SYMBOLIC COMPUTATION

Computer Graphics — Systems and Applications

Managing Editor: J.L. Encarnagao

Editors: K.Bg J.D.Foley R.A. Gued;
P.J.W. ten Hagen F. R.A. Hopgood M. Hosaka
M. Lucas A.G. Requicha

Springer Series
SYMBOLIC COMPUTATION
Computer Graphics — Systems and Applications

J.L. Encarnacéo, R. Schuster, E. Voge (eds.):
Product Data Interfaces in CAD/CAM Applications.
Design, Implementation and Experiences.

1X, 270 pages, 147 figs., 1986

U. Rembold, R. Dillmann (eds.):

Computer-Aided Design and Manufacturing.

Methods and Tools. Second, revised and enlarged edition.
X1V, 458 pages, 304 figs., 1986

G. Enderle, K. Kansy, G. Pfaft:

Computer Graphics Programming. GKS —The Graphics
Standard. Second, revised and enlarged edition.

XXIII, 651 pages, 100 figs., 1987

Y. Shirai:
Three-Dimensional Computer Vision.
XII, 297 pages, 313 figs., 1987

D.B. Arnold, P.R. Bono:

CGM and CGI. Metafile and Interface Standards
for Computer Graphics.

XXIII, 279 pages, 103 figs., 1988

J.L. Encarnacio, P. C. Lockemann (eds.):
Engineering Databases. XII, 229 pages, 152 figs., 1990

P. Wisskirchen:

Object-Oriented Graphics. From GKS and PHIGS
to Object-Oriented Systems.

X111, 236 pages, 83 figs., 1990

J.L. Encarnagio, R. Lindner, E. G. Schlechtendahl:

Computer Aided Design. Fundamentals and System

Architectures. Second, revised and extended edition.
X1I, 432 pages, 240 figs., 1990

José L. Encarnacao Rolf Lindner
Ernst G. Schlechtendahl

Computer Aided
Design

Fundamentals and System Architectures

Second, Revised and Extended Edition
With 240 Figures, Including 34 in Color

Springer-Verlag

Berlin Heidelberg New York
London Paris Tokyo

Hong Kong Barcelona

Prof. Dr. José L. Encarnacao
Dr. Rolf Lindner

TH Darmstadt

Institut fiir Informationsverwaltung
und Interaktive Systeme, FB 20
Wilhelminenstralle 7

D-6100 Darmstadt, FRG

Dr. Ernst G. Schlechtendahl

Kernforschungszentrum Karlsruhe
Postfach 3640
D-7500 Karlsruhe, FRG

CR Classification (1987): 1.3, J.6, B.4.4, A.1

ISBN-13: 978-3-642-84056-2 e-ISBN-13: 978-3-642-84054-8
DOI: 10.1007/978-3-642-84054-8

Library of Congress Cataloging-in-Publication Data

Encarnacao, José Luis.

Computer aided design : fundamentals and system architectures /J. Encarnagdo, R. Lind-
ner, E. S. Schlechtendahl.—2nd, rev. and extended ed. p. cm.—

(Symbolic computation. Computer graphics—systems and applications)

Includes bibliographical references.

1. Engineering design—Data processing. 2. Computer-aided design. 3. Computer architec-
ture. I. Linder, R. (Rolf) II. Schlechtendahl, E. G. (Ernst G.), 1938— . III. Title. IV. Series.
TA174.E47 1990 620°.0042°0285-dc20 90-9721 CIP

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustra-
tions, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in
data banks. Duplication of this publication or parts thereof is only permitted under the pro-
visions of the German Copyright Law of September 9, 1965, in its current version, and a
copyright fee must always be paid. Violations fall under the prosecution act of the German
Copyright Law.

The use of registered names, trademarks, etc. in this publication does not imply, even in the
absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

© Springer-Verlag Berlin Heidelberg 1983, 1990

Softcover reprint of the hardcover 2nd edition 1990

Typesetting: K & V Fotosatz, Beerfelden
2145/3140-543210 — Printed on acid-free paper

Preface

This second edition is a thorough revision and extension of the first edition, published
in 1983. Many minor corrections have been made to eliminate errors or to adapt to
new circumstances. Several subchapters have been extensively revised to preserve their
topicality. Some major additions have been made to eliminate deficiencies in the first
edition and to reflect new developments in science and technology. Several topics have
been moved within the book so that they are nearer to corresponding topics. And of
course the bibliography has been updated.

Chapter 1, Introduction, has been adapted to the new contents of this edition.

Chapter 2, History and Basic Components of CAD, is almost new. The subchapter
Graphics Standards is a revised and substantially extended version of the former sub-
chapter on the Graphical Kernel System and now includes sections on the computer
graphics reference model, GKS, CGI, CGM, GKS-3D, PHIGS, and PHI-GKS. The
subchapter The Graphical Dialogue System has been substantially revised and extend-
ed to discuss window managers, user interface toolkits and user interface manage-
ment systems, and now includes a detailed example (THESEUS). The former sub-
chapter ‘on data bases for CAD has been replaced by a new subchapter Application
Interfaces to Engineering Databases including much more detailed information. The
former subchapter on economical aspects of CAD has been replaced by an updated
and more detailed subchapter Evaluating and Choosing CAD Systems. These three
subchapters all contain revised parts of the fifth chapter of the first edition.

Chapter 3, The Process Aspect of CAD, and Chapter 4, The Architecture of CAD
Systems, have remained almost unchanged.

Chapter 5, Implementation Methodology, is mostly new. It now focuses on the
hardware, the system architecture and the system/application interface of graphics.
(Discussions of CAD system development, data bases, integrated systems, methods
bases, and Al in the fifth chapter of the first edition now appear in Chapter 2.) The
former subchapter on computer graphics has been completely rewritten and now
covers graphics peripherals, graphics workstations and network aspects in much more
detail. The description of GKS as the system/application interface has been revised.

Chapter 6, Engineering Methods of CAD, now includes the new subchapter
Mathematical Description of Curves and Surfaces.

Chapter 7, CAD Data Transfer, is completely new. (The former seventh chapter
is now Chapter 8.) Data exchange standards and neutral formats are described, in-
cluding IGES, SET, VDA-FS, XBF, ESP, CAD*I, PDES, and STEP.

VI Preface

Chapter 8, CAD Application Examples, (the former seventh chapter) has been
substantially revised and includes several new examples. The eighth chapter of the first
edition on trends has not been retained. Though many of the global trends described
in the first edition are still evident, the authors have the impression that trends are
an appropriate subject for special periodicals but are out of place in a book.

Darmstadt, Karlsruhe J.L. Encarnacgio
August 1990 R. Lindner
E.G. Schlechtendahl

Contents

1 Introduction ittt 1
1.1 Purpose of this Book ...ttt i e e 3
1.2 Scope Of CAD ... it i i e e e e e 3
1.3 Content of the BOOK it inenne 4
1.4 110§ o 0 T 1 o' 4
1.5 Comments on the Second Edition 5
1.6 Acknowledgements i e 5
1.7 List of Frequently Used Abbreviationsc.... 6
2 History and Basic Components of CAD 7
2.1 3 € 51703 /20O PP 9
2.2 Modules, Functions, Componentscceveereureenennn. 10
2.3 Graphics Standards i e 14
2.3.1 Reference Model for Computer Graphicsc.cvvunnn.. 14
2.3.2 Graphical Kernel System (GKS)cciiiiiiiiiianernn.. 15
2.3.3 Computer Graphics Interface (CGI)cciiiiinionn. 17
2.3.4 Computer Graphics Metafile (CGM)ccoviiiiinienannn.. 18
2.3.5 Graphical Kernel System for Three Dimensions (GKS-3D) 19

2.3.6 Programmer’s Hierarchical Interactive Graphics System (PHIGS) ... 20
2.3.7 Programmer’s Hierarchical Interactive Graphical Kernel System

PHI-GKS) .ottt i i e e et e i e ee et 21
2.3.8 Language Bindings for Graphics Standards 22
2.3.9 Future Developmentciuiiinineiriieennenrnnnenannnnn 23
2.4 The Graphical Dialogue Systemc.ccoiiiieniinnnnnn.n. 23
241 The Language Model ...ttt 24
2.4.2 Interaction Stylesccoiiiiiiiiiiit ittt i 25
2.4.2.1 Graphics INteractioncoiriieunerneneennnennnnnns 25
2.4.2.2 Menu Selectioniciiiiii i e e et i 27
2.42.3 Command Languagesc..cuiiierinennnennennnnannennnns 28
2424 Multi-Windowing ittt 28
2.4.3 User Interface Design ToOIScciiiiinin i, 29
2.4.3.1 Graphics SYStemsvttiri i ie ittt i e 29
2.4.3.2 Window Management SySteImscovuiireenneennennnnnn. 30
2.4.3.3 User Interface ToolKitsiiniiiiniiiininnnnnnn. 32
2.4.3.4 User Interface Management Systems (UIMS) 32
2.44 THESEUS: An Example of a User Interface Design Tool 34
2.4.4.1 System ArChIteCtUIE . ..ottt it ittt it et it ie i e eieennennn 35
2.4.4.2 Window Managementoeiuiienriinnnnernaernnennns 36
24,43 OULPUL .. ii ittt ittt et et e e e e 38

2.4.4.4 TOPUL ...t e e e e e 39

VIII

2.5
251
2.5.2
25.21
253
2.5.3.1
2532
2.5.33
2.5.34
2.5.4
2541
2.54.2
2.543
2.5.5
2551
2552
2.5.53
2.5.5.4
2.5.5.5
2.6
2.6.1
2.6.2
2.7
271
2.7.2
273
274
2.7.5
2.7.5.1
2.7.6
2.7.6.1
2.7.6.2
2.7.6.3
2.1.7

27741
2.7.8
2.8
2.9
2.10

3.1

3.1.1
3.1.2
3.1.3
3.14

Contents

Application Interfaces to Engineering Databases - 42
Introductioniiiiiin it i e e 42
Data Modeling in PRODATitiiiiiiiiriinannnnnnn. 43
Complex ObJectsS . ..vvvtn ittt et ittt iae e 43
Database Schema Designccciiiiiiiiiienenannannn 45
Principles of Using Data Model Features 46
Semantic and Logical Organizationcc.cn.... 48
Objects and Interdependenciescviiiemrnernnnnnnn 49
Examplec.iniiii e e e 52
Version Managementuuitnirneinunnnenennnenenennn 55
Version Generation in the Course of a Design Process 55
Modeling of Version Interrelationsccciiivinvinnn 57
Version and Configuration Management based on PRODAT 58
Generating and Entering Data cccoiiiiirineneinenn. 61
System Environmentoiiieiriinrietiaieiieeeann, 61
Criteria for Characterizing the Generation Process 62
Commercial Applicationscooiiiieiiiieeinnenninann. 62
Engineering Applicationsciiiiiiiiin i, 64
5.2 11 11 o) (PO 66
Integrated Systems and Methods Basescovnvinnnn. 67
The Concept of Integrated Systemsc.cviiinieennnn. 67
Methods Basesvinitiin ettt it ettt 72
Configuring, Evaluating, and Choosing CAD Systems 74
The CAD Evaluation Modelciiiiiiiiiiiinan.. 74
Phases of CAD System Choice and Introduction 77
Restriction Factors Versus Advantagesccevvunvennnn. 78
Organizational Parametersc.cueiriieennieneeienannn. 79
Technological Parametersciierinniirenrr e enennnn, 80
The Industrial Design Processccovtueeuneiinennenannnns 81
The Economics of CAD Systemsccviiiiniinnennn.. 85
The Initial and Annual COStSccvvrrirnernrinrenannnenn. 85
The Benefitsoiniiie i e i e ettt 86
Methods for the Analysis of the Economics of CAD Systems 94
A Decision Support for Configuring, Evaluating, and Choosing

CAD Systemscovvveieirennnennn. e 97
Implementation Approachesciiiiiivnniinenen... 98
@005 416 11 -3 1o o O AP P 103
Interdisciplinary Aspects of CAD i, 104
P40 4 o 105
Bibliographyiiiii i e e e e 105
The Process Aspect of CAD iiiiniiiiian, 113
Modeling of the Design Processc.coiiiiieenennnn... 115
A Crude Model of the Design Process 115
A More Refined Model of the Design Process 117
Design Processes and Design Environments 121

Differences Between Conventional Design and CAD 123

Contents IX

3.1.5
3.2

3.2.1
3.2.2

3.2.3
3.2.3.1
3.2.3.2
3.2.3.3
3234
3.2.4
3.2.441
3.24.2
3.24.3
3.2.5
3.2.5.1
3.2.5.2
3.25.3
33
3.3.1
3.3.141
3.3.1.2
3.3.13
3.3.14
33.2
333
3.3.3.1
3.3.3.2
3.34
3.3.5
33541
3352
3.3.6
34

35

4

4.1
4141
4.1.2
4.1.2.1
4.1.2.2
4.1.2.3
4.1.24
4.1.2.5
4.1.3
4.13.1

A Network Model of the Design Processc.c... 123
CAD PrOCESSES .« ot iitte e ieee ettt ia e taaaeeneaanannnn 126
Design Process and CAD Processc.oeiiieenennennnnn. 126
Design Process Characteristics and their Influence upon the CAD

PrOCESS .ottt e e e e 128
The Environment of CAD i, 130
The Organmizationcouutiieeiiereenneennnreenenanennns 130
The Human Environmentcovetiennruneennennnnn. 130
Computer ReSOUICESccniiiiiiniieiiniiiieninenraennns 131
The Interaction Phases of the CAD Processc...c..... 133
The State of CAD Processescooiiieiiiennnenarnaennnn 134
The Lifetime of Processesccviieeiriinennennnnnnnan. 134
The Representation of the Process State 135
The Operating Stateccoiiiinetinennenneenneenanenenn 137
The Problem of Resourcescovvviiiineniinnenneennnns 139
Resource Availability and Conflicts of Resource Requirements 139
The Efficiency Aspect of Resourcesc.ccoviieenieenn.n. 140
CAD Machines and CAD ToOISccoiiiiiiinniniinnnennnnn. 141
Modeling in CADttt e et et 141
Developing a Schemaoiiuiiiiiinrinnrinanenannnn 141
Basic Considerationscoiitiiiiiiniinninrnnenannn 141
A Sample Problem i i i 143
Naming of Objects and Attributesciiieinreneinnn.. 144
Alternatives for a First Schemacci i ... 145
Influence of the Operations upon Schema Planning 147
Subschema Transformationsccieuiiiieeirnnnnnn. 149
Subschema Transformations as Part of the Schema 149
The “n-square” Problem of Subschema Transformations 150
Flexibility — A Measure of Prudence — Versus Efficiency 152
Schema Planning and Design Process Planning 153
Subprocess Planning and Data Validity 153
The Information Packagesccoveveeniiiinnnnnnnrennnn. 157
Resulting Data Base Management System Requirements 159
VU 1114 F-1 o/ AP 160
Bibliographycciiiiiiii e e 161
The Architecture of CAD Systems 165
The Gross Architectureot iinriin e, 167
COmMIPONENLS . . vttt ittt it e ettt ettt ettt 167
Interfacescviiniiiiii i e e 169
Development and Installation of a CAD System 169
The Invocation of a CAD SyStemcviirieiniennnennnnn. 169
Functional Interfaces in a CAD Systemccovveenniunnnn. 171
Man-Machine Communication Channels 173
Data Transfer Interfaces of CAD Systems 173
CAD Tools and CAD Machinescciiierninnnnenennn. 174
Tools Used in CAD System Development e 174

X

4.13.2
4.2
4.2.1
4.2.1.1
4.2.1.2
4.2.1.3
42.14
422
4.2.3
4.2.4
43
4.3.1
43.2
43.2.1
43.2.2
4323
4324
4.3.2.5
433
43.3.1
4.3.3.2
4333
434
4.3.5
4351
4352
4.4

4.5

5

5.1

52
5.2.1
522
5.2.2.1
5222
5223
5.2.24
5.2.2.5
5.2.2.6
5.2.2.7
523
5.2.3.1
5232
5233
5234
5.2.3.5

Contents

Tools Used in CAD Systems Extensioncevivan.. 175
Data Models ittt it iee et et 176
1Y 20 01§ o V- 176
The Ideal Situationc.ciiiiiiinniiinnnnnan 176
Reasons for Non-Ideal Mappingc.c.ivieeiienineennnnnas 177
Mapping Around the Languageccoiiiiiiiiinnann.. 179
Mapping Between ASPECtSttt tiin it i 180
Bindingci i e e e 183
The Block Structure Dilemmaovvriineenineenrnnnnnns 186
Algorithmic Modelingcoiiiiiii i, 189
The Resource ASPECtovivuneii e iiiieeieeieeieanaennes 191
Software Machine Design it iiiiiianan, 191
Designing Against Resource Conflictsc..co.vu... 192
The Abstract Machinet iiinriinnnnnnnnn, 192
Process State Representationcciiiiiiiieennernn.. 195
The Concrete Machine ciiiiiiiiiiiiniiannnnn.. 196
Resource Management Strategiescuoveeeurnnennnnnnn 197
The Components of a Software Machine 198
A Sample Software Machine: The Stack Machine 199
The Task and a Simple Solution i inin. .. 199
Planning of the Stack Machine iiiennan.. 203
Implementation of the Stack Machine 206
Distributed Systemst iiiiitiit i i e 210
The Graphical Kernel System GKS as a Software Machine 214
The Process Aspect in GKS i it iiene 214
The Resource Aspect in GKS ittt 217
D004 ¢ o0 5 o P 218
Bibhographyciiiiil i e e e 220
Implementation Methodologyo iiieun.. 223
Introductioniiiiiiiit i e e 225
Computer Graphics Hardware, 225
Introduction ittt i i i 225
Graphical OQutput DeviCesc.coiiiiiierinerieennennnnnnns 226
Refreshing Vector and Raster Devicesc.ccvunn.. 228
The Storage Tubet i it eeieee 231
The Plasma Panelottt 233
Liquid Crystal DeviCesooviiiiin et tiieeiieerennnenns 234
Graphical Storagecoviiiiiiii i e i 235
Pen Plotterscoooiiii it e e e 235
Raster Plottersciuiietie ittt et aeiiee e 236
Graphical Input Devicesciiiiitiiniie ittt 237
The Lightpeno. ittt it iiiennaann, 238
Tablet, Digitizer, and Touch Panel 239
Mechanical and Optical MOUSE oviivnnnriiiiiiennnnnnnn. 241
Trackball, Thumbwheels, Dials, and Positioning Keys 243

Joystick, Joyswitch, 3D Mouse, and Menus 243

Contents XI

5.2.3.6
5.3
5.3.1
5.3.2
533
54
541
5.4.2
5.4.3
544
5.5
551
552
5.6
5.7

6

6.1
6.1.1
6.1.2
6.1.2.1
6.1.2.2
6.1.2.3
6.1.2.4
6.1.3
6.1.3.1
6.1.3.2
6.1.3.3
6.1.3.4
6.1.3.5
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.4.1
6.2.4.2
6.2.5
6.2.5.1
6.2.5.2
6.2.5.3
6.3
6.3.1
6.3.2
6.3.2.1
6.3.2.2
6.3.3

Yo7 11+ 1< P 245
Graphics Workstationsciueiiiininriieennnennnnnnnn 246
The Interdependence of Hardware and Software 247
Graphics Workstation Architecture i, 248
Personal Computers and Graphics Workstations 250
Graphics in NetworKsoiiiiiniii it ittt iiinannenanns 254
Introductioncoiiiiiiiiiii i i i e, 254
CAD’s Requirements on Computer Networks 255
Basics of CAD Netsoiiiiiintinii ittt it ieaeannn 255
Decentral Computing Centers/Graphic Computing Centers 257
The Graphical Kernel Systemc.outiiiirirnniinnnnnnn. 258
System Descriptioncoiiiiiii i i i e e e 258
GKS EXamplescoviintiitiiie ittt it iieeeneaaianaenannnn 266
UMY .ottt ettt ittt ittt ettt ettt e 272
Bibliographycoiii i e e 272
Engineering Methods of CAD iiiven... 275
Geometry Handlingiiniiiiiiiiiiiiiiiineannnnn 277
Introduction: Points in 3D Spacecoiiiiiiiiiiiiiiaan., 277
The Hidden-Line/Hidden-Surface Problem 284
General Considerationsc.oiiiiiiniiininennneannnn 284
The Priority Procedurecoiiiiiineiiiii i, 286
The Overlay Procedurec.oiiiiiiiiiniiniininnnnnnnn. 289
Generalization of the Visibility Problem 292
3D Modeling . ..ovii it e e 294
Introductionc.iiuiiiiiii it it i e 294
Wire-Frame Modelsc..oiiiiiiriiiiiiiiieiiianennn. 295
Surfaces in Space i e e 296
3D Solid Modelingcciuiiiiitiin ittt 297
Mathematical Description of Curves and Surfaces 303
Numerical Methodsc. ittt 308
Introductionoiiiiiiiii i e 308
Finite Element Methods iiiiiiiiiniiiaaann, 309
Finite Difference Methods and Other Methods 312
SImulation i e i 315
Survey e e e e e e 315
Simulation Languagesc..uuiiiirinetnennrieennnennennns 316
(03151 4117715 (o) + H U 319
Problem Formulation iiiiiiiiiiineinnnnnn.. 319
Optimization Problem Characteristicscoevuuenn... 321
2N o) o) 1 o721 1o) 1 1-J A O 328
Computer Graphics for Data Presentation 332
Introductionciiiiiiiiiiiiii i i e e 332
Functions of One Variable ciiiiiiiiiniinn.. 332
B T -4 1 Y- 332
Representations of Several Functions in One Diagram 334

Functions of Two Variablescciiiiiiiiiiinnnn.. 335

XII

6.3.3.1
6.3.3.2
6.3.3.3
6.3.3.4
6.3.3.5
6.3.3.6
6.3.4
6.3.5
6.4

6.5

7

7.1
7.2
73

7.4
7.4.1
7.4.2
7.4.3
7.5
7.6
7.7
7.71
7.7.2
7.7.3
7.74
7.7.5
7.7.6
7.8
7.9
7.10
7.11
7.12

8.1
8.2
8.3
8.4
8.5

10

Contents

Marker Cloudsotiiiiii it i i it e e 336
Hatching, Shading, and Coloringcoiiinn... 337
Contour Plottingcoiviii ittt i 339
Pseudo-Perspective Viewcoiiiiiiiiniii i, 340
Vector Plots ...ovt i e e e e 341
Two-Dimensional Functions on Curved Surfaces e 342
Functions of More than Two Variables 342
Graphic Editing i i e 343
031191 1 0 oy 344
Bibliographycoviiiii i e e e 345
CAD Data Transfer ittt iiiiiiinennnann. 351
Introductionccoiiiinii it i e i 353
The Principle of Neutral Filesccoiviiiiiiiininnn... 353
History of CAD Data Exchange Standards and Neutral Format

Proposals e e e e e 354
IGES i e e e e e, 355
Development and Contentccciiiiiiinernninnennnn. 355
Formato e i e 357
254 053 o (30 357
Y 2 360
VD A-FS e e e e e 361
Proposals for Solid Model Transfer 361
IGES Section 5 — Basic Shape Description 362
Experimental Boundary File (XBF)ciiiiiiiiininnn.. 362
The IGES Experimental Solids Proposal (ESP) 363
IGES 4.0 ..ottt e e e 364
The Product Data Definition Interface (PDDI) 364
SET Solids Proposaliiinriiineiii i iiieanenennnnn. 364
L@ N D 1 364
PDES e e, 369
ST B it e e e 371
Standardization of “Standard Parts” 372
BibHographycciiiiiiii it e e e e 373
CAD Application Examples 375
Numerical Analysis and Presentation 378
CAD Application in the Automotive Industry 381
Functional and Geometrical Layoutcovuiiun... 386
CAD Application for Fusion Reactor Development 393
Biblography . ..o e e e 398
Subject Indexiiiunriiii i i e 399
Author Index i i i e e 423

1 Introduction

Combination of two different presentation modes for a coachwork
(courtesy of Tektronix, Beaverton, USA)

1.2 Scope of CAD 3

1.1 Purpose of this Book

The intention of this book is to describe principles, methods and tools that are com-
mon to computer applications for design tasks, independent of a particular product.
It does not present cookbook recipes on how to select a commercially available CAD
system for this purpose. When we consider CAD as a discipline lying somewhere be-
tween engineering and computer science, the tendency towards generalization in-
evitably leads us to emphasize the computer aspects. But the book is primarily for
engineers who plan to work in CAD or who already do. They will recognize ex-
periences they may have had, placed in a more general context. They should also find
useful ideas which they can put into practice in their own environment. The book is
also intended for students who want to give themselves a broader fundamental
background in CAD.

1.2 Scope of CAD

The meaning of “computer-aided design” (CAD) has changed several times in its past
twentyfive years or so of history. For some time, CAD was almost synonymous with
finite element structural analysis. Later, the emphasis shifted to computer-aided draf-
ting (most commercially available CAD systems are actually drafting systems).
Handling smooth surfaces, as required in ship-building and the automobile industry,
became another key issue. More recently, CAD has been associated with the design
of three-dimensional objects (this is typical in many branches of mechanical engineer-
ing). In this book, we consider CAD as a discipline that provides the required know-
how in computer hardware and software, in systems analysis and in engineering
methodology for specifying, designing, implementing, introducing, and using com-
puter-based systems for design purposes.

Computer-aided design is often treated together with computer-aided manufactur-
ing (CAM). We are not including CAM in this book, since CAM starts from data —
preferably machine-readable data — that are produced in the design process, but
CAM is not part of the design process itself. The same applies to computer-aided
testing (CAT), computer-aided work planning (CAP), computer-aided quality
assurance (CAQ), computer-aided maintenance, and the other areas which constitute
computer-integrated manufacturing (CIM). Knowledge about the available manufac-
turing, testing, and maintenance capabilities certainly influences the design; but the
methods applied in these other CA’s are not the concern of this book.

Recently the term computer-aided engineering (CAE) has been used for sum-
marizing all computer aids in design, while restricting CAD to computer-aided draft-
ing. Here, however, we will continue to associate the term CAD with the wider mean-
ing defined above.

Design is not only the more-or-less intuitively guided creation of new information
by the designer. It also comprises analysis, presentation of results, simulation, and op-
timization. These are essential constituents of the iterative process, leading to a feasi-
ble and, one hopes, optimal design.

4 1 Introduction

1.3 Content of the Book

In Chapter 2 we present briefly the history of CAD. The main components of CAD
systems are identified, and their principal functions described. Economical and inter-
disciplinary aspects are discussed.

Chapter 3 starts with a systems analysis of the design process. The notion of a pro-
cess is introduced as a fundamental tool to describe activities like design as a whole,
computer-aided design, program executions, terminal sessions, etc. The environment
and the resources which the environment must supply for the successful execution of
any process are discussed. The problem of modeling the design objects in an abstract
schema and the interrelation between the schema and the planning of the individual
step in the design are analyzed.

Chapter 4 concentrates on the interfaces among the components of a CAD
system, including the human operator. The problem of mapping an abstract schema
onto the capabilities of various programming, command, or data description
languages in described in detail. Emphasis is laid upon the resource aspect and its in-
fluence on the design of CAD systems. The concept of a CAD software machine is
introduced, and rules for designing such machines are given.

Chapter 5 presents graphical input and output devices and describes their
capabilities based on their principle of operation. Graphics workstations are de-
scribed in terms of hardware architecture and graphics support. The most important
features of computer networks are outlined as far as CAD systems are concerned.
Finally, an introduction to a standard software interface to computer graphics hard-

“ware, the graphical kernel system (GKS), is given.

Chapter 6 presents selected engineering methods for CAD. Various numerical
analysis methods (such as the treatment of geometry with numerical techniques, finite
elements, simulation and optimization) are treated only to the extent that the reader
may obtain select entry points into the extensive literature on these subjects. Not the
methods themselves but rather their embedding into CAD lies within the scope of this
book. Graphic techniques for presentation of numerical results are described in more
detail.

Chapter 7 is concerned with CAD data exchange. This area has become extremely
important since industry has realized that the greatest benefits from using CAD can
be obtained only when CAD data can be exchanged without (significant) loss of infor-
mation both between CAD systems and from CAD to subsequent processes in
manufacturing. Various interface techniques have been developed, some of them have
become national or international standards, for this purpose.

Chapter 8 gives selected examples of CAD applications taken from industrial prac-
tice.

1.4 Summary

The aim of this first chapter was to give the reader an impression of what he may ex-
pect to learn from this book. We have also explicitly indicated important areas which

1.6 Acknowledgements 5

will not be covered at all, or will be touched on only briefly (computer-aided
manufacturing or finite elements, for instance). Readers who prefer to study just one
topic or another are invited to jump to the pertinent chapters immediately.

1.5 Comments on the Second Edition

In the seven years since the first publication of this book an impressive expansion of
CAD has taken place. The dominating evolutions may be summarized as follows:

— CAD has matured to an important factor influencing the economy of the in-
dustrial countries. On the user side, the need for justifying the introduction of
CAD in a company is now practically replaced by the need to justify when CAD
is not used for design applications;

— the tremendous development in computer hardware technology has led to a
multiplication of the processing power, the storage capacity, and the graphic in-
teraction potential that is now available to the user at his desk, at much reduced

" cost;

— CAD systems are now available in an investment range from a few thousand US
dollars up to many millions. Hence, there is a solution for utilizing CAD for all
companies;

— CAD is seen more and more as a central part of the whole manufacturing process
(an issue which we deal with specifically in Chapts. 3 and 4) with the need for com-
municating the results of a CAD process to other processes. Hence, the develop-
ment of standards for communicating CAD information, and the development of
processors which perform such communication conforming to these standards has
become vitally important.

1.6 Acknowledgements

The authors gratefully acknowledge the support of their organizations, Technische
Hochschule Darmstadt and Kernforschungszentrum Karlsruhe, which have made
their facilities available for the preparation of this book. Several experts have con-
tributed to the contents of this book: The sections listed were written by the following
contributors: R. Giill (Sect. 5.4), W. Hiibner (Sect. 2.4), K. Klement (Sects. 2.1 and
6.1), D. Kohler (Sect. 2.5), L. A. Messina (Sect. 2.7), S. Noll (Sect. 2.3), J. Poller (Sect.
2.3), and M. Ungerer (Sect. 2.5).

The laborious work of preparing most of the illustrations for this book was per-
formed with great care by Mrs. U. Maier. We are much obliged to Mr. G. Becker who
copy-edited the whole manuscript for the first edition of this book, and to Mrs. M.
Christ for editing the complete second edition. Finally, we very much appreciate the
ideal support we received from many experts in the field, both from Germany and
other countries. Communication with them has been an invaluable help in collecting

6

1 Introduction

together the great variety of thoughts in the CAD world and presenting them here.
We also wish to express our gratitude to our families, who had to spend many
weekends without husband and father during the preparation of the manuscript.

1.7 List of Frequently Used Abbreviations

2D two-dimensional

24D two-and-a-half-dimensional

3D three-dimensional

Al artificial intelligence

AP, APP application program

B-REP boundary representation

CAD computer-aided design

CAE computer-aided engineering

CAM computer-aided manufactur-
ing

CAP computer-aided planning

CAQ computer-aided quality
assurance

CAT computer-aided testing

CCD charge-coupled device

CELL-D. cell decomposition

CGI computer graphics interface

CGM computer graphics metafile

CIM computer-integrated
manufacturing

CODASYL conference on data system
languages

COM computer output on
microfilm/microfiche

CRT cathode ray tube

CSG constructive solid geometry

DB data base

DBMS data base management system

DBTG data base task group

DC device coordinates

DDL data definition language

DIS draft international standard

DML data manipulation language

DP draft proposal, design process

EP economical parameters, envi-
ronment process

GDS graphics data structure

GKS graphical kernel system

GKSM graphical kernel systemmetafile

H/S
HPAT
1/0

IS

LAN
MFLOPs

MIPs

MIT

NC
NDC
NWI
OP
PCB

hardware/software
hyperpatches

input/output

international standard

local area network

million floating-point opera-
tions per second

million instructions per sec-
ond

Massachusetts institute of
technology

numerical control
normalized device coordinates
new work item
organizational parameters
printed circuit board

PHI-GKS programmer’s hierarchical in-

PHIGS

PLA
POL
TP
Ul
UIM
UIMS

VDS
VLSI
wC
WCS
WD
WDSS

WI
WISS

teractive graphical kernel
system

programmer’s hierarchical in-
teractive graphics system
programmable logic array
problem-oriented language
technological parameters
user interface

unser interface manager
user interface management
system

virtual device surface
very-large-scale integration
world coordinates

world coordinate system
working draft

workstation dependent seg-
ment storage

work item

workstation independent seg-
ment storage

2 History and Basic Components of CAD

Solid modelling of a hydraulic component
(courtesy of Control Data, Minneapolis, USA)

2.1 History 9
2.1 History

We will first give a brief review of the historical background of CAD. Knowledge
about the history provides a better understanding of the present state of the art, and
may even enhance the creativity of those planning to work in this field [ALLA73].
Up to 1978, this review is based on [BENE79]. Another summary on the computer
graphics part of the history of CAD is given in [CHAS81]. Early in the 1950s, the
Servomechanisms Laboratory at the Massachusetts Institute of Technology (M.I.T.)
developed the first automatically controlled milling machine using the Whirlwind
computer [PEAS52]. This led to the evolution of the Automatically Programmed Tool
(APT) [BROW63]. We note that computer-aided manufacturing is not a descendant
of CAD, but has a distinct origin of its own. The step from APT to design programs
including computer graphics functions was outlined by Coons [COONG63].
Sutherland, one of the first CAD pioneers, envisaged the designer sitting in front of
a console using interactive graphics facilities developed at the Massachusetts Institute
of Technology; he developed SKETCHPAD in 1963 [SUTHG63]. The software prin-
ciples of rubber band lines, circles of influence, magnification, rotation, and subfram-
ing were born in those days.

In 1964, General Motors announced the DAC-1 (Design Augmented by Computer)
system [JACK64]. The hardware was built by IBM according to the specifications of
General Motors Research Laboratories. DAC-1 was more concerned with producing
hard-copies of drawings than with interactive graphical techniques. In 1965, Bell Tele-
phone Laboratories announced the GRAPHIC1 remote display system [NINK65].
GRAPHIC1 utilized a modified DEC 340 display and a PDP5 control processor, con-
nected to an IBM 7094. The system was used for geometrically arranging printed-cir-
cuit components and wirings, for the schematic design of circuits or block diagrams,
for the composition and editing of text, and for the interactive placement of connec-
tive wiring. It was a very early implementation of the important idea of having the
CAD processing power distributed among local interactive workstations and a central
host computer.

In 1966, IBM Components Division described a system which was an aid to the
design of hybrid integrated-circuit modules, as used in IBM’s System 360 machines
[KOFO66]. Freeman suggested, in 1967, an algorithm for the solution of hidden-line
problems [FREE67]. A system called GOLD was developed in 1972 at RCA for in-
tegrated circuit mask layout [FREN70]. GOLD was implemented on a custom-made
refresh display, driven by a small computer (Spectra 70/25) with a single disk, and
was capable of interacting with a large time-shared computer. The first half of the
1970s was a time of much enthusiasm among the early CAD scientists and system
developers [CLAU71]. Much theoretical work was done, laying down the fundamen-
tals of CAD as we know it today. The Integrated Civil Engineering System (ICES) was
developed [ROSS76], followed by a number of systems [SCHL74] which implemented
many principal ideas regarding a CAD methods base. The theory of finite elements
and associated programs started a booming development [PILK74]. At the same time,
considerable research activity was going on in the areas of hidden line and surface
removal [ENCA72].

The University of Rochester started the Production Automation Project in 1972.
As aresult of this project, two geometric modeling systems PADL-1 and PADL-2 were

10 2 History and Basic Components of CAD

developed [REQUS2]. In 1973, a Lockheed review demonstrated that computer
graphics will not only be practicable in the design process, but also cost effective
[NOTE73]. In 1975, Chasen from Lockheed Aircraft Corporation published an
analysis of the financial benefits of computer graphics in CAD systems [CHAS73],
and Eastman described a data base for CAD. As a specialty within CAD, computer-
aided drafting began to appear. It soon had such an impact on the field that, more
recently, the term CAD seems to have become associated with the drafting part of
design alone, while CAE (computer-aided engineering) has been used to include the
analysis and optimization aspects of design. In this book, however, CAD is considered
as a supporting discipline for the whole design process, which includes synthesis,
analysis, and evaluation.

. Hewlett-Packard announced in 1978 a microprocessor-based raster scan display
terminal [DICK?78]. Several publications by General Motors [RENQO78] and Boeing
[INMA78] in 1978 confirmed the usefulness of CAD/CAM technology and described
how to bridge the gap between CAD and CAM (computer-aided manufacturing). The
late 1970s may be characterized as the time of CAD’s breakthrough from a scientific
endeavor to an economically attractive and — in many areas — indispensible tool in
industry. Governments became aware of this fact, provided funding and initiated pro-
jects to promote the integration of CAD technology, particularly with respect to
medium- and smaller-sized industries.

Since the beginning of the 1980s, CAD has been fully developed in the market
place, increasingly becoming a standard tool in design offices, and progressing in
tandem with a steady correlation and adaptation of the work procedures there
[JOHNS6].

The efforts in research and industrial development have concentrated since the
mid 1980s on the integration aspects of CAD as central part of CIM (computer-in-
tegrated manufacturing, which is also known emphatically as “factory of the future”
[VERN84]. This embedding of CAD into a complex industrial automated process re-
quired a more general concept of internal model data. The term product definition
data has been established. These product definition data contain as extension of the
product geometry data application-dependent information like product material data,
product tolerance data, and life-cycle information like product planning data, product
manufacturing data, and product test data [STEPS88].

In parallel and in addition to this integration an improved reference model for
CAD systems has been worked out, which associates the construction-related tasks
and the computational aspects of CAD in a reference matrix [RCADS8S].

Not only the industrial nations but also the developing countries realized that
CAD will be an essential constituent of practically all industrial enterprises in the
near future [ENCAS81], [LASTS88], [CHIYS88].

2.2 Modules, Functions, Components

Computer-Aided Design (CAD) means the usage of computer hardware and software
for the design of products that are needed by society [DIEB76]. Products, in the

2.2 Modules, Functions, Components 11

data data 1/0

base query
integrity check

application
programs

e

program library
(methods base)

~ 17 —F

dialogue graphics

Fig. 2.1. The basic components of a CAD system

widest sense, are elements of some larger system: a transport system, a medical center,
a factory planning project, etc. CAD means the integration of computer science
methods and engineering sciences in a computer-based system, providing a data base,
a program library (sometimes called a program chain or methods bank), and a com-
munication subsystem (Fig. 2.1). The program library contains both the modules used
for the elementary system functions (data base, dialogue, data 1/0, graphics) and the
modules that represent the algorithms of the application area. Data 1/0 implies the
functions of inputting data, performing tests to guarantee the integrity and consisten-
cy of the data in the base, and querying the data base for data. Some of these applica-
tion modules may be very large programs (for example, a module for finite elements).
The communication subsystem includes modules for dialogues (commands addressed
to the subsystem CAD and messages returned to the designer), for input and output
of data, and for graphical information processing.

The dialogue modules comprise the command language of the operating system
to the extent that is required to set up the appropriate environment for its operation.
The CAD system itself supports a special command language for dialogue with the
user. The data acquisition, the integrity check and the query language are the modules
for data I1/0. The graphical I/0 and the interactive graphic dialogue are processed in
the graphical information processing module. It has become a generally accepted
practice to distinguish between modeling functions and viewing functions. While
modeling, the user is actually communicating with a part of the application program
chain for the definition of the problem, its topology, its geometry, and other proper-
ties. For viewing, the user communicates with a set of functions for the display and
manipulation of graphical data, independent of the particular application. Hence,
viewing functions may be collected in an independent graphical module [ENCA79].

The interface between model data and graphical data is realized by the so-called
presentation module; this contains all information about the intended visual ap-

12 2 History and Basic Components of CAD

methods
base
\ application
data :

CAD system

i
Lo Lo Lo

users
Fig. 2.2. The functional structure of a CAD system

pearance of the product definition data on an output device. This is information
about, e.g., spatial and non-spatial selection of product definition data for visualiza-
tion; presentation accuracy, which determines the approximation accuracy of the
product geometry with graphical output primitives; inheritance schema for the related
graphical attributes; and definition of an intended shading [KLEMS88].

The border lines between modeling, presentation and graphical functions cannot
be drawn unambiguously. They depend on the CAD systems capability.

Development in the graphics area itself is providing the graphical systems with
more and more low level modeling and presentation functionality [PHBR88].

Figure 2.2 illustrates the functional structure of a CAD system, with emphasis on
the central role of the data base. From a system point of view, CAD systems can be
classified as:

— Time sharing
Several applications: programs run on the same computer. They are independent
from each other. The users only share the CPU usage.

— System sharing;:
Several users work with one common application program using the same com-
puter, the same data base, etc. The users share the CAD system resources.

From a hardware point of view there are two principal CAD system structures
(Fig. 2.3, [NEES78]):

— single programs; independent “stand-alone” systems; and
— terminal systems linked to a host computer and its data base.

2.2 Modules, Functions, Components 13

drum plotter microfilm
plotter

stand-alone system terminal system

Fig. 2.3. Stand-alone and terminal systems

With the spread of open computer networks in recent years, four major types of

modeling in networks have been established [DFN__86]:

Local modeling
All modeling work is performed on the local CAD system, but all or part of the
product definition data is retrieved from remote systems via the network.

Remote modeling

All modeling activities are performed on a remote CAD system. The local system
acts only as a detached workstation for the remote one. Only the initial and final
results may be distributed via the network.

Resource-sharing distributed modeling

This requires homogeneously distributed modeling environments. Any resources
are directly available to all workstations on the network and are shared between
the different modeling processes.

Cooperating distributed modeling

This requires a common command interface and common neutral, but interactive-
ly processable product definition data for all CAD systems involved. This neutral
product definition data is continuously updated on all systems participating in a
particular modeling session.

From a software point of view, one may distinguish between [SPURS1]:

Black-box (turn-key) CAD systems:
These have a predefined set of functions, generally operating only on specific
hardware. They possess a menu-driven user interface and a command language for
sequential call-up of the predefined functions. There exists no other way for com-
municating with black-box systems;

14 2 History and Basic Components of CAD

— Freely programmable (open) CAD systems

These possess in addition a programing language, which allows extension of the

set of predefined functions. The programming language is generally still FOR-

TRAN [CCRES87].

As aresult of the ongoing integration of CAD into CIM the functionality of CAD
systems is increasing in two independent directions. On one side they tend to serve
several mostly similar application areas. On the other side they consider the traversal
tasks arising from CIM integration [CIM__88]. This extended funtionality like, e.g.,
CAP (computer-aided planning), CAQ (computer-aided quality assurance), CAT
(computer-aided testing) is interfaced and handled with the help of additional pro-
grams and modules [ISIS86].

2.3 Graphics Standards

Standards specify interfaces for exchanging information between parts of a graphics
system. The usage of standards provides portability, extendability, longevity, device-
independence and functionality of the applications and system components.

Computer graphics standards are developed within the International Standardiza-
tion Organization (ISO) in Sub-Committee 24 (SC24), which belongs to the Technical
Committee 97 (TC97) for information processing. Sub-Committee 24 has several
Working Groups (WG’s), which develop the several Graphics Standards.

The ISO process starts when a New Work Item (NWI) proposal for a graphics
standard is drafted by a member body or a Sub-Committee. After a letter ballot (each
member country has one vote) the NWI can be accepted as a Work Item (WI). The
Work Item (WI) or project is then assigned to a Rapporteur Group, created by the
working group (WG). In international meetings the Rapporteur Group prepares
Working Drafts (WD) from the base document. The Working Group (WG) can
recommend that SC24 register the Working Draft (WD) as a Draft Proposal (DP). If
the letter ballot that follows is successful, the Draft Proposal (DP) is registered and
gets an ISO number. When the DP is technically stable and international consensus
is reached it can become a Draft International Standard (DIS) after another letter
ballot.

The final status is International Standard (IS). Only an IS is a valid standard.

2.3.1 Reference Model for Computer Graphics

The computer graphics committee of ISO is developing a basic reference model for
computer graphics. This model is needed to define the relations between the several
graphics standards. The reference model is also used to clarify the relations between
the graphics standards and other related ISO standards, such as the Open System In-
terconnection (OSI) reference model for computer communication.

The reference model described here is based on a classical view of graphics system
architecture, which sees a high-level interface, with a completely device-independent

2.3 Graphics Standards 15

CGI
PHIGS
Application Device
Process GKS Level
COMPUTER GRAPH.
METAFILE
GKS-3D Metafile Storage
Component
Programming Computer Workstation Workstation Horkstation
Language Graphics Functional Level Graphics
Functional Support Interface Device
Interface Package Funktional
Level Interface

Fig. 2.4. Computer graphics reference model and graphics standards

view of graphics, provided to application programmers. This level is followed by a
series of lower level interfaces, such as workstation and device level, across which
would flow device-dependent information.

The reference model contains the following components and interfaces (Fig. 2.4):

— application process,

— programming language binding functional interface,
— computer graphics support package level,

— workstation functional interface,

— workstation level,

— workstation graphics device functional interface,

— device level, and

— metafile storage component.

Classes of processing, such as attribute, transformation, clipping, and dimen-
sionality, are each described as a sequence of processing steps. The collection of all
processing steps of a class is called a strand. Elements from various strands are then
interleaved into streams, which describe the sequence of processing associated with
each graphical function.

Currently there are some work documents developed within ISO. The final dispo-
sition of the reference model is unclear, but doing good progress.

2.3.2 Graphical Kernel System (GKS)

GKS, ISO IS 7942, was the first international standard for computer graphics. It was
developed between 1980 and 1984 and became an IS in 1985.

GKS is a 2D graphics system that provides graphical output and input in a device-
and language-independent manner.

2 History and Basic Components of CAD

16

1195UT

UOTIRUIOFSUPT]
Juaubas

U0T18ISYION

1

UOTIRWIOFSURI] UOTIRISYIOM

1

— burddrro maza ;

f

ﬁ suor3erado buIHaTA A

i

7 burddro voTIRZITRUIOU 7

SO ur Moy ered ‘ST "3

Adoo

U0TIBUIOFSURI]
Juawbas

uoTIBWIOFSURIY
Juawbas

Juaubas

ajeroosse

Juawbas ou

i
[¢/.]

Adoo

UOTIPWIOISURIY
uswbas

Juaubas

23p1208SP

Juaubas ou

Juauwbas Juaubas ou

SUOTIRISYION BATIOP

pa1o3s
XOPUT M3TA pUR
aungos drfo

3198U7

UOTJRWIOFSURI] UOTIRZTTRWIOY

i

wa3r 391dIajuy

werboid uoriearidde

Swalr 1asn

SwalT WSH9

2.3 Graphics Standards 17

Six output primitives are defined:

— Polyline,

— Polymarker,

— Fill Area,

— Text,

— Cell Array, and

— Generalized Drawing Primitive.

GKS uses the concept of a workstation, which is an abstraction from physical
devices. More than one workstation can be used simultaneously for output and input
(Fig. 2.5).

Transformation to the coordinate system of the display device is accomplished in
two stages:

— normalization transformation, maps from world (user) coordinates (WC) to nor-
malized device coordinated (NDC), and
— workstation transformation, maps from NDC to device coordinates (DC).

Both transformations are window-to-viewport mappings. Graphical output within
segments (see below) is also transformed via the segment transformation matrix
(2x3).

The appearance of the output primitive on the display is controlled by aspects. For
each graphical primitive a set of aspects is defined, such as linewidth, colour, and
linestyle for polylines. These aspects are bound in several ways to the primitive.

In GKS, output primitives and primitive attributes may be grouped together in a
segment. Segments are the units for manipulation and change. Manipulation includes
creation, deletion, and renaming of segments. Change includes transforming a seg-
ment, making a segment invisible, highlighted or detectable. Segments also form the
basis for workstation-independent storage of pictures. Via this storage, which is set
up as a special workstation called workstation-independent segment store, segments
can be inserted, copied, and associated to other workstations.

For graphical input there are six logical input devices defined:

— Locator,
— Stroke,
— Valuator,
— Choice,
— Pick, and
— String.

The logical input devices can operate in request, sample, and event mode.

For implementations GKS defines nine levels of functionality to support. The
simplest (0a) has no segments and no input, while the most complex one (2c) has all
facilities including workstation-independent segment storage and event input.

2.3.3 Computer Graphics Interface (CGI)

CGI, ISO DP 9636, has been developing since 1985 to provide a standard range of
facilities to be used in communicating with graphics devices. CGI is useful for the

18 2 History and Basic Components of CAD

device-independent/device-dependent interface between functional computer graph-
ics support packages, such as GKS/GKS-3D and PHIGS, and graphics devices.

The output primitives and aspects are very similar to GKS. Some new primitives
have been added to support special devices: Circle, Rectangle, and Pixel Array.
Another extension to GKS/PHIGS is the possibility of closed figures. A closed figure
is a set of connected output primitives which define a filled area. Other CGI concepts
for segments and input are also very similar to GKS.

One main difference with aspect to GKS is the raster part of CGI. This CGI part
defines the usage of bitmaps for graphical output. Bitmaps are rectangular ar-
rangements of pixels, and are used for storing and modifying graphics output data
via raster operations. Unlike GKS/PHIGS, CGI has no workstation concept, because
CGI is conceptually a single-device interface.

Like GKS/GKS-3D, CGI is a configurable standard. The functionality of a
specific CGI implementation is defined via a profile which can define a lot more
levels, as in GKS.

2.3.4 Computer Graphics Metafile (CGM)

CGM for the storage and transfer of picture description information, ISO IS 8632,
was the second international standard for computer graphics. It was developed be-
tween 1982 and 1987 and became an IS in 1987.

The CGM standard has two distinct roles: the first is to define the functions that
need to appear in the metafile and the order and position of the various elements. The
second role is to define the way that these functions are recorded in the metafile.

CGM is very closely related to the CGI definition in its output functions and
primitive attributes. Graphics metafiles provide:

— a data format for picture archiving,
— a graphical protocol for off-line and off-site plotting,

User application

Interpreter

/

Functional standards

GKS, GKS — 3D, PHIGS

Display Storage
Computer Computer
IGra‘;?'cs ;rap:;cs Fig. 2.6. Relationship of CGM to
rertece cratie other graphics standards

2.3 Graphics Standards 19

— a single format for spooling to multiple dissimilar plotting devices,

— the possibility and impetus for a single standard interface to picture-generating
devices,

— a way to reuse the same picture without recomputing it,

— a basis for session save/restart mechanisms, and

— the glue for unifying and integrating distinct graphics applications and hard-
ware/software systems in a distributed environment.

The CGM is closely related to the standards GKS, GKS-3D, and PHIGS (Fig. 2.6)
and also to CGI.

2.3.5 Graphical Kernel System for Three Dimensions (GKS-3D)

After the definition of GKS the development of a 3D extension, GKS-3D, was started
in 1982. This is a fully upward-compatible system that allows 2D-GKS programs to
run in the 3D environment. GKS-3D is already a Draft International Standard, ISO
DIS 8805.

The main features added to GKS are:

— 3D primitives,

— fill area set primitives,

— edge aspects for fill areas,

— 3D geometric aspects,

— 3D transformation pipeline with viewing operations,
— 3D input pipeline, and

— access to hidden-line/hidden-surface removal.

GKS-3D extends each GKS primitive to three dimensions, and it adds one new
primitive, fill area set. Fill area set allows one to define a filled area with more than
one polygon.

The same aspects for output primitives as in GKS are used in GKS-3D. Extensions
are the edge control for fill area sets, and the 3D geometric aspects for text and fill
area/fill area set.

The workstation-independent part of the transformation pipeline contains the
normalization transformation (3D-window to 3D-viewport), the segment transforma-
tion (3 X4 matrix) and the normalization clipping (rectangular parallelepiped oriented
with edges parallel to the normalized device coordinate axes).

Viewing transformations are defined in a table at each workstation. In the first
viewing stage objects are transformed by a 4 x 4 view orientation matrix. In the second
stage the objects are transformed by a 4 x4 view mapping matrix and clipped at a 3D
volume. The projection type of the view mapping may be parallel or perspective.

After the viewing transformation, the workstation transformation maps from a
3D window to a 3D viewport in device coordinates (Fig. 2.7).

The input devices are extended to three dimensions analogous to the output. The
inverse of each transformation in the whole transformation pipeline is applied to in-
put coordinates.

20 2 History and Basic Components of CAD

Primitive
World Coordinates

y

Normalization
Transformation

Segment
Transformation

Normalization
Clip

Workstation Independent
Workstation Dependent

y

View Orientation
Transiormation

View Reference Coordinates,

Clipping Operation
and View Mapping

Workstation Clip
and Transformation

To Display Fig. 2.7. GKS-3D transformation pipeline

GKS-3D also supports the use of workstation-dependent hidden-line/hidden-sur-
face removal which can be defined for each output primitive.

2.3.6 Programmer’s Hierarchical Interactive Graphics System (PHIGS)

The proposal of PHIGS, which was brought into ISO in 1985, is also an International
Standard, ISO IS 9592.

PHIGS defines that the output primitives and their attributes generated at struc-
ture traversal time are identical to those of GKS-3D.

PHIGS addresses different needs using new functionality referring to GKS-3D.
The concepts of hierarchical picture definition, editing of the data structures, and
modeling of the objects are the major points of extended functionality (Fig. 2.8).

PHIGS supports the storage and manipulation of data in a centralized hierar-
chical structure store. The fundamental units of data are structure elements and these
are grouped together into compounds called structures, which are organized as net-
works.

Structure elements contain the information for the definition of output primitives.

2.3 Graphics Standards 21

SN
04020

Q e Fig. 2.8. Relationships between structures

Each output primitive has associated with it a name set attribute defined at struc-
ture traversal time. This name set attribute defines the eligibility of the primitive for
invisibility, highlighting, and detectability. The workstation-independent primitive at-
tributes are specified modally and are bound to a primitive when it is created at struc-
ture traversal time. Graphical output on a workstation is produced by traversing a
posted (associated) structure on that workstation and interpreting the graphical struc-
ture elements (traversal time).

The workstation-independent part of the transformation pipeline contains the
modeling transformation (4 x4 matrix) and the modeling clipping (set of half-spaces
combined with boolean operators defining the acceptance regions). The workstation-
dependent part of the transformation pipeline and the input model are identical to
GKS-3D.

Besides the metafile interface to CGM, PHIGS defines a second way of saving,
transferring, and restoring graphical data: the archive file. The archive file allows ran-
dom access to structure networks.

2.3.7 Programmer’s Hierarchical Interactive Graphical Kernel System
(PHI-GKS)

The approach of PHI-GKS describes the concepts which offer the functionality pro-
vided in PHIGS, and ensures compatibility to GKS and GKS-3D (Fig. 2.9).

As a slight deviation from GKS-3D the workstation independent segment store
(WISS) must always be existent in PHI-GKS. This would compare to an open and ac-
tive WISS in GKS-3D, but in PHI-GKS the operating state is not influenced through
the WISS. All generated segments are stored within the WISS.

In PHI-GKS a segment is defined as a collection of segment elements. Segment
elements may be attribute selections, labels, application data, name set specifications,
transformation selections, segment references, or elements causing the generation of
output primitives at segment traversal time. The segment priority is a workstation-
dependent segment attribute which can be set for open or active workstations. The seg-
ment attributes are not global values for the whole segment, but initial values at the
beginning of the segment, which can be dynamically set without opening the segment.

The workstation-independent attributes of output primitives are stored as separate
segment elements within the PHI-GKS WISS. The effective attributes of a primitive
are evaluated at traversal time, as in PHIGS.

In addition to PHIGS, an initial set of primitive attribute values can be defined
in the segment state list. This initial set is used during editing to copy the current at-
tribute state into the segment, as in GKS/GKS-3D.

22 2 History and Basic Components of CAD

Application
i

PHIGS i GKS-3D
i

Fig. 2.9. PHI-GKS directly called by GKS-3D and

PHI - GKS
PHIGS applications

All coordinates of output primitives and attributes are transformed with the ac-
tual normalization transformation before generating the segment element in the
WISS.

With respect to the new higher functionality the compatibility with GKS/GKS-3D
cannot be a hundred percent. This leads to minor changes or restrictions in a few
GKS/GKS-3D programs.

2.3.8 Language Bindings for Graphics Standards

Language bindings for graphics standards are being generated according to guidelines
designed to provide portability. Since current language standards are used as a
baseline, portability between hardware configurations is achievable whenever com-
pilers conforming to standards are available. Application program portability is
achieved between standard-conformant implementations by giving a single standard
binding for each language.

Separate bindings for each programming language have been developed. Lan-
guage bindings for the new graphics standards are being developed in FORTRAN,
Pascal, Ada, and C.

The following bindings exist as DIS, DP, WD, or WI end of 1989:

- GKS FORTRAN ISO IS 8651-1
- GKS Pascal ISO IS 8651-2
- GKS Ada ISO IS 8651-3
- GKS C ISO DP 8651-4
- CGI FORTRAN ISO WD

- CGI C ISO WD

- GKS-3D FORTRAN ISO DIS 8806-1
— GKS-3D Pascal ISO WD 8806-2
- GKS-3D Ada ISO DIS 8806-3
— GKS-3D C ISO DP 8806-4
- PHIGS FORTRAN ISO IS 9593-1
— PHIGS Pascal ISO WD 9593-2
— PHIGS Ada ISO IS 9593-3

— PHIGS C ISO DP 9593-4

2.4 The Graphical Dialogue System 23

A
structuresf - - —-------- e It -
7 /l /I
Y e 7/
s / | s !
, . | . i
R pa 4 |
A , HIGSY
e | | i
. | | | 1
. | ' | !
If"—T““’Gf@,L ' f PHIGS !
1 l 1 | !
| segmentsf——-+4——— At A
I | L7 ! 7 s
| o, | A N
! [N l// | s, 1
! e e Amm—pm—t——— !
I 7 I[| i 1
rL P | [i
A 2] ' [
ot —— + ! I
, . GR57CK5-3D | , , ,
1 i I | | ! ! !
| I I ! | 1 1. |
| | i i static \ _dynamic
| 1 | 1,7 ! [
1 1 | | - ! [
realistic sceneg¥------ e i it
) i “ // | //
presentation 1,7 v,
18 L

graphics/ ~~~~-~-~~- -~

Fig. 2.10. Relations between graphics standards

2.3.9 Future Development

The first main objective for the future is to finish all current projects and bring all
Work Items (WI) to Working Drafts (WD), then to Draft Proposals (DP), Draft Inter-
national Standards (DIS), and finally to International Standards (IS). Such work has
to be done in all work areas.

The second main topic is the GKS review started in 1987. A review process for a
standard is done every five years. The review process has several goals such as correc-
tions, clarifications, extensions (GKS+), etc.

Another objective is to extend PHIGS for lighting and shading (PHIGS +). Fur-
ther extensions will then be included in PHIGS+ + (Fig. 2.10).

The standardization of a window manager and the clarification of the relation to
standards like GKS/GKS-3D and PHIGS are also a very important goal for future de-
velopment.

2.4 The Graphical Dialogue System

One of the most important basic components of interactive computer graphics in
CAD systems is the input and manipulation of complexly structured objects via their

24 2 History and Basic Components of CAD

graphical representation. That forms the human-computer interface (also called user
interface) playing a central role in the successful use of CAD systems. Although the
communication part of a CAD system is one of the most relevant components for ac-
ceptance by the user, user interface design is sometimes handled more like an art than
like a science.

One of the reasons is that in the past well-organized structures of the user inter-
face, design methodologies, and development tools were often missing. Therefore we
will discuss in this chapter a formal model of the user interface, the language model
of Foley and van Dam [FOLE84b], structuring human-computer interaction into lex-
ical, syntactical, semantical, and conceptual levels.

We will then discuss some interaction styles like graphics interaction techniques,
command languages, menu selection, and multi-windowing.

Beyond GKS as the standard for graphics systems, several tools like window
managers, user interface toolkits and User Interface Management Systems have been
developed recently to support specific tasks in the design and realization of user inter-
faces. A short introduction to such tools is given. At the end of this section THESEUS
is described which tries to incorporate the tasks of the tools mentioned above within
one integrated system.

2.4.1 The Language Model

Foley and van Dam [FOLES4b] tried to model the human-computer dialogue in
analogy to languages for interpersonal communication. In a CAD system a dialogue
language is the means to describe the user’s action for creating and manipulating
products to be designed.

This language is structured into four layers:

— conceptual level,

— semantical level,

— syntactical level, and
— lexical level.

The conceptual level incorporates the main concepts of the CAD system as seen
by the user. It forms the user’s model which is defined by operations, like drawing
tangents to circles; objects or classes of objects, like tangents and circles; and the rela-
tionships between objects (e.g., topological, geometric, and functional relationships).
For this purpose, task analysis methods can be used.

The semantical level describes the real functionality of the CAD system, i.c., the
meaning of the operations, the parameters, constraints, semantical errors and their
handling, and the feedback which is usually given by changing the displayed images
and messages. Formal or semi-formal specification tools can be used for this level.

The syntactical level defines how the user can execute the functionality defined at
the semantical level. Each function is decomposed into single user actions called
tokens representing minimal interaction units. The functionality defined at the seman-
tical level can then be described as sequences of those input tokens combined with
output tokens changing the graphical appearance of the modified objects.

2.4 The Graphical Dialogue System 25

Finally, the mapping of tokens to physical devices is the task of the lexical level.
These tokens represent the basic interaction techniques and output primitives. Typical
examples are specific menu types, pointing mechanisms, or rubberband line drawing.
The input tokens may consist of the logical input devices of GKS [ISO__85] or of
basic tokens of another I/0 package which manages the mapping to physical devices.

This language model provides a valuable framework for structuring dialogues into
more or less independent abstraction levels that can be designed and implemented
separately. CAD systems with rich graphics capabilities need some conceptual separa-
tion of syntactical tasks (dialogue sequencing and output organization) from lexical
tasks of basic input/output control. Yet sometimes no sharp separation from the
semantical level can be drawn. Semantical information can be useful in giving syntac-
tical and lexical prompts and feedbacks; while the user is picking objects to be deleted
with, e.g., the mouse, those objects that are allowed to be deleted should be highlight-
ed while the mouse cursor is over them. For this kind of lexical prompt semantical
information is necessary.

This layer model allows the definition of design criteria tailored to each layer in-
stead of talking about “user-friendliness” in general. For each layer one can define
specific evaluation categories so that a system can be improved by local modifica-
tions.

The four-level separation has been used successfully in designing many user inter-
faces and should be used as an organizational framework in specifying human-com-
puter communication.

More recently, several investigators have used an object-oriented approach that
allows very flexible definition of the user interface components. In order to develop
efficient interfaces using that approach more research work must be done.

2.4.2 Interaction Styles

A multitude of interaction techniques can be used and combined to form the lexical
tokens of a CAD user interface. Each interaction technique, like selecting a menu item
or rotating an object, is connected to some devices. Selecting a suitable interaction
technique based on the devices available, with respect to human factors, is one of the
most challenging tasks in implementing CAD systems.

We will now classify the most important interaction styles into the categories of
graphics interactions, menu selection techniques, command languages and multi-win-
dowing.

2.4.2.1 Graphics Interaction

Most human-computer interactions in a CAD system are executed using graphical
devices like the tablet, mouse, lightpen, joystick, touch pad, trackball, thumb wheels
or digitizer. Operating with those devices, the user provides graphical information like
positions, lengths, or basic objects as the building blocks for designing products like
car surfaces, electronic circuit layout, or architectural constructions. Graphical repre-

26 2 History and Basic Components of CAD

sentations of the design products displayed on the screen can then be modified via
input of graphical control functions like moving, stretching, or scaling objects.

For the graphics interaction task of providing input data, the logical input devices
of GKS are a good characterization. The six types of input devices are:

Input device Input value

choice integer

locator position

stroke list__of __position
valuator real within range
pick object identifier
string list__of__character

The interaction techniques for those interaction tasks depend on the input devices,
visual aids like prompting, echoing, and feedback, and involvement of semantical
support during input operation.

Beyond the task of providing data, graphics representations have to be modified
interactively. For that purpose Foley, Wallace, Chan [FOLE84a] list, among others,
the following controlling tasks:

— Stretch:
The user picks a point or a part of an object and moves this part to a new position
with the rest of the object remaining at its place. This mechanism allows distortion
of the shape of a figure; e.g., moving one corner of a rectangle while the opposite
one is fixed changes the size of this rectangle. Continuous feedback allows the user
to adjust the shape correctly.

— Manipulation:
An object is moved as a whole without changing shape, but changing its position,
scaling factor, or orientation. Changing the reference point of an object by moving
it continuously with the pointing device is called dragging. Related objects like
connection lines to other objects or related text is updated automatically. Twisting
is another manipulation technique used to rotate 2D or 3D objects. The user
defines the axis to rotate about. Continuous or discrete feedback is possible. Final-
ly the size of an object can be manipulated by changing the scale factor to make
the object appear larger or smaller.

— Shape:
Smooth curves or surfaces represented, e.g., by bicubic splines or as Bézier curves
or patches can be manipulated to change their shape. Selecting and dragging one
or more control points is the common interaction technique for this purpose.

Many more graphical interaction techniques are used in CAD systems which are
often tailored to requirements of the specific design area.

Graphical representations and graphics interactions of a specific kind of interface
which is seen, e.g., in desktop programs or WYSIWYG-editors (What You See Is
What You Get) is called “direct manipulation” [SHNES83]. Direct manipulation inter-
faces provide continuous graphics representation of the objects of interest, physical

2.4 The Graphical Dialogue System 27

actions instead of complex syntax, and rapid reversible operations whose impact on
the object is immediately seen [SHNES82]. Around this paradigm much research has
been done into “directness” of action, directness of the translation of intention to ac-
tion, and directness in the feedback and knowledge of the system [HUTCS6].

Direct manipulation can influence CAD design by providing “direct” user inter-
faces close to the real design task domain without an additional abstraction level for
human-computer communication. In such interfaces the underlying computer system
should be more or less invisible. For further details about direct manipulation see
[SHNE87], [HUTCS86].

2.4.2.2 Menu Selection

Menu selection is the most frequently used interaction style in CAD systems. The user
makes a selection from a predefined set of alternatives. Menu items usually represent
a collection of functions and/or data values offered to the user at a specific dialogue
step.

Typical selection techniques are: pointing with the lightpen, touching a sensitive
panel, controlling the cursor with the mouse, selecting with a tablet, typing a label
on the keyboard, hitting a function key, or voice input of the menu item name.

Menus are an excellent means to structure and group system functionality and to
avoid errors by restricting user input to those choices that are allowed in a particular
situation. Menus also minimize learning tasks and reduce keystrokes, and are
therefore suitable for inexperienced users having only a short training phase. However,
experienced users familiar with systems functionality may lose time if the physical
selection mechanism is not fast enough. In this case, macro definitions mapping menu
selection sequences to one item should be offered.

A menu can itself be an element in a menu at the next-higher level of hierarchy.
In that way, trees of menu hierarchies can be created. The user navigates through the
tree by selecting an item that offers him an additional menu. Several studies concern-
ing depth (number of levels) and breadth (number of items) recommend no more than
three to four levels and four to eight items per menu [SHNES7]. Only for purposes
of detailed structuring and organizing functionality may more tree levels be useful,
but to speed up performance the advantage of breadth over depth has been con-
firmed, especially in cases of slow display rate.

Rules for grouping of items and ordering them within a menu are hard to state.
Clustering related items or sequencing items by alphabetic order, frequency of use or
importance are aids for novice users to reduce searching time. In Card’s experiments
[CARDS82] performance was best with alphabetic order. Nevertheless, significance of
naming and iconizing is of much more importance than ordering of items.

Permanently displayed menus should be reduced to that functionality which must
be always available. Other menus like hierarchical menus or functions that are selec-
table only in specific cases should be invisible until they are really needed.

Menus can appear at the user’s request. Pop-up, pull-down, or drop-down menus
become visible in response to pressing down a pointing device. The contents of a pop-
up menu depends on the position of the pointing device, while pull-down and drop-
down menus appear by clicking at the menu title permanently visible.

28 2 History and Basic Components of CAD
2.4.2.3 Command Languages

Menus are a selective interaction style because the system offers the alternatives
directly to the user. In contrast, a command language must be typed in explicitly and
is therefore called an imperative dialogue technique.

Functions and parameters are typed in on the keyboard. Command languages pro-
vide a high degree of user flexibility and initiative (user’s locus of control) and are
therefore appropriate for experienced users. Macro mechanisms allow the sequencing
of several commands for minimizing typing and response time. To speed up typing
performance, abbreviations and mnemonics are often used. Requiring intensive user
training, this interaction style is most suitable for frequent users who memorize the
language.

Command languages require a high degree of abstraction from the user’s design
task to its description in a language. Moreover, it is unwieldy for the user to operate
with graphical input devices and the keyboard in parallel. Therefore, other interaction
styles like menu selection and graphical input are preferable presuming they provide
the same degree of flexibility and performance.

2.4.2.4 Multi-Windowing

Many CAD systems show several perspective views of models (especially in 3D ap-
plications) at the same time, together with additional information, help and error
messages, menus, etc. Therefore, the graphics display is a scarce resource. To tailor the
screen efficiently, windowing systems were developed. The screen is subdivided into
several rectangular areas each called a window. Windows can overlap and differ in size
and content. The goal is to present an optimum of information to the user by restrict-
ing the amount of visual information to that which is of relevance in a specific situa-
tion.

Each window shows a cut-out of a picture. The user can modify the appearance
of the windows and their contents at any time. The following window operations are
convenient:

— open and close a window
a window is created or destroyed;
— move a window
changing the position of the window on the screen with fixed size and content;
— resize a window
changing width and/or height of a window without scaling the window contents
so that more or less information is visible inside the window;
— scale a window
modifying the scale factor of the window contents without changing the size of
the window frame;
— zoom a window
changing size of the window frame and its contents;
— pan a window
the visible contents of a window are moved without changing the size of the win-
dow frame or the scale factor of the window contents;

2.4 The Graphical Dialogue System 29

— scroll a window
the visible contents of a window are moved horizontally or vertically using
scrollbars or sliders;
— cut and paste
select an area of one window and copy it to another;
— top a window _
a window which was overlapped by some others becomes totally visible, i.e., it is
the topmost in the hierarchy of overlapping windows;
— bottom a window
it becomes the bottommost window; and
— iconize a window
a window is shrinked down to an icon that represents it.

These operations are mostly offered by a pop-up window or by boxes and bars in
the window border. A window manager is usually responsible for handling these
operations. In an overlapping system the window manager controls the hierarchy of
windows. A system without overlapping is called a “tiled” window system. In this case
all windows are visible, and the window manager splits up the screen into rectangular
areas. A comparison of these two types of window management is given in
[BLY __86].

Windowing becomes very popular in CAD systems because it enables the user to
work in several contexts and views in parallel, while the visible information is tailored
to the current context. For further details about window design see [CARD84],
[HOPGS86].

2.4.3 User Interface Design Tools

One conclusion on dialogue design for CAD systems is that one should use existing
user interface design tools that allow one to describe and realize dialogues. Several
tools have been developed to support the lexical and syntactical level of dialogue
design and implementation. They can be categorized into four classes: graphics
systems, window management systems, user interface toolkits and User Interface
Management Systems (UIMS).

2.4.3.1 Graphics Systems

Graphics systems are usually used for both graphical output and input. The input
component of, e.g., GKS provides logical input devices of six different input classes,
each defined by its input value. The input classes locator, stroke, valuator, choice, pick
and string are described in detail in Sect. 2.3.2 and Sect. 5.5.1. For each logical input
device several predefined prompt/echo types are offered, e.g., for locator a rubber-
band, crosshair, and tracking cross. At initialization time of a logical input device one
prompt/echo type is selected to be valid. The standard defines a number of
prompt/echo types for each input class; a minimum of one must be implemented. The
initialized logical input devices form the lexical level of the user interface. Lexical

30 2 History and Basic Components of CAD

feedback is given by GKS through the prompt/echo type. The GKS approach frees the
user interface designer from defining the lexical level, i.e., defining the input tokens
and binding them to physical devices.

The syntactical level of ordering input tokens into a dialogue must be realized on
top of GKS. It is often mixed with the semantical application tasks but can be
separated by defining a command interpreter or dialogue handler as an intermediate
level between GKS and the application.

GKS provides three types of communication mechanisms called input modes: re-
quest, sample, and event. Request is used when the application needs a specific input
value of an input class from an input device to continue processing; the application
waits until a trigger action happens, then the current measured value is sent to the ap-
plication. In this case, input is strictly sequentialized.

Sample mode is similar to request mode except that no explicit trigger action is
necessary to return the input value to the application. The application does not wait
for an operator action.

Very flexible user interfaces that enable the user to operate with several input
devices in parallel can be realized using GKS event mode. Event mode allows a set of
events to be generated simultaneously by a single trigger action. Each input event is
written into the event queue time order. The application is able to read the head of
the event queue.

With the event input mode GKS provides a sophisticated model which is on one
hand very flexible to use, but on the other hand hard to implement. Therefore, the
first generation of GKS implementations were often restricted to level 2b, i.e., were
without sample and event mode. But with the growing importance of flexible user in-
terfaces more GKS level 2¢ implementations are becoming available.

For more details about GKS see Sect. 2.3.2 and Sect. 5.5.1. Other graphics systems
like PHIGS, PHIGS +, PHI-GKS, or CGI provide more or less the same input model.

2.4.3.2 Window Management Systems

The appearance of bitmap displays has brought on the creation of numerous window
management systems allowing the designer to communicate with different contexts in
parallel and to represent simultaneously multiple objects and tasks, e.g., several views
of the same object. Currently, window management systems form an essential compo-
nent of advanced user interfaces. Nearly every workstation provides multi-windowing
capabilities as a basic service. A general architecture for window management systems
was presented at the Workshop on Window Management [HOPGS86] by Williams
[WILL86] and is shown in Fig. 2.11.

The lowest level of basic input/output transforms device-specific functionality and
hardware capabilities to a device-independent level, and vice versa. This component
can be realized, e.g., by CGI (Computer Graphics Interface) [ISO__86b], a proposal
for standardizing the device interface.

The next layer of Window Management Services is responsible for handling rect-
angular areas on the screen which may overlap, relating input events to windows,
distributing them to clients, and mapping bitmaps into windows.

2.4 The Graphical Dialogue System 31

| aee1 | APP2 apP3
GIK GIK

Ea 2

Window Management Services (WMS)

Basic Input / Output

Fig. 2.11. Window management system
Output Devices Input Devices architectural model

WMI (Window Management Interface) can be seen as a specific application which
is responsible for managing all user operations concerning windows like move, size,
etc.

