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1
Introduction

By a forecast will be meant any statement about ‘the future’, where
the future is relative to the analyst’s viewpoint. So as well as the com-
mon sense notion of a forecast of what will happen tomorrow, or next
Saturday, the term will equally apply to the outcome of the 1997 General
Election made now but based on what was known at the end of 1996, for
example. Forecasts are often constructed ex post as a way of evaluating a
particular forecasting model or forecasting device, presumably with the
hope that the past forecast performance of the model will serve as a useful
guide to how well it might forecast in the future. In any event, forecast-
ing the past as the ‘relative future’ means that forecasts can be evaluated
as they are made, without having to wait to see what actually happens
tomorrow, or on the coming Saturday, and a large sample of forecasts can
be generated (with associated outcomes available), which might allow a
statistical analysis of the forecast performance of the model. My forecast
of rain might turn out to be wrong, but that might just be bad luck.
Suppose my forecasting model is that I forecast rain in the afternoon if
at 11 a.m. in the morning the cows in a certain field are lying down.
Given daily observations on afternoon rainfall and the morning stance
of cows over the last year, one could devise a statistical test of whether
my forecasting model was a good predictor of meteorological conditions.

Forecasts can be made about anything, and using a variety of means:
systems of dynamic equations, back-of-the-envelope calculations, tea-
leaf dregs, goats’ entrails. Our subject matter will be economic and
financial variables, such as output growth rates, unemployment and
inflation rates, and stock returns. The means will include econometric
models and survey-based expectations. The key issue will be the evalu-
ation of the forecasts. That is, how we judge ‘good’ in relation to forecasts,
and how we decide whether a certain set of forecasts have this property.

1



2 Evaluating Econometric Forecasts

The method of evaluation may depend on whether the forecasts are
model-based, as well as depending on the type of forecast being made. A
forecast defined as ‘any statement about the future’ includes statements
such as: the probability that it will rain is 80% (a probability forecast);
that it will rain (an event forecast); that there will be 1

4 cm of rain (a point
forecast); that there is a 75% probability that there will be between 0 cm
and 3

4 cm of rain (an interval forecast).
The material in this book will be structured by the type of forecast.

Chapter 2 begins with the evaluation of point forecasts. These are typic-
ally quantitative forecasts of the level or rate of change of a continuous
variable, such as the level of output or the rate of growth of output,
the price level or the inflation rate, but we will also include in this
chapter ‘direction of change, tests, although these might be more cor-
rectly thought of as event forecasts. It is probably fair to say that the
traditional concern of economic forecasting has been the production
and evaluation of point forecasts, and that it is only relatively recently
that there has been a general recognition that some measure of the degree
of uncertainty surrounding a ‘central tendency’ will enhance the value
or usefulness of the forecast. For example, the government might react
rather differently to a point forecast that inflation will be 2 1

2 % next year,
but that the forecaster believes there is a 40% chance that it will exceed
5%, compared to the same point forecast and the assertion that the out-
come will almost certainly be within ± 1

2 percentage point of 2 1
2 %. These

issues are taken up in subsequent chapters.
Chapter 3 switches attention from the evaluation of the (conditional)

mean of the random variable to the evaluation of forecasts of the condi-
tional variance of the process. For a large number of financial time series,
as well as some macroeconomic time series (such as inflation), the con-
ditional variance (or volatility) varies over time in a way that is in part
predictable from the past of the process. Models of conditional variance
are briefly reviewed as a precursor to a discussion of forecast evaluation.
A complicating factor is that volatility is not observed.

In Chapter 4 interval forecasts or prediction intervals come under the
spotlight. An interval forecast is a formal method of conveying forecast
uncertainty. An interval forecast can be used to express the uncertainty
surrounding a point forecast of the conditional mean, or of a volatility
forecast. Viewed as an estimate of a quantile of the conditional distribu-
tion of the random variable, a one-sided interval forecast is an estimate
of the ‘Value-at-Risk’ in the financial risk management literature.

Chapter 5 considers the evaluation of forecast densities, or forecast
probability distributions. We review methods of evaluation that make no
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recourse to the method of construction of the forecasts. These methods
are clearly appropriate when the forecasts come from surveys, or when
the models or methods underlying their construction are unknown to
the econometrician. A number of recent papers have proposed the evalu-
ation of models’ forecast densities as model specification tests, and these
are also reviewed.

Finally, Chapter 6 recognizes that forecasts are generally used to guide
actions (or decisions) in uncertain environments, and should ideally be
evaluated in terms of the benefits (or costs) that result or are expec-
ted to result from using them in this way. This approach is still in its
infancy in terms of applications in macroeconomics, but an exploration
of the ‘decision-based’ approach and its connections with more standard
approaches is illuminating.



2
Point Forecasts

Sections 2.1 and 2.2 consider the evaluation of sequences of point
forecasts in terms of the first- and second-moment properties of the fore-
cast errors. Section 2.3 allows that there is at least one rival set of forecasts
of the variable of interest, and asks which of the two is better, as well as
whether even the less good of the two provides some useful information.
In Section 2.4 we explicitly allow that the forecasts have been generated
by models. At this point, the question becomes not which of the sets of
forecasts is best, but which of the models generates more accurate fore-
casts, as judged by out-of-sample tests of predictive ability. Section 2.5
considers a number of issues that arise in the evaluation of forecasts from
non-linear models.

