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Foreword

Almost half a century has elapsed since the demand for money began
to attract widespread attention from economists and econometricians,
and it has been a topic of ongoing controversy and research ever since.
Interest in the topic stemmed from three principal sources.

First of all, there was the matter of the internal dynamics of macroe-
conomics, to which Harry Johnson drew attention in his 1971 Ely
Lecture on “The Keynesian Revolution and the Monetarist Counter-
Revolution,” American Economic Review 61 (May 1971). The main
lesson about money that had been drawn from the so-called “Keyne-
sian Revolution” was — rightly or wrongly — that it didn’t matter all
that much. The inherited wisdom that undergraduates absorbed in the
1950s was that macroeconomics was above all about the determination
of income and employment, that the critical factors here were saving
and investment decisions, and that monetary factors, to the extent
that they mattered at all, only had an influence on these all important
variables through a rather narrow range of market interest rates. Con-
ventional wisdom never goes unchallenged in economics, except where
its creators manage to control access to graduate schools and the jour-
nals, and it is with no cynical intent that I confirm Johnson’s suggestion
that those of us who embarked on academic careers in the ’60s found in
this wisdom a ready-made target. University faculties were expanding
at that time, so rewards for hitting that target cleanly were both vis-
ible before the event, and quickly available after it, particularly when
the weapons employed were those provided by then rapidly developing
computer technology. Seldom can a novel hypothesis — in this case
that the demand for money is a stable function of a few arguments —
have been better calculated simultaneously to undermine established
beliefs and to exploit newly available technology. Small wonder that
studies of the demand for money flourished in the academic journals.
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But second, in the late ’50s - early ’60s there was a new audience for
monetary research outside of the academic community. The relaxation
of war-time and post-war controls on economies in the 1950s, and the
high employment levels achieved during that decade, began to expose
monetary policy to new scrutiny. In Britain, the Radcliffe Committee,
in the United States, the Commission on Money and Credit, and in
Canada, the Porter Commission, all undertook wide-ranging investiga-
tions of the scope and strength of monetary policy at around this time.
Though the just beginning academic controversy about the interaction
of the supply and demand for money and its effects on output and
prices, in which demand for money studies stood at the very centre,
was low on the agenda of all of these bodies, they could not ignore it,
and their work helped to draw public attention to it.

Third and finally, though it was not readily apparent at the time,
the mid-1960s saw the onset of a great and more-or-less worldwide
inflation which was to last for the next quarter of a century. This would
in due course destroy the international monetary system created for the
post-war world at Bretton Woods, force a system of flexible exchange
rates on the western economies, and provide them with their principal
macroeconomic policy problem of the 1970s and ’80s. The fact that this
inflation, like all the others that had gone before it, turned out to be
largely monetary in nature was the final factor ensuring the demand
for money function a place of lasting importance in macroeconomic
research.

For a while indeed, in the early 1970s, it almost looked as if a new
conventional wisdom might impose itself on macroeconomics, in which
the central issue was the behaviour of prices, and the influence of the
quantity of money thereon was the crucial factor. Since the latter in-
fluence was thought to be transmitted through a mechanism in which
the demand for money function was a critical link, the theoretical un-
derpinnings of, and empirical support for, this relationship inevitably
attracted considerable attention. And of course the same internal dy-
namic described by Johnson that had undermined Keynesian macroe-
conomics in the 1960s soon got under way. Critical attention is the
natural consequence of success for any economic doctrine, and a fresh
cohort of academics, looking for ways to make their own mark turned
their attention to the above-mentioned story, and it proved to be all
too easy to find weaknesses in it.

Crucially, careful empirical scrutiny showed that the relationship
was not quite so well supported by the data as it had initially seemed
to be. In particular, the very progress of the inflation that had lent
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so much importance to the demand for money function, and policies
that relied on it, provoked institutional developments that undermined
its stability. Even to give precise empirical content to that deceptively
simple word “money” turned out to be extremely difficult and contro-
versial. And as new econometric techniques developed, old empirical
truths did not always survive their application. But, the implications
of all this were not that money, after all, did not matter. Rather they
were seen to be, first that its role in the economy was a great deal more
complicated than had previously been thought, and second that this
role was also likely to be subject to the effects of ongoing institutional
change that would need continuous monitoring by anyone interested in
the functioning of the system.

There is no need to go into more detail about all this in this brief
Foreword. In what follows, Apostolos Serletis has provided his readers
with a comprehensive account, not just of the current state of play in
the field, but also with a sense of how it got there, and where it is
likely to go next. He begins with a brief exposition of macroeconomic
theories, showing how the demand for money function fits in not only
to the old-fashioned short-run IS-LM model that underlay early work
on the topic but into more modern models, both long and short run
as well. He then describes the theoretical literature on the demand for
money function, beginning with its origins in the pre-Keynesian liter-
ature and proceeding to the formulations used in the latest theoretical
models. He goes on to provide a wide-ranging survey of the principle
econometric techniques that have been and are being used to bring em-
pirical discipline to the area. And, as the final chapter shows, he treats
the whole area as a field in which research is in progress, rather than
as a collection of established truths.

Here, then, is a book which will be valuable to anyone wishing to
get up to date with the state of play in this area, and, more important,
to anyone looking for a starting point for further work of their own.

David Laidler,
Bank of Montreal Professor
University of Western Ontario



Introduction

The purpose of the second edition of The Demand for Money: Theoret-
ical and Empirical Approaches, is the same as that of the first edition.
That is, to provide an account of the existing literature on the de-
mand for money, to show how the money demand function fits into
static and dynamic macroeconomic analyses, and to discuss the prob-
lem of the definition (aggregation) of money. In doing so, it shows how
the successful use in recent years of the simple representative consumer
paradigm in monetary economics has opened the door to the succeeding
introduction into monetary economics of the entire microfoundations,
aggregation theory, and micro-econometrics literatures.

A stable demand function for money is a necessary condition for
money to exert a predictable influence on the economy so that control
of the money supply can be a useful instrument of economic policy. As
such, the notion of a stable money demand function appears to require
that money holdings, as observed in the real world, should be pre-
dictably related to a small set of variables representing significant links
to spending and economic activity in the real sector of the economy.

Prior to 1973, both the theoretical derivation and the econometric
form of the money demand function were considered settled, and the
evidence was interpreted as showing that the money demand function
was stable. This evidence, occurring as it did in a climate of worsening
inflation, convinced the Federal Reserve to give emphasis to monetary
aggregates targeting. After 1973, however, the standard money demand
formulation performed poorly, showing inaccurate forecasting ability
and parameter instability — both of which remain largely unexplained
today despite extensive research devoted to determining the reasons for
this poor performance.

In trying to explain what happened, economists in addition to re-
opening the pre-1973 agenda of empirical issues (mainly concerned with
the inappropriate specification of the original function and the choice
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of dependent and explanatory variables), pointed to financial innova-
tions (and to a lesser extent regulatory changes) which have led to the
emergence of new assets and the changing of the relative degrees of
‘moneyness’ possessed by the various assets. A review of the vast lit-
erature devoted to these issues [see Edgar Feige and Douglas Pearce
(1977) and John Judd and John Scadding (1992)] reveals that these
studies were largely unsuccessful in explaining the instability in money
demand after 1973.

There is another problem with this literature, and this is that the
many studies of the demand for money (and of the influence of money
on the economy in general) are based on official simple-sum mone-
tary aggregates. There are conditions under which such aggregates are
appropriate, but if the relative prices of the financial components that
constitute the aggregates fluctuate over time (as the evidence suggests)
then simple-sum aggregation will produce theoretically unsatisfactory
definitions of money. The problem is the incorrect accounting for sub-
stitution effects that simple-sum aggregation entails, and the result is a
set of monetary aggregates that do not accurately measure the actual
quantities of the monetary products that optimizing economic agents
select (in the aggregate).

Recently, attention has been focused on the gains that can be
achieved by a vigorous use of microeconomic- and aggregation-theoretic
foundations in the construction of monetary aggregates. This new
approach to monetary aggregation was advocated by William Barnett
(1980) and has led to the construction of monetary aggregates based on
Erwin Diewert’s (1976) class of superlative quantity index numbers —
the most recent example is Richard Anderson, Barry Jones, and Travis
Nesmith (1997). The new aggregates are Barnett’s monetary services
indexes (also known as Divisia aggregates), and Julio Rotemberg, John
Driscoll, and James Poterba’s (1995) currency equivalent (CE) indexes.
These aggregates represent a viable and theoretically appropriate alter-
native to the simple-sum aggregates still in use both by central banks
and researchers in the field.

This new literature is actually an ongoing one that has only just
begun to produce empirical results worthy of the effort required to un-
derstand it. The main research lies in two areas — the construction of
monetary aggregates that conform to the specifications of systems of de-
mand theory and the estimation of systems of monetary asset-demand
equations in which the restrictions of demand theory are incorporated
in such a manner as to assure consistency with the optimizing behavior
of economic agents. I think that this new literature suggests answers to
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a number of problems raised over previous studies of the demand for
money. Most important, I think, is the idea that traditional measures of
money and log-linear money demand functions are simply unbelievable
in the volatile financial environment in which we find ourselves.

My aim in this textbook is to discuss the problem of the definition
(aggregation) of money and to show how the successful use in recent
years of the simple representative consumer paradigm in monetary eco-
nomics has opened the door to the succeeding introduction into mon-
etary economics of the entire microfoundations, aggregation theory,
and microeconometrics literatures. In particular, the book will illus-
trate how a simultaneous-equations monetary assets structure both fits
neatly into the new microeconomic- and aggregation-theoretic approach
to the definition of money and provides a structure that can be used to
measure income and interest rate elasticities as well as the important
elasticities of substitution among financial entities.

Although this text has undergone a major revision, it retains the
basic hallmarks that have made it the best book on money demand:

• A microeconomic- and aggregation-theoretic approach to the
demand for money

• Focus on issues pertaining to the idea that traditional measures of
money and log-linear money demand functions are inappropriate for
monetary policy purposes

• The presentation of empirical evidence using state-of-the-art econo-
metric methodology

• The recognizing of the existence of unsolved problems and the need
for further developments

In addition to the expected updating of all data used in the text,
there is major new material in every part of the text. Moreover new
material to this edition is:

• a new chapter (Chapter 3) on rational expectations macroeconomics
and issues such as the Lucas critique, rules versus discretion in mon-
etary policymaking, and time inconsistency

• a new chapter (Chapter 6) on money demand issues and estimation
of the welfare cost of inflation using tools from public finance and
applied microeconomics

• increased coverage of the univariate and multivariate properties of
the money demand variables, nonlinear chaotic dynamics, and self-
organized criticality (see Chapter 11)
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• increased coverage of theoretical and empirical approaches to the
demand for money, including a new chapter (Chapter 14) on cross-
country evidence

• revised coverage of monetary asset demand systems based on locally
flexible functional forms such as the translog, generalized Leontief,
almost ideal demand system, Minflex Laurent, and the Normalized
Quadratic reciprocal indirect utility function (see Chapter 20)

• revised coverage of monetary asset demand systems based on glob-
ally flexible functional forms such as the Fourier and the Asymptot-
ically Ideal Model (see Chapter 21)

• increased coverage of the econometrics of demand systems high-
lighting the challenge inherent with achieving both economic and
econometric regularity (see Chapter 22)

The Demand for Money is primarily aimed at upper-level under-
graduate and graduate students. The emphasis is on theoretical and
empirical approaches to the demand for money and the empirical anal-
ysis of data sets. Although the book uses data from the United States
economy, it is indended to be used internationally as the main text in
one-semester courses in Monetary Economics and as a supplement in a
wide range of courses in Macroeconomics, Applied Microeconomics and
Applied Econometrics. I hope that those interested in various aspects
of the demand for money will find this book valuable.

Apostolos Serletis



Part 1:

Static Monetary

Macroeconomics

Chapter 1. Classical Macroeconomic Theory
Chapter 2. Keynesian Macroeconomic Theory

Overview of Part 1

Chapters 1 and 2 concern macroeconomic analysis with a strong
emphasis on monetary aspects, in the context of static ‘classical’ and
‘Keynesian’ models. These models, as Bennett McCallum (1989, p. 13)
puts it, “have been extremely important in macroeconomic analysis
and teaching over the last 40 years.”

An important feature of these models is that they each incorporate a
demand for money function, but make different assumptions about the
flexibility of some prices. Our purpose, then, is to investigate the impli-
cations for monetary macroeconomics of different assumptions about
the money demand function, in different economic environments.



1

Classical Macroeconomic Theory

1.1. The Complete Classical Model
1.2. The Classical Dichotomy
1.3. The Classical AD-AS Model
1.4. The Neutrality of Money
1.5. Conclusion

We begin with an issue described by David Laidler in the (last) 1993
edition of his book, The Demand for Money : Theories, Evidence, and
Problems, as follows

“Macroeconomics is controversial. There is no single model upon
whose validity all practitioners agree. One area of disagreement
of particular importance is the behavior of money wages and
money prices. If these are extremely flexible in their response to
shocks to the economy, then so will be the general price level.
If they are not, then the price level will be slow moving, or
‘sticky.’ This matters because the general price level is one of
the key variables upon which the demand for money depends.
If the price level is flexible, then it is free to move to absorb the
consequences of shifts in exogenous factors such as the supply of
money, and their effects on other variables, notably real income
and employment, will be relatively muted. If the price level is
sticky, those consequences will spill over onto real income and
employment and cause them to fluctuate relatively more.” (p. 8)
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The above quotation shows that the assumptions we make about
the flexibility of prices (and wages) matter. In this chapter, we address
the issue by discussing a model that has been extremely important
in monetary macroeconomics — the classical model. One important
feature of this model is its assumption that prices and nominal wages
are fully flexible, in the sense that they continuously adjust to clear
markets; the implications of introducing some inflexibility of prices are
discussed in the next chapter.

Another important feature of the classical model is that it incor-
porates a money demand function, a function that explains people’s
willingness to hold money. Our task is to make as clear as possible
what the implications are for monetary macroeconomics of different
assumptions about the demand for money function. In describing the
model, we follow Chapter 1 of Thomas Sargent’s 1979 book, Macroe-
conomic Theory.

1.1 The Complete Classical Model

The classical model can be summarized as consisting of the following
seven equations, potentially able to determine seven endogenous vari-
ables,

w

P
= FL; (1.1)

L = L
(w
P

)
; (1.2)

Y = F (K,L); (1.3)
C = C(R− πe); (1.4)

I = I
(
q(K,L,R − πe, δ)

)
; (1.5)

Y = C + I +G; (1.6)
M

P
= Φ(Y,R). (1.7)

Equation (1.1) is the demand function for labor, derived by maximizing
economy wide profits with respect to employment. The basic hypothesis
is that firms maximize profits (that is, gross revenue less factor costs).
Formally, the firms’ problem is

max
L

{
PF (K,L) − wL− (R− πe + δ)PK

}
,
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where P the price of the economy’s single good, w the money wage
rate, and (R− πe + δ) the cost of capital. The reader should note that
R is the nominal interest rate on bonds, πe the expected inflation rate,
and δ the rate of depreciation of capital. Taking the stock of capital as
given, the first-order condition for profit maximization with respect to
L is

PFL − w = 0,

which can be rewritten as in equation (1.1), and states that firms max-
imize profits by equating the marginal product of labor, FL, to the real
wage rate, w/P .

Equation (1.2) is the labor supply function and describes the labor-
leisure preferences of workers. It is assumed that the supply of labor
is an increasing function of w/P (that is, L′ > 0) and that the labor
market is in equilibrium (that is, actual employment, L, equals labor
supply, Ls). Equation (1.3) is the aggregate production function where
Y is output of the economy’s single good, with K and L denoting
capital and labor inputs. We assume that both marginal products are
positive but diminishing, that is,

FL > 0, FK > 0, FLL < 0, FKK < 0,

where subscripts stand for partial derivatives. We also assume that
capital and labor are complements, that is,

FLK = FKL > 0.

Equation (1.4) is the consumption function relating real consumption
spending, C, to the real interest rate on bonds, R − πe, which is the
difference between the nominal interest rate, R, and the expected infla-
tion rate, πe. It is assumed that C ′ < 0, because of the intertemporal
substitution effect arising from changes in the rate of interest — see
Robert Barro (1997, Chapter 3). Equation (1.5) is the investment func-
tion that relates real investment spending by firms, I, to the relative
price q, defined by

q(K,L,R − πe, δ) =
FK − δ

R− πe
.

The assumption is that investment demand is a function of the gap
between the real rate of return to physical capital, FK − δ, and the real
rate of return to financial capital, R − πe. In particular, investment
demand is higher the higher is the marginal product of capital and the
lower is the real interest rate, R − πe; that is, I ′ > 0 — see Barro
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(1997, Chapter 9) for more details regarding a theoretical analysis of
investment. Notice that the derivatives of q with respect to K, L, and
R− πe are

qK =
FKK

R− πe
< 0;

qL =
FKL

R− πe
> 0;

qR−πe = − q

R− πe
< 0,

so q is an increasing function of L and a decreasing function of K and
R− πe.

Equation (1.6) is the national income identity linking aggregate real
output, Y , and its components — real consumption, C, real investment,
I, and real government purchases, G. Finally, equation (1.7) character-
izes portfolio equilibrium by equating the real money supply, M/P —
which is the ratio of the nominal money supply, M , to the price level,
P — and the real money demand, Φ(Y,R). Notice that real output,
Y , enters the Φ(·) function as a proxy for the rate of transactions in
the economy and also that the nominal interest rate, R, enters the Φ(·)
function as a proxy for the opportunity cost of holding money — which
is the real interest rate on bonds, R− πe, less the real interest rate on
money, −πe. We assume that

ΦY > 0;

ΦR < 0,

that is, the demand for money depends positively on real income and
negatively on the nominal interest rate.

Assuming that at any moment the stock of capital is fixed, equations
(1.1)-(1.7) determine seven endogenous variables:

L,
w

P
, Y, C, I, R, and P .

The exogenous variables are:

G, K, M, and πe.

The parameters of the model,
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FK , FKK , FL, FLL, FKL, L
′, C ′, I ′,

qL, qK , qR−πe , ΦY , ΦR, and δ,

determine the shapes of the underlying functions. Notice that we as-
sume that the expected inflation rate, πe, is exogenously determined.

1.2 The Classical Dichotomy

The hallmark of classical macroeconomic theory is its separation of
real and nominal variables, known as the classical dichotomy. This
classical dichotomy arises because in the classical model changes in the
money supply do not influence real variables and allows us to study
first how the values of the real variables are determined in isolation.
Given the equilibrium values of the real variables, the equilibrium in
the money market then determines the price level and, as a result, all
other nominal variables.

It is easy to verify that the classical model we have been studying
dichotomizes. Consider the model formed by equations (1.1)-(1.7) and
assume that an initial equilibrium exists. Write the model in change
form to obtain the following linear system (assuming, for simplicity,
that δ is always constant, so dδ = 0)

d (w/P ) = FLLdL+ FLKdK; (1.8)
dL = L′d (w/P ) ; (1.9)
dY = FKdK + FLdL; (1.10)
dC = C ′ (dR − dπe) ; (1.11)
dI = I ′qKdK + I ′qLdL+ I ′qR−πe (dR − dπe) ; (1.12)
dY = dC + dI + dG; (1.13)

dM

P
− M

P

dP

P
= ΦY dY + ΦRdR. (1.14)

Notice that this system is not fully simultaneous. In particular, only
two endogenous variables, d(w/P ) and dL, appear in the first two equa-
tions, implying that these two equations form an independent subset
that can determine employment and the real wage rate. Similarly, only
three endogenous variables, d(w/P ), dL, and dY , appear in the first
three equations. As a consequence, these equations form an indepen-
dent subset that determines employment, the real wage, and output.
This very important property of the classical model is known as block
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recursiveness and is what yields the dichotomy. That is, the key real
variables (output and employment) are determined solely in a subsys-
tem involving only production considerations, and are independent of
the level of the money supply and the general price level. In such a
system money is a veil.

1.3 The Classical AD-AS Model

In order to solve the classical model, we utilize the aggregate demand
(AD)-aggregate supply (AS) apparatus. That is, we collapse equations
(1.8)-(1.14) into a system of two equations in dR and dY . This is ac-
complished by eliminating d(w/P ), dL, dC, dI, and dP by substitution.

First we obtain the total differential of the aggregate supply sched-
ule. Substituting (1.9) into (1.8) to eliminate dL yields

d
(w
P

)
=

FLK

1 − FLLL′dK, (1.15)

which implies that an increase in the capital stock increases the real
wage, since

FLK > 0, FLL < 0, L′ > 0,

and hence
FLK

(1 − FLLL′)
> 0.

Also, substituting (1.15) into (1.9), to eliminate d(w/P ), yields

dL = L′ FLK

1 − FLLL′dK, (1.16)

which implies that an increase in the capital stock also increases em-
ployment.

The total differential of the aggregate supply curve can be obtained
by substituting (1.16) into (1.10), to eliminate dL

dY =
(
FK +

FLL
′FLK

1 − FLLL′

)
dK. (1.17)

Equation (1.17) implies that an increase in the capital stock would
increase output. In fact, the increase in capital increases output, both
because the marginal product of capital is positive as well as because
the increase in capital increases the marginal product of labor.

Clearly, equations (1.15)-(1.17) completely determine the values of
the only three endogenous variables involved and show that K is the
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only exogenous variable that enters into the determination of Y, L,
and w/P — in this model, there is no interaction with other variables.
Thus output, Y , is determined independently of the price level. In what
follows we assume that capital can be accumulated only by investing,
thus ruling out once-and-for-all changes in the stock of capital. This
implies that, at a point in time, output, employment, and the real
wage are constants, independent of fiscal and monetary variables and
the public’s expectations.

We now turn our attention to deriving the total differential of the
aggregate demand schedule. Assuming that dK = 0 [which implies,
from solving (1.8)-(1.10), that dY = dL = 0] and substituting (1.11)
and (1.12) into (1.13) yields the total differential of the AD schedule
or, equivalently, the total differential of the reduced form of R (after
solving for dR)

dR = − 1
C ′ + I ′qR−πe

dG+ dπe, (1.18)

where C ′ + I ′qR−πe — the total derivative of aggregate demand with
respect to the interest rate — is negative since C ′ < 0, I ′ > 0, and
qR−πe < 0.

Manipulation of the reduced form for R, equation (1.18), implies
that

∂R

∂G
= − 1

C ′ + I ′qR−πe
> 0;

∂R

∂πe
= 1.

Thus the nominal interest rate rises in response to an increase in gov-
ernment spending. Also, a change in πe produces an equivalent change
in R, with no change in R − πe — the Fisher effect. Notice that in
this version of the model, the interest rate bears the entire burden of
adjusting the level of aggregate demand, so that it equals the level of
aggregate supply determined by equations (1.1)-(1.3), given the capital
stock.

To determine the effect of changes in G and πe on consumption and
net investment we substitute (1.18) into (1.11) and (1.12), respectively,
and solve for the reduced form partial derivatives with respect to these
exogenous variables, keeping dK = dL = dY = 0. The effects on
consumption and investment are
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∂C

∂G
= C ′∂R

∂G
< 0;

∂I

∂G
= I ′qR−πe

∂R

∂G
< 0;

∂C

∂πe
= C ′ ∂R

∂πe
− C ′ = 0;

∂I

∂πe
= I ′qR−πe

∂R

∂πe
− I ′qR−πe = 0.

Thus, an increase in government expenditures tends to increase the in-
terest rate, which in turn, through equations (1.11) and (1.12) induces
changes in consumption and rates of capital accumulation. In fact, the
rise in the interest rate crowds out both forms of private spending, C
and I. However, changes in πe do not affect consumption and invest-
ment. This is so because of the Fisherian link, according to which a
change in πe leads to an equivalent change in R, leaving R − πe un-
changed.

Once the differentials for R and Y are determined, equation (1.14)
has only one free variable in it — the differential of the price level, dP .
In fact, the role of equation (1.14) is to determine dP/P to equate the
nominal demand for money to the given nominal quantity of money.

1.4 The Neutrality of Money

So far we have dealt with changes in the demand for money while
holding fixed the aggregate supply of nominal money. We have shown
that disturbances which end up changing the interest rate or output
change the demand for real money balances. With the money stock held
constant, the price level then changes to clear the money market. Notice
that the price level moves in the direction opposite to changes in the
real demand for money. For example, increases in R reduce the demand
for real money and drive the price level upward, while increases in Y
increase the demand for real money and drive the price level downward.

Although disturbances that end up changing output or the interest
rate are possible sources of price level changes, many economists argue
that fluctuations in nominal money, M , are the principal source of
variations in the price level. In fact, if the supply of money is the only
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exogenous variable that changes, equation (1.14) implies that only the
price level is affected, and it changes proportionately with the money
supply — i.e.,

dP

P
=

dM

M
,

since dY = dR = 0. This property of the classical model is referred to
as the neutrality of money, meaning the (null) effect on real variables
of a once-and-for-all change in the nominal money supply.

Notice that monetary neutrality and dichotomy are distinct con-
cepts. For example, a system that dichotomizes need not posses the
property of neutrality, while a system in which there is neutrality need
not dichotomize. See Sargent (1979, p. 47) for an (artificial) example
of a system that dichotomizes but in which neutrality fails.

1.5 Conclusion

We began with a representation of the aggregate economy designed to
facilitate analysis of the interaction between real and monetary vari-
ables, under perfect wage and price flexibility — the classical model.
Although the model is essentially static in nature, it is still used by a
large part of the economics profession and provides a good introduction
to some of the important issues pertaining to the role of money in the
economy and the importance of the money demand function.

An important result is that — with wage and price flexibility — the
real variables (real wage rate, real interest rate, and the aggregates of
output, consumption, investment, and employment) are invariant with
variations in the quantity of money. Money is, therefore, neutral in the
model — only the general price level and all other nominal variables
(nominal output, consumption, investment, and so on) are (equipropor-
tionally) affected by changes in the supply of nominal money balances.
In other words, the money market and the money demand function
play no crucial role in determining the aggregates of output and em-
ployment.

So far we haven’t been able to show why the money demand func-
tion is an important relationship. In the next chapter, we investigate
how inflexibility of some prices, and the resulting imbalance between
quantities supplied and demanded, change the nature of our conclusions
regarding the importance of the demand for money function.
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Keynesian Macroeconomic Theory

2.1. The Keynesian Consumption Function
2.2. The Complete Keynesian Model
2.3. The Keynesian-Cross Model
2.4. The IS-LM Model
2.5. The Keynesian AD-AS Model
2.6. Conclusion

In Chapter 1 we began our discussion of macroeconomic theory with
a view of nominal wages and prices as fully flexible. This approach
ensures that markets are always in equilibrium, in the sense that there is
continual balance between the quantities demanded and the quantities
supplied. The classical model was the dominant macroeconomic theory
until the Great Depression in the 1930s. The prolonged unemployment,
however, in the United Kingdom and the United States during the
1930s prompted John Maynard Keynes to significantly depart from
the classical assumption of perfectly flexible prices and develop models
based on the assumption that there are constraints on the flexibility of
some prices.

The crucial assumption in the Keynesian models is that some prices
are sticky — i.e., do not adjust promptly to ensure continual balance be-
tween the quantities supplied and demanded. Hence, unlike the classical
model, some markets do not always clear and output and employment
typically end up below the optimal amounts. Although Keynes’s analy-
sis and some subsequent treatments — see, for example, Don Patinkin
(1965, Chapter 13) and Barro and Herschel Grossman (1976) — focused
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on sticky money wages, the price level is sometimes assumed to be per-
fectly flexible (leading to the so-called complete Keynesian model), but
is more often treated also as sticky. Here, we follow Sargent (1979,
Chapter 2) and develop the complete Keynesian model.

2.1 The Keynesian Consumption Function

The key assumption in Keynesian analysis is that sticky money wages
result in excess supply in the labor market. This has important con-
sequences for employment and consumption. For example, producers
do not produce more than is demanded, suggesting that employment is
restricted to the minimum necessary to produce the given level of out-
put. Also, consumers find that their income is constrained to be less
than it would have been in the absence of excess supply in the output
market.

The implication of this is that people’s consumption depends on
their exogenously given level of real income. Formally, the consumption
function now takes the form

C = C(Y − T, R− πe),

relating real consumption spending, C, to real disposable income, Y −T
(where T is defined as real tax collections net of transfers), and to the
real rate of interest, R−πe. It is assumed that 0 < C1 < 1 and C2 < 0,
where C1 is the marginal propensity to consume out of real disposable
income and C2 is the interest sensitivity of consumption demand. The
above function is known as the Keynesian consumption function.

Another argument that has been put forward in deriving the Key-
nesian consumption function concerns the loan market. In particular,
it is argued that many people are liquidity constrained, in the sense
that they would like to borrow at market rates, but face higher bor-
rowing costs, because they have poor collateral. In this case, people
will change their consumption almost one-to-one with changes in their
income. Hence, this point of view can also explain why consumption
is a function of current income — see Barro (1997, Chapter 20) for a
more detailed discussion.

2.2 The Complete Keynesian Model

The Keynesian model’s assumption of excess supply in the output mar-
ket means that employment is determined by labor demand, which de-
fines the short side of the market. Therefore, removing the labor supply
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schedule, L = L(w/P ), and the implicit labor-market-clearing condi-
tion (LD = LS = L), making the money wage rate exogenous, and
making consumption also a function of real disposable income are the
essential changes that must be made in the classical model of Chapter
1 in order to arrive at the Keynesian model.

The resulting system, which constitutes the complete Keynesian
model, consists of the following six equations:

w

P
= FL; (2.1)

Y = F (K,L); (2.2)
C = C(Y − T,R− πe); (2.3)

I = I
(
q(K,L,R − πe, δ)

)
; (2.4)

Y = C + I +G; (2.5)
M

P
= Φ(Y,R), (2.6)

where w denotes the exogenous money wage, determined outside the
system. In fact, we treat w as a predetermined variable, not as one
that is strictly exogenous, and we assume that it changes through time
— that is, dw/dt can be nonzero. Notice that the other assumptions
underlying these equations are all as they were in the classical model.
Thus, the Keynesian model consists of the above six equations in the
six endogenous variables:

L, Y, C, I, R, and P .

The exogenous variables are:

M, G, T, K, πe, δ, and w,

and the parameters of the model are:

FK , FKK , FL, FLL, FKL, L
′, C1, C2, I

′,

qL, qK , qR−πe , ΦY , ΦR, and δ.

Clearly, the Keynesian model utilizes the same theory of aggregate
demand as the classical model [i.e., equations (2.3)-(2.6) are the same
in the two models] but a different theory of aggregate supply. To in-
vestigate the implications of the Keynesian version of the aggregate
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supply function, we totally differentiate the above six equations (as-
suming that dK = dδ = 0) to obtain the following linear system in the
differentials of the six variables:

dw

w
− dP

P
=

FLL

FL
dL; (2.7)

dY = FLdL; (2.8)
dC = C1dY − C1dT + C2(dR− dπe); (2.9)
dI = I ′qLdL+ I ′qR−πe (dR− dπe) ; (2.10)
dY = dC + dI + dG; (2.11)

dM

P
− M

P

dP

P
= ΦY dY + ΦRdR. (2.12)

Notice that this system, unlike the classical system, is not block
recursive, in the sense that it is impossible to find an independent
subset of equations that determine a subset of variables. That means,
of course, that output is not determined solely on the basis of aggregate
supply considerations, as it is in the classical model. In other words,
the Keynesian model does not dichotomize.

In what follows, we shall generate the basic Keynesian results in the
context of three different versions of the Keynesian model. In particular,
the Keynesian-cross, the IS-LM, and the AD-AS Keynesian models are
developed.

2.3 The Keynesian-Cross Model

An extreme version of the Keynesian model is the Keynesian-cross. In
addition to assuming that there is perpetual excess supply in the goods
market, the Keynesian-cross model also assumes that the nominal in-
terest rate is fixed. This allows it to ignore the money market and focus
exclusively on the goods market to determine the level of output, which
is demand determined.

We can summarize the main aspects of this simple Keynesian model
using equations (2.8), (2.9), (2.10), and (2.11) to obtain the total dif-
ferential of the reduced form of Y (assuming that dR = dπe = 0)

(
1 − C1 − I ′

qL

FL

)
dY = dG− C1dT . (2.13)

Assuming that the marginal propensity to save out of disposable in-
come, 1−C1, exceeds the marginal propensity to invest out of income,
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I ′qL/FL, the coefficient on dY in (2.13) is positive.1 Then the reduced
form partial derivatives of Y with respect to G and T are given by

∂Y

∂G
=

1
1 − C1 − I ′qL/FL

;

∂Y

∂T
= − C1

1 − C1 − I ′qL/FL
,

where the expression for ∂Y/∂G is the government purchases multi-
plier — the amount output changes in response to a unit change in
government purchases. The expression for ∂Y/∂T is the tax multiplier
— the amount output changes in response to a unit change in taxes.
Notice that if investment does not respond to changes in income, that
is if I ′ equals zero, the above expressions reduce to the standard simple
Keynesian multiplier formulas.

Finally, if I ′ = 0, the effect on output of a change in G matched by
an equal change in T is given by

∂Y

∂G

∣∣∣∣
dG=dT

= 1,

which is the so-called balanced budget multiplier.

2.4 The IS-LM Model

The Keynesian-cross model shows how to determine the level of output
for a given interest rate. The assumption, however, that the interest rate
is given means that the analysis is seriously incomplete. Therefore, we
now want to go further to determine simultaneously the interest rate
and the level of output. To carry this analysis we use John Hick’s (1937)
IS-LM curve apparatus. That is, we collapse equations (2.7), (2.8),
(2.9), (2.10), (2.11), and (2.12) into a system of two equations in dY
and dR, this being accomplished by eliminating the other endogenous
variables by substitution.

1 To see that I ′qL/FL is the marginal propensity to invest out of income, differen-
tiate the investment schedule partially with respect to Y to obtain

∂I

∂Y
=

∂I

∂q

∂q

∂L

∂L

∂Y
= I ′ qL

FL
.
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First we obtain the total differential of the IS curve, the locus of the
combinations of R and Y that satisfy (2.5), the aggregate demand-
aggregate supply equality. Substituting (2.8), (2.9), and (2.10) into
(2.11) and rearranging yields the total differential of the IS curve

(
1 − C1 − I ′qL/FL

)
dY = −C1dT + dG

+ (C2 + I ′qR−πe) (dR− dπe) . (2.14)

The slope of the IS curve in the R− Y plane is thus given by

dR

dY
=

1 − C1 − I ′qL/FL

C2 + I ′qR−πe
,

which is negative, since C2 + I ′qR−πe < 0 and 1−C1 has been assumed
to be greater than I ′qL/FL. Notice that the smaller the government
purchases multiplier and the smaller the sensitivity of aggregate de-
mand to the interest rate, C2 + I ′qR−πe , the steeper the IS curve.

To determine how the IS curve shifts when the exogenous variables,
T, G, and πe, change, we can use (2.14) to determine the horizontal shift
in the IS curve by evaluating the partial derivatives of Y with respect
to each exogenous variable, dR being set equal to zero. Alternatively,
we can use (2.14) to determine the vertical shift in the IS curve by
evaluating the partial derivatives of R with respect to each exogenous
variable, dY being set equal to zero. So we have:

∂Y

∂T
=

−C1

1 − C1 − I ′qL/FL
< 0;

∂Y

∂G
=

1
1 − C1 − I ′qL/FL

> 0;

∂R

∂πe
= 1.

An increase in government purchases or a decrease in taxes will shift
the IS curve out to the right, the extent of the shift depending on
the size of the relevant (Keynesian-cross model) multiplier. Also, when
the expected inflation rate changes, the IS curve shifts upward by the
amount of the increase in πe.

The IS curve does not determine either R or Y . It only provides
the combinations of nominal interest rates and income (output) that
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clear the goods market. To determine the equilibrium of the economy,
we need another relationship between these two variables, to which we
now turn.

By using (2.7) and (2.8) to eliminate dP/P from (2.12) yields the
total differential of the LM curve, a schedule that shows all combina-
tions of interest rates and levels of income that clear the market for
money balances

(
FLL

F 2
L

M

P
− ΦY

)
dY = −dM

P
+
M

P

dw

w
+ ΦRdR. (2.15)

The slope of the LM curve is

dR

dY
=

1
ΦR

(
FLL

F 2
L

M

P
− ΦY

)
> 0.

Notice that the smaller the interest sensitivity and the larger the income
sensitivity of the demand for money, the steeper the LM curve. In
fact, as ΦR → 0, the LM curve approaches a vertical position while
as ΦR → −∞, as is supposed in the case of the liquidity trap, the LM
curve approaches a horizontal position.

To determine how the LM curve shifts when the exogenous vari-
ables, M and w change, we use equation (2.15) to evaluate the partial
derivatives of R with respect to each of the exogenous variables, dY
being set equal to zero. Thus,

∂R

∂M
=

1
ΦRP

;

∂R

∂w
= − M

ΦRPw
.

The expression ∂R/∂M is zero when ΦR → −∞ and negative when
ΦR > −∞. Also, the expression ∂R/∂w is zero when ΦR → −∞ and
positive as long as ΦR > −∞. Hence, the LM curve shifts down and
to the right when the nominal money supply rises or the money wage
falls.

We now have all the components of the IS-LM model. Given that the
two equations of this model are (2.14) and (2.15) we can solve the sys-
tem analytically to analyze the (short run) effects of policy changes and
other events on national income. Alternatively, using our knowledge
of how changes in the various exogenous variables of the model shift
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the IS and LM curves, we can make use of a graphical device — see,
for example, Barro (1997, Chapter 20).

Substituting (2.15) into (2.14) to eliminate dR yields the total dif-
ferential of the reduced form of Y

HdY = −C1dT + dG− (C2 + I ′qR−πe)dπe

+
C2 + I ′qR−πe

ΦR

(
dM

P
− M

P

dw

w

)
,

where the coefficient on dY , H, is given by

H = 1 − C1 − I ′
qL

FL
− C2 + I ′qR−πe

ΦR

(
FLL

F 2
L

M

P
− ΦY

)
.

Under the assumption that 1−C1 exceeds I ′qL/FL, H is positive and
the reduced form partial derivatives of Y with respect to the exogenous
variables of the model are given by

∂Y

∂T
= −C1

H
≤ 0;

∂Y

∂G
=

1
H

≥ 0;

∂Y

∂πe
= −C2 + I ′qR−πe

H
≥ 0;

∂Y

∂M
=

C2 + I ′qR−πe

ΦRPH
≥ 0;

∂Y

∂w
= −(C2 + I ′qR−πe)M

ΦRPwH
≤ 0.

Thus, except in limiting cases, increases in G, πe, and M and decreases
in T and w will in general increase the level of real income. Therefore,
money is not neutral in this model.

Notice that if money demand is insensitive to the interest rate
(ΦR → 0 and the LM curve is vertical), H → ∞ and the effect on out-
put from a disturbance that shifts the IS curve is nil, that is, ∂Y/∂T,
∂Y/∂G, and ∂Y/∂πe all approach zero. Under those circumstances, a
fiscal expansion raises the interest rate and crowds out interest sensitive
private spending. However, any shift in the (vertical) LM curve has a
maximal effect on the level of income.

On the other hand, in the liquidity trap (ΦR → −∞ and the LM
curve is horizontal), monetary policy has no impact on the equilibrium
of the economy, since ∂Y/∂M and ∂Y/∂w both approach zero. Fiscal
policy, however, has its full multiplier effect on the level of income,
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since ∂Y/∂T and ∂Y/∂G reduce to the tax multiplier and government
purchases multiplier, respectively, of the Keynesian cross model.

Finally, if the interest rate has a negligible effect on aggregate de-
mand (C2 = I ′ = 0), the IS curve is vertical and changes in the
money supply and the money wage have no effect on output, that is,
∂Y/∂M = ∂Y/∂w = 0. On the other hand, if aggregate demand is
extremely sensitive to the interest rate, the IS curve is very flat and
shifts in the LM have a large effect on output.

2.5 The Keynesian AD-AS Model

In the previous section we solved the Keynesian model [equations (2.7),
(2.8), (2.9), (2.10), (2.11), and (2.12)] by collapsing it into two equations
in a pair of variables, dR and dY . We can also solve the same model
by collapsing it into two equations in another pair of variables, dP and
dY , thereby obtaining the Keynesian version of the aggregate demand
(AD)-aggregate supply (AS) model.

Solving (2.7) and (2.8) for dY yields the total differential of the
aggregate supply function in the P − Y plane

dY =
F 2

L

FLL

dw

w
− F 2

L

FLL

dP

P
. (2.16)

Since FLL < 0, equation (2.16) implies that aggregate supply increases
in response to an increase in the price level or (for a given price level) a
decline in the money wage. The slope of the aggregate supply schedule
is

dP

dY
= −PFLL

F 2
L

> 0.

This expression equals zero if the marginal product of labor is constant
— that is, if FLL = 0 — as it happens, for example, when capital and
labor are combined in fixed proportions.

The total differential of the aggregate demand curve in the P −
Y plane, a schedule that, in the present context, represents all those
combinations of P and Y that satisfy the demands for goods and assets,
comes from equations (2.9), (2.10), (2.11), and (2.12) and is given by

ĤdY = −C1dT + dG− (C2 + I ′qR−πe)dπe

+
C2 + I ′qR−πe

ΦR

dM

P
− C2 + I ′qR−πe

ΦR

M

P 2
dP , (2.17)
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where the coefficient on dY , Ĥ, is

Ĥ = 1 − C1 − I ′
qL

FL
+
C2 + I ′qR−πe

ΦR
ΦY .

The slope of the aggregate demand schedule is thus given (substituting
back for Ĥ) by

dP

dY
= −

[(
1 − C1 − I ′

qL

FL

)
ΦR + (C2 + I ′qR−πe)ΦY

]
P 2

(C2 + I ′qR−πe)M
,

which, under the assumption that 1 − C1 > I ′qL/FL, is negative.
Notice that the AD curve is flatter the smaller the interest sensitivity

of the demand for money, ΦR, the smaller the income sensitivity of
money demand, ΦY , and the larger the interest sensitivity of aggregate
demand, C2 + I ′qR−πe . Also, the larger the marginal propensity to
consume out of disposable income, C1, (or, equivalently, the smaller
the marginal propensity to save out of disposable income, 1−C1), and
the larger the sensitivity of investment demand to income, that is, the
larger I ′qL/FL, the flatter the AD curve. It is also interesting to note
that as C2 + I ′qR−πe → 0 or ΦR → −∞, the aggregate demand curve
becomes vertical in the P − Y plane.

To determine how the aggregate demand curve shifts when the ex-
ogenous variables, T, G, πe, and M change, we use equation (2.17) to
evaluate the partial derivatives of Y with respect to each exogenous
variable, dP being set equal to zero. Letting Ĥ stand for the coefficient
on dY in equation (2.17) we obtain

∂Y

∂T
= −C1

Ĥ
< 0;

∂Y

∂G
=

1

Ĥ
> 0;

∂Y

∂πe
= −C2 + I ′qR−πe

Ĥ
> 0;

∂Y

∂M
=

C2 + I ′qR−πe

ĤΦRP
> 0.

Thus, increases in G, πe, and M and decreases in T will in general
shift the aggregate demand curve outward and/or upward in the P −Y
plane.

We now have all the components of the Keynesian AD-AS model. It
consists of equations (2.16) and (2.17), which we can solve to analyze
the effects of policy actions on national income — alternatively, we
can make use of a graphical device as, for example, in Barro (1997,
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Chapter 20). In particular, substituting (2.16) into (2.17) to eliminate
dP/P yields the total differential of the reduced form of Y

H̃dY = −C1dT + dG− (C2 + I ′qR−πe)dπe

+
C2 + I ′qR−πe

ΦR

(
dM

P
− M

P

dw

w

)
,

where the coefficient on dY , now H̃, is given by

H̃ = 1 − C1 − I ′
qL

FL
− C2 + I ′qR−πe

ΦR

(
FLL

F 2
L

M

P
− ΦY

)
.

Again, under the assumption that 1 − C1 exceeds I ′qL/FL, H̃ is
positive and the reduced form partial derivatives of Y with respect to
the exogenous variables are:

∂Y

∂T
= −C1

H̃
≤ 0;

∂Y

∂G
=

1

H̃
≥ 0;

∂Y

∂πe
= −C2 + I ′qR−πe

H̃
≥ 0;

∂Y

∂M
=

C2 + I ′qR−πe

ΦRPH̃
≥ 0;

∂Y

∂w
= −(C2 + I ′qR−πe)M

ΦRPwH̃
≤ 0.

Hence, this model produces the same qualitative results as the IS-LM
model. The reader should also notice that the AD-AS Keynesian model
does not dichotomize as the classical model does, as presented in
Chapter 1.

2.6 Conclusion

In this chapter, we have summarized a great deal of traditional Keyne-
sian macroeconomic theory. We have seen that if there are constraints
on the flexibility of some prices, then the financial market and the
money demand function play a crucial role in determining the effects
not only of monetary policy, but also of fiscal policy. In fact, the rela-
tionship between the demand for money and the level of real income
and the nominal rate of interest is of crucial importance in these Key-
nesian models.
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In particular, with sticky prices knowledge of the various functions
and of the values of their parameters is particularly useful in evaluating
the effects of policy actions on the macroeconomy. In the case, for
example, of the money demand function, if the interest elasticity of the
demand for money balances is high, then fluctuations in the level of
income are not likely to be caused by variations in the money supply.
If it is low, then exactly the converse is true.

Of course, the theories of macroeconomic behavior that we have so
far discussed in Chapters 1 and 2 are static in specification. As Bennett
McCallum (1989, p. 77-78) puts it

“one way in which these models are static is that they treat the
economy’s capital stock — its collection of productive machines,
plants, highways, and so on — as fixed in quantity. As a result
of that simplification, the models are not well designed for the
analysis of policy actions or other events that would tend to
induce substantial changes in the stock of capital within the
relevant time frame.”

Although this weakness of the classical and Keynesian models can
be remedied, the current fashion is to explore short-run and long-run
phenomena in the context of dynamic analyses. Models of this type have
displaced the IS-LM and AD-AS frameworks in mainstream macroe-
conomic theory and dominate current research in almost all areas in
economics. In the light of these developments, we now turn to these
models.



Part 2:

Dynamic Monetary

Macroeconomics

Chapter 3. Models with Rational Expectations
Chapter 4. Neoclassical Growth Theory
Chapter 5. Monetary Growth Theory
Chapter 6. The Welfare Cost of Inflation

Overview of Part 2

We begin Chapter 3 by introducing the Cagan (1956) money de-
mand model and the adaptive and rational expectation hypotheses.
We introduce random shocks and present models designed to trace
out the time paths of the endogenous variables. We proceed under the
assumption that expectations are formed rationally and demonstrate
how policy analysis is conducted in dynamic stochastic models. We also
discuss some important and interesting research developments in the
rational expectation macroeconomics literature.

In Chapter 4, we begin developing the framework for dynamic mon-
etary macroeconomics, using the tools of neoclassical growth theory
and related dynamical approaches. As Costas Azariadis (1993, p. xii)
puts it “dynamical systems have spread so widely into macroeconomics
that vector fields and phase diagrams are on the verge of displacing
the familiar supply-demand schedules and Hicksian crosses of static
macroeconomics.”

In Chapter 5, we discuss monetary versions of neoclassical growth
theory. Among monetary growth models, three that have seen wide
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and expanding use in the last two decades are the Tobin model, the
Sidrauski model, and the overlapping generations model. Chapter 5
covers the Tobin and Sidrauski models in detail, leaving a discussion of
the overlapping generations model for Chapter 9.

Chapter 6 provides a brief summary of the theoretical issues re-
garding the estimation of the welfare cost of inflation. We note that
the welfare cost of inflation question is an outstanding one in macroe-
conomics and monetary economics.
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Models with Rational Expectations

3.1. The Cagan Model
3.2. Adaptive Expectations
3.3. Rational Expectations
3.4. The Lucas Critique
3.5. Rules versus Discretion
3.6. Time Inconsistency
3.7. Inflation Mitigation
3.8. Conclusion

We begin this chapter by introducing the Cagan (1956) model and
the adaptive and rational expectation hypotheses. Our analysis in this
chapter is more complicated, because we introduce random shocks and
use models designed to trace out the time paths of the endogenous
variables on a period-by-period basis. Most of our discussion proceeds
under the assumption that expectations are formed rationally, and in
the context of dynamic, stochastic models, we discuss some important
and interesting research developments.

In doing so, we also implicitly demonstrate how policy analysis is
conducted in dynamic stochastic models. In particular, in the static
models of Chapters 1 and 2 we used comparative static analysis and
compared outcomes of changes in policy variables. In the context, how-
ever, of dynamic stochastic models, as McCallum (1989, p. 228) puts



28 Chapter 3. Models with Rational Expectations

it,

“the appropriate comparison pertains to average outcomes re-
sulting, over a large number of periods, from different policy
rules when maintained over these periods. Averages are rep-
resented analytically by unconditional expectations of relevant
random variables.”

Let us start with Cagan’s (1956) famous study of hyperinflations —
Philip Cagan was the 2006 Nobel laureate in economics.

3.1 The Cagan Model

Consider the following aggregate money demand function (to be dis-
cussed in more detail in Parts 3 and 4 of this book)

mt − pt = α0 + α1 log yt + α2Rt + ut, (3.1)

where mt = logMt, pt = logPt, Rt = rt + πe
t , rt is the real rate

of interest, πe
t is the expected inflation rate, and ut is a white noise

money demand innovation term.
Since during hyperinflations, movements in M and P are so large

so as to dominate movements in real variables, we neglect movements
in rt and yt and write (3.1) as

mt − pt = (α0 + α1 log yt + α2rt) + α2π
e
t + ut

= γ + απe
t + ut, (3.2)

where γ = (α0 + α1 log yt + α2rt) is a composite constant term and
α = α2 < 0. Equation (3.2) is the central ingredient of the Cagan
model. It involves only two variables, mt and pt, since πe

t is taken as
exogenous. Under the additional assumption that mt is determined ex-
ogenously, (3.2) describes the behavior of pt and can be used as a theory
of price level determination during hyperinflations (i.e., extremely se-
vere inflationary episodes).

Cagan wanted to econometrically estimate (3.2) and provide evi-
dence that during hyperinflations the demand for real balances depends
negatively on the expected inflation rate, πe

t . He examined seven hyper-
inflations, but because he had no data on the expected inflation rate,
πe

t , he came up with the adaptive expectations hypothesis, to which we
now turn.
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3.2 Adaptive Expectations

In terms of our notation, the adaptive expectations model for the un-
observed expected inflation rate at time t, πe

t , can be expressed as

πe
t − πe

t−1 = θ
(
Δpt − πe

t−1

)
,

where Δpt (= logPt − logPt−1) = πt, and 0 ≤ θ ≤ 1. The adaptive
expectations model states that the change in the expected inflation
rate from period t−1 to the current period t, πe

t −πe
t−1, is proportional

to the forecast error — the discrepancy between the current actual and
last period’s anticipated inflation rate, πt − πe

t−1 — with the factor of
proportionality being θ.

Clearly, the adaptive expectations model expresses the ability of
economic agents to learn from their past mistakes, and this is why it
is also known as the error learning hypothesis. In particular, if ex-
pectations realize (i.e., πt = πe

t−1), then there will be no revision in
expectations (πe

t = πe
t−1). If, however, the inflation rate turns out to be

surprisingly high (i.e., πt > πe
t−1), then there will be an upward revision

in expectations (πe
t > πe

t−1), and if it turns out to be surprisingly low
(i.e., πt < πe

t−1), then there will be a downward revision in expectations
(πe

t < πe
t−1).

A simple rearrangement of the adaptive expectations model yields

πe
t = θΔpt + (1 − θ)πe

t−1. (3.3)

This formulation states that the expected inflation rate at time t is a
weighted average of the current actual inflation rate and last period’s
expected inflation rate, with the weights being the adjustment param-
eters θ and 1 − θ.

3.2.1 Application to the Cagan Model

Using (3.3), the Cagan model, equation (3.2), can be written as

mt − pt = γ + α
[
θΔpt + (1 − θ)πe

t−1

]
+ ut (3.4)

To get rid of the expectational term, πe
t−1, on the right-hand side of

(3.4), we can write (3.2) for period t− 1 to get an expression for πe
t−1,

which when substituted in (3.4) gives

mt − pt = γθ + αθΔpt + (1 − θ) (mt−1 − pt−1) + vt
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where vt = ut−(1−θ)ut−1. Clearly this last equation no longer includes
terms involving the unobserved expected inflation rate variable. So, it
can be estimated econometrically — see Cagan (1956) or McCallum
(1989, Chapter 7) for a discussion and interpretation of Cagan’s (1956)
estimates for the seven hyperinflations that he studied.

3.3 Rational Expectations

The adaptive expectations hypothesis that we just examined has been
faulted on the grounds that it doesn’t assume enough rationality on
the part of economic agents. In particular, according to the second pre-
sentation of the adaptive expectations hypothesis, economic agents use
only current and last period’s expected inflation rate when formulat-
ing expectations for the future. An alternative hypothesis for economic
analysis of expectational behavior is John Muth’s (1961) rational ex-
pectations hypothesis.

According to the rational expectations notion, economic agents use
all of the available and economically usable information, including rel-
evant economic theory, in the formation of expectations for the future.
Formally, let π be the variable that is being forecast, πe the rational
expectation of π, and πof the optimal forecast of π. Then according to
the rational expectations hypothesis

πe
t = πof

t = E
(
πt |It−1

)
,

where It−1 is the available information set. That is, the agents’ subjec-
tive expectations are equal to the mathematical conditional expecta-
tions, meaning that expectations will not differ from optimal forecasts
(i.e., the best guess possible) using all available information. Of course,
there are two reasons why expectations may fail to be rational: (i) eco-
nomic agents might be aware of all available information, but they are
not making their expectation the best guess possible, and (ii) agents
might be unware of some available relevant information, so that their
expectation will not be the best guess possible.

The theory of rational expectations leads to the following two,
common-sense implications for the way expectations are formed:

• if there is a change in the way a variable moves, the way expectations
of this variable are formed will also change, and

• the expectational forecast error, εt = πt −E (πt |It−1 ), will on aver-
age be zero and uncorrelated with available information. That is,
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E
(
εt |It−1

)
= E

[(
πt−E

(
πt |It−1

))
|It−1

]
= 0,

and
E
(
εt × It−1 |It−1

)
= 0.

If this were not the case it would be possible to improve the forecast
by incorporating the available information.

3.3.1 Application to the Cagan Model

The Cagan model with rational expectations can be written as

mt − pt = γ + απe
t + ut

= γ + αEt(pt+1 − pt) + ut (3.5)

where α < 0 and Etpt+1 = Et(pt+1 |It ). Solving for pt we obtain

pt =
mt − γ − αEtpt+1 − ut

1 − α
. (3.6)

Expression (3.6), however, is not a solution for pt, because of the ex-
pectational variable, Etpt+1, on the right-hand side.

To derive the rational expectation solution for this model’s endoge-
nous variable, pt, we use the ‘minimal set of state variables (MSV)’
solution procedure — see McCallum(1989, Chapter 8) for more details.
In doing so, we first complete the model (of price level determination),
by assuming a monetary policy rule, determining the money supply, as
follows,

mt = μ0 + μ1mt−1 + et, (3.7)

where |μ1| < 1 and et is white noise. According to (3.7), the money
supply at time t depends on its value last period and also on the random
component, et. In (3.7), μ0 + μ1mt−1 represents the ‘systematic’ part
of monetary policy and et the ‘unsystematic’ part.

Next, using (3.7) in (3.5) yields

γ + αEtpt+1 + (1 − α)pt + ut = μ0 + μ1mt−1 + et, (3.8)

which shows that pt will depend on mt−1, ut, et, and Etpt+1. Hence,
we conjecture the following solution

pt = φ0 + φ1mt−1 + φ2ut + φ3et, (3.9)
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where φ0, φ1, φ2, and φ3, are constants which we will have to express
in terms of the parameters of the model, α, γ, μ0, and μ1.

Assuming that our conjecture is true, we can write (3.9) for period
t+ 1 to get

pt+1 = φ0 + φ1mt + φ2ut+1 + φ3et+1,
and apply the time t expectations operator, Et, to obtain

Etpt+1 = φ0 + φ1mt

= φ0 + φ1 (μ0 + μ1mt−1 + et) . (3.10)

Substituting (3.9) and (3.10) into (3.8) to eliminate pt and Etpt+1 yields
[
γ + αφ0 + αφ1μ0 + (1 − α)φ0

]

+
[
αφ1μ1 + (1 − α)φ1

]
mt−1

+
[
(1 − α)φ2 + 1

]
ut

+
[
αφ1 + (1 − α)φ3

]
et

= μ0 + μ1mt−1 + et. (3.11)

The equality in (3.11) can be used to solve for φ0, φ1, φ2, and φ3

as a function of the model’s parameters, α, γ, μ0, and μ1. In fact, it
implies the following restrictions on the parameters:

γ + αφ0 + αφ1μ0 + (1 − α)φ0 = μ0; (3.12)

αφ1μ1 + (1 − α)φ1 = μ1; (3.13)

(1 − α)φ2 + 1 = 0; (3.14)

αφ1 + (1 − α)φ3 = 1. (3.15)

These are the conditions that we need to express φ0, φ1, φ2, and
φ3 as a function of the model’s parameters. In fact, (3.13) and (3.14)
imply, respectively,

φ1 =
μ1

1 − α + αμ1
;

φ2 = − 1
1 − α

.
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If we substitute the solution for φ1 into (3.15) and (3.12) we get, re-
spectively,

φ3 =
1

1 − α+ αμ1
;

φ0 =
μ0(1 − α)

1 − α+ αμ1
− γ.

Hence, the rational expectation solution for the price level is

pt =
μ0(1 − α)

1 − α + αμ1
−γ+

μ1

1 − α + αμ1
mt−1 − 1

1 − α
ut +

1
1 − α + αμ1

et.

This equation defines the time path of pt in terms of the exogenous
shocks ut and et and the predetermined variable, mt−1 — see McCallum
(1989, Chapter 8) regarding the properties of this solution and other
examples of rational expectation solutions.

As it happens, the concept of rational expectations has been em-
braced by the economics profession and the theory has been enhanced
by important contributions by Lucas (1972, 1973, 1976), Sargent and
Wallace (1975), Barro (1976), and Barro and Gordon (1983). In the rest
of this chapter we review a number of results in the rational expectation
macroeconomics literature.

3.4 The Lucas Critique

Robert Lucas in his famous (1976) paper, “Econometric Policy
Evaluation: A Critique,” presented an argument against the use of con-
ventional econometric models as forecasting tools and for policy evalu-
ation. The Lucas cririque is an important insight, and for it, Lucas was
awarded the Nobel Prize in 1995.

To illustrate the Lucas critique of conventional policy evaluation,
let’s use Cagan’s money demand function,

mt − pt = −β (Etpt+1 − pt) + ut, (3.16)

and assume that ut is a serially correlated process,

ut = ρut−1 + εt,

with |ρ| < 1 and εt being white noise. Assume that in the past the
money supply was fixed, say mt = 0 (or, equivalently, Mt = 1), and
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that, under this fixed money supply policy, prices were thought to be
too volatile. The central bank asks the econometric policy advisor to
advice on how mt can be used in the indefinite future in order to min-
imize the fluctuations in pt.

The behavior of pt during the past is given by the rational expecta-
tion solution for pt. To find the rational expectation solution for pt, we
need to solve the following model for pt,

mt − pt = −β (Etpt+1 − pt) + ut;

ut = ρut−1 + εt;

mt = 0.

which can be written as

−pt = −β (Etpt+1 − pt) + ρut−1 + εt. (3.17)

Using the method of conjectured solutions, we conjecture the solution

pt = φ0 + φ1ut−1 + φ2εt, (3.18)

which implies (after we apply the period t expectations operator, Et)

Etpt+1 = φ0 + φ1ut. (3.19)

Substituting (3.18) and (3.19) into (3.17) yields the equality

φ0 + φ1ut−1 + φ2εt =
1

1 + β

[
βφ0 + (βφ1 − 1)ρut−1 + (βφ1 − 1)εt

]
.

Hence, the implied conditions on the φ’s are:

φ0 =
βφ0

1 + β
;

φ1 =
(βφ1 − 1) ρ

1 + β
;

φ2 =
βφ1 − 1
1 + β

.

Solving these conditions for φ0, φ1, and φ2 yields,
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φ0 = 0;

φ1 = − ρ

1 + β(1 − ρ)
;

φ2 = − 1
1 + β(1 − ρ)

.

Hence, the rational expectation soltion for pt is

pt = − ρ

1 + β(1 − ρ)
ut−1 − 1

1 + β(1 − ρ)
εt.

In fact, since

pt−1 = − ρ

1 + β(1 − ρ)
ut−2 − 1

1 + β(1 − ρ)
εt−1

= − 1
1 + β(1 − ρ)

(ρut−2 + εt−1)

= − 1
1 + β(1 − ρ)

ut−1,

we can express the rational expectation solution for pt as

pt = ρpt−1 − εt

1 + β(1 − ρ)
. (3.20)

Conventional policy evaluation might proceed as follows. The econo-
metrician would use time series data to estimate (3.20) and get an esti-
mate of ρ, ρ̂, over the sample period. The estimated model would then
serve as a model of expectations to find Etpt+1 = ρ̂pt which would be
substituted into (3.16) to give

mt − pt = −β (ρ̂pt − pt) + ut.

The conventional econometrician’s model of pt would then be

pt=
mt − ut

1 + β(1 − ρ̂)
. (3.21)

Next, considering a policy rule of the form mt = gut−1 equation (3.21)
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implies

Var (pt) =
σ2

ε

(
g2 + 1 − 2gρ̂

)

[1 + β(1 − ρ̂)]2 (1 − ρ̂2)
. (3.22)

Hence, the g that minimizes Var(pt) is the one that solves the equa-
tion

∂Var (pt)
∂g

= 0.

Taking the partial derivative of Var(pt) with respect to g, setting it
equal to zero, and rearranging yields the optimal value of g,

g = ρ̂,

implying the minimum variance

Var (pt) =
σ2

ε

[1 + β(1 − ρ̂)]2
.

But we know that (3.22) is incorrect when g = ρ̂, since (3.22) was
derived under the assumption that g = 0 (that is, under the money
supply rule mt = 0). The error was to assume that Etpt+1 = ρ̂pt,
regardless of the choice of policy. This is exactly the point of the Lucas
critique.

In fact, the correct approach would be to solve the following model

mt − pt = −β (Etpt+1 − pt) + ut;

ut = ρut−1 + εt;

mt = gut−1,

in which case the rational expectation solution for pt is not (3.20). To
find the rational expectation solution for pt, we write the above model
as

gut−1 − pt = −β (Etpt+1 − pt) + ρut−1 + εt (3.23)

and conjecture the solution

pt = φ0 + φ1ut−1 + φ2εt, (3.24)

which implies
Etpt+1 = φ0 + φ1ut. (3.25)

Substituting (3.24) and (3.25) into (3.23) yields



3.4. The Lucas Critique 37

φ0+φ1ut−1+φ2εt =
1

1 + β

[
βφ0 + (βφ1ρ+ g − ρ)ρut−1 + (βφ1 − 1)εt

]

The implied conditions on the φ’s are:

φ0 =
βφ0

1 + β
;

φ1 =
βφ1ρ+ g − ρ

1 + β
;

φ2 =
βφ1 − 1
1 + β

,

which, when solved for φ0, φ1, and φ2 yield:

φ0 = 0;

φ1 =
g − ρ

1 + β(1 − ρ)
;

φ2 =
−1 − β(1 − g)

(1 + β) [1 + β(1 − ρ)]
.

