. 

2. Generally, all parameters are passed in registers. 

The argument registers are used as volatile registers because often they contain 
parameters to the PALcode instructions. In strict adherence to the calling standard, 
the temporary registers tO—tl2 could also be considered volatile in the PALcode 
instructions, but they are not. The temporary registers are not considered 
necessarily volatile because PALcode instructions generally do not need more free 
registers. Further, it is convenient in assembly language, from which the PALcode 
instructions are most frequently called, to be able to assume that temporary registers 
are preserved across the PALcode instruction. 

All parameters to the PALcode instructions are passed in registers. If the number 
of parameters exceeds the available number of argument registers, additional 
temporary registers are used as arguments. This precludes the need for callers 
to build an appropriate stack frame for PALcode instructions with more than six 
parameters. 

The RESTART_ADDRESS register indicates the next execution address when 
the PALcode exits. Upon entry to each of the PALcode instructions, the 
RESTART_ADDRESS register is considered to contain the address of the instruction 
immediately following the PALcode instructions. 

A range of privileged PALcode instructions is reserved for processor-implementation-
specific PALcode instructions that allow specialized communication between the HAL 
and the PALcode. 

Note: 

The Operation part of the PALcode instruction descriptions is shown as an 
ordered sequence of instructions. The instructions in the sequence may be 
reordered as long as the results of the sequence of instructions are not altered. 
In particular, if an instruction j is listed subsequent to an instruction i and i 
writes any data that is used by j , then i must be executed before j . 
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5.1 Privileged PALcode Instructions 

Table 5-1 summarizes the privileged PALcode instructions. 

Table 5-1 : Privileged PALcode Instruction Summary 
Mnemonic Description 

csir Clear software interrupt request 

di Disable interrupts 

draina Drain aborts 

dtbis Data translation buffer invalidate single 

ei Enable interrupts 

halt Halt the processor 

initpal Initialize the PALcode 

rdcounters Read PALcode event counters 

rdirql Read current IRQL 

rdksp Read initial kernel stack 

rdmces Read machine check error summary 

rdpcr Read processor control region address 

rdpsr Read processor status register 

rdstate Read internal processor state 

rdthread Read the current thread value 

reboot Transfer to console or previous PALcode environment 

restart Restart the processor 

retsys Return from system service call 

rfe Return from exception 

ssir Set software interrupt request 

swpctx Swap privileged thread context 

swpirql Swap IRQL 

swpksp Swap initial kernel stack 

swppal Swap PALcode 

swpprocess Swap privileged process context 

tbia Translation buffer invalidate all 

tbis Translation buffer invalidate single 

tbisasn Translation buffer invalidate for single ASN 

wrentry Write system entry 
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Table 5-1 (Cont.): Privileged PALcode Instruction Summary 
Mnemonic Description 

wrmces Write machine check error summary 
wrperfmon Write performance monitoring values 
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5.1.1 Clear Software Interrupt Request 

Format: 

csir ! PALcode format 

Operation: 

{ aO = Software interrupt requests to clear} 

if ( PSR<Mode> EQ User ) then 
{initiate illegal instruction exception} 

endif 
if ( aO<l> EQ 1 ) then 

SIRR<DPC> «- 0 
endif 
if ( a0<0> EQ 1 ) then 

SIRR<APC> «- 0 
endif 

GPR State Change: 

aO - a5 are UNPREDICTABLE 

IPR State Change: 

SIRR «- a0<1..0> 

Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

The csir instruction clears the specified bit in the SIRR internal processor register, 
depending on the contents of aO. See Section 4.2.7. 
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5.1.2 Disable All Interrupts 

Format: 

di ! PALcode format 

Operation: 

if ( PSR<Mode> EQ User ) then 
{initiate illegal instruction exception} 

endif 
PSR<IE> «- 0 

GPR State Change: 

None 

IPR State Change: 

PSR<IE> - 0 

Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

The di instruction disables all interrupts by clearing the interrupt enable bit (IE) in 
the PSR internal processor register. The IRQL field is unaffected. Interrupts may 
be re-enabled via the ei instruction. 

Windows NT AXP PALcode Instruction Descriptions (ll-C) 5-5 



5.1.3 Drain All Aborts Including Machine Checks 

Format: 

draina ! PALcode format 

Operation: 

if ( PSR<Mode> EQ User ) then 
{initiate illegal instruction exception} 

endif 
{ implementation-specific drain } 

GPR State Change: 

None 

IPR State Change: 

None 

Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

The draina instruction facilitates the draining of all aborts, including machine 
checks, from the current processor. When coupled with the appropriate 
implementation-specific native code, draina can help guarantee that no abort is 
signalled for an instruction issued before the draina while any instruction issued 
subsequent to the draina is executing. 

5-6 Windows NT AXP Software (II—C) 



5.1.4 Data Translation Buffer Invalidate Single 

Format: 

dtbis ! PALcode format 

Operation: 

{ aO = Virtual address of translation to invalidate} 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception} 

endif 
{ invalidate all translations in the data stream for the } 
{ virtual address in aO } 

GPR State Change: 

aO - a5 are UNPREDICTABLE 

IPR State Change: 

None 

Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

The dtbis instruction invalidates a single data stream translation. The translation 
for the virtual address in aO must be invalidated in all data translation buffers and 
in all virtual data caches. 
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5.1.5 Enable Interrupts 

Format: 

ei ! PALcode format 

Operation: 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception} 

endif 
PSR<IE> <- 1 

GPR State Change: 

None 

IPR State Change: 

PSR<IE> «- 1 

Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

The ei instruction sets the interrupt enable (IE) bit in the PSR internal processor 
register, thus enabling those interrupts that are at the appropriate level for the 
current IRQL field in the PSR. 
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5.1.6 Halt the Operating System by Trapping to Illegal Instruction 

Format: 

halt ! PALcode format 

Operation: 

initiate illegal instruction exception 

GPR State Change: 

See Section 4.1.7.3 for illegal instruction exception handling. 

IPR State Change: 

See Section 4.1.7.3 for illegal instruction exception handling. 

Exceptions: 

Illegal Instruction 

Description: 

The halt instruction forces an illegal instruction exception. See the reboot 
instruction, Section 5.1.16, for transferring control to the console or previous 
PALcode environment. 
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5.1.7 Initialize PALcode Data Structures with Operating System Values 

Format: 

initpal ! PALcode format 

Operation: 

{ aO = Page directory entry (PDE) page, superpage 32 address} 
{ al = Initial thread value} 
{ a2 = Initial TEB value} 
{ a3 = Interrupt stack pointer (ISP) 
{ gp = Kernel global pointer} 
{ sp = Initial kernel stack pointer} 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception} 

endif 
PDR 
THREAD 
TEB 
ISP 
IKSP 
KGP 

(aO BIC 8OOOOOOO16) 
al 
a2 
a3 
sp 
gp 

PcPalBaseAddress (PCR) «-
PcPalMajorVersion(PCR) «-
PcPalMinorVersion(PCR) «-
PcPalSequenceVersion(PCR) <-
PcPalMajorSpecification(PCR) <-
PcPalMinorSpecif ication(PCR) <-
vO <- PAL_BASE 

PAL_BASE 
PalMaj orVersion 
PalMinorVersion 
PalSequenceVersion 
PalMajorSpecification 
PalMinorSpecification 

GPR State Change: 

vO - PAL_BASE 
aO - a5 are UNPREDICTABLE 

IPR State Change: 

PDR - aO 
THREAD - a l 
TEB <- a 2 
ISP - a3 
IKSP 4- sp 
K G P - g p 
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Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

The initpal instruction is called early in the kernel initialization sequence to 
establish IPR values for the initial thread PDR, THREAD, TEB, and IKSR The 
IPR values ISP and KGP persist for the life of the system. In addition, initpal 
writes the PALcode version information into the PCR. 

On return from the initpal instruction, the return value register, vO, contains the 
PAL_BASE register (the base address in 32-bit superpage (ksegO) format). 
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5.1.8 Read the Software Event Counters 

Format: 

rdcounters ! PALcode format 

Operation: 

{ aO = Pointer to 32-bit superpage address of counter record buffer. 
{ Address must be quadword aligned} 
{ al = Length of buffer in bytes} 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception} 

endif 
{ dump event counter values to the counter record } 
vO <— status 

GPR State Change: 

vO *- status 
aO - a5 are UNPREDICTABLE 

IPR State Change: 

None 

Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

For debug PALcode (see Section 5.3), rdcounters causes that PALcode to write the 
state of its internal software event counters into an implementation-specific counter 
record pointed to by the address passed in the aO register. For production PALcode, 
rdcounters returns a status value of zero, indicating that it is not implemented in 
the current PALcode image. 

On return from rdcounters, vO contains the status as follows: 
If vO = 0 Interface is not implemented. 
If vO<al vO is length of data returned. 
If vQ > al No data is returned and vO is length of processor implementation counter 

record. 
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5.1.9 Read the Current IRQL from the PSR 

Format: 

rdirql ! PALcode format 

Operation: 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception} 

endif 
vO «- PSR<IRQL> 

GPR State Change: 

vO - <IRQL> 

IPR State Change: 

None 

Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

The rdirql instruction returns in vO the contents of the interrupt request level (IRQL) 
field of the PSR internal processor register. 
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5.1.10 Read Initial Kernel Stack Pointer for the Current Thread 

Format: 

rdksp ! PALcode format 

Operation: 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception} 

endif 
vO <- IKSP 

GPR State Change: 

vO «- <IKSP> 

IPR State Change: 

None 

Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

The rdksp instruction returns in vO the contents of the IKSP (initial kernel stack 
pointer) internal processor register for the currently executing thread. 
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5.1.11 Read the Machine Check Error Summary Register 

Format: 

rdmces ! PALcode format 

Operation: 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception} 

endif 
vO <- MCES 

GPR State Change: 

vO - MCES 

IPR State Change: 

none 

Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

The rdmces instruction returns in vO the contents of the machine check error 
summary (MCES) internal processor register. 
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5.1.12 Read the Processor Control Region Base Address 

Format: 

rdpcr ! PALcode format 

Operation: 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception} 

endif 
vO <- PCR 

GPR State Change: 

vO <- PCR 

IPR State Change: 

None 

Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

The rdpcr instruction returns in vO the contents of the PCR internal processor 
register (the base address value of the processor control region). 
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5.1.13 Read the Current Processor Status Register (PSR) 

Format: 

rdpsr ! PALcode format 

Operation: 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception} 

endif 
vO <- PSR 

GPR State Change: 

vO «- PSR 

IPR State Change: 

None 

Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

The rdpsr instruction returns in vO the contents of the current PSR (Processor Status 
Register) internal processor register. 
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5.1.14 Read the Current Internal Processor State 

Format: 

rdstate ! PALcode format 

Operation: 

{ aO = Pointer to 32-bit superpage address of state record buffer.} 
{ Address must be quadword aligned} 
{ al = Length of buffer in bytes} 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception} 

endif 
{ dump internal processor state record to processor state buffer} 
vO <— status 

GPR State Change: 

vO «- status 
aO - a5 are UNPREDICTABLE 

IPR State Change: 

None 

Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

The rdstate instruction writes the internal processor state to the internal processor 
state buffer pointed to by the address passed in the aO register. The form and content 
of the internal processor state buffer are implementation specific. 

On return from the rdstate instruction, the return value register, vO, contains the 
status as follows: 
If vO = 0 Interface is not implemented. 
If vO<al vO is length of data returned. 
If vO > al No data is returned and vO is length of processor implementation counter 

record. 
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5.1.15 Read the Thread Value for the Current Thread 

Format: 

rdthread ! PALcode format 

Operation: 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception} 

endif 
vO <- THREAD 

GPR State Change: 

vO - THREAD 

IPR State Change: 

None 

Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

The rdthread instruction returns in vO the contents of the THREAD internal 
processor register (for the currently executing thread). 
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5.1.16 Reboot—Transfer to Console Firmware 

Format: 

reboot ! PALcode format 

Operation: 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception} 

endif 
RestartBlockPointer *— PcRestartBlock(PCR) 
{ if cannot verify restart block, restart previous PALcode } 
{ save general register state in saved state area } 
{ save internal processor register state in saved state area, } 
{ includes PAL_BASE} 
{ save implementation-specific data in saved state area } 
{ set the saved state length in restart block } 
{ compute and store Checksum for restart block } 
{ restore previous privileged state } 
PAL_BASE «— previous_PAL_BASE. 
RESTART_ADDRESS <— PcFirmwareRestartAddress(PCR) 

GPR State Change: 

All registers are UNPREDICTABLE 

IPR State Change: 

PAL_BASE ^previous_PAL_BASE 
RESTART_ADDRESS ^PcFirmwareRestartAddress(PCR) 
All other registers are UNPREDICTABLE 

Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

The reboot instruction stops the operating system from executing and returns 
execution to the boot environment. Reboot is responsible for completing the 
ARC Restart Block before returning to the boot environment. The PALcode 
must accomplish two tasks to restore the boot environment: re-establish the 
boot environment PALcode and restart execution in the boot environment at the 
Firmware Restart Address. 
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5.1.17 Restart the Operating System from the Restart Block 

Format: 

restart ! PALcode format 

Operation: 

{ aO = Pointer to ARC restart block with Alpha AXP saved state area} 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception} 

endif 
{ verify restart block } 
{ if invalid then return to caller } 
RestartBlockPointer <— PcRestartBlock(PCR) 
{ restore general register state from saved state area } 
{ restore internal processor register state from saved state area,} 
{ restore implementation-specific data from saved state area } 
RESTART_ADDRESS <— RbRestartAddress(RestartBlockPointer) 

GPR State Change: 

All registers are UNPREDICTABLE 

IPR State Change: 

RESTART_ADDRESS^-RbRestartAddress(RestartBlockPointer) 
All other registers are UNPREDICTABLE 

Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

The restart instruction restores saved processor state and resumes execution of the 
operating system. 
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5.1.18 Return from System Service Call Exception 

Format: 

retsys ! PALcode format 

Operation: 

{ aO = Previous PSR} 
{ al = New software interrupt requests} 
{ fp = Pointer to trap frame} 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception} 

endif 
if ( al<l> EQ 1 ) then 

SIRR<DPC> «- 1 
endif 
if ( al<0> EQ 1 ) then 

SIRR<APC> *- 1 
endif 
TrapFrame <— fp 
ra «- TrlntRa(TrapFrame) 
gp <— TrlntGp(TrapFrame) 
fp <— TrlntFp(TrapFrame) 
sp <— TrlntSp(TrapFrame) 
RESTART_ADDRESS <— TrFir(TrapFrame) 
PSR <- aO 
{ Clear lock_flag register} 
{ Clear intr_flag register} 

GPR State Change: 

ra <- TrlntRaCTrapFrame) 
gp <- TrlntGp(TrapFrame) 
fp <- TrlntFp(TrapFrame) 
sp «- TrlntSp(TrapFrame) 
at, tO - t l2 , aO - a5 are UNPREDICTABLE 

IPR State Change: 

PSR <- aO 
RESTART_ADDRESS - TrFir(TrapFrame) 
SIRR «- al<1..0> 
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Exceptions: 

Illegal Instruction 
Machine Checks 
Invalid Kernel Stack 

Description: 

The retsys instruction returns from a system service call exception by unwinding 
the trap frame, clearing the lock_flag and intr_flag (interrupt flag) registers, and 
returning to the code stream that was executing when the original exception was 
initiated. Retsys must return to the native code stream; it is illegal for retsys to 
return to the PALcode environment and that must be guaranteed not to happen. In 
addition, retsys accepts a parameter to set software interrupt requests that became 
pending while the exception was handled. 

Retsys is similar to the rfe instruction, with the following exceptions: 

1. Retsys need not restore the argument registers a0-a3 from the trap frame. 

2. Retsys need not preserve volatile register state. 

3. Retsys returns to the address in the ra register at the point of the callsys 
rather than the faulting instruction address (the ra was written to the faulting 
instruction address by callsys). 
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5.1.19 Return from Exception or Interrupt 

Format: 

rfe ! PALcode format 

Operation: 

{ aO = Previous PSR} 
{ al = New software interrupt requests} 
{ fp = Pointer to trap frame} 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception} 

endif 
if ( al<l> EQ 1 ) then 

SIRR<DPC> <- 1 
endif 
if ( al<0> EQ 1 ) then 

SIRR<APC> <- 1 
endif 

if ( ISP_FLAG NE 0 ) then 
if ( TrPreviousKSP(TrapFrame) NE 0 ) then 

ISP_FLAG <- 0 
IKSP <- TrPreviousKSP(TrapFrame) 

endif 
endif 

PSR <- aO 
TrapFrame <— fp 
aO <— TrlntAO(TrapFrame) 
al <— TrlntAl(TrapFrame) 
a2 «— TrIntA2(TrapFrame) 
a3 <— TrIntA3(TrapFrame) 
ra *— TrlntRa(TrapFrame) 
gp <— TrlntGp(TrapFrame) 
fp <— TrlntFp(TrapFrame) 
sp <— TrlntSp(TrapFrame) 
RESTART_ADDRESS <— TrFir(TrapFrame) 

{ Clear lock_flag register} 
{ Clear intr_flag register} 

GPR State Change: 

aO «- TrlntAO(TrapFrame) 
a l <- TrlntAl(TrapFrame) 
a2 <- TrIntA2(TrapFrame) 
a3 «- TrIntA3(TrapFrame) 
ra <- TrlntRa(TrapFrame) 
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gp <- TrlntGp(TrapFrame) 
fp «- TrlntFp(TrapFrame) 
sp <- TrlntSp(TrapFrame) 

IPR State Change: 

PSR «- aO 
RESTART.ADDRESS «- TrFir(TrapFrame) 
SIRR <- al<1..0> 

Exceptions: 

Illegal Instruction 
Machine Checks 
Invalid Kernel Stack 

Description: 

The rfe instruction returns from exceptions or interrupts by unwinding the trap 
frame, clearing the lock_flag and intr_flag (interrupt flag) registers, and returning 
to the code stream that was executing when the original exception or interrupt was 
initiated. Rfe must return to the native code stream; it is illegal for rfe to return to 
the PALcode environment and that must be guaranteed not to happen. In addition, 
rfe accepts a parameter to set software interrupt requests that became pending while 
the event was handled. 
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5.1.20 Set Software Interrupt Request 

Format: 

ssir ! PALcode format 

Operation: 

{ a0 = Software interrupt requests to set} 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception} 

endif 
if ( a0<l> EQ 1 ) then 

SIRR<DPC> <- 1 
endif 
if ( a0<0> EQ 1 ) then 

SIRR<APC> «- 1 
endif 

GPR State Change: 

a0 - a5 are UNPREDICTABLE 

IPR State Change: 

SIRR «- a0<1..0> 

Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

The ssir instruction sets software interrupt requests by setting the appropriate bits 
in the SIRR internal processor register. See Section 4.2.7. 
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5.1.21 Swap Thread Context 

Format: 

swpctx ! PALcode format 

Operation: 

{ aO = New initial kernel stack va) 
{ al = New thread address) 
{ a2 = New thread environment block pointer) 
{ a3 = New address space page frame number (PFN)) 
{ or a negative number) 
{ a4 = ASN) 
{ a5 = ASN_wrap_indicator) 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception) 

endif 
IKSP <- aO 
THREAD <- al 
TEB <- a2 
ASN_wrap_indicator <— a5 
if ( a3 GE 0 ) then ! swap address space 

temp <- SHIFT_LEFT( a3, PAGE_SHIFT ) 
PDR <— temp 
ASN <- a4 
if ( ASN_wrap_indicator NE 0 ) then 

{ invalidate all translations and virtual cache blocks) 
{ for which ASM EQ 0) 

endif 
endif 

{ Where : ) 
{ 2**PAGE_SHIFT = implementation page size ) 

GPR State Change: 

aO - a5 are UNPREDICTABLE 

IPR State Change: 

IKSP «- aO 
THREAD «- a l 
TEB - a2 
PDR <- a3 (possibly) 
ASN <- a4 (possibly) 
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Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

The swpctx instruction swaps the privileged portions of thread context. Thread 
context is swapped by establishing the new IKSP, THREAD, and TEB internal 
processor register values. 

Swpctx may also swap the address space (or process) for the new thread. If the new 
thread is in the same process (address space) as the previous thread, the kernel 
passes a negative value for the page frame number (PFN) in the page directory 
page, indicating that the address space need not be switched. If the PFN is zero or 
a positive number, it is used to swap the address space, just as if swpprocess had 
been executed. 
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5.1.22 Swap the Current IRQL (Interrupt Request Level) 

Format: 

swpirql ! PALcode format 

Operation: 

{ aO = New IRQL} 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception} 

endif 
vO «- PSR<IRQL> 
PSR<IRQL> «- aO 

GPR State Change: 

vO 4- PSR<IRQL> 
aO - a5 are UNPREDICTABLE 

IPR State Change: 

PSR<IRQL> - aO 

Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

The swpirql instruction swaps the current IRQL field in the PSR internal processor 
register by setting the processor so that only permitted interrupts are enabled for 
the new IRQL. Swpirql updates the IRQL field and returns in vO the previous IRQL. 
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5.1.23 Swap the Initial Kernel Stack Pointer (IKSP) for the Current Thread 

Format: 

swpksp ! PALcode format 

Operation: 

{ aO = New IKSP} 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception} 

endif 
vO «- IKSP 
IKSP <- aO 

GPR State Change: 

vO - IKSP 
aO - a5 are UNPREDICTABLE 

IPR State Change: 

IKSP - aO 

Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

The swpksp instruction returns in vO the value of the previous IKSP internal 
processor register and writes a new IKSP for the currently executing thread. 
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5.1.24 Swap the Currently Executing PALcode 

Format: 

swppal ! PALcode format 

Operation: 

{ aO = Physical base address of new PALcode} 
{ al-a5 = Arguments to the new PALcode environment} 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception} 

endif 
{ load processor-dependent parameters } 
{ jump to address in aO as a physical address in } 
{ the PALcode environment} 

GPR State Change: 

at and tO - t l2 are UNPREDICTABLE or contain processor-dependent parameters 

IPR State Change: 

None 

Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

The swppal instruction swaps the currently executing PALcode by transferring to the 
base address of the new PALcode image (provided in aO) in the PALcode environment. 
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5.1.25 Swap Process Context (Swap Address Space) 

Format: 

swpprocess ! PALcode format 

Operation: 

{ aO = Page frame number (PFN) of new PDR} 
{ al = Address space number (ASN) of new process} 
{ a2 = Address space number wrap indicator (ASN_wrap_indicator):} 
{ 0 = no wrap} 
{ nonzero = wrap} 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception} 

endif 
temp <- SHIFT_LEFT( aO, PAGE_SHIFT ) 
PDR *— temp 
ASN <- al 

if ( ASN_wrap_indicator NE 0 ) then 
{ invalidate all translations and virtual cache blocks} 
{ for which ASM EQ 0} 

endif 

{ Where : } 
{ 2**PAGE_SHIFT = implementation page size } 

GPR State Change: 

aO - a5 are UNPREDICTABLE 

IPR State Change: 

PDR 4- aO 
ASN «- a l 

Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

The swpprocess instruction swaps the privileged process context by changing the 
address space for the currently executing thread. The address space change is 
accomplished by establishing a new PDR and ASN. If the ASN_wrap_indicator 
passed in a2 is nonzero, swpprocess causes invalidation of all translation buffer 
entries and virtual cache blocks that have a clear address space match (ASM) bit. 
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5.1.26 Translation Buffer Invalidate All 

Format: 

tbia ! PALcode format 

Operation: 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception} 

endif 
{ invalidate all translations and virtual cache blocks } 
{ within the processor } 

GPR State Change: 

aO - a5 are UNPREDICTABLE 

IPR State Change: 

None 

Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

The tbia instruction invalidates all translations and virtual cache blocks within the 
processor. 
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5.1.27 Translation Buffer Invalidate Single 

Format: 

tbis ! PALcode format 

Operation: 

{ aO = Virtual address of translation to invalidate} 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception} 

endif 
{ invalidate all translations for the virtual address in aO,} 
{ invalidate in all translation buffers and all virtual caches } 

GPR State Change: 

aO - a5 are UNPREDICTABLE 

IPR State Change: 

None 

Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

The tbis instruction invalidates a single virtual translation. The translation for the 
passed virtual address must be invalidated in all processor translation buffers and 
virtual caches. 
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5.1.28 Translation Buffer Invalidate Single for ASN 

Format: 

tbisasn ! PALcode format 

Operation: 

{ aO = Virtual address of translation to invalidate } 
{ al = Address space number (ASN) } 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception} 

endif 
{ invalidate the translation for the virtual address in aO } 
{ that matches the ASN in al. The translation must be invalidated} 
{ in all translation buffers and virtual caches} 

GPR State Change: 

aO - a5 are UNPREDICTABLE 

IPR State Change: 

None 

Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

The tbisasn instruction invalidates a single virtual translation for a specified address 
space number. The translation for the passed virtual address must be invalidated 
in all processor translation buffers and virtual caches. 
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5.1.29 Write Kernel Exception Entry Routine 

Format: 

wrentry ! PALcode format 

Operation: 

{ aO = Address of exception entry routine, 32-bit} 
{ superpage address} 
{ al = Exception class value} 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception} 

endif 
case al begin 

0: 
PANIC_ENTRY <- aO 
break; 

1: 

2: 

MEM_MGMT_ENTRY <- aO 
break; 

INTERRUPT_ENTRY <- aO 
break; 

SYSCALL_ENTRY <- aO 
break; 

4: 
GENERAL_ENTRY <- aO 
break; 

otherwise : 
{initiate panic exception} 

endcase; 

GPR State Change: 

aO - a5 are UNPREDICTABLE 

IPR State Change: 

*_ENTRY <-a0 
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Exceptions: 

Illegal Instruction 
Machine Checks 
Panic Exception 

Description: 

The wrentry instruction provides the registry of exception handling routines for 
the exception classes. The address in aO is registered for the exception class 
corresponding to the exception class value in a l . The kernel must use wrentry 
to register an exception handler for each of the exception classes. The relationship 
between the exception classes and class values is shown in Table 5-2. 

Table 5-2: Exception Class Values 
Exception Class Value 

Panic exceptions 0 
Memory management exceptions 1 
Interrupt exceptions 2 
System service call exceptions 3 
General exceptions 4 
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5.1.30 Write the Machine Check Error Summary Register 

Format: 

wrmces ! PALcode format 

Operation: 

{a0 = New values for the machine check error} 
{ summary (MCES) register.} 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception} 

endif 
vO «- MCES 
MCES<DMK> <- a0<5> 
MCES<DSC> <- a0<4> 
MCES<DPC> <- a0<3> 
if ( a0<2> EQ 1 ) then 

MCES<PCE> <- 0 
endif 
if ( a0<l> EQ 1 ) then 

MCES<SCE> <- 0 
endif 
if( a0<0> EQ 1 ) then 

MCES<MCK> <- 0 
endif 

GPR State Change: 

vO <- previous MCES 

IPR State Change: 

MCES «- aO 

Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

The wrmces instruction writes new values for the MCES internal processor register 
and returns in vO the previous values of that register. 
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5.1.31 Write Performance Counter Interrupt Control Information 

Format: 

wrperfmon 

Operation: 

if ( PSR<MODE> EQ User ) then 
{initiate illegal instruction exception} 

endif 

{ aO - a5 contain implementation-specific input values } 

GPR State Change: 

vO -«-implementation-dependent value 
aO - a5 are UNPREDICTABLE 

IPR State Change: 

None 

Exceptions: 

Illegal Instruction 
Machine Checks 

Description: 

The wrperfmon instruction controls any performance monitoring mechanisms in the 
processor and PALcode. The wrperfmon instruction arguments and actions are chip 
dependent, and when defined for an implementation, are described in Appendix D. 
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5.2 Unprivileged PALcode Instructions 

Table 5-3: Unprivileged PALcode Instruction Summary 
Mnemonic Description 

bpt Breakpoint trap 
callkd Call kernel debugger 
callsys Call system service 
gentrap Generate trap 
imb Instruction memory barrier 
kbpt Kernel breakpoint trap 
rdteb Read thread environment block pointer 
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5.2.1 Breakpoint Trap (Standard User-Mode Breakpoint) 

Format: 

bpt ! PALcode format 

Operation: 

See Sections 4.1.7.8 and 4.1.7.6 

GPR State Change: 

See Sections 4.1.7.8 and 4.1.7.6 

IPR State Change: 

See Sections 4.1.7.8 and 4.1.7.6 

Exceptions: 

Machine Checks 
Kernel Stack Invalid 

Description: 

The bpt instruction raises a breakpoint general exception to the kernel, setting a 
USER_BREAKPOINT breakpoint type. 
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5.2.2 Call Kernel Debugger 

Format: 

callkd ! PALcode format 

Operation: 

{vO = Type of breakpoint} 
See Sections 4.1.7.8 and 4.1.7.6 

GPR State Change: 

See Sections 4.1.7.8 and 4.1.7.6 

IPR State Change: 

See Sections 4.1.7.8 and 4.1.7.6 

Exceptions: 

Machine Checks 
Kernel Stack Invalid 

Description: 

The callkd instruction raises a breakpoint general exception to the kernel, setting 
the breakpoint type with the value supplied in vO. The callkd instruction implements 
special calls to the kernel debugger. 
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5.2.3 System Service Call 

Format: 

callsys ! PALcode format 

Operation: 

{ vO = System service code} 
{ a0-a5 = System call arguments} 
previousPSR <— PSR 
if( PSR<MODE> EQ UserMode ) then 

PSR<MODE> <— KernelMode 
! Establish trap pointer 

! Establish trap pointer 

tp * 
else 

tp ♦ 

endif 
TrlntSp(tp) 
TrlntFp(tp) 
TrlntRa(tp) 
TrlntGp(tp) 
TrFir(tp) 
TrPsr(tp) 
gp «- KGP 
sp <- tp 
fp <- tp 

- (IKSP - TrapFrameLength 

— (sp - TrapFrameLength) 

«- sp 
«- fp 
<— ra 
«- gp 
<— ra 
<— previousPSR 

tO «— previousPSR<MODE> 
tl <- THREAE ) 
RESTART_ADDRESS *- SYSCALL_ENTRY 

GPR State Change: 

fp 
gp 
sp 
to 
tl 

<-tp 

-KGP 
-tp 
-PSR 
-THREAD 

at and tO - t l 2 are UNPREDICTABLE 

IPR State Change: 

PSR<MODE> <- KernelMode 
RESTART_ADDRESS - SYSCALL_ENTRY 
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Exceptions: 

Machine Checks 
Kernel Stack Invalid 

Description: 

The callsys instruction raises a system service call exception to the kernel. The 
system service call has the software semantics of a standard procedure call. That 
is, arguments are passed in argument registers and on the stack, volatile registers 
are considered free, and nonvolatile registers must be preserved across the call. In 
addition to the standard calling sequence, callsys is passed the number of the desired 
system service in the return value register vO. Callsys does not interpret this value, 
but rather passes it directly to the operating system. 

Callsys switches to kernel mode if necessary, builds a trap frame on the kernel 
stack, and then enters the kernel at the kernel system service exception handler. 
See Section 4.1.6. 

The argument registers must be preserved through the instruction. Standard control 
information, such as the previous PSR, is stored in the trap frame. Callsys then 
restarts execution at the kernel system service call exception entry, passing the 
previous mode as a parameter in the tO register, and the current thread as a 
parameter in the t l register. 
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5.2.4 Generate a Trap 

Format: 

gentrap ! PALcode format 

Operation: 

{ aO = Trap number that identifies exception} 

See Sections 4.1.7.8 and 4.1.7.5 

GPR State Change: 

See Sections 4.1.7.8 and 4.1.7.5 

IPR State Change: 

See Sections 4.1.7.8 and 4.1.7.5 

Exceptions: 

Machine Checks 
Kernel Stack Invalid 

Description: 

The gentrap instruction generates a software general exception to the current thread. 
The exception code is generated from a trap number that is specified as an input 
parameter. Gentrap is used to raise software-detected exceptions such as bound 
check errors or overflow conditions. 
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5.2.5 Instruction Memory Barrier 

Format: 

imb ! PALcode format 

Operation: 

{ From within kernel mode, make processor } 
{ instruction stream coherent with main memory } 

GPR State Change: 

None 

IPR State Change: 

None 

Exceptions: 

Machine Checks 

Description: 

The imb instruction may only be called from kernel mode and guarantees that all 
subsequent instruction stream fetches are coherent with respect to main memory on 
the current processor. Imb must be issued before executing code in memory that has 
been modified (either by stores from the processor or DMA from an I/O processor). 
See Common Architecture, Chapter 6. 

User-mode software must not use the imb instruction, but rather use the appropriate 
Windows NT interface to make the I-cache coherent. 
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5.2.6 Kernel Breakpoint Trap 

Format: 

kbpt ! PALcode format 

Operation: 

See Sections 4.1.7.8 and 4.1.7.6 

GPR State Change: 

See Sections 4.1.7.8 and 4.1.7.6 

IPR State Change: 

See Sections 4.1.7.8 and 4.1.7.6 

Exceptions: 

Machine Checks 
Kernel Stack Invalid 

Description: 

The kbpt instruction raises a breakpoint general exception to the kernel, setting a 
KERNEL_BREAKPOINT breakpoint type. 
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5.2.7 Read Thread Environment Block Pointer 

Format: 

rdteb ! PALcode format 

Operation: 

vO «- TEB 

GPR State Change: 

vO «- TEB 

IPR State Change: 

None 

Exceptions: 

Machine Checks 

Description: 

The rdteb instruction returns in vO the contents of the TEB internal processor 
register for the currently executing thread (the base address of the thread 
environment block). See Section 2.7. 
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5.3 Debug PALcode and Free PALcode 

The debug PALcode is a functional superset of the production PALcode, which 
is specified in this document. The debug PALcode includes extra counters for 
performance evaluation and additional sanity checks. An unacceptable performance 
loss would occur if these features were implemented in production PALcode. 
Therefore, the debug PALcode is used in the laboratory only. 

The debug PALcode contains the following additional features: 

1. Kernel stack underflow/overflow checking 

2. Special I/O address checking 

3. Event counters 

5.3.1 Kernel Stack Checking 
The debug PALcode checks for kernel stack underflow and overflow whenever it 
allocates a trap frame and the previous mode was kernel mode. Two pages of kernel 
stack are allocated for each thread. 

• Underflow occurs when the thread's kernel mode stack pointer (SP) is greater 
than the initial kernel stack pointer (IKSP). 

• Overflow is detected whenever the SP would be less than (IKSP - 2 * PAGE_SIZE). 

Kernel stack underflow and overflow are indicated with a panic exception, described 
in Section 4.1.8. 

5.3.2 I/O Address Checking 
Alpha AXP systems that use standard buses and drivers cannot provide direct 
access to I/O space addresses (as would Intel-based systems). Instead, the Alpha 
AXP systems provide access to I/O space by allowing the standard device drivers 
to use address handles, provided by the HAL, that may be treated as standard I/O 
virtual addresses for all operations except the I/O accesses. The I/O accesses must 
be performed by specialized routines in the HAL that are able to convert the address 
handles to the actual virtual addresses used for the I/O space accesses. 

By convention, the HAL uses the range of numbers A000000016 through 
BFFFFFFF1 6 to represent these address handles whenever possible. This range 
of numbers falls into the upper half of the 32-bit superpage address range. The 
debug PALcode disables the 32-bit superpage in hardware and provides support for 
the lower half of the 32-bit superpage in PALcode (the range of addresses 80000000i6 
through 9FFFFFFF16). Addresses in the range Α0000000χ6 through BFFFFFFF1 6 
are treated as standard addresses and, since they are not mapped, cause memory 
management faults (translation not valid). This support in the PALcode allows easy 
and precise trapping of device driver code that attempts to access I/O addresses 
directly without using the intended access routines provided by the HAL. 
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Note: 

Physical system memory is limited to 512M bytes when running with the debug 
PALcode. 

5.3.3 Event Counters 
The debug PALcode provides software counters to count significant events within the 
PALcode. The PALcode also provides the privileged rdcounters instruction to allow 
kernel-mode code to read the counters. The counted events are implementation 
specific but must include the following: a separate counter for each of the different 
PALcode instructions, TB miss counts, and interrupt counts. The format of the data 
returned by rdcounters is also implementation specific. However, all counters must 
be 64-bit counters. 
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Chapter 6 

Initialization and Firmware Transitions (II—C) 

This chapter describes the four phases of PALcode environment initialization and 
the PALcode functions that provide the transition between the operating system and 
the firmware. 

6.1 Initialization 
From the perspective of the PALcode environment there are four phases of 
initialization: 

1. Internal system-specific processor state is established before the PALcode runs. 

2. PALcode initializes the internal processor state. 

3. The kernel uses PALcode initialization callback instructions to prepare the 
PALcode to handle exceptions. 

4. Interrupt tables are initialized so that standard interrupt support can be used. 

6.1.1 Pre-PALcode Initialization 
Firmware must set the processor and system to a known good state before the 
PALcode entry point is called. The firmware must initialize any internal processor 
registers that contain system-specific parameters such as timing or memory size 
information. This is necessary because the PALcode is entirely independent of the 
system. The firmware must ensure that all caches are coherent with main memory 
before calling the PALcode and that the memory system has been fully initialized. 

Implementation Note (Hardware): 

If system configuration information is written to write-only IPRs, those 
configuration IPRs cannot have any control bits that need to be written by the 
platform-independent operating system PALcode. If such bits were written in 
that manner, the firmware would have to pass the configuration information 
in internal processor state on a per-implementation basis. Hardware designers 
should consider allowing configuration registers to be read as well as written 
to allow the platform-independent layer to have visibility to the full internal 
processor state. 

6.1.2 PALcode Initialization 
The PALcode is called at its first instruction, at the base of the PALcode image. 
This is the reset vector for the PALcode. PALcode is called with the page frame 
number (PFN) of the PCR as a parameter in a l . All other argument registers must 
be preserved across PALcode initalization and are considered parameters to the 
operating system and are not interpreted by the PALcode. That is, the PALcode 
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is free to destroy volatile general-purpose integer and floating-point registers, but 
must preserve the nonvolatile register state across the call. Register volatility is 
listed in Section 1.2. The PALcode must accomplish the following initialization: 

1. Deassert all interrupt requests and disable all interrupt enables (this includes 
software, hardware and asynchronous trap interrupts). 

2. Set the processor status register (PSR) such that interrupts are enabled, 
interrupt request level is set to high level (7), and the mode is kernel. 

3. Invalidate all virtual translation buffers. 

4. Establish all required superpage mapping: 32-bit I-stream and D-stream, and 
43-bit D-stream mapping. 

5. Set the previous_PAL_BASE register to the previous value of the PAL_BASE 
register. 

6. Set the PAL_BASE register to the base address of the PALcode image. 

7. Set the interrupt level table so that no interrupts are enabled for all interrupt 
levels. 

8. Initialize all architected internal processor registers to their specified 
initialization values. 

9. Begin any required implementation-specific initialization, such as unlocking 
error registers. 

When the PALcode has completed its initialization, it resumes execution at the 
address passed in the ra (return address) register. 

6.1.3 Kernel Callback Initialization of PALcode 
The kernel uses the initpal and wrentry instructions to call back into the PALcode 
with the initialization values that allow exceptions to be handled properly between 
the PALcode and the kernel. 

The kernel uses initpal to establish per-processor context for the PALcode, system-
permanent context, and per-thread context for the initialization thread. The per-
processor context established for the PALcode is the interrupt stack pointer (ISP), 
the address of which is passed to the PALcode as a standard argument in 32-bit 
superpage format. The system-permanent context passed to initpal is the kernel 
global pointer (KGP), which is passed via the gp register. 

The initialization thread data passed in initpal are the page directory page, the 
initial kernel stack pointer, and the initialization thread address. The page directory 
page and thread address are passed as standard parameters; the kernel stack pointer 
is passed in the sp register. The initpal instruction also initializes the PALcode 
information section of the processor control region. 

The kernel uses wrentry to register the kernel exception entry points with the 
PALcode. The wrentry instruction is called once for each kernel exception entry 
point. Each call includes the exception entry point address and the number of the 
exception class it handles. 
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6.1.4 Interrupt Table Initialization 
The interrupt table values in the processor control region are system specific and 
so are not initialized until HAL initialization. Until these tables are initialized, 
the PALcode uses interrupt tables that are initialized such that all interrupts are 
disabled. An implementation may choose to cache some portion of the interrupt 
tables within the processor. If an implementation does cache the interrupt tables, 
it must provide implementation-specific PALcode instructions to allow the HAL to 
resynchronize the cached tables with the values written to the processor control 
region. 

6.2 Firmware Interfaces 

The firmware PALcode environment is decoupled from the operating system 
PALcode. The reboot/restart and swppal instructions permit the transition between 
the operating system and the firmware PALcode context. 

6.2.1 Reboot Instruction—Transition to Firmware PALcode Context 
The reboot instruction performs a controlled transition to the firmware PALcode 
context. Reboot essentially follows the semantics for a return to the ARC (Advanced 
RISC Computing) firmware environment, with the addition of Alpha AXP support for 
switching to the firmware PALcode. The reboot function accomplishes the following 
tasks: 

1. Retrieves the restart block pointer from the processor control region. 

The restart block is expected to be initialized by the firmware. The pointer to 
the restart block is passed by the firmware through the OS Loader to the kernel 
in the loader parameter block. The kernel writes the restart block pointer into 
the processor control region during startup. The restart block pointer must be a 
32-bit superpage address. 

The firmware environment is responsible for allocating memory for the entire 
restart block, including the saved state area that is specific to the Alpha AXP 
architecture. The firmware is also responsible for initializing the restart block, 
as specified by ARC. 

2. Verifies the restart block and if invalid, initiates alternate restart. 

The PALcode verifies the restart block by ensuring that the restart block 
signature is valid and that the restart block and saved state area lengths are of 
sufficient size to contain the state the PALcode saves. If the PALcode determines 
that the restart block is not valid, an alternate restart is initiated. 

The alternate restart allows the PALcode to restore the previous PALcode base 
to the PAL_BASE register and to transfer control to the previous PALcode base 
in the PALcode environment. 

Figure 6-1 shows the structure of the PAL_BASE register. 
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Figure 6-1 : PAL_BASE Internal Processor Register 

ADDR RAZ 

The hardware vectors into the appropriate PALcode handlers as offsets from the 
base in the PAL_BASE register. The offsets for each handler and the type of 
handler are implementation specific, except for the reset vector. The reset vector 
is the PALcode initialization vector and must begin at offset 0 within the PALcode 
image. 

Explicitly, PAL.BASE contains the value <PA_BITS..K>, where PA_BITS is the 
physical address bits for the implementation, and 2**K is the minimum PALcode 
byte alignment for the implementation. 

Note that the OS Loader uses 64K-byte boundaries, so the maximum value for K 
is 16. The minimum value for K is N, where 2**N = implementation page size. 

3. Saves the general register state in the restart block. 

The saved general register state includes all 32 integer registers and all 32 
floating-point registers. In addition, the floating-point control register is also 
saved. 

4. Saves the architected internal processor register state in the restart block. 

The internal processor register state is stored in its architected format so that it 
may be interpreted in the firmware environment. In addition, remaining space is 
allocated so that the total size of the restart block is 2040 bytes. The additional 
space can be used for per-implementation data. 

5. Saves the RESTART_ADDRESS in the restart block. 

The RESTART_ADDRESS is stored in the saved state area to allow return from 
reboot via the restart instruction. The HAL is responsible for populating the 
Version, Revision, and RestartAddress fields of the restart block header. 

6. Retrieves the firmware restart address from the processor control region. 

The firmware restart address is the address to which the PALcode transfers 
control upon completion of the reboot. The firmware restart address is 
passed from the firmware through the OS Loader to the kernel and stored 
in the processor control region as is the restart block pointer. The firmware 
restart address is read from the processor control region and written to the 
RESTART_ADDRESS register with implementation-specific (but well-defined) 
interpretation. 

7. Restores the PALcode base from the previous PALcode base. 

The PALcode captures the previous PALcode environment when it is first 
initialized. The PALcode base address is read from the PAL_BASE register and 
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written to the previous_PAL_BASE register. When the processor executes the 
reboot function, it restores the previous PALcode environment by writing the 
value in the previous_PAL_BASE register to the PAL_BASE register. 

Hardware Implementation Note: 
Several restrictions are imposed on the hardware design to support this model 
for switching PALcode environments: 

1. The currently active PALcode must be settable by writing the base address 
of the PALcode image to an internal processor register. 

2. No implementation can require, for the base of the PALcode, an alignment 
of greater than 64K bytes or less than the implementation page size. 

3. The internal processor register used to set the base of the PALcode must 
be readable for each bit that is writable. 

8. Completes the restart block by updating the boot status and the checksum. 

9. Restarts execution at the firmware restart address passing a pointer to the 
restart block in the aO register. 

The restart instruction is provided to reverse the work done by a reboot instruction 
and allows the processor to restart execution. The restart function performs the 
inverse of the tasks that were performed in the reboot. 

6.2.2 Reboot and Restart Tasks and Sequence 
The tasks and sequence required for performing a reboot and restart are described 
below: 

1. Firmware allocates restart block, initializing signature, length, ID fields, and the 
pointer to next restart block. Restart block pointer and firmware restart address 
are passed to the kernel. 

2. HAL populates the Version and Revision fields during HAL initialization. 

3. Some external event triggers a halt, a reboot, or a power-fail. 

4. The appropriate HAL routine populates the RestartAddress field of the restart 
block with the address of the HAL restart routine. 

5. The HAL executes the reboot instruction. 

6. The PALcode saves processor state, including the RESTART_ADDRESS register 
(the address in the HAL of the instruction after the reboot instruction). 

7. The PALcode transfers to the firmware environment. 

8. The firmware initializes a restart by calling the HAL restart routine (via the 
address in the restart block header). 

9. The HAL uses the swppal instruction to restore the operating system PALcode 
environment. 

10. The HAL uses the restart instruction to restore complete processor state. 
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11. The PALcode restores state and then returns execution to the instruction after 
the reboot instruction in the HAL. 

12. The HAL completes the restart. 

6.2.3 Swppal Instruction—Transition to Any PALcode Environment 
The swppal instruction is a flexible interface that allows kernel code to transition 
to any PALcode environment, as contrasted with reboot, which limits the caller to 
transition to the previous PALcode environment. 
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Chapter 1 

Console Subsystem Overview (III) 

On an Alpha AXP system, underlying control of the system platform hardware is 
provided by a console. The console: 

• Initializes, tests, and prepares the system platform hardware for Alpha AXP 
system software. 

• Bootstraps (loads into memory and starts the execution of) system software. 

• Controls and monitors the state and state transitions of each processor in a 
multiprocessor system in the absence of operating system control. 

• Provides services to system software that simplify system software control of and 
access to platform hardware. 

• Provides a means for a "console operator" to monitor and control the system. 

The console interacts with system platform hardware to accomplish the first three 
tasks. The mechanisms of these interactions are specific to the platform hardware; 
however, the net effects are common to all systems. Chapter 3 describes these 
functions. 

The console interacts with system software once control of the system platform 
hardware has been transferred to that software. Chapter 2 discusses the basic 
functions of a console and its interaction with Alpha AXP system software. 

The console interacts with the console operator through a virtual display device 
or console terminal. The console operator may be a person or a management 
application. The console terminal forms the interface between the console and a 
console presentation layer. 

In an Alpha AXP multiprocessor system, there is one primary processor and one or 
more secondary processors. The primary processor: 

• Can legally refer to the console I/O devices 

• Can legally send characters to the console terminal 

• Can legally receive characters from the console terminal 

• Has direct access to a BB_WATCH on the system 

• Is named in response to an inquiry as to which processor is primary 

All other processors in the system are secondary processors. 
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1.1 Console Implementations 
The implementation of an Alpha AXP console varies from system to system. 
Regardless of implementation, the console on each system provides the functionality 
described in this chapter and in Chapters 2 and 3. The console may be implemented 
as: 

• "Embedded," or co-resident in the hardware platform complex that contains the 
processors 

• "Detached," or resident on a separate and distinct hardware platform 

• Any hybrid of the above 

The distinction is somewhat arbitrary. A detached console may have cooperating 
special code that executes on one of the processors; an embedded console may have 
a cooperating management application that executes on a remote machine. 

Regardless of the actual implementation, each console must provide: 

1. A virtual display device, the default "console terminal". 

This device allows the console operator to issue commands and receive displays. 
In the absence of hardware errors and with the proper console-lock setting, the 
default console terminal device provides reliable communication with the rest of 
the console. 

2. Reliable access to console functionality by system software and the console 
operator. 

All console functionality must appear to be resident within the console at all 
times. All console functions must be accessible in a timely manner, without prior 
notification, and with sufficient reliability. 

3. Secure communications with system software and the console operator. 

All console communication paths must be able to be made secure by either 
physical measures or encryption methods. 

4. A mechanism by which the console can gain control of a processor that is 
executing system software. 

This mechanism must preserve the execution state of system software; it must 
be possible for the console to gain control of the processor, and subsequently 
continue system software execution successfully. 

5. A mechanism that locks the console. 

A console lock prohibits the user from accessing a selected subset (or all) of 
console functions. The console lock may be a console password, a keyswitch, 
jumper, or any other implementation-specific mechanism. The lock is either 
"locked" or "unlocked." 
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1.2 Console Implementation Registry 
This chapter, and Chapters 2 and 3, specify required console functions. Some of these 
functions have attributes that may vary with console implementation; consoles may 
also extend beyond the required functions. Console functions or attributes that may 
vary with implementation include: 

1. Supported console terminal blocks (CTBs) 

2. Supported environment variables 

3. Environment variable value formats, such as BOOT_DEV or BOOT.OSFLAGS 

4. Configuration data block format 

5. Supported callback routines 

6. Supported bootstrap media 

7. Implementation-specific HALT codes or messages 

The goal of the Alpha AXP console architecture is to promote a consistent 
interface across all Alpha AXP systems. Some console functionality is inherently 
implementation specific and cannot be required of all Alpha AXP systems; some 
may be applicable to more than one Alpha AXP system. To prevent the proliferation 
of interfaces and achieve commonality of function whenever possible, the Alpha AXP 
console architecture requires that: 

1. Any console function that is visible to system software which is not specified by 
these chapters must be registered with the Alpha AXP architecture group. 

2. Any console function which is visible to an on-site or remote console operator 
(including Field Service engineers) which is not specified by these chapters must 
be registered with the Alpha AXP architecture group. 

3. Whenever possible, implementations must use previously registered functions 
rather than inventing new variations. 

Console functions intended for use solely by development engineering or expert-level 
repair and diagnosis are excluded from the above. 

1.3 Console Presentation Layer 

The following functions are assumed to be provided in the console presentation layer: 

• BOOT (bootstrap the system) 

• CONTINUE (continue execution) 

• START -CPU (start a given secondary) 

• INITIALIZE (initialize system) 

• INITIALIZE -CPU (initialize a given processor) 

• HALT -CPU (force a given processor into console I/O mode) 
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• HALT -CRASH (cause a given processor to initiate a crash) 

1.4 Messages 

The console generates a binary message code to the console presentation layer to 
signal messages, such as audit trail or error messages. The console presentation 
layer interprets the binary code into something meaningful to the console operator. 

1.5 Security 

The means by which the console achieves a secure communications path with system 
software and with the console operator is implementation specific. Embedded 
consoles inherently have the capability of secure communications with system 
software. Detached consoles can achieve this security by residing in the same room 
as the Alpha AXP system and communicating with it over a private connection. 
Detached consoles can also achieve security by using an encrypted protocol over 
a shared connection. This latter method allows a workstation over a network to 
function as the console. 

1.6 Internationalization 

Wherever possible, console implementations should support the goals of 
internationalization: 

• Each message has a binary message code. The console presentation layer 
interprets the code into a meaningful message display of the appropriate 
language and characters. 

• Consoles should avoid explicitly interpreting character set encoding (such as 
ISO Latin-1). Character strings are to be viewed as simple byte strings. Thus, 
the GETC console callback routine supports from one-to-four-byte character 
encodings, depending on the currently selected language and character set; the 
PUTS routine outputs only a byte stream. 

• ASCII strings are used in certain fields of the HWRPB and certain interprocessor 
communications due to DEC Standard 12 and to present a common interface to 
system software. 

• The currently selected character set encoding and language to be used for the 
console terminal are defined by the CHAR_SET and LANGUAGE environment 
variables. 

• The end of a character string passed between the console and the operating 
system as an argument to a console callback routine is determined by passing 
its length. 

• Console callback routines should be written to be independent from character 
set encoding and language. At a minimum, every implementation must support 
ISO Latin-1 character set encodings, which requires the following properties: 
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1. The GETC console callback routine returns a one byte character (see 
Section 2.3.4). 

2. The PROCESSJŒYCODE console callback routine returns a one-byte 
character (see Section 2.3.4). 

3. English console presentation layers are strongly encouraged to use the actual 
values as defined in Table 2-6, rather than creating aliases. 

Other supported character set encodings are determined by platform product 
requirements. 

• The console presentation layer is independent of the required console 
functionality interface. 

Note: 

The chapters in Section III apply to both OpenVMS AXP and DEC OSF 
/l operating systems. The few functional descriptions that are unique to 
one operating system are described as such. However, because of contextual 
equivalence in this section and in the interests of brevity, any text concerning 
the OpenVMS AXP hardware privileged context block (HWPCB) applies equally 
to the DEC OSF/1 privileged context block (PCB). 
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Chapter 2 

Console Interface to Operating System Software (III) 

This chapter describes the interactions between the console subsystem and system 
software. These services depend on state that is shared between the console and 
system software. Shared state is contained in the Hardware Restart Parameter 
Block (HWRPB) and a number of environment variables. The HWRPB is a data 
structure that is directly accessed by both the console and system software; the 
environment variables are indirectly accessed by system software. Specifically, in 
this chapter: 

• Section 2.1 describes the HWRPB. 

• Section 2.2 describes the environment variables. 

• Section 2.3 describes the service, or callback, routines provided by the console to 
system software. 

• Section 2.4 describes the communication between the console and system 
software. 

2.1 Hardware Restart Parameter Block (HWRPB) 

The Hardware Restart Parameter Block (HWRPB) is a page-aligned data structure 
that is shared between the console and system software. The HWRPB is a critical 
resource during bootstraps, powerfail recoveries, and other restart situations. An 
overview of the HWRPB is shown in Figure 2 -1 . The individual HWRPB fields are 
shown in Figure 2-2 and described in Table 2 -1 . 

The console creates the HWRPB and the required per-CPU, CTB, CRB, MEMDSC, 
and DSRDB offset blocks as a physically contiguous structure during console 
initialization. Fields within the HWRPB and the required offset blocks are updated 
by the console and system software during and after system bootstrapping. The 
console must be able to locate the HWRPB and the required offset blocks at all times. 
Neither the console nor system software may move the HWRPB or the required offset 
blocks to different physical memory locations; subsequent operation of the system is 
UNDEFINED if such an attempt is made. 

The HWRPB and the required offset blocks must comprise a virtually contiguous 
structure at all times. Prior to transferring control to system software, the console 
maps the HWRPB and the required offset blocks into contiguous addresses beginning 
at virtual address 0000 0000 1000 000016 in the initial bootstrap address space. 
If system software subsequently changes this virtual mapping, any new mapping 
must preserve the relative offsets of all fields and blocks; all physically contiguous 
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Figure 2-1 : HWRPB Overview 
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pages must remain virtually contiguous. Some of the data structures located by 
HWRPB fields need not be contiguous with the HWRPB. The structures that may 
be discontiguous are the PALcode space(s), the logout area(s), the CRB pages, and 
the memory bitmaps located by the MEMDSC table. 
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All offset blocks must be at least quadword aligned. The starting address of an offset 
block is determined by adding the contents of the HWRPB offset field to the starting 
address of the HWRPB. For example, the starting address of the MEMDSC block is 
given by: 

MEMDSC Address = HWRPB address + MEMDSC OFFSET 
= HWRPB address + (HWRPB[200]) 

The total size of the HWRPB and the required offset blocks is on the order of 8K 
bytes to 16K bytes. The size is contained in the HWRPB_SIZE field at HWRPB [24]. 
The required offset blocks may be offset from the HWRPB in any order; the HWRPB 
offset fields must not be used to infer the size of the HWRPB or any offset block. 
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Figure 2-2: Hardware Restart Parameter Block Structure 
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Figure 2-2 (Cont.): Hardware Restart Parameter Block Structure 
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Table 2 - 1 : HWRPB Fields 

Offset Description 

HWRPB HWRPB PA1 

Starting physical address of the HWRPB field. This field is used by the 
console to validate the HWRPB. 

+08 HWRPB VALIDATION1 

Quadword containing "HWRPB<0><0><0>" (0000 0042 5052 5748i6). This 
field is used by the console to validate the HWRPB. 

+16 HWRPB REVISION1 

Format of the HWRPB. See Section 2.1.1. The HWRPB revision level for 
this version of the architecture specification is 6. 

+24 HWRPB SIZE1 

Size in bytes of the HWRPB and required physically contiguous TBB, per-
CPU, CTB, CRB, MEMDSC, CONFIG, FRU, and DSRDB offset blocks. 
Unsigned field. 

+32 PRIMARY CPU ID1·3 

WHAMI of the primary processor. System software modifies this field only 
at primary switch; see Section 3.5.6. Unsigned field. 

+40 PAGE SIZE1 

Number of bytes within a page for this Alpha AXP processor 
implementation. Unsigned field. 

+48 PA SIZE1 

Size of the physical address space in bits for this Alpha AXP processor 
implementation. PA SIZE must be 48 bits or less. Unsigned field. 

+56 MAX VALID ASN1 

Maximum ASN value allowed by this Alpha AXP processor implementa-
tion. Unsigned field. 

+64 SYSTEM SERIAL NUMBER1 

Full DEC STD 12 serial number for this Alpha AXP System. This octaword 
field contains a 10-character ASCII serial number determined at the time of 
manufacture; see DEC STD 12 for format information. See Section 2.1.1.1. 

+80 SYSTEM TYPE1 

Family or system hardware platform. See Section 2.1.1. Unsigned field. 

+88 SYSTEM VARIATION1·3 

Subtype variation of the system. This may include the member of the 
system family, and whether the system has optional features such as 
multiprocessor support or special power supply conditioning. See Sections 
2.1.1 and 2.1.1.2 for optional features. 

initialized by the console at cold system bootstrap only. Preserved unchanged by the console at all warm system 
bootstraps. 
3May be modified by system software. 
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Table 2-1 (Cont.): HWRPB Fields 

Offset Description 

+96 SYSTEM REVISION CODE1 

DEC STD 12 revision field for this Alpha AXP system. Four ASCII 
characters. See Section 2.1.1.1. 

+104 INTERVAL CLOCK INTERRUPT FREQUENCY1 

Number of interval clock interrupts per second (scaled by 4096) in this 
Alpha AXP system. Interrupts occur only if enabled. Unsigned field. 

+112 CYCLE COUNTER FREQUENCY1 

Number of SCC and PCC updates per second in this Alpha AXP system. 
See the RPCC instruction and, for OpenVMS AXP, the CALL_PAL RSCC 
instruction. Unsigned field. 

+120 VIRTUAL PAGE TABLE BASE2-3 

Virtual address of the base of the entire page table structure. The console 
sets this field at system bootstraps and restores the virtual page table base 
register (pointer) with this value at all processor restarts. System software 
is responsible for updating this field whenever the virtual page table base 
register (pointer) is modified. See Sections 3.4.1.2, 3.4.3.5, and 3.5.1. 

+128 Reserved 
Reserved for architecture use; SBZ. 

+136 TB HINT OFFSET1 

Unsigned offset to the starting address of the Translation Buffer Hint Block 
(TBB). See Section 2.1.2. 

+144 NUMBER OF PER-CPU SLOTS1 

Number of per-CPU slots present. Must be a number between 1 and 64, 
inclusive. See Section 2.1.3 for the per-CPU slot format. Unsigned field. 

+152 PER-CPU SLOT SIZE1 

Size in bytes of each per-CPU slot rounded up to the next integer multiple 
of 128. See Section 2.1.3. Unsigned field. 

+160 CPU SLOT OFFSET1 

Unsigned offset to the first per-CPU slot in the HWRPB. See Section 2.1.3. 

+168 NUMBER OF CTB1 

Number of Console Terminal Blocks (CTBs) contained in the CTB table. 
See Section 2.3.8.2. Unsigned field. 

+176 CTB SIZE1 

Size in bytes of the largest Console Terminal Block (CTB) contained in the 
CTB table. See Section 2.3.8.2. Unsigned field. 

1 Initialized by the console at cold system bootstrap only. Preserved unchanged by the console at all warm system 
bootstraps. 
2Initialized by the console at all system bootstraps (cold or warm). 
3 May be modified by system software. 
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Table 2-1 (Cont.): HWRPB Fields 

Offset Description 

+184 CTB OFFSET1 

Unsigned offset to the starting address of the Console Terminal Block 
(CTB) table. See Section 2.3.8.2. 

+192 CRB OFFSET1 

Unsigned offset to the starting address of the Console Callback Routine 
Block (CRB). See Section 2.3.8.1. 

+200 MEMDSC OFFSET1 

Unsigned offset to the starting address of the Memory Data Descriptor 
Table (MEMDSC). See Section 3.4.1.1. 

+208 CONFIG OFFSET1 

Unsigned offset to the starting address of the Configuration Data Table 
(CONFIG). If zero, no CONFIG table exists. See Section 2.1.4. 

+216 FRU TABLE OFFSET1 

Unsigned offset to the starting address of the Field Replaceable Unit Table 
(FRU). If zero, no FRU table exists. See Section 2.1.5. 

+224 SAVE TERM RTN VA23 

Starting virtual address of a routine that saves console terminal state. 
This routine is optionally provided by system software. See Section 3.5.7. 
Set to zero by the console at system bootstraps. 

+232 SAVE.TERM VALUE2-3 

Procedure value of the SAVE_TERM routine optionally provided by system 
software. The console copies this value into R27 before invoking the 
routine. See Section 3.5.7. Set to zero by the console at system bootstraps. 

+240 RESTORE.TERM RTN VA2-3 

Starting virtual address of a routine that restores console terminal state. 
This routine is optionally provided by system software. See Section 3.5.7. 
Set to zero by the console at system bootstraps. 

+248 RESTORE.TERM VALUE2 3 

Procedure value of the RESTORE_TERM routine optionally provided by 
system software. The console copies this value into R27 before invoking the 
routine. See Section 3.5.7. Set to zero by the console at system bootstraps. 

+256 RESTART RTN VA2·3 

Starting virtual address of a CPU restart routine provided by system 
software. The console restarts system software by transferring control 
to this routine. See Section 3.5. Set to zero by the console at system 
bootstraps. 

1 Initialized by the console at cold system bootstrap only. Preserved unchanged by the console at all warm system 
bootstraps. 
2Initialized by the console at all system bootstraps (cold or warm). 
3May be modified by system software. 
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Table 2-1 (Cont.): HWRPB Fields 

Offset Description 

+264 

+272 

+280 

+288 

+296 

+304 

+312 

RESTART VALUE2·3 

Procedure value of the CPU restart routine provided by system software. 
During the restart process, the console copies this value into R27 before 
transferring control to the CPU restart routine. See Section 3.5. Set to 
zero by the console at system bootstraps. 
RESERVED FOR SYSTEM SOFTWARE2-3 

Set to zero by the console at system Reserved for use by system software. 
bootstraps. 
RESERVED FOR HARDWARE1 

Reserved for use by hardware. 
HWRPB CHECKSUM2-3 

Checksum of all the quadwords of the HWRPB from offset [00] to [280], 
inclusive. Computed as a 64-bit sum, ignoring overflows. Used to validate 
the HWRPB during warm bootstraps, restarts, and secondary starts. Set 
by console initialization; recomputed and updated whenever a HWRPB 
field with offset [00] to [280], inclusive, is modified by the console or system 
software. 
RXRDY BITMASK2·3 

Secondary receive bitmask for interprocessor console communications. 
When transmitting a command to a secondary, the primary processor sets 
the RXRDY bit, which corresponds to the CPU ID of the secondary. The 
number of active bits in this field is determined by the number of per-CPU 
slots in HWRPB[144]. See Section 2.4. All bits are initialized as clear. 
TXRDY BITMASK2·3 

Secondary transmit bitmask for interprocessor console communications. 
When transmitting a message to the primary, the secondary processor 
sets the TXRDY bit, which corresponds to its CPU ID and requests an 
interprocessor interrupt to the primary. The number of active bits in this 
field is determined by the number of per-CPU slots in HWRPB [144]. See 
Section 2.4. All bits are initialized as clear. 
DSRDB OFFSET1 

Unsigned offset to the starting address of the Dynamic System Recognition 
Data Block. 

+(HWRPB[136]) TB HINT BLOCK2·3 

Quadword-aligned block that describes the characteristics of the 
translation buffer (TB) granularity hints. See Section 2.1.2. 

1 Initialized by the console at cold system bootstrap only Preserved unchanged by the console at all warm system 
bootstraps. 
2Initialized by the console at all system bootstraps (cold or warm). 
3May be modified by system software. 
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Table 2-1 (Cont.): HWRPB Fields 
Offset Description 

+(HWRPB[160]) Per-CPU SLOTS2·3 

128 byte-aligned slots that describe each processor in the system. See 
Section 2.1.3. 