GTK (Graphics library and Tol Kit) is a graphics library like GKS but can also be
a user interface toolkit. It is a subroutine package linked to the CAD system. In addi-
tion, other applications or system services like mailboxes, text editors, or calculators
can run in parallel in other windows.

An industrial de-facto standard has been established by X-Windows [SCHES6], a
Window Management System that was developed at MIT, sponsored by DEC and
IBM. A consortium of hardware companies including DEC, HP, Apollo, SUN, and
Data General have announced support for the X-Window environment on their
systems.

The American National Standards Institute (ANSI) is working on a standard in
Display Management and developed a first proposal to standardize architectures and
functionality of Window Management Systems [ANSI86]. Because of the success of
X-Windows the ANSI committee is now inclined to switch over to X, and will proba-
bly standardize X-Windows version 11.

Most of the commercial window systems do not confine themselves to handling
windows and the user operations related to them. In addition they often provide user
interface library with low level raster device-oriented output facilities and some in-
teraction techniques like menus and scrollbars. These tools are not well-suited to
designing CAD applications because they do not provide graphics interactions like
pick.

Only a few offer more powerful graphics systems like GKS for graphics I/0 inside
windows. In this case they usually are not fully integrated in the window system. A
consistent integration of graphics systems and window managers is especially a prob-
lem, because systems like GKS were not meant to run within a multi-windowing envi-
ronment. Therefore some modifications [LUXMS88] are necessary to let graphics ap-
plications run in some windows of a window manager. The paper of Lux-Miilders et

32 2 History and Basic Components of CAD

al. [LUXMB88] discusses several integration approaches. Because of market demands
we will soon see more GKS implementations on top of window management systems.

2.4.3.3 User Interface Toolkits

The interaction technique libraries usually offered in addition to a window manage-
ment system are called user interface toolbox or user interface toolkit. They are built
on top of window management systems as a collection of subroutines providing a set
of interaction techniques like menus, icons, scrollbars, forms, etc. This guarantees a
uniform interaction style presented to the user.

The user interface toolkit is responsible for binding hardware devices to interac-
tion units, giving prompt and feedback, and mapping user input to an event of a
specific type. The events are pushed into an event queue while the application can read
from this queue. Such tools can support the lexical level of user interface manage-
ment.

Unfortunately, they are often restricted to some specific interaction techniques and
lack graphical input mechanisms like pick or locator input because they are unrelated
to output capabilities. Therefore some lower level input like button-down and button-
up is passed directly to the application which is responsible for more complex graphics
interactions.

Nevertheless, systems like the APPLE Macintosh Toolkit, MS Windows and the
Presentation Manager from Microsoft, GEM from Digital Research, the X Toolboxes
from DEC, HP, and OSF/Motif, SunView, SunNeWS, Open Look and others have
become very popular.

2.4.3.4 User Interface Management Systems (UIMS)

A UIMS is a framework for user interface design, specification, and implementation
similar to what software engineering environments are to software development. In
contrast to toolkits they also support the syntactical level of dialogue sequencing and
are not embedded into a programming language.

UIMS have been a research topic for many years [THOMS3], [PFAFS85],
[OLSE87] and are now entering the market. One of the goals of User Interface
Management Systems is to specify the user interface with formal means and to
generate more or less automatically the real user interface from it.

A UIMS usually provides tools to define:

— lexical tokens and their binding to hardware devices;

— sequences of dialogue steps; and

— the routing of tokens to appropriate semantical processing places, i.c., the interface
to the application.

From this specification, which can be coded in a UI description file, the runtime part
of a user interface is generated. The user interface runtime part handles all the interac-
tion with the user and is separated from the kernel application. Three types of com-
munication between the user interface runtime component and the application are in
current use [ENDES84], [HAYESS5]:

2.4 The Graphical Dialogue System 33

(1) Internal control:
Internal control defines the user interface as a collection of 1/0 services activated
by the application program. In this case the user interface is controlled by the ap-
plication-oriented flow of programming code. The user communication is ac-
complished by calling corresponding functions.

(2) External control:
Here the application is divided into small packages each processing one dialogue
unit. Initiated by predefined input sequences the user interface component calls
application functions to give semantic feedback and to execute application-depen-
dent program steps. External control ensures a clear separation of application-
dependent functionality and I/O responsibilities. Controlling the context of all
possible interactions, the user interface is able to handle any context switch per-
formed by the user.

(3) Mixed control:
Here the user interface package and the application are realized by coroutines or
parallel processes. Information is exchanged in both directions. Mixed control
provides a very flexible interface between user interface and application because
application-specific semantics can be inserted at lower levels of user interaction
(e.g., semantic feedback at the lexical level). Yet a well-organized synchronization
mechanism is necessary to control the communication flow between user interface
and application.

The user interface should be developed by a user interface designer, a specialist
in dialogue design, human factors, and psychology who has the knowledge to tailor
the user interface to the personal skills of the potential computer-aided design group
and to the specific requirements of working place and environment. Many CAD
system designers are overtaxed in doing this because they do not have the knowledge
of, and education in user interface design. Because the final CAD system should be
separated into a user interface component and a real application component
developed with different design tools, a personnel division of responsibility is recom-
mended.

Nevertheless, it is nearly impossible for any dialogue designer to develop in a first
attempt the optimal user interface. One of the reasons is that in the computer-aided
design process a human being is involved whose behaviour is not as predictable as a
software component, and whose capabilities are difficult to estimate and to deal with.
A top-down specification of the user interface often fails because user skills were
misunderstood or unpredictable. A study at the University of California [GING78]
compared the properties of the user interface designer, the properties the designer
predicted for the end user who will use his system and the characteristics of the real
end user. The predicted properties were mostly closer to the designer’s characteristics
than to the user’s.

Consequently, professional user interface design must be an iterative process. A
first prototype is developed and tested with real users. The behaviour of the users,
their problems and mistakes are inspected and further prototypes are developed. This
method of prototyping, evaluation, and acceptance testing is usually more successful
than a formal specification of all details at the user interface. A user interface
specification should instead be of the form Shneiderman suggested in [SHNES82]:

34 2 History and Basic Components of CAD

“after 75 minutes of training 40 typical users should be able to accomplish 80 percent
of the benchmark tasks in 35 minutes with fewer than 12 errors”. Iterative design
presumes a powerful UIMS for fast prototyping, the opportunity for user participa-
tion, and fixed acceptance criteria to decide whether a further iteration loop is
necessary or not.

A UIMS often provides additional tools for help, error handling, undo, macro
definition, and user profiles to customize system characteristics to individual
preferences during user’s login.

UIMS will spread abroad in the near future; at the moment systems like Apollo’s
Domain/Dialogue and Open Dialogue, PVI’s Enter/Act, Tiger from Team Engineer-
ing, Interface Builder from Experlelligence and Hypercard for the Macintosh, Flair
from TRW, and BLOX of Rubel Software are available.

We saw that several types of tools exist to support the development of CAD user
interfaces. Most of them concentrate on a specific task in user interface design. At
present there is a great demand for integrated systems that incorporate concepts of
graphics systems, window management systems, user interface toolkits, and UIMS.
Graphics systems have their strong points in picture representation, structuring and
support of modeling; window management systems are responsible for managing
screen resources at a raster device-oriented level; user interface toolkits concentrate on
interaction techniques; and UIMS deal with dialogue specification and dialogue
management. It is not a disadvantage that these systems concentrate on what they can
do best. But as a minimum there should exist well-defined interfaces between the com-
ponents. Only a few attempts have been to incorporate dialogue management,
graphics, and window management tasks within one integrated system: these are
PRODIA [KROMSS], SIEMCAD [BITT88] and THESEUS [HUBNS7a],
[HUBNS87b]. The latter is now described in detail.

2.4.4 THESEUS: An Example of a User Interface Design Tool

The remaining part of Sect. 2.4 describes THESEUS as an example of a system for
designing and controlling all the communication tasks between user and computer ap-
plication. All I/0 services are strictly separated from the application with the advan-
tage that the user interface design is affected very little by the remaining CAD system.
THESEUS supports:

— multi-windowing for parallel work in various contexts;

— full GKS facilities within windows;

— interaction techniques like menus, icons, object pick, dragging, etc., for user input;

— object-oriented output for hierarchical structuring of pictures;

— event-driven input processing to implement user-controlled dialogue-techniques;
and

— mechanisms to specify dialogue flow and sequences.

To minimize the effort of designing and realizing a user interface, the THESEUS
programming interface, i.e., the interface to the CAD application, is located at a high
level of abstraction.

2.4 The Graphical Dialogue System 35

The following abstractions are provided by THESEUS:

— Physical abstraction frees programmers from device-dependencies. Moreover, this
device-independent interface hides terminal size and resolution by maintaining
windows for applications.

— Logical abstraction defines I/O-facilities in an application-oriented manner.
Logical abstraction allows the use of graphics primitives as well as the creation of
complex graphics objects based on predefined primitives. Moreover the applica-
tion is freed of special interaction styles: e.g., the implementation of a menu selec-
tion is hidden from the application. Feedback for user events is standardized and
executed by the user interface as long as semantic information stored in the ap-
plication program is not needed.

— Finally, syntactical abstraction is provided by an approach called incremental
dialogue specification. It enables the determination of dialogue sequences explicit-
ly so that dialogue management and execution is separated from the application.

The THESEUS communication architecture between user interface component
and CAD application programs is based on a mixed control model. Application-
dependent output and control of the dialogue is supported by THESEUS service
functions initiated by the application. In the case of input events, however, the cor-
responding semantical functions are called by THESEUS.

2.4.4.1 System Architecture

The transformation of device-dependent functions to application-oriented tasks and
vice versa is realized via three layers. The THESEUS system architecture reflects this
fact (Fig. 2.12):

— The basic I/0 system converts device-specific functions and characteristics to a
device-independent level. Therefore, other levels located above this layer do not
have to deal with these special capabilities.

— The task of the second layer, the window manager, is the control and management
of perhaps overlapping screen areas (e.g., open, close, resize of windows, etc.). It
maps output primitives from window coordinates to a screen coordinate system
and correlates physical input with events of some input classes. Moreover, it is
responsible for output into visible or hidden parts of windows and for screen
repair. It is possible to use existing window management systems, but then only
parts of the required functionality can be satisfied.

— The third layer is the communication layer nearest to the application. It is divided
into three components:

— The Presentation Manager is responsible for the display of all information on
the screen. It handles all output classes like GKS, object-oriented output, or
alphanumeric output and provides functions for window control. This func-
tionality is used by the application program to open windows and to draw and
manipulate the contents of a window.

— The Dialogue Manager maps user input to logical input sets. In the case of ac-
tions which have to be handled by the application, an application function is

36 2 History and Basic Components of CAD

Application Program

Dialogue || ciass | | erst || window|| || obgect || exs* || AP | | pindow
numeric
Control Input | | Input | | Input Output | | Output | | oy | |Control
Dialogue Presentation
Manager Manager

L Window Manager }
Basic Input/Output System }

THESEUS

v

i Fig. 2.12. THESEUS system architecture

called. Feedback in response to user input is done via the Presentation
Manager. Window-related operations like move or scroll are signalled to the
Presentation Manager which contains the data structures of the windows and
its contents stored as logical information.

— The Dialogue Control provides capabilities to define dialogue units and

dialogue sequences. This is done via the creation of input sets which, e.g., rep-
resent menus, icons, etc. Input sets can be created by application programs. In
this way, allowable user actions are defined.
Using the information stored within this component the Dialogue Manager is
able to prompt, echo or reject user input, to transform it to application-
oriented events and invoke capabilities of the Presentation Manager or the ap-
plication program itself.

2.4.4.2 Window Management

The window management implemented in THESEUS hides from the CAD program
problems normally related to multi-windowing, e.g., to redraw window contents in
case of windows moved, resized, or scrolled by the user. THESEUS stores the window
contents itself as logical data structures so that all necessary redraw operations can
be executed locally without involving the application.

Nevertheless it is possible to inform the application program that such a window-
related event had occurred. Three main tasks have to be handled by THESEUS:

2.4 The Graphical Dialogue System 37

— availability and management of a so-called virtual device surface (VDS); the infor-
mation actually displayed may be only part of the VDS;

— realization of local interactions (move, resize, etc.); and

— correlation of input events — triggered by physical devices — with window con-
texts and possibly transmission to the CAD program connected with these win-
dows.

THESEUS offers the following functionality for manipulation and control of
windows:

— move a window on the screen;

— resize a window;

— scroll the visible part of the VDS; and
— scale a window.

At any time exactly one window visible on the screen is related to user input. This
window is called the Listener Window; therefore another function,

— selection of the listener window,

is supplied.
Furthermore, other standardized user functions are available which have to be
called by the application program but which are controlled by the user interface:

— open and close a window;
— demand for help information (HELP); and
— roll-back of transactions (UNDO).

The window frame contains interaction regions for these tasks. The window itself
consists of a work area where information is displayed and graphics input (position-
ing, object picking) can be done.

Input and output functions supported by the THESEUS system are applied to dif-
ferent kinds of windows:

— GKS windows for programs written with the graphics standard;
— windows for graphics programs written in an object-oriented fashion; and
— text windows for display and manipulation of alphanumeric information.

The underlying concepts are identical for all kinds of windows: The application
program directs its data output to a world coordinate system (WCS) without consider-
ing problems associated with terminal screen resolution or window size. Only parts
of the WCS are usually visible in windows because of the limited size of the window
or the required resolution of the screen. It is possible to shift this visible area — by
means of user operations using scrollbars — within limits defined by the application
program (pan area).

The application program can inquire about actual window information like size,
position, and attributes for a flexible reaction to the new demands. The result is an
optimal adaption of the output to the actual window conditions.

38 2 History and Basic Components of CAD
2.4.4.3 Output

The output supported by the THESEUS system can be divided into three classes:

— GKS output,
— object-oriented graphics output, and
— alphanumeric output.

Output based on the GKS standard (see Sect. 2.3.2) is mapped into a THESEUS
window. Initially, GKS was not intended to support multi-windowing, but with
minimal changes at the GKS application interface it is possible to let GKS run in a
window.

— One change is that GKS is not allowed to take control over the whole physical I/0
device because this is a contradiction to the concept of divided I/0 resources
found in window systems. Therefore, GKS is connected to virtual devices which
are mapped by the window manager to real devices. As a result the GKS display
surface is no longer fixed but changes dynamically in respect to the size of its win-
dow.

— Moreover, a second change is that user-induced modifications of the visual presen-
tation are only possible by informing the application program responsible for per-
forming updates. For conceptual and performance reasons the underlying window
manager is responsible for executing window operations like moving, sizing, or
scrolling locally without involving the application by asking GKS to modify the
workstation transformation using the segment storage.

This solution keeps changes to the GKS standard minimal but tries to integrate
multi-windowing capabilities to GKS in an efficient way. For further details see
[LUXMB88].

In addition, THESEUS provides an object-oriented approach for graphics output.
It offers mechanisms for structuring graphics objects hierarchically. A basic set of
graphics object classes can be used to build up larger graphics entities, the complex
objects. Windows are then applied to present to the user sections of this “object
world”. Together with an inheritance principle for dynamical binding of attributes,
application-dependent graphics structures are defined, while the visual presentation
of those graphics structures is left to the THESEUS system. Therefore, the main ap-
plication task concerning output is to correlate application-oriented objects with
graphics objects and to position these objects into a two-dimensional world coor-
dinate system which can be defined freely by the application. -

During its lifetime a graphics object is represented in two ways:

— an entry into the graphics data structure (GDS); and
— a physical (visual) representation on the output device.

The representation of the object at the terminal screen is controlled by data items
in the GDS connected to this object. The application can only access the GDS,
whereas THESEUS manages the representation autonomously. Both representations
have to correspond to each other at all times.

Complex objects are composed of basic objects or other complex objects (hierar-
chical structuring of objects). This concept allows the definition of any application-

2.4 The Graphical Dialogue System 39

specific structure by means of simple building blocks (the basic objects). The same
operations applied to basic objects are also valid for these complex structures.

Once created, these complex objects can be viewed as new elementary units. A
complex object therefore consists of basic objects and/or complex objects and can be
seen from a logical point of view as a tree with basic objects as leaves.

For the application it is possible to create, manipulate, and delete instances of the
different object types.

Visual characteristics of objects like geometry, size, line type, or fill interior style
are divided into three groups.

— The first group of characteristics describes the object types, e.g., the shape and
orientation of a diamond. These type characteristics are fixed and determine the
layout of the object type.

— Other characteristics like size or radius describe how a single occurrence of a
specific object is to be drawn on the screen. These attributes are defined before
drawing the object.

— The third group of attributes can be changed dynamically, e.g., line type, colour,
or visibility. Such dynamic changes to graphics attributes may either be deferred
or will be displayed on the screen immediately.

Graphics attributes of complex objects are bound to child objects by an in-
heritance mechanism. Each child object is annotated as to whether it inherits the at-
tributes of the parent object or not. In the first case, the attribute values of the parent
object are used for output, otherwise the child attributes are valid. The mechanism
is a recursive one, i.e., it is applied also to child objects which are complex objects.

The alphanumeric output interface handles the output of alphanumeric text con-
sisting of characters of fixed size which are positioned into a matrix of rows and col-
umns. This serves as a basis for intelligent alphanumeric editors usable in a window
environment. Text is stored in a buffer and handled autonomously by THESEUS
analogous to graphics objects.

2.4.4.4 Input

The THESEUS system architecture allows the implementation of user-driven man-
machine interfaces where the user takes the initiative and the system reacts to user ac-
tions. Physical user input with input devices like keystrokes or movements of the
mouse are captured, collected, and related by THESEUS to logical input events like
object dragging. Feedback is given autonomously. In case of appearance of a logical
user event THESEUS can call an application function for semantical processing.
In conventional window management systems, physical user input (events) is
signalled directly to the application to be processed there [HOPG85]. The THESEUS
system frees the application from waiting for input, testing the authorization, and
branching dependent on input types. The mapping of physical user actions to logical
events related to application functions is done completely internally by the THESEUS
system which than triggers the corresponding application functions. The relation user
action — application function is not a static one, but can be modified dynamically
by the application. The relation is defined within data structures controlled by

40 2 History and Basic Components of CAD

Time
Create input events Application:
Initialisation

qulingh Start Stop
Hierarchy Event- Event-
Handler Handler
THESEUS :
Dialogue
Manager

Application calls
caused by
Input events

D77 5752705472777 s

Calls for
presentation or
dialogue control

THESEUS:
Presentation
Manager and
Dialogue
Control

Fig. 2.13. THESEUS control model

THESEUS. Moreover, the application is allowed to control the mapping process by
using functions to access the input data structures of the THESEUS system.

The flexibility of information exchange at the interface THESEUS-application re-
quires a well-organized control architecture for communication.

The THESEUS model of alternating control is shown in Fig. 2.13.

At first, THESEUS is instructed by the application in which way it has to react
to user actions. Normally this task is part of the main program. After having initializ-
ed first input events, the event handler as part of the Dialogue Manager is started.
It expects and collects user input, checks its permission, performs lexical, syntactical
and in some cases semantic feedback and activates the application if necessary. These
applications use THESEUS facilities for output and window control as part of their
semantic feedback and dialogue control components for specifying the next dialogue
step. After the application function has finished, the event handler is enabled to call
the next application function corresponding to user actions that have occurred.

To relate user actions to an application function several steps are executed within
the THESEUS system. At first one or a sequence of input events is related to an input
class. The relation is governed by fixed rules defined by the input data structures of
the THESEUS system. Typical physical input events (e.g., with the mouse) are pressing
or releasing one mouse button or moving the mouse. Examples of input classes are
menu selection, icon selection, object identification, object dragging, positioning
within predefined areas, or keyboard input.

Logical input events are grouped into input sets. Each input set consists of
elements of one specific class, e.g., the elements of an input set of class “Menu Selec-
tion” represent the menu items themselves. The grouping into sets is done during the
initialization phase of the application program according to an application-specific
task. Input sets are used to control the dialogue sequences. Input sets can be enabled
or disabled to allow or forbid the interaction units within a set. Moreover, each ele-

2.4 The Graphical Dialogue System 41

ment can be enabled or disabled. The input sets and the elements can be modified
dynamically. THESEUS provides functions to create and delete input sets, to add and
remove these sets to/from the event handler, to add and remove elements to/from sets,
to disable or enable sets and elements, and to set or inquire about input sets or ele-
ment attributes.

Each element of an input set is related to an application function. After having
related a physical input event to such an input element, the application function asso-
ciated with this event is called by THESEUS. Several elements can be connected with
the same application function. The application function is not necessarily limited to
application-dependent processing. It is also possible to modify THESEUS-specific
data structures for the control of subsequent input events. Using this mechanism
dialogues can be specified incrementally.

In contrast to most UIMS, the dialogue steps and their order are not specified in
a preliminary design phase because many graphical user interactions like picking are
related to dynamic elements which cannot be totally predefined. Therefore, the

o AP 17}
events [1][2][3][¢] [1][2][3]

I

Sets Input .. Input Internal Presentation Manager
Set 1 Set n Events and Dialogue Control

‘ STEP i

-’|*]AP1

o 3]
{2 4]

gvents DX 3][4][5] [1][2](3]

J? A
Sets Input .. Internal Presentation Manager
Set 1 et Events and Dialogue Control

STEP it1

Fig. 2.14. Dialogue specification

42 2 History and Basic Components of CAD

dialogue syntax is dynamically defined and modified at run-time. To reduce complexi-
ty only the changes compared with the dialogue step before have to be described.

Figure 2.14 shows an example of two successive dialogue steps. The logical events
like dragging an object or selecting a menu item are grouped into input sets. Internal
events like window operations are processed locally. All other events are connected to
application functions. After an event has occurred and an application function is
called, a transition to step i+1 is performed. During this transition event 1 of set 1
is disabled so that input related to this event is rejected. Event 2 is removed, the ap-
plication functions triggered by event 3 and 4 are switched, event 5 is added and the
whole input set n is disabled.

THESEUS offers the functionality required to specify the changes during a transi-
tion in an incremental way. That method of dialogue specification obtains a high
degree of flexibility in describing dynamic graphical user interfaces and reduces com-
plexity problems.

THESEUS is now used in several graphical application areas. For further details
see [HUBNS87a}], [HUBNS87b]. THESEUS is a research product developed at the Com-
puter Graphics Center, Zentrum fiir Graphische Datenverarbeitung eV. (ZGDV) in
Darmstadt, carried out within the UNIBASE project, partially sponsored by the
Federal Ministry for Research and Technology (BMFT), grant number ITS 8308, with
the project contractors ACTIS, ADV/ORGA, IABG, mbp, FZI, GMD, TU Berlin and
ZGDV.

2.5 Application Interfaces to Engineering Databases

2.5.1 Introduction

The quality and efficiency of the design process, especially in mechanical engineering
and VLSI design, has been improved by the development of sophisticated tools and
systems. While developing tools will continue to be a point of research, a new research
direction concerns the aspect of the integration of tools by a central database and by
standardized interfaces. Today most of the CAD tools work in isolation from each
other, using individual input and output files. Each tool requires its special data for-
mat; conversion programs have to be written to allow communication between dif-
ferent tools. Aside from this drawback, the file system approach lacks a lot of
capabilities which existing database systems for commercial applications offer. Never-
theless, database management systems (DBMS) for administrative applications are
not immediately suited for engineering design areas. There exist two principal ways
to satisfy the special requirements for CAD database systems. The first solution is to
extend existing DBMS with an additional layer. The other way is to develop complete-
ly new database systems with all features required for engineering applications.

Engineers in CAD/CAM and graphics-oriented applications on one side, and
database theory scientists on the other side have to work together to integrate tools
and DBMS into commercial products. The acceptance of such systems by users most-
ly depends on the database application interface and support of the system in model-
ing and manipulating the applications data (see also [ENLO 90]).

2.5 Application Interfaces to Engineering Databases 43

The intent of this section is to present such engineering database interfaces and
to show some examples of how to work with them. We first introduce a new data
model called PRODAT, which has been developed for the system engineering environ-
ment PROSYT".

We use this example to show the main features of object-oriented data models and
working with database application interfaces. The second section gives an overview
and some examples of the difficult process of defining data structures and data item
types for specific applications. The third section shows some mechanisms for hand-
ling versions of objects in databases. Finally, we will analyze the procedure of generat-
ing data and entering them in the database.

The operations and resources for use will be shown in examples and some deficien-
cies from an applications point of view will be discussed.

2.5.2 Data Modeling in PRODAT

PRODAT [PRODSS] is a database system which supports tools in a system engineer-
ing environment (see also [DITT86]). In particular, PRODAT provides basic mechan-
isms for modeling complex objects, configurations, and versions. These modeling
concepts include fundamental operations for:

— construction of complex structured objects from predefined parts or subobjects;
— recognition of the structure of a certain complex object; and

— selection of special parts of complex objects.

Instead of a conventional query language, PRODAT offers a procedural interface
to tools, and a graphical interface to human users. Only schema definitions are still
done by alphanumerical means.

2.5.2.1 Complex Objects

Complex objects (see also [LORI83]) consist of simple objects connected by standard
relationships. Simple objects are described by attributes and may contain text, object
code, pixel data, etc., which are called the contents of the object. The contents are a
variable-length byte string which is not interpreted by PRODAT. Attributes are similar
to those of the relational model, where each attribute has a domain and is unstruc-
tured. Figure 2.15 explains the two parts “contents” and “attributes”. The example
object contains a program source code and the attributes describe the generation date
of the program, the author, the programming language and an internal code number.

The structure of complex objects is modeled through relationships, which are
defined in the SUCCESSORS part of the schema definition (Fig. 2.16). It is possible
either to give an expression that determines the set of admissible SUCCESSORS or
to use one of various standard relationships (e.g., ‘has__component’, ‘has__alterna-
tive’). Relationships group simple objects in a hierarchical manner; there is no limit,

1 PROSYT R&D project was sponsored by the German government (BMFT) under reference
number ITS-8306A7.

44 2 History and Basic Components of CAD

Attribute Domain
11.11.87 DATE
heiner NAME
pascal CHAR 15
160559 INTEGER

Contents

program gen_pic;
begin

end. Fig. 2.15. Attributes and contents of an object

TYPE logical __object
STRUCT

name CHAR (20) /* attribute definition */

date DATE /* attribute definition */

CONTENTS /* contents definition */

SUCCESSORS /* subobject definition */
1 text__object OR 1..2 picture__object /* non-exclusive or! */

Fig. 2.16. Type definition of an object

however, to the number of predecessors of an object. Completion of complex objects
is a necessary condition for closing a phase of the computer-aided design process. The
structuring of objects might be a long process during which objects are not
guaranteed to stay consistent in each state of development. But tools and applications
need some predefinitions and restrictions when using objects. It should be possible
to fix certain conditions for the structure of complex objects in the schema definition
of objects. This is the reason why PRODAT supports definitions about the com-
pleteness of complex objects. A complex object is in the state complete if the set of
its current subobjects matches the expression in the SUCCESSORS part of the ob-
ject’s definition both in type and cardinality. The completeness status of an object is
evaluated by the system each time a subobject is moved or otherwise manipulated.

Figure 2.16 shows a schema definition. It determines that for each object of type
“logical object” one subobject of type “text object”, one or two subobjects of type
“picture object”, or a combination of both cases must be present for the object to be
complete. Incidentally, this defines the ‘has__alternative’ standard relationship. Fig-
ure 2.17 gives an example of a complex object with subobjects. For certain kinds of
combinations of types in the subobject definition part, PRODAT defines standard
relationships which are typical structures of objects in systems engineering environ-
ments. The precise definition of these standard relationships is not necessary in the
context of this paper. The example in Fig. 2.17, however, provides some basic ideas.

The object “Flip-Flop” has two subobjects, “phys. structure” and “logical
descript?”, which are connected to it by the relationship ‘has__representations’ (R). In
this case “Flip-Flop” is complete if the so-called representations both exist and if each
of them is of the appropriate type. Object “logical descript” has two subobjects
“text” and “picture”, which are connected to “logical descript” by a relationship

2.5 Application Interfaces to Engineering Databases 45

FLIP-FLOP

phys. logical
Structure descript.

N\
l text] | picturﬂ

/\z

segmented proc.
file generatio.
[of c [of
Symbols box display
test -

A A A
S1 52 53
A & % A

‘has__alternative’ (A). The ‘has__alternative’ relationship defines that the superob-
ject “logical descript” is complete if any subobject of a type specified exists. Object
“proc. generation” has three subobjects, which are connected to it by the
‘has__component’ relationship (C). The object “proc. generation” is complete if ex-
actly the specified number of subobjects for each defined type exists.

Fig. 2.17. Example of a PRODAT object

2.5.3 Database Schema Design

Before user data may be inserted or manipulated with manipulation operations of a
data manipulation language (DML), a database schema has to be defined for the
database by an authorized person (e.g., the project administrator). This section gives
an overview and some examples of the difficult process of defining data structures
and data item types for specific applications. We will discuss in this section only the
development of a database schema and not the general modeling aspects of CAD.
More information on developing a schema for CAD systems and for CAD applica-
tions is given in Sect. 3.3.1.

Database schema modeling features like data definition languages (DDL) and sup-
port tools help users in modeling their miniworld semantics. A future trend in this
direction is the use of graphical tools or interfaces for definition of a database
schema. Systems support the aspect that people think in pictures and therefore want
to use diagrams or similar techniques.

46 2 History and Basic Components of CAD

We first determine and formulate some general requirements for schema design in
technical applications.

Although the process of modeling design information with logical database struc-
tures may be intuitive and individual, we can find many common advances to map
the applications meta data (logical data and structures for holding user data). This
is indeed the reason why database designers can find data models. We can not give
a recipe for schema definition for engineers, but we can describe the demands and
some advances in engineering design. From this starting point we can derive some
proposals for data description and give some suggestions in working with a data
model, which is described in Sect. 2.5.2. Working with DML operations on user data
is described later in a further section.

2.5.3.1 Principles of Using Data Model Features

In each application, database schema definition is an examination of the features of
the data model, so it is the first test of the formal framework.

Data declarations give an answer to a basic question, namely the question ‘is it
possible to map the elements of a particular application to the components of a par-
ticular model?’. If it is, the model would be useful and the corresponding database
system can find acceptance. Schema definition is the most important part of the in-
tegration of tools/applications and database system, because the schema is the kernel
of the interface between the two components.

Data modeling is a method or formal description for structuring user data by
defining:

— object types;

— object structures;
— relationships; and
— consistency rules.

In the following we concentrate on determining object or entity types, object struc-
tures, and relationships as main components of the data structuring process. The
engineer has to observe some principles. If he describes his design world by the
schema, he has to keep in mind the definition level. There is a strong distinction be-
tween the data type definition level and the instance level, where insertion and
manipulation of object instances by entering and changing of values are done. In
discussing object semantics, we often forget this distinction, which is important when
we discuss types, objects, configurations, versions, and static and dynamic links in the
structure part of structured objects (see also Fig. 2.18).

We can compare these two parts with computer programming languages: the data
definition is the declaration part and the second part are the programming com-
mands. But in engineering applications the analogy is not strong, because the schema
definition should not be as static as the type declaration in programming languages.
Design is an evolutionary process, object types and structures evolve during the design
phases. In the course of declaring types and structures we have to notice that they
must be extendable.

2.5 Application Interfaces to Engineering Databases 47

type level instance level
celld c3
celld g%ceﬂé’ ¢ c2 2 23 ¢4
type definition: tuple entries:
composed object {c3: celld ct: celll)
{object: cell3, ..., cx cell3, c2t: celld)

parts: (cellt, celld))

{c3: cell3, c24: cell?) Fig. 2.18. Type and instance levels
cd

c§ Fig. 2.19. Shared subobjects

By modeling fixed relationships between object types like the ‘is__part__of” link
in the composition of a structured object, we have to take care about the resulting
Jframework: it must be useful later for designers! (See Fig. 2.19.)

The careful use of link types leads us to the problem of redundancy. Sometimes
structuring of data is manageable, but there is a lot of redundancy in the information
because the features of data models are not efficiently used (think of the algebra in
the relational model). By structuring the data one can already avoid some redundancy,
if a global overview of the overall schema and the whole set of design objects exists.

Last but not least, the user’s intention is to have not only a good logical represen-
tation of the data, but also efficient access. Performance is, of course, an important
factor for acceptance of the database system. So, we should not forget this point in
the schema declaration either. For example, if the model supports the destinction be-
tween simple and compound objects (complex structure), we should only declare a
simple object type for unstructured simple data values. Otherwise, the overhead on

48 2 History and Basic Components of CAD

the instance level, e.g., for retrieval is too high. The conclusion is to be careful in using
complex features of the model for simple solutions, because every service has a price.

2.5.3.2 Semantic and Logical Organization

Basic data structures which are given by the data model (e.g., tables and columns in
the relational model) are the logical organization of data. To define a sub-schema
(specific schema for a certain application) the designer has to group and arrange his
types of data in a way which allows the application or the user manageable insertion
and manipulation of data. Furthermore, the designer should take advantage of the
whole complexity of the particular data model. Only like this is an optimal use of the
database and its DML operations possible. Let us first consider the kind of applica-
tions and data which use an engineering database with features like the ones described
in this book.

The global task is to map the engineering design semantics onto features of the
data model. What we mean by semantics are the contents and the meaning of the ob-
jects, and the interrelationships between them, which together describe the design
area.

Engineering design description incurs the very difficult task of fixing as little
semantics as possible, but no less than necessary. If less are fixed, the later user has
more freedom in writing his own application programs. If a great deal of semantics
are fixed by the model, the user has a well-defined environment and it is guaranteed
that special tools will work in the right way.

An example of this principle is the information about cell ports in a VLSI design.
In the schema description one can fix the types of ports, or this information can be
variable and not fixed. Later in the design phase, the application has more
possibilities if the type is not fixed (see example in Fig. 2.20). But it is now the task
of applications to fix and interpret the semantics of a particular port. In this case,
the engineering database system can not support control of cell ports.

Therefore, in an engineering design environment, where user-written DML pro-
grams are not the primary application, but tools working on data are, the ad-
ministrator should fix as much semantics as possible. Of course there are some
counter examples, but in an integrated system, which should support and control very
different tools, we take it as a rule to fix semantics strongly.

This task enforces an information analysis of the existing application-specific tool
environment. Which information flows between which tools, i.e., what kind of data
are the input and what kind of data are the output of a certain tool or application?

After getting this information and structuring the data thus determined, one can
begin with the data description in the database. The administrator has to model the

less fixing: relation cell (name: string, . .., port: string)
good fixing: relation cell (name: string, .. ., port: (in, out, inout))
strong fixing: relation cell (name: string, .. ., inport: in, outport: out)

Fig. 2.20. Semantics fixing

2.5 Application Interfaces to Engineering Databases 49

representational and structural details of a design and the design process. We first
describe this process and the data produced.

Engineers work with interactive graphics methods and tools at a workstation.
After changing the design into a certain state, they start with some tools to check the
design, or simulate and test it. Therefore, the whole design exists in different represen-
tations or views on different abstraction levels, with additional interrelationships
across the representations. Moreover, it must be possible to partition the design
among subsystem designers. The database must provide structures for organizing the
design description within and across representations, design versions and interface
specifications.

2.5.3.3 Objects and Interdependencies

Here is something more about the objects, which must be described in the database.
For the term ‘object’ we use in this section identically also the terms ‘entity’ or ‘collec-
tion of data items’.

There are many different characteristics that together determine the object’s
semantics, which can be divided into three classes:

— object representations,
— object interdependencies, and
— library or object overlapping information.

In the following subchapters we consider these three main characteristics in more
detail. The above mentioned points of design objects are very important for the
description of the designer’s miniworld. From each of the following points, we can
derive some requirements on the data structures and relationships needed for the
design description in the database.

A) Object Representations

Representations in the context of database objects mean the description of an object
at different abstract levels. A complex object exists in more than one representation
(see also [KATZ85]). Some kinds of representations are not application-dependent
and we can find some common points and examples. Objects can be described by:

— internal and external information;
— interface information;

— the behaviour;

— the documentation; and

— graphical information.

The schema definition must include representations of infernal and external infor-
mation belonging to an object. At certain levels, objects may be handled as black
boxes with a special input and output. If the design wants, for a cell component, dif-
ferentiation between, e.g., the name, colour, and dimensions as external, and the num-
ber of primitives, geometry of primitives, etc.,, as internal information, he has to
define two representations of the object. The distinction is significant: if a user wants

50 2 History and Basic Components of CAD

to place this object in a certain drawing environment, then he needs only the external
information.

Another example is a program module: its name, and input and output parameters
may be defined as an external part, while the internally defined subroutines or other
details are hidden, externally inaccessible information.

Some objects have interfaces to other objects in the database, e.g., if an object is
used in another one. Therefore, the database has to manage interface information of
an object as well. Consider once again the program module example. Interface infor-
mation may be the program’s function, the programming language, and a reference
to its external information.

Design objects need a behavioral description, if they are functional parts of a
system configuration. There are many different forms for the behavioral description
of design objects. It may be state diagrams and tables, informal text, logical truth
tables or other mathematical descriptions, etc. The formal descriptions are mostly at
a high logical level, and so are the features of a data model. So, we can find a mapping
between the two forms.

Objects are often very complex and not self-descriptive. Therefore, they need a
documentation, mostly in text form. Textual information like documentation should
be placed into long fields of the data base, so it need not be partitioned or cut in an
impractical way.

Engineering design often produces objects which have a graphical representation.
Graphical information like geometric parameters of an object must be structured and
kept with data model features. Here there is overlap with the first kind of representa-
tion: some graphical information can also be partitioned into internal and external
parts.

B) Object Interdependencies

As an example for an object interdependency, suppose that if object A is modified,
this event induces an action (e.g., that object B must be generated anew).

Such complex consistency constraints can not be enforced by the system in every
case. Sometimes consistency is best maintained semi-automatically by sending
messages to the user, or by prohibiting some operations on such data. Another
possibility is a strict control over the execution of tools in a well-defined order (e.g.,
to run a logic test before the physical layout of a circuit is done). However, there are
some general interdependencies the engineering database system can support like:

— the composition;

— the hierarchy;

— connectivity information; and
— the evolution.

The designer has to give some semantics of the composition of complex objects.
He has to generate structures that express how complex objects are composed from
primitives (basic objects and structures). We can describe a compound object as a set
of independently manipulated primitives or complex objects. Between these objects
exists a characteristic relationship (like, e.g., a hierarchy or a network). An example
of a compound complex object is a VLSI cell, shown in a graphical representation
in Fig. 2.21.

2.5 Application Interfaces to Engineering Databases 51

celld

cellt cell2 Fig. 2.21. Compound object in VLSI

Hierarchical construction of the design is a result of the natural top-down parti-
tioning in the design process. Thereby the hierarchy is a particular relationship be-
tween objects and the construction a particular method. In many systems in our daily
lives, we can find hierarchically arranged subsystems as compound parts. Some of
these are the ‘component__of”, ‘child__parent’, and ‘is__a’ relationships (partition/
composition, specialization/generalization).

Some objects may be connected in, e.g., a netlist structure. In VLSI design there
is information about ports and junctions between parts of a netlist.

To model the evolution of design objects and design interdependencies between
them, the user should classify his objects as versions and use systems version manage-
ment. A version mechanism is described in Sect. 2.5.4. From a more abstract point
of view, this issue will be revisited in Sect. 3.3.5.1.

C) Library and Object Overlapping Information

Many design objects belong to projects. There is global information for each project
to manage the different design parts. Library objects or relations of objects to
libraries are also important for design environments. We have to consider object-
overlapping information like:

— project dependency;

— simulation information;

— technology information; and
— standard library.

An important information for partitioning a collection of designs is the dependen-
cy between projects and objects. For each project the administrator has to define a
new database for organizational reasons. Between the different databases it should be
possible to interchange project-overlapping information or technical details for fur-
ther design constructions.

Simulation tools manipulate objects and include further ones or complementary
data. To simulate, e.g., the electrical characteristics of a VLSI cell represented as a
complex object in the database, the designer has first to map the features and seman-
tics of some hardware description language into the data structures of the basis data
model.

A design object in a certain representation may need some fechrology parameters
to include the object in a final system configuration. Technology information is most-
ly not private, individual data; instead, it is, e.g., dependent on a workstation or
dependent on a certain material. So the designer should define this information in a

52 2 History and Basic Components of CAD

general library, accessable to all users who work with the same design in the related
project. To use the technology data, one has to reference the related objects or make
entries in a table or entity describing technology.

Design data and structured objects are often reused in other designs. After com-
pletion of object preparation, some objects will be released from private use to the
global environment. Released objects will be compared with or included in the current
development. Another point is inclusion of standard solutions, e.g., VLSI cell design
with standard cells is a common technique. In these cases we need standard libraries
in a global database area.

2.5.3.4 Example

After informal description of problems in the definition of database schema for
engineering applications, we introduce a specific example of data classification and
schema definition. Step by step, a schema for the example given in Sect. 2.5.2.1 will
be defined by using the data model features of PRODAT (see Sect. 2.5.2). On the basis
of object types and relationship types described in this section, we show the creation
and manipulation of some objects in the following Sections.

The design of structured object ‘Flip-Flop’ (FF) is done topdown; that is we first
define the object type for FF, then the types for its successors, and so on. But the types
exist independently; there are no subtypes or other hierarchical concepts used in the
schema definition.

Type Definitions of the Structured Object FLIP-FLOP

/~* Predefined Types for Attributes ***/

TYPE NAME STRUCT[name CHAR (20)];
TYPE ADDRESS STRUCT]
name NAME,

prename NAME,
street CHAR(40),
city CHAR(40)

I;

I*** Object Type Definitions ***/
TYPE FLIP_FLOP__OBJ STRUCT]
shortname NAME,
author ADDRESS,
generation DATE,
CONTENTS,
SUCCESSORS
1 PHYS_OBJ AND 1 LOGICAL__OBJ
I;
TYPE PHYS__OBJ STRUCT]
level INTEGER,
generation DATE,
simulated BOOLEAN,
CONTENTS
I

2.5 Application Interfaces to Engineering Databases

TYPE LOGICAL__OBJ

TYPE TEXT__OBJ

TYPE PICTURE__OBJ

TYPE SEGMENT

TYPE PROGRAM

STRUCT]
shortname NAME,
author ADDRESS,
generation DATE,
kind CHAR [10],
CONTENTS,
SUCCESSORS

1 TEXT_OBJ OR 1..2 PICTURE__OBJ

I

STRUCT]
author ADDRESS,
generation DATE,
system NAME,
editor NAME,
formatter NAME,
CONTENTS

I;

STRUCT]

author ADDRESS,

generation DATE,

graphics NAME,

bitmap BOOLEAN,

device NAME,

CONTENTS,

SUCCESSORS

1 SEGMENT AND 1 PROGRAM

I

STRUCT]

metafile CHAR [10],
generation DATE,
CONTENTS

JF

STRUCT]

language NAME,

author ADDRESS,

generation DATE,

execute BOOLEAN,
CONTENTS

SUCCESSORS

1 INCLUDE AND 2 MODULE

])

53

54 2 History and Basic Components of CAD

TYPE INCLUDE STRUCT]
language NAME,
generation DATE,
CONTENTS,
SUCCESSORS,
1..10 SYMBOL__OBJ OR 1. .100
PRIMITIVE

I;

TYPE SYMBOL__OBJ STRUCT]
longname NAME,
language NAME,
generation DATE,
CONTENTS,
SUCCESSORS
PRIMITIVE

I

TYPE PRIMITIVE STRUCT]
longname NAME,
language NAME,
generation DATE,
CONTENTS

I

The expressions in the SUCCESSORS clauses define the following ‘completeness
rules’ for objects of the named types:

A AND B: There must be objects of both types, type ‘A’ and type ‘B’

A OR B: There must be either objects of type ‘A’ or objects of type ‘B’, or objects
of both types (non-exclusive).

A XOR B: There must be either objects of type ‘A’ or objects of type ‘B’ (exclusive).

If ‘°k’ is a cardinality, we can write the following abbreviations for standard rela-
tionships. The database system will interpret them as described above. If there is no
cardinality given, we can generate as many objects of this type as we want (see type
SYMBOL__OB]J).

For kjA; AND...AND kA,

we write K (k{Aq, . . kpAp)

to define the ‘has__component’ relationship.
For 1...kjA; OR...OR 1.. .k A}

we write A (kjAq, ..., kA

to define the ‘has__alternative’ relationship.
For 1 A AND...AND 1 A,

we write R (A, ..., A

to define the ‘has__representation’ relationship.

2.5 Application Interfaces to Engineering Databases 55

For A OR...OR A,
we write E (Ay, ..., A}

to define the ‘has__element’ relationship, which is the most common one.

2.5.4 Version Management

Generally speaking, all technical design processes produce versions of the objects to
be designed. It is impossible to give a formal specification of a version; versions may
represent provisional results, erroneous developments, improved designs, updates, or
final results. In particular, versions reflect special interrelations resulting from the
design process. An idea of version generation is illustrated in Fig. 2.22.

design process

{

origin
object

l

design process continues

|

version of
object

Fig. 2.22. Version generation process

The lack of a formal specification makes it impossible to determine the semantics
of versions by a database system. Semantics of versions depend on the design process.
Therefore the support of version management by an engineering database system is
restricted to some basic versioning mechanisms. A model of version interrelations us-
ing these mechanisms must include the design process.

2.5.4.1 Version Generation in the Course of a Design Process

Each design process can be subdivided into different design phases. The sum of these
design phases and their interdependencies sets up a so-called design life cycle.
Remember our example of a VLSI design. In the case of a VLSI design, we can find
at least four design phases:

— requirement engineering;
— conceptual design;
— logical design; and
— layout or physical design.

The first step of a VLSI design is to establish a list of design goals. The conceptual
design results in a decomposition of the circuit to be designed into subsystems, and
a specification of the behaviour and interactions of these subsystems. This way, the
- functional dimension of the circuit is given, e.g., by a register transfer description or
block diagrams. The logic design leads to a logic description of the subsystems, usual-

56 2 History and Basic Components of CAD

requirement conceptual logic Simu- Simu-
engineering [k | design [~ Check— yaqion Mation™™ 30Ut I ation

-

Fig. 2.23.
Design life cycle

ly presented as logic gate schematics. The last step in the course of VLSI design is
to work out the layout. The layout describes precisely how to place and interconnect
the design parts. Each design phase leads to a complete description of the circuit, but
reflects a different level of abstraction — so-called representations of an object.

Of course a design process is not as linear as implied by the above explanation.
As illustrated in Fig. 2.23, a lot of iterations may occur during a design process.

Each design phase is followed by a check for correctness. In a VLSI design this
can often be done automatically, e.g., the layout is checked by design rule checkers,
and the logic design by logic simulators, switch level simulators, or circuit simulators.

It stands to reason that detection of errors leads to iterations, i.e., the correspond-
ing design phase has to be passed through again. Iterations are not only caused by
error detection, but also by an optimization of a certain design step. The design pro-
cess consists of an inner loop of synthesis and analysis parts.

Even if the results of a certain design phase are correct and optimized, redesign
may be necessary. For example, the logic design does not take into account geometri-
cal aspects. When designing the layout, there are geometrical restrictions we have to
take into consideration. If it is not possible to design an adequate layout of our logic
design because of such restrictions, we have to look for alternative solutions. From
these considerations results another loop of the design process. (See Sect. 3.1 for more
details on CAD design processes.)

As shown above, many things can force iteration cycles, each one leading to a ver-
sion of an object. This is not only a characteristic of VLSI design, it is typical of all
technical design processes. We can find similar design phases more or less in all
technical design processes. Looking carefully at the design process we can now distin-
guish between two classes of version — variants and revisions. Variants of an object
have similar functionality but may have different performance characteristics. For ex-
ample, two layouts of a circuit may be designed, one consuming less area and another
one consuming less power. Variants reflect design decisions while revisions of an ob-
ject reflect improvements. The generation of a revision is always done based upon its
temporary predecessor, while variants may be generated at any time.

Furthermore, we have to distinguish between released and in-progress versions.
Once a version is released, changes have to be prohibited. Bear in mind that variants
as well as revisions may be released. Released versions set up a kind of working base,
i.e., not only the designer of the version itself but also other designers have access to
released version and may use them for ongoing work.

Let us consider VLSI design again. Even if the layout of our circuit is not opti-
mized, a prototype based on it may be produced. In such a case we have to guarantee

2.5 Application Interfaces to Engineering Databases . 57

that the version of this layout will neither be changed nor deleted. In contrast with
released versions, in-progress versions are the ones still under development. Hence a
designer should be able to change, improve, or delete them.

To summarize, we should bear in mind that each design object is described at dif-
ferent levels of abstraction (representations). Usually various versions of the designed
objects exist for each of these representations (see [NEUMS83]). These are two classes
of versions to be managed during the design process:

— revisions; and
— variants.

Of course, versions may have other meanings, but in our context we shall focus
on the classes given above. Other semantics of versions are not yet supported by
engineering database systems.

2.5.4.2 Modeling of Version Interrelations

Version interrelations do not only exist within a certain representation, but also across
different representations. Modeling of version interrelations across different represen-
tations is a very difficult task. Therefore we must focus on the modeling of version
scheme interrelations within a certain representation.

To manage version interrelations, we need a modeling scheme. A modeling scheme
depends on what interrelations a designer is interested in. Thus we have to work out
different schemes depending on the interrelations to be managed.

Often version management (see also [DADAS84], [DITT85], [KATZ84], [TICHS85])
is needed to manage history information only. In this case a linear modeling scheme
is sufficient, even if it implies sequential version generation as illustrated by the
following example (Fig. 2.24).

In our example given above, we assume that ¥ is the generic version of the object
to be designed and the numbering of versions reflects their creation times. Then our
scheme implies that version V| is a revision of version ¥}, version V), a revision of
version V; etc., i.e., each version is based on its temporal predecessor. Although the
sequence given above is correct from a time-dependent view, it need not reflect the
real design interrelations. For example, version ¥, may be a redesign of version ¥
because version V; turned out to be a dead end. Hence, a linear modeling scheme
does not allow distinction between variants and revisions.

To distinguish between variants and revisions, a tree-like modeling scheme is
useful (see [RIEDS86]). (Figure 2.25 gives an example of a tree-like scheme of modeling
variants and revisions.)

Again we assume that Vj is the generic version of the object to be designed. Ver-
sions Vi, V5, and V, are variants, ie., they are alternative redesigns of version V.

O >0 (0O~ - 20

Vo V: Ve Vn

r T T T B Fig. 2.24. Sequential version genera-
ta t: tz tn tion

58 2 History and Basic Components of CAD

Fig. 2.25. Tree-like version generation Fig. 2.26. Directed acyclic graph version generation

Even if we assume that version V; is a dead end, in the course of a design process
it has to be interpreted as a variant. Version V3 is a revision of version V,. Generally
spéaking, we can interpret a tree-like modeling scheme like this: a certain path in the
tree reflects revisions of an object, while different paths reflect alternative solutions.
If the numbering of versions implies their creation times, it is possible to manage
history information by a tree-like scheme as well.

Tree-like schemes are useful for distinguishing between variants and revisions. But
how does one manage merging of versions by a tree-like scheme? In the course of a
design process, often the results of different versions are merged to a new version. This
leads us to a directed acyclic graph as a modeling scheme, as given in Fig. 2.26.

The graph given above may be interpreted as follows. Version Vj is the generic
version. Versions V;, V5, and V, are variants, while version V; is a revision of version
V. Version Vs — the final result — is a merge of versions V3 and V. Hence, it is
a revision of version V; as well as a revision of version V. As with a tree as modeling
scheme, history information is managed by a directed acyclic graph if the numbering
of versions implies their creation times.

To sum up, we have to bear in mind three modeling schemes:

— a linear modeling scheme;
— a tree-like modeling scheme; and
— a directed acyclic graph.

A directed acyclic graph is the most powerful scheme. Using such a scheme, we
are able to distinguish between revisions and variants. Merging of versions as well as
history information is supported. This does not mean using such an acyclic directed
graph is always suitable. The modeling scheme to be used depends on the version in-
terrelations that a designer wants to manage.

A very rough rule is that the modeling scheme to use depends on the design
phases. It seems useful to have a tree-like modeling scheme during the conceptual
design, a directed acyclic graph during the logical design, and a linear modeling
scheme for the physical design.

2.5.4.3 Version and Configuration Management based on PRODAT

Versions in PRODAT are objects which are derived from one another. This directed
dependency is maintained in a ‘is__derived__from’ relationship. It is possible not

2.5 Application Interfaces to Engineering Databases 59

Vi
=0 =0 =0
VO V2 V3 V5
v4 Fig. 2.27. Tree-like version interdependencies
Flip - Flop
R R
loglcal
rl
phys. 2 lo 1cal 2
structure t, p A A

/picture 2%

i text 1 & icture 1
e

Fig. 2.28. Versions of a complex object

only to have a linear sequence of versions, but also to build version trees by deriving
variants from one version which in turn may spread out arbitrarily. The resulting ver-
sion tree is shown in Fig. 2.27. To create a new version of an object, the original object
has to be released, which means this object cannot be changed further. If it is
changed, dependent versions can no longer be derived from it. Only complete objects
may be released.

The user can generate versions (by the create___version operation) from both sim-
ple and complex objects. If a version is created, a new object is generated automatical-
ly and the system connects the original and the new object by the version relationship
described above. Both the original and the new object acquire version status; never-
theless, from the user’s point of view they are treated like normal objects. The new
version is not released and, therefore, can be arbitrarily manipulated.

Figure 2.28 shows a version of a complex object, here named “logical descript. 1”.
If the version “logical descript. 2” is created as a complex object, the user must
specify that the unit for making a version is a complex object (instead of a simple
one). Version relationships between the originals and the new versions are generated
automatically. Each new object with version number 2 is now embedded in a different
version graph. After this generation process, the same standard relationships as in the
original object exist between the object and the subobject (in the new version). This
is because versions of an object have the same object type, and version generation of

60 2 History and Basic Components of CAD

CONFIGURATION FF__conf
/* components of the configuration */
* definition for each type part */

~

LOGICAL__OBJ
STRUCT

customer CHAR (20),
price INTEGER,

~

* additional. . */
* .. .attributes */

~

SELECTION
1 text__object XOR 1 picture__object,

~

* selection rule */

Fig. 2.29. Configuration type definition

a complex object does not change the structure of the origin. Starting from this state,
it would be possible to change the structure of the new version object or to manipulate
anything else (e.g., the contents).

To save memory space, versions are compacted automatically by storing only dif-
ferences between them [DITT8S], [TICHS85], so-called deltas, whenever it is possible.
A delta can refer to either a previous or a subsequent version. See [BATZ87] and
[RIEDS86] for a detailed discussion of the version concept.

Configurations can be seen as a logical grouping of objects; but it is usually necessary
to provide some additional information describing the configuration. For example, a
configuration could consist of a customized software package which is taken from a
complex object containing all potential parts of a package. Configuration-specific
data could then be the name of the customer, the date of delivery, or the price.

PRODAT configurations therefore contain an “inventory” of objects together
with user-defined attributes for each object. Configurations are described in a special
configuration type definition which contains selection rules similar to the com-
pleteness rules mentioned above (Fig. 2.29). The selection of objects must happen in
accordance with the relationship involved. For instance, @/ children of a choosen ob-
ject must be picked up (if using the ‘has__component’ rule) or excactly one child
must be picked up (if using the ‘has__alternative’ rule). As a result, the user can influ-
ence the configuration process by fixing a certain relationship at type-definition-time.

Creating a configuration is done by indicating the configuration type desired and
the simple objects involved. A conformance test with the configuration type defini-
tion is performed automatically. If any rule is violated, the action will be rejected; the
same is true if any of the objects involved is not released.

Figure 2.30 gives an example of a configuration; it originates from the complex
object shown earlier.

The main advantages of a separate configuration concept are as follows: con-
figuration structure is predefined to a certain degree by type definition; configura-
tions can be treated like “normal” objects; and they can be supplied with extra in-
dividual attributes. For a more detailed discussion see [BATZ87] and [BAUMSS],
which also deals with archiving of versions and configurations.

2.5 Application Interfaces to Engineering Databases 61

FLIP-FLOP

N

phys. logical
structure descript.

A

picture

R

proc.
generation

C [¢

b .
Symbols i eos}; display

Fig. 2.30. A complex object

2.5.5 Generating and Entering Data

In this section we will analyze in detail the procedure of entering data in the database
and what must be done first to generate these data. The first subsection deals with
ways of generating and entering data in different applications.

Generally, engineering design systems handle data at different points. Data arise
between the user and the user interface management, between the user interface
management and the application programs, or between application programs and the
database system, for example. Generating or entering in this context concerns the data
at the database interface. Therefore we will examine primarily data sent to the
database by the other components of the design system. But we have also to take into
consideration the entering and generating of data at other interfaces in our design en-
vironment, because of their influence on the behavior at database interface.

The importance of the whole system of which the database management system
is an integrated component, is outlined first. Next, the criteria for characterizing the
generation and entering data are described. By means of these criteria we treat the
subject in commercial applications, and present the differences in engineering ap-
plications. We will thereby make apparent the interfaces important for generating and
entering data, and will analyze the handling of data by tools.

2.5.5.1 System Environment

An engineering database system is an integrated part of a comprehensive engineering
application system. The data handled in such an environment are dependent on the

62 2 History and Basic Components of CAD

individual parts that process and produce data. Although our main interest is the data
produced at the database interface, all components involved in processing data must
be taken into consideration. Thus, when we want to discuss generating and entering
of data we have to look at the architecture of systems and distinguish these particular
components. Starting with components which communicate directly with the data-
base, all other components involved must be analyzed with respect to their types of
data, and the way these data are generated.

First, we outline some criteria as a basis for examination. Then we apply these
criteria to a typical commercial application to give a better understanding of
generating and entering data, and to show the contrasting requirements in engineering
applications.

2.5.5.2 Criteria for Characterizing the Generation Process

When analyzing and comparing the generation and entering of data for different ap-
plications, we need common criteria. The following points are used for later discus-
sion of data handling by applications both in commercial and engineering en-
vironments:

— process of generating data;
— type of data;
— quantity of data.

The process of generating data describes the route data takes from its origin to the
database interface. Points of interest are the application (dialogue or batch process,
or complexity of the data processing) and the influence of users (degree of interaction,
use of input devices).

For the type of data it is important to know whether the application deals with
simple attribute values or with structured objects. An example of the first kind are
flat tuples in a relational database. Data of the second kind can be objects which are
composed of other subobjects or relationships. The type of data used can be changed
by the application (a graphic structure used by an application may go on to be
transformed into longfields for entry in the database).

To describe the quantity being entered into a database a distinction must be made
between size and number of units. Whereas the size of units specifies whether at-
tributes, tuples, longfields, or complex objects are being entered, the number of units
is a measure of the amount of data produced in a design step.

By means of these criteria ways of generating and entering of data in typical ap-
plications can be analyzed.

2.5.5.3 Commercial Applications

Generally, applications using the database in an commercial environment hardly dif-
fer. The components in a commercial system and their use are shown in Fig. 2.31.

2.5 Application Interfaces to Engineering Databases 63

i AP AP
1

DBMS Interface

A

Vi

“ Fig. 2.31. Commercial applications

The following kinds of different applications are usually found in such systems:

— stand-alone DML users;

— simple interactive applications;
— batch applications; and

— conversion programs.

In stand-alone DML applications the process of generating data is very simple.
The user refers to data structures and data types, i.e., entity types with attribute types
and relationship types, defined by the schema, and enters the data to be stored directly
into the database. The #ype of data is the same as defined by the schema, i.e., in com-
mercial applications usually simple attributes. Also the guantity of data entered at
one time (DML session) is very small, both in unit size and number of units.

Applications with simple interactions, e.g., flight booking or accounting in bank
applications use specific actions and data like filling out a screen mask. The process
of such programs is retrieving data from the database, making some calculations and
updating the database. The type and quantity of data in interactive commercial ap-
plications are comparable to stand-alone applications.

By batch applications we mean monthly salary, statistics, settlement, or similar
applications. In such a batch process, many data can be retrieved from database,
calculations done, reports produced, and also many updates or store operations can
be done. As in the other cases we have only a simple ¢ype of data. The guantity (only
number of units) entered in the database is going to be large, but that is no disadvan-
tage in batch.

In every database environment there exist some data conversion programs, which
transform already existing information in machine readable form into the structure
needed for the defined database schema. Such conversion processes can run in batch.
The fype of data generated in these programs is simple, because data types are basic
and structures are predefined. The quantity of data is generally very large; an example
is the number of units in staff data.

Let us now summarize the facts for generating and entering data in commercial
applications. In most cases it is a simple process to generate the output data from cer-
tain input. Sometimes data is generated interactively by user. But there are also simple
types and small quantities of data handled. Only in batch processes is the quantity
of data large. In all cases the size of units is small.

64 2 History and Basic Components of CAD

X

User Interface
+ GKS
4

A

AP

DBMS Interface

0B
Fig. 2.32. Engineering applications

2.5.5.4 Engineering Applications

Commercial applications were introduced to emphasize what entering and generating
means and how it is done. Now we describe a fundamentally new situation in engine-
ering design. As in the previous section we first present the components of an
engineering design system. An engineering design is a complex structure composed of
many components. Figure 2.32 shows the rough architecture of an integrated
engineering design system. We can discern three main parts:

— user interface management and device independent graphics system;
— database management system; and
— application modules.

We briefly describe these parts and then consider the different data flows between
the components. The user interface management system realizes the dialogue between
user and application modules. The device-independent graphics system manages the
representation of graphical output produced by the application or directly extracted
from the database. It is also responsible for graphical input in cooperation with user
interface management. The dafabase management system is the central part in the
design environment. The application modules comprise all tools required for the
design. This architecture may not be seen as a rigid structure. When we describe user
interface management and the graphical kernel system as one component it does not
mean that this cannot be divided into two parts. But we do not discuss in detail
whether the user interface management is above GKS. In this section, only the ex-
istence of such components and their data communication is important. All the data
flows discussed in the following do not have to be present in every design environ-
ment, because their presence depends on the configuration and the systems integra-
tion. Interfaces exist between:

2.5 Application Interfaces to Engineering Databases 65

— user and database management system (DBMS);

— user and user interface management/GKS (UIM/GKS);
— UIM/GKS and application modules;

— UIM/GKS and DBMS; and

— application modules and DBMS.

The interface between user and DBMS serves mainly direct queries to the DBMS
by the designer. The user’s most frequent interactions are performed by the interface
to UIM/GKS. The interface between UIM/GKS and application modules is necessary
to control the user’s applications and graphic representations of application results.
The last two interfaces, between UIM/GKS and DBMS, and between application
modules and DBMS, can be seen as one single interface, if we take the UIM/GKS as
an application from the database point of view.

In the context of engineering systems the analysis of the tools communicating with
the database must be done. An engineering system consists of three classes of tools
(see also [KATZS85]):

— synthesis tools;
— analysis tools; and
— tools for information management.

In the first class we find synthesis aids for design capture, which transform the
design description to a machine processable form. The simplest way is digitizing a
pencil and paper specification or using a language-based text editor for creating some
program code. In VLSI design we find integrated circuit (IC) geometry editors for
specifying the processing masks for circuit fabrication or schematic editors for
creating a description of a hardware system at the logic gate level.

The process is marked by high human interaction, often using graphic input
devices. The application programs transform the human input (graphic input) to the
internal representation, which can be — depending on the database schema — com-
plex objects or longfields, which determine the #ype of data for the database.

Geometric descriptions of designs produce a large data quantity. Both the units
to be entered into the database (complex objects or longfields) and the number of
units (e.g., many transistors) are large.

Mapping tools map the high level description of an object into its physical im-
plementation. Examples for this type are programming language compilers or module
generators in software engineering, and PLA (Programmable Logic Array) generators
in VLSI design. Placement and routing tools, which place subobjects in a two- or
three-dimensional space and make the interconnection between them, are also part of
the synthesis class. All these tools generate data like machine language instructions,
fabrication mask geometries, wrap lists or printed circuit board (PCB) artwork, or
ship or building blueprints.

A designer makes fewer interactions in these kinds of processes. We can detect a
decreasing human interaction (Fig. 2.33).

The type of data is comparable with that of the last class. Furthermore, one can
notice an increasing quantity (e.g., stick diagrams are expanded to physical layouts).

Another important set of tools is available for analyzing a design. A simulator
models the behavior of a system by using an abstract description of it. In most cases
the model can be formulated mathematically. With topological analysis tools the cor-

66 2 History and Basic Components of CAD

decreasing human interactJ;gn
>

AP1 AP2
e.g.Editor e.g.Compiler
\
DBMS i . .
Fig. 2.33. Human interaction

rectness of the layout and interconnections of subsystems can be checked. An example
is a geometric design rule checker in VLSI design. A third class of analyzing aids are
timing analyzers for finding critical timing paths in VLSI designs or profiling the run
times of a program in software engineering.

When examining the data handled by this class of applications, we have to distin-
guish between dynamic and static analysis. Tools for static analysis like topological
analyzers or timing analyzers take a particular representation of design as input and
produce a report describing the errors encountered, a list of critical paths, etc., as out-
put. The analysis is independent of designers’ input; it uses representational data pro-
duced in another, earlier step of the design. Dynamic analyzing tools, which comprise
all kinds of simulators, produce outputs which are critically dependent on the input
set. Therefore systems must manage large quantities of data that are separated from
representational data like input or test data cases and the corresponding output. The
resulting output must also be stored in the database for later use, e.g., in the test phase
or for redesign.

Static analyzers process data produced by an earlier design step whereas dynamic
analyzers need some additional data like test data or stimuli. These data can be given
by human interaction or by database. Applications without human interaction can
run in batch. Analyzing tools produce large data quantities which must be stored in
a database for later use.

Finally, we consider tools for information management. An engineering design
system must provide facilities to query information about general design management
data like state of design parts, versions, releases, or designers involved in a design.
Furthermore the design management has to guarantee the consistency of designs by
starting complex consistency check applications.

The process of design management is highly interactive. It is marked by input from
humans, who normally enter data of simple fype and quantity.

2.5.5.5 Example

When generating the structured object ‘Flip-Flop’ as shown in Fig. 2.17 of Sect. 2.5.2,
one must either use an interactive object editor or the procedural interface, which is

2.6 Integrated Systems and Methods Bases 67

named PQL (PRODAT Query Language). The latter case is shown here. A structured
object must be generated by successively calling the create___object operation for each
node of the graph. After this generation process described below, one can use func-
tions to:

— update and read attributes, or read or write the contents;
— create or delete relationships;

— traverse the object structure; and

— archive designed objects.

The syntax for the basic create functions is as follows: (If a parent key value is
null, there is no parent.)

create__object:
crob (in: db identifier, object type, object name, parent object key, out: object key)

create__relationship:
cred (in: parent object key, child object key)

/* setting a variable for the database identifier */

SET $DB, CELLBIB;

I* creating the first level or root object */

CROB $DB, FLIP__FLOP, flip-flop, 0, $parentt;
I* creating the second level or all next direct subobjects */

CROB $DB, PHYS__0OBJ, phys.structure, $parentt, ;

CROB $DB, LOGICAL, logical__descr, $parent1, $parent2;
/* creating the next level */

CROB $DB, TEXT, text, $parent2, ;

CROB $DB, PICTURE, picture, $parent2, $parent3;
/* creating the next level */

CROB $DB, SEGMENT, segment__file, $parent3, ;

CROB $DB, PROGRAM, proc.generation, $parent3, $parent4;
/* creating the next level */

CROB $DB, INCLUDE, symbols, $parent4, $parent5;
CROB $DB, MODULE, boxtest, $parent4, ;

CROB $DB, MODULE, display, $parent4, ;

2.6 Integrated Systems and Methods Bases

2.6.1 The Concept of Integrated Systems

The software environment in which CAD systems are developed is usually character-

ized by:

— FORTRAN, or — more precisely — the FORTRAN dialect of the available com-
puter;

— several subroutine packages for access to non-standard features of the computer
installation such as graphic devices, data bases, etc.;

68 2 History and Basic Components of CAD

— the job control language of the particular computer; and
— the implicit assumption of the availability of certain hardware resources (a certain
amount of memory capacity, for instance).

Transfer of a CAD system from one installation to another — assuming that the
two environments are not identical — requires:

— modification of those FORTRAN statements that are not common to both
dialects;

— adaptation of those parts in the system that have been influenced by the computer
architecture (such as the word length);

— adaptation of the package calls to other packages (at least some of them);

— adaptation of the job control language;

— adjustment to more stringent hardware resources.

In the 1970s, a number of so-called “integrated systems” were developed
[SCHL74]. An integrated system consists of a set of subsystems for solving problems
from various engineering disciplines, and of a “system nucleus” whose facilities are
shared by all the subsystems. Its primary purpose is:

— to provide a user-oriented environment for formulating and solving application
problems from various disciplines in specialized subsystems;

— to support the development of such subsystems (in particular CAD systems), and
to minimize the work necessary for adapting a given system to a new computer
environment.

This goal is achieved by localizing all the environment dependency within the
system nucleus.

In addition, the system nuclei support the development of application systems by
providing higher-than-FORTRAN-level capabilities that are often needed. Examples
of such capabilities are: data structuring, language processing, program and data
management, documentation management, and user guidance.

The idea of concentrating basic software for all applications in a nucleus has also
been adopted in other systems, e.g., in IPAD [FULT81].

CAD system nuclei envelop the basic computer (hardware and manufacturer-sup-
plied software) and hide it behind a software machine, which provides facilities for
constructing higher-level software machines:

— facilities of the nucleus may be used by the CAD system developer for providing
new CAD capabilities (such as three-dimensional modeling). The term “sub-
system” is used for these new CAD capabilities. If the subsystem is useful for solv-
ing problems related to a large class of objects (a finite element or a line-drawing
subsystem, for example), it is called a problem-oriented subsystem;

— the capabilities of one or more problem-oriented subsystems may be combined by
an application programmer to formulate the design tasks for specific objects of
design (such as welding machines). Due to the fact that all subsystems belong to
the same family (being based on the same nucleus), they may be combined freely
without the danger of conflicts. Subsystems on this level are generally product-
oriented,

2.6 Integrated Systems and Methods Bases

basic computer
installation

CAD system nucleus

69

problem-oriented developer of
subsystems (*‘methods’’) the nucleus
product -oriented methods
subsystems developer
developer of a
parametric product design system
application parametric
user

Fig. 2.34. The level concept in an integrated system

— a product-oriented subsystem may still leave some parameters open. The para-
metric user may specify such parameters and perform variations on a basically
fixed design.

Figure 2.34 illustrates the various levels of the nucleus concept.

The existence of distinct levels of applications has also been recognized in the area
of CAD turn-key systems [GRAB79], [GRAB81]. Pioneering work on system nuclei
was done at MIT starting in the mid-1960s. The “Integrated Civil Engineering
System” or ICES [ROSS76] is still the most widely known CAD system nucleus. (The
term “Integrated System” is generally used synonymously to indicate what we prefer
to call the “nucleus”.) Other systems followed the same philosophy, placing emphasis
on different aspects (portability, efficiency, ease of subsystem development, interac-
tivity).

The systems DINAS [BEIE76], [BEIE78], GENESYS [ALCO71], IST [PAHL78],
and REGENT [SCHL76], [SCHLZ81b] belong to this class of CAD system nuclei. We
will discuss REGENT in more detail as a representative of this class.

Every implementation of the REGENT system consists of

— the nucleus;
— a number of subsystems for general-purpose use; and
— any number of application-oriented subsystems.

The nucleus itself consists of software machines for user support at various levels
(see Fig. 2.34):

— subsystem development;

— definition of a schema for the subsystem data structure;

— generation of modules;

— definition of a subsystem language (POL = “problem-oriented language” or
“product-oriented language”);

— subsystem execution; and

— subsystem documentation.

70 2 History and Basic Components of CAD

POL
statement
translator
library

POL REGENT subsysten
definition PLS

Y

schema
library
PLR precompiler .
PLR programs POL translator module Fig. 2.35.)
POL programs PL/1 compiler library The generation
module generator of a REGENT

~—_ subsystem

The architecture of a typical system of this type (REGENT) [SCHL81b) is shown
in Fig. 2.35 and Fig. 2.36. The components of a subsystem (subsystem language,
schema for the data structure, the modules, and the messages) are stored in three
libraries: a schema library, a library for the POL statement drivers, and a module
library. Subsystem data are stored in a data base and/or files (Fig. 2.37).

When these systems were developed, computer power was not yet so readily avail-
able as it is today. The “integrated systems”, though oriented towards interactive data
processing, found their dominant application in batch processing. Furthermore, they
were developed and operated mostly in a batch environment, and with typical batch
subsystems such as the finite-element ICES subsystem STRUDL II [NELS72] or the
REGENT subsystem GIPSY [ENDES80], [ENDES81] for geometrical and graphical ap-
plications.

In this environment, much emphasis was placed on providing an easy-to-remem-
ber problem-oriented language to the user. Sample Listing 2.1 shows a short program
in the GIPSY language with the result presented in Fig. 2.38. Since the principal man-
machine communication technique has shifted towards interactive communication
(menus, mouse, and the like) the “integrated system” approach is no longer being pur-
sued. The basic techniques developed are still found in current systems:

— tools for adapting the man-machine interface to user wishes;

— dynamic management and invocation of modules;

— management of complex data structures and their dynamic behavior;
— management of systems of files;

— data base management for archiving purposes; and

— tools for extending the capabilities of an existing system.

2.6 Integrated Systems and Methods Bases

71

Sample Listing 2.1. A program in the solid-modeling language GIPSY. This program will pro-

duce Fig. 2.38.