Hence, the rational expectation solution for pt is

pt =
g − ρ

1 + β(1 − ρ)
ut−1 +

−1 − β(1 − g)
(1 + β) [1 + β(1 − ρ)]

εt

=
g − ρ

1 + β(1 − ρ)
ut−1 − 1 + β(1 − g)

(1 + β) [1 + β(1 − ρ)]
(ut − ρut−1)

= − 1 + β(1 − g)
(1 + β) [1 + β(1 − ρ)]

ut +
g

1 + β
ut−1. (3.26)

Note that pt in (3.26) depends on the parameters of the policy rule.
We can calculate Var(pt) and minimize it with respect to g.

The message of the Lucas critique is that the public’s expectations
about a policy will influence the response to that policy, and that we
should avoid using equations that will tend to shift with policy changes.
Although the critique has typically being destructive, implicit in the
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critique is a constructive way to improve on conventional techniques
for policy evaluation, by constructing models in terms of ‘structural
parameters,’ that is, parameters that are invariant with respect to pol-
icy intervention. Whether, however, a parameter is invariant or not is a
matter of judgement. This even applies to the ‘deep parameters’ of ag-
gregator functions (utility and production functions) that we will deal
with in Chapters 4 and 5.

3.5 Rules versus Discretion

The topic of ‘rules versus discretion’ in the conduct of monetary pol-
icy has a long history in macroeconomics — see, for example, Simons
(1936). Recently, however, Barro and Gordon (1983), building on work
by Kydland and Prescott (1977), study monetary policymaking in a
world with rational expectations, taking into consideration the incen-
tives of the monetary authority and the political constraints it may face.
As they show, rules are better, because they lead to a lower average
inflation rate than discretionary policymaking does.

Let’s follow Barro and Gordon (1983) and assume that the expec-
tational Phillips curve captures how the economy works

u = u∗ − α(π − πe), α > 0, (3.27)

where u is the unemployment rate, π the inflation rate, u∗ the natural
rate of unemployment, πe the expected inflation rate, and α measures
the ‘marginal benefit of surprise inflation.’ Notice that u < u∗ when
π > πe and u > u∗ when π < πe. Also, notice that the slope of the
expectational Phillips curve is

Δ(π − πe)
Δu

= − 1
α

,

suggesting that an increase in α makes the curve flatter, increasing the
policymaker’s temptation to create surprise inflation, π−πe, which now
gives a larger reduction in the unemployment rate, u, per point of π.

To determine the monetary authority’s policy choice, we need to
specify the preferences of the monetary authority. We assume that the
monetary authority has a single period loss function (assumed to reflect
the preferences of both government and society) quadratic in the actual
inflation rate, π, and in the deviation of u from u∗, as follows

L = βπ2 + (u− ku∗)2, β > 0, k < 1, (3.28)

where β measures the ‘social cost of inflation’ and k the strength of the
policymaker’s incentive to create surprise inflation, π − πe.
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3.5.1 Rules

Rule-like policymaking calls for period-by-period implementation of a
formula that has been selected by the monetary authority to be appli-
cable each period and for a large number of periods. It is to be noted
that rule-type policy could be either nonactivist (that is, it does not
depend on the current state of the economy) as, for example, in the
following two monetary policy rules

μt = 0.02;

μt = 0.02 + 0.0001t,

where μt is the monetary growth rate in period t (assumed to be the
monetary authority’s instrument) and t is a time trend, or activist (that
is, it depends on the current state of the economy), as in the rule

μt = 0.02 + 0.5 (ut−1 − 0.05) ,

where ut−1 is the unemployment rate in period t − 1. Clearly, under
the activist policy rule, this period’s setting of the monetary policy
instrument, μt, depends on last period’s unemployment rate, ut−1. For
example, when ut−1 = 5%, μt = 2%, but μt > 2% if ut−1 > 5% and
μt < 2% if ut−1 < 5%.

Keeping in mind that rule-type policy could be either activist or
nonactivist and that the issue of rules versus discretion is separate form
the issue of activist versus nonactivist policy behavior, let’s examine
how the economy performs when monetary policy is conducted under
rules. Under rules, the monetary authority makes commitments about
future monetary growth and inflation. Assuming that the monetary
authority can use its instruments to produce any desired inflation rate,
π, consider first the case where the monetary authority is committed to
a constant π — this is known as ‘fixed (or constant-growth-rate) rule.’

With this commitment, under rational expectations, economic agents
will neither overpredict nor underpredict the inflation rate, π. Hence,
π = πe, π − πe = 0, and [according to equation (3.27)], u = u∗. In this
case, since u = u∗, regardless of π, there is no reason in having any
inflation at all, and thus the optimal inflation rate is zero. Hence

πp = πe = 0, (3.29)

and the value of the loss function is

Lp = (1 − k)2u∗2,
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where the subscript p denotes the ‘precommitment,’ rules-type equilib-
rium.

3.5.2 Discretion

Discretionary policymaking involves period-by-period reoptimization
on the part of the monetary authority. In particular, under discretion,
the monetary authority takes the public’s inflationary expectations, πe,
as given and minimizes (3.28) subject to (3.27). Hence, by substituting
(3.27) into (3.28) to eliminate u, taking the partial derivative with
respect to the choice variable, π, and setting it equal to zero, yields

∂L

∂π
= −2α

[
u∗ − α(π − πe) − ku∗

]
+ 2βπ = 0,

which, when solved for the optimal inflation rate gives

π =
α [(1 − k)u∗ + απe]

α2 + β
. (3.30)

When expectations are fulfilled (i.e., when π = πe), the inflation rate
will be (put π = πe in the above to get)

πd =
α

β
(1 − k)u∗, (3.31)

and the value of the loss function will be

Ld =
[
1 + α2/β

]
Lp, (3.32)

where d denotes the ‘discretionary’ equilibrium.
On the basis of these results, Barro and Gordon (1983) argue that

rule-type policy is superior to discretionary policy, because it leads to
a lower average inflation rate.

3.6 Time Inconsistency

We have shown that rule-type policymaking is superior because it leads
to zero inflation while discretionary (period-by-period) policymaking
leads to positive inflation, with no additional output in compensation.
The rules-type equilibrium, however, is often referred to as the ‘optimal,
but time-inconsistent solution’ — see Kydland and Prescott (1977).
The term ‘time-inconsistent’ refers to the policymaker’s incentives to
deviate from the rule when economic agents expect it to be followed.
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On the other hand, the discretionary equilibrium is referred to as the
‘suboptimal, but time-consistent solution.’

In order to discuss the time-inconsistency problem, let’s calculate
the value of π and L in the fooling solution, in which the public expects
zero inflation but the monetary authority instead acts opportunistically
and produces surprise inflation in order to reduce u below u∗. With
πe = 0, equation (3.30) implies that the monetary authority’s short-
run optimal inflation rate, π, is

πf =
α(1 − k)u∗

α2 + β
,

and the value of the loss function is

Lf =
(1 − k)2u∗2

1 + α2/β
=

1
1 + α2/β

Lp,

where the subscript f represents ‘fooling.’
Clearly,

Lf < Lp < Ld,

demonstrating the benefits of precommitment. Kydland and Prescott
(1977) argued that although the precommitted solution is optimal, it
is time-inconsistent, in the sense that it lacks credibilty because the
monetary authority has an incentive (called ‘temptation’) to behave
inconsistently and inflate more than the public expects to obtain Lf ,
which is lower than Lp.

In doing so, however, the monetary authority completely ignores
the consequences for future expectations and ends up raising the infla-
tion rate, producing the worst possible outcome — the discretionary
solution. In other words, the ‘reneging’ outcome is feasible only in the
short-run, because in a rational expectations world economic agents
cannot be fooled forever. That is, the rule will not be credible, the
reputation of the monetary authority will be damaged, and the discre-
tionary outcome will be realized.

One way to deal with the time-inconsistency problem is to ‘con-
strain’ the monetary authority by the rule — as already mentioned,
the exact form of the rule is less important than the need to estab-
lish a credible commitment to the rule. It is, for example, possible to
design an activist policy rule (specifying how the monetary authority
will adjust μ in the light of new information about the economy) or
a nonactivist policy rule (such as a fixed μ). Another solution is to
appoint a central banker with an excessive dislike for inflation; in this
case β → ∞ and Ld → Lp.
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3.7 Inflation Mitigation

Anticipated inflation reduces the welfare of money holders. Here, we
follow Fischer and Summers (1989) and examine the welfare conse-
quences of institutional changes (such as the payment of interest on
money, the issuance of government indexed bonds, the introduction
of mortgage contracts that keep real rather than nominal payments
constant, etc.) that reduce the costs of inflation. Such measures are
widespread in high inflation countries, but governments in moderate
inflation countries, despite the experience of significant inflation, have
been reluctant to promote such measures. In fact, in most countries,
only social security payments are indexed, but nothing else. Why?

Some economists have argued that the general reluctance of gov-
ernments in moderate inflation countries to promote reforms to reduce
the costs of inflation is due to the ‘transitional costs’ of moving to an
indexed system as well as the ‘transactions costs’ of operating in such
a system. Policymakers, however, argue that inflation-cost mitigation
is counterproductive, because it promotes the inflation whose harm-
ful effects seeks to mitigate. To evaluate this argument, let’s use the
Barro-Gordon (1983) model of the previous section.

We have seen that the discretionary equilibrium is given by (3.31)
and (3.32). Clearly, the πd function is increasing in the marginal ben-
efit of surprise inflation, α. Hence, policy measures that increase α,
will increase the inflation rate, π, and reduce social welfare. Hence,
wage indexation is good because it reduces α, making the expectational
Phillips curve steeper, and increasing economic welfare by reducing the
monetary authority’s incentive to create surprise inflation.

Let’s now think of β as representing the effects of changes in the
extent of inflation mitigation on utility — in particular, β falls as infla-
tion mitigation increases. The πd and Ld functions in (3.31) and (3.32)
are decreasing in β, implying that policy measures that reduce β end
up increasing the total cost of inflation to society. Hence, inflation mit-
igation policies, although they reduce the costs associated with a given
inflation rate, π, they make things worse by reducing the monetary au-
thority’s commitment to low inflation and by causing adjustments of
inflationary expectations.

3.8 Conclusion

The traditional models that we discussed in Chapters 1 and 2 and the
rational expectation models we discussed in this chapter have been
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criticized on the grounds that they are not based on sound microeco-
nomic foundations. In particular, it has been argued that the behav-
ioral relationships of a good macro model should be derived from the
intertemporal optimization of economic agents.

In the next three chapters we turn to explicit optimization analysis
of the choice problems of representative economic agents. In doing so,
we review neoclassical growth theory and related dynamical approaches
that have widely spread into both macroeconomics and monetary eco-
nomics and are now routinely used for macroeconomic and monetary
analysis.



4

Neoclassical Growth Theory

4.1. The Solow Model
4.2. The Optimal Growth Model
4.3. The Overlapping Generations Model
4.4. Conclusion

In Chapters 1-3 we considered the role of the money demand func-
tion in comparative static models. These models were the dominant
macroeconomic paradigm up until thirty years ago. Recently, how-
ever, neoclassical growth theory and related dynamical approaches have
widely spread into both macroeconomics and monetary economics and
are now routinely used in exploring fiscal and monetary policy issues.

Among dynamic macroeconomic models, three that have seen wide
and expanding use in the last twenty years are the neoclassical growth
model of Robert Solow (1956), the optimal growth model originated by
Frank Ramsey (1928), and further developed by David Cass (1965) and
Tjalling Koopmans (1965), and the overlapping generations model of
Peter Diamond (1965). In what follows, we briefly discuss non-monetary
versions of neoclassical growth theory, leaving monetary versions of the
theory for the next chapter. In doing so, we focus on discrete time
systems, given that economic data are available in discrete form.

4.1 The Solow Model

With the publication of Solow’s (1956) seminal article on growth the-
ory, entitled “A Contribution to the Theory of Economic Growth,”
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macroeconomics and monetary economics started developing a central
theoretical core. The Solow model is the cornerstone of that core.

The model consists of two equations, a production function and a
capital accumulation equation. The production function describes how
private factor inputs of capital, Kt, and labor, Lt, combine to produce
output, Yt. It takes the form

Yt = F (Kt, Lt),

and is assumed to exhibit constant returns to scale, so that

F (ψKt, ψLt) = ψYt,

for ψ > 0. Choosing ψ = 1/Lt for Lt > 0, we can write the production
function as

Yt = F (Kt, Lt) = LtF

(
Kt

Lt
, 1
)

= LtF (kt, 1) = Ltf(kt),

or in per capita (that is, per worker) terms,

yt = f(kt), (4.1)

where yt is output per person, Yt/Lt, and kt is capital per person,
Kt/Lt. Writing the production function as in equation (4.1), has the
advantage of focusing attention on per capita output, yt, which is a bet-
ter measure of living standards than total output, Yt. The production
function is also assumed to satisfy the conditions

f ′ > 0, f ′′ < 0, f ′(0) = ∞, and f ′(∞) = 0.

It is assumed that there are many firms in the economy, so that
perfect competition prevails, and that the firms are price-takers. Each
firm maximizes profits, Πt, by solving the following problem

max
Kt,Lt

Πt = Ltf(kt) − wtLt − rtKt, (4.2)

where wt is the real wage rate, rt is the real rental price of capital, and
Ltf(kt) = Yt — the latter obtained by rearranging (4.1). The first-order
conditions for profit maximization are

f(kt) − ktf
′(kt) = wt; (4.3)

f ′(kt) = rt. (4.4)



4.1. The Solow Model 47

Equation (4.3) states that firms will hire labor until the marginal prod-
uct of labor, f(kt)−ktf

′(kt), equals the real wage rate, wt, and equation
(4.4) states that firms will hire capital until the marginal product of
capital, f ′(kt), equals the real rental price of capital, rt. In other words,
under perfect competition and profit maximization, markets clear when
the real return to each factor equals its marginal product.

Notice also that, with constant returns to scale, payments to capital
and labor sum to equal national income — that is, rtKt + wtLt = Yt.
We can show this (in per capita terms) by combining the results from
(4.3) and (4.4) as follows

rtkt + wt = f ′(kt)kt + f(kt) − ktf
′(kt)

= f(kt),

which when multiplied by Lt becomes

rtKt + wtLt = Yt.

The second key equation of the Solow model is the capital accumu-
lation equation. Assuming that capital depreciates at the constant rate
δ > 0, the capital accumulation equation is given by

Kt+1 = It + (1 − δ)Kt

= sYt + (1 − δ)Kt,

where It is gross investment and s (0 ≤ s ≤ 1) is the saving rate — the
fraction of output that is saved and invested.

In what follows we let ν denote the population growth rate and τ
the rate of technical change and consider three versions of the model:

• with no population growth (ν = 0) and no technical change (τ = 0)
• with population growth (ν �= 0) but no technical change (τ = 0),

and
• with both population growth (ν �= 0) and technical change (τ �= 0)

4.1.1 Steady State (ν = τ = 0)

Under the assumption that the rate of population growth is zero (ν =
0), Lt+1 = Lt, and we have

kt+1 =
Kt+1

Lt+1
=

sYt + (1 − δ)Kt

Lt
,



48 Chapter 4. Neoclassical Growth Theory

which implies the following first-order difference equation

kt+1 = sf(kt) + (1 − δ)kt. (4.5)

Equation (4.5) is the Solow model in discrete time. It says that the
amount of capital per worker depends positively on the saving rate, s,
and negatively on the depreciation rate, δ.

Using the Solow model, equation (4.5), we can consider dynamic
equilibria, in which every variable grows at some constant rate. Such
equilibria are known as steady states. Under our present assumptions
(with no population growth and technical change), steady-state requires
that capital per person is constant over time — that is, kt+1 = kt. In
this case, (4.5) reduces to the standard steady-state equation

sf(k∗) = δk∗, (4.6)

suggesting that δk∗ is the amount of saving (and therefore, investment)
per capita, necessary to keep constant the level of capital per worker.

We can also discuss what amount of capital accumulation is optimal.
In order to do so, we assume a policymaker whose objective is the
same as that of the representative economic agent, and in particular,
to maximize steady-state per capita consumption. Such an objective is
called the golden rule and the equilibrium that maximizes per capita
consumption is called the golden rule level of capital accumulation.

To find the golden rule level of capital accumulation, we maximize
steady-state per capita consumption, c∗,

c∗ = f(k∗) − sf(k∗)

= f(k∗) − δk∗,

with respect to steady-state per capita capital, k∗. The first-order con-
dition implies

f ′(k∗) − δ = 0. (4.7)

Condition (4.10) is known as the golden rule of accumulation and states
that (under present assumptions) steady-state per capita consumption
is maximized when the marginal product of capital net of the depreci-
ation rate equals zero (or, equivalently, when the marginal product of
capital equals the depreciation rate).
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4.1.2 Steady State Growth (ν �= 0 and τ = 0)

Assuming that population grows at the rate ν, we have

kt+1 =
Kt+1

Lt+1
=

sYt + (1 − δ)Kt

(1 + ν)Lt
,

which implies the following first-order difference equation

(1 + ν)kt+1 = sf(kt) + (1 − δ)kt. (4.8)

Equation (4.8) is the Solow model in discrete time. It says that the
amount of capital per worker depends positively on the saving rate, s,
and negatively on the depreciation rate, δ, and the population growth
rate, ν.

Under our present assumptions (with constant population growth
and no technical change), steady-state growth requires that capital per
person is constant over time — that is, kt+1 = kt. In this case, (4.8)
reduces to the standard steady-state equation

sf(k∗) = (ν + δ)k∗, (4.9)

suggesting that (ν + δ)k∗ is the amount of saving (and therefore, in-
vestment) per capita, necessary to keep constant the level of capital
per worker. It is to be noted that in a steady state growth position
of the economy, L grows at the rate ν, each of K and Y also grows
at the same rate ν, so that k = K/L and y = Y/L are constant. In
other words, there is growth in the levels of the variables but not in
per capita quantities.

To find the golden rule level of capital accumulation, we maximize
steady-state per capita consumption, c∗,

c∗ = f(k∗) − sf(k∗)

= f(k∗) − (ν + δ)k∗,

with respect to steady-state per capita capital, k∗. The first-order con-
dition implies

f ′(k∗) − δ = ν. (4.10)

and states that (under present assumptions) steady-state per capita
consumption is maximized when the marginal product of capital net of
the depreciation rate equals the population growth rate.
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4.1.3 Steady State per Capita Growth (ν �= 0 and τ �= 0)

The Solow model can easily be extended to incorporate exogenous tech-
nical change. In that case, the first-order difference equation becomes

Δk̂ = sf(k̂) − (δ + ν + τ)k̂

where k̂ = K/AL, andA is a factor measuring the efficiency of labor and
assumed to grow at the rate τ . In this case, the steady-state equation
becomes

sf(k̂∗) = (ν + δ + τ)k̂∗,

It is to be noted that in a steady state, L grows at the rate ν, AL
grows at the rate ν + τ , each of K and Y also grows at the rate ν + τ ,
so that k̂ = K/AL is constant. However, y = Y/L and k = K/L each
grow at the rate τ . In other words, there is growth in the levels of
the variables (at the rate ν + τ) as well as growth in the per capita
quantities (at the rate τ). This is why such a steady state is referred
to as a steady state per capita growth position of the economy. Hence,
according to the model, technological progress is the only source of
rising living standards over time.

Finally, in this case the golden rule of accumulation (4.10) becomes

f ′(k̂∗) − δ = ν + τ .

Corresponding theoretical discussion can be found in Barro and Xavier
Sala-i-Martin (2004), David Romer (2001), and Solow (1999, 2000).

4.2 The Optimal Growth Model

One limitation of the neoclassical growth model of Solow is its ad hoc as-
sumption that the saving rate, s, is an exogenous parameter. Although
this assumption has allowed us to ignore the consumption-saving de-
cision in order to concentrate our attention on the production side of
the economy, as Solow (1999, p. 646) puts it,

“the current fashion is to derive the consumption-investment de-
cision from the decentralized behavior of intertemporal-utility-
maximizing households and perfectly competitive profit-maximizing
firms.”
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The Solow model has been improved upon. Today, there are two
different versions of neoclassical growth theory, both explicitly based
on maximizing behavior by economic agents — the optimal growth
model of Ramsey (1928) and the overlapping generations model of Di-
amond (1965). In this section we discuss the Ramsey model, leaving
the Diamond model for the next section.

Consider an economy populated by a large number of infinite-lived
households each of which has preferences (at an arbitrary time, denoted
t = 0) given by

U(c0, c1, c2, · · ·) =
∞∑

t=0

βtu(ct), (4.11)

or, written out in full,

U = u(c0) + βu(c1) + β2u(c2) + · · ·,
where ct is per capita consumption at time t. The discount factor β
equals 1/(1 + ρ), where ρ (0 < ρ < ∞) is a time preference parameter.
Notice that a positive ρ implies that β < 1 and therefore a positive time
preference — i.e., a preference for current over future consumption. The
within-period utility function, u(ct), satisfies the following conditions

u′(ct) > 0, u′′(ct) < 0, u′(0) = ∞, and u′(∞) = 0.

We also assume that the household supplies inelastically one unit of
labor each period — in other words, leisure is not valued.

The household operates a production function with constant returns
to scale in capital and labor, given by (4.1). Assuming that population
grows at the rate ν and that there is no technical change (τ = 0), the
national income accounts identity can be written as,

f(kt) = ct + it,

and the capital accumulation equation as,

Kt+1 = It + (1 − δ)Kt.

Dividing the capital accumulation equation by Lt (to express the equa-
tion in per capita terms) and rearranging gives

(1 + ν)kt+1 = it + (1 − δ)kt,

where the population growth rate, ν, is defined by (1 + ν) = Lt+1/Lt.
Finally, solving the last expression for it and substituting into the na-
tional income accounts identity to eliminate it, yields the household’s
budget constraint for period t,
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f(kt) = ct + (1 + ν)kt+1 − (1 − δ)kt. (4.12)

As of time 0, the household chooses ct and kt+1 (for t = 0, 1, 2, ...)
to maximize (4.11) subject to (4.12), taking the initial stock of capital,
k0, as given. Formally, the household’s problem in period 0 is

max
{ct, kt+1}∞t=0

∞∑
t=0

βtu (ct)

subject to
f(kt) = ct + (1 + ν)kt+1 − (1 − δ)kt,

for t = 0, 1, 2, · · ·, with k0 given.

4.2.1 The Method of Lagrange Multipliers

Discrete time optimization methods can be used to solve finite as well
as infinite horizon problems in both deterministic and stochastic envi-
ronments. One method that can be used to solve this problem is the
method of Lagrange multipliers; another method is ‘dynamic program-
ming.’

Let’s start by using the method of Lagrange multipliers and write
the Lagrangian function as

L =
∞∑

t=0

βtu (ct) +
∞∑
t=0

βtλt

[
f(kt) − ct − (1 + ν)kt+1 + (1 − δ)kt

]
.

As ct is subject to the control of the economic agent it is called a control
variable. kt+1 is called a state variable. λ is the Lagrange multiplier
associated with the household’s period t budget constraint.

The first-order conditions necessary for optimality can be obtained
by differentiating L with respect to ct and kt+1. They are (for all t)

u′(ct) = λt; (4.13)

−(1 + ν)λt + βλt+1

[
f ′(kt+1) + 1 − δ

]
= 0. (4.14)

Conditions (4.12)-(4.14) are necessary for a maximum. In addition,
there is a transversality condition,

lim
t→∞ kt+1β

tu′(ct) = 0, (4.15)
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stating that the present value of the stock of capital, kt+1, in marginal
utility units, must approach zero as t → ∞. Notice that (4.15) does
not require that kt+1 → 0, since βt → 0 as t → ∞.

In this setting, (4.12)-(4.14) are necessary for a maximum, while
(4.12)-(4.15) are jointly sufficient. In other words, if (4.15) is satisfied,
the household’s choices of ct and kt+1 will be described by (4.12)-(4.14).

Conditions (4.13) and (4.14) can be rearranged to give

(1 + ν)
u′(ct)

βu′(ct+1)
= f ′(kt+1) + 1 − δ. (4.16)

This condition is known as the Euler equation (or Keynes-Ramsey rule)
and relates the time path of consumption to the marginal product of
capital and the rate of time preference. In the special case, for example,
when

u(ct) =
cθt − 1
θ

, for θ < 1 and θ �= 0,

and the marginal utility of consumption is u′(ct) = cθ−1
t , the Euler

equation (4.16) reduces to the following difference equation, describing
a necessary condition that needs to be satisfied along an optimal path,

ct+1

ct
=
[
f ′(kt+1) + 1 − δ

1 + ρ

]1/(1−θ)

.

4.2.2 The Method of Dynamic Programming

As already noted, another method of solving the household’s maximiza-
tion problem is dynamic programming. In the dynamic programming
approach, we convert the infinite period problem into a two period
problem as follows

max
c

{
u(c) + βv(k′)

}
(4.17)

subject to
(1 + ν)k′ = f(k) − c+ (1 − δ)k (4.18)

with k given, where u(c) is utility in the current period, k′ denotes next
period’s value of k (that is k′ = kt+1), and v(k′) is the optimal value of
the infinite period problem from period t+1 onwards (that is, starting
with kt+1).

Substituting (4.18) into (4.17) we get the Bellman equation (often
called ‘functional equation’)

v(k) = max
c

{
u(c) + βv

[(
f(k) − c+ (1 − δ)k

)
/(1 + ν)

] }
,
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for all k. For this problem the state variable is k and is given at the start
of any period. The state completely summarizes all information from
the past that is needed for the forward looking optimization problem.
The control variable is the variable that is being chosen. In this case,
it is the level of current consumption, c. The dependence of the state
tomorrow on the state today and the control today is geven by (4.18).

In this two period problem, instead of choosing a sequence of con-
sumption and capital levels, {ct, kt+1}∞t=0, the agent just chooses current
consumption, c, since all future controls and v(k′) have already been
obtained.

A different version of the functional equation can be obtained by
specifying the problem so that instead of choosing today’s consumption,
c, we choose tomorrow’s state, k′, as follows

v(k) = max
k′

{
u
(
f(k) − (1 + ν)k′ + (1 − δ)k

)
+ βv(k′)

}
, (4.19)

for all k. Either specification yields the same result. We will choose
this latter approach because it makes the algebra easier. Note that the
unknown in the Bellman equation is the value function itself, v(k′).

The first order condition for the maximum problem (4.19) is

−u′
(
f(k) − (1 + ν)k′ + (1 − δ)k

)
(1 + ν) + βv′(k′) = 0.

The Benveniste-Scheinkman formula (envelope condition), saying that
the value function is differentiable, is

v′(k) = u′
(
f(k) − (1 + ν)k′ − (1 − δ)k

) [
f ′(k) + 1 − δ

]
, (4.20)

which, when combined with the first order condition, gives

u′
(
f(k) − (1 + ν)k′ + (1 − δ)k

)
(1 + ν) = βu′

(
f(k′) − (1 + ν)k

′′

+(1 − δ)k′
) [

f ′(k′) + 1 − δ
]

where k′′ denotes the value of k two periods ahead. The above equation
can written as

(1 + ν)
u′(ct)

βu′(ct+1)
= f ′(kt+1) + 1 − δ,

which is the Euler equation we derived earlier — that is, equation
(4.16).
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4.2.3 The Euler Equation

The Euler equation (4.16) states that the marginal rate of intertem-
poral substitution equals the gross marginal product of capital net of
the depreciation rate. It shows that when f ′(kt+1) rises, u′(ct) must in-
crease relative to u′(ct+1), suggesting that ct must fall relative to ct+1.
Alternatively, it shows that when f ′(kt+1) rises, period t+ 1 consump-
tion becomes relatively less expensive, motivating utility-maximizing
households to switch away from current consumption and toward fu-
ture consumption. An increase in δ has the opposite effect, since it
reduces f ′(kt+1) + 1 − δ.

Finally, an increase in β (which results from a fall in ρ, that is, a
decrease in impatience) reduces ct relative to ct+1. Thus the effect of
a fall in ρ in the Ramsey model is the same as that of a rise in s in
the Solow model with a capital stock below the golden-rule level. The
only difference between the two models is that in the Solow model s is
constant whereas in the Ramsey model the saving rate is not constant
during the transition to the new steady state.

4.2.4 The Modified Golden Rule

Equation (4.16) also implies that the competitive equilibrium steady
state is characterized by

f ′(k∗) − δ = ν + ρ, (4.21)

since in the steady state ct = ct+1 and therefore u′(ct) = u′(ct+1). Equa-
tion (4.21) is known as the modified golden rule of accumulation and
states that the capital stock is reduced below the golden rule level by
an amount that depends on the rate of time preference. This is a pow-
erful result, suggesting that the rate of time preference, ρ, determines
the marginal product of capital, f ′(k∗), and the production function
determines the stock of capital consistent with that marginal product
of capital.

4.3 The Overlapping Generations Model

The optimal growth model assumes that the economy is populated by
identical, infinitely-lived households, each endowed with perfect fore-
sight over the infinite future. This is restrictive. The overlapping genera-
tions model avoids some of the restrictiveness by assuming that individ-
uals have finite lives, that they care only about their own consumption,
and that they leave no bequests when they die.
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The simplest version of the overlapping generations model assumes
that individuals live for two periods, t and t+ 1, so that an individual
born at time t is young at t and old at t+ 1. Hence, at any time there
are two heterogeneous generations (or cohorts) alive — in particular,
in period t the young generation overlaps with an older generation and
in period t + 1 with a subsequent younger generation. An individual
born at time t consumes c1t in period t and c2t+1 in period t + 1 and
derives utility

U = u(c1t) + βu(c2t+1),

where β is the subjective discount factor and u′(·) > 0, u′′(·) < 0,
u′(0) = ∞, and u′(∞) = 0. Notice that there are two subscripts on
consumption. The first subscript gives the age of the consumer and the
second subscript the date (because the economy itself goes on forever).

Individuals work only when they are young, supplying inelastically
one unit of labor and earning the going real wage rate of wt. They decide
how much to spend on the single good for first-period consumption, c1t,
they save and invest st = wt − c1t at the going interest rate rt+1, and
spend all of their wealth — that is, (1 + rt+1)st — on second-period
retirement consumption, leaving nothing behind. The individuals born
at time t and working in period t+ 1 are Lt. Population grows at rate
ν so that Lt = (1 + ν)tL0. In what follows, we will examine the opti-
mization problems of individuals and firms and define the competitive
equilibrium.

Consider an individual born at time t. Her (constrained) maximiza-
tion problem is

max
{c1t,c2t+1}

{
u(c1t) + βu(c2t+1)

}

subject to

c1t + st = wt

c2t+1 = (1 + rt+1)st.

By substituting the budget constraints into the objective function, the
individual’s optimization problem can be written (in unconstrained
form) as

max
{st}

{
u(wt − st) + βu ((1 + rt+1)st)

}
.

The first-order condition for choice of st is

u′(c1t)
βu′(c2t+1)

= (1 + rt+1). (4.22)



4.3. The Overlapping Generations Model 57

This is the Euler equation, saying that the marginal rate of intertem-
poral substitution equals the gross real rate of interest.

Alternatively, we can solve the individual’s problem by obtaining
the intertemporal budget constraint, by eliminating st from the two,
one-period budget constraints to get

c2t+1 − (1 + rt+1)(wt − c1t) = 0.

Setting up the Lagrangian

L = u(c1t) + βu(c2t+1) + λ
[
c2t+1 − (1 + rt+1)(wt − c1t)

]
,

the first-order conditions for choice of c1t and c2t+1 are

u′(c1t) + λ(1 + rt+1) = 0;

βu′(c2t+1) + λ = 0,

which when combined give the Euler equation (4.22).
Equation (4.22) implies that the quantity saved can be expressed as

a function of the wage rate and interest rate,

st = s(wt, rt+1).

We assume that s is a differentiable function with 0 < sw < 1. How-
ever, sr may be positive, negative, or zero, because of the income and
intertemporal substitution effects. For example, an increase in the in-
terest rate reduces the price of second period consumption, leading
individuals to substitute second- for first-period consumption — this is
the intertemporal substitution effect. But it also increases the feasible
consumption set, making it possible to increase consumption in both
periods — this is the income effect. The net effect of these substitution
and income effects is ambiguous.1

1 Consider, for example, the case where utility is log linear,

U = log c1t + β log c2t+1,

in which case the Euler equation (4.22) can be written as

c2t+1

βc1t
= (1 + rt+1).

By substituting the intertemporal budget constraint into the Euler equation to
eliminate c2t+1 we get (after solving for c1t)

c1t =
wt

1 + β
or st = wt − c1t =

βwt

1 + β
.
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Turning now to firms, it is assumed that they act competitively us-
ing a constant returns to scale production function, (4.1). Each firm
is assumed to maximize profits, taking the real wage rate, wt, and the
rental rate on capital, rt, as given. The representative firm’s maxi-
mization problem (assuming that δ = 0) is given by (4.2), and profit
maximization requires that conditions (4.3) and (4.4) are satisfied.

To derive the market equilibrium we need to find conditions for
equilibrium in the goods and factor markets. Regarding equilibrium in
the factor markets, the equilibrium conditions are those given by (4.3)
and (4.4). Hence, equilibrium in the factor markets obtains when labor
is hired to the point where the marginal product of labor equals the
real wage rate and capital is rented to the point where the marginal
product of capital equals the real rental rate.

Equilibrium in the goods market requires that the demand for goods
equals the supply of goods or, equivalently, that investment equals sav-
ing

Kt+1 −Kt = Lts(wt, rt+1) −Kt. (4.23)

In equation (4.23), Kt+1 − Kt is net investment, Lts(wt, rt+1) is the
saving of the young, and Kt is the dissaving of the old. This equation
says that the capital stock increases only if the amount saved by the
young, Lts(wt, rt+1), exceeds the amount set aside last period by the
current old, Kt, who withdraw their savings in this period.

Eliminating Kt from both sides of (4.23), we get

Kt+1 = Lts(wt, rt+1),

which says that the capital stock at time t+ 1 equals the saving of the
young people at time t. Dividing both sides of the above by Lt gives
the following capital accumulation equation

(1 + ν)kt+1 = s(wt, rt+1). (4.24)

The capital accumulation equation (4.24), together with the fac-
tor market equilibrium conditions (4.3) and (4.4), yields the following
relationship between kt+1 and kt

(1 + ν) kt+1 = s
(
f(kt) − ktf

′(kt), f ′(kt+1)
)

. (4.25)

Clearly, in this (log linear utility) case, saving does not depend on the interest
rate, implying that the income and intertemporal substitution effects offset each
other exactly.
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We will refer to this equation as the saving locus. To study this equation
is to study equilibria in the overlapping generations model.2

As Olivier Blanchard and Stanley Fischer (1989, p. 95) argue, the
properties of the saving locus depend on the derivative

dkt+1

dkt
=

−sw(kt)ktf
′′(kt)

(1 + ν) − sr(kt+1)f ′′(kt+1)
,

and the model does not, without further assumptions about utility and
production, guarantee either existence or uniqueness of a steady state
equilibrium with a positive capital stock.3 One way to obtain definite
results on the properties of the model is to specify explicit functional
forms for the underlying utility and production functions.

As an example, consider the case where utility is log linear, U =
log c1t +β log c2t+1, and the production function is Cobb-Douglas, yt =
kα

t . In this case the capital accumulation equation is

kt+1 =
(1 − α)β

(1 + ν)(1 + β)
kα

t ,

suggesting that the steady state capital stock is

k∗ =
[

(1 − α)β
(1 + ν)(1 + β)

] 1
1 − α .

2 Let’s see how equation (4.25) looks like with logarithmic utility, U = log c1t +
β log c2t+1, and a Cobb-Douglas functional form, y = kα, for the production
function. We have

st =
βwt

1 + β
, rt = αkα−1

t , and wt = (1 − α)kα
t

so that the capital accumulation equation becomes

kt+1 =
st

(1 + ν)
=

βwt

(1 + ν)(1 + β)
=

(1 − α)β

(1 + ν)(1 + β)
kα

t ,

which is a difference equation for kt. If we can solve this equation then we can have
a complete solution, since we can read off wt, rt, and st (and hence consumption).

3 If we are willing to assume that a unique equilibrium with positive capital stock
exists, then stability requires that dkt+1/dkt is less than one in absolute value.
That is, the stability condition is

∣∣∣∣
−swk∗f ′′(k∗)

(1 + ν) − srf ′′(k∗)

∣∣∣∣ < 1.
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In this case, dkt+1/dkt > 0. Stability requires that |dkt+1/dkt| < 1, and
we can check if this is true for given values of the technology param-
eter α and the preference parameter, β. Notice that the properties of
the economy, once it has converged to its balanced growth path, are
the same as those in the optimal growth model — the saving rate is
constant, per capita output is growing at the rate ν, the capital-output
ratio is constant, and so on.

To see how the economy responds to shocks, consider a fall in ρ,
when the economy is initially on its balanced growth path. The fall
in ρ causes the young to save a greater fraction of their labor income,
thereby increasing k∗. Thus the effects of a fall in the utility rate of
time preference in the Diamond model (in the case we are considering,
with logarithmic utility and Cobb-Douglas technology) are similar to
the effects of a fall in ρ in the optimal growth model and to the effects
of a rise in the saving rate in the Solow model.

The change shifts the paths over time of output and capital per
worker permanently up, but it leads only to a temporary increase in
the growth rates of these variables. The reader should also notice that
in the Diamond model, as in the Ramsey model, the saving rate is not
constant during the adjustment process.

4.4 Conclusion

We have reviewed basic, one-sector models of neoclassical growth the-
ory and showed that these models, unlike the static IS-LM and AD-AS
models that we discussed in Chapters 1-3, are dynamic structures built
on solid microeconomic foundations. These models are also extremely
versatile. They can be extended to deal with a number of issues in
growth theory such as, for example, increasing returns to scale, human
capital, endogenous population growth, and technological progress —
see Robert Lucas (1988), Paul Romer (1986, 1990), Barro and Sala-i-
Martin (2004), and Solow (1999, 2000) for references.

Neoclassical growth theory, however, also has uses in monetary eco-
nomics and macroeconomics. As Costas Azariadis (1993, p. xii) puts
it, neoclassical growth theory has

“evolved into a language in which many macroeconomists, es-
pecially of the younger generation, choose to express their work
and communicate their findings.”

In fact, mainstream macroeconomic analysis amounts to ‘compli-
cating’ one of the models discussed in this chapter. Introducing, for
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example, taxes and government debt we can study the effects of fiscal
policy. Introducing money, we can explore the effects of monetary pol-
icy. Excellent treatments can be found in Blanchard and Fischer (1989),
Athanasios Orphanides and Solow (1990), McCallum (1990), Azariadis
(1993), and David Romer (2001).

In the next chapter, we review the ongoing debates about the role of
money and the money demand function in neoclassical growth theory.



5

Monetary Growth Theory

5.1. The Tobin Model
5.2. The Sidrauski Model
5.3. A Variation of the Sidrauski Model
5.4. The New Empirics of Monetary Growth
5.5. Conclusion

The neoclassical growth models that we studied in Chapter 4 are
models of a non-monetary economy. In this chapter, we review mone-
tary versions of neoclassical growth theory. This involves putting money
in the models of neoclassical growth theory and studying the implica-
tions for monetary policy. We begin with James Tobin (1965) who, as
Orphanides and Solow (1990, p. 224) put it,

“asked the question that has mainly preoccupied the literature
ever since 1965. Different long-run rates of growth of the money
supply will certainly be reflected eventually in different rates
of inflation; but will there be any real effects in the long-run?
Tobin studied this (“superneutrality”) question in a simple “de-
scriptive” model with aggregate saving depending only on cur-
rent income, and seigniorage distributed in such a way as to
preclude any distributional effects. He found that faster money
growth is associated with higher capital stock and output per
person in the steady state.”

We also discuss an optimizing framework, originally due to Miguel
Sidrauski (1967), that has played an important role in the development
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of monetary theory and has been used widely to study a variety of issues
in monetary economics. In the Sidrauski, infinite-horizon optimization
model superneutrality prevails.

We leave a discussion of a monetary version of the overlapping gen-
erations model for Chapter 9.

5.1 The Tobin Model

Tobin (1965) in his article, “Money and Economic Growth,” developed
one of the early dynamic models with money. He did so by introducing a
portfolio decision, connecting money growth and capital accumulation,
into the neoclassical growth model of Solow.

As with the Solow model, Tobin assumes a linearly homogeneous
production function, given by yt = f(kt), and that real per capita
wealth in period t, at, is kept in the form of physical capital, kt, and
real money balances, mt. That is,

at = kt +mt,

where mt is real per capita money balances,

mt =
Mt

PtLt
.

Above, Mt is nominal money balances, Pt is the price level, and Lt is
population. The intuition of this asset-allocation decision is that phys-
ical capital and real money balances are substitutes in asset portfolios.
In particular, for a given level of real wealth, a decrease in real balances
would increase per capita capital and output, whereas an increase in
real balances would have the opposite effect.

To introduce a means of changing the stock of money, Tobin assumes
a government whose only role in the economy is to make lump-sum, real
(per capita) transfers of money, in the amount of vt. He then defines
real aggregate disposable income in period t, Y d

t , as real output, Yt,
plus the monetary transfers, vtLt, plus the change in the real value of
money holdings arising from changes in the price level from period t to
period t+ 1. That is,

Y d
t = Yt + vtLt +

Mt

Pt+1
− Mt

Pt
.

Assuming that the inflation rate from period t to period t + 1 is πt =
(Pt+1 − Pt)/Pt, real aggregate disposable income can be written as
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Y d
t = Yt + vtLt − πt

1 + πt

Mt

Pt
,

where −πt/(1+πt) is the real rate of return on money.1 Clearly, inflation
(i.e., πt > 0) produces a capital loss and therefore reduces real aggregate
disposable income, whereas deflation (i.e., πt < 0) produces a capital
gain and increases it.

As with the Solow model, there is a saving decision in the Tobin
model, similar to that in the Solow model. In particular, assuming a
fixed saving rate, s, (physical and financial) asset accumulation equals
the saving rate times real aggregate disposable income, Y d

t . That is,

Kt+1 −Kt +
Mt+1

Pt+1
− Mt

Pt
= s

(
Yt + vtLt − πt

1 + πt

Mt

Pt

)
,

which implies that real aggregate investment (i.e., investment in phys-
ical capital) is given by

Kt+1 −Kt = s

(
Yt + vtLt − πt

1 + πt

Mt

Pt

)
−
(
Mt+1

Pt+1
− Mt

Pt

)
. (5.1)

If we divide both sides of equation (5.1) by Lt, we can write it in
per capita terms as follows (the same expression can be obtained by
dividing both sides of (5.1) by Lt+1)2

(1 + νt)kt+1 = s

(
yt + vt − πt

1 + πt
mt

)
− μt − πt

1 + πt
mt + kt, (5.2)

where μt denotes the monetary growth rate, μt = (Mt+1−Mt)/Mt, and
νt the population growth rate (as before).
1 To see this, notice that 1/P is the purchasing power of money (that is, the value

of a unit of money in terms of goods that it buys). Hence, the real rate of return
on money from period t to period t + 1 is

(
1

Pt+1
− 1

Pt

)/
1

Pt
=

Pt

Pt+1
− 1 = − πt

1 + πt
.

2 In deriving (5.2), we also made use of the fact that
(

Mt+1

Pt+1
− Mt

Pt

)
1

Lt+1
=

(
Mt+1Pt

MtPt+1

Lt

Lt+1
− Lt

Lt+1

)
Mt

PtLt

=

[
1 + μt

(1 + πt)(1 + νt)
− 1

1 + νt

]
mt

=
μt − πt

(1 + πt)(1 + νt)
mt.
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Since lump-sum transfers are equal to the real per capita value of
the change in nominal balances, or

vt =
Mt+1 −Mt

Pt+1Lt+1
=

μt

(1 + πt)(1 + νt)
mt,

equation (5.2) reduces to (under the approximation that πtνt → 0)

(1 + νt)kt+1 = sf(kt) −
(

1 − s

1 + νt

)
μt − πt

1 + πt
mt + kt. (5.3)

Equation (5.3) is the Tobin model, clearly showing that anything that
increases real per capita money balances will result in a lower level
of per capita capital and output. The basic intuition can be stated as
follows. People regard the transfer of money as income and therefore
raise their total saving, but only by a fraction s of the increase in real
money holdings. Thus, they are induced to consume more and hence
save less for capital accumulation.

Using the Tobin model, and assuming that the population growth
rate and the growth rate of nominal balances are constant, we now
consider properties of steady states. Since mt is real per capita money
balances, mt = Mt/PtLt, its evolution through time is given by

dm

dt
= (μ− π − ν)m,

suggesting that in the steady state (where m is constant)

π = μ− ν. (5.4)

Condition (5.4) states that steady-state inflation is directly determined
by the monetary growth rate, μ.

In the steady state we also have kt+1 = kt, so that equation (5.3)
reduces to, after using equation (5.4),

sf(k) =
[ (

1 − s

1 + ν

)
1

1 + π
m+ k

]
ν

=
[(

1 − s

1 + ν

)
1

1 + π

m

k
+ 1

]
νk. (5.5)

Equation (5.5) is the steady-state equation in the Tobin monetary
growth model. For m = 0, it reduces to the standard equation of the
Solow non-monetary growth model, with δ = 0.
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It is immediately clear from (5.5) that monetary neutrality prevails
in this model, since changes in the supply of nominal money balances
produce proportional changes in the aggregate price level, leaving the
real equilibrium unaffected. Notice that this property follows from the
fact that m = M/PL in (5.5), implying that proportional changes in
M and P do not affect the equilibrium level of per capita capital and
output.

To investigate the issue regarding the superneutrality of money, we
close the model by assuming that the ratio of money holdings to capital
holdings, m/k, is a function of the real rates of return yielded by the
two assets. Since r is the real rate of return on capital and −π/(1 + π)
the real rate of return on money, m/k depends negatively on r and pos-
itively on −π/(1 + π), or, equivalently, negatively on π. Algebraically,
we have the following money demand function

m

k
= Φ(r, π), (5.6)

with Φr < 0 and Φπ < 0.
With profit maximization and perfect competition in factor and

output markets, we know that r = f ′(k) and equation (5.6) becomes
m

k
= Φ

(
f ′(k), π

)
,

and the steady-state equation (5.5) in terms of s, π, and ν becomes

sf(k) =
[(

1 − s

1 + ν

)
1

1 + π
Φ
(
f ′(k), π

)
+ 1

]
νk. (5.7)

Totally differentiating (5.7) with respect to μ yields

dk

dμ
=

(
Φπ − Φ(·)

1 + π

)
ϑνk

sf ′(k) − ν
[

1 + ϑΦ+ ϑΦrf ′′(k)k
] dπ
dμ

,

where ϑ = 1/(1 + π) − s/(1 + ν)(1 + π). Clearly, dk/dμ is positive,
meaning that the Tobin model does not have the property of superneu-
trality, in the sense that changes in the monetary growth rate affect real
variables. Intuitively, an increase in the growth rate of money raises the
steady-state rate of inflation and lowers the real rate of return on money
relative to physical capital. This reduces the ratio of money holdings
to capital holdings and increases the steady-state level of per capita
capital. This portfolio substitution effect of money growth on the equi-
librium capital intensity of the economy is known as the Tobin effect.
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5.2 The Sidrauski Model

The descriptive Tobin model, like the Solow model, assumes that the
saving rate is an exogenous parameter. Sidrauski (1967), in his paper
“Rational Choice and Patterns of Growth in a Monetary Economy,”
studied the superneutrality of money question in the context of a mon-
etary growth model in an explicitly optimizing framework. In partic-
ular, he incorporated money balances into the utility function of the
representative economic agent of the Ramsey (1928) optimal growth
model, discussed in Chapter 4.

Sidrauski (1967) assumes that the representative household’s life-
time utility function is of the form

U =
∞∑
t=0

βtu(ct,mt), (5.8)

where ct and mt are per capita consumption and real balances at time
t. The within-period utility function, u(ct,mt), satisfies the conditions,
ui(ct,mt) > 0, uii(ct,mt) < 0, for i = 1, 2, where ui(ct,mt) denotes the
partial derivatives of u(ct,mt) with respect to the ith argument.

Assuming (for simplicity) that there is no population growth (i.e.,
ν = 0) and that the inflation rate from period t to period t + 1 is
πt = (Pt+1 − Pt)/Pt, the household’s budget constraint (in per capita
terms) can be written as

f(kt) + vt = ct + it

= ct + kt+1 − (1 − δ)kt + (1 + πt)mt+1 −mt, (5.9)

where mt is real (time t) cash holdings and vt denotes (lump-sum) real
government transfers (net of taxes), received at the start of the period.3

The problem is solved by maximizing (5.8) subject to the constraint
(5.9), taking k0 and m0 as given. The Lagrangian expression is

3 The term (1 + πt)mt+1 − mt on the right-hand side of (5.9) gives the change in
real money holdings from period t to period t + 1. In particular, it is

Mt+1 − Mt

Pt
=

Mt+1

Pt
− Mt

Pt
=

Mt+1

Pt+1

Pt+1

Pt
− mt

= (1 + πt)mt+1 − mt.
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L =
∞∑

t=0

βtu (ct,mt) +
∞∑

t=0

βtλt

[
f(kt) + vt

−ct − kt+1 + (1 − δ)kt − (1 + πt)mt+1 +mt

]
.

The necessary first-order conditions for optimality can be obtained by
differentiating L with respect to ct,mt+1, and kt+1. They are (for all t)

u1(ct,mt) − λt = 0; (5.10)

βu2(ct,mt) − λt (1 + πt) + βλt+1 = 0; (5.11)

−λt + βλt+1

[
f ′(kt+1) + 1 − δ

]
= 0. (5.12)

Conditions (5.9)-(5.12) are necessary for a maximum. In addition, there
are two transversality conditions,

lim
t→∞mt+1β

tλt(1 + πt) = 0; (5.13)

lim
t→∞ kt+1β

tλt = 0. (5.14)

In this setting, (5.9)-(5.12) are necessary for a maximum, while (5.9)-
(5.14) are jointly sufficient. In other words, if (5.13)-(5.14) are satisfied,
the household’s choices of ct, mt+1, and kt+1 will be described by (5.9)-
(5.12).

We can now consider properties of steady states. Under present
assumptions (with ν = 0 and no technical change), ct, kt,mt, vt, and λt

will be constant over time. With zero growth, conditions (5.10)-(5.12)
reduce to

βu2(c,m) = (1 + π − β)u1(c,m); (5.15)

β
[
f ′(k) + 1 − δ

]
= 1, (5.16)

with (5.15) coming from (5.10) and (5.11) and (5.16) from (5.12). As
equation (5.16) shows, in the steady state the marginal product of cap-
ital, f ′(k), is independent of π (and μ). This means that the real rate
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of interest (which equals the marginal product of capital) is indepen-
dent of π (and μ) and that the Fisherian link between the nominal
interest rate and the inflation rate holds across steady states. More-
over, because of the one-to-one mapping from f ′(k) to k, the capital
intensity is also independent of π (and μ). Thus, superneutrality pre-
vails and the Tobin effect is invalidated.

The superneutrality of money, however, is not a general result. Even
minor modifications of Sidrauski’s optimizing framework can lead to
quite different results. In what follows, we consider a variation of the
Sidrauski model, due to William Brock (1974), in which superneutrality
fails.

5.3 A Variation of the Sidrauski Model

The Ramsey and Sidrauski models are both based on the assumption
that labor is supplied inelastically. This is an unreasonable assumption
and we can drop it, by introducing the amount of work as another
decision variable. In doing so, we include labor input as an argument
in the utility function of the representative economic agent, as follows

U =
∞∑
t=0

βtu(ct,mt, nt),

where ct and mt are (as before) per capita consumption and real bal-
ances at time t and nt is the amount of work during period t. The
within-period utility function, u(ct,mt, nt), satisfies the conditions,
ui(ct,mt, nt) > 0, uii(ct,mt, nt) < 0, for i = 1, 2, and u3(ct,mt, nt) < 0,
u33(ct,mt, nt) < 0.

When labor supply is not inelastic, the production function can also
be written as yt = f(kt, nt), with fi > 0 and fii < 0, for i = 1, 2. The
household’s budget constraint (in per capita terms) can then be written
as

f(kt, nt) + vt = ct + it

= ct + kt+1 − (1 − δ)kt + (1 + πt)mt+1 −mt.

Taking a dynamic programming approach, we write the problem as
follows

max
c,m′,k′,n

{
u(c,m, n) + βv(k′,m′)

}
(5.17)
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subject to

f(k, n) + v = c + k′ − (1 − δ)k + (1 + π)m′ −m, (5.18)

where v(k′,m′) is the value function; as in Chapter 4, a prime on a
variable denotes next period’s value of that variable.

By substitutiong (5.18) in (5.17) to eliminate c, we get the Bellman
equation

v(k,m) = max
k′,m′,n

{
u
[
f(k, n) + v − k′ + (1 − δ)k − (1 + π)m′ +m,m,n

]

+βv(k′,m′)
}

The first order conditions for the maximum problem are

u1 (c,m, n) = βv1(k′,m′) (5.19)

(1 + π)u1 (c,m, n) = βv2(k′,m′) (5.20)

f2(k, n)u1(c,m, n) + u3(c,m, n) = 0 (5.21)

The Benveniste-Scheinkman formulas (envelope conditions) are

v1(k,m) = u1 (c,m, n)
[
f1(k, n) + 1 − δ

]

v2(k,m) = u1 (c,m, n) + u2(c,m, n)

which for period t+ 1 can be written as

v1(k′,m′) = u1

(
c′,m′, n′) [f1(k′, n′) + 1 − δ

]
(5.22)

v2(k′,m′) = u1

(
c′,m′, n′)+ u2(c′,m′, n′) (5.23)

Equations (5.19) and (5.22) imply the Euler equation

u1 (c,m, n)
βu1 (c′,m′, n′)

= f1(k′, n′) + 1 − δ (5.24)

and (5.20) and (5.23) yield



72 Chapter 5. Monetary Growth Theory

u1 (c,m, n)
β
[
u1 (c′,m′, n′) + u2(c′,m′, n′)

] =
1

1 + π
(5.25)

In the steady state, with ν = τ = 0 (5.24), (5.25), and (5.21) reduce
to

f1(k, n) − δ = ρ (5.26)

u1 (c,m, n)
u2 (c,m, n)

=
β

1 + π − β
(5.27)

u3(c,m, n) = −f2(k, n)u1(c,m, n) (5.28)

Clearly, equations (5.26)-(5.28) do not form a block recursive system of
equations. In fact, as equation (5.26) shows, the steady-state marginal
product of capital, f1(k, n), is no longer independent of π (and μ).
Hence, this model does not have the property of superneutrality.

In general, if the marginal product of capital depends on other things
besides per capita capital, then superneutrality will fail.

5.4 The New Empirics of Monetary Growth

Long-run monetary superneutrality asserts invariance of real variables
with respect to inflation rates and monetary growth rates. This invari-
ance derives from invariance in the marginal productivity of capital, to
which the real rate of interest is equal in equilibrium. Over the years,
these invariances have been investigated in a large number of studies.
The evidence, however, has been in a state of flux. In his Nobel lecture,
Robert Lucas (1996, p. 661) addresses this issue as follows:

“the work for which I have received the Nobel Prize was part of
an effort to understand how changes in the conduct of monetary
policy can influence inflation, employment, and production. So
much thought has been devoted to this question and so much
evidence is available that one might reasonably assume that it
has been solved long ago. But this is not the case: It had not
been solved in the 1970s when I began my work on it, and even
now this question has not been given anything like a satisfactory
answer.”
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The 1990’s, however, have been fruitful in this area of macroecono-
metrics, with new tests having been devised and executed. For example,
Mark Fisher and John Seater (1993) and Robert King and Mark Wat-
son (1997) contribute to the literature on testing long-run neutrality
propositions by developing tests using recent advances in the theory
of nonstationary regressors, to be briefly discussed later in this book.
They show that meaningful long-run monetary neutrality tests can only
be constructed if both nominal and real variables satisfy certain non-
stationarity conditions and that much of the older literature violates
these requirements, and hence has to be disregarded.

In particular, they show that neutrality tests are possible if real and
nominal variables are integrated of order one [or I(1) in the terminology
of Robert Engle and Clive Granger (1987)] and do not cointegrate; su-
perneutrality tests are possible if the order of integration of the nominal
variables is equal to one plus the order of integration of the real vari-
ables. Similarly, they show that the Fisherian link between inflation
and nominal interest rates can be tested if the inflation and interest
rate series are integrated of order one and do not cointegrate. Serletis
and Zisimos Koustas (1998) and Koustas and Serletis (1999) provide
international evidence on long-run monetary neutrality propositions,
based on the King and Watson (1997) methodology.

Overall, recent empirical tests of long-run monetary neutrality
propositions do not provide much evidence against the long-run neu-
trality of money. They provide, however, mixed evidence regarding
long-run monetary superneutrality and the Fisherian link between nom-
inal interest rates and inflation rates. See James Bullard (1999) for a
review of the recent evidence regarding testing long-run monetary neu-
trality propositions.

5.5 Conclusion

We developed the descriptive Tobin model and the Sidrauski optimiz-
ing model and showed that in the former high inflation is associated
with higher levels of per capita capital and output, whereas in the lat-
ter the superneutrality of money prevails. However, as we argued here
and as Orphanides and Solow (1990) and McCallum (1990) discuss in
more detail, these results are not robust to even modest modifications
of each of these models. There is undoubtedly some intuition about
the superneutrality question, but none of the models is comprehen-
sive enough to provide a good understanding of the long-run effects of
monetary growth.



74 Chapter 5. Monetary Growth Theory

One problem with these models is that they concentrate on the
transactions role of money, ignoring the precautionary and speculative
motives for holding money. In fact, although these models dominate
current research in a large number of areas, they haven’t been success-
fully expanded into the demand for money area in which static models
are still the rule. In Chapters 7, 8, and 9 we review such static models
of the demand for money.
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The Welfare Cost of Inflation

6.1. The Money Demand Function
6.2. The Consumer Surplus Approach
6.3. The Compensating Variation Approach
6.4. Empirical Evidence
6.5. Conclusion

The specification of the money demand function is also crucial in the
estimation of the welfare cost of inflation. Whether inflation is costly
is an important question, especially given the prevalence of inflation
in the economic history of many countries around the world. In this
chapter we provide a brief summary of the theoretical issues regarding
the estimation of the welfare cost of inflation and note that the welfare
cost of inflation question is an outstanding one in macroeconomics and
monetray economics.

6.1 The Money Demand Function

Consider the following money demand function

M

P
= �(R, y),

where M denotes nominal money balances, P the price level, y real
income, and R the nominal rate of interest, all at time t. Assuming
that the �(R, y) function takes the form �(R, y) = Φ(R)y, the money
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demand function can be written as m = Φ(R)y, where m denotes real
money balances, M/P . Equivalently, we can write

z =
m

y
= Φ(R),

which gives the demand for real money balances per unit of income as
a function of the nominal interest rate R.

The specification of the money demand function is crucial in the
estimation of the welfare cost of inflation. As you will see in the next
section, Bailey (1956) and Friedman (1969) use a semi-log demand
schedule whereas Lucas (2000) uses a double log (constant elasticity)
schedule on the grounds that the double log performs better on the
U.S. data that does not include regions of hyperinflation or rates of
interest approaching zero.

6.2 The Consumer Surplus Approach

Bailey (1956) uses tools from public finance and applied microeco-
nomics to measure the welfare cost of inflation. He argues that the
welfare cost of inflation is the area under the inverse money demand
schedule — the ‘consumer surplus’ that can be gained by reducing the
nominal interest rate from a positive level of R to the lowest possible
level (perhaps zero). In doing so, he implicitly assumes that individuals
hold money (thereby sacrificing interest) because of the benefits from
the transaction-facilitating services provided by money. These benefits
are the reduced time and energy devoted to shopping and for any given
change in the level of money holdings, the change in these benefits
is represented by the area under the inverse money demand schedule
between the initial and final levels of money holdings.

In particular, based on Bailey’s consumer surplus approach, we esti-
mate the function z = Φ(R), calculate its inverse R = Ψ (z), and define
the welfare cost function w(R) by

w(R) =
∫ Φ(0)

Φ(R)
Ψ(x)dx =

∫ R

0
Φ(x)dx−RΦ(R). (6.1)

Above, w(R) is the welfare cost of inflation expressed as a fraction of
income.

Clearly any measure of the welfare cost of inflation depends on the
money demand function Φ(R) that is used. Bailey (1956) and Friedman
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(1969) use a semi-log (Cagan-type) functional form for Φ(R) whereas
Lucas (2000) uses a log-log functional form.

In particular, assuming a double-log money demand function

lnΦ(R) = lnA + η lnR, (6.2)

or, equivalently,1

Φ(R) = ARη, (6.3)

the welfare cost function (6.1) takes the form

w(R) =
∫ R

0
Φ(x)dx−RΦ(R)

=
[

A

η + 1
xη+1

]R

0

−RARη = −A η

η + 1
Rη+1.

To calculate w(R), we use an estimate of η and calculate the value of
A such that the curve obtained passes through the geometric means of
the data.2

On the other hand, with a semi-log functional form for Φ(R),

lnΦ(R) = α− ξR, (6.4)

or, equivalently,3

Φ(R) = Be−ξR, (6.5)

the welfare cost function (6.1) takes the form

1 Equation (6.3) is obtained from equation (6.2) by writing (6.2) as elnΦ(R) =
elnA+η ln R which implies Φ(R) = eln AelnRη

= ARη.
2 As an example, suppose that η = −0.3 and the geometric means of z and R are

1 and 0.05, respectively. Then

A =
z

Rη
=

1

0.05−0.3
= 0.41.

In this case, the welfare cost of a steady state nominal interest rate of 10% relative
to a steady state interest rate of 0% is

w(0.10) = −A
η

η + 1
Rη+1 = −(0.41)

−0.3

0.7
(0.10)0.7 = 0.035.

That is, the welfare cost of a 10% steady state interest rate is equal to 3.5% of
people’s income in the steady state.

3 Equation (6.5) is obtained from equation (6.4) by writing (6.4) as elnΦ(R) =
eα−ξR, which implies Φ(R) = eαe−ξR = Be−ξR, where B = eα.
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w(R) =
∫ R

0
Φ(x)dx−RΦ(R)

=
[
B

−ξ e
−ξx

]R

0

−RBe−ξR =
B

ξ

[
1 − (1 + ξR)e−ξR

]

The difference between the log-log and semi-log money demand
functions is that the log-log schedule always produces greater welfare
gains since the demand for real balances increases without limit as the
nominal interest rate approaches zero. As Marty (1999) argues the log-
log form works well in times of moderate inflation, but is not likely
to work well in times of hyperinflation or in cases where policy is set
according to Friedman’s (1969) rule.

6.3 The Compensating Variation Approach

Lucas (2000) takes a ‘compensating variation’ approach in estimating
the welfare cost of inflation. In particular, in the context of general equi-
librium Ramsey type models, he calculates the reduction in consump-
tion needed to compensate for (and measure) the gain in utility from a
larger stock of money balances. In doing so, he derives an exact measure
for the welfare cost of inflation using the Sidrauski (1967) framework
and also investigates the robustness of the results to the non-existence
of lump sum taxes and to the assumed transactions technology.