2.1 Realization-forecast regressions

Suppose that we have a sequence of pairs of forecasts and outturns,
{yt+h|t , yt+h}, where, for example, t = 1, 2, . . . , T and h is a fixed integer.
yt+h|t is the forecast of the value of the variable in period t + h made at
time t , and yt+h is the realization, or out-turn. h is the forecast horizon.

An obvious property of a good sequence of forecasts is that there is no
tendency to systematically over or underpredict, that is, that the forecasts
are unbiased. Formally,

Et (yt+h|t − yt+h) = 0, (2.1)

where Et denotes the mathematical expectation based on informa-
tion up to period t . An equivalent way of writing Et (yt+h|t − yt+h)

is E(yt+h|t − yt+h|�t ), where the information set �t being conditioned

4
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on is made explicit. Notice that (2.1) implies that the forecasts are
unconditionally unbiased, E(yt+h|t − yt+h) = 0.

The condition (2.1) should hold for each t , that is, for each forecast-
out-turn pair. Because only one realization of the random variable occurs
at each point in time, unbiasedness is tested by whether the sample
mean of the forecast errors, et+h|t ≡ yt+h − yt+h|t , over t = 1, 2, . . . , T , is
significantly different from zero. Weak rationality or consistency often
refers to the property that forecasters are not systematically mistaken in
their forecasts.

Strong rationality, or efficiency, in addition requires that the fore-
cast errors are uncorrelated with other series or information available
at the time the forecasts were made. Otherwise it would be possible to
exploit these relationships to produce superior forecasts, in a sense to
be defined, and the original forecasts would be inefficient. There have
been many studies of the rationality of macroeconomic forecasts based
on these notions, including Mincer and Zarnowitz (1969), Figlewski and
Wachtel (1981), Zarnowitz (1985), Keane and Runkle (1990), and see
Stekler (2002) and Fildes and Stekler (2002) for recent reviews.

Forecasts could be unbiased and efficient but highly inaccurate.
Unbiasedness would result if large positive and negative errors approx-
imately cancel, so that the sample mean of the forecast errors is close to
zero. So we will also need to pay attention to the variance of the observed
sample of forecast errors about the mean. This last consideration will be
put to one side until we consider forecast precision in Section 2.2.

Tests of rationality are often based on regression equations of the form:

yt+1 = α + βyt+1|t + εt+1 (2.2)

for t = 1, . . . , T . We assume that h = 1 to forestall the complications that
arise for multi-step (h > 1) forecasts. These are addressed at the end of
this section.

Clearly, the joint null hypothesis α = 0 and β = 1 entails unbiasedness.
From (2.2):

Et (yt+1) = α + βEt (yt+1|t ), (2.3)

so Et (yT+1 − yT+1|t ) = 0. However, as noted by Holden and Peel
(1990), α = 0 and β = 1 is a sufficient, but not a necessary, condition
for unbiasedness, since (2.3) is satisfied more generally by:

α = (1 − β)Et (yt+1|t ). (2.4)



6 Evaluating Econometric Forecasts

A more satisfactory test of unbiasedness is via a test of τ = 0 in the
regression:

et+1|t ≡ yt+1 − yt+1|t = τ + εt+1, (2.5)

that is, from comparing the t-statistic of the null that τ = 0 to the
Student’s t distribution or the standard normal distribution. The t-
statistic is given by:

(1/T)
∑T

t=1
et+1|t√

(1/T)s
,

where:

s2 = 1
T − 1

T∑
t=1

(et+1|t − ēt+1|t )2

and ēt+1|t is the sample mean of the forecast errors. A standard textbook
result is that the t-statistic has a Student’s t distribution (T − 1 degrees
of freedom) when {εt+1} are independent identically distributed (i.i.d.),
zero-mean, and come from a normal distribution. Without the assump-
tion of normality the statistic converges in distribution to a standard
normal. We will show in Section 2.4 that these standard distributional
results for testing for unbiasedness, as well as other aspects of forecast
accuracy, may no longer be applicable when the forecasts are derived
from models with estimated parameters.

If unbiasedness is not rejected, then this is typically formulated as
part of the maintained hypothesis, and various tests of the forecast error
being uncorrelated with the past of the process, past errors, or in fact any
variables known at t , can be conducted. Tests that include other variables
are often termed orthogonality tests. An example of which would be
H0 : γ = 0 in:

et+1|t = γ ′zt + εt+1, (2.6)

where zt is the designated vector of variables known at period T .
Although a test of the joint hypothesis α = 0 and β = 1 is often

described as a test of unbiasedness, it can also be viewed as a test of
efficiency, in the sense of checking that forecasts and their errors are
uncorrelated. If there is a systematic relationship between the two, then
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this could be exploited to help predict future errors, and could be used
to adjust the forecast-generating mechanism accordingly. From (2.2):

et+1|t = yt+1 − yt+1|t = α + (β − 1)yt+1|t + εt+1, (2.7)

so that the forecast error and forecast are uncorrelated:

E(yt+1|t , et+1|t ) = αE(yt+1|t ) + (β − 1) E(y2
t+1|t ) + E(yt+1|tεt+1) = 0

when α = 0 and β = 1.
The properties of unbiasedness and efficiency are often presented as

minimum requirements for optimal or rational forecasts. However, the
identification of the unbiasedness property with optimality requires that
the loss function is symmetric, as in the case of quadratic costs (see
Zellner (1986), and the discussion in Section 6.8).