+(HWRPB[184]) CTB TABLE1 

Quadword-aligned Console Terminal Block Table. Set at console 
initialization; modified by console terminal callbacks. See Section 2.3.8.2. 

+(HWRPB[192]) CONSOLE CALLBACK ROUTINE BLOCK2·3 

Quadword-aligned block that describes the location and mapping of the 
console callback routines. Set at system bootstrap; modified by console 
FIXUP callback. See Section 2.3.8.1. 

+(HWRPB[200]) MEMDSC1'3 

(+HWRPB[208]) 

(+HWRPB[216D 

Quadword-aligned Memory Data Descriptor Table. Set at console 
initialization; preserved across warm bootstraps. See Section 3.4.1.1. 
CONFIG BLOCK1 

Optional implementation-dependent configuration block. See Section 2.1.4. 
FRU TABLE1 

Optional implementation-dependent field replaceable unit table. See 
Section 2.1.5. 

(+HWRPB[312D DSRDB1 

Quadword-aligned Dynamic System Recognition Data Block (DSRDB). 

in i t ia l ized by the console at cold system bootstrap only. Preserved unchanged by the console at all warm system 
bootstraps. 
in i t i a l ized by the console at all system bootstraps (cold or warm). 
3May be modified by system software. 

2.1.1 Serial Number, Revision, Type, and Variation Fields 
The HWRPB contains several serial number, revision, type, and variation fields that 
describe the Alpha AXP system platform hardware and PALcode. System software 
uses these fields to identify hardware-dependent support code that must be loaded 
or enabled. These fields are examined early in operating system bootstrap; if one of 
the fields contains a value that is unrecognized or incompatible with the operating 
system, the bootstrap attempt fails. Diagnostic software uses these fields to guide 
field installation and upgrade procedures and for material and parts control. 

In multiprocessor systems, the processor type and PALcode revisions need not be 
identical for all processors. Console and system software can use these fields to 
determine if multiprocessor operation is viable. This evaluation may be performed by 
the running primary, the starting secondary, or a combination of both. For example, 
see Section 3.4.3.3. 
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2.1.1.1 Serial Number and Revision Fields 

The revision fields include: 

1. HWRPB revision—HWRPB[16] 

This field identifies the format of the HWRPB. Since the HWRPB is shared 
between the console and system software, both must agree on the field offsets, 
formats, and interpretations. 

2. System serial number and revision—HWRPB[64] and HWRPB[96] 

These fields identify the system platform hardware serial number and revision 
according to DEC STD 12. 

The system serial number and revision fields must be distinct from the 
processor serial number and revision fields in the per-CPU table, pointed to by 
HWRPB[152]. In particular, on multiprocessing systems, the system fields must 
not simply be replicated from the fields of the primary processor. The system 
fields must be constant regardless of which processor serves as primary and 
must have persistence across processor failures and/or replacement. 

3. Processor type and processor variation (capabilities)—SLOT[176] and SLOT[184] 

These per-CPU slot fields identify each Alpha AXP processor and its capabilities. 
The type field (SLOT[176]) contains a major and minor subfield. The major 
subfield identifies the processor family and the minor subfield identifies the 
particular membership in that family. 

The variation (capabilities) field (SLOT[184]) identifies any system-specific 
attributes (such as local memory or cache size). 

4. Processor Revision—SLOT[192] 

This per-CPU slot field identifies the processor hardware revision according to 
DEC STD 12. 

5. PALcode Revision—SLOT[168] 

This field identifies the PALcode revision required and/or in use by the processor. 
System software uses the PALcode variation and PALcode compatibility subfields. 
The variation subfield indicates whether the PALcode image includes extensions 
or functional variations necessary to a given operating system or application. 

Programming Note: 
For example, a PALcode variation may contain a different TB fill routine. 
System software (and optionally the console) uses the compatibility subfield 
to ensure that all processors in a multiprocessor system are using compatible 
PALcode images. 

PALcode revisions are specific to the system platform and processor major type. 
The file name of distributed PALcode images must contain sufficient information 
to distinguish the intended system platform and processor. 

6. PALcode Revisions Available—SLOT[464] 
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This field identifies the PALcode variant revisions that have been previously 
loaded on this processor. System software uses these fields to determine if a 
given PALcode variant and revision are present prior to PALcode switching. The 
format follows the PALcode revision field in SLOT[168]. 

2.1.1.2 System Type and Variation Fields 

The system type and system variation fields are HWRPB[80] and HWRPB[88]. 

These fields identify the Alpha AXP system platform. System software infers 
attributes such as physical address offsets and I/O device locations from the system 
type. The system type field contains the family and member identification numbers, 
along with the major and minor subfield identifiers. The system variation field is 
described in Table 2-2. 

The following system variations are defined: 

Table 2-2: System Variation Field (HWRPB[88]) 

Bits Description 

63-16 Reserved — MBZ 
15-10 System Type Specific (STS). Registered system identifiers for system member 

identification. 
9 GRAPHICS — If set, indicates that the platform contains an embedded graphics 

processor. Initialized by the console at all cold bootstraps. 
8 POWERFAIL RESTART — If set, indicates that the console should restart all 

available processors on a powerfail recovery. If clear, only the primary processor 
will be restarted. Cleared by the console at system bootstraps; may be set by system 
software. 

7-5 POWERFAIL — Indicates the type of powerfail (if any) implemented by this 
platform. See Section 3.5.3 for more information. Defined values include: 

<7:5> Interpretation 

000 Reserved 
001 United 
010 Separate 
011 Full battery backup of system platform hardware 

Initialized by the console at all cold bootstraps. 
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Table 2-2 (Cont.): System Variation Field (HWRPB[88]) 
Bits Description 

4-1 CONSOLE — Indicates the type of console. Defined values include: 

<4:1> Interpretation 

0000 Reserved 
0001 Detached service processor 
0010 Embedded console 
other Reserved for future use 

Initialized by the console at all cold bootstraps. 
0 MPCAP — If set, indicates this system platform is capable of being configured as a 

multiprocessor; all support for multiprocessing is present, even if only one processor 
is present. If clear, this system supports a uniprocessor only. Initialized by the 
console at all cold bootstraps. 

2.1.2 Translation Buffer Hint Block 
The Translation Buffer Hint Block (TBB) contains information on the characteristics 
of the instruction stream translation buffer (ITB) and data stream translation buffer 
(DTB) granularity hints (GH). All processors in a multiprocessor Alpha AXP system 
must implement the same granularity hints. The granularity hint fields are listed 
in Table 2-3. 

The TBB consists of 8 quadwords, 4 for each of the translation buffers (ITB and 
DTB). The 4 quadwords contain 16 word fields; each word contains the number of 
entries in the translation buffer that implement a combination of granularity hints 
(including none). 

Table 2-3: Granularity Hint Fields 
Offset 16 Granularity Hint 

0 

2 

4 

6 

8 

A 

C 

E 

None 

1 page 

8 pages 

1 and 8 pages 

64 pages 

1 and 64 pages 

8 and 64 pages 

1, 8, and 64 pages 
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Table 2-3 (Cont.): Granularity Hint Fields 

Offset^ Granularity Hint 

10 

12 

14 

16 

18 

1A 

1C 

IE 

512 pages 

1 and 512 pages 

8, and 512 pages 

1, 8, and 512 pages 

64 and 512 pages 

1, 64, and 512 pages 

8, 64, and 512 pages 

1, 8, 64, and 512 pages 

2.1.3 Per-CPU Slots in the HWRPB 
Information on the state of a processor is contained in a "per-CPU slot" data structure 
for that processor. The per-CPU slots form a contiguous array indexed by CPU ID. 
The starting address of the first per-CPU slot is given by the offset HWRPB [160] 
relative to the starting address of the HWRPB. The number of per-CPU slots is given 
in HWRPB [144]. Each per-CPU slot must be 128-byte-aligned to ensure natural 
alignment of the hardware privileged context block (HWPCB) at SLOT[0]. The slot 
size, rounded up to the nearest multiple of 128 bytes, is given in HWRPB [152]. 

CPU IDs are determined in an implementation-specific manner. The only 
requirement is that they be in the range of zero to the maximum number of 
processors the particular platform supports minus one. 

Software Note: 

OpenVMS AXP supports CPU IDs in the range 0-31 only. 

Each per-CPU slot contains information necessary to bootstrap, start, restart or 
halt the processor. The format is shown Figure 2-3 and Table 2-4. The hardware 
privileged context block (HWPCB) specifies the context in which the loaded system 
software will execute. 

The console must initialize the per-CPU slot for the primary processor prior to system 
bootstrap. The per-CPU slot fields for secondary processors are set by a combination 
of the console and system software. The console updates the halt information at 
error halts and prior to processor restarts. 

Slots corresponding to nonexistent processors are zeroed. There may be more 
per-CPU slots than are necessary in any given Alpha AXP system. A system 
implementation may reserve HWRPB space for processors that are not present at 
system bootstrap. 

An Alpha AXP system may support internally different, yet software compatible, 
PALcode for different processors in a multiprocessor implementation. Each per-CPU 
slot contains a PALcode memory descriptor that locates the PALcode used by that 
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processor. See Section 3.3.1 for information on PALcode loading and initialization on 
the primary processor and Section 3.4.3.3 for information on PALcode loading and 
initialization on secondary processors. 
The starting address of a per-CPU slot is calculated by: 

Slot Address = {CPU ID * slot size} + offset + HWRPB base 
= {CPU ID * HWRPB[152]} + HWRPB[160] + #HWRPB 

The address may be physical or virtual. 
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Figure 2-3: Per-CPU Slot in HWRPB 
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Table 2-4: Per-CPU Slot Fields 

Offset Description 

SLOT HWPCB3'6 

Hardware privileged context block (HWPCB) for this processor. See Table 3-8 for 
the contents as set by the console. 

+128 STATE FLAGS3·6 

Current state of this processor. See Table 2-5 for the interpretation of each bit. 
+136 PALCODE MEMORY SPACE LENGTH ^ 2 · 8 

Number of bytes required by this processor for PALcode memory. Unsigned field. 
+144 PALCODE SCRATCH SPACE LENGTH ^2-8 

Number of bytes required by this processor for PALcode scratch space. Unsigned 
field. 

+152 PA OF PALCODE MEMORY SPACE ^ 6 · 8 

Starting physical address of PALcode memory space for this processor. PALcode 
memory space must be page aligned. See Section 3.3.1 or Section 3.4.3.3. 

+160 PA OF PALCODE SCRATCH SPACE ^6-8 

Starting physical address of PALcode scratch space for this processor. PALcode 
scratch space must be page aligned. See Section 3.3.1 or Section 3.4.3.3. 

1 Initialized by the console for the primary at cold system bootstrap only Preserved unchanged by the console at all 
other times. 
2 Initialized by the console for a secondary at cold system bootstrap only. Preserved unchanged by the console at all 
other times. 
3Initialized by the console for the primary at all system bootstraps (cold or warm) and for a secondary prior to 
processor start. 
6 May by modified by system software for a secondary prior to processor start. 
8Support PALcode loading as described in Section 3.3. 
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Table 2-4 (Cont.): Per-CPU Slot Fields 

Offset Description 

+168 PALCODE REVISION1·2'5·6 

PALcode revision level for this processor. 

Bits Interpretation 

63-48 Maximum number of processors that can share this PALcode 
image 

47-32 PALcode compatibility (0-65535) 
0 Unknown 
1-65535 Compatibility revision 

31-24 SBZ 
23-16 PALcode variation (0-255) 
15-8 PALcode major revision (0-255) 
7-0 PALcode minor revision (0-255) 

This field identifies the PALcode revision required by the console and/or 
processor initialization. The major and minor PALcode revisions are set at 
console initialization; the remaining fields are set during PALcode loading and 
initialization. This field must be updated after PALcode switching to reflect the 
new PALcode environment. See Sections 2.1.1 and 3.4.3.3. 

+176 PROCESSOR TYPE1·2 

Type of this processor. 

Bits Interpretation 

63-32 Minor type 
31-0 Major type 

1 Initialized by the console for the primary at cold system bootstrap only. Preserved unchanged by the console at all 
other times. 
2 Initialized by the console for a secondary at cold system bootstrap only. Preserved unchanged by the console at all 
other times. 
5 May be modified by system software for the primary. 
6May by modified by system software for a secondary prior to processor start . 
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Table 2-4 (Cont.): Per-CPU Slot Fields 

Offset Description 

+184 PROCESSOR VARIATION1·2 

The following processor variations are defined: 

Bit Description 

63-3 RESERVED — MBZ 
2 PRIMARY ELIGIBLE (PE) — If set, indicates that this processor 

is eligible to become a primary processor. The processor has direct 
access to the console, a BB_WATCH, and all I/O devices. See 
Chapter 3. 

1 IEEE-FP — If set, indicates this processor supports IEEE floating-
point operations and data types. If clear, this processor has no such 
support. 

0 VAX-FP — If set, indicates this processor supports VAX floating-
point operations and data types. If clear, this processor has no such 
support. 

+192 PROCESSOR REVISION1·2 

Full DEC STD 12 revision field for this processor. This quadword field contains 
four ASCII characters. See Section 2.1.1. 

+200 PROCESSOR SERIAL NUMBER1·2 

Full DEC STD serial number for this processor module. This octaword 
field contains a 10-character ASCII serial number determined at the time of 
manufacture; see DEC STD 12 for format information. 

+216 PA OF LOGOUT AREA1·2 

Starting physical address of PALcode logout area for this processor. Logout areas 
must be at least quadword aligned. 

+224 LOGOUT AREA LENGTH1·2 

Number of bytes in the PALcode logout area for this processor. 
+232 HALT PCBB3·4 

Value of the PCBB register when a processor halt condition is encountered by 
this processor. Initialized to the address of the hardware privileged context block 
(HWPCB) at offset [0] from this per-CPU slot at system bootstraps or secondary 
processor starts. 

1 Initialized by the console for the primary at cold system bootstrap only. Preserved unchanged by the console at all 
other times. 
2 Initialized by the console for a secondary at cold system bootstrap only. Preserved unchanged by the console a t all 
other times. 
3Initialized by the console for the primary at all system bootstraps (cold or warm) and for a secondary prior to 
processor start . 
4Set by the console a t all processor halts. 
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Table 2-4 (Cont.): Per-CPU Slot Fields 
Offset Description 

+240 HALT PC3·4 

Value of the PC when a processor halt condition is encountered by this processor. 
Zeroed at system bootstraps or secondary processor starts. 

+248 HALT PS3-4 

Value of the PS when a processor halt condition is encountered by this processor. 
Zeroed at system bootstraps or secondary processor starts. 

+256 HALT ARGUMENT LIST3·4 

Value of R25 (argument list) when a processor halt condition is encountered by 
this processor. Zeroed at system bootstraps or secondary processor starts. 

+264 HALT RETURN ADDRESS3«4 

Value of R26 (return address) when a processor halt condition is encountered by 
this processor. Zeroed at system bootstraps or secondary processor starts. 

+272 HALT PROCEDURE VALUE3-4 

Value of R27 (procedure value) when a processor halt condition is encountered by 
this processor. Zeroed at system bootstraps or secondary processor starts. 

+280 REASON FOR HALT3·4 

Indicates why this processor was halted. Values include: 

Code ig Reason 

0 Bootstrap, processor start, or powerfail restart 
1 Console operator requested a system crash 
2 Processor halted due to kernel-stack not-valid halt 
3 Invalid SCBB 
4 Invalid PTBR 
5 Processor executed CALL_PAL HALT instruction in kernel 

mode 
6 Double error abort encountered 
7 Machine check while in PALcode environment 
8-FFF Reserved 
Other Implementation-specific 

Code is set to "0" at console initialization. 
+288 RESERVED FOR SOFTWARE6 

Reserved for use by system software. Zeroed at system bootstraps or secondary 
processor starts. 

3Initialized by the console for the primary at all system bootstraps (cold or warm) and for a secondary prior to 
processor start. 
4Set by the console at all processor halts. 
6May by modified by system software for a secondary prior to processor start. 
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Table 2-4 (Cont.): Per-CPU Slot Fields 

Offset Description 

+296 RXTX BUFFER AREA 
Used for interprocessor console communication. See Section 2.4. 

+464 PALCODE AVAILABLE1·2 

Block of 16 quadwords that list previously loaded PALcode variations that are 
available to the console or operating system for PALcode switching. The first offset 
(SLOT[464]) is reserved for an overall firmware revision field for this processor; 
the format of this field is platform specific. 
The format of each subsequent quadword follows the PALcode revision field 
(SLOT[168]). Each quadword is indexed by PALcode variant. If the quadword 
is non-zero, the PALcode variant has been loaded and the operating system may 
switch to that PALcode variant by passing the variant number to CALL_PAL 
SWPPAL. 

+592 PROCESSOR SOFTWARE COMPATIBILITY FIELD7 

Type of pre-existing processor that is software compatible with existing processor. 
Format follows SLOT[176]. 

Bits Interpretation 

63-32 Minor type 
31-0 Major type 

+600 RESERVED 
Reserved for Digital; SBZ. 

1 Initialized by the console for the primary at cold system bootstrap only. Preserved unchanged by the console at all 
other times. 
2 Initialized by the console for a secondary at cold system bootstrap only. Preserved unchanged by the console at all 
other times. 
7Initialized by the console at cold bootstrap and never written by system software or console. 
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Table 2-5: Per-CPU State Flags 
Bit Description 

63:24 RESERVED; MBZ. 

23:16 HALT REQUESTED 3 · 5 6 

Indicates the console action requested by system software executing on this 
processor. Values include: 

Codeie Reason 

0 Default (no specific action) 
1 SAVE_TERM/RESTORE_TERM exit 
2 Cold Boots t rap reques ted 
3 Warm Boots t rap reques ted 
4 Remain ha l t ed (no re s t a r t ) 
O the r Reserved 

Set to "0" at system bootstraps and secondary processor starts. May be set to non-
zero by system software prior to processor halt and subsequent processor entry into 
console I/O mode. See Sections 3.5.7 and 3.4.5. 

15:9 RESERVED; MBZ. 

8 PALCODE LOADED (PL) 1 2 ' 6 

This bit indicates that this processor's PALcode image has been loaded into the 
address given in the processor's slot PALcode memory space address field. See 
Sections 3.3.1 and 3.4.3.3. 

7 PALCODE MEMORY VALID (PMV) x>2>6 

This bit indicates that this processor's PALcode memory and scratch space addresses 
are valid. Set after the necessary memory is allocated and the addresses are written 
into the processor's slot. See Sections 3.3.1 and 3.4.3.3. 

6 PALCODE VALID (PV)1'2 

This bit indicates that this processor's PALcode is valid. Set after PALcode has been 
successfully loaded and initialized. See Sections 3.3.1 and 3.4.3.3. 

5 CONTEXT VALID (CV)3<6 

This bit indicates that the HWPCB in this slot is valid. Set after the console or 
system software initializes the HWPCB in this slot. See Sections 3.3.1 and 3.4.3. 

1 Initialized by the console for primary at cold system bootstrap only. Preserved unchanged by the console at all 
other times. 
2 Initialized by the console for a secondary at cold system bootstrap only. Preserved unchanged by the console at all 
other times. 
3Initialized by the console for the primary at all system bootstraps (cold or warm) and for a secondary prior to 
processor start . 
5 May be modified by system software for the primary. 
6May by modified by system software for a secondary prior to processor start . 
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Table 2-5 (Cont.): Per-CPU State Flags 
Bit Description 

4 OPERATOR HALTED (OH)3·4 

This bit indicates that this processor is in console I/O mode as the result of explicit 
operator action. See Section 3.5.8. 

3 PROCESSOR PRESENT (PP)1·2 

This bit indicates that this processor is physically present in the configuration. 
2 PROCESSOR AVAILABLE (PA)1·2 

This bit indicates that this processor is available for use by system software. The 
PA bit may differ from the PP bit based on self-test or other diagnostics, or as the 
result of a console command that explicitly sets this processor unavailable. 

1 RESTART CAPABLE (RC)3·4·5'6 

Indicates that system software executing on this processor is capable of being 
restarted if a detected error halt, powerfail recovery, or other error condition occurs. 
Cleared by the console and set by system software. See Sections 3.4.1.3, 3.4.3.6, and 
3.5.1. 

0 BOOTSTRAP IN PROGRESS (BIP) 35>6 

For the primary, this bit indicates that this processor is undergoing a system 
bootstrap. For a secondary, this bit indicates that a CPU start operation is in 
progress. Set by the console and cleared by system software. See Sections 3.4.1.3, 
3.4.3.6, and 3.5.1. 

1 Initialized by the console for primary at cold system bootstrap only. Preserved unchanged by the console at all 
other times. 
2 Initialized by the console for a secondary at cold system bootstrap only. Preserved unchanged by the console at all 
other times. 
3Initialized by the console for the primary at all system bootstraps (cold or warm) and for a secondary prior to 
processor start . 
4Set by the console at all processor halts. 
5 May be modified by system software for the primary. 
6May by modified by system software for a secondary prior to processor start . 

2.1.4 Configuration Data Block 
Systems may have a Configuration Data Block (CONFIG). The format of the block 
and whether it exists in a system is implementation specific. If present, the block 
must be mapped in the bootstrap address space. The CONFIG offset at HWRPB[208] 
contains the block offset address; if no CONFIG block exists, the offset is zero. The 
first quadword of a CONFIG block must contain the size in bytes of the block. The 
second quadword must contain a checksum for the block. The checksum is computed 
as a 64-bit sum, ignoring overflows, of all quadwords in the configuration data block 
except the checksum quadword. 
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2.1.5 Field Replaceable Unit Table 
Systems may have a field replaceable unit (FRU) table. The format of the table and 
whether it exists in a system is implementation specific. If present, the table must 
be mapped in the bootstrap address space. The FRU table offset at HWRPB[216] 
contains the table offset address; if no FRU table exists, the offset is zero. 

2.2 Environment Variables 

The environment variables provide an easily extensible mechanism for managing 
complex console state. Such state may be variable length, may change with system 
software, may change as a result of console state changes, and may be established 
by the console presentation layer. Environment variables may be read, written, or 
saved. 

An environment variable consists of an identifier (ID) and a byte stream value 
maintained by the console. There are three classes of environment variables: 

1. Common to all implementations: ID = 0 to 3F16. 

These have meaning to both the console and system software. All consoles must 
implement all of these environment variables. 

2. Specific to a given console implementation: ID = 40 to 7F16. 

These have meaning to a given console implementation and system software 
implementation. Support for these environment variables is optional. 

3. Specific to system software: ID = 80 to FF1 6. 

These have meaning to a given system software application or implementation; 
the console simply passes these environment variables between the console 
presentation layer and the target application without interpretation. Support 
for these environment variables is optional. 

If a console supports optional environment variables, they must be described in the 
relevant console implementation specification and registered with the Alpha AXP 
architecture group. 

The value, format, and size of each environment variable is dependent on the 
environment variable and the console implementation. The size of an environment 
variable value is specified in bytes. The byte stream value of most environment 
variables consists of an ASCII string. 

The booting environment variables, BOOT_DEV, BOOTDEFJ3EV, and BOOTED, 
DEV, contain values that can consist of multiple fields and lists. For those variables, 
the values are parsed as follows: 

1. Each field is delimited by one and only one space " " (20χ6). 

2. Each list element is delimited by one and only one comma "," (2C16). 

3. Any numeric quantities are expressed in decimal. 

4. All characters are case-blind and may be expressed in uppercase or lowercase. 
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Other examples of environment variables that have list values are BOOT_DEV, 
BOOTED.OSFLAGS, and DUMP.DEV. 

Programming Note: 

For example, BOOT_DEV might consist of "0 4 MSCP,0 1 MOP" and BOOT_ 
OSFLAGS might consist of "7,2,28*. 

System software uses the console environment variable routines to access the 
environment variables. Each environment variable is identified by an identification 
number (ID). If the console resolves the ID, the associated byte stream value is 
returned. The console environment variable routines present system software with 
a consistent interface to environment variables regardless of the presentation layer 
and internal console representation. The console operator interacts with the console 
presentation layer to access environment variables. See Section 1.3 for details. 

In a multiprocessor system, the console must ensure that the dynamic state created 
by the environment variables is common to all processors. It must not be possible 
for a value observed on a secondary to differ from that observed on the primary 
or another secondary. This is necessary to support bootstrapping, restarting a 
processor, and switching the primary. 

Some environment variables contain critical state that must be maintained across 
console initializations and system power transitions. Other environment variables 
contain dynamic state that must be initialized at console initialization and retained 
across warm bootstraps. Still others contain dynamic state that is initialized at each 
system bootstrap. 

Environment variable values that must be maintained across console initializations 
must be retained in some sort of nonvolatile storage. Default values for these 
environment variables must be set prior to system shipment. Thus, there are three 
possible values: the dynamic value, the default value retained in nonvolatile storage, 
and the initial default value set in nonvolatile storage prior to system shipment. 
The console need not preserve the initial default value. If console implementation 
preserves the initial default value, that value is accessible only to the console 
presentation layer; system software accesses only the dynamic and default (last 
written) values. The dynamic and default values may differ at any time after console 
initialization as the result of changes by system software or the console operator. 

The internal representation and implementation mechanisms of environment 
variables is at the complete discretion of the console and is unknown to both 
system software and the console presentation layer. The realization of the required 
nonvolatile storage is also implementation specific. 

Table 2—6 lists the environment variables maintained by the console. Each 
environment ID is also assigned a symbolic name that is used to reference 
the environment variable elsewhere in this specification. Tables 2-7 and 2-8, 
respectively, list supported languages and character sets. 
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Table 2-6: Required Environment Variables 
Environment Var 

Π>!6 Symbol Description 

00 

01 AUTCLACTION1'2 

02 BOOTJDEV2 

03 BOOTDEF.DEV1 2 

04 BOOTED_DEV4 

05 BOOT.FILE1 '2 

Reserved 

Console action following an error halt or powerup. Defined 
values and the action invoked are: 

- "BOOT" (544F 4F4216) bootstrap 

- "HALT" (544C 4148i6) halt 

- "RESTART" (54 5241 5453 455216) restart 

Any other value causes a halt; The default value when the 
system is shipped is "HALT". See Section 3.1.1. 

Device list used by the last (or currently in progress) 
bootstrap attempt. The console modifies BOOTJDEV at 
console initialization and when a bootstrap attempt is 
initiated by a BOOT command. The value of BOOT_DEV is 
set from the device list specified with the BOOT command 
or, if no device list is specified, BOOTDEF_DEV. The 
console uses BOOT_DEV without change on all bootstrap 
attempts that are not initiated by a BOOT command. See 
Section 3.4.1.4. The format is independent of the console 
presentation layer. 

Device list from which bootstrapping is to be attempted 
when no path is specified by a BOOT command. See 
Section 3.4.1.4. The format follows BOOTJDEV. The 
default value when the system is shipped indicates a valid 
implementation-specific device or NULL (OOig). 

Device used by the last (or currently in progress) bootstrap 
attempt. Value is one of the devices in the BOOT_DEV 
list. See Section 3.4.1.4. The format is independent of the 
console presentation layer. 

File name to be used when a bootstrap requires a file 
name and when the bootstrap is not the result of a 
BOOT command or when no file name is specified on a 
BOOT command. The console passes the value between 
the console presentation layer and system software 
without interpretation; the value is preserved across warm 
bootstraps. The default value when the system is shipped 
is NULL (0016). 

1 Nonvolatile. The last value saved by system software or set by console commands is preserved across system 
initializations, cold bootstraps, and long power outages. 
2Warm nonvolatile. The last value set by system software is preserved across warm bootstraps and restarts. 
4Read-only. The variable cannot be modified by system system software or console commands. 
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Table 2-6 (Cont.): Required Environment Variables 
Environment Var 

ID ig Symbol Description 

06 BOOTED_FILE4 

07 BOOT.OSFLAGS1·2 

08 BOOTED.OSFLAGS4 

09 BOOT.RESET1'2 

0A DUMP.DEV1'2 

File name used by the last (or currently in progress) 
bootstrap attempt. The value is derived from BOOTJFILE 
or the current BOOT command. The console passes the 
value between the console presentation layer and system 
software without interpretation. 

Additional parameters to be passed to system software 
when the bootstrap is not the result of a BOOT command or 
when none is specified on a BOOT command. The console 
preserves the value across warm bootstraps and passes the 
value between the console presentation layer and system 
software without interpretation. The default value when 
the system is shipped is NULL (OOig). 

Additional parameters passed to system software during 
the last (or currently in progress) bootstrap attempt. The 
value is derived from BOOT_OSFLAGS or the current 
BOOT command. The console passes the value between 
the console presentation layer and system software without 
interpretation. 

Indicates whether a full system reset is performed in 
response to an error halt or BOOT command. Defined 
values and the action invoked are: 

- "OFF" (46 464Fie) warm bootstrap, no full system reset 
is performed. 

- "ON" (4E4Fj6) cold bootstrap, a full system reset is 
performed. 

See Sections 3.4.1 and 3.4.2. The default value when the 
system is shipped is implementation specific. 

Device used to write operating system crash dumps. The 
format follows BOOTED_DEV and is independent of the 
console presentation layer. The value is preserved across 
warm bootstraps. The default value when the system 
is shipped indicates an implementation-specific device or 
NULL (0016). 

1 Nonvolatile. The last value saved by system software or set by console commands is preserved across system 
initializations, cold bootstraps, and long power outages. 
2Warm nonvolatile. The last value set by system software is preserved across warm bootstraps and restarts. 
4Read-only. The variable cannot be modified by system system software or console commands. 
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Table 2-6 (Cont.): Required Environment Variables 

Environment Var 
ID ig Symbol Description 

OB ENABLE AUDIT12 

OC 

OD 

OE 

OF 

LICENSE1-4 

CHAR.SET1'2 

LANGUAGE1·2 

TTY_DEV 1 2 ' 4 

10-3F 
40-7F 
80-FF 

Indicates whether audit trail messages are to be generated 
during bootstrap. Defined values and the action invoked 
are: 

- "OFF" (46 464F16). Audit trail messages suppressed. 

- "ON" (4E4F16). Audit trail messages generated. 

The default value when the system is shipped is "ON." 
Software license in effect. The value is derived 
in an implementation-specific manner during console 
initialization. 
Current console terminal character set encoding. Defined 
values are given in Table 2-8. The default value when the 
system is shipped is determined by the manufacturing site. 
Current console terminal language. Defined values are 
given in Table 2-7. The default value when the system 
is shipped is determined by the manufacturing site. 
Current console terminal unit. Indicates which entry of the 
CTB table corresponds to the actual console terminal. The 
value is preserved across warm bootstraps. The default 
value is "0" (30i6). 
Reserved for Digital. 
Reserved for console implementation use. 
Reserved for system software use. 

nonvolatile. The last value saved by system software or set by console commands is preserved across system 
initializations, cold bootstraps, and long power outages. 
2Warm nonvolatile. The last value set by system software is preserved across warm bootstraps and restarts. 
4Read-only. The variable cannot be modified by system system software or console commands. 

Table 2-7: Supported Languages 

LANGUAGE 16 Language 

0 None (cryptic) 

30 Dansk 

32 Deutsch 

34 Deutsch (Schweiz) 

36 English (American) 

38 English (British/Irish) 

Character Set 

ISO Latin-1 

ISO Latin-1 

ISO Latin-1 

ISO Latin-1 

ISO Latin-1 

ISO Latin-1 

GETC 
Bytes 
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Table 2-7 (Cont.): Supported Languages 

GETC 
LANGUAGE 16 Language Character Set Bytes 

3A 

3C 

3E 

40 

42 

44 

46 

48 

4A 

4C 

4E 

Espanol 

Francais 

Francais (Canadian) 

Francais (Suisse Romande) 

Italiano 

Nederlands 

Norsk 

Portugues 

Suomi 

Svenska 

Vlaams 

ISO Latin-1 1 

ISO Latin-1 1 

ISO Latin-1 1 

ISO Latin-1 1 

ISO Latin-1 1 

ISO Latin-1 1 

ISO Latin-1 1 

ISO Latin-1 1 

ISO Latin-1 1 

ISO Latin-1 1 

ISO Latin-1 1 

Table 2-8: Supported Character Sets 
CHAR_SET16 Character Set 

0 ISO Latin-1 
Other Reserved. 

2.3 Console Callback Routines 
System software can access certain system hardware components through a set 
of callback routines provided by the Alpha AXP console. These routines give 
system software an architecturally consistent and relatively simple interface to those 
components. 

All of the console callback routines may be used by system software when the 
operating system has only restricted functionality, such as during bootstrap or crash. 
When invoked in this context, the console may assume full control of system platform 
hardware. Some of the console callback routines may be used by system software 
when the operating system is fully functional. Such usage imposes constraints on 
the console implementation. 

All routines must be called by system software executing in kernel mode. All routines 
require that the HWRPB and the per-CPU, CTB, and CRB offset blocks are virtually 
mapped and kernel read/write accessible. If these conditions are not met, the results 
are UNDEFINED. If conditions from within user mode are not met, the results are 
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UNPREDICTABLE. Some of the routines execute correctly only at or above certain 
IPLs. 

The routines must never modify any processor registers except those explicitly 
indicated by the routine descriptions. 

2.3.1 System Software Use of Console Callback Routines 
The console callback routines present an environment to the operating system in 
which the following behavior must be implemented. These routines must: 

• Not alter the current IPL 

• Not alter the current execution mode 

• Not disable or mask interrupts 

• Not alter any registers except as explicitly denned by the routine interface 

• Not alter the existing memory management policy 

• Not usurp any existing interrupt mechanisms 

• Be interruptable 

• Ensure timely completion 

Once the operating system is bootstrapped, the console must not reclaim resources 
transferred to that operating system. This includes both the issuing and servicing 
of I/O device interrupts, interprocessor interrupts, and exceptions. 

It is the responsibility of the console implementation to ensure that these console 
callback routines may be invoked at multiple IPLs, may be interrupted, and may be 
invoked by multiple system software threads. The operation of these routines must 
appear to be atomic to the calling system software even if that software thread is 
interrupted. 

In a multiprocessor system, some console routines may be invoked only on the 
primary processor. A secondary processor may invoke only a subset of these routines 
and then only under a limited set of conditions. These conditions are explicitly stated 
in the routine descriptions; if violated, the results are UNDEFINED. 

2.3.2 System Software Invocation of Console Callback Routines 
With the exception of the FIXUP routine, all of the routines are accessed uniformly 
through a common DISPATCH procedure. The target routine is identified by a 
function code. All console callback routines are invoked using the Alpha AXP 
standard calling conventions. 

Any memory management exceptions generated by incorrect mapping or 
inaccessibility of console callback routine parameters produces UNDEFINED 
results. This occurs naturally for those console callback routines that are intended 
for use while the operating system is fully functional; these routines execute in the 
unmodified context of that operating system. 
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For those routines intended for use only while the operating system has restricted 
functionality, the DISPATCH routine must ensure that any conflicts in mapping or 
accessibility are resolved prior to permitting the console to gain control of the system 
platform hardware. 

2.3.3 Console Callback Routine Summary 

The console callback routines fall into four functional groups: 

1. Console terminal interaction 

2. Generic I/O device access 

3. Environment variable manipulation 

4. Miscellaneous 

The hexadecimal function code, name, and function for each routine are summarized 
in Table 2-9. 

Table 2-9: Console Callback Routines 
Codeie Name Funct ion Invoked 

Console Terminal Routines 

01 

02 

03 

04 

05 

06 

07-F 

GETC 

PUTS 

RESET.TERM 

SET_TERM_INT 

SET_TERM_CTL 

PROCESSJŒYCODE 

Get character from console terminal 

Put byte stream to console terminal 

Reset console terminal to default 

Set console terminal interrupts 

Set console terminal controls 

Process and translate keycode 

Reserved 

Console Generic I/O Device Routines 

10 

11 

12 

13 

14 

15-1F 

OPEN 

CLOSE 

IOCTL 

READ 

WRITE 

Open I/O device for access 

Close I/O device for access 

Perform I/O device-specific operations 

Read I/O device 

Write I/O device 

Reserved 
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Table 2-9 (Cont.): Console Callback Routines 
Codejg Name Function Invoked 

Console Environment Variable Routines 

20 
21 
22 
23 

SET.ENV 
RESETJENV 
GET.ENV 
SAVE ENV 

Set (write) an environment variable 
Reset (default) an environment variable 
Get (read) an environment variable 
Save current environment variables 

Console Miscellaneous Routines 

30 PSWITCH Switch primary processor 
(None) FIXUP Remap console callback routines 
(None) DISPATCH Access console callback routine 
Other Reserved 

All Alpha AXP consoles must implement: 

• All console terminal routines except PROCESSJKEYCODE. 

• All console generic I/O device routines. 

• All environment variable routines except SAVE_ENV. 

• The FIXUP and DISPATCH miscellaneous routines. 

The PSWITCH routine is required for all Alpha AXP multiprocessor systems that 
support dynamic primary switching. See Section 3.5.6. 

2.3.4 Console Terminal Routines 
Alpha AXP consoles provide system software with a consistent interface to the 
console terminal, regardless of the physical realization of that terminal. This 
interface consists of the console terminal block (CTB) table and a number of console 
terminal routines. Each CTB contains the characteristics of a terminal device that 
can be accessed through the console terminal routines; see Section 2.3.8.2. 

There is only one console terminal. The CTB Table may contain multiple CTBs and 
the console terminal routines may be used to access multiple terminal devices. Each 
terminal device is identified by a "unit number" that is the index of its CTB within the 
CTB table. The TTY_DEV environment variable indicates the unit, hence the CTB, 
of the console terminal. The console terminal unit is determined at system bootstrap 
and cannot be altered by system software. Console terminal device interrupts are 
delivered at the console terminal device IPL to the primary processor; interrupts can 
be redirected to a secondary only when switching the primary processor. 

The console terminal routines permit system software to access the console terminal 
in a device-independent way. These routines may be invoked while the operating 
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system is fully functional as well as during operating system bootstrap or crash. All 
console terminal routines are subject to the constraints given in Section 2.3.1. These 
routines must: 

• Not alter the current IPL or current mode. 

These routines must be invoked in kernel mode at or above the console terminal 
device IPL. 

• Not alter the existing memory management policy. 

All internal pointers must have been remapped by FIXUP. 

• Not block interrupts. 

The operating system must be capable of continuing to receive hardware 
interrupts at higher IPLs. 

• Be interruptible and re-entrant. 

These routines may be invoked at multiple IPLs and their execution may be 
interrupted. However, console terminal callback operations are not necessarily 
atomic. In the event of re-entrant invocations, it is UNPREDICTABLE whether 
or not the interrupted operation will fail and characters may be transmitted or 
received out of order. 

The time required for console terminal routines to complete is UNPREDICTABLE; 
however, a console implementation will attempt to minimize the time whenever 
possible. 

Software Note: 

Implementations must limit the execution time to significantly less than the 
interval clock interrupt period. A return after partial operation completion is 
preferable to long latency. 

When invoking these routines, system software must: 

• Be executing in kernel mode at or above the console terminal device IPL. 

If these routines are invoked in other modes, their execution causes 
UNPREDICTABLE operation. If invoked at lower IPLs, their execution causes 
UNDEFINED operation. 

• Be executing on the primary processor in a multiprocessor configuration. 

If these routines are invoked on secondary processors in kernel mode, their 
execution causes UNDEFINED operation. 

• Be prepared to service any resulting console terminal interrupts, if enabled. 

System software must provide valid interrupt service routines for the console 
terminal transmit and receive interrupts. The operating system interrupt service 
routines must be established prior to enabling interrupts; otherwise the operation 
of the system is UNDEFINED. 
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Programming Note: 
Any console terminal interrupt service routines established by the console 
prior to transferring control to operating system software are not transferred 
to the operating system nor are they remapped by FIXUP. Any console 
terminal interrupts will be delivered only after the operating system lowers 
IPL from the console terminal device IPL. 

Implementation Note: 
The implementation of console terminal I/O interrupts is specific to system 
hardware platform. An example of implementation-specific characteristics is 
console terminal SCB vectors. 
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2.3.4.1 GETC - Get Character from Console Terminal 

Format: 

char = DISPATCH ( GETC,unit ) 

Inputs: 

GETC 
unit 
retadr 

= R16; 
= R17; 
= R26; 

GETC function code - 01 1 6 

Terminal device unit number 
Return address 

Outputs: 

char = RO; Returned character and status: 
R0<63:61> Ό00' Success, character received 

Ό0Γ Success, character received, more 
to be read 

4100' Failure, character not yet ready 
for reception 

'110' Failure, character received with 
error 

Ί 1 Γ Failure, character received with 
error, more to be read 

R0<60:48> Device-specific error status 
R0<47:40> SBZ 
R0<39:32> Terminal device unit number returning 

character 
R0<31:0> Character read from console terminal 

GETC attempts to read one character from a console terminal device and, if 
successful, returns that character in R0<31:0>. The character is not echoed on the 
terminal device. The size of the returned character is from one to four bytes and is 
a function of the current character set encoding and language (see Table 2-7). The 
routine performs any necessary keycode mapping. 

For implementations that support multiple directly addressable terminal devices, 
R17 contains the unit number from which to read the character. If the 
implementation does not support multiple terminal devices or if the devices are not 
directly addressable, R17 should be zero. The unit number from which the character 
was read is returned in R0<39:32>. If the implementation does not support multiple 
terminal devices, R0<39:32> is returned as zero. 

GETC returns character reception status in R0<63:61>. If received characters are 
buffered by the console terminal, R0<61> is set to T whenever additional characters 
are available. If GETC returns a character without error, R0<63:62> is set to Ό0\ 
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If no character is yet ready, R0<63:62> is set to '10'. If an error is encountered 
obtaining a character, R0<63:62> is set to ΊΓ; examples of errors during character 
reception include data overrun or loss of carrier. 
When an error is returned by GETC, the contents of R0<31:0> and R0<60:48> depend 
on the capabilities of the underlying hardware. Implementations in which the 
hardware returns the character in error must provide that character in R0<31:0>. 
Additional device-specific error status may be contained in R0<60:48>. 

When appropriate, GETC performs special keyboard operations such as turning 
keyboard LEDs on or off. Such action is based on the incoming stream of keycodes 
delivered by the console terminal. 
The return address indicated by R26 should be mapped and kernel executable. 
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2.3.4.2 PROCESS_KEYCODE - Process and Translates Keycode 

Format: 

char DISPATCH( PROCESS_KEYCODE,unit,keycode,again) 

Inputs: 

PROCESS.KEYCODE = R16; 
unit = R17; 
keycode = R18; 
again = R19; 

retadr = R26; 

Outputs: 

char 

PROCESS.KEYCODE function code 
Terminal device unit number 
Keycode to be processed 
T if calling again for same keycode 
Ό' otherwise 
Return address 

06 16 

= R0; Translated character and status: 
R0<63:61> 

R0<60> 

R0<59:32> 
R0<31:0> 

Ό00' 
Ί 0 Γ 

ΊΙΟ' 

Ί Ι Γ 

Ό' 

T 

SBZ 

Success, character returned 
Failure, more time needed 
to process keycode 
Failure, device not sup-
ported by routine or rou-
tine not supported 
Failure, no character; more 
keycodes needed or ille-
gal sequence encountered 
Success in correcting 
severe error 
Failure in correcting se-
vere error 

Translated character 

PROCESS_KEYCODE attempts to translate the keycode contained in R18 and, 
if successful, returns the character in R0<31:0>. The translation is based on 
the current character set encoding, language, and console terminal device state 
contained in the appropriate CTB. The translated character may be from one to four 
bytes. For implementations that support multiple terminal devices, R17 contains 
the unit number of the keyboard; R17 should be zero otherwise. 

Implementation Note: 

For ISO Latin-1 character set encoding, PROCESS_KEYCODE returns a one-
byte character. ) 
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PROCESS_KEYCODE returns keycode translation status in R0<63:61>. The 
processing falls into one of several cases: 

1. The keycode, along with previous keycodes if any, translates into a character 
from the currently selected character set. In this case, R0<63:61> set to Ό00\ 

2. The keycode, along with previously entered keycodes if any, does not translate 
into a character from the currently selected character set. This is because either: 

• There are not yet enough keycodes entered to produce a character in the 
currently selected character set. 

• The keycodes entered to this point indicate a severe keyboard error status. 

• The keycodes entered to this point form an illegal or unsupported keycode 
sequence. 

In this case, R0<63:61> set to '111'. 

3. The console terminal device for which keycode translation is being performed 
is not supported by the PROCESS_KEYCODE implementation or the console 
implementation does not support PROCESS_KEYCODE. In this case, R0<63:61> 
set to Ί 1 0 \ 

4. The keycode cannot be processed in a reasonable amount of time; multiple 
invocations of PROCESS_KEYCODE are necessary. In this case, the routine 
returns with R0<63:61> set to Ί 0 Γ . The subsequent call(s) should be made with 
the same keycode in R18 and R19 set to T . 

Implementation Note: 
It may not be possible for an implementation to perform all the actions 
associated with special keycodes (such as turning on LEDs) in a timely 
manner. The PROCESS_KEYCODE routine must return after partial 
completion of an operation if necessary. It is the responsibility of the 
console to ensure that subsequent calls make forward progress. The delay 
between successive operating system calls is UNPREDICTABLE, although 
the operating system should attempt to complete the operation in a timely 
fashion. See Section 2.3.4. ) 

In all but the first case, the contents of R0<31:0> are UNPREDICTABLE. 

When certain severe keyboard errors are encountered, PROCESS_KEYCODE 
attempts to correct them by performing special keyboard operations. Those severe 
errors that may be corrected are device specific and contained in the terminal device 
CTB. If an error is encountered and the attempt to correct the error is unsuccessful, 
R0<60> set to T ; otherwise R0<60> set to Ό'. 

The keyboard state recorded in the CTB is updated appropriately as the input stream 
of keycodes is processed. If appropriate, PROCESS_KEYBOARD may buffer some 
of the keycodes in the CTB keycode buffer. The supported keyboard state changes 
are device specific and are listed in the device CTB. 

The return address indicated by R26 should be mapped and kernel executable. 
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2.3.4.3 PUTS - Put Stream to Console Terminal 

Format: 

wcount = DISPATCH ( PUTS,uni t a d d r e s s , l e n g t h ) 

Inputs: 

PUTS 
unit 
address 
length 
retadr 

= R16 
= R17 
= R18 
= R19 
= R26 

PUTS function code - 02 16 

Terminal device unit number 
Virtual address of byte stream to be written 
Count of bytes to be written 
Return address 

Outputs: 

wcount = R0; Count of bytes written and status: 
R0<63:61> 

R0<60:48> 
R0<47:32> 
R0<31:0> 

Ό00' 
Ό0Γ 
100' 

ΊΙΟ' 

'111* 

Success, all bytes written 
Success, some bytes written 
Failure, no bytes written 
terminal not ready 
Failure, no bytes written 
terminal error encountered 
Failure, some bytes written 
terminal error encountered 

Device-specific error status 
SBZ 
Count of bytes written (unsigned) 

PUTS attempts to write a number of bytes to a console terminal device. R18 contains 
the base virtual address of the memory-resident byte stream; R19 contains its 32-bit 
size in bytes. The byte stream is written in order with no interpretation or special 
handling. The count of the bytes transmitted is returned in R0<31:0>. 

Programming Note: 

For multiple-byte character set encodings, the returned byte count may indicate 
a partial character transmission. 

For implementations that support multiple terminal devices, R17 contains the unit 
number to which the byte stream is to be written; R17 should be zero otherwise. 

PUTS returns byte stream transmission status in R0<63:61>. If only a portion of the 
byte stream was written, R0<61> is set to 'Γ. If no error is encountered, R0<63:62> is 
set to Ό0'. If no bytes were written because the terminal was not ready, R0<63:62> 
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is set to '10'. If an error is encountered writing a byte, R0<63:62> is set to Ί Γ ; 
examples of errors during byte transmission include data overrun or loss of carrier. 

When an error is returned by PUTS, additional device-specific error status may be 
contained in R0<60:48>. 

Multiple invocations of PUTS may be necessary because the console terminal may 
accept only a very few bytes in a reasonable period of time. 

The output byte stream located by R18 should be mapped and kernel read accessible; 
the return address indicated by R26 should be mapped and kernel executable. 
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2.3.4.4 RESET_TERM - Reset Console Terminal to default parameters 

Format: 

status = DISPATCH ( RESET_TERM,unit ) 

Inputs: 

RESET_TERM= R16; RESET_TERM function code - 03 
unit = R17; Terminal device unit number 
retadr = R26; Return address 

Outputs: 

status = R0; Status: 
R0<63> Ό' 

T 
R0<62:0> SBZ 

RESET_TERM resets a console terminal device and its CTB to their initial, default 
state. All errors in the CTB are cleared. For implementations that support multiple 
terminal devices, R17 contains the unit number to be reset; R17 should be zero 
otherwise. 

The CTB describes the capabilities of the terminal device and its initial, default state. 
Depending on the terminal device type and particular console implementation, other 
terminal devices may be affected by the routine. 

Programming Note: 

For example, if multiple terminal units share a common interrupt, that interrupt 
may be disabled or enabled for all. 

If the console terminal is successfully reset, RESET_TERM returns with R0<63> set 
to Ό\ If errors are encountered, the routine attempts to return the console terminal 
to a usable state and then returns with R0<63> set to T . 

The return address indicated by R26 should be mapped and kernel executable. 

Success, terminal reset 
Failure, terminal not fully reset 
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2.3.4.5 SET_TERM_CTL - Set Console Terminal Controls 

Format: 

status = DISPATCH ( SET_TERM_CTL,unit,ctb ) 

Inputs: 

SET_TERM_CTL= R16; SET_TERM_CTL function code - 05χ6 

unit = R17; Terminal device unit number 
ctb = R18; Virtual address of CTB 
retadr = R26; Return address 

Outputs: 

status = RO; Status: 
R0<63> Ό' Success, requested change com-

pleted 
T Failure, change not completed 

R0<62:32> SBZ 
R0<31:0> Offset to offending CTB field (unsigned) 

SET_TERM_CTL, if successful, changes the characteristics of a console terminal 
device and updates its CTB. The changes are specified by fields contained in a CTB 
located by R18. The characteristics that can be changed, hence the active CTB 
fields, depend on the console terminal device type. For implementations that support 
multiple terminal devices, R17 contains the unit number to be reset; R17 should be 
zero otherwise. 

If the console terminal characteristics are successfully changed, SET_TERM_CTL 
returns with R0<63> set to Ό'. If errors are encountered or if the terminal device 
does not support the requested settings, the routine attempts to return the device 
to the previous usable state and then returns with R0<63> set to T and R0<31:0> 
set to the offset of an offending or unsupported field in the CTB located by R18. 
Regardless of success or failure, the device CTB table entry always contains the 
current device characteristics upon routine return. SET_TERM_CTL returns the 
CTB located by R18 without modification. 

The CTB located by R18 should be mapped and kernel read accessible; the return 
address indicated by R26 should be mapped and kernel executable. 
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2.3.4.6 SET_TERM_INT - Set Console Terminal Interrupts 

Format: 

s t a t u s = DISPATCH ( SET_TERM_INT,unit,mask ) 

Inputs: 

SET_TERM_INT= R16 

unit 
mask 

= R17 
= R18 

retadr = R26; 

SET_TERM_INT function code 
Terminal device unit number 
Bit encoded mask: 
R18<63:10> SBZ 

04 16 

R18<9:8> 

R18<7:2> 
R18<1:0> 

ΌΓ 
Ό0' 
ΊΧ ' 
SBZ 
ΌΙ ' 
Ό0' 

No change to receive interrupts 
Disable receive interrupts 
Enable receive interrupts 

No change to transmit interrupts 
Disable transmit interrupts 

4IX' Enable transmit interrupts 
Return address 

Outputs: 

status = R0; Status: 
R0<63> 

R0<62:2> 
R0<0> 

R0<1> 

Ό' 
T 
SBZ 
T 
Ό' 
T 
Ό' 

Success 
Failure, operation not supported 

Transmit interrupts enabled 
Transmit interrupts disabled 
Receive interrupts enabled 
Receive interrupts disabled 

SET_TERM_INT reads, enables, and disables transmit and receive interrupts from 
a console terminal device and updates its CTB. For implementations that support 
multiple terminal devices, R17 contains the unit number to be reset; R17 should be 
zero otherwise. 

If the interrupt settings are successfully changed, the routine returns with R0<63> 
set to Ό'. If the terminal device does not support the requested setting, the routine 
returns with R0<63> set to T . 
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Programming Note: 

For example, a device that has a unified transmit/receive interrupt would not 
support a request to enable transmit interrupts while leaving receive interrupts 
disabled. 

Regardless of success or failure, the routine always returns with the previous 
settings in R0<1:0>. The current state of the interrupt settings can be read without 
change by invoking SET_TERM_INT with R18<1:0> and R18<9:8> set to ΌΓ. 

The return address indicated by R26 should be mapped and kernel executable. 
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2.3.5 Console Generic I/O Device Routines 
The Alpha AXP console provides primitive generic I/O device routines for system 
software use during the bootstrap or crash process. These routines serve in place of 
the more sophisticated system software I/O drivers until such time as these drivers 
can be established. These routines may also be used to access console-private devices 
that are not directly accessible by the processor. 

During the bootstrap process, these routines can be used to acquire a secondary 
bootstrap program from a system bootstrap device or write messages to a terminal 
other than the logical console terminal. When the operating system is about to crash, 
these routines can be used to write dump files. 

These routines are not intended for use while the operating system is fully functional. 
These routines may: 

• Alter the current IPL. 

The console may raise the current IPL. It may lower the current IPL only insofar 
as the state presented to the operating system remains consistent, as though 
the IPL had not been lowered. The console must ensure that interrupts that 
would not have been delivered at the caller's IPL are pended and delivered to 
the operating system at the conclusion of the callback. 

• Block interrupts. 

These routines may cause any and all interrupts to be blocked or delivered to 
and serviced by the console for the duration of the routine execution. 

• Block exceptions. 

These routines may cause any and all exceptions to be blocked or delivered to 
and serviced by the console for the duration of the routine execution. 

• Alter the existing memory management policy. 

The console may substitute a console-private (or bootstrap address) mapping for 
the duration of the routine execution. 

Programming Note: 
The console must resolve any virtually addressed arguments prior to altering 
the existing memory management policy. 

• Take any length of time for completion. 

The operating system has no timeliness guarantee when invoking these 
routines. Any operating system timer may have expired before their return. 
The time necessary for completion is UNPREDICTABLE; however, a console 
implementation will attempt to minimize the time whenever possible. 

Prior to returning to the invoking system software, these routines must restore any 
altered processor state. These routines must return to the calling system software 
at the IPL and in the memory management policy of that software. 
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System software invokes these routines synchronously. When invoking these 
routines, system software must: 

• Be executing in kernel mode. 

If these routines are invoked in other modes, their execution causes 
UNPREDICTABLE operation. 

• Be executing on the primary processor in a multiprocessor configuration. 

If these routines are invoked on other processors, their execution causes 
UNDEFINED operation. 
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2.3.5.1 CLOSE - Close Generic I/O Device for Access 

Format: 

status = DISPATCH ( CLOSE,channel ) 

Inputs: 

CLOSE = R16; CLOSE function code - 1116 

channel = R17; Channel to close 
retadr = R26; Return address 

Outputs: 

status = RO; Status: 
R0<63> Ό' Success 

T Failure 
R0<62:60> SBZ 
R0<59:32> Device-specific error status 
R0<31:0> SBZ 

CLOSE deassigns the channel number from a previously opened block storage I/O 
device. The channel number is free to be reassigned. The I/O device must be 
reopened prior to any subsequent accesses. 

CLOSE returns status in R0<63>. If the channel was open and the close is successful, 
R0<63> is set to Ό'; otherwise R0<63> is set to T and additional device-specific status 
is recorded in R0<62:32>. 

For magnetic tape devices, CLOSE does not affect the current tape position, nor is 
any rewind of the tape performed. 

The return address indicated by R26 should be mapped and kernel executable. 
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2.3.5.2 lOCTL - Perform Device-specific Operations 

Format: 

count = DISPATCH ( IOCTL, channel ,1118,1*19 ,R20,R21 

Inputs: 

IOCTL 
channel 
retadr 

= R16 
= R17 
= R26 

IOCTL function code - 1216 

Channel number of device to be accessed 
Return address 

For Magnetic Tape Devices Only: 

operate = R18; 

count = R19; 
= R20-

R21 

Tape positioning operation: 
ΌΓ For skip to next/previous interrecord gap 
Ό2' For skip over tape mark 
Ό3' For rewind 
Ό4' For write tape mark 
Number of skips to perform (signed) 
Reserved for future use as inputs 

Outputs: 

For Magnetic Tape Devices Only: 

count = RO; Number of skips performed and status: 
R0<63:62> W success 

'10' Failure, position not found 
*1Γ Hardware failure 

R0<61:60> SBZ 
R0<59:32> Device-specific error status 
R0<31:0> Number of skips actually performed (signed) 

IOCTL performs special device-specific operations on I/O devices. The operation 
performed and the interpretation of any additional arguments passed in R18—R21 
are functions of the device type as designated by the channel number passed in R17. 

For magnetic tape devices, the following operations are defined: 

1. ΌΓ - IOCTL relocates the current tape position by skipping over a number of 
interrecord gaps. The direction of the skip and the number of gaps skipped 
is given by the signed 32-bit count in R19. Skipping with a count of Ό' does 
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not change the current tape position. The number of gaps actually skipped is 
returned in R0<31:0>. 

2. Ό2' - IOCTL relocates the current tape position by skipping over a number of tape 
marks. The direction of the skip and the number of marks skipped is given by 
the signed 32-bit count in R19. Skipping with a count of Ό' does not change the 
current tape position. The number of tape marks actually skipped is returned in 
R0<31:0>. 

3. Ό3' - IOCTL rewinds the tape to the position just after the Beginning-of-Tape 
(BOT) marker. R0<31:0> is returned as SBZ. 

4. Ό4' - IOCTL writes a tape mark starting at the current position. R0<31:0> is 
returned as SBZ. 

IOCTL returns magnetic tape operation status in R0<63:62>. If the operation was 
successful, R0<63:62> is set to ΌΟ'. If the tape positioning was not successful, the 
tape is left at the position where the error occurred and R0<63:62> is set to '10\ 
Tape positioning may fail due to encountering a BOT marker (R18 ΌΓ or Ό2'), 
encountering a tape mark (R18 ΌΓ), or running off the end of the tape. If a hardware 
device error is encountered, the final position of the tape is UNPREDICTABLE and 
R0<63:62> is set to Ί Γ . In the event of an error, additional device-specific status is 
recorded in R0<61:32>. 

The return address indicated by R26 should be mapped and kernel executable. 
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2.3.5.3 OPEN - Open Generic I/O Device for Access 

Format: 

channel = DISPATCH ( OPEN,devstr,length 

Inputs: 

OPEN 
devstr 

length 
retadr 

= R16; OPEN function code - 10i6 

= R17; Starting virtual address of byte string that contains the 
device specification 

= R18; Length of byte buffer 
= R26; Return address 

Outputs: 

be 

channel = RO; Assigned channel number and status: 
R0<63:62> Ό0' Success 

'10' Failure, device does not exist 
Ί Γ Failure, error, device cannot 

accessed or prepared 
R0<61:60> SBZ 
R0<59:32> Device-specific error status 
R0<31:0> Assigned channel number of device 

OPEN prepares a generic I/O device for use by the READ and WRITE routines. 
R17 contains the base virtual address of a byte string that specifies the complete 
device specification of the I/O device. The length of the string is given in R18. The 
format and contents of the device specification string follow that of the BOOTED_ 
DEV environment variable. 

The routine assigns a unique channel number to the device. The channel number is 
returned in RO and must be used to reference the device in subsequent calls to the 
READ, WRITE, and CLOSE routines. 

OPEN returns status in R0<63:62>. If the I/O device exists and can be prepared for 
subsequent accesses, R0<63:62> is set to Ό0'. If the device does not exist, R0<63:62> 
is set to '10\ If the device exists, but errors are encountered in preparing the 
device, R0<63:62> is set to Ί Γ and additional device-specific status is recorded in 
R0<61:32>. In the latter two failure cases, the channel number returned in R0<31:0> 
is UNPREDICTABLE. 

All console implementations must support at least two concurrently opened generic 
I/O devices. Additional generic I/O devices may be supported. 

For magnetic tape devices, OPEN does not affect the current tape position, nor is 
any rewind of the tape performed. 
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Multiple channels cannot be assigned to the same device; the second and any 
subsequent calls to OPEN fail with R0<63:62> set to Ί Γ and R0<31:0> as 
UNPREDICTABLE. The status of the first opened channel is unaffected. 

The input string located by R17 should be mapped and kernel read accessible; the 
return address indicated by R26 should be mapped and kernel executable. 
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2.3.5.4 READ - Read Generic I/O Device 

Format: 

rcount = DISPATCH ( READ,channel,count,address,block ) 

Inputs: 

READ 
channel 
count 

address 
block 

= R16; 
= R17; 
= R18; 

= R19; 

= R20; 

retadr = R26; 

READ function code - 1316 

Channel number of device to be accessed 
Number of bytes to be read (should be multiple of the 
device's record length) (unsigned) 
Virtual address of buffer to read data into 
Logical block number of data to read (used only by disk 
devices) 
Return address 

Outputs: 

rcount = R0; Number of bytes 
R0<63> 

R0<62> 

R0<61> 

R0<60> 

R0<59:32> 
R0<31:0> 

Ό' 
T 
T 

Ό' 
T 
Ό* 
T 
Ό' 

read and status: 
Success 
Failure 
EOT or Logical End of Device condi 
tion encountered 
Otherwise 
Illegal record length specified 
Otherwise 
Run off end of tape 
Otherwise 

Device-specific error status 
Number of bytes actually read (unsigned) 

READ causes data to be read from the generic I/O device designated by the channel 
number in R17 and written to a memory buffer pointed to by R19. The 32-bit 
transfer byte count, hence length of the buffer, is contained in R18. The buffer must 
be quadword aligned, virtually mapped, and resident in physical memory. 

READ returns transfer status in R0<63:60> and the number of bytes actually read, 
if any, in R0<31:0>. If the routine is successful, R0<63> is set to Ό\ If an error is 
encountered in accessing the device, R0<63> is set to 'Γ. Additional device-specific 
status may be returned in R0<59:32>. 

The transfer byte count should be a multiple of the record length of the device. If the 
specified byte count is not a multiple of the record length, R0<61> is set to T . If the 
count exceeds the record length, the count is rounded down to the nearest multiple 
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of the record length and READ attempts to read that number of bytes. If the record 
length exceeds the count, it is UNPREDICTABLE whether READ attempts to access 
the device. If no read attempt is made, R0<63> is set to 'Γ. 

For magnetic tape devices, READ does not interpret the tape format or differentiate 
between ANSI formatted and unformatted tapes. The routine simply reads the 
requested transfer byte count starting at the current tape position. READ terminates 
when one of the following occurs: 

1. The specified number of bytes have been read. In this case, R0<63:60> is set to 
Ό000'. 

2. An interrecord gap is encountered. In this case, the tape is positioned to the next 
position after the gap and R0<63:60> is set to Ό000\ 

3. A tape mark is encountered. In this case, tape is positioned to the next position 
after the tape mark and R0<63:60> is set to Ό100\ (After calling READ and 
finding a tape mark, the caller can determine if the logical End-of-Volume or an 
empty file section has been found by calling READ again. The condition exists if 
the second READ returns with zero bytes read and a tape mark found.) 

4. The routine runs off the end of tape. In this case, R0<63:60> is set to '1001'. 

READ ignores End-of-Tape (EOT) markers. 

For disk devices, READ does not understand the file structure of the device. The 
routine simply reads the requested transfer byte count starting at the logical block 
number specified by R20. The transfer continues until either the specified number 
of bytes has been read or the last logical block on the device has been read. If the 
logical end of the device is encountered, then R0<63:62> is set to ΌΓ. 

For network devices, READ interprets and removes any device-specific or protocol-
specific packet headers. If a packet has been received, the remainder of the packet is 
copied into the specified buffer. If a packet has not been received, the routine returns 
with R0<31:0> set to Ό\ Only those network packets that are specifically addressed 
to this system and are of the specified protocol type are returned; broadcast packets 
are not returned. The actual packet size is dependent on the device and protocol; 
the characteristics of the network device and protocol are specified at the time of the 
channel OPEN. 