Let’s consider the Sidrauski (1967) framework and assume an econ-
omy populated by a large number of infinite-lived agents each of which
has preferences (at an arbitrary time, denoted t = 0) given by

U =
∞∑

t=0

βtu(ct,mt), (6.6)

where ct and mt are real consumption and money balances at time
t. The discount factor β equals 1/(1 + ρ), where ρ (0 < ρ < ∞) is
a time preference parameter. We assume a homothetic current period
utility function (with consumption, c, and the ratio of real balances to
consumption, m/c, as arguments) of the form

u(c,m) =
1

1 − σ

[
cf

(m
c

)]1−σ
, (6.7)
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with σ �= 1.4

We also assume that each household is endowed with one unit of
time which is inelastically supplied to the market and produces yt =
(1 + γ)ty0 units of the consumption good in period t. Because the
consumption good is nonstorable, one equilibrium condition is

ct = yt = (1 + γ)ty0, (6.8)

where γ is the real growth rate, assumed to be independent of monetary
policy.

Households also face a cash flow constraint, which in nominal terms
for period t is

Ptyt = Ptct +Mt+1 −Mt +Ht, (6.9)

where Ht denotes lump sum taxes (or, if Ht < 0, lump sum transfers).
Dividing both sides of (6.9) by Pt, we can write the household’s cash
flow constraint in real terms as

yt = ct + (1 + πt+1)mt+1 −mt + ht, (6.10)

where (1 + πt+1) = Pt+1/Pt and ht = Ht/Pt.
We assume a balanced growth equilibrium where the money growth

rate μt = (Mt+1 −Mt)/Mt is constant at μ, maintained by a constant
ratio of transfers to income, h/y. In this case m/y will be constant and
the condition

1 + π =
1 + μ

1 + γ

will also be satisfied.
Using dynamic programming, let ṽ(m, y) be the value of the max-

imized objective function (6.6) for a household in such an equilibrium
that has real balances m when the economy-wide income level has
reached y. Then the value function ṽ(m, y) satisfies the Bellman equa-
tion

4 Homotheticity requires that the slope of the indifference curves (that is, the
marginal rate of substitution) depend only on the m/c ratio. In the context of
equation (6.7), we have

∂u(c, m)

∂c
∂u(c, m)

∂c

=

[
cf

(m

c

)]−σ [
f
(m

c

)
− f ′

(m

c

) m

c

]

[
cf

(m

c

)]−σ

f ′
(m

c

) =
f
(m

c

)
− f ′

(m

c

) m

c

f ′
(m

c

) ,

which depends on the ratio of real balances to consumption m/c.
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ṽ(m, y) = max
c

{
1

1 − σ

[
cf

(m
c

)]1−σ
+ βṽ

(
m′, (1 + γ)y

)}
, (6.11)

where m′ denotes next period’s real balances, mt+1, given by equation
(6.10).

Under the homotheticity assumption the value function can be sim-
plified to a function of a single state variable as follows. Define a value
function v(z) such that

ṽ(m, y) = v(z)y1−σ ,

where z = m/y, and let ω = c/y be the household’s choice variable.
Then the function v(z) satisfies

v(z) = max
ω

{
1

1 − σ

[
ωf

( z
ω

)]1−σ
+ β(1 + γ)1−σv(z′)

}
, (6.12)

where z′ is next period’s value of the state variable z, zt+1, defined as

z′ =
m′

(1 + γ)y
=

y − c+m− h

(1 + π) (1 + γ) y
=

1 − ω + z − h/y

1 + μ
.

The first-order and envelope conditions for the problem (6.12), eval-
uated along any equilibrium path where c = y (and thus ω = 1) are5

[f(z)]−σ [f(z) − zf ′(z)
]

=
1

1 +R
v′(z′); (6.13)

and
v′(z) = [f(z)]−σ f ′(z) +

1
1 +R

v′(z′), (6.14)

where the nominal interest rate R is defined by

1
1 +R

=
β(1 + γ)1−σ

1 + μ
. (6.15)

Since along the balanced path z is constant, v′(z) = v′(z′). Elimi-
nating v′(z) and v′(z′) between (6.13) and (6.14) we get

R =
f ′(z)

f(z) − zf ′(z)
. (6.16)

Let Φ(R) denote the z value that satisfies (6.16). It is this kind of
steady state equilibrium relationship that Lucas (2000, p. 256) refers
to as ‘money demand function.’
5 The first-order condition is obtained by evaluating ∂v(z)/∂w = 0 at w = 1.
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Next we define the welfare cost of a nominal interest rate R, w(R), to
be the income compensation needed to leave the household indifferent
between living in a steady state with an interest rate constant at R and
an otherwise identical steady state with an interest rate of zero. Thus,
w(R) is the solution to the following equality

U
[
(1 + w(R)) y, Φ(R)y

]
= U

[
y, Φ(0)y

]
. (6.17)

With the assumed homothetic utility function (6.7), the equality in
(6.17) reduces to6

(1 + w(R)) f
(

Φ(R)
1 +w(R)

)
= f (Φ(0)) , (6.18)

and the welfare cost w(R) can be calculated using an estimated money
demand function Φ(R).

Suppose for example, that Φ(R) is given and substitute its inverse,
R = Ψ(z), into equation (6.16) to get the differential equation

f ′(z) =
Ψ(z)

1 + zΨ(z)
f(z). (6.19)

Differentiating (6.18) with respect to R, yields

w′(R)f
(

Φ(R)
1 + w(R)

)
+ f ′

(
Φ(R)

1 + w(R)

)[
Φ′(R) − w′(R)Φ(R)

1 + w(R)

]
= 0.

(6.20)
Applying equation (6.19) with z = Φ(R)/ (1 +w(R)) to equation (6.20)
and rearranging yields the differential equation

w′(R) = −Ψ
(

Φ(R)
1 + w(R)

)
Φ′(R) (6.21)

in the welfare cost function w.

6 Equation (6.18) is obtained by writing (6.17) as

1

1 − σ

[
(1 + w(R)) yf

(
Φ(R)y

(1 + w(R)) y

)]1−σ

=
1

1 − σ

[
yf

(
Φ(0)y

y

)]1−σ

,

and rearranging.
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For any given money demand function, equation (6.21) can be solved
numerically for an exact welfare cost function w(R).7 For example,
with the log-log functional form (6.3) for Φ(R), equation (6.21) can be
written as

w′(R) = −ηARη (1 + w(R))−1/η , (6.22)

with solution

w(R) = exp

⎡
⎢⎢⎣−

η ln
(
− 1

A(R exp(η ln R))− η
A(η+1)

− 1
A(η+1)

)

η + 1

⎤
⎥⎥⎦− 1. (6.23)

Thus the welfare cost of inflation is easily obtained using equation
(6.23).

Lucas also investigates the robustness of his results to the non-
existence of lump sum taxes and inelastic labor supply, by introducing
theoretical modifications to the Sidrauski model as well as a version of
the McCallum and Goodfriend (1987) variation of the Sidrauski model
to provide another general equilibrium rationale for Bailey’s consumer
surplus approach.

6.4 Empirical Evidence

Lucas (2000) provides estimates of the welfare cost of inflation in the
United States, based on time series for 1900-1994. In doing so, he de-
fines the money supply as simple-sum M1, assumes that money pays no
interest, and estimates the welfare cost of inflation using Bailey’s (1956)
consumer surplus approach as well as the compensating variation ap-
proach. Lucas argues that money demand behavior at hyperinflation
7 It is also possible to solve the differential equation (6.19) for the function f and

to reconstruct the utility function. Consider, for example, the money demand
function z = AR−1/2 and its inverse R = Ψ(z) = (A/z)2. By substituting in
(6.19) yields

f ′(z)

f(z)
=

1

z
− 1

z + A2
.

Solving this differential equation we get ln f(z) = ln z − ln
(
z + A2

)
=

ln
(
z/

(
z + A2

))
or, equivalently, f(z) = z/

(
z + A2

)
=

[(
z + A2

)
/z
]−1

=(
1 + A2/z

)−1
, which when substituted in the Sidrauski utility function (6.7) gives

u(c, m) =
1

1 − σ

[
c

(
1 +

A2

z

)−1
]1−σ

=
1

1 − σ

[
1

c
+

A2

m

]σ−1

.
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or at rates of interest close to zero is crucial for welfare cost calcu-
lations; in those cases the semi-log money demand function, used by
Cagan (1956) and Bailey (1956), fits the data better and should be used
for such calculations. However, the U.S. time series data includes only
moderate inflation rates, and Lucas’ calculations, based on the double
log demand schedule, indicate that reducing the interest rate from 3%
to zero yields a benefit equivalent to an increase in real output of about
0.009 (or 0.9%; that is, nine tenths of one percent).

More recently, Serletis and Yavari (2004) calculate the welfare cost
of inflation for Canada and the United States, in the post-World War
II period, from 1948 to 2001. In doing so, they use the same double log
money demand specification used by Lucas (2000), but pay particular
attention to the integration and cointegration properties of the money
demand variables and use recent advances in the field of applied econo-
metrics (to be discussed in detail in Chapters 11-13) to estimate the in-
terest elasticity of money demand. They conclude that the welfare cost
of inflation is significantly lower than Lucas reported. In particular, for
the United States, they find that reducing the interest rate from 3% to
zero, would yield a benefit equivalent to 0.0018 (less than two tenths of
one percent) of real income. This is much smaller than the 0.9% (nine
tenths of one percent) figure obtained by Lucas under the assumption
that the interest elasticity of money demand is −0.5. Similar welfare
cost estimates are also reported by Serletis and Yavari (2005) for Italy,
using the low frequency data from Muscatelli and Spinelli (2000) over
the 1861 to 1996 period.

Finally, as Lucas (2000, p. 270) puts it in his conclusions, a direction
for potentially productive research “is to replace M1 with an aggregate
in which different monetary assets are given different weights.” Serletis
and Virk (2006) have taken up Lucas on this suggestion and provide a
comparison among the official simple-sum aggregates, Barnett’s (1980)
Divisia aggregates, and Rotemberg’s (1991) currency equivalent (CE)
aggregates, at four different levels of monetary aggregation, to investi-
gate the welfare implications of alternative monetary aggregation pro-
cedures — monetary aggregation issues will be discussed in detail in
Chapters 15-17 of the book. In doing so, they assume that the different
monetary aggregates face the same double log demand function, since
their data does not include regions of hyperinflation or rates of interest
approaching zero. However, following Serletis and Yavari (2004), they
pay particular attention to the integration and cointegration properties
of the money demand variables and use the Fisher and Seater (1993)
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long-horizon regression approach to obtain an estimate of the interest
rate elasticity of money demand.

Their results indicate that the choice of monetary aggregation proce-
dure is crucial in evaluating the welfare cost of inflation. In particular,
the Divisia monetary aggregates, which (as you will see later in this
book) embody differentials in opportunity costs and correctly measure
the monetary services furnished by the non-currency components (val-
ued by households), suggest a smaller welfare cost than the simple-sum
and currency equivalent aggregates. This result is robust to whether
they use the traditional approach developed by Bailey (1956) or the
compensating variation approach used by Lucas (2000). Serletis and
Virk (2006), however, have also made the bold assumption that money
is non-interest bearing and used the 90-day T-bill rate to capture the
opportunity cost of holding money. Investigating how much this mat-
ters, and also dealing with the issues raised in the last section of Marty
(1999), is an area for productive research.

6.5 Conclusion

Of course the issue regarding the welfare cost of inflation is not closed.
Recently, for example, Bullard and Russell (2004) use a quantitative-
theoretic general equilibrium model of the U.S. economy and report
that

“a permanent, 10-percentage-point increase in the inflation rate
— a standard experiment in this literature — imposes an annual
welfare loss equivalent to 11.2 percent of output.”

This is an estimate that is an order of magnitude larger than those
estimates reported by Lucas (2000), Serletis and Yavari (2004, 2005),
and Serletis and Virk (2006), suggesting that the welfare cost of infla-
tion question is an outstanding one in macroeconomics and monetary
economics.

As already noted, the choice of a money measure and the assump-
tions that we make about the interest elascticity of money demand are
crucial in evaluating the welfare cost of inflation. In fact, the use of
monetary aggregates (in various forms and at different levels of aggre-
gation) is also subject to a comment by Prescott (1996, p.114) that (in
the case of M1)

“the theory has households holding non-interest bearing money,
while the monetary aggregate used in the demand for money
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function is M1. Most of M1 is not non-interest bearing debt
held by households. Only a third is currency and half of that
is probably held abroad. Another third is demand deposits held
by businesses, which often earn interest de facto. Households do
not use these demand deposits to economize on shopping time.
The final third is demand deposits held by households that, at
least in recent years, can pay interest.”

Dealing with these issues is an area for potentially productive future
research. It should also be kept in mind that much of the welfare cost
of inflation is borne by the poor, and thus depends on the income
distribution, meaning that aggregate methods of the type discussed in
this chapter might not be the most appropriate ones to use.
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Overview of Part 3

Chapters 7, 8, and 9 deal with conventional theoretical approaches
to the demand for money. As in Laidler (1993), I discuss Fisher, Keynes,
Friedman, Baumol and Tobin, McCallum, and Sargent and Wallace.
Some of this theoretical literature on money demand, unlike the ‘micro-
foundations’ approach to be discussed in Part 5 of the book, contains
the result that the demand for money should be linear (or linear in the
logs) and should have as arguments a small set of variables, themselves
representing significant links to spending and economic activity in the
other sectors of the economy.
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The Classics, Keynes, and Friedman

7.1. The Equation of Exchange
7.2. The Quantity Theory of Money
7.3. The Quantity Theory Demand for Money
7.4. The Cambridge Cash Balance Equation
7.5. The Keynesian Approach
7.6. Friedman’s Modern Quantity Theory
7.7. Conclusion

In this chapter we survey the early theoretical literature on the
macroeconomic demand for money. We begin with the classical version
of the quantity theory of money, which remains considerably relevant
even today. Then we move on to the Keynesian liquidity preference
theory and we end with Milton Friedman’s modern quantity theory.

A central question in this literature, crucial to how we view money’s
effects on aggregate economic activity, is whether and to what extent
the demand for money is affected by changes in the interest rate. If the
demand for money is insensitive to interest rates, the velocity of money
is constant and the quantity of money is the primary determinant of
nominal aggregate spending. If, however, the demand for money is af-
fected by changes in interest rates, then velocity is not constant and
money is not the primary determinant of aggregate spending.

For discussing these theories of the demand for money, the equation
of exchange is a useful point of departure.
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7.1 The Equation of Exchange

We begin with the transactions version of the equation of exchange,
introduced by Irving Fisher in his 1911 book, The Purchasing Power
of Money,

M sV = PT ,

where M s is the actual stock of money, V its transactions velocity of
circulation (or more simply velocity — the average number of times per
period that the stock of money changes hands to finance transactions),
P is the price level, and T is the volume of transactions. The equation
of exchange states that the quantity of money multiplied by the average
number of times that it changes hands per period in making transac-
tions (which equals the number of purchases) must equal the number of
transactions conducted over the period multiplied by the average price
at which they take place (which equals the value of sales).

In the literature one finds a second presentation of the equation of
exchange, known as the income version of the equation of exchange,

M sV = PY , (7.1)

where instead of the volume of transactions, T , real output, Y , ap-
pears in the equation and the income velocity (the rate of circulation
of money relative to the rate of production of real income) replaces the
transactions velocity. Underlying this substitution is the assumption
that real income and the volume of transactions are proportionately
related. In what follows, we adopt the convention of working with the
income version of the equation of exchange.

7.2 The Quantity Theory of Money

Although equation (7.1) is nothing more than an identity, it can be
used to develop a theory by postulating certain things about the deter-
minants of the equation of exchange variables. In particular, assuming
(as Fisher did) that real activity and money are exogenously deter-
mined, that velocity has a constant equilibrium long-run value, and
that, within the monetary sector, the price level is the only endoge-
nous variable, the equation of exchange (7.1) can be transformed into
a version of the quantity theory of money, which can be written as

M
s
V = PY , (7.2)
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with bars over M s, V , and Y indicating that they are determined inde-
pendently of the other variables. Equation (7.2) is the quantity theory
of money, which states the conditions under which nominal income
is determined solely by movements in the quantity of money. Alterna-
tively, equation (7.2) can be viewed as a theory of price level determina-
tion, suggesting that the equilibrium price level is strictly proportional
to the quantity of money.

7.3 The Quantity Theory Demand for Money

The quantity theory of money becomes a theory of the demand for
money once one assumes that the money market is in equilibrium, so
that M s = Md = M . In that case, equation (7.2) becomes (when solved
for Md)

Md = kPY or
M

P

d

= kY , (7.3)

where k = 1/V . Equation (7.3) is the long-run demand for money func-
tion, interpreted from the viewpoint of the quantity theory of money.
It says that the demand for nominal (real) money is proportional to
nominal (real) income.

A convenient linearization of equation (7.3) is achieved if we write
it in logarithmic form as

logM − logP = α+ log Y , (7.4)

where α = log k. Equation (7.4) implies that for given values of real
income, the demand for real money balances, logM − logP , is unaf-
fected by exogenous changes in nominal money. In fact equation (7.4)
implies that the price level elasticity of the demand for nominal money
balances, η(M,P ), is1

1 The reader should note that the above mentioned price level homogeneity condi-
tion can easily be tested by reformulating equation (7.4) as

log P = −α − β log Y + γ log M,

and testing the hypothesis that γ = 1. In fact, the above equation can also be
written in differenced form as

Δ log P = −α − βΔ log Y + γΔ log M,

where Δ is the difference operator, and be used to test the steady-state hypothesis
between the inflation rate, Δ log P , and the monetary growth rate, Δ log M , by
testing that γ = 1.
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η (M,P ) =
d logM
d logP

= 1,

and that the real income elasticity of the demand for real money bal-
ances, η(M/P, Y ), is2

η

(
M

P
,Y

)
=

d log(M/P )
d log Y

= 1.

Equation (7.3) also suggests that the demand for money is purely a
function of income and that interest rates have no effect on the demand
for money. In other words, the (nominal) interest rate elasticity of the
demand for real money balances, η(M/P,R), is

η

(
M

P
,R

)
=

d log(M/P )
d logR

= 0.

7.4 The Cambridge Cash Balance Equation

A somewhat different approach within the quantity theory tradition
was taken by the neoclassical economists in Cambridge University, Eng-
land.3 In contrast to the classical macroeconomic approach, the Cam-
bridge economists took a microeconomic approach, by asking what de-
termines the amount of money an economic agent would wish to hold.
The emphasis was therefore on the choice-making behavior at the mi-
croeconomic level rather than on wants at a macroeconomic level.

The Cambridge economists treated money as a durable good yield-
ing a flow of services (such as, according to Pigou for example, ‘con-
venience’ and ‘security’) and they also raised to a position of impor-
tance variables such as wealth and interest rates. They argued that
total wealth puts an upper bound on money holdings and that money
competes with other financial assets, many of which offer advantages
relative to money. In this regard they argued that the division of total
wealth into money and other assets individuals could hold, is optimal

2 The implication of a unitary income elasticity can also be tested by reformulating
equation (7.4) as

log

(
M

P

)
= α + β log Y,

and testing the hypothesis that β = 1.
3 By neoclassical economics we generally mean the work of Leon Walras (1834-

1910), Alfred Marshall (1842-1924), and Arthur C. Pigou (1887-1959).
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only if the marginal utility of money equals the marginal utility of an
investment in an alternative asset.

The Cambridge economists, however, significantly simplified their
formal demand for money relationship, by assuming that — in the
short run at least — an economic agent would not alter the relationship
between his level of wealth, the volume of transactions, and the level
of income. They then argued that money demand will be a constant
fraction, k, of income, as follows

Md = kPY or
Md

P
= kY . (7.5)

Equation (7.5) is known as the Cambridge cash balance equation. It
looks similar to equation (7.3), but rests on fundamentally different
notions of the role of money in the economy, as we discussed.

The Cambridge economists assumed, in common with Fisher, that
the level of real income is exogenous, suggesting that their demand
for money is roughly proportional to the general level of prices. No-
tice that under the additional assumptions that the supply of money
is exogenous and that money is willingly held (so that M s = Md),
the Cambridge cash balance equation also implies the quantity the-
ory prediction that nominal income is determined by the quantity of
money.

However, unlike the quantity theorists (who assumed that velocity
can change with changes in institutional factors, but not with changes
in other variables of the economic system), the Cambridge economists
allowed for the possibility of interest-rate effects on the demand for
money in the short run. They argued that k could fluctuate in the
short run with fluctuations in the yields and expected returns on other
assets individuals could hold. This was a major departure from the
quantity theorists’ view, and led Keynes (a later Cambridge economist)
to develop a theory of the demand for money that emphasized the
importance of interest rates.

7.5 The Keynesian Approach

Although the Cambridge economists raised to a position of importance
variables such as interest rates and wealth, they did not explicitly in-
clude these variables in their money demand function. It is, however,
from this tradition of approaching the subject of money demand that
their successor Keynes developed his analysis in his famous 1936 book,
The General Theory of Employment, Interest, and Money.
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Keynes studied both transaction and asset theories of money de-
mand. He called his overall theory of the demand for money the liquid-
ity preference theory and distinguished three motives for holding money
— a ‘transactions motive,’ a ‘precautionary motive,’ and a ‘speculative
motive’ — suggesting that people regard holding of money for one mo-
tive, at least in part, as separate from holdings of money for another
motive.

In his discussions of the transactions demand for money, Keynes
followed closely Fisher and the Cambridge economists and listed the
transactions motive as an important (but not the only) motive un-
derlying the demand for money. He postulated that the transactions
(or business) demand for money is a stable function of the level of in-
come. In fact, he wrote the transactions demand for money as in equa-
tion (7.3). Also, regarding the precautionary motive for holding money,
Keynes suggested that the demand for precautionary money balances
depends on the level of income and slightly on the interest rate, but for
the most part, on the level of uncertainty about the future.

However, the most important innovation in Keynes’s analysis of the
demand for money is his speculative demand for money, or the demand
for money as an asset alternative to other interest-yielding assets. The
primary result of the Keynesian speculative theory is that the demand
for money depends negatively on the interest rate. Keynes derived this
result by analyzing only the choice between interest-yielding bonds and
money as an issue of liquidity preference. In doing so, however, he raised
to a position of importance variables such as interest rates, expecta-
tions, and uncertainty, which although considered by the Cambridge
economists, were ultimately accorded a secondary role.

We may illustrate the Keynesian speculative theory of money de-
mand by dividing the assets into two broad categories: money and
bonds. Assume that the expected return on money is zero, as Keynes
did (in his time, unlike today, this was a reasonable assumption, since
money was mostly of the outside type). The expected rate of return on
bonds is the sum of the current yield and the expected rate of capital
gain (or loss).

If people expect interest rates to increase in the future (and therefore
bond prices to decline), the expected rate of return on bonds would
be less than the current yield, because the expected rate of capital
gain is negative — that is, an expected capital loss. In fact, if people
expect future interest rates to increase substantially, the expected rate
of capital loss might outweigh the current yield, so that the expected
rate of return on their bonds would be negative. In this case, they
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will put all of their liquid wealth into money. On the other hand, if
people expect a substantial decline in interest rates (and therefore a
significant increase in bond prices), the expected rate of return on bonds
will exceed the current yield, because the expected rate of capital gain
is positive. In this case, people will hold all bonds and no money for
speculative purposes.

The implication of this is that the demand for speculative money
balances depends on both the observable market (nominal) interest
rate and people’s expectation concerning that rate in the future. The
decision with respect to holding bonds or money is described in Keynes
in terms of some normal value that interest rates tend to. If interest
rates are above this normal value, people will expect them to fall, bond
prices to rise, and capital gains to be realized. As a result, people will
be more likely to hold their liquid wealth as bonds rather than money,
and the demand for money will be low.

If interest rates are below the normal value, people will expect them
to rise, bond prices to fall, and capital losses to be realized. They will
be more likely to hold money than bonds and the demand for money
will be high. In fact, at some very low interest rate, everyone will expect
it to rise and the demand for money in the aggregate will be perfectly
elastic with respect to the interest rate — this is known as the liquidity
trap. Overall, assuming a normal distribution on the population’s ex-
pectations of the future interest rate, the aggregate demand for money
will be negatively related to the level of interest rates.

We have discussed three separate demands for money — the trans-
actions demand, the precautionary demand, and the speculative (or
asset) demand for money. Combining these three demands, we get the
Keynesian liquidity preference function, describing the total demand
for money

Md

P
= Φ(R,Y ),

with Φ1 < 0 and Φ2 > 0, where Φi denotes the partial derivative of
Φ(·) with respect to its ith argument. That is, the demand for real
money balances is negatively related to the nominal interest rate, R,
and positively related to real income, Y .

One implication of the Keynesian liquidity preference theory of the
demand for money, which contrasts sharply with the classical quantity
theory approach, is that velocity is not constant but instead positively
related to nominal interest rates. We can see this by writing down the
velocity that is implied by the liquidity preference function
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V =
Y

M/P
=

Y

Φ(R,Y )
.

We know that when the interest rate increases the demand for money
declines and therefore velocity rises. Hence, in contrast to the quantity
theorists’ view of a constant velocity, the Keynesian liquidity preference
theory implies that velocity is procyclical, since procyclical interest rate
movements induce procyclical velocity movements.

7.6 Friedman’s Modern Quantity Theory

The Keynesian theory of liquidity preference draws a distinction be-
tween transactions, precautionary, and speculative demands for money.
Friedman (1956), however, by assuming that money is abstract purchas-
ing power, meaning that people hold it with the intention of using it for
upcoming purchases of goods and services, integrated an asset theory
and a transactions theory of the demand for money within the con-
text of neoclassical microeconomic theory of consumer and producer
behavior.

In particular, Friedman did not specify, as Keynes did, any partic-
ular motives for holding money. Rather, by taking for granted the fact
that people hold money, he viewed money as a durable good (or mone-
tary assets as durable goods) yielding a flow of nonobservable services
(proportional to the stock), which enter as arguments in aggregator
functions (i.e., utility and production functions). He also assumed that
money competes with other assets (such as, for example, bonds, stocks,
and physical goods) for a place in individuals’ and business firms’ port-
folios and that the marginal utility of monetary services declines as the
quantity of money held increases.

Friedman’s theory of the demand for money can be expressed in
terms of the following demand function for money for an individual
wealth holder

Md

P
= Φ(Yp, Rb −Rm, Re −Rm, π

e −Rm, · · ·), (7.6)

where

Yp = real permanent income
Rb = expected nominal rate of return on bonds
Re = expected nominal rate of return on equities
Rm = expected nominal rate of return on money, and
πe = expected inflation rate.
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The dots in equation (7.6) stand for other variables (such as, for ex-
ample, the ratio of human to nonhuman wealth) that are regarded as
relevant but play no essential role in Friedman’s theory and have no
important implications for monetary policy. The expected nominal rate
of return on bonds includes expected capital gains or losses, that on
equities includes expected changes in their prices, and πe is used as a
proxy for the expected nominal rate of return on physical assets. It is
also assumed the demand for real money balances is positively related
to permanent income, Yp, and negatively related to the yield on other
assets.

The first point in an exposition of this theory must be an explanation
of the concept of permanent income, which differs from actual measured
income. In fact, an individual’s permanent income is the hypothetical
constant level of income that has the same discounted present value as
the expected future income streams. More formally, (real) permanent
income, Yp, can be defined by the condition

Yp +
Yp

(1 + r)
+

Yp

(1 + r)2
+ · · · =

∞∑
j=0

Yt+j

(1 + r)j
, (7.7)

where variables dated after t are anticipated values, viewed from today
(period t), and r is the real rate of interest. By algebraic manipulation,
the above equation yields4

Yp =
r

1 + r

∞∑
j=0

Yt+j

(1 + r)j
(7.8)

4 To see this, rewrite equation (7.7) as

[1 + z + z2 + · · · ]Yp =
∞∑

j=0

Yt+j

(1 + r)j

in which z = 1/(1 + r). Since

1 + z + z2 + · · · =
∞∑

j=0

zj =
1

1 − z
, for − 1 < z < 1,

the above equation can be written as

1

1 − z
Yp =

∞∑
j=0

Yt+j

(1 + r)j

which by substitution (to eliminate z) and suitable algebraic manipulation yields
equation (7.8).
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Friedman stressed two issues regarding his money demand func-
tion that distinguish it from Keynes’s liquidity preference theory. First,
Friedman did not take the expected rate of return on money to be a
constant, as did Keynes, and by assuming that the demand for money
depends on the incentives for holding other assets relative to money,
he argued that the demand for money is insensitive to interest rates. In
particular, in Friedman’s view, when interest rates rise in the economy
the expected rate of return on money held as bank deposits also rises
(along with the rise in the expected rates of return on other assets), so
that there is no change in the incentive terms, Rb −Rm, Re −Rm, and
πe −Rm, in the money demand function.

Hence, unlike Keynes’s liquidity preference theory in which interest
rates are an important determinant of the demand for money, Fried-
man’s theory suggests that although the demand for money is sensitive
to changes in the incentives for holding other assets relative to money,
these incentives stay relatively constant when interest rates change,
implying that the demand for money is insensitive to interest rates.
Therefore, Friedman’s money demand function, equation (7.6), can be
approximated by

Md

P
= Φ(Yp),

which indicates that real permanent income is the only determinant of
real money demand.

The second issue Friedman stressed is the stability of the money de-
mand function. In particular, unlike Keynes (who felt that the demand
for money is erratic and shifts with changed expectations of the rate
of interest), Friedman suggested that the money demand function is
highly stable, implying that the quantity of money demanded can be
predicted accurately by the money demand function. Also, when com-
bined with his view that the demand for money is insensitive to interest
rates, this means that the velocity of money is highly predictable.

The reader should notice that the stability of the money demand
function and the consequent predictability of the velocity of money
derive from the relationship between current income and permanent
income. In particular, according to equation (7.8), a permanent change
in income changes permanent income by the same amount, whereas
a temporary change in income (as, for example, in a business cycle
expansion or recession) changes permanent income by a small amount.5

5 Mathematically, suppose that r = 10% and consider a temporary change in in-
come, such as ΔYt = 1 with ΔYt+j = 0, j = 1, 2, · · · . According to equation
(7.8), we have
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We can see this implication of Friedman’s theory, by converting
the money demand function to the corresponding velocity of money
function

V =
Y

M/P
=

Y

Φ(Yp)
,

which suggests that since the relationship between current income, Y ,
and permanent income, Yp, is usually quite predictable, the velocity of
money is predictable (although not constant) as well. This means that
a given change in the nominal money supply will produce a predictable
change in aggregate spending. Therefore, Friedman’s theory of the de-
mand for money is indeed a reformulation of the quantity theory of
money, because it leads to the quantity theory conclusion that money
is the primary determinant of aggregate nominal spending.

Finally, Friedman’s money demand formulation can also explain the
procyclical movements of velocity we find in the data, by the relation-
ship between the demand for real money balances and permanent in-
come and by the relationship between permanent income and actual
measured income. For example, in a business cycle expansion the de-
mand for money rises less than income because the increase in perma-
nent income is small relative to the increase in actual measured income
[see equation (7.8)], and velocity rises. Similarly, in a recession, the
demand for money falls less than income because the decline in perma-
nent income is small relative to the decline in actual measured income,
and velocity falls.

7.7 Conclusion

We have discussed the early theories of money demand and identi-
fied similarities and differences that exist among them. According to
the classical quantity theory (developed by Fisher and the Cambridge
economists), nominal income is determined primarily by the quantity

ΔYp =
.10

1 + .10
ΔYt = .09,

that is, permanent income changes by only .09. A permanent change in income,
however, such as ΔYt+j = 1, j = 0, 1, 2, · · · , produces an equal change in
permanent income, since

ΔYp =
r

1 + r

1 + r

r
= 1.
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of money. This proposition, however, rests on the classical economists’
assumption that velocity could be treated as reasonably constant.

Keynes criticized the quantity theorists for their assumption of a
constant velocity and argued that velocity is affected by behavioral
economic variables, most importantly by the nominal interest rate. His
conclusion that the demand for money is negatively related to the nom-
inal interest rate is a significant departure from the classical quantity
theory of money demand. It is, however, less of a departure from the
classical Cambridge approach, which did not rule out such a relation-
ship.

Friedman’s theory of the demand for money used a similar approach
to that of Keynes and the earlier Cambridge economists, but did not
deal with the motives for holding money. By using the theory of port-
folio choice, Friedman argued that the demand for money depends on
permanent income and the incentives for holding other assets relative
to money. In contrast to Keynes, however, he concluded that the de-
mand for money is stable and insensitive to interest rates. This implies
that velocity is predictable, yielding the quantity theory conclusion that
money is the primary determinant of nominal aggregate spending.
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Transactions Theories of Money Demand

8.1. The Baumol-Tobin Model
8.2. The Shopping-Time Model
8.3. Cash-in-Advance Models
8.4. Conclusion

Theories of the demand for money that emphasize money’s medium-
of-exchange role in the economy are called transactions theories. These
theories emphasize that money, unlike other assets, is held to make pur-
chases and in general show that the average amount of real money held
involves a trade-off between transactions costs (that arise when people
economize on their holdings of money) and interest income foregone.

Transactions theories of the demand for money take many different
forms, depending on how the process of obtaining money and making
transactions is modeled. To see how these theories explain the demand
for money, in this chapter we develop explicitly three prominent models
of this type.

8.1 The Baumol-Tobin Model

The choice of when and how often to exchange bonds for money is an
important margin of choice for individuals and has been analyzed in-
dependently by William Baumol (1952) and James Tobin (1956). Both
emphasize the costs and benefits of holding money, coming to similar
conclusions about the variables that determine the transactions de-
mand for money. It is argued, for example, that the benefit of holding
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money is convenience and that the cost of this convenience is the in-
terest income foregone by not holding interest-yielding assets, such as
bonds.

To see how maximizing economic agents trade off these benefits, we
follow Baumol’s (slightly simpler) approach and consider an individual
agent who plans to spend Y , in real terms, gradually over the course of a
year. The agent has a choice of holding his wealth in the form of (non-
interest-yielding) money or in the form of interest-yielding bonds —
bonds yield an interest rate of R per period, which is assumed constant
over the period and reflects the opportunity cost of holding money.
In addition, it is also assumed that each exchange of interest-bearing
bonds for money involves a lump-sum transactions cost b in real terms
— b is what Baumol calls the brokerage fee.

In the setting described, assuming that K is the real value of bonds
turned into money each time such a transfer takes place, the total cost
of making transactions is the sum of the brokerage cost, b (Y/K), where
(Y/K) is the number of withdrawals, and the foregone interest if money
is held instead of bonds, which is R(K/2), where K/2 is the average
amount of real money holdings (= M/P ). Thus, the total cost can be
written as

Total Cost = b
Y

K
+R

K

2
. (8.1)

Clearly, the fewer the withdrawals, Y/K (and as a result the larger
the money balances, K/2, held by the individual), the lower will be
the brokerage cost and the higher the interest cost. In fact the number
of withdrawals that minimizes the total cost of making transactions
occurs when the increase in brokerage cost as the result of an additional
withdrawal is just offset by the reduction in the interest cost as a result
of this withdrawal.

By taking the partial derivative of equation (8.1) with respect to K,
setting it equal to zero and solving for K we find the optimal value of
K — the value that minimizes total cost. Thus

∂(Total Cost)
∂K

= − bY

K2
+
R

2
= 0,

which yields the following square root relationship between K and Y ,
b, and R

K =

√
2bY
R

.

At this value of K, average money holding in real terms is, as noted
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earlier
M

P
=

K

2
=

1
2

√
2bY
R

, (8.2)

suggesting that the demand for real (transactions) money balances is
proportional to the square root of Y and inversely proportional to the
square root of R. Notice that as b → 0, M/P → 0, meaning that with-
out transactions costs there would be no demand for money, since in
this case the individual will be synchronizing cash withdrawals with
the purchase of goods and services. Hence, transactions costs have an
important role in determining average money balances held, suggesting
that the demand for money emerges from a trade-off between transac-
tions costs and interest earnings.

The merit of this approach to the demand for money is that it
produces testable relationships between the demand for money and its
determinants. For example, taking logarithms of equation (8.2), we can
express it as

log
(
M

P

)
= α +

1
2

log Y − 1
2

logR, (8.3)

where α = log (1/2)
√

2b. In the log-linear equation (8.3), the elasticity
of M/P with respect to Y is

η

(
M

P
,Y

)
=

d log(M/P )
d log Y

=
1
2
,

implying that a rise in real spending leads to a less-than-proportionate
increase in the average holding of real money. Economists refer to this
result as economies of scale in money holding, meaning that individuals
with a larger scale of spending hold less money when expressed as a
ratio to their expenditures.

Also the elasticity of M/P with respect to the interest rate is

η

(
M

P
,R

)
=

d log(M/P )
d logR

= −1
2
,

and the elasticity of nominal money, M , with respect to the price level
is

η(M,P ) =
d logM
d log P

= 1.

Clearly, the Baumol-Tobin model represents a significant departure
from the classical quantity theory of money, as it implies economies
of scale in the demand for money and an interest elasticity away from
zero. This conflict between the Baumol-Tobin model and the quantity
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theory led Karl Brunner and Allan Meltzer (1967) to reformulate the
Baumol-Tobin model and show that for large values of Y or small values
of b, there will be no economies of scale in the use of money. On the
basis of this result, they argue that the Baumol-Tobin model is not an
alternative to the quantity theory, but that it implies it.

However, as Syed Ahmad (1977) shows, although the Brunner and
Meltzer specification eliminates economies of scale, it implies an interest
elasticity of money demand of −2.0, when Y → ∞ or b → 0. In other
words, the Brunner and Meltzer formulation, instead of bringing the
Baumol-Tobin model closer to the quantity theory, takes it further away
from it.

8.2 The Shopping-Time Model

Although the Baumol-Tobin model pays attention to the medium of ex-
change role of money, it does not explicitly focus on that most obvious
distinguishing characteristic of money. More recently, however, McCal-
lum and Marvin Goodfriend (1987) and Kevin Dowd (1990) suggest
that we analyze the demand for money by taking explicitly into ac-
count the transactions facilitating services provided by money.

They argue that trade with money, unlike trade by barter which
is inefficient and time consuming, produces large savings of what is
called shopping time. Such savings are desirable, because shopping time
reduces leisure which, in turn, reduces utility. In what follows a formal
model is presented in which this appealing idea is developed, following
McCallum and Goodfriend (1987) and McCallum (1989, Chapter 3).1

Consider an economy composed of a large number of similar, infinite-
lived individuals. The representative person, who can be viewed as the
head of the representative extended family, has preferences given by

U =
∞∑
t=0

βtu(ct, �t),

where ct and �t are the individual’s consumption of goods and leisure
respectively, during period t. β is the discount factor and the within-
period utility function, u(ct, �t), is assumed to satisfy the conditions,
ui(ct, �t) > 0 and uii(ct, �t) < 0, for i = 1, 2.

To bring in the role of money, it is assumed that the representative
agent holds money (even though higher-yielding assets are available)
1 This is basically Miguel Sidrauski’s (1967) model, expanded to include the ‘shop-

ping time’ specification developed by Thomas Saving (1971).
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because it helps to facilitate transactions. In particular, the agent ex-
pends time (and energy) in shopping and the amount of time (and
energy) devoted to shopping is positively related to consumption but,
for a given level of consumption, negatively related to real money hold-
ings. Of course, the greater the time (and energy) spent in shopping,
the smaller the amount left over for leisure, which in turn suggests that
leisure will be negatively related to consumption and positively related
to real money holdings. We can summarize these ideas in the form of
a function, ψ, for leisure demanded

�t = ψ(ct,mt), ψ1 < 0, ψ2 > 0,

where mt = Mt/Pt, with Mt being nominal money balances held during
period t and Pt is the price level.

The household has access to a production function that is homoge-
neous of degree one in physical capital and labor. Assuming, for sim-
plicity, that labor is supplied inelastically, the production function can
be written as yt = f(kt). The production function is assumed to satisfy
the conditions f ′ > 0, f ′′ < 0, f ′(0) = ∞, and f ′(∞) = 0.

It is also assumed that the household can buy at time t government
bonds at a money price of 1/(1 + Rt) and redeem them for one unit
of money at time t+ 1. Hence, the nominal rate of return on bonds is
Rt. Assuming that the inflation rate from period t to period t + 1 is
πt = (Pt+1 − Pt)/Pt, the household’s budget constraint can be written
as

f(kt) + vt = ct + kt+1 − kt

+ (1 + πt)mt+1 −mt +
bt+1

1 + rt
− bt, (8.4)

wheremt and bt are real (time t) cash and bond holdings, and vt denotes
(lump-sum) real government transfers (net of taxes), received at the
start of the period.2

The Lagrangian associated with this problem can be written as

2 The term bt+1/(1 + rt) − bt on the right-hand side of (8.4) gives the change in
real bond holdings from period t to t + 1. In particular, it is

Bt+1/(1 + Rt) − Bt

Pt
=

Bt+1

(1 + Rt)Pt
− bt =

1 + πt

1 + Rt
bt+1 − bt =

bt+1

1 + rt
− bt.
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L =
∞∑

t=0

βtu [ct, ψ(ct,mt)] +
∞∑

t=0

βtλt

[
f(kt) + vt

− ct − kt+1 + kt − (1 + πt)mt+1 +mt − bt+1

1 + rt
+ bt

]
,

where ψ(ct,mt) is substituted for �t, and λt is the Lagrange multi-
plier associated with the household’s period t budget constraint. The
necessary first-order conditions for optimality can be obtained by dif-
ferentiating L with respect to ct,mt+1, kt+1, and bt+1. They are (for all
t)

u1(ct, �t) + u2(ct, �t)ψ1(ct,mt) − λt = 0; (8.5)

βu2(ct+1, �t+1)ψ2(ct+1,mt+1) − λt(1 + πt) + βλt+1 = 0; (8.6)

−λt + βλt+1

[
f ′(kt+1) + 1

]
= 0; (8.7)

− λt

1 + rt
+ βλt+1 = 0, (8.8)

where ui(ct, �t) and ψi(ct,mt) denote the partial derivatives of u(ct, �t)
and ψ(ct,mt) with respect to the ith argument and f ′(kt+1) is the rate
of return on capital between periods t and t+ 1. Conditions (8.4)-(8.8)
are necessary for a maximum. In addition, there are three transversality
conditions,

lim
t→∞mt+1β

tλt(1 + πt) = 0; (8.9)

lim
t→∞ kt+1β

tλt = 0; (8.10)

lim
t→∞ bt+1β

t λt

1 + rt
= 0. (8.11)

In this setting, (8.4)-(8.8) are necessary for a maximum, while (8.4)-
(8.11) are jointly sufficient. In other words, if (8.9)-(8.11) are satisfied,
the household’s choices of ct,mt+1, kt+1, and bt+1 will be described by
(8.4)-(8.8).
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Eliminating βλt+1 between (8.6) and (8.8) and λt from the resultant
equation, by using (8.5), we get the following optimality condition3

u1(ct, lt) + u2(ct, lt)ψ1(ct,mt)
βu2(ct+1, �t+1)ψ2(ct+1,mt+1)

=
1 + rt

Rt
. (8.12)

The optimality condition (8.12) involves only three variables: ct, mt,
and Rt. Assuming that it can be uniquely solved for mt as a function
of ct and Rt we obtain an exact equilibrium relationship,

Mt

Pt
= Φ(ct, Rt), (8.13)

relating the household’s optimal consumption, his demand for real bal-
ances and the nominal interest rate. Since Mt/Pt and ct are choice vari-
ables, equation (8.13) is not a (money) demand function but, instead,
an equilibrium condition among choice variables that the demand func-
tions must satisfy. However, the practice of calling relations like (8.13)
money demand functions is extremely common, and although improper,
we shall use that terminology.

The foregoing theoretical model, although it is explicit and general,
is lacking in one way. In particular, it does not imply, as the Baumol
(1952) and Tobin (1956) models do, that ct enters positively and Rt

negatively on the right-hand side of (8.13). To complete the model, we
assume that Φ(·) possesses partial derivatives and that Φ1 > 0 and
Φ2 < 0. It is to be noted, however, that it is not true that those signs
are strictly implied for all functions satisfying the assumptions that we
placed on u(ct, �t) and ψ(ct,Mt/Pt).

8.3 Cash-in-Advance Models

Another popular device for introducing money into macroeconomic
equilibrium models is the cash-in-advance constraint, proposed by
Robert Clower (1967). This approach captures the role of money as
a medium of exchange by requiring that a transaction can take place
only if the money needed for the transaction is held in advance. More-
over, it provides an explanation as to why rational economic agents hold
3 From (8.7) and (8.8) we also get

1 + f ′(kt+1) =
1 + Rt

1 + πt+1
,

which is basically the Fisher equation, linking the nominal interest rate to the
real interest rate and the inflation rate.
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money — an asset that is intrinsically useless and return-dominated by
other assets.

The simplest cash-in-advance model parallels the Sidrauski and
shopping time models and was introduced by Alan Stockman (1981).
Following Stockman (1981), we consider an economy with a represen-
tative individual with perfect foresight, solving the following problem

max
{ct, kt+1, Mt+1}∞t=0

∞∑
t=0

βtu(ct), (8.14)

subject to a series of one period budget constraints (for all t)

f(kt) + vt = ct + kt+1 − (1 − δ)kt +
Mt+1 −Mt

Pt
, (8.15)

and

Mt

Pt
+ vt ≥ ct. (8.16)

The first constraint is the dynamic budget constraint corresponding
to the asset accumulation equation of the Sidrauski model. Mt is the
amount of nominal money balances carried over from the previous pe-
riod, period t − 1, and Mt+1 is the amount of nominal balances held
at the end of period t and carried forward to period t+ 1. The second
constraint is the cash-in-advance constraint, according to which real
money balances carried into the period plus the government transfer
received at the start of the period cannot be less than real consumption
spending during the period.

The problem is solved by maximizing (8.14) subject to constraints
(8.15) and (8.16), taking k0 and M0 as given. The Lagrangian is as
follows

L =
∞∑

t=0

βt
{
u (ct)

+ λt

[
f(kt) + vt − ct − kt+1 + (1 − δ)kt − Mt+1 −Mt

Pt

]

+ γt

[
Mt

Pt
+ vt − ct

]}
,
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where λ and γ are the Lagrange multipliers for the two constraints.
The necessary first-order conditions for optimality can be obtained by
differentiating L with respect to ct, kt+1, and Mt+1. They are (for all t)

u′(ct) = λt + γt; (8.17)

βλt+1

[
f ′(kt+1) + 1 − δ

]
= λt; (8.18)

βλt+1
1

Pt+1
+ βγt+1

1
Pt+1

= λt
1
Pt

. (8.19)

Equation (8.17) equates the marginal utility of consumption, u′(ct),
to the marginal cost of consumption (which is the marginal utility of
having an additional unit of real money balances), λt + γt. Equation
(8.18) equates the marginal value of an additional unit of capital in
period t + 1 to the marginal cost of holding an additional unit of real
balances in period t. Finally, equation (8.19) states that the marginal
value of an extra unit of nominal balances in period t + 1, deflated
by that period’s price level, equals the marginal cost of having that
additional unit of money. Conditions (8.15)-(8.19) are necessary for a
maximum. In addition, there are two transversality conditions,

lim
t→∞ kt+1β

tλt = 0; (8.20)

lim
t→∞Mt+1β

tλt
1
Pt

= 0. (8.21)

In this setting, (8.15)-(8.19) are necessary for a maximum, while (8.15)-
(8.21) are jointly sufficient. In other words, if (8.20)-(8.21) are satisfied,
the household’s choices of ct, kt+1, and Mt+1 will be described by (8.15)-
(8.19).

We can now turn to steady-state analysis. Consumption and the
capital stock are constant in the steady state. This implies that λ + γ
is constant over time, suggesting that λ and γ must each be constant.
Hence, in the steady state (8.18) becomes

β
[
f ′(k∗) + 1 − δ

]
= 1,

suggesting that the steady-state capital and real interest rate are inde-
pendent of the rate of inflation. Clearly, this model provides the same
result as the Sidrauski model.



110 Chapter 8. Transactions Theories of Money Demand

So far, however, we have assumed that the liquidity-cash-in-advance
constraint pertains only to the purchases of consumption goods, ct. We
now investigate the robustness of our results regarding the superneu-
trality of money in cash-in-advance models, by assuming that the cash-
in-advance constraint pertains to purchases of consumption as well as
capital. Under this assumption, we write the cash-in-advance constraint
as

Mt

Pt
+ vt ≥ ct + kt+1 − (1 − δ)kt, (8.22)

where kt+1 − (1 − δ)kt is gross investment. The cash-in-advance con-
straint (8.22) states that the individual must be able to finance current
consumption and gross investment out of money balances carried over
from the previous period plus current transfers.

Now the problem of a private agent is to maximize (8.14) subject
to (8.15) and (8.22). The Lagrangian associated with this problem is

L =
∞∑

t=0

βt
{
u (ct)

+ λt

[
f(kt) + vt − ct − kt+1 + (1 − δ)kt − Mt+1 −Mt

Pt

]

+ γt

[
Mt

Pt
+ vt − ct − kt+1 + (1 − δ)kt

]}
,

and the necessary first-order conditions are

u′(ct) = λt + γt; (8.23)

βλt+1

[
f ′(kt+1) + 1 − δ

]
+ βγt+1(1 − δ) = λt + γt; (8.24)

βλt+1
1

Pt+1
+ βγt+1

1
Pt+1

= λt
1
Pt

. (8.25)

Using (8.23)-(8.25), we again turn to steady state analysis. As be-
fore, the capital stock and consumption are constant in the steady state,
implying that λ + γ is constant over time. Hence, in the steady state
(8.25) becomes

β(λt+1 + γt+1) = λt
Pt+1

Pt
,
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which yields

γ =
1 + π

β
λ− λ,

since λ and γ are each constant over time and Pt+1/Pt = 1+π. Substi-
tuting the last expression into (8.24) and rearranging yields the steady-
state condition

f ′(k∗) = (1 + π)
1 − (1 − δ)β

β2
.

Thus, when both consumption and gross-investment are subject to the
liquidity constraint, higher inflation rates are associated with higher
steady-state real rates of interest and lower capital stock and money
balances.

The reason for this result is the complementarity of money and
capital. In particular, as Orphanides and Solow (1990, p. 256) put it

“[i]nvestment of an additional unit of capital in period t + 1
requires an additional unit of money holdings in period t. Higher
inflation increases the cost of the additional unit of investment
by increasing the cost of holding the money necessary for the
investment. Thus, it reduces the (net of money holding costs)
return on a unit of investment. As a result, the demand for
capital is reduced and less money is held.”

Finally, since consumption and the capital stock are constant in
the steady-state market equilibrium, the cash-in-advance constraint is
satisfied as an equality, implying the following money demand function

Mt

Pt
= f(k),

which is similar to the quantity-theoretic money demand function.
We have presented a simple cash-in-advance model and seen that

the specification of the transactions subject to the liquidity constraint
is important. For other (more recent) cash-in-advance frameworks, see
Lars Svennson (1985), Lucas and Nancy Stokey (1987), and Thomas
Cooley and Gary Hansen (1989).

8.4 Conclusion

The models that we have discussed in this chapter seek to derive the
demand function for money from explicit consideration of the notion
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that money facilitates transactions. In particular, the Baumol-Tobin
model shows how the use of money in completely foreseen transactions
implies economies of scale and an interest elasticity of money demand
significantly different from zero.

However, although the Baumol-Tobin model pays attention to money’s
role as a means of exchange in markets for goods and services, it does
not focus explicitly on that role. It does not, for example, explain the
holding of money in terms of the transactions facilitating services pro-
vided by money, but in terms of transactions costs, which influence
money demand and consumption decisions. It is only the shopping time
and cash-in-advance models that focus explicitly on transactions ser-
vices and money’s role as a medium of exchange.
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Portfolio Theories of Money Demand

9.1. Tobin’s Theory of Liquidity Preference
9.2. Money and Overlapping Generations
9.3. Conclusion

Theories of the demand for money that emphasize the role of money
as a store of value are called asset or portfolio theories. These theories
stress that people hold money as part of their portfolio of assets and
predict that the demand for money depends on the return and risk
offered by money and by other assets that people can hold instead of
money.

We have already discussed two asset theories of the demand for
money — the Keynesian speculative theory of money demand and
Friedman’s modern quantity theory. In what follows we will discuss
the portfolio theories of the demand for money developed by Tobin
(1958) and Thomas Sargent and Neil Wallace (1982).

9.1 Tobin’s Theory of Liquidity Preference

We have already discussed Tobin’s contribution to the transactions the-
ory of money demand in the Baumol-Tobin model of cash management.
Tobin, in his 1958 article, “Liquidity Preference as Behavior Towards
Risk,” has also reformulated Keynes’s speculative theory of money de-
mand. While Keynes derived an inverse aggregate relationship between
the demand for money and the interest rate from the assumption of cer-
tain expectations that differ among individuals, Tobin (1958) derived
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this same demand for money relationship for an individual from the
assumption of uncertain expectations and risk avoidance — the latter
being the basis for his Nobel Prize in economics. He refers to his theory
as a theory of liquidity preference, following Keynes’s terminology.

Tobin assumes that the individual holds a portfolio consisting of
a proportion of wealth w1 in money and w2 in the risky asset, say
perpetual bonds. Notice that w1 +w2 = 1. Money has a riskless rate of
return E1 = Rf (≥ 0) and therefore a variance of return that is exactly
zero, σ2

1 = 0. The risky asset has an expected rate of return E2 (> Rf )
and a variance of return σ2

2 (> σ2
1).

The expected return on the portfolio, Ep, is simply a weighted av-
erage of the expected returns on each of the assets, with the weights
being the proportion of wealth invested in each asset,

Ep =
k∑

i=1

wiEi,

where k is the number of assets in the portfolio and Ei is the expected
return on asset i. Since k = 2, E1 = Rf , and w1 = 1 − w2, we have

Ep = (1 − w2)Rf + w2E2. (9.1)

The total variance of the portfolio, σ2
p, is

σ2
p =

k∑
i=1

k∑
j=1

wiwjRijσiσj ,

where Rij is the simple correlation between returns on assets i and j.
However, since k = 2 and R11 = R22 = 1 we have

σ2
p = w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2R12σ1σ2.

Finally, since σ1 = 0 and the assets are independent (i.e., R12 = 0), the
last equation reduces to

σ2
p = w2

2σ
2
2 . (9.2)

Rearranging equation (9.2) yields w2 = σp/σ2 which, after substi-
tuting back into equation (9.1) and rearranging terms, gives

Ep = Rf +
(
E2 −Rf

σ2

)
σp. (9.3)

This equation shows a simple linear relationship between expected port-
folio return, Ep, and portfolio risk, σp. Specifically, expected portfolio
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return is the sum of the risk-free rate of return, Rf , and (E2 −Rf )/σ2

times the portfolio risk, σp. The slope (E2 − Rf )/σ2 is referred to as
the price of risk, since it measures how σp and Ep can be traded off in
making portfolio choices.

Equation (9.3) describes the options available to investors with re-
spect to holding alternative portfolios. To examine, however, how in-
vestors determine what portfolios to hold, we must first examine in-
vestor preferences over expected portfolio return and portfolio risk. In
doing so, we assume that the individual wishes to maximize a utility
function depending on Ep and σ2

p, as follows

U = u(Ep, σ
2
p),

with u1 > 0, u2 < 0, u11 < 0, and u22 < 0. Approximating the explicit
utility function by

U = Ep − γ

2
σ2

p,

where γ is a constant representing the degree of risk aversion, and using
equations (9.1) and (9.2), the individual’s (unconstrained) optimization
problem is to maximize

U = (1 − w2)Rf + w2E2 − γ

2
w2

2σ
2
2 ,

with respect to w2.
The first-order condition for maximization is

∂U
∂w2

= −Rf + E2 − γw2σ
2
2 = 0,

which implies the optimal proportion of the holding of the risky asset,
w∗

2,

w∗
2 =

E2 −Rf

γσ2
2

. (9.4)

Equation (9.4) is Tobin’s (1958) mean-variance model of asset demands
and holds for any risky portfolio.

Consider now the effects of an increase in the interest rate, with
no change in the perceived riskiness of bonds. Clearly, according to
Tobin’s asset demand model the optimal proportion of the holding of
the risky asset will increase and money holdings will decline. That is,
the increase in the interest rate reduces the demand for money. Hence,
Tobin’s model implies a negative interest rate elasticity of the same
general form as we saw in the Keynesian and Baumol-Tobin models.
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The effect of a change in the perceived riskiness of bonds could also
be discussed. In terms of equation (9.4), an increase in the riskiness
of bonds, σ2

2, involves a decline in w∗
2. This causes money holdings to

increase, bond holdings and expected return to decrease, and portfolio
risk, σ2

p, may increase or decrease, depending on the magnitude of the
proportionate decline in w2 relative to the magnitude of the propor-
tionate increase in σ2

2 — see equation (9.2).
Tobin has therefore reformulated the Keynesian asset theory of

money demand, largely in terms of portfolio theory. The key charac-
teristic of Tobin’s theory is that it explains the speculative demand for
money by the assumption of uncertain expectations and the principle of
portfolio diversification by individuals, rather than Keynes’s assump-
tion of certain expectations that differ among people. As Laidler (1993,
p. 85) puts it,

“this model suggests that some measure of the economy’s as-
sessment of the riskiness of assets other than money may be
worth including in the demand-for-money function.”

Given, however, the menu of assets available in most countries, To-
bin’s approach actually undermines the speculative demand for money,
by requiring that money be an important component of diversified port-
folios. The reason is that other risk-free assets (such as, for example,
savings deposits and Treasury bills) paying a higher rate of return than
money, may displace money from portfolios.

9.2 Money and Overlapping Generations

The demand for money as an asset has also been analyzed by non-
Keynesian economists. Recently, Sargent and Wallace, two leading ex-
ponents of new classical macroeconomic theory, developed monetary
theory based on the overlapping generations model that we discussed
in Chapter 4 — see Sargent and Wallace (1982). As we will see, this
model also has nothing to do with the means-of-exchange function of
money.1

Assume that time is discrete (indexed by the subscript t = 1, . . . ,∞),
that people live for two periods, and that population grows at the rate
ν, so that by appropriate normalization Lt = (1 + ν)t. People born at
time t are young at t and old at t + 1. In the first period of life, each

1 More detailed expositions can be found in Blanchard and Fischer (1989), Laidler
(1993), and Bruce Champ and Scott Freeman (1994).



9.2. Money and Overlapping Generations 117

individual is endowed with one unit of the nonstorable consumption
good, but receives no endowment when old. To keep things simple we
will assume that all agents born at time t have identical preferences
and that the representative agent’s utility function is given by

U = u(c1t) + βu(c2t+1),

where (as before) c1t denotes the amount of the good consumed in the
first period of life by an individual born in period t and c2t+1 denotes
the amount that the same individual consumes in the second period of
life. In other words, the first subscript gives the age of the consumer
and the second one gives the date (because the economy itself goes on
forever).

In order to open up an intergenerational trade opportunity, we now
introduce money into the economy by assuming that the government
gives H perfectly divisible units of fiat money to the old in the initial
period. Unlike the consumption good, fiat money can be stored between
periods and we assume that fiat money is not valued for its own sake
but simply because individuals believe it will have value in the future.
In particular, we assume that the old and every subsequent generation
believe that money can be exchanged for goods at price Pt at time t —
we refer to Pt as the price level.

For fiat money to have value, the economy must go on forever, the
supply of fiat money must be limited, and it must be impossible (or
very costly) to counterfeit. If, for example, the economy ended at some
time T , generation T would have no incentive to buy money (from
generation T − 1) that it could not spend at time T + 1. This in turn
implies that generation T − 1, knowing this, would not want to buy
money from generation T−2, and so on. In other words, in such a finite-
lived economy, money could not be introduced at all and the economy
would remain at the barter equilibrium. Hence, the assumption that the
economy goes on forever is a necessary but not a sufficient condition for
money to be valued. If, for example, individuals had the ability to print
money costlessly, its supply would rapidly approach infinity, driving its
value to zero.

Let us now examine how agents will decide how much money to hold.
Consider an individual born at t, t ≥ 1. His problem is to maximize,

u(c1t) + βu(c2t+1),

with respect to c1t and c2t+1, subject to the budget constraints

c1t +
Md

t

Pt
= 1;
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c2t+1 =
Md

t

Pt+1
,

where Md
t is the individual’s demand for money at time t, which equals

1−c1t. The first equation is the budget constraint facing the individual
in the first period of life. The right-hand side represents the individ-
ual’s total sources of goods (his endowment) and the left-hand side the
individual’s total uses of goods (consumption and the acquisition of
money — 1/Pt is the value of one unit of money in terms of goods).
The second equation is the budget constraint facing the individual in
the second period of life (period t+ 1). This equation makes clear that
since the individual receives no endowment when old, he can acquire
second-period consumption goods only by spending the money acquired
in the previous period.

By substituting the period-(t+1) budget constraint into the period-
t budget constraint to eliminate Md

t we can obtain the individual’s
lifetime budget constraint

c1t +
Pt+1

Pt
c2t+1 = 1,

which shows combinations of first- and second-period consumption that
an individual can afford over his lifetime.

To solve the individual’s problem we set up the Lagrangian

L = u(c1t) + βu(c2t+1) + λ

(
1 − c1t − Pt+1

Pt
c2t+1

)
,

where λ is the Lagrange multiplier on the lifetime budget constraint.
The first-order conditions are

u′(c1t) = λ;

βu′(c2t+1) = λ
Pt+1

Pt
.

These combine to give the Euler equation

u′(c1t)
βu′(c2t+1)

=
Pt

Pt+1
,

which states that the marginal rate of substitution between first-
and second-period consumption equals the rate of return on money,
Pt/Pt+1.
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The Euler equation implies a money demand function (which is a
saving function)

Md
t

Pt
= Φ

(
Pt

Pt+1

)
.

If we define the deflation rate, πt, by (1 + πt) = Pt/Pt+1, we can write
the money demand function as

Md
t

Pt
= Φ(1 + πt).

Let us now describe equilibrium in the money market and find an
equilibrium time path of the value of money. Since the old supply in-
elastically the money they have (which is H) and the young buy money
according to the above equation, the money market — or equivalently,
by Walras’ law the goods market — will be in equilibrium when

(1 + ν)tMd
t = H,

where ν is the constant population growth rate and (1 + ν)tMd
t is the

total demand for money by all individuals in the economy at time t.
Using the above two equations at time t and t+ 1 we obtain

1 + ν

1 + πt
=

Φ(1 + πt)
Φ(1 + πt+1)

.

To simplify, we consider a stationary allocation, where the members
of every generation have the same lifetime consumption pattern, that is,
c1t = c1 and c2t+1 = c2 for every period t. This definition implies that
the price ratio, Pt/Pt+1 will also be independent of time and that Φ(1+
πt) = Φ(1 + πt+1). In turn, our definition of a stationary equilibrium
and the last equation imply that the rate of deflation must be equal to
the constant population growth rate (π = ν).

Since ν > 0, π = ν means that the price of the consumption good is
falling over time, or, equivalently, that the value of money is increasing
over time. In other words, in a growing economy with a constant fiat
money stock, the price of the consumption good must decrease at a rate
such that the supply of real money balances grows at the same rate as
the total demand for money, which is itself growing at the population
growth rate.