2.1.1 Testing the rationality of multi-step forecasts

Consider the case where h > 1 in the realization-forecast regression:

yt+h = α + βyt+h|t + εt+h. (2.8)

When the forecast horizon, h, exceeds the frequency at which forecasts
are made (assumed to be 1, with forecasts made at t , t + 1, t + 2, etc.),
forecasts will overlap in the sense of being made before the realization
paired to the previous forecast is known. Thus, for example, the 2-step
ahead forecast error et+1|t−1 will be unknown when the forecast yt+2|t is
made. In that case, the efficient use of information does not rule out
serial correlation in the error process in (2.8) of order 1 (more generally,
moving average of order h − 1 for h-step ahead forecasts).

This can perhaps be made clearer by supposing for the moment that
forecasts are model based. Specifically, the forecasting model is an AR(1):

yt = φyt−1 + υt , (2.9)

which happens to coincide with the data generating process. We assume
{υt } is an i.i.d. zero-mean series with E(υt |yt−1, yt−2, . . .) = 0, and |φ| < 1.
Then letting yt+h|t = Et (yt+h):

yt+h|t = φhyt (2.10)
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and:

et+h|t = yt+h − yt+h|t =
h−1∑
i=0

φiυt+h−i. (2.11)

Consider the h-step forecast error made s periods later (substitute t
by t + s):

et+s+h|t+s = yt+s+h − yt+s+h|t+s =
h−1∑
i=0

φiυt+s+h−i. (2.12)

The forecast errors will be correlated whenever some same-dated υ’s are
common to the summations in (2.11) and (2.12). For s > 0, the correla-
tion will only be zero when s > h − 1, which holds for h = 1. For s = 1
(consecutive forecasts) and h > 1 simple algebra gives:

E(et+h|t et+s+h|t+s) = φ(1 − φ2(h−1))

1 − φ2

assuming σ2
υ ≡ E(υ2

t ) = 1. When α = 0 and β = 1, the error terms in regres-
sion (2.8) are the forecast errors, so the regression errors will exhibit the
correlation patterns described above.

While the coefficient estimates obtained from ordinary least squares
(OLS) on (2.8) will remain unbiased, the estimate of the covariance mat-
rix of the parameter estimates (necessary for tests of the significance
of the parameters in (2.8)) will be inconsistent. This is typically dealt
with by using Newey and West (1987) standard errors which correct for
autocorrelation and heteroskedasticity, implemented as follows.

Let xt+h = (1 yt+h|t )′ and γ = (α β)′, then we can write (2.8) as:

yt+h = x′
t+hγ + εt+h.

The OLS estimator of the covariance matrix of γ̂ , V̂(γ̂ ), is given by:

V̂(γ̂ ) = s2

(
T∑

t=1

xt+hx′
t+h

)−1

,

where s2 is the usual OLS estimator of the error variance σ2 of {εt+h}. The
OLS estimator V̂(γ̂ ) assumes that the errors {εt+h} are serially uncorrel-
ated, E(εt+h εt+h−s) = 0 for all s �= 0. When h > 1, we have shown that
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E(εt+h εt+h−s) = 0 only for s > h − 1. The Newey–West covariance matrix,
V̂∗(γ̂ ), is given by:

V̂∗(γ̂ ) =
(

T∑
t=1

xt+hx′
t+h

)−1

TS∗
(

T∑
t=1

xt+hx′
t+h

)−1

, (2.13)

where:

S∗ = 1
T

T∑
t=1

ε̂2
t+hxt+hx′

t+h + 1
T

h−1∑
j=1

wj

T∑
s=j+1

ε̂s+hε̂s+h−j(xs+hx′
s+h−j + xs+h−jx′

s+h).

(2.14)

When h = 1 (or equivalently, wj = 0 all j) the second term in (2.14) is
zero and the standard errors computed as the square roots of the diagonal
elements of V̂∗(γ̂ ) are known as heteroskedasticity-consistent standard
errors (HCSEs), due to White (1980). The HCSEs allow valid inference
when used in place of the square root of the elements of V̂(γ̂ ), in the
event that the {εt+h} are heteroskedastic but uncorrelated. Note that the
type of heteroskedasticity does not need to be specified.

More generally, when h > 1 the wj need to be specified. Setting wj = 1
is perhaps natural, but may lead to estimates of the covariance matrix
that are not positive definite. Bartlett weights wj = 1 − j/h ensure the
estimate of the covariance matrix is positive definite and capture the
notion that autocorrelations decline with j. The latter assumption will
hold when the autocorrelation is induced by the overlapping nature of
forecasts. Verbeek (2000), pp. 103–5 provides an intuitive explanation for
the form of S∗ given in (2.14). The standard errors from (2.13) with h > 1
are known as heteroskedasticity-and-autocorrelation-consistent (HAC)
standard errors.