ENTER GIPSY:
DECLARE SURFACE(6) PLANE;
/* SPACE(n) means: a SPACE element with up to n surfaces
/* SPACE elements are convex
DECLARE INNER__SPHERE SPACE(1);
DECLARE CUBE SPACE(6);
/* BODY means: it is a general, not necessarily convex body
DECLARE OBJECT BODY;
I* length units are CM, unless specified otherwise
CHANGE UNITS LENGTH CM;

*/
*/

*/

*/

/* a PLANE is defined by a point in the plane and by the vector pointing to the material

side

SET SURFACE(1) = PLANE(POINT(0, 0, 0),POINT(-3, 0, O));
SET SURFACE(2) = PLANE(POINT(~3, 0, 0),POINT(0, 0, O));
SET SURFACE(3) = PLANE(POINT(0, 0, 0),POINT(0, 0, 3));
SET SURFACE(4) = PLANE(POINT(0, 0,-3),POINT(0, 0, O));
SET SURFACE(5) = PLANE(POINT(0, 0, 0),POINT(0, 3, O));
SET SURFACE(8) = PLANE(POINT(0, 3, 0),POINT(0, 0, O)):

/* Both cube and sphere are centered at (- 1.5, 1.5, 1.5)
SET CUBE = SPACE(SURFACE(1) + SURFACE(2) + SURFACE(3)

+ SURFACE(4) + SURFACE(5) + SURFACE(6));
SET INNER__SPHERE = SPACE(BALL(POINT(-1.5,1.5,1.5),1.8));
/* we now subtract the inner sphere from the cube
SET OBJECT = BODY(SPACE(CUBE-INNER__SPHERE));
/* we specify the direction of projection,

the projection plane by its normal vector,

and the location of the projected origin of the 3D-coordinated system in

the projection plane
CHANGE PROJECTION PARALLEL (-100.,-95.,+130.),
PROJECTION PI_NORMAL(-100.,-95. ,+130.),
PROJECTION ORIGIN (60. MM, 40. MM);
/* we specify the representation of lines, pen 4 is thick
CHANGE STANDARD PEN(4),
INVISIBLE LINETYPE DASHED;
OPEN PLOT DINA(6) BROAD;
PLOT(OBJECT);
/* we now wish to plot the shifted object, but suppress hidden lines
CHANGE INVISIBLE LINETYPE OMITTED;
PLOT(SHIFT(OBJECT, 5. CM, —5. CM , 0.));
END GIPSY;

*/

*/

*/

*!

*/

*/

72 2 History and Basic Components of CAD

POL REGENT POL
statement translator program
translator

library
schema PL/N
library program
N~
static .
_____ PL/1 compiler
l = Eg
m‘i‘:; binding linkage editor
___/

executable
CAD
program

Fig. 2.36. The generation of an application program with REGENT

2.6.2 Methods Bases

Similar system architectures have become better known as “methods bases” or
“banks of methods” [DITT79]. In a sense, the “integrated systems” idea is a
predecessor of the methods base concept [SCHL82]. However, for methods bases,
documentation support and interactive user guidance have been included in the con-
cept right from the beginning. See, for instance, [BART80], [EGGES81], [NOLT76],
[SCH177], [SCHLS81b]. The experienced user would employ a methods base in much
the same way as he would use an integrated system: he would state and solve his prob-
lem by formulating it in a problem-oriented language. The inexperienced user, how-
ever, will be guided from a first and perhaps imprecise statement of his problem
(maybe even in natural language) to the formalism required for the application of the
appropriate method. The methods base will try to recognize in the initial problem
statement patterns that are characteristic for the range of methods that it can propose;
it will ask for further data about the problem until the appropriate method has been
identified; it will then continue to ask for additional information as is needed for ap-

2.6 Integrated Systems and Methods Bases 73

executable . .
CAD _|ntemctlve
input/output
program
-— =
=
module
library e —
w II\
CAD program
execution

D y
card file

data input
base
files
N~
print output plot output

Fig. 2.37. The execution of an application program under REGENT control

Fig. 2.38. The result of a sample
program written in the problem-
oriented language GIPSY for
geometrical applications

plying the method. Keywords and/or a hierarchical structure will be used to navigate
in the problem domain.

Whether or not a significant amount of design knowledge can be preprocessed in-
to the formalism and structure required for this approach has yet to be seen. It is
perhaps not a question of whether this approach is principally feasible but simply a
matter of time and man-power required to create this formalization, which may cause
the failure of this concept if attempted on an overly broad scale. In limited areas, how-
ever, methods bases will not only help users to obtain solutions for isolated problems,
but will also provide a means for computer-aided education in the corresponding
problem domain.

74 2 History and Basic Components of CAD

2.7 Configuring, Evaluating, and Choosing CAD Systems

Computer-aided Design has developed rapidly in the last 20 years. The hardware and
software has varied greatly and is now accessible to many potential users. Drafting
tasks are solved today from PC to network environments.

Some reasons for the user’s difficulties in deciding when and how he should enter
the CAD field are:

— increasing hardware and software offerings;

— uncertainties regarding standards;

— high initial costs;

— lack of measurable justification;

— lack of qualified personnel; and

— time span required for planning, selecting and introducing a CAD system.

The approach given here proposes how this decision problem can be handled by
showing a global model of the decision process and dedicated implemented pro-
totypes. Such a decision system, in spite of the usual consistency and updating prob-
lems, is able to save considerable time and manpower. Still, its major advantage is that
it is the beginning of a methodology for maintaining and developing knowledge in
this field, and better tools to deal with it. Prototyping helps to classify, to force the
judgment of necessities, to analyze the knowledge development and to approach a
methodology. The choice, introduction, and expansion of CAD systems may be pro-
perly and effectively carried out by analyzing the firm environment, the technological
support and the estimated costs and savings. These form the domains of the model
and its elements, which are organizational, technical and economic facts, and rules.

2.7.1 The CAD Evaluation Model

The model (Fig. 2.39) contains the following aspects:
Management

This aspect represents the analysis and planning of costs and benefits. The methods
and precision in which the involved parameters are considered supports the local
economic correctness of the decision.

Application

cAD

Management Workstation

Mode |

Environment

Fig. 2.39. CAD evaluation model

2.7 Configuring, Evaluating, and Choosing CAD Systems 75

Environment

The environment which directly influences the choice, introduction, and operation of
a CAD system is described in terms of departments, processes, functions, personnel,
and tools.

Application

The application processes, functions, restrictions, and conditions are described, form-
ing challenges, objectives, and requirements.

Workstation

A hardware/software classification including individual components, attributes, con-
figuration dependencies, and market analysis is described.

The implementation approaches deal with these four aspects. The formal model
nevertheless does not partition the theme into these four aspects but into three, which
are: organizational, technological, and economic. The application aspects are includ-
ed in the organizational description. From these domains, decision processes, parame-
ters, facts, and rules are designed and implemented.

The following formal definition is expressed in first order predicate calculus and
its model theory. This formalization originated through discussions and a proposal
made by W. Kasprzak [ENCAS8S5]. One positive aspect is the conceptually simple tran-
sition to an implementation in the form of an expert system.

For the CAD model we build a language 2. of the class Q
* sorts/2./ =Spp U Sgp U Sgp

Sop = The sort name for organizational parameters
S7p = The sort name for technological parameters
Sgp = The sort name for economic (cost and saving) parameters

* The correspondent set of variables X, =OP u TP u EP
* (CAD model) = (M, y),Y,d)

M, = an implementation of the language Q,

v=Tvu l, U I

T = The axioms of the language Q.

I, = Inference of the type: formula(OP) — formula(TP)
(They describe the transition from a description in organizational param-
eters to a description in technological parameters)

I, = Inference of the type: formula(TP) — formula(EP)
(The transition to an economic description in cost and saving parameters)

Y=R; U R, U ¢ =the analysis methods

R, = so-called metarule in inference form
Sormula (OP) — formula,(OP) n formula,(OP)
(They describe the possibility of expansion of the given formula to a for-
mula with additional organizational parameters)

76

2 History and Basic Components of CAD

R; = so-called metarule, which contains statements upon the choice of the bet-

ter variants

Jormula,(TP) yu formula,(TP) — formula,(TP)
Jormula (EP) U formula,(EP) — formula,(EP)

o:t/xy, ..., t,/x, = Substitution rules applied to inferences I, I, Ry, R;.

D = (¢y+/x* € X} = a family of interpretations, which are distinct only in the values
for the variables of X.

Organizatian

Technology

Economics

Fig. 2.40. Mutual influence of domains

Since this model is accompanied by implementation approaches, real problems are
regularly tested and reformulations of the structure are attained. The general domain
structure is represented in Fig. 2.40.

Table 2.1. Phases of CAD planning and introduction

Initial investigation:

System analysis:

Choice:

Preparation:

Introduction:

Operation:

Evaluation of the state-of-the art
Concept development for CAD introduction

Analysis of the company’s current situation
Analysis of CAD introduction strategies
Catalog of functional and technical requirements

Market analysis and preliminary choice of alternatives
Test the alternative CAD systems

Analysis for CAD system expansion

Evaluation of alternatives and decision

Room preparation

Personnel planning

Personnel training and information supplying
Computer operation planning

Pilot installation
Generation of existing data and drawings

User orientation and control
CAD system maintenance, expansion, and improvements

2.7 Configuring, Evaluating, and Choosing CAD Systems

Personnel

Functional Tasks

Structures

A 2

Processes
Information Flow

A

¥

l Design Tasks

| Parts Spectrum

¥

Y

{ Marginal Conditions |

40 _

N

Fig. 2.41. Procedure to obtain the current state

fictivities

Direct

Design

activities

Indirect
Design activities

Fig. 2.42. Activities distribution in a design department

2.7.2 Phases of CAD System Choice and Introduction

77

It is just a matter of time until all branches of industry use CA technology. Table 2.1
gives a short description of activities which should be followed in order to guarantee
a controlled CAD planning and introduction.

Spur suggests in [SPUR84] the following steps in a procedure (Fig. 2.41) to obtain
the current state of the environment and shows in Fig. 2.42 an example of activities
distribution in a design department.

78 2 History and Basic Components of CAD

high acquisition

cost | 60%

lack of software
for specific
problems

] 53%

inadequate
company structure

1 a3%

not enough

profitability] 38%

inadequate
production
program

] 308

lack of
qualified
personnel

1 308

bad political-
economic
conditions

1 23%

not enough
information

1 218

hardware
problems

119

employee
prejudice and
resistance

1 17s

managers
prejudice and
resistance

1 108 Fig. 2.43. Factors which delay the introduction of CAD

systems

2.7.3 Restriction Factors Versus Advantages

The factors described in Fig. 2.43 delay the introduction of CAD systems [POTH&6].
They correspond to a questionnaire answered by 450 firms.

The possible benefits of introducing CAD systems are also well documented in
[WILDS86], [WEDES6]:

— increases the potential for competition;

— reduces design and production costs;

— increases drawing productivity;

— increases company flexibility;

— improves product quality;

— increases automation of the design process;

— improves the workstation;

— enables dynamic development of a CAD/CAM technology; and
— enables the synergic effect of information flow.

Hatvany, Newman, and Sabin also give other advantages [HATV77]:

— more efficient utilization of design skills;
— homogenization of technology;
— more precise design documentation; and
— easier updating of documents.

2.7 Configuring, Evaluating, and Choosing CAD Systems 79

2.7.4 Organizational Parameters

These parameters describe the organization in order to support an analysis of the en-
vironment in which a CAD system will be introduced. The organization’s functional
behavior and the operation of the application processes which correlate to design ac-
tivities are described by sets of parameters, facts, and rules.

The upper-level parameters are:

— Application field
A hierarchical structure under an application field such as, e.g., mechanical, deter-
mines the general events and requirements of the field. The following logical
sentence shows an example:

Mechanic n machine-tool design - FEM n NC. . .Graphic Workstation
So that: Application — Type of CAD-Software n Type of Workstation. ..

— Personnel and qualification
Determining the available manpower provides better grounds for predicting re-
quirements according to objectives and tasks to be fulfilled. This supports task dis-
tribution planning and calculation of the number and type of workstations.
The VDI (Verein Deutscher Ingenieure — Association of German Engineers) sug-
gests, in guideline 2216 [VDI__87], the following functional distribution in respect
to a CAD operation team: designer (the german terms according to acquired skills
are: detailer, drafter, constructor) with or without CAD experience, CAD applica-
tion programmer, systems analyst, application analyst, and CAD instructor.

— Integration with existing computer network
If integration to an existing computer network (or a simple computer resource) is
to be achieved, this existing system must be technically specified. According to the
implementation approaches discussed later in this context, a dialogue interface for
technical parameters must accept configurations as input. This adds some restric-
tions to the choice of new hardware/software components.

— Standards and documents used
According to the application field, standards and catalogs of parts support the
designer’s work. These, and the way in which they are available, are important
tools. They are: standards drawings, lists, tapes, disks, microfilms, databases,
knowledge bases. .. .

— Project coordination
Tasks can be formulated in details or phases, each of which could have attached
to it the personnel capacity, the necessary tools, and the computer support. Addi-
tionally, both man and machine are responsible for specific tasks. This analysis
can be accomplished by an adaptation of the smallest time method yielding the
smallest activity method.

— Supplier and client dependence
The type of communication (as in standards and documents) and the hard-
ware/software technical restrictions support the description of this dependence.
Observe that integration restrictions are always possible at the technical level.

80

2 History and Basic Components of CAD

Product and production philosophy

The spectrum of products and partial products, of design activities, of drawing
and of production processes, their connections, and a technical description of the
tools used in the whole chain form a basis for the comprehension of this
philosophy. Needless to say, we do not claim to give a complete solution to this
description. Our aim is to provide the problem with some simple (e.g., tree, graph)
structures and analyze the evolution of the problem description and its successes
and/or failures, suggesting structural and application-dependent changes.

Flexibility of the organization

Supposing there is an approximated description of the design and production pro-
cess as to what concerns its technological application-dependent structure, it
seems not unreasonable to estimate the flexibility of the organization for a variant
structure.

CAD system allocation

All or part of the machines can be in one or more buildings, different sites, etc.
This gives measures for cables, work procedures, and hardware/software con-
figurations.

Clearance of the task to be supported by CAD systems

Through the firm structure and application fields, if the tasks are not yet deter-
mined, they can be deduced from the attributes and functions of the CAD systems
on the market by giving the highest priority to the better covered fields (avoiding
risks!).

These parameters and their subsequent levels are not claimed to be complete; they

are a first approach to be refined. A more detailed discussion of these parameters with
examples and the way of quantifying them is found in [ENCAS84].

2.7.5 Technological Parameters

Targeting the basic purpose of choosing an adequate CAD system configuration, a
detailed list of hardware and-software components, attributes, and values constitute
the elements of the classification. A combination of these elements following
technical and expert-derived facts and rules yields a correct configuration.
[MESS88a] gives a hardware/software classification of CAD systems which helps in
building up an individual company-specific catalog of requirements.

Some characteristics may be pointed out as first tests:

Software expandability;
Portability;

Documentation completeness;
User interface friendliness;
Software/hardware maintenance;
List of users; and

Market place for the products.

2.7 Configuring, Evaluating, and Choosing CAD Systems 81

2.7.5.1 The Industrial Design Process

The palette of CAD activities serves an interesting and fruitful example of a field that
involves a variety of domains. Their industrial application given in [HATV84]: pro-
duct structure definition, concept sketching, design parameter definition, design logic
rules definition, dynamic dimensioning and tolerancing, 3D model building, analysis
and optimization, viewing and verification, layout and production drawing and lists,
process planning, operation planning, NC-programming, and quality control.

Although each field (area of application, e.g., mechanical, electronic) has its in-
dividual themes and particular way of treatment, common data and operations are
available; e.g., numerical, geometrical, and nominal, identifying and creating objects
for sequential or parallel processing.

Today, a general software configuration for CAD systems [MESS88 a] may be said
to consist of a geometric kernel involving geometric objects and operations, a
database system manager to enable manipulation of various objects, usually a library
of available, attachable programs for use in certain applications and/or for connec-
tion to other phases of product development and manufacturing, and dialogue pro-
cesses which enable the man-machine communication. Figure 2.44 shows this com-
position graphically.

The design activity begins with product planning; it then proceeds from concep-
tual to preliminary and finally to detailed design. After these activities, product infor-
mation is used for manufacturing planning (Fig. 2.45).

In the product planning phase the initial product is at least roughly defined in
what concerns its general functions and attributes. The conceptual design uses this
specification and shapes the product by attaching its initial geometric definition, and
by testing its functions by simulating and measuring the results. The preliminary
design is the first attempt to complete the product definition by testing the more com-
plex functions, and also by testing for durability, for a large number of different cases,
and exhaustively for some which appear to present oscillatory behavior. In the detail-
ed design the product receives its present final documentation.

It is unavoidable that all phases may end up in “product returns”, when the prod-
uct should be redesigned from certain phases, determined by a history of the design
process. The lack of centralized information on products, activities and processes

Database
System Manager

Geometric Object [Program

Kernel Operation Libraries

. Fig. 2.44. A general software configuration for CAD
Dialogue
Processes Systems

82 2 History and Basic Components of CAD

Product
Planning

[

Conceptual
Design

l

Preliminary
Design

Detailed
Design

]

Manufacturing
Planning

Fig. 2.45. Phases of the design process

causes these product returns. The manufacturing planning phase prepares and adds
manufacturing-dependent information.

A) Product Planning

As stated in many reports, perhaps more than 90% of industrial design activity is
based on variant design; this means that there is already a well-formalized description
of an object (perhaps a product model) possibly with functions similar to the so-call-
ed new variant object. The task here is to find the object with the closest functions,
and manipulate or improve these functions, according to the ones desired, by chang-
ing or adding data and attributes to the existing formalized object. Figure 2.42 shows
a distribution of activities which do not include variant design; but on the other hand
it presents an activity ‘Find parts’ which is actually basic for CAD design and which
will support automatic search for similar parts.

For example, in planning the design of a new camera, the designer may search for
an old type, and based on its functions, attributes and on his or catalogued knowledge
(rules and facts), he may add new, desired functions, by varying some chosen parame-
ters.

The remaining 10%, i.e., new design, may use very little of already existing objects
and knowledge about them. The planning of such products assumes a much more
refined knowledge base, also containing trial and error data and methods based on
similar research.

In a broad view, it is clear that areas such as raw and synthetic material research,
economics, market analysis, manufacturing, and specific application-dependent
knowledge should also be considered. However, the establishment of such a structure
demands an understanding which at the moment cannot be formalized.

The planning of a product is in fact a task which is done by a large number of
experts and is usually based on a number of risks. The degree of complexity of the
task rises even more if the dynamic changes in time to the planning of a product and
to the product itself are considered. This suggests a continuous evaluation of the pro-
cesses just executed against the current state of knowledge.

2.7 Configuring, Evaluating, and Choosing CAD Systems 83

B) Conceptual Design

It is assumed that at the beginning of this phase the initial product specification is
already set; this means the product has, although not complete, an initial definition
of the functions and attributes. This provides the first data with which to continue
the design in a stronger technical/scientific way.

The designer uses the tools he has at hand to develop his ideas and his knowledge
in a systematic way to produce an idealized object. The usual representation schemes
used in industry are engineering drawings, containing all sorts of information besides
geometric. In the present configuration of CAD systems on the market, the designer
does not have at hand sufficient support in order to take into consideration real
engineering or manufacturing constraints. Structural analysis methods and a few
mathematical simulations are still the only available support.

As mentioned earlier, as long as much of this work consists of manipulating ex-
isting parts and changing these parts, the designer should be able to get some amount
of the task already formalized ready for use. On the other hand, for this formalization
to exist, it is necessary that designers work with some sort of system capable of keep-
ing track of their sequence of operations [MESS88b] in a variety of ways, which is
also able to discard irrelevant sequences. By this variety of ways, it is meant that the
surrounding areas of knowledge must be integrated to enable these topics to be taken
into account.

So, in this phase the topology and the geometry of the object is fully treated and
some simulation tests are executed.

C) Preliminary Design

This phase is considered as the testing stage for the designed product. The product
is subjected to all conceivable sorts of tests, possibly by simulation. Tests involve
geometric constraints, material resources, product lifetime, range of operations,
manufacturing constraints, etc.

It is obvious that in order to be able to use such diverse knowledge, the formaliza-
tion of domain-dependent procedures plays a very important role. Once more the
combined use of mathematics and geometry appears, with descriptive observed laws
(heuristics), which cannot be mathematically described but can be easily formalized,
e.g., in predicate calculus, in the form of facts and rules.

The output of this phase consists, then, of an exhaustively tested product, whose
data is delivered to the next phase with all the information grained in these tests plus
the ones already achieved at conceptual design.

D) Detailed Design

The final product drawings will be elaborated in this phase. It is assumed that drafting
standards and manufacturing regulations will be the major tools here.

Still, as in all other phases, a product may for some specific reason (e.g., impossi-
ble to produce according to a local manufacturing regulation), not pass this phase and
therefore must be “sent back” to some previous stage. What previous stage should be
selected is decided by the type of change necessary on the product, which is not always
easy to determine. Decision routes, according to the type of failure, must be deter-
mined, based on an analysis of the stored operation sequence track [KIMUS87].

84 2 History and Basic Components of CAD

This problem would be reduced if all possible information were available at all
stages. But this is still unrealistic.

On the other hand, if a product succeeds through this phase, its documentation
contains all the available information necessary for production preparation or
manufacturing planning.

E) Manufacturing Planning

The specification of the available data and tools seems, as in all other areas of
research, development, and production, to be the key point for detailed and pro-
grammed planning of the operations and processes to occur. This means, very basical-
ly, the specification of machines, paths, and work operations on a product in the pro-
duction cycle.

Actually, the degree of detail contained in the specification, plus the way in which
it is stored and will be used, determines the a priori optimization in the production
and design processes. This manufacturing specification supports, therefore, not only
process planning, machining, and assembling, but also product planning, where it
serves as a filter to the planning of ready-to-make products, avoiding misunderstand-
ings and asynchronous or manual information transfer.

On one side there is information about the machines and paths; on the other side,
the object to be manufactured contains detailed information about its geometric
shape, its technological data and its surrounding engineering knowledge. Based on
this information the sequence of processing operations must be determined or
matched to an existing sequence.

Although the inclusion of many features listed here has not yet succeeded in real
commercial systems, prototypes based on a small set of parameters are being
developed [MESS86], [FUJI85], [TOMI86], [KIMU87], [WARMBS7].

F) Interaction and Integration

The construction of CAD software systems demands, therefore, a well integrated
structure to support product models, which include geometric models, basic engineer-
ing knowledge about the product, and dialogue processes.

CAD systems on the market, because of the structures of the implementation
languages and state of the art of hardware/software environments, offer very few
possibilities, if any, for the development of appropriate dialogues and knowledge
structures to represent the situations at each phase of product development properly.

The task of a designer in a CAD system is to devise, on availability of some objects
and operations on objects, a new object which fulfills desired functions. He needs a
set of objects, operations, and confirmations, some of which are very dependent on
his application. These objects have, in most cases, geometric properties and should
therefore be presented to him as such. Graphic interactive interfaces represent not on-
ly a suitable tool for the designer or draftsman, but also for all system users, as the
development of graphic dialogues evolves, presenting them with easier and more com-
prehensible symbols for operation.

Figure 2.46 facilitates the comprehension of the integration of activities involving
the design, drafting, and manufacturing of products with respect to a product model.

2.7 Configuring, Evaluating, and Choosing CAD Systems

s Product
Pl}:;o}%uic;lt specifies o mynctions and
o g Attributes

Product
Design

determines

produces

Product

Production

Fig. 2.46. Design, drafting, and manufacturing of products

2.7.6 The Economics of CAD Systems

85

This section deals with the balance of cost and benefit of CAD systems. Quantifica-
tion methods and examples are shown, giving an introduction and indicating ad-
vanced and specific literature in this field. But the main purpose is to provide a prac-
tical approach, which is at least partially applied in the implementation approaches

for evaluation.

2.7.6.1 The Initial and Annual Costs

If the technical parameters of a configuration are already set and there are com-
ponents on the market which build up an equivalent configuration, the initial and an-
nual costs for this configuration may be roughly estimated, based on real value

calculation and ideal experimental approximations.
The initial costs are:

— hardware and software investment;
— room preparation;

— cables and connections;

— company current state analysis;
— CAD introduction planning;

— CAD systems choice;

— introduction preparation;

— training;

— installation and integration;

— dead period; and

— data input.

The annual costs are:

— personnel;
— training;

86 2 History and Basic Components of CAD

— data integrity and backups;

— material and power consumption;

— hardware and software maintenance;
— insurance;

— rate of interest;

— rent; and

— depreciation.

The list of costs in this first level of the classification specifies the elementary
costs. Some mathematical formulas may be used for cost calculations, as for estimat-
ing the costs with training. Otherwise, experimental rules, e.g., of percentage estimates
based on the investment or on other quantities are applied.

The VDI guideline 2216 [VDI__87] suggests for the training period in a 2D system
2 to 4 weeks and in a 3D system 6 to 12 weeks. Now, if a formula to calculate the
costs with training is to be found, the following may be used:

N; = Number of employees of the class i
TW (2D, 3D) = Training time in weeks
CW (in, out) = Costs per week
DC = Drop out costs per week
i = Manager
Training Costs = Y, N;TW;(2D, 3D, etc.)-(CW (in, out);+DC))
i = Drafts

2.7.6.2 The Benefits
Benefits are often classified as direct and indirect. Most of them are very difficult to
quantify, if at all. Figure 2.47 gives a first classification [ENCAS84], where three

benefit components are derived from a technical support. They are: productivity,
quality, and flexibility.

Benefit

I Quantifiab]e l Difficult to quant]fy1 | Quantifiah]e—l | Difficuit to quantify I
I Productivity | I Quality I Dexﬂnhty l | Productivity ” Quality I LFlexibﬂi;I

Operations scheduling,
Manufactoring, Assembly,
Quality assurance

Design

Fig. 2.47. Technical benefit components

2.7 Configuring, Evaluating, and Choosing CAD Systems 87

Standard
Integration

Crganisat on

Qual ity
Flexibility

Fig. 2.48. Technological, economic, and organizational benefit components

Technology

Figure 2.48 helps in understanding the expansion of benefit components, which
also influence industrial processes and improve the industrial knowledge considering
explicitly economic and organizational components.

Methods for Quantifying the Benefits
The main tasks to be solved are:

— the understanding of the types of potential benefits;
— the tools or factors which influence these benefits; and
— the measurement of how much a certain tool can influence a type of benefit.

The methods considered here apply to drawing tasks although more elaborate
design activities such as the development of a product based on a similar one may
in the near future also be considered, which in some sense will not displace these
methods as long as they apply to a task division in its measurable elements. This is
exactly the basic topic of the first method.

1) Smallest time method

A typical engineering drawing is classified into its elements (material specification,
rotational parts, cuts dimensioning, etc.) to which acceleration factors dependent on
the available hardware/software configuration are designated. The total acceleration
factor (gain of productivity) is then given by the formula:

i=n

2: 141%']VZ%
T4F ==t

i=n
Y NE;

i=1

88 2 History and Basic Components of CAD

Modification of a drawing (2.95)
Test, quality and delivery regulations ()
Manufacturing regulations ()| E
Material specification ()
Raw material specification (YN
Surface texture symbols 6] (6.00)
Additional specifications (I D
Contour elements 3] (1.80)
Dimensionings 25| (6.20)
Tolerance dimensioning 10 | (5.00)
Geometrical and positional tolerance (5.60)
Hatch-areas 23 | (3.40)
Scale specifications ()
Dimens ioning arrows 24 | (3.50) U
Auxiliary lines 371 (400)|p
Lines (1.30) | D
Special symbols (3.00) A
Macros (4.00) |7
Texts 31| (2.57) | E
Unwinding and/or revoluted surfaces (7.50)
Views 1| (4.00)
Straight sections (1.758)
Penetrations {)
Separate details ()
Enlarged details 2| (3.00)
Symmetric elements (597)|T L
Rotated and/or translated elements (6.00) |0 E
Copied elements (JIT R
Standard grade (1-3) (YA .
Variants (5.10) | L F
Datatransfer to: - Methods of calculation (4.00) A
- Production resources (J|AC
« Parts list preparation ()| ¢ T
« Production plan preparation (J|Cco
- NC-machine (10.00) | E R
- different types of drawing ()
() | 3.65

Fig. 2.49. Example of a drawing classification with acceleration factors and number of elements

The result is the mean acceleration factor for a drawing with the given specifica-
tion supported by a CAD configuration. The acceleration factors AF; for individual
elements are based on measured values according to experimental studies. NE; is the
number of elements ‘i’ of a drawing with corresponding acceleration factor AF;.

The difficulties encountered here are 1) the composition of the set of elements, 2)
the corresponding hardware/software support for one element, 3) the acceleration
factor interval of an element, and 4) the individual acceleration factor designated bas-
ed on hardware/software support. Experimental values are used, based on industrial
practice. Figures 2.49 and 2.50 show an example.

This method can be extended to treat acceleration factors for design activities in
general, by splitting the design process into known tasks supported by hardware and
software tools.

v

Fig. 2.50. Example of a typical drawing

89

2.7 Configuring, Evaluating, and Choosing CAD Systems

s | BT [r=en] anzeq Buniepuy 50z
18

YOLIIN Howg 230

e [T, NOISINONHI3L
TN o)
ZZ
4dag)
qaeag|

avey wnjeg

A9 NID P49, Yaeu
aqebuezuesajo) auyo ayen

00021 W3LSAS OVI NOISIAONHIIL 41w 41184543 bunuyziaz

g0+ €

LA

LS W
X 13Y152U3

wmag qrysyen ayxpa00 ayasagsbunpuansap N
50~ ~F TS
58 T s
z0- \% /\ ° a &
09 7 =
€0 05 N
ns.cv
1
e
T 581
_ i >
AA / _ - &
[i g /°
LS W _ R Ep—
7 {1ayjazuiy N s N K _ s
.w ./7.: “an ° ¢ _ m.o: ~¢/
s S kS H N
w; S e ——r R St | m B Ry M - N
50+ - I N
< Ay _
NI B _
. ™ w \FJ — .IV/
| i ¥ e
! »
47/ S Y / _ i
/\ S W \ PR
<7 g / IR N 0z
&
7 _ X 6H 285 NID §7%05 8

§0 gy

Jjosdua)jamuyez

90 2 History and Basic Components of CAD

In general, if the time required for the manual production of a drawing is given,
and this task is accelerated through hardware/software tools by a given acceleration
factor, the cost reduction can be calculated.

2) Global comparison

Two drawing tasks are compared. In the easiest case two drawing elements are com-
pared. If it is assumed that for a given drawing task the time is known, the time for
the second task is dependent on the new environment and on the comparison of both
environments. To find similar tasks it is usually necessary to know the history of the
drawing [REINS5], [VDI__87], [KIMUS87].

3) Efficiency measures

The idea is to classify the CAD activities in drawing, calculation, modification, and
parts lists production. According to an integration with manufacturing activities, NC
programming and manufacturing scheduling are also considered [HETES85].

The following formulas give an idea of some average reference quantities to apply
as (1) measures of productivity, (2) flexibility, and (3) information quality:

Drawing Time = Total time for CAD Drawings)
Number of CAD Drawings

Number of Drawings per Designer
B Number of CAD Drawings
Number of Designers for CAD Drawing Activities

(0

Turnaround Time for Drawing Tasks

_ Total Sum of Turnaround Times of CAD Drawings
Number of CAD Drawings

@

Number of Mistakes per Drawing

_ Number of Noticed Mistakes in CAD Drawings
Number of CAD Drawings

3

Number of Mistakes per NC Program

_ Number of Noticed Mistakes in CAD NC Programs
Number of CAD NC Programs

3)

4) Cost-saving calculation

This method is based on a time division for the execution of a drawing task, which
is given by CPUTime+ I/0-Time+ Drawing-Time, and on comparisons between at-
tribute values of two CAD hardware/software systems, which in turn modify the time
portions yielding a different number of drawing tasks per year. The cost saving per

2.7 Configuring, Evaluating, and Choosing CAD Systems 91

annum is then calculated. The task is assumed to have been executed with an initial
CAD system which will give the initial time partition [ENCA84].

According to the time partition, the hardware and software attributes are con-
sidered as follows:

Drawing Time (D,)
Two attributes are considered at the moment:
— (a) Hardware dynamics at the workstation

The type of hardware support such as rotation, translation, panning, zooming,
clipping, fill area, frame buffer, z-buffer, etc. are taken into account.

— (b) Software drawing (designing) methods

This describes the software functionality. Some examples are: 2D drawing in
planes, cuts, and sweeping yielding 3D object generation, uniform dialogue inter-
faces through drawing processes, calculation and NC programs, available drawing
library, variant elements and consistency rules, etc.

CPU-Time (CPU)

— (c) MIPS, MFLOPS
— (d) Main Memory

Although the sizes of the main memory of two computers may be directly com-
pared, memory management should be compared as well, especially if virtual
memory management is done.

— (e) Software Techniques

Some examples are: analytic versus approximated volume description, search
algorithms, database management, computational methods, expert systems. These
are only guidelines to be used and very often depend on the application.

I/0-Time (1/0,)
— (f) 1/0-processors

The I/0-time may be extremely reduced if 1/0-Processors, a fast bus and fast
parallel interfaces are present.

— (g) Multiprocessors

The use of a multiprocessor architecture may reduce queueing problems. I/0-pro-
cessors, multiprocessors and architectures should have their attributes described in
order to enable comparisons.

Increasing the comprehension of hardware and software components and at-
tributes, combinations of components, attributes and values will provide better means
for classifying them properly and for estimating their comparisons.

92 2 History and Basic Components of CAD

The number of CAD hours per year is CAD hours = Ng-N;-Dg4- A.

N4 = Number of days a year (= 250)
N; = Number of terminals

Dy = Drawing time a day (= 8h)

A = Terminal load level (~ 70%).

The total time for the drawing task is T, = CPU,+1/0,+D,.

Assuming that a certain drawing task has been done with a CAD system (S;),
that the partial time was measured, and that the values of the attributes of the CAD
system S, are known, the number of drawing tasks per year is:

CAD hours

Nasks (S1) =
tasks 1 Tt (S1)

Taking another CAD system (S,) with known attribute values, one can estimate
T,(S,) and therefore N,,(S,) based on the comparison S, to S;.

1

T,(Sy) = D,(S))-— + CPU, (S))-
(ax/ay)- (by/by) (ca/cy)+ (dy/dy) - (ex/e))
1
+1/0; (S))———
(f2/11)(82/81)
CAD hours
Nygsps(8) = ——mmm—
tasks \O2 Tt(SQ)
The relation between the systems is given by R, | = Niass () .
Ntasks(Sl)

It is equivalent to say that the number of CAD hours regarding both systems will
be changed by this relation, so that:

CAD(SZ’ 1) = CAD hours-Rz,I
The CAD saving hours is therefore CAD (Saving;) = CAD(S,,) — CAD hours.
The personnel saving is given by ~ CAD (Saving,) = CAD (Saving,)+ manhour rate.
The overall saving per year is then given, with the total costs per year subtracted:
CAD saving,e, = CAD(Saving,)—Total costs per years

Where the total costs per year may be given as:

C, = Depreciation + Interest +(Maintenance + Personnel)+ Room + Power

+ Consumables

2.7 Configuring, Evaluating, and Choosing CAD Systems 93

Table 2.2. Cost saving percentage caused by CAD introduction

Operations Manufac- Assembly Quality

scheduling turing assurance
Reduction of 5% 5% 5% 10% defective goods, increased
mistakes consumption (personnel, ma-

terial, machine)

Personnel 20% 10% 10% 10% Personnel cost in production
optimization
in production
Optimization 10% 10% 10% machine cost

of machine

35) Cost reduction based on percentage of savings

This method is based on a triple (department, advantages, cost) which depicts possi-
ble advantages gained by CAD introduction specifically estimating the percentage of
saving.

The following example shows the intent of this method. As was shown before by
the advantages and possible benefits, introducing a CAD system not only means a
change in the structure of the design department, but it influences gradually in-
tegrated or possibly to-be-integrated processes.

The purpose of this method is 1) to recognize the departments, 2) to recognize the
advantages that may occur, and 3) to estimate the percentage of cost saving implied
by the advantage.

Take for example a CAD system which has two other modules besides drafting:
FEM and NC programming. The introduction of this CAD system will gradually
result in cost savings in the departments under the advantages and cost classes shown
in Table 2.2.

6) Benefit Value Analysis

This method consists basically of:

a) Construction of a tree structure representing the object (CAD system configura-
tion) to be analyzed, where child nodes are partial criteria, and leaves are the at-
tributes which will present a set of possible values. CAD systems on the market,
which serve as alternatives, will be analyzed based on this structure and on the
values of the attributes.

b) The criteria are weighted according to their importance for the user, so that each
level of criteria belonging to an upper criterium sums up to 100%.

¢) The possible values of an attribute are classified in a table, as intervals, or as a
function, assigning a grade (N, usually between 1 and 5) to a value.

For each alternative configuration a cost-benefit value is calculated through the
formula:

94 2 History and Basic Components of CAD

[Minimum Requirements |

- Maximum Investment
- Producer

- Geometric Model

~ NC-program

- Price

No.of Colors
Transformations
- Graphic No. of Channels
Processor Clipping
Fill Area
Z-Buffer

. Resolution
- Monitor <
No. of Colors

Iteration
Simulations
Variants
Libraries

- plotter < Resolution Fig. 2.51. Example of objectives
No. of Colors for analyzing a CAD system

- CAD software

It calculates the sum of the partial benefits by multiplying the corresponding
grade N; given to the value of the attribute ‘i* by the accumulated weight W; given
by the product of the weights in the path.

The number of alternative systems analyzed by the method is naturally reduced
based on the fact that at the beginning some ‘must have’ attribute values (minimum
requirements) are usually desired. This means that only alternatives providing these
values will be analyzed. Figure 2.51 shows an example.

2.7.6.3 Methods for the Analysis of the Economics of CAD Systems

The methods in this section are not concerned with the quantification of benefits and
cost-saving estimation based on a hardware/software configuration. Some concepts,
formulas, and one example for the analysis of CAD economics are given.

Method I: Sellmer and Schmidt consider in [SELL84] the productivity ratio P, as the
relation between the costs after and before CAD introduction. “It costs P, more to
produce a drawing by using a CAD system. The break-even point will be reached when
drawing production occurs P, times faster”

2.7 Configuring, Evaluating, and Choosing CAD Systems 95

H2 H1-H2

Hi hours prior Tasks unaffected Tasks reduced in
to CAD/CAM by CAD/CAM time by CAD/CAM

|

Hours of
console use

um o dditional influence Fig. 2.52. Drawing time reduction

C, = average personnel cost (per hour)
C,, = console, machine or workstation rate (per hour)

p=EntC
Cp
- Total CAD system cost per year [cost/hour] .

CAD hours per year

Method 2: Chasen in [BLAUS80] begins with the following question “How can cost
benefits be realistically measured in terms of parameters familiar to everyone?” He
also uses the term productivity ratio, but defined in terms of manhours.

H| = manhours prior the introduction of CAD
H, = manhours unaffected by CAD

H; = manhours at the console

K = estimated indirect benefits (worst case K = 0)

H,—H.
H,

Cost Reduction = K+(H—H,) C,— H3(C,+Cp,) .

Chasen given in [BLAUS8O0] some interpolative tables, estimates and examples to
help the analysis. Figure 2.52 shows the time reduction through CAD introduction.
One can also expect a certain additional influence on the unaffected hours.

Method 3: Scott in [SCOT81] points out that CAD should not only improve the
design but should also make it more profitable! He considers two measures for the
productivity ratio:

H
Total Productivity Factor = ———

.. H —H.
Computer Productivity Factor = =z

H;

96 2 History and Basic Components of CAD

Method 4: Grabowski [EIGNS80] observes that since 1900 the productivity in
manufacturing has increased 1000%, whereas in design only 20%. The investment per
workstation in manufacturing has reached according to the level of automation be-
tween US$ 25000 and 250000, whereas for design on average only US$ 1500 was in-
vested. The disproportion of investment explains the difference in productivity gain.

Grabowski considers the productivity ratio also as a measure of the smallest time
method. This means that for a typical drawing, values of productivity ratio may be
based on measured values for equivalent tasks, assuming the environment is the same.

Because the costs with CAD C,,., must still be smaller than the conventional
costs without it C.,,,, the following expression holds, C,cn=<Ccony-

N = Number of drawings per year
G = Average time for the production of a drawing
B = Operational costs per hour.

Noach* Cmacn* (Cp +Crr+Biygen) = Neony Geony* (Cp +Bony)

_ Geony - (Cp + Co +Bmach) " Nmach
Gach (Cp +Bom) *Neony

r

Method 5: Warman gives in [WARM?78] examples for system costs and system
justification. A sensitivity analysis is also given based on the following parameters:
number of workstations, working hours per day, productivity ratio and manhour rate.
The justification is:

S = System cost

I = Installation cost

OC = Operating costs (maintenance, supervision, power, consumables)
OB = Operating benefit

D = Depreciation

OB = number of workstations - shifts-number of designers
-draftsman saveable cost p.a.

The efficiency of the first year reaches 75% on average. After the second year it
may be calculated as 100%. The saving is then given by:

Cash benefit = OB-75% -~ OC
Accounting benefit = OB:75% —OC-D.

The savings here are based on the saveable costs of a draftsman.

Method 6: The economics in [KRAU84] is also based on the productivity ratio.
First the current costs of the design tasks are calculated:

Current cost = Cp-actual hours US$/year
= US$ 30/h-30000 h/year = US$900000/year

2.7 Configuring, Evaluating, and Choosing CAD Systems 97

The initial costs are:
Ci = Hardware + Software + Adaptation+Training + Room preparation
= US$ 1030000+ 100000+ 25000+ 25000425000
= US$ 1205000
The annual costs that represent the CAD costs are:
Cy = Depreciation + Interest + (Maintenance + Personnel) + Room + Power
+ Consumables
= US$ 241000+ 120500+ 170500+ 9000+ 5000+ 5000
= US$ 551000/year
The estimated costs determine the maximum personnel costs for CAD support.
Estimated costs = Current cost—CAD costs
= US$ 900000—551000
= US$ 349000/year
The number of design hours per year with the CAD-System are:

Estimated costs 349000
manhour rate 30

Design hours = = 11663 h/year

The console rate or the workstation cost per hour is:

_ CAD cost 551000
" Design hours 11663

=US$47.24/h

The break-even-point is therefore only formally reached when the productivity
ratio achieves the following value:

p— Co+Cn_30+47.24
C, 30

=2.57

2.7.7 A Decision Support for Configuring, Evaluating,
and Choosing CAD Systems

As we have seen, the planning, choice, and introduction of CAD systems demand
qualified personnel and time for analysis. The proposal here is to build a system
which is able to support this task. The domains to be covered are complex and for
implementation purposes should be seen as an example of the task.

Table 2.3 describes briefly the most important domains, which were explained in
previous sections.

98 2 History and Basic Components of CAD

Table 2.3. Domains supporting the decisions

Concepts Modeling/Parameterizing

Environment Reduced description of the design environment

H/S configuration Classification of hardware/software tools
Description of CAD systems on the market

CAD economics Cost classification

and benefits Estimation of benefits and savings

2.7.7.1 Implementation Approaches

The ideal system should be constructed in such a way that the organizational (OP),
technological (TP), and economic parameters (EP) mutually influence one another.
This is represented by Fig. 2.40.

Some general questions arise:

1) Based on an organizational description, which technological support is necessary
and sufficient?

2) How can this derivation be explained and justified?

3) How complete must the organizational description be in order to achieve an accep-
table technical specification?

4) What is the basic justification for the economic values and where are their limits?

5) What kind of data structures and manipulation could handle the combination of
these domains better?

6) When should data and structures be modified?

Many other questions could be posed as well. It is also clear that no general
algorithm exists. These questions are usually left for a certain strategic decision, which
takes into account experience and knowledge in the fields. Structures for the manipula-
tion of such complex matters are the subject of current research and do not yet repre-
sent theories, which can be explained, justified, and applied to practical problems.

A practical solution to the configuration, choice, and evaluation problems consists
of a sequential approach which starts with an organizational description, derives
alternative technical solutions, and applies economic analysis to these. This repre-
sents, in fact, a procedure which also enables returns and partial specifications.

A simple example shows this approach. Let us suppose an organizational descrip-
tion is based on three questions:

— Type of application;
— Drawing complexity; and
— Number of designers.
These questions imply alternative technical equipment of the following types:

— CAD software;
— Computer;

— Terminal; and
— Plotter.

2.7 Configuring, Evaluating, and Choosing CAD Systems 99

Dialogue Alternatives !

—-| H/S Configuring l

—{ H/S Evaluating I

H/S Choice I Fig. 2.53. General structure for decision support

Based on the values for both domains, alternative combinations arise which
generate correct, complete configurations. These may then be economically tested
following some procedures:

— Initial and current cost calculation;
— Benefit analysis through drawing capability; and
— Cost-saving calculation.

Figure 2.53 shows the general structure of a system for this type of analysis. The
following paragraphs will be devoted to the clarification of requirements for the con-
struction of such a system, which has been at least partially solved at the THD
(Technical University of Darmstadt).

Having programs to support these tasks brings many advantages; but many
restrictions on the construction of the first prototypes are also imposed, which make
the system rather inflexible. These impositions are clear on what concerns the neces-
sary data and structures.

Let us take the case of having to store information on the CAD systems currently
on the market, in order to be able to search them under specific conditions. What at-
tributes of a system should be stored? That is, what logical scheme will be im-
plemented to store information about CAD systems on the market? Classifications
of up to 5000 or more items (not yet values) are known [BRANS83], [IKO__83],
[KRAU84], [ENCAS84], [MESS88a]. But the use of such classifications is tiresome
and diverts attention from really important attributes for a specific application. Fur-
thermore, most attributes do not yield a precise advantage that could be directly taken
into account for the economic and benefit analysis.

There is unfortunately no general subclass which could be taken for all cases. A
practical decision is to consider the tools at hand and based on them implement par-
tial solutions to cover some parts of the problem. One solution which was tackled,
although it does not demand completeness, is the sequential general solution which
can be represented by OP—TP—EP. To demonstrate this solution one can not make
use of many parameters, but the ones used influence one another. The system im-
plemented for this case uses a database system (CORAS) and GKS for the graphic
interactive dialogue interface. The steps of the system may be described as follows:

User: Describes the organizational conditions
System: Suggests alternative CAD systems (H/S)

100 2 History and Basic Components of CAD

User: Chooses one
System: Possible CAD costs
System: Possible benefits and cost savings.

The description of the organizational conditions limits itself to the specification
of the application field, the number of designers, the maximum investment, and
whether an NC package is necessary. A configuration (H/S) is then built up from the
database of CAD systems on the market. The CAD configurations are described by
the following attributes: class of computer (mainframe, mini, micro, pc), main
memory, price, MIPS, number of processors, number of I/O processors, geometry
model, workstation hardware, and dynamics of interaction. Most of these attributes
are considered with normalized scaled values in order to be able to compare two
systems. The costs are listed according to initial and current costs. Some estimates are
made based on experienced values to enable a first guess. These costs may be interac-
tively changed and they may be printed as a report. Three methods of quantification
(1, 4, and 5) are used to estimate the benefits and the cost saving. There is no doubt
that a more detailed specification is necessary, but it serves to demonstrate the pro-
posal.

If the analysis is restricted to a search of CAD systems on the market through a
technical specification of the desired attributes of a system, a database application
based-on a refined data scheme of hardware/software attributes of a CAD system is
sufficient. In this case the UDS (Universelles Datenbanksystem) running on a Siemens
7570 was used [DEDES86], [BECK87]. The interaction was implemented using a mask
concept from UDS.

To handle the choice and the configuration of CAD hardware and software a
specific data management system was also implemented [SANGS86]. This system has
the advantage that the scheme may be interactively modified. This saves an enormous
amount of time and dynamizes the dialogue session. The graphic interaction is GKS-
based.

One of the most used methods for the evaluation of computer systems, because
it enables the evaluation of numerical and non-numerical attributes giving them
grades according to a scale, and weights according to their importance for the user,
is cost-benefit analysis, which was described in the section for quantification of
benefits. The formulation of the sequential analysis OP—TP—EP was also im-
plemented (Fig. 2.54). With a certain combination of OP values, combinations of TP

l Graph Editor

Organizational Technological
Parameters Parameters
Fig. 2.54. Cost-benefit
Cost-benefit analysis: implementation
Analysis
structure

2.7 Configuring, Evaluating, and Choosing CAD Systems 101

»(VM/PROLOG e

THD-GRIS

Knowledse

Base

%@ Dicl]ogue Con\cigur‘ator-

Fig. 2.55. Structure of an expert system prototype

values are associated (determined by experts), through which alternative CAD systems
may be matched. These alternatives may thereafter be evaluated by the method. A
direct specification of necessary technical attributes is also available. This implemen-
tation offers an interactive way of describing the organizational and the technical pa-
rameters through a graph editor. The graphs created have nodes that, in this case, are
a hierarchy of attributes to describe OP and TP. The alternative CAD systems are
generated choosing values for the attributes of the hierarchy. This approach was im-
plemented in IfProlog and Turbo Prolog [SCHRS86], [LEMP85], [THOMSS].

If one considers the problems of maintaining an administration of configurations,
it turns out that the amount of information about the available hardware and soft-
ware plus the interdependencies among them increases very rapidly. The possible, the
practical, the profitable, and the efficient forms of configuring are usually not
methodically analyzed. They follow some local and arbitrary analysis which do not
correspond to a scientific approach. These do not yet mention the problems of
misunderstandings and mistakes. In addition to these two points, it must be said that
graphic interactive dialogue interfaces do help users to check on-line, semantically in-
tricate errors, eliminating many steps in the trial process.

The problem of configuring has also gained interest since DEC internally uses the
system XCON to configure DEC computers. A similar approach was implemented at
the THD (Technical University of Darmstadt) aiming at the configuration of hard-
ware and software, using the data of IBM products and under a study contract with
IBM Education and Research. This prototype of an expert system was written in
VM/PROLOG and uses the graphic functionality of GDDM (Graphical Data Display
Manager). A complete interface to the GDDM-Package was written for this purpose
[SANGS87]. The structure of the system is shown in Fig. 2.55.

The aim of the system is to help vendors configuring CAD systems for their
clients. The system has a graphic interactive dialogue interface, through which a ven-
dor may develop a hardware/software configuration. The client starts by choosing the
areas of application he intends to cover and by giving the number of designers. The
configurator (system) searches in the knowledge base according to the application,
and based on the number of designers and configures a corresponding number of
workstations and the appropriate software. As long as additional alternatives are
possible, the system is able to show these to the client. These alternatives are ordered
by increasing price.

102 2 History and Basic Components of CAD

Device type

__—Models
Data

Attributes
Optional features
/Classes of Devices

AN\

Knowl edge

x_Contraols_y

ependencies<>< is_basis_for_y
X_TUns, un_y

/

Fig. 2.56. Interpretation for

/

Configuring Workstation onfi i hardwa d soft
:/_ conligurin, ware and soit-
Strategies Central Computer guring
~oP —s TP ware

Modifications and expansions of an existing configuration are allowed. The
system also enables a direct specification of hardware and software components of
the configuration. In this case the configurator searches for restrictions in the
knowledge base in order to show to the client only the expansions which are possible
depending on the actual components of the workstation, and on the entire actual con-
figuration.

Figure 2.56 shows the knowledge interpretation concerning the configuring prob-
lem.

The knowledge base contains:

— hardware and software IBM product models, standard attributes, and optional
features;

— the technical and heuristic facts and rules representing the dependencies and the
possible connections between IBM products; and

— the rules and facts connecting the application, the environment, and the com-
ponents of a configuration.

The configurator enables:

— the interpretation of facts and rules of the knowledge base passing them to the
graphic dialogue interface;

— the choice of strictly possible products at each step of the configuration process;

— the state of dialogue evolution;

— the configuration of hardware and software for the workstations;

— the derivation and configuration of a computer center based on the workstations;
and

— the derivation and configuration of necessary products, which were not specified,
always providing a correct configuration.

2.7 Configuring, Evaluating, and Choosing CAD Systems 103

CAD Department Configuration

Device classes at the workstation: PC_1

local_processors

display_processors

display_terminals configuration

printer_plotters

graphical_input_devices

mass_storage

help
quit
Fig. 2.57.
Please select Workstation
hardware

The user interface enables:

— graphic interaction through menus and icons;

— interaction through unified layouts based on areas of information, processing,
controlling, and messages (Fig. 2.57); and

— the graphic visualization and manipulation of the H/S configuration (Fig. 2.58).

One of the advantages of the Prolog graphic predicates built to support the
graphic dialogue interface is their general purpose. This means that the layout, pick
actions, help functions, and messages may be interactively created using an easy syn-
tax. The whole dialogue interface was created using these predicates. In other words,
by using these predicates, dialogues may be interactively generated and modified.

2.7.8 Conclusion

Many reasons have been given in the literature supporting the benefits of CA
technology. The economics

Total Design Costy,,., <Total Design Cost,ypy

is rather difficult to prove. Not only a static economic analysis, but a timely dynamic
one involving environment parameters and change give an understanding of the devel-
opment that has already occurred. The high investments are considered as rationaliza-
tion of work.

The choice of a CAD system or of any other system demands a considerable
amount of time and qualified personnel. The experience and the knowledge obtained
in this phase is usually kept only by the responsible personnel and not enough

104 2 History and Basic Components of CAD

Fig. 2.58. Visualization and manipulation of a H/S configuration

methodology is applied to their maintenance and update. One could estimate that 1
man/year is necessary for this task, which in turn yields costs around US$ 100000.
The implementation of systems to support this and correlated tasks is therefore in the

long run profitable. It generates a methodology for knowledge maintenance and de-
velopment.

2.8 Interdisciplinary Aspects of CAD

A basic characteristic of larger CAD systems is the diversity of the computer science
and engineering science methods used in their implementation:

— design methodology;

— computational methods (for design, analysis, and optimization);
— data sorting and searching;

— interactive graphics;

— information handling and retrieval; and

— numerous application-oriented algorithms.

2.10 Bibliography 105

Furthermore, we have to consider at least three kinds of qualifications for various
people concerned with the design, implementation, and use of CAD systems:

— computer science specialists (both hardware and software):
qualified to develop the fundamental methods, tools, and equipment of CAD
systems;

— application programmers:
highly qualified in the design methodology and algorithms of an application area
and capable of composing problem-oriented or product-oriented CAD systems
from the basic components; and

— designers:
highly qualified in their design work, and sufficiently well trained in utilizing the
CAD systems’ capabilities.

One of the most important aims for the coming years in this area will be to find
widely accepted methods and concepts, and a'common terminology. Then the effec-
tive education and training of CAD specialists will be possible in all three of these
domains.

2.9 Summary

CAD was defined as the creation, analysis, and documentation of physical com-
ponents, structures, or facilities. The concept and the precise form of the title CAD
is due to the work of Coons early in 1958. CAD is firmly and profitably established
in automobile industry, aerospace engineering, ship design, chemical engineering,
nuclear engineering, and electronics; in mechanical engineering, profitable applica-
tions have been mainly in the area of analysis, with a very rapid increase in the ap-
plications of Computer Aided Drafting.

The high percentage values for drawing and information gathering activities in
design work indicate not only that there is a great need for interactive computer
graphics in design, but also that CAD systems should be designed as information
systems with adequate support for information retrieval. On the other hand, using
computer-based methods for the computational part of the design process (which ac-
counts only for a small percentage of the work) is more likely to increase than to de-
crease the cost of design, but with the potential for a respectable increase in overall
production profits.

2.10 Bibliography

[ALCO71] Alcock, Shearing, and Partners: GENESYS Reference Manual. Loughborough,
The GENESYS Centre (1971).

[ALLA73] J.J. Allan III: Foundations of the Many Manifestations of Computer
Augmented Design. In: J. Vlietstra, R.F. Wielinga (eds.): Computer Aided
Design. Amsterdam, North-Holland Publ. Co. (1973).

106
[ANSI86]
[BARTS80]

[BATZ87]

[BAUMSS]

[BECKS7]

[BEIE76]

[BEIE78]

[BENE79]

[BITTSS]

[BLAUS0]

[BLY __86]

[BRANS3]

[BROW63]
[CARDS2]
[CARDS4]
[CCRES7]
[CHAS73]
[CHASS1]
[CHIY88]
[CIM __88]

[CLAU71]

2 History and Basic Components of CAD

ANSI Display Management Preliminary First Draft. Technical Report ANSI
X3H3.6/86-44 (1986).

H. Barth: Grundlegende Konzepte von Methoden- und Modellbanksystemen.
Angewandte Informatik 8 (1980), pp. 301—309.

T. Batz: Versionsverwaltung im Datenhaltungssystem PRODAT des Systement-
wicklungssystems PROSYT. In: Proc. GI-Workshop ,,Datenbanken fiir Software
Engineering“, Dortmund (1987).

P. Baumann, D. K&hler: Archiving of Versions and Configurations in a Database
System for System Engineering Environments. To be published in Proc. of Int.
Workshop of Software Version and Configuration Control in Grassau, Germany
January (1988).

K. Beck: Untersuchung und Weiterentwicklung des Informationssystems CAD-
System Auswahl DBCAD. TH Darmstadt, Diplomarbeit, FB Informatik, FG
Graphisch-Interaktive Systeme (1987).

K. P. Beier: Systemsoftware fiir ein integriertes schiffbautechnisches Programm-
system. Dissertation. Berlin, Techn. Univ. (1976).

K.P. Beier, W. Jonas: DINAS — A Transportable Executive System for Interac-
tive Computer Aided Design. Proc. Int. Conf. Interactive Techniques in Com-
puter Aided Design. Bologna (1978), pp. 393 —403.

I.D. Benest: A Review of Computer Graphics Publications. Computers &
Graphics 4 (1979), pp. 95—136.

H. Bittner, M. J. Cote, F. Eser, D. Frantz: A User Interface Management System
for Integrating Electronical and Medical CAD. 3rd IFAC Conference on Man-
Machine Systems, Oulu, Finland (1988).

R.E. Blauth (ed.), C. Machover: The CAD/CAM Handbook, Computervision
Corporation, Bedford, Massachusetts (1980).

S. A. Bly, J.K. Rosenberg: A Comparison of Tiled and Overlapping Windows.
Proceedings of CHI’86 Human Factors in Computing Systems (1986), pp.
101—106.

H. Brand, H. Felzmann, R. Glatz, R. Grabowski, H.H. Rubensdorffer:
Qualitédtsbeurteilung von CAD/CAM-Systemen, Testhandbuch Band 1, Tech-
nische Nutzwert-Analyse, SCS Scientific Control Systems GmbH (1983).

S. Brown, C. Drayton, B. Mittman: A Description of the APT-Language. CACM
6, 11 (1963), pp. 649 —658.

S.K. Card: User Perceptual Mechanisms in the Search of Computer Command
Menus. Proc. Human Factors in Computer Systems (1982), pp. 190—196.
S.K. Card, M. Pavel, J.E. Farrell: Window-based Computer Dialogues. In: B.
Shackel, Human-Computer Interaction-INTERACT’84 (1984), pp. 355—359.
Marktiibersicht: CAD-Systeme ab 100000 DM, 1. Teil Mechanik. CAD-
CAM-Report Nr. 8 (1987).

S. H. Chasen: Economic Principles for Interactive Graphic Applications. AFIPS
44 (1973), pp. 613 —620.

S.H. Chasen: Historical Highlights of Interactive Computer Graphics. Mechani-
cal Engineering 103 (1981) 11, pp. 32—41.

H. Chiyokura: Solid Modelling with Designbase. Addison-Wesley Publ. Co
(1988).

Projektgruppe CIM im DIN, AK1: CAD-Schnittstellen. Bericht zur Vorunter-
suchung (1988).

U. Claussen: Konstruieren mit Rechnern. Konstruktionsbiicher, Band 29,
Springer-Verlag (1971).

2.10 Bibliography 107

[COONG®63]

[DADAS4]

[DEDES6]

[DFN__86]
[DICK78]
[DIEB76]

[DITT79]

[DITTSS]

[DITTS6]

[EGGES1]
[EIGNS0]
[ENCA72]

[ENCA78]

[ENCA79]

[ENCAS1]

[ENCAS84]

[ENCASS]

[ENDES0]

[ENDES1]

S. Coons: An Outline of the Requirements for a Computer Aided Design
System. AFIPS, SICC 23 (1963), pp. 299—304.

P. Dadam, V. Lum, H.-D. Werner: Integration of Time Versions into a Relational
Database System. Proc. 10th Int. Conf. on Very Large Databases, Mexico City
(1984), pp. 509—-522.

A. Dede: Implementierung einer Datenbank auf dem Datenbanksystem UDS zur
Auswahl von CAD-Software/Hardware aufgrund einer CAD-Klassifizierung.
Diplomarbeit, FB Informatik, FG GRIS, TH Darmstadt (1986).

Deutsches Forschungsnetz — DFN: Status review and future plans for graphics,
modelling, and document services in DFN. DFN-Bericht Nr. 46, Berlin (1986).
P. Dickinson: Versatile Low-Cost Graphics Terminal 13 Designed for Ease of
Use. Hewlett-Packard Journal (1978), pp. 2—6.

Diebold Deutschland GmbH: Rechnerunterstiitztes Entwickeln und Konstruie-
ren in den USA. Report KFK-CAD 7, Kernforschungszentrum Karlsruhe (1976).
K.R. Dittrich, R. Hiiber, P.C. Lockemann: Methodenbanksysteme: Ein
Werkzeug zum Maflschneidern von Anwendersystemen. Informatik-Spektrum 2
(1979), pp. 194-203.

K.R. Dittrich, R. A. Lorie: Version Support for Engineering Database Systems.
Research Report FJ4769, IBM Research Laboratory San Jose, California (1985).
K.R. Dittrich, W. Gotthard, P.C. Lockemann: DAMOKLES - Database
System for Software Engineering Environments. Proc. IFIP Workshop on Ad-
vanced Programming Environments, Trondheim, Springer-Verlag (1986).

R. Eggensberger: Design eines interaktiven didaktisch orientierten Methoden-
banksystems. Angewandte Informatik 9 (1981), pp. 394—399.

M. Eigner, H. Grabowski, H.-D. Habn: Auswahl und Einfithrung von
schliisselfertigen CAD-Systemen. FB/IE 29, Heft 3 (1980).

J.L. Encarnagdo, W. Giloi: PRADIS — An Advanced Programming System for
3D-Display. AFIPS, SICC 40 (1972), pp. 985—998.

J.L. Encarnagdo, E.G. Schiechtendahl: Konzepte, Probleme und Méglichkeiten
von CAD-Systemen in der industriellen Praxis. Informatik Fachberichte 16,
Springer-Verlag (1978), pp. 308—325.

J.L. Encarnac¢do: Interactive Computer Graphics — The Rich and Dynamic
Man-Machine Environment. In: P. A. Samet (ed.), Proc. EURO IFIP 79, Lon-
don, September 1979. Amsterdam, North-Holland Publ. Co. (1979), pp.
521-529.

J. L. Encarnacgdo, O. Torres, E. A. Warman (eds.): CAD/CAM as a Basis for the
Development of Technology in Developing Nations. Amsterdam, North-Holland
Publ. Co. (1981).

J.L. Encarnacgiio, H.-E. Hellwig, E. Hettesheimer, W.F. Klos, S. Lewandowski,
L.A. Messina, W. Poths, K. Rohmer, H. Wenz: GI/CAD-Handbuch Auswahl
und Einfiihrung von CAD-Systemen, Springer-Verlag (1984).

J.L. Encarnacgdo, Z. Markov, L. A. Messina: Models and methods for decision
support systems for evaluating and choosing CAD-Systems. Proc. of IFIP
W.G.5.2 Working Conference on Design Theory for CAD, October 1985, Tokyo
Japan. Edited by Yoshikawa H. and Warman E. A., North-Holland (1987).

G. Enderle, K. H. Bechler, F. Katz, K. Leinemann, W. Olbrich, E. G. Schlechten-
dahl, K. Stolting: GIPSY-Handbuch. Report KfK 2878, Kernforschungszentrum
Karlsruhe (1980).

G. Enderle, K.-H. Bechler, H. Grimme, W. Hieber, F. Katz: GIPSY-Handbuch
Band II. Report KfK 3216, Kernforschungszentrum Karlsruhe (1981).

108
[ENDES4]
[ENLO90]

[FOLE84a]

[FOLES4b]
[FREE67]
[FREN70]

[FUJI8S]

[FULTS81]
[GING78]
[GRABT79]
[GRABS1]
[HATV77]
[HATV84]

[HAYESS5]

[HETES8S]

[HOPGS85]
[HOPGB86]
[HUBNg7a]

[HUBNS7b]
[HUTCS6]
[IKO__83]

[INMA78]

[ISIS86]

2 History and Basic Components of CAD

G. Enderle: The Interface of the UIMS to the Application. Computer Graphics
Forum 3 (1984), pp. 175—179.

J.L. Encarnagdo, P.C. Lockemann (eds.): Engineering Databases, Springer-
Verlag (1990).

J.D. Foley, V.L. Wallace, P. Chan: The Human factors of computer graphics in-
teraction techniques. IEEE Computer Graphics & Applications 4, 11 (1984), pp.
13-48.

J.D. Foley, A. van Dam: Fundamentals of Interactive Computer Graphics. Ad-
dison-Wesley, Reading, Massachusetts (1984).

H. Freeman: An Algorithm for the Solution of the Two-Dimensional “Hidden-
Line” Problem. IEEE Trans. Electr. Comput. EC 16, 6 (1967), pp. 748 —790.
L. French, A. Teger: GOLD — A Graphical On-Line Design System. AFIPS,
SJCC 40 (1970), pp. 461 —470.

T. Fujita, F. Kimura, T. Sata, H. Suzuki: Designing machine assembly structure
using geometric constraints in product modelling. Annals of the CIRP 34, 1
(1985), pp. 169—172.

R.E. Fulton: Using CAD/CAM to Improve Productivity. Mechanical Engineer-
ing 103, 11 (1981), pp. 64—69.

McLean Gingras: A study of users and designers of information systems. Center
for Information Studies, Working Paper 2—79, UCLA (1978).

H. Grabowski: Verinderte Arbeitsstrukturen durch CAD-Systeme. ZwF 74, 6
(1979), pp. 294—300.

H. Grabowski, H. Maier: Der Konstrukteur als Programmierer. NC-Report
1—81 (1981), pp. 125—130.

J. Hatvany, W.M. Newman, M. A. Sabin: World survey of Computer Aided
Design. Computer Aided Design 9, 2 (1977).

J. Hatvany: CAD-state of the art and a tentative forecast. Robotics & Computer-
Integrated Manufacturing 1 (1984).

P.J. Hayes, P. A. Szekely, R. A. Lerner: Design Alternatives for User Interface
Management Systems Based on Experience with COUSIN. Proc. of CHI’85
Human Factors in Computing Systems (1985), pp. 169—175.

E. Hetesheimer: Planung von CAD-Einfithrungsstrategien unter Beriicksichti-
gung organisatorischer Inhalte und Regelung der Effizienz des CAD-Einsatzes.
Dissertation, Univ. Karlsruhe, Fortschritt-Berichte VDI, Reihe 1: Konstruk-
tion/Maschinenelemente, Nr. 127, VDI Verlag (1985).

E.R.A. Hopgood, D.A. Duce, E.V.C. Fielding, K. Robinson, A.S. Williams
(eds.): Methodology of Window Management. Springer-Verlag (1985).

F.R. A. Hopgood, et al. (eds.): Methodology of Window Management. Springer-
Verlag (1986).

W. Hiibner, G. Lux-Miilders, M. Muth: THESEUS — Die Benutzungsoberfliche
der UNIBASE-Softwareentwicklungsumgebung. Springer-Verlag (1987).

W. Hiibner, G. Lux-Miilders, M. Muth: Designing a System to provide Graphical
User Interfaces — the THESEUS approach. In: G. Marechal (ed.) Proc. of
EUROGRAPHICS’87. North-Holland, Amsterdam (1987), pp. 309—322.
E.L. Hutchins, J.D. Hollan, D. A. Norman: Direct Manipulation Interfaces. In:
D.A. Norman, S.W. Draper (eds.): User Centered System Design. Lawrence
Erlbaum Ass. (1986), pp. 87—124.

IKO Software Service GmbH (Hsg.): CAD-Kriterienkatalog. Stuttgart (1983).
B. Inman: The Boeing Electronic Computer Aided Design System. AFIPS 47
(1978), pp- 353—355.

ISIS Engineering Report, ISSN 0175-601 X, Nomina GmbH, Miinchen (1986).

2.10 Bibliography 109

[ISO__85]

[ISO__86a]

[ISO__86b]

[ISO__87a]

[ISO__87b]

[ISO__87¢]

[JACK64]
[JOHNS6]

[KATZ84]

[KATZ85]

[KIMU87]

[KLEMSS]

[KOFO66]

[KRAU84]

[KROMS9]

[LASTSS]
[LEMPS5]

[LORI83]

[LUXMS88]

International Standard Organisation (ISO): Information Processing Systems —
Computer Graphics — Interfacing Techniques Graphical Kernel System (GKS) —
Functional Description, ISO IS 7942. New York, ISO (1985).

International Standard Organisation (ISO): Information Processing Systems —
Computer Graphics — Graphical Kernel System for Three Dimensions (GKS-3D),
Functional Description, ISO/TC97/SC21 DIS 8805. New York, ISO (1986).
International Standard Organisation (ISO): Information Processing Systems —
Computer Graphics — Interfacing Techniques for Dialogues with Graphical
Devices (Computer Graphics Virtual Device Interface) — Functional Specifica-
tion, ISO DP 9636. New York, ISO (1986).

International Standard Organisation (ISO): Information Processing Systems —
Computer Graphics — A GKS shell for PHIGS-Implementations, ISO/TC97/
SC21/WG2/PHIGS/66, preliminary draft. New York, ISO (1987).

International Standard Organisation (ISO): Information Processing Systems —
Computer Graphics — Programmer’s Hierarchical Interactive Graphics System
(PHIGS), ISO/TC97/SC21 DIS 8805. New York, ISO (1987).

International Standard Organisation (ISO): Information Processing Systems —
Computer Graphics — Programmer’s Hierarchical Interactive Graphics System
(PHIGS), ISO/TC97/SC21 DIS 9592. New York, ISO (1987).

E. Jacks: A Laboratory for the Study of Man-Machine Communication. AFIPS,
FICC 26, Part 1 (1964), pp. 343—350.

R.J. Johnson: Solid modelling: a state of the art report. North Holland, second
edition, Amsterdam (1986).

R.H. Katz, T.J. Lehmann: Database Support for Versions and Alternatives of
Large Design Files. IEEE Transactions on Software Engineering 10 (1984), pp.
191—-200.

R.H. Katz: Information Management for Engineering Design. Springer-Verlag
(1985).

F. Kimura, Y. Yamaguchi, P. ten Hagen: Interaction Management in CAD Systems
with History Mechanisms. In: G. Marechal (ed.) Proc. of EUROGRAPHICS’87,
North Holland (1987).

K. Klement, H. Nowacki: Exchange of model presentation information between
CAD systems, Computers & Graphics 12, 2 (1988).

J. Koford, P. Strickland, G. Sporzynski, E. Hubacher: Using Graphic Data Pro-
cessing Systems to Design Artwork for Manufacturing Hybrid Integrated Circuits.
AFIPS, FICC 29 (1966), pp. 229—246.

F-L. Krause, G. Spur: CAD-Technik, Lehr- und Arbeitsbuch fiir die Rechnerunter-
stiitzung in Konstruktion und Arbeitsplanung. Carl Hanser Verlag (1984).

D. Krémker, H. Steusloff, H.P. Subel (Hrsg.): PRODIA und PRODAT: Dialog-
und Datenbankschnittstellen fiir Systementwurfswerkzeuge, Springer-Verlag
(1989).

G.L. Lastra, J.L. Encarnagio, A.A.G. Requicha: Applications of Computers in
Engineering Design, Manufacturing and Management. North Holland {1588).
H. Lempert: Nutzwertanalyse in Ifprolog. Studienarbeit, FB Informatik, FG
GRIS, TH Darmstadt (1985).

R.A. Lorie, W. Plouffle: Complex Objects and Their Use in Design Transactions.
Proc. Database Week: Engineering Design Applications (IEEE) (1983), pp.
115—121.

G. Lux-Miilders, W. Hiibner, M. Muth, U. Brand, T. No6thing: An Approach for
the Integration of General Purpose Graphics Systems and Window Management.
The Visual Computer, Int. Journal of Computer Graphics 4, 3 (1988).

110

[MESS86]

[MESS88a]
[MESS88b]

[NEES78]

[NELS72]

[NEUMS3]

[NINK65]
[NOLLS87]

[NOLT76]

[NOTE73]
[OLSE87]
[PAHL78]
[PEAS52]
[PFAFS85]

[PHBRSS]
[PILK74]

[POTHS6]

[PRODSS]

[RCADSS]

[REINSS]

[RENO78]

2 History and Basic Components of CAD

L. A. Messina, M. J. Prospero: Towards the construction of graphical interfaces
on the basis of geometric models. Proc. of EUROGRAPHICS’86, Lisbon,
North-Holland (1986). '

L.A. Messina: Verfahren zur Auswahl und Evaluierung von CAD-Systemen.
Dissertation, FB Information, FG GRIS, TH Darmstadt (1988).

L. A. Messina: A teachware concept for education in CAD, proposed to the Int.
Conf. Computer-Assisted Learning, Dallas (1989).

G. Nees: Struktur und Organisationsformen von CAD-Systemen aus der
bisherigen Praxis. In: J.L. Encarna¢io (ed.), Proc. CAD-Fachgesprich bei der
GI-Jahrestagung 1978, Berlin. Report GRIS 78-3, TH Darmstadt, FB Infor-
matik, FG GRIS (1978).

M.E Nelson: ICES STRUDL II. In: Three-Dimensional Continuum Computer
Programs for Structural Analysis, New York, ASME (1972), pp. 23-24.

T. Neumann: Konzepte zur Erweiterung von Datenbanksystemen fiir die
Unterstiitzung von CAD/CAM-Anwendungen. Dissertation, FB Informatik, FG
GRIS, TH Darmstadt (1983).)
W. Ninke: GRAPHIC 1 A Remote Graphical Display Console System. AFIPS,
FICC 22, Part 1 (1965), pp. 839—846.

S. Noll et al.: PHI-GKS, Functional Description. TH Darmstadt, FB Informatik,
FG GRIS (1987).

H. Noltemeier: Modelle — Methoden — Daten. In: H. Noltemeier (ed.), Com-
putergestiitzte Plannungssysteme, Wiirzburg, Physica-Verlag (1976), pp.
247-253.

R. Notestine: Graphics and Computer Aided Design in Aerospace. AFIPS 42
(1973), pp. 629—-633.

D.R. Olsen (ed.): ACM SIGGAPH Workshop on Software Tools for User Inter-
face Management. Computer Graphics 21, 2 (1987), pp. 71—147.

P.J. Pahl, L. Beilschmidt: Informationssystem Technik. Programmierhandbuch.
Report KfK CAD-81, Kernforschungszentrum Karlsruhe (1978).

W. Pease: An Automatic Machine Tool. Scientific American 187, 3 (1952), pp.
101—115.

G. Pfaff (ed.): User Interface Management Systems. Springer-Verlag (1985).
PHIGS BR Functional Description, ISO/IEC JTC1/SC24 N224 (1988).