The analysis also applies to a shrinking economy, where ν < 0.
In such a case, with a constant fiat money stock, the price level will
be rising over time, implying a falling value of money. Finally, in the
special case of constant population (ν = 0), the last equation gives that
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1 + πt = 1 or
Pt

Pt+1
= 1,

implying a constant price level, or, equivalently, a rate of return on fiat
money of 1. Since the value of money is the inverse of the price level,
it, too, is constant over time.

So far we have shown that fiat money can be valued (in the sense
that it can be traded for consumption goods), and that the introduction
of positive valued fiat money can lead to a Pareto optimal allocation
of resources across generations, assuming that the economy reaches
a stationary equilibrium. We have also concentrated on factors that
affect the demand for money and we have found that the overlapping
generations model explains the demand for money as an asset but not
as a means of exchange, as it might appear at first glance — what
matters is money’s capacity to act as a store of value between periods.

There seem to be problems, however, with some of the results the
overlapping generations model generates. For example, in an economy
in which money coexists with another asset that yields a real return
(like government bonds or land), money will be driven out of the
model since it doesn’t pay interest and the other asset does. Hence,
the overlapping generations model cannot explain the value of the rate
of return-dominated money in actual economies, and like the Keyne-
sian speculative theory of the demand for money, implies an infinite
elasticity of the demand for money as an asset with respect to the rate
of return on other assets.

Regarding rate of return dominance, Sargent and Wallace (1982)
rely on legal restrictions to explain the coexistence of fiat money and
government bonds in an overlapping generations equilibrium. This an-
swer to rate of return dominance has become known as legal restrictions
theory. It claims that it is only because of institutionally imposed pro-
hibitions, that introduce an element of coercion into the decision to
hold money, that people hold rate of return-dominated money.

9.3 Conclusion

The models that we have discussed in this chapter are a sample of those
models that seek to derive the demand for money as an asset. These
models are theoretically interesting, but certainly unrealistic since they
abstract from money’s most obvious distinguishing characteristic — its
ability to function as a medium of exchange.

These models, however, should not be dismissed out of hand for this
reason. As Laidler (1993, p. 90) puts it,
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“models of the demand for money as an asset yield predictions
about the nature of the demand-for-money function that arise
when the means-of-exchange function is ignored. Hence they
enable us to formulate empirical questions whose answers might
help us to decide whether or not we need take account of money’s
peculiar characteristics when we construct theories about it.”

From this point of view, models of the demand for money as an asset
have important implications for how the macroeconomy functions.
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Empirical Approaches

to the Demand

for Money

Chapter 10. Conventional Demand for Money Functions
Chapter 11. Modeling Trends
Chapter 12. Cointegration and the Demand for Money
Chapter 13. Balanced Growth and the Demand for Money
Chapter 14. Cross-Country Evidence

Overview of Part 4

Chapter 10 deals with the empirical relevance of some of the theories
presented in Part 3, taking a conventional approach to estimation and
hypothesis testing. In Chapters 11, 12, and 13, we turn to a discussion
of the same issues using recent advances in the field for applied econo-
metrics, such as integration and cointegration theory. The approach
here is similar to that taken by Hoffman and Rasche (1996). That is,
we pay explicit attention to the econometric consequences of nonsta-
tionary data and their implications for the study of money demand.

In both Chapters 10 and 13, comparisons are made among simple-
sum, Divisia, and CE monetary aggregates (of M1, M2, M3, and MZM).
Similar comparisons will be provided in Chapter 16, as one of the ob-
jectives of this textbook is to provide empirical evidence regarding the
relative merits of alternative monetary aggregation procedures.

Chapter 14 examines money demand issues using cross-country
data, for 48 countries over the 1980-1995 period. In particular, we
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investigate conventional money demand functions, for both narrow
and broad monetary aggregates, and the role that institutions, finan-
cial structure, and financial development may have in the demand for
money.
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Conventional Demand for Money Functions

10.1. The Basic Specification
10.2. The Long-Run Function
10.3. Money Demand Dynamics
10.4. First-Difference Specifications
10.5. Conclusion

In our discussions of theories of macroeconomic behavior, we have
talked about the demand for money function. As we saw, this function is
a critical component in the formulation of monetary policy. Moreover, it
has been argued over the years that a stable demand function for money
is a necessary condition for money to exert a predictable influence on
the economy so that control of the monetary aggregates can be a useful
instrument of economic policy.

Not surprisingly, then, numerous empirical studies have been con-
ducted in many countries to evaluate the determinants and stability of
the demand for money. As Stephen Goldfeld and Daniel Sichel (1990,
p. 300) put it,

“the evidence that emerged, at least prior to the mid-1970s, sug-
gested that a few variables (essentially income and interest rates,
with appropriate allowance for lags) were capable of providing
a plausible and stable explanation of money demand.”

In this chapter we look at the factors that have shaped the evolution
of the research on modeling and estimating money demand functions.
In doing so, we discuss measurement issues on a variable-by-variable
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basis, and distinguish the long-run and short-run concepts of the de-
mand for money by the absence of adjustment costs in the former and
their presence in the latter. We conclude that conventional money de-
mand functions are seriously misspecified, and argue for new modelling
approaches.

10.1 The Basic Specification

As we have seen there are different money demand theories, empha-
sizing different considerations and implying different testable theoreti-
cal hypotheses. These theories, however, share common important ele-
ments. In particular, most of them suggest a relationship between the
quantity of money demanded and a few important variables that rep-
resent significant links to the level of economic activity. In general, this
theoretical money demand relationship can be written as

Mt

Pt
= Φ(Rt, Yt),

where Mt is nominal money balances demanded, Pt is the price index
used to convert nominal balances to real balances, Yt is the scale vari-
able relating to activity in the real sector of the economy, and Rt is the
opportunity cost of holding money.

In what follows, we discuss the choice of variables as suggested by
the different theories of the demand for money. For other similar, and
perhaps more detailed discussions, see Edgar Feige and Douglas Pearce
(1977), Judd and Scadding (1982), Laidler (1993), and Goldfeld and
Sichel (1990).

10.1.1 Definition of Money

The first problem in the empirical estimation of money demand func-
tions is the selection of an explicit measure of money. In general,
transactions-based theories of the demand for money emphasize nar-
row definitions of money that include currency and checkable deposits.
Once one moves away, however, from a transactions approach, there
are problems in determining which monetary assets belong to which
monetary aggregate — see, for example, Goldfeld and Sichel (1990) for
a discussion of the relevant issues as they pertain to the United States.

In addition to problems of determining the monetary assets over
which to aggregate, the monetary aggregates currently in use by most
central banks around the world have been criticized for being based on
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the simple-sum method of aggregation. The essential property of this
method of monetary aggregation is its assigning all monetary compo-
nents a constant and equal (unitary weight). This index is Mt in

Mt =
n∑

j=1

xjt, (10.1)

where xjt is one of the n monetary components of the monetary aggre-
gate Mt. This summation index implies that all monetary components
contribute equally to the money total and it views all components as
dollar for dollar perfect substitutes. Such an index, there is no ques-
tion, represents an index of the stock of nominal monetary wealth, but
cannot, in general, represent a valid structural economic variable for
the services of the quantity of money.

Over the years, there has been a steady stream of attempts at prop-
erly weighting monetary components within a simple-sum aggregate.
With no theory, however, any weighting scheme is questionable. As we
will see in later chapters, it was Barnett (1980) who derived the the-
oretical linkage between monetary theory and aggregation and index
number theory. He applied economic aggregation and index number
theory and constructed monetary aggregates based upon Erwin Diew-
ert’s (1976) class of superlative quantity index numbers, to be discussed
in more detail later in this book. The new aggregates are Divisia quan-
tity indexes which are elements of the superlative class. The Divisia
index (in discrete time) is defined as

logMD
t − logMD

t−1 =
n∑

j=1

w∗
jt(log xjt − log xj,t−1). (10.2)

According to equation (10.2) the growth rate of the aggregate is the
weighted average of the growth rates of the component quantities, with
the Divisia weights being defined as the expenditure shares averaged
over the two periods of the change,

w∗
jt = (1/2)(wjt + wj,t−1),

for j = 1, · · ·, n, where
wjt =

pjtxjt
n∑

k=1

pktxkt

is the expenditure share of asset j during period t, and pjt is the user
cost of asset j, derived in Barnett (1978),
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pjt =
(Rt − rjt)
(1 +Rt)

, (10.3)

which is just the opportunity cost of holding a dollar’s worth of the
jth asset. In equation (10.3), rjt is the market yield on the jth asset,
and Rt is the yield available on a benchmark asset that is held only to
carry wealth between multiperiods.

More recently, Rotemberg (1991) and Rotemberg, Driscoll, and
Poterba (1995) proposed the currency equivalent (CE) index

CEt =
n∑

j=1

Rt − rjt

Rt
xjt. (10.4)

In (10.4), as long as currency yields no interest, units of currency are
added together with a weight of one. Other assets are added to currency
but with a weight that declines toward zero as their return increases
toward Rt.

Clearly, the problem of the definition of money is an aggregation
problem. We will not get into the specific aggregation issues in this
discussion, but will reserve the topic for Part 5 of the book. There we
will consider some important theoretical issues and approach the topic
by means of a system of demand equations for the various monetary
assets, estimating the degree of substitution between monetary assets
and testing for weakly separable asset groupings.

10.1.2 Scale Variables

The scale variable in the money demand function is used as a measure of
transactions relating to economic activity. As we saw in earlier chapters,
transactions theories of money demand emphasize the level of income as
the relevant scale variable whereas asset theories place more emphasis
on wealth. Wealth, however, is difficult to measure. In fact, only in a
handful of countries like the United Kingdom and the United States it
is possible to construct long time series on financial wealth. Moreover,
these measures are less inclusive than a general measure of wealth that
includes the value of human as well as nonhuman capital, as suggested
by Friedman’s (1956) modern quantity theory discussed in Chapter 7.

To measure this more inclusive concept of wealth, as Laidler (1993,
pp. 99-100) put it

“presents formidable difficulties of its own, and virtually all at-
tempts to come to grips with them have started from the simple
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idea that wealth is the discounted present value of expected fu-
ture income. So long as the rate of discount used can be re-
garded as constant, wealth varies in exactly the same fashion
as expected income. If expected income rises by 10%, so will
wealth; if it falls, so will wealth, and so on. One is interested
in studying the relationship between variations in the level of
wealth and variations in the demand for money and, because
this is the case, it is not important whether wealth is measured
directly or whether expected income, or, as it is often called,
permanent income, is used as a proxy for this variable.”

One way to measure expected income is to use Cagan’s (1956) model
of adaptive expectations that we discussed in Chapter 3. In terms of our
notation, the adaptive expectations model for the unobserved expected
level of income at time t, Y e

t , can be expressed as

Y e
t − Y e

t−1 = θ
(
Yt − Y e

t−1

)
,

where 0 ≤ θ ≤ 1. A simple rearrangement of the adaptive expectations
model yields

Y e
t = θYt + (1 − θ)Y e

t−1.

This formulation states that the expected level of income at time t is
a weighted average of the current actual level of income and last pe-
riod’s expected value of income, with the weights being the adjustment
parameters θ and 1− θ. Finally, through continuous back-substitution,
the second presentation of the adaptive expectations model yields

Y e
t = θYt + θ (1 − θ)Yt−1 + θ (1 − θ)2 Yt−2 + · · ·,

according to which the unobserved expected level of income at time t
is a weighted average of the current actual level of income and already
known income levels of the past, Yt−1, Yt−2, and so on. The weight-
ing scheme, θ, θ (1 − θ), θ (1 − θ)2, and so on, represents a memory
expressing the influence of past income levels on the formation of ex-
pectations. If, for example, θ is close to zero, then the weights decline
slowly and the economic agent is said to have a ‘long memory,’ in the
sense that information from the distant past significantly influences the
formation of expectations. If θ is close to one, then the weights decline
quickly and the agent is said to have a ‘short memory,’ in the sense
that only information from the recent past influences the formation of
expectations.
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The adaptive expectations model, however, has been faulted on the
grounds that it doesn’t assume enough rationality on the part of eco-
nomic agents. In particular, according to the third presentation of the
adaptive expectations hypothesis, economic agents use only current
and past values of the variable in question when formulating expecta-
tions for the future. An alternative hypothesis for economic analysis
of expectational behavior is John Muth’s (1961) rational expectations
hypothesis. According to the rational expectations notion, economic
agents use all of the available and economically usable information, in-
cluding relevant economic theory, in the formation of expectations for
the future.

As it happens, the concept of rational expectations has been em-
braced by the economics profession and the theory has been enhanced
by important contributions by Lucas (1972, 1973), Sargent and Wal-
lace (1975), and Barro (1976). Of course, in order to implement the
notion of rational expectations empirically, it is necessary to quantify
the concepts of ‘available information’ and ‘relevant economic theory.’
Such quantification, although potentially fruitful, is very difficult, since
it also requires an explicit treatment of a large number of other issues,
such as, for example, structural shifts in the income growth process —
for empirical work along these lines, see Barro (1977, 1978).

As an empirical matter, the level of current income is most often
used to represent the scale variable in the money demand function. As
Laidler (1993, pp. 98-99) put it

“the measurement of this variable presents little problem be-
cause, although gross national product series, net national prod-
uct series and gross domestic product series have been used to
measure it, these variables move rather closely together over
time and no important difference in results is obtained by using
one or the other.”

The level of income, however, is less inclusive than a more compre-
hensive measure of transactions. For example, gross national product
(GNP) excludes transactions in financial assets, sales of intermediate
goods, transfers, and purchases of existing goods, all of which are likely
to affect the demand for money. For this reason, in recent years research
has focused on the construction of scale variables based on more general
measures of transactions. It is too early, however, to tell if these new
data will yield significant improvements in the explanation of aggregate
money demand.

Recent research has also focused on the disaggregation of GNP into
several scale variables, reflecting the notion that not all transactions are
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equally money intensive. For example, Gregory Mankiw and Lawrence
Summers (1986) argue that consumption is a more empirically success-
ful scale variable in estimated money demand functions than GNP. It
has also been argued that the disaggregation of GNP into components
that reflect the nature of international transactions is likely to be im-
portant for open economies. However, there is no firm evidence that
disaggregation of GNP improves the performance of money demand
functions.

10.1.3 Opportunity Costs

For a given definition of money, the opportunity cost of holding money
is the difference between the rate of return on assets alternative to
money and the own rate on money. Regarding the rate of return on
alternative assets, those researchers that adopt a transactions approach
and use a narrow definition of money typically use one or more short-
term interest rates, such as the Treasury bill rate, the commercial paper
rate, or the saving deposit rate. On the other hand, those that adopt
an asset approach and use broader definitions of money typically use
longer-term rates of interest.

As to the own rate on money, most researchers treat it as zero,
implicitly assuming that the explicit rate of return on most forms of
money (i.e., currency, demand deposits, etc.) is zero. This is not correct,
however, because even when the explicit return is zero, money earns
an implicit rate of return, in the form of gifts, services, or reduced
transactions fees, when deposit holders maintain a minimum level of
deposits. The measurement, however, of this implicit rate of return
is a difficult matter and it is perhaps for this reason that this issue
has generally been ignored — see Benjamin Klein (1974) and Richard
Startz (1979) for exceptions.

Of course, there are other variables that may play a role in the
money demand function. For a discussion with further references see
Goldfeld and Sichel (1990), Laidler (1993), and Subramanian Sriram
(1999).

10.2 The Long-Run Function

In general, the starting point in the empirical estimation of money
demand functions is the long-run, log linear function of the form

log
(
M∗

t

Pt

)
= α + β1 log Yt + β2Rt + εt, (10.5)
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where M∗ denotes the desired stock of nominal money, P is the price
index used to convert nominal balances to real balances, Y is the scale
variable, and R is the opportunity cost variable.

As an example of estimated long-run money demand functions, in
Table 10.1 we report estimation results based on monthly observations
for the United States over the 1960:1 to 2006:1 period. In doing so,
we use the industrial production index as the scale variable, the 90-
day T-bill rate as the opportunity cost variable, and make comparisons
between simple-sum, Divisia, and currency equivalent monetary ag-
gregates (of M1, M2, M3, and MZM). The monetary aggregates were
obtained from the St. Louis MSI database, maintained by the Federal
Reserve Bank of St. Louis as a part of the Bank’s Federal Reserve Eco-
nomic Database (FRED). The three different monetary aggregation
procedures will be discussed in detail in Chapters 15-17.

The numbers in parentheses, under the ordinary least squares (OLS)
coefficients are p-values. Other notation is:R2 is the unadjusted squared
multiple correlation coefficient and DW is the conventional Durbin-
Watson statistic. Q is the Ljung-Box (1978) Q-statistic for testing resid-
ual serial correlation, asymptotically distributed as a χ2(36) on the null
of no autocorrelation; RESET is (an F -version of) Ramsey’s (1969) test
of functional form (using the square of the fitted values), and has an
asymptotic F distribution on the null of no misspecification; J-B is
the Jarque-Bera (1980) test for normality of the regression residuals,
distributed as a χ2(2) under the null hypothesis of normality; ARCH
is Robert Engle’s (1982) Autoregressive Conditional Heteroskedasticity
(ARCH) test, distributed as a χ2(1) on the null of no ARCH; CHOW is
(an F -version of) Gregory Chow’s (1960) test for parameter constancy
over the 1960:1 – 1982:10 and 1982:11 – 2006:1 sample periods, and
has an asymptotic F distribution on the null of parameter constancy.

The estimates seem reasonable by conventional standards. The co-
efficient on real income is statistically significant, has the correct sign
(i.e., β1 > 0), and is of reasonable magnitude. The coefficient on the
opportunity cost variable is also as the theory implies (i.e., β2 < 0),
although it is not always statistically significant. The test statistics,
however, give indication of model misspecification. In particular the
Q-statistic indicates significant residual serial correlation and this is
consistent with the DW statistic. The Chow test statistic reveals pa-
rameter non-constancy of the regression model and the RESET and
J-B statistics indicate model misspecification.
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10.3 Money Demand Dynamics

Many of the early studies tended to ignore dynamic aspects of the
money demand specification. However, the standard practice of using
monthly or quarterly, instead of annual, observations and hence the
need to take account of sluggish adjustment by money holders to fluc-
tuations in the determinants of money demand, prompted a number
of researchers to address this issue, most frequently by assuming that
agents behave as posited by the partial adjustment model. This model
posits the existence of a desired level of real money balances M∗/P
— reflecting what real money demand would be if there were no ad-
justment costs — and further assumes that the actual level of money
balances adjusts in each period only part of the way toward its desired
level.

If the adjustment of actual to desired money holdings is in real
terms, the adjustment mechanism is

log
(
Mt

Pt

)
− log

(
Mt−1

Pt−1

)
= λ

[
log

(
M∗

t

Pt

)
− log

(
Mt−1

Pt−1

)]
, (10.6)

where Mt/Pt denotes the actual value of real money balances and λ
is a measure of the speed of adjustment, with 0 ≤ λ ≤ 1; λ = 1 cor-
responds to full immediate adjustment while smaller values represent
slower, more sluggish, adjustment. Implementation of the real partial
adjustment model is achieved by assuming that log (M∗

t /Pt) is given
by an equation of the form (10.5) and by substituting equation (10.5)
into equation (10.6) to obtain the short-run demand for money function
with real [e.g., Chow (1966) and Goldfeld (1973)] partial adjustment

log
(
Mt

Pt

)
= λα + λβ1 log Yt

+ λβ2Rt + (1 − λ) log
(
Mt−1

Pt−1

)
+ et, (10.7)

where et is a random error term.
The real partial adjustment model of equation (10.6), however, is not

without its shortcomings. One aspect of this can be seen by rewriting
(10.6) as follows

logMt − logMt−1 = λ

[
log

(
M∗

t

Pt

)
− log

(
Mt−1

Pt−1

)]
+Δ log Pt.
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As this equation shows, since the coefficient of Δ logPt is unity, the real
partial adjustment specification presumes an immediate adjustment to
changes in the price level. As this assumption is unlikely to hold, more
recent research has used the so-called nominal adjustment model given
by

logMt − logMt−1 = λ
[
logM∗

t − logMt−1

]
. (10.8)

Implementation of the nominal adjustment model (10.8) is achieved by
assuming again that log(M∗

t /Pt) is given by an equation of the form
(10.5) and substituting equation (10.5) into equation (10.8) to obtain
the short-run demand for money function with nominal [e.g., Goldfeld
(1976)] partial adjustment

log
(
Mt

Pt

)
= λα + λβ1 log Yt

+ λβ2Rt + (1 − λ) log
(
Mt−1

Pt

)
+ vt, (10.9)

where vt is a stochastic disturbance term. A number of empirical tests
suggest that the nominal model is to be preferred.

A final attack on the real and nominal partial adjustment models
involves a more general reconsideration of the adjustment process. In
particular, if we assume that the monetary authorities exogenously fix
the nominal money supply, then the desired nominal stock of money
must adjust to the given stock, presumably by adjustments in the price
level. A particularly simple version of this idea would replace equation
(10.8) with an adjustment equation in prices as in

log Pt − logPt−1 = λ
[
logP ∗

t − log Pt−1

]
. (10.10)

Implementation of (10.10) is achieved by assuming that log(M∗
t /Pt) is

given by an equation of the form (10.5) and by substituting equation
(10.10) into equation (10.5) to obtain the short-run demand for money
function with price [e.g., Robert Gordon (1984)] adjustment

log
(
Mt

Pt

)
= λα+ λβ1 log Yt

+ λβ2Rt + (1 − λ) log
(

Mt

Pt−1

)
+ ζt, (10.11)



136 Chapter 10. Conventional Demand for Money Functions

where ζt is a stochastic disturbance term.
Equations (10.7), (10.9), and (10.11) differ in the lagged money

term. In equation (10.7), which is the real adjustment specification, the
lagged dependent variable is Mt−1/Pt−1, whereas in equation (10.9),
which is the nominal adjustment specification, the lagged dependent
variable is Mt−1/Pt, and in equation (10.11), which is the price adjust-
ment specification, the lagged dependent variable is Mt/Pt−1.

Because specifications (10.7), (10.9), and (10.11) are not nested hy-
potheses, each should be evaluated for its stability and its consistency
with the theory, the latter meaning that the coefficients should be cor-
rectly signed, statistically significant, and the adjustment coefficient
should obey its restriction. Ordinary least squares estimates of the real,
nominal, and price adjustment equations (not reported here) indicate
that these changes do not repair the money demand function, since the
test statistics indicate model misspecification with almost all money
measures (irrespective of the method of aggregation) and for all partial
adjustment specifications.

10.4 First-Difference Specifications

Another complication is introduced by the widely held belief that equa-
tions like (10.7), (10.9), and (10.11) would not remain the same with
the passage of time. A simple way to take account of this is to add to
each of these equations a trend term, λβ3t, where the variable is time
itself and λβ3 is the associated coefficient. Estimates, however, of the
formulation just described give rise to highly serially correlated distur-
bances. One very simple way to take account of that statistical problem
is to work with first-differenced data. Thus, if we add λβ3t to each of
(10.7), (10.9), and (10.11), use the same equation for period t− 1, and
subtract the latter from the former, we get

Δ log
(
Mt

Pt

)
= λβ1Δ log Yt + λβ2ΔRt

+ (1 − λ)Δ log
(
Mt−1

Pt−1

)
+ λβ3 +Δet, (10.12)

for the real partial adjustment specification,
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Δ log
(
Mt

Pt

)
= λβ1Δ log Yt + λβ2ΔRt

+ (1 − λ)Δ log
(
Mt−1

Pt

)
+ λβ3 +Δvt, (10.13)

for the nominal partial adjustment specification, and

Δ log
(
Mt

Pt

)
= λβ1Δ log Yt + λβ2ΔRt

+ (1 − λ)Δ log
(

Mt

Pt−1

)
+ λβ3 +Δζt, (10.14)

for the case with price adjustment. In each of (10.12), (10.13), and
(10.14), λβ3 = λβ3t− λβ3(t− 1).

Estimates of equations (10.12), (10.13), and (10.14), not reported
here, indicate that the first-difference specifications appear to eliminate
some of the autocorrelation problems in comparison with the log-levels
specifications, suggesting that the econometric estimates obtained with
differenced data might be more reliable. However, the first-difference
specifications are not consistent with the theory, since the coefficients
are not always ‘correctly’ signed neither are they always statistically
significant.

Regarding the levels versus first-difference formulations, many re-
searchers, under the assumption that the (log) levels of the variables
are nonstationary, carried out the empirical analysis in terms of first
differences of the variables. This practice, however, of first differencing
to induce stationarity has recently been questioned by Engle and Clive
Granger in their 1987 article “Co-Integration and Error Correction:
Representation, Estimation and Testing”. They argue that the tradi-
tional approach of first differencing to induce stationarity disregards
potentially important equilibrium relationships among the levels of the
series to which the hypotheses of economic theory are usually taken to
apply.

Hence, a strategy that is consistent with recent developments in the
theory of nonstationary regressors should be applied to analyze the
money demand variables.
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10.5 Conclusion

We have looked at the factors that have shaped the evolution of the
research on the demand for money function and discussed some spe-
cific results on the demand for money in the United States. We have
determined that, irrespective of how money is measured, conventional
money demand functions are seriously misspecified and that recent de-
velopments in the theory of nonstationary regressors should be used to
analyze aggregate money demand. These developments are the subject
matter of the next two chapters.
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Modeling Trends in the Variables of the Money
Demand Function

11.1. Deterministic and Stochastic Trends
11.2. Testing for Unit Roots
11.3. Testing for Stationarity
11.4. Fractional Integration
11.5. Testing for Nonlinearity and Chaos
11.6. Detecting Signatures of Self Organization
11.7. Conclusion

As discussed in the previous chapter the issue of whether economic
time series are nonstationary or not is important for both estimation
and hypothesis testing, both of which rely on asymptotic distribution
theory. Moreover, the nature of nonstationarity has important impli-
cations for the appropriate transformation to attain a stationary series
as well as for the estimation of long-run relationships between nonsta-
tionary variables.

In this chapter we explore recent exciting developments in the field
of applied econometrics to distinguish between two different types of
nonstationary time series — those with a deterministic trend and those
with a stochastic trend. We also use tools from dynamical systems
theory and statistical physics to distinguish between stochastic and
deterministic behavior in the money demand variables. As we shall see,
such a distinction is an important part of the analysis of data on the
demand for money.



140 Chapter 11. Modeling Trends

11.1 Deterministic and Stochastic Trends

The money demand variables (and most economic and financial time
series in general) are nonstationary and the basic statistical issue is the
appropriate representation of the nature of nonstationarity. Nonsta-
tionary time series are frequently assumed to be trend-stationary (TS)
and are detrended in empirical investigations by regressing the series
on time or a function of time. However, Charles Nelson and Charles
Plosser (1982) show that most economic time series are better char-
acterized as difference-stationary (DS) processes rather than TS pro-
cesses. As a result, differencing rather than detrending is preferable to
achieve stationarity.

The issue of whether economic time series are TS or DS has also im-
portant implications for the nature and existence of business cycles. For
example, according to Nelson and Plosser (1982), trend stationarity in
aggregate output would be evidence for traditional (monetary or Key-
nesian) business cycle models — according to which output fluctuations
from a variety of macroeconomic disturbances are temporary deviations
from trend. On the other hand, difference stationarity in output would
be providing support for the real business cycle (RBC) theory of eco-
nomic fluctuations — according to which most disturbances to output
are permanent.

To distinguish between TS and DS processes, let us start with the
time series model most commonly used to describe trend stationarity

yt = μt+
∞∑

j=0

ajεt−j, (11.1)

where μt describes the trend and εt is a random disturbance. If aj ap-
proaches zero as j → ∞,

∑∞
j=0 ajεt−j is a stationary stochastic process.

In this case, fluctuations in yt are temporary and yt is called trend sta-
tionary. As a result, a one-unit shock to y, say in period 1 (i.e., ε1 = 1)
with no further shocks (i.e., εt = 0, for t > 1), increases the growth rate
of y above its historical average for a few periods, but does not change
the long-range forecast of the level of y.

The simplest time series model most commonly used to describe
difference stationarity is the ‘random walk with drift’ which is a first-
order autoregressive process with unit coefficient (also known as a unit
root process)

yt = μ+ yt−1 + εt, (11.2)

where εt is white noise with zero mean and variance σε, and where μ is
the (fixed) mean of the first differences, often called the ‘drift.’ When
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μ = 0, equation (11.2) reduces to a ‘pure random walk’ (i.e., random
walk with no drift), yt = yt−1 + εt.

The conditional mean of yt is

E (yt |y0 ) = y0 + μt,

which increases or decreases without limit as t increases. It is for this
reason that a random walk with drift model is also known as a model
of stochastic trend, because the trend is driven by stochastic shocks.
Also, the ‘conditional variance’ of yt is

var (yt |y0 ) = E
[
yt − E (yt |y0 )

]2

= E [εt + εt−1 + ... + ε1]
2

= tσ2
ε ,

with limt→∞ tσ2
ε = ∞. Hence, the conditional variance of a random

walk increases without limit, rather than converging to some finite un-
conditional variance. In fact, the unconditional mean and variance of a
random walk do not exist. Hence, the random walk is also nonstation-
ary.

Fluctuations in a random walk are permanent in the following sense.
Accumulating changes in y from some initial value y0 at time 0, we get
from (11.2)

yt = y0 + μt+
t∑

j=1

εj, (11.3)

which has the same form as equation (11.1), but is fundamentally dif-
ferent from (11.1). In particular, the intercept in (11.3) is not a fixed
parameter but rather depends on the initial value y0. Also, equation
(11.3) implies that a one-unit shock to y, say in period 1 (i.e., ε1 = 1)
with no further shocks (i.e., εt = 0, for t > 1), will forever increase y by
one unit. Hence fluctuations in a random walk are permanent. Nelson
and Plosser (1982) refer to processes like (11.2) as DS processes. Such
processes are also known as integrated with an ‘order of integration’ of
one, denoted I(1), meaning that they need to be differenced once to
yield a stationary series — a stationary series is said to be integrated
of order zero, I(0).
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We have distinguished between two different types of nonstationary
time series — those with a deterministic trend and those with a stochas-
tic trend. We have also argued that time series with a deterministic
trend can be transformed into stationary series by removing the deter-
ministic trend and those with a stochastic trend by first-differencing.
Obviously, subtracting a deterministic trend from a DS process or first-
differencing a TS process will result in serious misspecification errors in
applied work. Thus, the issue is how to distinguish between time series
with and without a unit root.

11.2 Testing for Unit Roots

The literature on unit root testing is vast — see Francis Diebold and
Mark Nerlove (1990), John Campbell and Pierre Perron (1991), and
James Stock (1994) for selective surveys, and Walter Enders (2004,
Chapter 4) for a textbook treatment. In what follows, we shall only
briefly illustrate some of the issues that have arisen in the broader
search for unit roots in economic and financial time series.

11.2.1 Dickey-Fuller (DF) Tests

The point of tests for unit roots is to distinguish between TS and
DS processes. In the simplest case one starts with a zero-mean AR(1)
process

yt = φ1yt−1 + et, (11.4)

where the shock et is white noise. By subtracting yt−1 from both sides
of (11.4) we obtain

Δyt = α1yt−1 + et, (11.5)

where α1 = (φ1 − 1). Notice that testing the hypothesis φ1 = 1 is
equivalent to testing the hypothesis α1 = 0. With this in mind, in what
follows we shall consider regression equations of the form (11.5).

Hence, we can test for the presence of a unit root by estimating (by
ordinary least squares) the coefficients in (11.5) and using the standard
t-test, labeled τ̂ , to test the null H0 : α1 = 0. When the null is true,
equation (11.5) reduces to

Δyt = et,

so that yt is a pure random walk and thus nonstationary.
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In the context of (11.5) we test the null hypothesis of a pure random
walk against the alternative hypothesis of a zero-mean, covariance-
stationary AR(1) process. However, given that economic time series
rarely have zero mean, we should allow for a nonzero mean, α0, under
the alternative hypothesis. In this case, we can estimate the regression
equation

Δyt = α0 + α1yt−1 + et, (11.6)

and use the standard t-test, now labeled τ̂μ (since a nonzero mean is
allowed), to test the null H0 : α1 = 0. Under the null hypothesis of a
unit root, equation (11.6) reduces to

Δyt = α0 + et,

so that yt is a random walk with drift and thus nonstationary.
Finally, we can also allow for a deterministic trend under the alter-

native hypothesis, by estimating the regression equation

Δyt = α0 + α1yt−1 + α2t+ et, (11.7)

and using the standard t-test, in this case labeled τ̂τ (since a linear
trend is allowed), we can test the null hypothesis H0 : α1 = 0.

A key result is that, under the null hypothesis H0 : α1 = 0, in each
of (11.5), (11.6), and (11.7) the yt sequence is generated by a nonsta-
tionary process and the t-statistic for testing α1 = 0, τ̂ , τ̂μ, and τ̂τ ,
respectively, does not have the usual t-distribution. This problem has
been solved by David Dickey and Wayne Fuller (1979, 1981) who de-
vised special distributions, now called the ‘Dickey-Fuller distributions’
— see Fuller (1976) for the Dickey-Fuller tables.

11.2.2 Augmented Dickey-Fuller (ADF) Tests

The Dickey-Fuller test can also be generalized to allow for higher-order
autoregressive dynamics, in case that an AR(1) process is inadequate
to render et white noise. Consider, for example, the zero-mean AR(p)
process

yt =
p∑

j=1

αjyt−j + et, (11.8)

which can be written as1

1 To obtain (11.9), first subtract yt−1 from both sides of (11.8) to obtain
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Δyt = αyt−1 +
k∑

j=1

cjΔyt−j + et, (11.9)

where k = p− 1 and

α = −
⎛
⎝1 −

p∑
j=1

αj

⎞
⎠ and cj = −

p∑
i=j+1

αi. (11.10)

Of course, depending on whether a zero mean, a nonzero mean, or
a linear trend is allowed under the alternative hypothesis, one can use
either (11.9) or

Δyt = α0 + αyt−1 +
k∑

j=1

cjΔyt−j + et, (11.11)

or

Δyt = α0 + αyt−1 + βt+
k∑

j=1

cjΔyt−j + et. (11.12)

The same τ̂ , τ̂μ, and τ̂τ Dickey-Fuller statistics are used to test the
null that α = 1 in each of (11.9), (11.11), and (11.12), respectively. The
k extra regressors are added to eliminate possible nuisance parameter
dependencies of the test statistic caused by temporal dependencies in
the disturbances. The optimal lag length, k, can be chosen using data-
dependent methods that have desirable statistical properties when ap-
plied to unit root tests.

Based on such ADF unit root tests, Nelson and Plosser (1982) argue
that most macroeconomic and financial time series are better character-
ized as DS processes rather than TS processes. As a result, differencing
rather than detrending is usually necessary to achieve stationarity.

Δyt = −(1 − α1)yt−1 +

p∑
j=2

αjyt−j + et.

Then add and subtract αpyt−p+1 to obtain

Δyt = −(1 − α1)yt−1 + α2yt−2 + ... + (αp−1 + αp)yt−p+1 − αpΔyt−p+1 + et.

Next, add and subtract (αp−1 + αp)yt−p+2. Continuing in this fashion, we obtain
(11.9), with α and cj (j = 1, · · ·, p − 1) defined as in (11.10).
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11.2.3 Breaking Trend Functions

Perron (1989), however, argues that most time series [and in particular
those used by Nelson and Plosser (1982)] are trend stationary if one
allows for a one-time change in the intercept or in the slope (or both)
of the trend function. The postulate is that certain ‘big shocks’ do not
represent a realization of the underlying data generation mechanism of
the series under consideration and that the null should be tested against
the trend-stationary alternative by allowing, under both the null and
the alternative hypotheses, for the presence of a one-time break (at a
known point in time) in the intercept or in the slope (or both) of the
trend function.

In particular, Perron (1989) uses the following modification to the
ADF regression

yt = μ+ θDUt + βt+ γDTt + δD(TB)t + αyt−1

+
k∑

j=1

cjΔyt−j + et, (11.13)

where DUt = 1 and DTt = t if t > TB and 0 otherwise, and D(TB)t = 1
if t = TB + 1 and 0 otherwise. TB (with 1 < TB < T , where T is
the sample size) denotes the time at which the change in the trend
function occurs.2 In this framework, testing the null hypothesis of a unit
root amounts to comparing the t statistic for testing (taking the break
fraction, or break point, λ = TB/T , to be exogenous) α = 1, tα(λ),
with the critical values tabulated by Perron over different values of λ.
In particular, reject the null hypothesis of a unit root if tα(λ) < τ(λ),
where τ(λ) denotes the critical value from the asymptotic distribution
of tα(λ) for a fixed λ.

Perron’s (1989) assumption that the break point is uncorrelated
with the data has been criticized, most notably by Lawrence Chris-
tiano (1992) who argues that problems associated with ‘pre-testing’
are applicable to Perron’s methodology and that the structural break
should instead be treated as being correlated with the data. More re-
cently, Eric Zivot and Donald Andrews (1992), Perron and Timothy
Vogelsang (1992a, 1992b), and Anindya Banerjee, Robin Lumsdaine,

2 Equation (11.13) is Perron’s (1989) regression (14), Model (C). It nests the null
(i.e., yt = μ1 + yt−1 + et for t ≤ TB and yt = μ2 + γD(TB)t + yt−1 + et for
t > TB) and the alternative (i.e., yt = μ1 + β1t + et for t ≤ TB and yt =
μ2 + (β1 − β2)TB + β2t + et for t > TB) hypotheses.
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and Stock (1992), in the spirit of Christiano (1992), treat the selec-
tion of the break point as the outcome of an estimation procedure and
transform Perron’s (1989) conditional (on structural change at a known
point in time) unit root test into an unconditional unit root test.

The idea here is that the choice of a break point should be an ex-
plicit part of the estimation procedure, because in practice one never
selects a date to test for a break point without prior information about
the data. Moreover, endogenizing the break point leads to critical val-
ues that are much more conservative that Perron’s (1989) ones. For
example, the Zivot and Andrews (1992) estimation procedure involves
using regression (11.13) without the dummy variable D(TB)t,

yt = μ+ θDUt + βt+ γDTt + αyt−1 +
k∑

j=1

cjΔyt−j + et,

and choosing λ to minimize the one-sided t-statistic for testing α = 1,
over all T − 2 regressions.

In general, existing empirical evidence indicates that the unit root
hypothesis could be rejected if allowance is made for the possibility of
a one-time break in the intercept or in the slope (or both) of the trend
function, irrespective of whether the break point is estimated or fixed.
Hence, whether the unit root model is rejected or not depends on how
big shocks are treated. If big shocks are treated like any other shock,
then ADF unit root testing procedures are appropriate and the unit
root null hypothesis cannot (in general) be rejected. If, however, they
are treated differently, then Perron-type procedures are appropriate
and the null hypothesis of a unit root will most likely be rejected.

11.3 Testing for Stationarity

It is important to note that in the tests that we have discussed so far
the unit root is the null hypothesis to be tested and that the way in
which classical hypothesis testing is carried out ensures that the null
hypothesis is accepted unless there is strong evidence against it. In
fact, Denis Kwiatkowski, Peter Phillips, Peter Schmidt, and Yoncheol
Shin (1992) argue that such unit root tests fail to reject a unit root
because they have low power against relevant alternatives (meaning
that they do not reject the hypothesis α = 1, but they do not reject
the hypothesis α = 0.95 either).

Kwiatkowski et al. (1992) propose tests (known as the KPSS tests)
of the null hypothesis of stationarity against the alternative of a unit
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root. They argue that such tests should complement unit root tests and
that by testing both the unit root hypothesis and the stationarity hy-
pothesis, one can distinguish series that appear to be stationary, series
that appear to be integrated, and series that are not very informative
about whether or not they are stationary or have a unit root.

In particular, the null hypothesis of level stationarity in yt is tested
by calculating the test statistic

η̂μ =
1
T 2

T∑
t=1

S2
t

σ̂2
k

,

where St =
∑t

i=1 ei, t = 1, 2, ···, T , et is the residuals from the regression
of yt on an intercept, and σ̂k is a consistent estimate of the long-run
variance of yt calculated, using the Whitney Newey and Kenneth West
(1987) method, as

σ̂k =
1
T

T∑
t=1

e2t +
2
T

T∑
s=1

b(s, k)
T∑

t=s+1

etet−s,

where T is the number of observations, b(s, k) = 1 + s/(1 + k) is a
weighing function and k is the lag truncation parameter.

The null hypothesis of trend stationarity in yt can also be tested by
defining et as the residuals from the regression of yt on an intercept and
time trend (instead of as above) and calculating the η̂τ test statistic as
above.

11.4 Fractional Integration

Fractional integration is a generalization of integer integration, under
which time series are usually presumed to be integrated of order zero or
one. For example, an autoregressive moving-average process integrated
of order d — denoted ARFIMA(p, d, q) — can be represented as

(1 − L)d θ(L)x(t) = φ(L)u(t),

where u(t) is an i.i.d. random variable with zero mean and variance σ2
u,

L denotes the lag operator, and θ(L) and φ(L) denote finite polynomials
in the lag operator with roots outside the unit circle. For d = 0, the
process is stationary, and the effect of a shock to u(t) on x(t+j) decays
geometrically as j increases. For d = 1, the process is said to have a
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unit root, and the effect of a shock to u(t) on x(t+ j) persists into the
infinite future.

Fractional integration defines the polynomial in the lag operator
(1 − L)d for non-integer values of d. Following Hosking (1981) and
Granger and Joyeaux (1980), a more general definition of (1 − L)d can
be derived from a power series expansion as follows

(1 − L)d =
∞∑

k=0

(
d
k

)
(−L)k

= 1 − dL− 1
2
d (1 − d)L2 − 1

6
d (1 − d) (2 − d)L3 − · · ·.

This power expansion can be re-expressed in terms of the gamma func-
tion as

(1 − L)d =
∞∑

k=0

Γ (k − d)Lk

Γ (−d)Γ (k + 1)
.

For −0.5 < d < 0.5, the process x(t) is stationary and invertible.
For such processes, the effect of a shock u(t) on x(t + j) decays as
j increases, but much more slowly than for a process with d = 0.
More precisely, the autocovariance function for a fractionally integrated
process decays hyperbolically, while the autocovariance function for
zero-integrated processes decays geometrically. In both cases, the sign
of the autocovariances has the same sign as d.

Fractionally integrated processes are often distinguished by their
properties in the frequency domain, where Fourier analysis is utilized
to represent a time series in terms of sine and cosine functions. In
particular, for a fractionally integrated process with 0 < d < 0.5, a
large portion of the variance is explained by low frequency components.
The extent of the low frequency variation is so great that the spectral
density at frequency zero is infinite. Analogously, for fractionally inte-
grated processes with −0.5 < d < 0, a large portion of the variance is
explained by high frequency components, such that the spectral density
at frequency zero is zero.

11.5 Testing for Nonlinearity and Chaos

Most of the tests that we discussed so far are designed to detect linear
structure in the data. However, as John Campbell, Andrew Lo, and
Craig MacKinlay (1997, p. 467) argue,



11.5. Testing for Nonlinearity and Chaos 149

“many aspects of economic behavior may not be linear. Experi-
mental evidence and casual introspection suggest that investors’
attitudes towards risk and expected return are nonlinear. The
terms of many financial contracts such as options and other
derivative securities are nonlinear. And the strategic interac-
tions among market participants, the process by which infor-
mation is incorporated into security prices, and the dynamics of
economy-wide fluctuations are all inherently nonlinear.
This is quite a challenge, since the collection of nonlinear models
is much ‘larger’ than the collection of linear models — after all,
everything which is not linear is nonlinear. Moreover, nonlinear
models are generally more difficult to analyze than linear ones,
rarely producing closed-form expressions which can be easily
manipulated and empirically implemented. In some cases, the
only mode of analysis is computational, and this is unfamiliar
territory to those of us who are accustomed to thinking analyt-
ically, intuitively, and linearly.”

It is for such reasons that interest in deterministic nonlinear chaotic
processes has in the recent past experienced a tremendous rate of de-
velopment. Besides its obvious intellectual appeal, chaos is interesting
because of its ability to generate output that mimics the output of
stochastic systems, thereby offering an alternative explanation for the
behavior of economic variables. Clearly then, an important research
inquiry is to test for chaos in the money demand variables. In other
words, we are interested in whether it is possible for the money de-
mand variables to appear to be random but not to be really random.

Sensitive dependence on initial conditions is the most relevant prop-
erty of chaos to economics and finance and its characterization in terms
of Lyapunov exponents is the most satisfactory from a computable (i.e.
possible to estimate) perspective. Lyapunov exponents measure aver-
age exponential divergence or convergence between trajectories that
differ only in having an ‘infinitesimally small’ difference in their initial
conditions and remain well-defined for noisy systems. A bounded sys-
tem with a positive Lyapunov exponent is one operational definition
of chaotic behavior. See Barnett and Serletis (2000) and Kyrtsou and
Serletis (2006) for several other univariate statistical tests for indepen-
dence, nonlinearity and chaos, that have been recently motivated by
the mathematics of deterministic nonlinear dynamical systems.

One early method for calculating the dominant Lyapunov exponent
is the one proposed by Alan Wolf, Jack Swift, Harry Swinney, and John
Vastano (1985). This method, however, requires long data series and is
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sensitive to dynamic noise, so inflated estimates of the dominant Lya-
punov exponent are obtained. Douglas Nychka, Stephen Ellner, Ronald
Gallant, and Daniel McCaffrey (1992) have proposed a new method,
involving the use of neural network models, to test for positivity of
the dominant Lyapunov exponent. The Nychka et al. (1992) Lyapunov
exponent estimator is a regression (or Jacobian) method, unlike the
Wolf et al. (1985) direct method which [as William Brock and Chera
Sayers (1988) have found] requires long data series and is sensitive to
dynamic noise. Another very promising approach to the estimation of
Lyapunov exponents [that is similar in some respects to the Nychka et
al. (1992) approach] has also been proposed by Ramazan Gencay and
Davis Dechert (1992). This involves estimating all Lyapunov exponents
of an unknown dynamical system. The estimation is carried out, as in
Nychka et al. (1992), by a multivariate feedforward network estimation
technique — see Gencay and Dechert (1992) for more details.

Until recently, however, it was not possible to investigate the statis-
tical significance of the sign of the Lyapunov exponent point estimates.
Thus, it was difficult to tell whether the positive Lyapunov exponents
were evidence of chaotic behavior. This problem motivated Whang and
Linton (1999) and Shintani and Linton (2003, 2004) to construct the
standard error for the Nychka et al. (1992) dominant Lyapunov expo-
nent and provide a statistical test for chaos — see also Serletis and
Shintani (2006) for another application of this approach. In what fol-
lows, we discuss the key features of the Whang and Linton (1999) and
Shintani and Linton (2003, 2004) approach.

Let {Xt}T
t=1 be a random scalar sequence generated by the following

non-linear autoregressive model

Xt = θ(Xt−1, . . . ,Xt−m) + ut (11.14)

where θ: R
m →R is a non-linear dynamic map and {ut}T

t=1 is a
random sequence of iid disturbances with E(ut) = 0 and E(u2

t ) =
σ2 < ∞. We also assume θ to satisfy a smoothness condition, and
Zt = (Xt, . . . ,Xt−m+1)′ ∈R

m to be strictly stationary and to satisfy a
class of mixing conditions — see Whang and Linton (1999) and Shin-
tani and Linton (2003, 2004) for details regarding these conditions.

Let us express the model (11.14) in terms of a map

F (Zt) = (θ(Xt−1, . . . ,Xt−m),Xt−1, ...,Xt−m+1)
′ , (11.15)

with Ut = (ut, 0, ..., 0)
′ such that

Zt = F (Zt−1) + Ut,
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and let Jt be the Jacobian of the map F in (11.15) evaluated at Zt.
Then the dominant Lyapunov exponent of the system (11.14) is defined
by

λ ≡ lim
M→∞

1
2M

ln ν1

(
T′

MTM

)
, TM =

M∏
t=1

JM−t = JM−1·JM−2·· · ··J0,

(11.16)
where vi(A) is the i-th largest eigenvalue of a matrix A. Necessary
conditions for the existence of the Lyapunov exponent are available in
the literature. Usually, if max {ln ν1 (J ′

tJt) , 0} has a finite first moment
with respect to the distribution of Zt, then the limit in (11.16) almost
surely exists and will be a constant, irrespective of the initial condition.

To obtain the Lyapunov exponent from observational data, Eck-
mann and Ruelle (1985) and Eckmann et al. (1986) proposed a method
based on nonparametric regression which is known as the Jacobian
method. The basic idea of the Jacobian method is to substitute θ in
the Jacobian formula by its nonparametric estimator θ̂. In other words,
it is the sample analogue estimator of (11.16). It should be noted that
we distinguish between the ‘sample size’ T used for estimating the Ja-
cobian Ĵt and the ‘block lenght’ M which is the number of evaluation
points used for estimating the Lyapunov exponent. Formally, the Lya-
punov exponent estimator of λ can be obtained by

λ̂M =
1

2M
ln ν1

(
T̂′

M T̂M

)
, T̂M =

M∏
t=1

ĴM−t = ĴM−1 · ĴM−2 · · · · · Ĵ0,

(11.17)
where

Ĵt =
∂F̂ (Zt)
∂Z ′ =

⎡
⎢⎢⎢⎢⎢⎣

Δθ̂1t Δθ̂2t · · · Δθ̂m−1,t Δθ̂mt

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦

, (11.18)

for t = 0, 1, ...,M − 1, and Δθ̂jt = Dej θ̂(Zt) for j = 1, ...,m in which
ej = (0, ..., 1, ..., 0)′ ∈ R

m denotes the j-th elementary vector.
In principle, any nonparametric derivative estimator Dej θ̂ can be

used for the Jacobian method. However, in practice, the Jacobian
method based on the neural network estimation first proposed by Ny-
chka et al. (1992) and Gençay and Dechert (1992) is the most widely
used method in recent empirical analyses in economics. The neural
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network estimator θ̂ can be obtained by minimizing the least square
criterion

ST (θT ) =
1
T

T∑
t=1

1
2

(
Xt − θT (Zt−1)

)2
,

where the neural network sieve θT : R
m →R is an approximation func-

tion defined by

θT (z) = β0 +
k∑

j=1

βjψ
(
a′jz + bj

)
,

where ψ is an activation function and k is the number of hidden units.
For the neural network estimation, we use the FUNFITS program de-
veloped by Nychka et al. (1996). As an activation function ψ, this pro-
gram uses a type of sigmoid function

ψ(u) =
u(1 + |u/2|)

2 + |u| + u2/2
,

which was also employed by Nychka et al. (1992). The number of hid-
den units (k) will be determined by minimizing the generalized cross
validation (GCV) criterion defined by

GCV (m,k) =
σ̂2

(
1 − 2

T [1 + k(m + 2)]
)2 ,

where σ̂2 = T−1
∑T

t=1

(
Xt − θ̂(Xt−1, . . . ,Xt−m)

)2
. Notice that the

GCV criterion is closely related to the BIC criterion. This particular
type of GCV has been recommended by Nychka et al. (1996).

Using the argument in Whang and Linton (1999), Shintani and Lin-
ton (2003, 2004) showed that under some reasonable condition, the
neural network estimator λ̂M is asymptotically normal and its stan-
dard error can be obtained using

Φ̂ =
M−1∑

j=−M+1

w(j/SM )γ̂(j) and γ̂(j) =
1
M

M∑
t=|j|+1

η̂tη̂t−|j|,

where
η̂t = ξ̂t − λ̂M ,
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with

ξ̂t =
1
2

ln

⎛
⎝ ν1

(
T̂′

tT̂t

)

ν1

(
T̂′

t−1T̂t−1

)
⎞
⎠ for t ≥ 2 and ξ̂1 =

1
2

ln ν1

(
T̂′

1T̂1

)
.

Above, ω(·) and SM denote a kernel function and a lag truncation
parameter, respectively. Note that the standard error is essentially the
heteroskedasticity and autocorrelation covariance estimator of Andrews
(1991) applied to η̂t. We employ the QS kernel for ω(·) with SM selected
by the optimal bandwidth selection method recommended in Andrews
(1991).

It should also be noted that before conducting nonlinear analysis
the data must be rendered stationary, delinearized (by replacing the
stationary data with residuals from an autoregression of the data) and
transformed (if necessary). Also, since the interest is in nonlinear de-
pendence, one should remove any linear dependence in the stationary
data by fitting the best possible linear model. In particular, one can
prefilter the stationary series by the following autoregression

zt = b0 +
q∑

j=1

bjzt−j + εt, εt| It−1 ∼ N(0, w0),

using for each series the number of lags, q, for which the Ljung-Box
(1978) Q(36) statistic, for example, is not significant at the 5% level.

Finally, since the interest is in deterministic nonlinear dependence,
one should remove any stochastic nonlinear dependence by fitting a
GARCH model with the same AR structure as the one determined
above, using the Q(36) statistic. In particular, one can estimate the
following GARCH (1,1) model

zt = b0 +
q∑

j=1

bjzt−j + εt, εt| It−1 ∼ N(0, σ2
t ),

σ2
t = w0 + α1ε

2
t−1 + β1σ

2
t−1,

where N(0, σ2
t ) represents the normal distribution with mean zero and

variance σ2
t . Lyapunov exponent estimates can then be calculated for

the standardized GARCH (1,1) residuals, ε̂t/σ̂t — see Serletis (1995) or
Serletis and Ioannis Andreadis (2000) for more details regarding these
issues.
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In general, it has been proven difficult to produce reliable evidence
regarding the existence of chaotic processes in the money demand vari-
ables, or in macroeconomic and financial variables in general. Recently,
however, Serletis and Shintani (2006) have looked at Canadian and U.S.
simple-sum, Divisia, and currency equivalent money and velocity mea-
sures (a total of 54 variables) to investigate their dynamic structure and
to address disputes about their chaoticity, using the Whang and Lin-
ton (1999) and Shintani and Linton (2003, 2004) approach. They have
found statistically significant evidence against low-dimensional chaos.
In fact, as Barnett (2006) put it, the Serletis and Shintani (2006) paper

“is important, since it resolves some of the problems associated
with a long standing controversy. In fact the paper is close to
being the “last word” on the subject.”

11.6 Detecting Signatures of Self-Organization

Another type of nonlinear process is self-organized criticality, recently
discovered in physics by Bak et al. (1987). Unlike chaos, self-organized
criticality is a probabilistic process. It incorporates a dominant long-run
trend toward greater sensitivity and a short-run catastrophic element,
which is triggered by random shocks within the system. Moreover, self-
organized criticality produces fractal patterns that are generically sim-
ilar, unlike chaotic fractals that differ substantially among systems.
While self-organized criticality has not received much attention in eco-
nomics and finance, it has been extensively investigated in the hard
sciences.

As Bak et al. (1988, p. 364) put it “the temporal ‘fingerprint’ of
the self-organized critical state is the presence of flicker noise or 1/f
noise.” A statistical physics approach — namely ‘detrended fluctuation
analysis’ (DFA), introduced by Peng et al. (1994) — has recently been
used by Serletis, Uritskaya, and Uritsky (2007) to investigate the frac-
tal structure of some of the money demand variables. DFA is a sensitive
statistical tool for detecting multiscale autocorrelations in various types
of data, including financial, geophysical, and physiological signals. The
main advantage of this method consists in its ability to distinguish
intrinsic autocorrelations associated with memory effects in the under-
lying dynamical system from those imposed by external nonstationary
trends.

Consider the time series X(t) with t = 1, · · ·, N . The first step of
the DFA technique consists of creating the following integrated signal
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(a running sum of the X(t) fluctuations)

y(k) =
k∑

t=1

[
X(t) − 〈x〉

]
,

where 〈x〉 is the average value of the series x(t) and k = 1, · · ·, N . If
the returns are completely uncorrelated, this integrated signal is a ran-
dom walk — a self-affine stochastic process described by the coastline
fractal dimension of 1.5 — see Mandelbrot (1982). In the presence of
long-range correlations, however, this signal should have another fractal
dimension or exhibit deviations from fractality.

To investigate this issue, DFA of the integrated signal y(k) enables
us to reveal long-range correlations in x(t) by getting rid of trends.
In particular, the integrated series y(k) is divided into M = N/n�
nonoverlapping boxes (subintervals) of equal length n, where ·� is the
floor function. The boxes are indexed by m = 1, ···,M and their starting
times are denoted as knm. For each m-th box of size n, the least squares
line ynm(k) representing a local linear trend in that box is fit to the data.
Next, the integrated series y(k) is detrended by subtracting ynm(k), and
the root mean square fluctuation of the integrated and detrended series
is calculated as follows

F (n) =
1
M

M∑
m=1

√√√√ 1
N

knm+n∑
k=knm

[
y(k) − ynm(k)

]2
.

This computation is repeated over all box sizes in order to characterize
the relationship between the average detrended fluctuation F (n) and
the time scale n.

Typically, F (n) will increase with the box size. A linear relationship
between F (n) and n on a log-log plot indicates the presence of power
law (fractal) scaling — power laws indicate that there is ‘scale invari-
ance’ (or ‘self-similarity’), in the sense that fluctuations over small time
scales are related to the fluctuations at larger time scales. Under such
conditions, the slope of the line relating logF (n) to log n determines
the ‘scaling exponent’ (or ‘self-similarity parameter’) α that can be
used to characterize the fluctuations.

The scaling exponent α is related to the slope γ of the 1/fγ power
spectrum of scale-invariant fluctuations by γ = 2α− 1. In particular, if
α = 0.5 (and γ = 0), the time series x(t) is uncorrelated (white noise).
If α = 1 (and γ = 1), x(t) corresponds to the 1/f noise or flicker noise.
If α = 1.5 (and γ = 2), x(t) can be represented as a 1/f2 noise —
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a random walk series (the best known nonstationary series) is exactly
1/f2 noise — see Li (1991).

As already noted, recently, Serletis et al. (2007) extend the work in
Serletis and Shintani (2006) by using DFA to investigate the dynamic
structure in United States money and velocity measures. In doing so,
they use monthly data, over the period from 1959:1 to 2006:2, and
provide a comparison between sum, Divisia, and CE money and velocity
measures at each of the four levels of monetary aggregation, M1, M2,
M3, and MZM — see Serletis et al. (2007) for more details.

11.7 Conclusion

We have argued that the first step in estimating money demand func-
tions is to test for stochastic trends (unit roots) in the autoregressive
representation of each individual time series. Moreover, since the power
of unit root tests against alternative hypotheses near the null hypoth-
esis is low, we should use alternative testing procedures (such as, for
example, the KPSS level and trend stationarity tests) to deal with
anomalies that arise when the data are not very informative about
whether or not there is a unit root.

In a univariate time series modeling context, unit root and stationar-
ity tests are useful in regard to the decision of whether to specify mod-
els [such as, for example, moving-average (MA) models, autoregressive
(AR) models, and autoregressive moving-average (ARMA) models] in
levels or first differences. If the series are stationary (i.e., there is no
unit root), then it is desirable to work in levels, and if the series are
integrated (i.e., there is a unit root), then differencing is appropriate.

At one time, the conventional wisdom was to generalize this idea
and difference all integrated variables used in a multivariate context.
Recently, however, Engle and Granger (1987) argue that the appro-
priate way to treat integrated variables is not so straightforward in
a regression analysis. It is possible, for example, that the integrated
variables cointegrate — in the sense that a linear relationship among
the variables is stationary. Differencing such an already stationary re-
lationship entails a misspecification error, which we should avoid. It is
to these issues that the next chapter is devoted.
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We have argued that in a multivariate context with integrated vari-
ables it is important to test for cointegration (i.e., long-run equilibrium
relationships). If the variables are integrated of the same order, but
not cointegrated, ordinary least squares yields misleading results. In
fact, Peter Phillips (1987) formally proves that a regression involving
integrated variables is spurious in the absence of cointegration. In this
case, the only valid relationship that can exist between the variables is
in terms of their first differences.

However, if the variables are integrated and cointegrate, then there
is a long-run equilibrium relationship between them. Moreover, the
dynamics of the variables in the system can be described by an error
correction model in which the short-run dynamics are influenced by the
deviation from the long-run equilibrium. This is known as the ‘Granger
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representation theorem’ stating that for any set of integrated variables,
cointegration and error correction are equivalent representations.

In this chapter we explore recent exciting developments in the field
of applied econometrics, pertaining to the empirical analysis of mod-
els characterized by integrated and cointegrated variables. We begin
with a brief review of recent theoretical developments and then discuss
empirical issues in modeling and estimating aggregate money demand
functions.

12.1 Cointegration

Cointegration is a relatively new statistical concept, introduced into the
economics literature by Engle and Granger (1987). It is designed to
deal explicitly with the analysis of the relationship between integrated
series. In particular, it allows individual time series to be integrated, but
requires a linear combination of the series to be stationary. Therefore,
the basic idea behind cointegration is to search for a linear combination
of individually integrated time series that is itself stationary.

Consider the null hypothesis that there is no cointegration between
two integrated series, yt and xt, or equivalently, there are no shared
stochastic trends (i.e., there are two distinct stochastic trends) between
these series, in the terminology of Stock and Mark Watson (1988). The
alternative hypothesis is that there is cointegration (or equivalently, yt

and xt share a stochastic trend). Following Engle and Granger (1987),
one can estimate the so-called cointegrating regression (selecting arbi-
trarily a normalization)

yt = a+ bxt + εt. (12.1)

A test of the null hypothesis of no cointegration (against the alternative
of cointegration) is based on testing for a unit root in the ordinary least
squares (OLS) regression residuals, ε̂t, using the testing procedures
discussed in Chapter 11.

12.2 Cointegration and Common Trends

The observation by Stock and Watson (1988) that cointegrated vari-
ables share common stochastic trends provides a useful way to under-
stand long-run and/or short-run relationships. Let’s follow Stock and
Watson (1988) and decompose each of the yt and xt variables into a
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trend, cyclical, and stationary (but not necessarily white-noise) irreg-
ular component as follows

yt = τyt + cyt + εyt; (12.2)

xt = τxt + cxt + εxt, (12.3)

where τjt is the trend component of variable j at time t, cjt is the
cyclical component, and εjt is the noise (or irregular) component. If
the individual series have a stochastic trend, we can explore for shared
stochastic trends between the series. In particular, if the stochastic
trend of xt is shared with the yt series (i.e., τxt is linearly related to
τyt), then we have the following structure

yt = τyt + cyt + εyt; (12.4)

xt = ατyt + cxt + εxt, (12.5)

where α is the factor of proportionality between the two trends. In
this case there is a unique coefficient λ, such that the following linear
combination of yt and xt

zt = yt − λxt

is a stationary series — see Engle and Granger (1987). In fact, if there
is a shared stochastic trend, the linear combination zt can be written
as

zt = τyt + cyt + εyt − λ
(
ατyt + cxt + εxt

)

= τyt − λατyt + cyt − λcxt + εyt − λεxt,

which for λ = 1/α reduces to

zt = cyt − λcxt + εyt − λεxt.