2.2 Forecast precision

Evaluating whether forecasters make efficient use of available informa-
tion, and whether agents are able to avoid making systematic errors in
their predictions, is obviously of interest, not least because these find-
ings may bear more generally on the assumptions of rationality made
in the wider economics literature. However, forecasts that are not sys-
tematically biased may nevertheless be wildly inaccurate. That is, the
variance of forecast errors may be ‘large’. But without knowledge of the
process generating the data, and the intrinsic difficulty of forecasting
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that particular series, it is difficult to judge what a good forecast-error
variance is.

Suppose the process were known to be, say, a first-order autoregression
(AR(1)):

yt = φyt−1 + υt , |φ| < 1 (2.15)

with {υt } an i.i.d. zero-mean series, σ2
υ = E(υ2

t ), and with E(υt | yt−1,
yt−2, . . . ) = 0, as in Section 2.1.1. The minimum attainable forecast-error
variance is given by:

V(et+h|t ) ≡ E[(et+h|t − E(et+h|t ))2] = E

⎡
⎣(h−1∑

i=0

φiυt+h−i

)2⎤⎦ = σ2
υ

(1 − φ2h)

1 − φ2

(2.16)

for an h-step ahead forecast. This could be used as a benchmark against
which the forecast-error variances of other models could be judged. For
h = 1 (2.16) collapses to the variance of the disturbance term in (2.15),
V(et+1|t ) = σ2

υ .
In the event that the parameters of the model (here φ and σ2

υ ) were
unknown a benchmark forecast-error variance could still be derived.
We can calculate the minimum attainable forecast-error variance using
the true model but in ignorance of the values of the parameters. For the
model in (2.15), the forecast error for the forecast ŷt+h|t = φ̂hyt is given by:

êt+h|t ≡ yt+h − ŷt+h|t = (φh − φ̂h)yt +
h−1∑
i=0

φiυt+h−i, (2.17)

where φ̂ is an estimator of φ.1 Taking the variance of êt+h|t conditional on
yt yields:

V( êt+h|t ) � V(φh − φ̂h)y2
t + σ̂2

υ

(1 − φ2h)

(1 − φ2)
(2.18)

where in addition σ̂2
υ replaces σ2

υ . An approximation to V(φh − φ̂h) can be
obtained as follows.2 Using the OLS estimator of φ we have:

φ̂ = φ + δ, (2.19)
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where δ is Op(1/
√

T), so that powers of δ are asymptotically negligible.
φ̂h is approximated by the expansion:

φ̂h = (φ + δ)h � φh + hδφh−1 = φh + hφh−1(φ̂ − φ). (2.20)

Therefore:

V(φ̂h − φh) � V [hφh−1(φ̂ − φ)] = h2φ2(h−1)V(φ̂), (2.21)

and substitution into (2.18) results in:

V( êt+h|t ) � h2φ2(h−1)V(φ̂)y2
t + σ̂2

υ

(1 − φ2h)

(1 − φ2)
. (2.22)

The asymptotic variance of the estimated parameters is given by:

V(φ̂) = σ2E
( T∑

t=2

y2
t−1

)−1

� 1
T

(1 − φ2) (2.23)

so that plugging this into (2.22) gives the approximate forecast-error
variance as:

V( êt+h|t ) � 1
T

h2φ2(h−1)(1 − φ2)y2
t + σ̂2

υ

(1 − φ2h)

(1 − φ2)
. (2.24)

From (2.24) it is apparent that the effect of parameter estimation
uncertainty is of order T−1, and so should be ‘small’ when T is of a
reasonable size.

In practice the specification of the model (e.g. that it is an AR(1) rather
than an ARMA(2, 1) say, or an ARMA with extraneous explanatory vari-
ables) will not be known, so that the notion of using some measure of
the minimum value of the forecast-error variance as a benchmark for
assessing forecasts would appear to be unworkable. In the next section
we will show that rival models’ forecast error variances can be used in
the spirit of ‘encompassing’ to fill in this missing information.

The forecast bias and forecast-error variance combine to give the
expected squared forecast error:

E(e2
t+h|t ) = V(et+h|t ) + [E(et+h|t )]2. (2.25)

When the forecasts are unbiased, choosing the forecast with the smallest
forecast-error variance will amount to choosing the forecast with the
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smallest expected squared error. Such a strategy suggests that the cost
function (which attaches costs or losses to making forecast errors of dif-
ferent magnitudes) is quadratic, so that large errors are proportionately
more serious than small, and that over- and under-predictions of the
same magnitude have equal costs. Quadratic cost functions are mathem-
atically tractable and underpin OLS, for example. Cost functions and the
extent to which squared-error loss is unduly restrictive will be considered
in Section 3.3 and in Chapter 6.