W. Pilkey, K. Saczalski, H. Schaeffer: Structural Mechanics Computer Pro-
grams, Surveys, Assessments, and Availability. Charlottesville, Univ. Virginia
Press (1974).

W. Poths: Stand und Mdoglichkeiten von CAD/CAM im Maschinenbau. In: J. L.
Encarnacéo (ed.), Proc. der Aktuellen Themen der Graphischen Datenverarbei-
tung. Springer-Verlag (1986).

T. Batz, P. Baumann, K.-G. Hoft, D. Kohler, D. Kromker, H.-P. Subel: PRODAT
— Das PROSYT-Datenbanksystem. In D. Kromker, H. Steusloff, H.P. Subel
(Hrsg.): PRODIA und PRODAT: Dialog- und Datenbankschnittstellen fiir
Systementwurfswerkzeuge, Springer-Verlag (1989).

Referenzmodell fiir CAD-Systeme 1. Entwurf. Gesellschaft fiir Informatik eV.
(D) (1988).

D. Reinking: Quantifizierung der Produktivititssteigerung beim Einsatz von
CAD-Systemen im Konstruktionsprozefl. Fortschritt-Berichte VDI, Reihe 10:
Angewandte Informatik. Dissertation Uni Karlsruhe, VDI-Verlag (1985).

T. Reno: General Motors Network Station a Low Cost Graphics System for Body
Tooling. AFIPS 47 (1978), pp. 337—341.

2.10 Bibliography 111

[REQUS2]

[RIEDS6]

[ROSS76]
[[SANGS6]

[SANG87]

[SCHES6]
[SCHI77]

[SCHL74]

[SCHL76]

[SCHLS81a]

[SCHLS81b]

[SCHLS2]
[SCHO86]
[SCHR86]
[SCOT81]

[SELL84]

[SHNES2]
[SHNES83]
[SHNE87]
[SPURS1]
[SPURS84]

[STEPS88]

A.A.G. Requicha, H.B. Voelcker: Solid Modeling: A Historical Summary and
Contemporary Assessment. IEEE Computer Graphics and Applications, 2
(1982), pp. 9—24.

T. Riedel-Heine, D. K6hler: A Version Management System for Design En-
vironments. Proc. EUROGRAPHICS’86, Lisbon, North-Holland (1986).
Ross, D.T.: ICES System Design. Cambridg, MIT Press (1976).

C. Sanger: Graphisch-Interaktive Schnittstelle zur Behandlung von Rechner-Ar-
chitekturen. Diplomarbeit, FB Informatik, FG GRIS, TH Darmstadt (1986).
C. Sénger: Beschreibung der Pridikate der graphisch-interaktiven Dialogschnitt-
stelle und der allgemeinen Priadikate des graphischen Dialog-Werkzeuges
(GDW _GDDM). Ordner 2 IBM- DOK (1987).

R.W. Scheifler, J. Gettys: The X Window System. ACM Transactions on
Graphics 5, 2 (1986), pp. 79—109.

B. Schips: Ein Beitrag zum Thema ,,Methodenbanken®, Angewandte Informatik
11 (1977), pp. 465—470.

E.G. Schlechtendahl: Comparison of Integrated Systems for CAD. Int. Conf.
Computer Aided Design, IEE Conf. Publ. 111, Southampton (1974), pp.
111-116.

E. G. Schlechtendahl: Grundziige des integrierten Programmsystems REGENT.
Angewandte Informatik 11 (1976), pp. 490—496.

E.G. Schlechtendahl: Der Systemkern REGENT als Basis zur Entwicklung
technisch-wissenschaftlicher Programmsysteme. 9. Int. Kongress iiber die
Anwendungen der Mathematik in den Ingenieurwissenschaften, Weimar, 1981.
Hochschule fiir Architektur und Bauwesen, Heft 1 (1981), pp. 89—92.

E.G. Schlechtendahl, K.H. Bechler, G. Enderle, K. Leinemann, W. Olbrich:
REGENT-Handbuch. Report KfK 2666 (KfK-CAD 71), Kernforschungszentrum
Karlsruhe (1981).

E.G. Schlechtendahl, G. Enderle: Anséitze zu Methodenbanken im technisch-
wissenschaftlichen Bereich. Angewandte Informatik 8 (1982), pp. 399—-409.

J. Schonhut: Are PHIGS and GKS Necessarily Incompatible? IEEE Computer
Graphics & Applications (1986).

H. Schréder: Ein Graphen-Editor in Ifprolog. Studienarbeit, FB Informatik, FG
GRIS, TH Darmstadt (1986).

D. J. Scott: Computer Aided Graphics: Determining the System Size, Estimating
Costs and Savings. Computers in Industry 2 (1981).

U. Sellmer, B. Schmid: Beispiel zur Bestimmung der wirtschaftlichen Anwen-
dung von CAD-Systemen. CAD/CAM Sonderteil in Hanser-Fachzeitschriften
(1984).

B. Shneiderman: The future of interactive systems and the emergence of direct
manipulation. Behavior and Information Technology, 1 (1982), pp. 237—-256.
B. Shneiderman: Direct Manipulation: A Step Beyond Programming Languages.

" IEEE Computer 16, 8 (1983), pp. 57—69.

B. Shneiderman: Designing the User Interface: Strategies for Effective Human-
Computer Interaction. Addison Wesley (1987).

G. Spur, F-L. Krause: Aufbau und Einordnung von CAD-Systemen. VDI-
Berichte 413 (1981), pp. 1—18.

G. Spur, F-L. Krause: CAD-Technik, Lehr- und Arbeitsbuch fiir die Rechner-
unterstiitzung in Konstruktion und Arbeitsplanung. Carl Hanser Verlag (1984).
Project Plan for ISO TC 184/SC4/WG1 (STEP), N-213; Owner: J. A. Weiss,
McDonnell Douglas Corp., PO. Box 516, USA — St. Louis (1988).

112
[STRAS6]
[SUTH63]
[THOMS3]
[THOMSS]
[TICHS5]

[TOMI86]

[VDI__87]
[VERNS4]
[WARM78]
[WARMS7]
[WEDES6]
[WILDS86]

[WILLS6]

2 History and Basic Components of CAD

D.H. Straayer: Setting Standards. Computer Graphics World, Nov 86, pp.
73-78.

LE. Sutherland: Sketchpad: A Man-Machine Graphical Communication
System. AFIPS, SICC 23 (1963), pp. 329—-346.

J.J. Thomas, G. H. Hamlin et al.: Graphical Input Interaction Technique Work-
shop Summary. Computer Graphics 17, 1 (1983), pp. 5—30.

M. Thomas: Meniisystem und Nutzwertanalyse in Turbo Prolog. Studienarbeit,
FB Informatik, FG GRIS, TH Darmstadt (1988).

W.F. Tichy: RCS — A System for Version Control. Software — Practice and Ex-
perience 15, 7 (1985), pp. 637—654.

T. Tomiyama: Integrated Data Description Schema — Issues on Representation
of Knowledge for CAD Systems. Winter School on Conceptual Modelling,
Visegrad (1986).

VDI-Richtlinie 2216, Einfiihrungsstrategie und Wirtschaftlichkeit von CAD-
Systemen (1987).

E.B. Vernadet: A commented and indexed bibliography on data structuring and
data management in CAD/CAM: 1970 to mid-1983. National Research Council
Canada, Division of Electrical Engineering, ERB-956, NRCC No. 23373 (1984).
E.A. Warman: CAD/CAM Management and Economics, SIGGRAPH’78.
E.A. Warman, H. Yoshikawa (ed.): Design Theory for CAD. IFIP WG 5.2,
North Holland (1987).

H. Wedekind: Systemanalyse — Die Entwicklung von Anwendungssystemen fiir
DV-Anlagen. Carl Hanser Verlag, Miinchen (1973).

H. Wildemann: CAD/CAM als Instrument der Wettbewerbsstrategie. ZWF 81,
10 (1986), Carl Hanser Verlag (1986).

A.S. Williams: A comparison of some window managers. In F.R. A. Hopgood
et al., Methodology of Window Management, Springer-Verlag (1986).

3 The Process Aspect of CAD

Space flight scenery
(courtesy of Evans & Sutherland, Salt Lake City, USA)

3.1 Modeling of the Design Process 115

3.1 Modeling of the Design Process

3.1.1 A Crude Model of the Design Process

CAD provides computer support for the design process. Hence, if we want to talk
about CAD, we must first talk about the process of design; that is, we must construct
at least a crude model of the design process. The problem, however, is that design pro-
cesses are quite different from one another, depending on the product (a bicycle versus
a nuclear power plant), on the company’s size and organization (a large architectural
engineering firm versus a specialized engineering bureau), and on the type of design
(the restatement of a basically fixed design versus the completely original design of
a new product). The purpose of establishing modeling concepts for the design process
is to provide the systems analyst with a means of describing the global system into
which a CAD system must fit (and to set forth a basis for the terminology used in
the subsequent chapters). Both the designer of a CAD system and its potential user
must be able to agree on a description of the interfaces of the computer-aided part
of the design process with the remaining part of the process. Such interfaces will be
easy to describe if the design process can be adequately represented by a sequence or
chain of actions where each action passes its results on to its successor. We will see,
however, that the design process is far more complex, and that neither a chain nor a
tree is sufficient to represent its essential characteristics, even though it may
sometimes look like a chain or a tree in certain respects. In view of the complexity
of the design process, it is perhaps not very surprising that there have been many at-
tempts to establish a systematic description of design, resulting in a number of pro-
posals, which are similar, but without complete agreement in detail (see [PAHL77],
for example). An important step in the direction of establishing a common view is
achieved with VDI guideline 2221 [VDI__69]. The complex structure of the design
process will have to be reflected in the structure of CAD systems, if such systems are
to support the design process as a whole and not only isolated parts of it.

We will now set up a very general (and hence rather simple) model of a “typical”
design process. Using the terminology of Grotenhuis and van den Broek [GROT76],
this is an intuitive conceptual model. Figure 3.1 is a first attempt at such a model.
The basic assumptions of this model are:

— the design goal is fixed (at least temporarily),

— a certain kind of knowledge is required to construct the design, and

— the design process produces information (the “design”), which in one way or
another can be documented and used for production.

That which is labelled “design” in Fig. 3.1 is not yet the product itself. It is a
model of the product which allows us to talk about the product before it exists.

Using Nijssens approach [NIJS76], such a model may be deduced from the real
world by a sequence of two operations: perception and selection (see Fig. 3.2). We
perceive only a subset of reality: the perceptible reality. The subjectivity of this step
in modeling is emphasized by the definition of a “system”, which we quote from
[NYGAS80]:

116 3 The Process Aspect of CAD

design process

@ Fig. 3.1. A crude model of the design process

perception

perceivable
reality

naming

selection

universe of
discourse

Fig. 3.2. Modeling of the real world

— “A system is a part of the world, which a person (or group of persons) — during
some time and for some reason — chooses to regard as the whole consisting of
components, each component characterized by properties which are selected as be-
ing relevant and by actions which relate to these properties and to other com-

ponents?”

We can talk about perceptible reality by assigning names to its entities and the at-
tributes of the entities. One of these entities is the anticipated product. In general,

3.1 Modeling of the Design Process 117

however, we are not interested in all aspects of perceptible reality; we select those
aspects which are relevant in some pragmatic way. This process of selection generates
what Nijssen calls the “universe of discourse”. It is not a formal model but an “in-
tuitive conceptual model” -in the sense of Grotenhuis and van den Broek.

3.1.2 A More Refined Model of the Design Process

Our first crude model of the design process, however, does not yet reflect important
characteristics of many design processes. We will modify the model to account for the
following points:

— The design process is not self-contained. The design process is always embedded

in another process (called its environment), and is initiated and controlled by a
higher level process (the “company” process or “world” process). This aspect has
been pointed out in particular in [WAEC69].
When the design process is started, it will be accompanied by the submission of
the design specification to the designer. This specification is not identical to the
final goal, but is rather a formulation of the goal. It is possible that due to
misinterpretations, or to incomplete or incorrect formulation in the design
specification, the goal cannot be reached. For long-running and large-scale design
projects the specification cannot be assumed to remain constant. The specification
may not only be developing in more detail, but may actually be changing. As an
example, new environmental protection laws taking effect during the design period
of a chemical plant will affect the specification. The design process must involve
precautions to accommodate such specification changes (at least to a certain ex-
tent). The design specification may be influenced not only by such external forces.
In the course of the design certain aspects of the specification may turn out to be
undesirable with respect to the design goal. For instance, tight tolerances may
cause very high costs. A reevaluation at a higher level might lead to less stringent
specification requirements and thus to a better design. In order to allow for such
corrective measures, the model of the design process should include the presenta-
tion of preliminary design achievements to the higher-level stages of the overall
process.

— The design process is most often iterative. Decisions on certain product character-
istics are made in a heuristic way at an early design stage on the basis of in-
complete knowledge about their consequences with respect to the design goal. We
call this the “synthesis” part of the design process. As a result, the “design” must
be analyzed and evaluated in the light of the design specification. In the software-
oriented world these activities are associated with the terms “validation” or
“verification”. If the goal is not met, the design decisions must be appropriately
corrected.

Figure 3.3 reflects these points. It shows that the design process is of a control-
loop type. The inner loop operates on a fixed design specification and consists mainly
of the operations “synthesis”, “analysis”, and “evaluation”. The deviation of the
preliminary design from the specification is fed into the synthesis operation. A second
loop is closed not within the design process itself but rather in the higher-level process.

118 3 The Process Aspect of CAD

design goal higher level achievement
process
design
specification

presentation

deviation evaluation

synthesis knowledge analysis

intuitive
conceptual model
of the product

design process

analysis
aspect

production
aspect

other production
processes process

Fig. 3.3. A refined model of the design process

Thus, the design specification is (or at least may be) a moving target. For the sake
of economy in the design process it is essential that appropriate specification methods
be used to minimize the rate of change of the target.

Figure 3.3 illustrates additional important aspects. The design process does not
only generate the information needed for production of the product. The conceptual
model must also represent all the information necessary for the analysis part of the
design process, and for all the other processes which may follow. Testing, marketing,
and maintenance, for instance, require information produced in the design process.
The conceptual model, which is generated by the synthesis and checked against the
specification via analysis and evaluation, thus becomes the central point of all subse-
quent operations. It is for this reason that literature on CAD emphasizes the impor-
tance of the data base and the particular requirements posed by CAD applications
[GRAB79].

3.1 Modeling of the Design Process 119

Another point reflected in Fig. 3.3 is the fact that the available knowledge is not
necessarily fixed. As with the potential changes in the specification this is particularly
true for long and large projects, such as a chemical or nuclear plant, and for anything
which is being designed for the first time. Design and production schedules for large
projects would be intolerable if the start of the design process had to be delayed until
all the required knowledge was collected. The knowledge used for the design of a par-
ticular product — like the design specification — is the result of another process. This
other process is necessary to provide the resources for successful execution of the
design process; knowledge is one of these resources. Continuous improvement of
design methods is especially important for CAD, and provisions must be made to in-
corporate such improvements in the design process.

Not only the set point (the specification) of the design process control loop, but
also the resources (the knowledge) may vary during the process. Using this analogy,
it is obvious that the lifetime of the specifications and of the knowledge should be
large compared to the cycle time in the loop from synthesis via analysis and evaluation
back into synthesis; otherwise a lot of spurious and costly transients will occur before
the design reaches a new stable situation. With respect to the knowledge we will need
to consider this point in connection with the problems of introducing CAD in in-
dustry. The introduction of such innovative techniques is restricted by the requirement
that it must be gradual enough not to conflict with the current design processes.

There are some aspects of the design process which are not shown in Fig. 3.3:

— Every process has not only a functional aspect (which is illustrated) but also a
resource aspect. The process can be executed only if the required resources are
available and in a suitable state. We will deal with this aspect in more detail in Sect.
3.2.4. Resources in this context may include the designer, paper, pocket calculators,
computers, time, money, etc. In addition, knowledge about facts and methods may
be interpreted as one of the resources.

— The design process may itself create other (dependent) design processes by specify-
ing the design for a component of the whole product (the design of the control
system of a power plant may serve as an example). Synchronization of these
dependent processes and allocation of resources to them are part of the original
design process. The interaction between two environment processes and the cor-
responding design processes is schematically shown in Fig. 3.4,

— Furthermore, the design process for a particular product does not stand alone. It
is executed in the environment of other design processes (for similar or completely
different products) within the organization. All these individual design processes
are embedded in a “company” process which coordinates design with manufactur-
ing, marketing, etc., to achieve the company goals. The different processes must
be synchronized and supplied with resources by the “company process”.

We will now take a closer look at the knowledge. Knowledge is mostly a set of rules
such as

— when you recognize situation ¢ — try a certain refinement of the model;
— when you recognize situation b — analyze and evaluate a property of the model;
— when you recognize situation ¢ — correct part of the model.

These types of rules may be associated with the main parts of the design process:
synthesis, evaluation, and analysis. This distinction is clearly pointed out by Suss-

120 3 The Process Aspect of CAD

communication and communication with
agreement on higher level process
- representations - specifications
- control of processes - achievements
- resources - calls for help

coordination
of the design synthesis
processes rules for
represe_nt_mg specification
and refining
models analysis
resource applicable

management rules for rules

working on .
evaluation

models model

resources

learning presentation result

one of several design processes

design environment process

Fig. 3.4. Design process and design environment

mann [SUSS78]. Synthesis and analysis are not merely inversions of each other. Syn-
thesis is an attempt to refine the model in such a way that the subsequent analysis
will be likely to produce a satisfactory result. Such attempts may fail, which will
become evident in the evaluation phase of the process. Upon failure, part of the model
refinement will have to be redone. Backtracking will be necessary to find out which
refinement steps were responsible for the mismatch between specification and result.
If no satisfactory solution is found within the limits of the available resources (time,
money, etc.) the process will have to call upon the higher-level process for help. It is
interesting to note that in computer science the concept of “refinement” has become
a key issue. This reflects the fact that designing a program and designing any other
product are quite similar tasks on a basic level. The notion of refinement might also
be expressed as a selection of a subset of all known rules, to be added to the set of
those rules which are already being considered applicable. Analysis, as opposed to
synthesis, is the application of previously selected rules. Thus we may associate syn-
thesis, analysis, and evaluation with the following rules:

— Synthesis:
— when you recognize a certain situation — include a certain subset of all known
rules to the set of applicable rules;
— Analysis:
— apply the set of applicable rules;

3.1 Modeling of the Design Process 121

— Evaluation:
— if result satisfies specification then finish; otherwise remove from the set of ap-
plicable rules those which are the probable reason for mismatch or call for
help.

Note that the rules in the various phases obviously belong to different levels or
types of rules. The objects to which the analysis rules apply may be considered as the
primitives, while the synthesis and evaluation rules operate on sets of rules. It is prob-
ably this multilevel sense of rules (pointed out in [HOFS80]) which makes it so dif-
ficult to introduce formal methods not only into analysis but into the other parts of
design as well. Synthesis, in particular, requires “intelligence”. We quote Hofstadter
[HOFS80] in order to illustrate what we mean by this term:

143

. essential abilities for intelligence are certainly:

— to respond to situations very flexibly;

— to take advantage of fortuitous circumstances;

— to make sense out of ambiguous or contradictory messages;

— to recognize the relative importance of different elements of a situation;

— to find similarities between situations despite differences which may separate
them,;

— to draw distinctions between situations despite similarities which may link them;

— to synthesize new concepts by taking old concepts and putting them together in
new ways;

— to come up with ideas which are novel?

With the separation we have now introduced between the set of applicable rules
and the set of known rules, we can easily express what is meant by changes in the
knowledge (which we call “learning” in accordance with [WAEC69]) and by specifica-
tion:

— Learning:
add new rules to the set of known rules;
— Specification:
specify the rules which have to be applied in any given case.

We have seen that the whole design process can indeed be formulated in terms of
rules. Such a unified approach to design, and computer-aided design in particular, is
taken if artificial intelligence and pattern recognition methods are applied [LATO78].
A human, as an information processor, can work with rules immediately. He is par-
ticularly suited for “recognition of situations”, which is generally a tough job for
computers. Attempts have been made to provide systems with the capability to
recognize situations and to choose properly among a potentially applicable set of
rules. Such systems are called “expert systems” [LUMLS82]. However, except for a few
famous applications, they are still in an experimental stage.

3.1.3 Design Processes and Design Environments

The aspects of learning and environment introduced in the previous paragraph lead
to a further refinement of our design process model, which is represented in Fig. 3.4.

122 3 The Process Aspect of CAD

design environment process

synthesis evaluation analysis \Q’esentc\tion

knowtedge

one of the design processes

higher-level design process

design environment process
v

synthesis evaluation analysis \gresentatim.

subset of knowledge

one of the design processes

lower-level design process

Fig. 3.5. Cooperation of design processes and environment processes

Here we do not show the control-loop relationships between the various tasks (which
were the key aspect in Fig. 3.3). We simply show that synthesis, analysis, evaluation,
and representation all operate on the same set of information which we call the
“knowledge” associated with the design process for a given product. Several such
design processes potentially using the same basic knowledge may be going on in
parallel within a particular design environment. The design environment is again con-
sidered as a process with the following tasks:

— it is the recipient of requests (coming from other processes) for doing some design
work, or in other words for the creation of a new design task of the particular type
it can perform;

— it must agree with these other processes about the methods for representing design
specifications and achievements, and for the creation, control, and termination of
the newly created design tasks;

— it creates and coordinates design tasks;

— it manages resources in order to make the necessary resources available for the
tasks. It attempts to avoid resource allocation conflicts, and to improve the effi-
ciency of resource usage;

— it is responsible for providing, maintaining, and improving the knowledge (which
is a particular resource).

The design environment is generally taken for granted, simply because it exists in
all organisations doing design work. Moreover, the above-mentioned functions of the
design environment seem to be trivial enough that one need not talk about them. The
situation, however, is quite different if we consider the computer as part of the design
process. In fact, using the computer one has to define the representation of specifica-
tion, achievement, and so forth, very explicitly. Such agreements already exist in
human-based design due to a long development and learning process.

Figure 3.5 illustrates the hierarchical cooperation of a design process (for a prod-
uct) with one or more subordinate processes (for various parts of the product).

3.1 Modeling of the Design Process 123

The need for communication of design information between the design processes
in separate design environments produces problems whose difficulties were not ap-
preciated properly until the early 1980s (see Chap. 7).

3.1.4 Differences Between Conventional Design and CAD

Information processing by a human does not require a formal representation, while
computers can process information only if it is represented in some formal way. The
question of whether all information (design specification and knowledge) can be
completely formalized is perhaps a philosophically interesting speculation.

But in any case the development of a formal language for representing the infor-
mation is a task which in itself consumes resources. People, time, and money are need-
ed for this task. For this reason, in the typical case, only part of the design goal and
only part of the knowledge will be represented in a formal way.

We must be aware of the essential difference between science and engineering. In
science, the question of “cost” in the general sense is of secondary interest. In
engineering, however, economy is a priority. Therefore, in CAD we must consider
economy as important as any other aspect.

As a consequence, complete design by computer will be possible only in excep-
tional cases. Computer-aided design, however, will be most successful if a good
synergetic cooperation between the designer (or more often, designers) and the com-
puter (or sometimes computers) is achieved.

Another important difference between conventional design and CAD (besides the
need for formal representations) has been mentioned earlier: the need to establish the
environment in which the design process can work. Limitations in computer capacity
(memory, disks, graphic display units, or processor power) are part of the environ-
ment. Even if we could conceive an “ideal” CAD system for certain design processes
in terms of functional aspects, we cannot realize it because we have to cope with the
environment. The most critical computer limitations appear to be:

— the inability of computers (or their programs) to “recognize situations”;

— their inability to work with rules. Instead, computer programs require rules to be
cast into an algorithmic form which has most often to be developed;

— their unsatisfactory efficiency in handling model changes within the synthesis task
(as compared with their excellent capabilities for working on fixed models within
the analysis task).

These deficiencies may become less important if artificial intelligence methods are
more widely introduced into CAD [WARM?78]. Currently, however, CAD methods
generally call for the operation of the two main design activities with:

— synthesis preferably associated with human designers; and
— analysis preferably associated with the computer.

3.1.5 A Network Model of the Design Process

In the previous paragraphs we discussed a hierarchical structure of design environ-
ment processes; a design process could generate subordinate processes only in an envi-

124 3 The Process Aspect of CAD

design
environment
process

another

one of the
design

processes

one of the
design
processes

Fig. 3.6. An alternative representation of
environment and design processes

universal

environment
highest level
N+1 N+1
EPj EP i1
N+1-level
N N
EPy 1 EP)
N-level
opN-! op -1
N-1-level

Fig. 3.7. A network model of the design process

ronment subordinate to its own. This, however, is only a special case of the more
general situation. Any design process may contact any design environment process
and request the creation of a new subordinate process. In order to represent these
more general situations in a graphical representation, we replace the schema of Fig.
3.4 by Fig. 3.6. The line connecting the environment process to the individual design
process indicates the same ‘belongs__to’ relation as the embedding used in Figs. 3.4
and 3.5. With this graphical schema we are able to represent a network of processes
within a structure of levels as illustrated in Fig. 3.7. This schema has been influenced
by proposals for the architecture of so-called “open systems” [GIES85]. Open systems
are systems which permit processes to establish communications with other processes
on the same level, while using facilities of a lower level. Networks of processes are also
discussed in [MIS__81].

In Fig. 3.7 the design process DP?I_JE1 (e.g., design of a vehicle) has created two
subprocesses DPY | and DP{‘I, which now do work for DPN*!

3.1 Modeling of the Design Process 125

{N+1) - level (N+1)-level
environment design
process process

belongs to
one

knows about many

N- level N-level
design) environment
process uses a design process
process belonging to I
k=) one of many I
209 >
glu g
HES: |
GloE
8§ I
- I
{N-1)-level _-_____—____Jl

design
process

Fig. 3.8. The elementary building block of design processes

These two subprocesses are of a different type, as indicated by their respective en-
vironment processes (one perhaps being the overall design and the other being the
shape design of the vehicle, for example). Parallel to process DP%‘I_“E1 another design
process DP{\I+1 is being executed in the same universal environment. Note that in this
particular example both (N + 1)-level processes require subprocesses at the (N— 1)-level
of the same type (namely of the type provided by the environment process EPE_1).
Thus, while on the N-level process DPL ; does not necessarily know of the existence
of the other process DP}\I, their subprocesses may create conflicts in the use of the
resources required on the (N— 1)-level, which have to be resolved by the environment
process EPE_1.

So far we have not dealt with the problem of the creation of subprocesses: how
can process DP] | create its subprocess DP?L?, for instance? A strict interpretation
of the schematic representation in Fig. 3.7 would mean that process DP}L would
have to send a corresponding request either to DPN*! or to its environment EPjIYl].
If these processes cannot satisfy the request because they do not know of the existence
of the environment EPE, the request would first have to be passed upwards in the
hierarchy of process levels until a process is reached to which both EPE and the re-
questing process DPiIL belong, This, however, may reduce the efficiency of all pro-
cesses considerably. For this reason, the individual design processes usually have ac-
cess to knowledge about environment processes on the same level. In our example,
DP%L would probably know about the existence of the environment process EP}

and its capabilities in order to request the creation of subprocess DPﬁ? directly.

126 3 The Process Aspect of CAD

Such knowledge was passed to the processes when they were created. Part of this
knowledge is:

— knowledge about the capabilities of the environment processes; and
— knowledge of how to address these environment processes, and how to com-
municate with them.

Thus DP%L may know directly about EPE. It would then request directly from
EPY the creation of a subordinate process DPiIi_zi, without the need for communica-
tion up and down the hierarchy. This concept allows us to model a design process and
its interfaces' withqut considering the totality of all processes. We may simply look at
one process and its interface to other processes. The schema illustrated in Fig. 3.8 may
be considered as a model building block for constructing small or large networks of
design processes.

3.2 CAD Processes

3.2.1 Design Process and CAD Process

Using the constructs derived in the preceding paragraphs, we are now able to in-
troduce CAD into the model. A design process, having identified and specified a cer-
tain subtask, may want to create a subordinate design process. If this subordinate
design process operates in a computer environment, we call it a CAD process.

The general schema as sketched in Fig. 3.9 is, however, far too abstract to be
useful. Let us consider two extreme cases which occur quite often in practice:

— the application of CAD systems on a large central computer in batch mode; and
— the use of a dedicated CAD system in the environment of the design office in an
interactive mode.

In the first case, as illustrated in Fig. 3.10, the computer environment is not im-
mediately suitable for CAD application. Instead, the general purpose computer (or,

computer design
process

CAD
process

Fig. 3.9. A primitive CAD model

3.2 CAD Processes 127

computer design

department department

computer and its design

operating system process

o

CAD system
and computer resources

CAD
process

CAD system
execution

Fig. 3.10. CAD on a central
computer

design

department

dedicated CAD
computer

design

designer team

process

CAD

process

graphics terminal

operator

Fig. 3.11. CAD on a dedicated computer

more precisely, its operating system) must first be addressed in the language of the
operating system, and requested to establish the appropriate environment: this means
to make -available the necessary programs, data files, and communication facilities
which, collectively, we call a CAD system. Each CAD application requires not only
knowledge about the CAD system itself — its capabilities and its means of com-
munication — but also requires a purely computer-oriented job training; this fact is
a particular burden of this type of CAD environment.

128 3 The Process Aspect of CAD

A much easier way to establish a CAD process is shown in Fig. 3.11. A specially
programmed or “dedicated” computer within the design environment presents the
CAD system in usable form to the designer, immediately or with only a few general
commands required. The designer can then execute his CAD task without the prob-
lems imposed by the many other processes running on a large general-purpose com-
puter. This system is more readily available and can be tuned more specifically to a
small group of designers and design tasks. On the other hand, it may lack of the flex-
ibility, computing power, and large data bases of a big computer. Figure 3.11 il-
lustrates in particular the interactive mode. The CAD execution process itself ad-
dresses a human operator via a terminal (usually a graphics terminal), and thus
creates a new subprocess which we call a session. It is important to distinguish among
the various levels of processes, and not to confuse the design process itself with the
process of a session, even though both processes may be driven by the same person.

3.2.2 Design Process Characteristics and their Influence
upon the CAD Process

According to Hatvany [HATV73], the main components of a CAD system are

— a person,
— computer hardware,

— software,

— a certain type of problem.

The type of problem is a characteristic which the CAD process has inherited from
its superordinate design process. Here, we will discuss the type of problem in a very
general sense. We will basically follow the classification schema used in [KRAU77]
and illustrated in Fig. 3.12. Much work regarding the classification of individual
phases of the design process was done at several German universities. A survey of
several attempts to classify the design activities in a systematic manner is given by
Pahl and Beitz [PAHL77]. We might also refer to the work of Simon [SIMO68], Roth
[ROTH71], Hansen [HANS76], Koller [KOLL76], Rodenacker [RODE76], and
Baumann and Looscheelders [BAUMS82].

In the context of the previous sections, however, it seems more appropriate to use
the classifications indicated in Fig. 3.13.

The development of a product is the response to a certain request which is to be
satisfied. As an example of such a request let us use J. F. Kennedy’s well-known state-
ment (on May 25, 1961, before a joint session of the US Congress):

“I believe that this nation should commit itself to achieving the goal, before this
decade is out, of landing a man on the moon and returning him safely to the earth”.

This is not a specification of a vehicle which would be suitable to do the job! As
a first step, the functional requirements of the product have to be worked out. For
this task, the environmental conditions in which the product will have to operate need
to be considered. This leads to a functional structuring of the anticipated product,
and results in a functional specification. This process, which we call functional
design, is informal, and highly intuitive. This does not mean that computer support
is completely precluded at this stage. Though the process itself is informal, representa-

3.2 CAD Processes 129

task definition
request
definition of wfshes b
functional
structure
functional design
selection of
\.«{orl_‘lng functional
principles . K
specification
=
Q
g
shape design . . o
imonsional schematic design %
design Bt
k]
c =)
conceptual 2 3
schema -
detailing of 3
c Q
parts and zones 2 ©
detail design S
°
[~
2
_ instance of 2
manufucful’lng schema complete s
planning with values
Fig. 3.12. Classification Fig. 3.13. Relationship between design
of design activities activities and conceptual schema

tions of the elements in this process (the requests, the environmental conditions, and
the resulting specifications) may be formalized.

Design, however, in the more strict sense used in this book, does not start until
after the functional specification exists (see Fig. 3.13). The functional specification
determines part of the conceptual schema of the product to be designed. The selection
of working principles (such as welding versus screwing to hold two pieces together)
and the gross shape and dimensional design, along with the selection of basic
manufacturing methods, is part of the schematic design. As a result of the schematic
design, the conceptual schema of the product is complete. This means that we know
which constituent parts (entities) make up the product and which properties (at-
tributes) of these constituents must be determined. The relationships among the en-
tities are now fixed.

The final part (“detail design”) deals with the assignment of specific values for
all the attributes of an instance of this schema. For example, while the schematic
design has determined the fact that certain edges of an object must be rounded and
that the material is an essential property, the detail design will assign a value to the
rounding radius and a material name to the material attribute.

The difference between schematic design and detail design will show up in the ap-
propriate CAD systems used in these areas. In the detail design, theoretically at least,
one could conceive an algorithm which would produce the unknown attribute values

130 3 The Process Aspect of CAD

of the conceptual schema from the representation of the specification within this
schema. This algorithm may not be straightforward and may require a lot of itera-
tions. However, the result (or at least one result if one exists) is totally predetermined.
In schematic design the situation is different. Under what conditions a schema can
be derived in algorithmic form from functional requirements — or whether this is at
all possible — is a question we will not discuss here. In any practical case, the design
of a schema has a pronounced heuristic and pragmatic character. Human judgement
is the principal decision mechanism. Thus CAD systems in this area must be interac-
tive from the basic principles, while in detail design CAD systems may or may not
be interactive,

3.2.3 The Environment of CAD

3.2.3.1 The Organization

Considerable variety may be found with respect to the organizational embedding of
CAD. This depends not only on the size and organization of the company, but even
reflects differences in attitude towards CAD (as for example between the U.S. and
Europe). As Allan [ALLA78] pointed out, American companies have a tendency to
use CAD-as a technical service whenever the need arises. The responsibility for CAD
is more directly associated with the design departments themselves. In Europe, CAD
(or CAD/CAM) is regarded as “an extension of management”. Responsibility for the
introduction and use of CAD methods and systems is preferably associated with
higher-level management. This latter attitude may reflect the fact that the application
of CAD is often accompanied by an increasing trend towards formalization and stan-
dardization, both in the products and in manufacturing. Full benefit will only be
gained from CAD (and from these side effects) if not only the design aspect, but also
work planning and manufacturing are involved.

3.2.3.2 The Human Environment

The human factor is dominant in the early phases of introduction of CAD in an orga-
nization. The spectrum of.skills required to perform a certain design task will general-
ly change when computer support is introduced. The most obvious change is that a
certain amount of knowledge about computers and how to deal with them will be re-
quired. Exactly how much computer knowledge is necessary in the design environ-
ment will depend mainly on the following factors:

— access to a central data processing department versus the installation of one or
more computers in the design department;

— use of black-box (“turn-key”) CAD systems versus the introduction of a CAD
system that supports user-defined software extensions; and

— complexity and amount of knowledge required to perform the design task.

Another change in skill requirements, however, is of much greater concern with
respect to the people working in the design office. Since computer-based systems are

3.2 CAD Processes 131

so well suited to performing analytical work along prescribed algorithms (programs)
but so ill-suited for the actual “design” work (which is basically decision making), the
introduction of CAD will cause a change in job content, as pointed out in [HATV77].
High-level designers will be able to increase productivity and product quality by using
CAD; however, they may be subject to more stress during their work because they may
miss certain periods of relaxation which had been caused by the more-or-less routine
work prior to the introduction of CAD. On the other hand, there will be less need
for low-level designers whose capabilities are limited to routine work.

Besides skills, a necessary condition for the successful introduction of CAD in a
company is the motivation of the design personnel to use the new CAD tools and
methods instead of the familiar conventional ones.

The introduction of CAD in general requires:

— higher-level skills (planning and decision making rather than execution and
analysis); and
— motivation.

3.2.3.3 Computer Resources

In a CAD environment, three computer configurations are mainly found:

— the local computer;
— the remote computer; and
— the local satellite of a remote host computer.

Any one of these configurations may be found in different operational modes:

CAD
computer

EI local

‘EB' Fig. 3.14. Configuration of a local CAD

computer

132 3 The Process Aspect of CAD

1/

computer

!

=1

Fig. 3.15. Configuration of a remote CAD computer

remote
le—> > general-purpose

— batch mode only;
— interactive mode only; or
— both batch and interactive mode.

Three of the many variations of CAD computer configurations are shown in Fig.
3.14 through Fig. 3.16. Figure 3.14 indicates the most primitive case which has prac-
tically disappeared: a local batch computer, with some means of program and data
input (the keyboard input of data is just one of the many possibilities), and with text
output on a printer and plot output on a plotter. Figure 3.15 shows a configuration
with a local terminal (both alphanumeric and graphic) attached to a remote computer
center. Figure 3.16 shows what is generally considered the most powerful configura-
tion: a local computer with all alphanumeric and graphic input and output capabili-
ties, backed up by a powerful remote computer.

The decision as to which configuration and which operational mode is “best”,
depends very much on the individual situation. This is particularly true for the first
five years or so after the introduction of CAD into a company. Organizations which
make significant use of a large general-purpose computer for non-CAD applications
will in all likelihood start by attaching remote terminals to the central computer. Orga-
nizations with less computer background will probably increase the computer capaci-
ty of the design office from personal computers to one or more CAD workstations
until they find it advantageous to connect some of these individual computers to a
bigger background computer. The final configuration in a large organization will
quite often have the structure shown in Fig. 3.16. (Note that the background computer
may in fact be a network of computers, not necessarily a single machine.)

3.2 CAD Processes 133

remote
general-purpose

computer

local

T~
== CAD
computer
EB' Fig. 3.16. Configuration of a local CAD
computer with remote support

3.2.3.4 The Interaction Phases of the CAD Process

In the cooperation between a design process and a subordinate CAD process we may
often distinguish various degrees of interaction in different phases. These phases are
illustrated in Fig. 3.17. The first phase consists of the transmission of a prepared task
specification to the CAD process. This “primary input” often includes a considerable
amount of information which has to be checked for completeness and correctness
before it is processed any further. The next step is usually a highly interactive com-
munication between the two partners, involving adjustments and modifications of the
specification until both can agree. The next step is the actual execution of the task.
Interaction should be less prominant in this phase. Finally, the presentation of results
often requires a high degree of communication when it emerges that more details are
wanted than were included in the first presentation, or the way of representing the
results should be modified for a better visualization of the essential aspects.

These phases may be more or less pronounced in a particular environment, so that
they do not always show up in the architecture of CAD systems; but this principal
structure is always useful to compare real CAD systems against. Besides the two
highly interactive phases of a CAD process mentioned above there are two more situa-
tions which are associated with a high degree of interactive communication:

— information retrieval; and
— synergetic cooperation of human and computer (as is typical for computer-aided
drafting).

134 3 The Process Aspect of CAD

amount of

R h I interaction phases | interaction
information |) I
exchanged | in CAD | rate
| |
high | task specification] low
I primary input I
I |
' 1
low { input validation | high
' |
’ I
high ‘ | high
for synthesis | . l for synthesis
| execution
low I low
for analysis |] for analysis
| |
|
high | presentation | high
or low | of results l or low
| I

Fig. 3.17. The interaction phases in CAD

3.2.4 The State of CAD Processes

3.2.4.1 The Lifetime of Processes

In the previous sections we have not explicitly dealt with the aspect of time. Time,
however, is an essential aspect of processes. Each process has a beginning and an end:
we call this the lifetime of a process. The process exists only during its lifetime. At
any moment during its lifetime, the process is in a certain state. The lifetime of a pro-
cess is not independent of the lifetime of other processes. Note that the lifetime of
a process includes both its “active” and its “dormant” phases (see Sect. 3.2.4.3). As
Fig. 3.4 suggests, a process can exist only during the lifetime of its environment. Fur-
thermore, a process which was created by another process as a subtask should (in most
cases) return a result and terminate before the original process is terminated. In cer-
tain cases, however, a process may create another process without the need for a result;
in such a case the creating process may well terminate before the created process. The
basic requirement of process lifetime is illustrated in Fig. 3.18 for three examples.
First, the general situation is illustrated. The second example shows the environ-
ment process which makes a look-up table available (a book in the office or a data
base on a computer). Although there is only one administration process which creates,
maintains, and deletes from the table, several independent look-up processes may be
executed. The third example is related to the design environment. Independent of a
particular design process, the need for a CAD system has been realized and a process
for the installation of a CAD system created. As a result, the CAD system has become

3.2 CAD Processes 135

= environment process

several processes
in this environment

maintenance of a look-up table

|
F ﬁ>l
l —_— —— |
| several look-up processes |
l —_— _—
design environment

a design process

I
I
I installation of .

| a CAD system CAD system existence
l

[

CAD process

session process

I 2

Fig. 3.18. Three examples illustrating process lifetime

available in the design environment. Some design process may now create a CAD pro-
cess utilizing the system, during which process several sessions will be held. Several
other design processes may easily utilize the same CAD system in parallel with the
design process shown in the figure, provided that no conflicts arise.

3.2.4.2 The Representation of the Process State

At any point during its lifetime, a process is either active or inactive. To call a process
active means that the process is changing its own state, or that the process is com-
municating with another process. We will have to deal with this concept of the state
of a process in more detail. A designer can usually formulate the state of the design
process he is working on. Certain design goals may have been achieved, while others
are still to be reached; certain documents may have been produced but only in a
“preliminary” version; inconsistencies may exist in the design itself due to incomplete
updating of documents according to the most recent design changes, or there may be
inconsistencies between the achieved solution and the design goals as a consequence
of inadequate choices made in an earlier phase of design; even the knowledge about
such inconsistencies is part of the changing state of the design process as analysis pro-
ceeds.

136 3 The Process Aspect of CAD

In general, one will be able to express the state of the design process in terms of
the state of certain “things” (such as design drawings, written documents, of
knowledge in human brains) which constitute the specific resources of the design pro-
cess:

— The resources which represent the state of the process must be reserved for ex-
clusive use by this process alone.

The same situation exists for a CAD process, except that the resources which rep-
resent the state of the CAD process are restricted to:

— machine-readable storage media and
— the knowledge of the “computer-aided designers”, usually called operators in the
CAD process.

We will deal with the knowledge of the operators in more detail when we discuss
the communication aspect of interactive CAD systems. The state representation of a
CAD process is related closely to the discussion of data structures and their represen-
tation. At this point it is sufficient to note that machine-readable storage media may
be of very different types and may be looked at on different levels. The lowest level
is represented by hardware, like bits in computer primary memory and on external
storage devices. This aspect is of minor interest to the CAD user. However, only in
rare cases can he avoid dealing with the state representation on the level of a com-
puter-operating system, data base, or file management system, or on a programming
language level. On these levels, the objects in a data base, the sequence of values in
a file, or the values of variables in a program together with the corresponding underly-
ing schema represent one part of the state of the CAD process at any instant. The sec-
ond part of the CAD process state representation is the associated knowledge in the
brain of the “computer-aided designer”. Consequently, a major task in CAD is:

EP

operator
@ ——————— knowledge knowledge
CAD system
Ly Loy

Fig. 3.19. The representation of the state of CAD processes

3.2 CAD Processes 137

— to communicate the schema of the CAD process state to the computer in machine-
readable form, and
— to fill an instance of this schema with values in a particular CAD process.

Figure 3.19 is a more detailed representation of the schema shown in Fig. 3.6. It
distinguishes more precisely between the CAD processes themselves and their states.
Furthermore, the CAD environment is separated into its two main components:
“operator” and “CAD system”. The state of process DPF"1 is defined as the com-
bination of the data structure of the CAD system and the associated knowledge of
the operator. While the schema is the same for all CAD processes DPF“, the con-
tent is different for each of them. The machine-readable resources representing the
state of the processes are associated with the overall CAD system (that is, the environ-
ment process), while the values belong to the individual processes.

3.2.4.3 The Operating State

It is advantageous to define the various situations of a process in terms of an
“operating state”. This is common practice in process control, and we will use a
simplified version of the state diagram used in the definition of the PEARL language
[PEARB81]. Other programming languages which support the concept of a process
might be used as a reference as well [WINK79], [WINK80]. The correspondence be-
tween PEARL and the notions used here is as follows:

PEARL this book
task environment process
activity of a task CAD process

Figure 3.20 shows the operating states of the environment process (we have omit-
ted the scheduling feature of PEARL). The environment process EP(N) (in Fig. 3.19)
is said to be dormant if no CAD processes exist in this environment. It is runable if
at least one process exists and is executable or being executed; it is suspended if at least
one process exists, but none of them wants to proceed. In addition it is useful to in-
troduce the state “unknown”, which actually is not a state of the environment itself,
but is rather associated with the relation between this environment and some other

suspend
continue

suspended | “| runnable

resource requested

Fig. 3.20. The operating states of an
resource obtained

environment process

138 3 The Process Aspect of CAD

—_————— nonexisting

initiate
terminate

terminate

abnormal
situation

waiting
for message
or resource

repair
successful

message
or resource
obtained

terminate

Fig. 3.21. The operating states of a CAD process

(environment or CAD) process. An environment is unknown to some other process
if the latter does not know about its existence, or at least does not know how to com-
municate with it. The operating state of an environment is thus closely related to the
operating states of the CAD processes which belong to it (Fig. 3.21). Every CAD pro-
cess must pass through the operating state “existing”. It is in this state immediately
after it has been created in the environment upon the request of some other process.
In order to become executable, the CAD process must be initialized. For initialization,
values which are meaningful and consistent with the operations to be performed are
assigned to certain objects in the corresponding data structure. This corresponds to
the communication of the design goal to a subordinate design process, as discussed
in Sect. 3.1.2. If there are any steps to be taken, the process will pass to operating state
“executing”, from which it will return when the task is completed. In the executing
state, the need for support by other processes may occur. Resources may be needed;
new subprocesses may have to be created and their responses awaited; “help” may be
needed from a higher-level process or the environment process. In such cases, the
CAD process will pass to the operating state “waiting”. The operating state “in
repair” is reached if abnormal conditions arise. It might be emphasized that this
operating state should be investigated much more intensively than has been done in
the past. Computer-based systems often become complicated not because their nor-
mal tasks are complicated, but rather because abnormal situations and repair
mechanisms have not been taken into account in sufficient detail.

3.2 CAD Processes 139

From both the “waiting” and “in repair” states the process can normally return
to “executing”. However, if the message cannot be received, or the resource cannot be
obtained, or the repair is not successful, the process will have to return to either “ex-
ecutable” or “existing”. The first is certainly preferable, because it leaves the process
in a consistent state from which it can proceed (for instance, by repeating the step
which has just failed).

3.2.5 The Problem of Resources

3.2.5.1 Resource Availability and Conflicts of Resource Requirements

In the previous paragraphs we have mentioned “resources” several times as something
indispensable for a process. Examples of such resources are:

— time, money, manpower, storage capacity, or a processor; and
— a certain piece of hardware, a certain file, a certain compiler, a name.

The difference between the two groups of resources mentioned above is their abili-
ty to be substituted by other resources. This will later cause differences in how these
two groups of resources have to be treated. At this time we will deal with their com-
mon aspect: we consider as a resource,

anything needed which may have limitations of availability in the environment
considered [SCHL78].

The resource problem is less evident if only one process exists (or can exist) within
the environment. In this simple case, practically all the resources of the environment
are available to the process. However, when several processes exist in parallel, conflicts
may arise already due to the fact that the state representation of each process requires
resources which cannot be shared. Serious conflicts are even more likely if several of
the processes are in the executable operating state (including the “executing”,
“waiting”, and “in repair” states). Computer science has developed several constructs,
like semaphores [DIJK68] and others, which deal with the problem of resolving con-
flicts [BRIN73]. Furthermore, Petri nets (or P-nets) may provide the necessary tools
to handle the problems of coordinating the individual parallel tasks in a design pro-
cess [ZUSE80]. However, to the authors’ knowledge these techniques have not yet
been introduced into CAD systems. The reason why CAD has disregarded this prob-
lem thus far is probably that CAD systems which support several CAD processes in
parallel and in real time are uncommon. Furthermore, the notion of a “process” is
usually associated with a “job” or a “session” on a computer, not with the longer-
lasting design task. Finally, constructs for the coordination of concurrent processes
have found their representation in programming languages [BRIN75], [PEARS1]
which are as yet unfamiliar to the CAD community, while in data base systems these
problems tend to be taken care of entirely by those systems and, hence, are hidden
from the user. In Sect. 4.3 we will have to deal with the problems of resource manage-
ment in an environment which does not provide semaphores or similar constructs for
resource management.

140 3 The Process Aspect of CAD

Names are a special kind of resource. Names are used in processes as substitutes
for objects, while the objects themselves are each represented by some lower-level pro-
cess. The action of replacing the name by the actual object is called binding
[SALT78]. Resource problems may arise in two ways:

— the use of identical names for different objects may cause an inconsistency;
— during binding (replacement of the name by the object itself) it may turn out that
the required resources are not available.

Examples of binding actions are:

— the inclusion of subprograms from a library into a program module in a process.
The words “binding”, “mapping”, or “linkage editing” are common, depending
on the computer manufacturer’s terminology;

— the establishment of a connection from a terminal to the main computer (by tele-
phone dialing for instance);

— the opening of an actual data file by a CAD program; or

— the substitution of a computer memory address for a programming language vari-

able name during compilation.

The aspect of resource availability is important with respect to CAD systems.
CAD systems which are designed to operate on a large central computer may not be
applicable in an environment which does not provide sufficient memory capacity. On
the other hand, an interactive CAD system which is used successfully on a small com-
puter may be unacceptable when operated from a remote terminal on a large central
computer where it has to share resources (central processor time, communication
channels) with other processes. Software such as compilers for certain programming
languages, or specific data base management systems or subroutine packages might
also constitute resource requirements which restrict the applicability of CAD systems.
The same even applies to human resources when a certain kind of knowledge for
operating the CAD system is required. As a consequence, a CAD system is fully de-
scribed only if its resource requirements are spelled out in addition to its functional
capabilities. It is not surprising that several CAD systems exist which are quite similar
in functional respects but differ in their resource requirements.

3.2.5.2 The Efficiency Aspect of Resources

Besides the functional aspect of availability of resources, efficiency of their utilization
is also an important consideration in CAD systems. Efficiency is related to cost, and
hence introduces a commercial aspect. CAD systems which operate efficiently in one
environment may operate less efficiently in another. In the early years of CAD the
size of primary computer memory was limited because of high costs. For this reason,
CAD systems were developed which could operate with a minimum of primary
memory by storing all but the most immediate data on peripheral devices. The
tremendous decrease in primary memory cost [SCHU78] has caused a shift towards
larger memories for the optimal use of resources, while on the other hand time is
becoming more valuable. The decrease of memory cost together with the spreading
of 32-bit computer architectures and virtual storage has emphasized the use of more

3.3 Modeling in CAD 141

primary storage while minimizing time-consuming accesses to secondary storage. It
should be noted that the economic factors related to resources may have a con-
siderable influence upon CAD systems.

3.2.5.3 CAD Machines and CAD Tools

Engineers are used to thinking of machines. By analogy, a CAD system may be com-
pared to a machine. In CAD the product is design information, and the resource
representing the product is paper or a certain region in a data base (rather than a piece
of hardware). The resources which this “machine” uses in the production process are
mainly computer hardware and software (instead of hydraulic forces and lubrication
oil). Both the CAD system and the conventional production machine need control or
at least supervision by a human.

The analogy goes further. Machines may be designed for “stand-alone” use. This
is the common situation when so-called “turn-key” CAD systems are used
[ALL__78]. But machines are quite often used in a larger environment where a
transfer system stores the intermediate product and transports it from one machine
to another, while in the meantime some checking may be performed and the piece of
work may have to be oriented in a different way before it is inserted into the next ma-
chine. The transfer system finds its analogy in CAD in a data base management
system, the intermediate human checking being done with a suitable query language,
while the different orientations of the same pieces of work correspond to the different
“views” of the same objects in the data base according to different subschemas (see
Sect. 3.3.2).

3.3 Modeling in CAD

3.3.1 Developing a Schema

3.3.1.1 Basic Considerations

In the previous sections we have tried to develop a conceptual model of the design
process. The model is far from being formal, since that was not the intent. But it pro-
vides a suitable basis for talking about CAD, for developing more formal models of
CAD, and for designing CAD systems. The task of developing a model recurs in every
design task (see Fig. 3.22 and Sect. 3.1.2). Because computer systems are lacking in
the ability to do synthesis, the development of a model — or more precisely: the set
of models that belongs to the scope of a CAD system — is generally a task to be per-
formed by the designer of a CAD system. The user of the CAD system can develop
product models only within the restrictions imposed by the designer of the CAD
system. The description of the whole set of possible models that can be developed by
the designer when using a CAD system is called the conceptual schema. The design
of the schema, however, does not only depend on the objects to be designed, but also

142 3 The Process Aspect of CAD

anticipated objects
anticipated actions
of the design

evaluation

synthesis analysis

schema and
transformations
to subschema 1

Fig. 3.22. The CAD process and its schema

German standard

]

U.S. standard Fig. 3.23. Design drawing standards

on the anticipated actions to be taken. In conventional design the actions to be taken
are all related to human information processing. Over many years a suitable schema
for a very large class of objects has been developed: the standards for design drawings.
Note that the standards for design drawings are not identical all over the world. Figure
3.23 shows the same object according to German and American standards. These two
standards serve the same purpose equally well, yet they are different. They illustrate
that “correctness” is not an applicable criterion for evaluating a conceptual schema.
“Suitability” is more appropriate. We group from [BRUNS56]:

— “The categories in terms of which we quote the events of the world around us are
constructions or inventions. The class of prime numbers, animal species, the huge
range of colors dumped into the category ‘blue’, squares and circles: all of these
are inventions and not ‘discoveries’. They do not ‘exist’ in the environment. The

3.3 Modeling in CAD 143

objects of the environment provide the cues or features on which our groupings
may be based, but they provide cues that could serve for many groupings other
than the ones we make. We select and utilize certain cues rather than others”

The essential question to be answered by analysis and evaluation of a conceptual
schema is:

— Is the schema suitable for efficient transformation to and from the various
subschemas required by the different design steps anticipated?

The examples in the subsequent chapters will illustrate these considerations.

3.3.12 A Sample Problem

This sample problem may appear to be too trivial. Yet it exhibits all the essential
features of schema planning in CAD applications. Figure 3.24 represents an object
which has some similarity with a hammer (although we do not claim that it is a good
hammer). It would not be too difficult to manufacture this hammer in a workshop
with the information given in the figure. Let us take a closer look at this information.
It contains

— structural information:
the object consists of two subobjects (head and shaft);

— geometrical information:
the geometric shape of head and shaft, and the geometrical position of these two
pieces after assembly; and

— information regarding manufacturing:
the material information (presumably together with the geometrical data) will in-
fluence the selection of the raw material for both pieces. The tolerance data will
influence the quality control.

150!
|

T—1

Ls
> e

60°
T
m
>
[S]
20

140

Y
Y
&
>
=]
24
110

SHAFT

|
2
Fig. 3.24. The graphical representation of an object

o

144 3 The Process Aspect of CAD

Note that the drawing itself is not a complete description of the hammer. It is com-
plete only in a certain environment. In order to complete the geometrical information,
one must additionally apply the rules for representation of bodies in design drawings.
Only with this additional knowledge can one conclude that the shaft is basically a cir-
cular cylinder with flat ends which are perpendicular to the center line of the cylinder.
Furthermore, one must know that the standard length unit is the millimetre. If we
neglect the implied rules, we find tremendous difficulties in describing the geometry.
A verbal description without any graphic support would be quite lengthy if at all
feasible. A particular problem of CAD is that computers do not know about the rules
of design drawings and cannot read a design drawing as a human does. Hence a dif-
ferent schema is required to represent the information.

3.3.1.3 Naming of Objects and Attributes

A fundamental difference between a design drawing and a schema suitable for com-
puter application is the naming requirement. While on the design drawing entities
may be pointed at (“this length is 140 mm”), the entities in a schema and their at-
tributes must have names assigned with them [SALT78]. We obtain one possible
schema of the hammer by simply replacing each number by a respective name. We
have many choices in doing this, the first choice being the set of allowable names. In
Fig. 3.25 we choose as names identifiers built from an arbitrary number of capital let-
ters and numbers. However, we might as well have chosen another naming system,
such as assigning a positive integer value to each of the entities. In a more general
sense, even a position may be taken as the name (“the lowest line of the HEAD
representation”). Since information processing with computers is generally based on
information representation in the form of character strings and numbers, names of
this form are most common. In the context of graphic data processing, we will discuss
the use of graphic representation of names in more detail. In this chapter we will
restrict ourselves to the usual form of names, namely character strings.

DO

GAP

ANGLE
x
m
>
o
H

-

SHAFT

D1

Fig. 3.25. The graphical representation of a schema

3.3 Modeling in CAD 145

In any case, names must be unique in the environment where they are used. In Fig.
3.25 we select DO and L for two entities each. Nevertheless, the names are unique if
we prefix (or qualify) them with the name of the object to which they belong:
HEAD.DO and SHAFT.DO are two unique names. The same principle applies if we
consider the possibility of two different processes in the same environment using the
same name for independent entities. Again the technique of qualifying the name (in
this case with the name of the appropriate process) will make the name unique. Prob-
lems will arise only if we restrict the rules for naming so that qualification is not
possible. In this case conflicts are likely to occur.

3.3.14 Alternatives for a First Schema

A logical next step would be to transform Fig. 3.25 into a machine-readable represen-
tation. We choose a Pascal-like notation:

TYPE MEASURE = RECORD

VALUE, TOLERANCE : REAL
END;
TYPE HEAD__SCHEMA = RECORD
ANGLE, H, W, OFFSET, L : REAL;
DO : MEASURE
END;
TYPE SHAFT_SCHEMA = RECORD
D1, L1, L 1 REAL;
DO : MEASURE
END;
TYPE HAMMER__SCHEMA = RECORD
GAP : REAL;
HEADPART 1 = HEAD__SCHEMA;
SHAFTPART : = SHAFT_SCHEMA;
END;

We now ask ourselves: Is this a suitable schema? As mentioned before this ques-
tion can be answered only if we consider the actions to be taken. Consideration of
the objects alone is insufficient. First of all, we note that we are able to identify ob-
jects of the types defined above by combining the name of each object with the name
of a schema:

VAR HAMMER: HAMMER _SCHEMA;
SHAFT : SHAFT_SCHEMA;
HEAD : HEAD__SCHEMA;

We call HAMMER an “object” of type HAMMER _SCHEMA in order to dis-
tinguish between a schema and an instance of this schema. We use “object” as a
synonym for “data structure”, whenever the representation of a real world object in

146 3 The Process Aspect of CAD

terms of data is concerned. In the literature, we can also find “data structure” being
used instead of “schema”, i.e., for a whole class of objects. Since we generally allow
several processes to exist in one environment, each of them being characterized by its
appropriate state, we must distinguish between the abstract schema and its individual
instances, one of which is associated with each process (see Sect. 3.2.4.3).

We can also assign values to certain quantities:

HAMMER.GAP : = 0.0005;
SHAFT.DOVALUE: = 0.015;
HEAD.DOVALUE : = 0.015;

Here, implicitly, we have introduced the convention of using the ISO standard for
physical units (i.e., m for length) instead of the mm unit which was the design-drawing
standard. At this point we could use a data structure built according to the above
schema as a memory. All we need is a query language which allows us to retrieve data
from the storage and to represent them in a form readable to man or program. This
is in fact a fundamental function of data bases. Note, however, that we do not use
the “pointers” of the schema hammer. Indeed, we have not needed them so far. It
would be more appropriate to include the HEAD__SCHEMA and
SHAFT__SCHEMA in the HAMMER __SCHEMA as follows:

TYPE COMBINED _SCHEMA = RECORD
GAP: REAL;
DO: REAL:
SHAFT: RECORD
DO__TOLERANCE: REAL;
D1, L1, L: REAL
END;
HEAD: RECORD
DO__TOLERANCE: REAL;
ANGLE, H, W, OFFSET, L: REAL
END
END;

Note that the COMBINED__SCHEMA differs from a simple combination of the
three previous schemas: the nominal value of diameter DO has been removed from
both the SHAFT_SCHEMA and the HEAD__SCHEMA and is now given only
once. This reflects the functional requirement that the two parts must have the same
nominal value for this diameter in order to fit together. This is a consistency condition
of the original data structure, which results from a redundancy in D0 in just the same
way as in the design drawing (Fig. 3.24). While the COMBINED _ SCHEMA im-
plicitly guarantees consistency, the first solution with separate HEAD__ SCHEMA
and SHAFT__SCHEMA requires an explicit check of the consistency, whenever
HEAD and SHAFT are combined into HAMMER.

3.3 Modeling in CAD 147
3.3.2 Influence of the Operations upon Schema Planning

We will use the example HAMMER from the previous section to illustrate the type
of considerations necessary during schema planning. Let us plan for the following ac-
tions:

— we wish to deal with hammers with different values of DO;

— we wish to combine heads and shafts having different length dimensions but the
same value of DO. We do not expect any changes in the angle value of 60 degrees
assigned ANGLE;

— we want to produce design drawings similar to Fig. 3.24 from the data base;

— we want to compute the weight of shaft and head for each hammer;

— we want to query the data base, and

— we will apply these actions one at the time to one hammer at a time.

Before we continue we must make some additional assumptions:

— The algorithm (the program) for producing the design drawing must know all the
lines and texts to be displayed. It must know where to place these lines and in what
line width.

— The algorithm for calculating the weight must know the material density. It will
work only for simple volume shapes such as cylinders, quadrilaterals, and prisms.
The head material will always be steel, shafts may be made from steel or wood.

— The query action is satisfied by a schema like the one described in the previous
chapter. The same applies to the action of assigning values to the quantities in the
data structure.

A graphical representation of the situation is given in Fig. 3.26. Within the overall
schema we distinguish the input and query subschema (which is identical to the
original schema for HAMMER, SHAFT, and HEAD derived in the previous chapter
but including the WEIGHT in order to facilitate queries for the weight after it has
been determined by the weight analysis algorithm). The drawing subschema contains
all the graphical data, the weight analysis subschema all data relevant for this action.
Each subschema presents the data in the form which is suitable for the respective ac-
tion. Comparing this schema with the previous one and with the planned actions, we
note:

— the original schema has become a subschema for input and query, but the weight
has been included as an additional attribute;

— it has become advantageous to use the more complicated triple of HAMMER,
HEAD, and SHAFT, rather than the COMBINED__ SCHEMA, since we want to
combine different shafts and heads to build all sorts of hammers;

— two additional subschemas have been developed, one representing all data re-
quired for the weight analysis algorithm based on elementary geometrical shapes
plus material information, the other one representing all data required to produce
a design drawing;

The situation, however, is as yet unsatisfactory because

— we cannot derive the data required to fill the drawing and the weight analysis
subschema from the input subschema;

148 3 The Process Aspect of CAD

the complete schema:
HAMMER

lines and texts
and their
attributes
linewidth

linestyle
textsize

input and query
subschema

drawing subschema

subschema for weight analysis

Fig. 3.26. Refinement of a schema by the definition of subschemas

— we may calculate the weight, but the value cannot yet be returned to the input and
query schema;

— no provisions have been made to avoid the construction of a hammer with a shaft
of 15mm DO and head of 12mm DO; the important query schema contains
ANGLE and WEIGHT, although ANGLE should always be 60 degrees, and
WEIGHT can never be a legal input value.

The two attributes weight and material may be considered as examples, illustrating
the freedom that we have in schema planning. Instead of the solution illustrated in
Fig. 3.26, we might have included the weight in the weight analysis subschema and/or
the material information in the input and query subschema. Depending on our choice,
either the input or the query action has to access one or both of these subschemas.
Efficiency considerations, based on the estimated number of occurrences of the
various actions, must generally be applied to decide which of these solutions is to be
preferred.

3.3 Modeling in CAD 149

3.3.3 Subschema Transformations

3.3.3.1 Subschema Transformations as Part of the Schema

How can we produce the data required to fill the drawing schema? These data are
necessary for the plotting operation. Two extreme positions may be taken:

— we generate all drawing data from scratch; or
— we generate all drawing data from the data in the input and query schema.

The first approach (as shown in Fig. 3.27) is certainly feasible. In fact, it was the
standard approach taken in the early stages of CAD. However, two drawbacks are
quite evident: expected economical advantage of introducing CAD is lost if the user
has to handle basically the same information many times and cast it into a different
subschema once for every action; furthermore, the problem of inconsistency arises
since it may easily happen that the drawing displays a length value of 200 mm for the
shaft while the corresponding value in the SHAFT subschema is 140 mm.

The second approach (shown in Fig. 3.28) corresponds to the CAD user’s
paradise. But this paradise is almost nonexistent. How could we possibly derive the
size of the drawing text from the input and query subschema? We might, of course,
build this knowledge into the “drawing data generator”. But this eliminates the flex-
ibility which is needed whenever the outcome of this built-in procedure is unaccep-
table to the user (in the context of Sect. 3.1.2, we would say that the achievement
presented to the higher level process is unsatisfactory).

It will be necessary to guide the drawing data generator when it produces the draw-
ing by adding the information on how the object should be displayed while all infor-
mation about what to display may be taken from the input and query subschema. In
general, we find that transformation of information from one subschema to another

schema
HAMMER

input
and query
subschema

drawing
subschema

[weight
analysis
subschema

information for
weight analysis

Fig. 3.27. Information flow for object
definition with complete schema redun-
dancy

150 3 The Process Aspect of CAD

input
and query
subschema

drawing
data
generator

drawing
subschema

analysis
subschema

Fig. 3.28. The CAD user’s paradise
(which does not exist)

primary input query output

-
5.0
—_—— c
9 2> = . &
56 g generate generate EE =
=go weight analysis drawing £a¢g
SEx information information T g5
BE= in informatio T g8
U2 o c
Rps E
£3

weight

analysis
sub-

schema

analysis

graphic
processor

plot

Fig. 3.29. The relationship between subschemas and operations

requires additional information. The transformers which take data from one sub-
schema and generate data of another subschema (with additional information) ob-
viously must know two subschemas rather than one. For the sample case discussed
so far the situation is shown in Fig. 3.29.

3.3.3.2 The “n-square” Problem of Subschema Transformations

In CAD system design, one often tries to minimize the number of subschemas in one
schema. The reason for this tendency is evident if one assumes that information may

3.3 Modeling in CAD 151

sub-
schema

four subschemas require reduced number of
six transformations subschema transformations (4)

Fig. 3.30. The “n-square” problem of data transformation

have to flow from any subschema to any other subschema. In this case, with n being
the number of subschemas, a total of n-(n—1) transformations would be necessary.
Because of the quadratic increase in the number of necessary transformations (which
would roughly result in a quadratic work increase for the implementation of the CAD
system), the CAD system designer will often attempt one of two solutions:

— use only one subschema even if this is unnecessarily complicated and wastes
resources in many instances; or

— use one preferred subschema, from which and to which all transformations are
done.

The first solution is the basis of many successful CAD systems. Finite element
programs are typical representatives of this class. The great advantage of the finite ele-
ment approach lies in the use of a single subschema (or very few) for even the most
complicated problems (triangles and rectangles, for instance, in the two-dimensional
case). The same approach is taken in a number of line drawing systems which are
based entirely on polylines for storing geometrical information, even for such regular
objects as circles and rectangles.

The second solution corresponds to the preferred mental model of today’s data
base management systems [ECKE77]. This preferred model is a flexible schema on
which all other subschemas are based. In many realizations, however, only a one-way
transformation is implemented. In line drawing systems, for instance, the polyline is
most often the preferred subschema for graphical information. Circles, arcs, and texts
may easily be transformed into polylines. But one does usually not bother about the
reverse.

An organization planning to introduce a solid modeling system will usually be
faced with the problem of which subschema for solid model representation it should
choose. Both constructive solid geometry and boundary representation techniques (to
mention only the two most widely used ones) have their advantages and disadvan-
tages. Constructive solid geometry models may be transformed into boundary
representations, but the reverse is practically impossible.

152 3 The Process Aspect of CAD

In a general case, subschema transformations may have to use data from more
than just one subschema in order to produce data for an additional subschema. For
four different subschemas the situation is illustrated in Fig. 3.30. The subschema
transformations must of course be part of the environment in which the schema ex-
ists. In fact, it is advantageous to consider the subschema transformation as part of
the total schema itself.

3.3.4 Flexibility — A Measure of Prudence — Versus Efficiency

CAD experts are quite familiar with a very serious problem: after some effort has
been put into the planning of a CAD system (or maybe even after implementation)
suddenly the goal changes. There may be many reasons for such changes:

— technical development calls for a design change of the objects;

— economical development sets different priorities;

— increased insight into the effect of introducing the CAD system opens a door to
new wishes.

It is therefore good policy for CAD system developers to anticipate such new
wishes, and to clarify possible problems beforehand. It is often prudent to plan for
goals which are somewhat beyond what is actually requested. This will allow the
classification of future wishes into:

— options which should immediately be included in the plan, even if they are not ac-
tually required;

— options which may be added later at low cost, provided that such future modifica-
tion is taken into account in early planning;

— options which would require a more or less new approach.

In the example of the hammer used above, we have already mentioned the first
type of these options: although the angle at the front edge of the hammer should
always be 60 degrees, it is good strategy to include this information in the schema in-
stead of building this knowledge into all the algorithms (for drawing and weight
analysis). Storing the angle value without using it for computation would be
dangerously redundant, as both the data structure and the algorithms would know the
same information. If the angle value is made part of the schema, the algorithms
should use it even if it always is the same constant value. Efficiency of execution may
be increased in one case, while the algorithms would require an extra look at the data
structure in the other case. But the gain in efficiency is probably less important than
the increased flexibility. The safety is not reduced by this approach, since the input
subschema can easily be restricted so that the value of “angle” can never be input but
is rather initialized with the desired 60 degree value. The second type of options may
result from the consideration that the front edge of the hammer should perhaps be
rounded in more advanced versions. This could be achieved by a slight modification
of the schema and somewhat more sophisticated algorithms. The designers of the
CAD system might choose to provide the schema for this more advanced goal, but
still implement the algorithm for the primitive version only. This approach would
make a steady enhancement easier than if the old schema had to be replaced by a new

3.3 Modeling in CAD 153

o

spherical shapes
not tractable
with sample schema

Fig. 3.31. Modification of an existing schema

one. The third class of options may be illustrated by the consideration that head and
shaft of the hammer might be pinned together as shown in Fig. 3.31 in some later ver-
sion. Since the pin would involve spherically shaped bodies for which (according to
our assumptions) the algorithms for weight analysis are not available, and hence the
corresponding subschema is as yet undetermined, this option should not be included
in the planning of the schema. The purpose of this example is to illustrate the
arguments which should be considered in planning a schema. However, the appropri-
ate decisions must be taken in each individual case. There are no general rules, with
one exception:

— mistakes in the planning of the schema of a CAD system will drastically limit the
success of design processes using the system.

3.3.5 Schema Planning and Design Process Planning

3.3.5.1 Subprocess Planning and Data Validity

Thus far, in the discussion of schema planning, we have not adequately considered
the process aspect. Schema planning is strongly influenced by the planning of the
design process. We can say that:

CAD modeling = schema planning + design process planning.

We will again use the example of the hammer in order to illustrate this point. The
basis of our considerations is the schema illustrated in Fig. 3.29. Let us assume that
the task to be solved is the design of a hammer with properties which:

— (class A) in some parts can be represented by certain values of quantities in the
input subschema (such as geometrical data);

— (class B) in other parts can be formally represented as restrictions, with respect to
values which are associated with the query schema but not found in the input
schema (such as the weight, which should never be input); and

— (class C) in certain other parts cannot be represented in a formal way within the
schema (the design drawing “doesn’t look good”).

154 3 The Process Aspect of CAD

primary
input
input
data
generate generate
weight drawing
analysis data data
weight drawing
analysis dat
data ata
weigh? plot
analysis
weight
query Fig. 3.32. The precedence of operations required for data
validity

Most design goals include all these three aspects. Class A properties can be
specified directly in the input. Class B properties may be obtained only by an interac-
tive process, but this process may potentially be formalized. Thus the successful
design process may or may not include a human. Class C properties require that a
human be included in the process to perform the task of evaluation (see Fig. 3.3). In
this example, we ignore the possibility of automatic iteration of the weight and leave
the evaluation task entirely to a human. Process planning consists mainly of combin-
ing the elementary operations available in an environment into subprocess units. It is
obvious that certain primitive operations must precede others: without prior input no
other operation would be meaningful; without prior generation of weight data, the
weight analysis would not be useful. The necessary sequence of precedence is il-
lustrated in Fig. 3.32.

One extreme alternative would be to combine all operations into a single process.
In this most simple case the process would pass from the operating state “existing”
immediately after creation through “executable” to “executing”, and would return to

3.3 Modeling in CAD 155

“existing” after completion. Finally the process would become “nonexisting”. The in-
dividual operations would be scheduled within the process in a predetermined way
consistent with the precedence requirements to guarantee that each operation uses on-
ly valid data. The data validity problem is thus completely resolved once the internal
scheduling is fixed in accordance with the needs. This approach is the basis of any
batch-oriented CAD systems. The great advantage of this approach is that the validity
problem can be solved once for all processes in the environment. A second easy way
to solve the problem is to redo all dependent operations after modification of the data
on which they depend. This approach would lead to a subprocess structure as follows:

subprocess 1: primary input immediately after creation of the process, generate
weight analysis data, weight analysis;

subprocess 2: generate drawing data, plot; and

subprocess 3: query.

With this partitioning of the operations into subprocesses, no validity problems
arise since both subprocesses 2 and 3 can start only with valid data. However, this ap-
proach is far too restrictive in many cases. It may even be unacceptable: it may well
happen that the weight is totally irrelevant in a particular case. No designer would
readily accept the necessity to provide additional information for weight analysis if
he is not interested in weight. Furthermore, the weight analysis may be costly, and
should not be carried out unless wanted. Thus we may prefer the following sub-
processes.

— subprocess 1: primary input immediately after creation of the process;
— subprocess 2: generate weight analysis data;

— subprocess 3: weight analysis;

— subprocess 4: generate drawing data, plot;

— subprocess 5: query (with options for weight or no weight data).