Of course, λ may not be known a priori. Stock (1987) shows that λ
can be consistently estimated using OLS in the following regression

yt = λxt + zt

The test for a common stochastic trend is therefore a cointegration test.
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12.3 Cointegration and Common Cycles

Regarding common cycles, the approach adopted in the business cy-
cle literature is a modern counterpart of the methods developed by
Burns and Mitchell (1946). It involves the measurement of the degree
of comovement between two series by the magnitude of the correla-
tion coefficient, ρ(j), j ∈ {0,±1,±2, . . .}, between (stationary) cyclical
deviations from trends — see Chapter 17 for more details.

Recently, however, Engle and Kozicki (1993) and Vahid and Engle
(1993) suggested an alternative and more informative test for common
cycles based on an extension of the common trends (cointegration) anal-
ysis in a stationary setting. They show that the presence of a cyclical
component in the first difference of an integrated of order one variable
implies the existence of some feature and that the test for common
cycles in a set of I(1) variables is essentially a test for the existence of
common features — features are data properties such as, for example,
seasonality, heteroscedasticity, autoregressive conditional heteroscedas-
ticity, and serial correlation.

Here, we follow Engle and Kozicki (1993) and consider how to test
for a common feature of serial correlation. Therefore, the basic idea
behind such a serial correlation (co)feature test is to determine whether
a serial correlation feature is present in the first differences of a set of
cointegrated I(1) variables and then to examine whether there exists a
linear combination of the stationary variables that does not have the
serial correlation feature. If the linear combination of the stationary
variables eliminates the feature, it means that the feature is common
across the stationary variables and that they were generated by similar
(stationary) stochastic processes. Evidence to the contrary provides
strong empirical support that the series are generated by significantly
different (stationary) stochastic processes.

Suppose, for example, that in our bivariate setting the yt and xt se-
ries are I(1) variables and that each series has been rendered stationary
by removing the stochastic trend. We can then write equations (12.2)
and (12.3) as

Δyt = cyt + εyt

Δxt = cxt + εxt.

Assuming that the cyclical component is common across the two series,
cxt = βcyt where β is the factor of proportionality between the cyclical
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components, a linear combination between Δyt and Δxt can be written
as

Δzt = cyt + εyt − μ
(
βcyt + εxt

)

= cyt − μβcyt + εyt − μεxt,

which for μ = 1/β reduces to a series made up of the noise components.
The test for a common serial correlation feature is thus a test of whether
there is some ‘cofeature vector’ [1, μ] for which Δzt does not have the
serial correlation feature.

12.4 Cointegration and Codependent Cycles

In introducing the notion of common features, Engle and Kozicki (1993)
expand on the work by Engle and Granger (1987) on common trends
and cointegration and provide a test for the existence of common cy-
cles. However, as Ericsson (1993, p. 380) argues, in an early critique of
the Engle and Kozicki (1993) methodology, common feature tests have
some shortcomings and that

“detecting the presence of a cofeature depends on the dating of
the series. If the relative lag between the series is not correct,
a test for a cofeature may fail to find a cofeature when there is
one, even asymptotically.”

To illustrate, suppose that the Δyt and Δxt series have exactly the
same serial correlation cofeature but at different lags, as follows,

Δyt = cyt + εyt;

Δxt = βcyt−k + εxt.

In this case, a linear combination of Δyt and Δxt at time t will not
remove the feature even though each of the Δyt and Δxt series individu-
ally has the same feature. If, however, Δyt enters the linear combination
at lag k, as follows,

Δzt = cyt−k + εyt−k − μ
(
βcyt−k + εxt

)

= cyt−k − μβcyt−k + εyt−k − μεxt,
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then for μ = 1/β the serial correlation common feature is eliminated
from the Δzt series. Vahid and Engle (1997) refer to the presence of a
lagged serial correlation cofeature of this kind as a ‘codependent cycle.’

A codependent cycle is not as strong a form of comovement as a
common cycle. It provides, however, a stronger and more informative
test of underlying comovements between a group of variables than tra-
ditional (lagged) cross-correlation analysis does.

12.5 Cointegration and Error Correction

If a cointegrating relationship is identified, for example ε̂t is integrated
of order zero in (12.1), then according to the Engle and Granger (1987)
representation theorem there must exist an error correction represen-
tation relating current and lagged first differences of yt and xt, and at
least one lagged value of ε̂t. In particular, in the present context of the
yt and xt variables, the error correction model can be written as

Δyt = α1 + αy ε̂t−1

+
r∑

j=1

α11(j)Δyt−j +
s∑

j=1

α12(j)Δxt−j + εyt; (12.6)

Δxt = α2 + αxε̂t−1

+
r∑

j=1

α21(j)Δyt−j +
s∑

j=1

α22(j)Δxt−j + εxt, (12.7)

where α1, α2, αy, αx, α11(j), α12(j), α21(j), and α22(j) are all parame-
ters, εyt and εxt are white noise disturbances, and ε̂t−1 estimates the
deviation from long-run equilibrium in period t− 1.

The purpose of the error correction model is to focus on the short-
run dynamics while making them consistent with the long-run equi-
librium. In particular, the error correction model shows how yt and
xt change in response to stochastic shocks, represented by εyt and εxt,
and to the previous period’s deviation from long-run equilibrium, repre-
sented by ε̂t−1. If, for example, ε̂t−1 is positive (so that yt−a−bxt > 0),
xt would rise and yt would fall until long-run equilibrium is attained,
when yt = a+ bxt.
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Notice that αy and αx can be interpreted as speed of adjustment pa-
rameters. For example, the larger is αy, the greater the response of yt to
the previous period’s deviation from long-run equilibrium. On the other
hand, very small values of αy imply that yt is relatively unresponsive
to last period’s equilibrium error. In fact, for yt to be unaffected by xt,
αy and all the α12(j) coefficients in (12.6) must be equal to zero. This
is the empirical definition of Granger causality in cointegrated systems.
In other words, the absence of Granger causality for cointegrated vari-
ables requires the additional condition that the speed of adjustment
coefficient be equal to zero.

In fact, in the context of two integrated variables, yt and xt, that
cointegrate, the causal relationship between yt and xt can be deter-
mined by first fitting equation (12.6) by ordinary least squares and
obtaining the unrestricted sum of squared residuals, SSRu. Then by
running another regression equation under the null hypothesis that αy

and all the coefficients of the lagged values of Δxt are zero, the re-
stricted sum of squared residuals, SSRr, is obtained. The statistic

(SSRr − SSRu)/(s + 1)
SSRu/(T − r − s− 2)

,

has an asymptotic F -distribution with numerator degrees of freedom
(s + 1) and denominator degrees of freedom (T − r − s − 2). T is
the number of observations, r represents the number of lags of Δyt

in equation (12.6), s represents the number of lags for Δxt, and 2 is
subtracted in order to account for the constant term and the error
correction term in equation (12.6).

If the null hypothesis cannot be rejected, than the conclusion is that
the data do not show causality. If the null hypothesis is rejected, then
the conclusion is that the data do show causality. The roles of yt and
xt are reversed in another F -test [as in equation (12.7)] to see whether
there is a feedback relationship among these series.

It is to be noted that if the two integrated variables, yt and xt,
do not cointegrate, then the causal relationship between them can be
tested as above, but with the restrictions αy = αx = 0 imposed.

12.6 Cointegration and Money Demand

Consider the long-run demand function for real money balances of
Chapter 10, which we now write as

(m− p)t = β0 + β1yt + β2rt + εt, (12.8)



164 Chapter 12. Cointegration and the Demand for Money

where m, p, y, and r respectively denote the logs of nominal money,
the price level, aggregate real income, and the nominal interest rate.
The behavioral assumptions require that β1 > 0, β2 < 0, and that the
εt sequence is stationary, so that any deviations from long-run money
market equilibrium are temporary in nature. Hence, the theory requires
the existence of a combination of the nonstationary variables (m− p)t,
yt, and rt, such as, for example,

εt = (m− p)t − β0 − β1yt − β2rt,

that is stationary.
We have argued in Chapter 11 that real money balances, real in-

come, and the nominal interest rate are most likely integrated of order
one, so that their changes are stationary. If these variables are each
I(1), then it is typically true that the error εt will also be I(1). A
stochastic trend (i.e., a unit root) in εt, would imply that (m− p)t, yt,
and rt deviate permanently from each other, thus invalidating model
(12.8). However, stationarity in εt would establish (12.8) as a plausible
long-run relationship, with the short-run dynamics incorporated in εt,
usually referred to as the equilibrium error. Then the integrated vari-
ables (m−p)t, yt, and rt are said to be cointegrated and equation (12.8)
is referred to as the cointegrating regression, as in Engle and Granger
(1987).

In matrix notation, an equilibrium money demand model requires
that

εt = β′X t =
[
1 −β0 −β1 −β2

]
⎡
⎢⎢⎣

(m− p)t
1
yt

rt

⎤
⎥⎥⎦

is stationary. The vector β′ = [1 −β0 −β1 −β2] is called the cointegrat-
ing vector for the nonstationary stochastic process Xt, corresponding
to [(m− p)t 1 yt rt]′. This cointegrating vector isolates (in the present
context) the stationary linear combination, εt.

There are several important points to note about cointegration —
see Enders (2004) for more details. First, the cointegrating vector β is
not unique. In particular, if β is a cointegrating vector, then for any
ϑ �= 0, ϑβ is also a cointegrating vector. Also, cointegration requires
that the nonstationary variables are integrated of the same order —
if the variables are integrated of different orders, they cannot be coin-
tegrated. Moreover, cointegration refers to a ‘linear’ combination of
integrated variables. Theoretically, it is possible that nonlinear long-
run relationships exist among a set of integrated variables. The current
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state of econometric practice, however, cannot test for nonlinear coin-
tegrating long-run relationships.

Finally, if Xt has two components, then there can be at most one
independent cointegrating vector. If, however, Xt contains n variables,
then there may be as many as n− 1 linearly independent cointegrating
vectors — the number of cointegrating vectors is called the cointegrating
rank of Xt. To see this point, suppose that Xt is [ct it (m − p)t 1 yt

rt], where ct is logged consumption and it is logged investment. From
economic theory, we expect three long-run equilibrium relations among
these variables, given by

β′Xt =

⎡
⎣

1 0 0 0 −1 0
0 1 0 0 −1 0
0 0 1 −β0 −β1 −β2

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ct
it

(m− p)t
1
yt

rt

⎤
⎥⎥⎥⎥⎥⎥⎦

= stationary.

The three rows of the matrix β′ are the cointegrating vectors of the non-
stationary stochastic process Xt. These linearly independent cointe-
grating vectors isolate stationary linear combinations of theXt process
corresponding to the logarithms of the balanced-growth consumption
to output ratio, investment to output ratio, and the long-run money
demand function. As such the cointegrating rank of Xt is 3.

12.7 Testing for Cointegration

Several methods have been proposed in the literature to test for coin-
tegration. For a survey on statistical issues in cointegrated systems,
see Campbell and Perron (1991), Engle and Byung Yoo (1987), Jesus
Gonzalo (1994), and Watson (1994). Excellent textbook treatments can
also be found in Enders (2004) and Dennis Hoffman and Robert Rasche
(1996). In what follows, we consider two of the most frequently used
cointegration testing approaches — the Engle and Granger (1987) ap-
proach and the Soren Johansen (1988) approach.

12.7.1 The Engle-Granger Approach

The Engle and Granger (1987) approach is to select arbitrarily a nor-
malization and regress one variable against the others to obtain the
OLS regression residuals. In the context of the money demand function,
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this involves estimating the long-run equilibrium relationship (12.8) to
obtain the residual sequence ε̂t. A test of the null hypothesis of no coin-
tegration (against the alternative of cointegration) could then be based
on testing for a unit root in ε̂t using a Dickey-Fuller test.

In particular, we could estimate the following autoregression of the
residuals [without an intercept and trend term, since the ε̂t sequence is
a residual from a regression],

Δε̂t = α1ε̂t−1 + ξt, (12.9)

and test the null hypothesis that α1 = 0, using critical values that
reflect the fact that the ε̂t sequence is generated from a regression
equation — the problem here is that we cannot use the ordinary Dickey-
Fuller tables, because ε̂t is not the actual error, but an estimate of the
error. If we cannot reject the null hypothesis α1 = 0, we can conclude
that the ε̂t sequence contains a unit root, suggesting that the money
demand variables are not cointegrated. If, however, we can reject the
null hypothesis α1 = 0, we can conclude that the residual series is
stationary and that the money demand variables are cointegrated.

If the residual sequence ξ̂t of (12.9) does not appear to be white
noise, we could perform an augmented Dickey-Fuller test on the se-
quence ε̂t. That is, instead of using (12.9), we could estimate the fol-
lowing autoregression

Δε̂t = α1ε̂t−1 +
k∑

j=1

cjΔε̂t−j + ξt, (12.10)

and test the null hypothesis α1 = 0, using simulated critical values
which correctly take into account the number of variables in the coin-
tegrating regression — see Engle and Yoo (1987) for the appropriate
tables.

The Engle-Granger procedure has several important defects. One
defect is that it is a ‘two-stage’ estimator. In the first stage we generate
the residual sequence ε̂t, by estimating the long-run equilibrium rela-
tionship (12.8). In the second stage we use the generated sequence ε̂t

to test the null hypothesis of a unit root in the context of a regression
equation of the form (12.9) or (12.10), depending on whether or not the
ξ̂t sequence exhibits serial correlation. This is an undesirable feature of
the procedure, since any errors introduced in the first stage are carried
into the second stage.

Another defect of the Engle-Granger procedure is that (with limited
amounts of data typically available in economics) the test for cointe-
gration depends on the arbitrary normalization implicit in the selection
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of the ‘dependent’ variable in the regression equation. In the context,
for example, of the nonstationary stochastic process Xt = [log(M/P )t
log Yt logRt]′, the long-run equilibrium regression can be estimated us-
ing either log(M/P )t, log Yt, or logRt as the dependent variable. The
problem is that it is possible to find that the variables are cointegrated
using one variable as the dependent variable, but are not cointegrated
using another variable. This possible ambiguity is a weakness of the
test.

Moreover, in tests using three or more variables, the Engle-Granger
procedure does not distinguish between the existence of one or more
cointegrating vectors. As a consequence, the Engle-Granger approach
is well suited for the bivariate case which can have at most one cointe-
grating vector. All these problems can be avoided by using Johansen’s
(1988) maximum likelihood (ML) extension of the Engle and Granger
(1987) cointegration approach. This approach is sufficiently flexible to
account for long-run properties as well as short-run dynamics, in the
context of multivariate vector autoregressive models.

12.7.2 The Johansen ML Approach

The Johansen procedure is a multivariate generalization of the ADF
test. Following Johansen and Katarina Juselius (1992), let us consider
the following p-dimensional vector autoregressive (VAR) model of order
k

Xt =
k∑

i=1

AiXt−i + ut, (12.11)

whereXt is a p×1 vector and ut is an independently and identically dis-
tributed p-dimensional vector of innovations with zero mean and vari-
ance matrix Σu. In the case of the stochastic process Xt = [log(M/P )t
log Yt logRt]′, p = 3.

The maximum likelihood estimation and likelihood ratio test of this
model has been investigated by Johansen (1988), and can be described
as follows. First, letting Δ = 1 − L, where L is the lag operator, Jo-
hansen and Juselius (1992) suggest writing equation (12.11) as

ΔXt =
k−1∑
i=1

Γ iΔXt−i +ΠX t−k + ut, (12.12)
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where

Γ i = −
⎛
⎝I −

i∑
j=1

Aj

⎞
⎠ and Π = −

(
I −

k∑
i=1

Ai

)
, (12.13)

with the p × p ‘total impact’ matrix Π containing information about
the long-run relationships between the variables in Xt.1

In the context of (12.12), the number of distinct cointegrating vec-
tors that exist between the p elements of Xt will be given by the rank
of Π, denoted as r. The rank of a (square) matrix is the number of
linearly independent rows (columns) in the matrix and is given by the
number of its ‘eigenvalues’ that are significantly different from zero.

To recall some linear algebra, note that for an n× n square matrix
A, a real number λ is an eigenvalue (or ‘characteristic root’) of A if
the system of linear equations

Az = λz,

(where z is an n×1 vector) has nonzero solutions z (called ‘eigenvectors’
or ‘characteristic vectors’). The condition Az = λz can be written as

(A− λI)z = 0,

where I is the n × n identity matrix. Hence, λ is an eigenvalue of A
if and only if A−λI is not invertible, which in turn means that the
determinant |A− λI|= 0. Thus, we can find the eigenvalues of A by
finding the values of λ that satisfy the ‘characteristic equation’

|A− λI|= 0.

In the context of (12.12), if Π consists of all zeros, its characteristic
equation has solutions λ1 = λ2 = ... = λp = 0, and rank(Π) = 0. In

1 Equation (12.12) can be obtained as follows. Subtract X t−1 from both sides of
(12.11) to get

ΔX t = (A1 − I)X t−1 +
k∑

i=2

AiX t−i + ut.

Now, add and subtract (A1−I)X t−2 to obtain

ΔX t = (A1 − I)ΔX t−1 + (A2 +A1 − I)X t−2 +
k∑

i=3

AiX t−i + ut.

Next add and subtract (A2+A1−I)X t−3. Continuing in this fashion, we obtain
(12.12).
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this case, (12.12) is the usual VAR model in first differences and there
are p unit roots and no cointegration — that is, all elements of Xt have
unit roots and so do all linear combinations of these elements.

If all rows of Π are linearly independent, Π has full rank so that
rank(Π) = p, and the vector process is stationary — that is, all ele-
ments of Xt (as well as any linear combination of these elements) will
be stationary. In the more interesting case when 0 < rank(Π) = r < p,
there are r cointegrating relations among the elements of Xt and p− r
common stochastic trends.

Johansen proposes two tests for the number of distinct cointegrating
vectors — the trace and maximum eigenvalue tests. In the trace test,
the null hypothesis that there are at most r cointegrating vectors is
tested (against a general alternative) by calculating the test statistic

λtrace(r) = −T
p∑

i=r+1

log(1 − λ̂i),

where λ̂i (i = 1, ..., p) are the estimated eigenvalues, obtained from the
estimated Π matrix. If the variables do not cointegrate, rank(Π) = 0,
and the characteristic equation of Π has solutions λ1 = λ2 = ... =
λp = 0. In this case, each log(1 − λ̂i) will equal zero (since log 1 = 0),
and λtrace equals zero. However, the farther the estimated eigenvalues
are from zero, the more negative is each of the expressions log(1− λ̂i),
and the larger the λtrace statistic.

In the maximum eigenvalue test, the null hypothesis of r cointe-
grating vectors is tested against the alternative of r + 1 cointegrating
vectors by calculating the test statistic

λmax(r, r + 1) = −T log(1 − λ̂r+1).

Again, if the estimated eigenvalue, λ̂r+1, is close to zero, λmax will be
small, and the null hypothesis that the number of cointegrating vectors
is r will not be rejected.

The cointegration and error-correction frameworks have proved to
be successful tools in the identification and estimation of aggregate
money demand functions. This type of approach to the demand for
money captures the long-run equilibrium relationship between money
and its determinants as well as the short-run variation and dynamics.
It does so by allowing economic theory to specify the long-term equi-
librium while the underlying data-generating process determines the
short-term dynamics. It is in this sense that this approach represents a
significant improvement over the partial adjustment specifications that
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we discussed in Chapter 10, which severely restrict the lag structure by
relying solely on ad hoc economic theory without examining the actual
data.

There is a growing literature on the application of cointegration and
error-correction models to the examination of aggregate money demand
functions. The earlier applications tended to be based on the Engle and
Granger (1987) cointegration approach. Further research, however, sug-
gests that we undertake the identification and estimation of aggregate
money demand functions in a multivariate framework, using procedures
developed by Johansen (1988) and Johansen and Juselius (1992). For
an excellent textbook treatment see Hoffman and Rasche (1996), and
for further references regarding the existing empirical literature on the
demand for money in different countries (including developing coun-
tries), see Sriram (1999).

12.8 A Bounds Testing Approach

Although the demand for money has been investigated in a large num-
ber of recent studies taking a cointegration and error-correction ap-
proach, this approach requires the researcher to take a stance on a
common order of integration for the individual variables in the money
demand function. As a result, most of the literature ignores a recent
important contribution to this topic by Serena Ng and Perron (1997)
who show that we should be very wary of estimation and inference in
‘nearly unbalanced,’ ‘nearly cointegrated’ systems.

In this section we discuss a new econometric technique developed
by Hashem Pesaran, Yongcheol Shin, and Richard Smith (2001). Their
autoregressive distributed lag (ARDL), bounds test approach to testing
for the existence of a single long-run relationship among a set of vari-
ables is particularly relevant as it does not require that we take a stand
on the time series properties of the data. Therefore one is able to test
for the existence of a long-run relationship without having to assume
that the money demand variables are I(0), I(1), or even integrated of
the same order.

Let us consider the existence of a single long-run relationship be-
tween the logarithm of real money balances, (m−p)t, which here we will
denote by st, and xt, where xt is the vector time series [log Yt logRt].
In describing the Pesaran et al. (2001) methodology, we begin with an
unrestricted vector autoregression
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Zt = μ+δt+
p∑

j=1

φjZt−j + εt (12.14)

where Zt = [st xt]′, μ is a vector of constant terms, μ = [μs μx]′ , t is
a linear time trend, δ = [δs δx]′ and φj is a matrix of VAR parameters
for lag j. As noted earlier, the money demand variables can be either
I(0) or I(1). In this case, equation (12.14) describes a trivariate VAR.

The vector of error terms εt = [εs,t εx,t]
′ ∼ IN (0,Ω) where Ω is

positive definite and given by

Ω =
[
ωss ωsx

ωsx ωxx

]
.

Given this, εs,t can be expressed in terms of εx,t as

εs,t = ωεx,t + ut (12.15)

where ω = ωsx/ωxx and ut ∼ IN (0, ωss) .
Manipulation of equation (12.14) allows us to write it as a vector

error correction model, as follows

ΔZt = μ+ δt+ λZt−1 +
p−1∑
j=1

γjΔZt−j + εt (12.16)

where Δ = 1 − L, and

γj =
[
γss,j γsx,j

γsx,j γxx,j

]
= −

p∑
k=j+1

φk.

Here λ is the long-run multiplier matrix and is given by

λ =
[
λss λsx

λxs λxx

]
= −

⎛
⎝I −

p∑
j=1

φj

⎞
⎠ ,

where I is an identity matrix. The diagonal elements of this matrix are
left unrestricted. This allows for the possibility that each of the series
can be either I(0) or I(1) — for example, λss = 0 implies that the real
balances series is I(1) and λss < 0 implies that it is I(0).

This procedure allows for the testing for the existence of a maximum
of one long-run relationship that includes both (m − p)t and xt. This
implies that only one of λxs and λsx can be non-zero. As our interest
is on the long-run effect of real output and the nominal interest rate
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on real money balances, one can impose the restriction λxs = 0. This
implies that real balances have no long-run impact on real output and
the nominal interest rate or that the real output and nominal interest
rate series are long-run forcing for real money balances, in the termi-
nology of Pesaran et al. (2001). Note that this does not preclude real
money balances being Granger causal for the real output and nominal
interest rate series in the short-run. These effects are captured through
the short-run response coefficients described by the matrices φ1 to φp.

Under the assumption λxs = 0, and using (12.15), the equation for
real money balances from (12.16) can be written as

Δ(m− p)t = α0 + α1t + ϕst−1 +ψxt−1

+
p−1∑
j=1

βs,jΔ(m− p)t−j

+
q−1∑
j=1

βx,jΔxt−j + ωΔxt + ut (12.17)

where α0 = μs−ω′μx, α1 = δs+ω′δx, ϕ = λss, ψ = λsx−ω′λxx, βs,j =
γss,j−ω′γxs,j and βx,j =γsx,j−ω′γxx,j . This can also be interpreted as
an autoregressive distributed lag [ARDL(p,q)] model. One can estimate
equation (12.17) by ordinary least squares and test the absence of a
long-run relationship between st and xt, by calculating the F statistic
for the null hypothesis of φ = ψ = 0. Under the alternative of interest,
φ �= 0 and ψ �= 0, there is a stable long-run relationship between
(m− p)t and xt, which is described by

(m− p)t = θ0 + θ1t+ θ2xt + vt

where θ0 = −α0/ϕ, θ1 = −a1/ϕ, θ2 = δ/ϕ and vt is a mean zero
stationary process.

The distribution of the test statistic under the null depends on the
order of integration of (m− p)t and xt. In the trivariate case where all
variables are I(0), and the regression includes an unrestricted intercept
and trend, the appropriate 95% asymptotic critical value is 4.87. When
all variables are I(1) this critical value is 5.85. For cases in which one
series is I(0) and the other is I(1), the 95% asymptotic critical value
falls in-between these two bounds — see Pesaran et al. (2001, Table
C1.v).
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12.9 Conclusion

We have argued that cointegration provides a correct method of es-
timating and testing hypotheses in models characterized by long-run
relations between nonstationary time series data. It avoids the spuri-
ous regression problem and indicates whether it is possible to model the
integrated data in an error correction model. In particular, if the vari-
ables are integrated and cointegrate, then there is an error-correction
representation that enables the estimation of long-run equilibrium re-
lationships without simultaneously having to take a strong position
on how to model short-run dynamics. If, however, the variables are
integrated and do not cointegrate, then the only valid relationship that
can exist between them is in terms of their first differences.

More detailed discussion of the issues raised in this chapter is best
carried on in the context of a specific investigation. Such an inves-
tigation forms the subject matter of the next chapter. In particular,
we examine the evidence for an equilibrium aggregate money demand
function in the United States, using quarterly data and making com-
parisons among simple-sum, Divisia, and currency equivalent methods
of monetary aggregation. We also discuss the implications of such an
equilibrium relationship for the sources of shocks in the U.S. economy.
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Balanced Growth, the Demand for Money, and
Monetary Aggregation

13.1. Theoretical Background
13.2. Univariate Tests for Unit Roots
13.3. Testing the c, i, y System
13.4. Testing the m− p, y, R System
13.5. Testing the c, i, m− p, y, R System
13.6. Conclusion

In this chapter, building on a previous empirical study by King,
Plosser, and Watson (1991), we apply the Johansen (1988) maximum
likelihood approach for estimating long-run steady-state relations in
multivariate vector autoregressive models, to test the implications of
neoclassical stochastic growth theory and traditional money demand
theory. As we argued in Chapter 12, the Johansen approach is superior
to the Engle and Granger (1987) methodology, because it fully captures
the underlying time series properties of the data, provides estimates of
all the cointegrating relations among a given set of variables, offers a
set of test statistics for the number of cointegrating vectors, and allows
direct hypothesis tests on the elements of the cointegrating vectors.

Our objective is to apply the Johansen methodology to U.S. quar-
terly observations over the 1960:1 to 2005:4 period, and also determine
whether the evidence supports certain theoretical claims in the real
business cycle literature as well as in the traditional money demand
literature. In doing so, we make comparisons among simple-sum, Di-
visia, and currency equivalent monetary aggregates (of M1, M2, M3,
and MZM), to deal with the possible anomalies that arise because of
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different definitions of money. The monetary aggregates were obtained
from the St. Louis MSI database, maintained by the Federal Reserve
Bank of St. Louis as a part of the Bank’s Federal Reserve Economic
Database (FRED). The monetary data and the different monetary ag-
gregation procedures will be discussed in great detail in Chapters 15-17.

13.1 Theoretical Background

Following King et al. (1991), let’s consider the following simple real
business cycle model. The single final good, Yt, is produced via a
constant-returns-to-scale Cobb-Douglas production function,

Yt = λtK
1−θ
t Lθ

t , (13.1)

where Kt is the predetermined capital stock, chosen in period t − 1,
and Lt is labor input in period t. Total factor productivity, λt, follows
a logarithmic random walk

log (λt) = μλ + log (λt−1) + ξt, (13.2)

where μλ represents the average productivity growth rate and ξt is
an independent and identically distributed process with mean zero and
variance σ2. In equation (13.2), μλ+log (λt−1) represents the determin-
istic part of the productivity evolution and ξt represents the stochastic
innovations (or shocks).

Under the assumption that the intertemporal elasticity of substi-
tution in consumption is constant and independent of the level of
consumption, the basic neoclassical growth model with deterministic
trends implies that the two great ratios — the log output-consumption
ratio and the log output-investment ratio — are constant along the
steady-state growth path, since the deterministic model’s steady-state
common growth rate is μλ/θ. With stochastic trends, however, there is
a common stochastic trend log (λt) /θ with a growth rate of (μλ + ξt) /θ,
implying that the great ratios, ct − yt and it − yt become stationary
stochastic processes — see King, Plosser, and Sergio Rebelo (1988) for
more details.

As we argued in Chapter 12, these theoretical results can be formu-
lated as testable hypotheses in a cointegration framework. Let Xt be
the multivariate stochastic process consisting of the logarithms of real
per capita consumption, investment, and output,Xt = [ct, it, yt]. Each
component of Xt is integrated of order one [or I(1) in the terminology
of Engle and Granger (1987)] — because of the random walk nature
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of productivity. The balanced growth implication of the neoclassical
growth model with stochastic trends is that the differences ct − yt and
it − yt will be I(0) variables. That is, there should be two cointegrating
vectors, [1, 0, −1] and [0, 1, −1].

If Xt is augmented to include real per capita money balances,
(m − p)t and the nominal interest rate, Rt, that is, if Xt = [ct, it,
(m − p)t, yt, Rt], and if (m − p)t and Rt are each integrated of order
one, then according to the theory we would expect to find three cointe-
grating vectors — the two great ratios, [1, 0, 0, −1, 0] and [0, 1, 0, −1,
0], and the money demand relation, [0, 0, 1, βy, βR]. In fact, according
to the theory we expect βy = −1 and βR to be small and positive.
These coefficients in the cointegrating vector imply a one-to-one posi-
tive relation between real money balances and real output and a small
but negative relation between real balances and the nominal rate of
interest.

13.2 Univariate Tests for Unit Roots

As we argued earlier meaningful cointegration tests can only be con-
ducted if both nominal and real variables are integrated of order one
and of the same order of integration. Hence, the first step before con-
ducting Johansen maximum likelihood cointegration tests is to test for
stochastic trends (unit roots) in the autoregressive representation of
each individual time series. In doing so, in what follows we use four
alternative testing procedures to deal with anomalies that arise when
the data are not very informative about whether or not there is a unit
root.

In the first three columns of panel A of Table 13.1, we report p-values
for the augmented Weighted Symmetric (WS) unit root test [see Pan-
tula et al. (1994)], the augmented Dickey-Fuller (ADF) test [see Dickey
and Fuller (1981)], and the nonparametric, Z(tα̂), test of Phillips (1987)
and Phillips and Perron (1988). These p-values (calculated using TSP
4.5) are based on the response surface estimates given by MacKinnon
(1994). As discussed in Pantula et al. (1994), the WS test dominates
the ADF test in terms of power. Also, the Z(tα̂) test is robust to a wide
variety of serial correlation and time-dependent heteroskedasticity. For
the WS and ADF tests, the optimal lag length was taken to be the
order selected by the Akaike information criterion (AIC) plus 2 — see
Pantula et al. (1992) for details regarding the advantages of this rule
for choosing the number of augmenting lags. The Z(tα̂) test is done
with the same Dickey-Fuller regression variables, using no augmenting
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lags. Based on the p-values for the WS, ADF, and Z(tα̂) test statistics
reported in panel A of Table 13.1, the null hypothesis of a unit root in
levels cannot in general be rejected for each of the variables, except for
the CE M3 monetary aggregate and investment.

Given that unit root tests have low power against relevant (trend
stationary) alternatives, we also follow Kwiatkowski et al. (1992) and
test for level and trend stationarity to distinguish between series that
appear to be stationary, series that appear to be integrated, and series
that are not very informative about whether or not they are stationary
or have a unit root. KPSS tests for level and trend stationarity are
presented in columns 4 and 5 of panel A of Table 13.1. As can be seen,
the t-statistic η̂μ that tests the null hypothesis of level stationarity is
large relative to the 5% critical value of .463 given in Kwiatkowski
et al. (1992). Also, the t-statistic η̂τ that tests the null hypothesis of
trend stationarity exceeds the 5% critical value of .146 [also given in
Kwiatkowski et al. (1992)]. Hence, combining the results of our tests of
the stationarity hypothesis with the results of our tests of the unit root
hypothesis, we conclude that all the series have at least one unit root.

To test the null hypothesis of a second unit root, in panel B of
Table 13.1 we test the null hypothesis of a unit root (using the WS,
ADF, and Z(tα̂) tests) as well as the null hypotheses of level and trend
stationarity in the first (logged) differences of the series. Clearly, all
the series appear to be stationary in first differences, since the null
hypothesis of a unit root is rejected and the null hypotheses of level
and trend stationarity cannot be rejected. The decision of the order of
integration of the series is documented in the last column of Table 13.1.

13.3 Testing the c, i, y System

In this section, we apply the Johansen and Juselius (1992) maximum
likelihood cointegration tests to test the balanced growth hypothesis
in a three-variable model containing the real variables, c, i, and y on
a per capita basis. According to the theory, we expect two cointegrat-
ing relationships among these three I(1) variables, given by the (log)
differences of consumption and output and of investment and output.
These are known as the ‘great ratios.’

Table 13.2 reports the results of the cointegration tests on a quar-
terly VAR of length 6 (k = 6). Two test statistics are used to test for
the number of cointegrating vectors: the maximum eigenvalue (λmax)
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and trace (λtrace) test statistics. As we argued in Chapter 12, in the
trace test the null hypothesis that there are at most r cointegrating vec-
tors (where r = 0, 1, 2) is tested against a general alternative whereas
in the maximum eigenvalue test the alternative is explicit. That is,
the null hypothesis r = 0 is tested against the alternative r = 1, r = 1
against the alternative r = 2 et cetera. Based on the 90% critical val-
ues for the λmax and λtrace test statistics reported in Table 13.2, the
hypothesis of zero cointegrating vectors cannot be rejected — notice
that in this case the two test statistics give similar results regarding
the number of cointegrating relations.

Hence, we conclude that the two great ratios are nonstationary, in
contrast to the predictions of the balanced growth literature and the
more recent real business cycle literature. These results are also in
conflict with the findings by King et al. (1991), using quarterly U.S.
data over the 1949:1 to 1988:4 period..

Table 13.2
Maximum Likelihood Cointegration

Tests for the c, i, y System

Null 90 % 90 %
hypothesis λmax critical value λtrace critical value

r = 0 18.802 19.020 29.816 28.780

r ≤ 1 10.981 12.980 11.013 15.750

r ≤ 2 0.032 6.500 0.032 6.500

Notes: Sample period, quarterly data: 1960:1–2005:4.
An asterisk indicates significance of the 10% level.

13.4 Testing the m− p, y, R System

The next system that we test is the m− p, y, R system. As we argued
earlier, according to theory, in this case we expect to find one cointe-
grating vector, [1, βy, βR], which corresponds to the long-run money
demand function. In fact, according to the theory we expect βy = −1
and βR > 0. That is, real balances should be positively related to in-
come and negatively related to the nominal rate of interest.
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The results of the Johansen maximum likelihood cointegration tests
are reported in Table 13.3 for the twelve sum, Divisia, and CE monetary
aggregates. Using the 10% critical values reported in the notes to Table
13.3, we see that the λmax and λtrace test statistics give similar results
regarding the number of cointegrating relations. In fact, the results
indicate that the hypothesis of zero cointegrating vectors cannot be
rejected

13.5 Testing the c, i, m− p, y, R System

We now turn to the multivariate stochastic process, Xt = [ct, it, (m−
p)t, yt, Rt] and report results in Table 13.4, in the same fashion as those
for the trivariate system, m − p, y, R, in Table 13.3. Using the 10%
critical values reported in the notes to Table 13.4, we see that the λmax

and λtrace test statistics give different results regarding the number of
cointegrating relations. According to Johansen (1991) this ambiguity is
due to the low power in cases when the cointegration relation is quite
close to the nonstationary boundary. However, since the trace test takes
account of all of the smallest eigenvalues it tends to have more power
than the λmax test.

According to the λtrace test statistic, we cannot reject the null of r =
1 in all systems. The next step is to identify the cointegrating vector.
Clearly, the evidence in support of one cointegrating relationship does
not provide any direction as to which one of the three vectors expected
by economic theory is picked up by the Johansen procedure. It is more
likely that the one cointegrating vector is the long-run money demand
function, since in the trivariate c, i, y system we did not find evidence of
cointegration. Identifying the cointegrating vector is beyond the scope
of this Chapter — see King et al. (1991) for work along these lines

13.6 Conclusion

We have looked at data consisting of the traditional simple-sum mone-
tary aggregates, as published by the Federal Reserve Board, and Divisia
and CE monetary aggregates, recently produced by the Federal Reserve
Bank of St. Louis, to investigate the univariate time series properties of
the different monetary aggregates and to test the predictions of the bal-
anced growth literature and the traditional money demand literature.
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Our results, although not in line with the simple one-factor neoclassical
growth model, are consistent with the evidence reported by Kunst and
Neusser (1990) for Austria, Neusser (1991) for Canada, Germany, and
Japan, and Serletis (1994) for Canada..

We have also established that the different monetary aggregates
have different time series properties. Of course, in such cases our eco-
nomic intuition is hard-pressed for explanations. In this regard, we
think that our results in this chapter suggest answers to a number
of questions raised over previous studies of the role of money in the
economy. In fact, as Serletis and Koustas (2001, p. 137) put it

“a meaningful comparison of alternative monetary aggregation
procedures requires the discovery of the structure of preferences
over monetary assets by testing for weakly separable subgroup-
ings. Leaving aside the method of aggregating over monetary
assets (i.e., Divisia as opposed to other possibilities), the prob-
lem is the a priori assignment of monetary assets to monetary
aggregates.”

We explore such issues in the rest of this book, starting with the
microeconomic- and aggregation-theoretic approach to the definition of
money in Part 5 of the book.
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Cross-Country Evidence on the Demand
for Money

14.1. Cross-Country Data
14.2. Cross-Country Specifications
14.3. Cross-Country Evidence
14.4. Robustness
14.5. Conclusion

Past estimation of money demand functions has primarily been con-
fined to industrialized countries, especially the United States and the
United Kingdom — see Goldfeld and Sichel (1990) and Sriram (1999)
for surveys on past theoretical and empirical money demand studies.
However, the estimates derived from the time-series approach seem to
be sensitive to the choice of sample period, functional form, and the
univariate and multivariate time series properties of the underlying
variables. Thus, it has been difficult to draw broad conclusions about
long-run money demand based on only a handful of countries, which
can be argued to be similar in nature. For these reasons (among oth-
ers), Friedman and Kuttner (1992, p. 490) argue that time-series data
does not uncover a “close or reliable relationship between money and
nonfinancial economic activity.”

Recently, however, Kenny (1991), Mulligan and Sala-i-Martin (1992),
Fujiki and Mulligan (1996), and Fischer (2005), have opted for an
alternative modeling approach, by estimating money demand cross-
sectionally. This approach allows researchers to utilize additional con-
ditional variables, which may not be available as a time-series. For
example, the Mulligan and Sala-i-Martin (1992) cross-state American
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study includes state specific variables for population, population den-
sity, agricultural sector’s share of income, and regional dummies. Also,
Fischer (2005) attempts to reconcile parameter biases in the conven-
tional money demand estimates by conditioning on heterogeneous levels
of financial sophistication in his cross-regional panel analysis of Switzer-
land. The findings and conclusions drawn from such studies indicate
that supplementary variables can enhance standard inferences regard-
ing money demand.

Motivated by these considerations, in this chapter we examine
money demand issues using cross-country data, for 48 countries over
the 1980-1995 period. In particular, we investigate conventional money
demand functions, for both narrow and broad monetary aggregates,
and the role that institutions, financial structure, and financial devel-
opment may have in the demand for money. As Levine (2002, p. 405)
puts it,

“one advantage of the broad cross-country approach is that it
permits a consistent treatment of financial system structures
across countries and thereby facilitates international compar-
isons.”

14.1 Cross-Country Data

In order to analyze the possible relationships between real money bal-
ances, real GDP, the nominal interest rate, and different institutional,
financial structure, and financial development measures, we adopt the
common broad cross-country approach, using one observation for each
variable under consideration, per country, for 48 countries (over the
1980-1995 period). The countries we consider are the same as those
investigated in Levine (2002) and are listed in Table 14.1. The insti-
tutional, financial structure, and financial development measures are
also from Levine (2002) — see Levine (2002) and Serletis and Vaccaro
(2006) for a detailed description of the data.

14.2 Cross-Country Specifications

Following Levine (2002), we argue that different views regarding money
demand can be represented as rival predictions on the parameters of
a standard money demand equation and consider the following cross-
country money demand regression equations:
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Table 14.1 . Countries
Argentina Kenya
Australia Malaysia
Austria Mexico
Belgium Netherlands
Brazil New Zealand
Canada Norway
Chile Pakistan
Colombia Panama
Cyprus Peru
Denmark Philippines
Ecuador Portugal
Egypt South Africa
Finland Spain
France Sri Lanka
Germany Sweden
Ghana Switzerland
Greece Taiwan, China
Honduras Thailand
India Trinidad and Tobago
Ireland Turkey
Israel Tunisia
Italy United Kingdom
Jamaica United States
Japan Zimbabwe

log
(
M

P

)
= a′X + ε1;

log
(
M

P

)
= a′X + b′I + ε2;

log
(
M

P

)
= a′X + cS + ε3;

log
(
M

P

)
= a′X + dF + ε4,

where M is the money stock (defined by either a narrow or broad defi-
nition) and X represents the standard set of conditioning information
— that is, the natural logarithm of real GDP and a short term nominal
interest rate.

As in Levine (2002), I represents a vector of institutional vari-
ables which measure macroeconomic stability, openness to international
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trade, and political stability. S gauges financial structure, with larger
values suggesting a more market-based economy and smaller values
implying a bank-based economy. F measures the degree of financial
development; larger measures of F imply an increased development of
securities markets, banks, and non-banks. Such measures can also be
interpreted as a proxy for financial services. εi, with i = 1, 2, 3, 4, is the
corresponding error term for each of the four equations, respectively.
a, b, c, and d are estimated coefficients (with bold letters indicating
vectors of coefficients). I, S, and F are the same variables that Levine
(2002) considers as possible growth determinants.

The idea is that countries with greater institutional stability should
exhibit less uncertainty and therefore display a reduced demand for
money. Specifically, the sign of b will depend on each of the institu-
tional variables under consideration. For example, a higher level of av-
erage schooling years over the population implies a stronger knowledge
of the mechanics of the economy and the money market, suggesting
that the demand for money will be lower as the educational index rises.
Large black market premium values indicate that the transaction costs
incurred while purchasing goods and services are also large, which in
turn requires agents to hold more liquid money. There is also a possi-
ble relationship between government expenditure and money demand.
Theory asserts that private spending and public spending maybe per-
fect substitutes or complements — see, for example, Barro (1997). If
perfect substitutes, then the expenditure on goods and services by the
government will reduce expenditure by agents, requiring them to hold
less money, ceteris paribus. If complements, then providing additional
services will require agents to purchase these services and compel them
to retain additional funds, ceteris paribus.

The trade variable attempts to proxy the degree of openness. With
enhanced trade comes exposure to different markets, where agents must
now consider foreign interest rates and balance of payment issues. As
a result, agents will have to divide their monetary holdings between
domestic and foreign accounts. Higher degrees of openness would sug-
gest that there would be lower demand for domestic money. Measures
of civil liberties, revolutions and coups and political assassinations can
be thought of as proxies for political stability. With domestic political
instability comes capital flight. The theory is that as the future of the
financial system becomes dismal, faith in a paper promise declines and
faith in other assets such as gold and tangible goods useful for barter-
ing increases. Kenny (1991) considers a similar approach by trying to
control for the type of government by including a dummy variable for
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dictatorships. Our interpretation differs given that the three political
stability variables are not mutually exclusive to countries considered
either a dictatorship or democracy. As well, Kenny (1991) emphasizes
precautionary motives for his interpretation but neglects speculative
motives, which have increasingly dominated financial markets during
our sample period.

Bureaucratic efficiency measures the extent of autonomy from po-
litical pressures and strength to govern. This is important because it
signals a degree of competence within key governmental departments
such as finance and the central bank. Given that autonomy and exper-
tise indicate certainty and provide faith in the monetary and political
system, the implication is that as the quality of the bureaucracy rises,
the demand for money should decline. As with the black market pre-
mium measure, corruption can also accordingly be considered a source
of raising transaction costs. It is not unreasonable to assume that an
increase in corruption would be followed by bribery and possibly influ-
ence peddling. Therefore, as we observe an increase in corruption we
should also observe an increase in the demand for money.

The addition of financial structure measures allows for investigation
into the possible heterogeneity in money demand under diverse finan-
cial systems. Specifically, a better understanding of whether money
demand is higher or lower in a bank-based or market-based system can
be explored. Such analysis and its insights may be useful in formu-
lating monetary policy to remedy a financial crisis or to restructure
a command style economy to a more capital driven one, from a pol-
icy perspective. Given that, the hypothesis is that under market-based
systems firms can easily raise funds in the open market for financing
and investment through capital markets, which in turn would broaden
loan possibilities. Boot and Thakor (1997) along with Allen and Gale
(1999) articulate that competitive capital markets contribute positively
in aggregating dispersed information signals and efficiently relay such
information to investors, with favorable implications for firm level fi-
nancing — see also Levine (2002) for a further explanation and other
references on the subject matter. In comparison, under a bank-based
system, funds would have to be raised through banks, therefore limiting
financing possibilities. Bhide (1993) along with Boot and Thakor (1997)
argue that banks act as a coordinated coalition of investors which can
monitor firms more efficiently to diminish post lending moral hazard is-
sues and a myopic investor climate. Thus, given the possibility of easily
attainable funds under a market based system and the possible imped-
iments under a bank-based system, we should observe the demand for
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money to be lower in economies where there are market-based charac-
teristics and higher in economies where bank-based characteristics are
observed. Hence, we should observe c < 0.

Financial services, whether provided by banks or capital markets,
can also give broad insight into transaction costs. The idea is that fi-
nancial arrangements such as contracts, markets, and intermediaries
alleviate market imperfections. Levine (1997) stresses that this view
curtails the significance of the bank-based and market-based discus-
sion. The argument Levine (2002) makes is that financial arrangements
(such as contracts, markets, and intermediaries) highlight prospective
investment opportunities, promote corporate responsibility, contribute
to risk management, develop liquidity, and reduce savings mobilization.
With regards to money demand, the issue is whether such arrangements
assist in lowering transaction costs or aid in increasing them. Standard
economics textbooks describe financial innovations having a negative
effect on the demand for real money balances — see, for example, Barro
(1997). However, there is not a definitive hypothesis given that reduc-
tions in market imperfections come at a price. Ambiguity arises because
the derived benefits from financial services may not outweigh the costs
and vice versa. As a result, the data will have to dictate which case
is more likely. If the benefits offset the costs, transaction costs decline
and the implied sign is d < 0. Whereas, if the costs overshadow the
benefits, transaction costs could rise and the implied sign is d > 0.
Kenny (1991) presents a similar idea by using population density as a
surrogate for bank proximity and their corresponding services.

14.3 Cross-Country Evidence

Table 14.2 presents the initial conventional money demand results us-
ing ordinary least squares (OLS) estimation with heteroskedasticity-
consistent standard errors. The top panel displays the results for M1
as the dependent variable and the bottom panel those for M2. For
both money measures, the estimated income elasticity of the demand
for real money balances is highly significant and close to the quantity
theory demand for money predictions. Specifically, for both aggregates
we tested the null hypothesis that the income elasticity is equal to one,
and cannot reject the null at the 5% level. The estimated interest elas-
ticities of the demand for real balances are negative and both significant
at the 5% level. Although the interest elasticity estimates are not zero
for both aggregates, as predicted by the quantity theory demand for
money, they are quite low and statistically different than the implied



14.3. Cross-Country Evidence 191

value of the Baumol-Tobin transactions theory.

Table 14.2 . Conventional Money Demand Functions

Explanatory Standard RESET
Variable Coefficient error t-statistic p-value R2 F

M1

Constant -6.575 0.943 -6.969 0.000 0.897 1.099
Ln R -0.108 0.037 -2.899 0.006
Ln Y 1.012 0.040 25.240 0.000

M2

Constant -6.615 0.787 -8.396 0.000 0.940 0.110
Ln R -0.102 0.024 -4.165 0.000
Ln Y 1.061 0.032 32.468 0.000
Note: The reported explanatory variables are all included in each of the
regressions. The simple information set only includes the logarithm of
short term interest rates and the logarithm of real GDP.

Table 14.3 presents the institution results for both money measures.
The estimation procedure we opt for is to control sequentially for each
institutional variable conditioned on the simple information set. The
reasoning stems from issues regarding simultaneity and mutual exclu-
siveness. In particular, we are concerned with high correlations between
the bureaucracy and corruption indexes and the small variance of the
political indexes. As well, we are also apprehensive about the validity
and consistency of OLS once multiple indexes measured by scale are
included concurrently and when numerous degrees of freedom are lost
from including multiple explanatory variables in our small sample. Al-
though Kenny (1991) and Levine (2002) do not take the same approach,
Beck and Levine (2004) do take a similar approach when investigating
associations between stock market and bank development with eco-
nomic growth. As a result, we are simply interested in the influential
direction each of the explanatory variables has on the money measures
and caution on interpreting the results as exploitable elasticities.

The results in the top panel of Table 14.3 imply that only the ed-
ucational variable is significantly related to money demand when con-
sidering a narrow measure. The sign of the coefficient also theoretically
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Table 14.3. Institutions, Political, Macro-Stability, and Money Demand

Explanatory Standard RESET
Variable Coefficient error t-statistic p-value R2 F

M1

Ln School80 -0.395 0.161 -2.452 0.018 0.904 1.003
Ln BMP 0.095 0.136 0.698 0.489 0.895 1.027
Ln GOV -0.086 0.310 -0.279 0.781 0.895 1.093
Ln Trade -0.422 0.309 -1.363 0.180 0.902 0.289
Civil 0.034 0.058 0.593 0.556 0.895 1.205
REVC -0.257 0.219 -1.174 0.247 0.896 1.105
ASSASS -0.081 0.128 -0.632 0.530 0.895 0.892
Bureau -0.051 0.095 -0.543 0.590 0.895 1.067
Corrupt -0.045 0.087 -0.512 0.611 0.895 0.934

M2

Ln School80 0.056 0.132 0.424 0.673 0.939 0.107
Ln BMP -0.531 0.131 -4.059 0.000 0.943 0.096
Ln GOV 0.274 0.183 1.490 0.143 0.941 0.151
Ln Trade -0.046 0.319 -0.145 0.885 0.939 0.169
Civil 0.002 0.036 0.071 0.943 0.939 0.104
REVC -0.228 0.163 -1.400 0.168 0.940 0.148
ASSASS -0.178 0.103 -1.724 0.092 0.942 0.354
Bureau 0.028 0.068 0.416 0.679 0.939 0.090
Corrupt 0.061 0.054 1.130 0.264 0.940 0.020
Note: The reported explanatory variables are included one-by-one in each
of the regressions. The simple information set only includes the log of the
interest rate and the log of real GDP.

conforms because increases in the level of workforce education impact
money demand negatively from a narrow perspective. This result is also
consistent with Kenny (1991) where he also finds a negative relation-
ship between literacy and M1. None of the other institutional indica-
tors enter the narrow money demand regressions at the 10% level. With
regards to the broader aggregate, Table 14.3 shows that the black mar-
ket premium and assassination variables enter significantly. However,
the sign of the black market premium coefficient is incorrect from the
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theoretical expectation. The negative sign on the assassination coeffi-
cient corresponds to our prediction that domestic turmoil would lead
to a substitution out of money and into other tangible assets. However,
given that it narrowly makes the 10% level we are still aware of poten-
tially making a Type II error. None of the other institutional indicators
enter the broad money demand regressions at the 10% level.

The implication of both the narrow and broad money regressions
is that conditioning on institutions may not be so informative and un-
necessary when investigating money demand issues. This follows from
only one out of the nine institutional variables entering the narrow
specification significantly and only two out of the nine being signifi-
cant in the broad specification. As a result, it would be suspect to add
any of the institutional variables to the conditioning information set.
One interpretation may be that the demand for both aggregates could
be stable irrespective of most institutional differences. In fact, in both
specifications the elasticities with respect to income and the interest
rate remain statistically similar to those in Table 14.2.

Table 14.4 presents the results when controlling for financial struc-
ture. The same estimation methods were used as in the institutional
specification. Three of the structure measures enter the narrow specifi-
cation significantly at the 10% level. In particular, the activity, size, and
aggregate coefficients are all negative and of similar statistical magni-
tude, with size having the largest effect. The implication is that some
measures of financial structure indicate that money demand is nega-
tively related to market-based economies. This result corresponds to
the economic theory outlined in the specification section. However, it
also shows that there is some measurement sensitivity to such a con-
clusion. On the other hand, only the size variable is significant at the
10% level in the broad specification. This result suggests that mea-
sures of financial structure are for the most part statistically trivial
when investigating money demand from a broad perspective. Again,
the elasticities with respect to income and the interest rate remain
statistically similar to those in Table 14.2.

Finally, Table 14.5 presents the results when conditioning on the
simple information set and controlling for financial development. The
elasticities with respect to income and the interest rate again remain
statistically similar to those in Table 14.2 for both aggregates. Using
the same estimation method as the previous specification for finan-
cial structure, the results indicate that measures of financial develop-
ment do not bring forth additional information regarding narrow money
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Table 14.4. Financial Structure and Money Demand

Explanatory Standard RESET
Variable Coefficient error t-statistic p-value R2 F

M1

Structure-Activity -0.170 0.091 -1.854 0.070 0.902 1.038
Structure-Size -0.204 0.107 -1.900 0.064 0.901 1.920
Structure-Efficiency -0.110 0.094 -1.168 0.249 0.899 1.157
Structure-Aggregate -0.194 0.105 -1.839 0.073 0.903 1.377
Structure-Regulatory 0.014 0.031 0.461 0.647 0.895 0.929

M2

Structure-Activity -0.002 0.066 -0.031 0.975 0.939 0.113
Structure-Size -0.132 0.070 -1.872 0.068 0.942 0.117
Structure-Efficiency 0.071 0.075 0.951 0.347 0.941 0.064
Structure-Aggregate -0.009 0.074 -0.121 0.904 0.939 0.116
Structure-Regulatory -0.002 0.027 -0.108 0.914 0.939 0.102
Note: The reported explanatory variables are included one-by-one in each
of the regressions. The simple information set only includes the log of the
interest rate and the log of real GDP.

demand. None of the financial variables enter significantly at the 10%
level. Conversely, in the broad specification there are intuitive results.
All of the four measures of financial development enter significantly at
the 10% level or higher. The sign on all of the coefficients is positive.
Recall that the implied sign may be positive or negative. Given the
consistent positive sign, we argue that this may suggest possible evi-
dence that although greater financial development would bring forth
additional services through financial arrangements, the benefits of such
services may be outweighed by the costs and may actually raise trans-
action costs on a cross country scale. Kenny (1991) also finds a sig-
nificantly positive estimate on the bank proximity variable in his M2
specification. Such results warrant further analysis before a definitive
conclusion can be made.
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Table 14.5 . Financial Development and Money Demand

Explanatory Standard RESET
Variable Coefficient error t-statistic p-value R2 F

M1

Finance-Activity -0.044 0.073 -0.609 0.545 0.896 0.946
Finance-Size 0.033 0.173 0.194 0.847 0.895 1.080
Finance-Efficiency -0.069 0.064 -1.072 0.289 0.897 0.785
Finance-Aggregate -0.074 0.143 -0.514 0.609 0.895 0.974

M2

Finance-Activity 0.143 0.060 2.356 0.023 0.949 0.009
Finance-Size 0.447 0.127 3.522 0.001 0.952
Finance-Efficiency 0.110 0.057 1.917 0.062 0.944 0.022
Finance-Aggregate 0.304 0.113 2.679 0.010 0.950 0.006
Notes: The reported explanatory variables are included one-by-one in
each of the regressions.The simple information set only includes the
log of the interest rate and the log of real GDP.

14.4 Robustness

So far, we have followed Kenny (1991), Levine (2002), and Beck and
Levine (2004) and treated countries as homogeneous units using the
same regression model for all countries in the sample. Recently, Ser-
letis and Vaccaro (2006) explored whether heterogeneity exists in our
cross-country database, and in doing so, they provide an approach to
overcome it. They used an automatic classification program (Auto-
Class) for cluster analysis, developed by researchers at the Ames Re-
search Center — for a description of the AutoClass program, see Stutz
and Cheeseman (1996) or Serletis (2007) for a recent application in the
context of monetary aggregation.

They have shown that the assumption that all of the countries can
be treated as a homogeneous unit can cause systematic distortions.
Specifically, they used unsupervised Bayesian methods based on finite
mixture models and mathematical properties, to cluster the data set
into two distinct groups. Regressions based on each of the partitioned
data sets displayed heterogeneity with respect to the influence insti-
tutions, financial structure, and financial development have on money
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demand, for each of the two groups. They found that the developing,
high-inflation class somewhat dominated the data set and distorted
some of the developed, low-inflation class results. In particular, the role
that the supplementary variables have in the money demand function
depends not only on the specified aggregate, but also on the countries
specified in the sample — see Serletis and Vaccaro (2006) for more
details.

14.5 Conclusion

In this chapter we used cross-country data (for 48 countries, over the
1980-1995 period) to investigate the long-run relationship between both
narrow and broad monetary aggregates and interest rates, real GDP,
institutions, financial structure, and financial development. We have
shown that the interest and income elasticities of real balances are
fairly stable and conform to the theoretical prediction of the quantity
theory demand for money. As well, we have found that institutions,
financial structure, and development do play a role in the demand for
money in an aggregate setting; albeit a limited role.
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Overview of Part 5

Chapters 15 and 16 provide the microeconomic foundations to the
problem of monetary aggregation. Most of the material here is by now
well established in the monetary literature. In fact, the manifest advan-
tages of the microfoundations approach have been laid out carefully by
Barnett, Douglas Fisher, and Serletis (1992) and Barnett and Serletis
(2000).

Chapter 17 investigates the cyclical behavior of the monetary vari-
ables, using the methodology suggested by Kydland and Prescott
(1990). In doing so, comparisons are made among simple-sum, Divisia,
and CE monetary aggregates (of M1, M2, M3, and MZM) using the
data set that we discussed in Chapters 10 and 13.
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In the discussion to this point, we have used the word ‘money’ as
though it were obvious what it means, but this is not the case. Cur-
rently, the common practice among central banks is to construct money
measures from a list of possible components by simply adding together
those that are considered to be the likely sources of monetary services.
These are usually highly liquid financial assets, and the approach is
referred to in the literature as that of simple-sum aggregation.

In recent years, however, such a monetary aggregation procedure
has been questioned and explicit attention has been focused on the rig-
orous use of microeconomic- and aggregation-theoretic foundations in
the construction of monetary aggregates. In this chapter we provide a
brief qualitative assessment of the relative merits of the conventional
(summation) versus the new approach to monetary aggregation. In do-
ing so, we follow closely the presentation of Barnett, Fisher, and Serletis
(1992).
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15.1 The Simple-Sum Index

As already suggested, the monetary aggregates currently in use by
most central banks around the world are simple-sum indexes in which
all monetary components are assigned a constant and equal (unitary)
weight. This index is M in

M =
n∑

j=1

xj

where xj is one of the n monetary components of the monetary ag-
gregate M . This summation index views all components as dollar-for-
dollar perfect substitutes. There is no question that such an index rep-
resents an index of the stock of nominal monetary wealth, but it is
a special case, at best, of the appropriate type of index for monetary
services, as we will see.

Friedman and Schwartz (1970, pp. 151–152) dismissed simple-sum
monetary aggregates when discussing the potential generalization of
the simple-sum aggregates to index numbers

“this (summation) procedure is a very special case of the more
general approach. In brief, the general approach consists of re-
garding each asset as a joint product having different degrees of
moneyness, and defining the quantity of money as the weighted
sum of the aggregate value of all assets, the weights for indi-
vidual assets varying from zero to unity with a weight of unity
assigned to that asset or assets regarded as having the largest
quantity of “moneyness” per dollar of aggregate value. The pro-
cedure we have followed implies that all weights are either zero
or unity. The more general approach has been suggested fre-
quently but experimented with only occasionally. We conjecture
that this approach deserves and will get much more attention
than it has so far received.”

Over the years, there has been a steady stream of attempts at prop-
erly weighting the monetary components within a simple-sum aggre-
gate. Without theory, however, any weighting scheme is questionable.
Chetty (1969) appears to have been the first to recognize the direct rel-
evancy of microeconomic aggregation theory to monetary aggregation,
since he was the first to produce a structure for monetary aggregation
embedded within a constrained optimization problem.
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More recently, Barnett (1980) in a challenging paper, “Economic
Monetary Aggregates: An Application of Index Number and Aggrega-
tion Theory,” voiced objections to simple-sum aggregation procedures
and argued instead for applying aggregation theory and statistical in-
dex number theory to monetary aggregation. As Barnett, Offenbacher,
and Spindt (1984, p. 1051) put it,

“by equally weighting components, aggregation by summation
can badly distort an aggregate. For example, if one wished to
obtain an aggregate of transportation vehicles, one would never
aggregate by summation over the physical units of, say, subway
trains and roller skates. Instead one could construct a quantity
index (such as the Department of Commerce’s indexes) using
weights based on the values of the different modes of trans-
portation.”

Barnett has argued that a more satisfactory approach to monetary
aggregation must involve consideration of the utility function under-
lying the demand for monetary assets. For example, the appropriate
form of aggregation (simple-sum as opposed to other possibilities) will
be determined by the relationship that monetary assets bear to one
another and their contribution to total ‘moneyness.’ It turns out that
simple-sum aggregation is justified, when viewed in this framework,
only if the component assets are perfect substitutes.

The case for using microeconomic aggregation theory in monetary
economics is now very strong. The theory has two branches, one lead-
ing to the construction of index numbers and methods derived from
economic theory and one leading to the construction of money-demand
functions in the context of a system of equations modeling the wealth
holder’s allocation of funds between money and nonmoney assets. The
two branches are supported by the same structure in that the support-
ing theory in both cases is that of the constrained maximization of the
aggregate consumer’s dynamic utility function.

In what follows, we briefly spell out the microtheoretical frame-
work to the aggregation of money, leaving the related discussion of the
demand systems approach to modeling the demand for money (and
monetary assets) for later chapters.

15.2 The User Cost of Money

The meaning of the price of money is not obvious in monetary the-
ory. Usually this price has been viewed as varying inversely to the
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general price level. In this sense, the price of money is its purchasing
power in terms of real goods and services. The price of money has also
been viewed as an opportunity cost — the cost of not holding interest-
yielding assets. In fact, as we will see later in this book, the usual
assumption is that the demand for money depends negatively on the
incentives for holding other assets relative to money.

In the recent literature, however, money is treated as a durable good
having an infinite life and it is assumed that money retains at least some
value beyond the holding period. Under such an assumption, it would
be wrong to attribute a price of unity — the full purchase price —
to a unit of the stock of money, simply because this one dollar price
represents the price of a unit of the stock over an infinite holding period.
There is no question that money is a stock (at an instant of time). But
money is also an economic good that provides a variety of services
(i.e., liquidity, safety, convenience). These services of money are better
described in a flow dimension (per period of time).