Assuming squared-error loss, we will show in Section 2.5.1 that the
conditional expectation is the optimal forecast, in that it is the minimum
MSE predictor (the MMSEP). In the previous section, the forecast given by
(2.10) is the conditional expectation for the model (2.9) and is therefore
the MMSEP.

The sample counterpart of (2.25) for the sample of T h-step ahead
forecasts is the mean squared forecast error (MSFE):

MSFEh = 1
T

T∑
t=1

e2
t+h|t (2.26)

while the square root of this quantity is the root MSFE (RMSFE).

2.3 Rival forecasts, forecast combination and
encompassing

2.3.1 Tests of comparative forecast accuracy

Assuming that the loss function is squared-error loss, the corresponding
sample measure of forecast accuracy, (R)MSFE, can be calculated for each
set of forecasts, and the set with the smallest MSFE might be deemed
the most accurate. Of interest though is whether differences between
rival forecasts can be attributed to sampling variability, or whether any
apparent differences are statistically significant once this variability has
been taken into account.

The two sets of forecasts will be distinguished by ‘hats’ and ‘tildes’,
that is, as ŷt+h|t and ỹt+h|t . The corresponding forecast errors are col-
lected in the column vectors ê and ẽ, where ê = ( ê1+h|1, . . . , êT+h|T )′ and
ẽ = ( ẽ1+h | 1, . . . , ẽT+h|T )′. If we assume that the forecast errors are zero-
mean, normally distributed and serially uncorrelated (implying h = 1)
then the following test due to Granger and Newbold (1977) (and some-
times known as the Morgan–Granger–Newbold test in recognition of
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Morgan 1940) is the uniformly most powerful unbiased. Under unbiased-
ness, equality of MSFE of ê and ẽ amounts to equality of variances.
The test of equal variances can be implemented by the use of an ortho-
gonalizing transformation to construct u1,t+1|t = êt+1|t −ẽt+1|t and u2,t+1|t =
êt+1|t + ẽt+1|t , and then test for zero correlation between u1,t+1|t and u2,t+1|t .

Note that:

E(u1,t+1|t u2,t+1|t ) = E(ê2
t+1|t ) − E(ẽ2

t+1|t )

so:

E(u1,t+1|tu2,t+1|t ) = 0 =⇒ E(ê2
t+1|t ) = E(ẽ2

t+1|t ).

The test statistic is:

r√
(T − 1)−1(1 − r2)

∼ tT−1, (2.27)

where:

r = u′
1u2√

u′
1u1u′

2u2

and u′
i = (ui,2|1, . . . , ui,T+1|T ), i = 1, 2.

Given the restrictive nature of the assumptions that underpin this
test, and especially that it is only applicable for h = 1, more general
approaches are often required. Diebold and Mariano (1995) introduce
a test statistic that does not require zero-mean, normally distributed
and serially uncorrelated forecast errors, so that it is applicable when
h > 1. Nor does the test statistic require that the loss function is squared-
error loss. So assume an arbitrary loss function g(x), where g(x) = x2 for
squared-error loss, for example, and x is either êt+h|t or ẽt+h|t . Next, define
the loss differential as dt+h|t ≡ [g( êt+h|t ) − g( ẽt+h|t )], so that equal forecast
accuracy entails the condition that E(dt+h|t ) = 0. Given a covariance-
stationary sample realization {dt+h|t }, the asymptotic distribution of the
sample mean loss differential d̄:

d̄ = 1
T

T∑
t=1

dt+h|t

is given by:

√
T(d̄ − μ)

D→ N(0, 2πfd(0)),
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where:

fd(0) = 1
2π

∞∑
τ=−∞

γd(τ),

is the spectral density of the loss differential at frequency zero, γd is the

autocovariance function, and
D→ denotes convergence in distribution.

The large-sample statistic that Diebold and Mariano (1995) propose for
testing the null of equal forecast accuracy is:

d̄√
1
T 2πf̂d(0)

app∼ N(0, 1),

where f̂d(0) is a consistent estimate of fd(0), based on a weighted sum of

the sample autocovariances. The notation ‘
app∼ ’ indicates that this statistic

approximately follows a standard normal distribution.
It may be more natural to some readers to think of the denomin-

ator of the test statistic explicitly as the square root of the estimated
variance of d̄:

d̄√
V̂(d̄)

app∼ N(0, 1). (2.28)

As an example, consider only h = 1 forecasts, so that { êt+1|t } or { ẽt+1|t } are
serially uncorrelated, and treating {dt+1|t } as being serially uncorrelated,
we obtain:

V(d̄) = V

(
1
T

T∑
t=1

dt+1|t

)
= 1

T2
[TV(dt+1|t )] = 1

T
V(dt+1|t ) (2.29)

because all the covariance terms of the form C(dt+1|tdt+1−i|t−i) are zero,
i �= 0. We can estimate V(dt+1|t ) by V̂(dt+1|t ), the sample moment:

V̂(dt+1|t ) = 1
T

T∑
t=1

(
dt+1|t − d̄

)2
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and plugging this into (2.29) gives an estimate V̂(d̄) of V(d̄), and the test
statistic becomes

T d̄√∑T
t=1(dt+1|t − d̄)2

app∼ N(0, 1).