In the subschemas this approach would be reflected in the following way:

TYPE HAMMER__SCHEMA = RECORD
GAP : REAL;
HEAD__PART : »HEAD_SCHEMA;
SHAFT_PART : »SHAFT__SCHEMA,;
WEIGHT _VALID : BOOLEAN INITIAL (FALSE);
WEIGHT : REAL
END;
or perhaps

TYPE HAMMER__SCHEMA = RECORD
GAP : REAL;
HEAD__PART : -HEAD__SCHEMA,;
SHAFT_PART : —»SHAFT_SCHEMA,;
CASE WEIGHT _VALID : BOOLEAN INITIAL (FALSE) OF
FALSE : ();
TRUE : (WEIGHT: REAL)
END;

156 3 The Process Aspect of CAD

The query operation would first have to check WEIGHT _VALID and then pre-
sent either the value or an error message. Furthermore, the operation of adding weight
information to the schema would have to be modified to set the “weight analysis data
validity” value to true. This value would then have to be initialized with false upon
creation of the data structure. A request for weight analysis would first check whether
the data to be used are valid. This approach eliminates the possibility of algorithms
using invalid data. However, it introduces the less obvious but (for this reason)
possibly more serious problem of inconsistency. Let us assume that weight analysis
has been performed once (hence the weight in the query subschema is valid); and let
us assume that a new set of weight analysis data is input afterwards. As a consequence
(except for some rare cases), the weight value in the query subschema is inconsistent
with the weight analysis data; it still reflects an outdated situation.

The question whether results of intermediate operations (such as the weight
analysis) should be stored in a system or regenerated whenever needed is fundamental.
Storing intermediate results introduces a redundancy which helps to improve efficien-
cy, as it saves the unnecessary repetition of operations. However, the same measure
introduces the danger of using invalidated information if the origin of the intermedi-
ate results undergoes a change.

There are several methods to ensure the correct precedence of operations:

— Method A: Leave it to the user.
In this case no security measure is taken to prevent the user from requesting a
weight analysis without valid data, or to query for the weight value before it has
been computed. The results of such requests are unpredictable. Nevertheless, in
many cases this solution is acceptable. The user will probably be surprised by the
result of an invalid request, and will recognize the mistake. Changes are often very
small that the result would be so close to what the user expects that he does not
recognize the problem. Obviously, this approach should be taken only when the
user is experienced enough to judge correctly. In a more complicated situation this
probably can not be justified.

— Method B: Modify the schema by adding a validity value, and add a validity initia-
tion operation.

This approach influences the subschemas for “input and query” and for
“weight analysis data”. Both subschemas would have to be enhanced as illustrated
for HAMMER below.

— Method C: Add a “validity check” subprocess and a validity subschema.

The validity subschema might have the form

TYPE VALIDITY = RECORD

INPUT _DATA, WEIGHT _ANALYSIS __DATA,

WEIGHT, DRAWING _DATA : BOOLEAN INITIAL (FALSE)
END;

The subprocess responsible for the validity of the data would be called upon at
the beginning and end of other operations. At the beginning of an operation the
validity subprocess would be asked whether all data to be used are valid; at the end
the subprocess would be requested to set the validity of the new data to true and the

3.3 Modeling in CAD 157

M: number of preceding operations

NAME OF THE
OPERATION

e~ ———

N: number of dependent subschemas

J: number of dependent operations

NAME OF THE validity
SUBSCHEMA of the data

possibly also
I: number of operations which
influence data in this subschema

Fig. 3.33. A schema representing the precedence of operations

validity of all dependent data to false. In this case, the knowledge of precedence would
have to be built into the validity check algorithm. In a more complicated situation this
knowledge would preferably be built into a data structure, which may have a schema
as represented in Fig. 3.33. The concept of implementing the dependency of data
upon other data and preceding operations has been implemented in a knowledge-
based approach for solid modeling and production planning by Kimura et al.
[KIMU88].

3.3.5.2 The Information Packages

The ideas in the previous section lead us to consider another aspect of information
in CAD systems: How should we group the information which is to be exchanged
among the various subprocesses? In particular, how should we group the information
which flows between user and system? Information is always transported in certain
packages (for input, output, and storage). In the implementation, these packages may
appear as statements, commands, or records. In the example used in this chapter it
is not possible to modify the material properties for the hammer shaft without
repeating the whole weight analysis — even for the head piece which remains un-
changed. Similarly, the additional drawing information must be input as a complete
set of data. It would not be possible to change the width of an individual line without
regenerating the complete drawing data structure.

158 3 The Process Aspect of CAD

The aspect of how information should be grouped has been given much attention
in the area of artificial intelligence. In particular, investigations related to chess play-
ing by humans and computers [FREY78] have shown that a human stores and handles
information not always in the most obvious way, but rather on various levels of
abstraction in so-called information chunks. In chess play, for example, certain situa-
tions are not memorized as a set of pieces located on certain fields of the two-dimen-
sional array on the chess board, but as a single chunk that represents the whole
strategic situation. Communication between a human and a CAD system would prob-
ably be optimal if information packages corresponding to such chunks in the design
task could be exchanged. On output, graphical representation of information comes
very much closer to this ideal than lists of figures do.

Large information packages are quite adequate for batch processing, which is
characterized by much work in the preparation of a complete and correct set of input
data. In interactive processes, however, the information packages must be reduced to
a size which is easily tractable by the user without great risk of mistakes during input,
or misunderstanding or frustration during output. Thus, in interactive CAD systems,
one is forced to break the information packages and hence the individual sub-
processes down to small sizes. As a consequence, the number of subschemas and of
subprocesses becomes large, and the problem of data validity and consistency
becomes more important than in batch-oriented systems.

The information packages which are exchanged between the user of a CAD system
and the system itself are not merely groups of information units. They must be for-
mulated subject to certain rules. On input (to the system) they must be transformed
into a machine-readable representation, on output (from the system) they must be
transformed into a form which is perceptible by the operator (in most cases a visible
form). The set of rules for the formulation and representation of the information
packages constitutes the operator language of the CAD system.

One particular question in the design of the communication language is whether
it should have a descriptive or more of a command character. For interactive com-
munication, the general trend is to split the user input into a large number of com-
mands containing relatively few descriptive data. The advantage of this approach is
that it makes echoing and correcting input a relatively simple task. The commands
may often be classified into the following groups:

— commands for building a model;

— commands for starting significant processing;

— commands for display of results; and

— commands for addressing system utility functions (such as “help”).

A more descriptive type of language would tend to eliminate the commands for
initialization of processing steps. A system based upon this approach would have to
determine for itself what processing steps ought to be taken, on the basis of the types
of results that are asked for. A precedence schema, as illustrated in Fig. 3.33, could
be used in a CAD system to derive such information. An example of this kind of ap-
proach to CAD has been proposed by Pomberger [POMBS82].

Modeling in CAD is a task which consists of the following main subtasks, which
must be performed in a parallel and coordinated way:

3.3 Modeling in CAD 159

— planning of the schema:
— identification of the objects to be treated,
— specification of the relations between the objects,
— specification of the attributes of objects and relations,
— specification of the allowable range of values for the attributes,
— refinement of the schema, introduction of subschemas;
— planning of the process:
— identification of the subprocesses,
— specification of the subschemas required for the subprocesses, including the ef-
ficiency aspect,
— specification of precedences among the subprocesses,
— specification of the data validity requirements for each subprocess; and
— planning of the language:
— specification of the information packages for communication between man
and machine,
— specification of the rules for formulating and representing these information
packages.

3.3.6 Resulting Data Base Management System Requirements

The close interrelationship between the operations in a design process and the
schema, poses special problems which do not arise (for instance) in commercial ap-
plications to the same extent. When computer methods are to be applied, the concep-
tual schema of the design process, or at least a subschema of it, will have to be repre-
sented on two levels:

— in the programs;
— on external storage media.

In the programs, a subschema representation takes the form of the set of declara-
tions of records, arrays, and variables (specifying names and attributes) which repre-
sent the entities in the schema. For external storage, we find two solutions: file
management systems or data base management systems (DBMS). Files contain
records which represent the individual entities and relations, while the associated
subschema is implicitly defined by the corresponding declaration of records in all pro-
grams which access the file. In a DBMS, however, the schema is explicitly stored as
an integral part of the data base itself.

When we discuss the exchange of data between programs, we have to consider fil-
ing systems and DBMS?’s as alternatives. The DBMS provides several well-known ad-
vantages (see also Sect. 2.5):

— relief of the application program from details of data and storage space ad-
ministration;

— relief of the application program from access efficiency considerations;

— reduced data redundancy;

— reduced redundancy of the schema representations;

— improved consistency;

160 3 The Process Aspect of CAD

— shared access by separate parallel processes; and
— improved data security.

These advantages do not imply that filing systems are completely outdated. They
are still superior to a DBMS for rapidly accessing large amounts of data.

DBMS’s have a wide-spread application in commercial data processing, while they
are as yet less frequently found in a CAD environment. The reasons are mainly the
following:

— In commercial applications, the number of entities of a single type is generally
large, but the number of entity types is limited. In design, however, the situation
is the opposite. The number of entity types is extremely large (how many different
parts are there in a car?!) while there are usually just a few instances of each entity
type;

— the relationships between entities are generally much more complex in a CAD
schema (functional relationships, topological relationships, and geometric rela-
tionships) as compared to commercial data processing. In short, CAD requires
that significantly more complex schemas be handled;

— most DBMS’s tend to store data of similar type together (all points together, all
circles together). CAD applications, however, need many varieties of data types at
the same time. This causes long searches to bring together what belongs logically
in the same context but has been scattered throughout the data base because of
the grouping according to type. The consequence is inefficient processing;

— as described in Sect. 3.2.2 and illustrated by Fig. 3.13, design consists largely of
the development of a schema. Only in detail design (variational design) can the
schema be considered as fixed. Otherwise, the schema is subject to continuous de-
velopment, while in most DBMS’s the schema is assumed to have a relatively long
lifetime without modification. As a consequence, DBMS’s which are suited for
commercial data processing applications may be expected to satisfy the re-
quirements of CAD for variational design, but not necessarily for the whole
design process.

Hence, a data base management system for CAD application must provide
facilities for

— handling very complex schemas with up to a thousand different types of entities,
or even more;

— allow for frequent modification of the schema, with the associated necessary
transformation of the previously defined data base content into the new schema.

3.4 Summary

This chapter had two main purposes. First, we introduced a concept (or a model) of
the design process which can be used as a basis for describing CAD processes. Sec-
ond, we introduced terminology which will be used for describing design processes,
CAD processes, and CAD systems. A key issue was the structuring of the design pro-

3.5 Bibliography 161

cess into the activities of specification, synthesis, analysis, evaluation, and presenta-
tion. These activities are centered around a conceptual model of the objects to be
designed. However, when the design process starts, the conceptual model is only part-
ly determined (namely by the specification). It will be developed, refined, and
possibly modified as the design proceeds in the synthesis activity. Analysis does not
change the conceptual model, but rather determines values for object attributes in the
model. Evaluation compares the results with the specified goals, and influences the
synthesis activity. The achievement of the design is presented to the higher-level pro-
cess from which the specification was issued.

The important concept of the environment was introduced. The environment is
considered as a process in which the design process is embedded. The environment
provides the required resources for the design process and coordinates resource re-
quests if more than one process is executed in parallel. Learning was identified as an
activity of the environment.

The fundamental difference between a human-based design process and CAD pro-
cesses is the need for formal representation. While man can work on an informal
basis, CAD is possible only if the conceptual schema and the rules to be applied in
synthesis and analysis have been formalized. This requirement applies both to conven-
tional CAD systems and to systems based on artificial intelligence (AI) methods.
While in conventional CAD the synthesis is mainly the task of a human operator, Al
methods offer the chance to transfer this task to the CAD system. The reason for this
difference stems from the fact that conventional CAD systems are based on the com-
mon programming languages and the algorithmic approach to problem-solving that
underlies them. Furthermore, conventional data base management systems and pro-
gramming languages generally consider the determination of a schema as a task
which has to be completed before any other operation using the schema. In synthesis,
however, we apply rules which are not in algorithmic form and we should be able to
manipulate schemas freely. For this reason, AI methods have a potential for progress
in the synthesis area of CAD, but more research is needed before such methods are
ready for production.

Finally, we investigated modeling in CAD. Modeling, or developing a schema, is
a task which cannot be performed by simply studying the anticipated properties of
the objects to be designed (although this is one prerequisite). The schema and its
various subschemas are significantly influenced by the operations. Along with func-
tional aspects, the consideration of efficient utilization of the available resources
(manpower being the most precious) will influence schema planning. As a third con-
stituent (besides schema and operations), we have identified the CAD system
language. CAD system design requires the development of these three constituents in
parallel.

3.5 Bibliography

[ALL__78] J.J. Allan III, K. Ba: A Survey of Commercial Turnkey CAD/CAM Systems.
Dallas Productivity Int. Corp. (1978).

162
[ALLA78]
[BAUMS2]
[BRIN73]
[BRIN75]

[BRUNS56]
[DLJK68]

[ECKET7]

[FREY78]
[GIESS85]

[GROT76]

[GRAB79]
[HANS76]
[HATV77]

[HATV73]

[HOFS80j]

[KIMU88]

[KOLL76]

[KRAU77]

[LATO78]

[LUMLS2]
[MIS__81]

[NIJS76]

[NYGASO0]

3 The Process Aspect of CAD

J.J. Allan III: CAD in the US. and in Europe. In: Tech Report GRIS 78-3,
Fachgebiet Graphisch-Interaktive Systeme. TH Darmstadt (1978).

H.G. Baumann, K.-H. Looscheelders: Rechnerunterstiitzies Projektieren und
Konstruieren. Heidelberg, Springer-Verlag (1982).

P. Brinch Hansen: Distributed Processes: A Concurrent Programming Concept.
Computing Surveys 5, 4 (1973), pp. 223-245.

P. Brinch Hansen: The Programming Language Concurrent Pascal. IEEE Trans.
Softw. Eng. 1, 2 (1975), pp. 199—-207.

J.S. Bruner: A Study of Thinking. New York, John Wiley & Sons (1956), pp. 232.
E.W. Dijkstra: Cooperating Sequential Processes. In: F. Genuys, Programming
Languages. New York, Academic Press (1968).

K. Ecker: Organisation von parallelen Prozessen — Theorie deterministischer
Schedules. Reihe Informatik 23, Bibliographisches Institut Mannheim,
B.1-Wissenschaftsverlag (1977).

P.W. Frey: Chess Skill in Man and Machine. Heidelberg, Springer-Verlag (1978).
E. Giese, K. Gorgen, E. Hirsch, G. Schulze, K. Truél: Dienste und Protokolle in
Kommunikationssystemen — Die Dienst- und Protokollschnittstelle der ISO-Ar-
chitektur. Heidelberg, Springer-Verlag (1985).

G. Grotenhuis, J. van den Broek: A Conceptual Model for Information Process-
ing. InB G.M. Nijssen, Modelling in Data Base Management Systems. Amster-
dam, North-Holland Publ. Co. (1976), pp. 149—180.

H. Grabowski, M. Eigner: Anforderungen an CAD-Datenbanksysteme. VDI-Z
121, 12 (1979), pp. 621—633.

F. Hansen: Konstruktionswissenschaft — Grundlagen und Methoden. Miinchen,
Hanser-Verlag (1974).

J. Hatvany, W.M. Newman, M.A. Sabin: World Survey of Computer-Aided
Design. Computer Aided Design 9, 2 (1977), pp. 79-98.

J. Hatvany: The Engineer’s Creative Activity in a CAD Environment. In: J.
Vlietstra, R.F. Wielinga (eds.), Computer-Aided Design. Amsterdam, North-
Holland Publ. Co. (1973), pp. 113—126.

D.R. Hofstadter: Godel, Escher, Bach: An Eternal Golden Braid. New York, Vin-
tage Books (1980), pp. 24—27.

F. Kimura et al.: Representation of Design and Manufacturing Process by Data
Dependency. IFIP WG 5.2, Workshop on Intelligent CAD Systems, Cambridge
(1988).

R. Koller: Konstruktionsmethode fiir den Maschinen-, Geréte- und Apparatebau.
Heidelberg, Springer-Verlag (1976).

F-L. Krause, V. Vassilakopoulos: A Way to Computer Supported Systems for In-
tegrated Design and Production Process Planning. In: J.J. Allan III, CAD
Systems. Amsterdam, North-Holland Publ. Co. (1977), pp. 5-34.

J.-C. Latombe: Artificial Intelligence and Pattern Recognition in Computer Aided
Design. Amsterdam, North-Holland Publ. Co. (1978).

J. Lumley: Expert Systems. Systems International 6 (1982), pp. 53—56.

J. Misra, K. Mani Chandy: Proofs of Networks of Processes. IEEE Trans. Softw.
Eng. SE-7, 4 (1981), pp. 417—426.

G. M. Nijssen: A Gross Architecture for the next Generation Database Manage-
ment. In: G.M. Nijssen, Modelling in Data Base Management Systems. Amster-
dam, North-Holland Publ. Co. (1976), pp. 1—24.

K. Nygaard, P. Nandlykken: The System Development Process. In: K. Hiinke,
Software Engineering Environments. Amsterdam, North-Holland Publ. Co.
(1980), pp. 157—172.

3.5 Bibliography 163

[PAHL77]

[PEARS1]
[POMBS2]
[RODE76]
[ROTH71]

[SALT78]

[SCHL78]

[SCHU78]
[SIMO68]

[SUSS78]

[VDI__69]
[WAEC69]

[WARMT78]

[WINK79]
[WINKSO]

[ZUSES80]

G. Pahl, W. Beitz: Konstruktionslehre. Handbuch fiir Studium und Praxis.
Heidelberg, Springer-Verlag (1977). “DIN 66253 Teil 1”: Programmiersprache
PEARL. Basic PEARL. Berlin, Beuth (1981).

DIN 66253 Teil 1: Programmiersprache PEARL. -Basic PEARL. Berlin, Beuth
(1981).

G. Pomberger: Ein Modell zur Simulation von Konstruktionsprozessen.
Angewandte Informatik 1 (1982), pp. 26—34.

W. G. Rodenacker: Methodisches Konstruieren. Konstruktionsbiicher Bd. 27, 2.
Aufl., Heidelberg, Springer-Verlag (1976).

K. Roth, H.J. Franke, R. Simonek: Algorithmisches Auswahlverfahren zur
Konstruktion mit Katalogen. Feinwerktechnik 75 (1971), pp. 337—345.

J.H. Saltzer: Naming and Binding of Objects. In: G. Goos, J. Hartmanis (eds.),
Operating Systems. Lecture Notes in Computer Science, Vol. 60. Berlin, Springer-
Verlag (1978), pp. 99—208.

E.G. Schlechtendahl: Rules for Designing CAD Software Machines. Proceedings
of the International Conference “Interactive Techniques in Computer Aided
Design”. Bologna, Italy (1978).

C. Schuenemann: Speicherhierarchie-Aufbau und Betriebsweise. Informatik-
Spektrum 1, 1 (1978), pp. 25-36.

R. Simon: Rechnergestiitztes Konstruieren. Dissertation TH Aachen (1968).
Amsterdam, North-Holland Publ. Co. (1977), pp. 5—34.

G. J. Sussman: SLICES: At the Boundary between Analysis and Synthesis. In:
J. C. Latombe, Artificial Intelligence and Pattern Recognition in Computer Aided
Design. Amsterdam, North-Holland Publ. Co. (1978), pp. 261 —299.

VDI 2221: Methodik zum Entwickeln und Konstruieren technischer Systeme und
Produkte. Diisseldorf, VDI-Verlag (1985).

R. Wichtler: Die Dynamik des Entwickelns (Konstruierens). Feinwerktechnik 73
(1969), pp. 329—333.

E.A. Warman: Computer Aided Design: An Intersection of Ideas. In: J.C.
Latombe, Artificial Intelligence and Pattern Recognition in Computer Aided
Design. Amsterdam, North-Holland Publ. Co. (1978), pp. 1—18.

J.F.H. Winkler: Das ProzeBkonzept in Betriebssystemen und Programmierspra-
chen I. Informatik Spektrum 2, 4 (1979), pp. 219—229.

J.F.H. Winkler: Das Prozefkonzept in Betriebssystemen und Programmierspra-
chen II. Informatik Spektrum 3, 1 (1980), pp. 31 —40.

K. Zuse: Petri-Netze aus der Sicht des Ingenieurs. Braunschweig, Vieweg & Sohn
(1980).

4 The Architecture of CAD Systems

Simulation of a robot model
(courtesy of Kernforschungszentrum, Karlsruhe, Germany)

4.1 The Gross Architecture 167

4.1 The Gross Architecture

4.1.1 Components

Just as it would be difficult to define “the typical program” or “the typical house”,
there is no such thing as “the typical CAD system”. The architecture of a particular
CAD system will certainly depend on:

— the tasks to be solved by the system;

— the computer resources available for its implementation (both hardware and soft-
ware);

— the experience of the CAD system designer;

— rules established within the company or on a wider scale, which restrict the
freedom of the system designer.

Graphical representations of CAD systems depend very much upon the aspects
which their authors wished to emphasize. The representation given in Fig. 4.1 is based
on [NOPP77]. This representation emphasizes the time sequence of the execution of
several CAD programs as the design process proceeds through its various phases. The
representation shown in Fig. 4.2 relates the main system components to the major ac-
tivities in a design process as described in Chap. 3:

— specification,

— synthesis,

— analysis,

— transformation,
— presentation, and
— evaluation.

phases of the design and productjon process

technical e hd Y 4
objects function 'f] principal f\ﬁgeometricul If] detail []P’EPGO’?“"" [) production
design k)\J design L}\J design LJ design L) pro duction |) 7

o
o
o individual application programs
(-]
________ ra
drive g /
system
control
system

power
supply

Fig. 4.1. The program chain schema of CAD systems

168 4 The Architecture of CAD Systems

specification

commands
programs

queries

data base conceptual

model

library of
programs

understanding

of
the methods
evaluation goals

other
CAD system
resources

trans-
formations

presentation
printed
output

graphics

Fig. 4.2. CAD activities and CAD system components

The specifications are passed from the system user (the operator) to the CAD
system as commands, queries, or programs, expressed in a language that is under-
stood by both partners (man and machine). Within the CAD system, analyses and
transformations are performed accordingly. The state of the process is represented in
the data base, while the program libraries and other system resources are used during
execution. Results are presented in graphical or printed form to the operator who per-
forms the evaluation by comparing the results with the goal. The operator (usually)
performs the synthesis task as well. For this purpose he must have a conceptual model
of the objects handled by the CAD system, and of the state of the CAD system pro-
cess. He must also have a conceptual understanding of the methods that are im-
plemented in the system as programs, and he must know how these methods affect
the objects. With this knowledge, he can formulate the specification of the next steps
to be taken and send this request to the CAD system. In certain cases, however, the
synthesis task is at least partially located within the CAD system. For special products
in a special environment, it may be possible to formulate a synthesis algorithm which
can be programmed. Furthermore, systems based upon artificial intelligence methods
attempt to support synthesis in a wider range of problems [LATO78]. But the stan-
dard case corresponds to the situation shown in Fig. 4.2.

The components of a CAD system may be viewed in various aspects. The func-
tional aspect relates the system components to the model of the design process, the
hardware aspect concentrates on pieces of equipment, while the software aspect deals
with programs and data. There is typically (but not necessarily) a correspondence be-
tween the functions and the hardware/software components which perform them.
Table 4.1 summarizes this correspondence.

4.1 The Gross Architecture

169

Table 4.1. Correspondence between functional, hardware, and software aspects

Functional

Hardware

Software

knowledge, memory

state representation of pro-
cess
analysis

man — machine communica-
tion:
control and data control
identification
machine — man communica-
tion:
inquiries, messages

presentation of:
text

pictures

mixed text and pictures
information transport

evaluation, synthesis

peripheral storage devices:
disks, tapes, etc.
same as above

central processor and prima-
ry memory

terminal, keyboard function
keys, menu cursor, tablet,
mouse

printer, terminal, display
(alpha-numeric and
graphical) indicator lights

printer, terminal, COM
plotter, graphics display
COM

plotter, graphics display
mail (conventional and elec-
tronic), networks

person

program libraries, data files,
data base systems
data files, data base systems

programs, modules, program
packages

character strings, text editor,
commands case constructs,
pointers

character strings, menu tech-
niques, prompting, graphical
representations

WRITE statements
graphics packages

graphics package

mail service (conventional
and electronic), file transfer
human brain

4.1.2 Interfaces

4.1.2.1 Development and Installation of a CAD System

Before a CAD system can be used it must be developed and installed. In the case of
turnkey systems [ALLA78], these activities are reduced to the analysis of commercial-
ly available systems, and the evaluation of how well they will suit the actual needs.
In other cases the initial implementation and the gradual extensions of a CAD system
uses components of the environment — and sometimes components of the system
itself — in what is known as “bootstrap” technique (Fig.4.3). In designing, im-
plementing, and enhancing CAD systems, such techniques very effectively reduce the
time and cost of system development and maintenance.

4.12.2 The Invocation of a CAD System

Let us assume that a CAD system has been installed in a computer environment.
Before he can operate with the CAD system on a given project (new or old), the
designer must invoke the CAD system: he must bring it to execution. In order to do

170 4 The Architecture of CAD Systems

computer
environment
facilities
for generation
of a CAD
system new
CAD
system

Fig. 4.3. The implementation of a new
CAD system in an environment

organizational
environment

computer
environment

CAD system
operator / environment

CAD system
in
execution

Fig. 4.4. Interfaces during invocation of a CAD system

this, the designer (whom we call the operator while he is using the CAD system) must
deal with a number of obstacles before he can address the CAD system itself. There
may be organizational barriers (the access to the CAD system may require him to
move physically to another room or another building), but in any case there will be
barriers due to the computer environment.

If he uses a central computer, both the CAD system and the data structure
representing the state of his CAD process may be on resident storage devices, and the
obstacle is merely a language barrier: he must use a limited subset of the computer’s
operating system control language to hook the CAD system both to the data (files)
of the process and to the communication channels (terminals) he wants to use. If he
uses a dedicated CAD computer in his office, he may even have to deal with hardware:
he may need to load a couple of floppy disks (one for the CAD system, one for his
data) and perform some manipulations to start the computer. Compared to the large

4.1 The Gross Architecture 171

central computer, he may find that the operating system of his dedicated computer
is much easier to use. In any case the communication interface of the computer envi-
ronment always constitutes a part of the interface between the operator and the CAD
system (see Fig. 4.3). Only after the invocation of his CAD system can the operator
address the system itself (Fig. 4.4).

4.1.2.3 Functional Interfaces in a CAD System

Figure 4.2 is an overview of the main functional components of a CAD process during
execution. The representation, however, is not very helpful with respect to the inter-
faces between system components. Either the interface is not shown, or it is represent-
ed simply by a solid line. But a solid line between two circles can mean almost
anything. We will now investigate in more detail the interfaces between some CAD
system components, although such a detailed analysis complicates the picture con-
siderably (even if we concentrate on just a few components). A graphical representa-
tion of the interfaces among all components would become unreadable. When in-
vestigating an interface between components, we will apply the following considera-
tion:

An interface between two components represents the use of a shared resource ac-
cording to one or more agreed-upon schemas.

Thus, in order to discuss an interface between two components, we must say
something about this common resource and about the related schema. Note that the
two components do not necessarily have to use the same schema. In a general situa-
tion, particularly in open systems configurations [OSI__78], the interface resource
may provide a schema transformation allowing each of the interfacing components
to use a different schema to represent the same information. The situation occurs
quite frequently when data are exchanged between computers of different manufac-
turers, which use different coding for data representation (see Chaps. 4.3.4 and 7). Ex-
cept for the extra schema transformation, which may require some additional infor-
mation for correct operation, there is no basic difference from the situation where
both partners use the same schema. For this reason, we will discuss only the simple
case where one schema is used by both communicating partners.

We can use Fig. 4.5 as a model for discussing the execution of a CAD system. The
figure concentrates on the interfaces between the main functional components. For
the moment, let us ignore the box on the left-hand side of the figure. As in Fig. 3.29,
the CAD system programs (which perform the analytical work) and the subschema
transformations play a central role. They operate on an internal representation of the
process state by using primary memory (with computer words as the resource), ac-
cording to a certain subschema. This subschema is defined by the declaration of some
global data structure in the programs. For long-term saving of the process state, a data
base management system is used. The rules for transformation of the schema into the
data base’s internal representation are carried out within the data base management
system; the data definition language of the system has been used to define this
transformation. All CAD execution programs and the communication processor use
the command subschema of the data base to access data in the data base system.

172 4 The Architecture of CAD Systems

man
operator communication schemas
customer

validity check

internal

keyboard or
—— card file display printer plotter

process l driver driver driver driver
resource l
management l internal

I communication representation

processor
of results
pragram |
libraries |
data | internal -
result presentation
libraries | command p
subschema processor

data [

I

scheduling CAD execution representation

program of process state
standard subschema
error handling
and repair data base

data base
help command system
subschema 4

Fig. 4.5. Interfaces between main CAD system components

Transformation of process state data from the data base into an internal represen-
tation takes place in a similar way.

The internal state representation is also the interface between the CAD programs.
and a result presentation processor (one or several), which produces an internal
representation of results suitable for output on a number of devices. The output
device processors (printer, plotter, display) will then transform the results into optical-
ly perceptible information in a schema as required by the operator or other persons
(a customer, for instance).

Communication from the operator to the CAD system is mainly in the form of
a conversation between the operator and a communication processor (interpreter,
compiler) within the CAD system. The purpose of this communication is to build up
or to change the internal state representation (the “model”), and to inquire about the
actual model state [LILL81]. If more than one input device is to be used, it is ad-
visable to have a common interface for representing messages (in either direction) be-
tween the drivers of the input device and the actual communication processor. Often
a character string representation is used as a common command schema for all input
devices. Input originating from any input device is first converted to the character
string representation, and can then be processed by the command interpreter in just
the same way as if it had come from the keyboard. Part of the conversation will take
place in a local way (errors in basic input syntax can be detected by the device drivers,
and correction will be requested so that only “legal” commands are passed to the
communication processor). The communication processor controls the execution of

4.1 The Gross Architecture 173

the CAD programs by passing information from the input to them in a special inter-
face.

The schematic described so far represents what might be called the “abstract CAD
machine”. Only the main functions are considered here. All processes within the ex-
ecuting CAD system, however, need to be supported by a number of utility functions
which designers of CAD systems tend to hide from the users. The resource manage-
ment in the CAD system provides the necessary environmental conditions for the suc-
cessful operation of the “concrete CAD machine”.

4.1.2.4 Man-Machine Communication Channels

From Fig. 4.5 it is evident that several communication processes will occur between
the operator and the CAD system at any given time. Problems may arise if these com-
munication processes share the same resource for visualization. In the extreme case
where there is only a single display available, the input echo and computer-operating
system messages — among others — compete with each other for the limited display
space (in printer output all these processes may share the same paper, but at least they
do not have to compete with each other for the lines). In order to avoid severe prob-
lems, it has become a good practice to use at least two separate visualization surfaces,
one for the presentation of results and one for the messages of the communication
processes, including the input echo. An ergonomically better alternative is the use of
multiple windows on the same display screen. Examples of solutions to this problem
of conflict are listed in Table 4.2.

Table 4.2. Use of available hardware for man-machine communication

Hardware Used for message Used for data presentation
available visualization
printer printer new page before and after blocks of results
printer + plotter printer plotter
keyboard +display display display
refresh display display, possibly limited remaining area of display
message area
two displays one of the displays the other display

4.1.2.5 Data Transfer Interfaces of CAD Systems

With the use of CAD systems becoming more and more abundant throughout in-
dustry the communication interface between CAD systems and between CAD and
subsequent phases of the industrial production process (manufacturing, assembly,
quality assurance, and maintenance) has become a key issue. This topic will be dealt
with in more detail in Chapter 7.

174 4 The Architecture of CAD Systems

4.1.3 CAD Tools and CAD Machines

Even in an established CAD environment, one is likely to be faced with CAD tasks
that cannot be catered for satisfactorily by any of the CAD systems available in that
environment. Generally one finds certain components in the systems which (at least
in principle) could be used beneficially. The alternatives are: either to tackle that
design problem by conventional means, or to buy a new CAD system for that purpose,
or to extend the functional capabilities of one of the available systems by adding new
software.

Considerable economic savings are possible if, for a new CAD task, an existing
CAD system can be used (possibly with some adaptation) or — if some amount of
new development cannot be avoided — the work of development effort can be re-
duced by utilizing available tools. The necessity for and the benefits of such tools were
pointed out by Hatvany [HATV77]. Two categories of such tools may be distin-
guished:

— tools which are used only during the CAD system development; and
— tools which become part of the CAD system and will be used during its operation
for extending its capabilities. We will call these tools “machines”.

4.13.1 Tools Used in CAD System Development

In an environment where the development of CAD systems is a routine job, one is
likely to find special software systems for this work. These tools include:

— specification aids,
— testing aids,

— documentation aids,
— precompilers, and
— program generators.

Although the specification is (or should be) completed before the development of
a CAD system is started, while the documentation is performed in parallel with the
development, specification aids are often suited for documentation purposes as well.
This applies particularly to relatively informal methods like SADT [ROSS76] or
PSL/PSA [TEIC77]. Such systems are already being used for production purposes.
Formal specification methods based on abstract data types [GUTT77] or on “traces”
[BART78] are still undergoing rapid development. For a survey of specification and
planning methods, see [LUDE78], [BALZ81], [HESS81]. Special tools for testing
have also been developed [VOGES80].

Precompilers usually serve two purposes. They may guarantee the consistency of
data declarations in different programs which are intended to operate on the same ob-
jects. For this purpose, data declarations are retrieved from a data base and inserted
into the programs (in the most simple case, by including a piece of declarations text
or by expanding macros). The second purpose is to permit the algorithms to be writ-
ten in a language that is better suited to express the operations, or simply shorter than

4.1 The Gross Architecture 175

the available programming language. The higher-level program text is then compiled

into a language for which standard compilers are available (e.g., FORTRAN, etc).
Examples of collections of software tools are the National Bureau of Standards

Software Tools Database [HOUGS80] and the summary reported in [HUENS80].

4.1.3.2 Tools Used in CAD System Extension

Typical low-level components which one would choose off-the-shelf to combine into
an operable CAD system are:

— a data base management system;

— a file management system;

— a program package for handling common data structures in primary memory;

— a command interpreter for character-string type commands and for interactive
graphic communication;

— a graphics package; and

— mathematical subroutine packages.

One would also like to select from an available set of higher-level tools for such
tasks as:

— finite element analysis;

— two-dimensional geometry handling;
— computer-supported drafting;

— three-dimensional geometry handling;
— smooth surface design; and

— hidden line removal.

It is a well-known problem in the world of CAD that even if such machines are
available (and quite often they are), it is a major task to put them together into a satis-
factory or even barely functional system. They just do not fit together. This is one
reason for the continual rewriting of programs all over the world. The question is
obvious: Is it possible to design such software machines so that they can be put to-
gether into an operational system, in any arbitrary combination, more easily than the
present state of the art allows? We will devote Sect. 4.3.2 specifically to this ques-
tion.

Many of the points to be discussed are not new and may be found in other
areas. In particular a technically oriented reader should note the similarity between
the software machine concept developed here and real machines in an industrial pro-
cess.

176 4 The Architecture of CAD Systems

4.2 Data Models

4.2.1 Mapping
4.2.1.1 The Ideal Situation

We will assume that a conceptual model of the objects to be handled in a CAD system
has been derived. We will further assume that this model satisfies all functional re-
quirements, that is, it is suitable for all operations to be performed on a conceptual
level. Finally, we have defined which information the system should receive from the
user and supply to the user, and how this information is to be packed into information
packages (see Sect. 3.3.5.2). We are now faced with the problem that a computer does
not operate in the abstract space of the abstract data types [LISK75]. The objects of
abstract data types must somehow be mapped onto the hardware of the computer.
The same statement applies to the operations to be performed with the objects, and
to the information packages. In practice, the mapping from abstract space to hard-
ware is not done in a single step. An intermediate mapping level (at least one) is in-
troduced. The intermediate level is the level of a language which can be understood
by both a person and the machine. The closer this language is to the concepts used
in the abstract space, the more easily a person can use it. This is the level of “high
level languages” or “problem-oriented languages”. Of course, it would be advan-
tageous if only one intermediate mapping is required. Figure 4.6 illustrates this situa-
tion.

In the ideal situation, a person would only have to deal with the mapping between
the conceptual level and that of the high-level language. The mapping from this level

conceptual
level

high level or
problem-oriented
language level

hardware
level

Fig. 4.6. The ideal two-step mapping be-
tween the conceptual world and hardware

4.2 Data Models 177

to the hardware level would be hidden in the language compilers and the operating
system. In reality, the ideal situation is rarely found. This is particularly true when
FORTRAN is considered as the main (or perhaps the only) available high-level
language. Since FORTRAN is still the most common programming language for
CAD, we cannot simply ignore the deviations from the ideal. We have to identify such
deviations in order the make them evident.

4.2.1.2 Reasons for Non-Ideal Mapping

There are two basic reasons for deviations from the ideal situation: inadequate func-
tional capabilities of the high-level language, and loss of efficiency of the system ex-
ecution process. The following examples will illustrate these cases.

(1) SCALAR TYPES IN FORTRAN. Let us assume that we wish to express a
calendar date on the language level. With PASCAL this could be done as follows
[JENS78]:

type DATE= record

DAY: 1: 31;

MONTH: (JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEPOCT,NOV,DEC);
YEAR: 1900:2200

end,

Thus all calendar dates from Jan. 1, 1900 through Dec. 31, 2200 are mapped from
the conceptual model space into the language level. The reverse mapping, however,
might produce some illegal calendar dates such as Feb. 30, 1930, which makes the
above record definition somewhat unsatisfactory and indicates the limitation of even
advanced programming languages like PASCAL or C.

In FORTRAN, however, the situation is worse, since only a very limited number
of data types is available (basically INTEGER and REAL). Hence we must map all
abstract data types onto these few data types. A common way of doing this is to in-
troduce an intermediate mapping between the abstract level and the language level.
Two possibilities are shown in Figs. 4.7a and 4.7b using the data type “date” as an
example. In the case of Fig. 4.7a, we map day, month, and year onto one integer each.
In Fig. 4.7b, we define the year 1900 as a reference (mapped onto the integer value
0) and count the days from 1 through 366. Thus all calendar dates between Jan. 1,
1900 and Dec. 31, 2200 find their mapping on the language level, but the reverse map-
ping is really inadequate. A rather complicated algorithm is required to retrieve from
the single integer value the separate information of day and month. The inverse map-
ping may not even be unique: other objects of the conceptual space may also have
been mapped onto integers. Considerable confusion and significant economic losses
for program debugging arise from this deficiency in FORTRAN. Due to a programm-
ing error, it may easily happen that “green” (mapped onto integer 3, say) is added to
the “third of February” (mapped onto integer 34) with unforeseeable consequences.

(2)STORAGE SPACE CONSIDERATIONS. We are still using the above example,
but will now introduce the resource aspect of storage space. Mapping a calendar date
onto two integers (as in Fig. 4.7b) instead of three immediately saves one third of the
storage space. This statement may be derived from even a rough understanding of

178

integer integer
1900 1...12

a) date => three integers

4 The Architecture of CAD Systems

conceptual level

integer
1...

integer
1..
366

b) date => two integers

Fig. 4.7. The mapping of calendar dates (as.an example) onto integers

integer

0..
300

integer

+day-1

date code

12x31x year
+31x month

conceptual level

FORTRAN level

Fig. 4.8. The mapping of calendar dates onto
a single integer

compilers, which tells us that every integer quantity needs one computer word for
storage. The same line of argument may be carried further; mapping of the calendar
date onto a single integer (as indicated in Fig. 4.8) will save two thirds of the storage
space, as compared to Fig. 4.7a. The saving in storage space must, however, be paid
for with extra processing cost whenever the normal calendar representation (month,
day, year) has to be retrieved from the single integer.

4.2 Data Models 179
conceptual

193 197 201 214 228
level

INTEGER LETTER (5)
LOGICAL x 1 CHAR (2,5]
EQUIVALENCE (LETTER (1], CHAR (1,1))

FORTRAN
level

hardware
level

i I D

Fig. 4.9. Deficiencies of programming languages cause mapping around the language

4.2.1.3 Mapping Around the Language

A most peculiar situation arises if the high-level language is totally unsuited for map-
ping certain objects, while adequate support could be provided on a lower level
(assembly language and hardware). The system designer is then tempted to map
around the language level in order to achieve what he needs despite the properties of
the high-level language. A typical example that is very important for CAD is the lack-
ing capability of FORTRAN to specify record structures (ordered sets of data values
of different types). The use (or rather mis-use) of EQUIVALENCE for this purpose
is a poor and dangerous way to map around the limitation of that language im-
mediately onto the computer storage space. We assume a version of FORTRAN which
does not support character handling to illustrate such mappings. Let us write a pro-
gram which reads characters, one at a time, and checks for the occurrence of A, E,
I, O, or U. We assume that the computer has a byte-structured memory and that IN-
TEGERSs are stored in two bytes, LOGICAI*1 data in one byte.

Most FORTRAN programmers know how the compiler will map arrays of integers
and logicals onto a sequence of computer storage words by bytes. They also know that
reading a character will result in setting certain bits in a storage byte of the computer,
and that this sequence of bits might be interpreted as an integer. Using this
knowledge, the program designer can now map the character of the conceptual level
onto computer storage bytes (see Fig. 4.9): he maps the bytes onto a two-dimensional
array of logicals (CHAR) which — using an EQUIVALENCE - is embedded in an
array of INTEGERs. The INTEGER array corresponds to a sequence of INTEGERS
in the conceptual world. Instead of testing for ‘E’, which is not possible in our as-

180 4 The Architecture of CAD Systems

sumed FORTRAN, the program might test for 197. Note: the fact that we have included
this example does not imply that we recommend the procedure described. However, the
technique of mapping around the language level is common practice especially in FOR-
TRAN programming, and in fact is sometimes unavoidable. Experienced FORTRAN
programmers can do almost everything in this language, particularly if a couple of
FORTRAN callable Assembler routines are added. Of course, it would be much better
to use a language which provides the necessary features without requiring techniques
— such as EQUIVALENCE — which are known to be a frequent source of error.

4.2.14 Mapping Between Aspects

We will use a plane truss to illustrate the mapping between the aspects of operation,
representation and communication. On the conceptual level, we characterize the
geometry of a plane truss by

— the set of nodes (node name and location for each node); and
— the set of frame members (member name, names of starting node and end node
for each member, cross-sectional area).

The location is always assumed to be given by X and Y coordinates in a unique
Cartesian coordinate system. The corresponding schema is graphically represented in
Fig. 4.10a together with a sample truss structure (Fig. 4.10b). We assume that a
DBTG data base management system as described in [OLLE78] is to be used for im-
plementation purposes. In the DBTG data definition language, the schema definition
would be as follows:

Member

name of
start hode

name of
end node

a) Graphical representation of the schema

Node

name
x-coordinate
y-coordinate

SCHEMA

instance of schema
sample structure corresponding to sample structure

D (00,0.4) C(0.4,04)
M3
S g [o] [B]
M1
A(00,00] B(04,00)

b) Two representations of a sample structure

Fig. 4.10. Sample schema: plane truss

4.2 Data Models 181

RECORD NAME IS NODE;
LOCATION MODE IS SYSTEM;
WITHIN MODEL;

02 NAME; TYPE IS CHAR 20;

02 X; TYPE IS REAL;

02Y; TYPE IS REAL;

RECORD NAME IS MEMBER;
LOCATION MODE IS SYSTEM,;
WITHIN MODEL;

02 STARTNODE; TYPE IS CHAR 20;
02 ENDNODE; TYPE IS CHAR 20;
02 AREA; TYPE IS REAL;

The program which will perform the design calculations for the truss structure is
assumed to be written in PASCAL. Although PASCAL supports sets, we prefer to
map the two sets (of nodes and members) onto a list structure (a simple queue in this
case). In the program, the names are mapped onto pointers, while the original charac-
ter string names appear as additional attributes, and the coordinates are real values.
The schema representation in the PASCAL program would read as follows:

type NODE = record

NEXT_NODE : »NODE;
NAME : array [20] of char;
xY) : real
end;
type MEMBER= record
NEXT_MEMBER : -MEMBER,;
NAME : array [20] of char;
(START_NODE,
END__NODE) : »NODE;
AREA : real
end;
type SET_OF__NODES : »NODE;

type SET__OF_MEMBERS : »NODE;

With respect to communication, we distinguish between input and output. For in-
put, each node can be mapped onto an 80 character record beginning with NODE,
followed by the node name and the two coordinate values. A member is mapped onto
a similar record beginning with MEMB and followed by the member name and the
two node names. The input for a structure as shown in Fig. 4.10b would be as follows:

NODE A 0. 0.

NODE B 04 0.

NODE C 04 04
NODE D 0. 04
MEMB M1 A B
MEMB M2 B C
MEMB M3 CD
MEMB M4 D A
MEMB M5 A C

182 4 The Architecture of CAD Systems

input direct
any [check interpreter | input
; data base
operation
record record
interpreter | input
case 1
check plot
plot output
direct input
not permitted
any
operation data base -
ol record record
-S| interpreter input
case 2
plot
input direct
interpreter input
unchecked
check and nehec record record
copy —data base— interpreter | input
checked
case 3
any
operation plot

Fig. 4.11. Three different CAD system architectures with respect to data validation

In addition we may use the interactive input of the data base management system.
If we intend to use interactive graphical input, we have to define how the communica-
tion should be performed in terms of actions with mouse, keyboard and function keys.
For output we will be likely to use a graphical mapping. The schema is mapped onto
labelled points placed in a geometrically correct way (with some viewing transforma-
tion) on a sheet of paper or a display screen. The members are mapped onto straight
lines between the starting and end nodes. It is worthwhile to remember that the
transformation functions which convert the object representation from one of these
subschemas to another must know both subschemas (see Sect. 3.3.3).

Note that the mapping from the DBTG schema to the declarations in the PASCAL
programs is not a complete one-to-one mapping. The PASCAL declarations of the
records NODE and MEMBER guarantee that each member can refer only to nodes
(not to other members) and, in particular, to exactly two nodes. These properties of
the abstract model are not adequately reflected in the DBTG schema. Here, a limita-
tion of DBTG-oriented data base management systems with respect to their applica-
tion in CAD becomes evident. Thus we are forced to include in our system a checking

4.2 Data Models 183

(validation) routine which determines whether an instance of the DBTG schema is
consistent with this restriction or not.

Due to this deficiency, we now have a choice between various architectures, as
shown in Fig. 4.11. They differ in how the validation process cooperates with the
other processes (input, output, data storage, and other operations). In Case 1, direct
input to the data base is permitted. Thus the above mentioned restrictions may be
violated and must be checked before a program uses the data. In Case 2, we allow
input to the data base only via an interpreter, which uses the PASCAL record declara-
tions to represent the objects. In this case we can guarantee that the DBTG data base
content is consistent with the restrictions. Both of these architectures have their pros
and cons. In Case 1, the user may be confronted with an error message at a late stage
in the problem solution process and may lose time in having to go back to input (not
to mention the fact that the repeated checking consumes unnecessary computer
resources when applied again and again to unmodified data). In Case 2, we lose the
option of direct input to the data base, and we may be unnecessarily constrained to
provide the input in a form that is consistent not only at the end of all input but also
at all intermediate steps.

A third way of structuring the system is shown as Case 3 of Fig. 4.11. Here the
consistency check is used as a significant intermediate step between input and all
subsequent operations, which thus guarantees that all operations act on valid data on-
ly. This advantage is achieved at the expense of imposing more restrictions on the user
of the system. He can no longer switch back and forth between input and analysis;
but he must realize that there is a fundamental difference between the raw input data
and the validated data, and that data validation is an important intermediate step.

4.2.2 Binding

According to [SALT78] the term binding stands for the replacement of a name by the
object it actually represents. Thus binding occurs when the variable name PI in a pro-
gram is replaced by its value 3.14159, binding also occurs at a lower level when the
decimal value 3.14159 is substituted by its bit representation in computer storage.
Other examples of binding are: the substitution for a subprogram name (in CALL
SUB(...), for instance) of the subprogram itself; the association of a file that is ad-
dressable in a piece of program with an actual data set on a specific peripheral storage
medium; or the assignment of the address of a data structure to the corresponding
pointer variable.

In the design of a CAD system it is essential to pay attention to the time at which
such binding occurs (the “binding time”). The following times, at least, should be dis-
tinguished:

Case I: Binding at programming time (the time when the program is written in a pro-
gramming language);

Case 2 binding at module binding time (the time when the program and all its
subroutines are bound together to form an executable module);

Case 3: Binding at job preparation time (the time when a job is prepared for execu-
tion); and

Case 4: Binding at job execution time (the time when a process is executed).

184 4 The Architecture of CAD Systems

These different times are often not identified as being separate. For instance, if we
write a simple FORTRAN program which reads some data, performs certain calcula-
tions, and prints results, only the programming time and the run time are obvious.
But let us take a more common case for illustrative purposes. Consider a program
which needs an “equation of state” for a material (e.g., the pressure as a function of
density and temperature for water) for performing calculations. The following ap-
proaches correspond to different binding times of the equation of state to the pro-
gram.

Case I: Binding at programming time.
The equation of state is explicitly coded into the program as an internal pro-
cedure or simply as inline code. This corresponds to binding at programming
time. The equation of state (and hence, the material to be treated by the pro-
gram) cannot be modified at a later time. The possibility of including a case
option to select among a number of predefined equations of state does not
alter the basic situation, as it merely replaces one materials by a limited and
predetermined number of choices.

Case 2: Binding at module binding time.
The equation of state is declared as an external procedure in the program.
Different procedures corresponding to different materials are loaded in dif-
ferent subprogram libraries. During the binding of all subprograms to an ex-
ecutable module (“linkage editing”), only one of these libraries is used. Thus,
the function which computes the equation of state for the desired material
may be selected shortly before the program is submitted to execution. Here
we have no limitation at all with respect to the material. The only condition
is that a unique pressure must be computable from any given density and tem-
perature values.

Case 3: Binding at job preparation time.
For the moment let us assume that all the equations of state that might be
used are of a parametric type: they involve the same mathematical expression,
with only some parametric values to be adjusted for each material. In this
case we can delay the binding of the actual equation of state until after the
module binding time. For instance, we could let the program read the parame-
ters from a file which is not associated with an actual data set until im-
mediately before running the job. We have used the parametric version of an
equation of state here since most programming languages allow for the
delayed binding of data, but not of routines. In some systems, however, it is
possible to delay the binding of routines as well [INTS75].

Case 4: Binding at job execution time.
Let us now assume that the material to be used or the equation of state is not
known until part of the program has been executed (possibly because the pro-
gram selects a mixture of other materials depending upon certain design
criteria, and the equation of state is not determined until the mixture is de-
fined). Again, as in Case 3 above, most programming languages would allow
a delay of binding if a parametric representation of the equation of state is
used. In this case, the parameter values would have to be computed in the pro-
gram, or obtained from a data base and assigned to the variables which map

4.2 Data Models 185

the parameters. Certain systems, like REGENT [LEIN78], would allow us to
treat routines in just the same way as data, in that they would allow us to

generate, compile, bind, and execute a complete subprogram in a single pro-
gram step.

The following example shows the binding of an equation of state which computes
pressure p as a function of density rho and temperature T for various materials (using
PL/1 as a programming language):

Case I: Binding at programming time combined with a selection between predefined
options at execution time.

DECLARE P ENTRY(DECIMAL,DECIMAL) RETURNS(DECIMAL) VARIABLE;
P1: PROCEDURE(rho,T) RETURNS(DECIMAL);
[*code for material 1 */
RETURN(p);
END P1;
P2: PROCEDURE(rho,T) RETURNS(DECIMAL);
*code for material 2 */
RETURN(p);
END P2;
P3: PROCEDURE(rho,T) RETURNS(DECIMAL);
/*code for material 3 */
RETURN(p);
END P3;
SELECT (material) ;
WHEN(mat1) P = P1;
WHEN(mat2) P = P2;
WHEN(mat3) P = P3;
END;
any statement using P(rho;T);

Case 2: Binding at module binding time.

DECLARE P ENTRY(DECIMAL, DECIMAL) RETURNS(DECIMAL) EXTERNAL;
any statement using P(rho,T);
/*the operating system language is used to assure that the desired version of
the function P (corresponding to the desired material) is bound into the load
module */

Case 4: Binding at job execution time.

/* the following programming language is an extension of PL/1 provided by
the CAD system REGENT [SCHL78];
the attribute DYNAMIC indicates that binding is to be performed at execution
time */
DECLARE MATERIAL _NAME CHAR(4);
MATERIAL_NAME= any__expression__defining__the__material_name;
BEGIN;
DECLARE P ENTRY(DECIMAL, DECIMAL) RETURNS(DECIMAL)
DYNAMIC MODULE(MATERIAL _NAME);
any statement using P(rhoT);
END;

186 4 The Architecture of CAD Systems

The next (admittedly somewhat artificial) example shows how the value of 3.14159
may be bound to a variable PI at different times, again using PL/1 as the program-
ming language:

Case I: Binding at programming time.
DCL PI DECIMAL STATIC INTERNAL INITIAL(3.14159);
Case 3: Binding at job preparation time.

DCL PI INTERNAL;

DCL INPUT FILE STREAM;

GET FILE(INPUT) LIST(PI);

[*operating system language is used to allocate file INPUT to an existing data set
containing the value of Pl */

Case 4: Binding at job execution time.

DCL PI INTERNAL;

DCL TERMINAL FILE STREAM,;

GET FILE(TERMINAL) LIST (Pl);

/*the value of Pl is input by the user at the terminal */

It is obvious that Case I is the preferred solution, because we know at programm-
ing time that PI should always have this value. Delaying the binding introduces a flex-
ibility which in this case can only produce errors. In other cases we might be willing
to sacrifice the safety and efficiency of early binding for increased flexibility. The
designer of a CAD system will always have to choose between the criteria of:

— flexibility (enhanced by late binding), and
— safety (enhanced by early binding), as well as
— efficiency (enhanced by early binding).

It is important to realize that this decision has a very great influence upon the ar-
chitecture of a CAD system. Two CAD systems may behave quite differently even if
they perform the same fundamental tasks on the surface, depending on the choices
made with respect to binding time. Also graphical packages like the graphical kernel
system GKS are influenced very much by the decisions taken with respect to binding.
An essential characteristic of GKS in this respect is the way in which graphic represen-
tation attributes are bound to primitives and segments [BONOS82].

4.2.3 The Block Structure Dilemma

As shown in Fig. 4.1, CAD implies the execution of a sequence of programs with ap-
propriate interfaces. Each program will produce more data which are to be added to
the data base. Much of this data will be used by some other program later in the pro-
gram chain without the need for consultation or modification by a person. It is
generally accepted as good practice that such sequences of actions should be con-
tained in an enclosing block which receives the first input and returns the final result
(block structure approach in system design). We will see, however, that this approach
is not always feasible or useful.

4.2 Data Models 187

First let us note that for transferring data from one program (or process or block)
P1 to another program P2, the interface must be declared in the containing block. We
will call this interface P1__TO__P2 with the schema P1_TO__P2__SCHEMA.
Similarly, all other interfaces have to be declared in the containing block. The follow-
ing is a PASCAL-type formalization:

procedure CAD__PROCESS(INPUT, RESULT);

type INPUT_SCHEMA =record....... end;
type P1_TO__P2__SCHEMA =record....... end;
type P2_TO__P3__SCHEMA =record. end;
type PN_TO__PLAST_SCHEMA =record. end;
type RESULT _SCHEMA =record....... end;

var P1_TO__P2: P1_TO__P2__SCHEMA,;
var P2__TO__P3: P2__TO__P3__SCHEMA;

var PN__TO__PLAST : PN_TO__PLAST__SCHEMA;

var INPUT : INPUT__SCHEMA;
var RESULT : RESULT__SCHEMA;
call P1(INPUT P1_TO__P2);

call P2(P1_TO__P2,P2__TO__P3);

call PLAST(PN__TO__PLAST,RESULT);
end CAD__PROCESS;

A solution of this type, however, is not satisfactory for several reasons:

— when we realize that a CAD process may take many months or even years for com-
pletion, it is evident that we cannot wait until the schema of the data to be
transferred from PN to PLAST is defined before we start executing P1 and P2.
At the beginning of the activities, we do not even know how PLAST will look;

— there is no good reason why CAD__PROCESS should know the schema of any
of the transferred data unless it has to request or modify part of that data. On the
contrary, details of the transport data schemas should be hidden from the enclos-
ing process in order to avoid inadvertent modification;

— Associated with the declaration of the data in the above example is the allocation
of resources for the representation of these data (storage space in the case of pro-
gramming languages). Thus, in the above example, resources would be allocated
to all interface data throughout the whole time, even though such a need exists on-
ly from some point within the producing program to some point within the con-
suming program. This is a waste of resources.

The problems associated with block structures have been investigated in
[TOWS79], [WULF73], [PARN72] and others. From a system designer’s point of
view, one would like to define an “envelope” for data. Such envelopes should be able
to accommodate data of different schemas (letters enclosed in envelopes are
transported by mail regardless of their contents, provided that the exterior of each
envelope follows certain standards). The possibilities of allocating such envelopes and
disposing of them at any suitable time would be desirable. Envelopes could be used
to transfer data from one block to another. With two envelopes, the above example
might read as follows:

188 4 The Architecture of CAD Systems

procedure CAD__PROCESS(INPUT, RESULT);

var INPUT_SCHEMA =record....... end;
var RESULT_SCHEMA =record....... end;
var P__ODD__TO__P__EVEN: envelope;

var P__EVEN__TO__P__ODD: envelope;

var INPUT : INPUT_SCHEMA,;
var RESULT : RESULT_SCHEMA;
call PI(INPUT ,P_ODD__TO__P__EVEN);

call P2(P_ODD__TO__P__EVEN,P_EVEN__TO__P__ODD);

call PLAST(P_ODD__TO__P__EVEN,RESULT);

[*or perhaps

call PLAST(P_EVEN__TO__P__ODD,RESULT);

depending upon whether the number of processes is even or odd */
end CAD__PROCESS;

Let us take a look at various programming languages from this point of view. In
fact, the envelope technique is used extensively in systems which are based on FOR-
TRAN or PL/1. In FORTRAN, envelopes may be mapped onto arrays of REAL
and/or INTEGER data of a COMMON block or a parameter with the EQUIVA-
LENCE technique. In PL/1, based variables offer a great variety of options to imple-
ment envelopes. In both FORTRAN and PL/1, files may serve as implementations
of an envelope. In the languages of the ALGOL and PASCAL families which are
more restrictive with respect to type checking, it is much more difficult (if at all feasi-
ble) to violate the block structure principles and to implement envelopes for data of
unknown schemas. We do not want to underestimate the dangers associated with the
misuse of EQUIVALENCE in FORTRAN or based variables in PL/1 (or files in
both); but the judicious use of these features offers possibilities which are urgently
needed in practical CAD system implementation, and which do not find adequate
support in more restrictive programming languages. The package concept in the pro-
gramming language ADA [ADA __79], [ADA __82] provides a step towards a solution
of this problem. It allows us to hide the internal interface data structures safely within
the package, so that they cannot be accessed by the containing block. However, it does
not resolve the problems of wasted storage space, or the problem of the as yet un-
known schema for interfaces between future activities.

Let us now consider data base management systems under the same aspects. Ob-
viously data base management systems are well suited to transport data from one pro-
gram to another, since this is one of their fundamental tasks. To some extent, they
offer sufficient flexibility to allow us to augment and modify the schema at later times
without the loss of already existing data. Thus one might be tempted to leave all data
transfer tasks to a data base management system. However, there are drawbacks to
this approach. If solely used for interfacing programs, data base management systems
require a considerable amount of overhead due to the necessary transformations from
the external schema (used in the programs) to the internal schema (used for data
storage) and in the return. It is unlikely that a user would want the stiffness matrix
of a finite element program to be stored in a data base, where it is stored less efficient-
ly than on a simple file. The advantage of being able to query or possibly modify in-
dividual data elements does not apply to stiffness matrices, which are more or less

4.2 Data Models 189

meaningless except to the analysis program for which each matrix has been as-
sembled.

After the general trend towards restrictive block-structure oriented programming
techniques and languages in the 1970s, from the CAD standpoint it is desirable to see
the development of efficient and practicable techniques for passing data between pro-
grams (modules, processes) which are safer and theoretically better founded than the
constructs that are now available in FORTRAN and PL/1. A typical situation which
calls for the violation of block structure is the interactive definition of graphical in-
formation at a terminal, where the information is to be moved upwards in the process
hierarchy in order to be stored somewhere for future use in other programs. During
the process of defining this information in an interactive way, we must be able to deal
with information chunks [TOWS79], which are created and deleted in a random way
and not in a block structure.

4.2.4 Algorithmic Modeling

So far we have dealt with models which could be mapped relatively easily onto a data
schema. The representation of an object was always considered to exist, though it
might be undefined or defined at a given time. Such a data representation of objects
consumes resources; and in many cases these resources are too valuable to be spent.
As an example: when graphic information is displayed at a remote terminal, the trans-
port of the information across the connecting line consumes both transmission cost
and manpower (the time of the operator who has to wait until the transport is com-
plete). In order to save part of the resource, it would be preferable to condense the
information. For graphics text, for instance, a data representation of the letter strokes
consumes more storage space and transport time than a character string along with
the information on how the character string should be expanded into line strokes. In
general, a data model may be replaced by:

— the identification of an algorithm; and
— aset of (condensed) data which will be used by the algorithm to generate the com-
plete data model.

We call such a condensation an “algorithmic model”. The prerequisites, of course,
are that the algorithm is properly implemented and that the mapping from the con-
densed data to the expanded form has been agreed upon by all users of this “short-
hand” model. Similar algorithmic models are implemented in conventional program-
ming languages. Arithmetic functions like SIN or COS are not supplied as tables of
data, but rather as algorithms. A geometric modeling system for two- and three-
dimensional objects, which is completely based on algorithmic modeling, is described
in [SCHU?76]. In an algorithmic model, data are not stored, but they are evaluated
whenever they are needed. Two questions arise:

— When should a model be represented as data?
— When should algorithmic modeling be used?

The answer cannot be given on the basis of abstract operations which the system
is to perform. A particular operation may be implemented with either approach. The

190 4 The Architecture of CAD Systems

Table 4.3. The choice between data models and algorithmic models

Aspect The preferred modeling is:
data model algorithmic model

storage capacity high low
processing cost high low
usage rate of data high low
processing rate low high
time to retrieve data low high
time to transport data low high
change rate of data low high

answer must be derived from resource considerations, as indicated in Table 4.3. In the
extreme cases the preferred solution is obvious:

— A data model is preferred when storage capacity, processing costs, and usage rates
are high. '

— An algorithmic model is preferred when the computer has a fast processor, when
the retrieval costs or transport times for data are high, and when the model is
rapidly changing.

In the wide range of practical situations, the choice is a matter of judgment based
on experience more often than on objective criteria. A particular problem is posed by
the fact that the “best” solution is a function of how the system is used. In the early
design phase of a three-dimensional body, the rate of change of the model is usually
so high that perspective views (and dependent data such as weight) are used only once
before the next change is made. Thus it is preferable to use an algorithmic model for
the projection of the body (and other data). When a display is requested, the projec-
tion lines may be evaluated and displayed on a plotter or a screen, line by line, with
a minimum of storage requirements. At a later stage in the design process, modifica-
tions of the body become rare, but editing of the two-dimensional pictures of the
body may be required. Now it is advantageous to store the projection of the body as
data, in order to avoid unnecessary repetition of the projection operation.

The opportunity to choose between algorithmic modeling and data modeling of
the same object, depending upon the type of work to be done, may have a significant
influence on the usefulness of a CAD system in the different phases of the design pro-
cess. This aspect will require much more attention in the future.

A similar line of argument may be used to compare the two essentially different
types of solid modeling systems: constructive solid geometry and boundary represen-
tations. Constructive solid geometry is in fact a representation of a function in the
form of data structures, while boundary representation is the instantiation of the
result of such a function. In early stages of geometric design of solids, when drastic
changes are still likely to occur, the functional description of shape is more advan-
tageous, while in the later design stage detailing is done more easily by storing only
the result of the operations.

4.3 The Resource Aspect 191

4.3 The Resource Aspect

4.3.1 Software Machine Design

When we investigate software machines which are potential candidates for incorpora-
tion into larger systems, we generally note that they obey special rules for using certain
resources. Examples of such standardized use of resources are: a filing system (rules
for naming and structuring external data storage, most often used in program chains,
see Fig. 4.1), the COMMON-block technique (probably the most widely used CAD
system basis of the FORTRAN oriented world, with rules for naming and structuring
sharable internal memory), and subroutine packages (based on rules for naming the
procedures and structuring their argument lists).

Such systems work fine as long as they are just used by themselves. However, when
put together into a bigger system, conflicts usually arise either because some of the
“subsystems” do not allow the sharing of certain resources with others, or because
they use shared resources according to conflicting rules. Let us illustrate this point by
a few examples:

— obviously one cannot use two independent subroutine packages in one program
if both together demand more memory capacity than is available;

— even if each of the packages has its own dynamic memory allocation facility (as
some FORTRAN packages provide by means of Assembler extensions) they may
not be usable in combination anyway. Each of them must be limited to a maximum
amount of memory: the authorization to use a resource must explicitly or implicit-
ly be passed from some higher level or organization; and

— the same is true if the resource to be used is not of a quantitative nature (such as
memory space), but of a qualitative nature. Software machines cannot be used in
parallel if they make independent use of certain global names such as program
names, file names, common block names. This conflict becomes evident if one
thinks of using two graphics packages in a single program, one for data presenta-
tion and one for geometrical design. The chances that both of them use different
subroutines with identical names — like OPEN, CLOSE, or PLOT — are rather
high.

It is not sufficient that the required resources are available: some of these
resources, namely those which represent the state of a process, must be reserved for
exclusive use by this process. Other processes must be inhibited from modifying such
resources. The design of software machines for general use in a large number of
systems will have to deal with the following questions:

— What is the function of the software machine?

— Which resources does it require?

— How are these resources to be supplied? How must they be initialized (set up in
a proper state prior to their actual use)?

— How do we guarantee that certain parts of these resources will remain unchanged
as long as they are needed?

192 4 The Architecture.of CAD Systems

4.3.2 Designing Against Resource Conflicts

4.3.2.1 The Abstract Machine

Let us consider the execution of a CAD application as a running process. During this
process certain other processes are created, executed, and terminated (such as the
looking up of design rules from a library, or the display of graphical information on
a display screen, see Sect. 3.2.4.1). Some of these processes last only as long as a “call”
to a subroutine, as is often the case for mathematical algorithms. Other processes live
longer; for example, the looking up of design rules in a data base is usually im-
plemented in the following way: Make the design rules available (“open”), look up as
often as needed (“search™), terminate the availability (“close”). In such a case many
short-lived look-up processes exist parallel to a long-living process which we may call
“maintenance of the environment for the look-up table process” (Fig. 3.18). Similarly,
the communication process between the application program and a graphics terminal
lasts much longer than the display process for some picture.

Let us take a look at implementations of such processes in today’s CAD systems
(which in most cases means FORTRAN). Short-lived processes are usually found as
calls to subroutines which require all information to be passed as arguments (or
possibly in a COMMON block which is filled prior to the call). Long-living processes
may be found in the form of a sequence of calls to a subroutine package. All the
values of the variables in the COMMON block for such a package represent the actual
state of the corresponding process. It is essential for correct operation that these vari-
ables will be used exclusively by this particular package. Note that there is a functional
difference between the uses of COMMON in these two examples: in the first case it
is merely a shorthand writing for arguments; in the second case it is the realization
of the state of the process. Confusing these two functions inevitably leads to problems
(and one of the drawbacks of FORTRAN is that it supports this confusion).

However, the situation is even more complicated. Quite often several processes of
the same type exist parallel to each other. A typical example is the use of several
graphics displays for different purposes in the same program: some are used for close-
up views, diagrams, and communication, while others are used for design drawings
and overall representations. It is obvious that whenever a software machine is to con-
tinue such a process, it must be made clear which one of the particular processes
should now be continued. While in the first case (only one process executing) there
is no apparent need to distinguish between the process and the machine, this need
becomes evident whenever a machine can operate parallel processes. In the first case
the resources which represent the state of the process may or may not be included in
the software machine (the COMMON technique includes them in the machine; see
Fig. 4.12) while in the second case the software machine must be able to manage a
varying number of process state representations (Fig. 4.13). The management of
resources and the management of the different processes become clearly separated
tasks (see p. 49 in [SCHN78]).

The various functions of an abstract machine either change the state of the process
or provide to the “parent process” information as a function of certain input parame-
ters and the present state [PARN75]. In a symbolic way one might write:

4.3 The Resource Aspect

v
/s
/

¢

software
machine

state

representation

of P

1

Fig. 4.12. A software machine for a single process

resources of the /
software machine / N\
/ \
J \
SM SR (P3) SR (P4) SR (P5)
P3 P4 P5

Pn = process n

SR (Pn) = state representation of process n
IPn = identification of process n

Fig. 4.13. A software machine for many parallel processes

193

194 4 The Architecture of CAD Systems

abstract machine function = (Q, V, state)

where O is a set of operating functions o,
which change the state

state = o(state, input),

while V is a set of value-delivering functions v,
such that

output = v(state, input).

As noted above, whenever the software tool is to be used for parallel processes P;, a
reference to the state of one particular process P, must be passed as part of the in-
put. Hence

input = (identification of process Py, other input).

A user can use a software tool intelligently only if he has a clear understanding
of its functional capabilities. For this reason we formulate the first rule

(R1): The functional documentation of a software machine must give a precise defini-
tion of the type of process which is driven by this machine. This means:
— a complete description of the state in terms of objects of the abstract object
type, corresponding to the underlying conceptual schema;
— a complete description of all operating functions in terms of their effect on
the state;
— a complete description of the value-delivering functions.

This rule should require no special explanation. However, it is violated quite often
with respect to completeness.

The second rule applies to software machines which are to be used to drive similar
processes in parallel:

(R2): Whenever a software machine may conceivably drive more than one process in
parallel, caller and software machine should agree upon a unique identification
of each newly created process in order to be able to communicate about this
process at a later time.

There are many ways an agreement about the identification of the new process (its
name) can be achieved. The caller may pass a name to the software machine, or the
software machine may determine the name. In the first case, conflicts may arise if
more than one caller wants to use the same name; this conflict may be removed if the
name is prefixed by the caller’s name. In the second case, it may happen that a process
is created and later terminated and another process is then given the same name by
the software machine. If the caller erroneously refers to the name of the already ter-
minated process, a misunderstanding would result without the possibility of detec-
tion. The caller would think that operations are being performed on the old process,
while the callee is performing the actions on the new process. This problem may be
removed if the creation time (date and time) is made part of the process name. In
either case, at least one of the partners (the caller or the software machine) must
maintain a table which associates the name which was fixed in the other’s environ-
ment with a private name within its own environment (a name is valid only within
a given environment, see Sect. 3.3.1.3). A very efficient means of communication be-

4.3 The Resource Aspect 195

tween caller and software machine may be achieved when both agree to use a com-
bination of their respective private names. Such a combination of names represents
a uniquely labelled key (in the literal sense): the label identifies the key to the caller
(the person) while the shape of the key proper uniquely belongs to the callee (the door
lock). An illustration of this technique is given in Sample Listing 4.3 and Sect. 4.3.3.2.

4.3.2.2 Process State Representation

In Sect. 3.2.4.2, we characterized a process by the fact that its state is modified only
by the process itself. The process state is represented by the situation of certain
resources (values of variables, position of a magnetic tape on its unit, existing connec-
tion to a certain terminal, etc.). If we have more than one parallel process, then the
problem may arise that one process modifies the state representation of other pro-
cesses. In order to avoid this, we formulate the rule:

(R3): A software machine should be designed and implemented so that the state
representations of processes which it creates cannot be modified by other pro-
cesses.

It is not always easy to implement this rule in a strict sense. If a software machine
is used for one process only, the state representation of this process may be integrated
with the software machine itself as shown in Fig. 4.12. In FORTRAN a common tech-
nique is to include a COMMON block which contains declarations representing the
process state in all subroutines and functions which constitute the machine. This
method efficiently protects the process state against modification by other processes
provided that no other program uses the same name for a COMMON block. Safer
and much more powerful techniques are provided by the package concept in the pro-
gramming language ADA.

If, however, a number of independent processes are to be driven by the software
machine, the machine should have the capability to maintain a variable table of pro-
cess state representations as illustrated in Fig. 4.13. Here the two processes P1 and P2
use the same software machine SM. P1 has created the processes P3 and P4, P2 has
created P5. The software machine (following rule (R2)) has agreed with the “callers”
about the identification of the processes. The identifications of the subprocesses are
stored within the state representation of the higher-level processes (IP3 for process P3,
for instance). The state representations of P3 through P5 are accessible only to the
software machine SM, and are thus effectively protected (an example is given in Sect.
4.3.3). When a caller calls the software machine, it supplies the identification of the
process to be continued. The corresponding state representation is then bound to the
software machine (the name is replaced by what it means), and the process continues.

Another approach is shown in Fig. 4.14. This solution is feasible even in FOR-
TRAN, where the above method is difficult to implement because of the inability of
FORTRAN to perform dynamic storage management for allocating and deleting the
data structures which represent the process states. Here the state representations of
all subprocesses (created by the software machine SM under control of a “caller” pro-
cess) are embedded in the state representation of the caller itself. In a FORTRAN im-
plementation, one would implement this as an array of REAL or INTEGER data

196 4 The Architecture of CAD Systems

/ state

/ representation
/ of caller

state
representation
of P2

state
representation
of P1

——

SM

P1 P2

Fig. 4.14. Allocation of the resources for state representation by the caller

which are not used at all by the calling program, but passed to every routine of the
software machine upon the request of a software machine function. It is a matter of
discipline not to use this array of data for any other purpose. Some programming
languages (PL/1 for instance) provide limited capabilities for the higher-level process
to treat the data structure representations simply as resources (or as “envelopes” of
the data structures which they contain) without being able to access the contained
data structures (see Sect. 4.3.3.2).

4.3.2.3 The Concrete Machine

Software machines do not only use resources for representing the state of a process.
They also use resources for operational purposes. Examples of such resources are: pri-
mary memory, working files, names of files in communication with the operating
system, names of subroutines. Some of these resources are merely a certain quantity
out of a larger pool (memory is an example). Other resources, however, are well iden-
tified and must be reserved for exclusive use (such as the names of the subroutines).
In either case, problems may arise whenever more than one software machine is used
in a CAD system.