The buffer pointed to by R19 should be mapped and kernel write accessible; the 
return address indicated by R26 should be mapped and kernel executable. 
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2.3.5.5 WRITE - Write Generic I/O Device 

Format: 

wcount = DISPATCH ( WRITE,channel,count,address,block 

Inputs: 

WRITE 
channel 
count 

address 
block 

retadr 

= R16; WRITE function code - 1416 

= R17; Channel number of device to be accessed 
= R18; Number of bytes to be written (should be multiple of the 

device's record length) (unsigned) 
= R19; Virtual address of buffer to read data from 
= R20; Logical block number of data to be written (used only by 

disk devices) 
= R26; Return address 

Outputs: 

wcount = RO; Number of bytes written and status: 
R0<63> 

R0<62> 

R0<61> 

R0<60> 

R0<59:32> 
R0<31:0> 

Ό' 
T 
T 

Ό' 
T 
Ό' 
T 
Ό' 

Success 
Failure 
EOT or Logical End of Device condi-
tion encountered 
Otherwise 
Illegal record length specified 
Otherwise 
If run off end of tape 
Otherwise 

Device-specific error status 
Number of bytes actually written (unsigned) 

WRITE causes data to be written to the generic I/O device designated by the channel 
number in R17 and read from a memory buffer pointed to by R19. The 32-bit transfer 
byte count, hence length of the buffer, is contained in R18. The buffer must be 
quadword aligned, virtually mapped, and resident in physical memory. 

WRITE returns transfer status in R0<63:60> and the number of bytes actually 
written, if any, in R0<31:0>. If the routine is successful, R0<63> is set to Ό\ If 
an error is encountered in accessing the device, R0<63> is set to 'Γ. Additional 
device-specific status may be returned in R0<59:32>. 

The transfer byte count should be a multiple of the record length of the device. If the 
specified byte count is not a multiple of the record length, R0<61> is set to T . If the 
count exceeds the record length, the count is rounded down to the nearest multiple 
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of the record length and WRITE attempts to write that number of bytes. If the 
record length exceeds the count, it is UNPREDICTABLE whether WRITE attempts 
to access the device. If no write attempt is made, R0<63> is set to 'Γ. 

For magnetic tape devices, WRITE does not interpret the tape format or differentiate 
between ANSI formatted and unformatted tapes. The routine simply writes the 
requested transfer byte count starting at the current tape position. WRITE 
terminates when any of the following occur: 

1. The specified number of bytes has been written without detecting an End-of-Tape 
(EOT) marker. In this case, R0<63:60> is set to Ό000'. 

2. The specified number of bytes has been written and an End-of-Tape (EOT) marker 
was detected. In this case, R0<63:60> is set to ΌΙΟΟ'. 

3. The routine runs off the end of tape. In this case, R0<63:60> is set to Ί00Γ . 

For disk devices, WRITE does not understand the file structure of the device. The 
routine simply writes the requested transfer byte count starting at the logical block 
number specified by R20. The transfer continues until either the specified number 
of bytes has been written or the last logical block on the device has been written. If 
the logical end of the device is encountered, then R0<63:62> is set to ΌΓ. 

For network devices, WRITE appends any device-specific or protocol-specific headers. 
The routine transmits the specified requested transfer bytes with the proper network 
protocol over the appropriate network. The actual packet size is dependent on 
the device and protocol; the characteristics of the network device and protocol are 
specified at the time of the channel OPEN. 

The buffer pointed to by R19 should be mapped and kernel write accessible; and the 
return address indicated by R26 should be mapped and kernel executable. 
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2.3.6 Console Environment Variable Routines 
System software accesses the environment variables indirectly through console 
callback routines. These routines may be invoked while the operating system is 
fully functional as well as during operating system bootstrap or crash. The GET_ 
ENV, SET_ENV, and RESET_ENV routines are subject to the constraints given in 
Section 2.3.1. These routines must: 

• Not alter the current IPL or current mode. 

These routines must be invoked in kernel mode. 

• Not alter the existing memory management policy. 

All internal pointers must be remapped by FIXUP. 

• Not block interrupts. 

The operating system must be capable of continuing to receive hardware and 
software interrupts. 

The constraints on SAVE.ENV differ; see Section 2.3.6.3. 

The time necessary for these routines to complete is UNPREDICTABLE; however, 
a console implementation will attempt to minimize the time whenever possible. 

Software Note: 

Implementations must limit the execution time of these routines to significantly 
less than the interval clock interrupt period. 

The console implementation must ensure that any access to an environment variable 
is atomic. The console implementation must resolve multiple competing accesses by 
system software as well as competing accesses by system software and the console 
presentation layer. 

When invoking these routines, system software must be executing in kernel 
mode. If these routines are invoked in other modes, their execution causes 
UNPREDICTABLE operation. 

These routines may be invoked on both the primary and secondary processors in 
a multiprocessor configuration. It is recommended that system software serialize 
competing accesses to a given environment variable; a stale value may be returned 
if GET_ENV is invoked simultaneously with SET_ENV or RESET_ENV. 
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2.3.6.1 GET_ENV - Get an Environment Variable 

Format: 

status = DISPATCH ( GET_ENV,ID,value,length 

Inputs: 

GET_ENV = R16 
ID = R17 
value = R18 

retadr 

GET_ENV function code - 2216 

ID of environment variable 
Starting virtual address of buffer to contain returned 
value 

length = R19; Number of bytes in buffer (unsigned) 
= R26; Return address 

Outputs: 

status = R0; Status: 
R0<63:61> 

R0<60:32> 

Ό00' 
Ό0Γ 
'110' 
SBZ 

Success 
Success, byte stream truncated 
Failure, variable not recognized 

R0<31:0> Count of bytes returned (unsigned) 

GET_ENV causes the value of the environment variable specified by the ID in R17 
to be returned in the byte stream specified by the virtual address in R18. The size 
in bytes of the input buffer is contained in R19. 

GET_ENV returns status in R0<63:61>. If the environment variable is recognized, 
R0<63:62> is set to ΌΟ', its current value is copied into the byte stream, and R0<31:0> 
is set to the number of bytes copied. If the value must be truncated, R0<61> is set 
to T . If the variable is not recognized, R0<63:61> is set to '110' and R0<31:0> is set 
to Ό\ 

The byte stream indicated by R18 should be mapped and kernel write accessible; 
the return address indicated by R26 should be mapped and kernel executable. 
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2.3.6.2 RESET_ENV - Reset an Environment Variable 

Format: 

status = DISPATCH ( RESET_ENV,ID,value,length ) 

Inputs: 

RESET ENV = R16 

ID 
value 

length 
retadr 

= R17; 
= R18; 

= R19; 
= R26; 

RESET_ENV function code - 21 1 6 

ID of environment variable 
Starting virtual address of byte stream to contain 
returned value 
Number of bytes in buffer (unsigned) 
Return address 

Outputs: 

status = R0; Status: 
R0<63:61> Ό00' 

Ό0Γ 
Ί00' 
ΊΟ Ι ' 

'110' 
SBZ 

Success 
Success, byte stream truncated 
Failure, variable read-only 
Failure, variable read-only, byte 
stream truncated 
Failure, variable not recognized 

R0<60:32> 
R0<31:0> Count of bytes returned (unsigned) 

RESET_ENV causes the environment variable specified by the ID in R17 to be reset 
to the system default value and that default value to be returned in the byte stream 
specified by the virtual address in R18. The size in bytes of the input buffer is 
contained in R19. 

RESETJ3NV returns status in R0<63:61>. If the environment variable is 
successfully reset to the default value, R0<63:62> is set to Ό0\ If the variable 
is recognized but read-only, the value is unchanged and R0<63:62> is set to '10'. In 
both cases, the default value is copied into the byte stream and R0<31:0> is set to 
the number of bytes copied; if the value must be truncated, R0<61> is set to Ύ. If 
the variable is not recognized, R0<63:61> is set to '110' and R0<31:0> is set to Ό\ 

The byte stream indicated by R18 should be mapped and kernel write accessible; 
the return address indicated by R26 should be mapped and kernel executable. 
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2.3.6.3 SAVE_ENV - Save Current Environment Variables 

Format: 

status = DISPATCH ( SAVE_ENV ) 

Inputs: 

SAVE.ENV = R16; SAVE_ENV function code - 23 
retadr = R26; Return address 

Outputs: 

status = RO; Status: 
R0<63:61> Ό00' 

ΌΟΙ' 

ΊΙΟ' 
<i i r 

R0<60:0> SBZ 

SAVE_ENV attempts to update the nonvolatile storage of those environment 
variables that must be retained across console initializations and system power 
transitions. These environment variables are identified as "NV" in Table 2-6. 

Programming Note: 

For example, SAVE_ENV may cause an EEPROM to be updated. That update 
may write all "NV" environment variable values to the EEPROM, or may only 
write those variables that have been modified since the last update or console 
initialization. 

This routine is not subject to the constraints given in Section 2.3.6. The console may 
usurp operating system control of the system platform hardware, but must restore 
any such control or altered state prior to return. The console must not service any 
interrupts or exceptions that are otherwise intended for the operating system. 

The nonvolatile storage update may take significant time and multiple invocations 
of SAVE_ENV may be necessary. The time necessary for this routine to complete 
is UNPREDICTABLE. A console implementation will attempt to minimize the time 
whenever possible and must return in a timely fashion. The routine must return 
after partial operation completion if necessary. It is the responsibility of the console 
to ensure that subsequent calls make forward progress. The operating system may 
delay for extended periods between subsequent calls; the console must not rely on 
timely invocations of SAVE_ENV. 

Success, all values saved 
Success, some bytes saved, addi-
tional values to be saved 
Failure, routine unsupported 
Failure, error encountered saving 
values 
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Implementation Note: 

Implementations must limit the execution time of these routines to significantly 
less than the interval clock interrupt period. A return after partial operation 
completion is preferable to long latency. 

SAVE_ENV returns status on the update in R0<63:61>. When the update has 
successfully completed and all relevant variables have been saved, the routine 
returns with R0<63:61> set to Ό00\ If SAVE_ENV returns after only a partial 
update to ensure timely response, R0<63:61> set to Ό0Γ. If an unrecoverable error 
is encountered, the routine returns with R0<63:61> set to Ί1Γ. The contents of the 
nonvolatile storage are UNDEFINED. 

Implementation of SAVE_ENV is optional. If the console does not support SAVE_ 
ENV, the routine returns with R0<63:61> set to '110'. 

On a multiprocessor system with an embedded console, the routine must be invoked 
on each processor in the configuration. 

It is recommended that system software ensure that calls to SET_ENV or RESET_ 
ENV are not issued while an update operation is in progress on any processor. It is 
UNPREDICTABLE whether the updated environment value is saved. 

The return address indicated by R26 should be mapped and kernel executable. This 
routine does not affect the current value of any environment variable maintained by 
the console. 
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2.3.6.4 SET_ENV - Set an Environment Variable 

Format: 

status = DISPATCH ( SET_ENV,ID,value,length ) 

Inputs: 

SETJENV =R16 
ID = R17 
value = R18 
length = R19 
retadr = R26: 

SET.ENV function code - 2016 

ID of environment variable 
Starting virtual address of byte stream containing value 
Number of bytes in buffer (unsigned) 
Return address 

Outputs: 

status = R0; Status: 
R0<63:61> Ό00' 

ΊΟΟ' 
ΊΙΟ' 
Ί Ι Γ 

Success 
Failure, variable read-only 
Failure, variable not recognized 
Failure, byte stream exceeds value 
length 

R0<60:31> SBZ 
R0<31:0> Maximum value length (unsigned) 

SET_ENV causes the environment variable specified by the ID in R17 to have the 
value specified by the byte stream value pointed to by the virtual address in R18. 
The size in bytes of the input buffer is contained in R19. 

SET_ENV returns status in R0<63:61>. If the environment variable is successfully 
set to the new value, R0<63:61> is set to Ό00\ If the variable is not recognized, 
R0<63:61> is set to '110'. If the variable is read-only, the value is unchanged and 
R0<63:61> is set to ΊΟΟ'. If the input buffer exceeds the maximum value length, the 
value is unchanged and R0<63:61> is set to '111'. In all cases, the maximum value 
length is returned in R0<31:0>. 

The byte stream indicated by R18 should be mapped and kernel read accessible; the 
return address indicated by R26 should be mapped and kernel executable. 
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2.3.7 Miscellaneous Routines 
2.3.7.1 FIXUP - Fixup Virtual Addresses in Console Routines 

Format: 

s t a t u s = FIXUP ( NEW_BASE_VA, HWRPB_VA ) 

Inputs: 

NEW_BASE_VA= R16; New starting virtual address of the console callback 
routines 

HWRPB.VA = R17; New starting virtual address of the HWRPB 
retadr = R26; Return address 

Outputs: 

status = RO; Status: 
R0<63> Ό' Success 

T Failure 
R0<62:0> SBZ 

FIXUP adjusts virtual address references in all other console callback routines using 
the new starting virtual address in R16, the new starting virtual address of the 
HWRPB in R17, and the current contents of the CRB. See Section 2.3.8.1.2 for a full 
description of FIXUP usage and functionality. 

If FIXUP is successful, it returns with R0<63> set to Ό'. If FIXUP is not successful, 
console internal state has been compromised. The console attempts a cold bootstrap 
if the state transition in Figure 3-1 indicates a bootstrap and the BOOT_RESET 
environment variable is set to "ON" (4E4F16). Otherwise, the system remains in 
console I/O mode. 

This routine must be called in kernel mode and in the context of the existing memory 
mapping; otherwise its execution causes UNPREDICTABLE or UNDEFINED 
operation. 

Software Note: 

FIXUP must be called while the original address space mapping is in effect. 

The return address indicated by R26 should be mapped and kernel executable. 
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2.3.7.2 PSWITCH - Switch Primary Processors 

Format: 

s t a t u s DISPATCH ( PSWITCH,action ) 

Inputs: 

PSWITC] 
action 

cpu_id 
retadr 

EÎ = R16; 
= R17; 

= R18; 
= R26; 

PSWITCH function code - 3016 

Action requests: 
R17<63:2> SBZ 
R17<1:0> ΌΓ 

ΊΟ' 
Ί Γ 

Transition from primary 
Transition to primary 
Switch primary 

New primary CPU ID 
Return address 

Outputs: 

status = R0; Status: 
R0<63> 

R0<62:0> 

Ό' Success 
T Failure, operation not supported 
Implementation-specific error status 

PSWITCH attempts to perform any implementation-specific functions necessary to 
support primary switching. R17 indicates the requested primary transition action. 
R18 contains the CPU ID (WHAMI IPR) of the new primary. 

PSWITCH is invoked by the old primary, the secondary that is to become the 
new primary, or both. See Section 3.5.6 for a full description of PSWITCH usage, 
functionality, and error returns. 

If PSWITCH is successful, it returns with R0<63> set to Ό'. If PSWITCH is 
unsuccessful for any reason, it returns with R0<63> set to T and implementation-
specific status in R0<62:0>. 

PSWITCH is invoked at the highest IPL level or it produces UNDEFINED results. 
The return address indicated by R26 should be mapped and kernel executable. 
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2.3.8 Console Callback Routine Data Structures 
The console and system software share two data structures that are necessary for 
the console callback routines: the Console Routine Block (CRB) and the Console 
Terminal Block (CTB) table. Both are located by offset fields in the HWRPB as 
shown in Figure 2-4. 

The CRB locates all addresses necessary for console callback routine function. The 
base physical address of the CRB is obtained by adding the CRB OFFSET field at 
HWRPB [192] to the base physical address of the HWRPB. The CRB format is shown 
in Figure 2-5 and described in Table 2-10. 

The CTB table contains information necessary to describe the console terminal 
devices. The base physical address of the CTB table is obtained by adding the CTB 
TABLE OFFSET field at HWRPB [184] to the base physical address of the HWRPB. 
The CTB format is shown in Figure 2-6 and described in Table 2-11. 

Figure 2-4: Console Data Structure Linkage 

:HWRPB ] :CTB 

[ 
[Offset to CTB 

[ 
[Offset to CRB 

[Procedure Descriptor 1st Quadword] -
[VA of DISPATCH Entry] 

[DISPATCH Procedure] *+-

[VA of DISPATCH Procedure Value] :CRB -
[PA of DISPATCH Procedure Value] 
[VA of FIXUP Procedure Value ] 
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[Number of Entries in Map ] 
[Number of Pages in Map ] 
[Virtual/Physical Map ] 

2.3.8.1 Console Routine Block 

Prior to transferring control to system software, the console ensures that the console 
callback routines, console-private data structures, and associated local I/O space 
locations are mapped into region 0 of initial bootstrap address space. All necessary 
pages are located by the console routine block (CRB). 
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Figure 2-5: Console Routine Block 
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Table 2-10: CRB Fields 
Offset Description 

CRB DISPATCH VA — The virtual address of the OpenVMS procedure descriptor for 
the DISPATCH procedure. 

+08 DISPATCH PA — The physical address of the OpenVMS procedure descriptor for 
the DISPATCH procedure. 

+16 FIXUP VA — The virtual address of the OpenVMS procedure descriptor for the 
FIXUP procedure. 

+24 FIXUP PA — The physical address of the OpenVMS procedure descriptor for the 
FIXUP procedure. 

+32 ENTRIES — The number of entries in the virtual-physical map. Unsigned 
integer. 

+40 PAGES — The total number of physical pages to be mapped. Unsigned integer. 
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Table 2-10 (Cont.): CRB Fields 

Offset Description 

+48 ENTRY — Each entry identifies a collection of physically contiguous pages to be 
mapped. Each map entry consists of three quadwords: 

Offset Name Description 

+00 ENTRY_VA Base virtual address for entry 
+08 ENTRY.PA Base physical address for entry 
+16 ENTRY_PAGES Number of contiguous physical pages to be 

mapped. Unsigned integer. 

The CRB must be quadword aligned. The DISPATCH and FIXUP addresses must 
be quadword aligned; all unused bits should be zero. The ENTRY addresses must 
be page aligned and all unused bits should be zero. 

The DISPATCH and FIXUP procedure descriptors located by DISPATCH_PA, 
DISPATCH.VA, FIXUP_PA and FIXUP_VA must be contained within the pages 
located by the first virtual-physical map entry. 

2.3.8.1.1 Console Routine Block Initialization 

Prior to transferring control to system software, the console initializes all fields of 
the CRB. The console fills in all physical and virtual address fields, the number 
of entries in the virtual-physical map (ENTRIES), the total number of pages to be 
mapped (PAGES), and the virtual addresses contained in the OpenVMS procedure 
descriptors for the DISPATCH and FIXUP procedures1. PAGES is the sum of the 
contents of all ENTRY_PAGES fields. 

All addresses are initially mapped within region 0 of the initial bootstrap address 
space. These addresses include the contents of the CRB and all addresses contained 
within the DISPATCH and FIXUP procedure descriptors. The mapping must permit 
kernel access with appropriate read/write/execute access. The KRE, KWE, and FOx 
PTE fields are never subsequently altered by system software. The initial mapping 
need not be virtually contiguous. 

2.3.8.1.2 Console Routine Remapping 

When the console transfers control to the system software, the console callback 
routines may be invoked by the system software without additional setup. All 
necessary virtual mappings into initial bootstrap address space must be performed 
by the console prior to transferring control. 

The system software may virtually remap the console callback routines. This 
remapping permits the system software to relocate the routines to virtual addresses 

Recall from the OpenVMS AXP calling standard that the second quadword of a procedure descriptor contains the entry 
address (virtual) of the procedure itself. 
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other than those assigned in initial bootstrap address space. This relocation requires 
that the console adjust (or fix up) various internal virtual address references. 

The system software invokes the FIXUP routine to enable the console to perform 
the necessary internal relocations. The FIXUP routine virtually relocates all console 
routines and adjusts any console-private virtual address pointers such as those used 
to locate a local I/O device or HWRPB data structure. If system software virtually 
remaps the HWRPB, FIXUP must be invoked prior to calling any other console 
callback routine; it is recommended that system software remap both the HWRPB 
and the console routines together. Calling the console callback routines after the 
HWRPB has been remapped from its original bootstrap address location results in 
UNDEFINED operation of the system. 

To remap the console callback routines, the system software and the console 
cooperate as follows: 

1. System software must be executing on the primary processor in a multiprocessor 
system. 

2. System software determines the new base virtual address of the HWRPB; this 
remapping is optional. System software does not perform any remapping of the 
HWRPB at this step. 

System software need not remap the memory data descriptor table located by 
HWRPB[200]. See Section 2.1 for a description of the HWRPB and its size. 

3. System software determines the new base virtual address of the console callback 
routines. The CRB entries will be mapped into a set of virtually contiguous 
pages. The CRB PAGES field (CRB[40]) is used to determine the number of 
pages that must be mapped. System software does not perform any remapping 
of the console callback routines at this step. 

4. System software passes control to the console by calling FIXUP (NEW_BASE_ 
VA, NEW_HWRPB_VA), initiating the remapping. NEW_BASE_VA is the new 
base virtual address as established in step 3. HWRPB_VA is the new starting 
virtual address of the HWRPB as established in step 2. The remapping process 
is only initiated at this step; do not attempt to access the HWRPB or CRB using 
the new VAs. 

5. The console first locates the HWRPB, then locates the CRB using the CRB 
OFFSET field. The console then locates all internal pointers and adjusts them. 
All linkage sections and other console-internal pointers must be modified. These 
data structures can be located during FIXUP because the initial bootstrap 
address space mapping is in effect; any console-internal pointers are valid until 
modified. 

System software need not remap the optional CONFIG block or FRU table located 
by HWRPB OFFSET fields. If these blocks will be subsequently used by the 
console, they must be located by console-internal pointers and those pointers 
must be modified during FIXUP. 
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DISPATCH and FIXUP are not uniquely remapped by the system software. The 
FIXUP must update the DISPATCH and FIXUP procedure descriptors located by 
CRB[8] and CRB[24]. The physical pages containing the procedure descriptors 
and the routines themselves must be included in the virtual-physical map. 

The relative virtual address offsets of the pages located by the entry map are 
not guaranteed to be retained across the FIXUP The initial bootstrap address 
mapping of the physical pages located by the entry map is not required to be 
virtually contiguous. The system software remapping is required to be virtually 
contiguous. Any offsets that cross physical pages may have to be modified by 
FIXUP. 

6. The console returns from FIXUP. If the FIXUP was not successful, console 
internal state has been compromised. The console attempts a cold bootstrap 
if the state transition in Figure 3-1 indicates a bootstrap and the BOOT_RESET 
environment variable is set to "ON" (4E4F16). Otherwise, the system remains in 
console I/O mode. 

7. System software updates each virtual-physical map entry of the CRB: 

1. The PTE and TB entries that correspond to the range of old virtual address 
are invalidated using the old ENTRY_VA and ENTRY_PAGES values. 

2. The new starting virtual address is written into the ENTRYJVA. This virtual 
address is computed by adding the NEW_BASE_VA to the sum of the PAGE_ 
COUNTs of each preceding entry. 

3. New PTEs are constructed for each physical page. The new PTE FOx and 
protection fields are copied from the original bootstrap address PTE. 

Programming Note: 
It is the responsibility of the console to judiciously set both the protection 
and FOx bits in the bootstrap address PTE. In particular, if the console 
sets the FOE bit, there is no architectural guarantee that the console 
exception handler will gain control as a result, nor is there any obvious 
appropriate response for the operating system handler. 

8. System software updates the DISPATCH and FIXUP VAs. The first virtual-
physical map entry locates the physical page that contains the DISPATCH and 
FIXUP procedure descriptors. 

9. System software updates all PTEs and invalidates all appropriate TB entries 
associated with the remapped HWRPB and any remapped OFFSET blocks. 

At the completion of this process, the console callback routines are remapped and 
may again be used by system software. Since FIXUP itself is relocated, system 
software may remap the routines more than once. 
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2.3.8.2 Console Terminal Block Table 

The Console Terminal Block (CTB) table indicates the current identity and 
characteristics of each console terminal device. The CTB table is the only data 
structure shared by the console and system software that describes the terminal 
devices accessible by console callback routines. 

The CTB table contains an array of CTBs. Each CTB is a quadword-aligned structure 
with format as shown in Figure 2-6 and described in Table 2-11. The index of the 
CTB in the CTB table is the unit number of the terminal device. The CTB format 
consists of two parts: a header and a device-specific segment. The format of the 
header is common to all CTBs; the format of the device-specific segment is dependent 
on the unique device type. 

There is only one console terminal. The console terminal unit is selected by 
the console presentation layer prior to bootstrapping the operating system. See 
Section 1.3. Once the operating system is bootstrapped, the console terminal unit 
should not be changed by the console presentation layer. Any attempt to do so results 
in UNDEFINED operation of the console. Specifically, if the console presentation 
layer halts the operating system, alters the console terminal unit, then restarts or 
continues operating system execution, the operation of the console is UNDEFINED. 
The console terminal unit is identified by the TTY_DEV environment variable. 

During console initialization, the console: 

1. Locates all console terminal devices. 

2. Selects the console terminal. 

3. Builds a CTB for each. 

4. Initializes the CTB OFFSET field of the HWRPB. 

5. Initializes each console terminal device. 

6. Records the default state of each console terminal device in its CTB. 

7. Records the unit number of the console terminal in the TTY_DEV environment 
variable. 

Whenever the console changes the state of a console terminal device, the console 
must update its CTB to reflect the change. The console may record extended status 
on character transfers (GETC/PUTS) in the CTB. 

System software uses the CTB to determine console terminal device characteristics. 
System software never directly modifies the contents of a CTB; such modifications 
can result in UNDEFINED operation of the console terminal device either as the 
result of a subsequent call to a console terminal routine or as the result of a console 
internal need to access a console terminal device (for example, as the result of a 
halt). System software calls the SET_TERM_CTL console terminal routine to change 
console terminal device characteristics. 
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Figure 2-6: Console Terminal Block 
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Table 2-11: CTB Fields 
Offset Description 

CTB DEVICE TYPE — Console terminal device type and format of the device-specific 
segment. Defined device types are: 

Type Description 

0 No console present 
1 Detached service processor 
2 Serial line UART 
3 Graphics display with LK keyboard connected to serial line UART 
4 Multipurpose 
Other Reserved 

+08 DEVICE ID — The physical device and channel that sends and receives the 
console terminal stream. This field is necessary for configurations that include 
multiple-channel devices or multiple single-channel devices. The field has two 
subfields: 

Bits Description 

<63:32> Device index 
<31:0> Channel index 

For implementations that support only a single directly connected console terminal 
device, this field is set to zero. The device ID is not necessarily related to the 
console terminal device unit number. 
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Table 2-11 (Cont.): CTB Fields 

Offset Description 

+16 RESERVED — This field is reserved for future expansion and may not be used 
by the console or system software. 

+24 DSD LENGTH — This field specifies the number of bytes in the device-specific 
data field, DSD. 

+32 DSD — This field contains device-specific data associated with the unique console 
terminal type. Device-specific data may include such parameters as baud rate, 
flow eentrol enable, and the current state of the CAPS LOCK key. The DSD field 
should contain only those items that must be shared between the console and 
system software. 

2.4 Interprocessor Console Communications 
Only those communications between a running processor and a console processor are 
considered here. Communications paths between running processors are external to 
the console. Communications paths between console processors are internal to the 
console. 

Commands are transmitted from a running primary to a console secondary; messages 
(and requests) are transmitted from a console secondary to a running primary. 
Commands and messages are passed via receive (RX) and transmit (TX) buffers 
contained in each per-CPU slot of the HWRPB. The use of these buffers is controlled 
by the Receive Buffer Ready (RXRDY) and Transmit Buffer Ready (TXRDY) flags. 

The transmit and receive buffers are named from the point of view of the console 
secondary. The console secondary receives commands in the RX buffer and transmits 
messages in the TX buffer. 

2.4.1 Interprocessor Console Communications Flags 
The Receive Buffer Ready (RXRDY) and Transmit Buffer Ready (TXRDY) flags are 
used to control the interprocessor console communications. The RXRDY and TXRDY 
flags are gathered into bitmasks in the HWRPB at HWRPB [296] and HWRPB [304] 
respectively. The TXRDY bitmask allows a running primary to quickly determine 
which, if any, of the console secondaries are trying to send messages. 

The running primary sets the appropriate RXRDY flag to indicate to the receiving 
console secondary that a command is contained in the secondary's RX buffer. The 
secondary is assumed to be polling its RXRDY flag. The RXRDY flag is cleared by 
the secondary after the command has been read from the RX buffer and prior to 
executing the command. 

A console secondary sets its TXRDY flag to indicate to the running primary that 
a message is contained in the secondary's TX buffer. The console generates an 
interprocessor interrupt to the primary to notify it that a message is ready. System 
software clears the TXRDY flag after the message has been read from the TX buffer 
and prior to processing the message. 
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Implementation Note: 

The TXRDY b i t m a s k minimizes interprocessor i n t e r rup t service overhead by 
reducing the n u m b e r of requi red memory lookups. 

2.4.2 Interprocessor Console Communications Buffer Area 

Each per -CPU slot of t h e H W R P B includes a n RXTX Buffer Area t h a t provides 
t h e communica t ions p a t h be tween processors. The buffer a r ea is controlled by t h e 
RXRDY and TXRDY flags. The format is shown in F igure 2 - 7 and described in 
Table 2 -12 . 

Figure 2-7: Inter-Console Communications Buffer 
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Table 2-12: Inter-Console Communications Buffer Fields 
Offset Description 

SLOT+296 RXLEN — If the bit corresponding to this processor is set in the RXRDY 
bitmask at HWRPB [296], the RXLEN field contains the length in bytes of the 
command in the RX buffer. 

+300 TXLEN — If the bit corresponding to this processor is set in the TXRDY 
bitmask at HWRPB [304], the TXLEN field contains the length in bytes of the 
message in the TX buffer. 

+304 RX BUFFER — Buffer used by this console secondary to receive a command 
from the running primary. Only command data is passed through this buffer; 
a console secondary does not receive messages from the running primary. 
Commands must end with "<CRxLF>" (0A0D16). 

+384 TX BUFFER — Buffer used by this console secondary to transmit a message 
to the running primary. Only message data is passed through this buffer; a 
console secondary does not send commands to the running primary. Messages 
must end with with the console secondary's prompt, " < C R x L F > P n n » > " 
(3E3E 3Enn nn50 0A0D16). 
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2.4.3 Sending a Command to a Secondary 
The running primary manipulates the secondary's RXRDY flag and RX buffer in the 
following manner to send a command to a console secondary. In the sequence, the 
console secondary is assumed to have CPU ID = n. 

Programming Note: 

The RXRDY flag is a software lock variable; the primary and the secondary must 
use LDQ_L/STQ_C instructions to set and clear bit n. See Common Architecture, 
Chapter 5. 

1. The primary examines bit n of the RXRDY bitmask. If the bit is clear, proceed 
to step 3. 

2. The primary polls bit n of the RXRDY bitmask until clear or until some timeout 
is reached. If a timeout occurs, system software reports an error and takes 
appropriate action. 

3. The primary moves the text of the desired console command into the RX buffer 
in the secondary's HWRPB slot (the rath per-CPU slot). 

4. The primary sets the length of the command into the RXLEN field in the 
secondary's HWRPB slot (the rcth per-CPU slot). 

5. The primary sets bit n of the RXRDY bitmask to indicate there is a command 
waiting. 

6. The secondary is assumed to be polling bit n of the RXRDY bitmask. 

7. When the secondary notices that bit n of the RXRDY bitmask is set, it removes 
the command from its RX buffer. 

8. The secondary clears bit n of the RXRDY bitmask, indicating that its RX buffer 
is again available. 

9. The secondary attempts to process the command. 

2.4.3.1 Sending a Message to the Primary 

The console secondary manipulates its TXRDY flag and TX buffer in the following 
manner to return a message to the running primary. Again, the console secondary 
is assumed to have CPU ID = n. 

Programming Note: 

The TXRDY flag is a software lock variable; the primary and the secondary must 
use LDQ_L/STQ_C instructions to set and clear bit n. See Common Architecture, 
Chapter 5. 

1. The secondary examines bit n of the TXRDY bitmask. If the bit is clear, proceed 
to step 3. 

2. The secondary polls this bit until it clears or until a long timeout occurs. (See 
step 7.) 
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3. The secondary moves the text of its response message into the TX buffer in the 
secondary's HWRPB slot (the nth per-CPU slot). 

4. The secondary sets the length of the message into the TXLEN field in the 
secondary's HWRPB slot (the rath per-CPU slot). 

5. The secondary sets bit n of the TXRDY bitmask to indicate there is a message 
waiting. 

6. The secondary issues an interprocessor interrupt to the primary. This is always 
done; the primary need not poll for bits in the TXRDY bitmask. 

7. The secondary polls the TXRDY bitmask until bit n clears or until a long timeout 
expires. This prevents the secondary from performing any action that might 
cause the message to be lost before the primary can process it. 

Programming Note: 
The secondary may be restarted once it has transmitted the error halt 
message to the primary. However, it must wait for the primary to have 
a reasonable chance to respond to the interprocessor interrupt and process 
the message before the restart proceeds, because that message is important 
visible evidence of the error halt condition. On the other hand, the secondary 
should not wait too long for the primary to respond because the primary may 
be affected by the same condition that caused the secondary to error halt. 
Hence, the need for a timeout that is of reasonable length. 

8. As a result of the interprocessor interrupt, the primary eventually checks for 
console messages by examining the TXRDY bitmask. The primary notices that 
bit n of the TXRDY bitmask is set. 

9. The primary removes the message from the TX buffer. 

10. The primary clears bit n of the TXRDY bitmask, indicating that the TX buffer is 
again available. 

11. The primary attempts to process the message. 
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Chapter 3 

System Bootstrapping (III) 

This chapter describes the net effects of the action of the console to control the 
system platform hardware. The major system state transitions and the role of the 
console in controlling those transitions are described in Section 3.1.1. When power 
is applied to an Alpha AXP system, the console initializes the system as explained 
in Section 3.2. The console actions necessary to bootstrap system software include 
processor initialization (Section 3.4.1.5), memory sizing and testing (Section 3.4.1.1), 
building an initial virtual address space (Section 3.4.1.2), and loading the bootstrap 
(Section 3.6). The console actions to restart system software are described in 
Section 3.5. 

3.1 Processor States and Modes 

3.1.1 States and State Transitions 

An Alpha AXP processor can be in one of five major states: 

1. Powered off- no system power supplied to the processor 

2. Halted - operating system software execution suspended 

3. Bootstrapping - attempting to load and start the operating system software 

4. Restarting - attempting to restart the operating system software 

5. Running - operating system software functioning 

As shown in Figure 3-1 , the transitions between the major states are determined 
by the current state and by a number of variables and events, including: 

• Whether power is available to the system 

• The console AUTO_ACTION environment variable, which specifies a "Halt 
action" (see CALL_PAL HALT) 

• The console lock setting 

• The Bootstrap-in-Progress (BIP) flags 

• The Restart-Capable (RC) flags 

• Processor error halts 

• The CALL_PAL HALT instruction 

• Console commands 
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Key to Figure 3-1 

A Console is unlocked and AUTO.ACTION is "HALT". 
B Console is unlocked and AUTO.ACTION is "BOOT". 
C Console is unlocked and AUTO_ACTION is "RESTART" or console is locked. 
D Console is unlocked, the processor is forced into console I/O mode. 

Figure 3-1 : Major State Transitions 
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To effect major state transitions, the console obeys these rules: 

• If the console is unlocked when power is restored or when the processor halts, 
enter the state selected by the console AUTO_ACTION environment variable. 

• If the console is locked when power is restored or when the processor halts, 
attempt a processor restart. 

• When processor restart fails, attempt a bootstrap ofthat processor. One cause of 
a failed restart is the processor's RC flag being clear when the console attempts 
the restart. 

• When system bootstrap fails, halt. One cause of a failed bootstrap is the 
processor's BIP flag being set prior to the console attempting the bootstrap. Only 
the processor that failed bootstrap will halt. 

• When system bootstrap or processor restart succeeds, the processor starts 
running. 

• When the primary processor is halted and the console is unlocked, the console 
BOOT command causes a system bootstrap. 

• When a secondary processor is halted and the console is unlocked, the console 
START -CPU command causes the console to attempt to start that processor 
running. 

• When a processor is halted and the console is unlocked, the console CONTINUE 
command causes the processor to continue running as though no halt was 
incurred. 

• If the console is unlocked and a specified processor is running or booting or 
restarting, that processor is halted by a console HALT -CPU command. 

Implementation Note: 
In an embedded console implementation, the primary processor must be 
forced into the console I/O mode prior to issuing the HALT -CPU command. 

3.1.2 Major Modes 
In addition to the major states, the console and processor are described as being in 
one of three modes: 

1. Program I/O mode 

The processor is running. The processor interprets instructions, services 
interrupts and exceptions, and initiates I/O operations under the control of the 
operating system. 

2. Console I/O mode 

The processor is halted or bootstrapping or restarting. The console provides 
control over the system; the operating system has either relinquished control 
or has yet to gain control. The operating system does not service interrupts or 
exceptions or initiate I/O operations. The actions of the console are determined 
by internal console state and commands from the console operator. 
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3. Console Initialization mode 

The console has yet to acquire control of the processor. The console itself may 
also require initialization, such as when power is first applied to the system. 

A given processor may be in one of four modes: 

1. Primary processor in program I/O mode or "running primary" 

2. Primary processor in console I/O mode or "console primary" 

3. Secondary processor in program I/O mode or "running secondary" 

4. Secondary processor in console I/O mode or "console secondary" 

As noted in Section 1.1, implementations must include a mechanism to force a 
processor executing in program I/O mode into console I/O mode. 

System Initialization 

An Alpha AXP system must be initialized when power is restored. System 
initialization also occurs as the result of a system bootstrap when the BOOT_RESET 
environment variable is set to "ON", or as the result of the console INITIALIZE 
command. Initialization involves all implementation-specific, system-wide actions 
necessary to allow the system to boot system software on the primary processor. 
Table 3-1 summarizes the effects of initialization as seen by system software. 

Initialization may include initialization of the console itself. During console 
initialization, the console must build the HWRPB and all associated data structures 
necessary to permit the console to accept console commands and boot system 
software. 

System initialization may also include any necessary system bus, processor, or I/O 
device initialization. The initialization of a processor performed as part of system 
initialization is not necessarily that performed just prior to transfer of control to 
the operating system bootstrap. See Section 3.4.1.5 for a description of processor 
initialization as seen by system software. 

Table 3-1 : Effects of Power-Up Initialization 

Processor State Initialized State: 

BIP and RC flags 
Reason for halt code 
Integer and floating-point registers 
System memory 

Environment variables 

BB_WATCH 

Cleared 
Ό' (bootstrap) 
UNPREDICTABLE 
Unaffected if preserved by battery backup; 
otherwise, UNPREDICTABLE 
Unaffected if nonvolatile; otherwise, set to 
default 
Unaffected 
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Table 3-1 (Cont.): Effects of Power-Up Initialization 

Processor State Initialized State: 

I/O device registers UNPREDICTABLE 

3.3 PALcode Loading and Switching 

3.3.1 PALcode Loading 

The console loads PALcode into good memory within a memory cluster that is not 
available to system software. If PALcode scratch space is required, the console 
allocates good memory within a memory cluster that is not available to system 
software. PALcode memory and scratch space are at least page aligned. The console 
records the starting physical address and length of PALcode memory and scratch 
space and then sets the PALcode Memory Valid (PMV) flag in the per-CPU slot of 
the primary processor. The PMV flag indicates that the PALcode descriptors are 
valid. 

After PALcode loading and initialization, the console sets the PALcode Loaded (PL) 
and PALcode Valid (PV) flags in the primary's per-CPU slot. The PL flag indicates 
that PALcode has been loaded; the PV flag indicates that any necessary PALcode 
initialization has been performed. 

PALcode loading and initialization are implementation specific. The PALcode source 
may be a special console device, ROM, a system device, a communications line, or 
any other implementation-specific source. The state of the console and system must 
be such that the source is accessible. The console determines the PALcode variant 
in an implementation-specific fashion; console implementations that are dependent 
on a given variant load that variant. Console and platform implementations may 
select any PALcode variant and may load multiple PALcode variants. 

Note: 

DEC OSF/1 supports PALcode switching but does not support PALcode loading. 
Any platform that supports DEC OSF/1 must either use the DEC OSF/1 variant 
as the default or must load (but need not switch to) the DEC OSF/1 variant prior 
to system bootstrap. 

The means by which any PALcode internal state is initialized is implementation 
specific. 

3.3.2 PALcode Switching 

PALcode switching is accomplished when one ("current") PALcode transfers control 
to another ("new") PALcode. PALcode switching can be initiated by the console or 
the operating system software. 
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Note: 

OpenVMS AXP does not support PALcode switching. Any platform that supports 
OpenVMS AXP must either use the OpenVMS AXP variant as the default or must 
switch to the OpenVMS AXP variant prior to system bootstrap. 

PALcode switching is performed by PALcode without intervention from the console 
or operating system software. The current PALcode must be able to locate the new 
PALcode image. The new PALcode may perform minimal sanity checks. 

To support PALcode switching, all PALcode images must implement a PALcode 
switching entry point at the image base (offset 0). During PALcode switching, the 
new PALcode image receives control from the current PALcode image at this offset. 

For the purposes of switching, a PALcode image is identified by one of the following: 

• PALcode variant 

PALcode variants are in the range 0 < variant < 256 and permit switching 
between cooperating, previously loaded PALcode images. PALcode variants 
are interpreted by the current PALcode without assistance from the console or 
operating system. 

• The physical address of the switching entry point. 

Entry point addresses are used whenever the operating system or console 
must load a PALcode image. Entry point addresses must meet the alignment 
requirements of the processor implementation and may occupy the lowest 
memory page. 

System software initiates PALcode switching during system bootstrap whenever the 
variant required is not identical to that supplied by the console. Once a new variant 
has been established by system software, the console must restore that variant across 
all subsequent transitions from console I/O mode to program I/O mode. The console 
must ensure that the system software PALcode variant appears unchanged when: 

1. A processor is restarted. 

2. A secondary processor is started. 

3. The operator forces a processor into console I/O mode, then continues program 
execution (HALT followed by CONTINUE). 

4. System software invokes a callback routine that requires transition to console 
I/O mode. 

System software is never required to restore a PALcode variant. The console 
may switch PALcode at entries to console I/O mode, but must restore the variant 
established by system software at subsequent re-entry to program I/O mode. 
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3.3.2.1 PALcode Switching Procedure 

PALcode switching proceeds as follows: 

1. The current PALcode is entered by the CALL_PAL SWPPAL instruction. The 
PALcode image identifier (variant or switching entry point address) is contained 
in R16. Registers R17 through R21 contain parameters that are passed without 
change to the new PALcode image. The interpretation of R17 through R21 is 
specific to the new PALcode image. 

2. If the current PALcode is not supplied by Digital and does not support PALcode 
switching, the current PALcode sets RO = 1 and returns from the CALL_PAL 
SWPPAL. 

3. The current PALcode determines if R16 contains a PALcode variant or switching 
entry point address. If the latter, execution continues at step 7. 

4. The current PALcode validates the PALcode variant. If unsuccessful, the 
operation fails, the current PALcode sets RO = 1 and returns from the CALL_PAL 
SWPPAL instruction. 

5. The current PALcode determines if the PALcode associated with the PALcode 
token has been loaded. If not, the operation fails, the current PALcode sets RO 
= 2 and returns from the CALL_PAL SWPPAL instruction. 

6. The current PALcode determines the base physical address associated with the 
PALcode token. 

7. The current PALcode branches tö the new PALcode image at the switching entry 
point (physical) address determined in step 3 or 6. 

8. The new PALcode performs any necessary implementation-specific PALcode 
initialization. 

9. The new PALcode invalidates all TB entries and establishes the new memory 
management algorithm. (For example, OSF/1 PALcode loads the VPTB with a 
value supplied to the CALL_PAL SWPPAL instruction.) 

10. The new PALcode performs any implementation-specific actions using the entry 
parameters contained in R17..R21. The resulting changes in processor state are 
summarized for each PALcode variant in Section 3.3.2.3. 

11. The new PALcode clears RO and passes control to the code thread determined by 
the entry parameters. Control is always passed in kernel mode with interrupts 
disabled or blocked. 

In the event of any hardware failure in accessing any of the addresses specified by 
the calling arguments or other dependent locations, a hardware reset and system 
initialization are performed. 

Implemention Note: 

A common implementation is that the switching entry point is identical to the 
hardware reset entry. PALcode must distinguish the two causes. In the case 
of hardware reset, PALcode must perform any necessary hardware initialization 
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and pass control to the console. In the case of switching, PALcode must pass 
control to the code thread determined by the entry parameters. 

Notes: 

• System software must update the PALcode revision field (SLOT[168]) after 
PALcode switching. The console uses that field to determine if PALcode must 
be switched (to the system software-specific image) prior to passing control on 
system restarts. 

Similarly, system software may need to update the PALcode revision field in 
the per-CPU slot (SLOT[168]) of each secondary processor prior to starting the 
secondary. There is only one system restart routine. The console uses the 
PALcode revision field to determine if PALcode must be switched (to the system 
software-specific image) prior to passing control on secondary processor starts. 

• PALcode switching is initiated by invoking the CALL_PAL SWPPAL instruction. 
Prior to invoking SWPPAL, the caller should ensure that the system is quiescent. 
It is recommended that SWPPAL be invoked with interrupts either disabled or 
blocked. After a successful PALcode switch, the operating system may need to 
update the VPTB field in the HWRPB or restart HWPCB in each per-CPU slot. 

• PALcode switching does not implicitly load PALcode. During system bootstrap, 
the operating system must ensure that the desired PALcode variant is loaded. 
If loading is required, the operating system must allocate sufficient physically 
contiguous physical memory for the new PALcode image and any additional 
PALcode scratch space, then load the PALcode image in an implementation-
specific manner. 

• After a PALcode switch, the operating system may need to invoke the FIXUP 
console callback routine. FIXUP must be invoked after any operation that affects 
virtual address translation and before subsequent invocations of other callback 
routines. See Section 2.3.7.1. 

3.3.2.2 Specific PALcode Switching Implementation Information 

OpenVMS AXP does not currently support PALcode switching. DEC OSF/1 supports 
PALcode switching as shown in Table 3-2. 

Table 3-2: DEC OSF/1 PALcode Variation 2 

Register 

R17 (al) 

R18 (a2) 

R19 (a3) 

CALL_PAL swppal Parameter Usage 

New PC 

New PCBB 

New VPTB 
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3.3.2.3 Processor State at Exit for DEC OSF/1 from PALcode Switching Instruction 

Table 3-3: Processor State for DEC OSF/1 at Exit from swppal 

Processor State At exit from swppal: 

ASN 

FEN 

IPL 

MCES 

PCBB 

PC 

PS 

PTBR 

Unique 

WHAMI 

Sysvalue 

KSP 

Other IPRs 

RO 

Address space number 

Floating enable 

Interrupt priority level 

Machine check error summary 

Privileged context block 

Program counter 

Processor status 

Page table base register 

Processor unique value 

Who-Am-I 

System value 

Kernel stack pointer 

Integer and floating-point registers 

ASN in PCB passed to swppal 

FEN in PCB passed to swppal 

7 

Zero 

Address of PCB passed to swppal 

PC passed to swppal 

IPL=7, CM=K 

PTBR in PCB passed to swppal 

unique in PCB passed to swppal 

Unchanged 

Unchanged 

KSP in PCB passed to swppal 

UNPREDICTABLE 

Zero 

UNPREDICTABLE, except SP an 

3.4 System Bootstrapping 
This section describes the operations performed by the Alpha AXP console to locate, 
load, and transfer control to a primary bootstrap. The responsibilities of the console 
and the initial state seen by system software are presented for multiprocessor 
and uniprocessor environments. The actions of the console for cold bootstrap (full 
hardware initialization) and warm bootstrap (partial hardware initialization) are 
described. 

A system bootstrap can occur as the result of a powerfail recovery, a processor halt, 
or an INITIALIZE or BOOT console command. See Section 3.1.1 for a complete 
description of these state transitions. 

3.4.1 Cold Bootstrapping in a Uniprocessor Environment 
This section describes a cold bootstrap in a uniprocessor environment. A system 
bootstrap is a cold bootstrap when any of the following occur: 

• Power is first applied to the system. 

• Requested by system software. 
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• A console INITIALIZE command is issued and the AUTO.ACTION environment 
variable is set to "BOOT". 

• The BOOT_RESET environment variable is set to "ON". 

The console must perform the following steps in the cold bootstrap sequence. 

1. Perform a system initialization 

2. Size memory 

3. Test sufficient memory for bootstrapping 

4. Load PALcode 

5. Build a valid Hardware Restart Parameter Block (HWRPB) 

6. Build a valid Memory Data Descriptor table in the HWRPB 

7. Initialize bootstrap page tables and map initial regions 

8. Locate and load the system software primary bootstrap image 

9. Initialize processor state on all processors 

10. Transfer control to the system software primary bootstrap image 

The steps leading up to the transfer of control to system software may be 
performed in any order. The final state seen by system software is defined, but 
the implementation-specific sequence of these steps is not. Prior to beginning a 
bootstrap, the console must clear any internally pended restarts to any processor. 

3.4.1.1 Memory Sizing and Testing 

Memory sizing is the responsibility of the console. The console must also test 
sufficient memory to permit control to be passed to the primary bootstrap image. 
The results of console memory sizing and testing are passed to system software in 
the Memory Data Descriptor (MEMDSC) table located by HWRPB[200]. 

The MEMDSC table contains one or more memory cluster descriptors. Each memory 
cluster descriptor describes a physically contiguous extent of physical memory that 
contains no holes. Cluster descriptors are ordered by increasing physical address; 
the range of PFNs described by cluster N is of lower address than the range of PFNs 
described by cluster N+l. 

The MEMDSC table must be quadword aligned and both physically and virtually 
contiguous. The MEMDSC table format is shown in Figure 3-2; the memory cluster 
descriptor format is shown in Figure 3-3. The size of the MEMDSC table can be 
determined by the number of clusters contained in MEMDSC [16]. The size of the 
table and the offset to the last quadword of the table are given by: 

MEMDSC_SIZE = ((7 * MEMDSC[10ig]) + 3) * 8 
MEMDSC_END = MEMDSC_SIZE -8 

The memory within a cluster is either available to system software or reserved 
for console use. Usage within a cluster cannot be mixed; if the cluster contains a 
page reserved for console use, system software cannot allocate any page within the 
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cluster. The memory cluster descriptor contains a cluster usage field that indicates 
the cluster availability to system software. The primary bootstrap image must reside 
in clusters available to system software. 

The memory within each cluster may be fully tested, partially tested, or untested 
by the console. If the memory is untested, no cluster memory bitmap is built. The 
console must test enough memory to allow the primary bootstrap image to be loaded 
and control to be passed to that image. This memory includes: 

• PALcode memory and scratch areas 

• CPU logout areas 

• Memory bitmaps 

• HWRPB and all offset blocks 

• Console CRB map entries 

• Bootstrap address space page tables 

• Primary bootstrap image 

• One page for the initial bootstrap stack 

Any additional memory testing by the console is implementation specific. It is the 
responsibility of system software to test any memory untested by the console. 

A cluster bitmap is built if the cluster is available to system software and the console 
tests any memory within the cluster. Each page in the cluster is represented by a 
bit in the bitmask. A T in the bitmap means that the corresponding page is "good"; 
the page was tested without error. A Ό' in the bitmap means that the corresponding 
page is "bad"; the page is either untested or was tested but encountered correctable 
(Corrected Read Data) errors or hard (Read Data Substitute) errors. 

Cluster bitmaps must be at least quadword aligned and must be an integral number 
of quadwords; any unused bits in the highest addressed quadword MBZ. 

Implementation Notes: 

Every implementation cannot be required to test all of memory before booting 
the operating system. Partial memory testing is recommended whenever testing 
is time-consuming and would significantly delay the bootstrapping process; the 
choice is implementation specific. The high-water mark mechanism allows 
implementations to completely size memory without testing all of it and indicate 
to the operating system where testing ended. 

Clusters reserved for the use of the console and PALcode do not have associated 
bitmaps. If such a cluster would contain a large number (three or more) of 
contiguous pages that encounter soft read errors or are otherwise unsuitable for 
console and PALcode, the console should consider breaking the bad pages into 
a separate cluster. This cluster should be made available for use by system 
software, which can possibly reclaim the pages for use. 
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The console does not alter the Memory Data Descriptor table or any bitmaps 
across warm bootstraps. This permits system software to propagate information 
on system software memory testing and intermittent errors across operating 
system bootstraps. For example, system software could set the "bad" bit of a 
page that incurred repeated CRD errors. 

Figure 3-2: Memory Cluster Descriptor Table 

Checksum 

PA of Optional Implementation-Specific Information 

Number of Clusters 

Memory Cluster Descriptor 1 

MEMDSC 

+08 

+16 

+24 

Memory Cluster Descriptor Last :MEMDSC_END 

Table 3-4: Memory Cluster Descriptor Table Fields 

Offset Description 

MEMDSC 

+08 

+16 

+24 

CHECKSUM — Checksum of all the quadwords from offset MEMDSC+8 
through MEMDSC_END. Computed as a 64-bit sum, ignoring overflows. 
The checksum does not include any of the cluster bitmaps or any optional 
implementation-specific data. 
IMP_DATA_PA — Physical address of additional implementation-specific 
information (if any). If no additional implementation-specific information exists, 
the field must contain a zero. 
CLUSTERS — Number of clusters in the Memory Cluster Descriptor table. 
Unsigned integer. 
CLUSTER — Each Memory Cluster Descriptor describes an extent of physical 
memory. See Figure 3-3. 
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Figure 3-3: Memory Cluster Descriptor 

Starting PFN of Cluster MEMC 

+08 

+16 

+24 

+32 

+40 

+48 

+56 

Count of Pages in Cluster 

Count of Tested Pages in Cluster Bitmap 

VA of Cluster Bitmap or Zero 

PA of Cluster Bitmap or Zero 

Checksum of Cluster Bitmap 

Usage of Cluster 

Table 3-5: Memory Cluster Descriptor Fields 
Offset Description 

MEMC PFN — Starting PFN of the memory cluster. 

+08 PAGES — Number of pages in the memory cluster. Unsigned integer. 

+16 TESTED_PAGES — Number of tested memory pages in the cluster. If only a 
limited extent of the cluster memory was tested, a bitmap is built, and this field 
indicates the number of pages that were tested. 

+24 BITMAP_VA — Starting virtual address of the cluster memory testing bitmap 
in the bootstrap address space. If the memory is untested, no bitmap is built and 
this field is set to zero. 

+32 BITMAP_PA — Starting physical address of the cluster memory testing bitmap. 
If the memory is untested, no bitmap is built and this field is set to zero. 

+40 BITMAP_CHECKSUM — Checksum of the cluster memory testing bitmap. 
Computed as a 64-bit sum, ignoring overflows, over the PAGES active bits only. 

+48 USAGE — Indicates whether the cluster is available for use by system software. 
If USAGE<0> is Ό', system software may allocate and use the cluster. 
If USAGE<0> is Ό' and USAGE<1> is T , the cluster is available for use by the 
system software, but is in nonvolatile memory. 
If USAGE<0> is T , the cluster is reserved for console use and must not be allocated 
by system software. 
USAGE<63:2> should be zero. 
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3.4.1.2 Bootstrap Address Space 

All system software, including the primary bootstrap image, runs in a virtual 
memory environment. The console creates the initial page tables that define the 
initial bootstrap address space for the primary bootstrap. System software may 
replace this bootstrap address space at any time after the console passes control to 
the primary bootstrap image. 

The bootstrap address space consists of four regions. All regions must be located in 
good memory within clusters that are available to system software. The regions are: 

Region 0 
This region maps all console or PALcode data structures that must be shared with 
system software. These structures include the HWRPB in its entirety, all blocks 
located by HWRPB offsets, the console callback routines, and all memory bitmaps. 
Region 0 begins at address 256MB, virtual address 0000 0000 1000 000016. The 
starting address of the HWRPB is the base of Region 0. 

Region 1 
The primary bootstrap image is loaded into this region. The region must be at least 
large enough to load system software plus three pages. The three additional pages 
are used as an initial bootstrap stack and stack guard pages. The stack guard pages 
are virtually adjacent to the bootstrap stack page and marked no-access. All other 
pages in the region are mapped and valid. Region 1 begins at address 512MB, virtual 
address 0000 0000 2000 0000i6. 

Software Note: 

This region must be set to the size of the primary bootstrap image plus 3 pages 
for OpenVMS AXP and at least 256K bytes for DEC OSF/1. 

Region 2 
This region, or "page table space," contains the bootstrap address space page tables. 
Region 2 begins at address 1GB, virtual address 0000 0000 4000 000016. The range 
depends on the page size: 

Page Table Space 
Page Size Address Range 

8KB 1GB to 1GB+8MB 
16KB 1GB to 1GB+16MB 
32KB 1GB to 1GB+32MB 
64KB 1GB to 1GB+64MB 

This region includes the Level 2 and Level 3 page tables used to map all three regions 
comprising bootstrap address space. The Level 2 page table maps itself as a Level 
3 page table. The address of the Level 2 page table page and the PTE within the 
page that is used for self-mapping also depend on the page size: 
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Virtual Address of L2PTE Number Used 
Page Size Level 2 Page Table for Self-Mapping 

8KB 1GB+1MB 128 
16KB 1GB+512KB 32 
32KB 1GB+256KB 8 
64KB 1GB+128KB 2 

Implemention Note: 

Region 2 allows the primary bootstrap code to start with 32-bit pointers that 
execute in a 32-bit context. Thus, Region 2 allows primary bootstrap software to 
be written with 32-bit-oriented language complilers. 

The initial page tables that map the virtual address regions are shown in Figure 3-4 
and illustrated in Figure 3-5. 

Region 3 
This region maps the entire page table structure, including all levels of page table, 
that would be required to map the entire virtual address space supported by this 
implementation. The Level 1 page table is self-mapped by the second PTE in the 
page. Region 3 exists to support virtual page table lookup for Translation Buffer 
misses. Region 3 exists at a virtual address that is inaccessible to code that is 
compiled to support only a 32-bit virtual address space. As such, Region 3 is not the 
primary page table space that is presented to bootstrap software. 

Programming Note: 

Due to the self-mapping, Region 3 maps all page table pages. The Level 2 and 
Level 3 page table pages are in both Region 2 and Region 3. 

Page Size Virtual Address of Page Table Space (VPTB) 

8KB 8GB 
16KB 64GB 
32KB 512GB 
64KB 4TB 

All valid pages allow read/write access from kernel mode and deny all access from 
other modes. All fault bits (FOR, FOW, FOE) are clear, as well as Address Space 
Match (ASM) and Granularity Hint (GH). 
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Figure 3-4: Initial Virtual Memory Regions 
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Map Region 0 

I 

:VA=2000 0000 (hex) 

:SP 

:VA=4000 0000 (hex) 

:VPTB 

Unused 

i 
Level 3 Page Table 

Map Region 1 

Unused i 
Level 2, 3 Page Table 

(Maps Itself and Region 2) 

The self-mapping of the Level 2 page table excludes the Level 1 page table page from 
Region 2. The Level 1 page table has two active PTEs. The first LIPTE points to 
the PFN of the Level 2 page table page, which maps page table space (Region 2). 
The second LIPTE contains the PFN of the Level 1 page table itself, thus defining 
Region 3. Only these two entries within the Level 1 page table are valid; all other 
Level 1 PTEs are zeros. 

The self-mapping of the Level 2 page table also causes the addresses of the Level 
2 and Level 3 PTEs for a given virtual address to be functions of that address. 
For every virtual address within the bootstrap address space, there is exactly one 
location within page table space for the Level 2 PTE that maps that virtual address, 
and exactly one location for the Level 3 PTE that maps that virtual address. 

Thus, the Level 2 and Level 3 PTE virtual addresses for a given virtual address (VA) 
within bootstrap address space can be calculated given the page size. The following 
bit range definitions provide convenient notation for referring to the constituent 
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Figure 3-5: Initial Page Tables 
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The level 1 PT is not mapped. 

parts of a virtual address. For example, "VA<L2>" is equivalent to "VA<32:23>" for 
8K byte sized pages. 

VA: L1 L2 L3 Byte in Page 

Page Size LI L2 L3 

8KB 42:33 32:23 22:13 
16KB 46:36 35:25 24:14 
32KB 50:39 38:27 26:15 
64KB 54:42 41:29 28:16 

The base of page table space is a constant value: 

1. P T _ B a s e = 1GB 

The virtual address of the Level 3 PTE (L3PTE_VA) of any virtual address (VA) 
is given by: 

2. L3PTE_VA(VA) = PT_Base + (page_size * VA<L2>) + (8 * VA<L3>) 

Thus, the virtual address of the Level 3 PTE that maps the lowest address of 
page table space is given by: 
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L3PTE_VA(PT_Base) = PT_Base + (page_size * PT_Base<L2>) 

Since the Level 2 page table is self-mapped, the above is also the base virtual 
address of the Level 2 page table. Thus: 

3. L2PT_Base = PT_Base + (page_size * PT_Base<L2>) 

Finally, the virtual address of the Level 2 PTE (L2PTE_VA) of any virtual address 
(VA) is given by: 

L2PTE_VA(VA) = L2PT_Base + (8 * VA<L2>) 

4. L2PTE_VA(VA) = PT_Base + (page_size * PT_Base<L2>) + (8 * VA<L2>) 

3.4.1.3 Bootstrap Flags 

The Bootstrap-in-Progress (BIP) and Restart-Capable (RC) processor state flags in 
the primary processor's per-CPU slot are used to detect failed bootstraps. If the 
primary re-enters console I/O mode while the BIP flag is set and the RC flag is 
clear, the bootstrap attempt fails, and the subsequent console action is determined 
by Figure 3-1 . 

The console sets the BIP flag and clears the RC flag prior to transferring control to 
system software. System software sets the RC flag to indicate that sufficient context 
has been established to handle a restart attempt. System software clears the BIP 
flag to indicate that the bootstrap operation has been completed. The RC flag should 
be set prior to clearing the BIP flag. 

Table 3-6: Console Interpretation of BIP and RC flags 

BIP RC Interpretation at Entry to Console I/O Mode 

set clear Failed bootstrap 
set set Halt condition encountered during bootstrap, restart processor 
clear clear Failed restart 
clear set Halt condition encountered, restart processor 

3.4.1.4 Loading of System Software 

The console is responsible for loading system software at the base of Region 1 
beginning at virtual address 512MB. This software is expected to be a primary 
bootstrap program that is responsible for loading other system software, but may 
be diagnostic or other special-purpose software. Section 3.6 contains descriptions of 
the format of each supported bootstrap medium. 

The console uses the BOOT_DEV environment variable to determine the bootstrap 
device and the path to that device. These environment variables contain lists of 
bootstrap devices and paths; each list element specifies the complete path to a given 
bootstrap device. If multiple elements are specified, the console attempts to load a 
bootstrap image from each in turn. 
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The console uses the BOOTDEF_DEV, BOOT_DEV, and BOOTED_DEV environ-
ment variables as follows: 

1. At console initialization, the console sets the BOOTDEF_DEV and BOOT_DEV 
environment variables to be equivalent. The format of these environment 
variables is a function of the console implementation and independent of the 
console presentation layer; the value may be interpreted and modified by system 
software. 

2. When a bootstrap results from a BOOT command that specifies a bootstrap device 
list, the console uses the list specified with the command. The console modifies 
BOOT_DEV to contain the specified device list. 

Note: 
This may require conversion from the presentation layer format to the 
registered format. 

3. When a bootstrap is the result of a BOOT command that does not specify a 
bootstrap device list, the console uses the bootstrap device list contained in 
the BOOTDEF_DEV environment variable. The console copies the value of 
BOOTDEF_DEV to BOOT.DEV. 

4. When a bootstrap is not the result of a BOOT command, the console uses the 
bootstrap device list contained in the BOOT_DEV environment variable. The 
console does not modify the contents of BOOT_DEV. 

5. The console attempts to load a bootstrap image from each element of the 
bootstrap device list. If the list is exhausted prior to successfully transferring 
control to system software, the bootstrap attempt fails and the subsequent 
console action is determined by Figure 3-1 . 

6. The console indicates the actual bootstrap path and device used in the BOOTED_ 
DEV environment variable. The console sets BOOTED_DEV after loading the 
primary bootstrap image and prior to transferring control to system software. 
The BOOTED_DEV format follows that of a BOOT_DEV list element. 

7. If the bootstrap device list is empty, BOOTDEF_DEV or BOOT_DEV are NULL 
(00i6), and the action is implementation specific. The console may remain in 
console I/O mode or attempt to locate a bootstrap device in an implementation-
specific manner. 

The BOOT_FILE and BOOT_OSFLAGS environment variables are used as default 
values for the bootstrap file name and option flags. The console indicates the actual 
bootstrap image file name (if any) and option flags for the current bootstrap attempt 
in the BOOTED_FILE and BOOTED_OSFLAGS and environment variables. The 
BOOT_FILE default bootstrap image file name is used whenever the bootstrap 
requires a file name and either none was specified on the BOOT command or the 
bootstrap was initiated by the console as the result of a major state transition. The 
console never interprets the bootstrap option flags, but simply passes them between 
the console presentation layer and system software. 
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3.4.1.5 Processor Initialization 

Before control is transferred to system software, certain IPRs and other processor 
state must be initialized as shown in Table 3-7 and Section 3.3.2.3 for each PALcode 
variant. Processor initialization is performed by the console prior to booting a 
processor, prior to restarting a processor, or as the result of the INITIALIZE -CPU 
console command. 