Donovan (1978) argued that a user cost concept, rather than the
full purchase price, is more appropriate for pricing money. Barnett
(1978) derived the user cost formula in a constrained intertemporal con-
sumer optimization framework — see also Barnett and Serletis (2000,
Chapter 1). The user cost is given by

pj = p∗
(
R− rj

1 +R

)
(15.1)

and denotes the discounted interest foregone by holding a dollar’s worth
of the jth asset. Here, rj is the yield on the jth asset, R is the yield on
the benchmark asset, and p∗ is the true cost of living index.

The benchmark asset is specifically assumed to provide no liquidity
or other monetary services and is held solely to transfer wealth in-
tertemporally. In theory, R is the maximum expected holding period
yield in the economy. It is usually defined in practice in such a way
that the user costs for the monetary assets are positive. Note that if p∗
is deleted from the user cost formula, the formula produces real rather
than nominal user cost. The interest rates are nominal so that infla-
tionary expectations appear here (mainly in the denominator, since the
effects in the two rates in the numerator of the formula may well cancel
out).
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15.3 Microeconomic Foundations

With Barnett’s (1978) derivation of the user cost of monetary assets the
stage has been set for formulating a representative consumer’s decision
problem over consumption goods, leisure, and the services of monetary
assets. In doing so, we assume that the services of consumption goods,
as well as the services of monetary assets and leisure, enter as arguments
in the representative agent’s utility function

u = u(c, �,x) (15.2)

where

c = a vector of the services of consumption goods
� = leisure time, and
x = vector of the services of monetary assets

(assumed to be proportional to the stocks)

The utility function (15.2) is assumed to be maximized subject to
a full income constraint

q′c+ p′x+w� = Y ,

where

Y = full income
w = wage rate
q = a vector of prices of the consumption goods

(with the prime indicating a row vector)
p = a vector of monetary asset user costs (or rental prices),

with the ith component given as above

In order to focus on the details of the demand for monetary services,
ignoring other types of goods, a good starting point is the theory of
two-stage optimization investigated initially in the context of consumer
theory by Strotz (1957, 1959) and Gorman (1959). It refers to a sequen-
tial expenditure allocation, where in the first stage (that of budgeting
or price aggregation), the consumer allocates his expenditure among
broad categories (consumption goods, leisure, and monetary services in
our context) relying on price indexes for these categories, and then in
the second state (that of decentralization) allocates expenditure within
each category.

Decomposition of the consumer choice problem along these lines is
possible if and only if the representative individual’s utility function is
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weakly separable, implying a utility tree, in the services of monetary
assets. That is, it must be possible to write the utility function as

u = u
(
c, �, f(x)

)
, (15.3)

in which f(x) is the monetary services aggregator function (quantity
index) satisfying a number of economically motivated conditions that
will be mentioned later.

As we shall argue later in the book, according to the original defi-
nition of separability by Leontief (1947) and Sono (1961) the algebraic
requirement of (direct) weak separability in the services of monetary
assets is that

∂

∂ζ

⎛
⎜⎜⎝

∂u

∂xi

∂u

∂xj

⎞
⎟⎟⎠ = 0, ζ = c, �,

for i �= j. That is, the marginal rate of substitution between any two
monetary assets does not depend upon the values of c and �. This means
that the demand for monetary services is independent of relative prices
outside the monetary group.1

Whether or not the utility function (15.2) is weakly separable in
monetary services is, of course, an empirical question. Ideally, instead
of treating (15.3) as a maintained (untested) hypothesis, as we do here,
one could test whether the utility function (15.2) is appropriately sepa-
rable in monetary services — an assumption implicit in the traditional
money-nonmoney dichotomization. This issue remains relatively unex-
plored.

If one is willing to continue focusing on the details of the demand for
services of monetary assets, ignoring other types of goods, the following
classical consumer problem can be utilized

max
x

f(x) subject to p′x = y, (15.4)

in which y is the expenditure on the services of monetary assets (de-
termined in the first stage of the two level optimization problem) and
p is as defined above, a vector of monetary asset user costs.
1 Note that the separability structure is asymmetric. That is, c is not separable

from x and  in u(·) unless there exists a function g(c) such that

u = u(c, ,x) = u
(
g(c), , f(x)

)
.

For an extensive discussion of separability, see Blackorby, Primont, and Russell
(1978).
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15.4 Aggregation Theory

In the discussion to this point, we have shown the steps that are nor-
mally taken to reduce a very general consumer choice problem to an
asset-choice problem. At this point, we are prepared to proceed to re-
sults in the aggregation-theoretic literature, in which we are looking for
monetary aggregates that are consistent with the optimizing behavior
of rational economic agents. We begin with the monetary services util-
ity function, f(x), assuming that the utility function (15.2) is weakly
separable in monetary services.

Using a specific and differentiable form for f(x), and solving decision
(15.4), we can derive the demand-function system. Using these derived
solution functions and specific monetary data, we then could estimate
the parameters and replace the unknown parameters of f(x) by their
estimates. The resulting estimated function is called an economic (or
functional) monetary index, and its calculated value at any point in
time is an economic monetary-quantity index number.

The problem is that the use of a specific function necessarily implies
a set of implicit assumptions about the underlying preference structure
of the economic agent. For example, the use of a weighted linear aggre-
gator function,

f(x) =
n∑

j=1

ajxj,

implies perfect substitutability among the n assets and hence should
logically lead to specialization in consumption of the least expensive
asset.2 If this is inaccurate, obviously, we commit a specification error
by using this functional form.

The use of a Cobb-Douglas functional form,

f(x) =
n∏

j=1

x
aj

j ,

imposes an elasticity of substitution equal to unity (σ = 1) between
every pair of assets and its use implies that each asset always accounts
for a constant share of the expenditure. Again, if this proposition is at
odds with the facts, as it is likely to be, the use of the Cobb-Douglas
seems inappropriate.3

2 The more restrictive unit-weighted (aj = 1, j = 1, ..., n) aggregator function im-
plies dollar for dollar perfect substitutability. This is the simple-sum aggregation
procedure.

3 In general, the elasticity of substitution between assets i and j is defined as
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As a last example, a constant elasticity of substitution (CES) func-
tional form

f(x) =
n∑

j=1

(ajx
r
j)

1/r,

where 0 < aj < 1, −∞ < r < 1, relaxes the unitary elasticity of
substitution restriction imposed by the Cobb-Douglas, but imposes the
restriction that the elasticity of substitution between any pair of assets
is always constant, σ = 1/(1 − r). Again this seems contrary to fact.

The list of specific functional forms is, of course, boundless, but the
defining property of the more popular of these entities is that they imply
limitations on the behavior of the consumer that may be incorrect in
practice. While the issue of their usefulness is ultimately an empirical
question — and we shall treat the issue that way in this book — we
feel that most members of this class of functions should be rejected,
partly in view of the restrictive nature of their implicit assumptions,
and partly because of the existence of attractive alternatives.

Among the alternatives is a member of the class of quadratic util-
ity functions. With a member of the quadratic class, we would be us-
ing a flexible functional form to approximate the unknown monetary-
services aggregator function, f(x). Flexible functional forms such as
the translog, introduced by Christensen, Jorgenson, and Lau in their
1975 article, “Transcendental Logarithmic Utility Functions,”

f(x) = α0 +
n∑

i=1

αi log xi +
1
2

n∑
i=1

n∑
j=1

βij log xi log xj, (15.5)

can locally approximate to the second order any unknown functional
form for the monetary services aggregator function, and even higher

σij =
d log(xj/xi)

d log (fi(x)/fj(x))
.

To calculate the elasticity of substitution for the simple, two-asset (i.e., n = 2)
Cobb-Douglas utility function, we note that the numerator of the above expression
is

d log(x2/x1) = d log x2 − d log x1,

and that the denominator is

d log (f1(x)/f2(x)) = d log

(
α1

α2

x2

x1

)
= d log x2 − d log x1.

Hence, σ = 1.
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quality approximations are available. We will consider the details of
such functional forms later in this book.

If one is to do away with the simple-sum method of aggregating
money and replace it with a nonlinear aggregator function as suggested,
one will be able to deal with less than perfect substitutability and, for
that matter, with variations over time in the elasticities of substitution
among the components of the monetary aggregates. There is a problem,
however, and this is that the functions must be estimated over specific
data sets (and re-estimated periodically) with the attendant result that
the index becomes dependent upon the specification.

This dependence is particularly troublesome to government agencies
that have to justify their procedures to persons untrained in economet-
rics. This is a reasonable concern — and it is exacerbated by the fact
that there are many possible nonlinear models from which to choose.
Under these circumstances, government agencies around the world have
always viewed aggregation theory as being solely a research tool, and
have instead used index number formulas from statistical index number
theory, to which we now turn.

15.5 Index Number Theory

Statistical index-number theory provides a class of quantity and price
indexes that can be computed from price and quantity data alone, thus
eliminating the need to estimate an underlying structure. In fact since
the appearance of Fisher’s (1922) early classic book on statistical index
number theory, nearly all federal government economic data series have
been based upon aggregation formulas from that literature. Well known
examples are the Consumer Price Index, which is a Laspeyres price
index, the Implicit Price Deflator, which is a Paasche price index, and
real GNP, which is a Laspeyres quantity index.4 The simple-sum index,
4 The Laspeyres quantity index is

ML
t =

n∑
j=1

wj,t−1

(
xjt

xj,t−1

)
,

where wjt = pjtxjt

/∑n
k=1 pktxkt is the jth asset’s share in expenditure on all

assets. The Paasche quantity index is

MP
t =

1
n∑

j=1

wjt

(
xj,t−1

xjt

) .
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often used for monetary quantities, is a member of the broad class, but
the simple-sum is a special case, since it contains no prices.

Statistical indexes are mainly characterized by their statistical prop-
erties. These properties were examined in great detail by Fisher (1922)
and serve as tests in assessing the quality of a particular statistical in-
dex. They have been named, after Fisher, as Fisher’s system of tests.
Eichhorn (1976, 1978) provides a detailed analysis as well as a compre-
hensive bibliography of Fisher’s test (or axiomatic) approach to index
numbers.

While Fisher found the simple-sum index to be the worst known in-
dex number formula, the index that he found to be the best, in the sense
of possessing the largest number of appropriate statistical properties,
has now become known as the Fisher ideal index. Another index found
to possess a very large number of such properties is the (Törnqvist)
discrete time approximation to the continuous Divisia index. That in-
dex commonly is called the Törnqvist index or just the Divisia index
(in discrete time). We shall use the latter naming convention.

Let xjt be the quantity of the jth asset during period t, and let pjt

be the rental price (i.e., user cost) for that asset during period t. Then,
the Fisher ideal index, MF

t , during period t, is the geometric average
of the Laspeyres and Paasche indexes

MF
t = MF

t−1

⎡
⎣

n∑
j=1

wj,t−1

(
xjt

xj,t−1

)
× 1

/
n∑

j=1

wjt

(
xj,t−1

xjt

)⎤
⎦

1/2

,

where
wjt =

pjtxjt∑n
k=1 pktxkt

is the jth asset’s share in expenditure on the total portfolio’s service
flow.

On the other hand, the discrete time (Törnqvist) Divisia index, MD
t ,

during period t, is

MD
t = MD

t−1

n∏
j=1

(
xjt

xj,t−1

)(1/2)(wjt+wj,t−1)

.

It is informative to take the logarithm of each side of the above equa-
tion, so that

logMD
t − logMD

t−1 =
n∑

j=1

w∗
jt(log xjt − log xj,t−1), (15.6)
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where w∗
jt = (1/2)(wjt +wj,t−1). In this form, it is easy to see that for

the Divisia index the growth rate (log change) of the aggregate is the
share-weighted average of the growth rates of the component quantities.

The primary advantage of the Fisher ideal index over the Divisia
index is that the Fisher ideal index satisfies Fisher’s factor reversal test
— which requires that the product of the price and quantity indexes
for an aggregated asset (or good) should equal actual expenditures on
the component assets (or goods) — while the Divisia index fails that
test. However, the magnitude of the error is very small (third order
in the changes), and the Divisia index has the very large advantage
of possessing the easily interpreted functional form, given as equation
(15.6).

15.6 Diewert’s Link

Until relatively recently, the fields of aggregation theory and statistical
index number theory developed independently. However, Diewert in
his 1976 paper, “Exact and Superlative Index Numbers,” provided the
link between aggregation theory and statistical index number theory by
attaching economic properties to statistical indexes. These properties
are defined in terms of the statistical indexes’ ability to approximate a
particular functional form for the unknown aggregator function, f(x)
in our case.

For example, for a number of well known statistical indexes Diewert
shows that they are equivalent to the use of a particular functional
form. Such statistical indexes are called exact. Exactness, however is
not sufficient for acceptability of a particular statistical index when the
functional form for the aggregator function is not known. In this case it
seems desirable to choose a statistical index which is exact for a flexible
functional form. Diewert termed such statistical indexes superlative.
Diewert also showed that the Divisia index is exact for the linearly
homogeneous translog and is, therefore, superlative.

Following Diewert (1976) we will demonstrate how an exact index
for the homogeneous translog functional form can be derived and that
the index is the Divisia index. Consider the homogeneous (of degree
one) translog functional form given by equation (15.5), with the fol-
lowing (homogeneity) restrictions imposed

n∑
i=1

αi = 1 and
n∑

j=1

βij = 0, for all j,
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and define a quantity index between periods 0 and r, Q(p0,x0,pr,xr),
r = 1, ..., T , as a function of the n prices in periods 0 and r. To
ensure that the statistical index approximates the functional form for
the aggregator function, it is required that the following relation is
satisfied

f(xr)
f(x0)

= Q(p0,x0,pr,xr), for r = 1, ..., T (15.7)

whenever xr > 0 is the solution to the following aggregator maximiza-
tion problem

max
x

{f(x) : prx ≤ prxr, x ≥ 0} , for r = 0, ..., T .

For a base period normalization f(x0) = 1, equation (15.7) implies
that the quantity index at time t equals the aggregator function eval-
uated at that point. If equation (15.7) is satisfied the quantity index
Q(p0,x0,pr,xr) is said to be exact for the aggregator function f(x).

Next, we make use of the quadratic approximation lemma of Theil
(1967, p. 222-223)

f(z1) − f(z0) =
1
2
[∇f(z1) + ∇f(z0)

]
(z1 − z0), (15.8)

where ∇f(zr) is the gradient vector of f(z) evaluated at zr. Now,
since for the translog zr

i = log xr
i and f(zr) = log f(xr), for r = 0, 1

and i = 1, ..., n, we have

∇f(zr) =
∂ log f(xr)
∂ log ∂xr

=
∂f(xr)
∂xr

xr

f(xr)
= x̂r∇f(xr)

f(xr)
, (15.9)

where x̂r, r = 0, 1 is the vector x diagonalized into a matrix. Then if
we substitute (15.9) into (15.8), we obtain

log
f(x1)
f(x0)

=
1
2

[
x̂1∇f(x1)

f(x1)
+ x̂0∇f(x0)

f(x0)

] (
logx1 − logx0

)
, (15.10)

where logxr = (log xr
1, log x

r
2, · · ·, log xr

n), for r = 0, 1. Using Wold’s
theorem (for a linear homogeneous function),

pr

prxr
=

∇f(xr)
f(xr)

,

and substituting into (15.10) we obtain
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log
f(x1)
f(x0)

=
1
2

[
x̂1p1

p1Tx1
+
x̂0p0

p0Tx0

]
(
logx1 − logx0

)

=
n∑

j=1

1
2
(
w1

j + w0
j

) (
log x1

j − log x0
j

)
.

The right-hand side of the above equation is the same as that in equa-
tion (15.6). In fact, it is the Divisia index in growth rate form. Hence,
we have shown that the Divisia index is exact for the homogeneous
translog. Since the homogeneous translog is a flexible functional form,
the Divisia index is a superlative index.

It is obvious that the definition of exact statistical indexes depends
upon microeconomic maximizing behavior and is completely indepen-
dent of the form or properties the aggregator function might have.
However, if we do not know the true functional form for the aggregator
function (that is, if we do not have a priori information about prefer-
ences) it would be wise to choose a statistical index that is exact for
a flexible functional form. Diewert (1976) also showed that the Fisher
ideal index is exact for the square root of a homogeneous quadratic
function — see also Lau (1978).

15.7 Conclusion

With Diewert’s (1976) successful merging of index number theory with
economic aggregation theory and Barnett’s (1978) derivation of the
user cost of the services of monetary assets, the stage has been set for
introducing index number theory into monetary economics. The moral
of the story is that the nonlinearity produced by economic theory is
important and that the simple-sum index should be abandoned (both
as a source of research data and as an intermediate target or indicator
for monetary policy).

The most obvious conclusion of this brief theoretical discussion is
that the rigorous use of nonlinear microeconomic theory will result in
consistent and satisfactory monetary aggregates. In fact, Barnett (1980)
originated the Divisia monetary aggregates, which are elements of the
superlative class, and which represent a practically viable, and theoret-
ically meaningful, alternative to the inappropriate simple-summation
aggregates. We discuss the Divisia monetary aggregates in the next
chapter.
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The New Monetary Aggregates

16.1. The Neoclassical Monetary Problem
16.2. Understanding the Divisia Aggregates
16.3. Divisia Second Moments
16.4. Measurement Matters
16.5. The MQ and CE Indexes
16.6. Empirical Comparisons
16.7. Conclusion

We have argued in Chapter 15 that the simple-sum method of ag-
gregation makes strong a priori assumptions about substitution effects
and the result is a set of monetary aggregates that do not accurately
measure the actual quantities of the monetary products that optimiz-
ing economic agents select (in the aggregate). We also surveyed the
microeconomic theory of monetary aggregation, as it has evolved dur-
ing the past twenty years, using a model of the optimizing behavior of
representative economic agents.

Our objective in this chapter is to develop a better understanding
of the Divisia monetary aggregates, by presenting the source and the
underlying microeconomic theory of the Divisia index. In addition, we
provide an empirical assessment of the relative merits of the Divisia
versus the simple sum method of monetary aggregation as well as other,
recently proposed, aggregation procedures. Our objective is to be able
to settle on a satisfactory method of ‘measuring’ money.
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16.1 The Neoclassical Monetary Problem

In the discussion to this point, we have shown that in the second stage
of the two-stage maximization problem, with weak separability between
monetary assets and consumer goods and leisure, the consumer faces
the following problem

max
x

f(x) subject to p′x = y, (16.1)

or, written out in full,

max
x1,x2,···,xn

f(x1, x2, · · ·, xn)

subject to
n∑

i=1

pixi = p1x1 + p2x2 + · · · + pnxn = y,

where x = (x1, x2, · · ·, xn) is a vector of services from monetary assets,
p = (p1, p2, · · ·, pn) is a vector of monetary asset user costs, and y is
the expenditure on the services of monetary assets.

The first order conditions for a maximum can be found by forming
an auxiliary function known as the Lagrangian

L = f(x) + λ

(
y −

n∑
i=1

pixi

)
,

where λ is the Lagrange multiplier. By differentiating L with respect
to xi, and using the budget constraint, we obtain the (n+1) first order
conditions

∂f(x)
∂xi

− λpi = 0, i = 1, ..., n;

y −
n∑

i=1

pixi = 0,

where the partial derivative ∂f(x)/∂xi is the marginal utility of asset
i.

What do these first order conditions tell us about the solution to
the utility maximization problem? Notice that the first n conditions
can be written as
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∂f(x)/∂x1

p1
=

∂f(x)/∂x2

p2
= · · · =

∂f(x)/∂xn

pn
= λ, (16.2)

which simply say that, in equilibrium, the ratio of marginal utility to
price must be the same for all assets. Alternatively, for any two assets
i and j, the above condition can be rewritten as

∂f(x)/∂xi

∂f(x)/∂xj
=

pi

pj
,

which says that, in equilibrium, the ratio of marginal utilities (also
known as the marginal rate of substitution) must equal the respective
price ratio.

Notice that according to equation (16.2), the optimal Lagrange mul-
tiplier is utility per unit of asset k divided by the number of dollars
per unit of asset k (k = 1, · · ·, n), reducing to utility per dollar. By
this interpretation, the optimal Lagrange multiplier is also called the
marginal utility of income.

16.2 Understanding the Divisia Aggregates

Consider the representative consumer’s utility function over monetary
assets, f(x). Take the total differential of f(x) to get

df(x) =
n∑

i=1

(
∂f(x)
∂xi

)
dxi,

where ∂f(x)/∂xi (i = 1, ..., n) are marginal utilities containing the
unknown parameters of the function f(x). From the first-order condi-
tions of the neoclassical monetary problem (discussed in the previous
section), we can write the marginal utilities as

∂f(x)
∂xi

= λpi, i = 1, ..., n,

where λ is the Lagrange multiplier and pi is the user-cost of asset i.
This expression can then be substituted into the total differential of
f(x), to eliminate ∂f(x)/∂xi (i = 1, ..., n), and yield

df(x) =
n∑

i=1

λpidxi, (16.3)

which is written not in unknown marginal utilities but in the unknown
Lagrange multiplier, user costs, and changes in quantities.
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In equation (16.3) the Lagrange multiplier is itself a function of un-
known tastes and thereby a function of the parameters of the unknown
utility function. We would rather not have to estimate it econometri-
cally. In order to get rid of the Lagrange multiplier, we assume that
the economic quantity aggregator, f(x), is linearly homogeneous in its
components — that is, f(κx) = κf(x). This is, indeed, a reasonable
assumption, since it would be very curious indeed if linear homogeneity
of f(x) failed — in such a case the growth rate of the aggregate would
differ from the growth rates of its components, even if all components
were growing at the same rate.

Next define P (p) to be the dual price index satisfying Fisher’s factor
reversal test1

P (p)f(x) =
n∑

i=1

pixi = y.

It can be shown [see Barnett, Fisher, and Serletis (1992, footnote 22)]
that λ = 1/P (p) in which case equation(16.3) reduces to

df(x) =
n∑

i=1

(
1

P (p)

)
pidxi. (16.4)

Manipulating equation (16.4) algebraically, to convert to growth
rate (log change) form, we find that

d log f(x) =
n∑

i=1

w∗
i d log xi. (16.5)

The result is that the log change in the utility level (and therefore in
the level of the aggregate) is the weighted average of the log changes
of the component levels. Equation (16.5) is the Divisia index in growth
rate form, as defined in Chapter 10.

This exercise demonstrates the solid microeconomic foundations of
the Divisia index. It is indeed, the logical choice for an index from a
theoretical point of view, being the transformed first-order conditions
for constrained optimization.

1 Recall that Fisher’s factor reversal test requires that the product of the price and
quantity indexes for an aggregated asset (or good) should equal actual expendi-
ture on the component assets (or goods).
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16.3 Divisia Second Moments

Henri Theil in his 1967 book, Economics and Information Theory, ob-
served that there is an interesting stochastic interpretation of the Di-
visia index. In particular, he observed that the Divisia weights are
nonnegative and sum to 1 in every period. Given this, we can treat the
growth rates of the components as drawn randomly from a population
such that the right-hand side of equation (16.5) becomes an expecta-
tion. Under this interpretation, the left-hand side of equation (16.5) is
the mean of the growth rates of the components, d logMD. What this
then suggests is that the Divisia quantity index is a first moment and,
by appealing to Theil’s sampling analogy, we can define the Divisia sec-
ond moments. In particular, the Divisia quantity variance (the second
moment) is

Kt =
n∑

i=1

w∗
it(d log xit − d logMD

t )2.

Also, since the Divisia price index (mean or first moment) is

d log Pt =
n∑

i=1

w∗
itd log pit,

the corresponding Divisia price variance is

Jt =
n∑

i=1

w∗
it(d log pit − d log Pt)2,

and the Divisia price-quantity covariance is

Γt =
n∑

i=1

w∗
it(d log xit − d logMD

t )(d log pit − d log Pt).

Similarly, we can define the Divisia share mean as

d logWt =
n∑

i=1

w∗
itd logwit,

and the Divisia share variance as

Ψt =
n∑

i=1

w∗
it(d logwit − d logWt)2.
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Note that Theil (1967) has shown that the Divisia second moments are
related by the equality

Kt = Ψt − Jt − 2Γt.

Recently, Barnett and Serletis (1990) applied Theil’s stochastic index
number theory and tested for aggregation error in the Divisia monetary
aggregates. Aggregation errors can be produced when the conditions
for exact aggregation are violated. As we have seen, exact aggregation
(over monetary assets) requires the existence of a weakly separable and
linearly homogeneous aggregator function and removes dependency of
market behavior upon distributional effects.

This means that the Divisia second moments would contain no in-
formation about the economy, if one already had conditioned upon the
information contained in the Divisia mean. Barnett and Serletis (1990),
by implicitly assuming that the appropriate distributional variable is
the Divisia quantity variance, explored its macroeconomic effects by
explicitly introducing it along with the Divisia quantity mean in var-
ious tests. They found no evidence of major aggregation error in the
Divisia monetary aggregates.

16.4 Measurement Matters

At this stage, it is perhaps worth asking whether ‘measurement’ mat-
ters. To highlight the importance of measurement, let’s recall the three-
year ‘monetarist experiment’ of November 1979 to August 1982. Dur-
ing that time the Federal Reserve Board embarked on an experiment
in monetarist policy designed to control the money supply and permit
interest rates to be determined in the money markets, free of control.

The Fed’s views on monetary policy, however, were based on the
simple sum monetary aggregates (in particular simple sum M2) and
monetary policy during the three-year period was considerably tighter
than the Fed thought and led to the recession of 1982. The follow-
ing quotation, from Barnett (1997, pp. 1174-1175), explains what
happened:

“As I reported in Barnett (1984), the growth rate of sim-
ple sum M2 during the period of the ‘monetarist experiment’
averaged 9.3%, while the growth rate of Divisia M2 during the
period averaged 4.5%. Similarly, the growth rate of simple sum
M3 during the period averaged 10%, while the growth rate of
Divisia M3 during the period averaged 4.8%. This period fol-
lowed double digit growth rates of all simple sum and Divisia
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monetary aggregates. In short, believers in simple sum mone-
tary aggregation, who had been the advocates of the ‘monetarist
experiment,’ were put in the embarrassing position of witness-
ing an outcome (the subsequent recession) that was inconsistent
with the intent of the prescribed policy and with the behavior of
the simple sum aggregates during the period. This unwelcome
and unexpected outcome rendered vulnerable those economists
who advocated a policy based upon the assumption of a stable
simple sum demand for money function.

Friedman’s very visible forecast error on 26 September 1983
followed closely on the heels of the end of the monetarist exper-
iment in August 1982 and the recession that it produced. The
road buckled and collapsed below the monetarists and those
who believed in stable simple sum demand for money functions.
Those two associated groups have never recovered. But the re-
cession that followed the monetarist experiment was no surprise
to anyone who had followed the Divisia monetary aggregates,
since those aggregates indicated that a severe deflationary shock
had occurred. To those who were using data based upon valid
index number and aggregation theory, rather than the obsolete
simple sum monetary aggregates, the road remained smooth —
no bumps, no breaks. Nothing unexpected had happened.”

The above quotation shows that simple sum and Divisia monetary
aggregates tell very different stories. Monetary policy, as indicated by
the Divisia monetary aggregates, was tighter than indicated by the sim-
ple sum aggregates. That resulted in the severe 1982 recession, despite
the fact that the Fed’s intention, as indicated by the simple sum mon-
etary aggregates, was to produce a gradual disinflation rather than a
severe disinflationary shock. Hence, measurement matters and the fail-
ure to use superior aggregates can have big practical consequences.

16.5 The MQ and CE Indexes

While we are on the topic of monetary indexes, we will briefly consider
two recent additions to the list of alternative index numbers, with a po-
tential application to monetary aggregation. These are Spindt’s (1985)
‘monetary quantities’ (MQ) index (which is no longer in use in the
monetary literature), and the ‘currency equivalent’ (CE) index more
recently introduced by Rotemberg (1991) and Rotemberg , Driscoll,
and Poterba (1995).
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In the particular form computed by Spindt (1985), MQ is measured
as a Fisher ideal index, but with the user costs replaced by monetary-
asset turnover rates. That is

MQt = MQt−1

⎡
⎣

n∑
j=1

wj,t−1

(
xjt

xj,t−1

)
× 1

/
n∑

j=1

wjt

(
xj,t−1

xjt

)⎤
⎦

1/2

,

where
wjt =

vjtxjt
n∑

k=1

vktxkt

,

with vj being the turnover rate of monetary asset j. The problem with
this procedure is that the MQ index, unlike the Divisia index, is in-
consistent both with existing aggregation theory and index number
theory. The relevant foundations (both index-number theoretic and ag-
gregation theoretic) for the Fisher-ideal index require the use of prices
and quantities and not turnover rates and quantities. If nothing else,
MQ can be said to be no less arbitrary than the official simple-sum
aggregates.

A more recent addition to the list of alternative index numbers is
the Rotemberg, Driscoll, and Poterba (1995) currency equivalent (CE)
index

CE =
n∑

j=1

Rt − rjt

Rt
xjt. (16.6)

This index is basically the simple sum index with the addition of a
simple weighting mechanism. In (16.6), as long as currency gives no
interest, units of currency are added together with a weight of one.
Other assets are added to currency, but with a weight that declines
toward zero as their return increases toward Rt and the assets come
to behave more like the benchmark asset (a means to transfer wealth)
and less like money.

The difference between Divisia and CE methods of monetary ag-
gregation is that the former measures the flow of monetary services
whereas the latter, like simple summation aggregation, measures the
stock of monetary assets. There is also a considerably less attractive
interpretation of the CE index as a flow index. See Barnett, Hinich, and
Yue (2000) regarding the flow interpretation, which requires stronger
assumptions than those needed to derive the Divisia flow index.
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16.6 Empirical Comparisons

In order to provide a quantitative assessment of the simple sum, Di-
visia, and currency equivalent monetary aggregation procedures, we
employ (seasonally-adjusted) monthly data, from 1959:1 to 2006:2, on
United States simple sum, Divisia, and CE indexes. The data were ob-
tained from the St. Louis MSI database, maintained by the Federal
Reserve Bank of St. Louis as part of the Federal Reserve Economic
Database (FRED) — see Anderson, Jones, and Nesmith (1997) for de-
tails regarding the construction of the Divisia and currency equivalent
aggregates and related data.

Figures 16.1 to 16.4 provide graphical representations of the four
major measures of money (M1, M2, M3, and MZM) under the simple
sum, Divisia, and currency equivalent aggregation procedures. As the
graphs indicate, the numbers differ considerably across the three mon-
etary aggregation procedures. Even more interesting are the graphs of
the (industrial production) velocities for these same aggregates appear-
ing in Figures 16.5 to 16.8. Not only are the fluctuations of the velocity
series different at different levels of aggregation, but also across aggre-
gation methods.

Finally, in Table 16.1 we provide summary statistics based upon the
first and second order sample moments of the monthly data on annual
monetary growth rates.2 Inspection of the summary statistics suggests
that the average growth rate of the Divisia aggregates is, in general,
less than that of the simple sum aggregates. In addition, the Divisia
aggregates indicate less volatile monetary growth, during our sample
period, than is indicated by the official simple sum aggregates.

However, the currency equivalent money measures tell a very differ-
ent story. In particular, the average growth rate of the CE aggregates
is always higher than that of the corresponding simple sum and Divisia
aggregates. Also, observe that monetary policy, as measured by the CE
aggregates, is much more volatile than is suggested by either the sim-
ple sum or Divisia aggregates. These differences reflect the essentially
complicated monetary aggregation issues — something we mentioned
when we discussed the ‘monetarist experiment’ of November 1979 to
August 1982 and to be kept in mind throughout this book.

2 The annual growth rates are simple percent monthly changes at an annual rate
— that is, 1200 × ln(xt/xt−1).
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Table 16.1 . Sample Moments of Annual
Rates of Growth of Monetary Aggregates

Aggregate Mean Standard deviation

Sum M1 4.868 6.692
Divisia M1 5.088 5.912
CE M1 5.453 17.667

Sum M2 6.712 4.130
Divisia M2 5.731 4.012
CE M2 7.541 41.041

Sum M3 7.589 4.426
Divisia M3 6.138 4.001
CE M3 7.920 47.384

Sum MZM 6.459 8.728
Divisia MZM 5.766 7.226
CE MZM 7.378 31.371
Note: Monthly data 1959:1-2006:2.

16.7 Conclusion

We have surveyed a growing literature on the importance of the use of
microeconomic aggregation theory in monetary aggregation. The issue
is of practical importance, because effective conduct of monetary policy
presupposes an appropriate monetary aggregate. It is also of academic
interest for the insight it provides into the nature of ‘moneyness’. We
have argued that the simple sum aggregates are just accounting iden-
tities, not economic aggregates. The Divisia aggregates are economic
aggregates, and hence are useful indicators (or intermediate targets)
for ultimate policy goals.
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Nominal Stylized Facts

17.1. The Hodrick and Prescott Filter
17.2. The Cyclical Behavior of Money
17.3. Prices, Interest Rates, and Velocity
17.4. Robustness
17.5. Conclusion

Kydland and Prescott in their 1990 article, “Business Cycles: Real
Facts and a Monetary Myth,” argue that business cycle research took
a wrong turn when it abandoned the effort to account for the cyclical
behavior of aggregate data, following Koopmans’ (1965) criticism of
the methodology developed by Burns and Mitchell (1946), as being
‘measurement without theory.’ Crediting Lucas (1977) with reviving
interest in business cycle research, they initiated a line of research that
builds on the growth theory literature and part of it involves an effort
to assemble business cycle facts.

Kydland and Prescott report some original evidence for the United
States economy, and conclude that several accepted nominal facts, such
as the procyclical movements of money and prices, appear to be busi-
ness cycle myths. In this chapter, we follow Kydland and Prescott
(1990) and examine the cyclical behavior of United States money,
prices, nominal interest rates, and velocity, using the monthly data
that we discussed in the previous chapter.

In doing so, we start by discussing the popular Hodrick-Prescott
(1980) filter, and then present Hodrick and Prescott cyclical corre-

lations, making comparisons among simple sum, Divisia, and currency
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equivalent money and velocity measures. We also discuss the robustness
of our results to relevant alternative filtering procedures.

17.1 The Hodrick and Prescott Filter

For a description of the stylized facts, we follow the current practice
of detrending the data with the Hodrick-Prescott (HP) filter — see
Hodrick and Prescott (1980). For the logarithm of a time series xt, for
t = 1, 2, . . . , T , this procedure defines the (smoothed) trend or growth
component, denoted τt, for t = 1, 2, . . . , T , as the solution to the follow-
ing minimization problem,

min
{τt}T

t=1

T∑
t=1

(xt − τt)2,

subject to
T−1∑
t=2

[(τt+1 − τt) − (τt − τt−1)]2 ≤ Λ.

That is, the smoothed trend component, {τt}T
t=1, is obtained by min-

imizing the sum of squared differences from the data subject to the
constraint that the sum of the squared differences be less than an ap-
propriate bound Λ.

The above minimization problem is equivalent to the following un-
constrained (minimization) problem,

min
{τt}T

t=1

T∑
t=1

(xt − τt)2 + λ

T−1∑
t=2

[(τt+1 − τt) − (τt − τt−1)]2,

for an appropriate value of the smoothing parameter λ — the Lagrange
multiplier. The smaller is λ, the smoother the trend path and when
λ = 0, the linear trend results. In our computations we set λ = 14, 400,
as it has been suggested by Kydland and Prescott (1990) for monthly
data (with quarterly data, λ is set equal to 1, 600). Notice that xt − τt
is the filtered series.

As noted by Kydland and Prescott (1990), the Hodrick and Prescott
filter has several attractive features. In particular, it occupies an in-
termediate position between the linear filter (which permits most low
frequency components to pass through) and the first difference filter
(which permits the least). Moreover, the Hodrick and Prescott trend is
a linear transformation of the original series and is a smooth curve —
like one that one would draw through a plot of the original series.
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17.2 The Cyclical Behavior of Money

We describe the empirical regularities of the monetary variables, using
the Hodrick and Prescott filter and by investigating whether deviations
from their HP trends are correlated — and at what leads and lags —
with the cycle. In particular, we measure the degree of comovement
of a monetary aggregate with the cycle by the magnitude of the cor-
relation coefficient ρ(j), j ∈ {0,±1,±2, . . .}. All the variables are in
logarithms (with the exception of the rate variables) and the statistics
discussed pertain to variables that have been processed via the Hodrick
and Prescott filter — that is, to stationary HP cyclical deviations.

The contemporaneous correlation coefficient — ρ(0) — gives in-
formation on the degree of contemporaneous comovement between
the monetary series and the cycle. In particular, if ρ(0) is positive,
zero, or negative, we say that the series is procyclical, acyclical, or
countercyclical, respectively. In fact, for data samples of this size, it
has been suggested [see, for example, Ricardo Fiorito and Tryphon
Kollintzas (1994)] that for 0.5 ≤ |ρ(0)| < 1, 0.2 ≤ |ρ(0)| < 0.5,
and 0 ≤ |ρ(0)| < 0.2, we say that the series is strongly contempo-
raneously correlated, weakly contemporaneously correlated, and con-
temporaneously uncorrelated with the cycle, respectively. Also, ρ(j)
j ∈ {±1,±2, . . .} — the cross correlation coefficient — gives informa-
tion on the phase shift of the monetary series relative to the cycle. If
|ρ(j)| is maximum for a positive, zero, or negative j, we say that the
series is leading the cycle by j periods, is synchronous, or is lagging the
cycle by j periods, respectively.

In Table 17.1 we report contemporaneous correlations as well as
cross correlations (at lags and leads of 3, 6, 9, 12, 18, and 24 months,
given the high frequency nature of the data and the traditional view
that there are ‘long and variable lags’ in the relationship between real
and monetary variables) between the cyclical components of money and
the cyclical component of industrial production. We see that money,
irrespective of how it is measured is acyclical.

To investigate the robustness of this result to changes in the cycli-
cal indicator, we report in Table 17.2 correlations (in the same fash-
ion as in Table 17.1) using the unemployment rate as an indicator
of the cycle. The seasonally adjusted unemployment rate includes all
workers (including resident armed forces). Of course, since the cycli-
cal components of industrial production and the unemployment rate
are negatively correlated, a negative correlation in Table 17.2 indicates
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procyclical variation and a positive correlation indicates countercyclical
variation. Clearly, the results in Table 17.2 strongly confirm those in
Table 17.1.

We interpret these results as being generally illustrating no signif-
icant differences across simple-sum, Divisia, and currency equivalent
monetary aggregates. They also appear to support no monetary effect
of money on real output (based on the monthly data that we use).

17.3 Prices, Interest Rates, and Velocity

While we are investigating nominal stylized facts, we also describe the
statistical properties of the cyclical components of the price level (mea-
sured by the consumer price indexr) and two short-term nominal inter-
est rates (to deal with anomalies that arise because of different ways
of measuring financial market price information) — the Treasury bill
rate and the federal funds rate. The Treasury bill rate is the inter-
est rate on short-term unsecured borrowing by the U.S. government
whereas the fed funds rate is the interest rate on fed funds. Again,
with the exception of the rate variables, all the other variables are in
logarithms. Table 17.3 reports HP cyclical correlations of prices and
short-term nominal interest rates with each of industrial production
(panel A) and the unemployment rate (panel B).

Irrespective of the cyclical indicator, we see that the price level is
acyclical. This result clearly supports the Kydland and Prescott (1990)
claim that the perceived fact of procyclical prices is but a myth. We also
see that when industrial production is used as the cyclical indicator,
the federal funds and Treasury bill rates are acyclical. However, when
the unemployment rate is used as the cyclical indicator, these interest
rate series are weakly procyclical and lead the cycle — recall that a
variable leads the cycle if its cross-correlations with future industrial
production are larger (in absolute value) than the contemporaneous
correlation.

In addition to the statistical properties of the cyclical components
of money, the price level, and nominal interest rates, we also examine
the cyclical behavior of simple-sum, Divisia, and CE velocity (at the
M1, M2, M3, and MZM levels of monetary aggregation), using both
industrial production as well as the unemployment rate as measures of
the cycle. The results reported in Tables 17.4 and 17.5 (in the same
fashion as those in Tables 17.1 and 17.2 for the monetary aggregates),
indicate that velocity (irrespective of how it is measured) is in general
acyclical.
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17.4 Robustness

We have characterized the key nominal features of U.S. business cycles
using a modern counterpart of the methods developed by Burns and
Mitchell (1946) — HP cyclical components. The HP filter is almost
universally used in the real business cycle research program and ex-
tracts a long-run component from the data. HP filtering, however, has
recently been questioned as a unique method of trend elimination. For
example, King and Rebelo (1993) argue that HP filtering may seriously
change measures of persistence, variability, and comovement. They also
give a number of examples that demonstrate that the dynamics of HP
filtered data can differ significantly from the dynamics of differenced
or detrended data.

Also, Cogley and Nason (1995) in analyzing the effect of HP filtering
on trend- and difference-stationary time series, argue that the interpre-
tation of HP stylized facts depends on assumptions about the time
series properties of the original data. For example, when the original
data are trend stationary, the HP filter operates like a high pass filter
(removes the low frequency components and allows the high frequency
components to pass through) on deviations from trend. However, when
the original data are difference stationary, the HP filter does not operate
like a high pass filter. In this case, HP stylized facts about periodicity
and comovement are determined primarily by the filter and reveal very
little about the dynamic properties of the original data.

More recently, two other filters have been proposed in the literature
— the Baxter and King (1999) and the Christiano and Fitzgerald
(2003) filters, to which we now briefly turn.

17.4.1 The Baxter and King Filter

The Hodrick and Prescott filter is a high-pass filter that passes through
frequencies higher than a chosen cut-off frequency, ω. The Baxter and
King (1999) filter improves upon the Hodrick and Prescott filter. It is
a band-pass filter, with a gain function that takes the value 1 for all
frequencies in the desired band, the interval [ω1, ω2], and the value 0
for all other frequencies. Although an infinite number of observations
is required to construct an ideal filter, Baxter and King (1999) approx-
imate the ideal filter yt with a finite and symmetric moving average
filter over 2K + 1 periods, as follows

ŷt =
K∑

j=−K

αjL
jxt−j ,
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where ŷt is the filtered series, Lj is the lag operator of order j, αj are
the filter weights, K is the order of the approximation, and the xt’s
are the observed data. The filter weights are chosen in the frequency
domain, by minimizing the difference between the ideal but unfeasible
filter A(ω) and the proposed feasible filter B(ω), as follows [see Baxter
and King (1999) for more details],

min
1
2π

π∫

−π

∣∣∣A(ω) −B(ω)
∣∣∣
2
,

with

B(ω) =
K∑

j=−K

gj exp (−iωj) .

17.4.2 The Christiano and Fitzerland Filter

The Christiano and Fitzgerald (2003) filter is an improved version of
the Baxter and King (1999) filter. It approximates the ideal filter yt

by a linear function ŷt of the observed data, x ≡ (x1, · · ·, xT ). In doing
so, it chooses the filter weights to make ŷt as close as possible to yt by
minimizing the mean criterion

E
[
(yt − ŷt)

2
∣∣∣ x
]
,

where E is evaluated using the time series properties of x. The Chris-
tiano and Fitzgerald (2003) recommended solution for the filtered series
is given by

ŷt = β0xt + β1xt+1 + · · · + βT−1−txT−1

+ β̃T−txT + β1xt−1 + ... + βt−2x2 + β̃t−1x1

for t = 3, 4, · · ·, T − 2, where the βj ’s are defined as in Baxter and
King (1999) and β̃T−t and β̃t−1 are linear functions of the βj ’s — see
Christiano and Fitzgerald (2003) for more details.
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17.5 Conclusion

We have investigated the cyclical behavior of United States money,
prices, short term nominal interest rates, and velocity, using the method-
ology of Kydland and Prescott (1990). Although we have not investi-
gated the robustness of our results to alternative filtering procedures,
we believe that the results reported here, based on the Hodrick-Prescott
filter (and our monthly data), are reasonably robust across business cy-
cle filters. In fact, as Baxter and King (1999) argue HP filtering can
produce reasonable approximations to an ideal business cycle filter.

Based on monthly data, the results are (in general) robust to alter-
native measures of the cycle and match recent evidence regarding the
cyclical behavior of the price level. We also found that short-term nom-
inal interest rates are weakly procyclical and that money and velocity
(however measured) are acyclical. These findings do not support a mon-
etary effect on the cycle and illustrate the importance of constructing
theoretically meaningful monetary aggregates — an issue that we will
attempt to deal with in more detail in the rest of this book.
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Chapter 19. The Parametric Approach to Demand Analysis
Chapter 20. Locally Flexible Functional Forms
Chapter 21. Globally Flexible Functional Forms

Overview of Part 6

In Chapters 18 and 19, we move from the theoretical model of util-
ity maximization (presented in Chapters 15 and 16) to the inter-related
problems of monetary aggregation and estimation of money demand. To
achieve this, we conduct the analysis within a microtheoretical frame-
work, and discuss nonparametric and parametric approaches to demand
analysis. The ‘Slutsky conditions’ that every demand system should
satisfy, irrespective of the form of the utility function, are also dis-
cussed.

In Chapters 20 and 21, we discuss classes of flexible functional forms
for utility and demand systems that play important roles in the para-
metric approach to empirical demand analysis. In particular, we discuss
five locally flexible forms and two asumptotically globally flexible forms.
In doing so, we pay explicit attention to the theoretical regularity con-
ditions of positivity, monotonicity, and curvature and argue that much
of the older empirical literature ignores economic regularity and hence
has to be disregarded.



18

The Nonparametric Approach to Demand
Analysis

18.1. The Idea of Revealed Preference
18.2. The Maximization Hypothesis
18.3. Homotheticity
18.4. Direct Separability
18.5. Indirect Separability
18.6. Homothetic Separability
18.7. NONPAR Tests of Consumer Behavior
18.8. Conclusion

In Chapter 15 we showed the steps that are normally taken to reduce
a very general consumer choice problem to a monetary asset choice
problem. At this point, we are prepared to proceed and develop the
microeconomic- and aggregation-theoretic literature on the demand for
money and monetary assets. This is achieved by conducting the anal-
ysis within a microtheoretical framework, making use of a number of
theoretical advances in a set of related theories — revealed preference,
index numbers, duality, separability, and demand systems.

The standard approach to applied demand analysis is parametric,
in the sense that it postulates parametric forms for the utility function
and fits the derived demand functions to observed data. The estimated
demand functions can then be tested for consistency with the utility-
maximizing hypothesis underlying the model, used to estimate price
and substitution elasticities, or used to forecast behavior for other price
configurations. As Varian (1982, p. 945) puts it, this approach
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“will be satisfactory only when the postulated parametric forms
are good approximations to the ‘true’ demand functions.”

An alternative approach to demand analysis is nonparametric, in
the sense that it requires no specification of the form of the demand
functions. This approach, fully developed by Varian (1982) in his arti-
cle, “The Nonparametric Approach to Demand Analysis,” deals with
the raw data itself using techniques of finite mathematics. It typically
addresses three issues concerning consumer behavior: (i) consistency of
observed behavior with the preference maximization model; (ii) the re-
covering of preferences, given observations on consumer behavior; and
(iii) the forecasting of demand for different price configurations. How-
ever, there are also advantages and disadvantages of this approach to
demand analysis, as we will discuss later in this chapter.

Let us now turn to a detailed discussion of the nonparametric ap-
proach to the demand for liquid assets, leaving a discussion of the
parametric approach for the next chapter and the rest of this book.

18.1 The Idea of Revealed Preference

Consider the n-vector x of monetary assets and its corresponding n-
vector of user costs, p. Suppose also that we have T observations on
these quantities and user costs. Let xi = (xi

1, · · ·, xi
n) denote the ith

observation of x and let pi = (pi
1, · · ·, pi

n) be the associated user costs,
i = 1, ···, T . Let us consider the following definitions from Varian (1982,
1983).

Definition 18.1. An observation xi is directly revealed preferred to a
bundle x, written xiR0x, if pixi ≥ pix. An observation xi is revealed
preferred to a bundle x, written xiRx, if there is a sequence of obser-
vations

(
xj,xk, · · ·,xl

)
such that xiR0xj , xjR0xk, · · ·, xlR0x.

Note that revealed preference is a relation that holds between the
optimal bundle at some budget and anything else the consumer could
have bought at the given budget.

Definition 18.2. The data satisfies the Generalized Axiom of Revealed
Preference (GARP) if xiRxj implies pjxj ≤ pjxi.

What this definition tells us is that the set of choices xi is revealed
to be preferred to xj if the expenditures on xi exceed or are equal to
those on xj evaluated at the original set of prices, where i and j refer
to dates (not necessarily consecutive). Note from the above definition
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that GARP is a necessary and sufficient condition for observed demand
data to be consistent with utility maximization.

18.2 The Maximization Hypothesis

The importance of GARP is that we can use it to see if there is a utility
function that has generated a given set of data. As we just mentioned,
consistency with GARP is a necessary and sufficient condition for the
existence of a well-behaved utility function.

Definition 18.3. A utility function f(x) rationalizes the data
(
pi,xi

)
,

i = 1, ..., T , if f(xi) ≥ f(x) for all x such that pixi ≥ pix, for i ≥
1, · · ·, T .

This definition simply means that f(·) is consistent with the data
if observed consumption would be optimal under f(·). Varian (1982)
developed methods for examining whether any such utility function
exists for a given data set based on the following theorem due to Afriat
(1967) and Diewert (1973b).

Theorem 18.4. The following conditions are equivalent: (1) there ex-
ists a nonsatiated utility function that rationalizes the data; (2) the data
satisfies GARP; (3) there exist numbers U i, λi > 0, i = 1, · · ·, T that
satisfy the Afriat inequalities:

U i ≤ U j + λjpj(xi − xj),

for i, j = 1, ..., T ; (4) there exists a concave, monotonic, continuous,
nonsatiated utility function that rationalizes the data.

By parts 1 and 4 of the theorem, if there exists a rationalizing utility
function, it will have the properties typically assumed in consumer
theory. By parts 1 and 2, some rationalizing utility function exists if
and only if the data satisfy GARP. By parts 2 and 3, one can test for
GARP by examining if there exist numbers U i > 0 and λi > 0 that
satisfy the Afriat inequalities.

18.3 Homotheticity

Varian (1983) also developed the Homothetic Axiom of Revealed Pref-
erence (HARP), to test for consistency with homothetic preferences.
Let’s consider the following definition.



248 Chapter 18. The Nonparametric Approach to Money Demand

Definition 18.5. A function f(x) : R
n→ R is homothetic if it is a

linear monotonic transformation of a linearly homogeneous (i.e., ho-
mogeneous of degree 1) function.

That is, f(x) is homothetic if it can be written as f(x) = g (h(x)) ,
where h(x) is homogeneous of degree 1 and g(h) is positive monotonic.
Normalizing the prices by the level of expenditure at each observation,
so that pixi = yi = 1, for i = 1, · · ·, T , consider the following theorem
from Varian (1983):

Theorem 18.6. The following conditions are equivalent: (1) there ex-
ists a nonsatiated homothetic utility function that rationalizes the
data; (2) the data satisfies HARP: for all distinct choices of indexes
(i, j, · · ·,m) we have

(
pixj

)(
pjxk

)
· · · (pmxi

) ≥ 1;

(3) there exist numbers U i > 0, i = 1, · · ·, T such that

U i ≤ U jpjxi,

for i, j = 1, ..., T ; (4) there exists a concave, monotonic, continuous,
nonsatiated, homothetic utility function that rationalizes the data.

18.4 Direct Separability

The notion of separability is of considerable importance, because it
provides a means of justifying the use of monetary aggregates. It also
resolves the statistical problem caused by the lack of degrees of freedom,
since it rationalizes the estimation of a smaller set of demand equations
when one takes a parametric approach to demand analysis (as we shall
do in the rest of this book). In the context of preference structures there
are different separability concepts, giving rise to both different grouping
patterns and different behavioral implications — for a good exposition
of alternative forms of separability and their behavioral implications,
see Pudney (1981). Here we deal with the utility relation expressed in
the direct form.

Let I = (1, 2, · · ·, n) be a set of integers that identify the variables
over which preferences are defined and consider the partition of I into
two subsets

I = {Ic, Ir}
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such that Ic ∪ Ir = I, Ic ∩ Ir = ∅, Ic �= ∅, and Ir �= ∅. Corresponding
to the binary partition I, denote vectors in Ωn in ways that reflect
the partition. In particular, express Ωn as a Cartesian product of the
subspaces

Ωn = Ω(c) ×Ω(r)

with the dimensions of Ω(c) and Ω(r) given by the cardinalities of Ic and
Ir, respectively. An asset vector, x ∈ Ωn, can be written as x = (xc,xr)
and if the ith asset is in the rth category, then xi is a component
of the vector xr ∈ Ω(r). Consider the following definition, adapted
from Blackorby, Primont, and Russell (1978) — Blackorby et al. (1978)
should be consulted as a definite source concerning separability, duality,
and functional structure.

Definition 18.7. Ir is weakly separable in f(x) if and only if there
exist functions

f r : Ω(r) → R

and
f : Ω(r) ×R(f r) → R,

where R(f r) is the range of f r, such that

f(x) = f(xc, f r(xr)),

where f is strictly inreasing in f r(xr).

According to this theorem, f(x) is called the parent function,
f(xc, f r(xr)) the macro function, and f r(xr) the aggregator function.
The requirement of weak separability is that the marginal rate of sub-
stitution between any two assets in a separable component group be
invariant with respect to any asset outside the group. Algebraically,
assets i and j are separable from asset k, if and only if

∂

∂xk

(
fi(x)
fj(x)

)
= 0, ∀x ∈ Ωn,

where fi(x) is the marginal utility of asset i and fj(x) the marginal
utility of asset j. Equivalently, assets i and j are separable from asset
k if and only if

fik(x)
fi(x)

=
fjk(x)
fj(x)

,

which is the explicit differential statement of the previous equation and
fik(x) and fjk(x) are the cross partial derivatives. Note that a sufficient
condition for weak separability is perfect substitutability. Under perfect
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substitutability, the ratio of marginal utilities is constant and hence
invariant to any asset change.

If the utility function f(x) is weakly separable in xr, its value does
not depend on the elements of xr individually, but rather on the quan-
tity index f r(xr). As we discussed in Chapter 15, weak separability
implies a sequential expenditure allocation, where in the first stage the
consumer divides expenditures on xc and xr, and then decides the opti-
mal allocation of expenditure among the elements of xr independently
of the choices of the elements of xc. In other words, when the function
f(x) is weakly separable in xr, the econometrician can estimate a sep-
arable demand system in the assets of xr, disregarding the assets in
xc.

Varian (1982, 1983) provides two tests of weak separability. The first
test, which is the weaker of the two, is a test of the necessary conditions
for weak separability. It checks if the subdata in group r satisfy GARP.
In particular, since each observation in group r must solve the problem

max
xr

f r(xr) subject to prxr ≥ prx,

it is necessary for separability that Afriat numbers exist for the data in
xr. Otherwise the aggregator function f r(xr) does not exist. The sec-
ond, stronger test checks necessary and sufficient conditions for weak
separability. It does so, by checking if the Afriat numbers for the aggre-
gator function f r(xr) are consistent with those for the parent function
f(x). The following theorem from Varian (1983) states the relationship
precisely.

Theorem 18.8. The following conditions are equivalent: (1) there ex-
ists a weakly separable concave, monotonic, continuous, nonsatiated
utility function that rationalizes the data; (2) there exist numbers
U i,W i, λi > 0, μi > 0, i = 1, · · ·, T that satisfy:

U i ≤ U j + λjpj(xi − xj) +
λj

μj
(W i −W j),

W i ≤ W j + μjqj(zi − zj),

for i, j = 1, ..., T ; (3) the data (qjzj) and
(
pi, 1/μi;xi,W i

)
satisfy

GARP for some choices of
(
W i, μi

)
that satisfy the Afriat inequalities.

Note that part 2 of the theorem provides the means for testing
the necessary and sufficient conditions for direct weak separability —
clearly one must construct two sets of interrelated Afriat numbers.
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18.5 Indirect Separability

The utility function f(x) introduced above is direct — it has the actual
quantities of liquid assets used, xi, i = 1, ..., n, as arguments. Alterna-
tively, preferences may be represented by the indirect utility function,
which indicates the indifference curve attainable at prices p and total
expenditure y. In particular, the utility maximization problem

max
x

f(x) subject to p′x = y,

can be reformulated equivalently as

max
x

f(x) subject to
n∑

i=1

vixi = 1. (18.1)

where vi = pi/y, i = 1, ..., n denotes ‘expenditure-normalized’ user
costs. In this reformulated version, the maximization problem has two
sets of n variables: monetary asset services, with values x = (x1, ..., xn),
and normalized monetary asset user costs, with values v = (v1, ..., vn).

As we shall see in the next chapter, the solution to (18.1) is the
system of demand functions

xi = xi(v1, ..., vn), i = 1, ..., n. (18.2)

Substituting solution (18.2) into the objective function yields the max-
imum attainable utility given normalized monetary asset user costs

h(v) = h
(
x1(v), ..., xn(v)

)
,

where h(v) is quasi convex, continuous, and decreasing. The function
h(v) reflects the fact that utility depends indirectly on prices and in-
come rather than on quantities. For this reason, h(v) is called the in-
direct utility function.

The important thing is that the direct utility function and the in-
direct utility function are equivalent representations of the underlying
preference ordering. However, a structural property of the direct utility
function does not imply the same property of the indirect utility func-
tion. The point to be stressed here is that the behavioral implications
of direct separability are different from those of indirect separability.
Let’s consider the following definition of indirect weak separability.
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Definition 18.9. Ir is weakly separable in h(v) from Ic if and only if
there exist continuous functions

hr : Ω(r)
+ → R

and
h : Ω(c)

+ ×R(V r) → R,

where R(hr) is the range of hr, such that

h(v) = h(vc, hr(vr)),

where h is nondecreasing in hr(vr).

The algebraic requirement of indirect weak separability is that

∂

∂vk

(
hi(v)
hj(v)

)
= 0, ∀v ∈ Ωn,

or using Roy’s identity (to be discussed in detail in the next chapter)

∂

∂vk

(
xi(v)
xj(v)

)
= 0.

Also, since h(v) = h(p, y), due to homogeneity of degree zero in p and
y, the last equation can be rewritten as

∂

∂pk

(
xi(v)
xj(v)

)
= 0,

which implies that the optimal asset ratios in Ir are independent of the
kth price. Equivalently, the above can be written as

xj(v)
(
∂xi(v)
∂pk

)
= xi(v)

(
∂xj(v)
∂pk

)
,

or
ηik = ηjk, (18.3)

where ηik and ηjk are the cross price elasticities of assets i and j with
respect to the kth price, respectively. Hence, indirect weak separability
implies an equality restriction on the cross price elasticities.
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18.6 Homothetic Separability

Separability is a characteristic of functional structure that does not
necessarily carry over from direct to indirect utility functions. In par-
ticular, a separable direct utility function implies a different preference
ordering than a separable indirect utility function. However, Lau (1970)
has shown that if the direct utility function is homothetically separa-
ble, then the indirect utility function will have the same structure with
respect to normalized prices. Hence, testing for homothetic separability
is of considerable practical interest, since homothetic separability is a
sufficient condition for simultaneous separability of f(x) and h(v).

Moreover, direct separability establishes only a necessary condition
for aggregation in its simplest form. In particular, if we wish to mea-
sure the subaggregate f r(xr) using the most elementary method, we
would require the additional assumption that f r(xr) be homothetic.
In fact, homothetic weak separability is necessary and sufficient for the
existence of the simplified form of subaggregation. Let us now define
homothetic separability of the direct utility function.

Definition 18.10. Ir is homothetically weakly separable in f(x) if and
only if there exist functions

f r : Ω(r) → R

and
f : Ω(r) ×R(f r) → R,

where R(f r) is the range of f r, such that

f(x) = f(xc, f r(xr)),

where f is nondecreasing in f r(xr) and f r(xr) is homothetic.

Varian (1983) provides the following theorem to test for direct homo-
thetic separability, based on the Diewert and Parkan (1978) suggested
procedure.

Theorem 18.11. The following conditions are equivalent: (1) there
exists a homothetically weakly separable, concave, monotonic, continu-
ous, nonsatiated utility function that rationalizes the data; (2) the data(
pi, 1/W i;xi,W i

)
satisfy GARP for some choices of W i that satisfies

the homotheticity inequalities; (3) there exist numbers U i,W i, λi > 0,
i = 1, · · ·, T that satisfy
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U i ≤ U j + λjpj(xi − xj) +
λj

W j
(W i −W j),

W i ≤ W jqjzj,

for i, j = 1, ..., T .

18.7 NONPAR Tests of Consumer Behavior

GARP, homotheticity, direct separability, and direct homothetic sepa-
rability are quite simple to test, using Varian’s nonparametric (NON-
PAR) computational package. As we have argued, this approach to
applied demand analysis imposes no functional form restrictions and
requires only actual market data (quantities and user costs) generated
by the consumers of financial services.

For example, in the case of GARP, NONPAR takes advantage of
the formulation,

if xiRxj then pjxj ≤ pjxi,

and evaluates all pairs in the data (which are, of course, finite) in
order to see if the expenditures on xi, evaluated at pj, are greater than
those on xj , evaluated at the same price, for all i, j = 1, · · ·, T . In
doing so, NONPAR reports the number of violations (reversals of the
inequality), which can be considerable if the data set contains assets
held by different sorts of economic agents, as possibly by consumers
versus business firms.

What this suggests is that we can take a revealed preference ap-
proach to monetary aggregation. In particular, we can use the observed
monetary data and their respective user costs to find sets of assets that
are consistent with preference maximization and then test for direct
separability to see which grouping has been used by money-holders in
practice. Thus, if the data for x satisfies GARP, then there is a utility
function f(x) that rationalizes the data. There may also be an aggre-
gator function f r(xr) such that f(x) is weakly separable. GARP will
still be satisfied by f(x), but f r(xr) not only must satisfy GARP but
must also be homothetically weakly separable, in order for a monetary
aggregate to behave like an elementary asset.

The nonparametric approach to demand analysis has been used in
numerous recent papers, such as, for example, Fleissig, Hall, and Seater
(2000), Fisher (1989, Chapter 1), Fisher and Fleissig (1997), Swofford
and Whitney (1986, 1987, 1988, 1994), Serletis and Rangel-Ruiz (2001),
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Fleissig and Whitney (2003, 2005), de Peretti (2005), Jones and de
Peretti (2005), and Jones et al. (2005). Note, however, that the non-
parametric approach to demand analysis is not without problems. As
Fleissig, Hall, and Seater (2000, p. 329) put it,

“[t]he NONPAR tests have advantages and disadvantages. The
main advantage is that the tests are non-parametric; one need
not specify the form of the utility function. Also, the tests can
handle a large number of goods. The main disadvantage is that
the tests are non-stochastic. Violations are all or nothing; either
there is a utility function that rationalizes the data or there is
not. We therefore must be especially careful about the possibil-
ity of measurement error. If there were no measurement error,
then any observed rejection of GARP would be a genuine re-
jection. However, with measurement error, false rejections may
occur, and without a distribution theory for the tests, we cannot
judge the importance of observed rejections by the conventional
significance tests.”

Thus, establishing consistency with preference maximization and
the existence of consistent monetary aggregates, using Varian’s (1982,
1983) nonparametric techniques of revealed preference analysis, is a
very strong standard, and it is not surprising that most recent stud-
ies of the demand for money cannot rationalize a well-behaved utility
function over liquid assets. Of course, the nonparametric revealed pref-
erence analysis has implications for the parametric analysis, but for
these implications to be fully investigated it is necessary that the non-
parametric approach rationalizes a well-behaved utility function over
monetary assets over long samples, to enable the estimation of large
demand systems like the ones used in this paper.