With respect to quantitative resources, conflicts may arise if one process
monopolizes a resource. (Certain systems such as ICES tend to make optimal use of
primary memory by using as much as possible. This will cause failure if combined
with another package which itself provides a dynamic storage management facility.)
Hence, we state the rule:

4.3 The Resource Aspect 197

(R4): If a software tool is able to obtain certain quantities of a resource for its opera-
tional purposes, the parent process should authorize it to allocate up to a cer-
tain amount of that resource. Otherwise, the necessary resources should be sup-
plied by the parent process. In any case, the documentation must include a list
of the resources from which the software tool needs a certain quantity.

With respect to qualitative resources (those which can be identified as individuals,
such as all names), we state the following rule:

(RS): Qualitative resources should be obtained from the parent process. If this is not
possible (as for the names of subroutines), the description of the software ma-
chine must identify which qualitative resources are used and how the software
machine might be modified to permit the replacement of qualitative resources
with others, if necessary.

It is worth noting that the potential of name conflicts has been recognized in the
graphical kernel system GKS. This standard recommends that GKS implementations
should provide a “name converter”, which allows for the replacement of any global
name in the package during the process of installation in a computer environment
where name conflicts would otherwise arise.

4.3.2.4 Resource Management Strategies

Sometimes the number of quantitative resources needed by a process depends heavily
on certain process parameters. The buffer area for a graphic display file is a familiar
example. The particular requirements may also grow and shrink considerably with
time. The design of software tools depends heavily on the resource management
strategy followed:

Case A: During the whole process a maximum amount of resource is allocated to the
process, no matter whether it is really needed (this is typical for local FOR-
TRAN working arrays in subroutines). If many processes follow this strategy
the resource may soon be exhausted.

Case B: The process obtains resources when needed and returns them when they are
no longer needed. Although this strategy makes “optimum” use of the
resource, it may cause considerable overhead and may also lead to the so-
called “fragmentation problem” unless the sequence of allocate and free re-
quests is issued on a last-in-first-out basis [KNUT69]. As noted in Sect.
4.2.3, block structuring of the individual processes with respect to their
resource allocations is not always a satisfactory solution.

Case C: The process provides a resource estimate algorithm. The parent process
usually has sufficient information available to produce good estimates of the
relevant process parameters for a certain period of time. With these parame-
ters, an estimate of the amount of resource needed may be generated so that
the parent process can supply this resource to the process. Problems similar
to those in Case B above may arise, but their probability is significantly
reduced.

198 4 The Architecture of CAD Systems

Each of these strategies has its advantages and disadvantages and we do not pre-
tend to recommend one as being superior in all cases. It is not surprising that software
machines which perform the same function may appear totally different in their im-
plementation, depending on the resource management strategy. Hence, we formulate
the rules:

(R6): The documentation of the software machine must contain a complete list of the
resources which are needed for successful operation.

(R7): The documentation of a software machine must include a description of the

resource management strategy of this machine in particular for

— Case A: the limitations on the relevant process parameters and the amount
of resources needed at all times;

— Case B: an estimate of the amount of each resource needed as a function of
relevant process parameters;

— Case C: same as for Case B. In addition, information should be given about
the consequence of providing more or less than the estimated amount of
each resource.

It is suggested that the resource estimate algorithms should not only be document-
ed in the user’s manual, but should also be provided as callable subroutines within
the software machine itself.

In some cases a certain amount of one resource may be replaced by another. As
an example: external storage may be used instead of primary storage. In such a case,
the software machine itself is unable to determine the optimal global balance between
these resources, because it does not know how an attempt to improve its own perfor-
mance would influence other processes. Hence, if the software machine has the
capability to adapt itself to different resource configurations, strategy C is the only
one which allows for a global optimum.

In any case, the software machine should provide information about the amount
of resources actually used for a particular process, so that the user is able to learn
from previous applications and use the machine more efficiently in the future.

4.3.2.5 The Components of a Software Machine

Let us combine the functional aspect of a software machine with its resource aspect
in the following schema, which is illustrated by Fig. 4.15:

software machine = (abstract machine function,
resource management machine,
documentation);

The abstract machine function has been described in Sect. 4.3.2.1. The resource
management machine must be explained in more detail:

resource management machine = (management state,
management functions);

The resource management state includes a list of the authorizations (or limita-
tions) obtained from a higher-level resource management process, and a list of the

4.3 The Resource Aspect 199

documentation

abstract
machine

resource
management
machine

Fig. 4.15. The components of a software machine

resources which have actually been allocated by the various processes to the “abstract
machine” part of this software machine. The resource management functions are
operational functions which authorize or limit the use of resources by the software
machine, or which deliver information about resource requirements (estimated or ac-
tual).

Note that while the abstract machine part may drive several processes in parallel,
there is only one resource management process associated with a software machine.
The machine is completed by its documentation:

documentation = (documentation of the abstract machine,
documentation of qualitative resource requirements,
documentation of resource management strategy);

In the previous pages (Sects. 4.3.1 and 4.3.2), we have emphasized that the design
of software machines should try to avoid potential conflicts in the assembly of such
software machines into larger units. This means that we have emphasized the bottom-
up approach to system development, as opposed to the top-down or “stepwise refine-
ment” approach which is often advertised, particularly in computer science oriented
literature. However, top-down design may imply that the system is broken down into
components at an early stage, when the knowledge about the consequences of such
a decision is still too sparse [JACK82]. Furthermore, the practical problems in design-
ing and implementing large systems for CAD and CAM are very often too great. A
top-down approach might easily result in the final system being available at a time
when it is no longer needed. Hence, one often has to be satisfied with partial solutions
that are feasible in the required time scale. If time and the judicious design of the par-
tial solution permit, they may later be combined into larger systems [LINCS81].

4.3.3 A Sample Software Machine: The Stack Machine

4.3.3.1 The Task and a Simple Solution

Many operations in CAD require a set of objects as operand. As an example, we might
mention the problem of hidden line removal from a drawing of a three-dimensional
body, where all the surfaces of the body have to be considered simultaneously. This
example further illustrates that the objects in such a set may have different representa-
tions (a cylinder will have a different representation from a plane). Only very few pro-

200 4 The Architecture of CAD Systems

gramming languages (PASCAL and C for instance) provide a limited set facility. In
general, sets are mapped onto list structures [KNUT69], which are available in a much
greater number of programming languages. In order to minimize the amount of work
involved for this example we will use the most simple list structure: a stack. The idea
of the following paragraphs can easily be extended to more complicated structures.
The basic operations of a stack are:
o-functions: push(item);
/* puts an item on top of the stack */
pop(item);
/* removes the item from the top of
the stack and delivers it */
v-function: empty;
/* true if stack is empty false otherwise */

The implementation of these functions in various programming languages is
straightforward and may be found in a number of textbooks. Here we will use the pro-
gramming language ADA [ADA__79], whose “package” concept can be interpreted
as a formal way of describing software machines.

The ADA program in Sample Listing 4.1 deals with the abstract machine only. The
resource aspect is completely hidden. Only the compiler has to care about the memory
resources, not the programmer. The resource aspect becomes apparent, however, if we
specify the task as follows:

— the software machine should be able to manage several stacks;

— the software machine should not make any assumptions whatsoever regarding the
structure of the items. The ADA module of Sample Listing 4.1 is applicable for
one ITEM schema only. Using a case construct, one could easily expand the ap-
plicability to a finite number of predefined schemas (see Sect. 4.2.2). But all
schemas which should ever be stored in the stack would have to be bound to the
package at programming time by including their declaration. Hence, ADA does
not readily provide answers to our problem;

— the resource (storage space) allocated to each stack should be restricted. One rea-
son for this restriction is to avoid storage overflow and uncontrolled program
failure in a case of incorrect use (in an external loop of push operations, for in-
stance). If the limit is too restrictive, the machine should be able to call for help;
and

— the possibility to save whole stacks and to restore them at a later time should be
provided.

Before we plan the “stack machine” in more detail, let us rewrite the above ADA
module in PL/1 in order to be able to compare the purely functional program with
the final software package more easily. We choose PL/1 rather than ADA for compar-
ison purposes because in PL/1 it is much easier to implement features which are not
readily available in the language. ADA (like PASCAL) is less permissive, and allows
us only to express objects and operations which the designers of the language wanted
to allow. For this reason, these languages are much more suitable for teaching pur-
poses than PL/1 or FORTRAN. PL/1 may appear too powerful to be a “good”
language, but often this extra power is quite helpful in systems programming (see
Sample Listing 4.2).

4.3 The Resource Aspect

Sample Listing 4.1. A stack machine for a single item type. The ADA version

package STACK__MANAGER is
type ITEM is
record

..... record declaration. . ..
end record;

NULL__ITEM : constant ITEM :=value of an ITEM which will be

recognized as NULL__ITEM ;

procedure PUSH (NEW__ITEM : in ITEM);
procedure POP (TOP__ITEM : out ITEM);
STACK__FULL : exception; — may be raised by push
end,;

package body STACK__MANAGER is
SIZE : constant INTEGER := 2000;
subtype INDEX is INTEGER range 0. .SIZE;
type INTERNAL _ITEM is

record
CONTENT : ITEM;
SUCC : INDEX;
PRED : INDEX;
end record;

STACK : array (INDEX'FIRST. .INDEX'LAST) of INTERNAL _ITEM;
FIRST_BUSY_ITEM : INDEX :=0;
FIRST__FREE__ITEM : INDEX :=1;

function BUSY__LIST__EMPTY return BOOLEAN is end;

function FREE__LIST__EMPTY return BOOLEAN is end;
procedure EXCHANGE (FROM 1 in INDEX; TO : in INDEX) is .. .end;
procedure PUSH (NEW__ITEM : in ITEM) is

begin

if FREE__LIST__EMPTY then raise TABLE__FULL; end if;

end PUSH;
procedure POP (TOP__ITEM : in ITEM) is end POP;
begin

end STACK__MANAGER;

201

202 4 The Architecture of CAD Systems

Sample Listing 4.2. A stack machine for a single item type. The PL/1 version

PROCEDURE STACKM;
DECLARE 1 ITEM BASED,

..... STRUCT URE declaration.
DECLARE 1 NULL__ITEM STATIC,
. INITIAL(... value of NULL__ITEM . ..)
..... repeat declaration of ITEM with initial values;
/¥ PUSH: ENTRY (NEW__ITEM: IN LIKE ITEM)
POP : ENTRY (TOP__ITEM: OUT LIKE ITEM)
STACK__FULL: CONDITION , MAY BE RAISED BY PUSH ¥
I* PL/1 MACRO PROCESSOR CAPABILITY IS USED TO REPLACE “SIZE” BY
“2000” AND “INDEX” BY “BINARY FIXED(15)” IN THE FOLLOWING PRO-
GRAM TEXT */
% DECLARE SIZE FIXED;
% SIZE = 2000;
% DECLARE INDEX CHARACTER,;
% INDEX = 'BINARY FIXED(15)’;
/* WHEREVER A VARIABLE OF TYPE INDEX IS MODIFIED CHECK THAT IT
REMAINS WITHIN 0..SIZE *
DECLARE 1 INTERNAL _ITEM BASED,
2 CONTENT LIKE ITEM,
2 SuUCC INDEX,
2 PRED INDEX;
DECLARE 1 STACK STATIC
2 INTERNAL __ITEM (0 : 2000) LIKE ITEM,
2 FIRST_BUSY _ITEM INDEX INIT(0),
2 FIRST__FREEITEM INDEX INIT(1);

BUSY _LIST_EMPTY: PROCEDURE RETURNS(BIT); RETURN;END;
FREE __LIST_EMPTY: PROCEDURE RETURNS(BIT); RETURN;END;
EXCHANGE: PROCEDURE (FROM , TO) ;
DECLARE (FROM,TO) INDEX;
RETURN;END EXCHANGE;
PUSH: ENTRY (NEW__ITEM);
DECLARE NEW__ITEM LIKE ITEM;
IF FREE __LIST__EMPTY THEN SIGNAL TABLE__FULL;
/* remaining code for PUSH */
RETURN;END PUSH,;
POP :ENTRY (TOP_ITEM);
DECLARE NEW__ITEM LIKE ITEM;

/* code for initialization of stack linkages */
RETURN;END STACKM;

4.3 The Resource Aspect 203
4.3.3.2 Planning of the Stack Machine

The fundamental operations which we want to provide are:

management functions:
initiate___stack___machine(/*no resource restrictions*/,
file for messages, help)
terminate__stack __machine(final report, help)
estimate___resource__requirement(stack characteristics, help)
create__stack(resource allowance, stack name, help)
save__stack(stack name, resource for saving, help)
restore__stack(stack name, resources for saved stack, help)
o-functions:
push(stack name, item, help)
pop(stack name, item, help)
v-functions:
empty(stack name, help).

We will now deal with the problem of mapping the abstract object types men-
tioned in the above functions onto PL/1. We have to make decisions on the following
issues:

What are the items which we want to push on the stacks? In our ADA example
(and in practically all examples which may be found in the literature), the stack ma-
chine knows the schema of the items to be handled. At best, the machine knows a
small number of schemas such that objects of various structure may be handled. But
there is actually no reason why the stack machine should have this knowledge. In fact,
this knowledge is bad knowledge. The stack machine is not allowed to perform any
action with the objects in the stack items, so why should it know the names and struc-
tures of these objects? What is worse, if at a later time we decide to utilize the stack
machine for stacking items with a different schema, we will be forced to include the
new schema in the stack machine and recompile. The solution to this problem is to
use a very general schema onto which most items may be mapped in an efficient way:
the contiguous storage space. We allow the user to push and pop all items which may
be mapped onto a contiguous storage space or “envelope”, as introduced in Sect.
4.2.3. This generalization requires a “mapping around the language” (see Sect.
4.2.1.3) and will be difficult (if at all possible) to perform in restrictive programming
languages of the ALGOL or PASCAL type. Other languages like PL/1 and even
FORTRAN are much more permissive and make it relatively easy to perform such
mappings. The stack machine should actually not deal with the objects pushed on the
stack, but rather with the resources (storage space) that represent these objects. In
PL/1, two possibilities offer themselves for the mapping of items to a contiguous area
of storage space: CHARACTER strings and AREA data. The mapping around the
language level for a byte-oriented computer according to Fig. 4.9 would be as follows:

abstract level storage space

language level CHARACTER(*) or AREA(*)

machine level a set of contiguous bytes

204 4 The Architecture of CAD Systems

The caller of the stack machine would have to perform this mapping, and would
pass to the stack machine the length of the storage area (the PL/1 built-in function
CURRENTSTORAGE may be used to determine this value in terms of bytes, cor-
responding to CHARACTERS on the language level) and the address of the first byte
of the aggregate (which may be obtained by the PL/1 built-in function ADDR).

— How do we represent saved stacks?
The problem here is similar to the problem of representing items with an as yet
unknown structure. In this case, the representation of the stack is to be handed
over to a higher level process (the caller) who should not do anything to the con-
tents of the stack. Hence, the caller should not know the schema of the stack. In
a way similar to the treatment of the stack items, we map the representation of
a stack onto a contiguous storage space (a PL/1 STRUCTURE) which contains
the stack representation and additional information (size, identification, producer
and consumer). We call this an “envelope”, by analogy to the envelope in which
someone may send a letter (information in a certain schema) to someone else (or
to himself) without the post office having to know the contents of the letter.

— How do we represent a stack?
The stack is the representation of a stack process. We choose to use list structure.
An array would be an alternative; but for storing items with varying storage space
requirements, a list structure is more economical with respect to storage usage. The
question arises whether the stack implementation should take into consideration
right at the outset that stacks might have to be saved in the form of an envelope.
This would mean that not only would the stack have to be enveloped for saving
and restoring, but every stack would be implemented within an envelope, whether
saving is requested or not. The decision cannot be derived from functional aspects.
A consideration of the resources (here: effort involved in planning the data struc-
ture, processing and storage requirements) must give the answer. In order to reduce
the planning effort, we decide to use only one representation of stacks for both
saved and non-saved stacks. In a real case, the decision might come out differently.

— How do we represent the state of the stack management machine?
The state of the resource management machine is characterized by the actual
stacks, the storage allowance for each stack, and the actual storage use. In order
to keep track of its state, the machine itself needs some storage space for a stack
table. We do not decide at this point how the stack table should be implemented;
we leave this decision until after further refinement of the schema and the
algorithm. With respect to the operating states of the stack machine (see Sect.
3.2.4.3), the distinction of three different states appears to be necessary:

1) “existing” prior to initialization of the stack machine, and after termination;
2) “in repair” during a call to a help procedure; and
3) “executable” otherwise.

— How do we represent names?
The options among which we may choose in PL/1 are: integers, character strings
with fixed or variable length, pointers, and offsets. The most efficient solution
with respect to execution is the use of pointers. Pointers may be used both for
naming and for accessing objects. Their use as names avoids the need for an ad-

4.3 The Resource Aspect 205
Sample Listing 4.3. The PL/1 stack machine. The declarations of the state representation

{* the following declarations are to be included in all modules */
DECLARE 1 STACKB EXTERNAL,
2 MESSAGE__FILE FILE,
2 OPERATING _STATE CHAR(32) VARYING INITIAL{ EXISTING’),
2 STACK__MACHINE _NAME CHAR(32) VARYING
INITIAL("STACK_MACHINE"),
2 STACK__TABLE INITIAL(EMPTY);
DECLARE ERROR__CODE BINARY FIXED(15);
DECLARE 1 NAME__OF_STACK,
2 EXTERNAL__NAME CHAR(32) VARYING,
2 INTERNAL_NAME POINTER /* TO STACK_ENTRY */
2 GENERATION__TIME CHAR(16);
DECLARE ACTUAL _STACK__ENTRY POINTER;
DECLARE 1 STACK__ENTRY BASED(ACTUAL __STACK__ENTRY),
2 INTERNAL NAME POINTER,
2 LINKAGES __IN_STACK__TABLE,
2 ACTUAL _STACK POINTER,;
DECLARE 1 ENVELOPE BASED(ACTUAL _STACK),
2 LENGTH BINARY FIXED(31),
2 EXTERNAL _NAME CHAR(32) VARYING INITIAL(EXT__NAME),
2 PRODUCER CHAR(32) VARYING INITIAL(STACK_MACHINE _NAME),
2 CONSUMER CHAR(32) VARYING INITIAL(STACK _MACHINE_NAME),
2 BASE OFFSET(ENVELOPE.STACK) INITIAL(NULL()),
2 STACK AREA(ALLOWANCE REFER(ENVELOPE.LENGTH));
DECLARE 1 STACK__HEADER BASED(BASE),
2 GENERATION__TIME CHAR(16) VARYING INITIAL(DATE() || TIME()),
2 TOP OFFSET(STACK);

dress table. The disadvantage of using pointers as names is the reduced security
of data: every process that knows the pointer to data can potentially access these
data. With respect to the names of the stack items this is not a point of concern,
since these items belong to the calling process anyway. With respect to the stack
names, we use a combination of names corresponding to the two environments in-
volved: the caller supplies a character string (limited to 32 characters), while the
stack machine adds a pointer and the generation time of the stack (see Sampling
Listing 4.3).
— How do we represent the help functions?
The possibilities available in PL/1 are:

1) to return a record (a PL/1 STRUCTURE) which is to be interpreted by the call-
ing program. The information in this record (error code) will tell the caller
whether the stack machine has detected an abnormal situation, and which of
the predefined possible actions it has taken. The caller may then react ap-
propriately;

2) to call a help procedure which was passed to the stack machine as an argument,
either in the present or in an earlier call. The help procedure itself is supplied
by the caller.

206 4 The Architecture of CAD Systems

Referring to our example, we decide to use the first option in most cases. The stack
machine will then return an integer error code, which is set to 0 for a normal case and
will be set to specific integer values if abnormal situations are detected. In such cases
the state of the stack machine will not be changed. A full-stack exception, however,
will cause a help procedure to be called. The stack machine will supply to this pro-
cedure the stack name, the present storage size of the stack, and the size of the item
to be pushed on top of the stack; and it will expect from the help procedure the infor-
mation of whether the storage allowance for the stack is to be raised and to what
value.

4.3.3.3 Implementation of the Stack Machine

First we will summarize all declarations which are needed for representing the stack
machine and the stacks. Part of the schema is still to be refined and mapped onto the
possibilities of the PL/1 language. The declarations shown in Sample Listing 4.3 must
be included in all modules of the stack machine. Communication between the
modules is achieved by declaring the basis of the data structure (STACKB) as EX-
TERNAL; this attribute assures that all modules of the stack machine operate on the
same data structure (provided that they are bound into a single load module before
execution).

Two tests which should be performed in almost all entries to the stack machine
are represented as macros in Sample Listing 4.4. These lines of codes have to be in-
serted whereever they are referenced. ‘

We must choose a module structure for the different operations of the stack ma-
chine. In the sense of Parnas [PARN72] or in the programming language ADA, all
the operations together would form a “module”. The term module, however, is asso-
ciated with different meanings. A module is sometimes used for the portion of code
which is treated by the compiler as one unit. Sometimes the term module is used for
the loadable and executable unit of machine code that is produced by the linkage
editor (or binder) from various separately compiled programs and additional sub-
programs retrieved from a library. At this point, we are associating “module” with the
program unit to be submitted to the compiler. Such modules would also usually repre-
sent the units which would be documented and listed separately.

Sample Listing 4.4. The PL/1 stack machine. The test macros.
* the following macros are to be included where they are referenced */

I* test whether stack machine is initialized */
IF OPERATING __STATE + ‘EXECUTABLE’ THEN DO;
/* set ERROR__CODE */ RETURN;END;

1* test for existence of stack with NAME_OF__STACK in stack table */
ACTUAL _STACK__ENTRY = NAME_OF __STACK.INTERNAL _NAME;
IF NAME_OF _STACK.EXTERNAL _NAME = ENVELOPE.EXTERNAL __NAME |
NAME _OF _STACK.GENERATION_TIME +STACK_HEADER.GENERATION_TIME
THEN DO; /* set ERROR__CODE */ RETURN;END;

4.3 The Resource Aspect 207

Sample Listing 4.5. The PL/1 stack machine. The module for initialization and termination of
the machine itself.

INITST: PROC(FILE_FOR__MESSAGES,ERROR__CODE);
/* INITIATE STACK MACHINE */

MESSAGE __FILE = FILE__FOR__MESSAGES;
OPERATING _STATE = 'EXECUTABLE’;

/* set ERROR__CODE */ RETURN;

TERMST: ENTRY(NUMBER__OF _ACTIVE_STACK__PROCESSES,ERROR__CODE);
/* TERMINATE STACK MACHINE */

I* test whether stack machine is initialized */

I* delete all remaining envelopes and stack */

/* write message on MESSAGE _FILE; */

OPERATING _STATE = ‘EXISTING’;

/* set ERROR__CODE */ RETURN;

END INITST;

Sample Listing 4.6. The PL/1 stack machine. The module for creating, deleting, and estimating
stacks.

CREAST: PROC(ALLOWANCE,EXT_NAME,NAME _OF _STACK);

[* CREATE STACK */

/* test whether stack machine is initialized *
DECLARE EXT_NAME CHAR(32) VARYING;

ALLOCATE STACK__ENTRY;ALLOCATE ENVELOPE;

[* insert stack entry into stack table; *
STACK__ENTRY.INTERNAL _NAME = ACTUAL _STACK__ENTRY;
NAME_OF_STACK.EXTERNAL__NAME = STACK.EXTERNAL _NAME;

NAME__OF _STACK.INTERNAL_NAME = STACK__ENTRY.INTERNAL__NAME;
NAME__OF __STACK.GENERATION_TIME = STACK_HEADER.GENERATION_TIME;
/* set ERROR__CODE */ RETURN;

DELEST: ENTRY(NAME _OF _STACK,NORMAL _END);
/* DELETE STACK */

/* test whether stack machine is initialized *
/* test for existence of stack with NAME_OF __STACK in stack table *
/* delete envelope and remove stack entry from stack table *f

I* set ERROR__CODE */ RETURN;

ESTIST: ENTRY(ESTIMATED _SIZE,ESTIMATED _NUMBER,GUESS,ERROR__CODE);
I* ESTIMATE STORAGE REQUIREMENT */
DECLARE (GUESS,ESTIMATED __SIZE,ESTIMATED_NUMBER)BINARY FIXED(31);
GUESS = (ESTIMATED _SIZE+4)*ESTIMATED _NUMBER+20;
/* set ERROR__CODE */ RETURN;
END CREAST;

208 4 The Architecture of CAD Systems

Sample Listing 4.7. The PL/1 stack machine. The module for saving and restoring stacks.

SAVEST: PROC(NAME _OF _STACK,ENVELOPE_ADDRESS,ERROR__CODE);
/* SAVE STACK */

/* test whether stack machine is initialized *

I* test for existence of stack with NAME_OF_STACK in stack table *f
ENVELOPE__ADDRESS = ACTUAL__STACK;

I* remove stack entry from stack table and delete it; *

I* set ERROR__CODE */ RETURN;

RESTST: PROC(NAME __OF _STACK,ENVELOPE_ADDRESS,ERROR__CODE);
/* RESTORE STACK */
I* test whether stack machine is initialized *
ACTUAL _STACK = ENVELOPE__ADDRESS;
IF ACTUAL _STACK—~OWNER=+ STACK_MACHINE _NAME THEN DO;
I* set ERROR CODE */ RETURN;END;
I* test for non-existence of stack with NAME _OF _STACK *
/* allocate stack entry and insert stack with stack entry *
I* into stack table;
STACK__ENTRY.INTERNAL _NAME = ACTUAL _STACK__ENTRY;
NAME__OF_STACK.EXTERNAL_NAME = STACK.EXTERNAL__NAME;

*

NAME _OF _STACK.INTERNAL__NAME = STACK__ENTRY.INTERNAL __ NAME;
NAME_OF_STACK.GENERATION__TIME = STACK__HEADER.GENERATION__TIME;

I* set ERROR__CODE */ RETURN;
END SAVEST;

The first module represents the operations which are related to stack machine
management. Initialization and termination make the stack machine available as an
operable resource in the environment. These two functions would bracket any other
utilization of the stack machine. The second module is related to the lifetime of the
stacks (see Sample Listing 4.5). Creation and deletion of a stack (Sample Listing 4.6)
would bracket all other operations with the stack. The third module is related to the
saving and restoring of stacks (Sample Listing 4.7). Note that although a stack is no
longer accessible to the stack machine after saving (until it is restored), the stack pro-
cess is considered to continue. The saved stack carries with itself the identification
given by the program that created it. In a hidden way, the saved stack also contains
within itself the unique identification given to it by the stack machine (the creation
date and time). Thus saved, stacks maintain their identity on whatever storage
medium they may reside, and they can be deleted legally only by the stack machine.
Due to the method of implementation, however, we cannot guarantee that a saved
stack will not be “killed” illegally by another process which has access to its represen-
tation (the program which issued the save call, or a human operator using utility pro-
grams of the operating system to delete a data set which represents a saved stack). The
last module (Sample Listing 4.8) is related to the proper stack functions of an abstract
stack machine: push, pop and empty.

4.3 The Resource Aspect 209

Sample Listing 4.8. The PL/1 stack machine. The module for the abstract stack functions.

PUSHST: PROC(NAME _OF _STACK,0OBJECT __SIZE,OBJECT__ADDRESS,
HELP,ERROR__CODE);
/* test whether stack machine is initialized *
/* test for existence of stack with NAME_OF_STACK in stack tabie */
/* PUSH ITEM ON STACK */)
DECLARE 1 OBJECT BASED(OBJECT _ADDRESS),
2 SIZE BINARY FIXED(31),
2 CONTENT CHARACTER(OBJECT _SIZE REFER(OBJECT.SIZE));
DECLARE ITEM__SIZE BINARY FIXED(31);
DECLARE 1 ITEM OFFSET(TOP),
2 IS__BELOW OFFSET(STACK),
2 SIZE BINARY FIXED(31),
2 CONTENT CHARACTER(ITEM__SIZE REFER(ITEM.SIZE));
DECLARE NUMBER__OF_ATTEMPTS BINARY FIXED(15) INIT(0);
/* test whether stack machine is initialized *
/* test for existence of stack with NAME_OF_STACK in stack table *
ON AREA(STACK) BEGIN;
IF NUMBER__OF_ATTEMPTS = 0 THEN DO;
NUMBER__OF_ATTEMPTS = 1;

I*try to compress stack by allocating a new envelope *
/*with the same storage size, copy the old envelope */
I*into the new envelope, update the stack entry in *
[*stack table and delete the old envelope that caused */
/*the area overflow*/ END;

ELSE BEGIN;

DECLARE ALLOWANCE BINARY FIXED(31);
OPERATING _STATE = ‘IN REPAIR’;
CALL HELP(STACK.SIZE,OBJECT __SIZE,ALLOWANCE);
OPERATING __STATE = ‘EXECUTABLE’;
IF STACK.SIZE = ALLOWANCE THEN DO;

I*set ERROR__CODE and RETURN* END;

ELSE DO;
[*try to resolve problem by allocating a new envelope !
I*with new ALLOWANCE; copy the old envelope into the i
I*new envelope; update the stack entry in the */
[*stack table and delete the old envelope that caused i

/*the area overflow*/ END;
END /* of AREA exception handling */;
ALLOCATE ITEM IN(STACK);
/* set ERROR__CODE */ RETURN;
POPST: ENTRY(NAME _OF _STACK,OBJECT _SIZE,OBJECT_ADDRESS,HELP);
/* POP ITEM FROM STACK */

/* test whether stack machine is initialized *f

/* test for existence of stack with NAME_OF_STACK in stack table */
DECLARE NULL__OBJECT _SIZE BINARY FIXED(31) STATIC INIT(0);

I* if stack is empty set OBJECT __SIZE = NULL__OBJECT _SIZE; i

/* otherwise set OBJECT __SIZE = ITEM.SIZE, allocate object, copy *f

/* ITEM.CONTENT into OBJECT.CONTENT, delete ITEM and readjust TOP *,

I* set ERROR__CODE */ RETURN;
EMPTST: ENTRY(NAME_OF _STACK,YES,ERROR__CODE);
* 1S STACK EMPTY ? */

DCL YES BIT;
/* test whether stack machine is initialized */
I* test for existence of stack with NAME__OF__STACK in stack table *
/* YES = true if found; otherwise YES = false *f

I* set ERROR__CODE */ RETURN,;
END PUSHST;

210 4 The Architecture of CAD Systems
4.3.4 Distributed Systems

Much attention has been devoted recently to the concepts of distributed CAD
systems. The basic idea is simple. We have a small local computer (in the design office)
for doing that part of the work which has to be done fast and can be done with the
limited resources of the local computer. (Note that we use the terms “local” and
“remote” with respect to the user — the local computer — being in the design office,
and the remote computer at some other place. In other literature these terms are often
used with respect to the central computer, which is then considered as local while the
attached satellites are remote.) If we need more computer power, we connect to the
big computer in the computer center and submit the task for processing on “big
brother”. This central computer may in turn be backed up by a network of computers.
However, the realization of this concept turns out not to be quite so simple. Even if
there were no problems in connecting two computers (generally of different manufac-
turers) to each other in such a way that they can exchange messages, essential pro-
blems on the user level have to be resolved:

— Which tasks should be executed on the local computer? Which ones remotely?

— Should there be a choice of executing a specific task either locally or remotely?
If so, the corresponding functions would have to be available on both machines
(redundancy of functions).

— How do we split the database? Which parts of the data base should be kept as
copies on both computers (redundancy of data)?

In most cases the dominant criterion is the response time. In order to decide the
above questions, an estimate of the response time for the individual functions (as a
function of the characteristic data supplied to the functions) would be required. Even
for a dedicated local computer (with no other users competing) this is difficult, and
even more so in the time-sharing environment of a computer center. The processing
time (for rotation of a three-dimensional object or for searches in a data base)
depends very much on the amount and complexity of the data. On the remote central
computer, the work load coming from many users is a highly varying function and
is hardly predictable in a response time estimate. Thus, a suitable split of the tasks
between local and remote computers is often based on practical experience rather than
objective criteria. Cullman [CULLS80] has proposed an interface architecture between
a host and a satellite computer, which principally allows for run-time adjustment of
the work. Cullman proposes to implement the respective functions on both the
satellite and the host and to call upon the particular version of the function which
may be expected to give better performance. Some parameters which characterize the
actual work load on both processors could be used by the interface system to decide
autonomously (that is without being helped by the operator) whether the host side
or the satellite side version of a function should be used.

The design of distributed systems requires much preplanning of the distribution
of processes among the participating computers [BRIN73], [YAU__81]. Hence, it is
not surprising that the architectures of distributed CAD systems show more variety
than CAD systems based on a single computer. However, the three types shown in Fig.
4.16 through Fig. 4.18 may serve as a reference.

4.3 The Resource Aspect 211

remote
computer

specifications

results subset of
help data and
programs
program local data
base computer base
operator

Fig. 4.16. A distributed CAD system with the local computer
as a master

Figure 4.16 represents a local computer with remote backup. The local computer
is the master, the remote computer a slave. Data base and program base are concen-
trated on the local computer. For the activities which require large computational
resources, programs and data are sent to the remote computer {(as an alternative, the
programs may have previously been implemented in the remote computer’s library).
A typical application of this sort is the finite element analysis of a structure which
has been designed interactively on the local computer. The remote computer is
operated in batch mode. Large amounts of information are exchanged between the
two computers before the start and after the termination of the remote task. The
response time of the programs (“number crunching” like finite element or finite dif-
ference analyses, or operations on large data bases) generally forbids interactive
operation. The advantages of this arrangement are simplicity and fast response to the
user for many’ activities. The problems which are often encountered are:

— the methods for maintaining a growing data and program base may turn out to
be less powerful on the small local computer than on the large remote one. Either
the user approaches the limits of his small computer before he can satisfy his
needs, or (if possible) the small computer soon grows and becomes a big one itself.
In this latter case the “small” dedicated local computer loses its desired simplicity,
and requires more money and computer expertise for its operation and mainte-
nance than had originally been anticipated.

— If more than one user at different locations should want to work with the same
program and data base, this arrangement is inadequate.

The concept shown in Fig. 4.17 does not produce the problem of limited com-
puting power and storage capacity. Similar to time-shared usage of a CAD system on
a big central computer directly from a terminal (without an intermediate local com-
puter), this concept is well suited for a greater number of users at different locations.
Compared to the centralized approach, however, it has the advantage that prior to a

212 4 The Architecture of CAD Systems

program remote data
base computer base
subset of specifications
data and requests for
programs information
results
help
local
computer
operator

Fig. 4.17. A distributed CAD system with the remote
computer as a master

sequence of activities all (or most) of the related programs and data may be transmit-
ted to the local computer. Thus we avoid the need for exchanges of information across
the connection line for even the most primitive operations. The gain in response can
be significant. This benefit has to be paid for:

— Since the transmitted part of the data base is no longer under the control of the
central data base management system, the problem of consistency arises. Different
users may work on different copies of the same part of the data base and make
changes which are not consistent with each other. Features (possibly of an
organizational nature) must be added to the system to deal with this problem, thus
increasing the level of complexity.

— More preplanning is required. The user cannot freely follow his intuition when
working at the local computer. He can work (efficiently) only with the subset
which has previously been copied from the remote computer. Thus the possibility
of switching between activities (such as information retrieval, drafting, and
calculation), which is typical for design work, is reduced.

Figure 4.18 shows what appears to be the solution of the dilemma. The logical
program and data bases have been split into a local and a remote part according to
the resource requirements (response time, processing, and storage capabilities). The
problem with this concept, however, is that it does not find adequate support in reali-
ty. It is still a subject of much research work going on [SCHI79]. If despite the
undeveloped methodology an attempt is made to implement such a system, one will
likely be confronted with the fact that data base support, programming languages,
and other tools are not compatible on the two computers. Methods that have been
developed in the area of process control systems may possibly be borrowed to the ad-
vantage of distributed CAD system development [RAMAR81]. In this case, a separa-
tion once defined is likely to be fixed forever because otherwise much programming
would have to be redone (consider two different database management systems on the
two computers, PASCAL on the big computer, FORTRAN on the small one). Por-

4.3 The Resource Aspect 213

— | Je——

| | remote | | remote | | remote I
T

| part | computer [part }

| |

| | | |

. specifi- I

I logical | results cations | logical }

I program | help refcg:ests [data

| base l infor- | base !

| i mation | I

| | l 1

| local | local ! local I

| | part " computer i part l

— L___ |

operator

Fig. 4.18. A distributed CAD system with split
program and data bases

| _aopplication
___presentation
I __session]
e transport N
network
link
e —— —— — — >
e _physical

physical media for interconnection

Fig. 4.19. The seven-layer model for connecting two systems

tability of system functions from local to remote and vice versa is important because,
as experience with the implemented system grows, the need to adapt the response
behavior to changing user attitudes and changing computer loads will arise. A system
which is split between two computers is probably much less portable to other installa-
tions than a system based on one computer only (at least in the general case of two
different computer manufacturers).

Nevertheless, the potential benefits of a distributed CAD system require more con-
sideration and research. The architecture developed in [OSI__78] (see Fig. 4.19) is
promising. Seven levels (or layers) of processes have been identified. The highest layer
would correspond to one or more CAD processes; the lowest level represents the
hardware which connects the computers. The need for subschema transformations

214 4 The Architecture of CAD Systems

application A
FA FA FA FA
transformation
at A
b | opensystem
FT=FB FT FT=FA FT=FA=FB
transformation
at B
FB FB FB FB
application B
FA: local format at A | X .
FB: local format at 8 Fig. 4.20. Transformations in con-
FT: format for transport nected systems

(see Sect. 3.3.3) is recognized in the concept. Figure 4.20 indicates that subschema
transformations may take place:

— not at all, if the same subschema is used on both computers;

— on one computer or the other; or

— on both computers, if the interconnection between the components requires a dif-
ferent subschema for the transport itself.

There is a remarkable agreement between the Open Systems concept and the CAD
process model as derived in Chapter 3 (Figs. 3.7 and 3.8) with respect to the impor-
tance assigned to management functions. A layer in the Open Systems concept is char-
acterized by a varying number of “application-process entities” (say, abstract pro-
cesses) and a single “management entity” (say, the environment process).. The “ap-
plication-process entities” have direct relations to corresponding entities on higher
and lower levels; the “management entity” is linked to a “system-management entity”
(Fig. 4.21). The similarity between the ISO Open Systems concept and the concepts
of CAD processes and CAD software machines (see Chap. 4.3.1) suggests that this
proposal will suitably support distributed CAD processes (once it becomes available).
At present, however, designers of distributed CAD systems have to deal with incom-
patibilities of computer systems on all levels (even down to the hardware), and either
must refrain from utilizing the benefits of distributed processes or must themselves
provide interfaces at low levels instead of concentrating on their actual problem: the
optimal split of the process functions on the user level.

4.3.5 The Graphical Kernel System GKS as a Software Machine

4.3.5.1 The Process Aspect in GKS

The design of the Graphical Kernel System GKS has been influenced considerably by
the ideas described in Chap. 3 with respect to processes, and by the concepts

4.3 The Resource Aspect 215

CAD
GKS CAD
package application
process
2
(2]
o
c
S
©
0
knows about many
GKS workstations
process controls processes and their

belonging to drivers

workstation
processes

Fig. 4.21. The main processes and environments in GKS applications

developed in this chapter regarding software machine design. GKS is indeed a typical
software machine. It has been specified functionally in the GKS standard for a wide
range of applications (not only CAD) on an abstract level, independent from any par-
ticular programming language — though the GKS designers (more precisely, the
designers of the specification) always kept in mind that it should be implementable
in a FORTRAN environment. During its development, nobody could foresee the
possible resource conflicts which might arise in future application programs, when
GKS would start to compete with other software components for resources. Hence,
it was necessary to consider the resource aspect as an essential part of the GKS func-
tional specification.

The application program using GKS obviously has to know about the existence
of the GKS package in its environment. This condition is achieved by appropriate pro-
gramming (like the use of the correct names of GKS functions) on the programming
level, and by binding the corresponding GKS subroutines into the executable applica-
tion module. In the sense of Chap. 3 (see Fig. 3.8) the GKS package is an environment
that is known to the application process. The application program may request the
creation of a GKS process from the package (called OPEN GKS in GKS terminology);
it may modify the state of this process by calling upon different GKS functions, and
it may finally terminate the process by CLOSE GKS. As part of the GKS process state,
several subprocesses may be created, each one corresponding to an individual
workstation. These subprocesses have names (the workstation identifiers), while the

216 4 The Architecture of CAD Systems

the
open
segment

application
process

existin
segments

process

viewing
rocess
P Fig. 4.22. The subprocesses under

GKS control

GKS process itself does not need an explicit name: only one GKS process may exist
in an application program. Via GKS and a workstation process, the application pro-
gram may address the drivers of graphical hardware. Both the graphical hardware and
the associated drivers constitute part of the computer environment in which the ap-
plication is executed. The knowledge about the capabilities of the various types of
workstations in a computer environment is passed to the application program via
GKS as the “workstation description table”. Figure 4.21 illustrates this situation; it
is a special case of the more general schema shown in Fig. 3.8.

In Sect. 3.2.4.3 (Fig. 3.19) we stated that each process has a certain state represen-
tation. We will now refer to Fig. 4.22 for the discussion of the subprocesses in GKS.
The environment aspect has not been included in this figure in order not to make it
overly complicated. In the GKS standard, the state representation of the GKS process
is defined as the “GKS state list”, and each workstation process has a “workstation
state list”. Among other information, the workstation state list contains the defini-
tions for visualization of the graphical primitives.

A subtask of the GKS process is the management of segments. A particular seg-
ment is the open segment. The lifetime of the open segment process is bracketed by
OPEN SEGMENT and CLOSE SEGMENT. This latter statement transfers the newly
created segment process into the set of the existing segments, where it continues to
exist until it is deleted. A second way to create segment processes under GKS control
is to read segments which were created in previous GKS applications from a GKS
metafile.

Another task of GKS is the maintenance of the “list of associated workstations”
for each segment. This list may be interpreted as an inversion of a picture definition.
The notion of a picture is not available in GKS. We regard a picture as a collection
of segments, and represent the correspondence between a picture and a workstation

4.3 The Resource Aspect 217

by considering the picture as a subprocess to a workstation process. It would be
desirable to have the concept of a picture in a Graphical Kernel System in order to
be able to treat such pictures as entities (for copying, deleting, etc.). However, very ear-
ly in the GKS specification work it was decided to use only a single level of naming
for identifying graphical entities. The introduction of named “pictures” would have
created a second such level. The state of a picture is modified by creating new
segments or by reading segments from a metafile while the corresponding workstation
is “active”, or by copying existing segments from one picture into another.

Each workstation process has (potentially) a number of input subprocesses. The
input processes are associated with input devices of various types. Each one of the
input processes may be uniquely identified by a qualified name consisting of worksta-
tion identification, device class, and device number. The state of each input process
is characterized by an input class mode (REQUEST, SAMPLE, or EVENT). The GKS
standard defines “measure” processes and “trigger” processes in order to describe the
state of the input processes in more detail. For the REQUEST and SAMPLE input
modes, the input processes are synchronized by GKS. For EVENT input, the input
processes operate asynchronously and communicate their event reports through the
workstation processes to the input queue (see dashed line in Fig. 4.22), from which
these reports may be retrieved by the application process via GKS.

One viewing process is associated with each workstation. It presents an image of
the workstation picture (that is, of the set of segments associated with the worksta-
tion) to the operator. The viewing process lifetime equals the lifetime of the worksta-
tion process. The state of the viewing process is what the operator can visually
perceive on a display screen or a sheet of paper. This image is not necessarily identical
with the visual representation of the corresponding picture according to the actual
state of the workstation state list. Due to deferred updating there may be a delay,
which we interpret as a difference between the states of the workstation process and
its viewing subprocess.

4.3.5.2 The Resource Aspect in GKS

As is common in functional specifications, the GKS standard concentrates on abstract
functions and does not elaborate on the resource aspect in great detail. Nevertheless,
the necessity of dealing with this aspect has been realized to the extent that a whole
annex has been devoted to it under the title “interfaces”. A number of rules, roughly
corresponding to rules (R1) through (R7) of Sect. 4.3.2, are documented as a means
of minimizing the potential for resource conflicts in future applications. For instance,
every GKS implementation is requested to supply a renaming facility. This feature
should eliminate conflicts between GKS names, and names used by other parts of the
application program. It concerns both programming time conflicts (names of GKS
functions that are visible to the application program) and binding time conflicts
(global names of SUBROUTINEs or COMMONSs in GKS, which are not visible to
the application program). Another rule calls for the description of all additional files
(for buffer overflow or GKS module libraries, for instance) as resources that have to
be provided by the application process in order to make GKS operable.

218 4 The Architecture of CAD Systems

But beyond that, it should be noted that the abstract concept of workstations
[ENCA _80] has resulted from resource considerations. It was found to be essential
to provide both GKS itself and the application process with knowledge about the
capabilities of the various types of graphics workstations that are available in their
computer environment. The quantification of the graphical resources was intentional-
Iy not hidden in the drivers, but made apparent so as to allow the higher-level pro-
cesses (GKS and application) to adjust their behavior in line with whatever the drivers
and the hardware can or cannot perform. The workstation description table is a
special case of a quantified resource description, and should be considered a powerful
tool in the implementation of portable software machines.

One point where more consideration of resource aspects would have been appro-
priate in GKS is the need for storage capacity for the graphical information. It would
be a significant help for designers of CAD systems using GKS for their graphics part
if GKS provided a storage estimate inquiry function, which would pass back the esti-
mated storage capacity needed for a segment of given complexity (number and type
of graphical primitives in the segment). As it is, GKS will respond with an error
message like “storage overflow” if the resources are insufficient; the application pro-
gram may then take corrective actions. Instead of correcting and redoing previous
work, one would probably prefer to have an estimate of the resource requirements in
advance in order to prevent the error condition from occurring at all.

4.4 Summary

In the first paragraphs of this chapter, we concentrated on the components and inter-
faces of CAD systems. The components were considered under various aspects (hard-
ware, software, functional). The functional aspect was related to the main design ac-
tivities:

— specification,

— synthesis,

— analysis,

— transformation,

— presentation, and

— evaluation.

The interface between the components has been identified as an important charac-
teristic of CAD system architectures. Different interfaces exist during the develop-
ment, invocation and application of a CAD system. The development and use of a
CAD system is greatly improved if suitable CAD tools (or CAD machines) are avail-
able. CAD tools are “black box” components which perform certain tasks in whatever
environment they are used. Thus, CAD systems can conceptually be built by assembl-
ing a number of suitable tools.

While in conventional design the conceptual model of real objects may be de-
scribed informally, in CAD the conceptual model must be mapped in a formal way
onto the computer hardware. This mapping is done in (at least) two steps:

4.4 Summary 219

1) conceptual model — language level, and
2) language level — hardware.

Many languages may be used for this mapping process (programming languages
as well as data definition languages of data base management systems). Different
languages may offer different capacities for expressing important properties of ob-
jects relating to the conceptual model. Not all languages will be equally suitable.
Often it is necessary to introduce intermediate mappings (such as when calendar dates
are mapped onto integers). In extreme cases, the desired mapping can be achieved on-
ly by “mapping around the language”, and the programming language becomes more
of an obstacle than a help.

Binding was identified as an important step between the definition of an object
and its use. The binding process replaces a reference to a name by the reference to the
object denoted by the name. Binding may occur at different times: programming,
module binding, job preparation, or execution. Flexibility and efficiency are com-
peting criteria which influence the decision of whether early or late binding is
preferable.

Besides the representation of objects by data, objects may be represented in
algorithmic form. Data modeling and algorithmic modeling both have their pros and
cons. The “best” model depends very much on how the model is to be used in prac-
tice.

As a key issue of CAD system architectures the resource aspect was described in
some detail. The abstract function of a CAD system is essential, but the question of
resource management may equally well determine the usefulness of a system in a given
environment. Questions like

— Which resources are needed? and
— How does the system try to optimize resource usage?

should not be hidden from the user, but should instead be made evident. CAD tools
(or CAD machines) can be freely combined into new CAD systems only when the
design of the CAD machines avoids potential conflicts. A set of rules, significantly
reducing the conflict problem, has been formulated. A sample problem (a stack ma-
chine) illustrates the difference in the amount of work required for the writing of an
algorithm in a programming language and for the realization of a powerful CAD ma-
chine for the same task.

Distributed CAD systems offer a promising compromise between the use of a
dedicated (usually small) CAD computer and the time-shared use of a large central
computer system. The benefits of a distributed system (fast response to small prob-
lems, back-up by a powerful computer for big problems) must be paid for: distributed
systems are much more complex, and portable solution concepts are still in the devel-
opment stage.

Finally, the Graphical Kernel System (GKS) was discussed under the aspects of
processes and software machine design, which had been developed in Chaps. 3 and 4.

220

4 The Architecture of CAD Systems

4.5 Bibliography

[ADA__79]

[ADA _82]

[ALLA78]

[BALZ81]

[BART78]

[BONOS2]
[BRIN73]

[CULLS80]

[ENCA __80]

[GKS__82]
[GUTT77]

[HATV77]

[HESS81]
[HOUGB80]
[HUENS0]
[INTS75}
[JACKS82]
[JENS78]
[KNUT69]

[LATO78]

J. Ichbiah et al.: Preliminary ADA Reference Manual. SIGPLAN Notices 14,
6 (1979).

J. Ichbiah: Reference Manual for the ADA Programming Language. United
States Department of Defense, July 1980, Proposed Standard Document.
LNCS 106. New York, Springer-Verlag (1982).

J.J. Allan III, K. Be: A Survey of Commercial turnkey CAD/CAM Systems.
Dallas, Productivity Int. Corp. (1978).

H. Balzert: Methoden, Sprachen und Werkzeuge zur Definition, Dokumenta-
tion und Analyse von Anforderungen an Software-Produkte. Part 1. Infor-

- matik-Spektrum 4, 3 (1981), pp. 145—163. Teil II. Informatik-Spektrum 4, 4

(1981), pp. 246—260.

W. Bartussek, D.L. Parnas: Using Assertions about Traces to Write Abstract
Specifications for Software Modules. In: G.G. Bracchi, P.C. Lockemann:
Proc. Information Systems Methodology. Heidelberg, Springer-Verlag (1978).
P. Bono, J. Encarnagao, F. Hopgood, P. ten Hagen: GKS The First Graphics
Standard. IEEE Computer Graphics and Applications 2, 5 (1982), pp. 9—23.
P. Brinch Hansen: Distributed Processes: A Concurrent Programming Con-
cept. Computing Surveys 5, 4 (1973), pp. 223—245.

N. Cullmann: Optimized Software Distribution in Satellite Graphics Systems.
In: C.E. Vandoni, Proc. Eurographics 80, Geneva. Amsterdam, North
Holland (1980).

J.L. Encarnagao, G. Enderle, K. Kansy, G. Nees, E. G. Schlechtendahl, J. WeiB,
P. WiBkirchen: The Workstation Concept of GKS and the Resulting Concep-
tual Differences to the GSPC Proposal. Proc. SIGGRAPH ’80, Computer
Graphics 14 (1980).

ISO/TC97/SC5/WG2 N117; Draft International Standard; Information Pro-
cessing, GRAPHICAL KERNEL SYSTEM (GKS), 1982.

J. V. Guttag: Abstract Data Types and the Development of Data Structures.
CACM 20 (1977), pp. 396—404.

J. Hatvany: Trends and Developments in Computer-Aided Design. In: B.
Gilchrist (ed.), Information Processing 1977. Amsterdam, North-Holland
(1977), p. 267-271.

W. Hesse: Methoden und Werkzeuge zur Software-Entwicklung. Informatik-
Spektrum 4, 4 (1981), pp. 229-245.

R.C. Houghten Jr, K.A. Oakley: NBS Software Tools Database, NBSIR
80-2159, Washington, National Bureau of Standards (1980).

K. Hiinke: Software Engineering Environments. Amsterdam, North-Holland
(1980).

Integrierte Programmsysteme. Report KfK-CAD 2, Kernforschungszentrum
Karlsruhe (1975).

M. A. Jackson: Software Development as an Engineering Problem. Angewand-
te Informatik 2 (1982), pp. 96—103.

K. Jensen, N. Wirth: PASCAL User Manual and Report. Second Corrected
Reprint of the Second Edition. New York, Springer-Verlag (1978).

D.E. Knuth: The Art of Computer Programming. Vol. 1: Fundamental Algo-
rithms (2nd ed.). Reading, Mass., Addison-Wesley Publ. (1969).

J-C. Latombe: Artificial Intelligence and Pattern Recognition in Computer
Aided Design. Amsterdam, North-Holland (1978).

4.5 Bibliography 221

[LEIN78]
[LILL81]
[LINC81]
[LISK75]

[LUDE78]

[NOPP77]

[OLLE78]

[OSI__78]

[PARN72]
[PARN75]

[RAMAS!1]

[ROSS76]

[SALT78]

[SCHI79]

[SCHL78]

[SCHN78]

[SCHU76]

[TEIC77]

[TOWS79]

[VOGES0]

[YAU __81]

[WULF73]

K. Leinemann, E.G. Schlechtendahl: The REGENT System for CAD. In: J.J.
Allan III, CAD Systems. Amsterdam, North-Holland (1977), pp. 143—168.
F. Lillehagen: CAD/CAM Workstations for Man/Model Communication.
IEEE Computer Graphics 1, 3 (1981), pp. 17-27.

W. Lincke: Zukiinftige CAD-Anwendungen; Forderungen und Perspektiven.
VDI-Berichte 413 (1981), pp. 137—142.

B.H. Liskov, S.N. Zilles: Specification Techniques for Data Abstractions.
IEEE Trans. on Softw. Eng. 1 (1975), pp. 7—19.

J. Iudewig, W. Streng: Uberblick und Vergleich verschiedener Mittel fiir die
Spezifikation und den Entwurf von Software. Report KfK 2509, Kern-
forschungszentrum Karlsruhe (1978).

R. Noppen: Technische Datenverarbeitung bei der Planung und Fertigung in-
dustrieller Erzeugnisse. Informatik Fachberichte 11, Heidelberg, Springer-
Verlag (1977), pp. 1—19.

T.W. Olle: The CODASYL Approach to Data Base Management. Chichester,
John Wiley (1978).

Reference Model of Open Systems Interconnection (Version 4 as of June 1979).
Report ISO/TC97/SC16 N227 Paris, Association Frangaise de Normalisation
(1978).

D.L. Parnas: A Technique for Software Module Specification with Examples.
CACM 15, 5 (1972), pp. 330-336.

D.L. Parnas: On the Need for Fewer Restrictions in Changing Compile-Time
Environments. SIGPLAN Notices 10 (1975), pp. 29—36.

C.V. Ramamoorthy, Y.R. Mok, F.B. Bastani, G.H. Chin, K. Suzuki: Applica-
tion of a Methodology for the Development and Validation of Reliable Process
Control Software. IEEE Trans. Softw. Eng. SE-7, 6 (1981), pp. 537—555.
D.T. Ross, K.E. Schoman: Structured Analysis for Requirements Definition.
Proc. IEEE/ACM 2nd Int. Conf. on Softw. Eng., San Francisco (1976).
J.H. Saltzer: Naming and Binding of Objects. In: G. Goos, J. Hartmanis
(eds.), Lecture Notes in Computer Science 60: Operating Systems. Heidelberg,
Springer-Verlag (1978), pp. 99—208.

S. Schindler, J. C. W. Schroder (eds.), Kommunikation in verteilten Systemen.
Informatik Fachberichte 22, Heidelberg, Springer-Verlag (1979).

E.G. Schlechtendahl, K.H. Bechler, G. Enderle, K. Leinemann, W. Olbrich:
REGENT-Handbuch. Report KfK 2666 (KfK-CAD 71), Kernforschungszen-
trum Karlsruhe (1978).

P. Schnupp: Rechnernetze; Entwurf und Realisierung. Berlin, de Gruyter
(1978).

R. Schuster: System und Sprache zur Behandlung graphischer Information im
rechnergestiitzten Entwurf. Report KfK 2305, Kernforschungszentrum
Karlsruhe (1976).

D. Teichrov, E.A. Hershey III: PSL/PSA: A Computer-Aided Technique for
Structured Documentation and Analysis of Information Processing Systems.
IEEE Trans. on Soft. Eng. SE-3, 1 (1977), pp. 41—48.

E. Towster: A Convention for Explicit Declaration of Environments and Top-
Down Refinement of Data. IEEE Trans. on Soft. Eng. SE-5, 4 (1979), pp.
374—386.

U. Voges, L. Gmeiner, A. Amschler von Mayrhauser: SADAT An Automated
Testing Tool. IEEE Trans. on Softw. Eng. SE-5, 6 (1980), pp. 286—290.

S.S. Yau, C-C. Yang, S.M. Shatz: An Approach to Distributed Computing
System Software Design. IEEE Trans. Softw. Eng. SE-7, 4 (1981), pp.
427-447.

W. Wulf, M. Shaw: Global Variables Considered Harmful. SIGPLAN Notices
8 (1973), pp. 1829, and 3, pp. 226—230.

5 Implementation Methodology

Operating a drum plotter
(courtesy of Calcomp, Anaheim, USA)

5.2 Computer Graphics Hardware 225

5.1 Introduction

Computer graphics hardware and system architectures have been subject to dramatic
changes during the past years. At the same time, there has been a great breakthrough
in graphics standards, with the aim to obtain a stable interface between expensive
graphics software and continuously changing graphics hardware.

In this chapter, computer graphics hardware, system architecture aspects, and (be-
ing the archetype of computer graphics standards) the international graphics standard
GKS are presented.

It was the intention of the authors to make evident how quickly the world of com-
puter graphics hardware changes; therefore, devices are also presented which have no
practical importance any longer. Devices in common use today may be obsolete within
only a few years.

The topic of system architecture is treated by describing today’s workstations and
networks. In the field of workstations, the amazingly rapid development of faster and
faster VLSI processors has resulted in an almost uniform architecture for most cur-
rent workstations. Really dedicated hardware and systems solutions have been
superseded by standard firmware implementations profiting from general-purpose
CPUs and from high-speed, specialized VLSI processors. Today, networks tend to
become the standard solution for flexible architectures of workstations and resources.

In the field of graphics standards, the classical two-dimensional international
standard GKS has proved the effectiveness of standards in this field. Today, standards
are under development with much higher capabilities. The description of these ac-
tivities, however, is beyond the scope of this book.

5.2 Computer Graphics Hardware

5.2.1 Introduction

Graphical I/0 devices cannot be treated absolutely separate from each other. They are
not just pieces of hardware giving system information to the user and user informa-
tion to the system. They must be observed in their role as one link each in the closed
chain of interaction. This chain contains more than the devices themselves. Let us
describe it, starting with a system’s input to the user. We find the following links in
the interaction loop:

— user’s senses (mainly eyes, but possibly also ears, touch, etc.);

— user’s brain;

— user’s means of action (mainly hands, but possibly also feet, voice, eye and head
movements, etc.);

= the hardware of the graphical input device (possibly containing firmware and soft-
ware);

— the input-oriented hardware of the workstation’s processing unit;

— the workstation’s operating system including input drivers and input sections of
the basic graphics software;

226 5 Implementation Methodology

— typically, the application software;

— the output sections of the basic graphics software and output drivers interfacing
with the workstation’s operating system again;

— the output-oriented hardware of the workstation’s processing unit; and, finally,

— the hardware of the graphical output device (typically containing software and
firmware) with its means of visualization (possibly supported by sound, move-
ment, etc.).

Each link above gets its input from its predecessor (the first link from the last one)
and gives its output to its successor (the last link to the first one). Obviously, the loop
required for interactive graphics is quite lengthy. It is a chain of links, a pipeline parti-
tionable into a user-specific and a workstation-specific section. The suitability of a
certain input or output device for a certain application is therefore determined by its
behavior in the pipeline. The pipeline itself is characterized by its slowest link which
may be found in the user-specific or in the workstation-specific section of the interac-
tion loop. Any well chosen device will not be a bottleneck in the interaction loop.

Actually, the interaction mentioned above is not as simple as was previously de-
scribed. In fact, there are also lower loops (e.g., echoing, dragging, etc.) and higher
loops (e.g., actions using remote facilities). On the other hand, speed cannot be de-
fined in milliseconds, but is also related to demands like accuracy for geometry and
identification.

The preliminary remarks make it obvious that any valuation of interactive
graphical devices has to consider certain assumptions concerning the parameters of
the hardware/firmware/software in the CAD system, the capabilities of the user, and
the target application.

5.2.2 Graphical Output Devices

The term “graphical output” is used in two different senses: as a presentation of a
picture and as a pictorial reflection of an application situation. These different mean-
ings result in varying demands on the output devices. We will therefore distinguish be-
tween interactive (graphical) output devices for interactive applications and graphical
archival devices for those applications where the production of graphical results is not
a link in an interaction loop. Of course, applications range continuously from highly
interactive tasks (e.g., simulation) to clearly non-interactive ones (e.g., archiving), and
thus our distinction is arbitrary to a certain degree.

The suitability of graphical output devices is not as inherently dependent on the
performance of the interaction loop as graphical input is. Graphical output has its
value in itself, while graphical input has its value in its effect on graphical output.
However, certain applications (and CAD is clearly one of them) may require a very
fast interaction loop and therefore a very fast graphical output as one link in this loop.
Thus, a lot of features must be observed in order to select an appropriate interactive
graphical output device:

— Features of the presentation area:
— resolution (coordinate grid and line width or pixel size),
— presentation mode (line drawing or raster),

5.2 Computer Graphics Hardware 227

— size and format of the presentation area,

— geometrical accuracy (absolute and relative),

— color capabilities, brightness, contrast,

— write, refresh and update characteristics;

— Features of the display processor (the display processor may be hardware, firm-
ware, or software or a mixture of all three):

— virtual coordinate range,

— refresh manipulation capabilities (support for zooming, panning, and window-
ing),

— supported attributes (highlight, blink, line styles, textures, pick enable, etc.),

— output generation support (line generation, polygon filling, pixel block
transfers, z-buffer operations, etc.),

— input and echoing support (cursors, pick support, etc.);

— Features of the software, driving the output device:

— specifically, features of the basic software (operating system, device drivers,
graphical package) have to be considered, but also the demands of the applica-
tion; and

— Economic Features:

— suitability for the application type,

— availability and costs of device drivers,

— price and availability of device,

— expected maintenance efforts (time and costs), and

— expected lifetime and innovation cycle time.

For the moment, we will focus on the features of the presentation area and on
some of the economic features. The features of the display processor will be discussed
later, whereas features of the driving software will be mentioned in Sect. 5.5 (The
Graphical Kernel System).

In the discussion of interactive graphical output devices it is useful to divide them
up into classes, using typical features for the distinction between devices of different
classes. In our presentation, the following distinguishing features are used in three
levels of hierarchy (Fig. 5.1):

— the principle used for writing (refreshing) the information on the display surface:
calligraphic (continuous-line writing on vector-type displays) or scanning (pixel
setting on raster-type displays);

— the kind of display used: periodical refresh of the information on the screen from
a non-visible storage or visible storage of the information on the screen;

— the technological principle used for making the picture information visible.

In the presented schema of visual displays (Fig. 5.1), the recently still competing
technologies (calligraphic storage tube displays and raster-type CRT-displays which
dominate in CAD applications) are considered together with the retiring classical
calligraphic CRT-vector display, the stillborn hybrid calligraphic laser-vector display,
the raster-type plasma panel about to be kicked out, the raster-type liquid crystal
panel with its uncertain promises for the future, and “other technologies”, the open
field of surprises. Within the latter, “electroluminescent powder layer panels” are an
example, but these do not have much importance.

228 5 Implementation Methodology

Laser Vector Display

Refresh

Scr‘eehs

CRT Veotor Display

Calligraphic
Displays

Storage Tube Display

Storage
Screens

Laser Vector Display

(:) All Displays

CRT Raster Display

Refresh

SCI"BehS

Liquid Crystal Panel

Raster

Displays

Plasma Panel

Storage
Screens

VANVANEVANNIVAN

other Techrolcgies

Fig. 5.1. Hierarchy of visual displays

The limited size of this chapter does not allow to describe all technologies for
displays in detail. Thus, we shall focus on the advantages of CRT raster technology.
Because of its properties this technology is the most promising candidate in the field
of interactive graphical displays. In comparing it with its competitors, these will also
be discussed to some degree.

5.2.2.1 Refreshing Vector and Raster Devices

In the early days of computer graphics, only calligraphic devices were available (vector
plotters and vector screens). When raster devices appeared on the market, for quite
a long time they were not considered to be suitable for high quality applications. The
low resolution of the screens resulted in such badly jagged lines and edges that no
users seriously accepted this low picture quality. Moreover, in the beginning of com-
puter graphics nearly all applications made use of line presentations — partly because
of the type of application, and partly because only line-drawing output devices were
available.

Today, raster screens are applied in cases where color is used as an essential ele-
ment of communication information and where filled areas are used. The presenta-
tion of “realistic pictures”, in particular, is the domain of raster graphics. But also
most applications using abstract presentation on line basis (wire frames, production
drawings, etc.) have changed over to raster displays now as a result of the dramatically
increasing quality of raster displays. It is a fact that raster displays have superseded

5.2 Computer Graphics Hardware 229

vector displays completely within the last few years, making use of CRT raster
technology which itself is heavily supported by the high-definition television market
expected in the near future.

For quite a long time, raster technology and vector technology had to compete
against each other. Both had advantages and drawbacks and both used the same type
of output medium, the CRT (cathode ray tube). In CRTs, an electron beam hitting the
screen produces a bright spot on the thin phosphor layer inside the tube. The
brightness of this spot holds for a short time (some ten milliseconds) even if the elec-
tron beam is switched off or moved aside. Thus, by controlling the position of the
spot and the intensity of the electron beam, it is possible to keep many positions and
even the entire screen bright. The picture on the screen needs to be refreshed in order
to avoid visible flicker. As a “fast” phosphor is required for fast changes on the
screen, the refresh rate must be 50 cycles per second or even more. Arbitrary intensity
control of the electron beam can be performed quite simply at a very high speed while
even medium speed arbitrary deflection is much more expensive if it has to be very
accurate: deflection is done magnetically, requiring the control of quite large currents
through deflection coils. Therefore, deflection is the physical bottleneck for the
presentation of pictures on the CRT screen. If done periodically regular, deflection
of the beam can be much faster, especially if absolute accuracy is not very important
(while relative accuracy is still very high). Raster and vector CRT displays differ by
the way in which they use electron beam positioning and intensity control. While CRT
vector displays (Fig. 5.2) move the intensified electron beam along the lines to be
shown or (with intensity switched off) to the starting point of the next line, in CRT
raster displays (Fig. 5.3) the beam is moved in parallel lines over the entire screen
regardless the picture to be shown and is switched on at all positions on the screen
which are to appear bright. The clock and synchronization generator controls the
deflection system of the CRT and — corresponding to the position of the electron
beam — the address generator of the pixel memory. The pixel memory must contain
the intensity and color information of the picture for every pixel on the screen. This
information is generated by the scan converter which breaks down graphics primitives
and their attributes to single pixel presentations. The pixel information is read for

Update

Deflection
System

Dx, Dy

Ram
Gererator

Intensity Control

Code

Stroke
Generator

Function Gernerator

Screen

Display File Controller + DFMem

Fig. 5.2. Block diagram of a CRT vector display

230 5 Implementation Methodology

Refresh

Loading | Pixel Par‘a%lel/

o — Serial-~

9 Memory ;

8 ¢ Conversion
T |8

[} < [y

£ [}

C >
— C
v |8 : Deflaction

% c Intensi ty System

£ o3 Control

[EJ U)O Syno. n —
o =

u
Electron [N
Gun
Screen
Clock and
Sync. Deflection (Sync.)
Generator

Fig. 5.3. Block diagram of a CRT raster display

refresh several pixels per access and then converted from parallel to serial format. This
conversion makes it possible to avoid high-speed demands on memory.

The demand in a CRT vector display for exact random positioning of the beam
at high speed and for a medium data rate (start and end point coordinates of the vec-
tors) compares with the demand for a very high data rate (intensity control) and a
cyclic and periodically regular beam deflection at a very high speed in a CRT raster
display. The problems of vector display technology become evident from the ap-
pearance of two different vector generators for very short vectors as required for text
(the stroke generator) and for longer vectors (the ramp generator). The quasi-static
current position and the increments from the vector generators are converted from
digital to analog presentation and fed to the sum points of operational amplifiers
which control the deflection amplifiers. The intensity of the electron beam is controll-
ed separately by the function generator.

The very high data rate required in the raster display results in large-scale calcula-
tion load for data preprocessing (the so-called scan conversion). Raster technology
comes out to be more advantageous than vector technology for the following reasons.

The hardware of raster displays is essentially digital. Raster displays require much
less maintenance than vector displays. The deflection amplifiers of the latter need pe-
riodical adjustment as they are essentially analog components.

Raster displays benefit from television technology that has produced abundant ex-
perience in the field of CRT and associated raster electronics design. The high-defini-
tion television standard now under development will support high-resolution raster
displays even further. Thus, raster displays are much less costly than vector displays
for comparatively similar quality.

Raster displays offer simultaneous access to the entire screen as the electron beam
passes every point of it periodically at the refresh rate. Therefore, only the resolution
of the pixel grid (number of raster lines on the screen and video bandwidth, i.e., pixel
spacing within the raster line) restricts the complexity of the information that can be
displayed. On the other hand, vector displays suffer from their limited deflection

5.2 Computer Graphics Hardware 231

bandwidth and are typically not able to fill the entire screen with information without
flicker. Moreover, vector displays are not able to modify intensity or color along a vec-
tor drawn. Thus, as soon as polygons are to be filled, vector displays are no longer
suitable output devices. On the other hand, different colors and intensities are not
really effective unless filled areas are utilized.

Especially, since vector displays typically do not offer color and more than about
three different intensities, the field of realistic pictorial representation is clearly the
domain of raster displays.

The previous list of benefits from raster technology has a complementary list of
drawbacks.

The extremely high data bandwidth and the absolutely strict timing required for
the intensity control of the electron beam results in a huge amount of data processing.
The conversion of application primitives (vectors, circles, polygons, etc.) to picture
elements (pixels) for the raster representation is called scan conversion. There are only
few and very expensive display systems (simulators) that offer scan conversion in real
time (i.e., scan conversion of the complete picture at refresh rate). In the field of CAD,
scan conversion is done by preprocessing, resulting in a pixelwise storage of the results
in main storage or in a special pixel memory. Refresh of the screen is done from this
pixel buffer. Special memory devices offer high-speed pixel output for refresh in
parallel to random access for pixel update in a dual port manner and thus lessen the
problems of pixel memory management. However, large-scale data processing is re-
quired for the scan conversion necessary for any update of the picture. Special firm-
ware and hardware was developed to reduce these severe problems of raster displays
(see Sect. 5.3). Vector displays do not need scan conversion and therefore do not suffer
from these problems.

Raster displays present the picture after sampling it (scan conversion) previously
by giving intensity and color values to the pixels on the screen. This procedure means
sampling and is subject to sampling theory which makes certain demands on it.
Spatial filtering prior to sampling the scene and after introducing the sample values
for regenerating it is absolutely essential for proper display. Actually, in most cases
neither the first nor the second filtering is performed, as avoiding the computational
expense is given higher priority than guaranteeing proper display in all instances. This
results in many annoying effects which are classed under the general term aliasing.
Antialiasing is the name given to all algorithmic efforts to reduce aliasing effects.
Aliasing effects can be reduced by increasing the pixel density. This is not antialiasing,
but just allows for higher spatial frequencies in the original scene. The second filtering
mentioned above is performed to a certain degree by the spatial profile of the electron
beam’s spot on the screen. However, aliasing effects are still a severe drawback for
raster displays. They will be nearly overcome by further increases in the screen resolu-
tion and by some hardware postprocessing during refresh. There are also some simple
and fast algorithmic antialiasing methods which may be applied to scan conversion.
Vector displays do not show any aliasing effects like jagged lines and edges or Moiré
patterns in dense line structures. The reason why no severe aliasing effects are ob-
served in television technology is that the TV camera performs the first filtering to
some extent (CCD cameras do not!).

Updating the picture for a raster display means accessing a lot of separate storage
entities (pixels) constituting the changed primitives (vectors, polygons, etc.) from the

232 5 Implementation Methodology

application. Additionally, and especially for Z%D and 3D object structures, the
whole display file has to be scanned for primitives which may have been hidden by
the pixels of a changing primitive. One line being dragged over the screen might other-
wise erase a substantial part of the entire picture. On the other hand, updating line
drawings is quite simple for vector displays where the refresh is done from the display
file directly (and at intersections the intensities of the overlapping lines just add up
unnoticed). In any case, the task of picture update requires much more computational
power for the raster display than for the vector display.

For identifying objects on the screen, raster displays do not offer a comfortable
pick as vector displays do by using the lightpen device. Vector displays can use the hit-
signal of the lightpen to interrupt the display processor and thus provide the applica-
tion with the display file address of the primitive just being refreshed. As raster
displays use the intermediate storage of the picture in pixel memory for refresh, this
technique is not available there. Instead, only the position of the lightpen can be ob-
tained, and a scan process is required to identify the primitive associated with the pixel
at this position. Software techniques (e.g., box lists) give some help in this task. As
a consequence of these drawbacks, the lightpen is not used with raster displays. As
the complexity of pictures on the screen increases with growing resolution, the
lightpen becomes generally inefficient because of its inaccuracy. Therefore, the
drawback of raster displays mentioned above is no longer very important.

5.2.2.2 The Storage Tube

While with increasing quality and decreasing cost the CRT raster refresh displays
superseded the CRT vector refresh display, another CRT device, the storage tube (Fig.
5.4), has for a long time been able to keep up with both. Different from its com-
petitors, it has no refresh problems. The picture information is stored on a so-called
storage grid (non-conducting material on a conducting grid) which is positioned in-
side the tube, parallel to the phosphor of the screen and very near to it, with the con-
ducting grid towards the phosphor. The storage tube has a special cathode for un-
focused electrons besides the conventional one, the source of the electron beam. The
unfocused electrons from the special cathode are drawn by the conducting part of the
storage grid.