The Context Valid (CV) flag in the processor's per-CPU slot must be valid for 
processor initialization to be successful. If the CV flag is clear, the HWPCB contained 
in the per-CPU slot is not valid, and the console must not transfer control to system 
software. If this or any error occurs in initializing the processor, the console retains 
control of the system and generates the binary error message ERROR_PROC_INIT. 

Table 3-7: Processor Initialization 

Processor State Initialized State 

ASN Address Space Number 
ÄSTEN1 AST Enable 
ASTSR1 AST Summary 
FEN Floating Enable 
IPL Interrupt Priority Level 
MCES Machine Check Error Summary 
PCBB Privileged Context Block 
PS Processor Status 
PTBR Page Table Base Register 
SISR1 Software Interrupt Summary 
WHAMI Who-Am-I 
SCC1 System Cycle Counter 
SP Kernel Stack Pointer 
Other IPRs 
Cache, instruction buffer, or write buffer 
Translation buffer 
Main memory 
Integer and floating-point registers 
Reason for Halt code 
BIP and RC flags 
Environment variables 

Zero 
ASTEN in processor's HWPCB 
ASTSR in processor's HWPCB 
FEN in processor's HWPCB 
highest 
8 (bit 3=1) 
Address of processor's HWPCB 
IPL=highest, VMM=0, CM=K, SW=0 
PFN value in processor's HWPCB 
Zero 
CPU identifier 
Zero 
KSP in processor's HWPCB 
UNPREDICTABLE 
Empty or valid 
Invalidated 
Unaffected 
Unaffected, except SP 
Unaffected 
Unaffected 
Unaffected 

OpenVMS AXP only. 
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3.4.1.6 Transfer of Control to System Software 

Prior to transferring control to system software, the console must define valid 
hardware privileged context for that software. The console builds that context in 
the hardware privileged context block (HWPCB ) in the primary processor's per-
CPU slot. The initialized context is summarized in Table 3-8 and Section 3.3.2.3 for 
each PALcode variant. 

The initial KSP points to the lowest addressed quadword in the higher addressed 
stack guard page (top-of-stack) of Region 1 of the bootstrap address space. The PTBR 
points to the Level 1 page table page. All other scalar and floating-point register 
contents are UNPREDICTABLE. 

After building the HWPCB for the primary, the console sets the Context Valid (CV) 
flag in the primary's per-CPU slot. All other bootstrap information is passed from 
the console to system software via environment variables. See Section 2.2 for more 
details. 

Table 3-8: Initial HWPCB contents 

HWPCB Field Initialized State 

KSP Top-of-stack (contents of SP) 
ESP1 

SSP1 

USP 

PTBR 

ASN 

ASTSR1 

ÄSTEN1 

FEN 

PCC 

Unique value 

PALcode scratch 

UNPREDICTABLE 

UNPREDICTABLE 

UNPREDICTABLE 

PFN of Level 1 page table 

Zero 

Zero 

Zero (all disabled) 

Zero (disabled) 

Zero 

Zero 

Implementation specific 

1 OpenVMS AXP systems only. 

Control is transferred to system software in kernel mode at the highest IPL 
with virtual memory management enabled. Control is transferred to the first 
longword of the system software image loaded into Region 1, virtual address 
0000 0000 2000 0000i6. Prior to transferring control, the console ensures that the 
SP contains the KSP value in the HWPCB. System software should assume that the 
stack is initially empty. 

The transfer of control transitions the primary processor from the halted state into 
the running state and from console I/O mode into program I/O mode. The rest of the 
uniprocessor bootstrap process is the responsibility of system software. 

System Bootstrapping (III) 3-21 



3.4.2 Warm Bootstrapping in a Uniprocessor Environment 
The actions of the console on a warm bootstrap are a subset of those for a cold 
bootstrap. A system bootstrap will be a warm bootstrap whenever the BOOT_RESET 
environment variable is set to "OFF", and console internal state permits. 

The console performs the following steps in the warm bootstrap sequence. 

1. Locate and validate the Hardware Restart Parameter Block (HWRPB) 

2. Locate and load the system software primary bootstrap image 

3. Initialize processor state on all processors 

4. Initialize bootstrap page tables and map initial regions 

5. Transfer control to the system software primary bootstrap image 

At warm bootstrap, the console does not load PALcode, does not modify the Memory 
Data Descriptor table, and does not reinitialize any environment variables. If the 
console cannot locate and validate the previously initialized HWRPB, the console 
must initiate a cold bootstrap. Prior to beginning a bootstrap, the console must 
clear any internally pended restarts to any processor. 

Programming Note: 

Warm bootstrap permits system software to preserve limited context across 
bootstraps. 

3.4.2.1 HWRPB Location and Validation 

After console initialization, the console must preserve the location of the HWRPB in 
an implementation-specific manner. On warm bootstraps and restarts, the console 
locates the HWRPB and verifies it by ensuring that: 

1. The first quadword of the table contains the physical address of the table. 

2. The second quadword of the table contains "HWRPB" (0000 0042 5052 5748i6). 

3. The quadword at offset HWRPB[288] contains the 64-bit sum, ignoring overflows 
of the quadwords from offset HWRPB [00] to HWRPB [280], inclusive, relative to 
the beginning of the potential HWRPB. 

4. The quadword at offset [0] of the MEMDSC block contains the 64-bit sum, 
ignoring overflows, of the quadwords from MEMDSC+8 through MEMDSC_ 
END of that block. The MEMDSC block is located by the MEMDSC offset at 
HWRPB[200]. See Figure 3-2. 

5. As described in Section 2.1.4, if a CONFIG table exists, it is located by the 
CONFIG offset at HWRPB [208]. The quadword at offset [8] of the optional 
CONFIG table contains the 64-bit sum, ignoring overflows, of the quadwords 
from CONFIG+16 through CONFIG_END ofthat table. 

If one or more of the above conditions is not true, the HWRPB is not valid. The 
warm bootstrap (or restart) fails. The subsequent console action is determined by 
Figure 3-1 . If a bootstrap is indicated, a cold bootstrap will be performed. 
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The console must not search memory for a HWRPB; searching memory constitutes 
a security hole. 

3.4.3 Multiprocessor Bootstrapping 
Multiprocessor bootstrapping differs from uniprocessor bootstrapping primarily in 
areas relating to synchronization between processors. In a shared memory system, 
processors cannot independently load and start system software; bootstrapping is 
controlled by the primary processor. 

3.4.3.1 Selection of Primary Processor 

The primary processor is selected by the console during system initialization prior 
to any access to main memory by any processor. Selection of the primary processor 
may be done in any fashion that guarantees choosing exactly one primary processor. 

Once a primary processor has been selected, the secondary processors take no further 
action until appropriately notified by the primary processor. In particular, secondary 
processors must not access main memory 

3.4.3.2 Actions of Console 

After selection, the console proceeds to bootstrap the primary processor, after the 
normal uniprocessor bootstrap as described in Section 3.4.1. 

The console must correctly initialize all HWRPB fields used for synchronization or 
communication between the processors. The console must initialize the PRIMARY 
CPU ID field at HWRPB [32], zero the TXRDY and RXRDY bitmasks at HWRPB [296] 
and HWRPB [304], and recompute the HWRPB checksum at HWRPB [288]. 

The console must also initialize each per-CPU slot for the secondary processors. The 
console must: 

1. Clear the BIP, RC, OH, and CV flags 

2. Clear the Halt Request code field 

3. Set the PP flag if the processor is present 

4. Set the PA flag if the processor is present and available for use by system software 

5. Set the PMV and PL flags if the console has loaded PALcode on this processor 

6. Set the PV flag if the console has initialized PALcode on this processor 

7. Set the PE processor variation flag if the processor is eligible to become a primary 

After initializing each processor's per-CPU slot, the console must notify each console 
secondary processor of the existence and location of the valid HWRPB. 

3.4.3.3 PALcode Loading on Secondary Processors 

Most console implementations load PALcode on all secondary processors prior to 
bootstrapping the primary processor. Console implementations may delay the 
loading or initialization of PALcode on a secondary. If delayed, PALcode loading and 
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initialization require the cooperation of system software executing on the running 
primary and the console executing on behalf of the secondary. 

The console secondary must have performed any necessary initialization as described 
in Section 3.4.3.5. All interprocessor console communications follow the mechanisms 
described in Section 2.4. 

The following procedure applies only to initial PALcode loading on a console 
secondary. The PALcode variant to be loaded must be identical to that of the 
running primary processor prior to any PALcode switching by system software. This 
procedure cannot be used to load operating system-specific PALcode variants: 

1. The console secondary initializes the PALcode memory and scratch space length 
fields in its per-CPU slot. 

2. The console secondary sets the PALcode major revision, minor revision, and 
compatibility subfields in the PALcode revision field in its per-CPU slot. 

3. The console secondary notifies the primary that PALcode loading is requested by 
transmitting a message to the running primary as described in Section 2.4. 

4. The console secondary polls the PALcode Memory Valid (PMV) flag in its per-CPU 
slot. 

5. The running primary detects the console secondary request. 

6. The running primary verifies that the Processor Available (PA) flag is set in the 
secondary's per-CPU slot. If the flag is not set, the operation fails. 

7. The running primary compares the major and minor revision subfields of the 
PALcode revision field in its per-CPU slot to that in the secondary's per-CPU 
slot. If the revisions levels do not match, the running primary proceeds to step 
12. 

8. The running primary compares the number of processors currently sharing its 
PALcode image to the maximum contained in the subfield of the PALcode revision 
field of its per-CPU slot. If the current number is the maximum, no additional 
console secondary can share the PALcode image. The running primary proceeds 
to step 12. 

Programming Note: 
The running primary can determine the number of processors currently 
sharing a given PALcode image by counting the number of per-CPU slots 
with the same valid PALcode memory space descriptors. A PALcode memory 
space descriptor is valid if the PALcode Loaded (PL) flag is set in the per-CPU 
slot. 

9. The running primary copies the PALcode memory and scratch space descriptors 
from its per-CPU slot into the secondary's per-CPU slot. 

10. The running primary copies the PALcode variation, compatibility, and maximum 
number of processors subfields of the PALcode revision field from its per-CPU 
slot into the secondary's per-CPU slot. 
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11. The running primary sets the PALcode Loaded (PL) flag in the secondary's per-
CPU slot, then proceeds to step 13. 

12. The running primary allocates physical memory for PALcode memory and scratch 
areas and records the addresses in the secondary's per-CPU slot. 

13. The running primary sets the PALcode Memory Valid (PMV) flag in the 
secondary's per-CPU slot. 

14. The console secondary observes that the PMV flag is set in its per-CPU slot. 

15. If the PL flag in its per-CPU slot is not set, the console secondary loads PALcode 
into the allocated PALcode memory and scratch space. In this case, the console 
secondary sets the PALcode Loaded (PL) flag in its per-CPU slot. 

16. The console secondary ensures that any required implementation-specific 
PALcode initialization is performed. 

17. The console secondary sets the PALcode Valid (PV) flag in the secondary's per-
CPU slot. 

The PALcode memory and scratch space must be page aligned. If not allocated by the 
console prior to system bootstrap, the allocation management of PALcode memory 
for secondary processors is the responsibility of system software. 

It is the responsibility of console and system software to ensure that the initially 
loaded PALcode variation and revision levels of all processors are compatible. 
This may be performed by the primary prior to starting the secondary, by the 
starting secondary, or any combination thereof. PALcode images of the same 
PALcode variation but different revision levels are compatible if the PALcode revision 
compatibility subfields match. 

3.4.3.4 Actions of the Running Primary 

System software executing on the primary processor must initialize the HWPCB for 
each secondary processor. The HWPCB contains the necessary privileged context 
for the execution of system software and successful restarts. The HWPCB must 
be initialized prior to requesting that the console secondary perform any START 
command. After initializing the HWPCB, system software sets the Context Valid 
(CV) flag. 

Once the PALcode is valid on a console secondary, the secondary waits for a START 
(or other) command from the running primary. System software issues the necessary 
console commands that instruct the secondary to begin executing software. The 
exchange of commands and messages between the running primary and a secondary 
is described in Section 2.4. 

System software may start secondary processors at any time. In particular, 
secondary processors may be started before or after switching PALcode on the 
running primary. If system software switches to an operating system-specific 
PALcode prior to starting a secondary processor, system software must update the 
PALcode revision field in the per-CPU slot (SLOT[168]) of each secondary prior to 
starting the secondary. See Section 3.3.1. 
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Programming Note: 

All commands sent to a console secondary are implicitly targeted to the secondary. 

3.4.3.5 Actions of a Console Secondary 

After failing to become the primary, a console secondary uses an implementation-
specific mechanism to determine when a valid HWRPB has been constructed in main 
memory. The console secondary then locates the HWRPB in an implementation-
specific manner. 

Once the HWRPB is located, the secondary locates its per-CPU slot using its CPU 
ID as an index. The secondary verifies that its slot exists by comparing its CPU ID 
to the number of per-CPU slots at HWRPB [144]. If its CPU ID exceeds the number 
of per-CPU slots, the secondary must not leave console mode or continue to access 
main memory. If PALcode loading is necessary, the console secondary follows the 
procedure given in Section 3.4.3.3. 

Once PALcode is valid, the console secondary waits for a START (or other) command 
from the running primary by polling the appropriate flag in the RXRDY bitmask. 
The exchange of commands and messages between the running primary and a 
secondary is described in Section 2.4. 

In response to a START command, the console secondary: 

1. Verifies that the Context Valid (CV) flag is set in its per-CPU slot. 

2. Sets the Bootstrap-in-Progress (BIP) flag in its per-CPU slot. 

3. Clears the Restart-Capable (RC) flag in its per-CPU slot. 

4. Initializes the processor. 

5. If necessary, switches to the system software specific PALcode variant identified 
in the PALcode revision field in the per-CPU slot. 

6. Loads the privileged context specified by the HWPCB in its per-CPU slot. 

7. Loads the procedure value at HWRPB[264] into R27. 

8. Clears R26 and R25. 

9. Loads the virtual page table base (VPTB) register with the value stored in 
HWRPBU20]. 

10. Transfers control to the CPU Restart routine, whose virtual address is stored in 
HWRPB [256]. 

The CV flag indicates that the HWPCB in the slot contains valid hardware privileged 
state for system software. If the CV flag is not set, the processor remains in console 
I/O mode. 

The console uses the PALcode revision field in the per-CPU slot to determine if 
system software has switched PALcode to a system software-specific variant. The 
console must restore that variant prior to passing control to the CPU restart routine. 
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3.4.3.6 Bootstrap Flags 

The Bootstrap-in-Progress (BIP) and Restart-Capable (RC) processor state flags in 
the console secondary processor's per-CPU slot are used to control error recovery 
during secondary starts. If the secondary re-enters console I/O mode while the BIP 
flag is set and the RC flag is clear, the start attempt fails. Failed starts are equivalent 
to failed bootstraps, and the subsequent console action is determined by Figure 3-1 . 
See Section 3.4.1.3 and Table 3-6. 

3.4.4 Addition of a Processor to a Running System 
A processor may be added to a running system at any time if a slot has been provided 
for it in the HWRPB. The new console secondary processor follows the secondary 
start procedure given in Sections 3.4.3.3 and 3.4.3.5, with one minor difference. If no 
PALcode loading is necessary, the console secondary sends a ?STARTREQ? message 
to the running primary. This message notifies the primary that a new processor 
has been added to the configuration. After sending the 7STARTREQ? message, the 
console secondary waits for a START (or other) command from the running primary. 
See Section 2.4 for a description of interprocessor console communication. 

3.4.5 System Software Requested Bootstraps 
System software can request that the console perform a system bootstrap. This 
request can be made on any processor in a multiprocessor system and overrides the 
setting of the AUTO_ACTION and BOOT_RESET environment variables. 

To request a bootstrap, system software sets one of the bootstrap requested codes 
in the Halt Request field of its per-CPU slot, then executes a CALL_PAL HALT 
instruction. If a cold bootstrap is requested, the "Cold Bootstrap Requested" code ('2') 
is set; the "Warm Bootstrap Requested" ('3') code is set to request a warm bootstrap. 

Rather than the normal error halt processing described in Section 3.5.4, the console 
initiates the appropriate system bootstrap as described in Sections 3.4.1 and 3.4.2. 
The bootstrap attempt is unconditional; the AUTO_ACTION or the BOOT_RESET 
environment variables do not affect the bootstrap attempt. 

3.5 System Restarts 

The console is responsible for restarting a processor halted by powerfail or by error 
halt. The console follows the same sequence for a primary or secondary processor. 

3.5.1 Actions of Console 
The console begins the restart sequence by locating and then validating the HWRPB, 
using the procedure given in Section 3.4.2.1. If the HWRPB is not valid, the restart 
attempt fails. See Section 3.1.1 for console actions at major state transitions. 

If the HWRPB is valid, the console uses the processor CPU ID as an index to calculate 
the address of that processor's HWRPB slot. The console: 

1. Verifies that the processor's PALcode Valid (PV) flag is set. If the PV flag is clear, 
PALcode is not valid, and the restart attempt fails. 
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2. Verifies that the processor's Context Valid (CV) flag is set. If the CV flag is 
clear, the HWPCB does not contain valid software context for the restart, and 
the restart attempt fails. 

3. If the Reason for Halt is anything other that "powerfail restart", the console 
examines the processor's Restart-Capable (RC) flag. If set, the console proceeds 
with the restart at step 5. If clear, system software is not capable of attempting 
the restart, the restart attempt fails. 

Ignoring the RC flag for powerfail restart avoids unnecessary bootstraps that are 
caused by repeated power failures that in turn, are caused by a bouncing power 
supply that prevents software from having sufficient time to set the RC flag. 

4. Examines the Bootstrap-in-Progress (BIP) flag. If clear, and the AUTO_ACTION 
environment variable is "BOOT", a system bootstrap is attempted. Otherwise, 
the processor remains in console I/O mode. See Figure 3-1 . 

5. Examines the PALcode revision field in its per-CPU slot. If the revision field does 
not match the PALcode revision in use by the console, the console must switch 
PALcode prior to passing control to the CPU Restart routine. 

6. Loads the privileged context specified by the HWPCB in its per-CPU slot. 

7. Loads the procedure value at HWRPB[264] into R27. 

8. Clears R26 (return address) and R25 (argument information). 

9. Loads the virtual page table base (VPTB) register with the value stored in 
HWRPB[120]. 

10. Transfers control to the CPU Restart routine, whose virtual address is stored in 
HWRPB[256]. 

On all restart attempt failures the console initiates the action indicated by 
Figure 3-1 . The PV and CV flags should never be clear for the primary processor; 
if either flag is clear, then the restart fails. Also, no PALcode or system software is 
loaded during a restart. 

It is the responsibility of system software to complete the restart operation and to 
set the RC flag at the point where a subsequent restart can be handled correctly. 

3.5.2 Powerfail and Recovery — Uniprocessor 
An Alpha AXP system requires power to operate. The system power supply 
conditions external power and transforms it for use by the processor, memory, and 
I/O subsystems. Backup options are available on some systems to supply power 
after external power fails. The backup option may supply power to all of the system 
platform hardware, or only a subset. 

The effect of an external power failure depends on the backup option. 

1. If no backup option exists, the processor cannot be restarted after restoration of 
power. The processor must be bootstrapped or left halted in console I/O mode. 
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2. If the backup option maintains power to all of the system platform hardware, 
execution of system software is unaffected by the power failure. It must be 
possible for system software to determine that a transition to backup power has 
occurred. 

3. If the backup option maintains only the contents of memory and keeps system 
time with the BB_WATCH, the power supply must request a powerfail interrupt. 
After requesting the interrupt, the power supply must continue to supply power 
to the processor for an implementation-specific period to allow system software 
to save state. 

Powerfail recovery is possible only if adequate system state is preserved during 
an interruption of power to the processor. System software must save all volatile 
state and perform any operating system-specific actions necessary to ensure later 
successful recovery. 

Software Note: 
As explained in OpenVMS AXP Software II-A, Chapter 6 and DEC OSFI1 
Software II-B, Chapter 5, a powerfail interrupt is delivered at an appropriate 
IPL to the interrupt service routine located at SCB offset 64016 for that 
operating system. 

When power is restored, the console determines that the HWRPB is still valid, then 
examines the console lock and AUTO_ACTION environment variable. If the console 
is locked, and AUTO_ACTION environment variable is "RESTART", the console 
attempts an operating system restart. See Section 3.1.1. 

The processor may lose state when power is lost. For example, if a processor is 
halted when power fails, the action on power-up is still determined by the console 
switches and environment variables. The system does not necessarily stay halted. 

3.5.3 Powerfail and Recovery — Multiprocessor 
There are two basic approaches to powerfail recovery on multiprocessor systems: 

• United - all available processors effectively experience the powerfail event 
identically. 

• Split - each available processor effectively experiences independent powerfail 
events. 

A processor is "available" if the Processor Available (PA) flag is set in the processor's 
per-CPU slot. The powerfail system variation flag at HWRPB [88] indicates the type 
of powerfail and restart action. 

A multiprocessor Alpha AXP system that supports powerfail recovery must 
implement the united powerfail mode. The split mode may be implemented 
optionally as an alternative, selected at system bootstrap. 

System Bootstrapping (III) 3-29 



Software Note: 

OpenVMS AXP supports only the united powerfail and recovery mode at this 
time. Powerfail recovery is possible only when the primary is restarted; all 
secondaries should remain in console I/O mode. 

3.5.3.1 United Powerfail and Recovery 

In united powerfail and recovery mode, all available processors experience powerfail 
interrupts, halts, and restorations uniformly. If one available processor experiences 
a powerfail event, all other available processors experience that event. Therefore, if 
one processor powerfails and recovers, all processors must do so. Even if a separately 
powered processor does not actually lose power, that processor will still receive the 
powerfail interrupt and must be restarted as if power had been lost. 

When power is restored and a restart is to be attempted, the console must determine 
whether to restart all available processors or only the primary processor. The console 
determines the appropriate action by the Powerfail Restart (PR) flag in the system 
variation field of the HWRPB[88]. If the PR flag is set, the console attempts to restart 
all available processors; if clear, the console attempts to restart only the primary 
processor. In both cases, it is the responsibility of system software to coordinate and 
synchronize further powerfail recovery. 

3.5.3.2 Split Powerfail and Recovery 

In split powerfail and recovery mode, only the available processors that actually 
experience a loss of power will see a powerfail interrupt and subsequent recovery. 
Available processors that are separately powered and do not lose power do not see 
a powerfail interrupt. 

When power is restored and a restart is to be attempted, the console must determine 
whether to restart any available processor or only the primary processor. As in 
the united mode, the console determines the appropriate action by the Powerfail 
Restart (PR) flag in the system variation field of the HWRPB[88]. If the PR flag 
is set, the console attempts to restart any available processor. If clear, the console 
attempts to restart only the primary processor; on a secondary, the console sends 
the 7STARTREQ? message and waits for a START (or other command) from the 
running primary as discussed in Section 3.4.3.5. Again, system software has the 
responsibility for further coordination and synchronization of powerfail recovery. 

3.5.4 Error Halt and Recovery 
There are a number of serious error conditions that prevent a processor from 
executing the current thread of software. Such error conditions are detected by 
PALcode and halt the processor. 

When a halt is encountered, the console must ensure that the processor hardware 
state is visible to the console operator and to system software after a subsequent 
restart attempt. This state includes the current values in PS, PC, SP, PCBB, 
HWPCB, all integer registers, all floating-point registers, and the name of the halt 
condition. The console must: 
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1. Ensure that the contents of the integer and floating-point registers appear 
unaffected. 

2. Write the current hardware context to the HWPCB located by the current PCBB. 

3. Write the current PS, PC, PCBB register contents into the processor's per-CPU 
slot. 

4. Write the current R25, R26, and R27 register contents into the processor's per-
CPU slot. 

5. Set the appropriate code into the Reason for Halt field of the processor's per-CPU 
slot. 

The values of R25, R26, and R27, must be explicitly saved in the per-CPU slot to 
permit the console to invoke the CPU restart routine. 

Section 3.1.1 and Table 2-4 list the defined halt conditions that transition an Alpha 
AXP processor from the running state to a halted state and that may lead to an 
attempt to restart the processor. Each condition is passed to the operating system 
in the Reason for Halt quadword of the processor's HWRPB slot. 

When an error halt occurs, the console examines the console lock setting. If the 
console is locked, the console attempts a restart. If unlocked, the console action 
is determined by the setting of the AUTO_ACTION environment variable (see 
Figure 3-1). See Section 3.5.1 for a description of the restart attempt process. 

The processor must be initialized after an error halt. If the processor starts running 
after an error halt without an intervening processor initialization, the operation of 
the processor is UNDEFINED. The effects of processor initialization are summarized 
in Table 3-7. 

An error halt directly affects only the processor that incurred it, although multiple 
processors may simultaneously and coincidentally incur their own error halt 
conditions. If restarts are enabled, each halted processor must be independently 
restarted by the console. The restarts of individual processors may occur in a 
different order than the error halts occurred, but if the console restarts any halted 
processor, it must restart all halted processors in a timely fashion unless a bootstrap 
is requested in the meantime. A bootstrap nullifies any pending restarts in the 
multiprocessor. 

3.5.5 Operator Requested Crash 
When the operating system does not respond to normal program requests, the console 
operator may request that the console request an operating system crash. A console 
requested crash differs from a console halt of a processor in that system software 
can write a crash dump. 

The console operator interacts with the console presentation layer and requests the 
crash with a HALT -CRASH command. The console converts this command to an 
error halt restart of system software. After gaining control of the processor, the 
console preserves the hardware state (see Section 3.5.4). The console passes the 
crash request to system software by using the "Console Operator requests system 
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crash" code in the Reason for Halt field in the primary's per-CPU slot. It is the 
responsibility of the system software restart routine to initiate the crash in an 
implementation-specific fashion. 

3.5.6 Primary Switching 
System software may find it necessary to replace the primary processor with one of 
the running secondary processors without bootstrapping the system. This "switch" 
of the running primary may be caused by an error encountered by the primary or 
by a program request. Switching a running primary must be initiated by system 
software; the console cannot force a switch to occur. 

Support for primary switching is optional to system software, console 
implementations, and system platforms. The system platform hardware must permit 
the selected secondary to assume the functions of a primary. The selected secondary 
must have direct access to the console, a BB_WATCH, and all I/O devices. Direct 
access to the console ensures that the secondary can access console I/O devices and 
the console terminal. Direct access to a BB_WATCH ensures that the secondary 
can act as the system timekeeper. Direct access to all I/O devices ensures that the 
secondary can initiate I/O requests to and receive I/O interrupts from all I/O devices, 
and that the secondary can reinitialize all devices as part of powerfail recovery. 

If the processor is eligible to become a primary, the console will set the Primary 
Eligible (PE) processor variation flag in the processor's per-CPU slot during processor 
initialization. See Table 2-4. 

Primary switching requires cooperation between system software and the console. 
System software is responsible for the selection of the new primary and any 
necessary redirection of I/O interrupts. The console is responsible for any necessary 
configuration of the console terminal or other console device interface. 

Sequence on an Embedded Console 
The sequence of events differs depending on the type of console implementation. On 
a system with an embedded console, the operation proceeds as follows: 

1. System software performs any actions specific to system software synchroniza-
tion. 

2. System software executing on the old primary ensures that the console terminal 
is in a quiescent state. In particular, character reception from the terminal must 
be suspended. 

3. System software selects the new primary. The selected secondary must be eligible 
as indicated by the PE processor variation flag in its per-CPU slot. 

4. System software executing on the old primary invokes the PSWITCH console 
callback specifying the "transition from primary" action. 

5. The console attempts to perform any necessary hardware state changes to 
transform the old primary into a secondary. 

3-32 Console Interface Architecture (III) 



Hardware/Software Coordination Note: 
An example of such a hardware state change is disabling a console UART 
physically located on the processor board. 

6. If the state change is completed, PSWITCH returns success status. System 
software may proceed with the primary switch at step 8. 

7. If the state change is not effected, PSWITCH returns failure status. System 
software must take other appropriate action. 

8. System software executing on the old primary notifies system software on the 
selected secondary of the successful PSWITCH completion. 

9. System software executing on the selected secondary invokes the PSWITCH 
console callback specifying the "transition to primary" action. 

10. The console verifies that the selected secondary is eligible to become a primary 
and attempts to perform any necessary hardware state changes to transform the 
old secondary into the new primary. 

11. If the state change is completed, PSWITCH returns success status. System 
software may proceed with the primary switch at step 13. 

12. If the state change is not effected, PSWITCH returns failure status. System 
software must select a different potential primary or take other appropriate 
action. 

13. System software executing on the selected secondary reactivates the console 
terminal. In particular, character reception from the terminal is re-enabled. 

14. System software performs any additional system reconfiguration, updates the 
PRIMARY CPU ID field at HWRPB[32], recomputes the HWRPB checksum 
at HWRPB [288], and performs any actions specific to system software 
synchronization. 

Sequence on a Detached Console 
On a system with a detached console, the operation is similar, but only one call 
to PSWITCH is required. Additional calls to PSWITCH with the "switch primary" 
action may result in UNDEFINED operation. The operation proceeds as follows: 

1. System software performs any actions specific to system software synchroniza-
tion. 

2. System software executing on the old primary ensures that that the console 
terminal is in a quiescent state. In particular, character reception from the 
terminal must be suspended. 

3. System software selects the new primary. The selected secondary must be eligible 
as indicated by the PE processor variation flag in its per-CPU slot. 

4. System software executing on any processor invokes the PSWITCH console 
callback specifying the "switch primary" action and the CPU ID of the new 
primary. 
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5. The console verifies that the selected secondary is eligible to become a primary 
and attempts to perform any necessary hardware state changes to transform the 
old primary into a secondary and to transform the selected secondary into the 
primary. 

6. If the state change is completed, PSWITCH returns success status. System 
software may proceed with the primary switch at step 9. 

7. If the state change is not effected and the resulting hardware state permits a 
return to system software, PSWITCH returns failure status. System software 
must select a different potential primary or take other appropriate action. 

8. If the state change is not effected and the resulting hardware state does not 
permit a return to system software, the console takes the action associated with 
a failed restart. 

9. System software executing on the selected secondary reactivates the console 
terminal. In particular, character reception from the terminal is re-enabled. 

10. System software performs any additional system reconfiguration, updates the 
PRIMARY CPU ID field at HWRPB[32], recomputes the HWRPB checksum 
at HWRPB [288], and performs any actions specific to system software 
synchronization. 

3.5.7 Saving and Restoring Console Terminal State During HALT/RESTART 
Abrupt transitions from program I/O mode to console I/O mode may occur. Such 
transitions may be caused by execution of a CALL_PAL HALT instruction, a 
catastrophic error, or a console operator forcing the processor into console I/O mode. 
Upon transition to console I/O mode, the console must be able to regain control of 
the console terminal, even though system software may have changed the device 
characteristics. 

The console may seize control of the console terminal without regard to system 
software when the transition is such that no return to program I/O mode is possible. 
Such transitions are normally associated with a catastrophic error. 

If system software execution may be continued, the console must be able to restore 
the existing state of the console terminal. The console must regain and subsequently 
relinquish control of the console terminal with the cooperation of system software. 

Hardware/Software Coordination Note: 

This is particularly desirable on workstations when the console operator forces 
the processor into console I/O mode. 

System software may provide SAVE_TERM and RESTORE_TERM routines that 
can be called by the console to save and restore the state of the console terminal. 
To provide these optional routines, system software loads the SAVE_TERM and 
RESTORE_TERM starting virtual address and procedure descriptor fields in the 
HWRPB, and recomputes the HWRPB checksum at HWRPB[288]. At system 
bootstraps, the console sets these fields to zero. 
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The console calls SAVE_TERM and RESTORE.TERM in kernel mode at the highest 
IPL in the memory management policy established by system software. The console 
loads the routine procedure value into R27, clears R25 and R26, and then transfers 
control to system software at the starting virtual address. The procedure value and 
starting virtual address for SAVE_TERM are contained in HWRPB[224] and [232]; 
those for RESTORE_TERM are contained in HWRPB[240] and [248]. These routines 
are invoked only on the primary processor and only upon an unexpected entry into 
console I/O mode. The console must preserve sufficient hardware state to permit the 
processor to be restarted prior to invoking these routines. See Section 3.5.4. 

Exit from these routines must be accomplished by using the CALL_PAL HALT 
instruction to return the processor to console I/O mode; these routines do not use the 
RET subroutine return instruction. Prior to exit, these routines must set the "SAVE_ 
TERM/RESTORE_TERM exit" code (T) in the Halt Request field of the primary's 
per-CPU slot and indicate success CO') or failure (T) status in R0<63>. The console 
will not attempt to continue system software if a failure status is returned. 

SAVE_TERM and RESTORE_TERM may be called when system software has 
encountered an unexpected CALL_PAL HALT or other halt condition; system state 
may be corrupt. These routines must be written with few or no dependencies on 
possibly corrupt system state. 

Hardware/Software Coordination Note: 

A console terminal on a serial line may or may not have state that needs to be 
saved. A console terminal on a workstation may require the system software to 
"roll down" the current screen to expose the "console window" and "roll up" the 
"console window" to expose the current screen. 

3.5.7.1 SAVE_TERM - Save Console Terminal State 

Format: 

s t a t u s = SAVE_TERM 

Inputs: 

R27 = Procedure value (HWRPB[232]) 

Outputs: 

status = RO; status: 
R0<63> Ό' Success, terminal state saved 

'Γ Failure, terminal state not saved 
R0<62:0> SBZ 

SAVE_TERM is called by the console after an unexpected entry to console mode. The 
routine performs any implementation-specific and device-specific actions necessary 
to save the state of the console terminal as established by system software. When 
the routine exits and console I/O mode is restored, the console is free to modify the 
existing console terminal state in any manner. 
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3.5.7.2 RESTORE_TERM - Restore Console Terminal State 

Format: 

status = RESTORE_TERM 

Inputs: 

R27 = Procedure value (HWRPB[248]) 

Outputs: 

status = RO; Status: 
R0<63> Ό' Success, terminal state restored 

T Failure, terminal state not restored 
R0<62:0> SBZ 

RESTORE_TERM is called by the console just prior to continuing system software. 
The routine performs any implementation-specific and device-specific actions 
necessary to restore the state of the console terminal as established by system 
software. 

3.5.8 Operator Forced Entry to Console I/O Mode 
The console operator can force a processor into console I/O mode with a HALT -CPU 
command. When a processor enters console I/O mode in this way, the console sets 
the Operator Halted (OH) flag in its per-CPU slot. The console does not update the 
Reason for Halt or any other processor halt state in its per-CPU slot. The console 
sets the OH flag only as the result of an explicit operator action; the OH flag is not set 
on transitions to console I/O mode that result from error halt conditions, powerfails, 
CALL_PAL HALT instructions in kernel mode, console operator requests of a system 
crash, or software-directed processor shutdowns. 

The console clears the OH flag prior to returning to program I/O mode as the result of 
a CONTINUE or BOOT command. The console may clear OH flag if an error halt or 
operator-induced condition is encountered that precludes a subsequent CONTINUE 
command. Such a condition is treated as an error halt (see Section 3.5.4). 

3.6 Bootstrap Loading and Image Media Format 

An Alpha AXP console may load a primary bootstrap image from one or more of 
the device classes listed in Table 3-9. Subsequent sections describe how the console 
locates, sizes, and loads the bootstrap image for each device class. 

Table 3-9: Bootstrap Devices and Image Media 

Device Class Data Link Protocol 

Local Disk N/A Bootblock 
Local Tape N/A ANSI 

Bootblock 
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Table 3-9 (Cont.): Bootstrap Devices and Image Media 
Device Class Data Link Protocol 

Network NI, MOP 
FDDI Bootp 

ROM N/A ROM Bootblock 

As explained in Section 3.4.1.4, the console attempts to load a bootstrap image from 
each element of a bootstrap device list until a successful image load is achieved. If 
the bootstrap image cannot be located or if the load fails for any reason, the console 
retains control of the system, generates the binary error message AUDIT_BSTRAP_ 
ABORT, and then attempts to load a bootstrap image from the next bootstrap device 
list element. After a bootstrap image is successfully located and loaded, the console 
transfers control to system software as described in Section 3.4. 

As the bootstrap image load proceeds, the console optionally generates an audit trail 
of progress messages. The ENABLE_AUDIT environment variable controls audit 
trail generation. The audit trail begins with the AUDIT_BOOT_STARTS message. 
The audit trail continues with messages that are specific to the bootstrap device. 
Each consists of a binary message code that is interpreted by the console presentation 
layer. 

3.6.1 Disk Bootstrapping 
An Alpha AXP primary bootstrap may be loaded from a directly accessed disk device. 
The console loads the "boot block" contained in the first logical block (LBN 0) of the 
disk. The boot block contains the starting logical block number (LBN) of the primary 
bootstrap program and the count of contiguous LBNs that make up that image. 

The first 512 bytes of the boot block are structured as shown in Figure 3-6. The 
console loads the primary bootstrap without knowledge of the operating system file 
system. The boot block is (previously) initialized by the operating system. The actual 
size of a logical block is device-specific and may exceed 512 bytes. 

System Bootstrapping (III) 3-37 



Figure 3-6: Alpha AXP Disk Boot Block 
63 0 

BB Reserved (VAX Compatibility) 

Reserved (Expansion) 

Reserved 

Count (LBNs) 

Starting LBN 

Flags 

Checksum 

:+136 

:+472 

:+480 

:+488 

:+496 

:+504 

:+512 

A local disk bootstrap proceeds as follows: 

1. The console reads the boot block from LBN 0 of the specified disk device. 

2. The console validates the boot block CHECKSUM; if the checksum is not 
validated, the bootstrap image load attempt aborts. The console computes the 
checksum of the first 63 quadwords in the block as a 64-bit sum, ignoring 
overflow. The computation includes both reserved regions. The computed 
checksum is compared to the CHECKSUM. 

3. The console generates the AUDIT_CHECKSUM_GOOD message if the audit trail 
is enabled. 

4. The console ensures that the FLAG quadword is zero; otherwise the bootstrap 
image load attempt aborts. 

5. The console ensures that the COUNT is non-zero; otherwise the bootstrap image 
load attempt aborts. The count field indicates the number of contiguous logical 
blocks that contain the primary bootstrap. 

6. The console generates the AUDIT_LOAD_BEGINS message if the audit trail is 
enabled. 

7. The console reads the primary bootstrap image specified by COUNT and 
STARTING LBN into system memory; in any error occurs, the bootstrap image 
load attempt aborts. 

The transfer begins at the logical block given by the STARTING LBN; a 
contiguous COUNT number of logical blocks is read. The image is read into 
a virtually contiguous system memory buffer; the starting virtual address is 
0000 0000 2000 000016. (See Section 3.4.1.2.) 

Errors include device hardware errors, the specified STARTING LBN not being 
present on the disk, or unexpectedly encountering the last logical block on the 
disk during the read. 

8. The console generates the AUDIT_LOAD_DONE message when the load has 
completed; the message is generated only if the audit trail is enabled. 
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9. The console prepares to transfer control to the bootstrap program as described 
in Section 3.4.1.6. 

Implementation Notes: 

Unlike the VAX boot block support, no native AXP code is contained in the boot 
block; the boot block contains only the LBN descriptor for the Alpha AXP primary 
bootstrap image. An Alpha AXP boot block can contain pointers to primary 
bootstrap images for both VAX and Alpha AXP simultaneously. 

Because the boot block includes an LBN and block count, the console need have 
no knowledge of the operating system file system or on-disk structure. 

The first 136 bytes of the boot block are currently used by the VAX disk boot block 
mechanism. The next 80 bytes are not currently used either by VAX or Alpha 
AXP boot blocks. For future expansions, VAX boot blocks should expand towards 
higher addresses, and Alpha AXP boot blocks expand towards lower addresses; 
each region remains contiguous. These 216 bytes are ignored by the Alpha AXP 
console except for the purposes of computing the boot block checksum. 

The boot block FLAGS word is reserved for future expansion. Flag<0> is reserved 
to indicate a discontiguous bootstrap image; Flag <63:1> are reserved for future 
definition. There are no current plans by any Digital operating system to have 
a discontiguous primary bootstrap image. 

3.6.2 Tape Bootstrapping 
An Alpha AXP primary bootstrap may be loaded from a directly accessed tape device. 
Prior to loading the primary bootstrap, the console must determine the tape format 
and locate the primary bootstrap on the tape. The console: 

1. Rewinds the tape on the specified tape device to the beginning of the tape (BOT). 

2. Reads the first record. 

3. Determines the record length. 

• If the record length is 80 bytes, the tape may be an ANSI-formatted tape. 
The console proceeds as described in Section 3.6.2.1. 

• If the record length is 512 bytes, the tape is "boot blocked." The console 
proceeds as described in Section 3.6.2.2. 

• If the length is other than 80 or 512 bytes, the bootstrap image load attempt 
aborts. 

3.6.2.1 Bootstrapping from ANSI-Formatted Tape 

Prior to loading the primary bootstrap image from an ANSI-formatted tape, the 
console must ensure that the format is valid. To verify that a given record contains 
a particular ANSI label, the console checks for the ASCII label name string at the 
beginning of the record. For example, a record containing a VOLl label begins with 
the ASCII string "VOLl." All other record bytes are ignored when verifying the 
label. 
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A primary bootstrap image file name may be specified explicitly on a BOOT command 
or implicitly by the BOOT_FILE environment variable. If no file name is specified, 
the first file located will be used. 

A local ANSI-formatted tape bootstrap proceeds as follows: 

1. The console verifies that the first record contains a VOL1 label; if the verification 
fails, the bootstrap image load attempt aborts. 

2. The console generates the AUDIT_TAPE_ANSI message if the audit trail is 
enabled. 

3. If no file name was specified, the console advances the tape position to the End-
of-Tape (EOT) side of the the first tape mark. The console proceeds to step 5. 

4. If a file name was specified, the console attempts to locate that file on the tape. If 
the file cannot be located, the bootstrap image load attempt aborts. The console 
compares the specified file name with the file name present in each HDR1 label 
on the tape. At the first match, the console proceeds to step 5. 

The console searches for the specified file, starting with the second tape record. 
The console reads 80-byte records from the tape until it encounters an HDR1 
label, then proceeds as follows: 

a. The console generates the AUDIT_FILE_FOUND<filename> message, where 
<filename> is the value of the HDR1 label. The message is generated only if 
the audit trail is enabled. 

b. The console compares the specified file name with the 17 character File 
Identifier Field found in the HDR1 label. 

c. If a match occurs, the console advances the tape position to after the next 
tape mark and proceeds to step 5. (Any HDR2 or HDR3 labels are ignored.) 

d. If no match occurs, the console advances the tape position over the next 
three tape marks and reads the next record. If another tape mark is found, 
the logical end of volume has been encountered and the bootstrap image load 
attempt aborts. Otherwise, the record should be the HDR1 label for the next 
file on the tape and the console proceeds at step a. 

The console aborts the bootstrap image load attempt whenever an unexpected 
tape mark is encountered, the tape runs off the end, or a hardware error occurs. 

5. The console generates the AUDIT_LOAD_BEGINS message if the audit trail is 
enabled. 

6. The console reads the primary bootstrap image from tape into system memory; if 
any error occurs or if the tape runs off the end, the bootstrap image load attempt 
aborts. 

The transfer from tape begins at the current tape position and continues until 
a tape mark is encountered. The image is read into a virtually contiguous 
system memory buffer; the starting virtual address is 0000 0000 2000 0000 ig. 
(See Section 3.4.1.2.) 
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7. The console checks that the bootstrap file was properly closed by: 

a. Reading the record after the tape mark and verifying that the record is an 
EOF1 label. If not, the bootstrap image load attempt aborts. 

b. Searching for a subsequent tape mark. If a tape mark is not found, the 
bootstrap file was improperly closed and the bootstrap image load attempt 
aborts. (Any EOF2 and EOF3 labels are ignored.) 

8. The console generates the AUDIT_LOAD_DONE message if the audit trail is 
enabled. 

9. The console prepares to transfer control to the bootstrap as described in 
Section 3.4.1.6. The console does not rewind or otherwise change the position 
of the tape after reading the bootstrap image. 

3.6.2.2 Bootstrapping from Boot-Blocked Tape 

Bootstrapping from a boot-blocked tape is similar to the local disk bootstrapping 
described in Section 3.6.1. The first tape record must be 512 bytes and must follow 
the format given for disk boot blocks as shown in Figure 3-6. The STARTING LBN 
and FLAGS fields are MBZ for tape boot boot blocks. 

All tape records that comprise the primary bootstrap must be 512 bytes in size. If 
the console encounters records of any other size, the bootstrap image load attempt 
aborts. 

A local tape boot block bootstrap proceeds as follows: 

1. The console generates the AUDIT_TAPE_BBLOCK message if the audit trail is 
enabled. 

2. The console validates the boot block CHECKSUM; if the checksum is not 
validated, the bootstrap image load attempt aborts. The console computes the 
checksum of the first 63 quadwords in the block as a 64-bit sum, ignoring 
overflow. The computation includes both reserved regions and the MBZ fields. 
The computed checksum is compared to the CHECKSUM at [BB+504]. 

3. The console generates the AUDIT_CHECKSUM_GOOD message if the audit trail 
is enabled. 

4. The console ensures that the COUNT is non-zero; otherwise the bootstrap image 
load attempt aborts. The count field indicates the number of subsequent 512-byte 
records that contain the primary bootstrap. 

5. The console generates the AUDIT_LOAD_BEGINS message if the audit trail is 
enabled. 

6. The console reads the COUNT subsequent records from the tape into system 
memory. The bootstrap image load attempt aborts if the console encounters any 
error, encounters any record size other than 512 bytes, or the tape runs off the 
end. 

The image is read into a virtually contiguous system memory buffer; the starting 
virtual address is 0000 0000 2000 000016. (See Section 3.4.1.2.) 
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7. The console generates the AUDIT_LOAD_DONE message if the audit trail is 
enabled. 

8. The console prepares to transfer control to the bootstrap as described in 
Section 3.4.1.6. The console does not rewind or otherwise change the position 
of the tape after reading the bootstrap image. 

3.6.3 ROM Bootstrapping 
An Alpha AXP console may support bootstrapping from read-only memory (ROM). 
Bootstrap ROM is assumed to appear in multiple discontiguous regions of the 
physical address space. A given ROM region may contain multiple bootstrap images. 
A given bootstrap image must not span ROM regions. 

Each ROM bootstrap image is page aligned and begins with a boot block as shown 
in Figure 3-7. The ROM boot block is similar to the local disk and tape boot block 
shown in Figure 3-6. 

Figure 3-7: Alpha AXP ROM Boot block 

Complement Check Reserved 0x80 

Image Checksum 

Image Offset 

Image Length (Bytes) 

Bootstrap ID 

Checksum 

:BB 

:+08 

:+16 

:+24 

:+32 

:+40 

:+48 

A ROM bootstrap proceeds as follows: 

1. The console locates the specified ordinal ROM bootstrap image; if the bootstrap 
image cannot be located, the bootstrap image load attempt aborts. 

The console locates the ROM bootstrap image by searching ROM regions 
beginning with the ROM region with the lowest physical address and proceeding 
upward to the ROM region with the highest physical address. 

The search proceeds as follows: 

a. The console verifies that the page contains a ROM bootstrap image: 

• The low-order byte of the first quadword must be 8016. 

• The high-order longword of the first quadword must be the one's 
complement of the low-order longword. 
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• The sixth quadword must contain the checksum of the first five 
quadwords. The checksum is computed as a 64-bit sum, ignoring 
overflow. 

b. The console generates the AUDIT_BOOT_TYPE<string> message for each 
valid boot block, if the audit trail is enabled. The <string> is the ISO Latin-
1 string contained in the BOOTSTRAP ID quadword. 

c. If the specified ordinal image number has been reached, the console proceeds 
to step 2. 

d. Otherwise, the console uses the IMAGE LENGTH at [BB+24] to determine 
the offset to the next ROM region page to be searched. The console repeats 
the process at step a. 

2. The console computes the starting physical address of the bootstrap image by 
adding the physical address OFFSET at [BB+16] to the starting physical address 
of the boot block [BB], 

3. The console verifies the accessibility of each page of the bootstrap image. If any 
page is inaccessible, the bootstrap image load attempt is aborted. 

4. The console generates the AUDIT_BSTRAP_ACCESSIBLE message if the audit 
trail is enabled. 

5. If requested, the console validates the IMAGE CHECKSUM at [BB+08]; if the 
checksum is not validated, the bootstrap image load attempt aborts. The console 
computes the checksum of all quadwords in the bootstrap image as a 64-bit 
sum, ignoring overflow. The existence and implementation of the mechanism for 
requesting this validation is implementation specific. 

6. The console generates the AUDIT_BSTRAP_GOOD message if the audit trail is 
enabled. 

7. If requested, the console copies the bootstrap image from ROM into system 
memory (RAM). The image is copied into a virtually contiguous buffer starting 
at virtual address 0000 0000 2000 0000i6. (See Section 3.4.1.2.) The console 
generates the AUDIT_LOAD_BEGINS message before beginning the copy and 
the AUDIT_LOAD_DONE after the copy completes successfully if the audit trail 
is enabled. 

8. The console prepares to transfer control to the bootstrap as described in 
Section 3.4.1.6. 

3.6.4 Network Bootstrapping 
An Alpha AXP system may support bootstrapping over one or more network 
communication devices and data link protocols. The console actions are dependent 
on the network device, data link protocol, and remote server capabilities. 

An Alpha AXP system can use the Digital Network Architecture Maintenance 
Operations Protocol (MOP), or the BOOTP-UDP/IP network protocol, to bootstrap 
an Alpha AXP system. See the MOP or BOOTP-UDP/IP specification for a detailed 
description. 
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A network bootstrap proceeds as follows: 

1. The console determines if a bootstrap file name is to be used. The file name is 
taken from the BOOT command or the BOOT_FILE environment variable. If no 
file name is specified on the BOOT command and BOOT_FILE is null, no file 
name will be used. 

2. The console generates the AUDIT_BOOT_REQ<filename> message if the audit 
trail is enabled. 

3. The console issues the appropriate (MOP or BOOTP-UDP/IP) bootstrap request 
message(s). 

4. The console receives an appropriate response (MOP or BOOTP-UDP/IP) from a 
remote bootstrap server. If no such response is received, the bootstrap image 
load attempt aborts. 

5. The console generates the AUDIT_BSERVER_FOUND message if the audit trail 
is enabled. 

6. The bootstrap load proceeds, using the appropriate network protocol. 

7. When the console receives the first portion of the bootstrap image, the console 
generates the AUDIT_LOAD_BEGINS message if the audit trail is enabled. 

8. The console loads the initial portion of the bootstrap image into a 
virtually contiguous system memory buffer; the starting virtual address is 
0000 0000 2000 000016. (See Section 3.4.1.2.) 

9. When the bootstrap image has been loaded, the console generates the AUDIT_ 
LOAD_DONE message if the audit trail is enabled. 

10. The console prepares to transfer control to the bootstrap program as described 
in Section 3.4.1.6. 

If any error occurs, the bootstrap image load attempt aborts. 

3.7 BB_WATCH 
The following list offers important points about BB_WATCH: 

1. BB_WATCH is the correct name for this entity. Although incorrect terminology, 
TOY, TODR, and watch chip, when used in an Alpha AXP context, are equivalent 
in meaning to the BB.WATCH. 

2. System software must directly manipulate the BB_WATCH through an 
implementation-dependent interface. 

3. System software makes the decision where to acquire known time; if a BB_ 
WATCH is present, it may be used as the provider of known time. 

4. Systems are not required to have a BB_WATCH. 
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Software Note: 
However, all systems that support OpenVMS AXP or DEC OSF/1 on Alpha 
AXP must have a BB_WATCH. 

5. If a BB_WATCH is present in a system, it meets the following requirements: 

• It has an accuracy of at least 50 ppm regardless of whether power is applied 
to the system. 

• It has a resolution of at least 1 second (that is, it is read and written in units 
of a second or better). 

• Changing the entirety of the time maintained by the BB_WATCH takes under 
1 second. 

• It has battery backup to survive a loss of power. 

6. A BB_WATCH is always accessible to the primary processor. That is, a processor 
must be able to access a BB_WATCH directly (it must not need to go through 
another processor to access it) in order to be a candidate for primary processor. 

7. The number of BB_WATCH entities in a system is either one for the entire system 
or one per each processor in the system; which of the two options a system chooses 
is implementation dependent. If the latter option is chosen (one BB_WATCH per 
processor), writing one BB_WATCH does not update another. 

8. Although writing the BB_WATCH takes less than one second, it may not be a 
fast operation. Software should avoid frequently writing the BB_WATCH lest it 
negatively impact performance. 

9. The processor and its PALcode never changes the value of BB_WATCH except 
under the direction of system software. (The console, boot programs, and 
remote console clients are not system software.) The console, its PALcode, and 
any console application (including a diagnostic supervisor) never changes BB_ 
WATCH except under the direction of the console operator — even when the CPU 
is halted, the processor is being initialized, or the BB_WATCH has an invalid 
time. 

Programming Note: 

The Primary-Eligible (PE) bit in the per-CPU slot of the HWRPB for each 
processor indicates, among other things, whether the CPU has access to a BB_ 
WATCH. See Chapter 2. 

The description of primary switching details the actions taken in a multiprocessor 
system, including the requirement for the primary processor to have access to 
the BB.WATCH. 
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3.8 Implementation Considerations 

3.8.1 Embedded Console 
In an embedded console implementation, the console executes on the same processor 
as the operating system. In such an implementation, the state transitions as 
experienced by the processor are more conceptual. For example, the processor acting 
as the console will be executing instructions when in the halted state. The processor 
may also field console I/O mode exceptions and interrupts. 

An embedded console may be implemented as an extension of PALcode or as a 
distinct software entity. The console may execute from dedicated RAM or ROM 
on the processor or, after console initialization, may execute from main memory. 

An embedded console implementation must include a mechanism by which the 
primary processor can be forced into console I/O mode from program I/O mode. This 
enables the console operator to gain control of the system regardless of the state of 
the system software. See Section 1.1 for recommended and required mechanisms. 

3.8.1.1 Multiprocessor Considerations 

In a multiprocessor system, selection of the primary processor occurs prior to any 
access to main memory by any of the processors. At system cold start, each of the 
processors will be executing in console I/O mode. The necessary memory for console 
execution must be independent of main memory; the console must be executing from 
dedicated console RAM or ROM and/or a suitably configured processor cache. 

The selection of the console primary requires one or more hardware registers 
with state that is shared by all processors. One possible example is a mutex 
contained in a single-bit register accessed only with LDQ_L/STQ_C instructions. 
The primary successfully gains ownership of the mutex. Implementations should 
include mechanisms for operator override of the selection process and for recovery if 
the selection process fails. 

Once a console primary has been selected, the console secondaries take no further 
action until appropriately notified by the primary. In particular, console secondaries 
must not access main memory. The console primary is responsible for building the 
HWRPB and any console-internal data structures (such as environment variables) 
for the secondaries. When these structures have been initialized, the console primary 
must be able to signal one or more of the secondaries by additional hardware 
register(s). 

The console primary allocates a HWRPB in main memory, initializes it, and stores 
its physical address in an implementation-specific, nonvolatile manner. The console 
primary then indicates the presence of the HWRPB and its location to all secondaries 
by an implementation-specific mechanism. 

On system restarts, the console primary identifies itself by comparing its WHAMI 
register contents with the Primary CPU ID value stored in the HWRPB. 

When executing in console I/O mode, all processors must observe the same values 
of all console environment variables. Of particular importance are the values of the 
AUTO_ACTION and BOOT_RESET environment variables. After failing to become 
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the console primary processor, a console secondary waits to be notified that a valid 
HWRPB exists. Upon such notification by the primary, the console secondaries use 
the address provided by the primary to locate the HWRPB. The primary may be in 
either program I/O mode or console I/O mode. 

On cold bootstrap, a console secondary must not access main memory until notified 
by the primary that a valid HWRPB exists. Thus, there must exist a non-main-
memory-based mechanism by which the primary may signal each of the secondaries. 
On warm bootstrap or restart, a secondary processor must locate its per-CPU slot 
in the HWRPB and poll its RXRDY bit. 

Console processors must locate the HWRPB without searching memory; such a 
search constitutes a security hole. One possible implementation is to use an 
environment variable or other shared console data structure. The address of the 
HWRPB must be nonvolatile across power failures in systems that support powerfail 
recovery. 

Console implementations that support SAVE_ENV must be capable of executing 
the routine simultaneously on each processor. System software use of SAVE_ENV 
requires care. System software must invoke SAVE_ENV on all available processors, 
but cannot ensure that the nonvolatile storage is updated on processors that are 
not available at the time of update. In the event of mismatch, the console uses the 
nonvolatile values preserved by the primary processor. 

3.8.2 Detached Console 
In a detached console implementation, the console executes on a separate and 
distinct hardware platform. A detached console may have cooperating special code 
that executes on one of the processors in the system configuration. 

Detached console implementations should provide some sort of keep-alive function. 
System software should be able to detect failures of the path between the system 
platform and the console. The mechanism may be a single dedicated signal or 
periodic message exchange. System software should be able to continue to execute 
if a keep-alive failure occurs, and restoration of the connection (or console state) 
should not cause a system crash or other major state transition. The console should 
buffer any messages if a keep-alive failure occurs until reconnection occurs. 

Detached consoles may maintain a local console log. The logging device and format 
are implementation specific. 
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Appendix A 

Software Considerations 

A.1 Hardware-Software Compact 

The Alpha AXP architecture, like all RISC architectures, depends on careful 
attention to data alignment and instruction scheduling to achieve high performance. 

Since there will be various implementations of the Alpha AXP architecture, it is not 
obvious how compilers can generate high-performance code for all implementations. 
This chapter gives some scheduling guidelines that, if followed by all compilers and 
respected by all implementations, will result in good performance. As such, this 
section represents a good-faith compact between hardware designers and software 
writers. It represents a set of common goals, not a set of architectural requirements. 
Thus, an Appendix, not a Chapter. 

Many of the performance optimizations discussed below are advantageous only for 
frequently executed code. For rarely executed code, they may produce a bigger 
program that is not any faster. Some of the branching optimizations also depend on 
good prediction of which path from a conditional branch is more frequently executed. 
These optimizations are best done by using an execution profile, either an estimate 
generated by compiler heuristics, or a real profile of a previous run, such as that 
gathered by PC-sampling in PCA. 

Each computer architecture has a "natural word size." For the PDP-11, it is 16 
bits; for VAX, 32 bits; and for Alpha AXP, 64 bits. Other architectures also have 
a natural word size that varies between 16 and 64 bits. Except for very low-end 
implementations, ALU data paths, cache access paths, chip pin buses, and main 
memory data paths are all usually the natural word size. 

As an architecture becomes commercially successful, high-end implementations 
inevitably move to double-width data paths that can transfer an aligned (at an 
even natural word address) pair of natural words in one cycle. For Alpha AXP, this 
means 128-bit wide data paths will eventually be implemented. It is difficult to get 
much speed advantage from paired transfers unless the code being executed has 
instructions and data appropriately aligned on aligned octaword boundaries. Since 
this is difficult to retrofit to old code, the following sections sometimes encourage 
"over-aligning" to octaword boundaries in anticipation of high-speed Alpha AXP 
implementations. 

In some cases, there are performance advantages to aligning instructions or data 
to cache-block boundaries, or putting data whose use is correlated into the same 
cache block, or trying to avoid cache conflicts by not having data whose use is 
correlated placed at addresses that are equal modulo the cache size. Since the Alpha 
AXP architecture will have many implementations, an exact cache design cannot be 
outlined here. Nonetheless, some expected bounds can be stated. 
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1. Small (first-level) cache sizes will likely be in the range 2 KB to 64 KB 

2. Small cache block sizes will likely be 16, 32, 64, or 128 bytes 

3. Large (second- or third-level) cache sizes will likely be in the range 128 KB to 
8 M B 

4. Large cache block sizes will likely be 32, 64, 128, or 256 bytes 

5. TB sizes will likely be in the range 16 to 1024 entries 

Thus, if two data items need to go in different cache blocks, it is desirable to make 
them at least 128 bytes apart (modulo 2 KB). Doing so creates a high probability 
of allowing both items to be in a small cache simultaneously for all Alpha AXP 
implementations. 

In each case below, the performance implication is given by an order-of-magnitude 
number: 1, 3, 10, 30, or 100. A factor of 10 means that the performance difference 
being discussed will likely range from 3 to 30 across all Alpha AXP implementations. 

A.2 Instruction-Stream Considerations 

The following sections describe considerations for the instruction stream. 

A.2.1 Instruction Alignment 
Code PSECTs should be octaword aligned. Targets of frequently taken branches 
should be at least quadword aligned, and octaword aligned for very frequent loops. 
Compilers could use execution profiles to identify frequently taken branches. 

Most Alpha AXP implementations will fetch aligned quadwords of instruction stream 
(two instructions), and many will waste an instruction-issue cycle on a branch 
to an odd longword. High-end implementations may eventually fetch aligned 
octawords, and waste up to three issue cycles on a branch to an odd longword. 
Some implementations may only be able to fetch wide chunks of instructions every 
other CPU cycle. Fetching four instructions from an aligned octaword can get at 
most one cache miss, while fetching them from an odd longword address can get two 
or even three cache misses. 

Quadword I-fetch implementors should give first priority to executing aligned 
quadwords quickly. Octaword-fetch implementors should give first priority to 
executing aligned octawords quickly, and second priority to executing aligned 
quadwords quickly. Dual-issue implementations should give first priority to issuing 
both halves of an aligned quadword in one cycle, and second priority to buffering 
and issuing other combinations. 

A.2.2 Multiple Instruction Issue — Factor of 3 
Some Alpha AXP implementations will issue multiple instructions in a single cycle. 
To improve the odds of multiple-issue, compilers should choose pairs of instructions 
to put in aligned quadwords. Pick one from column A and one from column B (but 
only a total of one load/store/branch per pair). 
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Column A Column B 

Integer Operate Floating Operate 
Floating Load/Store Integer Load/Store 
Floating Branch Integer Branch 

BR/BSR/JSR 

Implementors of multiple-issue machines should give first priority to dual-issuing at 
least the above pairs, and second priority to multiple-issue of other combinations. 

In general, the above rules will give a good hardware-software match, but compilers 
may want to implement model-specific switches to generate code tuned more exactly 
to a specific implementation. 

A.2.3 Branch Prediction and Minimizing Branch-Taken — Factor of 3 
In many Alpha AXP implementations, an unexpected change in I-stream address will 
result in about 10 lost instruction times. "Unexpected" may mean any branch-taken 
or may mean a mispredicted branch. In many implementations, even a correctly 
predicted branch to a quadword target address will be slower than straight-line 
code. 

Compilers should follow these rules to minimize unexpected branches: 

1. Implementations will predict all forward conditional branches as not-taken, 
and all backward conditional branches as taken. Based on execution profiles, 
compilers should physically rearrange code so that it has matching behavior. 

2. Make basic blocks as big as possible. A good goal is 20 instructions on average 
between branch-taken. This means unrolling loops so that they contain at least 
20 instructions, and putting subroutines of less than 20 instructions directly in 
line. It also means using execution profiles to rearrange code so that the frequent 
case of a conditional branch falls through. For very high-performance loops, it 
will be profitable to move instructions across conditional branches to fill otherwise 
wasted instruction issue slots, even if the instructions moved will not always do 
useful work. Note that the Conditional Move instructions can sometimes be used 
to avoid breaking up basic blocks. 

3. In an if-then-else construct whose execution profile is skewed even slightly away 
from 50%-50% (51-49 is enough), put the infrequent case completely out of line, 
so that the frequent case encounters zero branch-takens, and the infrequent case 
encounters two branch-takens. If the infrequent case is rare (5%), put it far 
enough away that it never comes into the I-cache. If the infrequent case is 
extremely rare (error message code), put it on a page of rarely executed code and 
expect that page never to be paged in. 

4. There are two functionally identical branch-format opcodes, BSR and BR. 
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31 26 25 2120 

BSR 

BR 

Ra 

Ra 

0 

Displacement 

Displacement 

Branch Format 

Branch Format 

Compilers should use the first one for subroutine calls, and the second for GOTOs. 
Some implementations may push a stack of predicted return addresses for BSR 
and not push the stack for BR. Failure to compile the correct opcode will result 
in mispredicted return addresses, and hence make subroutine returns slow. 

5. The memory-format JSR instruction has 16 unused bits. These should be used 
by the compilers to communicate a hint about expected branch-target behavior 
(see Common Architecture, Chapter 4). 

JSR Ra Rb Memory Format 

If the JSR is used for a computed GOTO or a CASE statement, compile bits 
<15:14> as 00, and bits <13:0> such that (updated PC+Instr<13:0>*4) <15:0> 
equals (likely_target_addr) <15:0>. In other words, pick the low 14 bits so that 
a normal PC+displacement*4 calculation will match the low 16 bits of the most 
likely target longword address. (Implementations will likely prefetch from the 
matching cache block.) 

If the JSR is used for a computed subroutine call, compile bits <15:14> as 01, 
and bits <13:0> as above. Some implementations will prefetch the call target 
using the prediction and also push updated PC on a return-prediction stack. 