18.8 Conclusion

The nonparametric techniques of revealed preference analysis we have
sketched out above suggest one approach to testing for consistency with
preference maximization and for the existence of consistent monetary
aggregates. As we saw, however, there is a bias toward rejection, since
the GARP test is all or nothing — even one inconsistency leads to to-
tal rejection of GARP. Hence, passing the GARP test is a very strong
standard and it is not surprising that most recent studies of the de-
mand for money cannot rationalize a well-behaved utility function over
monetary assets.
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It remains now to assess the significance of the parametric approach
to demand analysis. This matter is the subject of the rest of this book.



19

The Parametric Approach to the Demand
for Monetary Assets

19.1. The Direct Utility Approach
19.2. The Indirect Utility Approach
19.3. The Slutsky Conditions
19.4. Conclusion

The parametric approach to applied demand analysis involves pos-
tulating parametric forms for the utility function and then fitting the
resulting demand functions to a finite number of observations on con-
sumer behavior. As we argued earlier, this approach will be satisfactory
only when the postulated parametric forms are good approximations
to the generating demand functions.

Our approach in this chapter addresses the question of how to de-
rive a set of demand functions for monetary assets from a framework in
which the representative asset holder maximizes the monetary services
utility function, f(x), subject to the budget constraint. We will state
the problem first and then show why and how duality theory might be
employed explicitly in the rationalization of estimable demand func-
tions.

19.1 The Direct Utility Approach

In chapter 15 we saw that the neoclassical monetary problem is that of
choosing a bundle of monetary services, given the utility function and
the budget constraint. So the problem is
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max
x

f(x) subject to p′x = y, (19.1)

with the following (n+1) first-order conditions for utility maximization

fi(x) = λpi, i = 1, ..., n;

p′x = y,

where fi(x) is the marginal utility of asset i, fi(x) = ∂f(x)/∂xi.
The first order conditions can be solved for the n optimal (i.e.,

equilibrium) values of xi

xi = xi(p, y), i = 1, ..., n, (19.2)

and the optimal value of λ

λ = λ(p, y).

System (19.2) is the demand system, giving the quantity demanded as
a function of the prices of all assets and income.

As an example, consider the Cobb-Douglas utility function intro-
duced in Chapter 15, but take logs to obtain

log f(x) =
n∑

i=1

αi log xi.

To find the demand system, we need to maximize the utility function
subject to the budget constraint

n∑
i=1

pixi = y.

Forming the Lagrangian, deriving the first order conditions, and rear-
ranging these conditions, we obtain the following demand system for
the Cobb-Douglas utility function

xi =
αi

n∑
i=1

αi

y

pi
, i = 1, ..., n.

Demand systems like (19.2) are the systems whose parameters we
will want to estimate and whose properties we will want to analyze,
although this is not our intention in this book. As you will see shortly,
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there are further techniques in the microeconomic literature which can
be used on this problem.

We should also note that the form of the demand system is de-
termined by the utility function. For example, the demand system for
the two-asset (n = 2) constant elasticity of substitution (CES) utility
function (introduced in chapter 15),

f(x) =
n∑

i=1

(aix
r
i )

1/r,

where 0 < ai < 1, −∞ < r < 1, with α1 = α2 = 1 for simplicity, can
be shown to have the following form

x1 =
p
1/(r−1)
1 y

p
r/(r−1)
1 + p

r/(r−1)
2

and x2 =
p
1/(r−1)
2 y

p
r/(r−1)
1 + p

r/(r−1)
2

.

That is, when the utility function changes (or rather when pref-
erences change) the demand system also changes. Empirical demand
analysis is mainly concerned with the identification of preferences and
the estimation of the parameters of demand systems such as the above.

19.2 The Indirect Utility Approach

An alternative method of deriving the demand system is from the in-
direct utility function, defined on prices and income (which we briefly
discussed in Chapter 18). As we saw, the utility maximization problem
(19.1) can be reformulated equivalently as

max
x

f(x) subject to v′x = 1, (19.3)

with the following solution

xi = xi(v), i = 1, ..., n, (19.4)

where vi = pi/y, i = 1, ..., n denotes ‘expenditure-normalized’ prices
(user costs). Substituting solution (19.4) into the objective function
yields the maximum attainable utility, given normalized monetary asset
user costs,



260 Chapter 19. The Parametric Approach to Demand Analysis

h(v) = h
(
x1(v), ..., xn(v)

)

= max
x

f(x) subject to v′x = 1.

The indirect utility function h(v) reflects the fact that utility depends
indirectly on prices and income.

The important thing is that the direct utility function and the in-
direct utility function are equivalent representations of the underlying
preference ordering. In fact, there is a duality relationship between the
direct utility function and the indirect utility function, in the sense
that maximization of f(x) with respect to x, with given p and y, and
minimization of h(v) with respect to v, with given x, leads to the
same demand equations — see, for example, Mas-Colell, Whinston,
and Green (1995).

While the direct utility function has greater intuitive appeal than
the indirect utility function, being able to represent preferences by an
indirect utility function is particularly appealing. This is so, because
the indirect utility function has prices exogenous in explaining con-
sumer behavior. Moreover, we can easily derive the demand system by
straightforward differentiation, without having to solve a system of si-
multaneous equations (as is the case with the direct utility function
approach).

In particular, a result known as Roy’s identity

xi = −∂h(v)/∂pi

∂h(v)/∂y
, i = 1, . . . , n,

allows us to derive the demand system, provided, of course, that pi > 0
and y > 0. Alternatively, we can apply the ‘logarithmic form’ of Roy’s
identity

si = −∂ log h(v)/∂ log pi

∂ log h(v)/∂ log y
, i = 1, . . . , n, (19.5)

to derive the budget share equations, where si = pixi/y is the budget
share of the ith asset.

As an example of how we can use the framework to get a set of
equations that we can estimate, consider the homothetic translog (HTL)
flexible functional form — the simplest member of the translog family
of flexible functional forms (to be discussed in more detail in Chapter
20 — for the indirect utility function h(v). The homothetic translog
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indirect utility function is given by1

log h(v) = a0 +
n∑

k=1

ak log vk +
1
2

n∑
k=1

n∑
j=1

βjk log vk log vj ,

with the following restrictions imposed:

βjk = βkj, for all k, j;

n∑
i=1

βik = 0, for all k;

n∑
k=1

αk = 1.

This function is a generalization of the Cobb-Douglas function and
reduces to it when all βi are equal to zero. In fact, when all βi are
equal to zero, the homothetic translog decays to

log h(v) = a0 +
n∑

k=1

ak log vk,

which is the Cobb-Douglas, written in logs.
Application of Roy’s identity in share form, equation (19.5) yields

a set of share equations for the homothetic translog

si = αi +
n∑

k=1

βik log vk, i = 1, ..., n. (19.6)

With n assets, the n homothetic translog share equations have n(n +
3)/2 parameters to be estimated. For example, let us assume that there
are only three assets (n = 3). In this three-asset case the homothetic
translog share equations become

1 Recall that a homothetic function is a positive monotonic transformation of a
linearly homogeneous (i.e., homogeneous of degree 1) function. That is, f(x) is
homothetic if and only if we can write f(x) = ϕ (g(x)), where g(x) is linearly
homogeneous and ϕ(·) is a monotonic function. Notice that since any mono-
tonic transformation of a utility function implies the same preference ordering,
a homothetic preference ordering can be equivalently represented by a linearly
homogeneous utility function.
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s1 = α1 + β11 log v1 + β12 log v2 + β13 log v3;

s2 = α2 + β12 log v1 + β22 log v2 + β23 log v3;

s3 = α1 + β13 log v1 + β23 log v2 + β33 log v3,

and have 9 parameters, α1, α2, α3, β11, β12, β13, β22, β23, and β33.
Budget share equation systems such as (19.6), written in matrix

notation as
st = ψ(vt,ϑ),

where s = (s1, · · ·, sn)′, ψ(v,ϑ) = (ψ1 (v,ϑ) , · · ·, ψn (v,ϑ))′, ϑ is the
parameter vector to be estimated, and ψi (v,ϑ) is given by the right-
hand side of (19.6), are what are typically estimated. Once the parame-
ters of the indirect utility function are estimated, we can move directly
to calculations of income and price elasticities and the elasticities of
substitution. We will consider the empirical implementation of such
systems later in this book.

19.3 The Slutsky Conditions

In this section we analyze the properties of demand systems which
result from the fact that demand systems are obtained by preference-
maximizing behavior. These properties translate into mathematical re-
strictions on the derivatives of the demand functions and hold whatever
the functional form of the utility function. It is for this reason that they
are referred to as general restrictions. They are also known as Slutsky
conditions, in the terminology suggested by Barten (1967) in honor of
Eugene Slutsky who was the first to state them explicitly.

19.3.1 Homogeneity (of Degree Zero)

Utility maximization implies that demand functions must be homo-
geneous of degree zero in prices and nominal income, meaning that if
all prices and income are multiplied by the same factor κ, the quanti-
ties demanded must not change. To demonstrate that homogeneity of
degree zero in prices and income holds, let’s consider the (n + 1) first
order conditions for utility maximization (derived earlier):

fi(x) = λpi, i = 1, ..., n; (19.7)

p′x = y, (19.8)
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and rewrite these conditions as

fi(x)
fn(x)

=
pi

pn
, i = 1, ..., n − 1; (19.9)

p′x = y. (19.10)

Multiplying all prices and income by κ, we see that κ drops out from
the numerator and denominator of the right hand side of (19.9) and is
also eliminated form (19.10). Hence, the first order conditions remain
unchanged by proportionate changes in all prices and income. This
result is summarized as follows

xi(κp, κy) = κ0xi(p, y) = xi(p, y),

for i = 1, ...n. That is, the demand functions are homogenous of degree
zero in prices and income.

The knowledge that a system of demand equations is homogeneous
of degree zero in prices and income is not very useful as such. However,
it can be made operational by expressing it in terms of derivatives of
the demand functions. In particular, by applying Euler’s theorem to
xi = xi(p, y), we obtain2

n∑
j=1

pj
∂xi

∂pj
+ y

∂xi

∂y
= 0, i = 1, ..., n.

Dividing all terms of the above expression by xi we get the following
reformulated restriction, in terms of price and income elasticities

n∑
j=1

ηij = −ηiy, i = 1, ..., n, (19.11)

where ηij is the elasticity of demand of asset i with respect to asset j,
2 In general, if a function f(x) = f(x1, ..., xn) is homogeneous of degree γ, then

Euler’s theorem implies that

n∑
i=1

xi
∂f(x1, ..., xn)

∂xi
= γf(x1, ..., xn).

In the special case of homogeneity of degree zero (γ = 0), the above reduces to

n∑
i=1

xi
∂f(x1, ..., xn)

∂xi
= 0.
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ηij =
pj

xi

∂xi

∂pj
,

and ηiy is the income elasticity of demand for asset i,

ηiy =
y

xi

∂xi

∂y
.

Hence, the homogeneity condition (19.11) states that the sum of the
own- and all cross-price elasticities of any asset i has to equal the
negative of its income elasticity.

As already stated, homogeneity of degree zero in income and prices
has to be exactly satisfied for our mathematical functions to be candi-
dates for qualification as demand functions. Evidence that contradicts
the homogeneity restriction has also important implications from a
macroeconomics perspective. For example, homogeneity of degree zero
with respect to prices and nominal income is an important assumption
underlying classical macroeconomic theory, which requires the real side
of the economy to be homogeneous of degree zero in the nominal vari-
ables.

19.3.2 Adding-Up (Summability)

Since the budget constraint has to be satisfied, the demand equations
have to be such that the sum of the estimated expenditures on the
different monetary assets equals total monetary asset expenditure in
any period. Such a system is called additive — not to be confused with
the additivity property of utility functions.

The adding-up restriction can also be expressed in terms of elastici-
ties. In particular, partially differentiating (19.10) with respect to y we
get

n∑
i=1

pi
∂xi

∂y
= 1,

which implies that an increase in total expenditure is completely allo-
cated to all monetary assets. Manipulating the above we obtain

n∑
i=1

siηiy = 1, (19.12)

where si = pixi/y is the budget share of asset i. Thus, the summability
condition (19.12), often called the Engel aggregation condition in the
terminology of Frisch (1959), states that the sum of the income elastic-
ities weighted by their respective expenditure proportions has to equal
unity.
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19.3.3 Symmetry of the Slutsky Matrix

Total differentiation of the first order conditions for utility maximiza-
tion, conditions (19.7) and (19.8), gives

[
F p
p′ 0

] [
dx

−dλ
]

=
[
0 λI
1 −x′

] [
dy
dp

]
, (19.13)

where F is the n× n Hessian matrix of the utility function,

F =

⎡
⎢⎢⎢⎢⎢⎣

∂2f(x)
∂x2

1

· · · ∂2f(x)
∂x1∂xn

...
. . .

...
∂2f(x)
∂xn∂x1

· · · ∂2f(x)
∂x2

n

⎤
⎥⎥⎥⎥⎥⎦

.

As already noted in Chapter 19, the solution to (19.7) and (19.8) is
the demand system

xi = xi(p, y), i = 1, ..., n;

λ = λ(p, y).

Total differentiation of this demand system yields
[

dx
−dλ

]
=
[
xy Xp

−λy −λ′p

] [
dy
dp

]
, (19.14)

where

λp =

⎡
⎢⎢⎢⎢⎣

∂λ

∂p1
...
∂λ

∂pn

⎤
⎥⎥⎥⎥⎦
, xy =

⎡
⎢⎢⎢⎢⎣

∂x1

∂y
...

∂xn

∂y

⎤
⎥⎥⎥⎥⎦
, Xp =

⎡
⎢⎢⎢⎢⎣

∂x1

∂p1
· · · ∂x1

∂pn
...

. . .
...

∂xn

∂p1
· · · ∂xn

∂pn

⎤
⎥⎥⎥⎥⎦

,

and λy = ∂λ/∂y.
Substitution of (19.14) into (19.13) leads to

[
F p
p′ 0

] [
xy Xp

−λy −λ′p

]
=
[
0 λI
1 −x′

]
,

the solution of which can be written in the form
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[
xy Xp

−λy −λ′p

]
=
[
F p
p′ 0

]−1 [0 λI
1 −x′

]
. (19.15)

Equation (19.15) implies [see Barten (1964) or Phlips (1974) for details]

xy = λyF
−1p;

Xp = λF−1 − (λ/λy)xyx
′
y − xyx

′. (19.16)

Equation (19.16) is known as the Slutsky equation — the fundamen-
tal equation of value theory. It can be written as

Xp = K − xyx
′, (19.17)

whereK = λF−1−(λ/λy) xy x
′
y is the substitution matrix (also known

as the Slutsky matrix ) of income compensated price responses and xyx
′

is the matrix of income effects. Notice that the i, j element of (19.17)
is

∂xi

∂pj
= kij − ∂xi

∂y
xj , (19.18)

where ∂xi/∂pj is the total effect of a price change on demand, kij (i.e.,
the i, j element of K) is the substitution effect of a compensated price
change on demand, and (−∂xi/∂y)xj is the income effect, resulting
from a change in price (not in income).

Notice that, in the absence of a particular specification of the utility
function, economic theory has nothing to say about the sign of the
income effect. It is an empirical question to determine the sign of the
income effect. In the case, for example, of normal goods (also known as
superior goods), ∂xi/∂y > 0 and the income effect is negative; in the
case of inferior goods, ∂xi/∂y < 0 and the income effect is positive

The Slutsky decomposition is not a restriction in itself. Its impor-
tance lies in the fact that the Slutsky matrix K is an n×n symmetric
matrix, since λF−1 − (λ/λy) xyx

′
y is symmetric. Hence,

kij = kji.

This symmetry restriction of the Slutsky matrix may also be written
in elasticity terms, making use of equation (19.18), as follows

ηij

sj
+ ηiy =

ηji

si
+ ηjy,

where ηij is the elasticity of demand of asset i with respect to the
price of asset j, ηiy is the income elasticity of demand of asset i, and
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sj = pjxj/y is the proportion of total expenditure devoted to asset j.
Clearly, the symmetrical terms are the Allen elasticities of substitution

σa
ij =

ηij

sj
+ ηiy =

ηji

si
+ ηjy = σa

ji, (19.19)

where σa
ij is the Allen elasticity of substitution between assets i and j.

Hence, the Allen elasticities of substitution are equivalent to compen-
sated price elasticities. As with the sign of the income effect, the sign
of the cross substitution effect, kij , is not determined, in the absence
of a particular specification of the utility function. This sign is to be
determined empirically.

19.3.4 Negativity of the Own Substitution Effect

Finally, the most important restriction of all is the negativity of the
own substitution effect [see Phlips (1974, p. 52-53) for a proof of the
negativity property]

kii < 0, i = 1, ..., n. (19.20)

This restriction establishes the negative relationship between quantity
and price (i.e., the negativity of the slope of the demand curves), for
those assets that are not inferior (i.e., assets for which the income
elasticity is positive or zero).

Equations (19.11), (19.12), (19.19), and (19.20) are the Slutsky con-
ditions that each system of demand equations should satisfy, irrespec-
tive of the choice of a particular utility function. These conditions,
together with the usual neoclassical monotonicity requirement that the
direct utility function should be an increasing function of each good
consumed, are also known as the integrability conditions. If they hold,
then the demand system is integrable in the sense that it can be gener-
ated by utility maximization subject to a budget constraint. As Fisher
(1989, p. 87) puts it

“[t]he importance of this is clear: if the integrability conditions
are valid, then the theory of individual consumer behavior is ap-
plicable to the analysis of aggregate consumer demand functions
in per capita form ... .”
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19.4 Conclusion

We have developed the demand systems approach to the demand for
liquid assets, paying explicit attention to the increasingly obvious trade-
off that exists between theoretical purity and econometric simplicity.
The reader should also note that the nonparametric and parametric
approaches to applied demand analysis are not mutually exclusive. For
example, one can test the data with GARP to find subsets that are
consistent with utility maximization and then estimate parametric de-
mand functions imposing the utility maximization restrictions.

Clearly, the use in recent years of the simple representative consumer
paradigm in monetary economics has opened the door to the succeeding
introduction into monetary economics of the entire microfoundations,
aggregation theory, and microeconometrics literatures. This new liter-
ature is actually an ongoing one and has only just begun to produce
empirical results worthy of the effort required to understand it. In the
following chapter we emphasize the contribution that can be made by
using alternative functional forms for demand systems.
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Locally Flexible Functional Forms and Demand
Systems

20.1. Locally Flexible Forms
20.2. Effectively Globally Regular Forms
20.3. Imposing Local Curvature
20.4. Conclusion

For many years, econometricians used globally regular functional
forms, such as the Cobb-Douglas and the Constant Elasticity of Substi-
tution (CES) forms, to approximate the generating functions (such as,
for example, direct utility, indirect utility, production, and cost func-
tions) of neoclassical microeconomic theory. By regularity we mean
that the indirect utility function is consistent with rational economic
behavior — that is, the economic agent maximises direct utility sub-
ject to a budget constraint. In particular, regularity requires that the
indirect utility function is homogeneous of degree zero in p and y, non-
increasing in p, non-decreasing in y, and convex or quasi-convex in p.
These constraints imply that the Slutsky conditions (discussed in the
previous chapter) are satisfied. Regularity is global if it holds for all
(positive) p and y values.

Although globally regular functional forms satisfy everywhere the
theoretical regularity conditions for rational neoclassical economic
behavior, they do not provide the capability to attain arbitrary elas-
ticities of substitution — see, for example, Uzawa (1962). In recent
years a number of empirical studies have made use of the flexible func-
tional forms method to approximate aggregator functions. A flexible
functional form is an approximation to an arbitrary function, with
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parameters that can be chosen to make the value of the first and second
derivatives of the approximation equal to the first and second deriva-
tives of the true function at any point — see Diewert (1973a) for more
details. In this and the next chapter we provide a theoretical com-
parison of a number of popular flexible functional forms by grouping
them into three sets that have broadly similar characteristics. These
are (i) locally flexible forms, (ii) effectively globally regular forms, and
(iii) asymptotically globally flexible forms.

We discuss locally flexible and effectively globally regular functional
forms in this chapter, leaving the discussion of the asymptotically glob-
ally flexible forms for the next chapter.

20.1 Locally Flexible Forms

We begin with three of the most popular flexible functional forms — the
generalized Leontief, the translog, and the almost ideal demand system.
These forms provide the capability to approximate systems resulting
from a broad class of generating functions and also to attain arbitrary
elasticities of substitution — although at only one point. They have,
however, very small regions of theoretical regularity, as we shall discuss
in the sequel.

20.1.1 The Generalized Leontief

The generalized Leontief (GL) functional form was introduced by Diew-
ert (1973) in the context of cost and profit functions. Diewert (1974)
introduced the GL reciprocal indirect utility function

h (v) = a0 +
n∑

i=1

aiv
1/2
i +

1
2

n∑
i=1

n∑
j=1

βijv
1/2
i v

1/2
j , (20.1)

where v = [v1, v2, · · ·, vn] is a vector of income normalized user costs,
with the ith element being vi = pi/y, where pi is the user cost of asset
i and y is the total expenditure on the n assets. B = [βij ] is an n× n
symmetric matrix of parameters and a0 and ai are other parameters,
for a total of

(
n2 + 3n+ 2

)
/2 parameters.

Using Diewert’s (1974) modified version of Roy’s identity

si =
vi∂h (v) /∂vi

n∑
j=1

vj∂h (v) /∂vj

, (20.2)
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where si = vixi and xi is the demand for asset i, the GL demand system
can be written as

si =

aiv
1/2
i +

n∑
j=1

βijv
1/2
i v

1/2
j

n∑
j=1

ajv
1/2
j +

n∑
k=1

n∑
m=1

βkmv
1/2
k v

1/2
m

, i = 1, · · ·, n. (20.3)

Because the share equations are homogenous of degree zero in the pa-
rameters, the following normalization — see Barnett and Lee (1985) —
could be used in estimation

2
n∑

i=1

ai +
n∑

i=1

n∑
j=1

βij = 1. (20.4)

20.1.2 The Basic Translog

The basic translog (BTL) flexible functional form was introduced by
Christensen, Jorgenson, and Lau (1975). The BTL reciprocal indirect
utility function can be written as

log h(v) = a0 +
n∑

k=1

ak log vk

+
1
2

n∑
k=1

n∑
j=1

βjk log vk log vj , (20.5)

where B = [βij ] is an n×n symmetric matrix of parameters and a0 and
ai are other parameters, for a total of

(
n2 + 3n+ 2

)
/2 parameters.

The share equations, derived using the logarithmic form of Roy’s
identity,

si = −∂ log h(v)/∂ log pi

∂ log h(v)/∂ log y
, i = 1, . . . , n,

are

si =

ai +
n∑

k=1

βik log vk

n∑
k=1

ak +
n∑

k=1

n∑
j=1

βjk log vk

, i = 1, . . . , n. (20.6)

By imposing the restrictions
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n∑
i=1

βik = 0, for all k,

on the BTL, the homothetic translog (HTL) model’s share equations
can also be obtained. These are (as we saw in Chapter 19)

si =

ai +
n∑

k=1

βik log vk

n∑
k=1

ak

, i = 1, . . . , n.

With n assets, the HTL model’s share equations contain n(n + 3)/2
parameters. Notice that estimation of each model’s share equations re-
quires some parameter normalization, as the share equations are homo-
geneous of degree zero in the a’s. Usually the normalization

∑n
i=1 ai = 1

is used.

20.1.3 The Almost Ideal Demand System

The almost ideal demand system (AIDS) is written is share equation
form [see Deaton and Muellbauer (1980) for more details] as

si = ai +
n∑

k=1

βik log pk + bi (log y − log g(p)) , i = 1, . . . , n, (20.7)

where log g(p) is a translog price index defined by

log g(p) = a0 +
n∑

k=1

ak log pk +
1
2

n∑
k=1

n∑
j=1

βkj log pk log pj.

In equation (20.7), si is the ith budget share, y is income, pk is
the kth price, and (a, b, β) are parameters of the demand sys-
tem to be estimated. Symmetry (βij = βji for all i, j), adding up
(
∑n

k=1 ak = 1,
∑n

i=1 βij = 0 for all j, and
∑n

i=1 bi = 0), and homoge-
neity (

∑n
j=1 βij = 0 for all i) are imposed in estimation. With n as-

sets the AIDS model’s share equations contain (n2 + 3n − 2)/2 free
parameters.
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20.2 Effectively Globally Regular Forms

As argued earlier, models such as the generalized Leontief, translog,
and AIDS are locally flexible but may have a relatively small regular
region. In fact, Caves and Christensen (1980), Barnett and Lee (1985),
and Barnett, Lee, and Wolfe (1985) show that the regularity regions
of local flexible functional forms can be relatively small. Furthermore,
the Monte Carlo analysis of Guilkey and Lovell (1980) finds that the
generalized Leontief and the translog fail to provide a satisfactory ap-
proximation to the true data generating process for the moderate and
even large elasticities of substitution that often arise in applications.

These problems led to the development of locally flexible functional
forms that have larger regularity regions that Cooper and McLaren
(1996) classify as ‘effectively globally regular.’ These functions typi-
cally have regular regions that include all data points in the sample.
In addition, the regularity region increases as real expenditure levels
grow, as is often the case with time series data. Furthermore, these
functions provide more general Engel curve approximations, especially
when income varies considerably.

Examples of these functions include the Minflex Laurent models
introduced by Barnett (1983, 1985), Barnett and Lee (1985), and Bar-
nett, Lee, and Wolfe (1985, 1987), based on the Laurent series expan-
sion; the ‘quadratic AIDS’ (QUAIDS) model of Banks, Blundell and
Lewbel (1996); and the ‘general exponential form’ (GEF) of Cooper
and McLaren (1996). In what follows, we will consider two effectively
globally regular flexible functional forms — the Minflex Laurent (ML)
model and the normalized quadratic (NQ) reciprocal indirect utility
function.

20.2.1 The Minflex Laurent

The Minflex Laurent model, introduced by Barnett (1983) and Barnett
and Lee (1985), is a special case of the Full Laurent model also intro-
duced by Barnett (1983). Following Barnett (1983), the Full Laurent
reciprocal indirect utility function is

h(v) = a0 + 2
n∑

i=1

aiv
1/2
i +

n∑
i=1

n∑
j=1

aijv
1/2
i v

1/2
j

− 2
n∑

i=1

biv
−1/2
i −

n∑
i=1

n∑
j=1

bijv
−1/2
i v

−1/2
j , (20.8)
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where a0, ai, aij, bi, and bij are unknown parameters and vi denotes
the income normalized price, as before.

By assuming that bi = 0, bii = 0 ∀i, aijbij = 0 ∀i, j, and forcing
the off diagonal elements of the symmetric matrices A ≡ [aij] and B
≡ [bij ] to be nonnegative, (20.8) reduces to the ML reciprocal indirect
utility function

h(v) = a0 + 2
n∑

i=1

aiv
1/2
i +

n∑
i=1

aiivi

+
n∑

i=1

n∑
j=1

i�=j

a2
ijv

1/2
i v

1/2
j −

n∑
i=1

n∑
j=1

i�=j

b2ijv
−1/2
i v

−1/2
j . (20.9)

Note that the off diagonal elements of A and B are nonnegative as
they are raised to the power of two.

By applying Roy’s identity to (20.9), the share equations of the ML
demand system are

si =

aiv
1/2
i + aiivi +

n∑
j=1

i�=j

a2
ijv

1/2
i v

1/2
j +

n∑
j=1

i�=j

b2ijv
−1/2
i v

−1/2
j

n∑
i=1

aiv
1/2
i +

n∑
i=1

aiivi +
n∑

i=1

n∑
j=1

i�=j

a2
ijv

1/2
i v

1/2
j +

n∑
i=1

n∑
j=1

i�=j

b2ijv
−1/2
i v

−1/2
j

.

(20.10)
Since the share equations are homogenous of degree zero in the param-
eters, one can follow Barnett and Lee (1985) and impose the following
normalization in the estimation of (20.10)

n∑
i=1

aii + 2
n∑

i=1

ai +
n∑

j=1
i�=j

a2
ij −

n∑
j=1
i�=j

b2ij = 1. (20.11)

Hence, there are

1 + n+
n(n+ 1)

2
+
n(n− 1)

2
.

parameters in (20.9), but the n (n− 1) /2 equality restrictions, aijbij =
0 ∀i, j, and the normalization (20.11) reduce the number of parameters
in equation (20.10) to

(
n2 + 3n

)
/2.
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20.2.2 The NQ Reciprocal Indirect Utility Function

Following Diewert and Wales (1988), the normalized quadratic (NQ)
reciprocal indirect utility function is defined as

h (v) = b0 +
n∑

i=1

bivi +
1
2

n∑
i=1

n∑
j=1

βijvivj

n∑
i=1

αivi

+
n∑

i=1

θi log vi, (20.12)

where b0, b = [b1, b2, · · ·, bn], θ = [θ1, θ2, · · ·, θn], and the elements of
the n× n symmetric B ≡ [βij ] matrix are the unknown parameters to
be estimated. It is important to note that the quadratic term in (20.12)
is normalized by dividing through by a linear function

n∑
i=1

αivi,

and that the nonnegative vector of parameters α = [α1, α2, · · ·, αn] is
assumed to be predetermined.

As in Diewert and Wales (1988), we assume that α satisfies

n∑
j=1

αjv
∗
j = 1, αj ≥ 0, ∀j. (20.13)

Moreover, we pick a reference (or base-period) vector of income nor-
malized prices, v∗ = 1, and assume that the B matrix satisfies the
following n restrictions

n∑
j=1

βijv
∗
j = 0, ∀i. (20.14)

Using the modified version of Roy’s identity (20.2), the NQ demand
system can be written as
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si =

vi

⎛
⎜⎜⎜⎜⎜⎝
bi − 1

2

αi

n∑
k=1

n∑
j=1

βkjvkvj

⎛
⎜⎝

n∑
i=1

αivi

⎞
⎟⎠

2 +

n∑
j=1

βijvi

⎛
⎜⎝

n∑
i=1

αivi

⎞
⎟⎠

+ θi

⎞
⎟⎟⎟⎟⎟⎠

n∑
i=1

biυi + 1
2

n∑
i=1

n∑
j=1

βijvivj

⎛
⎜⎝

n∑
i=1

αivi

⎞
⎟⎠

+
n∑

i=1

θi

. (20.15)

Finally, as the share equations are homogeneous of degree zero in
the parameters, one can follow Diewert and Wales (1988) and impose
the normalization

n∑
j=1

bj = 1. (20.16)

Hence, there are n (n+ 5) /2 parameters in (20.15), but the imposition
of the (n− 1) restrictions in (20.14) and (20.16) reduces the number of
parameters to be estimated to

(
n2 + 3n− 2

)
/2.

20.3 Imposing Local Curvature

The usefulness of flexible functional forms depends on whether they
satisfy the theoretical regularity conditions of positivity, monotonicity,
and curvature, and in most of the monetary asset demand literature
there has been a tendency to ignore theoretical regularity. In fact, as
Barnett (2002, p. 199) put it in his Journal of Econometrics Fellow’s
opinion article, without satisfaction of all three theoretical regularity
conditions,

“··· the second-order conditions for optimizing behavior fail, and
duality theory fails. The resulting first-order conditions, demand
functions, and supply functions become invalid.”

Recently, Ryan and Wales (1998) suggest a relatively simple proce-
dure for imposing local curvature conditions. Their procedure applies
to those locally flexible demand systems for which, at the point of ap-
proximation, the n× n Slutsky matrix S can be written as

S = B +C, (20.17)
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where B is an n×n symmetric matrix, containing the same number of
independent elements as the Slutsky matrix, and C is an n×n matrix
whose elements are functions of the other parameters of the system.
Curvature requires the Slutsky matrix to be negative semidefinite. Ryan
and Wales (1998) draw on related work by Lau (1978) and Diewert and
Wales (1987) and impose curvature by replacing S in equation (20.17)
with −KK′, where K is an n × n lower triangular matrix, so that
−KK′ is by construction a negative semidefinite matrix. Then solving
explicitly for B in terms of K and C yields

B = −KK ′ −C,

meaning that the models can be reparameterized by estimating the
parameters in K and C instead of the parameters in B and C. That
is, we can replace the elements of B in the estimating equations by the
elements of K and the other parameters of the model, thus ensuring
that S is negative semidefinite at the point of approximation, which
could be any data point.

Ryan and Wales (1998) applied their procedure to three locally flexi-
ble functional forms — the almost ideal demand system, the normalized
quadratic, and the linear translog. Moreover, Moschini (1999) suggested
a possible reparameterization of the basic translog to overcome some
problems noted by Ryan and Wales (1998) and also imposed curvature
conditions locally in the basic translog. In this section, we follow Ryan
and Wales (1998) and Moschini (1999) and impose curvature conditions
locally on the flexible functional forms discussed so far in this chapter.

It should be noted, however, that in general the imposition of cur-
vature does not assure true theoretical regularity as it might produce
spurious violations of monotonicity. In this regard, Barnett and Pasu-
pathy (2003, p. 151) argue that

“imposing curvature without monotonicity, while perhaps to be
preferred to the prior common practice of imposing neither, is
not adequate without at least reporting data points at which
violations of monotonicity occur. Monotonicity is too important
to be ignored.”

20.3.1 The Generalized Leontief and Local Curvature

Regarding the generalized Leontief model, we follow Serletis and Shah-
moradi (2007) who build on Ryan and Wales (1998) and Moschini
(1999) and impose curvature conditions locally on the generalized Leon-
tief model by exploiting the Hessian matrix of second order derivatives
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of the reciprocal indirect utility function, unlike Ryan and Wales (1998)
and Moschini (1999) who exploit the Slutsky matrix.

In particular, since curvature of the GL reciprocal indirect utility
function requires that the Hessian matrix is negative semidefinite, we
impose local curvature (at the reference point) by evaluating the Hes-
sian terms of (20.1) at v∗ = 1, as follows

Hij = −δij
⎛
⎝ai +

n∑
j=1,j �=i

βij

⎞
⎠+ (1 − δij)βij ,

where δij is the Kronecker delta (that is, δij = 1 when i = j and 0
otherwise). By replacing H by −KK ′, where K is an n × n lower
triangular matrix and K′ its transpose, the above can be written as

− (
KK ′)

ij
= −δij

⎛
⎝ai +

n∑
j=1,j �=i

βij

⎞
⎠+ (1 − δij)βij . (20.18)

Solving for the ai and βij terms as a function of the (KK ′)ij we can get
the restrictions that ensure the negative semidefiniteness of the Hessian
matrix [without destroying the flexibility properties of (20.1), since the
number of free parameters remains the same]. In particular, when i �= j,
equation (20.18) implies

βij = − (
KK ′)

ij
, (20.19)

and for i = j implies

(
KK ′)

ii
= ai +

n∑
j=1,j �=i

βij .

Substituting βij from (20.19) in the above equation we get

(
KK ′)

ii
= ai −

n∑
j=1,j �=i

(
KK ′)

ij
,

or

ai =
(
KK ′)

ii
+

n∑
j=1,j �=i

(
KK ′)

ij
,

which after some rearrangement yields
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ai =
n∑

j=1

(
KK ′)

ij
. (20.20)

For the case of three assets, conditions (20.19) and (20.20) imply the
following six restrictions on (20.3)

β12 = −k11k21;
β13 = −k11k31;
β23 = − (k21k31 + k22k32) ;

a1 = k2
11 + k11k21 + k11k31;

a2 = k2
21 + k2

22 + k11k21 + k21k31 + k22k32;

a3 = k2
31 + k2

32 + k2
33 + k11k31 + k21k31 + k22k32,

where the kij terms are the elements of the K matrix.

20.3.2 The Basic Translog and Local Curvature

Applying the Ryan and Wales (1998) procedure for imposing local cur-
vature to the basic translog, the Slutsky terms of (20.5) can be written
as

Sij = βij − aiδij − ai

n∑
k=1

βkj

− aj

n∑
k=1

βik + aiaj

(
1 +

n∑
k=1

n∑
m=1

βkm

)
,

for i, j = 1, ..., n, where δij is the Kronecker delta, as before. Ryan and
Wales (1998) argued that in the case of the basic translog replacing S by
−KK ′ is of little help in imposing local curvature because the ijth ele-
ment of S contains not just βij but also the terms

∑n
k=1 βkj ,

∑n
k=1 βik,

and aiaj (1 +
∑n

k=1

∑n
m=1 βkm). As they noted, there are n(n + 1)/2

independent βij parameters, but only n(n−1)/2 independent elements
in S, rendering it no longer possible to express the βij terms in terms
of the elements of K and of the other parameters of the model.

However, Moschini (1999) suggested a possible reparameterization
of the basic translog to overcome the problem noted by Ryan and Wales
(1998) so that we can still use their procedure for imposing local cur-
vature in the BTL demand system. In particular, he showed that by
letting θi =

∑n
j=1 βij we can rewrite (20.6) as
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si =

ai +
n−1∑
k=1

βik log vk + θi log vn

1 +
n∑

k=1

θk log vk

, i = 1, . . . , n − 1, (20.21)

with sn given by sn = 1 − ∑n−1
i=1 si. With this parameterization, the

Slutsky terms can be expressed in terms of a matrix of dimension (n−
1) × (n− 1), denoted by S̃, with the ijth element written as

S̃ij = βij − aiδij − aiθj − ajθi + aiaj

(
1 +

n∑
k=1

θk

)
, (20.22)

for i, j = 1, · · ·, n − 1. Note that now in equation (20.22) there are
exactly n(n− 1)/2 S̃ij terms as there are n(n− 1)/2 βij terms.

By replacing S̃ by −K̃K̃′
in (20.22), for n = 3 we get the following

three restrictions on (20.21)

β11 = −k2
11 + a1 + 2a1θ1 − a2

1

(
1 +

n∑
k=1

θk

)
;

β12 = −k11k21 + a1θ2 + a2θ1 − a1a2

(
1 +

n∑
k=1

θk

)
;

β22 = −k2
21 − k2

22 + a2 + 2a2θ2 − a2
2

(
1 +

n∑
k=1

θk

)
,

where the kij terms are the elements of the K̃ matrix.

20.3.3 The Almost Ideal Demand System and Local
Curvature

Applying the Ryan and Wales (1998) procedure for imposing local cur-
vature, we write the ijth element of the Slutsky matrix associated with
the AIDS demand system, equation (20.7), at the point y = pk = 1 (∀
k) as

Sij = βij − (ai − bia0)δij

+ (aj − bja0)(ai − bia0) − bibja0,
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for i, j = 1, ..., n, where δij = 1 when i = j and 0 otherwise. Thus,
following Ryan and Wales (1998) local curvature can be imposed by
replacing the elements of B in the estimating share equations by the
elements ofK and the other parameters, as follows for the ijth element
of B

βij =
(−KK ′)

ij
+ (ai − bia0)δij

− (aj − bja0)(ai − bia0) + bibja0, (20.23)

for i, j = 1, ..., n.
For n = 3, for example, equation (20.23) implies the following three

restrictions on (20.7)

β11 = −k2
11 + a1 − b1a0 − (a1 − b1a0)

2 + b21a0;
β12 = −k11k21 − (a2 − b2a0) (a1 − b1a0) + b1b2a0;

β22 = −k2
21 − k2

22 + a2 − b2a0 − (a2 − b2a0)2 + b22a0,

where the kij terms are the elements of the K matrix.

20.3.4 The Minflex Laurent and Local Curvature

As shown by Barnett (1983, Theorem A.3), (20.9) is globally concave
for every v ≥ 0, if all parameters are nonnegative, as in that case
(20.9) would be a sum of concave functions. If the initially estimated
parameters of the vector a and matrixA are not nonnegative, curvature
can be imposed globally by replacing each unsquared parameter by a
squared parameter, as in Barnett (1983).

20.3.5 The NQ Reciprocal Indirect Utility Function and
Local Curvature

The normalized quadratic reciprocal indirect utility function defined by
(20.12), (20.13), and (20.14) will be globally concave over the positive
orthant if B is a negative semidefinite matrix and θ ≥ 0 — see Diewert
and Wales (1988, Theorem 3). Although curvature conditions can be
imposed globally if the initially estimated B matrix is not negative
semidefinite or the initially estimated θ vector is not nonegative, we
follow Ryan and Wales (1998) and impose curvature conditions locally.

Using the Ryan and Wales (1998) technique, the Slutsky terms as-
sociated with the NQ demand system at the reference point v∗ = 1
can be written as
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Sij = βij − θiδij + θibj + θjbi + 2θiθj, (20.24)

for i, j = 1, 2, · · ·, n, where δij is the Kronecker delta, as before. As
already noted, according to Moschini’s (1999) result, a necessary and
sufficient condition for S to be negative semidefinite is that S̃ (obtained
by deleting the last row and column of S) is also negative semidefinite.
Thus, (20.24) can be expressed as

S̃ij = βij − θiδij + θibj + θjbi + 2θiθj, (20.25)

for i, j = 1, 2, · · ·, n − 1. Hence, local curvature can be imposed (at v∗

= 1) by setting S̃ = −K̃K̃ ′
in (20.25) and then using (20.25) to solve

for the βij elements, as follows

βij = −
(
K̃K̃ ′

)
ij

+ θiδij − θibj − θjbi − 2θiθj , (20.26)

for i, j = 1, 2, ···, n−1. It is to be noted that this re-parametrization does
not destroy the flexibility of the NQ reciprocal indirect utility function,
since the n(n − 1)/2 elements of B are replaced by the n(n − 1)/2
elements of K̃.

For the case of three assets (n = 3), (20.26) implies the following
restrictions on (20.15)

β11 = −k2
11 + θ1 − 2b1θ1 − 2θ2

1;
β12 = −k21k11 − θ1b2 − θ2b1 − 2θ1θ2;

β22 = − (
k2

21 + k2
22

)
+ θ2 − 2θ2b2 − 2θ2

2 ,

where the kij terms are the elements of the K̃ matrix.

20.4 Conclusion

We have provided a theoretical discussion of a number of different lo-
cally flexible functional forms, by grouping them into two groups that
have similar characteristics. Of course, there are many other possibili-
ties, but we selected these functional forms because they provide a rep-
resentation of the two groups of locally flexible functional forms that
are in the widest use in applied work based on the demand systems
approach.

We want to emphasize that it would be preferable if one could nest
at least some flexible functional forms, so that the choice between them
could be the subject of a statistical hypothesis test. This is currently
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possible for those flexible functional forms that have interpretations as
Taylor series expansions. For example, Serletis (1988) uses likelihood
ratio tests to choose between four nested translog demand systems —
the generalized translog, the basic translog, the linear translog, and the
homothetic translog. In general, however, given known estimation tech-
niques, it is not possible to nest flexible functional forms with different
approximation properties.
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Globally Flexible Functional Forms
and Demand Systems

21.1. The Fourier Model
21.2. The AIM Model
21.3. Computational Considerations
21.4. Imposing Curvature Restrictions
21.5. Conclusion

As already noted in the previous chapter, most locally flexible func-
tional forms provide arbitrary elasticity estimates at the point of ap-
proximation and they gain this precision at the expense of giving up
global regularity. Barnett (1983, 1985), Barnett and Lee (1985) and
Barnett, Lee, and Wolfe (1985, 1987) provided a partial solution to
this problem by proposing the minflex Laurent model that is locally
flexible and regular over a large region but is still not globally regular.

An innovation in this respect are the semi-nonparametric flexible
functional forms that possess global flexibility and in which asymp-
totic inferences are, potentially, free from any specification error. Semi-
nonparametric functions can provide an asymptotically global approx-
imation to complex economic relationships. These functions provide
global approximations to the true data generating process and its
partial derivatives. By global approximation, we mean that the flex-
ible functional form is capable, in the limit, of approximating the un-
known underlying generating function at all points and thus of produc-
ing arbitrarily accurate elasticities at all data points. Two such semi-
nonparametric functions are the Fourier flexible functional form, intro-
duced by Gallant (1981), and the Asymptotically Ideal Model (AIM),
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introduced by Barnett and Jonas (1983) and employed and explained
in Barnett and Yue (1988).

This chapter focuses on these two globally flexible functional forms
— the Fourier and the Asymptotically Ideal Model. While there is some
comparison implied in our presentation, our purpose in this chapter is
basically to make clear the properties of these two models.

21.1 The Fourier Model

We follow the procedure explained in Gallant (1981) for expanding the
indirect utility function using the Fourier series,

h(v) = u0 + b′v +
1
2
v′Cv

+
A∑

α=1

⎛
⎝u0α + 2

J∑
j=1

[
ujα cos(jk′αv) − wjα sin(jk′αv)

]
⎞
⎠ , (21.1)

in which

C = −
A∑

α=1

u0αkαk
′
α,

where v denotes income normalized prices (=p/y), kα is a multi-index
— an n-vector with integer components — and u0, {b}, {u}, and {w}
are parameters to be estimated. As Gallant (1981) shows, the length of
a multi-index, denoted as |kα|∗ =

∑n
i=1 |kiα|, reduces the complexity of

the notation required to denote high-order partial differentiation and
multivariate Fourier series expansions. For example, with n = 3 in
(21.1), the multi-index λ′ = (5, 2, 7), generates the 14th order partial
derivative, as follows — see Gallant (1981) for more details:

Dλh(v) =
∂|λ|

∗

∂vλ1
1 ∂vλ2

2 ∂vλ3
3

h(v) =
∂14

∂v5
1∂v

2
2∂v

7
3

h(v),

The parameters A (the number of terms) and J (the degree of the
approximation) determine the degree of the Fourier polynomials. The
Fourier flexible functional form has the ability of achieving close ap-
proximation in Sobolev norm which confers nonparametric properties
on the functional form. This is the reason the Fourier flexible form is
considered to be a semi-nonparametric functional form.

By applying Roy’s modified identity,
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si(v) =
vi (∂h(v)/∂vi)
v′ (∂h(v)/∂vi)

, (21.2)

to (21.1), we obtain the Fourier demand system

si =

vibi −
A∑

α=1

⎛
⎝u0αv

′kα + 2
J∑

j=1

j
[
ujα sin(jk′αv) + wjα cos(jk′αv)

]
⎞
⎠ kiαvi

b′v −
A∑

α=1

⎛
⎝u0αv′kα + 2

J∑
j=1

j
[
ujα sin(jk′αv) + wjα cos(jk′αv)

]
⎞
⎠k′αv

,

(21.3)
for i = 1, 2, 3 — the time subscript t has been suppressed.

Eastwood and Gallant (1991) show that Fourier functions produce
consistent and asymptotically normal parameter estimates when the
number of parameters to be estimated equals the number of effective
observations raised to the power of 2/3 — this result follows from Hu-
ber (1981) and is similar to optimal bandwidth results in many non-
parametric models. For example, with n = 3 and T = 134, the number
of effective observations is 268 (= 2×134) — since we estimate (n− 1)
share equations — and we should therefore estimate (approximately)
(2682/3 =) 41 parameters.

As we impose the normalization bn =
∑n−1

i=1 bi, the Fourier demand
system has (n− 1) b, A u0α, AJ ujα, and AJ wjα parameters to be
estimated, for a total of (n− 1)+A(1+2J) free parameters. By setting
(n− 1) + A(1 + 2J) equal to 41, for the n = 3 and T = 134 example,
we choose the values of A and J to be 13 and 1, respectively. This also
determines the elementary multi-indexes, as shown in the following
table:

Elementary Multi-indexes {k}13
α=1

α 1 2 3 4 5 6 7 8 9 10 11 12 13

v1 1 0 0 1 1 0 1 0 0 1 1 2 2
v2 0 1 0 1 0 1 1 1 2 2 0 1 0
v3 0 0 1 0 1 1 1 2 1 0 2 0 1

|kα|∗ 1 1 1 2 2 2 3 3 3 3 3 3 3
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As a Fourier series is a periodic function in its arguments but the
indirect utility function is not, the scaling of the data is also important.
In empirical applications, to avoid the approximation from diverging
from the true indirect utility function the data should be rescaled so
that the income normalized prices lie on 0 ≤ vi ≤ 2π. The income
normalized prices vi (i = 1, · · ·, n) are typically rescaled as follows vi ×
[(2π − ε) /max {vi : i = 1, · · ·, n}], with (2π − ε) set equal to 6, as in
Gallant (1982). In cases, however, that the income normalized prices
vi (i = 1, · · ·, n) are already between 0 and 2π, such rescaling is not
necessary.

21.2 The AIM Model

We follow Barnett and Yue (1988) and use the reciprocal indirect utility
function for the asymptotically ideal model for n = 3 (as an example):

h(v) = a0 +
K∑

k=1

3∑
i=1

aikv
λ(k)
i

+
K∑

k=1

K∑
m=1

⎡
⎣

3∑
i=1

3∑
j=1

aijkmv
λ(k)
i v

λ(m)
j

⎤
⎦

+
K∑

k=1

K∑
m=1

K∑
g=1

⎡
⎣

3∑
i=1

3∑
j=1

3∑
h=1

aijhkmgv
λ(k)
i v

λ(m)
j v

λ(g)
h

⎤
⎦ , (21.4)

where λ(z) = 2−z for z = {k,m, g} is the exponent set and aik, aijkm,
and aijhkmg, for all i, j, h = 1, 2, 3, are the parameters to be estimated.
The number of parameters is reduced by deleting the diagonal elements
of the parameter arrays so that i �= j, j �= h and i �= h. This does not
alter the span of the model’s approximation.

By applying the modified Roy’s identity to (21.4), we obtain the
AIM(K) demand system, where si = pixi/p

′x = vixi. With n assets
and a degree of approximation of K, the number of parameters to be
estimated in the AIM(K) model is given by the following formula:

nk

1!
+
n(n− 1)k2

2!
+
n(n− 1)(n − 2)k3

3!
+ · · ·.
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In what follows, we briefly present the basic properties of three AIM
models — the AIM model for K = 1, 2, and 3. While there is some
comparison in our presentation in this section, our purpose is basically
to make clear the properties and complexities of these models. It is to
be noted that for n = 3 and K = 4 the AIM(4) has 124 parameters to
be estimated!

21.2.1 The AIM(1) Model

For K = 1 equation (21.4) becomes, since λ(z) = 1/2 for z = {k,m, g},

hK=1(v) = a0 +
3∑

i=1

aiv
1/2
i +

3∑
i=1

3∑
j=1

aijv
1/2
i v

1/2
j

+
3∑

i=1

3∑
j=1

3∑
h=1

aijhv
1/2
i v

1/2
j v

1/2
h . (21.5)

We delete the diagonal terms (so that i �= j, j �= h and i �= h) and follow
Barnett and Yue (1988) and reparameterize by stacking the coefficients
as they appear in (21.5) into a single vector, b = (b0, · · ·, b7)′ containing
the 8 coefficients in (21.5), as follows,

hK=1(v) = b0 + b1v
1/2
1 + b2v

1/2
2 + b3v

1/2
3

+ b4v
1/2
1 v

1/2
2 + b5v

1/2
1 v

1/2
3

+ b6v
1/2
2 v

1/2
3 + b7v

1/2
1 v

1/2
2 v

1/2
3 , (21.6)

where

b0 = a0;
b1 = a1;
b2 = a2;
b3 = a3;
b4 = a12 + a21;
b5 = a13 + a31;
b6 = a23 + a32;
b7 = a123 + a132 + a213 + a231 + a312 + a321.
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Applying the modified Roy’s identity (21.2) to (21.6) yields the
AIM(1) demand system,

s1 =
(
b1v

1/2
1 + b4v

1/2
1 v

1/2
2 + b5v

1/2
1 v

1/2
3 + b7v

1/2
1 v

1/2
2 v

1/2
3

)
/D; (21.7)

s2 =
(
b2v

1/2
2 + b4v

1/2
1 v

1/2
2 + b6v

1/2
2 v

1/2
3 + b7v

1/2
1 v

1/2
2 v

1/2
3

)
/D; (21.8)

s3 =
(
b3v

1/2
3 + b5v

1/2
1 v

1/2
3 + b6v

1/2
2 v

1/2
3 + b7v

1/2
1 v

1/2
2 v

1/2
3

)
/D, (21.9)

where D is the sum of the numerators in equations (21.7), (21.8), and
(21.9).

21.2.2 The AIM(2) Model

For K = 2, equation (21.4) becomes:

hK=2(v) = a0 +
2∑

k=1

3∑
i=1

aikv
λ(k)
i

+
2∑

k=1

2∑
m=1

⎡
⎣

3∑
i=1

3∑
j=1

aijkmv
λ(k)
i v

λ(m)
j

⎤
⎦

+
2∑

k=1

2∑
m=1

2∑
g=1

⎡
⎣

3∑
i=1

3∑
j=1

3∑
h=1

aijhkmgv
λ(k)
i v

λ(m)
j v

λ(g)
h

⎤
⎦ . (21.10)

Again, to avoid the extensive multiple subscripting in the coeffi-
cients aijhkmg, we follow Barnett and Yue (1988), and reparameterize
by stacking the coefficients as they appear in (21.10) into a single vec-
tor of parameters, b = (b0, · · ·, b26)′ containing the 27 coefficients in
(21.10), as follows [since z = 1, 2 so that λ(1) = 1/2 and λ(2) = 1/4,
for z = {k,m, g}],
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hK=2(v) = b0 + b1v
1/2
1 + b2v

1/2
2 + b3v

1/2
3 + b4v

1/4
1 + b5v

1/4
2 + b6v

1/4
3

+ b7v
1/2
1 v

1/2
2 + b8v

1/2
1 v

1/4
2 + b9v

1/4
1 v

1/2
2 + b10v

1/4
1 v

1/4
2

+ b11v
1/2
1 v

1/2
3 + b12v

1/2
1 v

1/4
3 + b13v

1/4
1 v

1/2
3 + b14v

1/4
1 v

1/4
3

+ b15v
1/2
2 v

1/2
3 + b16v

1/2
2 v

1/4
3 + b17v

1/4
2 v

1/2
3 + b18v

1/4
2 v

1/4
3

+ b19v
1/2
1 v

1/2
2 v

1/2
3 + b20v

1/4
1 v

1/2
2 v

1/2
3 + b21v

1/2
1 v

1/4
2 v

1/2
3

+ b22v
1/2
1 v

1/2
2 v

1/4
3 + b23v

1/2
1 v

1/4
2 v

1/4
3 + b24v

1/4
1 v

1/2
2 v

1/4
3

+ b25v
1/4
1 v

1/4
2 v

1/2
3 + b26v

1/4
1 v

1/4
2 v

1/4
3 . (21.11)

Applying the modified version of Roy’s identity, (21.2), to (21.11) we
obtain the AIM(2) demand system,

s1 =
(
2b1v

1/2
1 + b4v

1/4
1 + 2b7v

1/2
1 v

1/2
2 + 2b8v

1/2
1 v

1/4
2 + b9v

1/4
1 v

1/2
2

+ b10v
1/4
1 v

1/4
2 + 2b11v

1/2
1 v

1/2
3 + 2b12v

1/2
1 v

1/4
3 + b13v

1/4
1 v

1/2
3

+ b14v
1/4
1 v

1/4
3 + 2b19v

1/2
1 v

1/2
2 v

1/2
3 + b20v

1/4
1 v

1/2
2 v

1/2
3

+ 2b21v
1/2
1 v

1/4
2 v

1/2
3 + 2b22v

1/2
1 v

1/2
2 v

1/4
3 + 2b23v

1/2
1 v

1/4
2 v

1/4
3

+b24v
1/4
1 v

1/2
2 v

1/4
3 + b25v

1/4
1 v

1/4
2 v

1/2
3 + b26v

1/4
1 v

1/4
2 v

1/4
3

)
/D; (21.12)

s2 =
(
2b2v

1/2
2 + b5v

1/4
2 + 2b7v

1/2
1 v

1/2
2 + b8v

1/2
1 v

1/4
2 + 2b9v

1/4
1 v

1/2
2

+ b10v
1/4
1 v

1/4
2 + 2b15v

1/2
2 v

1/2
3 + 2b16v

1/2
2 v

1/4
3 + b17v

1/4
2 v

1/2
3

+ b18v
1/4
2 v

1/4
3 + 2b19v

1/2
1 v

1/2
2 v

1/2
3 + 2b20v

1/4
1 v

1/2
2 v

1/2
3

+ b21v
1/2
1 v

1/4
2 v

1/2
3 + 2b22v

1/2
1 v

1/2
2 v

1/4
3 + b23v

1/2
1 v

1/4
2 v

1/4
3

+2b24v
1/4
1 v

1/2
2 v

1/4
3 + b25v

1/4
1 v

1/4
2 v

1/2
3 + b26v

1/4
1 v

1/4
2 v

1/4
3

)
/D; (21.13)

s3 =
(
2b3v

1/2
3 + b6v

1/4
4 + 2b11v

1/2
1 v

1/2
3 + b12v

1/2
1 v

1/4
3 + 2b13v

1/4
1 v

1/2
3

+ b14v
1/4
1 v

1/4
2 + 2b15v

1/2
1 v

1/2
3 + b16v

1/2
1 v

1/4
3 + 2b17v

1/4
2 v

1/2
3

+ b18v
1/4
2 v

1/4
3 + 2b19v

1/2
1 v

1/2
2 v

1/2
3 + 2b20v

1/4
1 v

1/2
2 v

1/2
3

+ 2b21v
1/2
1 v

1/4
2 v

1/2
3 + b22v

1/2
1 v

1/2
2 v

1/4
3 + b23v

1/2
1 v

1/4
2 v

1/4
3

+b24v
1/4
1 v

1/2
2 v

1/4
3 + 2b25v

1/4
1 v

1/4
2 v

1/2
3 + b26v

1/4
1 v

1/4
2 v

1/4
3

)
/D, (21.14)

where now D is the sum of the numerators in equations (21.12), (21.13),
and (21.14).
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21.2.3 The AIM(3) Model

For K = 3 and λ(z) = 2−z for z = {k,m, g}, equation (21.4) becomes,
after reparameterizing by stacking the coefficients as they appear in
(21.4) for K = 3 into a single vector of parameters b = (b0, · · ·, b63)′
containing the 64 coefficients in (21.4) for K = 3 and n = 3,

hK=3(v) = b0 + b1v
1/2
1 + b2v

1/2
2 + b3v

1/2
3 + b4v

1/4
1 + b5v

1/4
2

+ b6v
1/4
3 + b7v

1/8
1 + b8v

1/8
2 + b9v

1/8
3 + b10v

1/2
1 v

1/2
2

+ b11v
1/2
1 v

1/4
2 + b12v

1/2
1 v

1/8
2 + b13v

1/2
1 v

1/2
3 + b14v

1/2
1 v

1/4
3

+ b15v
1/2
1 v

1/8
3 + b16v

1/4
1 v

1/2
3 + b17v

1/4
1 v

1/4
2 + b18v

1/4
1 v

1/8
2

+ b19v
1/4
1 v

1/2
3 + b20v

1/4
1 v

1/4
3 + b21v

1/4
1 v

1/8
3 + b22v

1/8
1 v

1/2
2

+ b23v
1/8
1 v

1/4
2 + b24v

1/8
1 v

1/8
2 + b25v

1/8
1 v

1/2
3 + b26v

1/8
1 v

1/4
3

+ b27v
1/8
1 v

1/8
3 + b28v

1/2
2 v

1/2
3 + b29v

1/2
2 v

1/4
3 + b30v

1/2
2 v

1/8
3

+ b31v
1/4
2 v

1/2
3 + b32v

1/4
2 v

1/4
3 + b33v

1/4
2 v

1/8
3 + b34v

1/8
2 v

1/2
3

+ b35v
1/8
2 v

1/4
3 + b36v

1/8
2 v

1/8
3 + b37v

1/2
1 v

1/2
2 v

1/2
3

+ b38v
1/2
1 v

1/4
2 v

1/2
3 + b39v

1/2
1 v

1/8
2 v

1/2
3 + b40v

1/2
1 v

1/2
2 v

1/4
3

+ b41v
1/2
1 v

1/4
2 v

1/4
3 + b42v

1/2
1 v

1/8
2 v

1/4
3 + b43v

1/2
1 v

1/2
2 v

1/8
3

+ b44v
1/2
1 v

1/4
2 v

1/8
3 + b45v

1/2
1 v

1/8
2 v

1/8
3 + b46v

1/4
1 v

1/2
2 v

1/2
3

+ b47v
1/4
1 v

1/4
2 v

1/2
3 + b48v

1/4
1 v

1/8
2 v

1/2
3 + b49v

1/4
1 v

1/2
2 v

1/4
3

+ b50v
1/4
1 v

1/4
2 v

1/4
3 + b51v

1/4
1 v

1/8
2 v

1/4
3 + b52v

1/4
1 v

1/2
2 v

1/8
3

+ b53v
1/4
1 v

1/4
2 v

1/8
3 + b54v

1/4
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Applying the modified Roy’s identity to (21.15), yields the AIM(3)
demand system,
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where now D is the sum of the numerators in equations (21.16), (21.17),
and (21.18).

21.3 Computational Considerations

Demand systems (21.3) and (21.7)-(21.9), (21.12)-(21.14), and (21.16)-
(21.18) can be written as

st = ψ(vt, θ) + εt, (21.19)

with an error term appended. In (21.19), s = (s1, · · ·, sn)′, ψ(v, θ) =
(ψ1 (v,θ) , · · ·, ψn (v,θ))′, and ψi (v,θ) is given by the right-hand side
of each of (21.3) and (21.7)-(21.9), (21.12)-(21.14), and (21.16)-(21.18).

In our recent work with globally flexible demand systems [see Ser-
letis and Shahmoradi (2005)], we have followed Gallant and Golub
(1984, p. 298) who argue that

“all statistical estimation procedures that are commonly used
in econometric research can be formulated as an optimization
problem of the following type [Burguete, Gallant and Souza
(1982)]:
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θ̂ minimizes ϕ(θ) over Θ

with ϕ(θ) twice continuously differentiable in θ.”

Hence, following Gallant and Golub (1984) we can use Zellner’s
(1962) seemingly unrelated regression method to estimate θ. Hence,
ϕ(θ) has the form

ϕ(θ) =
1
T
ε
′
tεt =

1
T

T∑
t=1

[st −ψ(vt,θ)]
′ Σ̂−1 [st −ψ(vt,θ)] , (21.20)

where T is the number of observations and Σ̂ is an estimate of
the variance-covariance matrix of (21.19). In minimizing (21.20), we
have used the TOMLAB/NPSOL tool box with MATLAB — see
http://tomlab.biz/products/npsol. NPSOL uses a sequential quadratic
programming algorithm and is suitable for both unconstrained and con-
strained optimization of smooth (that is, at least twice-continuously
differentiable) nonlinear functions.

It is to be noted that as results in nonlinear optimization are sen-
sitive to the initial parameter values, to achieve global convergence,
in Serletis and Shahmoradi (2005) we randomly generated 500 sets of
initial parameter values and chose the starting θ that led to the lowest
value of the objective function. Also, as in Gallant (1981) and Barnett
and Yue (1988) we do not have access to asymptotic standard errors
that can be supported by statistical theory.