The device makes use of electrons from the two different sources at four different
energy levels (the lowest energy level 1 up to level 4, levels 1 and 3 from the special
cathode and levels 2 and 4 using the electron beam; see Table 5.1). The energy of the

Sprinkle Cathode Phosphor Layer

conventional
Electron Gun
and Deflection

System Fig. 5.4. The interior of a

isolated Storage Grid storage tube

Electron Drain

5.2 Computer Graphics Hardware 233

Table 5.1. The usage of electrons in a storage tube

El.-Energy El.-Source Effect on St. Grid Effect on Screen
low sprinkle Cathode None. Electrons Stored picture
are reflected is displayed
medium normal Cathode None. Electrons Display in
pass grid everywhere refresh mode
high sprinkle Cathode Grid is saturated Short flash,
with electrons then dark screen
very high normal Cathode Diminuation of Writing is
negative load by brightly visible

2nd el. emission

electrons is mainly determined by controlling the voltage of the emitting cathode. For
acceleration control of electrons from the special cathode, the conducting material of
the storage grid may be set to different voltages. Different from the normal CRT, the
storage tube does not use the electron beam, but non-focused electrons from the
special cathode (lowest energy level 1) for the presentation of the picture. The non-
conducting material of the storage grid may be completely loaded negatively by
sprinkling it with electrons (energy level 3) from the special cathode. Thereby, any dif-
ferences of electrical load are cleared away and thus any stored picture information
is erased. Energy level 3 is set by raising the voltage of the conducting material of the
storage grid. Once the non-conducting material on the storage grid is negatively load-
ed (erased), electrons at presentation energy level 1 from the special cathode cannot
pass the storage grid and the screen remains dark. The electron beam of the storage
tube is used for removing electrons from the storage grid by bombarding the grid with
high-energy electrons (energy level 4) at those places where the screen is to appear
bright. Use is made of the secondary electron emission effect, where any high-energy
electron entering the grid gives its energy to more than one electron of the grid, thus
enabling them to leave the grid and move to the anode-voltage coating of the tube.
As the negative load of the storage grid is diminished at those places where the grid
was hit by the writing electron beam, electrons of energy level 1 may pass through the
meshes of the grid and make the opposite phosphor luminous. These electrons are not
able to enter the non-conducting material and to alter the electrical load on it, though
they are able to pass the grid. The energy level 2 of electrons (beam cathode) is used
in the so-called “write-through mode”, where electrons are able to pass the storage
grid even on erased places without being able to enter it. In this mode, the storage
tube may be used like the classical vector CRT.

The advantage of the storage tube, in comparison with normal CRT devices, is its
ability to present pictures of nearly any geometrical complexity. On the other hand,
there are severe disadvantages of this device. Despite the absence of the special
maintenance problems and the high costs of the vector CRT refresh devices, the high
resolution of the device (a coordinate grid of typically 4000 by 4000 pixels on the
screen) is only possible at a relatively low writing speed. Therefore, the maximum
amount of information presented in the write-through mode is low, and writing a

234 5 Implementation Methodology

complex picture is a lengthy procedure. Any change that removes part of the stored
picture must be preceded by a complete erase of the storage grid information and re-
quires redrawing the whole picture. These facts are a severe limitation for the storage
tube in interactive mode.

Moreover, the storage tube does not allow different intensities as the writing pro-
cess has to be done to saturation. Storage tubes do not offer color presentations and
really have only poor facilities for structuring the picture or even just highlighting.
For these reasons, they have practically disappeared from CAD applications.

5.2.2.3 The Plasma Panel

Another storage-type device used at present is the plasma panel display (Fig. 5.5). It
combines the advantage of visible storage with the advantage of partial erase. It offers
very good brightness and contrast and inherently does not show any flicker. It is flat
and may be transparent, allowing the addition of background information from
another source. Color is a severe problem, though not impossible if several layers with
different plasma are used. On the other hand, it does not offer intensity control
besides on-off. Furthermore, it is of raster type and has most of the disadvantages

Cell

Border

|

only upper

electrode e ==

displayed

connections

to X/Y lires
by resistor N]
material N “‘H ”
o-\\: L»
orly lower X1 Fig. 5.5. The interior of a
electrode lines
displayed plasma panel

U A
UIc
1 X
R
Yorr §

Tex Ton I Fig. 5.6. Characteristics of a plasma cell

5.2 Computer Graphics Hardware 235

typical for these devices. Even if its limitations concerning resolution are solved, their
update speed problems will remain because of the large relaxation time of the plasma
which does not allow fast erase. Also, it has quite a high power consumption. Com-
pared with liquid crystal devices, it does not seem to be very promising for CAD ap-
plications. In Fig. 5.6, Uggr is the idle voltage at an extinguished cell, Iy is the idle
current at an ignited cell. The two points above respectively below Uggp delimit the
voltage range at an extinguished cell, the two points right respectively left of Igy
delimit the current range at an ignited cell while other cells in the same row or column
of the display are ignited respectively extinguished. Ujg is the ignition voltage, Igy is
the extinguish current of a cell. R represents the resistance of the two connections of
a cell to its X and Y lines.

5.2.2.4 Liquid Crystal Devices

Liquid crystal devices (Fig. 5.7) are still an unknown factor for the future. Though
they are of refresh type, their refresh demands are much less critical than those of
CRT devices. They are able to present a fairly good scale of intensities and color. They
offer a flat screen and a very low power consumption. As they are also candidates for
television, they may replace the CRT tube. They share most of the advantages and
disadvantages of CRT raster displays. There are still technological problems with
resolution and especially with display size. Their practical observation angle is quite
narrow, as they operate using polarization. At the moment, they are used in those
cases where the low power consumption is an essential advantage, as it is in portable,
battery-run personal computers.

Fig. 5.7. Functionality of a

. liquid crystal display

COLUMN — — —
SHIFT = | | -t |
VIDEO . .
Ho] — L
CIRCUIT = 1 - ‘ . :]_
LOAD * \{ R |
LINE
SHIFT .;'I I—/ﬁ 17‘ . I_}
I { {
e T
LIQUID
e -
i / / . L
oL { {
T T R
Ll o o
= { { {
T T)

236 5 Implementation Methodology
5.2.2.5 Graphical Storage

After having described interactive graphical output devices, the function and features
of the most important hardcopy and archival devices will be outlined.

These devices cover the range of hardcopy, in a general sense, and inherently
graphical storage. Hardcopy is a means of storing pictures (e.g., as a plotter output)
in such a way that they are visible without previous processing. Inherently graphical
storage (e.g., a video recording on magnetic tape) requires processing to get a viewable
result (use of a video recorder to get video output on a screen). The property “in-
herently graphical” is not strictly defined. An obvious example of non-inherently
graphical storage is a graphics metafile written to a magnetic tape: though the stored
information describes graphical information, it is just conventional digital data and
thus not inherently graphical. On the other hand, it seems sufficiently clear that a
video tape, containing in analogous storage mode a sequence of video frames, is in-
herently graphical storage. Digital optical disks, however, will most probably be fast
enough in the near future to store and output video frames at refresh rate. Will they
then be inherently graphical or only very fast digital mass storage devices? Subse-
quently, we will focus on graphical hardcopy devices and keep in mind that in the near
future there will exist storage media with random access and capacity to write and
read thousands of high-resolution video frames digitally.

Among plotters, those devices producing hardcopy on paper are the most com-
mon. The development of these devices reflects the advancements in graphical display
devices. While, in the past, plotters were line-drawing devices, today the trend is to
raster devices with their inherent capability to fill areas efficiently and to produce
shaded color output.

5.2.2.6 Pen Plotters

The classical line-drawing devices operate mechanically and can be distinguished
from each other by the movement of the pen and the surface: while flatbed plotters
(Fig. 5.8) move the pen along two axes over a flat surface, drum plotters (Fig. 5.9)
move the pen along one, the surface on the other axis; a drum functions as the support
for the paper and moves it back and forth. While the drum plotter is faster, it is less
precise than the flatbed plotter because of the limited adhesion between paper and
drum surface, causing slippage. The flatbed plotter additionally allows working on
non-flexible material, but is more expensive, heavier, larger, and has a size limit on
both axes while the drum plotter may use paper from rolls. Line-drawing plotters are

moved tool carrier

—
é%/// the tool carrier is moved

bidirectionolly olong 2 axes,
the poper stays fixed

<H

Al

H>
N moved carrier bridge

Fig. 5.8. Functionality of a (calligraphic) flatbed plotter

5.2 Computer Graphics Hardware 237

moved tool carrier
(bidirectionally) moved drum

the tool carrier is moved
bidirectionally along 1 axis,
the paper unidirectionally
along 1 axis

Fig. 5.9. Functionality of a (calligraphic) drum plotter

paper supply

Fixing Only the paper is moved
unidirectionally along 1 axis
paper
Torer
movement

electrostatic
charging comb

Fig. 5.10. Functionality of an electrostatic raster plotter

not designed to plot filled areas, though they are able to do it by tight hatching. They
use different colors and line width by changing pens and thus are limited. Shaded
areas cannot be plotted.

5.2.2.7 Raster Plotters

Raster plotters for output on paper may be distinguished from each other by their
principle of writing and by their method of scanning. Mainly, there are ink jet and
electrostatic plotters. Within electrostatic plotters there are those with electrodes and
those using laser beams for influencing electrical load on the surface. Ink jet plotters
(Fig. 5.11) and laser plotters (Fig. 5.12) perform line scanning in a serial manner,
while electrostatic plotters using electrodes assemble each scan line electronically and
output it simultaneously. While ink jet plotters can produce color hardcopy in one run
using four ink jets in parallel (yellow, magenta, cyan, and black), electrostatic plotters
usually need 4 runs for the four components (the black component is required because
it is not possible to produce a pure black by superposing the three basic colors). This
time-consuming procedure may soon be overcome by using 4 systems in a pipeline.
The problem to be solved is to fix the toner on the paper before it arrives in the next
system for processing the next color.

Given powerful processors providing for the pixel data, raster plotters need a fix
time for a plot of a given size regardless the picture contents. This property
distinguishes raster plotters from line-drawing plotters which produce plots in an
amount of time which is directly proportional to the size of the picture contents.
Typically, raster plotters are much faster than line-drawing ones, especially if raster
plotters with parallel output of the scan lines are used.

The same problems that plague raster displays exist for raster plotters, and in the
beginning the quality of raster plots was very poor. Nowadays, with resolutions of

238 5 Implementation Methodology

moved ink jet carrier
(scanline-wise)

! :f \\\faper movement

<+

the tool carrier and
the paper as well are
moved unidirectionally
along 1 axis

Fig. 5.11. Functionality of an ink jet plotter

Polygon scanner Lens

Laser modg +

[o,

LED array\

— Magnetic roller
Paper tray Cleaner blade
= ~ P assette
<~ <= o n <= aper casse
Fuser l PV l

Transfer charger

Fig. 5.12. Functionality of a laser printer plotter
(courtesy of Kyocera, Tokyo, Japan)

300 pixels per inch and more, the quality is excellent. Ink jet plotters are the low cost
version of raster plotters, offering less resolution and much less speed. Higher quality
than on paper is possible on film material, where laser plotters offer 250 pixels per
inch with a pixel substructure of 24 by 24 subpixels for high-quality typography.

5.2.3 Graphical Input Devices

The term “Graphical Input Device” is mainly used for those peripherals designed for
interaction between user and graphical workstation. Later, we will refer to these
devices as Interactive (Graphical) Input Devices and thus distinguish them from those
used for capturing graphical data. The latter devices will be referred to as (Graphical)
Acquisition Devices.

Interactive graphical input devices can be distinguished by the way they operate.
Class 1 devices interact with the display itself (e.g., lightpen). Class 2 devices work on
a direct mapping of the display (e.g., tablet, digitizer, touch panel), and class 3 devices
on an indirect one (e.g., mouse). Class 4 devices update the position of a cursor in
increments (e.g., trackball, thumbwheels, cursor control keys), and class 5 devices by
controlling its movement (e.g., joystick, 3D mouse, joyswitch). They may even work
in a two-step procedure as in the case of a cursor controlling menus. As interactive
graphical input is inherently combined with graphical output as a feedback, the im-
portance and suitability of interactive graphical input devices has been heavily in-
fluenced by the development of graphical output devices.

5.2 Computer Graphics Hardware 239

5.2.3.1 The Lightpen

The classical interactive graphical input device is the lightpen (Fig. 5.13), the only
device of class 1. This device is a good example for describing the influence of
graphical output devices on the suitability of graphical input devices. In the early days
of computer graphics, high-performance interactive graphics output was exclusively
done by vector screens, CRT devices writing vectors randomly. The maximum number
of flicker-free displayable vectors was around a few thousand on a large screen. The
lightpen, as a light-sensitive device, initiated an interrupt for the display processor
when the trace of the refreshing electron beam came sufficiently near to it. Therefore
this interrupt was directly time-correlated with the generation of the vector, and the
display processor was able to make the appropriate display file address available to
the CPU running the application.

Two prerequisites for efficient input operation were met in those early times: very
fast identification of a display file element (because of the operating principle of the

Lightpen (Sensor)

Electron Beam

(:
Vi
EVENT
Raster Veotor
Refresh Refresh
Display Display
J7str~obe to address generator éinterﬁupt to DF controller
screen position display file
respectively picture slement
pixel memory address address
which picture element picture element
is on this position? is known!

:

here the real work

begins ... Fig. 5.13. Functionality of a lightpen

240 5 Implementation Methodology

lightpen), and low probability of identification conflicts on the screen (because of the
low density of picture elements on the screen). Precise positioning with the lightpen
has always been a problem. Adjustable coordinate grids on the screen and automatic,
program-controlled matching of vertices near to each other were two techniques used
to reduce these problems.

‘When CRT raster scan output devices appeared, attempts were made to keep the
lightpen. But the prerequisites mentioned above were not met any longer: the pixels
making up picture elements from the display file are not refreshed coherently on the
raster screen, and the only information obtained from the lightpen is the position of
a pixel on the screen. To be more precise, typically one pixel from a set of adjacent
bright pixels is identified: the old positioning problem of the lightpen still exists.
Thus, the identification capability of the lightpen is lost and must be simulated by
(slow) matching tests in the software. This is the reason why the lightpen has been
unused since CRT raster scan output devices were introduced.

5.2.3.2 Tablet, Digitizer and Touch Panel

With regard to the order of directness of correspondence between output and input,
the tablet (digitizer and touch panel as well) as a device of class 2 is the next interactive
graphical input device to be discussed (Fig. 5.15, Fig. 5.16). The operating principle
is positioning: the position of a pen (or a reticule, Fig. 5.14) on a surface is input to
the workstation processor. There are many different principles of operation: magnetic

Fig. 5.14. Reticule of an electromagnetic tablet

5.2 Computer Graphics Hardware 241

T

N mn

)

—
R
(]

A
N
J J

A:BBB/B00 —
B:111,111 —AAA A AA

C:818/011 y Y V Fig. 5.15. Functionality of an elec-

-X-/-Y - tromagnetic tablet

Fig. 5.16. An electromagnetic tablet

242 5 Implementation Methodology

operation is the most important one today. Ultrasonic devices and laser devices are
already available but are not commonly used. They are not bound to plane surfaces
and therefore allow three-dimensional positioning.

One variation on the tablet could have been discussed prior to the classical tablet
if it were more important: the touch panel. The touch panel is a tablet device directly
on the display surface. The operating principle is optical: two orthogonal rows of light
barriers detect the position of the user’s finger on the screen and make it available
for the workstation processor. The resolution of this device is very low, and therefore
it is mainly used for menu selection purposes. For picture element identification or
even positioning, this input device is hardly appropriate. It is of no significance to
CAD.

The suitability of tablets and digitizers is rather dependent on the application.
Their most severe disadvantage is the fact that the user has to concentrate on the
device in all cases where he wants to make use of the direct mapping between display
and input device surface. As a consequence of this fact, the input loop is broken. The
user will tolerate this effect, however, in those cases where he is working on something
like digitizing a drawing. In those cases where the user concentrates on the display sur-
face, the digitizer is not suitable because of its bulkiness, and the tablet is used just
for cursor control, comparable with the next classes of interactive graphical input
devices, those of indirect mapping.

5.2.3.3 Mechanical and Optical Mouse

The classical indirect mapping, interactive graphical input device is the so-called
mouse (Fig. 5.17, Fig. 5.18, and Fig. 5.19), a device of class 3. The mouse provides
motion increments as it is moved on a surface. The mapping to the display surface
is indirect because the mouse may be lifted from the surface and then moved over the
surface without issuing motion increments. This fact makes it possible to get along
with a quite small working surface for the mouse, even if working on a large display
surface with high resolution. Inherently, the mouse is a cursor-positioning device, and
therefore the user is not interrupted in his concentration on the display surface. Of

moved by hand:
Trackball

ball with

tractive /
surfaoce \\

disk 1 with bar pattern
and double light barrier

g
9’ disk 2 with
bar pattern and

double light barrier

Mechanical Mouse

housir\g Trollins on surface:

Fig. 5.17. Functionality of a mechanical mouse

5.2 Computer Graphics Hardware 243

Fig. 5.18. A mechanical mouse (top view)

Fig. 5.19. A mechanical mouse (bottom view)

244 5 Implementation Methodology

course, for dragging picture elements or for panning, the whole coordinate system
may even be connected to the cursor and moved with it.

The classical operating principle of the mouse is mechanical with all side effects
inherent in this operation. In the beginning, two little wheels mounted on two or-
thogonal shafts were turned by moving the mouse over the surface. Connected to the
wheels on the same shafts, transparent disks with bar codes printed on them gave
signals to the electronic part of the device using the light barrier principle. In the next
stage of development, the two wheels were replaced by a metal ball, transferring the
motion of the mouse to the bar-coded disks. This replacement diminishes the slippage
of the mouse on the working surface, but still, many mechanical components make
the device sensitive to dirt and rough treatment.

Alternatively, the optical mouse is available. This device requires a special working
surface which contains the bar code, while a simple optical system and sensor elec-
tronics is located inside the movable mouse device. The two orthogonal directions can
be distinguished by using two colors for the grid lines and correlated colors for two
light emitting diodes (LEDs) which are alternately switched on and off. Four sensors
forming the vertices of a square are monitored to distinguish the motion of the mouse
on the surface. The mechanical problems were overcome by this principle.

5.2.3.4 Trackball, Thumbwheels, Dials and Positioning Keys

Class 4 of interactive graphical input devices is based on incremental cursor-position
control combined with a stationary device. Devices of this class are trackball, thumb-
wheels, and cursor positioning keys.

The trackball has been an alternative choice for the mouse and in fact is a mouse
turned upsidedown, using the surface of the user’s hand as a working surface. As the
user’s hand does not embody bar codes, the operating principle of the optical mouse
cannot be used for the trackball.

Thumbwheels or dials (Fig. 5.20) may be looked upon as a simplification of the
trackball, where the measuring wheels are moved by the user separately and directly.
Though the slippage problem can be neglected here, the lack of random motion con-
trol is usually a severe disadvantage. On the other hand, the lack of random motion
control allows separate motion of the cursor in the direction of either coordinate axis.
This ability may be an advantage for several applications (e.g., for 3D operation).

Cursor control keys lack any element of motion, but are extremely simple, and
allow any desired accuracy at reciprocal operation speed. They are physically available
on any workstation, but frequently this simple input device is not implemented
because of the presence of more efficient ones.

5.2.3.5 Joystick, Joyswitch, 3D Mouse and Menus

Class 5 of graphical input devices comprises those devices which allow the cursor to
be given a speed in a chosen direction. The classical device of this class is the joystick
(Fig. 5.21). A handle rises above the cabinet holding the electronic circuitry; kept in
resting position by springs, any displacement of the handle from this position results

5.2 Computer Graphics Hardware 245

Fig. 5.20. Graphics workstation with dials

Button Switch

Potentiometers Fig. 5.21. A jOYStiCk

in cursor movement in the direction determined by the direction of handle movement,
and at a speed determined by the amount of the displacement. Typical for this device
is the tradeoff between speed and accuracy of cursor control. With increasing resolu-
tion of the output devices and thus growing accuracy demands, the suitability of the
joystick is diminished because of the resulting decrease of speed. Nowadays, it is
mainly used in computer games where there are low accuracy requirements.

246 5 Implementation Methodology»

Fig. 5.22. A joyswitch

The so-called joyswitch (Fig. 5.22) has the functionality of the joystick in a very
much simplified manner. It is an octagonal key which may be pressed down on any
of its eight edges, and combines the function of a field of cursor-positioning keys in
repeat mode. It allows cursor movement in 8 directions.

A very new device that looks like a trackball device with the ball completely out-
side the electronics box, but completely different in operation, controls six dimensions
of motion: three-dimensional translation and three-dimensional rotation at the same
time. The device reacts with coordinate translation on thrust or traction, and with
coordinate rotation on torque. Providing excellent three-dimensional visual feedback,
this one-hand device may be very powerful.

Menu fields for cursor control are the latest fashion for user interface managers.
They are inherently slow and have even more disadvantages than cursor control keys.

5.2.3.6 Scanners

Interactive graphical input devices are mainly used for control of program flow (e.g.,
by identifying objects). They are thus general purpose, while graphical acquisition
devices are specialized for the capture of data from graphical representations. In the
beginning of graphical acquisition, these graphical representations have typically been
documents from hand-made archives (drawings, microfilms), and the task was to
make these hardcopies accessible to CAD packages and computer-supported archiv-
ing. The main problem with this type of graphical acquisition is the extraction of the
structural information from the documents. This task starts with feature extraction

5.3 Graphics Workstations 247

and ends with a knowledge-based system containing the rules of the respective picture
types, and produces data suitable for further information processing. For standard
drawings with strict rules, almost full automation can be obtained today. Nowadays,
however, pictures true to nature are the graphical representations to be processed.
Wide application fields are found in nuclear physics experimental work, terrestrial
observation, production quality verification, and robot control. The principle of pro-
cessing is the same as outlined above, but because of the much higher complexity of
the pictures, feature extraction and especially the rules in the knowledge-based system
are much more complicated. Up to now, this task has required massive human-expert
interaction and is far from full automation.

We shall restrict ourselves to the hardware section of the hardware/software task
of graphical acquisition. This decision leads us to the description of devices suppor-
ting raw data input.

Today, devices for supporting raw picture data are of the scanner type. For low and
medium resolution, video cameras are appropriate. For high resolution, parallel sam-
pling of scan lines with dedicated sensors is used, and for very high resolution, expen-
sive mechanical scanners are required, making use of laser technology for extremely
high performance.

Of course, there is a trade-off between the resolution and speed of these devices.
Additionally, mechanical operation in one or two dimensions slows down the scan
procedure dramatically. While frames with a size of about 500 by 500 sample points
can be scanned in 10 milliseconds (which means 25 megapixels per second) using a
CCD camera, high resolution scanning with 2000 by 2000 sample points can be done
in 10 seconds (line-parallel sampling with a rate of 400 kilopixels per second) by a
telefax device; very high resolution scanning with about 30000 by 30000 sample
points requires 15000 seconds (about 4 hours with about 64 kilopixels per second) on
a laser scanner. This technique, however, has little significance to CAD at this time.

5.3 Graphics Workstations

CAD workstations in the context of hardware equipment are no longer simply sets
of modules specialized for CAD requirements. Since graphical representation is com-
monly used at the user interface of general purpose applications, and since the quality
of graphics output on raster screens has been increased dramatically, the same general
purpose machinery is used for CAD as well as for many other tasks. The typical ap-
pearance of past CAD workstations with their two different screens (alphanumeric
and graphics) and their large peripherals (digitizers, plotters) is now history. Today’s
raster screens, in combination with window techniques, are capable of taking the roles
of both of the former dual screens in one. Today’s users are accustomed to working
with the screen, and usually do not require separate plotter output. Today’s data are
stored in databases and not on drawing paper. Thus, digitizers and plotters have lost
their importance in the design process.

248 5 Implementation Methodology
5.3.1 The Interdependence of Hardware and Software

The effectiveness of a CAD workstation is determined by the quality of the CAD soft-
ware, the capabilities of the workstation hardware and, last but not least, by the inter-
face between the two, in this order of importance. Today, software has the leading role
in the design of CAD systems. Graphics standards define the interface between de-
vice-independent software and hardware-specific code. Hardware has had some in-
fluence on the definition of the standard interfaces. However, since there have been
radical changes in graphics hardware since these first definitions, matching hardware
and software is still full of problems.

The typical problems to be solved in the future are the difficulties of eliminating
the computational bottlenecks in the software by hardware support, or to make hard-
ware capabilities effective for the software. Problems of this kind are window support,
hidden-surface elimination, patch rendering, and many others.

For example, typical window problems arise in software when there is no hardware
support for windows. In this case, the pixel generation capabilities of the graphics
hardware are no longer useful as they directly put their results into the pixel frame
buffer without checking window limits. Consequently, in those cases the task of pixel
generation is pulled up to the software and is thus dramatically slowed down. Hard-
ware window support, however, may consist of memory access control in accordance
with window borders or it may even allow for several virtual screens being mapped
to the physical screen by address handling under window-parameter control, and
always being kept in an updated state. It will require severe changes in the actual soft-
ware to make this hardware accessible.

Hidden-surface elimination can be done in software algorithmically by calculating
the appearance of a scene after perspective transformation. This bothersome pro-
cedure may in many data cases (24 D) be replaced by a sorting procedure and entry
of the primitives into the pixel store in the order of visibility. A general solution to
the hidden-surface problem is the z-buffer technique, which has no limitations
concerning the graphical data. To make use of this technique, it must be addressable
at the graphics standard interface.

At the moment, the modeling sections of CAD systems use much more complex
primitives than the rendering system of graphics machines do. Thus, one step on the
way towards visualization is the substitution of complex primitives by simple ones.
Spline curves are substituted by polylines, patches are substituted by planar facets.
These substitutions are required by the low complexity of the interpolation processors
in the pixel generation hardware. It is probably only a matter of time until this situa-
tion changes and hardware pixel generators are able to render splines and patches
directly. The development of the appropriate hardware will have to take the situation
in the modeling area into account.

The three examples above make it evident that software algorithms and strategies,
graphics standard specifications, and hardware processors and architectures must not
be treated in an isolated manner. Satisfying results will be obtained only if there is
tight cooperation between the experts in the three respective fields. Today, the soft-
ware experts often do not know the full capabilities of their hardware and some do
not even know the bottlenecks of their implementations. On the other hand, the hard-
ware experts often do not know the true requirements of the software and some do

5.3 Graphics Workstations 249

not even know the effectiveness of their hardware features. So, though both expert
groups do their best in their own fields, this does not always result in the best deci-
sions in a global sense.

Graphics workstations of today are able to calculate and present complex
schematic pictures in a very small amount of time. They are also not far from the
point of presenting true-to-nature scenes in real time. Since CAD graphics output is
typically simple (schematics, wire frames, etc.), the output processing capability of
workstations is no longer a severe problem. As a pixel frame format of more than
1000 by 1000 pixels is now standard, the quality of the graphics output is also suffi-
ciently high. Even in those cases where the software does not make use of all the sup-
port that graphics hardware offers, the bottleneck should not be attributed to the
hardware of the machines.

5.3.2 Graphics Workstation Architecture

Graphics workstations (Fig. 5.23) always contain a powerful general purpose pro-
cessor (the so-called CPU Section of the workstation) which is typically not severely
involved in graphics input/output processing. It is responsible for running the CAD
software, while the tasks of graphics I/0O are typically done by specially designed
hardware (the so-called GRAPHICS Section of the workstation).

Typically, graphical workstations are offered as so-called families. The members
of one family may differ in the power of the general purpose processing system and
they typically offer different graphics hardware. Members of the same workstation

o T oaoutre [)

CPU GRAPHICS

Applications
RAM Frame

VP —]} RP
1K * 1K * 1B Buffer

Graphics Libraries "
I | I é 8 Raster-0p I

I_L__JL____]L_I_”L_._II__II__I o o o— IL.___..JL_...__]_I

18" Monitor
S i S i
ection ection
I cPU | l Graphios Processor Graphics Buffer I
R| G| B[Syne
I 1 r———— |
Optional for 30 Color Map
I] | I
| |

VMEbus Commands Slave Master Pixel Oparctions

Fig. 5.23. Sections of a graphics workstation
(courtesy of SUN Microsystems, Mountain View, USA)

250 5 Implementation Methodology

Fig. 5.24. Board of a single-board graphics workstation

family generally follow a conformable basic concept, use the same software, but are
different in graphics speed and quality.

Concerning mechanical structure, there are two types of workstations: single-
board machines, and bus-oriented machines. Single-board machines are cheaper than
bus-oriented machines with the same capabilities. Bus orientation at the same cost
always means loss of speed. As single-board machines are naturally the low-end
members of a workstation family, they are likely to be sold in large numbers, which
brings the price down further. Thus, the price gap between a single-board machine
and a bus-oriented machine in the same workstation family is typically rather larger
than the performance gap. However, the single-board machines have the disadvantage
of very low flexibility for upgrading the hardware. Typically, only chips (e.g., floating
point processor) or so-called piggy-packs (e.g., additional main memory) may be add-
ed on these boards (Fig. 5.24). The performance of these machines cannot be in-
creased dramatically by upgrades. More flexible, but at the same time more expensive,
are the bus-oriented machines. In these workstations, a general purpose bus connects
the general purpose processor of the workstation with the special graphics hardware.
Both the CPU Section and the GRAPHICS Section can be configured from a set of

5.3 Graphics Workstations 251

boards each. By choosing an appropriate configuration, many different members of
the same workstation family can be composed to take a certain place in a wide range
of performance. It is practical to select a family in such a way that a medium-
equipped member of it offers the required performance.

5.3.3 Personal Computers and Graphics Workstations

Today it is not possible to distinguish clearly between personal computers and
workstations. Since microprocessors became fast and able to address huge main
memories, since memory became cheap, since cheap, small-sized hard disks with large
capacity became available, since high-resolution monitors became inexpensive and,
most importantly, since high-quality software began to be sold at a comparably low
price, the whole range between $1000 PCs and $100000 workstations is covered by
machines capable of running CAD software more or less professionally.

A possible criterion for classifying a workstation is the power of its two sections.
The more powerful the workstation is, the more specialized and numerous are the
modules found in either of its two sections.

PCs suitable for CAD are frequently of bus-oriented type. The reasons for this
decision, however, are not the better conditions for upgrading. The bus orientation,
instead, results from the fact that bus-oriented PC boards without graphics
capabilities (the former alphanumerical PCs) are available at very low cost, and
graphics boards are also (e.g., Hercules, EGA, VGA, etc.). Many PCs are still sold
without graphics but may be upgraded easily. The tendency clearly is towards graphics
capabilities, pushed by the window-based user interfaces of recent software (e.g.,
GEM, X-Windows, etc.). In bus-oriented PCs there is at least one board for the CPU
Section and another for the GRAPHICS Section. The bus itself is not a bottleneck
in these systems. The selection of the bus is therefore mainly dependent on the prod-
uct line of the manufacturer and not due to the properties of the bus itself. Thus,
many different buses coexist in different PCs, the two existing microprocessor bus
standards (the so-called MULTIBUS and the so-called VME bus) are found in addi-
tion to manufacturer-specific buses (e.g., the quasi-standard buses of IBM). Though
quite powerful due to very fast microprocessors, large main memory and effective
graphics boards, PCs are clearly the low end in the range of CAD-capable machines.
One of the reasons for this fact is the responsibility of the CPU Section for all
graphics calculations except for the last pixel-level ones in the calculation pipeline.

It is useful to keep in mind the pipeline of tasks which has to be passed through
by the data to obtain the picture on the raster screen. This pipeline may be subdivided
into two sections: the coordinate-oriented one and the pixel-oriented one. The pixel-
oriented tasks are the calculation of the pixels (determining which pixels are different
from the background and how they appear on the screen), their entry into the pixel
memory (frame buffer), their read-out for screen refresh and their presentation on the
screen. The calculation of the pixels is in a very general sense called rendering. The
entry of the pixel values into the pixel memory is typically done pixel-wise and is just
data entry. The read-out of the pixels can be done in larger packages (as the sequence
of pixels required is regular) and may perform a lot of functions (panning, zooming,
window functions, etc.). The presentation on the screen is the generation of the video

252 5 Implementation Methodology

signal from the pixel value information and may contain straight-forward functions
(color table, antialiasing, etc.).

The highest speed demands are found in the read-out and presentation tasks of
the GRAPHICS Section. However, no severe problems arise from these tasks, as the
architecture of the data stream is simple and not data sensitive. Special functions
generally require special hardware as there is no flexibility left in the straightforward
functionality. The bottlenecks of the GRAPHICS Section are found in the task of
pixel entry (a problem of memory bandwidth) and especially in the task of rendering.
While the task of pixel entry is clearly defined and can be solved by special hardware
architectures, the rendering task is a completely open field and requires special discus-
sion.

Rendering means to convert the picture information from the application to pixel
presentation on the raster screen. Generally, there is a wide range of formats for defin-
ing a picture. First, the geometry may be defined in many ways (vectors, curves,
patches, solids). Second, the appearance may be defined differently (color, surface pa-
rameters like reflection, diffusion, texture, refractive index, etc., material parameters
like transparency index, absorption spectrum, strewing factor, etc.). Third, the light
model may contain a lot of information (number, place, and characteristics of light
sources) and typically defines compromises for effects like shadows, reflections, and
highlights. In CAD, however, the main work is done using abstractions of the reality
like wire frames. These types of user model presentation can be done with a quite sim-
ple rendering task compared with presentations true to nature. The latter are used in
CAD at least for final judgement, and therefore lie outside the interactive process of
design. Thus, for interactive CAD the task of rendering is merely restricted to
geometrical computation, hidden-surface elimination (which is also required for wire
frames), and possibly depth cueing in order to help the user of 3D models.

The first steps of the geometry pipeline are generally done in the CPU Section of
the machine. Depending on the facilities in the GRAPHICS Section, the last of these
steps are transformations and clipping (if the GRAPHICS Section does not support
these operations) or the conversion of application-specific primitives to machine-
specific ones (if transformation and clipping processors are integrated in the
GRAPHICS Section). The task of primitive conversion is always done by the CPU
Section of a workstation as it is application-dependent and therefore does not admit
of special treatment in the GRAPHICS Section, which is only able to handle ma-
chine-specific primitives. Whether the GRAPHICS Section performs its tasks in soft-
ware, firmware, or hardware is dependent on the compromise chosen between speed
and cost. Changing from software to firmware and from firmware to hardware means
speeding up the respective tasks but, on the other hand, loss of flexibility and increas-
ed cost.

Today, PCs offer CPU Sections with typically one megabyte of main memory and
a processor performing about one million instructions per second. They speed up
floating point operations by a special coprocessor and typically have a Winchester
hard disk of some tens of megabytes capacity.

In single-board PCs the GRAPHICS Section typically shares the main memory
with the CPU (the pixel memory is part of the main memory) and is just responsible
for the screen refresh. Rendering of pixel data and entry into the pixel memory is done
entirely by the CPU, unless the GRAPHICS Section contains a processor able to enter

5.3 Graphics Workstations 253

primitives into the pixel memory directly, to some certain degree. So-called CRT con-
troller chips have pixel generation and entry capabilities besides their screen refresh
activities.

In bus-oriented PCs the GRAPHICS Section is typically a complete subsystem
with a microprocessor of its own, a CRT controller, and a separate pixel memory built
from video RAMs. Here the availability of the CPU Section for the application pro-
gram is much better and the graphics output does not siow down the CPU substantial-
ly as in the case of the single-board solution. On the other hand, the fixed interface
specification of the GRAPHICS Section may require adaptation of the application
programs.

Workstations may be looked upon as upgraded PCs today. In their CPU Section,
especially low-end workstations frequently make use of the same CPU chip types as
PCs do, but typically they run them at a higher clock rate and use the cache technique
to allow the memory to keep up with the fast processor. In bus-oriented workstations,
special floating point accelerators are available, much faster than the floating point
coprocessors which are standard provision. Very powerful graphics workstations use
multi-stage instruction pipelining in their CPU Section, and RISC processors.
Workstations do not use main memory for pixel buffers. They have a special frame
buffer allowing very extensive pixel specification (up to three times 8 bits color plus
16 bits z-buffer) without speed limitations. This frame buffer is part of the
GRAPHICS Section.

The GRAPHICS Section of a graphics workstation typically is a high-speed pro-
cessor (comparable with the CPU processor) assisted by further processors specialized

Fig. 5.25. An example of a graphics workstation

254 5 Implementation Methodology

Fig. 5.26. Another sample of a graphics workstation
(courtesy of Siemens, Munich/Berlin, Germany)

for certain tasks. Typical tasks appropriate for special processors are transformation,
clipping, pixel generation including interpolation for geometry and appearance, and
picture processing on a pixel basis. While in the CPU Section there are no hints that
conventional architectures will be overtaken soon (it will only be a matter of a few
years before, at the same price, CPU Sections will be speed up by a factor of 5), in
the GRAPHICS Section parallel processing and extensive pipelining seems to be tak-
ing the place of expensive ultra-speed hardware in those cases where a very high com-
plexity-quality-speed product is to be obtained.

The physical appearance of modern graphics workstations is quite uniform (Fig.
5.25, Fig. 5.26). Low-end machines are of desk-top type with a PC-sized cabinet, a
15- to 19-inch screen (black/white, grey-scale, or color), a keyboard, and a mouse.
More powerful workstations have a larger cabinet, but still small enough to find its
place under the working table. All workstations offer network capability. Plotting and
scanning is typically done in the network, as is extensive data storage.

5.4 Graphics in Networks

5.4.1 Introduction

Because of technological advances in computer hardware, it has become advan-
tageous to use a great number of computers and to join them to a system of different

5.4 Graphics in Networks. 255

computers. Such a system, consisting of personal computers, workstations, minicom-
puters, and mainframes, allows decentralized data processing based on networking.

Single computing systems or devices, called nodes in general, are connected via
serial buses, building a network. There are the following advantages:

— A node’s program and datafiles can be used by other nodes. This can be done by
filetransfers, that means by copying one node’s files into the directory of another
node. Also, a given node (destination) can be operated via another node. Although
connected to a remote node, networking gives the user the impression that his ter-
minal is connected to the destination. This technique is called a virtual terminal.

— Rare (and often expensive) resources can be used as shared resources by network
nodes, so these resources are used more economically. Such resources are, for ex-
ample, high performance computers (so-called computing servers), graphic plot-
ters, laser printers, and also database servers.

— Filesaving can be done efficiently via the network by transferring the contents of
a computer’s secondary memory to the mass memory of a special, highly reliable
computer (fileserver) using file transfers. This filesaving can be initiated centrally
by any node.

— The network will make the implementation of system-wide fault tolerance possi-
ble, if in case of an error redundant resources are available.

— The increase of computing power can be obtained using net-wide computing
resources in parallel.

5.4.2 CAD’s Requirements on Computer Networks

Today most CAD is based on workstations [SALMS87]. Engineering projects are in
general performed by a team of engineers. The team concept applied to CAD means
the use of multiple workstations within one project; that means decentralization of
tasks, so it is necessary to link CAD workstations [EIGN85]:

— It must be possible to access external files from every workstation according to the
requirements of tasks. These files must be updated according to the tasks’ pro-
gress.

— A project communication between project members must take place by messages
or via commonly usable databases.

— As CAD systems are typically used in office environments, networking need not
exceed the capabilities of local networks (LANS).

— To be able to react to project requirements in an optimal manner, it is necessary
to adapt the number of workstations by simply changing the network’s installa-
tions.

— Today’s LANs meet the requirements outlined above.

— Workstations of different manufacturers must be able to form a heterogeneous
system. There may be severe problems in building such a system.

5.4.3 Basics of CAD Nets

CAD networks are typically based on LAN general concepts [FRAN86], [HASIL87],
[KELLS86], [GOERSS5], [SCHI86], [CHYL87]. Local networks have an extent of some

256 5 Implementation Methodology

Fig. 5.28. Ring topology

100 to 1000 meters. The number of nodes is unlimited in theory, and can be increased
easily (open networks). There is no central switching system, so connections are
established decentrally by communications software. This software is based on net-
work controllers represented by the nodes’ interface boards, which connect a node to
the physical medium by a cable adapter. In CAD systems coaxial cables are mainly
used; these allow a transmission rate of about 10 Mbit/s. An increase to 400 Mbit/s
is possible by using fiber optic cables (e.g., [KAUF87]). The way single nodes are con-
nected is called network topology, and may be represented by graphs. CAD LAN
systems typically form the topologies “bus” and “ring” (Fig. 5.27 and Fig. 5.28).

Bus means to connect all nodes to a single medium (Fig. 5.27). Ethernet
[CHYLS87] is a typical, commonly used bus-LAN. Its medium consists of a coaxial
cable, which allows the connection of nodes to it without interrupting the bus, by us-
ing a special tool.

The ring topology means a ring made of coaxial cables (Fig. 5.28). Here the access
method “Token Ring” is used. That means the right to access the ring (= Token) is
passed from one node to the neighbour node. This method has a great performance.
Its disadvantage however is that communication may be interrupted if a node fails,
and is interrupted during the installation of additional nodes [SCHIS85].

In general, computer networks use bit-serial transfers [FAER87]; several bits are
united into a data word (e.g., an octet), several data words form a block, and several
blocks form a packet called a datagram. Such a packet is the smallest transferred unit.
One task of communications software is to keep the time context of all datagrams.

5.4 Graphics in Networks 257

For this purpose, each datagram contains appropriate information. As already shown
in Sect. 4.3.4, data communication can be described by using the ISO-7-layer-model.
Communication means communication between the same layers of this model. Each
layer has interfaces to its neighbouring layers. — Actually, today’s manufacturers of
communications systems base their systems only approximately on this model. The
tasks of the single layers are briefly described in the context of LANSs as follows:

— Layer 1 = Physical layer
— transfer of unstructured bit-streams by transmission codes that ensure syn-
chronization (e.g., Manchester code with coaxial cable Ethernet, NRZ with
fiberoptic networks);
— Modulation/Demodulation: in general not necessary in LANs, as baseband is
sufficient for transmission;
— Connection of nodes to transfer medium by appropriate hardware modules
(typical standards, e.g.: RS 232, special transceivers for Ethernet connection).
— Layer 2 = Link Layer
— access method;
— integration of unstructured word streams to blocks (frames);
— guaranteeing sufficiently safe transmission of each block by methods of fault
detection and correction. (Typical LAN standard protocol: HDLC, [SCHIS85].)

Remarks on access methods:

As only one node is allowed to access the transmission medium at a time, ac-
cess conflicts caused by simultaneous access by more than one node must be
solved by an access method. One appropriate method is the already mentioned
token ring method, where the token defines the node that will work next as a
transmitter. This method is a deterministic one, and is usable in real time pro-
cessing [CHYL87], [I3EB85].

CSMA-CD (Carrier-Sense Multiple-Access Collision Detection) [I3EA835] is a
non-deterministic method. Any node is allowed to access the bus only when it
does not recognize the carrier (or a signal, which takes the place of the carrier
if baseband is used). It interrupts its data transmission and transmits a jam-
signal to all nodes when it recognizes any disturbance of its signal on the bus
while transmitting. After a time, defined by a random-number generator, it
repeats its transmission. As any node involved in a collision tries another
transmission in the described manner after a individual random time, most
probably one node will be the first and will occupy the bus before the second
node will check the state of the carrier. This access method needs no modifica-
tion in case of system extension. Bus request time, however, increases with the
bus load, because the number of bus collisions increases. CSMA-CD has been
developed in the context of the Ethernet.

Above these layers today’s protocol software is offered, strongly dependent on its
manufacturer.
— Layer 3 = Network Layer
— Fragmentation and defragmentation of datagrams’ blocks;
— Establishing of connections, connecting several LANs.
— Layer 4 = Transport Layer

258 5 Implementation Methodology

— Reconstruction of some datagrams’ context;
— Addressing of certain user processes on end nodes;
— error treatment by repeating transmission of datagrams.
— Layer 5 = Session Layer
— Establishing monitoring, closing of connections during a user’s session;
— Conversion between logical names and network addresses.
— Layer 6 = Presentation Layer
— Converting data intended to be transmitted to a system-neutral format in order
to be compatible with different systems.
— Layer 7 = Application Layer
— Synchronization of application, calling network services;
— Net access monitoring.

Some widely distributed protocol families:

— TCP/IP covers layers 3 and 4.
TCP (Transmission Control Protocol) addresses communication partners
definitely, and reconstructs the correct sequence of datagrams.
IP (Internet Protocol) transmits datagrams between several different networks.

— FTP (File Transfer Program) covers layers 5, 6, and 7 and is based on TCP/IP,
performing a filetransfer between two different systems.

— TELNET covers layers 5, 6, and 7 and is also based on TCP/IP. It builds a vir-
tual terminal.

— NFS! (Network File System) covers layers 5, 6, and 7 and is also based on TCP/
IP. It makes possible network-wide directory-oriented access to different nodes’
files, network-wide remote procedure calls, and translations of file formats.

5.4.4 Decentral Computing Centers/Graphic Computing Centers

Low-cost computing hardware and local networks have propagated decentral data
processing, also in CAD. This kind of data processing, however, requires system-wide
management to guarantee computing operation. Such management is commonly the
task of a computing center. Decentral data processing results in a distributed system;
administration of system components, however, must be managed by a centrally
working facility which is not in contradiction to a decentral computing center
[REMMS5].

Graphic data processing, especially in CAD, requires such facility as well. Here,
this facility is called a graphic computing center, because it specifically takes the needs
of graphic data processing into consideration. Its tasks are mainly to maintain:

— resource administration, that contains an information system having regard to
system configuration according to the particular properties of CAD, and available
to all users;

— a project-related, network-wide reservation system;

— system-wide process and data saving;

— a maintenance system taking into account the special needs of graphic input/out-
put devices.

! Trademark of SUN Microsystems, Inc.

5.5 The Graphical Kernel System

CGKS
closed

open

GKS

close

GKS
open

open first

work -
station

close last

open workstation
close workstation

at least one
workstation

open

activate first

work -
station

deactivate last

activate workstation
deactivate workstation

at least one
workstation

primitive generation
attribute setting

active
open close
segment segment
segment primitive generation
open attribute setting

Fig. 5.29. Operating states and state transitions in GKS

5.5 The Graphical Kernel System

5.5.1 System Description

259

The international standard GKS has already been described very briefly in Sect. 2.3.2.
As it is a representative example of the graphics software many system programmers
and nearly all application programmers employ to make use of graphics hardware, ad-
ditional details, and especially examples, are given here.

GKS is structured according to a strictly defined set of operating states. In each

of these states, only certain actions are allowed (Fig. 5.29).

Our description of GKS is based on [ISOA85], and we take examples from
[STRAS81]. In particular, we will discuss some essential design decisions, which are
typical for the process of developing a full functional specification of a software tool.

260 5 Implementation Methodology

GKS is also an example of the overwhelming amount of effort that has to be put into
a specification when one really labors to achieve completeness, consistency, or-
thogonality, and other worthwhile goals. In the development of CAD systems, a com-
parable amount of time and man power can be allotted to the specification task only
in very rare cases. In general, CAD system development will have to cope with
specifications that are much less complete, partially inconsistent, or otherwise flawed.

From the start of the standardization activities in 1974, the main objective was to
allow easy portability of graphics systems between different installations. Although
GKS was to be capable of being used in small stand-alone graphics programs, it was
also essential that large suites of CAD programs could be written and moved from
one installation to another, possibly with quite different hardware, without the need
for significant reprogramming that might involve changes not only to the syntax, but
also to the program structure.

One of the major problems of GKS design was that the characteristics of graphics
hardware exhibit significant differences, and will continue to do so in the future. It
is obviously difficult to represent a wide range of facilities by a single abstraction
which would satisfactorily approximate a flat bed plotter, a high-performance vector
display, a plasma panel, and a color raster display. It was felt that the provision of
implementation-dependent defaults for unavailable facilities (say, color on a liquid
crystal display) would not always be appropriate. There was a need for the application
programmer to have some control over the mapping of graphics primitives to a par-
ticular device. Hence, a rather sophisticated parametric abstraction was conceived: the
workstation concept. A graphics workstation is equipped with a single display area
and a number of input devices. It may have a certain amount of intelligence, either
locally, connected to the display itself, or in the form of a workstation driver running
under GKS control as part of the application program. A workstation is described as
belonging to a standard type (one of a set of types) available at a given installation
(plotter, storage screen, refresh display, etc.). The application programmer has the
ability to modify its overall behavior so as to make optimal use of its features in that
environment.

An operator can have a number of GKS workstations under his control at the
same time. For example, he may output a large CAD drawing on a plotter while get-
ting a quick-look view on a separate raster screen. Or he may be interactively changing
his model on a refresh display, while making occasional hardcopies on a plotter.

The application programmer has considerable flexibility in how he uses each
workstation. Different workstations may be set to view different parts of the whole
graphics picture. The frequency of update may be different on different devices.

The CAD application programmer may insert statements into his program inquir-
ing which capabilities are implemented in the graphics hardware of its run-time envi-
ronment. He may design and implement the program so that it will adjust its behavior
to the available facilities. For example, with a refresh display one program will show
any modification of the display information immediately, while with a storage tube,
it will collect a number of changes until the whole picture is redrawn. The lack of a
tablet may necessitate a different method of entering locator positions. The type of
echoing may depend on the line speed between display and computer. Such adaptive
behavior may be programmed into the CAD system to improve its portability in terms
of the range of graphics hardware installations on which it can run.

5.5 The Graphical Kernel System 261

Besides the workstation concept, the treatment of the visual appearance of
graphical information on the display surface is peculiar to GKS. Graphics primitives
such as lines can have attributes associated with them, such as color, thickness,
linestyle, etc. The approach chosen for GKS was to provide one major attribute per
primitive, called the primitive index; it is a number between 1 and some implementa-
tion maximum. A GKS program like

SET POLYLINE INDEX(1)
POLYLINE
SET POLYLINE INDEX(2)
POLYLINE

also requires a definition of how indices 1 and 2 should be represented on one device
or another. Upon display, the indices are used to look up corresponding entries in a
table associated with the workstation, and the table defines a whole “bundle” of ap-
pearance attributes for each bundle index. These entries may be preset by calls from
the application program to GKS. They are modal attributes and thus remain in effect
until they are redefined. They are associated with one workstation each and not with
GKS as a whole. The application programmer may set the representation of index 1
as red, thick, and solid, while index 2 could mean green, thick, and dashed. The ad-
vantage of making the pen specification workstation-dependent is that the representa-
tion may be quite different on another workstation. For example, a designer using a
flat bed plotter for his final drawing output and a plasma panel during his interactive
work could recognize different colors as indicating different linestyles on his display
(red = solid, green = dashed, for instance) — provided that the application program-
mer has decided to distinguish the different bundle attributes in this way.

The elementary graphical items treated in GKS are called primitives. GKS has
defined six output primitives (see Sect. 2.3.2):

— POLYLINE,

— POLYMARKER,

— FILL AREA,

— TEXT,

— CELL ARRAY, and

— GENERALIZED DRAWING PRIMITIVE (GDP).

For line drawing, a polyline — which generates a sequence of lines connecting an
ordered set of points (given as a parameter) — is the fundamental line drawing
primitive. The motivation for having a polyline as a primitive, rather than a single
line, is that in most applications a set of lines is needed to form some shape. Since
a polyline rather than a line is the basic primitive, attributes such as linestyle apply
to the complete polyline instead of a single line segment. Thus, a red dotted or green
dashed curve is drawn as a single entity.

The polymarker is an obvious primitive, once polyline has been defined. Text
similarly produces a string of characters, rather than a single character, so that there
is some similarity of level among the three main output primitives.

The three remaining primitives demonstrate the spreading influence of raster
graphics and the need to allow access to the hardware features of certain output
devices. For example, raster displays support cell arrays on the hardware level. Conse-

262 5 Implementation Methodology

quently, this primitive has been made available in GKS in a generalized way. The GKS
primitive “fill area” defines a boundary whose interior can be filled in some pattern
and color, — or simply hatched if the hardware can only produce lines. Some plotters
provide such features as circles, arcs, or interpolation curves. The “generalized draw-
ing primitive” (GDP) provides a standard way of addressing such non-standard
capabilities (circles, arcs, etc.).

Polyline and polymarker have a single attribute, the index; at a given workstation
this index determines a bundle containing

for POLYLINE: LINETYPE, LINEWIDTH SCALE FACTOR, COLOR,

and for POLYMARKER: MARKERTYPE, MARKERSIZE SCALE FACTOR,
COLOR.

Text, on the other hand, has two sets of attributes, some of which are set by the
text bundle table:

TEXT: FONT, PRECISION, COLOR

while the remaining attributes are set modally on GKS level; that is, they are bound
directly to a primitive when it is generated. The motivation for this split is that the
overall form and shape of the text is considered more as a geometric property which
should remain invariant on whatever output device is used, while the appearance
(form and quality) of the individual characters may vary.

The geometric text attributes are:

— HEIGHT: defines the required height of the character in the user’s coordinate
system.

— EXPANSION FACTOR: defines the actual width on the basis of the nominal
width expressed in the height/width ratio of a given font.

— CHARUP VECTOR: defines the degree of rotation for every character in the text
line. Characters can therefore be drawn at any orientation.

— PATH: defines the direction in which characters are drawn. The normal setting is
RIGHT while LEFT draws them from right to left. Similarly, UP and DOWN
have obvious meanings.

— SPACING: controls the amount of space between characters, beyond that
nominally provided by the font.

It is recognized that some devices may have difficulty specifying characters with
this degree of sophistication. Consequently, the PRECISION attribute (with values
STRING, CHARACTER, STROKE) in the text bundle table defines the closeness of
the output to the specified requirements:

— STRING: the position of the first character is all that is guaranteed to be correct.
Thus, a device’s hardware character generator can be used. If a different orienta-
tion or size is requested, it can be ignored.

— CHARACTER: the position of each individual character box must be correct. The
form of the character within each box is workstation-dependent. Again, hardware
characters could be used but, in that case, they would probably have to be output
one at a time.

— STROKE: all the text attributes have to be implemented correctly. This will almost
certainly require the hardware to have a very flexible character generator, or else

5.5 The Graphical Kernel System 263

the text output must be simulated in software using polylines or fill area primi-
tives.

This method of defining text in GKS permits the use of sophisticated hardware
character generators if available. Otherwise, the high-precision text has to be produced
in software. In order to avoid the processing required for such a software simulation,
the application programmer may choose a simple and cheap text representation of
precision STRING or CHARACTER for all but the final drawing.

Similar to text, the fill area primitive also has two sets of attributes: the first one
regarded as part of the geometry, independent of the workstation, the other one
selected by index and defined in a workstation table. The geometric properties are
relevant when the interior is filled with a certain pattern:

— PATTERN SIZE: defines what size will be assigned to the pattern. The pattern is
replicated in both x and y directions, until the complete area is covered.
— PATTERN REFERENCE POINT: specifies the origin for the replicating process.

These attributes are mainly oriented towards raster devices, but simulations for
vector devices are also defined. The following attributes are associated with each
workstation individually:

— INTERIOR STYLE: defines the mode of filling as hollow (not filled), solid, pat-
terned, or hatched.

— 'STYLE INDEX: specifies for pattern an entry in a pattern table, to be used for
filling. If the interior style is hatched, the index is used to determine which of a
number of predefined hatch styles is used.

— COLOR INDEX: is used for both hollow and solid, and refers to the color table.

The next essential topic to discuss is the segment facility in GKS. A single
graphical primitive will not generally correspond to an information chunk in the com-
munication between the designer and the CAD system. GKS provides the means to
group a number of primitives together into a meaningful information package called
a segment, which may be handled as a whole. Segments can be individually deleted
as a unit, or highlighted to stand out from other information. They may be moved
around, scaled, or rotated. This is achieved by having a transformation matrix asso-
ciated with each segment, which may be altered after the segment is defined.

On workstations which provide storage capability of their own, segments may be
stored and made visible or invisible by appropriate requests from the application pro-
gram to GKS. Sometimes the need arises to display a segment on a workstation that
was not active when the segment was created. A typical example is a plotter which
is not activated until a complete and correct picture has been composed on an interac-
tive display. For such purposes, GKS provides a device-independent segment storage
which can keep copies of segments as they are formed. All transformations performed
on the segment will also apply to its device-independent copy. From the device-in-
dependent storage, the segments can be copied to other workstations. Facilities are
also provided for inserting a segment into another segment. The difference is that a
copy operation — as the name suggests — produces a duplicate of the segment, while
insertion copies all the primitives contained in the segment into a newly created seg-
ment. These facilities are supported only in higher levels of GKS implementations.

264 5 Implementation Methodology

writing the GKSM reading the GKSM
application program application program
graphical user user
GKS infor- user infor-
. N control .
functions mation mation
I I
GKS | GKS |
GKSM GKSM Fig. 530 Communication between an
applications program and the GKS
Metafile

For archiving graphical information, and for transport to and from other installa-
tions or systems, GKS provides the GKS metafile facility (GKSM, see also Sect. 2.3.4).
The application program may direct graphical output to a GKS metafile workstation,
which will write it onto a sequential file. The application program can also transmit
its own records (containing non-graphical information) to the metafile via GKS. In
a subsequent job, the same or another application program may have GKS read and
interpret the metafile, effectively regenerating whatever graphics information is on the
file. User records may either be ignored or passed to the application program for fur-
ther interpretation (Fig. 5.30).

Obviously, the segmentation decision made for GKS is by no means the only one
possible. One could envisage systems that treat individual primitives as entire units
for handling purposes. One might also consider higher levels of structuring, such as
segments containing references to other segments. The decision made for GKS in this
respect — as in all others — is a compromise, based on the maximum international
agreement that could be achieved as to what was required by the application com-
munity and could be provided without overloading the implementation with re-
quirements that might be shifted to another layer in the application program.

A common need of interactive graphics users is the ability to switch between
overall views of their model and some kind of detail view. The window/viewport con-
cept involves a standard computer graphics technique of mapping some rectangle of
the application space (called the window) onto a rectangle of the display surface (the
viewport). In GKS, where several workstations may be active at the same time, it
makes sense to allow different views of the same picture to be seen on different
workstations. This flexibility is achieved by having three different coordinate systems
and two distinct window/viewport mappings (see Sect. 2.3.1). The applications pro-
grammer defines his output in terms of a world coordinate (WC) system, which is
mapped onto some part of the normalized device coordinate (NDC) plane. The active
workstations can then present separate views of the NDC space when the application
program chooses a separate mapping from that space to the device coordinates for
each workstation.

5.5 The Graphical Kernel System 265

Multiple windows are a useful facility in GKS. It is quite common for the applica-
tion programmer to want to display several distinct parts which are most appropriate-
ly defined in different coordinate systems. A conventional way to do this would be
to redefine the window each time as required. For example:

SET WINDOW(XMIN,XMAX,YMIN,YMAX)
DRAW PICTURE A

SET WINDOW(X2MIN,X2MAX,Y2MIN,Y2MAX)
DRAW PICTURE B

Here PICTURE A is drawn when the first coordinate system is defined, while
PICTURE B is drawn with the second coordinate system. The user effectively sees a
display made up if two parts with different coordinate systems. The application pro-
gram would have to memorize the corresponding windows associated with pictures A
and B, and reset them whenever required. However, on input the problem becomes
more severe, since both pictures coexist on the same surface and it is not immediately
obvious whether a point on the surface refers to the space of picture A or B. Hence,
it is not possible for GKS to transform the coordinates of a point on the device back
into the user world in a unique manner. The problem has been solved by giving the
different world coordinate systems distinct names (in fact, numbers), and by making
them known to the GKS process. Thus, the application program and GKS can inform
each other which mapping is to be applied in each instance. The equivalent form of
the above program in GKS would look like:

DEF WINDOW (1,XMIN,XMAX,YMIN,YMAX)
DEF WINDOW (2,X2MIN,X2MAX.Y 2MIN,;Y2MAX)
SELECT (1)

DRAW PICTURE A

SELECT (2)

DRAW PICTURE B

Note that due to this technique, the application programmer will have a tendency
to define all the potentially needed coordinate systems collectively at the start of ex-
ecution and then select a particular transformation whenever required. The more con-
ventional technique would have transformation definitions scattered throughout the
program. This is another example of how strongly the layout of a software machine
influences the structure of the programs that are built on top of it.

Input in GKS is defined in terms of a set of logical devices which may be im-
plemented on a workstation in a number of ways. The different types of input are:

— LOCATOR: provides a position in world coordinates. The position indicated on
the display will be within one of the window/viewport transformations defined.
This will be used to give the correct world coordinate position.

— VALUATOR: provides a real number.

— CHOICE: provides an integer defining one of a set of possible choices.

— PICK: provides a segment name and a pick identifier associated with a particular
primitive.

— STRING: provides a character string.

266 5 Implementation Methodology

The implementation of the logical device on a workstation may be done in a varie-
ty of ways. For example, while it may be natural to input a STRING using a keyboard,
it could also be done by free-hand drawing on a tablet, or by hitting a set of light but-
tons indicating particular characters on a display. The exact form of the implementa-
tion depends on the individual workstation in terms of hardware and software.

Input can be obtained in three distinct ways:

— REQUEST: this is like a FORTRAN READ. The system waits until the input event
has taken place, and then returns the appropriate value. Only one input request
is valid at a time.

— SAMPLE: the current value of a GKS input device is examined. This is most fre-
quently used for devices which provide a continuous read-out of their value. For
example, the current position of a potentiometer or of the stylus on a digitizer can
be sampled.

— EVENT this mode is used for devices which would normally cause interrupts on
the workstation. For example, a lightpen hit or a touch of the tip switch on a tablet
would normally generate an event. Upon occurrence of the interrupt, a record con-
taining the input information and indicating its source is stored in a queue. The
queue is ordered according to the time when the interrupt occurred. Functions are
available to retrieve these records from the list for interpretation by the application
program.

Earlier versions of GKS had a much more complex input system, with non-sequen-
tial listing of input events. It was decided that such functions should be built on top
of GKS, rather than being a part of the kernel system.

5.5.2 GKS Examples

In this section, some important features of GKS are demonstrated using sample pro-
grams taken from [STRAS1].

In the first example (Sample Listing 5.1), we demonstrate the window/viewport
transformation and the associated clipping behavior. The result is shown in Fig. 5.31.

The second example (Sample Listing 5.2) demonstrates the transform segment
function when moving the hands of a clock. Depending on the particular device
capabilities connected to GKS, different actions are performed within the system so
that the visual effect will remain nearly the same. Either the segment transformation
is performed by hardware functions of the device, or a device-dependent segment
mechanism is used that allows for the deletion of a selected segment and a redisplay
of just the transformed segment, or the display surface has to be erased completely
and all segments have to be redrawn. In the third case, no real-time movement of the
second hand is normally possible. The result is shown in Fig. 5.32.

The third example (Sample Listing 5.3) is a simple example of using text and pen
attributes in a static way; that is, each time a new pen and text representation is set,
the subsequent output is drawn using the new attributes, without changing output al-
ready created. Within this program, a circle and eight surrounding letters are drawn.
Application-defined pens are used to generate lines. Characters of different color are
drawn at different angles around a circle. Precision “STROKE?” is defined for all char-
acters. The result of this GKS example is shown in Fig. 5.33.

5.5 The Graphical Kernel System 267

Sample Listing 5.1. The GKS program for Fig. 5.31.
C WINDOW/VIEWPORT TRANSFORMATION

REAL WLINEX(5), WLINEY(5), BX(5), BY(5)
REAL TRIAX(4), TRIAY(4)

INTEGER NOCLIP/0/,CLIP/1/

DATA BX /o, 1, 1, 0,0/
DATA BY / o0, 0, 1, 1,0/
DATA TRIAX [-7., 2., 14, -7/

DATA TRIAY [-7, 11, -7., =7/

DATA WLINEX / =10., —=10., 10., 10., —10./
DATA WLINEY / =10., 10., 10., —=10., —10./

C OPEN GKS (ERROR FILE IS ON DEVICE 22)
CALL GOPKS (22)
CALL GOPWK (1,1,6)
C DEFINE NORMALIZATION TRANSFORMATION
CALL GSW (1,-10., 10.,~10., 10.)
CALL GSW (2, - 10., 10.,-10., 10.)
CALL GSW (3,-10., 10.,-10., 10.)
CALL GSVW (1,0.05,0.45,0.55,0.95)
CALL GSVW (2,0.5 ,0.9 ,0.55,0.95)
CALL GSVW (3,0.55,0.95,0.05,0.45)
CALL GACWK (1)
C SET AND DRAW WINDOW BOUNDARIES
C IT SHOWS THE BOUNDARIES OF THE (0,1)-NDC COORDINATE SPACE
CALL GSELNT (0)
CALL GPL (5,BX,BY)
C SELECT MARKER TYPE 3
CALL GSPMI (3)
C 1. IMAGE
C SET NEW VIEWPORT AND DRAW THE WINDOW BOUNDARIES
CALL GSELNT (1)
CALL GPL (5,WLINEX,WLINEY)
C PICTURE NUMBER IN THE UPPER LEFT CORNER
CALL GTX (-8.,8.,1,1H1)
C FIRST IMAGE IS TO BE CLIPPED AT THE WINDOW
CALL GSCLIN (CLIP)
C POLYMARKER AT TRIANGLE CORNER POINTS
CALL GPM (3,TRIAX, TRIAY)
C POLYLINE (TRIANGLE)
CALL GPL (4, TRIAX,TRIAY)
C 2. IMAGE
C SET NEW VIEWPORT AND DRAW WINDOW BOUNDARIES
CALL GSELNT (2)
CALL GPL (5 WLINEX,WLINEY)
CALL GTX (-8.,8.,1,1H2)
C SECOND IMAGE IS NOT CLIPPED AT THE WINDOW
CALL GSCLIN (NOCLIP)
C POLYMARKER AT TRIANGLE CORNER POINTS
CALL GPM (3, TRIAX, TRIAY)
C POLYLINE (TRIANGLE)
CALL GPL (4,TRIAX, TRIAY)

268 5 Implementation Methodology

Sample Listing 5.1 (continued)

C 3. IMAGE
C SET NEW VIEWPORT AND DRAW THE LIMITATION OF THE WINDOW
CALL GSELNT (3)
CALL GPL (5WLINEXWLINEY)
CALL GTX (-8.8.1,1H3)
C THIRD IMAGE IS NOT CLIPPED AT THE WINDOW (BUT AT THE NDC-SPACE)
CALL GSCLIN (NOCLIP)
CALL GPM (3TRIAXTRIAY)
CALL GPL (4TRIAXTRIAY)
CALL GDAWK (1)
CALL GCLWK (1)
CALL GCLKS

Fig. 5.31. GKS example 1 output

Sample Listing 5.2. The GKS program for Fig. 5.32.
C REAL TIME CLOCK

REAL X(3),Y(3),PHI,MHX(6),MHY(8),SHX(5), SHY (5),HHX(10)
1 ,HHY(10),MH(6),MM(6),MS(6),PI
INTEGER I,DIGIT(24),J,K,ICH
DATA DIGIT /24H3 2 1 1211109 8 7 6 5 4 /,P1/3.14159/
C DEFINITION OF THE HANDS
DATA SHX/ -0.02, 0. , -0.02, 0. ,-0.02/
DATA SHY/ 0. , -004, 0. , 07, -0. /
DATA MHX/ -0.06, -0.02, 0.02, 0.06, 0. , —0.06/
DATA MHY/ 0. , -01,-01, 0. , 065 0. /
DATA HHX/ -0.015, —0.1, -0.02, 0.02, 0.1, 0.015, 0.1,0. ,~0.1,-0.015/
DATA HHY/ 0. , -01, -02,-02,-01, 0. ,0205 02 0 /
DATA MH/1.,0.,0.,0.,1.,0./,MM/1.,0.,0.,0.,1.,0./
DATA MS/1.,0.,0.,0.,1.,0./
INTEGER WORLDC/0/
c INTEGER EMPTI/22?222/ IS IMPLEMENTATION DEPENDENT

CALL GOPKS (22)

5.5 The Graphical Kernel System 269

Sample Listing 5.2 (continued)

CALL GOPWK (1,2,6)
CALL GACWK (1)
CALL GSW (1,-1., 1.,-1., 1))
CALL GSELNT (1)
CALL GCRSG (10)
C DRAW FRAME AND HANDS AXES BY THREE CIRCLES

X(1) = 0.
Y(1) = 0.

X@) = 1.

Y(2) = 0.

CALL GGDP (2,X,Y,1,1,EMPTI)
X(2) = 0.95

CALL GGDP (2,X,Y,1,1,EMPTI)
X(2) = 0.01

CALL GGDP (2,X,Y,1,1,EMPTI)
c DRAW MARKERS AND DIGITS
c SET CHARACTER HEIGHT
CALL GSCHH (0.08)
CALL GSCHSP (-0.1)
DO 50 1=1,48,4
X(1) = COS ((I-1)+P1/24.)+0.9
Y(1) = SIN ((I-1)+P1/24.)+0.9
X@) = X(1) ~ 0.9
Y(2) = Y(1) » 0.9
CALL GPL (2,X,Y)
X@3) = X(@2) « 0.8
Y@3) = Y(2) * 0.8 - 0.05
IF (LGT.9.AND.L.LT.22) X(3) = X(3) - 0.07
ICH = (1+3)/2—1
CALL GTX (X(3),Y(3),2,DIGIT(ICH))
50 CONTINUE
CALL GCLSG
C DRAW HANDS
CALL GCRSG (1)
CALL GPL (5,SHX,SHY)
CALL GCLSG
CALL GCRSG (2)
CALL GPL (6,MHX,MHY)
CALL GCLSG
CALL GCRSG (3)
CALL GPL (10,HHX,HHY)
CALL GCLSG
c MOVE HANDS FOR 10000 MINUTES
c FOR TERMINATION BY AN OPERATOR SAMPLE OR EVENT INPUT IS
NEEDED
PHI = —PI/30.
DO 200 J=1,10000
DO 100 K=1,60
CALL GACTM (MS,0.,0.,0.,0.,PHI,1.,1., WORLDC,MS)
CALL GSSGT (1,MS)

nni

[l

270 5 Implementation Methodology

Sample Listing 5.2 (continued)

C DELAY FOR A VECTOR DEVICE WITH SEGMENTATION FACILITY BUT WITH-

OUT HARDWARE TRANSFORMATION
CALL DELAY (985)

100 CONTINUE
CALL GACTM (MM,0.0.0.0.,PHI 1.1 WORLDC,MM)
CALL GACTM (MH,0.,0.,0.,0.,PHIA2.,1.,1. WORLDC,MH)
CALL GSSGT (2,MM)
CALL GSSGT (3,MH)
CALL GUPDWK (1,1)

200 CONTINUE
CALL GDAWK (1)
CALL GCLWK (1)
CALL GCLKS

Fig. 5.32. GKS example 2 output

Sample Listing 5.3. The GKS program for Fig. 5.26.

C STATIC PRIMITIVE ATTRIBUTES
INTEGER STRIN(8), RIND, GIND, BIND, BLAIND, WK
INTEGER SOLI, DASHED, DOTTED, DASHDT
INTEGER STROKE/2/
REAL PX(2),PY(2), PX1, PY1, CUPX,CUPY, IUP
REAL ANGLE, Pl, RADIUS, CIRCX(2), CIRCY(2)
DATA RADIUS/30./,CIRCX, CIRCY /50.,50.,50.,80./
DATA RIND/1/,GIND/2/,BIND/3/,BLAIND/4/WK/1/
DATA PI /3.1415927/
DATA IUP /35/
DATA STRINAHA,1HB,1HC,1HD,1HE,1HF,1HG,1HH/
DATA SOLIN/,DASHED/2/,DOTTED/3/,DASHDT/4/

CALL GOPKS (22)
CALL GOPWK (WK,1,3)
CALL GACWK (WK)
CALL GSW (1,0.,100.,0.,100.)
CALL GSELNT (1)
C DEFINE PENS
C PEN NO 1, LINETYPE = SOLID, COLOR = RED
CALL GSPLR (WK,1,S0LI,1.,RIND)
CALL GSTXR (WK,1,1,STROKE,1.,0.,RIND)
C PEN NO 2, LINETYPE = DASHED, COLOR = GREEN
CALL GSPLR (WK,2,DASHED,1.,GIND)
CALL GSTXR (WK,2,1,STROKE,1.,0,GIND)

5.5 The Graphical Kernel System 271

Sample Listing 5.3 (continued)
C PEN NO 3, LINETYPE = DOTTED, COLOR = BLUE

CALL GSPLR (WK,_3,DOTTED,1.,BIND)
CALL GSTXR (WK,3,1,STROKE,1.,0.,BIND)

C PEN NO 4, LINETYPE = DASHDOTTED, COLOR = BLACK

CALL GSPLR (WK,4,DASHDT,1.,BLAIND)
CALL GSTXR (WK,4,1,STROKE,1.,0.,BLAIND)

C DRAW A CIRCLE USING PEN 1 (SOLID LINETYPE, RED)

CALL GGDP (2,CIRCX,CIRCY,1,1,EMPTI)
ANGLE = PI/2.

PX(1) = CIRCX(1)

PX(2) = CIRCY(1)

C SET CHARACTER HEIGHT

CALL GSCHH (IUP)

DO 3001 = 18

CUPX = SIN (ANGLE)
CUPY = COS (ANGLE)
CALL GSCHUP (CUPX,CUPY)

C USER-DEFINED PENS 1.. 4

300

CALL GSPLI (MOD(I-1,4)+1)

CALL GSTXI (MOD(I-1,4)+1)

PX1 = CIRCX(1) + (RADIUS + 4.) » CUPX
PY1 = CIRCY(1) + (RADIUS + 4) » CUPY
CALL GTX (PX1,PY1,1,STRIN(I)

PX(2) = PX(1) + RADIUS » CUPX

PY(2) = PY(1) + RADIUS » CUPY

CALL GPL (2,PX,PY)

ANGLE = ANGLE - Pl/4.

CONTINUE

CALL GUPDWK (WK, 1)

C SHORT VERSION FOR DEACTIVATE AND CLOSE ALL WORKSTATIONS AND GKS

CALL GECLKS

Fig. 5.33. GKS example 3 output

272 5 Implementation Methodology

5.6 Summary

This chapter described mainly the hardware used in computer graphics and gave an
example of a standard interface to the software (GKS).

Section 5.2 introduced to the most commonly used devices for interactive work
and for hardcopy and documentation. The functionality of the devices was outlined
in order to give the CAD programmer a feeling for the capabilities available in hard-
ware.

Section 5.3 centered on workstations as today’s combination of a powerful com-
puter with graphical devices and special support for them to get a high degree of in-
teraction. The appearance and especially the typical architectures were described.

Section 5.4 outlined some basic information which is required to understand the
role of network architectures in CAD (primarily LANSs). This was an attempt to in-
troduce the most important terminology to the CAD programmer.

Section 5.5 gave an example in order to illustrate how the large variety of hardware
can be handled by standard software. GKS was chosen as it is an existing international
standard and shows the problems and the solutions in a very clear manner.

5.7 Bibliography

[ANDE83] R. Anderl, J. Rix, H. Wetzel: GKS im Anwendungsbereich CAD. Informatik
Spektrum 6, 2 (1983), pp. 76—81.