For h > 1, forecast errors will be serially correlated of order h−1, and the
estimate of V(d̄) will need to include sample autocovariances:

γ̂i = 1
T

T∑
t=i+1

(
dt+h|t − d̄

) (
dt+h−i|t−i − d̄

)

for i < h.

2.3.2 Forecast combination (or pooling) and encompassing

The basic idea behind the combination (or ‘pooling’) of forecasts is that,
although one forecast may be superior to another (on MSFE, say) using
the tests of equal forecast accuracy discussed in the previous section,
a combined forecast of the two may be better still. There is an exten-
sive literature: see inter alia Diebold and Lopez (1996) and Newbold and
Harvey (2002) for recent surveys, and Clemen (1989) for an annotated
bibliography. Studies such as Newbold and Granger (1974) provided early
evidence of the efficacy of combining, and Stock and Watson (1999a) and
Fildes and Ord (2002), for example, suggest that simple forms of com-
bination (that do not take into account the relative past performances
of the forecasts) often work just as well as more elaborate schemes.

Following Nelson (1972) and Granger and Newbold (1973), a forecast is
said to be conditionally efficient if the variance of the forecast error from
a combination of that forecast and a rival forecast is not significantly less
than that of the original forecast alone. Chong and Hendry (1986) apply
the principle of encompassing to the evaluation of forecasts. This prin-
ciple holds that an empirical model should be able to account for the
findings of rival models (see Hendry and Richard (1982, 1989), Mizon
(1984) and Mizon and Richard (1986)). The reasoning is as follows. If the
investigator knew the actual mechanism that gave rise to the observed
data series, then the properties of a particular (mis-specified) model could
be deduced analytically: we could work out the forecast-error variance
for that model. Of course the data generating process is not known, but
the above thought-experiment indicates that if a model closely approx-
imates the data generation process (DGP), it should be possible to deduce
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the properties of other models. One implication is that no other model
should have a smaller forecast-error variance. A model is said to forecast
encompass a rival if the rival’s forecasts have no additional explanatory
power, in the sense of contributing to a lower MSFE or forecast-error vari-
ance when used in combination with the original set of forecasts. Testing
for forecast encompassing and the procedure for computing conditional
efficiency are formally equivalent.

Suppose we have two sets of forecasts, ŷt+h|t and ỹt+h|t . We shall con-
sider h = 1, and so compress the notation that explicitly states the origin
and horizon, so that 1-step forecasts of period t + 1 are simply ŷt+1 and
ỹt+1. A further simplification can be achieved by defining f1t ≡ ŷt and
f2t ≡ ỹt . The forecast combination is given by:

fct = (1 − λ)f1t + λf2t . (2.30)

As written, the weights on the individual forecasts sum to unity, and
there is no intercept. This is appropriate if the individual forecasts are
unbiased. We might also impose the requirement that 0 ≤ λ ≤ 1.

Given a squared-error loss function, the weight λ is chosen to minimize
the MSFE of the combined predictor, fct . Assuming unbiasedness, this is
equivalent to minimizing the forecast-error variance. Subtracting yt from
both sides of (2.30) and multiplying through by −1 results in:

ect = (1 − λ)e1t + λe2t , (2.31)

where ect ≡ yt −fct and eit ≡ yt −fit , i = 1, 2. The variance of the combined
forecast error is:

V(ect ) = (1 − λ)2V(e1t ) + λ2V(e2t ) + 2λ(1 − λ)C(e1t , e2t ). (2.32)

Choosing λ to minimize V(ec,t ) leads to:

λ∗ = V(e1t ) − C(e1t , e2t )

V(e1t ) + V(e2t ) − 2C(e1t , e2t )
. (2.33)

Substituting (2.33) into (2.32) we can obtain the variance using λ∗ as the
combination weight:

V [ect ; λ∗] = (1 − ρ2)V1V2

V1 + V2 − 2ρ
√

V1V2
,
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where Vi = V [eit ], i = 1, 2, ρ = C(e1t , e2t )/
√

V1V2. Using the optimal
weight λ∗ leads to the inequality:

MSFE(fct ) ≤ min{MSFE(f1t ), MSFE(f2t )}, (2.34)

so that combination must be at least as good as the best individual
forecasts. In the unlikely event that the forecasts are uncorrelated,
C(e1t , e2t ) = 0, and (2.33) is simply:

λ∗ = V(e1t )

V(e1t ) + V(e2t )
, (2.35)

which has the natural interpretation that the weights only depend
(inversely) on the sizes of the relative forecast-error variances, and that
the larger V(e1t ) the smaller the weight (1 − λ) of f1t .