21.4 Imposing Curvature Restrictions

The indirect utility function should be a quasi-convex function in in-
come normalized prices, vi (i = 1, · · ·, n) — as already noted, this is
the curvature condition. Gallant and Golub (1984), following Diewert,
Avriel, and Zang (1977), argue that a necessary and sufficient condition
for quasi-convexity of h(v, θ) is

g(v, θ) = min
z

{
z′∇2h(v, θ)z : z′∇h(v, θ) = 0, z′z = 1

}
, (21.21)

where ∇h(v, θ) = (∂/∂v)h(v, θ) and ∇2h(v, θ) = (∂2/∂v∂v′)h(v,
θ), and g(v, θ) is non-negative (that is, zero or positive) when the
quasi-convexity (curvature) constraint is satisfied and negative when it
is violated. g(v, θ) is refered to as the ‘constraint indicator.’

Hence, as in Gallant and Golub (1984), we can impose quasi-
convexity by modifying the optimization problem as follows
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minimize ϕ(θ) subject to min
v∈Ω

g(v, θ) ≥ 0,

whereΩ is a finite set with the finite number of elements vi (i = 1, ···, n).
Curvature can be imposed at some representative point in the data
(that is, locally), over a region of data points, or at every data point in
the sample (that is, globally).

Let us briefly describe in more detail the Gallant and Golub (1984)
method for imposing curvature restrictions on flexible functional forms.
Define a real symmetric n×n matrix A = ∇2h(v, θ) — note that this
is the Hessian matrix of the indirect utility function, h(v, θ) — and
an n × 1 vector α = ∇h(v, θ) as the gradient vector of h(v, θ). The
curvature condition (21.21) can be written as

g(v, θ) = min
z

{
z′Az : z′α = 0, z′z = 1

}
.

The next step is to partition α as α= (α1,α
′
(2))

′, where α1 is the first
element of α and α(2) is an (n−1)×1 vector of the remaining elements
of α, and construct an n× 1 vector u

u =

⎛
⎝
α1 − ‖α‖

α(2)

⎞
⎠ ,

where ‖α‖ is the norm of α, defined as ‖α‖ =
(∑n

i=1 α
2
i

)1/2. With this
notation we define the following

γ = −1
2
u′u;

ω = −γ−1Au;

Φ =
(
γ−2u′Au

)
;

φ = (Φ/2)u −ω,

where γ is a scalar, Φ is an n×n matrix, and ω and φ are n×1 vectors.
The next and final step is to form an n× n matrix K as follows

K = A+ uφ′ +φu′.

Let’s delete the first row and column of K and rename the n− 1 by
n−1 thereby obtained matrix as K22. A necessary and sufficient condi-
tion for curvature (or equivalently for the indicator function (21.21) to
be non-negative) is that K22 should be a positive semidefinite matrix.
We can use the ‘chol’ command in MATLAB to perform a Cholesky
factorization of the K22 matrix and construct an indicator of whether
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K22 is positive semidefinite (this indicator is zero when K22 is pos-
itive semidefinite and a positive integer otherwise). Hence, we run a
constrained optimization subject to the constraint that K22 is positive
semidefinite (in which case curvature is satisfied). As already noted, we
can evaluate K22 at a single data point, over a region of data points,
or at every data point in the sample.

21.5 Conclusion

We have provided a theoretical discussion of two semi-nonparametric
flexible functional forms — the Fourier and the AIM. We also addressed
computational considerations and discussed how global curvature can
be imposed in these models, using methods suggested over 20 years
ago by Gallant and Golub (1984). Unlike the locally flexible functional
forms we discussed in the previous chapter — the generalized Leontief,
translog, AIDS, minflex Laurent, and normalized quadratic — that
provide arbitrary elasticity estimates at the point of approximation,
semi-nonparametric flexible functional forms are free from specifica-
tion error and can provide an asymptotically global approximation to
complex economic relationships.
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Overview of Part 7

In Chapter 22, stochastic specifications of monetary asset budget
share equations are discussed as well as income elasticities and own-
and cross-price elasticities. These elasticities, along with the (Allen and
Morishima) elasticities of substitution, are particularly useful in inter-
preting demand system parameter estimates. Attention is also focussed
on the dynamic context in which policy operates.

Chapter 23 presents an econometrics digression emphasizing the
contribution that can be made by using the demand-systems approach
to the demand for money and monetary assets. We tackle the problem
in two stages: (i) we employ the Divisia index to perform the aggre-
gation over monetary assets and (ii) we estimate a system of share
equations based on the basic translog flexible functional form and the
AIM(2) globally flexible demand system.

The concluding chapter discusses a number of issues and presents a
possible future research agenda that might flow out of this book.
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The Econometrics of Demand Systems

22.1. Dimension Reduction
22.2. Duality and Functional Structure
22.3. Stochastic Specification
22.4. Autoregressive Disturbances
22.5. Theoretical Regularity
22.6. Econometric Regularity
22.7. Expenditure and Price Elasticities
22.8. Elasticities of Substitution
22.9. Conclusion

There are three main purposes to our investigations in the context
of demand systems. First and foremost, we want to focus our attention
on econometric techniques that can be used to analyze the interrelated
demand for money and liquid assets in the context of share equation
systems. Secondly, we want to analyze the properties of demand sys-
tems which result from the fact that demand systems are obtained by
preference-maximizing behavior. Finally, we are interested in the sub-
stitutability/complementarity relationship between money and other
liquid assets.

In this chapter we outline a standard stochastic specification for
demand systems written in share form that forms the basis of our dis-
cussion in the rest of this book. Although our primary focus is the
estimation of price and substitution elasticities, we also pay explicit at-
tention to recent developments that have increased the usefulness of the
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demand-systems modeling approach for monetary studies. We attempt
to clarify just what these developments are and how they are tending
to reorganize a very traditional literature on an important topic.

22.1 Dimension Reduction

There is an immediate problem with the parametric approach to the
demand for money and liquid assets. It is the difficult problem of es-
timating monetary asset demand systems when there is a large num-
ber of assets. In particular, if n is large, the estimation of a highly
disaggregated demand system encompassing the full range of assets is
econometrically intractable, because of computational difficulties in the
large parameter space. In the United States, for example, the Federal
Reserve Board’s M3 monetary aggregate contains 22 monetary assets.
If we were to deal with a homothetic translog demand system (that we
discussed in Chapter 19) encompassing all 22 liquid assets, the share
equations would contain n(n+3)/2 = 275 parameters. It is not feasible,
for degrees of freedom reasons, to estimate that many parameters.

In such cases, the number of variables can be reduced, in a large
number of ad hoc ways, by assuming separability and using Divisia
subaggregate indexes. We can assume, for example, in accordance with
the Federal Reserve Board’s a priori assignment of monetary assets to
monetary aggregates, that the monetary services utility function f(x)
has the strongly recursive separable form

f(x) = f4(x4, f3(x3, f2(x2, f1(x1)))),

where the components of x1 are those that are included in the Fed’s
M1 monetary aggregate, the components of x2 are those of the Board’s
MZM aggregate net of x1, the components of x3 are those of the Board’s
M2 aggregate net of x1 and x2, and the components of x4 are those of
the Board’s M3 aggregate net of x1, x2, and x3.

Each aggregator function f r, r = 1, ..., 4, has two rather natural
(mutually consistent) interpretations. On one hand it can be thought
of as a (specific) category utility function; on the other hand, it may
be interpreted as a subaggregate measure of monetary services. In the
latter case, the aggregator functions f r, r = 1, ..., 4 are the Board’s
functional monetary aggregates M1, MZM, M2 and M3, respectively.
In particular, if Q1 is the monetary aggregate for the components of
M1, Q2 for MZM, Q3 for M2, and Q4 for M3, then it follows that
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Q1 = f1(x1);

Q2 = f2(x2, f1(x1)) = f2(x2, Q1);

Q3 = f3(x3, f2(x2, f1(x1))) = f3(x3, Q2);

Q4 = f4(x4, f3(x3, f2(x2, f1(x1)))) = f4(x4, Q3).

Of course, the actual numbers produced by the official monetary aggre-
gates require the restrictive assumption that f r, r = 1, ..., 4, and hence
f(x) itself, are all simple summations.

To focus on the details of demand for services of money and liquid
assets at different levels of aggregation, one can assume a recursively
decentralized decision-making process, reflected in the solution to the
following optimizing problems,

max
xr ,Qr−1

f r(xr, Qr−1),

subject to
prxr + Pr−1Qr−1 = PrQr,

for r = 4, 3, 2, where Pr is the Divisia price aggregate corresponding
to the Divisia quantity aggregate Qr. Recall that the Divisia quantity
index (in discrete time) is defined as

logMD
t − logMD

t−1 =
n∑

j=1

w∗
jt(log xjt − log xj,t−1),

according to which the growth rate of the aggregate M is the weighted
average of the growth rates of the component quantities, with the Di-
visia weights being defined as the expenditure shares averaged over the
two periods of the change, w∗

jt = (1/2)(wjt + wj,t−1) for j = 1, ..., n,
where wjt = pjtxjt/

∑
pktxkt is the expenditure share of asset j during

period t, and pjt is the nominal user cost of asset j, derived in Barnett
(1978),

pjt = p∗
Rt − rjt

1 +Rt
,

which is just the opportunity cost of holding a dollar’s worth of the jth
asset. Above, p∗ is the true-cost of living index, rjt is the market yield
on the jth asset, and Rt is the yield available on a ‘benchmark’ asset
that is held only to carry wealth between multiperiods.
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Thus the allocation of expenditure between the assets within the
rth group and the (r − 1)th monetary aggregate may be carried out
optimally knowing only the prices within the rth group, the price in-
dex of the (r − 1)th monetary aggregate, and the optimal expenditure
on Qr (being passed down recursively from the previous stage con-
strained maximization). This system of optimization problems reflects
a sequential budgeting procedure, similar to the two-stage budgeting
procedure discussed in Chapter 15. Although the consumer is mak-
ing the decentralization decisions from the top of the tree down, one
can estimate conditional money demand models at successive levels of
aggregation recursively, from the bottom up. This approach to the re-
cursive estimation of utility trees has been developed by Barnett (1977)
and Anderson (1979), and has been applied to the demand for money
problem by Serletis (1991a).

It should be obvious that strong recursive separability is a ‘strong’
assumption and that the Fed’s (and most other central banks’) present
practice of having this sort of structure is entirely unrealistic, and there-
fore not suitable for applied econometric work. In particular, the alge-
braic requirement of strong recursive separability is that

∂

∂xk

(
fi(x)
fj(x)

)
= 0,

for every i ∈ Ir, j ∈ Is, k ∈ It, t > r, s. That is, strong recursive
separability implies that the marginal rate of substitution between,
say, an asset in x1 and an asset in x2 is independent of assets in x3

and x4.
In fact, one of the objectives of empirical demand analysis is to dis-

cover the structure of preferences. That is, instead of imposing a group-
ing pattern on the model, as is the case with most central banks’ a priori
assignment of monetary assets to monetary aggregates, the structure of
preferences over monetary assets could be discovered by actually testing
for weakly separable subgroups. We feel that separability-based model-
ing of the demand for liquid assets is an area for potentially productive
future research. This matter is the subject of Chapter 24.

22.2 Duality and Functional Structure

There is another issue to be discussed, which is ultimately related
to the uncertainty about the ‘true stucture’ of preferences. We have
argued that the structure of preferences can be represented by either a
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direct or an indirect utility function, with the latter being more eas-
ily approached because it simplifies the estimation considerably, since
it has prices exogenous in explaining consumer behavior. However, a
structural property of the direct utility function does not imply the
same property on the indirect utility function, and in order to imple-
ment a model of demand based on the indirect function that satisfies
properties of the direct function, a correspondence between direct and
indirect properties is needed.

Although nonhomothetic direct and indirect separable utility func-
tions are distinct structures, as we mentioned in the previous chapter,
Lau (1970) showed that if the direct utility function is weakly separable
with homothetic aggregator functions then the indirect utility function
will have the same structure with respect to (expenditure-normalized)
prices. Moreover, Blackorby, Nissen, Primont, and Russell (1974) show
that if the direct utility function is strongly recursively separable with
homothetic aggregator functions then the indirect utility function will
have the same structure with respect to normalized prices. The above
results also apply to quasi-homothetic (i.e., homothetic to a point other
than the origin) preferences — see Gorman (1970) for an extensive
treatment of quasi-homotheticity.

The choice of homothetic indirect utility functions in some of the
empirical work [such as, for example, Serletis (1991a, 1991b)] has been
primarily motivated by these considerations. That is, it is motivated
by the need to maintain a correspondence between direct and indirect
utility function properties.

22.3 Stochastic Specification

In order to estimate share equation systems such as those discussed
in Chapters 20 and 21, a stochastic version must be specified. Since
these systems are in share form and only exogenous variables appear
on the right-hand side, it seems reasonable to assume that the observed
share in the ith equation, i = 1, ..., n, deviates from the true share by an
additive disturbance term εi. Furthermore, we assume that the resulting
disturbance vector ε = (ε1, ε2, ..., εn) is a ‘classical disturbance’ term
with the following properties

E(εt) = 0, E(εt, ε
′
s) =

⎧
⎨
⎩

Ω for s = t

0 for s �= t
all s, t,
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where Ω is the n × n symmetric and positive semidefinite covariance
matrix, and 0 is a null matrix. With the addition of additive errors,
the share equation system can be written in matrix form as

st = ψ(vt,θ) + εt, (22.1)

where θ is the coefficients vector.
As an example, consider the three-asset homothetic translog demand

system

s1t = α1 + β11 log v1t + β12 log v2t + β13 log v3t + ε1t;

s2t = α2 + β21 log v1t + β22 log v2t + β23 log v3t + ε2t;

s3t = α3 + β31 log v1t + β32 log v2t + β33 log v3t + ε3t,

which we can write in matrix notation as

⎡
⎣
s1t

s2t

s3t

⎤
⎦ =

⎡
⎣
α1 β11 β12 β13

α2 β21 β22 β23

α3 β31 β32 β33

⎤
⎦

⎡
⎢⎢⎣

1
log v1t

log v2t

log v3t

⎤
⎥⎥⎦+

⎡
⎣
ε1t

ε2t

ε3t

⎤
⎦ ,

or more compactly,
st = Πvt + εt, (22.2)

where st is a vector of positive expenditure shares, vt is a vector of
expenditure normalized prices with unity as the first element, Π is a
matrix of preference parameters, and εt is a vector of random distur-
bances.

Since the sit are budget shares, they satisfy the adding up (singu-
larity) condition, i′st = 1, for all t, so that we must have i′Π = [1 0 0
0] and i′εt = 0, for all t, where i is an appropriately dimensioned unit
vector. Written out in full, the adding up condition for the three asset
homothetic translog implies

α1 + α2 + α3 = 1;
β11 + β21 + β31 = 0;
β12 + β22 + β32 = 0;
β13 + β23 + β33 = 0;
u1t + u2t + u3t = 0.



22.4. Autoregressive Disturbances 307

In addition to the adding up restrictions onΠ, other restrictions are
also imposed. An example of such other restrictions is the symmetry
restrictions (to be discussed in more detail in the next chapter),

β12 = β21;
β13 = β31;
β23 = β32.

The assumption that we have made about εt permits correlation
among the disturbances at time t but rules out the possibility of auto-
correlated disturbances. This assumption and the fact that the shares
satisfy an adding up condition (because this is a singular system) imply
that the disturbance covariance matrix is also singular.

Another issue concerns our assumption that the error terms are nor-
mally distributed. As we are dealing with shares, such that 0 ≤ si ≤ 1,
the error terms cannot be exactly normally distributed and a multivari-
ate logistic distribution might be a better assumption, as in Barnett,
Geweke, and Yue (1991). However, as Davidson and MacKinnon (1993)
argue, if the sample does not contain observations which are near 0 or
1, one can use the normal distribution as an approximation in the in-
ference process.

If autocorrelation in the disturbances is absent, Barten (1969) has
shown that full information maximum likelihood (FIML) estimates of
the parameters can be obtained by arbitrarily deleting one equation in
such a system, and that the resulting estimates are invariant with re-
spect to the equation deleted. The parameter estimates from the deleted
equation can be recovered from the restrictions imposed.

22.4 Autoregressive Disturbances

The assumption of a classical disturbance term permits correlation
among the disturbances at time t but rules out the possibility of au-
tocorrelated disturbances. This assumption and the fact that st (and
therefore the εt) satisfy the adding up condition imply that the dis-
turbance covariance matrix is also singular. As we argued earlier, if
autocorrelation in the disturbances is absent, then FIML estimates of
the parameters can be obtained by arbitrarily deleting one equation,
with the resulting estimates being invariant with respect to the equa-
tion deleted.

However, autocorrelation in money demand systems is a common
result and may be caused by institutional constraints which prevent
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people from adjusting their asset holdings within one period. In cases
where the equation-by-equation Durbin-Watson statistics suggest that
the disturbances are serially correlated, then usually a first-order au-
toregressive process is assumed, such that

εt = ρεt−1 + et,

where ρ = [ρij ] is a matrix of unknown parameters and et is a non-
autocorrelated vector disturbance term with constant covariance ma-
trix. For example, in the three asset HTL case, we have

ρ =

⎡
⎣
ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33

⎤
⎦ and et =

⎡
⎣
e1t

e2t

e3t

⎤
⎦ ,

and adding up of the budget shares implies the following restrictions
on ρ,

ρ1i + ρ2i + ρ3i = κ, i = 1, 2, 3.

In this case, FIML estimates of the parameters can be obtained by using
a result developed by Berndt and Savin (1975). They showed that if
one assumes no autocorrelation across equations (i.e., ρ is diagonal),
the autocorrelation coefficients for each equation must be identical,
ρ11 = ρ22 = ρ33 = ρ. Consequently, by writing equation (22.1) for
period t − 1, multiplying by ρ, and subtracting from (22.1), we can
estimate (using FIML procedures) stochastic budget share equations
given by

st = ψ(vt,θ) + ρst−1 − ρψ(vt−1,θ) + et. (22.3)

As an example, the homothetic translog version of the problem, with
symmetry imposed and the third equation deleted, can be set up as
follows

s1t = α1 + β11 log v1t + β12 log v2t + β13 log v3t + ρs1t−1

− ρ
(
α1 + β11 log v1t−1 + β12 log v2t−1 + β13 log v3t−1

)
+ e1t;

s2t = α2 + β12 log v1t + β22 log v2t + β23 log v3t + ρs2t−1

− ρ
(
α2 + β12 log v1t−1 + β22 log v2t−1 + β23 log v3t−1

)
+ e2t.

Notice that imposing a common factor across the equations ensures
the invariance of the FIML parameter estimates with respect to the
equation deleted.
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22.5 Theoretical Regularity

As we noted in Chapter 20, the usefulness of flexible functional forms
depends on whether they satisfy the theoretical regularity conditions
of positivity, monotonicity, and curvature. These conditions can be
checked as follows [see, for example, Serletis and Shahmoradi (2005)
for more details]:

• Positivity can be checked by direct computation of the values of the
estimated budget shares, ŝt. It is satisfied if ŝt ≥ 0, for all t.

• Monotonicity can be checked by choosing a normalization on the in-
direct utility function so as to make h(v) decreasing in its arguments
and by direct computation of the values of the first gradient vector
of the estimated indirect utility function. It is satisfied if ∇ĥ(v) < 0,
where ∇ĥ(v) = (∂/∂v)ĥ(v).

• Curvature requires that the Slutsky matrix be negative semidefinite
and can be checked by performing a Cholesky factorization of that
matrix and checking whether the Cholesky values are nonpositive
[since a matrix is negative semidefinite if its Cholesky factors are
nonpositive — see Lau (1978, Theorem 3.2)]. Curvature can also be
checked by examining the Allen elasticities of substitution matrix
provided that the monotonicity condition holds. It requires that this
matrix be negative semidefinite. In the case of four assets (n = 4),
for example, this requires that (i) all own four σa

ii are negative at
each observation, (ii) each of the six possible 2 × 2 matrices

[
σa

ii σa
ij

σa
ij σa

jj

]

for i, j = 1, 2, 3, 4 but i �= j, has a positive determinant at every
observation, (iii) each of the four possible 3 × 3 matrices

⎡
⎣
σa

ii σa
ij σa

ik

σa
ij σa

jj σa
jk

σa
ik σa

jk σa
kk

⎤
⎦

for i, j, k = 1, 2, 3, 4 but i �= j, i �= k, j �= k, has a negative deter-
minant at every observation, and (iv) the 4× 4 matrix consisting of
all the σa

ij , i, j = 1, 2, 3, 4,
⎡
⎢⎢⎣
σa

11 σa
12 σa

13 σa
14

σa
12 σa

22 σa
23 σa

24
σa

13 σa
23 σa

33 σa
34

σa
14 σa

24 σa
34 σa

44

⎤
⎥⎥⎦
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has a determinant whose value is zero (or near zero).

22.6 Econometric Regularity

We have shown how to estimate money demand functions from ag-
gregate time series data and highlighted the challenge inherent with
achieving economic regularity and the need for economic theory to in-
form econometric research. Incorporating restrictions from economic
theory seems to be gaining popularity as there are also numerous recent
papers that estimate stochastic dynamic general equilibrium models us-
ing economic restrictions — see, for example, Aliprantis et al. (2006).
With the focus on economic theory, however, we should not be ignor-
ing econometric regularity. In particular, we should not be ignoring unit
root and cointegration issues, because the combination of nonstationary
data and nonlinear estimation in large models (like the ones discussed
in the previous two chapters) is an extremely difficult problem.

In this regard, there is a great deal of consensus in the literature
that aggregate budget shares and price and expenditure variables are
integrated of order one [or I(1) in the terminology of Engle and Granger
(1987)]. It follows then that for demand models to make any sense the
variables must be cointegrated in levels; that is, the equation errors
must be stationary. If the errors are nonstationary, then there is no
theory linking the left hand side to the right hand side variables in
equation (22.1) or, equivalently, no evidence for the theoretical models
in level form. In such cases, an important nonstationary variable might
have been omitted and as a minimal step towards addressing the issue
the models should be reestimated with the inclusion of a time trend,
which can at least roughly proxy the omitted dynamics, omitted de-
mographic shifts, and deterministic nonstationarity. Allowing for first
order serial correlation, as in equation (22.3), is almost the same as
taking first differences of the data if the autocorrelation coefficient is
close to unity. In that case, the equation errors become stationary, but
there is no theory for the models in first differences.

If the errors are stationary, the estimates are super consistent. How-
ever, as argued by Attfield (1997) and Ng (1999), standard estimation
procedures are inadequate for obtaining correctly estimated standard
errors for coefficients in cointegrating equations. If the equations were
all linear, the DOLS method of Stock and Watson (1993) or the FM-
OLS method of Phillips (1991, 1995) could have been used to obtain
correctly estimated standard errors. With nonlinear models, however,
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some sort of modification of these procedures is called for, but this is
a very difficult issue to deal with and beyond the scope of this book.

22.7 Expenditure and Price Elasticities

A system of budget share equations provides a complete characteriza-
tion of consumer preferences over the services of monetary assets and
can be used to estimate the income elasticities as well as the own-
and cross-price elasticities. These elasticities are particularly useful in
judging the validity of the parameter estimates and can be calculated
directly from the estimated budget share equations by writing the left-
hand side as

xi =
siy

pi
, i = 1, . . . , n.

In particular, the income elasticities, ηiy, can be calculated as

ηiy =
y

si

∂si

∂y
+ 1, i = 1, . . . , n,

and the uncompensated (Cournot) price elasticities, ηij , as

ηij =
pj

si

∂si

∂pj
− δij , i, j = 1, . . . , n,

where δij = 0 for i �= j and 1 otherwise. If ηij > 0 the assets are gross
substitutes, if ηij < 0 they are gross complements, and if ηij = 0 they
are independent.

As an example, the elasticity formulas for the homothetic translog
are

ηiy = 1, ηii =
βii

si
− 1, and ηij =

βij

si
.

22.8 Elasticities of Substitution

We can also interpret the estimated parameter values by computing
elasticities of substitution. One reason for our interest in these mea-
sures is that the degree of substitutability among monetary assets has
been used — explicitly or implicitly — to provide a rationale for the
appropriate definition of money, which as we have seen has been the
focus of continuing controversy over the years. Moreover, knowledge
of the substitutability between monetary assets is essential in order to
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understand the potential effects of monetary policy actions as well as
the effects of the growth of financial intermediation.

There are currently two methods employed for calculating the par-
tial elasticity of substitution between two variables — the Allen and
the Morishima. The Allen elasticity of substitution (AES) between two
liquid assets i and j, denoted by σa

ij , can be calculated from the in-
come and price elasticities, using the Slutsky equation (to be discussed
in detail in the next section)

σa
ij = ηiy +

ηij

sj
.

It categorizes goods as complements if an increase in the price of asset j
causes a decreased consumption of asset i (σa

ij < 0). If σa
ij > 0, goods are

Allen substitutes. Alternatively, following Diewert (1974) and Gallant
(1981), the Allen elasticity of substitution can be computed from the
estimated indirect utility function as follows

σa
ij =

[
∑

k vkVk]Vij

ViVj
−
∑

k vkVjk

Vj
−
∑

k vkVik

Vi
+
∑

m

∑
k vkVkmvm∑
n vnVn

,

where Vi and Vij denote elements of ∂h(v)/∂v and ∂2h(v)/∂v∂v′,
respectively.

Although the AES has been used widely to study substitution be-
havior and structural instability, Blackorby and Russell (1989) have
shown that the AES is quantitatively and qualitatively uninformative
and that the Morishima elasticity of substitution (MES) is the cor-
rect measure of the substitution elasticity. The Morishima elasticity of
substitution, denoted by σm

ij , is defined as [see Blackorby and Russell
(1989) for more details]

σm
ij = si(σa

ji − σa
ii),

and addresses impacts on the ratios of two goods. In particular, it
categorizes goods as complements (σm

ij < 0) if an increase in the price of
j causes xi/xj to decrease. If σm

ij > 0, goods are Morishima substitutes.
Comparing the AES and the MES, we see that [since σa

ii is always
positive (given negative own price elasticities)] if two goods are Allen
substitutes (σa

ji > 0) they must also be Morishima substitutes (σm
ij >

0). However, two goods may be Allen complements (σa
ji < 0), but

Morishima substitutes if |σa
ii| > |σa

ji|, suggesting that the AES always
overstates the complementarity relationship. Moreover, the AES matrix
is symmetric (σa

ij = σa
ji), but the MES matrix is not — Blackorby and

Russell (1981) show that the MES matrix is symmetric only when the
aggregator function is a member of the CES family.
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22.9 Conclusion

In this chapter we have illustrated some basic aspects of demand system
specification that will provide context and motivation for the discussion
in Chapter 23. One of the possible ways of improving on the foregoing
is to pay explicit attention to the time series properties of the data. A
recent finding in the econometrics literature is that estimation and hy-
potheses testing critically depend on the integration and cointegration
properties of the variables. For example, in the context of linear demand
systems such as the homothetic translog and the AIDS, Ng (1995) and
Attfield (1997) test the null hypothesis of homogeneity (with respect
to prices and nominal income) and show that this cannot be rejected
once the time series properties of the data are imposed in estimation.

This implies that testing for cointegration [in the spirit of Engle
and Granger (1987)], and constructing a form of the error correction
model is appropriate. Most demand systems, however, have share equa-
tions that are nonlinear and, as Granger (1995) points out, nonlinear
modeling of nonstationary variables is a new, complicated, and largely
undeveloped area. We generally ignore this issue in this book, keeping
in mind that this is an area for potentially productive future research.
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Applied Monetary Demand Analysis

23.1. The Monetary Problem
23.2. The Basic Translog and the Demand for Money
23.3. The AIM(2) Model and the Demand for Money
23.4. Conclusion

In this chapter we consider and illustrate a solution to the inter-
related problems of monetary aggregation and estimation of money
demand functions. In doing so, we use quarterly U.S. data and take a
demand systems approach. We handle the problem in two stages: (i) we
aggregate liquid assets using a superlative index — the Divisia index;
and (iii) we use a flexible demand system to deal with the problem of
money demand.

Our objective is to estimate income, price, and elasticities of substi-
tution, by estimating a system of demand equations derived from the
indirect utility function. In order to do so, we need to choose a func-
tional form that will accurately approximate both the true indirect
utility function and its partial derivatives. As already noted, paramet-
ric functions (such as, for example, the Cobb-Douglas) fail to accu-
rately approximate the data generating function and often restrict the
substitutability/complementarity relationship between money and near
monies.
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23.1 The Monetary Problem

Following Serletis and Shahmoradi (2005, 2007), we assume that the
representative money holder faces the following problem

max
x

f (x) subject to p′x = y (23.1)

where x = (x1, x2, · · ·, x8) is the vector of monetary asset quantities
described in Table 23.1; p = (p1, p2, · · ·, p8) is the corresponding vector
of monetary asset user costs; and y is the expenditure on the services
of monetary assets. Because demand system estimation requires heavy
dimension reduction (as already noted in Chapter 22), we follow Serletis
and Shahmoradi (2005, 2007) and separate the group of assets into
three collections based on empirical pre-testing. Thus the monetary
utility function in (23.1) can be written as

f (x) = f
(
fA (x1, x2,x3, x4) , fB (x5, x6) , fC (x7, x8)

)

where the subaggregate functions fi (i = A,B,C) provide subaggregate
measures of monetary services.

Table 23.1. Monetary Assets/Components

A

⎧
⎪⎪⎨
⎪⎪⎩

1 Currency + Travelers checks
2 Demand deposits
3 Other checkable deposits at banks including Super Now accounts
4 Other checkable deposits at thrifts including Super Now accounts

B

{
5 Savings deposits at banks including money market deposit accounts
6 Savings deposits at thrifts including money market deposit accounts

C

{
7 Small denomination time deposits at commercial banks
8 Small denomination time deposits at thrift institutions

Although not the same, this structure of preferences is very simi-
lar to the one uncovered by Fisher and Fleissig (1994) and also used
by Fleissig and Swofford (1996) and Fisher and Fleissig (1997) when
they estimated their money demand models. Fisher and Fleissig (1994)
found, using the NONPAR program of Varian (1982, 1983), that these
groups of assets satisfy the weak separability condition for several Gen-
eralized Axiom of Revealed Preference (GARP) consistent subperiods.
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Instead of using the simple-sum index, currently in use by the Fed-
eral Reserve and most central banks around the world, to contruct the
monetary subbaggregates, fi (i = A,B,C), we use the Divisia quantity
index to allow for less than perfect substitutability among the relevant
monetary components. Recall that the Divisia index (in discrete time)
is defined as

logMD
t − logMD

t−1 =
n∑

j=1

w∗
jt(log xjt − log xj,t−1),

according to which the growth rate of the aggregate is the weighted av-
erage of the growth rates of the component quantities, with the Divisia
weights being defined as the expenditure shares averaged over the two
periods of the change, w∗

jt = (1/2)(wjt + wj,t−1) for j = 1, ..., n, where
wjt = pjtxjt/

∑
pktxkt is the expenditure share of asset j during period

t, and pjt is the nominal user cost of asset j, derived in Barnett (1978),

pjt = p∗
Rt − rjt

1 +Rt
,

which is just the opportunity cost of holding a dollar’s worth of the jth
asset. Above, p∗ is the true-cost of living index, rjt is the market yield
on the jth asset, and Rt is the yield available on a ‘benchmark’ asset
that is held only to carry wealth between multiperiods.

23.2 The Basic Translog and the Demand for Money

We begin by using the basic translog functional form to approximate
the unknown indirect utility function. As we argued in Chapter 20,
however, the translog is capable of approximating an arbitrary function
only locally (at a point), and that a more constructive approach would
be based on the use of flexible functional forms that possess global
properties. Thus, the results in this section are not definitive in any
sense, but are meant to demonstrate the demand systems methodology
described in the discussion thus far.

The basic translog functional form, discussed in Chapter 20, with
the symmetry restrictions, βij = βji, imposed for the three-asset (n =
3) case can be written as

log h(v) = a0 +
3∑

k=1

ak log vk +
1
2

3∑
k=1

3∑
j=1

βjk log vk log vj .
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Applying the logarithmic form of Roy’s identity allows us to derive the
model’s share equations,

si =

ai +
3∑

k=1

βik log vk

3∑
k=1

ak +
3∑

k=1

3∑
j=1

βjk log vk

+ εi, i = 1, 2, 3.

The disturbance terms ei (i = 1, 2, 3) have been added to capture de-
viations of the observed shares from the true shares. As we argued in
Chapter 22, the errors are assumed to be additive, jointly normally dis-
tributed with zero means, and with constant but unknown variances
and covariances. This distributional assumption on the errors is stan-
dard and is fundamental in the derivation of the FIML estimator.

Since demand theory provides that the budget shares sum to 1, it
follows that the disturbance covariance matrix is singular. If autocor-
relation in the disturbances is absent (as assumed here), Barten (1969)
showed that FIML estimates of the parameters can be obtained by ar-
bitrarily deleting an equation in such a system and that the estimation
results are invariant with respect to the equation deleted. Thus, with
three shares one equation must be dropped, and only two equations are
estimated. Here, we drop the third equation and estimate the remaining
two equations. Notice also that estimation of this system requires some
parameter normalization, as the share equations are homogeneous of
degree zero in the a’s. We use the normalization a1 + a2 + a3 = 1, and
in terms of the variables defined above, we estimate

s1 =
a1 + β11 log v1 + β12 log v2 + β13 log v3

1 +
3∑

j=1

3∑
i=1

βji log vj

+ ε1;

s2 =
a2 + β12 log v1 + β22 log v2 + β23 log v3

1 +
3∑

j=1

3∑
i=1

βji log vj

+ ε2.

This system has 8 free parameters — that is, 8 parameters estimated
directly. These parameters are: a1, a2 β11 β12 β13 β22 β23, and β33.
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23.2.1 Data and Econometric Issues

We use the same quarterly data set (from 1970:1 to 2003:2, a total
of 134 observations) as in Serletis and Shahmoradi (2005, 2007). It
consists of asset quantities and nominal user costs for the eight items
listed in Table 23.1, obtained from the Monetary Services Indices (MSI)
project of the Federal Reserve Bank of St. Louis. As we require real
per capita asset quantities for our empirical work, we have divided each
measure of monetary services by the U.S. CPI (all items) and total U.S.
population in each period. The calculation of the user costs, which are
the appropriate prices for monetary services, has been explained earlier.

Prior to estimation (and the logarithmic transformation of the
data), the income-normalized prices were normalized again by dividing
each vi by its mean in order to place the Taylor’s expansion around
the point v∗ = 1. The system was estimated using the FIML regression
procedure in TSP International (version 4.5) — convergence is set at
0.00001. As with vector autoregressions and other time series models,
there are many parameters to be estimated and it does not matter if all
the parameters are statistically significant or not — what is important
is for the model to fit the data well.

As results in nonlinear optimization are sensitive to the initial pa-
rameter values, to avoid being caught in local minima and in order
to achieve global convergence, we randomly generate sets of initial pa-
rameter values and choose those parameter estimates that lead to the
lowest value of the objective function.

23.2.2 Empirical Evidence

The parameter estimates that minimize the objective function are re-
ported in Table 23.2, with p-values in the last column. We also re-
port the number of positivity, monotonicity, and curvature violations,
checked as we discussed in Chapter 22.

Clearly, although the model satisfies positivity and monotonicity at
all sample observations, it violates curvature at most observations (in
particular, at 65 observations). Because regularity hasn’t been attained
(by luck), we follow the suggestions by Barnett (2002) and Barnett and
Pasupathy (2003) and estimate the model by imposing local curvature.
We impose local curvature using the Ryan and Wales (1998) and Mos-
chini (1999) procedures, discussed in detail in Chapter 20. In particular,
we impose the following three restrictions [see Chapter 20 for more
details]:
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Table 23.2. Basic Translog Parameter Estimates

Parameter Estimate p-value

a1 .412 .004
a2 .290 .003
β11 .770 .114
β12 .117 .143
β13 .461 .126
β22 .249 .088
β23 .228 .111
β33 .511 .112

Positivity violations 0
Monotonicity violations 0
Curvature violations 65

Notes: Quarterly data 1970:1-2003:2 (T = 134).

β11 = −k2
11 + a1 + 2a1θ1 − a2

1 (1 + θ1 + θ2 + θ3) ;
β12 = −k11k21 + a1θ2 + a2θ1 − a1a2 (1 + θ1 + θ2 + θ3) ;

β22 = −k2
21 − k2

22 + a2 + 2a2θ2 − a2
2 (1 + θ1 + θ2 + θ3) ,

on the share equations.
Also, as noted by Ryan and Wales (1998), the ability of locally

flexible models to satisfy curvature at other sample observations other
than the point of approximation, depends on the choice of approxi-
mation point. Thus, we estimated the model 134 times (a number of
times equal to the number of observations) and report results for the
best approximation point (best in the sense of satisfying the curvature
conditions at the largest number of observations). The best approxi-
mation point is 2002:4. The results are reported in Table 23.3 in the
same fashion as those in Table 23.2.

Our findings in terms of regularity violations when the curvature
conditions are imposed are disappointing. In particular, the imposition
of local curvature reduces the number of curvature violations from 65
to 50. This means that based on this model inferences about money
demand (including those about income and price elasticities as well
as the elasticities of substitution) will not significantly improve our
understanding of real world money demand.
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Table 23.3. Basic Translog Parameter Estimates
With Local Curvature Imposed

Parameter Estimate p-value

a1 .398 .011
a2 .248 .016
β11 .140 .012
β12 .041 .013
β13 .089 .004
β22 .059 .005
β23 .052 .006
β33 .093 .008

Positivity violations 0
Monotonicity violations 0
Curvature violations 50

Notes: Quarterly data 1970:1-2003:2 (T = 134).

23.2.3 Regularity Effects of Serial Correlation Correction

We have used a static model, implicitly assuming that the pattern of
demand adjusts to a change in exogenous variables instantaneously. We
paid no attention to the dynamic structure of the model used, although
many recent studies report results with serially correlated residuals sug-
gesting that the underlying models are dynamically misspecified. Auto-
correlation in the disturbances has mostly been dealt with by assuming
a first-order autoregressive process (discussed in detail in Chapter 22)
— see, for example, Ewiss and Fisher (1984), Serletis and Robb (1986),
Serletis (1987, 1988), Fisher and Fleissig (1994, 1997), Fleissig (1997),
Fleissig and Swofford (1996, 1997), Fleissig and Serletis (2002), and
Drake and Fleissig (2004).

Here we investigate the effects on theoretical regularity of serial
correlation corrections by allowing the possibility of a first-order au-
toregressive process in the error terms, as follows

εt = ρεt−1 + et,

where ρ = [ρij ] is a matrix of unknown parameters and et is a non-
autocorrelated vector disturbance term with constant covariance matrix.
As already noted in Chapter 22, estimates of the parameters can
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be obtained by using a result developed by Berndt and Savin (1975).
They showed that if one assumes no autocorrelation across equations
(i.e., ρ is diagonal), the autocorrelation coefficients for each equation
must be identical. Consequently, we can estimate (using FIML proce-
dures) stochastic budget share equations given by

st = ψ(vt,θ) + ρst−1 − ρψ(vt−1,θ) + et.

We estimated the above equation for the basic translog and observed
that serial correlation correction increases the number of curvature vi-
olations (from 65 to 93) and also leads to induced violations of mono-
tonicity (at 40 data points) — see Serletis and Shahmoradi (2007) for
more details. It seems that the current practice of correcting for serial
correlation without reporting the results of monotonicity checks (even
when the curvature conditions are imposed) is not justified. Moreover,
allowing for first order serial correlation is almost the same as taking
first differences of the data if the autocorrelation coefficient is close to
unity. In that case, the equation errors become stationary, but there is
no theory for the models in first differences.

We believe that in order to deal with dynamically misspecified mod-
els attention should be focused in the development of unrestricted
dynamic formulations to accommodate short-run disequilibrium situ-
ations as, for example, in Serletis (1991) who builds on the Anderson
and Blundell (1982) approach to dynamic specification in the spirit of
error correction models. Alternatively, attention should be focused in
the development of dynamic generalizations of the traditional static
models by considering specific theories of dynamic adjustment.

23.3 The AIM(2) Model and the Demand for Money

Because of the dissapointing results with the basic translog demand
system, in this section we build on Serletis and Shahmoradi (2005)
and estimate the AIM model using the same optimization procedures
as in Gallant and Golub (1984) and Serletis and Shahmoradi (2005),
already discussed in Chapter 21 of this book. In particular, we estimate
the AIM(2) demand system (reproduced here):
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where D is the sum of the numerators in equations (23.2), (23.3), and
(23.4).

Since the usefulness of flexible functional forms depends on whether
they satisfy the theoretical regularity conditions (of positivity, mono-
tonicity, and curvature), we impose the curvature restriction globally,
using the methods that we discussed in Chapter 21. Using NPSOL we
performed the computations and report the parameter estimates in Ta-
ble 23.4, together with the minimized value of the objective function,
in the last row of the table.
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Table 23.4. AIM(2) Parameter Estimates

Parameter Estimate Parameter Estimate

b1 -6.926 b15 3.568
b2 -1.935 b16 -13.164
b4 -2.977 b17 -4.136
b5 -14.185 b18 5.035
b6 -4.432 b19 -7.425
b7 -3.326 b20 2.626
b8 -11.115 b21 13.912
b9 14.818 b22 -0.721
b10 2.416 b23 1.980
b11 -12.377 b24 5.727
b12 12.813 b25 -7.050
b13 -10.896 b26 5.627
b14 4.425

Value of the objective function: .0236.

Note: Quarterly data 1970:1-2003:2.

The imposition of curvature globally does not produce spurious vi-
olations of monotonicity, mentioned by Barnett and Pasupathy (2003),
thereby assuring true theoretical regularity. Hence, in what follows we
discuss the income and price elasticities as well as the elasticities of
substitution based on the AIM(2) model which (with our data set)
satisfies both the neoclassical monotonicity and curvature conditions.

23.3.1 AIM(2) Income and Price Elasticities

In the demand systems approach to estimation of economic relation-
ships, the primary interest, especially in policy analysis, is in how the
arguments of the underlying functions affect the quantities demanded.
This is conventionally and completely expressed in terms of income and
price elasticities and in elasticities of substitution. We are interested in
the policy issues, but we are also interested in the informational context
of the the model.

We begin by presenting the income elasticities (ηiy) in Table 23.5,
evaluated at the mean of the data, for the three subaggregates, A, B,
and C — all elasticities have been acquired using numerical differen-
tiation and the formulas presented in Chapter 22. ηAy, ηBy, and ηCy
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are all positive (suggesting that assets A, B, and C are all normal
goods) which is consistent with economic theory. In Table 23.5 we also
show the uncompensated (Cournot) own- and cross-price elasticities,
evaluated at the mean of the data. The own-price elasticities are all
negative, as predicted by the theory. For the cross-price elasticities,
economic theory does not predict any signs, but we note that most of
the off-diagonal terms are negative, indicating that the assets taken
as a whole, are gross complements. This is a frequent finding in the
literature.

Table 23.5. Income and Price Elasticities

Asset ηiy ηiA ηiB ηiC

A .988 −.551 −.225 −.211

B 1.821 −.750 −.751 −.322

C .115 .025 .130 −.270

Note: Quarterly data 1970:1-2003:2

23.3.2 AIM(2) Elasticities of Substitution

From the point of view of monetary policy, the measurement of the
elasticities of substitution among the three monetary assets is of prime
importance. The currently popular simple sum approach to monetary
aggregation requires that the elasticities of substitution be very high
(perhaps infinite) among the components of the monetary aggregates.
An additional concern relates to the volatility of the elasticities. Specif-
ically, if there is evidence of significant volatility in the elasticies of
substitution (with models such as the AIM(2) that satisfies all three
theoretical regularity conditions), the simple sum aggregates will surely
be invalid and methods of aggregation that allow for variable elasticities
of substitution would be preferable.

In Table 23.6 we show estimates of the Allen elasticities of substitu-
tion, evaluated at the means of the data. We expect the three diagonal
terms, representing the own-elasticities of substitution for the three
assets, to be negative. This expectation is clearly achieved. However,
because the Allen elasticity of substitution produces ambiguous results
off-diagonal, we will use the Morishima elasticity of substitution to in-
vestigate the substitutability/complementarity relation between money
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and near money.

Table 23.6. Allen Elasticities

Asset σa
iA σa

iB σa
iC

A −.212 .190 .170

B −.833 .575

C −.934

Note: Quarterly data 1970:1-2003:2.

Based on the asymmetrical Morishima elasticities of substitution
— the correct measures of substitution — the assets are all Morishima
substitutes, as documented in Table 23.7. Moreover, all Morishima elas-
ticities of substitution are less than unity. This clearly indicates diffi-
culties for a simple-sum based monetary policy and helps explain why
recent attempts to target and control the money supply (simple sum
M2) have been abandoned in favor of interest rate procedures.

Table 23.7. Morishima Elasticities

Asset σm
iA σm

iB σm
iC

A .185 .176

B .289 .427

C .285 .363

Note: Quarterly data 1970:1-2003:2.

Because we are providing global approximations, it is also interest-
ing to present graphs for the Morishima elasticities, as those in Figures
23.1 and 23.2. As already noted, the Morishima approach to the cal-
culation of the elasticity of substitution provides a different estimate
depending on which asset price is varied (of the two being considered).
For example, Figure 23.1 shows the Morishima elasticity between as-
sets A and B with the price of A changing whereas Figure 23.2 shows
the same elasticity with the price of B varying, in effect approaching
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from a different direction. As expected, there are no inconsistencies in
the elasticity calculations and all the estimates are less than unity over
the entire sample, showing mild substitutabilty (no matter what price
is varied in the Morishima calculation).

23.4 Conclusion

We have investigated the substitutabilty of money and near monies in
the United States in the context of the AIM(2) model. The model sat-
isfies the theoretical regularity conditions (of positivity, monotonicity,
and curvature) and our parameter and elasticity estimates are there-
fore consistent with neoclassical microeconomic theory. We have also
provided a policy perspective, using parameter estimates that are con-
sistent with global regularity, in that a very strong case can be made
for abandoning the simple sum approach to monetary aggregation, on
the basis of the low and volatile elasticities of substitution among the
components of the popular M2 aggregate of money. This is the same
(qualitative) conclusion reached by Serletis and Shahmoradi (2005) us-
ing the Fourier and the AIM(2) models and Serletis and Shahmoradi
(2007) using a number of locally flexible demand system specifications.

We have thus provided a solution to the inter-related problems of
monetary aggregation and estimation of money demand, using demand
systems analysis. As Fisher (1989, p. xiii) puts it,

“[t]his work represents a literature that has developed in the
monetary context over the last 15 or so years and one that now
offers theoretical and empirical insights on both the nature of
what we might call ‘the monetary problem’ and on most of the
major issues involving monetary policy.”

We have also addressed several other matters that we haven’t si-
multaneously examined. A discussion of these matters is the subject of
the next, final, chapter of this book.
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Future Research Agenda

24.1. Outstanding Credit
24.2. Monetary Policy
24.3. Dynamics
24.4. Risk Matters
24.5. Conclusion

Clearly many unsolved problems exist in what Barnett (1997) calls
the ‘high road’ literature regarding the inter-related problems of mon-
etary aggregation and estimation of money demand. These problems
continue to be the subject of expanding research. In fact, as Barnett
(1997, p. 1182) puts it,

“the high road builds on the foundation of existing microeco-
nomic theory, including the theory of the firm, consumer theory,
and the implied microeconomic aggregation and index number
theory. Advances in those areas are accepted and absorbed in
a coherent manner as research proceeds up the high road. Con-
structive criticism of the high road is based upon recognition
of the existence of unsolved problems in the supporting areas
of economic research and the need for further development in
those areas to permit the high road to climb even higher.”

With this in mind, in this concluding chapter of the book we address
a number of issues and point particular directions (not necessarily in
order of importance) that high road research could take.
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24.1 Outstanding Credit

The monetary aggregates currently available (either simple-sum, Di-
visia, or currency equivalent) exclude unused credit, potentially gener-
ating spurious instability of money demand. Given that a conceptually
more appropriate measure of the quantity of the medium of exchange
should assign a nonzero weight to outstanding credit, the current mon-
etary aggregation literature should be extended to include in the defi-
nition of the medium of exchange some measure of outstanding credit
available to the public.

Outstanding credit is a very useful asset. The problem is how to
price assets such as, for example, overdraft facilities of firms and indi-
viduals and approved credit lines available to the public, in order to be
explicitly included in microeconomic- and aggregation-theoretic mone-
tary aggregates. The gains remain to be seen, of course, but we suggest
that many of the anomalies in the literature on monetary topics will be
eliminated when theoretically designed index numbers are employed.

24.2 Monetary Policy

An exposition is needed of what the usefulness of the estimated elas-
ticities of substitution and, more importantly, the underlying demand
equations would be in practice. That is, to what extent are higher or
lower elasticities of substitution important for the conduct of effective
monetary policy? To what use would the central bank put this infor-
mation in its actions? What are the practical implications of using the
wrong elasticities?

A breakthrough from the current state of ‘interest target’ monetary
policy back to the correct control of monetary quantities will be through
demand systems. The research agenda is clear, and it starts with getting
across the procedures and showing that elasticities make sense and that
the properties of the models are nicely neoclassical. Since this has been
done, the next step is to analyze actual policies, using actual demand
system estimates, compared to the other ways of guiding policy.

24.3 Dynamics

We should note that most of the early studies of demand systems di-
rectly applied data to static models, implicitly assuming that the pat-
tern of demand adjusts to a change in exogenous variables instanta-
neously. No attention had been paid to the dynamic structure of the
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models used, although many studies reported results with serially cor-
related residuals suggesting that the underlying models are perhaps
dynamically misspecified. In fact, most of the early money demand
studies tended to ignore dynamic issues, although the issue of dynamic
adjustment has been considerably addressed in the ‘traditional’ log-
levels money demand specification by considering different, short-run
adjustment processes. In particular, in Chapter 10 we considered three
fundamentally different, short-run dynamic adjustment processes in the
traditional approach — the ‘real’ adjustment specification, the ‘price’
adjustment specification, and the ‘nominal’ adjustment specification.

Recently, however, a number of demand studies have focussed at-
tention on the development of dynamic generalizations of the tradi-
tional static models that allow a test of the static model itself, as well
as the theoretical restrictions and simplifications from demand theory.
For example, Serletis (1991a) develops microtheoretic dynamic gen-
eralizations of four static translog models, by appealing to the habit
hysteresis theory and assuming that consumers’ current preferences de-
pend on their past consumption pattern so that lagged variables will
influence current demand. Also, Gordon Anderson and Richard Blun-
dell (1982) motivated from the lack of accord between the postulates
of demand theory and empirical static demand functions estimated
on time series data, develop an unrestricted dynamic formulation to
accommodate short-run disequilibrium situations, by including lagged
endogenous and exogenous variables as regressors.

To illustrate the Anderson and Blundell (1982) approach, let’s con-
sider the share equation system of the HTL. The dynamics are intro-
duced by replacing the usual static assumption of instantaneous adjust-
ment by a more general one that the static model holds only asymp-
totically. Under this assumption it is possible to specify the dynamic
structure (data generation process) by a general stationary stochastic
process. In particular, following Anderson and Blundell (1982), we re-
place s in equation (22.2) by a vector autoregressive process in s of
order 1 and v by a vector autoregressive process in v of order 1. After
some manipulation and consideration of the adding up restrictions —
see Anderson and Blundell (1982, p. 1560-66) — a general first-order
dynamic model may be written as

Δst = DΔṽt −A
(
sn

t−1 −Πnvt−1

)
+ ut (24.1)

where Δ represents the first difference operator, ṽ refers to v with the
first element excluded, superscript n on a matrix or a vector denotes the
deletion of the nth row and D and A are appropriately dimensioned
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short-run coefficient matrices. Note that the adding-up restrictions as-
sociated with (22.2) require certain additional restrictions on the ele-
ments of D and A in (24.1). These imply that the column sums of D
and A in (24.1) are all zero.

The advantage of estimating in the context of (24.1) is that equation
(24.1) is the alternative hypothesis against which a number of hypothe-
ses can be tested. For example, if D = Π1, where Π1 denotes Π with
the first column corresponding to the intercept term deleted, equation
(24.1) reduces to the static model with AR(1) error term,

st = Πvt + ut,

ut = ρut−1 + et.

If D = AΠ1, equation (24.1) reduces to the partial adjustment model
considered by Ishag Nadiri and Sherwin Rosen (1969). Finally, if D =
Π1, and A = I, equation (24.1) reduces to the static model (22.1).

Notice that the Anderson and Blundell approach to dynamic speci-
fication, adopted in the money demand literature by Serletis (1991b),
follows in the spirit of the error correction models and stands in con-
trast to the theoretical approaches that maintain specific theories of
dynamic adjustment. It is, however, intuitively appealing as it seems
that no theoretical approach is likely to deal with the actual dynamics
of a demand system, which are likely to be a complicated amalgam of
effects, including habit persistence, adjustment costs, the formation of
expectations, and misinterpretation of real price changes.

More recently, Fisher and Fleissig (1994) produce two versions of the
dynamic Fourier demand system — one is a ‘dynamic utility function
approach,’ following the lead of Serletis (1991a), and the other is a
‘time series approach,’ following the lead of Anderson and Blundell
(1982, 1983) and Serletis (1991b). For other interesting follow-up papers
that utilize some of the flexible functional forms that we discussed in
Chapters 20 and 21, see Fleissig and Swofford (1996, 1997), Fleissig
(1997), Fisher and Fleissig (1997), Leigh Drake, Fleissig, and Andy
Mullineaux (1999), and Fleissig and Serletis (2001).

Those works are interesting and attractive; they include estimates
of the degree of substitutability using some constrained flexible func-
tional forms or unconstrained versions used to test for theoretical and
functional form restrictions. Yet Serletis (1991b), in addition to model-
ing the demand for aggregate Divisia money measures, systematically
tests for the appropriateness of the weak separability (aggregation)
conditions using flexible functional form interpretations of the translog
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functional form. All these specifications, however, simply add lagged
variables to the system. There is no explicit dynamic optimization
framework under consideration. We believe that a particularly con-
structive approach will be based on the use of dynamic models.

Moreover, high autocorrelation in demand systems estimated with
per capita data could also be due to either the effects of nonstationarity
of prices — see, for example, Arthur Lewbel (1996) — and/or aggrega-
tion across consumers — see, for example, Thomas Stoker (1986). None
of these potential biases to the models have been successfully consid-
ered in the existing monetary demand literature. Of course, dealing
with these issues is not easy. The combination, for example, of non-
stationary data and nonlinear estimation in fairly large models is an
extremely difficult problem.

24.4 Risk Matters

In this book we haven’t dealt with the extension of riskless models to
situations where the economic agent makes decisions under uncertainty.
In fact, in the theory of microeconomic quantity and price aggregation
reviewed in this book, the theoretical existence of exact aggregates
is proved through the use of nested two-stage budgeting and duality
theory. Under risk, however, two-stage budgeting theorems do not work,
and most duality theory does not apply.

Recently, however, Barnett (1995), and Barnett, Yi Liu, and Mark
Jensen (1997) have extended aggregation theory to the case of risk and
derived the ‘generalized Divisia index.’ This work is very interesting and
innovative and we briefly review it here in the context of an optimal
growth model, similar to those we dealt with in Chapters 4 and 5. Our
objective is to show the process by which the generalized Divisia index
may be derived, its connection to optimal growth theory and capital
asset pricing models, and to also discuss a possible future research
agenda that might flow out of this work.

Assume an infinitely lived economic agent having expected utility

E0

∞∑
t=0

βtu (ct,xt) , (24.2)

where E0 is the mathematical expectation operator conditional on all
information at time 0, β is the discount factor, c is aggregate real con-
sumption of goods and services, and x is an n-dimensional vector of
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real balances of monetary assets. It is assumed that the one-period util-
ity function, u(·) is weakly separable in x. That is, it must be possible
to write it as u = u (ct, f(xt)), in which f(x) defines the monetary
subutility function.

The objective (24.2) is maximized with respect to {ct,xt, At}∞t=0,
where At denotes holdings of the benchmark asset during period t,
subject to a sequence of one period budget constraints

qtct =
n∑

i=1

[
(1 + ri,t−1) p∗t−1xi,t−1 − p∗txit

]

+ (1 +Rt−1) p∗t−1At−1 − p∗tAt + It, (24.3)

for t = 0, 1, · · · . In equation (24.3), q is the exact price aggregate that
is dual to the consumer goods quantity aggregate c; ri is the nominal
holding period yield on assets i; R is the holding-period yield on the
benchmark asset; p∗ is the true cost of living index, p∗ = p∗(q); and
It is the sum of all other sources of income during period t. To rule
out perpetual borrowing on the part of the consumer, we impose the
condition

lim
t→∞ dtAt = 0, (24.4)

where the present value factor dt is defined by dt = dt−1/ (1 +Rt−1),
with dt−1 = 1.

Solving the difference equation (24.3) forward, using (24.4) as the
terminal condition, we obtain the following intertemporal version of the
budget constraint

∞∑
t=0

dtqtct=p∗t−1At−1 +
∞∑

t=0

dtIt

+
∞∑

t=0

n∑
i=1

dt

[
(1 + ri,t−1) p∗t−1xi,t−1 − p∗txit

]
. (24.5)

The Euler equations for monetary assets and the consumer goods
aggregate are

∂u

∂xit
= βEt

p∗t (Rt − rit)
p∗t+1

∂u

∂ct+1
, i = 1, ..., n; (24.6)

∂u

∂ct
= βEt

p∗t (1 +Rt)
p∗t+1

∂u

∂ct+1
. (24.7)
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For notational convenience, we convert the nominal rates of return, Rt

and rit, into real rates, R∗
t and r∗it, such that

(1 +R∗
t ) = p∗t

(1 +Rt)
p∗t+1

;

(1 + r∗it) = p∗t
(1 + rit)
p∗t+1

.

Under this new notation (24.6) and (24.7) can be written as

∂u

∂xit
= βEt

[
(R∗

t − r∗it)
∂u

∂ct+1

]
, i = 1, ..., n; (24.8)

∂u

∂ct
= βEt

[
(1 +R∗

t )
∂u

∂ct+1

]
. (24.9)

Under risk aversion, the marginal utility of consumption and the
interest rates in the expectation on the right-hand side of each of (24.8)
and (24.9) are correlated. Hence, these equations can be written as

∂u

∂xit
= βEt

[
∂u

∂ct+1

]
(EtR

∗
t − Etr

∗
it) + βCov

(
R∗

t ,
∂u

∂ct+1

)

− βCov
(
r∗it,

∂u

∂ct+1

)
, for all i (24.10)

∂u

∂ct
= βEt

[
∂u

∂ct+1

]
+ βEt [R∗

t ]Et

[
∂u

∂ct+1

]

+ βCov
(
R∗

t ,
∂u

∂ct+1

)
. (24.11)

Solving (24.11) for βEt [∂u/∂ct+1] and substituting into (24.10) yields

∂u

∂xit
= (pit + ψit)

∂u

∂ct
i = 1, · · ·, n, (24.12)

where (pit + ψit) is the risk-adjusted user cost of holding asset i, with
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pit =
EtR

∗
t − Etr

∗
it

1 +R∗
t

,

or in nominal terms
pit =

EtRt − Etrit

1 +Rt
,

and

ψit = β (1 − pit)
Cov

(
R∗

t ,
∂u

∂ct+1

)

∂u

∂ct

− β

Cov
(
r∗it,

∂u

∂ct+1

)

∂u

∂ct

.

To derive the Divisia index under risk aversion, let us return to the
consumer’s utility function as defined above, this was u = u (ct, f(xt)).
Because of the weak separability assumption of u(·), we have

∂u

∂xit
=

∂u

∂f(xt)
∂f(xt)
∂xit

, i = 1, · · ·, n,

which because of (24.12) becomes

∂f(xt)
∂xit

= (pit + ψit)
∂u/∂ct

∂u/∂f(xt)
. (24.13)

Since the total differential of f(x) is

df(xt) =
n∑

i=1

(
∂f(xt)
∂xit

)
dxit, (24.14)

substitution of (24.13) into (24.14) yields

df(xt) =
∂u/∂ct

∂u/∂f(xt)

n∑
i=1

(pit + ψit) dxit. (24.15)

Also, since linear homogeneity of f(x) implies

f(xt) =
n∑

i=1

(
∂f(xt)
∂xit

)
xit, (24.16)

substitution of (24.13) into (24.16) yields

f(xt) =
∂u/∂ct

∂u/∂f(xt)

n∑
i=1

(pit + ψit) xit. (24.17)
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Finally, dividing (24.15) by (24.17) and rearranging yields the general-
ized Divisia index

d log f(xt) =
n∑

i=1

w∗
itd log xit, (24.18)

where
w∗

it =
(pit + ψit) xit∑n

k=1 (pkt + ψkt) xkt
,

is the risk-adjusted share of asset i. Of course, under risk neutrality,
the marginal utility of consumption and the interest rates in the expec-
tations on the right-hand sides of (24.10) and (24.11) are uncorrelated.
Hence, ψit would be zero, for all i, and the generalized Divisia index
(24.18) reduces to the Divisia index in the perfect-certainty (or risk
neutrality) case that we studied in this book.

More recently, Barnett and Wu (2005) extend the monetary asset
user cost risk adjustment of Barnett et al. (1997) to the case of multi-
ple risky non-monetary assets and intertemporal non-separability. They
show that for any individual monetary asset, the risk adjustment (to
its certainty equivalent user cost) can be measured by its beta, which
depends on the covariance between the rate of return on the monetary
asset and the wealth portfolio of the consumers. This result is anal-
ogous to the standard Capital Asset Pricing Model (CAPM). These
extensions are especially useful, when own rates of return are subject
to exchange rate risk, as in Barnett (2007).

This extension of the theory of microeconomic quantity and price
aggregation under perfect certainty to situations under risk is interest-
ing and innovative. However, there is a need for the expected utility
approach to be extended to a nonexpected utility approach. As Diew-
ert (2000, p. xxvi) puts it, in his introduction to Barnett and Serletis
(2000a),

“starting with Allais (1953), various researchers, including for
example, Machina (1982), Mehra and Prescott (1985), and Chew
and Epstein (1989), have noted various paradoxes associated
with the use of the expected utility approach. Using the state
contingent commodity approach to choice under risk that was
pioneered by Blackorby, Davidson, and Donaldson (1977),
Diewert (1993) tried to show that the expected utility framework
led to a relatively inflexible class of functional forms to model
preferences over uncertain alternatives. Diewert showed that a
much more flexible class of functional forms can be obtained by
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moving to nonexpected utility models that are counterparts to
the choice over lotteries models of the type pioneered by Dekel
(1986), Chew (1989), Epstein and Zin (1990, 1991), and Gul
(1991). Epstein and Zin (1990), Epstein (1992), and Diewert
(1993, 1995) showed that these more flexible models can explain
many of the choice under uncertainty paradoxes, including the
equity premium puzzle of Mehra and Prescott (1985).”

24.5 Conclusion

Until fairly recently most money demand studies were based on the
use of simple-sum measures of money and log-linear demand for money
functions. The subject was, as Barnett (1987, p. 1184) puts it,

“the unstable non-demand function for a non-variable regressed
on other non-variables through non-theory.”

This book has focused attention on the gains that can be achieved
by a rigorous use of microeconomic theory, index number theory, ag-
gregation theory, and related econometric approaches to the study of
the inter-related problems of monetary aggregation and estimation of
money demand. Of course, many unsolved problems exist in this lit-
erature. The investigation of those problems, however, is likely to be
significantly useful and productive.
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