[ARDE86] M. Arden, A. Bechtolsheim: SUN-3 Architecture — A SUN Technical Report.
SUN Microsystems, Inc. (1986).

[BECH86] J. Bechlars, R. Buhtz: GKS in der Praxis. Springer-Verlag, Berlin (1986).

[BONOS87] P. Bono, I. Herman (eds.): GKS Theory and Practice. Springer-Verlag, Berlin
(1987).

[CHYL87] P. Chylla, H-G. Heyering: Ethernet-LLANs, Planung, Realisierung und Netz-
management. Datacom (1987).

[EIGN85] M. Eigner, H. Meier: Einstieg in CAD, Lehrbuch fiir CAD-Anwender. Carl
Hanser Verlag, Miinchen (1985).

[ENDE83] G. Enderle, K. Kansy, G. Pfaff, F-J. Prester: Die Funktionen des Graphischen
Kernsystems. Informatik-Spektrum 6, 2 (1983), pp. 55-75.

[ENDE87] G. Enderle, K. Kansy, G. Pfaff: Computer Graphics Programming, GKS — The
Graphics Standard, 2nd Edition. Springer-Verlag, Berlin (1987).

[ENCA78] J.L. Encarnagéo: Logical Design Techniques and Tools. Siemens Forschungs- und
Entwicklungsberichte 7, 6 (1978), pp. 332—335.

[ENCA81] J.L. Encarnagdo, W. StraBer (eds.): Geriteunabhingige graphische Systeme.
Oldenbourg, Miinchen (1981).

[ENCAS83] J.L. Encarnacdo, G. Enderle: Ein Uberblick tiber die Entwicklung des Graph-
ischen Kernsystems GKS. Informatik-Spektrum 6, 2 (1983), pp. 96—104.

[ENCAS87] J.L. Encarnagdo, L.M. Encarnac¢ido, W. Herzner: Graphische Datenverarbeitung
mit GKS. Carl Hanser Verlag, Miinchen (1987).

[ENDE84] G. Enderle: GKS Implementations Overview, 2nd Edition. Computer Graphics
Forum, 3 (1984), pp. 181—189.

[FAER87] G. Firber: Bussysteme, serielle, parallele Bussysteme und lokale Netze. Olden-
bourg, Miinchen (1987).

5.7 Bibliography 273

[FRANBG]
[GANZ81]
[GOERSS]
[HASL87]

[HERZS5]
[HOBBS1]

[HOPGS86]
[I3EAS85]
[I3EBSS]
[ISOA8S]
[KAUF87]
[KELLS6]
[LILLS1]
[LIND79]
[MACAS$1]
[MACBS1]
[REMMS5]

[SALMS7]

[SCHISS]
[SCHN79]

[SPROSS]

[STRAS1]

[WALL76]

R. Franck: Rechnernetze und Datenkommunikation. Springer-Verlag, Berlin
(1986).

R. Ganz, H-J. Dohrmann: Farbgraphische Ausgabesysteme. ZwF 76, 5 (1981), pp.
223-239.

K. Goergen et al.: Grundlagen der Kommunikationstechnologie, ISO-Architektur
offener Kommunikationssysteme. Springer-Verlag, Berlin (1985).

E. Haslinger: Lexikon der Personal Computer, Arbeitsplatzsysteme, Kommunika-
tionsnetze. Oldenbourg, Miinchen (1987).

W. Herzner: Einfithrung in GKS. Schriftenreihe der OGI, Wien (1985).

L.C. Hobbs: Computer Graphics Display Hardware. IEEE Comp. Graph. and
Appl. 1, 1 (1981), pp. 25—39.

F.R. Hopgood, D.A. Duce, J.R. Gallop, D.C. Sutcliffe: Introduction to the
Graphical Kernel System, 2nd Edition. Academic Press, Orlando (1986).

IEEE 802.3: Carrier Sense Multiple Access with Collision Detection (CSMA/
CD), (1985).

IEEE 802.4: Token Passing Bus Access, Method and Physical Layer Specifications
(1985).

ISO/IEC 7942: Graphical Kernel System (GKS). International Standard, (1985).
F-J. Kauffels: High Speed Local Area Networks. Datacom 5 (1987), pp. 68 —72.
K. H. Kellermayr: Lokale Computernetze — LAN. Springer-Verlag, Berlin (1986).
F. Lillehagen: CAD/CAM Work Stations for Man-Model Communication. IEEE
Comp. Graph. and Appl. 1, 3 (1981), pp. 17-27.

R. Lindner: Rasterdisplay-Prozessoren — ihre Bedeutung, Konzepte und Ver-
fahren. Dissertation, FBInformatik, FG GRIS, Darmstadt (1979).

C. Machover: A Guide to Sources of Information about Computer Graphics.
IEEE Comp. Graph. 1, 1 (1981), pp. 73—85.

C. Machover: A Guide to Sources of Information about Computer Graphics.
IEEE Comp. Graph. 1, 3 (1981), pp. 63—65.

M. Remmele: Dezentrale Rechenzentren, Ausgabe, Verwaltung, Komponentenaus-
wahl. Carl Hanser Verlag, Miinchen (1985).

R. Salmon, M. Slater: Computer Graphics, Systems & Concepts. Addison-Wesley,
Wokingham, GB (1987), pp. 619—621.

P. Schicker: Dateniibertragung und Rechnernetze. Teubner, Stuttgart (1985).

P. Schnupp, Chr. Floyd: Software-Programmentwicklung und Projektorganisa-
tion, 2nd Edition. de Gruyter, Berlin (1979).

R.F. Sproull, W.R. Sutherland, M.K. Ullner: Device Independent Graphics.
McGraw-Hill, New York (1985).

W. Strafler: Hardware and System Aspects of Computer Graphics, in J. L.
Encarnagao, O. Torres, E. Warman (eds.), CAD/CAM as a Basis for the Develop-
ment of Technology in Developing Nations. North-Holland (1981), p. 285.
V.L. Wallace: The Semantics of Graphics Input Devices. Computer Graphics 10,
1 (1976), pp. 62—65.

6 Engineering Methods of CAD

Simulation of a robot model
(courtesy of Kernforschungszentrum, Karlsruhe, Germany)

6.1 Geometry Handling 277

6.1 Geometry Handling

The statement of Voelcker and Requicha [VOEL78] “Geometry plays a crucial role
in nearly all design and production activities in the discrete goods industries. Curious-
ly, the industries’ primary means for specifying geometry - two-dimensional
graphics — has not changed significantly for more than a century. Dramatic changes
are likely to occur in the next decade, however, because the deficiencies of current
methods are retarding the progress of automation and are stimulating the develop-
ment of new, computationally oriented schemes for handling mechanical geometry”
is still true.
Voelcker and Requicha consider three different kinds of problems:

— Development of modeling schemes for representing as data the assemblies, stock
(raw materials), and the capabilities of particular tools that affect manufacturing,
assembly, and inspection processes.

— Development of algorithms that will automatically produce (from the data models
of parts, assemblies, stock, and tools) manufacturing, assembly inspection plans,
and command data for numerically controlled tools.

— Design, implementation, and testing of integrated computer systems which em-
body such representation and planning systems.

We will deal here with the first kind of problem. First we will very briefly present
some fundamentals in geometry: in particular perspective transformation and rota-
tion in 3D space; then we will discuss the problem of hidden-line and hidden-surface
detection, and finally the geometric specification of parts and assemblies.

6.1.1 Introduction: Points in 3D Space

Transformations of points in 2D space and 3D space play a fundamental role in all
geometric problems. The basic operations are:

— translation,

— rotation,

— scaling, and

— perspective view or projection.

Matrix algebra is the appropriate tool for performing these functions. Here we will
discuss only the 3D case. For 2D, we would simply have to omit one dimension.

Points are usually represented as 3 X1 column matrices or 1 X3 row matrices. The
operations of rotation and scaling can be represented as multiplication of the point
vectors by appropriate square matrices. If row matrices are chosen for representing
points (as we will do here), the multiplication is from the lefthand side: point - matrix.
If one operation is to be followed by a second one, the second matrix is simply
multiplied from the lefthand side again: point-matrix, - matrix,.

Translation

Translation of a point is represented by adding the row matrix of the endpoint to the
displacement vector. Thus, when a large number of points are undergoing the same

278 6 Engineering Methods of CAD

sequence of transformations (for example, when they are all to be rotated, then
translated and finally scaled in the same way), the three operations cannot be com-
bined into a single one, as would be possible for a sequence of three rotations (by
multiplying the matrices in proper sequence). However, there is a way to convert the
translation operation into a multiplication: the introduction of “homogeneous coor-
dinates” [RIES81]:

— The point [x y z] has the homogeneous coordinates [X y z 1] or, even more general-
ly, [ax ay az a], where a is an arbitrary scalar.

Now, instead of translating [x y z] by adding, say, [d d, d,], we write:

0
[ax ay az a]- (1)
d

0o O~
o O - O
-0 O O

x Yy Yz

Homogeneous coordinates allow us even to handle points at infinity properly: the
homogeneous coordinates [x y z 0] identify a point at an infinite distance on the line
directed from the origin of the 3D coordinate system towards the point [x y z].

Whether a system operates with natural coordinates or with homogeneous coor-
dinates is an essential design decision. Systems that perform a large number of iden-
tical linear transformations will benefit significantly from homogeneous coordinates
(interactive systems without hidden-line removal, for example). This statement applies
particularly when special hardware is provided for performing the 4x4 matrix
multiplication. Some high-performance graphics workstations offer this feature for
the real-time 3D manipulation of wire-frame graphics (wire-frame model = a 3D
model consisting of points and curves connecting them). For systems in which other
functions dominate (such as hidden-line determination or non-geometrical applica-
tions), the natural coordinates may be the better choice.

Rotation

The rotation of a point in the x-y plane is shown in Fig. 6.1. Returning to natural coor-
dinates, the rotation matrix R, is given by Eq. (6.1):

cos a sin 0
—sin & cos a 0 (6.1)
0 0 1

A rotation about an arbitrary axis may always be defined in terms of a sequence
of three rotations by 7y, f,, a, around the three axes (x, ¥y, z), respectively. As each
of the rotations is defined by a rotation matrix like Eq. (6.1), the complete 3D rotation
is defined by the overall rotation matrix R where

R=R;'Ry'R, 6.2)
with

6.1 Geometry Handling

I __.l_% P(xyz) = P{x;y,z')
|

y-cosa
. +Q
Y I

|
. X-COSQ x'
—> y-sina <
<

x Fig. 6.1. Rotation in the xy plane

R, = rotation in the yz-plane about the x axis followed by
R, = rotation in the xz-plane about the y axis followed by
R, = rotation in the xy-plane about the z axis.

The rotated point has the new natural coordinates

xyzI'R
where
A B C
R=1|D E F
G H I
and

A = cos f,-cos a,

B = cos f,-sin a,

C= —sin g,

D = sin B -sin 7,-cos a,—cos 7,-sin a,
E = sin B, -sin 7,-sin a,+cos 74-cos a,
F = cos By sin 7,

G = sin fy-cos 74°Cos a,+sin 7¢-sin @,
H = sin f,-cos 7sin a,—sin 7,°cos @,
I =cos By-cos 74

279

(6.3)

(6.4)

Equations (6.3) and (6.4) describe a rotation around the origin of the coordinate
system. The rotation around some arbitrary rotation center [X. y. X.] can be achieved

280 6 Engineering Methods of CAD

by first translating the point by —[x, y. x.] (which would bring the rotation center
into the origin), then rotating and finally translating back by + [x. v, x.]. The advan-
tage of using homogeneous coordinates is that these three operations can very easily
be combined into a single matrix multiplication.

Scaling

Scaling of a point also fits into the matrix multiplication scheme. A point whose coor-
dinates should be scaled by factors s, sy, s, in the x, y, and z directions will have the
new natural coordinates given as:

s, 0 O
[xyz]- |0 s, O 6.5)
0 0 s,

Scaling with respect to an arbitrary point is best done in homogeneous coordinates
in a similar way as rotating around an arbitrary point.

Projection

For perspective view or projection, we restrict our discussion first to the central pro-
jection from an origin that is located on the z axis at [0 O c,] onto a plane parallel
to the xy plane at an elevation q,. The coordinates [X Y] of the projected point are
then given by:

X< %%,
c,—Z
(6.6)
y=ST%.
c,—z
For the special case where q, = 0, we obtain
X = c i 1 .
c,—z 1-z/c,
(6.7)
X = C, 1

iy = .
c,—Z 1-z/c,

Using homogeneous coordinates, we obtain a rather simple 4 x4 matrix for this
projection. The projected point has the coordinates

00 0
10 0
00 -1/,
00 1

[ax ay az a]- (6.8)

[=R =R

6.1 Geometry Handling 281

A general central projection from an arbitrary point onto an arbitrary projection
plane may be obtained by combining rotation and translation operations so as to
achieve the standard situation described here. With homogeneous coordinates, these
operations may be combined into a single matrix. For further details on transforma-
tions in 3D space see [GILO78], for example.

In CAD, parallel normal projection plays a central role, as standard design draw-
ings represent their objects in this way. For a top view of an object, we have to project
its points onto the xy plane from a point at infinity on the z axis. Using Eq. (6.7),
we obtain for this standard case:

. C;
lim =1 6.9)

¢o® ¢, —Z

or, as we would expect:

X=x

Y=y (6.10)

This projection has several advantages. It clearly avoids a tangential intersection
of line-of-sight and the projection plane, thus eliminating the problem of having to
handle points at infinity. It avoids strange distortions of the projected picture, which
sometimes make it difficult to recognize an object from a central projection. It re-
quires a minimum of computation, as the projection simply implies dropping one of
the coordinates of a 3D point. For top view, the z coordinate has no influence on the
representation: it is only used for visibility testing. Parallel normal projection
minimizes the program runtime and simplifies the visibility-test procedures.

The most general projection implies that we specify independently:

— the projection origin;
— the projection plane; and
— origin and directions of the 2D coordinate system in the projection plane.

Schuster [SCHU76] has treated the general projection problem using vector
algebra in natural coordinates instead of homogeneous coordinates. Here, we briefly
outline his approach. (Bold face letters indicate vectors in the subsequent paragraphs.)
A point p is to be projected onto plane B. B is defined by a point reB and the normal
vector n (see Fig. 6.2):

— 3D space: coordinates (X, y, z) with base vectors e, ey, €

— 2D space: coordinates (X, Y) with base vectors ex, ey; these unit vectors will be
chosen such that the origin of the (X, Y) coordinate system coincides with the pro-
jection of the origin of the 3D space; the directions of the 2D coordihate system
will be defined later;

— plane B: point r and normal n;

— 3D point: p;

— projection origin: q; and

— projection point: x in 3D space, X in 2D space.

The plane is given by equation

x-r)'n=0 (6.11)

282 6 Engineering Methods of CAD

projection plane

origin of
(X.Y)—plane

n
normal on
projection plane

this line is
parallel to X
and lies in the (x,y)—plane

\
A \ ! Fig. 6.2. Perspective pro-
_q\n/projec’(ion origin jection

The projection beam through p and its projection q is given in vector notation as:
X =p+t(q—p) (6.12)

with t as a scalar parameter.
From these two equations we obtain immediately:

(p+t(q—-p)-1)'n=0 6.13)

We can solve this equation for the parameter t, which can then be inserted into
(6.12) to obtain the equation for the projected point in 3D space:

_ ((q'm)—(r'm)p+((r-n)—(p-n))q
(g—p)'n

(6.14)

X in the 2D space must coincide with x in the 3D space:
X=Xex+Yey=x 6.15)

So far, the base vectors ex and ey in the 2D space are arbitrary. The x direction ex
may, for instance, be chosen to coincide with the line of intersection of the projection
plane B with the xy plane in the 3D space, in such a way that the 3D space origin is
projected onto the 2D space origin. The equations of these planes in 3D space are as
follows (with subscripts 1, 2 and 3 indicating the vector components in the 3D space):

6.1 Geometry Handling 283

B plane: nix+n,y+n3z=0
x—y plane: z=0

Thus, after normalization, we obtain:

1 M
= W 31 (6.16)
The Y component must be orthogonal to both e, and n. Hence:
e, = nXe, (vector cross product) (6.17a)
1 —hyng
ey = W n—{fg; (6.17b)

With Egs. (6.14), (6.15), (6.16), and (6.17), we can now determine the components
X and Y of the 2D vector X. Equations (6.14) and (6.15) are used, together with e,
and ey as expressed by Eqgs. (6.16) and (6.17). Multiplication by ex makes the ey, com-
ponent disappear. We obtain: ’

_(@n-p-m)(p-ex)+(r-n—p-n)q-ex)

X (6.18)
(q—p)'n

Similarly, multiplying Eq. (6.15) by e, results in:

Y=(c1‘11~p'n)(rrey)+(r'n—p-n)(q-ey) (6.19)

(q—p)'n

After performing the vector multiplication and introducing the abbreviations:
[ny| = (n%+n%+n§)1/2 =1
L?=1-nf

d=q'n

s=r-m

we obtain finally:

_ 8(@ony —qymy) +p;(sny — Q,13 — q3nons) + py(—sny +q; L3 +q3n,n5) + p3ng(qn, — gony)
Lyd—pnL; —p,n,Ly —psnsl,

X

(6.20)
_ s(dpnyN; — Q003 +Q3L3) +pyn,(sn; —Gs) + Pony(sn; —ds) + Pa(an, +qon, —sL3)

Lyd—pnL; —p,n,L;—psnsLs

Y

The complete set of transformations that is relevant to three-dimensional
geometry handling may be classified into subsets using the criteria of mathematical

284 6 Engineering Methods of CAD

theory [KLEMS87], [LIETS5]. Three subsets of transformations can be identified,
each of them building a group and defining a related geometry:

1) The Metrical Geometry is defined by concatention of translations and rotations.
This group of transformations deals with the objects themselves and not with their
particular position in space.

2) The Affine Geometry is defined by concatenation of translations, rotations, and
scalings. This group of transformations deals with finite objects and does not
modify relative angles (parallel lines remain parallel).

3) The Projective Geometry is defined by concatenation of translations, rotations,
scalings, and perspectives. This group of transformations is the most general for-
mulation of transformations.

Group theory produces the following important results which allow the mean-
ingful use of each of the groups in CAD applications:

1) The concatenation of several transformations taken from any single group is a
transformation which again belongs to the same group.

2) The concatenation of transformations taken from any single group is associative.

3) The identity transformation belongs to each group.

4) The inverse of a transformation taken from any single group also belongs to that
group.

6.1.2 The Hidden-Line/Hidden-Surface Problem

6.1.2.1 General Considerations

The problem of eliminating the hidden planes and edges of non-transparent 3D
solids, the so-called visibility problem, has been tackled since the middle of the 1960s.
Various algorithms have been designed by Appel, Encarnac¢io, Galimberti and Mon-
tanari, Loutrel, Newell, Roberts, Schumacker, Warnock, Watkins, Weiss. For surveys
see [SUTH74], [ENCAT75], [NEWM79], [GILO78].

Visibility algorithms may be classified as hidden-surface algorithms and hidden-
line algorithms. Hidden-line algorithms are designed for edge-oriented output tools,
such as vector displays and plotters; hidden-surface algorithms are oriented towards
raster output devices.

The basic procedural kernel of all these algorithms usually follows one of three
distinct strategies, which may be classified as:

— surface test;
— point test; or
— combined surface/point test.

Surface test: Here, as the name implies, a surface element is the basic entity tested.
(A surface element is a portion of the whole surface. Its interior is described by some
mathematical form, and it is connected to adjacent surface elements along its edges).
In its elementary form, this test deals with planar faces only. Its basic idea is that faces
whose outward normal vector points towards the projection point, are visible, while

6.1 Geometry Handling 285

is situati lane of projection .
tcr;:nscl:ug:?:euted P Pret Fig. 6.3. The surface test
properly by a pure cannot handle all situa-
surface test tions properly

line -of -sight
vector

\

c Fig. 6.4. Principle of the surface test

plane of projection

all others are invisible. This test does not take into consideration that a surface ele-
ment of a solid may be hidden by another surface element of the same body, or of
another body. Thus it can be applied to single convex solids only. Furthermore, the
surface test assumes that all edges of a visible face are entirely visible. Figure 6.3
shows an example where a surface test would fail to determine the visibility properly.
It could not determine that part of the front surface of solid 2 is hidden by solid 1.
Formally, in the surface test the angle o between the line of sight (from the projection
origin to a face) and the normal vector N of the face (pointing outward from the solid)
is determined from the inner product of these vectors according to Eq. (6.21). If the
inner product is negative (or o <90°), then the face and of all its edges are visible as
a whole:

N-CQ = |N| |CQ| cos (180°—6)=<0 (6.21)

N = external surface normal
CQ = line of sight

Hence, in Fig. 6.4 face F1 is visible, while face F2 is invisible. Since the surface
test considers whole surfaces rather than single points, it is very fast but has limited

286 6 Engineering Methods of CAD

point of view Fig. 6.5. Example illustrating the point test

applicability. A pure surface test can only be applied to convex solids, and this is often
too strong a limitation.

Point test: In this method, a line or curve is broken up into very small segments,
each of which is drawn only if a testpoint on the segment is not hidden by any surface
in space. In Fig. 6.5, the line from P, to P, consists of two parts P; —P, and P, —P,.
With a pure point test, many test points on P;—P, would have to be considered in
order to locate P, properly. This approach requires large amounts of storage space
and computer time. In principle, these tests have the advantage of being universally
applicable, notably even for curved edges resulting from sculptured surfaces. How-
ever, because of the computer resources required, the pure point tests are not practical.

Combined point/surface test: In this category we place all procedures that attempt
to combine the two tests. The manner in which this combination is implemented
distinguishes the visibility test procedures that have been published.

We will now present two procedures of the combined point/surface test type.

6.1.2.2 The Priority Procedure

This procedure was developed for the solution of the hidden-line problem for solids
bounded by planar faces. The priority procedure is very general. It can treat more
than a single solid and is not restricted to convex shapes. Hence, holes, gaps, and even
individual surfaces (without thickness) can be treated. As a preparation for the priori-
ty procedure, the surface of the solid must be broken up into triangles (regardless of
what its original representation was). For planar faces, this is a straightforward opera-
tion; but curved surfaces must be approximated by joining triangles. This segmenta-
tion into triangles will not be described further here (see [MESC66], for example).
From now on, we will consider the solid’s surface as an unordered set of triangles.
It is now possible to devise the visibility strategy in a way that will highly optimize
running time and storage requirements.
The priority procedure consists of two main steps:

1) assignment of priority;
2) determination of coverings.

Without loss of generality, we can assume that the projection is onto the xy plane
with the projection origin on the positive z axis. This standard situation can always

6.1 Geometry Handling 287

be achieved by rotating and shifting the projection plane, the projection origin, and
the solid accordingly. We start by collecting all surface elements F; in a list, which we
are now going to order according to their priority.

1) Assignment of Priority

This step of the algorithm determines the order of processing of the triangles due to
mutual hidings (involving the hiding of one surface by another on the same solid).
Given a set of triangles, let:

g, h = surface points, defined by their coordinates x, v, z;
i, j = running indices for surfaces;
F = set of all surfaces.

We investigate points g and h of surfaces F; and F:

gek
hEFJ

The triangles to be processed are projected by the projection operator f onto the
Xy plane:

f: Fi —)Ai

where
A = projection of F.

The elements of the sets A; and A; (the projected points) are defined by the x and
y coordinates of their corners. A point ¢ is now computed, such that (Fig. 6.6a):

¢ € D where
D = intersection (A;, A;)

Hence, ¢ is within the overlapping part of two projected triangles. From the inverse
mapping of this point ¢ to F; and F;, one obtains the two corresponding z coor-
dinates on faces F; and F;. The highest z coordinate of ¢ among these sets determines
the highest priority. The list of all elements F; is continuously reordered according to
this priority.

If the intersection is the empty set, no priority assignment is possible. In this case,
the surface F; is exchanged with the last element of the surface list, the list length is
shortened by one, and the sorting process to determine priority starts anew. After
completion of the algorithm, the result is a list of triangles, which can be processed
from top to bottom to determine mutual coverings. Fig. 6.6b shows an example. In
this case the priority list would be as follows: 1, 2, 3, 5, 4.

In the case of a raster display, we have now almost completed the whole task: we
simply output all elements in the inverse order of their priority. Any surfaces elements
that would have to be hidden by others would thus be displayed first, but would be
covered later either partially or entirely by elements of higher priority. In the case of
vector-oriented output devices, however, we have to continue the hidden-line removal
by software.

288 6 Engineering Methods of CAD

Y Ai
M :
D
| Fig. 6.6a. Determination of intersections in the projection
X for the priority procedure
Y z

AN
T =
| =

X X
Fig. 6.6b. Assignment of priority

X Fig. 6.6¢c. Removal of completely hidden boundaries

F2

7’?’

X Fig. 6.6d. Removal of boundary lines (line G,)

2) Determination of Coverings

After determination of priorities, we must investigate which parts of the triangles are
to be drawn and which are not. For this purpose, all three boundary lines of a triangle
are compared with all other surface edges of higher priority. We maintain a list of all
(straight) line segments that will have to be drawn as visible. If a face is declared fully
invisible, its boundary lines are removed from the line list, like those of F, in Fig.
6.6c. The next covering surface is then immediately examined.

6.1 Geometry Handling 289

Fig. 6.7. Different line-covering situa-
tions encountered in the priority
method

If a surface is partially visible, then only the completely hidden lines are removed
from the line list (line G, in Fig. 6.6d). Maintaining the line list raises the storage
capacity requirements of this method, but saves substantial amounts of processing
time.

The algorithms that determine coverings must distinguish between the following
four situations, which are illustrated in Fig. 6.7:

a) the end point of a partially hidden line is hidden;

b) the starting point of a partially hidden line is hidden;
¢) both starting point and end point are not hidden;

d) both starting point and end point are hidden.

The formal treatment of these situations and their algorithmic implementation are
described in [ENCAT75].

6.1.2.3 The Overiay Procedure

The overlay procedure is applicable to solids whose surfaces are each defined by a so-
called u-v grid. Each surface element is defined by a function with two parameters
u and v:

facej = {fj(ll, v), Uy s=u= Uj2, Vi1 =v= Vjﬂ
Thus, each surface element may be considered as being spanned by a u-v line grid.
The procedure uses the overlaying of an imaginary Cartesian grid (on the projection

plane) upon the projection of the u-v grid of the surfaces.
This procedure consists of the following steps:

a) calculation of the u-v line grid;

b) construction of the Cartesian grid;

¢) assignment of u-v elements to the Cartesian grid;
d) calculation of the visibility of the nodes; and

e) determination of the visible u-v line elements.

Calculation of the u-v line grid:

Using the corresponding surface equations, the individual nodes of all the u-v line in-
tersections are determined. Each node belongs to exactly one u-line and one v-line (see
Fig. 6.8) and is determined by its X, v, and z coordinates.

290 6 Engineering Methods of CAD

Fig. 6.8. Coordinates of the nodes of a surface ele-
ment

vi
Ymax 7
B e
- : unction
o Py-testpoint <] KA definition grid
. > N A
grid element (\/“
for visibility N 0%
test ’<
N
OO0
N
Ymin) = x Fig. 6.9. The “overlaying”
Xmin Xmax procedure
L Fu,v
F"u,v Fig. 6.10. The approximating rectangle R, ,

Construction of the Cartesian grid:

Imagine an n by n Cartesian grid drawn on the projection plane. The grid lines form
rectangles which will be used as a basis in the subsequent tests. The size of the grid
can be chosen arbitrarily. In Fig. 6.9 a value of n = 11 was selected. The surface ele-
ment defined by the u-v lines is overlaid on this grid. If a node is to be tested for
visibility, we first determine which rectangle contains its projection. The visibility test
now concerns itself only with this rectangle, and not with the whole surface. All the
surface elements having sets of points in this rectangle must now be determined.

Assignment of the u-v elements to the Cartesian grid:

In this step, the individual surface elements are in this step approximated by rect-
angles, as shown in Fig. 6.10. The rectangles are constructed such that, after projec-
tion, their sides run parallel to the x and y axes. This is done to simplify the program-
ming and to minimize computer running time. In the following steps d) and ¢), how-
ever, the true u-v elements will be considered instead of the approximation. Since the
individual u-v elements are completely enveloped by their linear appoximation, no in-
formation needed for determining the visibility is lost.

6.1 Geometry Handling 291

Calculation of the visibility of the nodes:
First the Cartesian grid lines which envelop the test point are determined (see Fig.
6.9):

XnSXSXn+1

ym5y5Ym+1
X, y = coordinates of the projection of the node to be tested.

Then we determine the surface elements whose projections have a non-empty in-
tersection with the rectangle. For this purpose, we have to determine all elements
which contain a point that will coincide with the test point after projection. The u-v
elements are broken into two triangles and approximated by a plane. Now the
triangles containing the test point are determined, and all corresponding z coordinates
zp are computed using the planar approximation. Now we compare all values of zp,
and consider all nodes with

ZD>ZM

as being invisible, where zy; is either a predefined value or the minimum value of all
zp’s corresponding to the same test point.

Determination of visible u-v line elements:
After having determined the visibility of the u-v nodes on all surfaces, the next task
is to test the visibility of the connecting u-v grid lines. Visibility of two adjacent points
does not necessarily imply that the whole connecting line is visible. Parts of the con-
nection may be hidden by other surface elements. This is particularly important for
coarse grids. Six different situations may be encountered, as listed in Fig. 6.11.
When only one end point of a u-v grid node connection is visible, we have to exam-
ine the connecting projection by means of test points in order to determine where the

no. case comment meaning

15! end- point
! @ & ——O is visible @ ... visible node

2nd end-point

2| O-—8—=2 is visible O

. invisible node
3 both points are
@ 7 visible e - visible intermediate
point
both points are
4 o————0 invisible ___ ... visible line element
a test point on the
5 29— &1 ,
u-v line not visible | -—- ... invisible line element

6 Oo-—e—a-O a test point on the

u-v line is visible

Fig. 6.11. Possibilities for the connection of nodes

292 6 Engineering Methods of CAD

Fig. 6.12. Examples of hid-
den-line elimination with the
priority procedure

visibility ends. This testing proceeds in discrete steps, which have to be chosen as a
compromise between accuracy (small steps) and running time (large steps). The same
procedure is required for testing the connection between two visible or two invisible
nodes in order to detect any section of the connecting line that may be invisible (or
visible).

Figure 6.12 shows two examples, which were projected using the two visibility test
procedures described above.

6.1.2.4 Generalization of the Visibility Problem

A visibility algorithm consists of several major steps. Each step provides a particular
mapping, and the total algorithm is a concatenation of such mappings. Consequently,
interposed between the domain of a visibility transformation (the set of 3D objects)
and its range (the set of visible segments), there may exist a sequence of intermediate
representations. A formal definition of a visibility algorithm is possible.

6.1 Geometry Handling 293

Definition:
A visibility algorithm is a quintuple

VA={0, 8§, 1, 2, &}

where

O is a set of 3D objects. A 3D object is defined as a set of coordinates plus a set
of relations specifying the 3D object topology. In general, a topology may be
represented as a tree. “3-dimensional scene” is the root; the nodes are 3D ob-
jects, faces, edges, and start/end points of edges;

S is a set of visible segments in 2D (the result of the hidden-surface transforma-
tions). These segments are the visible parts of the elements of O;

I is a set of “intermediate representations”;

2 is a set of strategy functions which control the sequence of application of all
other functions of the algorithm;

@ Set of “transition functions” = {PM, IS, CT, DT, VT}

where

PM is a function that produces the perspective views (“projective mapping”). Hence,
the domain of PM is 3D, and its range is 2D;

S is a function that calculates the intersection of two graphical items. In 2D the
items are two line segments, in 3D they are a polygon and a line segment;

CT is a function that performs a “containment test” in 2D. CT checks whether a
point is inside a given bounded surface. The result of CT is Boolean. It is “true”
if the point is contained, and “false” otherwise;

DT is a function that performs a “depth test”. DT compares two points and finds
out which one has the greater depth, depending on the point of observation;

VT is a function that performs a “visibility test” for a given surface. VT yields a
Boolean value, “true” if the surface is potentially visible and “false” if the sur-
face is totally invisible.

Using this definition, visibility algorithms can now be formalized and represented
graphically by “strategy diagrams” [GILO78]. However, it is not a trivial task to con-
vert the different algorithmic formulations of visibility-test procedures into a form
that allows them to be mapped onto the generalized scheme. For seven visibility-test
procedures, namely

— Appel’s “quantitative invisibility” method;

— Encarnacio’s “priority” method (Sect. 6.1.2.2);

— Galimberti and Montanari’s “nature” method;

— Warnock’s “scan grid” method;

— Watkins’ “scan line” method;

— Encarnacdo’s “overlay” procedure (Sect. 6.1.2.3); and
— Weiss’ “analytical” method,;

a generalization is possible. Without going into further detail, let us note that such
a generalization is required if one attempts to design and build a special-purpose com-
puter for hidden-line and hidden-surface removal, which is not to be restricted to a
single algorithm [HORNS81].

294 6 Engineering Methods of CAD

6.1.3 3D Modeling

6.1.3.1 Introduction

During the design of a product, many aspects have to be considered, such as:

— function,

— shape,

— manufacturability,
— maintenance, and
— economics.

The design of the shape is a central part of all the activities, as all other aspects
have a significant influence on the shape. Some branches of industry are concerned
mainly with 2D shapes: electronic circuit layout, plant layout, and others. But even
in these applications, the 3D aspect will have to be considered to some extent. For
many applications the “21D” approach is sufficient. The term 21D does not have a
precise definition; it merely indicates that not all aspects of three-dimensional
geometry have to be fully considered. Geometrical arrangements that can be de-
scribed as layers of 2D layouts are called 21D problems. Electronic circuit boards are
a typical example. The third dimension is often indicated merely by an integer identi-
fying the sequence number of the respective layer. In 21D problems, we know
automatically that the individual objects cannot cross each other, nor can they be
folded. Hence, the algorithms can be much simpler and faster than in the fully 3D
case. A different case of “21D” geometry is the design of objects with rotational
symmetry in mechanical engineering; even the design of gearings does not yet involve
full 3D problems, as long it is merely concerned with bodies of revolution with
parallel axes. CAD methods for dealing with 2D and 21D objects were fairly well
established by the end of the 1970s. The same is true for many types of objects in 3D
space, particularly for objects with a single dominant dimension (networks of trusses,
frames, or pipes). Surfaces in space (flat and sculptured) also have a deep and suffi-
ciently broad theoretical foundation, upon which systems have been built. The theory
of 3D objects with unrestricted complexity, however, is not yet fully developed. All
systems that have been developed have certain restrictions with respect to their ap-
plicability, even when they are able to model almost everything by means of approx-
imations.

For computer-aided design of three-dimensional objects, the geometric aspect of
part and assembly specifications is critically important [VOEL78]. Standard drafting
practice suggests that geometric specification should be viewed as a two- or three-
phase process. Initially, a nominal or ideal 3D object — a “shape” — is defined,
typically by a drawing that does not account for tolerances. In the second phase,
tolerances are introduced; at this point one no longer defines a single 3D object, but
rather a class of 3D objects which are functionally equivalent and interchangeable in
assembly processes. Attributes that would be conveyed by notes in engineering draw-
ings are specified in the final phase, or in conjunction with tolerancing.

Engineering drawings are an imperfect medium for the specification of parts.
Because engineers and technicians possess vast stores of pertinent “world knowledge”

6.1 Geometry Handling 295

(the purpose of the device, general mechanical principles, etc.), they usually can ex-
tract from drawings the information needed to make and assemble parts correctly.
Machines — or programs for interpreting drawings — usually cannot. Thus, new ap-
proaches are needed for the difficult problem of precisely specifying (to automatic
manufacturing systems) what is to be made.

It is not hard to devise ad hoc schemes for manipulating geometry in computers,
but these systems lack some basic properties that are essential for fully automatic pro-
duction. For example: a reliable representation scheme should be complete and consis-
tent; every part in a given class should have a representation, and every representation-
should specify exactly one part. None of the industrial graphics systems popular to-
day exhibits these properties.

But there is more to geometric specification than nominal shape description. Any
industrially viable medium must provide means for specifying tolerances, surface
finishes, and similar geometric attributes in a complete and consistent manner. Fur-
ther, a viable system must be convenient for others to use and it must be reasonably
efficient.

6.1.3.2 Wire-Frame Models

Wire-frame models already have a long tradition in modeling 3D objects. Stress and
strain analysis of truss and frame structures was among the first large-scale computer
applications for design analysis. The geometric model for these analyses is im-
mediately suited for graphic representation. The (usually straight) elements of the
structure may be plotted directly after perspective projection of the corresponding
nodes. The elementary geometrical analysis tools indicated in Sect. 6.1.1 are sufficient
for this task. Curved structural elements do not pose any serious additional problems.

The same technique has been applied successfully for plant layout. In many
respects, pipes may be represented as straight or curved lines. Components (vessels,
pumps etc.) can be approximated by a wire frame to some extent for visualization pur-
poses. A cylindrical vessel, for instance, needs only two circles and four straight con-
necting lines in a coarse wire-frame model. However, this approach has its limitations,
where the number of lines in a model becomes more abundant. The perspective view
will then produce a mere mess of lines, from which the observer can no longer
reconstruct a mental model of the three-dimensional situation. The two principal
limitations with respect to visualization are:

— the impossibility of removing lines that ought to be considered as hidden; and
— the lack of contour lines, which result from viewing sculptured surfaces.

Wire-frame models are suited for performing certain geometrical analyses with a
design: for example, the distance of points can easily be retrieved. However, the wire-
frame model can produce no information about surfaces and volumes. Questions of
surface area, volume, weight, or possible interference of some body with another will
remained unanswered. In fact, there is no way besides visual inspection of a number
of perspectives by humans to tell whether the model represents a feasible 3D body or
assembly of bodies.

296 6.1 Geometry Handling

Despite these limitations, we should not forget that many existing CAD systems
are based on wire-frame models, and also that there are many useful applications for
these models in the early phases of design. The simplicity of the geometrical
algorithms (based on points and their connections) lends itself to hardware implemen-
tations, to that the model or the viewing point may be changed in real time under the
control of the operator at a workstation. Many design variants can thus be con-
structed and inspected with a minimum of delay.

6.1.3.3 Surfaces in Space

The next step toward increased complexity is the treatment of surfaces in space.
Depending on the type of surfaces, we distinguish systems for

— flat surfaces;

— sculptured surfaces based on flat surface approximations;
— sculptured surfaces based on patches or u-v grid lines;

— analytic surfaces; and

— combinations of these types.

The approximation of surfaces in space by flat elements has become common
practice in finite-element analysis of membrane, shell, or plate structures. Accuracy
of analysis requires that the surface be broken down into a large number of elements
anyway. The degree of approximation required for the analysis is generally sufficient
for all visualization purposes. For complicated shapes, hidden-line removal is man-
datory but, as only flat surfaces are involved, a large number of visibility-test pro-
cedures are at the disposal of the application programmer. Quite often, a pure surface
test (see Sect. 6.1.2) is sufficient, at least for some suitably chosen projections.

Many applications, however, call for the modeling of smooth surfaces. Typical
such areas may be found in the design of aircraft, ships, and cars. The design task
is generally the smoothing (or fairing) of a previously rough surface approximation.
Various optimization criteria may have to be applied (steady change in curvature,
elimination of changes in sign of curvature, or minimization of some weighted func-
tion of curvature). Only in rare cases can we describe the whole surface by a single
analytical function. In general, the surface has to be composed from patches that join
at their edges. The representation of sculptured surfaces as joining patches in
parametric form,

x=x(Wv,DPhy=y @ v, ph z=2z(u, v, [p))
with ul<u<u2; vi<v<v2
and {p} = patch parameters

has proven to be a most powerful method (see Sect. 6.1.3.5). The patch parameters
{p} are best defined on the basis of values associated with the nodes of the patch (coor-
dinates, derivatives, and curvature).

Different methods for representing these patches can guarantee various degrees of
continuity along the edge (as when continuous curvature is required). Coons’
representation of patches was the pioneering work in this field [COON67]. Coons’

6.1 Geometry Handling 297

patches belong to the Jocal type of surface representation: if some change is made to
one point, which forms the basis of some adjacent patches, then only the immediate
environment of the surface is influenced. Other methods (such as Gordon’s blending
function interpolation [GORD71] are more global: a local change will influence the
surface everywhere. One can notice an increasing trend towards the use of Bsplines
[FORR72], [GORD74].

The elementary operations which ought to be provided by a system that deals with
sculptured surfaces are [NOWCS80]:

— definition and modification of surfaces;

— interpolation; that is, the evaluation of points that lie on the surface between the
nodes of the defining u-v grid;

— computation of the lines of intersection of the surface with an arbitrary plane;

— computation of the lines of intersection of two surfaces; and

— fairing; that is, the determination of a surface that approaches a given rough ap-
proximation according to a specified smoothing criterion.

For sculptured surfaces, as well as for non-convex 3D objects, we have the very
general problem that the edges of faces may be partially visible (parts of the edges
may be hidden by faces of the same or other 3D objects). Hence, for a complete and
accurate visibility test, we have to follow all the edges of all potentially visible faces
and test (almost) @/l points on them to see whether they are hidden by any other face.
The complexity of this task rises dramatically as the number of 3D objects (or the
number of faces of each 3D object) is increased. The performance of 3D object
modeling programs depends strongly upon their strategies to eliminate as quickly as
possible many of the faces against which a point has to be tested. It is the old principle
of “divide and conquer” that has to be used to cut the immense problem into a num-
ber of smaller ones. How the subdivision is accomplished is a matter of strategy, and
represents a characteristic feature of the different visibility-test procedures. In any
case, computer science techniques for sorting and searching are an indispensable in-
gredient of all these methods. The two combined point/surface test procedures de-
scribed in Sect. 6.1.2 are typical examples of the subdivision principle. The principle
has been investigated in greater detail in [CATM78], [COHES80], [DOO__78].

6.1.3.4 3D Solid Modeling

Representation schemes for 3D objects (often called “solids”) should satisfy the
following criteria:

— validity:
‘We require that there exists a real 3D object corresponding to any given representa-
tion. A single line dangling in space, or M. C. Escher’s famous drawings of im-
possible objects, may illustrate the notion of validity by counterexample;
— completeness:
We require that all the operations we provide in a system be applicable to all possi-
ble representations of solids within the schema used. For instance, if hidden-line
removal could be applied to convex solids but not to non-convex ones, we would
consider the scheme as incomplete;

298 6 Engineering Methods of CAD

— uniqueness:
We require that there exists only one 3D object corresponding to any given repre-
sentation. Wire-frame representations may be ambiguous, and hence are not
unique;

— conciseness:
The schema for representation of solids should not contain redundant informa-
tion;

— ease of creation and modification:
In order to minimize the computational effort during interactions with the 3D
model, the internal representation should be as close as possible to the mental
schema that the operator prefers when building or modifying a solid or an
assembly of solids;

— efficiency:
The efficiency of the algorithms operating on the internal representation of solids
depends significantly on that internal representation. Different representations
may be better suited for different algorithms. Hence, it may be advantageous to
jeopardize the principle of conciseness for the sake of greater efficiency, and to
maintain some redundancy in the data model.

The elementary operations which we expect to be available for 3D models are:

— to build a model;

— to modify a model;

— to generate a projective display for area-drawing hardware (gray-scale or colour)
with hidden surfaces removed;

— to identify objects (points, edges, faces, volume elements) in the 3D model by
pointing to their 2D representations within a display;

— to evaluate collisions between separate solids; and

— to compute geometrical and inertial properties (surface area, volume, mass, center
of mass, moments of inertia).

Other operations are desired in various applications:

— generation of manufacturing information;

— treatment of imprecise dimensions (tolerances);

— generation of shadows produced by various light sources;
— representation of light reflections on the surfaces; and

— treatment of translucent solids.

A number of commercial solid modeling systems are listed in Table 6.1. Three-
dimensional modeling systems may be distinguished in various ways. Their funda-
mental characteristics are:

— the representation schema for solids;

— the user functions for building solid models;

— the types of surfaces allowed; and

— the language facilities provided for the user to formulate the modeling operations.

Two representation schemes are commonly used in 3D systems:

— the boundary representation (B-rep) scheme; and
— the constructive solid geometry (CSG) model.

6.1 Geometry Handling 299
Table 6.1. Commercial solid modeling systems
Solid modeling Supplier Country Nucleus Type of
system modeler
ANVIL 5000/ MCS USA CSG/B-REP
OMNISOLIDS
BRAVO 3 (Solids Applicon USA Synthavision CSG/B-REP
Modeler)
SOLIDDESIGN Computervision USA B-REP
(CADDS4)
CADIS-3D Siemens W. Germany Romulus B-REP
CAEDS IBM USA Geomod B-REP
CAM-X 3D Ferranti United Kingdom Romulus B-REP
CATIA SGM IBM USA (Dassault-Syst.) B-REP
CIMPLEX- ATP USA CSG/B-REP
DESIGN
CONCAD 2 Contraves Switzerland Romulus B-REP
EUCLID Matra Datavi- France (CNRS) CSG/B-REP
sion
GEOMOD General Elec- USA (SDRC) B-REP
tric
ICEM Control Data USA Synthavision CSG
CIS-MEDUSA 3D Computervision USA B-REP
MEDUSA Prime USA CIS-MEDUSA B-REP
ME Serie 30 Hewlett W. Germany Romulus B-REP
Packard
PATRAN PDA Engineer- USA HPAT/B-REP
ing
PROREN 2 Isykon W. Germany B-REP
SOLIDS ENGINE Phoenix Data USA OCTREE
(INSIGHT) Sys.
STRIM TV Cisigraph France B-REP
TECH 3D Norsk Data Norway Compac B-REP
TIPS-1 CAM-1 USA University CSG,CELL-D.
Hokkaido
UNISOLIDS McD. Douglas USA Public PADL-2 CSG

The boundary representation scheme is more familiar to the user who has previous

experience with wire-frame models. Each solid is defined by its boundaries. Each
boundary is a (planar or sculptured) surface bounded by edges of an adjacent bound-
ary. Three or more edges join at nodes. The boundary representation is best suited
for generating projective views, as the important elements for this operation (edges
and faces) are readily available in the solid representation. Geometric and inertial
properties may be computed from a boundary representation by means of Gaussian
integration.

The constructive solid geometry representation is based on a two-level scheme. On
the lower level, bounded volume primitives are defined on the basis of half-spaces
(one half-space for a sphere, three for a circular cylinder, six for a square block). In

300 6 Engineering Methods of CAD

Table 6.2. Modeling concepts of selected commercial 3D modeling systems

System Modeling type

Bravo3 CSG (facetted B-rep for interactive use)
Catia B-rep

Cimplex Hybrid (CSG + B-rep)

Euclid Hybrid (CSG + facetted B-rep)
Geomod B-rep

Icem CSG (based on Synthavision)
Medusa B-rep

Patran Hyperpatches

Proren 2 B-rep

Romulus B-rep

Series 7000 CSG (based on PADL-2)
Solids Hybrid (CSG + B-rep)

Soliddesign B-rep

Synthavision CSG

Technovision B-rep (based on COMPAC)
Unisolids CSG (based on PADL-2)

simple cases, such as when only rectangular blocks are used, the half-spaces may be
defined by parameters (like position, orientation, and size) associated with the volume
primitive, rather than being represented explicitly in the schema. On the second level,
these primitives are combined by Boolean set operators (union, intersection, dif-
ference). More precisely, we have to use the regularized form of these set operators
[REQUS82], [TILO80]. Figures 6.13a through 6.13 e illustrate the effects of particular
operators. The principle advantage of CSG is that it guarantees the validity and uni-
queness of the model: a boundary representation can always be derived in a unique
way.

The boundary representation is not suited for input. Most systems (see Table 6.1)
offer volume elements or half-spaces together with the above mentioned set opera-
tions for formulating the model, in a way that is consistent with the internal CSG
representation.

Another important technique for defining a solid is the sweeping operation. In the
most general case, a bounded surface element is moved along an arbitrary trajectory
in space. In most practical cases, the sweeping operation corresponds to a translation
along a straight line, or to a rotation. These sweeping operations are particularly
useful for modeling manufacturing processes.

Solid modeling systems generally allow one of the following classes of surfaces:

— Planes:
although most industrial products have curved surfaces, solid modeling based on
planar surfaces has a wide range of possible applications. Finite element analysis
of a 3D object is generally based on a model, which represents the 3D object by
a large number of small blocks (pyramids, for instance), thus approximating the
surface in terms of numerous planes. The same principle of approximation may

6.1 Geometry Handling 301

Fig. 6.13a—13e. Set operations in 3D modeling. a An im-

possible assembly of two blocks. b. The intersection

operator applied to two blocks. ¢ The effect of the

regularized difference operator. d The result of the dif-

ference operator. e The alternative difference of the same
€ blocks

be generalized to other applications: display with hidden-line or hidden-surface
removal, or geometric and inertial analysis. Such approximations may require
hundreds or thousands of flat patches to be treated. However, the algorithms for
treating planar surfaces are simple, well known, and fast. Some care must be taken
not to show those lines between patches that result from the method of approx-
imation but that do not exist in reality.
— Quadric surfaces:

quadric surfaces are defined by a second-order polynomial in the three spatial
coordinates. Quadric surfaces are very popular in solid modeling systems. Most
systems, however, do not treat the general quadric surface, but are restricted in
some way. Spheres, cylinders, and cones (and planes, of course) are the common
quadrics. Some systems provide the facility to handle toroidal surfaces as well.
The need for treating the torus arises from the many practical occurrences of this
shape.

302 6 Engineering Methods of CAD

— Sculptured surfaces defined on a u-v grid:
sculptured surfaces, as the kind popular in surface-handling systems (B-spline pat-
ches, for instance), so far play an “outsider” role in solid modeling. The
algorithms for performing the required operations in 3D modeling have not yet
béen developed to a state of satisfactory completeness and efficiency. In particular,
the combination of solids defined by different types of surfaces (some by
quadrics, others by patches) is an as yet unresolved problem.

— Super-quadric surfaces:
the theory of super-quadrics has made some progress [BARR81]. Super-quadrics
are generalizations of quadrics. For simplicity, we can use a two-dimensional space
to illustrate this generalization.
While

X=acosd;y=bsind
is the parametric representation of an ellipse, the superellipse
x=acos® §; y=bsin®

represents a wide range of two-dimensional shapes, from a slightly rounded rect-
angle (with sides a and b) to an image which looks like an “X” (or two thin sticks
of lengths a and b crossing each other perpendicularly at their mid points). Super-
quadrics can describe solids of relatively complicated shape by means of very few
surfaces, at least in an approximate way. They also have the potential to describe
slightly rounded edges on an otherwise rather square body. Superquadrics have
not found their way into practice.

— Fillets and chamfers:
Most technical objects have edges that deviate only slightly from the ideal
mathematical shape. Fillets and chamfers are typical examples of such deviations.
Two approaches may be taken to handle these features: the “correct” representa-
tion based on the same techniques as the overall solid model (boundary represen-
tation or constructive solid geometry) or the approximate representation as an at-
tribute associated with the edges of a boundary representation. In the latter case,
these deviations from ideal geometry cannot be treated by the same overall
algorithms. They can be used to modify the displayed picture locally in a manner
suitable for perception by a human. But their treatment in hidden-line or hidden-
surface algorithms, as well as in geometric or inertial computations, is incomplete.
Efficiency considerations nevertheless call for such a simplified special treatment
of minor local modifications of the geometry.

Historically, solid modeling systems were first oriented towards batch data pro-
cessing. This was due to the large amount of storage and computer time required for
analyzing 3D models. Consequently, the original language interface for the user was
either a package of subroutines or a command or programming language. Even today,
3D model analysis is typically a batch job requiring several minutes of fast processor
time for non-trivial problems. For building the model, however, graphic interaction
is becoming attractive. Hidden-line removal is generally suppressed during model
building. The resulting picture in the building phase very much resembles a wire-
frame model, showing all (hidden and non-hidden) lines; but the data structure being
built represents the correct 3D model.

6.1 Geometry Handling 303

Fig. 6.14. A perspective view of a 3D solid model (line drawing)

The computer graphics literature gives examples of computer generated pictures
of three-dimensional objects, that approach the quality of color photographs. Light
source reflections on the surfaces, translucency, and shadows significantly contribute
to this effect. Such pictures may be generated on color raster display devices using the
“ray-casting” technique. With this technique, an area of the projection plane is divid-
ed into a number of pixels (picture elements); lines of sight are followed from the an-
ticipated position of the eye to each one of these pixels; the point of intersection of
this line of sight with the first surface is then analyzed by continuing along the lines
to all light sources; any light source that is not hidden by interfering other surfaces
will contribute to the intensity and color of this visible point. Similarly, lines of sight
are followed through translucent material. For high resolution images (for example,
1024 by 1024 pixels) the computational effort is generally beyond that which can be
justified in a CAD environment.

Figures 6.14 (courtesy of Ferranti Cetec Graphics, Ltd.) and 6.15 (courtesy of Ap-
plicon) show two examples of projective representations of solid models. Other ex-
amples will be given in Chap. 8.

6.1.3.5 Mathematical Description of Curves and Surfaces

The principle of the mathematical description of curves and surfaces is an instruction
for generating these objects from a rather small set of data values. Such instructions
require only little storage space and provide the additional benefit that important
properties like tangents and curvatures may be derived from these data values exactly
by applying rigorous mathematical formulas.

Curves and surfaces are represented mainly in parametric form as so-called
parametric curves or parametric surfaces:

x(u)
Cw= |y
z(u)

304 6 Engineering Methods of CAD

Fig. 6.15. A perspective of a 3D solid model (color raster graphics, shaded picture)

x(u, v)
S(u, v) = | y(u, v)
z(u, v)

where C and S are the two-dimensional or three-dimensional point vectors defining
the curve or surface, respectively, in terms of the vector coorrdinates x, y, and z (the
latter for three-dimensional objects only) while the parameters u (and v, for surfaces)
vary continuously over a certain range of values. The shape of these curves and sur-
faces is controlled by certain characteristic contro! points P.

This representation permits the unambiguous and compact definition of multi-
valued objects like spiraling curves or toroidal surfaces. The transformation of
parametric curves and surfaces is easily achieved by transforming the control points.
The parametrization is, however, not unique; different parametric representations
may define the same geometric object (the parameter values associated with each
point on the object would of course be different for each parametric representation).

The parametric descriptions of curves and surfaces are based on control points.
In general, each control point is multiplied by a weighting function which depends
on the parameters. This weighting function determines the influence of the related

6.1 Geometry Handling 305

control point for each parameter value. The sum of these weighted control point vec-
tors produces the final point:

cw= 3 P
i=0

with the control points

Z;
and the weighting functions W;(u);

S(u, v) = E Z Pij'wj(u)'vj(v)
i=0 j=0

with the control points

Zij
and the weighting functions Wj(u) and V;(v).

This kind of weighting function for surface definition consists of a product of the
separate weighting functions in u and v.

The definition of the weighting functions determines the shape and the behavior
of the resulting curve or surface. Two basic goals of parametric curve and surface
representation may be distinguished: interpolation and approximation. In the first
case, the curve (or surface) will pass through the control points, in the latter case it
will not do this. We now present a brief description of some important classes of
parametric representations for curves. This can be extended easily to surfaces by using
the multiplication method for the weighting functions.

Lagrange interpolation

n
Cu)=) Py-L; (u) withO=<u=<1

i=0
) “u-n-k
with L; ,(w) = [] —
k=0 i—-k
k+i

The behavior of these curves is as follows:

1) The control points P; are interpolated with parameter u = i/n

2) Every control point has global control upon the curve: changing one control point
influences the whole curve.

3) The degree of the curve is n. The curve tends to oscillate for increasing n.

4) The concatenation of two Lagrange curves has, in general, zero-order continuity.

306 6 Engineering Methods of CAD

Cubic-Hermite interpolation

1 1
Cw= Y P;-Hjw+), T;-H(uw with 0=u=s1
i=0 1=0

This scheme takes tangential conditions into account. The tangents are Ty at Py
and T; at P;. The weighting functions are:

Ho(u) = (1+2u)- (u—1)2
H,(u) = 3—2u)-u?
Uy(u) = u-(u—1)°
Uj(u) = (u—1)-v?

The behavior of these curves is as follows:

1) The control points Py and Py are interpolated.

2) The tangents are interpolated as well; hence, we have a smooth change between
the two control points.

3) The concatention of two Cubic-Hermite curves has, in general, first-order con-
tinuity.

Bézier approximation
n
Cw) =) Pi'B;,(w with 0=us1
i=0

n .
with B; y(u) = (_)-(1 —u)"'u' (Bernstein base functions)
i

The behaviour of these curves is as follows:

1) For every particular parameter value u of the domain the resulting point is a con-
vex combination of the control points. The curve, therefore, lies entirely within the
convex hull of the control points.

2) The first and last control points are interpolated.

3) The tangent vectors of the curve in the first and last control points have the direc-
tion of the related polygon segment (the direction from the end points to their im-
mediate neighbours).

4) Two Bézier curves may be concatenated with first-order continuity.

5) Every control point has global control (influences the entire curve).

6) The degree of the curve is n and the curve is variation diminishing.

7) The curve could be evaluated recursively with the help of the algorithm of de
Casteljau.

Bspline approximation

This class of curves possesses great flexibility in the definition of the weighting func-
tions. A vector of parameter values u (called the knot vector) (uy, uy, ... 1) with

6.1 Geometry Handling 307

u;=U;, is used for the recursive definition of the weighting functions. The length
and the structure of the knot vector depend on the desired behavior of the resulting
curve.

n
Cu)=) P;*Ni(u) with y=us=sy
i=0

with
No) = 1, if uefuy, u;,4]
N?(u) = 0, otherwise

u-—uu; u; —u

r i r—1 i+1+1 r—1

Ni(u) = —N; (W)+—————— Nji4
Ujpr— U Ujpr41—Uipq

The behavior of these curves is as follows:

1) The parameter domain is determined by the first and last knot.

2) The parameter range between two adjacent knots generates one segment of the
curve.

3) The degree of the curve is independent of the number n of control points and the
curve is variation diminishing.

4) Every control point has local control upon the curve (influences only its
neighbourhood).

5) For every particular parameter value of the domain the resulting point of the curve
is a convex combination of the affected control points for the segment
u;Su=u;, . Each segment of the curve lies, therefore, within the convex hull of
its related set of control points.

6) The task of concatenating two Bsplines is reduced to the problem of defining a
proper knot vector for the joint set of control points.

7) The knot vector consisting of k times 0 and k times 1 defines weighting functions
which are identical to the Bernstein weighting functions of degree (k—1) for a
Bézier curve.

Approximation with rational curves

P;-Ri(u)
0

=

C(u) ="

I ™=

[=}

w;-R;(u)

o

where the R;(u) are polynomial functions in u.

Depending on the chosen functional basis for all of the polynominals as either
monomial, Bernstein, or Bspline the resulting curve is called a rational, rational
Bézier, or rational Bspline curve.

The general behavior of these curves is as follows:
n

1) The common denominator Y, w;-R;(u) could be interpreted as
i=0

308 6 Engineering Methods of CAD

division by a homogeneous coordinate (see 6.1.1). Therefore, the curve could be
treated as a homogeneous four-dimensional non-rational curve:

« [P
Cw =Y [i} Ri(w)
i=o LWi
This also fits with the transformation schema which is in fact a multiplication
of the homogeneous coordinate vector by a 4x4 matrix.

2) The set of exactly describable curves grows with this very powerful method. A
non-degenerate conic (ellipse, parabola, or hyperbola), for instance, could be rep-
resented as a rational curve of second degree.

As an example, let us investigate a rational representation of a circle:

1—u?

2u
0
1+u?

C(u) =

C(u) in fact represents a circle which is proved as follows:

22 2
x(u)2+y(u)2+z-(u)2= Gy + 2w

0=1
(1+ud)? (1+u??

For more detailed information see references [BOEHS84], [KLEM86], [FORR68],
[FAUX83], [TILL83], and [GROS57].

6.2 Numerical Methods

6.2.1 Introduction

In the late 1960s and especially in the early 1970s, a tremendous development of
numerical methods for design applications took place. This rapid development
resulted from a feedback process involving both computer technology and engineer-
ing sciences:

— computers became increasingly powerful, and cheaper as well. Thus methods
which required many computations and a large memory could now be applied at
moderate expense, while in previous decades hundreds of man years would have
been required to do the same computations manually; and

— the successful application of numerical methods led to intensive research and the
goal of making more and bigger problems tractable by these methods.

Numerical methods have had their greatest impact on the analysis part of the
design process. The most widely known group of methods are the finite element
methods; they are primarly used to determine stresses and deformations in structural
components for prescribed load cases. Finite difference methods play a dominant role
in determining the forces which are exerted by fluids (gases or liquids) upon struc-
tures. Many methods have been developed for the simulation of dynamic processes
(both continuous and discontinuous). Optimization methods may to some extent

6.2 Numerical Methods 309

replace human judgment in the analysis-synthesis-evaluation loop of the design pro-
cess. So far, however, their applicability is restricted mainly to variational design (see
Fig. 3.13). Whether deterministic optimization methods (as opposed to artificial in-
telligence methods) are suited to play a major role in the synthesis process (con-
tributing to the design of a schema rather than determining optimal values of at-
‘tributes in the schema) is still an open question.

The progress achieved in many industries (such as aerospace, nuclear, electronics,
and armaments) would not have been possible without the integration of numerical
methods into the design process. However, the problems increased along with the
computing power. For many problems, even today’s computers are too small and too
slow.

6.2.2 Finite Element Methods

Finite element methods (FEM) are most widely applied in structural analysis,
although applications in fluid flow and thermal analysis are also quite successful. A
tremendous literature on finite element methods is available. One of the fundamental
sources is [ZIEN77]. It is not our intention to provide a thorough introduction to the
numerical method of finite elements. In this respect, the reader should study the rele-
vant literature, such as [GLOW79], [GALL75], [PILK74]; instead, we will concentrate
on the question of embedding finite element analysis methods into the CAD process.
The importance of finite element methods for CAD stems from the fact that a num-
ber of general-purpose finite element programs has become commercially available,
and a large community of engineers has obtained the necessary expertise to apply
these programs to their problems. Detailed knowledge of the finite element theory and
the associated mathematical methods is not required for most practical applications.

In order to imbed finite element programs properly into the design process, the
availability of such a program alone is not sufficient. Figure 6.16 shows a family of
programs, which is a prerequisite for successful applications.

— As a first step, based upon the geometrical definition of the object to be analyzed,
a finite element mesh must be generated. For small problems this mesh may be
prepared manually; but for problems with more than a hundred elements or so,
automatic mesh generation by a (usually batch) program is advised.

— In most cases, inspection of the generated mesh by experienced users will indicate
that the first mesh is not completely satisfactory. The user may want to refine the
mesh in certain areas to improve the resolution and accuracy of the analysis; he
may want to make the mesh coarser in irrelevant areas for reduction of the com-
puter costs, or he may want to add geometrical details which are significant for
the structural analysis but could not be derived automatically from the geometri-
cal data in the primary data base. This modification of the finite element mesh
is best done at an interactive graphics terminal.

— Material data and data describing the load cases must then be added to the finite
element program data base.

— Finite element programs usually require significantly more computer resources
than their input generators and post-processors. They are typically large batch

310 6 Engineering Methods of CAD

FEM mesh editor

RA

FEM input v
generator

FEM mesh
generator FEM mesh
- ial FEM analysis
primary material material . program

data properties
FEM load load data
generator v

deformations

stresses

presentation
post processor

data base

geometry
material data
load data

Fig. 6.16. Program structure for
FEM applications in CAD

TE

programs which may consume hours of computer time, depending upon problem
size and complexity. It is common practice to have the input generators and the
post-processor near the design engineer and to submit the finite element analysis
job to a large remote computer (see Sect. 4.3.4).

— Presentation of the results for complex structures is in itself a nontrivial task. For
interpretation and evaluation of the results, the user may want to see certain parts
of the structure from various view points, with the resulting deformations and
stress representations superimposed. Here again, interactive graphics has become
a fruitful tool.

Quite often, the interpretation of the result leads to the need for further analysis
of the same structure with a modified mesh and/or modified load case, in a repeated
application of the above steps, until the results are considered reliable. If the results
are unsatisfactory in the light of the specification, another design iteration will be re-
quired, which is likely to produce changes in the geometrical data or material data
of the primary data base. The finite element analysis will have to be repeated, starting
either from a new input generation or perhaps from a modification of the obsolete
finite element data base. The latter procedure may be cheaper, but it introduces the
risk of inconsistencies, along with the problems of data validity which were described
in Sect. 3.3.5.1.

Programs for generation of the primary input are usually closely related to the ob-
jects to be analyzed. They are tailored to the particular application and to the schemas
used to represent geometry, loads, and material information in the primary data base.
They are generally not portable to other design objects or companies. Programs for
interactive mesh modification (which in medium-size problems may also be used for
mesh generation from scratch) and presentation post-processors are commercially
available for a number of finite element programs. Quite a few of them provide inter-
faces for more than one such program.

6.2 Numerical Methods 311
Table 6.3. Comparison of general-purpose structural mechanics programs
DISCRETIZATION [TYPES OF| LOADING TYPES OF COMPUTER SOFTWARE
KEY: METHOD CEOMETRY| CASES MATERIALS REQUIREM. ASPECTS
+ = YES . E
- =NO 9 | LINEAR 8 =
U = undef ined LJI.I | ELASTIC 5 EJJ
z ~- 0 . X 14
a Jw g a > W w
ow = <! X o ¥ 0 9| oL
wo ~ € -~ < z ~ w wf=L o<
—“Z < o W Ho T Ol wa Q ala= 1>
ruwoe ZE | Zi= =< N = < Ol=ruUiF
werzo |JJa Zigw - oz HeE =L o 3 IOz >w
= nwew |[<<Wg OOk glu=s= OO0 VINY B KEOW (<DL WO
r4 LIF |2Z>Z = Tl U Zl<k < Wo viuulz oRnZuwlLeZe oo
i} Loz [DOXO Wk >ul = Ududw e o< ou~><83
x WrekErm a3 WoEXeoL Lli< ol =<0l 2 ODiE=O0<iE > >
i =0O< wuow QOEZ< (w0 _ Tul Jw>u onor< WODK "moma
Q ¥ 0o |2z 2Z o0 wZ jorxooaql-o 0o = X 000UuU|-0D
<0 Jw & (Wi _WouEFo~OkOkWsI|Zz1 - ¥ WLzl < OXE</z @ @ -
JmQOFkE<EEZzZ|~ Wy <jxox> |~QF-XWo Z000| ¥ ¥0 ErkKx
LWLz UWEemkHFWoZEREFOWDL|Jd™ WWO|O OO L -FEUWECY EE
WOX [ZHEIDOOQKUES<WOR>ZE|IZO<IC] Z - -Z|0 WOOKHunEa v®
H>HMWHOOE FYXOC-Z0Z<<ulOw JF <|Z w00<| & xOJZ|WE] - =
PROGRAM OIZLULUALOf-NAMOLLFONR<IUHFZEWOd~ ZZZE| L c 00Kl aD
NAME Tt 111)12222(22222[2 3333 3333334444
12345678|9912|345678|98123/45678|89 B123] 4567888123
1 AC5B-A UUUUUUUU[-+-=[+---+-~[+4+++-]----- +2---Ft----]---4+4-
2 ADEPT |- - - - R L b i +U-=--l-4-=---76~--AT ----[4++UU
3 AMSA 20 - - - - AR L LI R -~3BUUUFS ------+U-
4 ANSYS L e 2t A2 R I A E U ++ +4|- -+ 4+ 4[-581-+F +++4[+++4+4 -
S ASAS - - === == L I B + + - - - [+ -+ + +|-32UUUF =-~=-=-=-}+4+-4+-
B ASKA R e A TR SR 2 £ I R R S T A E R N P - 2N B T AR [S S R A R
7 BASY b — = m - T N T T e S - 1IBUUUF ~-~---j+ -4+ -
8 BERSAFE +--=-==--- b+ A - - -~ + -~ -+ -+ + 4@ 0+ +FE F A -k~ -
9 BOSOR 4 i e e L L A e e F641 -+F4 -4+ -4+
1@ COSA I b -ttt -t - -3 -B4] -+ - -+
11 DYNAS UUUUUUU+#+--F+ 4+ --==----UFFBIB-+F =~-+4-|4++++-
12 EASE 2 L ++ - - - - - - - - 3B] - +|F/A+ -+ ~|+++ -+
13 ELAS 75 t-- - - td 4+ttt - +20--UF4 -+ +-|-4~+~4
14 FARSS R IR L R B A e L I - 201 - 4|F4 + 4+ 4|+ + -4 -
15 FESAP L i L O e L T e -8B~ 1|F4 +++ |-+ -~ -
16 FLHE - - - LRI T A e il ~BBUUUF ----1~+U+-
17 ISOPAR SHL - - - - - R R AR e e i -850 -+HF +----+-4 -
18 ISTRAN/S + - - - - - I e Ll AR CE I R |7 N i i L
19 KSHEL @ |- = = - - - +-- -+ -+ +++ -+t 4 -=-=-F[+3F-+~-|F ---=|-4-4
20 MARC t---- - t++ -+ -t -+t--|--+-+|-6BUUUF +--~-+U-~
21 MINIELAS t--m- - +r Pt -t - - -3+ 32 - -[F4 - -~ —[-~
22 NASTRAN + - - - - - - tr+ 4+ + -+t H|--+-+|-EBU-+F +++-|++
23 NEPSAP - - - - L S + 4+ + 4+ +|- -+ - +[-4512+ +|F +++-|++
24 NONLIN 2 t-- - R b e L el S Y A B (VB el i
25 NONSAP - - - L e O Tt - I S S e N EN L Rl | P I
26 NOSTRA - - - .- 44 ---- - + 4+ -~ - 4|-=-~--+[-286~-+|F ++ + +p+
27 PAFEC 78 - - - - B A e e L e + 1B - +F +++ -~
28 FRAKSI I L I 4 - - =l ===+~ 334 -+F4 -+ -+
28 REXBAT - L 1 [I 2T IR SRS E - 6518 +[F 4+ + 4+ - |++
30 SABOR/DRASTICEB|+ ~ = + - = = = =4 =]+ =+ + —~|+ + = ~ —|+ + 4+ - +{3 4513 | +|f -+ + - [+ +
31 SAMBA R I R i e L e - 241 - +JAL - -3 -+ 4+ -
32 SAP IV L R I A A A C R A R 2 - 4818 - +|F4 - - - -|+ + +
33 SATANS i il e e b e e e et BN 13 e I 4
34 SESAM 69 - - - - - - +++Ht - -t - - =-=-=-+|-40 + + +|F4 - - - - -+ + -
35 SHORE ~ et e el -ttt - -t -~ 4]--+---621] ++|F5 - -+ + 4+ -+ -
36 STARDYNE A R ++ -+ttt - - - -3 4++F +4++-+++-+
37 STARS mmmmd - -F -ttt -+ A -4+ UUUUIF +=-+-f++-UU
38 STRIP B I 44+ -+ - - - - + -4 - ---+-+{-64+U+[F4 + + - -+ + + + -
39 TEXCAP L e I A A S L A LA Al -2580 - +{F4 + -+ —-[+ + -+ -
40 TIRE St - - - e e L e e nd L LR TN URR 77 Sl E I
41 TITUS I L R A Tt | ~27UU+|F -+ + -]+ + -
42 VISCEL - - L e T L e -2B815~-+|F 4 -+ =]~ + +
43 ZP 26 - - - - R Y + + -4 -|--4+-4[+08---|F4 + 4+ |-+ -

312 6 Engineering Methods of CAD

Many finite element programs were developed for application in a limited environ-
ment only. The flexibility of the finite element method, however, led to the develop-
ment of a market which has been well established since the early 1970s. Some of the
finite element programs which have found international distribution are summarized
in [FENY73]. Some of them are well known in the CAD community: these include
ANSYS [SWANO00], ASKA [SCHR72], NASTRAN [MACN72], MARC [AYRE73],
SAP [BATH73], and STRUDL-II [NELS72]. The summary of 43 general-purpose
structural mechanics programs shown in Table 6.2 is taken from [RUOF74] and
demonstrates the predominance of the finite element method for general-purpose
structural mechanics.

In the 1960s and until early in the 1970s, the development of finite element pro-
grams was at least partly concentrated in specialized research institutes. Comparative
reviews and conferences about recent developments were quite common. Since then,
many of the better-known programs are supported by and commercially available
from various software houses or computer manufacturers. Reliable and up-to-date in-
formation about the actual power of particular finite element programs should be ob-
tained from the organizations that maintain these programs for sale, rent, or remote
use (software houses, computer manufacturers, or computer networks).

Flexibility is the advantage of the finite element method. Thus, expertise obtained
through the analysis of one type of structure is immediately helpful for other struc-
tures. The most widely used type of analysis is static analysis, based on the linear
theory of elasticity. Problems with several times ten thousand degrees of freedom are
not unusual in static analysis. Dynamic analyses are also quite common. Because
these require more computer power, the structural model is generally condensed to a
smaller number of degrees of freedom (up to several thousand). Many programs sup-
port the analysis of free vibrations, transient response to time-varying loads, and
power spectrum analysis for random excitations (earthquake loads, for instance).
Because the individual finite element programs do not overlap completely in their
capacities and requirements (in terms of analysis capabilities, library of finite element
types, users’ convenience, computer resource requirements), many organizations em-
ploy more than one finite element program.

6.2.3 Finite Difference Methods and Other Methods

As with finite element methods, this book does not intend to initiate the reader into
the numerical aspects of finite difference methods. The reader is referred to the exten-
sive and easily accessible literature on this subject. Finite difference methods are
generally based on approximate representations of partial differential equations,
while finite element methods are commonly derived from integral representations of
the problem. Finite difference methods are presently used in more domains than finite
elements. They are often related to the determination of loads. Examples of domains
of application are:

— fluid dynamics (determination of pressure fields);
— thermodynamics (determination of temperature fields); and
— neutron physics (determination of radiation fields in nuclear reactors).

6.2 Numerical Methods 313

However, finite element methods have also begun to spread into these domains
(see, for instance, [HUGH79]).

The variety of finite difference methods is larger than that of finite element
methods. There are several reasons for this. One is the variety in the types of underly-
ing differential equation (the Navier-Stokes equation, the Poisson equation, and the
Stefan-Boltzmann equation are used in the above domains). Another reason is the
greater dependency of finite difference formulations on geometry. Finite difference
programs which are suited to solve fluid dynamics problems in rectangular boxes are
not in general applicable to the same problems in cylindrical geometry or in networks
of pipes. As a consequence, <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>