In practice, the weights can be calculated by replacing the population
second-moment matrices in (2.33) by their sample counterparts:

λ̂ =
(1/T)

∑T

t=1
e2

1t − (1/T)
∑T

t=1
e1t e2t

(1/T)
∑T

t=1
e2

1t + (1/T)
∑T

t=1
e2

2t − 2(1/T)
∑T

t=1
e1t e2t

=
∑T

t=1
(e1t − e2t )e1t∑T

t=1
(e1t − e2t )

2
. (2.36)

The second line is the OLS estimator of λ in equation (2.31), noting that
equation (2.31) can be rearranged to give:

e1t = λ(e1t − e2t ) + ect . (2.37)

Therefore, the optimal weight can be obtained by a simple OLS
regression.3 That being the case, it follows immediately that the hypo-
thesis that f1t forecast encompass f2t (or f1t is conditionally efficient) is
simply the t-test of the null that λ = 0 in equation (2.37). This can be
viewed as a one-sided test against the alternative that λ > 0, that is,
that f2t has a positive weight in the combination. This is more intuitive
than a two-sided test with the alternative hypothesis that λ �= 0, but see
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Clements and Hendry (2004). Clearly, from (2.37) λ = 0 requires that
E(e1t , e1t − e2t ) = 0. Then the forecast f2t contains no useful information
that is not already present in f1t .

Harvey et al. (1998) provide some small-sample evidence on the size
and power properties of the t-test that λ = 0 when the forecast errors
are ‘well-behaved’, in the sense that they are normally distributed,
and also when they are non-normal. Table 2.1 reports the results of a
Monte Carlo4 study similar to that undertaken by Harvey et al. (1998).
We give the Monte Carlo estimates of the sizes of a number of tests
of forecast encompassing, for two data generating processes, and for
T = {8, 16, 32, 64, 128}. The first column of figures in the table are the
sizes of tests when the forecast errors are normal. Samples of size T are
generated for {e1t , e2t } from:

e1t = ε1t ,
e2t = ε1t + 0.5ε2t ,

where ε1t and ε2t are i.i.d. standard normal variables from a pseudo-
random number generator. Note that:

E(e1t , e1t − e2t ) = E[ε1t (ε1t − (ε1t + 0.5ε2t ))] = 0

because E(ε1tε2t ) = 0 by construction, so the simulated sample of fore-
cast errors satisfy the relationship that forecast 1 encompasses forecast 2.
Letting ti be the value of a test statistic for the null that 1 forecast encom-
passes 2, calculated on the ith simulated sample of size T , then the size
estimates reported in the table are calculated as:

100 × 1
R

R∑
i=1

1(ti > c0.05),

where 1(·) is the indicator function, equal to 1 when ti > c0.05 and 0 when
ti ≤ c0.05, and c0.05 is the 5% one-sided (Student t or normal) critical value
for λ = 0 versus λ > 0. R, the number of replications, is set to 40, 000.

We calculate the following test statistics:

‘Standard’ The standard t-statistic for λ = 0 is compared to the standard
normal.

R1 The t-statistic calculated using a White-HCSE (from the Newey–West
covariance matrix in (2.14) with h = 1), and compared to a Student
tT−1 reference distribution.
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Table 2.1 Monte Carlo estimates of sizes of tests of forecast
encompassing

Test statistic Normal errors Student t errors

T = 8
Standard 4.9 8.4
R1 9.9 12.8
DM 8.1 7.2
MDM 4.2 3.2
SR1 6.5 7.3
SR2 5.5 6.9

T = 16
Standard 4.9 9.8
R1 7.6 11.0
DM 6.5 6.0
MDM 4.7 4.1
SR1 5.0 5.9
SR2 5.0 6.2

T = 32
Standard 5.1 10.4
R1 6.7 8.9
DM 5.9 5.3
MDM 5.0 4.3
SR1 5.0 6.0
SR2 5.1 6.1

T = 64
Standard 5.1 11.5
R1 6.1 7.8
DM 5.7 5.1
MDM 5.2 4.6
SR1 4.9 6.0
SR2 5.0 6.5

T = 128
Standard 5.2 12.3
R1 5.6 6.8
DM 5.4 5.0
MDM 5.2 4.8
SR1 5.2 5.9
SR2 5.2 6.2

Notes: The table gives the percentage rejection rates for tests of forecast
encompassing. Rejection rates estimated from 40,000 replications. Tests
are carried out at a 5% nominal level.
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DM The Diebold–Mariano test for equal forecast accuracy applied to
testing for forecast encompassing. Recall that in Section 2.3.1 the test
for equal forecast accuracy (assuming squared-error loss) was based on
testing whether dt = e2

1t −e2
2t = 0. If instead we define dt = e1t (e1t −e2t ),

testing whether dt = 0 is now a test of forecast encompassing. The
resulting test statistic is compared to the standard normal distribution.

MDM Harvey et al. (1997) propose modifications to DM aimed at
improving its small-sample performance. For h = 1, as here:

MDM =
√

1 + 1
T

× DM

and MDM is compared to a Student tT−1 distribution.

SR Spearman’s rank correlation test. This is a distribution free test that
determines whether there is a monotonic relation between two vari-
ables, here e1t and (e1t −e2t ). It is applicable when, as here with h = 1, it
is reasonable to assume that drawings of {e1t , (e1t − e2t )} are independ-
ent. SR1 is the one-sided rank correlation test against the alternative of
positive correlation, and SR2 is a two-sided test. All the other tests are
one-sided tests, against the alternative of positive correlation, λ > 0.