If the JSR is used as a subroutine return, compile bits <15:14> as 10. Some 
implementations will pop an address off a return-prediction stack. 

If the JSR is used as a coroutine linkage, compile bits <15:14> as 11. Some 
implementations will pop an address off a return-prediction stack and also push 
updated PC on the return-prediction stack. 

Implementors should give first priority to executing straight-line code with no 
branch-takens as quickly as possible, second priority to predicting conditional 
branches based on the sign of the displacement field (backward taken, forward not-
taken), and third priority to predicting subroutine return addresses by running a 
small prediction stack. (VAX traces show a stack of two to four entries correctly 
predicts most branches.) 
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A.2.4 Improving l-Stream Density — Factor of 3 
Compilers should try to use profiles to make sure almost 100% of the bytes brought 
into an I-cache are actually executed. This means aligning branch targets and 
putting rarely executed code out of line. Doing so would consistently make an I-
cache appear about two times larger, compared to current VAX practice. 

The example below shows the bytes actually brought into a VAX cache (from part of 
an address trace of a DLINPAC). The dots represent bytes brought into the cache 
but never executed. They occupy about half of the cache. 

Each line shows the use of an aligned 64-byte I-cache block. A portion of DLINPAC 
and a portion of OpenVMS AXP 4.x are shown. Uppercase I is the first byte of 
an instruction, and lowercase i marks subsequent bytes. Period (. ) shows a byte 
brought into the cache but never executed. 
I-fetch Byte 0 Byte 63 

000268C0 Iiiiliiliiliiiiiiiiiliii 
00026900 Iiiiiliiiiiiiiii 
00026940 Iiliililiililililiiililiililiiiiiiiliiliii 
00026980 Iiiiliiliiliiiiiiiiiliii 
000269C0 I Iiiiiliiliiiililiiiiliiillililiililiiililiii 
00026A00 Iiliiiiiiiiiiiiiliiliiiliii 
00026A40 Iiiiiiiiiiliiiiiiiililiiiliilii 
00026A80 Iiliiiilililiiililililiiiiiiiiliiliiiliii Iiilii 
00026AC0 Iiiliii 

80004440 Iiiililiii 
80004680 ....Iiiiiiliii 
80004900 Iiiliiliiliiiililiiliiliiliiililiiiililiiiliiiil 
80004940 Iiiiiliiiliililiii Iiiiiliii 
80004A00 Iiiiiiliiliiiii 
80004A40 Iiliiliiiiliiiliiiliiiliii Iiiiiilliiiiiliiiiliiliiil 
80004A80 Iiiiiliiiliiliiliii....Iiiiiiliii 
80004F40 Iiiiiiliiiiiiliiiliiiiiiliii 
80004F80 Iiiiliiiiiiiliililiiiliiiiiiiiiiiiiiliiil 
80004FC0 Iliiiiiliiililiiiliii Iiiiililiii 
80008A40 Iiiiliii 
80008A80 Iliiliiiliililiiilililiiililiiliiiiiliiliiliiliiiiiiililiiiiiii. 

A.2.5 Instruction Scheduling — Factor of 3 
The performance of Alpha AXP programs is sensitive to how carefully the code is 
scheduled to minimize instruction-issue delays. 

"Result latency" is defined as the number of CPU cycles that must elapse between an 
instruction that writes a result register and one that uses that register, if execution-
time stalls are to be avoided. Thus, a latency of zero means that the instruction 
writes a result register and the instruction that uses that register can be multiple-
issued in the same cycle. A latency of 2 means that if the writing instruction is issued 
at cycle N, the reading instruction can issue no earlier than cycle N+2. Latency is 
implementation specific. 

Most Alpha AXP instructions have a non-zero result latency. Compilers should 
schedule code so that a result is not used too soon, at least in frequently executed 
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code (inner loops, as identified by execution profiles). In general, this will require 
loop unrolling and short procedure inlining. 

Assume that implementations can dual-issue instructions. Assume that Load and 
JSR instructions have a latency of 3, shifts and byte manipulation a latency of 2, 
integer multiply a latency of 10, and other integer operates a latency of 1. Assume 
floating multiply has a latency of 5, floating divide a latency of 10, and other floating 
operates a latency of 4. Scheduling to these latencies gives at least reasonable 
performance on current implementations. 

Compilers should try to schedule code to match the above latency rules and also to 
match the multiple-issue rules. If doing both is impractical for a particular sequence 
of code, the latency rules are more important (since they apply even in single-issue 
implementations). 

Implementors should give first priority to minimizing the latency of back-to-back 
integer operations, of address calculations immediately followed by load/store, of load 
immediately followed by branch, and of compare immediately followed by branch. 
Second priority should be given to minimizing latencies in general. 

A.3 Data-Stream Considerations 

The following sections describe considerations for the data stream. 

A.3.1 Data Alignment — Factor of 10 
Data PSECTs should be at least octaword aligned, so that aggregates (arrays, some 
records, subroutine stack frames) can be allocated on aligned octaword boundaries 
to take advantage of any implementations with aligned octaword data paths, and to 
decrease the number of cache fills in almost all implementations. 

Aggregates (arrays, records, common blocks, and so forth) should be allocated on 
at least aligned octaword boundaries whenever language rules allow. In some 
implementations, a series of writes that completely fill a cache block may be a factor 
of 10 faster than a series of writes that partially fill a cache block, when that cache 
block would give a read miss. This is true of write-back caches that read a partially 
filled cache block from memory, but optimize away the read for completely filled 
blocks. 

For such implementations, long strings of sequential writes will be faster if they start 
on a cache-block boundary (a multiple of 128 bytes will do well for most, if not all, 
Alpha AXP implementations). This applies to array results that sweep through large 
portions of memory, and also to register-save areas for context switching, graphics 
frame buffer accesses, and other places where exactly 8, 16, 32, or more quadwords 
are stored sequentially. Allocating the targets at multiples of 8, 16, 32, or more 
quadwords, respectively, and doing the writes in order of increasing address will 
maximize the write speed. 

Items within aggregates that are forced to be unaligned (records, common blocks) 
should generate compile-time warning messages and inline byte extract/insert code. 
Users must be educated that the warning message means that they are taking a 
factor of 30 performance hit. 
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Compilers should consider supplying a switch that allows the compiler to pad 
aggregates to avoid unaligned data. 

Compiled code for parameters should assume that the parameters are aligned. 
Unaligned actuals will therefore cause run-time alignment traps and very slow 
fixups. The fixup routine, if invoked, should generate warning messages to the 
user, preferably giving the first few statement numbers that are doing unaligned 
parameter access, and at the end of a run the total number of alignment traps (and 
perhaps an estimate of the performance improvement if the data were aligned). 
Again, users must be educated that the trap routine warning message means they 
are taking a factor of 30 performance hit. 

Frequently used scalars should reside in registers. Each scalar datum allocated 
in memory should normally be allocated an aligned quadword to itself, even if the 
datum is only a byte wide. This allows aligned quadword loads and stores and avoids 
partial-quadword writes (which may be half as fast as full-quadword writes, due to 
such factors as read-modify-write a quadword to do quadword ECC calculation). 

Implementors should give first priority to fast reads of aligned octawords and second 
priority to fast writes of full cache blocks. Partial-quadword writes need not have a 
fast repetition rate. 

A.3.2 Shared Data in Multiple Processors — Factor of 3 
Software locks are aligned quadwords and should be allocated to large cache blocks 
that either contain no other data, or read-mostly data whose usage is correlated with 
the lock. 

Whenever there is high contention for a lock, one processor will have the lock and 
be using the guarded data, while other processors will be in a read-only spin loop on 
the lock bit. Under these circumstances, any write to the cache block containing the 
lock will likely cause excess bus traffic and cache fills, thus having a performance 
impact on all processors that are involved, and the buses between them. In some 
decomposed FORTRAN programs, refills of the cache blocks containing one or two 
frequently used locks can account for a third of all the bus bandwidth the program 
consumes. 

Whenever there is almost no contention for a lock, one processor will have the lock 
and be using the guarded data. Under these circumstances, it might be desirable to 
keep the guarded data in the same cache block as the lock. 

For the high-sharing case, compilers should assume that almost all accesses to 
shared data result in cache misses all the way back to main memory, for each distinct 
cache block used. Such accesses will likely be a factor of 30 slower than cache hits. 
It is helpful to pack correlated shared data into a small number of cache blocks. It is 
helpful also to segregate blocks written by one processor from blocks read by others. 

Therefore, accesses to shared data, including locks, should be minimized. For 
example, a four-processor decomposition of some manipulation of a 1000-row array 
should avoid accessing lock variables every row, but instead might access a lock 
variable every 250 rows. 
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Array manipulation should be partitioned across processors so that cache blocks do 
not thrash between processors. Having each of four processors work on every fourth 
array element severely impairs performance on any implementation with a cache 
block of four elements or larger. The processors all contend for copies of the same 
cache blocks and use only one quarter of the data in each block. Writes in one 
processor severely impair cache performance on all processors. 

A better decomposition is to give each processor the largest possible contiguous 
chunk of data to work on (N/4 consecutive rows for four processors and row-major 
array storage; N/4 columns for column-major storage). With the possible exception 
of three cache blocks at the partition boundaries, this decomposition will result in 
each processor caching data that is touched by no other processor. 

Operating-system scheduling algorithms should attempt to minimize process 
migration from one processor to another. Any time migration occurs, there are likely 
to be a large number of cache misses on the new processor. 

Similarly, operating-system scheduling algorithms should attempt to enforce some 
affinity between a given device's interrupts and the processor on which the interrupt-
handler runs. I/O control data structures and locks for different devices should be 
disjoint. Doing both of these allows higher cache hit rates on the corresponding I/O 
control data structures. 

Implementors should give first priority to an efficient (low-bandwidth) way of 
transferring isolated lock values and other isolated, shared write data between 
processors. 

Implementors should assume that the amount of shared data will continue to 
increase, so over time the need for efficient sharing implementations will also 
increase. 

A.3.3 Avoiding Cache/TB Conflicts — Factor of 1 
Occasionally, programs that run with a direct-mapped cache or TB will thrash, 
taking excessive cache or TB misses. With some work, thrashing can be minimized 
at compile time. 

In a frequently executed loop, compilers could allocate the data items accessed from 
memory so that, on each loop iteration, all of the memory addresses accessed are 
either in exactly the same aligned 64-byte block, or differ in bits VA<10:6>. For loops 
that go through arrays in a common direction with a common stride, this means 
allocating the arrays, checking that the first-iteration addresses differ, and if not, 
inserting up to 64 bytes of padding between the arrays. This rule will avoid thrashing 
in small direct-mapped data caches with block sizes up to 64 bytes and total sizes 
of 2K bytes or more. 

Example: 

REAL*4 A ( I O O O ) f B ( 1 0 0 0 ) 
DO 60 i = l , 1 0 0 0 

60 A ( i ) = f ( B ( i ) ) 
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BAD allocation (A and B thrash in 8 KB direct-mapped cache): 

A B 

0 4K 8K 12K 16K 

BETTER allocation (A and B offset by 64 mod 2 KB, so 16 elements of A and 16 of 
B can be in cache simultaneously): 

A B 

0 4K 8K+64 12K 16K 

BEST allocation (A and B offset by 64 mod 2 KB, so 16 elements of A and 16 of B 
can be in cache simultaneously, and both arrays fit entirely in 8 KB or bigger cache): 

A B 

0 4K-64 8K 12K 16K 

In a frequently executed loop, compilers could allocate the data items accessed from 
memory so that, on each loop iteration, all of the memory addresses accessed are 
either in exactly the same 8 KB page, or differ in bits VA<17:13>. For loops that go 
through arrays in a common direction with a common stride, this means allocating 
the arrays, checking that the first-iteration addresses differ, and if not, inserting 
up to 8K bytes of padding between the arrays. This rule will avoid thrashing in 
direct-mapped TBs and in some large direct-mapped data caches, with total sizes of 
32 pages (256 KB) or more. 

Usually, this padding will mean zero extra bytes in the executable image, just a skip 
in virtual address space to the next-higher page boundary. 

For large caches, the rule above should be applied to the I-stream, in addition to 
all the D-stream references. Some implementations will have combined I-stream 
/D-stream large caches. 

Both of the rules above can be satisfied simultaneously, thus often eliminating 
thrashing in all anticipated direct-mapped cache/TB implementations. 

A.3.4 Sequential Read/Write — Factor of 1 
All other things being equal, sequences of consecutive reads or writes should use 
ascending (rather than descending) memory addresses. Where possible, the memory 
address for a block of 2**Kbytes should be on a 2**K boundary, since this minimizes 
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the number of different cache blocks used and minimizes the number of partially 
written cache blocks. 

To avoid overrunning memory bandwidth, sequences of more than eight quadword 
load or store instructions should be broken up with intervening instructions (if there 
is any useful work to be done). 

For consecutive reads, implementors should give first priority to prefetching 
ascending cache blocks, and second priority to absorbing up to eight consecutive 
quadword load instructions (aligned on a 64-byte boundary) without stalling. 

For consecutive writes, implementors should give first priority to avoiding read 
overhead for fully written aligned cache blocks, and second priority to absorbing 
up to eight consecutive quadword store instructions (aligned on a 64-byte boundary) 
without stalling. 

A.3.5 Prefetching — Factor of 3 
To use FETCH and FETCH_M effectively, software should follow this programming 
model: 

1. Assume that at most two FETCH instructions can be outstanding at once, 
and that there are two prefetch address registers, PREa and PREb, to hold 
prefetching state. FETCH instructions alternate between loading PREa and 
PREb. Each FETCH instruction overwrites any previous prefetching state, thus 
terminating any previous prefetch that is still in progress in the register that is 
loaded. The order of fetching within a block and the order between PREa and 
PREb are UNPREDICTABLE. 

Implementation Note: 
Implementations are encouraged to alternate at convenient intervals between 
PREa and PREb. 

2. Assume, for maximum efficiency, that there should be about 64 unrelated memory 
access instructions (load or store) between a FETCH and the first actual data 
access to the prefetched data. 

3. Assume, for instruction-scheduling purposes in a multilevel cache hierarchy, that 
FETCH does not prefetch data to the innermost cache level, but rather one level 
out. Schedule loads to bury the last level of misses. 

4. Assume that FETCH is worthwhile if, on average, at least half the data in a 
block will be accessed. Assume that FETCHJVi is worthwhile if, on average, at 
least half the data in a block will be modified. 

5. Treat FETCH as a vector load. If a piece of code could usefully prefetch four 
operands, launch the first two prefetches, do about 128 memory references 
worth of work, then launch the next two prefetches, do about 128 more memory 
references worth of work, then start using the four sets of prefetched data. 

6. Treat FETCH as having the same effect on a cache as a series of 64 quadword 
loads. If the loads would displace useful data, so will FETCH. If two sets of loads 
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from specific addresses will thrash in a direct-mapped cache, so will two FETCH 
instructions using the same pair of addresses. 

Implementation Note: 

Hardware implementations are expected to provide either no support for 
FETCHx or support that closely matches this model. 

A.4 Code Sequences 
The following section describes code sequences. 

A.4.1 Aligned Byte/Word Memory Accesses 
The instruction sequences given in Common Architecture, Chapter 4, for byte and 
word accesses are worst-case code. In the common case of accessing a byte or aligned 
word field at a known offset from a pointer that is expected to be at least longword 
aligned, the common-case code is much shorter. 

"Expected" means that the code should run fast for a longword-aligned pointer and 
trap for unaligned. The trap handler may at its option fix up the unaligned reference. 

For access at a known offset D from a longword-aligned pointer Rx, let D.lw be D 
rounded down to a multiple of 4 ((D div 4)*4), and let D.mod be D mod 4. 

In the common case, the intended sequence for loading and zero-extending an aligned 
word is: 

LDL R l , D . l w ( R x ) ! T r a p s i f u n a l i g n e d 
EXTWL R l , # D . m o d , R l ! P i c k s u p w o r d a t b y t e 0 o r b y t e 2 

In the common case, the intended sequence for loading and sign-extending an aligned 
word is: 

LDL Rl,D.lw{Rx) ! Traps if unaligned 
SLL Rl,#48-8*D.mod,Rl ! Aligns word at high end of Rl 
SRA R1,#48,R1 ! SEXT to low end of Rl 

Note: 

The shifts often can be combined with shifts that might surround subsequent 
arithmetic operations (for example, to produce word overflow from the high end 
of a register). 

In the common case, the intended sequence for loading and zero-extending a byte is: 
LDL R l , D . l w ( R x ) ! 
EXTBL R l , # D . m o d , R l ! 

In the common case, the intended sequence for loading and sign-extending a byte is: 
LDL R l , D . l w ( R x ) ! 
SLL R l / # 5 6 - 8 * D . m o d / R l ! 
SRA R 1 , # 5 6 , R 1 ! 

In the common case, the intended sequence for storing an aligned word R5 is: 
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LDL Rl,D.lw(Rx) 
INSWL R5,#D.mod,R3 
MSKWL Rl,#D.mod,Rl 
BIS R3,Rl,Rl 
STL Rl,D.lw(Rx) 

In the common case, the intended sequence for storing a byte R5 is: 
LDL Rl,D.lw(Rx) 
INSBL R5,#D.mod,R3 
MSKBL Rl,#D.mod,Rl 
BIS R3,R1,R1 
STL Rl,D.lw(Rx) 

A.4.2 Division 
In all implementations, floating-point division is likely to have a substantially longer 
result latency than floating-point multiply; in addition, in many implementations 
multiplies will be pipelined and divides will not. 

Thus, any division by a constant power of two should be compiled as a multiply 
by the exact reciprocal, if it is representable without overflow or underflow. If 
language rules or surrounding context allow, other divisions by constants can be 
closely approximated via multiplication by the reciprocal. 

Integer division does not exist as a hardware opcode. Division by a constant can 
always be done via UMULH of another appropriate constant, followed by a right 
shift. General quadword division by true variables can be done via a subroutine. 
The subroutine could test for small divisors (less than about 1000 in absolute value) 
and for those, do a table lookup on the exact constant and shift count for an UMULH 
/shift sequence. For the remaining cases, a table lookup on about a 1000-entry table 
and a multiply can give a linear approximation to 1/divisor that is accurate to 16 
bits. 

Using this approximation, a multiply and a back-multiply and a subtract can 
generate one 16-bit quotient "digit" plus a 48-bit new partial dividend. Three more 
such steps can generate the full quotient. Having prior knowledge of the possible 
sizes of the divisor and dividend, normalizing away leading bytes of zeros, and 
performing an early-out test can reduce the average number of multiplies to about 
five (compared to a best case of one and a worst case of nine). 

A.4.3 Byte Swap 
When it is necessary to swap all the bytes of a datum, perhaps because the datum 
originated on a machine of the opposite byte numbering convention, the simplest 
sequence is to use the VAX floating-point load instruction to swap words, followed 
by an integer sequence to swap four pairs of bytes. Assume as shown below that an 
aligned quadword datum is in memory at location X and is to be left in Rl after byte-
swapping; temp is an aligned quadword temporary, and "." (period) in the comments 
stands for a byte of zeros. Similar sequences can be used for data in registers, 
sometimes doing the byte swaps first and word swap second: 
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LDG 
STT 
LDQ 
SLL 
SRL 
ZAP 
ZAP 
OR 

FO 
FO 
Rl 
Rl 
Rl 
R2 
Rl 
Rl 

X 
temp 
temp 
#8,R2 
#8,R1 
#55(hex) 
#AA(hex) 
R2,R1 

,R2 
,R1 

X 
FO 

Rl 
R2 
Rl 
R2 
Rl 
Rl 

= 
= 

= 
= 
= 
= 
= 
= 

ABCD 
GHEF 

GHEF 
HEFC 
.GHE 
H.F. 
.G.E 
HGFE 

EFGH 
CDAB 

CDAB 
DAB. 
FCDA 
D.B. 
.C.A 
DCBA 

For bulk swapping of arrays, this sequence can be usefully unrolled about four times 
and scheduled, using four different aligned quadword memory temps. 

A.4.4 Stylized Code Forms 
Using the same stylized code form for a common operation makes compiler output 
a little more readable and makes it more likely that an implementation will speed 
up the stylized form. 

A.4.4.1 NOP 

The universal NOP form is: 
UNOP == LDQ_U R 3 1 , 0 ( R x ) 

In most implementations, UNOP should encounter no operand issue delays, 
no destination issue delay, and no functional unit issue delays. (In some 
implementations, it may encounter an operand issue delay for Rx.) Implementations 
are free to optimize UNOP into no action and zero execution cycles. 

If the actual instruction is encoded as LDQ_U Rn,0(Rx), where n is other than 
31, and such an instruction generates a memory-management exception, it is 
UNPREDICTABLE whether UNOP would generate the same exception. On most 
implementations, UNOP does not generate memory management exceptions. 

The standard NOP forms are: 
NOP == BIS R31,R31,R31 
FNOP == CPYS F31,F31,F31 

These generate no exceptions. In most implementations, they should encounter no 
operand issue delays and no destination issue delay. Implementations are free to 
optimize these into no action and zero execution cycles. 

A.4.4.2 Clear a Register 

The standard clear register forms are: 
CLR == BIS R31,R31,Rx 
FCLR == CPYS F31,F31,Fx 

These generate no exceptions. In most implementations, they should encounter no 
operand issue delays, and no functional unit issue delay. 
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A.4.4.3 Load Literal 

The standard load integer literal (ZEXT 8-bit) form is: 
MOV #lit8,Ry == BIS R31, lit8, Ry 

The Alpha AXP literal construct in Operate instructions creates a canonical longword 
constant for values 0..255. 

A longword constant stored in an Alpha AXP 64-bit register is in canonical form 
when bits <63:32>=bit <31>. 

A canonical 32-bit literal can usually be generated with one or two instructions, but 
sometimes three instructions are needed. Use the following procedure to determine 
the offset fields of the instructions: 

val = <sign-extended/ 32-bit value> 

low = val<15:0> 
tmpl = val - SEXT(low) ! Account for LDA instruction 

high = tmpl<31:16> 
tmp2 = tmpl - SHIFT_LEFT( SEXT(high,16) ) 

if tmp2 NE 0 then 
! original val was in range 7FFF8000i6..7FFFFFFF15 

extra = 4000i6 
tmpl = tmpl - 40000000i6 
high = tmpl<31:16> 

else 
extra = 0 

endif 

The general sequence is: 

LDA Rdst, low(R31) 
LDAH Rdst, extra(Rdst) ! Omit if extra=0 
LDAH Rdst, high(Rdst) ! Omit if high=0 

A.4.4.4 Register-to-Register Move 

The standard register move forms are: 
MOV RX,RY == BIS RX,RX,RY 
FMOV FX,FY == CPYS FX,FX,FY 

These generate no exceptions. In most implementations, these should encounter no 
functional unit issue delay. 

A.4.4.5 Negate 

The standard register negate forms are: 
NEGz Rx,Ry 
NEGz Fx,Fy 
FNEGz Fx,Fy 

= = 
= = 
= = 

SUBz 
SUBz 
CPYSN 

R31,Rx,Ry 
F31,Fx,Fy 
Fx,Fx,Fy 

z = L or Q 
z = F G S or T 
z = F G S or T 

The integer subtract generates no Integer Overflow trap if Rx contains the largest 
negative number (SUBz/V would trap). The floating subtract generates a floating-
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point exception for a non-finite value in Fx. The CPYSN form generates no 
exceptions. 

A.4.4.6 NOT 

The standard integer register NOT form is: 
NOT Rx,Ry == ORNOT R31,Rx,Ry 

This generates no exceptions. In most implementations, this should encounter no 
functional unit issue delay. 

A.4.4.7 Booleans 

The standard alternative to BIS is: 
OR R x , R y , R z == BIS R x , R y , R z 

The standard alternative to BIC is: 
ANDNOT R x , R y , R z == BIC R x , R y , R z 

The standard alternative to EQV is: 
XORNOT R x , R y , R z == EQV R x , R y , R z 

A.4.5 Trap Barrier 
The TRAPB instruction guarantees that it and any following instructions do not 
issue until all possible preceding traps have been signaled. This does not mean that 
all preceding instructions have necessarily run to completion (for example, a Load 
instruction may have passed all the fault checks but not yet delivered data from a 
cache miss). 

A.4.6 Pseudo-Operations (Stylized Code Forms) 
This section summarizes the pseudo-operations for the Alpha AXP architecture that 
may be used by various software components in an Alpha AXP system. Most of these 
forms are discussed in preceding sections. 

In the context of this section, pseudo-operations all represent a single underlying 
machine instruction. Each pseudo-operation represents a particular instruction 
with either replicated fields (such as FMOV), or hard-coded zero fields. Since the 
pattern is distinct, these pseudo-operations can be decoded by instruction decode 
mechanisms. 

In Table A - l , the pseudo-operation codes can be viewed as macros with parameters. 
The formal form is listed in the left column, and the expansion in the code stream 
listed in the right column. 

Some instruction mnemonics have synonyms. These are different from pseudo-
operations in that each synonym represents the same underlying instruction with 
no special encoding of operand fields. As a result, synonyms cannot be distinquished 
from each other. They are not listed in the table that follows. Examples of synonyms 
are: BIC/ANDNOT, BIS/OR, and EQV/XORNOT 
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Table A-1 : Decodable Pseudo-Operations (Stylized Code Forms) 
Pseudo-Operation in Listing Actual Instruction Encoding 

No-exception generic floating absolute value: 
FABS Fx, Fy CPYS 

Branch to target (21-bit signed displacement): 
BR target 

Clear integer register: 
CLR Rx 

Clear a floating-point register: 
FCLR Fx 

Floating-point move: 
FMOV Fx, Fy 

BR 

BIS 

CPYS 

CPYS 

No-exception generic floating negation: 
FNEG Fx, Fy CPYSN 

Floating-point no-op: 
FNOP CPYS 

Move Rx/8-bit zero-extended literal to Ry: 
MOV {Rx/Lit8}, Ry BIS 

Move 16-bit sign-extended literal to Rx: 
MOV Lit, Rx 

Move to FPCR: 
MT_FPCR Fx 

Move from FPCR: 
MF.FPCR Fx 

Negate F_floating: 
NEGF Fx, Fy 

Negate F_floating, semi-precise: 
NEGF/S Fx, Fy 

Negate G_floating: 
NEGG Fx, Fy 

Negate G_floating, semi-precise: 
NEGG/S Fx, Fy 

LDA 

MT.FPCR 

MF.FPCR 

SUBF 

SUBF/S 

SUBG 

SUBG/S 

F31, Fx, Fy 

R31, target 

R31, R31, Rx 

F31, F31, Fx 

Fx, Fx, Fy 

Fx, Fx, Fy 

F31, F31, F31 

R31, {Rx/Lit8}, Ry 

Rx, lit(R31) 

Fx, Fx, Fx 

Fx, Fx, Fx 

F31, Fx, Fy 

F31, Fx, Fy 

F31, Fx, Fy 

F31, Fx, Fy 

Negate longword: 
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Table A-1 (Cont.): Decodable Pseudo-Operations (Stylized Code Forms) 

Pseudo-Operation in Listing Actual Instruction Encoding 

NEGL {Rx/Lit8}, Ry SUBL R31, {Rx/Lit), Ry 

Negate longword with overflow detection: 
NEGL/V {Rx/Lit8}, Ry SUBL/V R31, {Rx/Lit}, Ry 

Negate quadword: 
NEGQ {Rx/Lit8), Ry SUBQ R31, {Rx/Lit}, Ry 

Negate quadword with overflow detection: 
NEGQ/V {Rx/Lit8}, Ry SUBQ/V R31, {Rx/Lit}, Ry 

Negate S_floating: 
NEGS Fx, Fy SUBS F31, Fx, Fy 

Negate S_floating, software with underflow detection: 
NEGS/SU Fx, Fy SUBS/SU F31, Fx, Fy 

Negate S_floating, software with underflow and inexact result detection: 
NEGS/SUI Fx, Fy SUBS/SUI F31, Fx, Fy 

Negate T_floating: 
NEGT Fx, Fy SUBT F31, Fx, Fy 

Negate T_floating, software with underflow detection: 
NEGT/SU Fx, Fy SUBT/SU F31, Fx, Fy 

Negate T_floating, software with underflow and inexact result detection: 
NEGT/SUI SUBT/SUI F31, Fx, Fy 

Integer no-op: 
NOP BIS R31, R31, R31 

Logical NOT of Rx/8-bit zero-extended literal storing results in Ry: 
NOT {Rx/Lit8}, Ry ORNOT R31, {Rx/Lit}, Ry 

Longword sign-extension of Rx storing results in Ry: 
SEXTL {Rx/Lit8}, Ry ADDL R31, (Rx/Lit), Ry 

Universal NOP for both integer and floating-point code: 
UNOP LDQ.U R31,0(Rx) 

A.5 Timing Considerations: Atomic Sequences 
A sufficiently long instruction sequence between LDx_L and STx_C will never 
complete, because periodic timer interrupts will always occur before the sequence 
completes. The following rules describe sequences that will eventually complete in 
all Alpha AXP implementations: 
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1. At most 40 operate or conditional-branch (not taken) instructions executed in the 
sequence between LDx_L and STx_C. 

2. At most two I-stream TB-miss faults. Sequential instruction execution 
guarantees this. 

3. No other exceptions triggered during the last execution of the sequence. 

Implementation Note: 

On all expected implementations, this allows for about 50 ^sec of execution time, 
even with 100 percent cache misses. This should satisfy any requirement for a 
1 msec timer interrupt rate. 
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Appendix B 

IEEE Floating-Point Conformance 

A subset of IEEE Standard for Binary Floating-Point Arithmetic (754-1985) is 
provided in the Alpha AXP floating-point instructions. This appendix describes how 
to construct a complete IEEE implementation. 

The order of presentation parallels the order of the IEEE specification. 

B.1 Alpha AXP Choices for IEEE Options 

Alpha AXP supports IEEE single, double, and optionally (in software) extended 
double formats. There is no hardware support for the optional extended double 
format. 

Alpha AXP hardware supports normal and chopped IEEE rounding modes. IEEE 
plus infinity and minus infinity rounding modes can be implemented in hardware 
or software. 

Alpha AXP hardware does not support optional IEEE software trap enable/disable 
modes; see the following discussion about software support. 

Alpha AXP hardware supports add, subtract, multiply, divide, convert between 
floating formats, convert between floating and integer formats, and compare. 
Software routines support square root, remainder, round to integer in floating-point 
format, and convert binary to/from decimal. 

In the Alpha AXP architecture, copying without change of format is not considered an 
operation. (LDx, CPYSx, and STx do not check for non-finite numbers; an operation 
would.) Compilers may generate ADDx F31,Fx,Fy to get the opposite effect. 

Optional operations for differing formats are not provided. 

The Alpha AXP choice is that the accuracy provided by conversions between decimal 
strings and binary floating-point numbers will meet or exceed IEEE standard 
requirements. It is implementation dependent whether the software binary/decimal 
conversions beyond 9 or 17 digits treat any excess digits as zeros. 

Overflow and underflow, NaNs, and infinities encountered during software binary to 
decimal conversion return strings that specify the conditions. Such strings can be 
truncated to their shortest unambiguous length. 

Alpha AXP hardware supports comparisons of same-format numbers. Software 
supports comparisons of different-format numbers. 

In the Alpha AXP architecture, results are true-false in response to a predicate. 
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Alpha AXP hardware supports the required six predicates and the optional 
unordered predicate. The other 19 optional predicates can be constructed from 
sequences of two comparisons and two branches. 

Except for the compare instructions (CMPTyy) and the Overflow Disable (OVFD) 
option, Alpha AXP hardware supports infinity arithmetic by trapping. That is the 
case when an infinity operand is encountered and when an infinity is to be created 
from finite operands by overflow or division by zero. A software trap handler 
(interposed between the hardware and the IEEE user) provides correct infinity 
arithmetic. 

Except for the Invalid Operation Disable (INVD) option, Alpha AXP hardware 
supports NaNs by trapping when a NaN operand is encountered and when a NaN 
is to be created. A software trap handler (interposed between the hardware and the 
IEEE user) provides correct Signaling and Quiet NaN behavior. 

In the Alpha AXP architecture, Quiet NaNs do not afford retrospective diagnostic 
information. 

In the Alpha AXP architecture, copying a Signaling NaN without a change of format 
does not signal an invalid exception (LDx, CPYSx, and STx do not check for non-finite 
numbers). Compilers may generate ADDx F31,Fx,Fy to get the opposite effect. 

Alpha AXP hardware fully supports negative zero operands, and follows the IEEE 
rules for creating negative zero results. 

Except for the optional trap disable bits in the FPCR, Alpha AXP hardware does not 
supply IEEE exception trap behavior; the hardware traps are a superset of the IEEE-
required conditions. A software trap handler (interposed between the hardware and 
the IEEE user) provides correct IEEE exception behavior. 

In the Alpha AXP architecture, tininess is detected by hardware after rounding, and 
loss of accuracy is detected by software as an inexact result. 

In the Alpha AXP architecture, user trap handlers are supported by compilers and 
a software trap handler (interposed between the hardware and the IEEE user), as 
described in the next section. 

B.2 Alpha AXP Hardware Support of Software Exception Handlers 
Except for the optional trap disable bits in the FPCR, the hardware trap behavior of 
Alpha AXP instructions is determined at compile time; short of recompiling, there 
are no dynamic facilities for changing hardware trap behavior. 

B.2.1 Choosing Degrees of IEEE Compliance 
There is an essential disparity between the Alpha AXP design goal of fast execution 
and the IEEE design goal of exact trap behavior. The Alpha AXP hardware 
architecture provides means for users to choose various degrees of IEEE compliance, 
at appropriate performance cost. 

Instructions compiled without the /Software modifier cannot produce IEEE-
compliant trap or status bit behavior, nor can they provide IEEE-compliant non-
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finite arithmetic. Trapping and stopping on non-finite operands or results (rather 
than the IEEE default of continuing with NaNs propagated) is an Alpha AXP value-
added behavior that some users prefer. 

Instructions compiled without the /Underflow hardware trap enable modifier cannot 
produce IEEE-compliant underflow trap or status bit behavior, nor can they provide 
IEEE-compliant denormal results. They are fast and provide true zero (not minus 
zero) results whenever underflow occurs. This is an Alpha AXP value-added behavior 
that some users prefer. 

Instructions compiled without the /Inexact hardware trap enable modifier cannot 
produce IEEE-compliant inexact trap or status bit behavior. Except when the Inexact 
Disable (INED) option is implemented, trapping on inexact is painfully slow. Few 
users appear to prefer enabling inexact trapping, but they can get it if they really 
want it. 

Except when the optional Overflow Disable (OVFD), Division by Zero Disable 
(DZED), or Invalid Operation Disable (INVD) bits in the FPCR are set, IEEE 
floating-point instructions compiled with the /Software enable modifier produce 
hardware traps and unpredictable values for overflow, division by zero, or invalid 
operation. A software trap handler may then produce the chosen IEEE-required 
behavior. The software trap handler reports an enabled IEEE exception to the user 
application as a fault, rather than as a trap. Because the exception is reported as a 
fault, the reported PC points to the trigger instruction, rather than to a point after 
the trigger instruction. 

Regardless of whether or not an enabled fault occurs, the software completion 
handler sets the result register and the status flags to the IEEE standard 
nontrapping result, as further defined in the IEEE Standard section in Common 
Architecture, Chapter 4. 

Except when the optional Underflow Disable (UNFD) bit in the FPCR is set, IEEE 
floating-point instructions compiled with the /Software enable and /Underflow enable 
modifiers produce hardware traps and true zero values for underflow; a software 
trap handler may then produce all IEEE-required behavior. Such instructions with 
/Software and /Underflow enabled, but without an underflow condition that produce 
zero value results, always have the correct sign. 

IEEE floating-point instructions compiled with the /Inexact enable modifier produce 
hardware traps that allow a software trap handler to produce all IEEE-required 
behavior. 

Thus, to get full IEEE compliance of all the required features of the standard, users 
must compile with all three options enabled. 

To get the optional full IEEE user trap handler behavior, a software trap handler 
must be provided that implements the five exception flags, dynamic user trap handler 
disabling, handler saving and restoring, default behavior for disabled user trap 
handlers, and linkages that allow a user handler to return a substitute result. 

The software trap handler uses the FP_Control quadword, along with the floating-
point control register (FPCR), to provide various levels of IEEE-compliant behavior. 
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B.2.2 IEEE Floating-Point Control (FP_C) Quadword 

Operating system implementations provide the following support for an IEEE 
floating-point control quadword (FP_C), illustrated in Figure B-1 and described in 
Table B-1 . 

Figure B-1: IEEE Floating-Point Control (FP_C) Quadword 
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• The operating system software completion mechanism maintains the FP_C. 
Therefore, the FP_C affects (and is affected by) only those instructions with the 
/Software enable modifier. 

• The FP_C quadword is context switched when the operating system switches the 
thread context. (The FP_C can be placed in a currently switched data structure.) 

• Although the operating system can keep the FP_C in a user mode memory 
location, user code may not directly access the FP_C. 

• Integer overflow (IOV) exceptions are controlled by the INVE enable mask bit 
(FP_C<1>), as allowed by the IEEE standard. Implementation software is 
responsible for setting the INVS status bit (FP_C<17>) when a CVTTQ or CVTQL 
instruction traps into the integer overflow software completion mechanism. 

• At process creation, all trap enable flags in the FP_C are clear. The setting of 
other FP_C bits, defined in Table B-1 as reserved for implementation software, 
are defined by operating system software. 

At other events such as forks or thread creation, and at asynchronous routine calls 
such as traps and signals, the operating system controls all assigned FP_C bits and 
those defined as reserved for implementation software. 

Table B-1 : Floating-Point Control (FP_C) Quadword Bit Summary 
Bit Description 

63-48 Reserved for implementation software. 
47-22 Reserved for future architecture definition. 

21 Inexact Result Status (INES) 
A floating arithmetic or conversion operation gave a result that differed from the 
mathematically exact result. 
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Table B-1 (Cont.): Floating-Point Control (FP_C) Quadword Bit Summary 

Bit Description 

20 Underflow Status (UNFS) 
A floating arithmetic or conversion operation underflowed the destination 
exponent. 

19 Overflow Status (OVFS) 
A floating arithmetic or conversion operation overflowed the destination exponent. 

18 Division by Zero Status (DZES) 
An attempt was made to perform a floating divide operation with a divisor of zero. 

17 Invalid Operation Status (INVS) 
An attempt was made to perform a floating arithmetic, conversion, or comparison 
operation, and one or more of the operand values were illegal. 

16-12 Reserved for implementation software. 
11-6 Reserved for future architecture definition. 

5 Inexact Result Enable (INEE) 
Initiate an INE exception if a floating arithmetic or conversion operation gives a 
result that differs from the mathematically exact result. 

4 Underflow Enable (UNFE) 
Initiate a UNF exception if a floating arithmetic or conversion operation underflows 
the destination exponent. 

3 Overflow Enable (OVFE) 
Initiate an OVF exception if a floating arithmetic or conversion operation overflows 
the destination exponent. 

2 Division by Zero Enable (DZEE) 
Initiate a DZE exception if an attempt is made to perform a floating divide 
operation with a divisor of zero. 

1 Invalid Operation Enable (INVE) 
Initiate an INV exception if an attempt is made to perform a floating arithmetic, 
conversion, or comparison operation, and one or more of the operand values is 
illegal. 

0 Reserved for implementation software. 

B.3 Mapping to IEEE Standard 

There are five IEEE exceptions, each of which can be "IEEE software trap-enabled" 
or disabled (the default condition). Implementing the IEEE software trap-enabled 
mode is optional in the IEEE standard. 

Our assumption, therefore, is that the only access to IEEE-specified software trap-
enabled results will be generated in assembly language code. The following design 
allows this, but only if such assembly language code has TRAPB instructions after 
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each floating-point instruction, and generates the IEEE-specified scaled result in a 
trap handler by emulating the instruction that was trapped by hardware overflow 
/underflow detection, using the original operands. 

There is a set of detailed IEEE-specified result values, both for operations that are 
specified to raise IEEE traps and those that do not. This behavior is created on 
Alpha AXP by four layers of hardware, PALcode, the operating-system trap handler, 
and the user IEEE trap handler, as shown in Figure B-2. 

Figure B-2: IEEE Trap Handling Behavior 

Hardware 

Traps to PALcode 

PALcode 

Traps to Operating System 

Optional System 

I Traps to User IEEE Trap Handler 
: (IEEE Standard) 

User Condition Handler 

The IEEE-specified trap behavior occurs only with respect to the user IEEE trap 
handler (the last layer in Figure B-2); any trap-and-fixup behavior in the first three 
layers is outside the scope of the IEEE standard. 

The IEEE number system is divided into finite and non-finite numbers: 

• The finîtes are normal numbers: 

-MAX..-MIN, -0 , 0, +MIN..+MAX 

• The non-finites are: 

Denormals, +/- Infinity, Signaling NaN, Quiet NaN 

Alpha AXP hardware must treat minus zero operands and results as special cases, 
as required by the IEEE standard. 

Table B-2 specifies, for the IEEE /Software modes, which layer does each piece of 
trap handling. See Common Architecture, Chapter 4, for more detail on the hardware 
instruction descriptions. 
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Table B-2: IEEE Floating-Point Trap Handling 

Alpha AXP Instructions Hardware 

OS 
Trap 

PAL Handler 

User 
Software 
Handler 

FBEQ FBNE FBLT FBLE FBGT Bits Only—No Exceptions 
FBGE 

LDS LDT 

STSSTT 

CPYS CPYSN 

FCMOVx 

Bits Only—No Exceptions 

Bits Only—No Exceptions 

Bits Only—No Exceptions 

Bits Only—No Exceptions 

ADDx SUBx INPUT Exceptions 

Denormal operand 

+/-Inf operand 

QNaN operand 

SNaN operand 

+ I n f + - I n f 

Trap 

Trap 

Trap 

Trap 

Trap 

Trap Supply 
sum 

Trap Supply 
sum 

Trap Supply 
QNaN 

Trap Supply 
QNaN 

Trap Supply 
QNaN 

[Invalid Op] 

[Invalid Op] 

ADDx SUBx OUTPUT Exceptions 

Exponent overflow 

Exponent underflow 
and disabled 

Exponent underflow 
and enabled 

Inexact and disabled 

Inexact and enabled 

Trap 

Supply 
+0 

Supply 
+0 and 
trap 

Supply 
sum and 
trap 

Trap Supply 
+/-Inf 
+/-MAX 

Trap Supply 
+/-MIN 
denorm 
+/-0 

Trap 

[Overflow] 
Scale by 
bias adjust 

l 

[Underflow] 
Scale by 
bias adjust 

[Inexact] 

1An implementation could choose instead to t rap to PALcode and have the PALcode supply a zero result on all 
underflows. 
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Table B-2 (Cont.): IEEE Floating-Point Trap Handling 

Alpha AXP Instructions Hardware PAL 

OS 
Trap 
Handler 

User 
Software 
Handler 

MULx INPUT Exceptions 

Denormal operand 

+/-Inf operand 

QNaN operand 

SNaN operand 

0 * l n f 

Trap 

Trap 

Trap 

Trap 

Trap 

Trap 

Trap 

Trap 

Trap 

Trap 

Supply 
prod. 

Supply 
prod. 

Supply 
QNaN 

Supply 
QNaN 

Supply 
QNaN 

-

-

-

[Invalid Op] 

[Invalid Op] 

MULx OUTPUT Exceptions 

Exponent overflow 

Exponent underflow 
and disabled 

Exponent underflow 
and enabled 

Inexact and disabled 

Inexact and enabled 

Trap 

Supply 
+0 

Supply 
+0 and 
Trap 

-

Supply 
prod, and 
trap 

Trap 

-

Trap 

-

Trap 

Supply 
+/-Inf 
+/-MAX 

-

Supply 
+/-MIN 
denorm 
+/-0 

-

[Overflow] 
Scale by 
bias adjust 

-

[Underflow] 
Scale by 
bias adjust 

-

[Inexact] 

DIVx INPUT Exceptions 

Denormal operand 

+/-Inf operand 

QNaN operand 

SNaN operand 

Trap 

Trap 

Trap 

Trap 

Trap 

Trap 

Trap 

Trap 

Supply 
quot. 

Supply 
quot. 

Supply 
QNaN 

Supply 
QNaN 

-

-

-

[Invalid Op] 
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Table B-2 (Cont.): IEEE Floating-Point Trap Handling 

Alpha AXP Instructions Hardware 

OS User 
Trap Software 

PAL Handler Handler 

DIVx INPUT Exceptions 

0/0 or Infflnf 

A/0 

Trap 

Trap 

Trap Supply 
QNaN 

Trap Supply 
+/-Inf 

[Invalid Op] 

[Div. Zero] 

DIVx OUTPUT Exceptions 

Exponent overflow 

Exponent underflow 
and disabled 

Exponent underflow 
and enabled 

Inexact and disabled 

Inexact and enabled 

Trap 

Supply 
+0 

Supply 
+0 and 
trap 

Supply 
quot. and 
trap 

Trap 

Trap 

Supply 
+/-Inf 
+/-MAX 

Supply 
+/-MIN 
denorm 
+/-0 

Trap -

[Overflow] 
Scale by 
bias adjust 

[Underflow] 
Scale by 
bias adjust 

[Inexact] 

CMPTEQ CMPTUN INPUT Exceptions 

Denormal operand 

QNaN operand 

SNaN operand 

Trap 

Trap 

Trap 

Trap 

Trap 

Trap 

Supply 
(=) 

Supply 
False 
for EQ, True 
for UN 

Supply 
False/ 
True 

[Invalid Op] 

CMPTLT CMPTLE INPUT Exceptions 

Denormal operand 

QNaN operand 

Trap 

Trap 

Trap 

Trap 

Supply 
< or < 

Supply 
False 

[Invalid Op] 
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Table B-2 (Cont.): IEEE Floating-Point Trap Handling 
OS User 
Trap Software 

Alpha AXP Instructions Hardware PAL Handler Handler 

CMPTLT CMPTLE INPUT Exceptions 

SNaN operand Trap Trap Supply [Invalid Op] 
False 

CVTfi INPUT Exceptions 

Denormal operand 

+/-Inf operand 

QNaN operand 

SNaN operand 

CVTfi OUTPUT Exceptions 

Inexact and disabled 

Inexact and enabled Supply 
Cvt and 
trap 

Integer overflow Supply 
Trunc. 
result 
and trap 
if enabled 

CVTif OUTPUT Exceptions 

Inexact and disabled 

Inexact and enabled Supply Trap 
Cvt and 
trap 

CVTff INPUT Exceptions 

Denormal operand Trap Trap Supply 
Cvt 

+/-Inf operand Trap Trap Supply 
Cvt 

2An implementation could choose instead to t rap to PALcode on extreme values and have the PALcode supply a 
truncated result on all overflows. 
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Trap Trap Supply -
Cvt 

Trap Trap Supply 0 [Invalid Op] 

Trap Trap Supply 0 

Trap Trap Supply 0 [Invalid Op] 

Trap - [Inexact] 

Trap - [Invalid Op]2 

[Inexact] 



Table B-2 (Cont.): IEEE Floating-Point Trap Handling 

Alpha AXP Instructions Hardware 

OS 
Trap 

PAL Handler 

User 
Software 
Handler 

CVTff INPUT Exceptions 

QNaN operand 

SNaN operand 

Trap 

Trap 

Trap Supply 
QNaN 

Trap Supply 
QNaN 

[Invalid Op] 

CVTff OUTPUT Exceptions 

Exponent overflow 

Exponent underflow 
and disabled 
Exponent underflow 
and enabled 

Inexact and disabled 
Inexact and enabled 

Trap 

Supply 
+0 

Supply 
+0 and 
trap 

Supply 
Cvt and 
trap 

Trap 

-

Trap 

Trap 

Supply 
+/-Inf 
+/-MAX 

-

Supply 
+/-MIN 
denorm 
+/-0 

-

[Overflow] 
Scale by 
bias adjust 

-

[Underflow] 
Scale by 
bias adjust 

[Inexact] 

Other IEEE operations (software subroutines or sequences of instructions), are listed 
here for completeness: 

Remainder 
SQRT 
Round float to integer-valued float 
Convert binary to/from decimal 
Compare, other combinations than the four above 
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Table B - 3 shows t h e I E E E s t a n d a r d char t s . 

Table B-3: IEEE Standard Charts 

Exception 

IEEE Software 
TRAP Disabled 
( IEEE Default) 

IEEE Software 
TRAP Enabled 
(Optional ) 

Invalid Operation 

(1) Input signaling NaN 

(2) Mag. subtract Inf. 

(3) 0 * Inf. 

(4) 0/0 or Inf/Inf 

( 5 ) x R E M 0 o r I n f R E M y 

(6) SQRT(negative non-zero) 

(7) Cvt to int(ovfl) 

(8) Cvt to intdnv, NaN) 

(9) Compare unordered 

Quiet NaN 

Quiet NaN 

Quiet NaN 

Quiet NaN 

Quiet NaN 

Quiet NaN 

Low-order bits 

0 

Quiet NaN 

Division by Zero 

x/0, x finite <>0 +/-Inf 

Overflow 

Round nearest 

Round to zero 

Round to -Inf 

Round to +Inf 

+/-Inf. 

+/-MAX 

+MAX/-Inf 

+Inf/-MAX 

Res/2** 192 or 1536 

Res/2** 192 or 1536 

Res/2** 192 or 1536 

Res/2** 192 or 1536 

Underflow 

Underflow 0/denorm Res*2**192 or 1536 

Inexact 

Inexact Rounded Res 
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Appendix C 

Instruction Summary 

This appendix contains a summary of all instructions and opcodes in the Alpha AXP 
architecture. All values are in hexadecimal radix. 

C.1 Common Architecture Instruction Summary 

This section contains a summary of all common Alpha AXP instructions. Table C-1 
describes the contents of the Format and Opcode columns in Table C-2. 

Table C-1 : Instruction Format and Opcode Notation 
Instruction 
Format 

Format 
Symbol 

Opcode 
Notation Meaning 

Branch 
Floating-
point 
Memory 
Memory/ 
func code 

Memory/ 
branch 
Operate 

PALcode 

Bra 
F-P 

Mem 
Mfc 

Mbr 

Opr 

Pcd 

00 

oo.ffi 

00 

oo.fflf 

oo.h 

oo.ff 

0 0 

oo is the 6-bit opcode field 
oo is the 6-bit opcode field 
fff is the 11-bit function code field 
oo is the 6-bit opcode field 
oo is the 6-bit opcode field 
ffff is the 16-bit function code in the displacement 
field 
oo is the 6-bit opcode field 
h is the high-order two bits of the displacement field 
oo is the 6-bit opcode field 
ff is the 7-bit function code field 
oo is the 6-bit opcode field; the particular PALcode 
instruction is specified in the 26-bit function code 
field 

Qualifiers for operate format instructions are shown in Table C-2. Qualifiers for 
IEEE and VAX floating-point instructions are shown in Sections C-3 and C-4, 
respectively. 

Table C-2: Common Architecture Instructions 

Mnemonic Format Opcode Description 

ADDF F-P 15.080 Add F_floating 
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Table C-2 (Cont.): Common Architecture Instructions 
Mnemonic 

ADDG 
ADDL 
ADDL/V 
ADDQ 
ADDQ/V 
ADDS 
ADDT 
AND 
BEQ 
BGE 
BGT 
BIC 
BIS 
BLBC 
BLBS 
BLE 
BLT 
BNE 
BR 
BSR 
CALL.PAL 
CMOVEQ 
CMOVGE 
CMOVGT 
CMOVLBC 
CMOVLBS 
CMOVLE 
CMOVLT 
CMOVNE 
CMPBGE 
CMPEQ 
CMPGEQ 
CMPGLE 
CMPGLT 
CMPLE 
CMPLT 
CMPTEQ 
CMPTLE 
CMPTLT 
CMPTUN 
CMPULE 
CMPULT 
CPYS 
CPYSE 
CPYSN 
CVTDG 
CVTGD 

Format 

F p̂ 
Opr 

Opr 

F-P 
F-P 
Opr 
Bra 
Bra 
Bra 
Opr 
Opr 
Bra 
Bra 
Bra 
Bra 
Bra 
Bra 
Mbr 
Pcd 
Opr 
Opr 
Opr 
Opr 
Opr 
Opr 
Opr 
Opr 
Opr 
Opr 
F-P 
F-P 
F-P 
Opr 
Opr 
F-P 
F-P 
F-P 
F-P 
Opr 
Opr 
F-P 
F-P 
F-P 
F-P 
F-P 

Opcode 

15.0A0 
10.00 
10.40 
10.20 
10.60 
16.080 
16.0A0 
11.00 
39 
3E 
3F 
11.0 
11.20 
38 
3C 
3B 
3A 
3D 
30 
34 
00 
11.24 
11.46 
11.66 
11.16 
11.14 
11.64 
11.44 
11.26 
10.0F 
10.2D 
15.0A5 
15.0A7 
15.0A6 
10.6D 
10.4D 
16.0A5 
16.0A7 
16.0A6 
16.0A4 
10.3D 
10.1D 
17.020 
17.022 
17.021 
15.09E 
15.0AD 

Description 

Add G_floating 
Add longword 

Add quadword 

Add S_floating 
Add T_floating 
Logical product 
Branch if = zero 
Branch if > zero 
Branch if > zero 
Bit clear 
Logical sum 
Branch if low bit clear 
Branch if low bit set 
Branch if < zero 
Branch if < zero 
Branch if φ zero 
Unconditional branch 
Branch to subroutine 
Trap to PALcode 
CMOVE if = zero 
CMOVE if > zero 
CMOVE if > zero 
CMOVE if low bit clear 
CMOVE if low bit set 
CMOVE if < zero 
CMOVE if < zero 
CMOVE if φ zero 
Compare byte 
Compare signed quadword equal 
Compare G_floating equal 
Compare G_floating less than or equal 
Compare G_floating less than 
Compare signed quadword less than or equal 
Compare signed quadword less than 
Compare T_floating equal 
Compare T_floating less than or equal 
Compare T_floating less than 
Compare T_floating unordered 
Compare unsigned quadword less than or equal 
Compare unsigned quadword less than 
Copy sign 
Copy sign and exponent 
Copy sign negate 
Convert D_floating to G_floating 
Convert G_floating to D_floating 
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Table C-2 (Cont.): Common Architecture Instructions 
Mnemonic 

CVTGF 
CVTGQ 
CVTLQ 
CVTQF 
CVTQG 
CVTQL 
CVTQL/SV 
CVTQL/V 
CVTQS 
CVTQT 
CVTST 
CVTTQ 
CVTTS 
DIVF 
DIVG 
DIVS 
DIVT 
EQV 
EXCB 
EXTBL 
EXTLH 
EXTLL 
EXTQH 
EXTQL 
EXTWH 
EXTWL 
FBEQ 
FBGE 
FBGT 
FBLE 
FBLT 
FBNE 
FCMOVEQ 
FCMOVGE 
FCMOVGT 
FCMOVLE 
FCMOVLT 
FCMOVNE 
FETCH 
FETCH.M 
INSBL 
INSLH 
INSLL 
INSQH 
INSQL 
INSWH 
INSWL 

Format 

F-P 
F-P 
F-P 
F-P 
F-P 
F-P 

F-P 
F-P 
F-P 
F-P 
F-P 
F-P 
F-P 
F-P 
F-P 
Opr 
Mfc 
Opr 
Opr 
Opr 
Opr 
Opr 
Opr 
Opr 
Bra 
Bra 
Bra 
Bra 
Bra 
Bra 
F-P 
F-P 
F-P 
F-P 
F-P 
F-P 
Mfc 
Mfc 
Opr 
Opr 
Opr 
Opr 
Opr 
Opr 
Opr 

Opcode 

15.0AC 
15.0AF 
17.010 
15.0BC 
15.0BE 
17.030 
17.530 
17.130 
16.0BC 
16.0BE 
16.2AC 
16.0AF 
16.0AC 
15.083 
15.0A3 
16.083 
16.0A3 
11.48 
18.0400 
12.06 
12.6A 
12.26 
12.7A 
12.36 
12.5A 
12.16 
31 
36 
37 
33 
32 
35 
17.02A 
17.02D 
17.02F 
17.02E 
17.02C 
17.02B 
18.8000 
18.A000 
12.0B 
12.67 
12.2B 
12.77 
12.3B 
12.57 
12.1B 

Description 

Convert G_floating to F_floating 
Convert G_floating to quadword 
Convert longword to quadword 
Convert quadword to F_floating 
Convert quadword to G_floating 
Convert quadword to longword 

Convert quadword to S_floating 
Convert quadword to T_floating 
Convert S_floating to T_floating 
Convert T_floating to quadword 
Convert T_floating to S_floating 
Divide F_floating 
Divide G_floating 
Divide S_floating 
Divide T_floating 
Logical equivalence 
Exception barrier 
Extract byte low 
Extract longword high 
Extract longword low 
Extract quadword high 
Extract quadword low 
Extract word high 
Extract word low 
Floating branch if = zero 
Floating branch if > zero 
Floating branch if > zero 
Floating branch if < zero 
Floating branch if < zero 
Floating branch if Φ zero 
FCMOVEif=zero 
FCMOVE if > zero 
FCMOVEif>zero 
FCMOVE if < zero 
FCMOVE if < zero 
FCMOVE if φ zero 
Prefetch data 
Prefetch data, modify intent 
Insert byte low 
Insert longword high 
Insert longword low 
Insert quadword high 
Insert quadword low 
Insert word high 
Insert word low 
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Table C-2 (Cont.): Common Architecture Instructions 
Mnemonic 

JMP 
JSR 
JSR_COROUTINE 
LDA 
LDAH 
LDF 
LDG 
LDL 
LDL L 
LDQ 
LDQ_L 
LDQ_U 
LDS 
LDT 
MB 
MF_FPCR 
MSKBL 
MSKLH 
MSKLL 
MSKQH 
MSKQL 
MSKWH 
MSKWL 
MT_FPCR 
MULF 
MULG 
MULL 
MULL/V 
MULQ 
MULQ/V 
MULS 
MULT 
ORNOT 
RC 
RET 
RPCC 
RS 
S4ADDL 
S4ADDQ 
S4SUBL 
S4SUBQ 
S8ADDL 
S8ADDQ 
S8SUBL 
S8SUBQ 
SLL 
SRA 

Format 

Mbr 
Mbr 
Mbr 
Mem 
Mem 
Mem 
Mem 
Mem 
Mem 
Mem 
Mem 
Mem 
Mem 
Mem 
Mfc 
F-P 
Opr 
Opr 
Opr 
Opr 
Opr 
Opr 
Opr 
F-P 
F-P 
F-P 
Opr 

Opr 

F-P 
F-P 
Opr 
Mfc 
Mbr 
Mfc 
Mfc 
Opr 
Opr 
Opr 
Opr 
Opr 
Opr 
Opr 
Opr 
Opr 
Opr 

Opcode 

1A.0 
1A.1 
1A.3 
08 
09 
20 
21 
28 
2A 
29 
2B 
OB 
22 
23 
18.4000 
17.025 
12.02 
12.62 
12.22 
12.72 
12.32 
12.52 
12.12 
17.024 
15.082 
15.0A2 
13.00 
13.40 
13.20 
13.60 
16.082 
16.0A2 
11.28 
18.E000 
1A.2 
18.C000 
18.F000 
10.02 
10.22 
10.0B 
10.2B 
10.12 
10.32 
10.1B 
10.3B 
12.39 
12.3C 

Description 

Jump 
Jump to subroutine 
Jump to subroutine return 
Load address 
Load address high 
Load F_floating 
Load G_floating 
Load sign-extended longword 
Load sign-extended longword locked 
Load quadword 
Load quadword locked 
Load unaligned quadword 
Load S_floating 
Load T_floating 
Memory barrier 
Move from FPCR 
Mask byte low 
Mask longword high 
Mask longword low 
Mask quadword high 
Mask quadword low 
Mask word high 
Mask word low 
Move to FPCR 
Multiply F_floating 
Multiply G_floating 
Multiply longword 

Multiply quadword 

Multiply S_floating 
Multiply T_floating 
Logical sum with complement 
Read and clear 
Return from subroutine 
Read process cycle counter 
Read and set 
Scaled add longword by 4 
Scaled add quadword by 4 
Scaled subtract longword by 4 
Scaled subtract quadword by 4 
Scaled add longword by 8 
Scaled add quadword by 8 
Scaled subtract longword by 8 
Scaled subtract quadword by 8 
Shift left logical 
Shift right arithmetic 
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Table C-2 (Cont.): Common Architecture Instructions 
Mnemonic 

SRL 
STF 
STG 
STS 
STL 
STL_C 
STQ 
STQ C 
STQJJ 
STT 
SUBF 
SUBG 
SUBL 
SUBL/V 
SUBQ 
SUBQ/V 
SUBS 
SUBT 
TRAPB 
UMULH 
WMB 
XOR 
ZAP 
ZAPNOT 

Format 

Opr 
Mem 
Mem 
Mem 
Mem 
Mem 
Mem 
Mem 
Mem 
Mem 
F-P 
F-P 
Opr 

Opr 

F-P 
F-P 
Mfc 
Opr 
Mfc 
Opr 
Opr 
Opr 

Opcode 

12.34 
24 
25 
26 
2C 
2E 
2D 
2F 
OF 
27 
15.081 
15.0A1 
10.09 
10.49 
10.29 
10.69 
16.081 
16.0A1 
18.0000 
13.30 
18.4400 
11.40 
12.30 
12.31 

Description 

Shift right logical 
Store F_floating 
Store G_floating 
Store S_floating 
Store longword 
Store longword conditional 
Store quadword 
Store quadword conditional 
Store unaligned quadword 
Store T_floating 
Subtract F_floating 
Subtract G_floating 
Subtract longword 

Subtract quadword 

Subtract S_floating 
Subtract T_floating 
Trap barrier 
Unsigned multiply quadword high 
Write memory barrier 
Logical difference 
Zero bytes 
Zero bytes not 
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C.2 IEEE Floating-Point Instructions 
Table C-3 lists the hexadecimal value of the 11-bit function code field for the 
IEEE floating-point instructions, with and without qualifiers. The opcode for these 
instructions is 1616. 

Table C-3: IEEE Floating-Point Instruction Function Codes 

None /C /M /D /U /UC /UM /UD 

ADDS 
ADDT 
CMPTEQ 
CMPTLT 
CMPTLE 
CMPTUN 
CVTQS 
CVTQT 
CVTST 
CVTTQ 
CVTTS 
DIVS 
DIVT 
MULS 
MULT 
SUBS 
SUBT 

080 
0A0 
0A5 
0A6 
0A7 
0A4 
OBC 
OBE 

000 
020 

03C 
03E 

See below 
See below 
OAC 
083 
0A3 
082 
0A2 
081 
0A1 

02C 
003 
023 
002 
022 
001 
021 

040 
060 

07C 
07E 

06C 
043 
063 
042 
062 
041 
061 

OCO 
0E0 

0FC 
0FE 

0EC 
0C3 
0E3 
0C2 
0E2 
0C1 
0E1 

180 
1A0 

1AC 
183 
1A3 
182 
1A2 
181 
1A1 

100 
120 

12C 
103 
123 
102 
122 
101 
121 

140 
160 

16C 
143 
163 
142 
162 
141 
161 

1C0 
1E0 

1EC 
1C3 
1E3 
1C2 
1E2 
ICI 
1E1 

/SU /SUC /SUM /SUD /SUI /SUIC /SUIM /SUID 

ADDS 
ADDT 
CMPTEQ 
CMPTLT 
CMPTLE 
CMPTUN 
CVTQS 
CVTQT 
CVTTS 
DIVS 
DIVT 
MULS 
MULT 
SUBS 
SUBT 

580 
5A0 
5A5 
5A6 
5A7 
5A4 

5AC 
583 
5A3 
582 
5A2 
581 
5A1 

500 
520 

52C 
503 
523 
502 
522 
501 
521 

540 
560 

56C 
543 
563 
542 
562 
541 
561 

5C0 
5E0 

5EC 
5C3 
5E3 
5C2 
5E2 
5C1 
5E1 

780 
7A0 

7BC 
7BE 
7AC 
783 
7A3 
782 
7A2 
781 
7A1 

700 
720 

73C 
73E 
72C 
703 
723 
702 
722 
701 
721 

740 
760 

77C 
77E 
76C 
743 
763 
742 
762 
741 
761 

7C0 
7E0 

7FC 
7FE 
7EC 
7C3 
7E3 
7C2 
7E2 
7C1 
7E1 

None /S 

CVTST 2AC 6AC 
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Table C-3 (Cont.): IEEE Floating-Point Instruction Function Codes 

CVTTQ 

CVTTQ 

None 

OAF 

D 

OEF 

/C 

02F 

/VD 

1EF 

/V 

1AF 

/SVD 

5EF 

/VC /SV 

12F 5AF 

/SVID /M 

7EF 06F 

/SVC 

52F 

/VM 

16F 

/SVI 

7AF 

/SVM 

56F 

/SVIC 

72F 

/SVIM 

76F 

Programming Note: 

Since underflow cannot occur for CMPTxx, there is no difference in function or 
performance between CMPTxx/S and CMPTxx/SU. It is intended that software 
generate CMPTxx/SU in place of CMPTxx/S. 
In the same manner, CVTQS and CVTQT can take an inexact result trap, but 
not an underflow. Because there is no encoding for a CVTQx/SI instruction, it is 
intended that software generate CVTQx/SUI in place of CVTQx/SI. 
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C.3 VAX Floating-Point Instructions 
Table C-4 lists the hexadecimal value of the 11-bit function code field for the VAX 
floating-point instructions. The opcode for these instructions is 15^ . 

Table C-4: VAX Floating-Point Instruction Function Codes 

None /C /U /UC /S /SC /SU /SUC 

ADDF 
CVTDG 
ADDG 
CMPGEQ 
CMPGLT 
CMPGLE 
CVTGF 
CVTGD 
CVTGQ 
CVTQF 
CVTQG 
DIVF 
DIVG 
MULF 
MULG 
SUBF 
SUBG 

080 
09E 
0A0 
0A5 
0A6 
0A7 
OAC 
OAD 

000 
01E 
020 

02C 
02D 

See below 
OBC 
OBE 
083 
0A3 
082 
0A2 
081 
0A1 

03C 
03E 
003 
023 
002 
022 
001 
021 

180 
19E 
1A0 

1AC 
IAD 

183 
1A3 
182 
1A2 
181 
1A1 

100 
H E 
120 

12C 
12D 

103 
123 
102 
122 
101 
121 

480 
49E 
4A0 
4A5 
4A6 
4A7 
4AC 
4AD 

483 
4A3 
482 
4A2 
481 
4A1 

400 
41E 
420 

42C 
42D 

403 
423 
402 
422 
401 
421 

580 
59E 
5A0 

5AC 
5AD 

583 
5A3 
582 
5A2 
581 
5A1 

500 
51E 
520 

52C 
52D 

503 
523 
502 
522 
501 
521 

CVTGQ 

None /C 

OAF 02F 

/V 

1AF 

/vc 
12F 

/S 

4AF 

/SC 

42F 

/SV 

5AF 

/SVC 

52F 
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C.4 Opcode Summary 
Table C-5 lists all Alpha AXP opcodes from 00 (CALL_PAL) through 3F (BGT). In 
the table, the column headings that appear over the instructions have a granularity 
of 8χ6. The rows beneath the leftmost column supply the individual hex number to 
resolve that granularity. 

If an instruction column has a 0 (zero) in the right (low) hex digit, replace that 0 with 
the number to the left of the backslash in the leftmost column on the instruction's 
row. If an instruction column has an 8 in the right (low) hexadecimal digit, replace 
that 8 with the number to the right of the backslash in the leftmost column. 

For example, the third row (2/A) under the 10 column contains the symbol INTS*, 
representing all the integer shift instructions. The opcode for those instructions 
would then be 1216 because the 0 in 10 is replaced by the 2 in the leftmost column. 
Likewise, the third row under the 18 column contains the symbol JSR*, representing 
all jump instructions. The opcode for those instructions is 1A because the 8 in the 
heading is replaced by the number to the right of the backslash in the leftmost 
column. 

The instruction format is listed under the instruction symbol. 

The symbols in Table C-5 are explained in Table C-6. 
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Table C-5: Opcode Summary 

00 08 10 18 20 28 30 38 

0/8 

1/9 

2/A 

3/B 

4/C 

5/D 

6/E 

7/F 

PAL* 
(pal) 

Res 

Res 

Res 

Res 

Res 

Res 

Res 

LDA 
(mem) 

LDAH 
(mem) 

Res 

LDQ_U 
(mem) 

Res 

Res 

Res 

STQ_U 
(mem) 

INTA* 
(op) 

INTL* 
(op) 

INTS* 
(op) 

INTM* 
(op) 

Res 

FLTV* 
(op) 

FLTI* 
(op) 

FLTL* 
(op) 

MISC* 
(mem) 

\PAL\ 

JSR* 
(mem) 

\PAL\ 

Res 

\PAL\ 

\PAL\ 

\PAL\ 

LDF 
(mem) 

LDG 
(mem) 

LDS 
(mem) 

LDT 
(mem) 

STF 
(mem) 

STG 
(mem) 

STS 
(mem) 

STT 
(mem) 

LDL 
(mem) 

LDQ 
(mem) 

LDL_L 
(mem) 

LDQ_L 
(mem) 

STL 
(mem) 

STQ 
(mem) 

STL_C 
(mem) 

STQ_C 
(mem) 

BR 
(br) 

FBEQ 
(br) 

FBLT 
(br) 

FBLE 
(br) 

BSR 
(br) 

FBNE 
(br) 

FBGE 
(br) 

FBGT 
(br) 

BLBC 
(br) 

BEQ 
(br) 

BLT 
(br) 

BLE 
(br) 

BLBS 
(br) 

BNE 
(br) 

BGE 
(br) 

BGT 
(br) 

Table C-6: Key to Opcode Summary (Table C-5) 
Symbol Meaning 

FLTI* IEEE floating-point instruction opcodes 

FLTL* Floating-point Operate instruction opcodes 

FLTV* VAX floating-point instruction opcodes 

INTA* Integer arithmetic instruction opcodes 

INTL* Integer logical instruction opcodes 

INTM* Integer multiply instruction opcodes 

INTS* Integer shift instruction opcodes 

JSR* Jump instruction opcodes 

MISC* Miscellaneous instruction opcodes 

PAL* PALcode instruction (CALL_PAL) opcodes 

\ PAL\ Reserved for PALcode 

Res Reserved for Digital 
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C.5 Common Architecture Opcodes in Numerical Order 

Table C-7: Common Architecture Opcodes in Numerical Order 
Opcode Opcode Opcode 

00 CALL.PAL 11.26 CMOVNE 15.01E CVTDG/C 
01 OPC01 11.28 ORNOT 15.020 ADDG/C 
02 OPC02 11.40 XOR 15.021 SUBG/C 
03 OPC03 11.44 CMOVLT 15.022 MULG/C 
04 OPC04 11.46 CMOVGE 15.023 DIVG/C 
05 OPC05 11.48 EQV 15.02C CVTGF/C 
06 OPC06 11.64 CMOVLE 15.02D CVTGD/C 
07 OPC07 11.66 CMOVGT 15.02F CVTGQ/C 
08 LDA 12.02 MSKBL 15.03C CVTQF/C 
09 LDAH 12.06 EXTBL 15.03E CVTQG/C 
0A OPC0A 12.0B INSBL 15.080 ADDF 
0B LDQJJ 12.12 MSKWL 15.081 SUBF 
0C OPC0C 12.16 EXTWL 15.082 MULF 
0D OPC0D 12. IB INSWL 15.083 DIVF 
0E OPC0E 12.22 MSKLL 15.09E CVTDG 
OF STQJJ 12.26 EXTLL 15.0A0 ADDG 
10.00 ADDL 12.2B INSLL 15.0A1 SUBG 
10.02 S4ADDL 12.30 ZAP 15.0A2 MULG 
10.09 SUBL 12.31 ZAPNOT 15.0A3 DIVG 
10.0B S4SUBL 12.32 MSKQL 15.0A5 CMPGEQ 
10.0F CMPBGE 12.34 SRL 15.0A6 CMPGLT 
10.12 S8ADDL 12.36 EXTQL 15.0A7 CMPGLE 
10. IB S8SUBL 12.39 SLL 15.0AC CVTGF 
10.1D CMPULT 12.3B INSQL 15.0AD CVTGD 
10.20 ADDQ 12.3C SRA 15.0AF CVTGQ 
10.22 S4ADDQ 12.52 MSKWH 15.0BC CVTQF 
10.29 SUBQ 12.57 INSWH 15.0BE CVTQG 
10.2B S4SUBQ 12.5A EXTWH 15.100 ADDF/UC 
10.2D CMPEQ 12.62 MSKLH 15.101 SUBF/UC 
10.32 S8ADDQ 12.67 INSLH 15.102 MULF/UC 
10.3B S8SUBQ 12.6A EXTLH 15.103 DIVF/UC 
10.3D CMPULE 12.72 MSKQH 15.11E CVTDG/UC 
10.40 ADDL/V 12.77 INSQH 15.120 ADDG/UC 
10.49 SUBL/V 12.7A EXTQH 15.121 SUBG/UC 
10.4D CMPLT 13.00 MULL 15.122 MULG/UC 
10.60 ADDQ/V 13.20 MULQ 15.123 DIVG/UC 
10.69 SUBQ/V 13.30 UMULH 15.12C CVTGF/UC 
10.6D CMPLE 13.40 MULL/V 15.12D CVTGD/UC 
11.00 AND 13.60 MULQ/V 15.12F CVTGQ/VC 
11.08 BIC 14 OPC14 15.180 ADDF/U 
11.14 CMOVLBS 15.000 ADDF/C 15.181 SUBF/U 
11.16 CMOVLBC 15.001 SUBF/C 15.182 MULF/U 
11.20 BIS 15.002 MULF/C 15.183 DIVF/U 
11.24 CMOVEQ 15.003 DIVF/C 15.19E CVTDG/U 

Instruction Summary C-11 



Table C-7 (Cont.): Common Architecture Opcodes in Numerical Order 

Opcode 

15.1A0 
15.1A1 
15.1A2 
15.1A3 
15.1AC 
15. IAD 
15.1AF 
15.400 
15.401 
15.402 
15.403 
15.41E 
15.420 
15.421 
15.422 
15.423 
15.42C 
15.42D 
15.42F 
15.480 
15.481 
15.482 
15.483 
15.49E 
15.4A0 
15.4A1 
15.4A2 
15.4A3 
15.4A5 
15.4A6 
15.4A7 
15.4AC 
15.4AD 
15.4AF 
15.500 
15.501 
15.502 
15.503 
15.51E 
15.520 
15.521 
15.522 
15.523 
15.52C 
15.52D 
15.52F 

ADDG/U 
SUBG/U 
MULG/U 
DIVG/U 
CVTGF/U 
CVTGD/U 
CVTGQ/V 
ADDF/SC 
SUBF/SC 
MULF/SC 
DIVF/SC 
CVTDG/SC 
ADDG/SC 
SUBG/SC 
MULG/SC 
DIVG/SC 
CVTGF/SC 
CVTGD/SC 
CVTGQ/SC 
ADDF/S 
SUBF/S 
MULF/S 
DIVF/S 
CVTDG/S 
ADDG/S 
SUBG/S 
MULG/S 
DIVG/S 
CMPGEQ/S 
CMPGLT/S 
CMPGLE/S 
CVTGF/S 
CVTGD/S 
CVTGQ/S 
ADDF/SUC 
SUBF/SUC 
MULF/SUC 
DIVF/SUC 
CVTDG/SUC 
ADDG/SUC 
SUBG/SUC 
MULG/SUC 
DIVG/SUC 
CVTGF/SUC 
CVTGD/SUC 
CVTGQ/SVC 

Opcode 

15.580 
15.581 
15.582 
15.583 
15.59E 
15.5A0 
15.5A1 
15.5A2 
15.5A3 
15.5AC 
15.5AD 
15.5AF 
16.000 
16.001 
16.002 
16.003 
16.020 
16.021 
16.022 
16.023 
16.02C 
16.02F 
16.03C 
16.03E 
16.040 
16.041 
16.042 
16.043 
16.060 
16.061 
16.062 
16.063 
16.06C 
16.06F 
16.07C 
16.07E 
16.080 
16.081 
16.082 
16.083 
16.0A0 
16.0A1 
16.0A2 
16.0A3 
16.0A4 
16.0A5 

ADDF/SU 
SUBF/SU 
MULF/SU 
DIVF/SU 
CVTDG/SU 
ADDG/SU 
SUBG/SU 
MULG/SU 
DIVG/SU 
CVTGF/SU 
CVTGD/SU 
CVTGQ/SV 
ADDS/C 
SUBS/C 
MULS/C 
DIVS/C 
ADDT/C 
SUBT/C 
MULT/C 
DIVT/C 
CVTTS/C 
CVTTQ/C 
CVTQS/C 
CVTQT/C 
ADDS/M 
SUBS/M 
MULS/M 
DIVS/M 
ADDT/M 
SUBT/M 
MULT/M 
DIVT/M 
CVTTS/M 
CVTTQ/M 
CVTQS/M 
CVTQT/M 
ADDS 
SUBS 
MULS 
DIVS 
ADDT 
SUBT 
MULT 
DIVT 
CMPTUN 
CMPTEQ 

Opcode 

16.0A6 
16.0A7 
16.0AC 
16.0AF 
16.0BC 
16.0BE 
16.0C0 
16.0C1 
16.0C2 
16.0C3 
16.0E0 
16.0E1 
16.0E2 
16.0E3 
16.0EC 
16.0EF 
16.0FC 
16.0FE 
16.100 
16.101 
16.102 
16.103 
16.120 
16.121 
16.122 
16.123 
16.12C 
16.12F 
16.140 
16.141 
16.142 
16.143 
16.160 
16.161 
16.162 
16.163 
16.16C 
16.16F 
16.180 
16.181 
16.182 
16.183 
16.1A0 
16.1A1 
16.1A2 
16.1A3 

CMPTLT 
CMPTLE 
CVTTS 
CVTTQ 
CVTQS 
CVTQT 
ADDS/D 
SUBS/D 
MULS/D 
DIVS/D 
ADDT/D 
SUBT/D 
MULT/D 
DIVT/D 
CVTTS/D 
CVTTQ/D 
CVTQS/D 
CVTQT/D 
ADDS/UC 
SUBS/UC 
MULS/UC 
DIVS/UC 
ADDT/UC 
SUBT/UC 
MULT/UC 
DIVT/UC 
CVTTS/UC 
CVTTQ/VC 
ADDS/UM 
SUBS/UM 
MULS/UM 
DIVS/UM 
ADDT/UM 
SUBT/UM 
MULT/UM 
DIVT/UM 
CVTTS/UM 
CVTTQ/VM 
ADDS/U 
SUBS/U 
MULS/U 
DIVS/U 
ADDT/U 
SUBT/U 
MULT/U 
DIVT/U 
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Table C-7 (Cont.): Common Architecture Opcodes in Numerical Order 

Opcode 

16.1 AC 
16.1AF 
16.1C0 
16.1C1 
16.1C2 
16.1C3 
16.1E0 
16.1E1 
16.1E2 
16.1E3 
16.1EC 
16.1EF 
16.2AC 
16.500 
16.501 
16.502 
16.503 
16.520 
16.521 
16.522 
16.523 
16.52C 
16.52F 
16.540 
16.541 
16.542 
16.543 
16.560 
16.561 
16.562 
16.563 
16.56C 
16.56F 
16.580 
16.581 
16.582 
16.583 
16.5A0 
16.5A1 
16.5A2 
16.5A3 
16.5A4 
16.5A5 
16.5A6 
16.5A7 
16.5AC 

CVTTS/U 
CVTTQ/V 
ADDS/UD 
SUBS/UD 
MULS/UD 
DIVS/UD 
ADDT/UD 
SUBT/UD 
MULT/UD 
DIVT/UD 
CVTTS/UD 
CVTTQ/VD 
CVTST 
ADDS/SUC 
SUBS/SUC 
MULS/SUC 
DIVS/SUC 
ADDT/SUC 
SUBT/SUC 
MULT/SUC 
DIVT/SUC 
CVTTS/SUC 
CVTTQ/SVC 
ADDS/SUM 
SUBS/SUM 
MULS/SUM 
DIVS/SUM 
ADDT/SUM 
SUBT/SUM 
MULT/SUM 
DIVT/SUM 
CVTTS/SUM 
CVTTQ/SVM 
ADDS/SU 
SUBS/SU 
MULS/SU 
DIVS/SU 
ADDT/SU 
SUBT/SU 
MULT/SU 
DIVT/SU 
CMPTUN/SU 
CMPTEQ/SU 
CMPTLT/SU 
CMPTLE/SU 
CVTTS/SU 

Opcode 

16.5AF 
16.5C0 
16.5C1 
16.5C2 
16.5C3 
16.5E0 
16.5E1 
16.5E2 
16.5E3 
16.5EC 
16.5EF 
16.6AC 
16.700 
16.701 
16.702 
16.703 
16.720 
16.721 
16.722 
16.723 
16.72C 
16.72F 
16.73C 
16.73E 
16.740 
16.741 
16.742 
16.743 
16.760 
16.761 
16.762 
16.763 
16.76C 
16.76F 
16.77C 
16.77E 
16.780 
16.781 
16.782 
16.783 
16.7A0 
16.7A1 
16.7A2 
16.7A3 
16.7AC 
16.7AF 

CVTTQ/SV 
ADDS/SUD 
SUBS/SUD 
MULS/SUD 
DIVS/SUD 
ADDT/SUD 
SUBT/SUD 
MULT/SUD 
DIVT/SUD 
CVTTS/SUD 
CVTTQ/SVD 
CVTST/S 
ADDS/SUIC 
SUBS/SUIC 
MULS/SUIC 
DIVS/SUIC 
ADDT/SUIC 
SUBT/SUIC 
MULT/SUIC 
DIVT/SUIC 
CVTTS/SUIC 
CVTTQ/SVIC 
CVTQS/SUIC 
CVTQT/SUIC 
ADDS/SUIM 
SUBS/SUIM 
MULS/SUIM 
DIVS/SUIM 
ADDT/SUIM 
SUBT/SUIM 
MULT/SUIM 
DIVT/SUIM 
CVTTS/SUIM 
CVTTQ/SVIM 
CVTQS/SUIM 
CVTQT/SUIM 
ADDS/SUI 
SUBS/SUI 
MULS/SUI 
DIVS/SUI 
ADDT/SUI 
SUBT/SUI 
MULT/SUI 
DIVT/SUI 
CVTTS/SUI 
CVTTQ/SVI 

Opcode 

16.7BC 
16.7BE 
16.7C0 
16.7C1 
16.7C2 
16.7C3 
16.7E0 
16.7E1 
16.7E2 
16.7E3 
16.7EC 
16.7EF 
16.7FC 
16.7FE 
17.010 
17.020 
17.021 
17.022 
17.024 
17.025 
17.02A 
17.02B 
17.02C 
17.02D 
17.02E 
17.02F 
17.030 
17.130 
17.530 
18.0000 
18.0400 
18.4000 
18.4400 
18.8000 
18.A000 
18.C000 
18.E000 
18.F000 
19 
1A.0 
1A.1 
1A.2 
1A.3 
IB 
1C 
ID 

CVTQS/SUI 
CVTQT/SUI 
ADDS/SUID 
SUBS/SUID 
MULS/SUID 
DIVS/SUID 
ADDT/SUID 
SUBT/SUID 
MULT/SUID 
DIVT/SUID 
CVTTS/SUID 
CVTTQ/SVID 
CVTQS/SUID 
CVTQT/SUID 
CVTLQ 
CPYS 
CPYSN 
CPYSE 
MT_FPCR 
MF_FPCR 
FCMOVEQ 
FCMOVNE 
FCMOVLT 
FCMOVGE 
FCMOVLE 
FCMOVGT 
CVTQL 
CVTQL/V 
CVTQL/SV 
TRAPB 
EXCB 
MB 
WMB 
FETCH 
FETCHJM 
RPCC 
RC 
RS 
PAL19 
JMP 
JSR 
RET 
JSR_COROUTINE 
PAL1B 
OPC1C 
PAL1D 
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Table C-7 (Cont.): Common Architecture Opcodes in Numerical Order 

Opcode Opcode Opcode 

IE PALIE 2A LDL_L 36 FBGE 
IF PAL1F 2B LDQ_L 37 FBGT 
20 LDF 2C STL 38 BLBC 
21 LDG 2D STQ 39 BEQ 
22 LDS 2E STL_C 3A BLT 
23 LDT 2F STQ.C 3B BLE 
24 STF 30 BR 3C BLBS 
25 STG 31 FBEQ 3D BNE 
26 STS 32 FBLT 3E BGE 
27 STT 33 FBLE 3F BGT 
28 LDL 34 BSR 
29 LDQ 35 FBNE 
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C.6 OpenVMS AXP PALcode instruction Summary 

Table C-8: OpenVMS AXP Unprivileged PALcode Instructions 
Mnemonic Opcode Description 

Atomic move from register to memory 
Atomic move from register to register 
Breakpoint 
Bugcheck 
Change mode to kernel 
Change mode to executive 
Change mode to supervisor 
Change mode to user 
Generate software trap 
I-stream memory barrier 
Insert into longword queue at head interlocked 
Insert into longword queue at head interlocked resident 
Insert into quadword queue at head interlocked 
Insert into quadword queue at head interlocked resident 
Insert into longword queue at tail interlocked 
Insert into longword queue at tail interlocked resident 
Insert into quadword queue at tail interlocked 
Insert into quadword queue at tail interlocked resident 
Insert entry into longword queue 
Insert entry into longword queue deferred 
Insert entry into quadword queue 
Insert entry into quadword queue deferred 
Probe for read access 
Probe for write access 
Move processor status 
Read unique context 
Return from exception or interrupt 
Remove from longword queue at head interlocked 
Remove from longword queue at head interlocked resident 
Remove from quadword queue at head interlocked 
Remove from quadword queue at head interlocked resident 
Remove from longword queue at tail interlocked 
Remove from longword queue at tail interlocked resident 
Remove from quadword queue at tail interlocked 
Remove from quadword queue at tail interlocked resident 
Remove entry from longword queue 
Remove entry from longword queue deferred 
Remove entry from quadword queue 
Remove entry from quadword queue deferred 
Read system cycle counter 
Swap AST enable for current mode 
Write unique context 
Write processor status software field 

AMOVRM 
AMOVRR 
BPT 
BUGCHK 
CHMK 
CHME 
CHMS 
CHMU 
GENTRAP 
1MB 
INSQHIL 
INSQHILR 
INSQHIQ 
INSQHIQR 
INSQTIL 
INSQTILR 
INSQTIQ 
INSQTIQR 
INSQUEL 
INSQUEL/D 
INSQUEQ 
INSQUEQ/D 
PROBER 
PROBEW 
RD_PS 
READJJNQ 
REI 
REMQHIL 
REMQHILR 
REMQHIQ 
REMQHIQR 
REMQTIL 
REMQTILR 
REMQTIQ 
REMQTIQR 
REMQUEL 
REMQUEL/D 
REMQUEQ 
REMQUEQ/D 
RSCC 
SWASTEN 
WRITEJJNQ 
WR_PS_SW 

00.00A1 
00.00A0 
00.0080 
00.0081 
00.0083 
00.0082 
00.0084 
00.0085 
00.00ΑΑ 
00.0086 
00.0087 
00.00A2 
00.0089 
00.00A4 
00.0088 
00.00A3 
00.008A 
00.00A5 
00.008B 
00.008D 
00.008C 
00.008E 
00.008F 
00.0090 
00.0091 
00.009E 
00.0092 
00.0093 
00.00A6 
00.0095 
00.00A8 
00.0094 
00.00A7 
00.0096 
00.00A9 
00.0097 
00.0099 
00.0098 
00.009A 
00.009D 
00.009B 
00.009F 
00.009C 
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Table C-9: OpenVMS AXP Privileged PALcode Instructions 
Mnemonic 

CFLUSH 
CSERVE 
DRAINA 
HALT 
LDQP 
MFPR ASN 
MFPR.ESP 
MFPR_FEN 
M F P R J P L 
MFPRJVICES 
MFPR.PCBB 
MFPR.PRBR 
MFPR_PTBR 
MFPR SCBB 
MFPR_SISR 
MFPR.SSP 
MFPR.TBCHK 
MFPR_USP 
MFPR.VPTB 
MFPR.WHAMI 
MTPR_ASTEN 
MTPR.ASTSR 
MTPR_DATFX 
MTPR.ESP 
MTPR FEN 
MTPRJPIR 
MTPR_IPL 
MTPRJVICES 
MTPR.PERFMON 
MTPR.PRBR 
MTPR.SCBB 
MTPR_SIRR 
MTPR SSP 
MTPR.TBIA 
MTPR.TBIAP 
MTPR TBIS 
MTPR_TBISD 
MTPRJTBISI 
MTPR_USP 
MTPR_VPTB 
STQP 
SWPCTX 
SWPPAL 

Opcode 

00.0001 
00.0009 
00.0002 
00.0000 
00.0003 
00.0006 
00.001E 
00.000B 
00.000E 
00.0010 
00.0012 
00.0013 
00.0015 
00.0016 
00.0019 
00.0020 
00.001A 
00.0022 
00.0029 
00.003F 
00.0026 
00.0027 
00.002E 
00.001F 
00.000B 
00.000D 
00.000E 
00.0011 
00.002B 
00.0014 
00.0017 
00.0018 
00.0021 
00.001B 
00.001C 
00.001D 
00.0024 
00.0025 
00.0023 
00.002A 
00.0004 
00.0005 
00.000A 
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Description 

Cache flush 
Console service 
Drain aborts 
Halt processor 
Load quadword physical 
Move from processor register ASN 
Move from processor register ESP 
Move from processor register FEN 
Move from processor register IPL 
Move from processor register MCES 
Move from processor register PCBB 
Move from processor register PRBR 
Move from processor register PTBR 
Move from processor register SCBB 
Move from processor register SISR 
Move from processor register SSP 
Move from processor register TBCHK 
Move from processor register USP 
Move from processor register VPTB 
Move from processor register WHAMI 
Move to processor register ÄSTEN 
Move to processor register ASTSR 
Move to processor register DATFX 
Move to processor register ESP 
Move to processor register FEN 
Move to processor register IPRI 
Move to processor register IPL 
Move to processor register MCES 
Move to processor register PERFMON 
Move to processor register PRBR 
Move to processor register SCBB 
Move to processor register SIRR 
Move to processor register SSP 
Move to processor register TBIA 
Move to processor register TBIAP 
Move to processor register TBIS 
Move to processor register TBISD 
Move to processor register TBISI 
Move to processor register USP 
Move to processor register VPTB 
Store quadword physical 
Swap privileged context 
Swap PALcode image 



C.7 DEC OSF/1 PALcode Instruction Summary 

Table C-10: 

Mnemon ic 

bpt 
bugchk 
callsys 
gentrap 
imb 
rdunique 
wrunique 

Table C-11: 

Mnemonic 

cflush 
cserve 
draina 
halt 
rdmces 
rdps 
rdusp 
rdval 
retsys 
rti 
swpctx 
swpipl 
swppal 
tbi 
whami 
wrent 
wrfen 
wripir 
wrkgp 
wrmces 
wrperfmon 
wrusp 
wrval 
wrvptptr 

DEC OSF/1 
Opcode 

00.0080 
00.0081 
00.0083 
00.00ΑΑ 
00.0086 
00.009E 
00.009F 

DEC OSF/1 
Opcode 

00.0001 
00.0009 
00.0003 
00.0000 
00.0010 
00.0036 
00.003A 
00.0032 
00.003D 
00.003F 
00.0030 
00.0035 
00.000A 
00.0033 
00.003C 
00.0034 
00.002B 
00.000D 
00.0037 
00.0011 
00.0039 
00.0038 
00.0031 
00.002D 

Unprivileged PALcode Instructions 
Descr ip t ion 

Breakpoint t rap 
Bugcheck 
System call 
Generate software trap 
I-stream memory barrier 
Read unique value 
Write unique value 

Privileged PALcode Instructions 
Descr ip t ion 

Cache flush 
Console service 
Drain aborts 
Halt the processor 
Read machine check error summary register 
Read processor status 
Read user stack pointer 
Read system value 
Return from system call 
Return from trap or interrupt 
Swap privileged context 
Swap interrupt priority level 
Swap PALcode image 
Translation buffer invalidate 
Who am I 
Write system entry address 
Write floating-point enable 
Write interprocessor interrupt request 
Write kernel global pointer 
Write machine check error summary register 
Performance monitoring function 
Write user stack pointer 
Write system value 
Write virtual page table pointer 
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C.8 Windows NT AXP Instruction Summary 

Table C-12: Windows NT AXP Unprivileged PALcode Instructions 
Mnemonic Opcode Description 

Breakpoint trap 
Call kernel debugger 
Call system service 
Generate trap 
Instruction memory barrier 
Kernel breakpoint trap 
Read TEB internal processor register 

bpt 
callkd 
callsys 
gentrap 
imb 
kbpt 
rdteb 

00.0080 
00.00AD 
00.0083 
00.00ΑΑ 
00.0086 
00.00AC 
00.00ΑΒ 

Table C-13: Windows NT AXP Privileged PALcode instructions 
Mnemonic Opcode Description 

Clear software interrupt request 
Disable interrupts 
Drain aborts 
Data translation buffer invalidate single 
Enable interrupts 
Trap to illegal instruction 
Initialize the PALcode 
Read PALcode event counters 
Read current IRQL 
Read initial kernel stack 
Read machine check error summary 
Read PCR (processor control registers) 
Read processor status register 
Read internal processor state 
Read the current thread value 
Transfer to console firmware 
Restart the processor 
Return from system service call 
Return from exception 
Swap IRQL 
Swap initial kernel stack 
Swap PALcode 
Swap privileged process context 
Swap privileged thread context 
Set software interrupt request 
Translation buffer invalidate all 
Translation buffer invalidate single 
Translation buffer invalidate single ASN 
Write system entry 
Write machine check error summary 
Write performance monitoring values 

csir 
di 
draina 
dtbis 
ei 
halt 
initpal 
rdcounters 
rdirql 
rdksp 
rdmces 
rdpcr 
rdpsr 
rdstate 
rdthread 
reboot 
restart 
retsys 
rfe 
swpirql 
swpksp 
swppal 
swpprocess 
swpctx 
ssir 
tbia 
tbis 
tbisasn 
wrentry 
wrmces 
wrperfmon 

00.000D 
00.0008 
00.0002 
00.0016 
00.0009 
00.0000 
00.0004 
00.0030 
00.0007 
00.0018 
00.0012 
00.001C 
00.001A 
00.0031 
00.001E 
00.0002 
00.0001 
00.000F 
00.000E 
00.0006 
00.0019 
00.000A 
00.0011 
00.0010 
oo.oooc 
00.0014 
00.0015 
00.0017 
00.0005 
00.0013 
00.0020 
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Opcodes 00.0038i6 through 00.003F16 are reserved for processor implementation-
specific PALcode instructions. All other opcodes are reserved for use by Digital. 
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C.9 PALcode Opcodes in Numerical Order 

Table C-14: PALcode Opcodes in Numerical Order 
Opcode16 Opcode10 OpenVMS AXP DEC OSF/1 Windows NT AXP 

00.0000 
00.0001 
00.0002 
00.0003 
00.0004 
00.0005 
00.0006 
00.0007 
00.0008 
00.0009 
00.000A 
00.000B 
OO.OOOC 
00.000D 
00.000E 
00.000F 
00.0010 
00.0011 
00.0012 
00.0013 
00.0014 
00.0015 
00.0016 
00.0017 
00.0018 
00.0019 
00.001A 
00.001B 
00.001C 
00.001D 
00.001E 
00.001F 
00.0020 
00.0021 
00.0022 
00.0023 
00.0024 
00.0025 
00.0026 
00.0027 
00.0029 
00.002A 
00.002B 
00.002D 

00.0000 
00.0001 
00.0002 
00.0003 
00.0004 
00.0005 
00.0006 
00.0007 
00.0008 
00.0009 
00.0010 
00.0011 
00.0012 
00.0013 
00.0014 
00.0015 
00.0016 
00.0017 
00.0018 
00.0019 
00.0020 
00.0021 
00.0022 
00.0023 
00.0024 
00.0025 
00.0026 
00.0027 
00.0028 
00.0029 
00.0030 
00.0031 
00.0032 
00.0033 
00.0034 
00.0035 
00.0036 
00.0037 
00.0038 
00.0039 
00.0041 
00.0042 
00.0043 
00.0045 

HALT 
CFLUSH 
DRAINA 
LDQP 
STQP 
SWPCTX 
MFPR_ASN 
MTPR_ASTEN 
MTPR ASTSR 
CSERVE 
SWPPAL 
MFPR_FEN 
MTPR_FEN 
MTPRJPIR 
M F P R J P L 
MTPRJPL 
MFPR_MCES 
MTPR_MCES 
MFPR.PCBB 
MFPR_PRBR 
MTPR_PRBR 
MFPR.PTBR 
MFPR_SCBB 
MTPR_SCBB 
MTPR.SIRR 
MFPR.SISR 
MFPR_TBCHK 
MTPR.TBIA 
MTPR.TBIAP 
MTPR.TBIS 
MFPR.ESP 
MTPR_ESP 
MFPR.SSP 
MTPR_SSP 
MFPRJJSP 
MTPR USP 
MTPR.TBISD 
MTPR.TBISI 
MFPR.ASTEN 
MFPR_ASTSR 
MFPR_VPTB 
MTPR.VPTB 
MTPR.PERFMON 
— 

halt 
cflush 
draina 
— 
— 
— 
— 
— 
— 
cserve 
swppal 
— 
— 
wripir 
— 
— 
rdmces 
wrmces 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
wrfen 
wrvptptr 

halt 
restart 
draina 
reboot 
initpal 
wrentry 
swpirql 
rdirql 
di 
ei 
swppal 
— 
ssir 
csir 
rfe 
retsys 
swpctx 
swpprocess 
rdmes 
wrmces 
tbia 
tbis 
dtbis 
tbisasn 
rdksp 
swpksp 
rdpsr 
— 
rdpcr 
— 
rdthread 
— 
wrperfmon 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
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Table C-14 (Cont.): PALcode Opcodes in Numerical Order 

O p c o d e ^ 

00.002E 
00.0030 
00.0031 
00.0032 
00.0033 
00.0034 
00.0035 
00.0036 
00.0037 
00.0038 
00.0039 
00.003A 
00.003C 
00.003D 
00.003F 
00.0080 
00.0081 
00.0082 
00.0083 
00.0084 
00.0085 
00.0086 
00.0087 
00.0088 
00.0089 
00.008A 
00.008B 
00.008C 
00.008D 
00.008E 
00.008F 
00.0090 
00.0091 
00.0092 
00.0093 
00.0094 
00.0095 
00.0096 
00.0097 
00.0098 
00.0099 
00.009A 
00.009B 
00.009C 
00.009D 
00.009E 
00.009F 

O p c o d e ^ 

00.0046 
00.0048 
00.0049 
00.0050 
00.0051 
00.0052 
00.0053 
00.0054 
00.0055 
00.0056 
00.0057 
00.0058 
00.0060 
00.0061 
00.0063 
00.0128 
00.0129 
00.0130 
00.0131 
00.0132 
00.0133 
00.0134 
00.0135 
00.0136 
00.0137 
00.0138 
00.0139 
00.0140 
00.0141 
00.0142 
00.0143 
00.0144 
00.0145 
00.0146 
00.0147 
00.0148 
00.0149 
00.0150 
00.0151 
00.0152 
00.0153 
00.0154 
00.0155 
00.0156 
00.0157 
00.0158 
00.0159 

OpenVMS AXP 

MTPR_DATFX 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
MFPR.WHAMI 
BPT 
BUGCHK 
CHME 
CHMK 
CHMS 
CHMU 
1MB 
INSQHIL 
INSQTIL 
INSQHIQ 
INSQTIQ 
INSQUEL 
INSQUEQ 
INSQUEL/D 
INSQUEQ/D 
PROBER 
PROBEW 
RD_PS 
REI 
REMQHIL 
REMQTIL 
REMQHIQ 
REMQTIQ 
REMQUEL 
REMQUEQ 
REMQUEL/D 
REMQUEQ/D 
SWASTEN 
WR_PS_SW 
RSCC 
READJJNQ 
WRITEJJNQ 

DEC OSF/1 

— 
swpctx 
wrval 
rdval 
tbi 
wrent 
swpipl 
rdps 
wrkgp 
wrusp 
wrperfmon 
rdusp 
whami 
retsys 
rti 
bpt 
bugchk 
— 
callsys 
— 
— 
imb 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 

— 
— 
— 
— 
rdunique 
wrunique 

Windows NT AXP 

— 
rdcounters 
rdstate 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
bpt 
— 
— 
callsys 
— 
— 
imb 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
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Table C-14 (Cont.): PALcode Opcodes in Numerical Order 

Opcode ig Opcode 10 OpenVMS AXP DEC OSF/1 Windows NT AXP 

00.00A0 
00.00A1 
00.00A2 
00.00A3 
00.00A4 
00.00A5 
00.00A6 
00.00A7 
00.00A8 
00.00A9 
00.00ΑΑ 
00.00ΑΒ 
00.00AC 
00.00AD 

00.0160 
00.0161 
00.0162 
00.0163 
00.0164 
00.0165 
00.0166 
00.0167 
00.0168 
00.0169 
00.0170 
00.0171 
00.0172 
00.0173 

AMOVRR 
AMOVRM 
INSQHILR 
INSQTILR 
INSQHIQR 
INSQTIQR 
REMQHILR 
REMQTILR 
REMQHIQR 
REMQTIQR 
GENTRAP 
— 
— 
— 

gentrap gentrap 
rdteb 
kbpt 
callkd 
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C.10 Required PALcode Function Codes 

The opcodes listed in Table C-15 are required for all Alpha AXP implementations. 
The notation used is oo.ffif, where oo is the hexadecimal 6-bit opcode and ffff is the 
hexadecimal 26-bit function code. 

Table C-15: Required PALcode Function Codes 

Mnemonic Type Function Code 

DRAINA Privileged 00.0002 
HALT Privileged 00.0000 
1MB Unprivileged 00.0086 

C.11 Opcodes Reserved to PALcode 

The opcodes listed in Table C-16 are reserved for use in implementing PALcode. 

Table C-16: Opcodes Reserved for PALcode 

Mnemonic Mnemonic Mnemonic 

PAL19 
PALIE 

19 
IE 

PAL1B 
PAL1F 

IB 
IF 

PAL1D ID 

C.12 Opcodes Reserved to Digital 

The opcodes listed in Table C-17 are reserved to Digital. 

Table C-17: Opcodes Reserved for Digital 
Mnemonic 

OPC01 
OPC04 
OPC07 
OPC0D 
OPC1C 

01 
04 
07 
0D 
1C 

Mnemonic 

OPC02 
OPC05 
OPC0A 
OPC0E 

02 
05 
0A 
0E 

Mnemonic 

OPC03 03 
OPC06 06 
OPC0C 0C 
OPC14 14 

C.13 Unused Function Code Behavior 
Unused function codes for all opcodes assigned (not reserved) in the Version 5 
Alpha AXP architecture specification (May 1992) produce UNPREDICTABLE but 
not UNDEFINED results; they are not security holes. 

Unused function codes for opcodes defined as reserved in the Version 5 Alpha AXP 
architecture specification produce an illegal instruction trap. Those opcodes are 01, 
02, 03, 04, 05, 06, 07, 0A, 0C, 0D, 0E, 14, 19, IB, 1C, ID, IE, and IF. Unused 
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function codes for those opcodes reserved to PALcode produce an illegal instruction 
trap only if not used in the PALcode environment. 
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C.14 ASCII Character Set 
This section contains the 7-bit ASCII character set and the corresponding 
hexadecimal value for each character. 

Table C-18: ASCII Character Set 

Char 

NUL 
SQH 
STX 
ETX 
EOT 
ENQ 
ACK 
BEL 
BS 
HT 
LF 
VT 
FF 
CR 
SO 
SI 
DLE 
DC1 
DC2 
DC3 
DC4 
NAK 
SYN 
ETB 
CAN 
EM 
SUB 
ESC 
FS 
GS 
RS 
US 

Code 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
1A 
IB 
1C 
ID 
IE 
IF 

Hex 
Char Code 

SP 
1 
II 

# 
$ 
% 
& 
5 

( 
) 
* 
+ 

-

/ 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

> 
< 
= 
> 
? 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
2A 
2B 
2C 
2D 
2E 
2F 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
3A 
3B 
3C 
3D 
3E 
3F 

Hex 
Char Code 

@ 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
P 
Q 
R 
S 
T 

u 
V 

w 
X 
Y 

z 
[ 
\ 
] 
Λ 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
4A 
4B 
4C 
4D 
4E 
4F 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
5A 
5B 
5C 
5D 
5E 
5F 

Hex 
Char Code 

* 
a 
b 
c 
d 
e 
f 
g 
h 
i 

j 
k 
1 
m 
n 
0 

P 
q 
r 
s 
t 
u 
V 

w 
X 

y 
z 
{ 

1 
} 
~ 
DEL 

60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
6A 
6B 
6C 
6D 
6E 
6F 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
7A 
7B 
7C 
7D 
7E 
7F 
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Appendix D 

Waivers and Implementation-Dependent Functionality 

This appendix describes waivers to the Alpha AXP architecture and functionality 
that is specific to particular hardware implementations. 

D.1 Waivers 

The following waivers have been passed for the Alpha AXP architecture. 

D.1.1 DECchip 21064, DECchip 21066, and DECchip 21068 IEEE Divide 
Instruction Violation 
The DECchip 21064, DECchip 21066, and DECchip 21068 CPUs violate the 
architected handling of IEEE divide instructions DIVS and DIVT with respect to 
reporting Inexact Result exceptions. 

NOTE 
The DECchip 21064A, DECchip 21066A, and DECchip 
21068A CPUs are compliant and require no waiver. The 
DECchip 21164 is also compliant. 

As specified by the architecture, floating-point exceptions generated by the CPU are 
recorded in two places for all IEEE floating-point instructions: 

1. If an exception is detected and the corresponding trap is enabled (such as ADD 
/U for underflow), the CPU initiates a trap and records the exception in the 
exception summary register (EXC_SUM). 

2. The exceptions are also recorded as flags that can be tested in the floating-
point control register (FPCR). The FPCR can only be accessed with MTPR/MFPR 
instructions and an explicit MT_FPCR is required to clear the FPCR. The FPCR 
is updated irrespective of whether the trap is enabled or not. 

The DECchip 21064, DECchip 21066, and DECchip 21068 implementations differ 
from the above specification in handling the Inexact condition for the IEEE DIVS 
and DIVT instructions in two ways: 

1. The DIVS and DIVT instructions with the /Inexact modifier trap unconditionally 
and report the INE exception in the EXC_SUM register (except for NaN, infinity, 
and denormal inputs that result in INVs). This allows for a software calculation 
to determine the correct INE status. 

2. The FPCR <INE> bit is never set by DIVS or DIVT. This is because the 
DECchip 21064, DECchip 21066, and DECchip 21068 do not include hardware 
to determine that particular exactness. 
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D.1.2 DECchip 21064, DECchip 21066, and DECchip 21068 Write Buffer Violation 
The DECchip 21064, DECchip 21066, and DECchip 21068 CPUs can be made to 
violate the architecture by, under one contrived case, indefinitely delaying a buffered 
off-chip write. 

NOTE 
The DECchip 21064A, DECchip 21066A, and DECchip 
21068A CPUs are compliant and require no waiver. The 
DECchip 21164 is also compliant. 

The CPUs in violation can send a buffered write off-chip when one of the following 
conditions is met: 

1. The write buffer contains at least two valid entries. 

2. The write buffer contains one valid entry and 256 cycles have elapsed since the 
execution of the last write. 

3. The write buffer contains an MB or STx_C instruction. 

4. A load miss hits an entry in the write buffer. 

The write can be delayed indefinitely under condition 2 above, when there is an 
indefinite stream of writes to addresses within the same aligned 32-byte write buffer 
block. 

D.2 Implementation-Specific Functionality 

The following functionality, although a documentated part of the Alpha AXP 
architecture, is implemented in a manner that is specific to the particular hardware 
implementation. 

D.2.1 DECchip 21064/21066/21068 Performance Monitoring 
NOTE 

All functions, arguments, and descriptions in this 
section apply to the DECchip 21064/21064A, 21066 
/21066A, and 21068/21068A. 

PALcode instructions control the DECchip 21064/21066/21068 on-chip performance 
counters. For OpenVMS AXP, the instruction is MTPR_PERFMON; for DEC OSF/1 
and Windows NT AXP, the instruction is wrperfmon. 

The instruction arguments and results are described in the following sections. The 
scratch register usage is operating system specific. 

There are two on-chip counters that count events. The bit width of the counters (8, 
12, or 16 bits) can be selected and the event that they count can be switched among a 
number of available events. One possible event is an "external" event. For example, 
the processor board can supply an event that causes the counter to increment. In 
this manner, off-chip events can be counted. 
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The two counters can be switched independently. There is no hardware support for 
reading, writing, or resetting the counters. The only way to monitor the counters is 
to enable them to cause an interrupt on overflow. 

The performance monitor functions, described in Section D.2.1.2, can provide the 
following, depending on implementation: 

• Enable the performance counters to interrupt and trap into the performance 
monitoring vector in the operating system. 

• Disable the performance counter from interrupting. This does not necessarily 
mean that the counters will stop counting. 

• Select which events will be monitored and set the width of the two counters. 

• In the case of OpenVMS AXP and DEC OSF/1, implementations can choose to 
monitor selected processes. If that option is selected, the PME bit in the PCB 
controls the enabling of the counters. Since the counters cannot be read/written 
/reset, if more than one process is being monitored, the rounding error may 
become significant. 

D.2.1.1 DECchip 21064/21066/21068 Performance Monitor Interrupt Mechanism 

The performance monitoring interrupt mechanism varies according to the particular 
operating system. 

For the OpenVMS AXP Operating System 
When a counter overflows and interrupt enabling conditions are correct, the counter 
causes an interrupt to PALcode. The PALcode builds an appropriate stack frame. 
The PALcode then dispatches in the form of an exception (not in the form of an 
interrupt) to the operating system by vectoring to the SCB performance monitor 
entry point through SCBB+650 (HWSCB$Q_PERF_MONITOR), at IPL 29, in kernel 
mode. 

Two interrupts are generated if both counters overflow. For each interrupt, the 
status of each counter overflow is indicated by register R4: 

R4 = 0 if performance counter 0 caused the interrupt 
R4 = 1 if performance counter 1 caused the interrupt 

When the interrupt is taken, the PC is saved on the stack frame as the old PC. 

For the DEC OSF/1 Operating System 
When a counter overflows and interrupt enabling conditions are correct, the counter 
causes an interrupt to PALcode. The PALcode builds an appropriate stack frame and 
dispatches to the operating system by vectoring to the interrupt entry point entINT, 
at IPL 6, in kernel mode. 

Two interrupts are generated if both counters overflow. For each interrupt, registers 
a0..a2 are as follows: 

aO = osfint$c_perf (4) 
a l = scb$v_perfmon (650) 
a2 = 0 if performance counter 0 caused the interrupt 
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a2 = 1 if performance counter 1 caused the interrupt 

When the interrupt is taken, the PC is saved on the stack frame as the old PC. 

For the Windows NT AXP Operating System 
When a counter overflows and interrupt enabling conditions are correct, the counter 
causes an interrupt to PALcode. The PALcode builds a frame on the interrupt stack 
and dispatches to the kernel at the interrupt entry point. 

D.2.1.2 Functions and Arguments for the DECchip 21064/21066/21068 

The functions execute on a single (the current running) processor only, and are 
described in Table D- l . 

The OpenVMS AXP MTPR_PERFMON instruction is called with a function code in 
R16, a function-specific argument in R17, and status is returned in R0. 

The DEC OSF/1 wrperfmon instruction is called with a function code in aO, a function 
specific argument in a l , and status is returned in vO. 

The Windows NT AXP wrperfmon instruction is called with input parameters aO 
through a3, as shown in Table D- l . 

Table D-1 : DECchip 21064/21066/21068 Performance Monitoring Functions 

Function Register Usage 

Enable performance monitoring 

DEC OSF/1 
Input: 

Output: 

OpenVMS AXP 
Input: 

Output: 

Windows NT AXP 
Input: 

a0 = 1 
a l = 0 
v0 = 1 
v0 = 0 

R16 = 1 
R17 = 0 
R0 = 1 
R0 = 0 

a0 = 0 
a 0 = 1 
a l = 1 

Disable performance monitoring 

DEC OSF/1 
Input: 

Output: 

OpenVMS AXP 

a0 = 0 
a l = 0 
v0 = 1 
v0 = 0 

Comments 

Function code 
Argument 
Success 
Failure (not generated) 

Function code 
Argument 
Success 
Failure (not generated) 

Select counter 0 
Select counter 1 
Enable selected counter 

Function code 
Argument 
Success 
Failure (not generated) 
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Table D-1 (Cont.): DECchip 21064/21066/21068 Performance Monitoring Functions 

Function Register Usage Comments 

Input: 

Output: 

Windows NT AXP 
Input: 

R16 = 0 
R17 = 0 
R0 = 1 
R0 = 0 

a0 = 0 
a0 = 1 
a l = 0 

Function code 
Argument 
Success 
Failure (not generated) 

Select counter 0 
Select counter 1 
Disable selected counter 

Select desired events (mux_ctl) 

DEC OSF/1 
Input: 

Output: 

OpenVMS AXP 
Input: 

Output-

Windows NT AXP 

Input: 

a0 = 2 
a l = mux_ctl 

v 0 = 1 
v0 = 0 

R16 = 2 
R17 = mux ctl 

R0 = 1 
R0 = 0 

a2 = PCMUXO 
a2 = PCMUX1 
a3 = PCO 
a3 = PCI 

Function code 
mux_ctl is the exact contents of those fields from 
the ICCSR register, in write format, described in 
Table D-2 
Success 
Failure (not generated) 

Function code 
muxjctl is the exact contents of those fields from 
the ICCSR register, in write format, described in 
Table D-2 
Success 
Failure (not generated) 

For ICCSR<PCMUX0> field when aO = 0 
For ICCSR<PCMUX1> field when aO = 1 
For ICCSR<PC0> field when aO = 0 
For ICCSR<PC1> field when aO = 1 

Select performance monitoring options 

DEC OSF/1 
Input: 

Output: 

OpenVMS AXP 
Input: 

Output: 

a0 = 3 
a l = opt 

v 0 = 1 
v0 = 0 

R16 = 3 
R17 = opt 

R0 = 1 
R0 = 0 

Function code 
Function argument opt is: 

<0> = log all processes if set 
<1> = log only selected if set 

Success 
Failure (not generated) 

Function code 
Function argument opt is: 

<0> = log all processes if set 
<1> = log only selected if set 

Success 
Failure (not generated) 
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D.2.1.3 DECchip 21064/21066/21068 MUX Control Fields in ICCSR Register 

Table D-2: DECchip 21064/21066/21068 MUX Control Fields in ICCSR Register 

Bits Option Descript ion 

34:32 PCMUX1 Event selection, counter 1: 

Val Name Description 

0 DCACHE_MISSES 
1 ICACHEJVIISSES 
2 DUAL_ISSUE_CYCLES 
3 BRANCHJVIISPREDICTS 

4 FPJNSTRUCTIONS 

5 INTEGER_OPERATE 

6 STOREJNSTRUCTIONS 
7 EXTERNAL 

Total D-eaehe misses 
Total I-cache misses 
Cycles of dual issue 
Branch mispredicts 
(conditional, JSR, HW_REI) 
FP operate instructions 
(not BR, LOAD, STORE) 
Integer operates 
(including LDA, LDAH into R0-R30) 
Total store instructions 
External events supplied by pin. See 
Section D.2.1.4 for a description of 
external performance counter events 
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Table D-2 (Cont.): DECchip 21064/21066/21068 MUX Control Fields in ICCSR Register 
Bits Option Description 

11:8 PCMUXO Event selection, counter 0: 

Val Name Description 

PCO 

PCI 

0 
1 
2 
3 
4 
5 
6 
7 
8 

9 
10 
11 
12 
13 
14 

15 

ISSUES 
Unused 
PIPELINE_DRY 
Unused 
LOADJNSTRUCTIONS 
Unused 
PIPELINE_FROZEN 
Unused 
BRANCHJNSTRUCTIONS 

Unused 
CYCLES 
PAL_MODE 
NONJSSUES 
Unused 
EXTERNAL 

Unused 

Total issues divided by 2 

Nothing issued, no valid I-stream data 

All load instructions 

Nothing issued, resource conflict 

All branches (conditional, 
unconditional, JSR, HW_REI) 

Total cycles 
Cycles while in PALcode environment 
Total nonissues divided by 2 

External event supplied by pin. See 
Section D.2.1.4 for a description of 
external performance counter events 

Frequency setting, counter 0: 

Val 

0 
1 

Freqi 

Val 

0 
1 

Name 

LOW 
HIGH 

Description 

2**16 (65536) events per interrupt 
2**12 (4096) events per interrupt 

uency setting, counter 1: 

Name 

LOW 
HIGH 

Description 

2**12 (4096) events per interrupt 
2**8 (256) events per interrupt 

Waivers and Implementation-Dependent Functionality D-7 

3 

0 



D.2.1.4 Monitoring External Events for the DECchip 21064/21066/21068 

External events can be monitored. How such events are monitored is implementation 
dependent. For example, the DECchip 21066/21066A and 21068/21068A monitor 
the following external events through the error address register (EAR). The EAR 
has one field for each performance counter (2 fields total) that selects particular 
events. EAR<31:29> selects counter 1 and EAR<2:0> selects counter 0, as shown in 
Table D-3 

Table D-3: External Performance Counter Events 

Counter 0 
Select Event 

Counter 1 
Select Event 

Number of reads to Bcache from the 0 
CPU or DMA 

Number of writes to Bcache from the 1 
CPU or DMA 

Number of reads to DRAM from the 2 
CPU or DMA 

Number of writes to DRAM from the 3 
CPU or DMA 

Number of DRAM accesses that do 4 
page mode cycles 

Number of DRMA assesses that miss 5 
page mode1 

Number of writes to graphics address 6 
space 

Number of reads to graphics address 7 
space 

Number of events from event 0 that are also from 
the CPU and Bcache hits 

Number of events from event 0 that are also from 
the CPU and Bcache misses and clean 

Number of events from event 0 that are also from 
the CPU and Bcache misses and dirty 

Number of events from event 0 that are also from 
DMA and Bcache hits 

Number of events from event 0 that are also from 
DMA and Bcache misses 

Number of CPU writes that write less than a full 
quadword 

Number of DMA writes that write less than a full 
quadword 

Number of chip cycles that the memory controller 
is idle2 

*DRAM page-mode hit + DRAM page-mode miss does not equal all DRAM cycles because page-mode miss does not include 
DRAM accesses when the mem_ras_l signal was already deasserted. 
2Idle means not accessing Bcache or DRAM or not doing a DRAM refresh or VRAM shift-register load. 

Implementation Notes: 

• The performance counters provide the ability to generate a PC-histogram of an 
event. While there is a degree of uncertainty about exactly where the PC points, 
performance counters have proven useful in pinpointing hot spots in code. 

• Future implementations should consider adding the on-chip capability to read 
/write the counters from PALcode. With an on-chip register that contains the 
two counters AND any counter/mux control information, a single load/store in 
SWPCTX could context switch performance monitoring data for each process 
individually. The performance impact to the SWPCTX flow would be minimal. 
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D.2.2 DECchip 21164 Performance Monitoring 
PALcode instructions control the DECchip 21164 on-chip performance counters. For 
OpenVMS AXP, the instruction is MTPR.PERFMON; for DEC OSF/1, the instruction 
is wrperfmon. 

The instruction arguments and results are described in the following sections. The 
scratch register usage is operating system specific. 

There are three on-chip counters that count events. Counters 0 and 1 are 16-bit 
counters; counter 2 is a 14-bit counter. Each counter is individually programmable. 
They can be read and written and are not required to interrupt. 

Processes can be selectively monitored via the PME bit. 

The counters can be collectively restricted according to the processor mode. 

The performance monitor functions, described in Section D.2.2, can provide the 
following, depending on implementation: 

• Enable and disable the performance counters. Disabling a counter stops the 
counter from counting interrupts but does not change the value stored in the 
counter to zero. 

• Select which events will be monitored. 

• Select which processor modes will be recognized. 

• Establish the interrupt frequency for each counter. 

• Read and write the counter contents. 

D.2.2.1 DECchip 21164 Performance Monitor Interrupt Mechanism 

The performance monitoring interrupt mechanism varies according to the particular 
operating system. 

For the OpenVMS AXP Operating System 
When a counter overflows and interrupt enabling conditions are correct, the counter 
causes an interrupt to PALcode. The PALcode builds an appropriate stack frame. 
The PALcode then dispatches in the form of an exception (not in the form of an 
interrupt) to the operating system by vectoring to the SCB performance monitor 
entry point through SCBB+650 (HWSCB$Q_PERF_MONITOR), at IPL 29, in kernel 
mode. 

An interrupt is generated for each counter overflow. For each interrupt, the status 
of each counter overflow is indicated by register R4: 

R4 = 0 if performance counter 0 caused the interrupt 
R4 = 1 if performance counter 1 caused the interrupt 
R4 = 2 if performance counter 2 caused the interrupt 

When the interrupt is taken, the PC is saved on the stack frame as the old PC. 
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For the DEC OSF/1 Operating System 
When a counter overflows and interrupt enabling conditions are correct, the counter 
causes an interrupt to PALcode. The PALcode builds an appropriate stack frame and 
dispatches to the operating system by vectoring to the interrupt entry point entINT, 
at IPL 6, in kernel mode. 

An interrupt is generated for each counter overflow. For each interrupt, registers 
a0..a2 are as follows: 

aO = osfint$c_perf (4) 
a l = scb$v_perfmon (650) 
a2 = 0 if performance counter 0 caused the interrupt 
a2 = 1 if performance counter 1 caused the interrupt 
a2 = 2 if performance counter 2 caused the interrupt 

When the interrupt is taken, the PC is saved on the stack frame as the old PC. 

D.2.2.2 Functions and Arguments for the DECchip 21164 

The functions execute on a single (the current running) processor only, and are 
described in Table D-4. 

The OpenVMS AXP MTPR_PERFMON instruction is called with a function code in 
R16, a function-specific argument in R17, and status is returned in R0. 

The DEC OSF/1 wrperfmon instruction is called with a function code in aO, a function 
specific argument in a l , and status is returned in vO. 

Table D-4: DECchip 21164 Performance Monitoring Functions 

Function Register Usage Comments 

Enable performance monitoring; do not reset counters 

DEC OSF/1 
Input: 

Output: 

OpenVMS AXP 
Input: 

Output: 

a0 = 1 
a l = arg 
v0 = 1 
v0 = 0 

R16 = 1 
R17 = arg 
R0 = 1 
R0 = 0 

Function code value 
Argument from Section D.2.2.3 
Success 
Failure (not generated) 

Function code value 
Argument from Section D.2.2.3 
Success 
Failure (not generated) 

Enable performance monitoring; start the counters from zero 

DEC OSF/1 
Input: a0 = 7 

al = arg 
Function code value 
Argument from Section D.2.2.3 
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Table D-4 (Cont.): DECchip 21164 Performance Monitoring Functions 
Function Register Usage 

Output: 

OpenVMS AXP 
Input: 

Output: 

v0 = 1 
v0 = 0 

R16 = 7 
R17 = arg 
R0 = 1 
R0 = 0 

Comments 

Success 
Failure (not generated) 

Function code value 
Argument from Section D.2.2.3 
Success 
Failure (not generated) 

Disable performance monitoring; do not reset counters 

DEC OSF/1 
Input: 

Output: 

OpenVMS AXP 
Input: 

Output: 

a0 = 0 
a l = arg 
v0 = 1 
v0 = 0 

R16 = 0 
R17 = arg 
R0 = 1 
R0 = 0 

Select desired events (MUX_SELECT) 

DEC OSF/1 
Input: 

Output: 

OpenVMS AXP 
Input: 

Output: 

a0 = 2 
a l = arg 
v0 = 1 
v0 = 0 

R16 = 2 
R17 = arg 
R0 = 1 
R0 = 0 

Select Processor Mode options 

DEC OSF/1 
Input: 

Output: 

OpenVMS AXP 
Input: 

Output: 

a0 = 3 
a l = arg 
v0 = 1 
v0 = 0 

R16 = 3 
R17 = arg 
R0 = 1 
R0 = 0 

Function code value 
Argument from Section D.2.2.4 
Success 
Failure (not generated) 

Function code value 
Argument from Section D.2.2.4 
Success 
Failure (not generated) 

Function code value 
Argument from Section D.2.2.5 
Success 
Failure (not generated) 

Function code value 
Argument from Section D.2.2.5 
Success 
Failure (not generated) 

Function code value 
Argument from Section D.2.2.6 
Success 
Failure (not generated) 

Function code value 
Argument from Section D.2.2.6 
Success 
Failure (not generated) 

Select interrupt frequencies 
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Table D-4 (Cont.): DECchip 21164 Performance Monitoring Functions 

Function Register Usage 

DEC OSF/1 
Input: 

Output: 

OpenVMS AXP 
Input: 

Output: 

Read the counters 

DEC OSF/1 
Input: 

Output: 
OpenVMS AXP 

Input: 

Output: 

Write the counters 

DEC OSF/1 
Input: 

Output: 

OpenVMS AXP 
Input: 

Output: 

a0 = 4 
a l = arg 
v 0 = 1 
v0 = 0 

R16 = 4 
R17 = arg 
R 0 = 1 
R0 = 0 

a0 = 5 
a l = arg 
νθ = val 

R16 = 5 
R17 = arg 
RO = val 

a0 = 6 
a l = arg 
v0 = 1 
v0 = 0 

R16 = 6 
R17 = arg 
R0 = 1 
R0 = 0 

Comments 

Function code value 
Argument from Section D.2.2.7 
Success 
Failure (not generated) 

Function code value 
Argument from Section D.2.2.7 
Success 
Failure (not generated) 

Function code value 
Argument from Section D.2.2.8 
Return value from Section D.2.2.8 

Function code value 
Argument from Section D.2.2.8 
Return value from Section D.2.2.8 

Function code value 
Argument from Section D.2.2.9 
Success 
Failure (not generated) 

Function code value 
Argument from Section D.2.2.9 
Success 
Failure (not generated) 

D.2.2.3 Enable Counters Argument Format 

Table D-5: Enable Counters Argument Format 

Bits Name Meaning When Set 

2 
1 
0 

CTR2 
CTR1 
CTRO 

Operate on counter 2 
Operate on counter 1 
Operate on counter 0 
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D.2.2.4 Disable Counters Argument Format 

Table D-6: Disable Counters Argument Format 

Bits 

2 
1 
0 

Name 

CTR2 
CTRl 
CTRO 

Meaning When Set 

Operate on counter 2 
Operate on counter 1 
Operate on counter 0 

Select Desired Events (MUX_SELECT) Argument Format 

Table D-7: Select Desired Events (MUX.SELECT) Argument 

Bits Name Meaning 

Format 

63:32 MBZ 
31 PCSELO Counter 0 selection: 

Val Name Meaning 

0 CYCLES Cycles 
1 ISSUES Issues 

30:25 MBZ 
24:22 CBOX2 CBOX2 event selection (only has meaning when event selection field 

PCSEL2 is value <15>; otherwise MBZ): 

Val 

0 
1 
2 
3 
4 
5 
6 
7 

Name 

SCACHE_MISS 
SCACHE_READ_MISS 
SCACHE_WRITE_MISS 
SCACHE_SH_WRITE 
SCACHE_WRITE 
BCACHE_MISS 
SYSJNV 
SYS_READ_REQ 

Meaning 

S-cache misses 
S-cache read misses 
S-cache write misses 
S-cache shared writes 
S-cache writes 
B-cache misses 
System invalidates 
System read requests 
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Table D-7 (Cont.): Select Desired Events (MUX_SELECT) Argument Format 
Bits Name Meaning 

21:19 CBOXl CBOXl event selection (only has meaning when event selection field 
PCSELl is value <15>; otherwise MBZ): 

Val Name Meaning 

0 
1 
2 
3 
4 
5 
6 
7 

SCACHE_ACCESS 
SCACHE_READ 
SCACHE_WRITE 
SCACHE.VICTIM 

BCACHE.HIT 
BCACHE_VICTIM 
SYS_REQ 

S-cache access 
S-cache read 
S-cache write 
S-cache victim 
Unused value 
B-cache hit 
B-cache victim 
Sys req 

18:8 MBZ 
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Table D-7 (Cont.): Select Desired Events (MUX_SELECT) Argument Format 
Bits Name Meaning 

7:4 PCSEL1 Counter l event selection: 

Val 

0 
1 

2 
3 

4 
5 
6 
7 
8 

Name 

NON_ISSUE_CYCLES 
SPLIT_ISSUE_CYCLES 

PIPELINE_DRY 
REPLAY_TRAP 

SINGLE_ISSUE_CYCLES 
DUAL_ISSUE_CYCLES 
TRIPLE_ISSUE_CYCLES 
QUAD_ISSUE_CYCLES 
FLOW_CHANGE 

Meaning 

Nothing issued, pipeline frozen 
Some but not all issuable instruc-
tions issued 
Nothing issued, pipeline dry 
Replay traps (ldu, wb/maf, lit-
mus test) 
Single issue cycles 
Dual issue cycles 
Triple issue cycles 
Quad issue cycles 
Flow change (all branches, jsr-
ret, hw_rei), where: 

If PCSEL2 has value 3 (BRANCH.MISPREDICTS), then: 
COND BRANCHES Conditional branch instructions 

Or: 

If PCSEL2 has value 2 (PCJVIISPR), then: 
JSR RET Jsr-ret instructions 

9 INTEGER_OPERATE 
10 FPJNSTRUCTIONS 

11 LOADJNSTRUCTIONS 
12 STOREJNSTRUCTIONS 
13 ICACHE.ACCESS 
14 DCACHE_ACCESS 
15 CBOX1 

Integer operate instructions 
Floating point operate instruc-
tions 
Load instructions 
Store instructions 
Instruction cache access 
Data cache access 
Use CBOX1 selection 
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Table D-7 (Cont.): Select Desired Events (MUX_SELECT) Argument Format 
Bits Name Meaning 

3:0 PCSEL2 Counter 2 event selection: 

Val 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Name 

LONG_STALLS 

PC_MISPR 
BRANCHJMISPREDICTS 
ICACHEJMISSES 
ITB_MISS 
DCACHE_MISSES 
DTB_MISS 
LOADS_MERGED 
LDU.REPLAYS 
WB_MAF_FULL_REPLAYS 
EXTERNAL 
CYCLES 
MEM_BARRIER 
LOAD_LOCKED 
CBOX2 

Meaning 

Long stalls (> 12 cycles) 
Unused value 
PC mispredicts 
Branch mispredicts 
I-cache misses 
ITB misses 
D-cache misses 
DTB misses 
Loads merged in MAF 
LDU replays 
WB/MAF full replays 
Event from external pin 
Cycles 
Memory barrier instructions 
LDx/L instructions 
Use CBOX2 selection 

D.2.2.6 Select Special Options Argument Format 

Table D-8: Select Special Options Argument Format 
Bits Name Meaning 

63:31 MBZ 
30 NOT.USER Stop count in user mode 
29:10 MBZ 
9 NOT.PAL Stop count in PAL mode 
8 NOTJKERNEL Stop count in kernel mode 
7:1 MBZ 
0 PROCESSES Monitor selected processes (when clear monitor all processes) 

Setting any of the "NOT" bits causes the counters to not count when the processor is 
running in the specified mode. Under OpenVMS AXP, "NOT_KERNEL" also stops 
the count in executive and supervisor mode, except as noted below: 
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NOT_BITS Counters Operate Under These Modes When Bits Set: 

K U P 

0 
0 
0 
0 
1 
1 
1 
1 

0 
0 
1 
1 
0 
0 
1 
1 

0 
1 
0 
1 
0 
1 
0 
1 

KESUP 
KESU 
KES P 
KES 

UP 

u 
P 

ES (here "NOT_KERNEL" stops kernel counter only) 

D.2.2.7 Select Desired Frequencies Argument Format 

All frequency fields in Table D-9 are two-bit fields with the following values defined: 
Table D-9 contains the selection definitions for each of the three counters: 

Table D-9: Select Desired Frequencies Argument Format 

Bits Name Meaning When Set 

63:10 
9:8 PCFREQO 

MBZ 
Counter 0 frequency: 

Value Meaning 

0 Do not interrupt 
1 Unused 
2 Low frequency (2**16 (65536) events per interrupt) 
3 High frequency (2**8 (256) events per interrupt) 

7:6 PCFREQ1 Counter 1 frequency: 

Value Meaning 

0 Do not interrupt 
1 Unused 
2 Low frequency (2**16 (65536) events per interrupt) 
3 High frequency (2**8 (256) events per interrupt) 
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Table D-9 (Cont.): Select Desired Frequencies Argument Format 

Bits Name Meaning When Set 

5:4 PCFREQ2 Counter 2 frequency: 

3:0 

Value Meaning 

0 Do not interrupt 
1 Unused 
2 Low frequency (2**14 (16384) events per interrupt) 
3 High frequency (2**8 (256) events per interrupt) 

MBZ 

D.2.2.8 Read Counters Argument Format 

Table D-10: Read Counters Argument Format 

Bits Name Meaning When Returned 

63:48 
47:32 
31:30 
29:16 
15:1 

CTRO 
CTR1 

CTR2 

Counter 0 returned value 
Counter 1 returned value 
MBZ 
Counter 2 returned value 
MBZ 

0 STATUS Set means success; clear means failure 

D.2.2.9 Write Counters Argument Format 

Table D-11: Write Counters Argument Format 

Bits Name Meaning 

63:48 
47:32 
31:30 
29:16 
15:0 

CTRO 
CTR1 

CTR2 

Counter 0 written value 
Counter 1 written value 
MBZ 
Counter 2 written value 
MBZ 
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Index 

A 
Aborts, forcing, (I), 6-6 
Absolute longword queue, (II-A), 2-21 
Absolute quadword queue, (II-A), 2-25 
Access control violation (ACV) fault, (II-A), 

6-11 
has precedence, (II-A), 3-13 
memory protection, (II-A), 3-8 
service routine entry point, (II-A), 6-29 

Access violation fault, (II-B), 3-10; (II-C), 
4-3 

ADDF instruction, (I), 4-98 
ADDG instruction, (I), 4-98 
Add instructions 

See also Floating-point operate 
add longword, (I), 4-24 
add quadword, (I), 4-26 
add scaled longword, (I), 4-25 
add scaled quadword, (I), 4-27 

ADDL instruction, (I), 4-24 
ADDQ instruction, (I), 4-26 
Address space, (II-C), 3-1 
Address space match (ASM) 

bit in PTE, (II-A), 3-5; (II-B), 3-5; (II-C), 
3-5 

TBIAP register uses, (II-A), 5-27 
virtual cache coherency, (I), 5-4 
with context switch, (II-C), 2-9, 5-32 

Address space number (ASN) register, (II-A), 
5-4; (II-C), 2-3 

at processor initialization, (HI), 3-20 
defined, (II-B), 1-2 
described, (II-B), 3-9 
HWRPB field for maximum value, (III), 

c\ o 

in HWPCB, (II-A), 4-2 
in initial HWPCB, (III), 3-21 
in process context, (II-B), 4-1 
privileged context, (II-A), 2-92 
range supported, (II-A), 3-12 
TBCHK register uses, (II-A), 5-24 
TBIS register uses, (II-A), 5-28 
translation buffer with, (II-A), 3-11 
virtual cache coherency, (I), 5-4 
with context switch, (II-C), 2-9 
with PALcode switching, (III), 3-9 

Address translation 
algorithm to perform, (II-A), 3-9, 3-11 
page frame number (PFN), (II-A), 3-8 
page table structure, (II-A), 3-8; (II-C), 

3-2 
performance enhancements, (II-A), 3-10 
physical, (II-B), 3-7 
translation buffer with, (II-A), 3-11 
virtual, (II-B), 3-8 
virtual address segment fields, (II-A), 3-8 

ADDS instruction, (I), 4-99 
ADDT instruction, (I), 4-99 
Aligned byte/word memory accesses, A-11 
ALIGNED data objects, (I), 1-9 
Alignment 

atomic longword, (I), 5-2 
atomic quadword, (I), 5-2 
data alignment trap, (II-A), 6-17 
data considerations, A-6 
double-width data paths, A - l 
D_floating, (I), 2-6 
F_floating, (I), 2-4 
G_floating, (I), 2-5 
instruction, A-2 
longword, (I), 2-2 
longword integer, (I), 2-12 
memory accesses, A-11 
program counter (PC), (II-A), 6-7 
quadword, (I), 2-3 
quadword integer, (I), 2-13 
stack, (II-A), 6-33 
S.floating, (I), 2-9 
T_floating, (I), 2-10 
when data is unaligned, (II-A), 6-30 
X_floating, (I), 2-11 

Alpha AXP architecture 
See also Conventions 
addressing, (I), 2-1 
overview, (I), 1-1 
porting operating systems to, (I), 1-1 
programming implications, (I), 5-1 
registers, (I), 3-1 
security, (I), 1-7 

Alpha AXP privileged architecture library 
See PALcode 
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AMOVRM (PALcode) instruction, (II-A), 2-77 
AMOVRR (PALcode) instruction, (II-A), 2-77 
AND instruction, (I), 4-38 
APC_LEVEL, IRQL table index name, (II-C), 

2-2 
ARC Restart Block, (II-C), 5-20 
Arithmetic exceptions, (II-C), 4-5 

See also Arithmetic traps 
Arithmetic instructions, (I), 4-23 

See also specific arithmetic instructions 
Arithmetic left shift instruction, (I), 4-37 
Arithmetic trap entry (entArith) register, 

(II-B), 1-2, 5-4 
Arithmetic traps, (II-C), 4-5 

defined, (II-A), 6-10; (II-B), 5-1 
described, (II-A), 6-13 
disabling, (I), 4-67 
division by zero, (I), 4-66, 4-69; (II-A), 

6-16; (II-B), 5-5; (II-C), 4-6 
division by zero, disabling, (I), 4-69 
division by zero, enabling, B-5 
division by zero, status of, B-5 
dynamic rounding mode, (I), 4-69 
enabling, B-4 
F31 as destination, (II-A), 6-13 
inexact result, (I), 4-66, 4-69; (II-A), 

6-16; (II-B), 5-5; (II-C), 4-6 
inexact result, disabling, (I), 4-68 
inexact result, enabling, B-5 
inexact result, status of, B-4 
integer overflow, (I), 4-67, 4-69; (II-A), 

6-16; (II-B), 5-5; (II-C), 4-6 
integer overflow, disabling, B-4 
integer overflow, enabling, B-4 
invalid operation, (I), 4-65, 4-69; (II-A), 

6-15; (II-B), 5-5; (II-C),4-7 
invalid operation, disabling, (7), 4-69 
invalid operation, enabling, B-5 
invalid operation, status of, B-5 
overflow, (I), 4-66, 4-69; (II-A), 6-16; 

(II-B), 5-5; (II-C), 4-6 
overflow, disabling, (7J, 4-69 
overflow, enabling, B-5 
overflow, status of, B-5 
program counter (PC) value, (II-A), 6-15 
programming implications for, (I), 5-26 
R31 as destination, (II-A), 6-13 
recorded for software, (II-A), 6-14 
REI instruction with, (II-A), 6-10 
service routine entry point, (II-A), 6-29 
system entry for, (II-B), 5-4 
TRAPB instruction with, (I), 4-126 
underflow, (I), 4-66; (II-A), 6-16; (II-B), 

5-5; (II-C), 4-6 
underflow, disabling, (7J, 4-68 

Arithmetic traps (cont'd) 
underflow, enabling, B-5 
underflow, status of, B-5 
underflow to zero, disabling, (I), 4-68 
when concurrent with data alignment, 

(II-A), 6-17 
when registers affected by, (II-A), 6-14 

ASCII character set, C-25 
ASN_wrap_indicator, (II-C), 2-9 
AST enable (ÄSTEN) register 

at processor initialization, (III), 3-20 
changing access modes in, (II-A), 4-4 
described, (II-A), 5-5 
in HWPCB, (II-A), 4-2 
in initial HWPCB, (III), 3-21 
interrupt arbitration, (II-A), 6-37 
operation (with ASTs), (II-A), 4-4 
privileged context, (II-A), 2-92 
SWASTEN instruction with, (II-A), 2-19 

AST summary (ASTSR) register 
at processor initialization, (III), 3-20 
described, (II-A), 5-7 
indicates pending ASTs, (II-A), 4-4 
in HWPCB, (II-A), 4-2 
in initial HWPCB, (III), 3-21 
interrupt arbitration, (II-A), 6-36 
privileged context, (II-A), 2-92 

Asynchronous procedure call (APC) 
SIRR register field for, (II-C), 4-16 
software interrupt for, (II-C), 4-13 

Asynchronous system traps (AST) 
ASTEN/ASTSR registers with, (II-A), 4-4 
initiating, (II-A), 4-4 
interrupt, defined, (II-A), 6-21 
service routine entry point, (II-A), 6-29 
with PS register, (II-A), 4-4 

Atomic access, (I), 5-2 
Atomic move operations, (II-A), 2-76 
Atomic operations 

accessing longword datum, (I), 5-2 
accessing quadword datum, (I), 5-2 
modifying page table entry, (II-A), 3-6 
updating shared data structures, (I), 5-7 
using load locked and store conditional, (I), 

5-7 
Atomic sequences, A-17 
AUTO_ACTION environment variable, (III), 

2-26 
overriding, (III), 3-27 
state transitions and, (III), 3-1 
with cold bootstrap, (III), 3-10 
with error halts, (III), 3-31 
with system restarts, (HI), 3-29 
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B 
BB.WATCH 

at power-up initialization, (HI), 3-4 
requirements, (HI), 3-44 
with powerfail interrupts, (HI), 3-29 
with primary console switching, (HI), 3-32 
with primary-eligible (PE) bit, (III), 3-45 

BEQ instruction, (I), 4-18 
BGE instruction, (I), 4-18 
BGT instruction, (I), 4-18 
BIC instruction, (I), 4-38 
Big-endian addressing, (I), 2-14 

byte operation examples, (I), 4-50 
byte swapping for, A-12 
extract byte with, (I), 4-47 
insert byte with, (I), 4-51 
load F_floating with, (I), 4-79 
load long/quad locked with, (I), 4-8 
load long/quad with, (I), 4-6 
load S_floating with, (I), 4-81 
mask byte with, (I), 4-53 
store F_floating with, (I), 4-83 
store long/quad conditional with, (I), 4-11 
store long/quad with, (I), 4-14 
store S_floating with, (I), 4-85 

BIS instruction, (I), 4-38 
BITMAP_CHECKSUM, memory cluster field, 

(III), 3-13 
BITMAP_PA, memory cluster field, (III), 3-13 
BITMAP.VA, memory cluster field, (III), 3-13 
BLBC instruction, (I), 4-18 
BLBS instruction, (I), 4-18 
BLE instruction, (I), 4-18 
BLT instruction, (I), 4-18 
BNE instruction, (I), 4-18 
Boolean instructions, (I), 4-37 

logical functions, (I), 4-38 
Boolean stylized code forms, A-15 
Boot block on disk, (III), 3-38 
BOOTDEF_DEV environment variable, (III), 

2-26 
with loading system software, (HI), 3-19 

BOOTED_DEV environment variable, (III), 
2-26 

with loading system software, (HI), 3-19 
BOOTED_FILE environment variable, (III), 

2-27 
with loading system software, (HI), 3-19 

BOOTED.OSFLAGS environment variable, 
(III), 2-27 

with loading system software, (HI), 3-19 
Boot environment, restoring, (II-C), 5-20 

BOOTP-UDP/IP network protocol, (III), 3-43 
Boot sequence, establishing, (II-C), 1-2 
Bootstrap address space 

regions, (III), 3-14 
Bootstrap-in-progress (BIP) flag 

at multiprocessor boot, (III), 3-23 
at power-up initialization, (HI), 3-4 
at processor initialization, (HI), 3-20 
per-CPU state contains, (III), 2-23 
state transitions and, (HI), 3-1 
with failed bootstrap, (III), 3-18 

Bootstrapping, (HI), 3-1 
adding processor while running system, 

(III), 3-27 
address space at cold, (HI), 3-14 
boot block in ROM, (III), 3-42 
boot block on disk, (III), 3-38 
cold in uniprocessor environment, (III), 3-9 
control to system software, (HI), 3-20 
failure of, (III), 3-18 
from disk, (III), 3-37 
from magtape, (III), 3-39 
from MOP-based network, (III), 3-43 
from ROM, (III), 3-42 
implementation considerations, (HI), 3-46 
loading page table space at cold, (HI), 3-14 
loading primary image, (III), 3-36 
loading system software, (HI), 3-18 
MEMC table at cold, (III), 3-13 
multiprocessor, (HI), 3-23 
PALcode loading at cold, (III), 3-14 
processor initialization, (HI), 3-20 
request from system software, (HI), 3-27 
state flags with, (HI), 3-18 
system, (III), 3-4 
unconditional, (HI), 3-27 
warm, (III), 3-22 

BOOT_DEV environment variable, (III), 2-26 
with loading system software, (HI), 3-18 

BOOT_FILE environment variable, (III), 
2-26, 3-40 

with loading system software, (III), 3-19 
BOOT.OSFLAGS environment variable, (III), 

2-27 
with loading system software, (HI), 3-19 

BOOT.RESET environment variable, (III), 
2-27 

at system initialization, (HI), 3-4 
at warm bootstrap, (HI), 3-22 
overriding, (III), 3-27 
with cold bootstrap, (III), 3-10 

bpt (PALcode) instruction, (II-B), 2-2; (II-C), 
5-41 

required recognition of, (I), 6-5 
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BPT (PALcode) instruction, (II-A), 2-4 
required recognition of, (I), 6-4 
service routine entry point, (II-A), 6-30 
trap information, (II-A), 6-17 

Branch instructions, (I), 4-17 
See also Control instructions 
backward conditional, (I), 4-18 
conditional branch, (I), 4-18 
displacement, (I), 4-19 
floating-point, summarized, (I), 4-87 
format of, (I), 3-10 
forward conditional, (I), 4-18 
opcodes and format summarized, C - l 
unconditional branch, (I), 4-20 
with trap shadow, (I), 4-65 

Branch prediction model, (I), 4-16 
Branch prediction stack, with BSR 

instruction, (I), 4-20 
Breakpoint exceptions, (II-C), 4-9 

initiating, (II-A), 2-4 
Breakpoint trap, initiating, (II-B), 2-2 
BR instruction, (I), 4-20 
BSR instruction, (I), 4-20 
Bugcheck exception, initiating, (II-A), 2-5 
bugchk (PALcode) instruction, (II-B), 2-3 

required recognition of, (I), 6-5 
BUGCHK (PALcode) instruction, (II-A), 2-5 

required recognition of, (I), 6-4 
service routine entry point, (II-A), 6-30 
trap information, (II-A), 6-18 

Byte data type, (I), 2-1 
Byte manipulation instructions, (I), 4-43 

See also Extract instructions; Insert 
instructions; Mask instructions; Zero 
instructions 

Byte swapping, A-12 
Byte_within_page field, (II-A), 3-2; (II-B), 

3-2 

c 

Caches (cont'd) 
requirements for, (I), 5-4 
translation buffer conflicts, A-8 
with powerfail/recovery, (I), 5-5 

callkd (PALcode) instruction, (II-C), 5-42 
callsys (PALcode) instruction, (II-B), 2-4; 

(II-C), 5-43 
entSys with, (II-B), 5-9 
stack frames for, (II-B), 5-3 

CALL_PAL (call privileged architecture 
library) instruction, (I), 4-120 

Canonical form, (I), 4-57 
Catastrophic errors, (II-C), 4-19 
Causal ordering, (I), 5-9 
cflush (PALcode) instruction, (II-B), 2-9 
CFLUSH (PALcode) instruction, (II-A), 2-85 

with powerfail, (II-A), 6-23 
Characters 

getting from console, (HI), 2-35 
writing to console, (HI), 2-39 

Charged process cycles register, (II-A), 2-93 
in HWPCB, (II-A), 4-2 
in process context, (II-B), 4-1 
PCC register and, (II-A), 4-3 

CHAR_SET environment variable, (III), 2-28 
Checksum, HWRPB field for, (III), 2-9 

at multiprocessor boot, (HI), 3-23 
CHME (PALcode) instruction, (II-A), 2-6 

service routine entry point, (II-A), 6-30 
trap initiation, (II-A), 6-18 

CHMK (PALcode) instruction, (II-A), 2-7 
service routine entry point, (II-A), 6-30 
trap initiation, (II-A), 6-18 

CHMS (PALcode) instruction, (II-A), 2-8 
service routine entry point, (II-A), 6-30 
trap initiation, (II-A), 6-19 

CHMU (PALcode) instruction, (II-A), 2-9 
service routine entry point, (II-A), 6-30 
trap initiation, (II-A), 6-19 

Clear a register, A-13 
Clock 

See BB_WATCH 
CLOCK.HIGH, IRQL table index name, 

(II-C), 2-2 
CLOSE device routine, (III), 2-47 
Clusters, memory, (III), 3-10 
CMOVEQ instruction, (I), 4-39 
CMOVGE instruction, (I), 4-39 
CMOVGT instruction, (I), 4-39 
CMOVLBC instruction, (I), 4-39 
CMOVLBS instruction, (I), 4-39 
CMOVLE instruction, (I), 4-39 
CMOVLT instruction, (I), 4-39 

Cache blocks, virtual 
invalidating all, (II-C), 5-33 
invalidating single, (II-C), 5-34 

Cache coherency, (II-C), 2-7 
barrier instructions for, (I), 5-23 
defined, (I), 5-2 
HAL interface for, (II-C), 1-3 
in multiprocessor environment, (I), 5-5 

Caches 
design considerations, A - l 
flushing physical page from, (II-A), 2-85; 

(II-B), 2-9 
I-stream considerations, A-5 
MB and 1MB instructions with, (I), 5-23 
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CMOVNE instruction, (I), 4-39 
CMPBGE instruction, (I), 4-45 
CMPEQ instruction, (I), 4-28 
CMPGEQ instruction, (I), 4-100 
CMPGLE instruction, (I), 4-100 
CMPGLT instruction, (I), 4-100 
CMPLE instruction, (I), 4-28 
CMPLT instruction, (I), 4-28 
CMPTEQ instruction, (I), 4-101 
CMPTLE instruction, (I), 4-101 
CMPTLT instruction, (I), 4-101 
CMPTUN instruction, (I), 4-101 
CMPULE instruction, (I), 4-29 
CMPULT instruction, (I), 4-29 
Code forms, stylized, A-13 

Boolean, A-15 
load literal, A-14 
negate, A-14 
NOP, A-13 
NOT, A-15 
register, clear, A-13 
register-to-register move, A-14 

Code sequences, A - l l 
Coherency 

cache, (I), 5-2 
memory, (I), 5-1 

Compare instructions 
See also Floating-point operate 
compare byte, (I), 4-45 
compare integer signed, (I), 4-28 
compare integer unsigned, (I), 4-29 

Conditional move instructions, (I), 4-39 
See also Floating-point operate 
with trap shadow, (I), 4-64 

CONFIG 
See Configuration data block 

CONFIG block, in HWRPB, (III), 2-10 
CONFIG offset, HWRPB field for, (III), 2-8 
Configuration data block, (III), 2-23 
Console 

at system restart, (HI), 3-27 
at warm bootstrap, (HI), 3-22 
console I/O mode, (HI), 3-4 
console initialization mode, (HI), 3-4 
data structure linkage, (HI), 2-64 
data structures loading at cold boot, (HI), 

3-14 
definition, (HI), 1-1 
detached, (III), 1-2 
detached implementations of, (III), 3-47 
embedded, (III), 1-2 
embedded implementation of, (III), 3-46 
environment variables, (III), 2-26 
error halt and recovery, (III), 3-30 

Console (cont'd) 
forcing entry to I/O mode, (III), 3-36 
HWRPB with, (III), 2-1 
implementation registry, (III), 1-3 
implementations, (III), 1-2 
inter-console communications buffer, (III), 

2-72 
internationalization, (III), 1-4 
interprocessor communications for, (III), 

2-71 
ISO Latin-1 support with, (III), 1-5 
loading PALcode, (III), 3-14 
loading system software, (III), 3-18 
lock mechanisms, (III), 1-2 
major state transitions, (III), 3-3 
messages for, (III), 1-4 
miscellaneous routines, (III), 2-62 
multiprocessor boot, (III), 3-23 
multiprocessor implementation of, (III), 

3-46 
presentation layer, (III), 1-3 
processor state flags, (III), 3-18 
program I/O mode, (III), 3-4 
remapping routines, (III), 2-66 
requirements for, (III), 1-2 
resetting, (III), 2-41 
RESTORE.TERM routine, (III), 3-36 
SAVE.TERM routine, (III), 3-35 
secondary at multiprocessor boot, (III), 

3-26 
security for, (III), 1-4 
sending commands to secondary, (III), 2-73 
sending messages to primary, (III), 2-73 
supported character set requirements, (III), 

2-29 
switching primary processors, (III), 2-63 

Console callback routine block, in HWRPB, 
(III), 2-10 

Console callback routines, (III), 2-29 
at cold boot, (III), 3-14 
CTB describes, (III), 2-69 
data structures for, (III), 2-64 
fixing up the virtual address, (III), 2-62 
HWRPB field for, (III), 2-8 
remapping, (III), 2-66 
summary of, (III), 2-31 
system software invoking, (III), 2-30 

Console environment variables 
See also Environment variables 
loading system software, (III), 3-19 

Console firmware, transferring to, (II-C), 
5-20 

Console I/O mode, (III), 3-3 
forcing entry to, (III), 3-36 

Index 
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Console initialization mode, (III), 3-4 
Console interface, (III), 2-1 
Console overview, (I), 7-1 
Console routine block (CRB), (III), 2-64 

console callback routines with, (III), 2-64 
initializing, (HI), 2-66 
offset, HWRPB field for, (III), 2-8 
structure of, (III), 2-65 

Console terminal block (CTB) 
console callback routines with, (HI), 2-64 
described, (III), 2-32, 2-69 
HWRPB fields for, (III), 2-7 
number, HWRPB field for, (III), 2-7 
offset, HWRPB field for, (III), 2-8 
size, HWRPB field for, (III), 2-7 
structure of, (III), 2-70 

Console terminal routines, (III), 2-32 
Context switching 

See also Hardware; Process 
between address spaces, (II-C), 5-32 
defined, (II-A), 4 -1 
hardware, (II-A), 4-2 
initiating, (II-A), 2-92 
multiprocessor considerations, (I), 5-22 
PDR register with, (II-C), 3-3 
raising IPL while, (II-A), 4-4 
software, (II-A), 4-2 
thread, (II-C), 5-27 
thread to process, (II-C), 2-9 
thread to thread, (II-C), 2-8 

Context valid (CV) flag 
at multiprocessor boot, (III), 3-23 
at processor initialization, (III), 3-20 
per-CPU state contains, (III), 2-22 

Control instructions, (I), 4-16 
Conventions 

code examples, (I), 1-9 
code flows, (II-C), 1-4 
extents, (I), 1-8 
figures, (I), 1-9 
instruction format, (I), 3-9 
notation, (I), 3-8 
numbering, (I), 1-7 
ranges, (I), 1-8 

/C opcode qualifier 
IEEE floating-point, (I), 4-61 
VAX floating-point, (I), 4-61 

Corrected error interrupts, logout area for, 
(II-A), 6-26 

CPU ID, HWRPB field for primary, (III), 2-6 
at multiprocessor boot, (III), 3-23 

CPU slot offset, HWRPB field for, (III), 2-7 
CPYSE instruction, (I), 4-93 

CPYS instruction, (I), 4-93 
CPYSN instruction, (I), 4-93 
CRB 

See Console routine block 
cserve (PALcode) instruction, (II-B), 2-10 

required recognition of, (I), 6-5 
CSERVE (PALcode) instruction, (II-A), 2-86 

required recognition of, (I), 6-4 
csir (PALcode) instruction, (II-C), 5-4 

clears software interrupts, (II-C), 4-16 
CTB 

See Console terminal block 
CTB table, in HWRPB, (III), 2-10 
Current mode field, in PS register, (II-A), 6-7 
Current PALcode, (III), 3-5 
Current PC, (II-A), 6-2 
CVTDG instruction, (I), 4-105 
CVTGD instruction, (I), 4-105 
CVTGF instruction, (I), 4-105 
CVTGQ instruction, (I), 4-103 
CVTLQ instruction, (I), 4-94 
CVTQF instruction, (I), 4-104 
CVTQG instruction, (I), 4-104 
CVTQL instruction, (I), 4-94 

FP_C quadword with, B-4 
CVTQS instruction, (I), 4-108 
CVTQT instruction, (I), 4-108 
CVTST instruction, (I), 4-109 
CVTTQ instruction, (I), 4-107 

FP_C quadword with, B-4 
CVTTS instruction, (I), 4-110 
Cycle counter frequency, HWRPB field for, 

(III), 2-7 

p 
Data alignment, A-6 
Data alignment trap (DAT) register 

privileged context, (II-A), 2-93 
Data alignment traps, (II-A), 6-16 

fixup (DAT) bit, in HWPCB, (II-A), 4-2 
fixup (DATFX) register, (II-A), 5-9 
memory management, (II-A), 6-17 
registers used, (II-A), 6-17; (II-B), 5-4 
service routine entry point, (II-A), 6-30 
system entry for, (II-B), 5-9 
when concurrent with arithmetic, (II-A), 

6-17 
Data fetches (memory), (I), 5-11 
Data format, overview, (I), 1-3 
Data sharing (multiprocessor), A-7 

synchonization requirement, (I), 5-5 
Data stream considerations, A-6 
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Data stream translation buffer (DTB), (III), 
2-13 

Data structures, shared, (I), 5-5 
Data types 

byte, (I), 2-1 
IEEE floating-point, (I), 2-7 
longword, (I), 2-2 
longword integer, (I), 2-12 
quadword, (I), 2-2 
quadword integer, (I), 2-13 
unsupported in hardware, (I), 2-13 
VAX floating-point, (I), 2-3 
word, (I), 2-1 

DATA_BUS_ERROR code, (II-C), 4-19 
Datum, changed, (I), 5-5 
Datum, updated, (I), 5-6 
DECchip 21064, waivers for, D - l 
DECchip 21064/21064A, performance 

monitoring for, D-2 
DECchip 21066, waivers for, D - l 
DECchip 21066/21066A, performance 

monitoring for, D-2 
DECchip 21068, waivers for, D - l 
DECchip 21068/21068A, performance 

monitoring for, D-2 
DECchip 21164, performance monitoring, D-8 
DEC OSF/1 PALcode, instruction summary, 

C-17 
Deferred procedure call (DPC) 

SIRR register field for, (II-C), 4-16 
software interrupt for, (II-C), 4-13 
stack for, (II-C), 2-8 

Denormal, (I), 4-58 
Detached console, (III), 1-2 
DEVICE ID, CTB field for, (III), 2-70 
Device-specific data (DSD), (III), 2-71 
DEVICE TYPE, CTB field for, (III), 2-70 
DEVICE_HIGH_LEVEL, IRQL table index 

name, (II-C), 2-2 
DEVICE_LEVEL, IRQL table index name, 

(II-C), 2-2 
di (PALcode) instruction, (II-C), 5-5 

as synchronization function, (II-C), 4-16 
Dirty pages, tracking, (II-C), 3-5 
Dirty zero, (I), 4-58 
Disk bootstrap image, (HI), 3-37 
DISPATCH, CRB fields for, (III), 2-65 
DISPATCH procedure, (III), 2-65 
DISPATCH_LEVEL, IRQL table index name, 

(II-C), 2-2 
DIVF instruction, (I), 4-111 
DIVG instruction, (I), 4-111 
Division 

integer, A-12 
performance impact of, A-12 

Division by zero bit, exception summary 
register, (II-C), 4-6 

Division by zero enable (DZEE) 
FP_C quadword bit, B-5 

Division by zero status (DZES) 
FP_C quadword bit, B-5 

Division by zero trap, (II-A), 6-16; (II-B), 
5-5; (II-C), 4-6 

DIVS instruction, (I), 4-113 
DIVT instruction, (I), 4-113 
DMA control, HAL interface for, (II-C), 1-3 
DMK bit, machine check error summary 

register, (II-C), 4-18 
/D opcode qualifier 

FPCR (floating-point control register), (I), 
4-67 

IEEE floating-point, (I), 4-61 
DPC bit, machine check error summary 

register, (II-A), 5-15; (II-B), 5-8; 
(II-C), 4-18 

draina (PALcode) instruction, (II-C), 5-6 
required, (I), 6-6 
with machine checks, (II-C), 4-19 

DRAINA (PALcode) instruction 
required, (I), 6-6 

DSC bit, machine check error summary 
register, (II-A), 5-15; (II-B), 5-8; 
(II-C), 4-18 

DSD, CTB field for, (III), 2-71 
DSD LENGTH, CTB field for, (III), 2-71 
DSRDB block, in HWRPB, (III), 2-10 
DSRDB offset, HWRPB field for, (III), 2-9 
DTB 

See data stream translation buffer 
dtbis (PALcode) instruction, (II-C), 3-6, 5-7 
Dual-issue instruction considerations, A-2 
DUMP_DEV environment variable, (HI), 

2-27 
DYNbit 

See Arithmetic traps, dynamic rounding 
mode 

DZE bit 
See also Arithmetic traps, division by zero 
exception summary parameter, (II-A), 

6-15 
exception summary register, (II-B), 5-5; 

(II-C), 4-6 
DZED bit 

See Trap disable bits, division by zero 
D_floating data type, (I), 2-6 

alignment of, (I), 2-6 
mapping, (I), 2-6 
restricted, (I), 2-6 
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E 
ei (PALcode) instruction, (II-C), 5-8 

as synchronization function, (II-C), 4-16 
Embedded console, (III), 1-2 
ENABLE_AUDIT environment variable, (III), 

2-28, 3-37 
entArith 

See Arithmetic trap entry 
entIF 

See Instruction fault entry 
entlnt 

See Interrupt entry 
entMM 

See Memory management fault entry 
ENTRY, CRB field for, (III), 2-66 
entSys 

See System call entry 
Environment variables, (HI), 2-24 

at power-up initialization, (HI), 3-4 
at processor initialization, (HI), 3-20 
getting, (III), 2-57 
resetting, (HI), 2-58 
routines described, (III), 2-56 
saving, (III), 2-59 
setting, (III), 2-61 

EQV instruction, (I), 4-38 
Error address register (EAR), performance 

counters with, D-8 
Error halt and recovery, (III), 3-30 
Error messages 

console, (III), 1-4 
Errors, correctable, (II-C), A-Yl 
Errors, processor, (II-A), 6-24; (II-B), 5-8 
Errors, system, (II-A), 6-24; (II-B), 5-8 
Errors, uncorrectable, (II-C), 4-17 
EXCB (exception barrier) instruction, (I), 

4-121 
Exceptional events 

actions, summarized, (II-A), 6-2 
defined, (II-A), 6-1 

Exception classes, (II-C), 4-1 
registry of handling routines for, (II-C), 

5-36 
values for, (II-C), 5-37 

Exception dispatch, (II-C), 4-1 
Exception handlers, B-2 

TRAPB instruction with, (I), 4-126 
Exception handling routines, registery for, 

(II-C), 5-36 
ExceptionPC address, (II-C), 4-5 
Exception register write mask, (II-B), 5-6 

Exceptions 
See also Arithmetic traps; Faults; 

Synchronous traps 
actions, summarized, (II-A), 6-2 
arithmetic, (II-C), 4-5 
breakpoint, (II-C), 4-9 
defined, (II-B), 5-1 
general class common dispatch, (II-C), 

4-10 
general class of, (II-C), 4-4 
illegal instruction, (II-C), 4-7 
initializing entry points, (II-C), 6-2 
initiated before interrupts, (II-A), 6-19 
initiated by PALcode, (II-A), 6-33 
introduced, (II-A), 6-10 
invalid address, (II-C), 4-8 
memory management class, (II-C), 4-3 
processor state transitions, (II-A), 6-38 
returning from, (II-C), 4-2, 5-24 
software, (II-C), 4-8 
stack frames for, (II-A), 6-9; (II-B), 5-4 
subsetted IEEE, (II-C), 4-9 
system service calls, (II-C), 4-4 
trap frames with, (II-C), 4-3 
unaligned access, (II-C), 4-7 

Exception service routines 
entry point, (II-A), 6-27 
introduced, (II-A), 6-9 

Exception summary parameter, (II-A), 6-14 
Exception summary register, (II-B), 5-2, 5-6; 

(II-C), 4-6 
format of, (II-B), 5-4 

EXCEPTION.SUMMARY, (II-C), 4-6 
Executive read enable (ERE), bit in PTE, 

(II-A), 3-4 
Executive stack pointer (ESP) register, (II-A), 

5-10 
as internal processor register, (II-A), 5-1 
in HWPCB, (II-A), 4-2 
in initial HWPCB, (III), 3-21 

Executive write enable (EWE), bit in PTE, 
(II-A), 3-4 

EXTBL instruction, (I), 4-47 
EXTLH instruction, (I), 4-47 
EXTLL instruction, (I), 4-47 
EXTQH instruction, (I), 4-47 
EXTQL instruction, (I), 4-47 
Extract instructions (list), (I), 4-47 
EXTWH instruction, (I), 4-47 
EXTWL instruction, (I), 4-47 

F 

lndex-8 



Index 

Fault on execute (FOE), (II-A), 6-13; (II-B), 
3-10 

bit in PTE, (II-A), 3-5; (II-B), 3-5 
service routine entry point, (II-A), 6-29 
software usage of, (II-A), 6-13 

Fault on read (FOR), (II-A), 6-12; (II-B), 
3-10 

bit in PTE, (II-A), 3-6; (II-B), 3-5 
service routine entry point, (II-A), 6-29 
software usage of, (II-A), 6-12 

Fault on write (FOW), (II-A), 6-12; (II-B), 
3-10 

bit in PTE, (II-A), 3-6; (II-B), 3-5; (II-C), 
3-5 

service routine entry point, (II-A), 6-29 
software usage of, (II-A), 6-12 

Faults, (II-C), 4-3 
access control violation, (II-A), 6-11 
defined, (II-A), 6-10; (77-BJ, 5-1 
fault on execute, (II-A), 6-13; f//-ßj, 3-10 
fault on read, (II-A), 6-12; (II-B), 3-10 
fault on write, (II-A), 6-12; (7/-ΒΛ 3-10 
floating-point disabled, (II-A), 6-11 
memory management, (II-B), 3-10 
MM flag, (II-A), 6-11 
program counter (PC) value, (II-A), 6-10 
REI instruction with, (II-A), 6-10 
translation not valid, (II-A), 6-12 

FBEQ instruction, (I), 4-88 
FBGE instruction, (7J, 4-88 
FBGT instruction, (I), 4-88 
FBLE instruction, (I), 4-88 
FBLT instruction, (I), 4-88 
FBNE instruction, (I), 4-88 
FCMOVEQ instruction, (X), 4-95 
FCMOVGE instruction, (I), 4-95 
FCMOVGT instruction, (I), 4-95 
FCMOVLE instruction, (I), 4-95 
FCMOVLT instruction, (I), 4-95 
FCMOVNE instruction, (7J, 4-95 
FEN 

See Floating-point enable 
FETCH (prefetch data) instruction, (I), 4-122 

performance optimization, A-10 
FETCH_M (prefetch data, modify intent) 

instruction, (I), 4-122 
performance optimization, A-10 

Field replaceable unit (FRU) 
offset, HWRPB field for, (III), 2-8 
table, in HWRPB, (III), 2-10 
table description, (III), 2-24 

Finite number, Alpha AXP, contrasted with 
VAX, (I), 4-59 

Firmware components, (II-C), 1-2 
Firmware restart address, (II-C), 2-6, 6-4 
FIXUP console routine, (III), 2-62 

procedure descriptor for, (HI), 2-65 
using, (III), 2-67 
with PALcode switching, (III), 3-8 

Floating-point branch instructions, (I), 4-87 
Floating-point control register (FPCR), (I), 

4-67 
accessing, (I), 4-70 
at processor initialization, (I), 4r-l\ 
bit descriptions, (I), 4-68 
instructions to read/write, (I), 4-97 
operate instructions that use, (I), 4-90 
saving and restoring, (I), 4-71 
trap disable bits in, (I), 4-67 

Floating-point convert instructions, (I), 3-13 
Fa field requirements, (I), 3-13 

Floating-point disabled fault, (II-A), 6-11 
service routine entry point, (II-A), 6-29 

Floating-point division, performance impact 
of, A-12 

Floating-point enable (FEN) register 
at processor initialization, (III), 3-20 
defined, (II-B), 1-3 
described, (II-A), 5-11 
in HWPCB, (II-A), 4-2 
in initial HWPCB, (III), 3-21 
in process context, (II-B), 4 -1 
privileged context, (II-A), 2-93 
with PALcode switching, (III), 3-9 

Floating-point format, number representation 
(encodings), (I), 4-59 

Floating-point instructions 
branch (list), (I), 4-87 
faults, (I), 4-57 
function field format, (I), 4-73 
introduced, (I), 4-57 
memory format (list), (I), 4-78 
opcodes and format summarized, C - l 
operate (list), (I), 4-90 
rounding modes, (I), 4-60 
terminology, (I), 4-58 
trapping modes, (I), 4-62 
traps, (I), 4-57 

Floating-point load instructions, (I), 4-78 
load F_floating, (I), 4-79 
load G_floating, (I), 4-80 
load S.floating, (I), 4-81 
load T.floating, (I), 4-82 
with non-finite values, (I), 4-78 

Floating-point operate instructions, (I), 4-90 
add (IEEE), (I), 4-99 
add (VAX), (I), 4-98 
compare (IEEE), (I), 4-101 
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Floating-point operate instructions (cont'd) 
compare (VAX), (I), 4-100 
conditional move, (I), 4-95 
convert IEEE floating to integer, (I), 4-107 
convert integer to IEEE floating, (I), 4-108 
convert integer to integer, (I), 4-94 
convert integer to VAX floating, (I), 4-104 
convert S_floating to T_floating, (I), 4-109 
convert T_floating to S_floating, (I), 4-110 
convert VAX floating to integer, (I), 4-103 
convert VAX floating to VAX floating, (I), 

4-105 
copy sign, (I), 4-93 
divide (IEEE), (I), 4-113 
divide (VAX), (I), 4-111 
format of, (I), 3-12 
move from/to FPCR, (I), 4-97 
multiply (IEEE), (I), 4-115 
multiply (VAX), (I), 4-114 
subtract (IEEE), (I), 4-118 
subtract (VAX), (I), 4-116 
unused function codes with, (I), 3-12 

Floating-point registers, (I), 3-2 
See also Registers 
with PALcode switching, (III), 3-9 

Floating-point rounding modes, (I), 4-60 
Floating-point single-precision operations, (I), 

4-57 
Floating-point store instructions, (I), 4-78 

store F_floating, (I), 4-83 
store G_floating, (I), 4-84 
store S.floating, (I), 4-85 
store T.floating, (I), 4-86 
with non-finite values, (I), 4-78 

Floating-point support 
floating-point control (FP_C) quadword, 

B-4 
FPCR (floating-point control register), (I), 

4-67 
IEEE, (I), 2-7 
IEEE standard 754-1985, (I), 4-76 
instruction overview, (I), 4-57 
longword integer, (I), 2-12 
operate instructions, (I), 4-90 
optional, (I), 4-2 
quadword integer, (I), 2-13 
rounding modes, (I), 4-60 
single-precision operations, (I), 4-57 
trap modes, (I), 4-62 
VAX, (I), 2-3 

Floating-point trapping modes, (I), 4-62 
See also Arithmetic traps 
imprecision from pipelining, (I), 4-63 

FLOAT_REGISTER_MASK, (II-C), 4-5 
FNOP code form, A-13 
FOE 

See Fault on execute 
FOR 

See Fault on read 
FOW 

See Fault on write 
FP 

See Frame pointer 
FPCR 

See Floating-point control register 
FP_C quadword, B-4 
Frame pointer (FP) register, linkage for, 

ai-B), l - i 
FRU 

See Field replaceable unit 
F_floating data type, (I), 2-3 

alignment of, (I), 2-4 
compared to IEEE S.floating, (I), 2-8 
MAX/MIN, (I), 4-60 
operations, (I), 4-57 
when data is unaligned, (II-A), 6-30 

G 
General class exceptions, (II-C), 4-4 

common dispatch of, (II-C), 4-10 
General exception address (GENERAL. 

ENTRY) register, (II-C), 2-3 
gentrap (PALcode) instruction, (II-B), 2-5; 

(II-C), 5-45 
raises software exceptions, (II-C), 4-8 
required recognition of, (I), 6-5 

GENTRAP (PALcode) instruction, (II-A), 
2-10 

required recognition of, (I), 6-4 
trap information, (II-A), 6-18 

GETC terminal routine, (III), 2-35 
ISO Latin-1 support and, (HI), 1-5 

GET_ENV variable routine, (III), 2-57 
GH 

See Granularity hint 
Global pointer (GP) register, linkage for, 

(II-B), 1-1 
Global translation hint, (II-C), 3-5 
Granularity hint (GH) 

bits in PTE, (II-A), 3-5; (II-B), 3-5; 
(II-C), 3-5 

block in HWRPB, (III), 2-13 
fields in, (III), 2-13 

G_floating data type, (I), 2-5 
alignment of, (I), 2-5 
mapping, (I), 2-5 
MAX/MIN, (I), 4-60 
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G_floating data type (cont'd) 
when data is unaligned, (II-A), 6-30 

H 
HAL (Hardware abstraction layer), (II-C), 

1-2 
hait (PALcode) instruction, (II-C), 5-9 

See also reboot (PALcode) instruction 
required, (I), 6-8 
writes PAL_BASE register, (II-C), 2-4 

HALT (PALcode) instruction 
required, (I), 6-8 
state transitions and, (III), 3-1 

Halt PCBB register, per-CPU slot field for, 
(III), 2-19 

Halt processor, per-CPU slot fields for, (III), 
2-20 

Halt requested, per-CPU state flag, (III), 2-22 
at multiprocessor boot, (III), 3-23 

Hardware abstraction layer 
interfaces for, (II-C), 1-2 

Hardware context, (II-B), 4 -1 
Hardware errors, when unrecoverable, (II-C), 

4-10 
Hardware interrupts, (II-C), 4-13 

interprocessor, (II-A), 6-22 
interval clock, (II-A), 6-22 
powerfail, (II-A), 6-23 
servicing, (II-B), 5-7 

Hardware nonprivileged context, (II-A), 4-3 
Hardware privileged context, (II-A), 4-2 

switching, (II-A), 4-2 
Hardware privileged context block (HWPCB) 

at cold boot, (III), 3-21 
at warm boot, (III), 3-22 
format, (II-A), 4-2 
original built by HWRPB, (II-A), 4-5 
PCBB register, (II-A), 5-17 
process unique value in, (II-A), 2-81 
specified by PCBB, (II-A), 4-2 
swapping ownership, (II-A), 2-92 
writing to, (II-A), 4-3 

Hardware restart parameter block (HWRPB), 
(III), 2-1 

fields for, (III), 2-6 
interval clock interrupt, (II-A), 6-22 
loading at cold boot, (III), 3-14 
logout area, (II-A), 6-26 
overview of, (HI), 2-2 
size field in, (III), 2-6 
structure of, (III), 2-4 
with cold boot, (III), 3-10 

HIGH.LEVEL, IRQL table index name, 
(II-C), 2-2 

HWPCB 
See Hardware privileged context block 

HWRPB 
See Hardware restart parameter block 

i 
I/O access, nonmapped, (II-C), 3-1 
I/O device interrupts, (II-A), 6-22 
I/O device registers, at power-up initializa-

tion, (III), 3-5 
I/O devices 

closing generic for access, (HI), 2-47 
device-specific operations for, (HI), 2-48 
generic routines for, (HI), 2-45 
opening generic for access, (HI), 2-50 
reading from generic, (HI), 2-52 
required implementation support for, (HI), 

2-50 
service routine entry points, (II-A), 6-32 
writing to generic, (III), 2-54 

I/O devices, DMA 
MB and WMB with, (I), 5-20 
reliably communicating with processor, (I), 

5-24 
shared memory locations with, (I), 5-10 

I/O interface overview, (I), 8-1 
I/O interrupts, (II-A), 6-23 
I/O support, HAL interface for, (II-C), 1-3 
IEEE, subsetted instruction exception, (II-C), 

4-9 
IEEE compliance, B-3 

choosing degrees of, B-2 
IEEE convert-to-integer trap mode, 

instruction notation for, (I), 4-63 
IEEE floating-point 

See also Floating-point instructions 
exception handlers, B-2 
floating-point control (FP_C) quadword, 

B-4 
format, (I), 2-7 
FPCR (floating-point control register), (I), 

4-67 
function field format, (I), 4-74 
hardware support, B - l 
NaN, (I), 2-7 
options, B - l 
standard, mapping to, B-5 
standard charts, B-12 
S_floating, (I), 2-7 
trap handling, B-6 
trap modes, (I), 4-63 
T_floating, (I), 2-9 
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IEEE floating-point (cont'd) 
X.floating, (I), 2-10 

IEEE floating-point compliance, (I), 4-72 
IEEE floating-point control word, B-4 
IEEE floating-point instructions 

add instructions, (I), 4-99 
compare instructions, (I), 4-101 
convert from integer instructions, (I), 

4-108 
convert S_floating to T_floating, (I), 4-109 
convert to integer instructions, (I), 4-107 
convert T_floating to S_floating, (I), 4-110 
divide instructions, (I), 4-113 
multiply instructions, (I), 4-115 
opcodes for, C-6 
operate instructions, (I), 4-90 
subtract instructions, (I), 4-118 

IEEE-FP bit, (III), 2-19 
IEEE rounding modes, (I), 4-60 
IEEE standard 

conformance to, B - l 
mapping to, B-5 
support for, (I), 4-72 

IEEE trap modes, required instruction 
notation, (I), 4-63 

IGN (ignore), (I), 1-9 
IKSP register 

See Kernel stack pointer, initial 
Illegal instruction exceptions, (II-C), 4-7 
Illegal instruction trap, (II-A), 6-18 

service routine entry point, (II-A), 6-30 
Illegal operand trap, service routine entry 

point, (II-A), 6-30 
Illegal PALcode operand trap, (II-A), 6-18 
imb (PALcode) instruction, (II-C), 5-46 

required, (I), 6-9 
1MB (PALcode) instruction, (I), 5-21 

required, (I), 6-9 
virtual I-cache coherency, (I), 5-5 

IMP (implementation dependent), (I), 1-9 
INE bit 

See also Arithmetic traps, inexact result 
exception summary parameter, (II-A), 

6-14 
exception summary register, (II-B), 5-5; 

(II-C), 4-6 
INED bit 

See Trap disable bits, inexact result trap 
Inexact result bit, exception summary 

register, (II-C), 4-6 
Inexact result enable (INEE) 

FP_C quadword bit, B-5 

Inexact result status (INES) 
FP_C quadword bit, B-4 

Inexact result trap, (II-A), 6-16; (II-B), 5-5; 
(II-C), 4-6 

Infinity, (I), 4-58, 4-59 
conversion to integer, (I), 4-76 

Initialization, PALcode environment, (II-C), 
6-1 

Initial kernel stack pointer (IKSP) 
See also Kernel stack pointer, initial, 

(II-C), 2-9 
initpal (PALcode) instruction, (II-C), 5-10 

at initialization, (II-C), 6-2 
interrupt stack access, (II-C), 2-7 
reads PAL_BASE register, (II-C), 2-4 
writes KGP register, (II-C), 2-4 
writes PCR register, (II-C), 2-5 
writes PDR register, (II-C), 2-5 

INSBL instruction, (I), 4-51 
Insert instructions (list), (I), 4-51 
Insert into queue PALcode instructions 

longword at head interlocked, (II-A), 2-31 
longword at head interlocked resident, 

(II-A), 2-33, 2-48 
longword at tail interlocked, (II-A), 2-39 
longword at tail interlocked resident, 

(II-A), 2-42, 2-50 
quadword at head interlocked, (II-A), 2-35 
quadword at head interlocked resident, 

(II-A), 2-37 
quadword at tail interlocked, (II-A), 2-44 
quadword at tail interlocked resident, 

(II-A), 2-46 
INSLH instruction, (I), 4-51 
INSLL instruction, (I), 4-51 
INSQHIL (PALcode) instruction, (II-A), 2-31 
INSQHILR (PALcode) instruction, (II-A), 

2-33 
INSQH instruction, (I), 4-51 
INSQHIQ (PALcode) instruction, (II-A), 2-35 
INSQHIQR (PALcode) instruction, (II-A), 

2-37 
INSQL instruction, (I), 4-51 
INSQTIL (PALcode) instruction, (II-A), 2-39 
INSQTILR (PALcode) instruction, (II-A), 

2-42 
INSQTIQ (PALcode) instruction, (II-A), 2-44 
INSQTIQR (PALcode) instruction, (II-A), 

2-46 
INSQUEL (PALcode) instruction, (II-A), 2-48 
INSQUEL/D (PALcode) instruction, (II-A), 

2-48 
INSQUEQ (PALcode) instruction, (II-A), 2-50 
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INSQUEQ/D (PALcode) instruction, (II-A), 
2-50 

Instruction encodings 
common architecture, C-2 
numerical order, C-11 
opcodes and format summarized, C-1 

Instruction fault, system entry for, (II-B), 5-4 
Instruction fault entry (entIF) register, (II-B), 

1-2, 5-4, 5-6 
Instruction fetches (memory), (I), 5-11 
Instruction formats 

branch, (I), 3-10 
conventions, (I), 3-9 
floating-point convert, (I), 3-13 
floating-point operate, (I), 3-12 
illegal trap, (II-A), 6-18 
memory, (I), 3-9 
memory jump, (I), 3-10 
operands, (I), 3-8 
operand values, (I), 3-8 
operate, (I), 3-11 
operators, (I), 3-6 
overview, (I), 1-4 
PALcode, (I), 3-13 
registers, (I), 3-1 

Instructions, overview, (I), 1-5 
Instruction set 

See also Floating-point instructions; 
PALcode instructions 

access type field, (I), 3-5 
Boolean (list), (I), 4-37 
branch (list), (I), 4-17 
byte (list), (I), 4-43 
conditional move (integer), (I), 4-39 
data type field, (I), 3-5 
extract (list), (I), 4-43 
floating-point subsetting, (I), 4-2 
insert (list), (I), 4-43 
integer arithmetic (list), (I), 4-23 
introduced, (I), 1-6 
jump (list), (I), 4-17 
load memory integer (list), (I), 4-4 
mask (list), (I), 4-43 
miscellaneous (list), (I), 4-119 
name field, (I), 3-4 
opcode qualifiers, (I), 4-3 
operand notation, (I), 3-4 
overview, (I), 4-1 
shift, arithmetic, (I), 4-42 
shift, logical, (I), 4-41 
software emulation rules, (I), 4-2 
store memory integer (list), (I), 4-4 
VAX compatibility, (I), 4-128 

Instruction stream 
See I-stream 

Instruction stream translation buffer (ITB), 
(III), 2-13 

INSWH instruction, (I), 4-51 
INSWL instruction, (I), 4-51 
Integer arithmetic instructions 

See Arithmetic instructions 
Integer division, A-12 
Integer overflow bit, exception summary 

register, (II-C), 4-6 
Integer overflow trap, (II-A), 6-16; (II-B), 

5-5; (II-C), 4-6 
Integer registers 

See also Registers 
defined, (I), 3-1 
R31 restrictions, (I), 3-1 
with PALcode switching, (III), 3-9 

INTEGER_REGISTER_MASK, (II-C), 4-6 
Internal processor registers (IPR) 

address space number, (II-A), 5-4; (II-C), 
2-3 

AST enable, (II-A), 5-5 
AST summary, (II-A), 5-7 
CALL.PAL MFPR with, (II-A), 5-1 
CALL.PAL MTPR with, (II-A), 5-1 
data alignment trap fixup, (II-A), 5-9 
defined, (II-A), 1-1 
executive stack pointer, (II-A), 5-10 
floating-point enable, (II-A), 5-11 
general exception address, (II-C), 2-3 
interprocessor interrupt request, (II-A), 

5-12 
interrupt exception address, (II-C), 2-4 
interrupt priority level, (II-A), 5-13 
kernel global pointer, (II-C), 2-4 
kernel mode with, (II-A), 5-1 
kernel stack pointer (IKSP), initial, (II-C), 

2-4 
machine check error summary, (II-A), 

5-14; (II-C), 2-4 
memory management exception, (II-C), 

2-4 
MFPR instruction with, (II-A), 2-88 
MTPR instruction with, (II-A), 2-89 
page directory base, (II-C), 2-5 
page table base, (II-A), 5-19 
PALcode image base address, (II-C), 2-4 
panic exception, (II-C), 2-5 
performance monitoring, (II-A), 5-16 
privileged context block base, (II-A), 5-17 
process control region base, (II-C), 2-5 
processor base, (II-A), 5-18 
processor status, (II-C), 2-5 
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Internal processor registers (IPR) (cont'd) 
restart execution address, (II-C), 2-5 
returning state of, (II-C), 5-18 
software interrupt request, (II-A), 5-21; 

(II-C), 2-5 
software interrupt summary, (II-A), 5-22 
stack pointer, (II-A), 5-1 
summarized, (II-A), 5-2; (II-C), 2-2 
supervisor stack pointer, (II-A), 5-23 
system control block base, (II-A), 5-20 
system service exception address, (II-C), 

2-5 
thread environment block base, (II-C), 2-6 
thread unique value, (II-C), 2-6 
translation buffer check, (II-A), 5-24 
translation buffer invalidate all, (II-A), 

5-26 
translation buffer invalidate all process, 

(II-A), 5-27 
translation buffer invalidate single, (II-A), 

5-28 
user stack pointer, (II-A), 5-29 
virtual page base, (II-A), 5-30 
Who-Am-I, (II-A), 5-31 

Interprocessor console communications, (III), 
2-71 

Interprocessor interrupt, (II-A), 6-22 
generating, (II-B), 2-27 
protocol for, (II-A), 6-23 
service routine entry point, (II-A), 6-32 

Interprocessor interrupt request (IPIR) 
register 

described, (II-A), 5-12 
protocol for, (II-A), 6-22 

Interrupt acknowledge, (II-C), 4-15 
Interrupt dispatch 

example, (II-C), 4-13 
table (IDT), (II-C), 4-13 
vectors, (II-C), 4-13 

Interrupt enable mask, (II-C), 4-12 
Interrupt entry (entint) register, (II-B), 1-2, 

5-4, 5-7 
Interrupt entry (entINT) register, D-3, D-9 
Interrupt exception address (INTERRUPT. 

ENTRY) register, (II-C), 2-4 
Interrupt handling 

HAL interface for, (II-C), 1-3 
Interrupt level table (ILT), (II-C), 4-12 

index values/names for, (II-C), 2-2 
Interrupt mask table (IMT), (II-C), 4-12 
Interrupt pending (IP) field, in PS register, 

(II-A), 6-7 
Interrupt priority level (IPL) 

See also Interrupt priority level (IPL) 
register 

Interrupt priority level (IPL) (cont'd) 
at processor initialization, (III), 3-20 
events associated with, (II-A), 6-20 
field in PS register, (II-A), 6-7 
hardware levels, (II-A), 6-8 
kernel mode software with, (II-A), 6-20 
operation of, (II-A), 6-19 
PS with, (II-B), 5-2 
recording pending software (SISR register), 

(II-A), 5-22 
requesting software (SIRR register), (II-A), 

5-21 
service routine entry points, (II-A), 6-31 
software interrupts, (II-A), 6-21 
software levels, (II-A), 6-8 
with PALcode switching, (III), 3-9 

Interrupt priority level (IPL) register 
See also Interrupt priority level (IPL) 
described, (II-A), 5-13 
interrupt arbitration, (II-A), 6-37 

Interrupt request levels (IRQL) 
ILT table for, (II-C), 4-12 
in PSR, (II-C), 2-1 
PSR and di instruction, (II-C), 5-5 
swapping, (II-C), 5-29 
with machine checks, (II-C), 4-19 

Interrupts, (II-C), 4-12 
actions, summarized, (II-A), 6-2 
disabling, (II-C), 5-5 
enabling, (II-C), 5-8 
hardware arbitration, (II-A), 6-36 
I/O device, (II-A), 6-22 
initiated by PALcode, (II-A), 6-33 
initiation, (II-A), 6-20 
input/output, (II-A), 6-23 
instruction completion, (II-A), 6-19 
interprocessor, (II-A), 6-22 
introduced, (II-A), 6-19 
PALcode arbitration, (II-A), 6-36 
passive release, (II-A), 6-22 
powerfail, (II-A), 6-23 
processor state transitions, (II-A), 6-38 
processor status register and, (II-C), 2-1 
program counter value, (II-A), 6-2 
returning from, (II-C), 5-24 
software, (II-A), 6-20 
software requests for, (II-C), 4-16 
sources for, (II-B), 5-2 
stack frames for, (II-A), 6-9; (II-B), 5-4 
system entry for, (II-B), 5-4 

Interrupt service routines 
entry point, (II-A), 6-27 
in each process, (II-A), 6-20 
introduced, (II-A), 6-19 
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Interrupt stack, (II-C), 2-7 
TrPreviousKSP with, (II-C), 4-14 

Interrupt stack pointer (ISP) register 
initializing, (II-C), 5-11 

Interrupt synchronization, (II-C), 4-16 
Interrupt tables (IDT, ILT, IMT), (II-C), 2-6 
Interrupt tables, at initialization, (II-C), 6-3 
Interrupt trap frame, building, (II-C), 4-14 
Interrupt vectors 

mask table for, (II-C), 4-12 
Interval clock interrupt, (II-A), 6-22 

HWRPB field for, (III), 2-7 
service routine entry point, (II-A), 6-31 

intr_flag register, (I), 3-3; (II-B), 1-3 
cleared by RC instruction, (I), 4-129 
cleared by retsys, (II-C), 5-23 
cleared by rfe, (II-C), 5-25 
set by RS instruction, (I), 4-129 

Invalid address exceptions, (II-C), 4-8 
Invalid operation enable (INVE) 

FP_C quadword bit, B-5 
Invalid operations bit, exception summary 

register, (II-C), 4-7 
Invalid operation status (INVS) 

FP_C quadword bit, B-5 
Invalid operations trap, (II-C), 4-7 
Invalid operation trap, (II-A), 6-15; (II-B), 

5—5 
INVbit 

See also Arithmetic traps, invalid operation 
exception summary parameter, (II-A), 

6-15 
exception summary register, (II-B), 5-5; 

(II-C), 4-7 
INVDbit 

See Trap disable bits, invalid operation 
IOCTL console device routine, (III), 2-48 
/I opcode qualifier, IEEE floating-point, (I), 

4-63 
IOV bit 

See also Arithmetic traps, integer overflow 
exception summary parameter, (II-A), 

6-14 
exception summary register, (II-B), 5-5; 

(II-C), 4-6 
IPI_LEVEL, IRQL table index name, (II-C), 

2-2 
IPR 

See Internal processor registers (IPR) 
IPR_KSP (internal processor register kernel 

stack pointer), (II-A), 5-1 
IRQL 

See Interrupt request levels; See also rdirql 
and swpirql 

ISO Latin-1 support, (III), 1-5 
PROCESSJKEYCODE and, (III), 2-37 

I-stream 
coherency of, (I), 6-9 
design considerations, A-2 
modifying physical, (I), 5-5 
modifying virtual, (I), 5-5 
PALcode with, (I), 6-2 
with caches, (I), 5-5 

ITB 
See Instruction stream translation buffer 

J 
JMP instruction, (I), 4-21 
JSR instruction, (I), 4-21 
JSR_COROUTINE instruction, (I), 4-21 
Jump instructions, (I), 4-17, 4-21 

See also Control instructions 
branch prediction logic, (I), 4-22 
coroutine linkage, (I), 4-22 
return from subroutine, (I), 4-21 
unconditional long jump, (I), 4-22 

K 
kbpt (PALcode) instruction, (II-C), 5-47 
Kernel global pointer (KGP) register, (II-B), 

1-3; (II-C), 2-4 
at initialization, (II-C), 6-2 
initializing, (II-C), 5-11 

Kernel mode, protection code with, (II-B), 3-6 
Kernel read enable (KRE) 

bit in PTE, (II-A), 3-5; (II-B), 3-4 
with access control violation (ACV) fault, 

(II-A), 3-13 
Kernel stack, (II-C), 2-7 

under/overflow detection, (II-C), 5-49 
Kernel stack, PALcode access to, (II-A), 6-33 
Kernel stack, when corrupted, (II-C), 4-11 
Kernel stack pointer (IKSP), initial, (II-C), 

2-4 
initializing, (II-C), 5-11 
returning contents of, (II-C), 5-14 
swapping to current, (II-C), 5-30 
with context switch, (II-C), 2-8, 2-9, 5-28 
with trap frames, (II-C), 4-3 

Kernel stack pointer (KSP) register 
at processor initialization, (III), 3-20 
defined, (II-B), 1-3 
in HWPCB, (II-A), 4-2 
in initial HWPCB, (III), 3-21 
in process context, (II-B), 4 -1 
with PALcode switching, (III), 3-9 
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Kernel write enable (KWE) 
bit in PTE, (II-A), 3-4; (II-B), 3-4 

KERNEL_BREAKPOINT breakpoint type, 
(II-C), 4-9 

Keycode, translating, (III), 2-37 
KGP 

See Kernel global pointer 
Kseg 

format of, (II-B), 3-2 
mapping of, (II-B), 3-1 
physical space with, (II-B), 3-3 

KSP 
See Kernel stack pointer 

L 
LANGUAGE environment variable, (HI), 

2-28 
Languages, supported by console, (HI), 2-28 
LDAH instruction, (I), 4-5 
LDA instruction, (I), 4-5 
LDF instruction, (I), 4-79 

when data is unaligned, (II-A), 6-30 
LDG instruction, (I), 4-80 

when data is unaligned, (II-A), 6-30 
LDL instruction, (I), 4-6 

when data is unaligned, (II-A), 6-30 
LDL_L instruction, (I), 4-8 

restrictions, (I), 4-9 
when data is unaligned, (II-A), 6-30 
with processor lock register/flag, (I), 4-9 
with STx_C instruction, (I), 4-8 

LDQ instruction, (I), 4-6 
when data is unaligned, (II-A), 6-30 

LDQP (PALcode) instruction, (II-A), 2-87 
LDQ_L instruction, (I), 4-8 

restrictions, (I), 4-9 
when data is unaligned, (II-A), 6-30 
with processor lock register/flag, (I), 4-9 
with STx_C instruction, (I), 4-9 

LDQ_U instruction, (I), 4-7 
LDS instruction, (I), 4-81 

when data is unaligned, (II-A), 6-30 
with FPCR, (I), 4-72 

LDT instruction, (I), 4-82 
when data is unaligned, (II-A), 6-30 

LICENSE environment variable, (III), 2-28 
Literals, operand notation, (I), 3-4 
Load instructions 

See also Floating-point load instructions 
emulation of, (I), 4-2 
FETCH instruction, (I), 4-122 
load address, (I), 4-5 
load address high, (I), 4-5 
load quadword, (I), 4-6 

Load instructions (cont'd) 
load quadword locked, (I), 4-9 
load sign-extended longword, (I), 4-6 
load sign-extended longword locked, (I), 

4-8 
load unaligned quadword, (I), 4-7 
multiprocessor environment, (I), 5-5 
serialization, (I), 4-124 
when data is unaligned, (II-A), 6-30 

Load literal, A-14 
Load memory instructions, with trap shadow, 

(I), 4-65 
Load memory integer instructions (list), (I), 

4-4 
Location, (I), 5-10 
Location access order 

after defined, (I), 5-15 
before defined, (I), 5-15 
defined, (I), 5-13 
with access size, (I), 5-15 
with processor issue order, (I), 5-15 

Location access size, (I), 5-13 
Locked_physical_address register, (I), 3-2 
Lock flag, per-processor 

defined, (I), 3-2 
when cleared, (I), 4-9 
with load locked instructions, (I), 4-9 
with store conditional instructions, (I), 

4-11 
Lock registers, per-processor 

defined, (I), 3-2 
with load locked instructions, (I), 4-9 
with store conditional instructions, (I), 

4-11 
lock_flag register, (II-B), 1-3 

cleared by retsys, (II-C), 5-23 
cleared by rfe, (II-C), 5-25 

Lock_flag register, (I), 3-2 
See also Lock flag, per-processor; Lock 

registers 
Logical instructions 

See Boolean instructions 
Logout area, (II-A), 6-26 

length, per-CPU slot field for, (HI), 2-19 
physical address, per-CPU slot field for, 

(III), 2-19 
Longword data type, (I), 2-2 

alignment of, (I), 2-12 
atomic access of, (I), 5-2 
integer floating-point format, (I), 2-12 

LSB (least significant bit), defined for 
floating-point, (I), 4-59 
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M 
Machine check error handling, (II-C), 4-18 
Machine check error summary (MCES) 

register, (II-C), 2-4 
at processor initialization, (HI), 3-20 
defined, (II-B), 1-3 
described, (II-A), 5-14 
format of, (II-C), 4-18 
reading, (II-B), 2-11 
returning contents of, (II-C), 5-15 
structure of, (II-B), 5-7 
using, (II-A), 6-26 
with PALcode switching, (HI), 3-9 
writing, (II-B), 2-29 
writing values to, (II-C), 5-38 

Machine checks, (II-A), 6-24 
actions, summarized, (II-A), 6-2 
catastrophic conditions with, (II-C), 4-19 
classes of, (II-C), 4-17 
disabling during debug, (II-C), 4-18 
initiated by PALcode, (II-A), 6-33 
interrupt entry for, (II-B), 5-7 
logout area, (II-A), 6-26 
masking, (II-A), 6-25 
no disabling of, (II-A), 6-25 
one per error, (II-A), 6-25 
processor correctable, (II-A), 6-24 
program counter (PC) value, (II-A), 6-25 
REI instruction with, (II-A), 6-25 
retry flag, (II-A), 6-25 
service routine entry points, (II-A), 6-31, 

6-32 
sources for, (II-C), 4-17 
stack frames for, (II-A), 6-9 
system correctable, (II-A), 6-24 
type codes, (II-C), 4-19 
unrecoverable reported, (II-C), 4-18 

Magtape bootstrap image 
ANSI format, (III), 3-39 
boot blocked, (III), 3-41 

Major modes, (III), 3-3 
Major states, (III), 3-1 
Major state transitions, (III), 3-2 

console rules for, (III), 3-3 
MAP_F function, (I), 2-4 
MAP_S function, (I), 2-8 
Masking, machine checks with, (II-A), 6-25 
Mask instructions (list), (I), 4-53 
MAX, defined for floating-point, (I), 4-60 
maxCPU, (II-B), 1-2 
Maximum ASN value, HWRPB field for, (III), 

2-6 

MB instruction, (I), 4-124 
See also 1MB, WMB 
multiprocessors only, (I), 4-124 
using, (I), 5-21 
with DMA I/O, r/J, 5-20 
with LDx_L/STx_C, (I), 4-12 
with multiprocessor D-stream, (I), 5-20 
with shared data structures, (I), 5-8 

MBZ (must be zero), (I), 1-9 
MCES 

See Machine check error summary 
MCK bit, machine check error summary 

register, (II-A), 5-14; (II-C), 4-18 
MEMC 

See Memory cluster descriptor 
MEMDSC 

See Memory data descriptor table 
Memory, unrecoverable errors with, (II-A), 

6-24 
Memory access 

aligned byte/word, A - l l 
coherency of, (I), 5-1 
granularity of, (I), 5-2 
width of, (I), 5-3 
with WMB instruction, (I), 4-127 

Memory access sequence, (I), 5-13 
Memory alignment, requirement for, (I), 5-2 
Memory barrier instructions 

See MB instruction; 1MB (PALcode) 
instruction; WMB instruction, (I), 
4-124 

Memory barriers, (I), 5-20 
Memory cluster descriptor (MEMC) table 

structure of, (HI), 3-13 
Memory clusters, (HI), 3-10 
Memory data descriptor (MEMDSC) table 

at warm boot, (III), 3-22 
in HWRPB, (III), 2-10 
offset, HWRPB field for, (III), 2-8 
structure of, (III), 3-12 
with cold boot, (HI), 3-10 

Memory format instructions 
opcodes and format summarized, C - l 

Memory instruction format, (I), 3-9 
with function code, (I), 3-10 

Memory jump instruction format, (I), 3-10 
Memory-like behavior, (I), 5-3 
Memory management, (II-C), 3-1 

See also Address translation; Pages; 
Processor modes; Virtual address 
space 

address translation, (II-A), 3-8 
always enabled, (II-A), 3-3 
control of, (II-B), 3-3 
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Memory management (cont'd) 
faults, (II-A), 3-12, 6-11; (II-B), 3-10 
introduced, (II-A), 3-1 
page frame number (PFN), (II-A), 3-6 
page table entry (PTE), (II-A), 3-3 
protection code, (II-A), 3-7 
protection of individual pages, (II-A), 3-7 
PTE modified by software, (II-A), 3-6 
support in PALcode, (I), 6-2 
translation buffer with, (II-A), 3-11 
unrecoverable error, (II-A), 6-24 
with interrupts, (II-A), 6-20 
with multiprocessors, (II-A), 3-6 
with process context, (II-A), 4-1 

Memory management exception (MEM_ 
MGMT.ENTRY) register, (II-C), 2-4 

Memory management fault entry (entMM) 
register, (II-B), 1-2, 5-4, 5-8 

Memory management faults 
registers used, (II-A), 6-11 
system entry for, (II-B), 5-4 
types, (II-B), 3-10 
with unaligned data, (II-A), 6-17 

Memory prefetch registers, A-10 
defined, (I), 3-3 

Memory protection, (II-B), 3-6 
Memory sizing at cold boot, (III), 3-10 
MFPR_IPR_name (PALcode) instruction, 

(II-A), 2-88 
MF_FPCR instruction, (I), 4-97 
MIN, defined for floating-point, (I), 4-60 
MIP bit, machine check error summary 

register, (II-B), 5-8 
Miscellaneous instructions (list), (I), 4-119 
MMCSR, (II-B), 5-8 
MMCSR code, (II-B), 3-10 
MOP-based network bootstrapping, (III), 3-43 
/M opcode qualifier, IEEE floating-point, (I), 

4-61 
Move, register-to-register, A-14 
Move instructions (conditional) 

See Conditional move instructions 
MSKBL instruction, (I), 4-53 
MSKLH instruction, (I), 4-53 
MSKLL instruction, (I), 4-53 
MSKQL instruction, (I), 4-53 
MSKWH instruction, (I), 4-53 
MSKWL instruction, (I), 4-53 
MTPR_IPR_name (PALcode) instruction, 

(II-A), 2-89 
MT.FPCR instruction, (I), 4-97 

synchronization requirement, (I), 4-70 
MULF instruction, (I), 4-114 

MULG instruction, (I), 4-114 
MULL instruction, (I), 4-30 

with MULQ, (I), 4-30 
MULQ instruction, (I), 4-31 

with MULL, (I), 4-30 
with UMULH, (I), 4-31 

MULS instruction, (I), 4-115 
MULT instruction, (I), 4-115 
Multiple instruction issue, A-2 
Multiply instructions 

See also Floating-point operate 
multiply longword, (I), 4-30 
multiply quadword, (I), 4-31 
multiply unsigned quadward high, (I), 4-32 

Multiprocessor bootstrapping, (HI), 3-23 
primary processor, (III), 3-23 

Multiprocessor environment 
See also Data sharing 
booting, (III), 3-23 
cache coherency in, (I), 5-5 
console requirements, (III), 2-25 
context switching, (I), 5-22 
interprocessor interrupt, (II-A), 6-22 
interrupts with, (I), 5-24 
I-stream reliability, (I), 5-21 
MB and WMB with, (I), 5-21 
memory faults, (II-A), 6-12 
memory management in, (II-A), 3-6 
move operations in, (II-A), 2-76 
no implied barriers, (I), 5-20 
read/write ordering, (I), 5-9 
serialization requirements in, (I), 4-124 
shared data, (I), 5-5, A-7 

Multithread implementation, (II-A), 2-81 

N 
NaN (Not-a-Number) 

conversion to integer, (I), 4-76 
copying, generating, propagating, (I), 4-77 
defined, (I), 2-7 
quiet, (I), 4-59 
signaling, (I), 4-59 

NATURALLY ALIGNED data objects, (I), 1-9 
Negate stylized code form, A-14 
Network bootstrapping, (HI), 3-43 
New PALcode, (III), 3-5 
Next PC, (II-A), 6-2 

defined for arithmetic traps, (II-A), 6-15 
Non-finite number, (I), 4-59 
Nonmapped address space, (II-C), 3-1 
Nonmemory-like behavior, (I), 5-3 
NOP, universal (UNOP), A-13 
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NOT instruction, ORNOT with zero, (I), 4-38 
NOT stylized code form, A-15 

o 
Opcode qualifiers 

See also specific qualifiers 
default values, (I), 4-3 
notation (list), (I), 4-3 

Opcodes 
common architecture, C-2 
DEC OSF/1 PALcode, C-17 
IEEE floating-point, C-6 
in numerical order, C - l l 
notation used in summary, C - l 
OpenVMS AXP PALcode, C-15 
PALcode in numerical order, C-20 
reserved, C-23 
summary, C-9 
unused function codes for, C-23 
VAX floating-point, C-8 
Windows NT AXP PALcode, C-18 

opDec, (II-B), 1-5 
OPEN device routine, (III), 2-50 

determines WRITE characteristics, (III), 
2-55 

OpenVMS AXP PALcode, instruction 
summary, C-15 

OpenVMS AXP PALcode instructions (list), 
(II-A), 2-2 

Operand expressions, (I), 3-4 
Operand notation 

defined, (I), 3-3 
Operand values, (I), 3-4 
Operate instruction format, (I), 3-11 

floating-point, (I), 3-12 
floating-point convert, (I), 3-13 
unused function codes with, (I), 3-11 

Operate instructions 
opcodes and format summarized, C- l 

Operate instructions, convert with integer 
overflow, (I), 4-67 

Operator halted (OH) flag, (III), 3-36 
at multiprocessor boot, (HI), 3-23 
per-CPU state contains, (III), 2-23 

Operators, instruction format, (I), 3-6 
Optimization 

See Performance optimizations 
ORNOT instruction, (I), 4-38 
OS Loader, (II-C), 1-2 
Overflow bit, exception summary register, 

(II-C), 4-6 
Overflow enable (OVFE) 

FP_C quadword bit, B-5 

Overflow status (OVFS) 
FP_C quadword bit, B-5 

Overflow trap, (II-A), 6-16; (II-B), 5-5; 
(II-C), 4-6 

OVFbit 
See also Arithmetic traps, overflow 
exception summary parameter, (II-A), 

6-14 
exception summary register, (II-B), 5-5; 

(II-C), 4-6 
OVFD bit 

See Trap disable bits, overflow disable 

p 
Page directory base (PDR) register, (II-C), 

2-5 
initializing, (II-C), 5-11 
maps PTEs, (II-C), 3-3 
with context switch, (II-C), 5-32 

Page directory entry (PDE), (II-C), 3-3 
Page frame number (PFN) 

bits in PTE, (II-A), 3-4; (II-B), 3-4; 
(II-C), 3-5 

determining validation, (II-A), 3-6 
finding for SCB, (II-A), 5-20 
in PTE, (II-C), 3-2 
PTBR register, (II-A), 5-19 
when a PDR, (II-C), 3-3 
with address translation, (II-A), 3-8 
with context switch, (II-C), 2-9, 5-28 
with hardware context switching, (II-A), 

4-3 
with physical address translation, (II-B), 

3-7 
Pages 

collecting statistics on, (II-A), 6-12 
individual protection of, (II-A), 3-7 
max address size from, (II-A), 3-3 
possible sizes for, (II-A), 3-2 
size range of, (II-B), 3-1 
virtual address space from, (II-A), 3-2 

PAGES, CRB field for, (III), 2-65 
pageSize, (II-B), 1-2 
Page size, HWRPB field for, (III), 2-6 
Page sizes, (II-B), 3-2 
Page table base (PTBR) register, (II-A), 5-19 

at processor initialization, (HI), 3-20 
defined, (II-B), 1-4 
in HWPCB, (II-A), 4-2 
in initial HWPCB, (III), 3-21 
in process context, (II-B), 4-1 
privileged context, (II-A), 2-92 
with address translation, (II-A), 3-8 
with PALcode switching, (HI), 3-9 
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Page table base (PTBR) register (cont'd) 
with physical address translation, (II-B), 

3-7 
Page table entry (PTE), (II-A), 3-3 

after software changes, (II-A), 3-11 
atomic modification of, (II-A), 3-6 
bits, summarized, (II-B), 3-4 
calculating at cold boot, (HI), 3-17 
changing and managing, (II-B), 3-5 
format of, (II-B), 3-3 
modified by software, (II-A), 3-6 
page frame number (PFN) with, (II-C), 3-2 
page protection, (II-A), 3-7 
physical access of, (II-A), 3-8; (II-B), 3-7 
summary of, (II-C), 3-5 
virtual access of, (II-A), 3-10; (II-B), 3-8 
with multiprocessors, (II-A), 3-6 

Page tables 
calculating base, (HI), 3-17 
initial mapping at cold boot, (III), 3-17 
physical traversal algorithm, (II-C), 3-4 
traversing, (II-C), 3-3 

Page table space 
loading at cold boot, (HI), 3-14 

PALcode 
See also Queues, support for 
access to kernel stack, (II-A), 6-33 
argument registers used, (II-C), 5-1 
barriers with, (I), 5-20 
CALL_PAL instruction, (I), 4-120 
compared to hardware instructions, (I), 6-1 
current defined, (HI), 3-5 
debugging, (II-C), 5-49 
event counters during debug, (II-C), 5-50 
identifying the image, (HI), 3-6 
illegal operand trap, (II-A), 6-18 
implementation-specific, (I), 6-3 
initialization of, (III), 3-5 
initializing environment for, (II-C), 6-1 
initial processor context for, (II-C), 6-2 
instead of microcode, (I), 6-1 
instruction format, (I), 3-13 
internal software registers, (II-C), 5-12 
kernel activates, (II-C), 1-2 
loading, (III), 3-5 
loading at multiprocessor boot, (HI), 3-23 
memory management requirements, (II-A), 

3-3 
new defined, (HI), 3-5 
OpenVMS AXP, defined for, (II-A), 2-1 
OSF/1 support for, (II-B), 5-9 
OS Loader and, (II-C), 1-2 
overview, (I), 6-1 
processor state transitions, (II-A), 6-38 
queue data type support, (II-A), 2-21 

PALcode (cont'd) 
recognized instructions, (I), 6-4 
replacing, (I), 6-3 
required function support, (I), 6-3 
required instructions, (I), 6-5 
running environment, (I), 6-2 
special functions, (I), 6-3 
swapping currently executing, (II-C), 5-31 
switching, (II-B), 2-20; (III), 3-5 
switching at multiprocessor boot, (HI), 

3-24 
unexpected exceptions in, (II-C), 4-11 
variants at loading, (HI), 3-5 
variants at multiprocessor boot, (III), 3-24 
variants at processor initialization, (HI), 

3-20 
version control, (II-C), 2-7 

PALcode available, per-CPU slot field for, 
(III), 2-21 

PALcode image base address (PAL_BASE) 
register, (II-C), 2-4 

from initpal, (II-C), 5-11 
previous, (II-C), 6-4 
structure of, (II-C), 6-4 

PALcode instructions 
DEC OSF/1 privileged (list), (II-B), 2-8 
DEC OSF/1 unprivileged (list), (II-B), 2-1 
opcodes and format summarized, C- l 
opcodes in numerical order, C-20 
OpenVMS AXP (list), (II-A), 2-2 
OpenVMS AXP privileged (list), (II-A), 

2-84 
OpenVMS AXP unprivileged (list), (II-A), 

2-3 
required, opcodes for, C-23 
reserved, opcodes for, C-23 
VAX compatibility, (II-A), 2-76 
Windows NT AXP privileged (list), (II-C), 

5-2 
Windows NT AXP unprivileged (list), 

(II-C), 5-40 
PALcode instructions, DEC OSF/1 privileged 

cache flush, (II-B), 2-9 
console service, (II-B), 2-10 
performance monitoring function, (II-B), 

2-30 
read machine check error summary, (II-B), 

2-11 
read processor status, (II-B), 2-12 
read system value, (II-B), 2-14 
read user stack pointer, (II-B), 2-13 
return from system call, (II-B), 2-15 
return from trap, fault, or interrupt, (II-B), 

2-16 
swap IPL, (II-B), 2-19 
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PALcode instructions, DEC OSF/1 privileged 
(cont'd) 

swap PALcode image, (II-B), 2-20 
swap process context, (II-B), 2-17 
TB (translation buffer) invalidate, (II-B), 

2-22 
who am I, (II-B), 2-23 
write floating-point enable, (II-B), 2-26 
write interprocessor interrupt request, 

(II-B), 2-27 
write kernel global pointer, (II-B), 2-28 
write machine check error summary, 

(II-B), 2-29 
write system entry address, (II-B), 2-24 
write system value, (II-B), 2-32 
write user stack pointer, (II-B), 2-31 
write virtual page table pointer, (II-B), 

2-33 
PALcode instructions, DEC OSF/1 

unprivileged 
breakpoint, (II-B), 2-2 
bugcheck, (II-B), 2-3 
generate trap, (II-B), 2-5 
read unique value, (II-B), 2-6 
system call, (II-B), 2-4 
write unique value, (II-B), 2-7 

PALcode instructions, OpenVMS AXP 
privileged 

See also individual instructions 
cache flush, (II-A), 2-85 
console service, (II-A), 2-86 
load quadword physical, (II-A), 2-87 
move from processor register, (II-A), 2-88 
move to processor register, (II-A), 2-89 
store quadword physical, (II-A), 2-90 
swap PALcode image, (II-A), 2-94 
swap privileged context, (II-A), 2-91 

PALcode instructions, OpenVMS AXP 
unprivileged 

See also individual instructions 
breakpoint, (II-A), 2-4 
bugcheck, (II-A), 2-5 
change to executive mode, (II-A), 2-6 
change to kernel mode, (II-A), 2-7 
change to supervisor mode, (II-A), 2-8 
change to user mode, (II-A), 2-9 
generate software trap, (II-A), 2-10 
insert into queue (list), (II-A), 2-30 
probe for read access, (II-A), 2-11 
probe for write access, (II-A), 2-11 
read processor status, (II-A), 2-13 
read system cycle counter, (II-A), 2-17 
read unique context, (II-A), 2-82 
return from exception or interrupt, (II-A), 

2-14 

PALcode instructions, OpenVMS AXP 
unprivileged (cont'd) 

swap AST enable, (II-A), 2-19 
thread, (II-A), 2-81 
write PS software field, (II-A), 2-20 
write unique context, (II-A), 2-83 

PALcode instructions, required privileged, (I), 
6-6 

PALcode instructions, required unprivileged, 
Qh 6-9 

PALcode instructions, Windows NT AXP 
privileged 

clear software interrupt request, (II-C), 
5-4 

data TB invalidate single, (II-C), 5-7 
disable all interrupts, (II-C), 5-5 
drain all aborts, (II-C), 5-6 
enable interrupts, (II-C), 5-8 
halt operating system, (II-C), 5-9 
initialize PALcode data structures, (II-C), 

5-10 
read current IRQL, (II-C), 5-13 
read initial kernel stack pointer, (II-C), 

5-14 
read internal processor state, (II-C), 5-18 
read machine check error summary 

register, (II-C), 5-15 
read processor (PSR) status register, 

(II-C), 5-17 
read processor control region base address, 

(II-C), 5-16 
read software event counters, (II-C), 5-12 
read thread value, (II-C), 5-19 
restart operating system, (II-C), 5-21 
return from exception or interrupt, (II-C), 

5-24 
return from system service call exception, 

(II-C), 5-22 
set software interrupt request, (II-C), 5-26 
swap current IRQL, (II-C), 5-29 
swap current PALcode, (II-C), 5-31 
swap initial kernel stack pointer, (II-C), 

5-30 
swap process context, (II-C), 5-32 
swap thread context, (II-C), 5-27 
transfer to console firmware, (II-C), 5-20 
translation buffer invalidate all, (II-C), 

5-33 
translation buffer invalidate single, (II-C), 

5-34 
translation buffer invalidate single for 

ASN, (II-C), 5-35 
write kernel exception entry routine, 

(II-C), 5-36 
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PALcode instructions, Windows NT AXP 
privileged (cont'd) 

write machine check error summary 
register, (II-C), 5-38 

write performance monitor, (II-C), 5-39 
PALcode instructions, Windows NT AXP 

unprivileged 
breakpoint trap, (II-C), 5-41 
call kernel debugger, (II-C), 5-42 
generate a trap, (II-C), 5-45 
instruction memory barrier, (II-C), 5-46 
kernel breakpoint trap, (II-C), 5-47 
read TEB pointer, (II-C), 5-48 
system service call, (II-C), 5-43 

PALcode loaded (PL) flag, (III), 3-5 
at multiprocessor boot, (III), 3-23 
per-CPU state contains, (III), 2-22 

PALcode loading at bootstrap, (III), 3-14 
PALcode memory space 

length of, (III), 2-17 
physical address of, (III), 2-17 
with PALcode loading, (III), 3-5 

PALcode memory valid (PMV) flag 
at multiprocessor boot, (III), 3-23 
per-CPU state contains, (III), 2-22 
with PALcode loading, (III), 3-5 

PALcode revision, per-CPU slot field for, (III), 
2-18 

with PALcode switching, (III), 3-7 
PALcode scratch space 

length of, (III), 2-17 
physical address of, (III), 2-17 
with PALcode loading, (III), 3-5 

PALcode scratch value 
in initial HWPCB, (III), 3-21 

PALcode swapping, (II-A), 2-94 
PALcode valid (PV) flag 

at multiprocessor boot, (III), 3-23 
per-CPU state contains, (III), 2-22 
with PALcode loading, (III), 3-5 

Panic exception (PANICJENTRY) register, 
(II-C), 2-5 

Panic exceptions, (II-C), 4-10 
kernel stack under/overflow, (II-C), 5-49 
trap from and dispatch for, (II-C), 4-11 

Panic stack, (II-C), 2-8 
Panic stack pointer, (II-C), 2-6 
PANIC_STACK_SWITCH code, (II-C), 4-11 
Passive release interrupts, (II-A), 6-22 

entry point, (II-A), 6-32 
PASSIVE_LEVEL, IRQL table index name, 

(II-C), 2-2 
PC 

See Program counter 

PCO field, ICCSR register, D-5, D-7 
PCI field, ICCSR register, D-5, D-7 
PCB 

See Process control block 
PCBB 

See Process control block base 
PCC 

See Processor cycle counter 
PCC.CNT, (I), 3-2, 4-125 
PCC_OFF, (I), 3-2, 4-125 
PCE bit, machine check error summary 

register, (II-A), 5-14; (II-B), 5-8; 
(II-C), 4-18 

PC halted, per-CPU slot fields for, (III), 2-20 
PCMUXO field, ICCSR register, D-5, D-7 
PCMUX1 field, ICCSR register, D-5, D-6 
Per-CPU slots 

block for, (III), 2-10 
fields for, (III), 2-16 
in HWRPB, (III), 2-14 
number, HWRPB field for, (III), 2-7 
size, HWRPB field for, (III), 2-7 
state flags at multiprocessor boot, (HI), 

3-23 
state flags in, (III), 2-22 
with PALcode switching, (HI), 3-8 

Performance counters, controlling, D-2 
Performance monitor (PME) register 

privileged context, (II-A), 2-93 
Performance monitoring enable (PME) bit 

defined, (II-B), 1-4 
in HWPCB, (II-A), 4-2 
in process context, (II-B), 4-1 

Performance monitoring register (PERF-
MON), (II-A), 5-16 

using, D-2, D-8 
writing, (II-B), 2-30 

Performance monitor interrupt entry point, 
(II-A), 6-32 

Performance monitor interrupt mechanism, 
D-3, D-9 

Performance optimizations 
branch prediction, A-3 
code sequences, A - l l 
data stream, A-6 
for frequently executed code, A - l 
for I-streams, A-2 
instruction alignment, A-2 
instruction scheduling, A-5 
I-stream density, A-5 
multiple instruction issue, A-2 
shared data, A-7 

PFN 
See Page frame number 
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Physical address size, HWRPB field for, (III), 
2-6 

Physical address space, (II-A), 3-3; (II-B), 
3-3; (II-C), ^-2 

described, (I), 5-1 
Physical address translation, (II-A), 3-9, 

3-11; (II-B), 3-7; (II-C), 3-2 
Pipelined implementations, using EXCB 

instruction with, (I), 4-121 
PME 

See Performance monitoring enable 
PMI bus, uncorrected protocol errors, (II-A), 

6-24 
Powerfail, CFLUSH PALcode instruction 

with, (II-A), 6-23 
Powerfail and recovery 

multiprocessor type of, (III), 3-29 
split type of, (III), 3-30 
uniprocessor type of, (HI), 3-28 
united type of, (III), 3-30 

Powerfail interrupt, (II-A), 6-23 
service routine entry point, (II-A), 6-32 

Powerfail restart (PR) flag 
powerfail and recovery, (III), 3-30 

Power-up initialization, (III), 3-4 
Prefetch data (FETCH instruction), (I), 4-122 
Prefetch data registers, A-10 
Pre-PALcode initialization, (II-C), 6-1 
previous_PAL_BASE register, (II-C), 6-5 
Primary bootstrap image 

format of, (III), 3-36 
loading at cold, (III), 3-14 

Primary-eligible (PE) bit, (III), 2-19 
at multiprocessor boot, (HI), 3-23 
with BB_WATCH, (III), 3-45 
with console switching, (III), 3-32 

Primary processor 
at multiprocessor boot, (III), 3-23 
definition of, (III), 1-1 
modes for, (III), 3-4 
running at multiprocessor boot, (III), 3-25 
switching from, (III), 3-32 

Privileged Architecture Library 
See PALcode 

Privileged context, (II-A), 2-92 
Privileged context block base (PCBB) register, 

(II-A), 5-17 
at processor initialization, (III), 3-20 
with PALcode switching, (III), 3-9 

Privileges, processor, (II-C), 2-2 
PROBER (PALcode) instruction, (II-A), 2-11 
PROBEW (PALcode) instruction, (II-A), 2-11 

Process, (II-A), 4 -1 
context switching the, (II-A), 4-4 

Process context, (II-B), 4 -1 
saved in PCB, (II-B), 4 -1 

Process control block (PCB), (II-B), 4-1 
structure, (II-B), 4-2 

Process control block base (PCBB) register, 
(II-B), 1-3 

Process control region base (PCR) register, 
(II-C), 2-5 

Processor 
adding to running system, (III), 3-27 
states and modes, (III), 3-1 

Processor, per-CPU slot field for 
halt, (III), 2-20 
revision, (III), 2-19 
serial number, (III), 2-19 
software compatibility, (III), 2-21 
type, (III), 2-18 
variation, (III), 2-19 

Processor available (PA) flag 
at multiprocessor boot, (III), 3-23 
per-CPU state contains, (III), 2-23 

Processor base (PRBR) register, (II-A), 5-18 
Processor control block (PRCB) 

at initialization, (II-C), 6-2 
Processor control region, (II-C), 2-6 

interrupt tables with, (II-C), 2-6 
Processor control region base (PCR) register 

at initialization, (II-C), 6-2 
initializing, (II-C), 5-11 
returning contents of, (II-C), 5-16 

Processor correctable errors, (II-C), 4-17 
reporting, (II-C), 4-18 

Processor cycle counter (PCC) register, (I), 
3-2 

See also Charged process cycles 
for DEC OSF/1, (II-B), 1-3 
for OpenVMS AXP, (II-A), 1-1 
in initial HWPCB, (III), 3-21 
RPCC instruction with, (I), 4-125 
system cycle counter with, (II-A), 2-17 

Processor data areas, (II-C), 2-6 
Processor hardware interrupt, service routine 

entry points, (II-A), 6-31 
Processor initialization, (III), 3-20 
Processor issue order 

access size effect on, (I), 5-14 
causal ordering, (I), 5-12 
defined, (I), 5-11 
with location access order, (I), 5-15 

Processor issue sequence, (I), 5-11 
Processor modes, (II-C), 2 -1 ; (III), 3-4 

AST pending state, (II-A), 5-7 
change to executive, (II-A), 2-6 
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Processor modes (cont'd) 
change to kernel, (II-A), 2-7 
change to supervisor, (II-A), 2-8 
change to user, (II-A), 2-9 
controlling memory access, (II-A), 3-7 
enabling executive mode reads, (II-A), 3-4 
enabling executive mode writes, (II-A), 3-4 
enabling kernel mode reads, (II-A), 3-5 
enabling supervisor mode reads, (II-A), 

3-4 
enabling supervisor mode writes, (II-A), 

3-4 
enabling user mode reads, (II-A), 3-4 
enabling user mode writes, (II-A), 3-4 
page access with, (II-A), 3-1 
PALcode state transitions, (II-A), 6-38 

Processor number, reading, (II-A), 5-31 
Processor present (PP) flag 

at multiprocessor boot, (III), 3-23 
per-CPU state contains, (III), 2-23 

Processors, switching primary, (III), 2-63 
Processor state, defined, (II-A), 6-6 
Processor state, internal, initialized, (II-C), 

6-1 
Processor state transitions, (II-A), 6-38 
Processor status (PS) register 

at processor initialization, (HI), 3-20 
bit meanings for, (II-B), 5-2 
bit summary, (II-A), 6-7 
bootstrap values in, (II-A), 6-7 
current, (II-A), 6-6 
defined, (II-A), 1-1; (II-B), 1-4 
explicit reading of, (II-A), 6-6 
in process context, (II-B), 4 -1 
in processor state, (II-A), 6-6 
saved on stack, (II-A), 6-6 
saved on stack frame, (II-A), 6-9 
with PALcode switching, (HI), 3-9 
WR_PS_SW instruction, (II-A), 2-20 

Processor status (PSR) register, (II-C), 2 -1 , 
2-5 

returning contents of, (II-C), 5-17 
Processor uncorrectable errors, (II-C), 4-17 
Processor unique value (unique) register 

in initial HWPCB, (III), 3-21 
with PALcode switching, (III), 3-9 

Process unique value (unique) register, (II-B), 
1-4 

in process context, (II-B), 4-1 
PROCESS.KEYCODE console terminal 

routine, (III), 2-37 
Program counter (PC) register, (I), 3-1 

alignment, (II-A), 6-7 
current PC defined, (II-A), 6-2 
defined, (II-B), 1-3 

Program counter (PC) register (cont'd) 
explicit reading of, (II-A), 6-7 
in process context, (II-B), 4-1 
in processor state, (II-A), 6-6 
next PC defined, (II-A), 6-15 
saved on stack frame, (II-A), 6-9 
with arithmetic traps, (II-A), 6-15; (II-B), 

5-1 
with EXCB instruction, (I), 4-121 
with faults, (II-A), 6-10 
with interrupts, (II-A), 6-2 
with machine checks, (II-A), 6-25 
with PALcode switching, (HI), 3-9 
with synchronous traps, (II-A), 6-16 

Program I/O mode, (III), 3-3 
Protection code, (II-A), 3-7; (II-B), 3-6 
Protection modes, (II-A), 6-8 
PS 

See Processor status 
Pseudo-ops, A-15 
PSR 

See Processor status register 
PSWITCH console routine, (III), 2-63, 3-32 
PS_<SP_ALIGN<XS> field, (II-A), 2-13 
PTBR 

See Page table base 
PTE 

See Page table entry 
PUTS console terminal routine, (III), 2-39 

Q 
Quadword data type, (I), 2-2 

alignment of, (I), 2-3, 2-13 
atomic access of, (I), 5-2 
integer floating-point format, (I), 2-13 
loading in physical memory, (II-A), 2-87 
storing to physical memory, (II-A), 2-90 
T.floating with, (I), 2-13 

Queues, support for 
absolute longword, (II-A), 2-21 
absolute quadword, (II-A), 2-25 
PALcode instructions (list), (II-A), 2-30 
self-relative longword, (II-A), 2-21 
self-relative quadword, (II-A), 2-26 

R 
R31 

restrictions, (I), 3-1 
with arithmetic traps, (II-A), 6-13 

RAZ (read as zero), (I), 1-9 
RC (read and clear) instruction, (I), 4-129 
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rdcounters (PALcode) instruction, (II-C), 5-12 
rdirql (PALcode) instruction, (II-C), 5-13 
rdksp (PALcode) instruction, (II-C), 5-14 

reads IKSP register, (II-C), 2-4 
reads kernel stack, (II-C), 2-8 

rdmces (PALcode) instruction, (II-B), 2-11; 
(II-C), 5-15 

rdpcr (PALcode) instruction, (II-C), 5-16 
reads PCR register, (II-C), 2-5 

rdps (PALcode) instruction, (II-B), 2-12 
rdpsr (PALcode) instruction, (II-C), 5-17 
rdstate (PALcode) instruction, (II-C), 5-18 
rdteb (PALcode) instruction, (II-C), 5-48 

reads TEB register, (II-C), 2-6 
rdthread (PALcode) instruction, (II-C), 5-19 

reads THREAD register, (II-C), 2-6 
rdunique (PALcode) instruction, (II-B), 2-6 

required recognition of, (I), 6-5 
RDUNIQUE (PALcode) instruction 

required recognition of, (I), 6-4 
rdusp (PALcode) instruction, (II-B), 2-13 
rdval (PALcode) instruction, (II-B), 2-14 
RD_PS (PALcode) instruction, (II-A), 2-13 
READ device routine, (III), 2-52 
Read/write, sequential, A-9 
Read/write ordering (multiprocessor), (I), 5-9 

determining requirements, (I), 5-10 
hardware implications for, (I), 5-25 
memory location defined, (I), 5-10 

READJJNQ (PALcode) instruction, (II-A), 
2-82 

Reason-for-halt code 
at power-up initialization, (III), 3-4 

reboot (PALcode) instruction, (II-C), 5-20 
operation of, (II-C), 6-3 
tasks and sequence for, (II-C), 6-5 

Regions, bootstrap address space, (HI), 3-14 
Regions in physical address space, (I), 5-1 
Register mask, floating-point and integer, 

(II-C), 4-5 
Registers, (I), 3-1 

See also specific registers 
DEC OSF/1 usage, (II-B), 1-1 
floating-point, (I), 3-2 
integer, (I), 3-1 
lock, (I), 3-2 
memory prefetch, (I), 3-3 
OpenVMS AXP specific usage, (II-A), 1-1 
optional, (I), 3-3 
processor cycle counter, (I), 3-2 
program counter (PC), (I), 3-1 
value when unused, (I), 3-9 
VAX compatibility, (I), 3-3 
Windows NT AXP usage, (II-C), 1-3 
with IPRs, (II-A), 5-1 

Register-to-register move, A-14 
Register write mask, with arithmetic traps, 

(II-A), 6-15 
REI (PALcode) instruction, (II-A), 2-14 

arithmetic traps, (II-A), 6-10 
faults, (II-A), 6-10 
interrupt arbitration, (II-A), 6-37 
interrupts, (II-A), 6-2 
machine checks, (II-A), 6-25 
synchronous traps, (II-A), 6-16 

Remove from queue PALcode instructions 
longword, (II-A), 2-72 
longword at head interlocked, (II-A), 2-52 
longword at head interlocked resident, 

(II-A), 2-55 
longword at tail interlocked, (II-A), 2-62 
longword at tail interlocked resident, 

(II-A), 2-65 
quadword, (II-A), 2-74 
quad word at head interlocked, (II-A), 2-57 
quadword at head interlocked resident, 

(II-A), 2-60 
quadword at tail interlocked, (II-A), 2-67 
quadword at tail interlocked resident, 

(II-A), 2-70 
REMQHIL (PALcode) instruction, (II-A), 

2-52 
REMQHILR (PALcode) instruction, (II-A), 

2-55 
REMQHIQ (PALcode) instruction, (II-A), 

2-57 
REMQHIQR (PALcode) instruction, (II-A), 

2-60 
REMQTIL (PALcode) instruction, (II-A), 2-62 
REMQTILR (PALcode) instruction, (II-A), 

2-65 
REMQTIQ (PALcode) instruction, (II-A), 2-67 
REMQTIQR (PALcode) instruction, (II-A), 

2-70 
REMQUEL (PALcode) instruction, (II-A), 

2-72 
REMQUEL/D (PALcode) instruction, (II-A), 

2-72 
REMQUEQ (PALcode) instruction, (II-A), 

2-74 
REMQUEQ/D (PALcode) instruction, (II-A), 

2-74 
Representative result, (I), 4-59 
Reserved instructions, opcodes for, C-23 
Reserved operand, (I), 4-59 
RESET_ENV variable routine, (III), 2-58 
RESET_TERM console terminal routine, (III), 

2-41 
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restart (PALcode) instruction, (II-C), 5-21 
tasks and sequence for, (II-C), 6-5 

Restart block 
with catastrophic errors, (II-C), 4-19 

Restart block pointer, (II-C), 2-6, 6-3 
Restart-capable (RC) flag 

at multiprocessor boot, (HI), 3-23 
at power-up initialization, (HI), 3-4 
at processor initialization, (HI), 3-20 
per-CPU state contains, (III), 2-23 
state transitions and, (III), 3-1 
with failed bootstrap, (III), 3-18 

Restart execution address (RESTART, 
ADDRESS) register, (II-C), 2-5 

at PALcode exit, (II-C), 5-1 
RESTART RTN VA, HWRPB field for, (III), 

2—8 
RESTART value, HWRPB field for, (III), 2-9 
RESTORE.TERM console routine, (III), 3-36 
RESTORE_TERM VA, HWRPB field for, (III), 

2—8 
RESTORE_TERM value, HWRPB field for, 

(III), 2-8 
Result latency, A-5 
RET instruction, (I), 4-21 
retsys (PALcode) instruction, (II-B), 2-15; 

(II-C), 5-22 
PS with, (II-B), 5-2 
use of, (II-C), 4-2 

Revision, HWRPB field for, (III), 2-6 
rfe (PALcode) instruction, (II-C), 5-24 

compared to retsys, (II-C), 5-22 
interrupt stack access, (II-C), 2-7 
use of, (II-C), 4-2 

ROM boot block structure, (III), 3-42 
ROM bootstrapping, (III), 3-42 
Rounding modes 

See Floating-point rounding modes 
RPCC (read processor cycle counter) 

instruction, (I), 4-125 
RSCC instruction with, (II-A), 2-18 

RS (read and set) instruction, (I), 4-129 
RSCC (PALcode) instruction, (II-A), 2-17 

RPCC instruction with, (II-A), 2-18 
rti (PALcode) instruction, (II-B), 2-16 

PS with, (II-B), 5-2 
with exceptions, (II-B), 5-1 

RX BUFFER, field in RXTX buffer area, (III), 
2—72 

RXLEN, field in RXTX buffer area, (III), 2-72 
RXRDY bitmask, HWRPB field for, (III), 2-9 
RXRDY flag, (III), 2-71 

at multiprocessor boot, (HI), 3-23 

RXTX buffer area, (III), 2-72 
per-CPU slot field for, (III), 2-21 

S 
S4ADDL instruction, (I), 4-25 
S4ADDQ instruction, (I), 4-27 
S4SUBL instruction, (I), 4-34 
S4SUBQ instruction, (I), 4-36 
S8ADDL instruction, (I), 4-25 
S8ADDQ instruction, (I), 4-27 
S8SUBL instruction, (I), 4-34 
S8SUBQ instruction, (I), 4-36 
SAVE_ENV variable routine, (HI), 2-59 
SAVE.TERM console routine, (III), 3-35 
SAVE_TERM RTN VA, HWRPB field for, 

(III), 2-8 
SAVE.TERM value, HWRPB field for, (III), 

2-8 
SBZ (should be zero), (I), 1-9 
SCC 

See System cycle counter 
SCE bit, machine check error summary 

register, (II-A), 5-14; (II-B), 5-8; 
(II-C), 4-18 

Secondary processors 
at multiprocessor boot, (HI), 3-23 
definition of, (HI), 1-1 
modes for, (III), 3-4 

Security holes, (I), 1-7 
with UNPREDICTABLE results, (I), 1-8 

SegO, mapping of, (II-B), 3-1 
Segl, mapping of, (II-B), 3-1 
Segment number fields, (II-A), 3-2 
Self-relative longword queue, (II-A), 2-21 
Self-relative quadword queue, (II-A), 2-26 
Sequential read/write, A-9 
Serialization, MB instruction with, (I), 4-124 
SET_ENV variable routine, (III), 2-61 
SET_TERM_CTL console terminal routine, 

(III), 2-42 
SET_TERM_INT console terminal routine, 

(III), 2-43 
Shared data (multiprocessor), A-7 

changed vs. updated datum, (I), 5-6 
Shared data structures 

atomic update, (I), 5-7 
ordering considerations, (I), 5-8 
using memory barrier (MB) instruction, (I), 

5-8 
Shared memory 

accessing, (I), 5-10 
access sequence, (I), 5-11 
defined, (I), 5-10 
issue sequence, (I), 5-11 
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Shift arithmetic instructions, (I), 4-42 
Shift logical instructions, (I), 4-41 
Single-precision floating-point, (I), 4-57 
SLL instruction, (I), 4-41 
Software (SW) field, in PS register, (II-A), 

6-7 
Software completion bit, exception summary 

register, (II-A), 6-14; (II-B), 5-6; 
(II-C), 4-7 

Software considerations, A - l 
See also Performance optimizations 

Software exceptions, (II-C), 4-8 
Software interrupt request (SIRR) register, 

(II-C), 2-5 
See also Software interrupts 
clearing, (II-C), 5-4 
described, (II-A), 5-21 
format for, (II-C), 4-16 
interrupt arbitration, (II-A), 6-37 
protocol for, (II-A), 6-21 
with interrupts, (II-A), 6-21 

Software interrupts, (II-A), 6-20; (II-C), 
4-13 

asynchronous system traps (AST), (II-A), 
6-21 

protocol between summary and request, 
(II-A), 6-21 

recording pending state of, (II-A), 5-22 
request (SIRR) register, (II-A), 6-21 
requesting, (II-A), 5-21; (II-C), 4-16 
requests after exception handling, (II-C), 

5-22, 5-24 
service routine entry points, (II-A), 6-31 
setting, (II-C), 5-26 
summary (SISR) register, (II-A), 6-20 
supported levels of, (II-A), 5-21 

Software interrupt summary (SISR) register 
at processor initialization, (HI), 3-20 
described, (II-A), 5-22 
protocol for, (II-A), 6-21 
with interrupts, (II-A), 6-20 

Software traps, generating, (II-A), 2-10 
/S opcode qualifier 

IEEE floating-point, (I), 4-63 
VAX floating-point, (I), 4-62 

SP 
See Stack pointer 

SRA instruction, (I), 4-42 
SRL instruction, (I), 4-41 
ssir (PALcode) instruction, (II-C), 5-26 

sets software interrupts, (II-C), 4-16 
Stack alignment, (II-A), 6-33 

Stack alignment (SP_ALIGN), field in saved 
PS, (II-A), 6-7 

Stack frames, (II-A), 6-8; (II-B), 5-3 
Stack pointer (SP) register 

defined, (II-A), 1-1; (II-B), 1-4 
linkage for, (II-B), 1-1 

Stack pointer internal processor registers, 
(II-A), 5-1 

State flags, per-CPU slot field for, (III), 2-17 
STATUS_ALPHA_ARITHMETIC code, (II-C), 

4-5 
STATUS_ALPHA_GENTRAP code, (II-C), 

4-9 
STATUS.BREAKPOINT code, (II-C), 4-9 
STATUS_DATATYPE_MISALIGNMENT 

code, (II-C), 4-7 
STATUSJLLEGALJNSTRUCTION code, 

(II-C), 4-8 
STATUS_INVALID_ADDRESS code, (II-C), 

4-8 
STF instruction, (I), 4-83 

when data is unaligned, (II-A), 6-30 
STG instruction, (I), 4-84 

when data is unaligned, (II-A), 6-30 
STL instruction, (I), 4-14 

when data is unaligned, (II-A), 6-30 
STL_C instruction, (I), 4-11 

when data is unaligned, (II-A), 6-30 
when guaranteed ordering with LDL_L, (I), 

4-12 
with LDx_L instruction, (I), 4-11 
with processor lock register/flag, (I), 4-11 

Storage, defined, (I), 5-15 
Store instructions 

See also Floating-point store instructions 
emulation of, (I), 4-2 
FETCH instruction, (I), 4-122 
multiprocessor environment, (I), 5-5 
serialization, (I), 4-124 
store longword, (I), 4-14 
store longword conditional, (I), 4-11 
store quadword, (I), 4-14 
store quadword conditional, (I), 4-11 
store unaligned quadword, (I), 4-15 
when data is unaligned, (II-A), 6-30 

Store memory instructions, with trap shadow, 
(I), 4-65 

Store memory integer instructions (list), (I), 
4-4 

STQ instruction, (I), 4-14 
when data is unaligned, (II-A), 6-30 

STQP (PALcode) instruction, (II-A), 2-90 
STQ_C instruction, (I), 4-11 

when data is unaligned, (II-A), 6-30 
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STQ_C instruction (cont'd) 
when guaranteed ordering with LDQ_L, 

Oh 4-12 
with LDx_L instruction, (I), 4-11 
with processor lock register/flag, (I), 4-11 

STQ_U instruction, (I), 4-15 
STS instruction, (I), 4-85 

when data is unaligned, (II-A), 6-30 
with FPCR, Qh 4-72 

STT instruction, (X), 4-86 
when data is unaligned, (77-Αλ 6-30 

SUBF instruction, (7J, 4-116 
SUBG instruction, (I), 4-116 
SUBL instruction, (X), 4-33 
SUBQ instruction, (7), 4-35 
SUBS instruction, (7λ 4-118 
SUBT instruction, (7J, 4-118 
Subtract instructions 

See also Floating-point operate 
subtract longword, (7), 4-33 
subtract quadword, (I), 4-35 
subtract scaled longword, (X), 4-34 
subtract scaled quadword, (7), 4-36 

SUM bit 
See Summary bit 

Summary bit, in FPCR, (7J, 4-68 
Superpage address space, (77-0, 3-1 

disabled by debug PALcode, (77-CJ, 5-49 
Supervisor read enable (SRE), bit in PTE, 

ai-A), 3-4 
Supervisor stack pointer (SSP) register, 

(77-AJ, 5-23 
as internal processor register, (77-AJ, 5-1 
in HWPCB, ai-A), 4-2 
in initial HWPCB, f///J, 3-21 

Supervisor write enable (SWE), bit in PTE, 
ai-A), 3-4 

SWASTEN (PALcode) instruction, f77-AJ, 
2-19 

interrupt arbitration, (77-Aj, 6-38 
with ÄSTEN register, (77-AJ, 5-6 

SWC bit 
exception summary parameter, (77-AJ, 

6-15 
exception summary register, ai-B), 5-2, 

5-6; ai-C), 4-7 
swpctx (PALcode) instruction, ai-B), 2-17; 

ai-C), 5-27 
PCB with, ai-B), 4-2 
PDR register with, (77-Cj, 2-5 
with ASNs, ai-B)9 3-9 
writes IKSP register, (77-Cj, 2-4 
writes TEB register, ai-C), 2-6 
writes THREAD register, ai-C), 2-6 

SWPCTX (PALcode) instruction, (77-Aj, 2-91 
with ASTSR register, (77-AJ, 5-8 

swpipl (PALcode) instruction, (Il-B), 2-19 
PS with, ai-B), 5-2 

swpirql (PALcode) instruction, (77-Cj, 5-29 
as synchronization function, ai-C), 4-16 

swpksp (PALcode) instruction, (77-Cj, 5-30 
reads kernel stack, (77-Ö, 2-8 
writes IKSP register, ai-Ch 2-4 

swppal (PALcode) instruction, ai-B), 2-20; 
ai-C), 5-31, 6-6 

firmware contributes, (77-CJ, 1-2 
required recognition of, (7), 6-5 

SWPPAL (PALcode) instruction, (77-AJ, 2-94 
required recognition of, (7), 6-5 
with PALcode switching, (77/), 3-7 

swpprocess (PALcode) instruction, (77-0, 
5-32 

writes PDR register, (77-CJ, 2-5 
Synchronization levels, interrupt, (77-Cj, 4-13 
Synchronous traps, (77-ßJ, 5-2 

data alignment, ai-A), 6-16 
defined, f77-AJ, 6-10 
program counter (PC) value, (77-ΑΛ 6-16 
REI instruction with, ai-A), 6-16 

System, HWRPB field for 
revision code, Oil), 2-7, 2-11 
serial number, (777J, 2-11 
type, Γ777Λ 2-6, 2-12 
variation, (777J, 2-6, 2-12 

System call entry (entSys) register, ai-B), 
1-3, 5-4, 5-9 

System control block (SCB) 
arithmetic trap entry points, (77-ΑΛ 6-29 
fault entry points, (77-ΑΛ 6-28 
finding PFN, ai-A), 5-20 
performance monitor with, D-3, D-9 
saved on stack frame, (77-AJ, 6-9 
structure of, (77-AJ, 6-27 
with memory management faults, ai-A), 

3-13 
System control block base (SCBB) register, 

ai-A), 5-20 
specifies PFN, (77-Aj, 6-27 

System correctable errors, (77-CJ, 4-17 
reporting, ai-C), 4-18 

System crash, requesting, (777), 3-31 
System cycle counter (SCO register 

at processor initialization, (777), 3-20 
reading, f77-Aj, 2-17 

System entry addresses, (77-Ä), 5-4 
System initialization, (777), 3-4 
System restarts, f777J, 3-27 

error halt and recovery, (777), 3-30 
forcing console I/O mode, (777), 3-36 
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System restarts (cont'd) 
powerfail and recovery (multiprocessor), 

(III), 3-29 
powerfail and recovery (split), (III), 3-30 
powerfail and recovery (uniprocessor), (III), 

3-28 
powerfail and recovery (united), (HI), 3-30 
primary switching, (HI), 3-32 
requesting a crash, (HI), 3-31 
RESTORE_TERM routine, (III), 3-36 
restoring terminal state, (HI), 3-34 
SAVE_TERM routine, (III), 3-35 
saving terminal state, (HI), 3-34 

System service call exceptions, (II-C), 4-4 
returning from, (II-C), 5-22 

System service exception address (SYSCALL_ 
ENTRY) register, (II-C), 2-5 

System uncorrectable errors, (II-C), 4-17 
System value (sy s value) register, (II-B), 1-4 

with PALcode switching, (III), 3-9 
System variation field (HWRPB) 

bit summary, (HI), 2-12 
Sysvalue 

See System value 
S_floating data type 

alignment of, (I), 2-9 
compared to F_floating, (I), 2-8 
exceptions, (I), 2-8 
format, (I), 2-8 
mapping, (I), 2-8 
MAX/MIN, (I), 4-60 
NaN with T_floating convert, (I), 4-76 
operations, (I), 4-57 
when data is unaligned, (II-A), 6-30 

T 
Tape 

See Magtape 
TB 

See Translation buffer 
TBB 

See Translation buffer hint block 
TB hint offset, HWRPB field for, (III), 2-7 
tbi (PALcode) instruction, (II-B), 2-22 

with TBs, (II-B), 3-9 
tbia (PALcode) instruction, (II-C), 3-6, 5-33 
tbis (PALcode) instruction, (II-C), 3-6, 5-34 
tbisasn (PALcode) instruction, (II-C), 3-6, 

5-35 
Temporary PALcode registers, (II-C), 5-1 
Terminals 

setting controls for, (HI), 2-42 
setting interrupts for, (HI), 2-43 

TESTED_PAGES, memory cluster field, (III), 
3-13 

Thread environment block base (TEB) 
register, (II-C), 2-6 

initializing, (II-C), 5-11 
returning contents of, (II-C), 5-48 
with context switch, (II-C), 2-8, 5-28 

Thread unique value (THREAD) register, 
(II-C), 2-6 

initializing, (II-C), 5-11 
returning contents of, (II-C), 5-19 
with context switch, (II-C), 2-8, 5-28 

Timeliness of location access, (I), 5-16 
Timer support, HAL interface fpr, (II-C), 1-3 
Timing considerations, atomic sequences, 

A-17 
Translation 

physical, (II-B), 3-7 
virtual, (II-B), 3-8 

Translation buffer (TB), (II-B), 3-8 
address space number with, (II-A), 3-11 
at context switch, (II-C), 2-9 
fault on execute, (II-A), 6-13 
fault on read, (II-A), 6-12 
fault on write, (II-A), 6-12 
granularity hint in PTE, (II-A), 3-5 
invalidate all, (II-C), 5-33 
invalidate single, (II-C), 5-34 
invalidate single data, (II-C), 5-7 
management of, (II-C), 3-5 
recursion in, (II-C), 3-6 
with invalid PTEs, (II-A), 3-11 

Translation buffer check (TBCHK) register 
described, (II-A), 5-24 
with translation buffer, (II-A), 3-11 

Translation buffer hint block (TBB), (III), 
2-9, 2-13 

Translation buffer invalidate all (TBIA) 
register 

described, (II-A), 5-26 
with translation buffer, (II-A), 3-11 

Translation buffer invalidate all process 
(TBIAP) register 

described, (II-A), 5-27 
with translation buffer, (II-A), 3-11 

Translation buffer invalidate single (TBIS) 
register, (II-A), 5-28 

Translation not valid fault, (II-A), 6-12; 
(II-B), 3-10; (II-C), 4-3 

service routine entry point, (II-A), 6-29 
TRAPB (trap barrier) instruction, A-15 

described, (I), 4-126 
with FPCR, (I), 4-72 
with trap shadow, (I), 4-65 

Index 
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Trap disable bits, (I), 4-67 
division by zero, (I), 4-69 
DZED with DZE arithmetic trap, (I), 4-66 
DZED with INV arithmetic trap, (I), 4-66 
IEEE compliance and, B-3 
inexact result, (I), 4-68 
invalid operation, (I), 4-69 
overflow disable, (I), 4-69 
underflow, (I), 4-68 
underflow to zero, (I), 4—68 
when unimplemented, (I), 4-67 

Trap enable bits, B-4 
Trap frames and offsets, (II-C), 4-3 
Trap handler, with non-finite arithmetic 

operands, (I), 4-64 
Trap handling, IEEE floating-point, B-6 
Trap modes 

floating-point, (I), 4-62 
IEEE, (I), 4-63 
IEEE convert-to-integer, (I), 4-63 
VAX, (I), 4-62 
VAX convert-to-integer, (I), 4-63 

Traps 
See Arithmetic traps 

Trap shadow, (II-B), 5-2 
defined, (I), 4-63 
defined for floating-point, (I), 4-59 
programming implications for, (I), 5-26 
trap handler requirement for, (I), 4-65 

TRAP_CAUSE_UNKNOWN code, (II-C), 
4-11 

TrFir trap frame offset 
from ExceptionPC address, (II-C), 4-5 

Trigger instruction, (II-B), 5-2 
TrPreviousKSP, with interrupt stack, (II-C), 

4-14 
True result, (I), 4-59 
True zero, (I), 4-59 
TTY_DEV environment variable, (III), 2-28 

with CTB, (III), 2-69 
TX BUFFER, field in RXTX buffer area, (III), 

2—73 
TXLEN, field in RXTX buffer area, (III), 2-72 
TXRDY bitmask, HWRPB field for, (III), 2-9 
TXRDY flag, (III), 2-71 

at multiprocessor boot, (HI), 3-23 
T_floating data type 

alignment of, (I), 2-10 
exceptions, (I), 2-10 
format, (I), 2-9 
MAX/MIN, (I), 4-60 
NaN with S_floating convert, (I), 4-76 
when data is unaligned, (II-A), 6-30 

u 
UMULH instruction, (I), 4-32 

with MULQ, (I), 4-31 
Unaligned access exceptions, (II-C), 4-7 
Unaligned access fault 

system entry for, (II-B), 5-4 
UNALIGNED data objects, (I), 1-9 
Unaligned fault entry (entUna) register, 

(II-B), 1-3, 5-9 
Unconditional long jump, (I), 4-22 
UNDEFINED operations, (I), 1-7 
Underflow bit, exception summary register, 

(II-C), 4-6 
Underflow enable (UNFE) 

FP_C quadword bit, B-5 
Underflow status (UNFS) 

FP_C quadword bit, B-5 
Underflow trap, (II-A), 6-16; (II-B), 5-5; 

(II-C), 4-6 
UNDZ bit 

See Trap disable bits, underflow to zero 
UNF bit 

See also arithmetic traps, underflow 
exception summary parameter, (II-A), 

6-14 
exception summary register, (II-B), 5-5; 

(II-C), 4-6 
UNFD bit 

See Trap disable bits, underflow 
Unique 

See Processor unique value; see also 
Process unique value 

Unique, processor unique value, (HI), 3-9 
Unique, process unique value, (II-B), 1-4 
UNOP code form, A-13 
UNORDERED memory references, (I), 5-9 
UNPREDICTABLE results, (I), 1-7 
/U opcode qualifier 

IEEE floating-point, (I), 4-63 
VAX floating-point, (I), 4-62 

User mode, protection code with, (II-B), 3-6 
User read enable (URE) 

bit in PTE, (II-A), 3-4; (II-B), 3-4 
User stack, (II-C), 2-8 
User stack pointer (USP) register, (II-A), 

5—29 
defined, (II-B), 1-4 
in HWPCB, (II-A), 4-2 
in initial HWPCB, (III), 3-21 
in process context, (II-B), 4 -1 
internal processor register, (II-A), 5-1 

User write enable (UWE) 
bit in PTE, (II-A), 3-4; (II-B), 3-4 
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USER_BREAKPOINT breakpoint type, 
(II-C), 4-9 

USP 
See User stack pointer 

V 
Valid (V) 

bit in PTE, (II-A), 3-6; (II-B), 3-5; (II-C), 
3-5 

Validation, HWRPB field for, (III), 2-6 
vaSize, (II-B), 1-2 
VAX compatibility instructions, restrictions 

for, (I), 4-128 
VAX compatibility register, (I), 3-3 
VAX convert-to-integer trap mode, (I), 4-63 
VAX floating-point 

See also Floating-point instructions 
D_floating, (I), 2-6 
F l o a t i n g , (I), 2-3 
GJloating, (I), 2-5 
trap modes, (I), 4-63 

VAX floating-point instructions 
add instructions, (I), 4-98 
compare instructions, (I), 4-100 
convert from integer instructions, (I), 

4-104 
convert to integer instructions, (I), 4-103 
convert VAX floating format instructions, 

(I), 4-105 
divide instructions, (I), 4-111 
function field format, (I), 4-75 
multiply instructions, (I), 4-114 
opcodes for, C-8 
operate instructions, (I), 4-90 
subtract instructions, (I), 4-116 

VAX-FP bit, (III), 2-19 
VAX rounding modes, (I), 4-60 
VAX trap modes, required instruction 

notation, (I), 4-63 
Virtual addresses 

format of, (II-C), 3-2 
non-canonical at fault, (II-C), 4-8 
physical view of, (II-C), 3-3 
virtual view of, (II-C), 3-3 

Virtual address format, (II-A), 3-2 
segment number fields, (II-A), 3-2 

Virtual address space, (II-A), 3-2; (II-B), 
3-1; (II-C), 3-1 

minimum and maximum, (II-A), 3-2 
page size with, (II-A), 3-1 

Virtual address translation, (II-A), 3-10; 
(II-B), 3-8; (II-C), 3-3 

Virtual cache blocks 
invalidating all, (II-C), 5-33 
invalidating single, (II-C), 5-34 

Virtual D-cache, (I), 5-4 
maintaining coherency of, (I), 5-4 

Virtual format, (II-B), 3-2 
Virtual I-cache, (I), 5-4 

maintaining coherency of, (I), 5-5 
Virtual machine monitor (VMM), bit in PS 

register, (II-A), 6-7 
Virtual memory regions, initial, (HI), 3-16 
Virtual page table base (VPTB) 

HWRPB field for, (III), 2-7 
with PALcode switching, (HI), 3-8 

Virtual page table base (VPTB) register, 
(II-A), 5-30 

Virtual page table pointer (VPTPTR), (II-B), 
1-4 

with address translation, (II-B), 3-8 
/V opcode qualifier 

IEEE floating-point, (I), 4-63 
VAX floating-point, (I), 4-63 

VPTB 
See Virtual page table base 

VPTPTR 
See Virtual page table pointer 

w · 
Waivers, D - l 
Warm bootstrapping, (III), 3-22 
Watchpoints 

with fault on read, (II-A), 6-12 
with fault on write, (II-A), 6-12 

whami (PALcode) instruction, (II-B), 2-23 
whami, current processor number, (II-B), 1-4 
Who-Am-I (WHAMI) register, (II-A), 5-31 

at processor initialization, (HI), 3-20 
with PALcode switching, (III), 3-9 

Windows NT AXP PALcode, instruction 
summary, C-18 

WMB instruction, (I), 4-127 
causal ordering, (I), 5-9 
causal ordering from, (I), 5-12 
with shared data structures, (I), 5-9 

Word data type, (I), 2-2 
wrent (PALcode) instruction, (II-B), 2-24 
wren try (PALcode) instruction, (II-C), 5-36 

at initialization, (II-C), 6-2 
writes GENERAL_ENTRY register, (II-C), 

2-3 
writes INTERRUPT_ENTRY register, 

(II-C), 2-4 
writes MEM_MGMT_ENTRY register, 

(II-C), 2-4 
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wrentry (PALcode) instruction (cont'd) 
writes PANIC.ENTRY register, (II-C), 2-5 
writes SYSCALL_ENTRY register, (II-C), 

2-5 
wrfen (PALcode) instruction, (II-B), 2-26 
wripir (PALcode) instruction, (II-B), 2-27 
Write-back caches, requirements for, (I), 5-4 
Write buffers, requirements for, (I), 5-4 
WRITE device routine, (III), 2-54 

characteristics determined by OPEN, (HI), 
2—55 

WRITE.UNQ (PALcode) instruction, (II-A), 
2-83 

wrkgp (PALcode) instruction, (II-B), 2-28 
wrmces (PALcode) instruction, (II-B), 2-29; 

(II-C), 5-38 
wrperfmon (PALcode) instruction, (II-B), 

2-30; (II-C), 5-39 
using, D-2, D-8 

wrunique (PALcode) instruction, (II-B), 2-7 
required recognition of, (I), 6-5 

WRUNIQUE (PALcode) instruction 
required recognition of, (I), 6-5 

wrusp (PALcode) instruction, (II-B), 2-31 
wrval (PALcode) instruction, (II-B), 2-32 
wrvptptr (PALcode) instruction, (II-B), 2-33 
WR_PS_SW (PALcode) instruction, (II-A), 

2-20 

X 
XOR instruction, (I), 4-38 
X_floating data type, (I), 2-10 

alignment of, (I), 2-11 
big-endian format, (I), 2-11 
format, (I), 2-11 
MAX/MIN, (I), 4-60 

z 
ZAP instruction, (I), 4-56 
ZAPNOT instruction, (I), 4-56 
Zero byte instructions (list), (I), 4-56 

lndex-32 