The first column of the table indicates that R1 and DM are over-sized
for n = 8 and 16. Clearly, HCSEs (R1) are not necessary, and the modific-
ation to DM (MDM) improves the performance of this statistic. Harvey
et al. (1998) argue that forecast-error distributions are liable to be heavy-
tailed if very large absolute errors are occasionally observed. They show
analytically that in this case the standard t-test will be over-sized, and
they analyse by Monte Carlo the usefulness of HCSEs and of the other
tests of forecast encompassing described above. The second column of
figures in the table records size estimates for heavy-tailed forecast errors.
Following Harvey et al. (1998), forecast errors are generated from:

eit = uit√
(χ2

ν,t/ν)

,

where:

u1t = ε1t

u2t = ε1t + 0.5ε2t
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and ε1t , ε2t are i.i.d. N(0, 1) variables, as before, and χ2
ν,t is a chi-squared

random variable with ν = 5 degrees of freedom. The results indicate that
the standard tests becomes increasingly over-sized as T increases; R1 is
correctly sized for large samples, but exacerbates the problem for small
samples, whilst the (M)DM and SR tests are reasonable throughout.
Harvey et al. (1998) also consider the power properties of these statistics.

2.4 Testing model-based forecasts for predictive accuracy

In this section, we consider issues that arise in the evaluation of point
forecasts that are explicitly model-based. If a set of forecasts are based
on a model, then an approach to forecast evaluation presents itself
that does not require the existence of rival forecasts (as in Section 2.3),
namely, comparing the accuracy of the forecasts to what would have
been expected based on the past fit of the model to the data. This idea
underlies tests of predictive accuracy which compare an estimate of the
forecast-error variance obtained from the past residuals with the actual
mean-squared error of the forecast (see, inter alia, Chow (1960), Christ
(1966) and Hendry (1974, 1979) for early developments). Such tests are
briefly reviewed in Section 2.4.1. However, published forecasts of macro-
economic variables based on large-scale macro-econometric models
usually reflect in varying degree the properties of the model and the
skills of the models’ proprietors. Forecasts are rarely based on the model
alone. Moreover, forecasters’ adjustments tend to improve accuracy:
see, for example, Marris (1954), Wallis et al. (1986, Table 4.8), Wallis
et al. (1987, Figures 4.3 and 4.4) and Wallis and Whitley (1991). That
being the case, tests of the predictive accuracy of the model-based fore-
casts may have little bearing on assessing the published forecasts. The
usefulness of this approach may also be limited by the models on which
the forecasts are based being unknown or not available for the purpose
of evaluation.

A second aspect we consider in this section is the impact on tests of
equal accuracy, and tests of forecast encompassing, of the forecasts and
rival forecasts being model-based.

2.4.1 Tests of predictive accuracy

To begin with, suppose:

yt = x′
tβ + εt , (2.38)
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where 1, . . . , T is now the estimation sample period and T + 1 is the
period to be forecast. xt is a p-dimensional vector of explanatory vari-
ables at period t , and let X be the T × p matrix of observations on the
p explanatory variables for periods 1, . . . , T . We assume that the {xt } are
strongly exogenous stochastic regressors, ruling out lagged {y}’s. We also
assume that the {εt } are i.i.d. N(0, σ2

ε ). The OLS estimator of β, β̂, is
given by:

β̂ = (X′X)−1X′y

= β + (X′X)−1X′ε,

where ε′ = [ε1 · · · εT ]. The 1-step error in forecasting the regressand at
period T + 1 is:

eT+1|T = yT+1 − x′
T+1β̂

= x′
T+1(β − β̂) + εT+1

= −x′
T+1(X

′X)−1X′ε + εT+1.

Since E(eT+1|T ) = 0, the variance of eT+1|T , V(eT+1|T ) = E(e2
T+1|T ), and so:

V(eT+1|T ) = x′
T+1(X

′X)−1X′E(εε′)X(X′X)−1x′
T+1 + σ2

ε

= σ2
ε x′

T+1(X
′X)−1x′

T+1 + σ2
ε

≡ σ2
ε fT+1

assuming that the process at time T +1 is the same as that at 1, . . . , T (i.e.
yT+1 = x′

T+1β + εT+1, and E(ε2
T+1) = σ2

ε ). Because eT+1|T is a linear com-
bination of normally distributed random variables, eT+1|T ∼ N(0, σ2

ε fT+1),
and hence:

e2
T+1|T

σ2
ε fT+1

∼ χ2
(1).

In practice σ2
ε will not be known. A standard textbook result is that:

(T − p)s2

σ2
ε

∼ χ2
(T−p).

Because the two chi-squared random variables are independent, dividing
each by their degrees of freedom, and then the resulting statistics one by
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the other, gives the Chow (1960) test statistic we referred to above:

Q = e2
T+1|T

s2fT+1
∼ F1

T−p (2.39)

a statistic with an F-distribution with (1, T − p) degrees of freedom.
When the explanatory variables contain lags of the dependent vari-
able the justification for comparing Q to the F-distribution rests on
asymptotic arguments, but Kiviet (1986) shows by simulation that it has
good size properties, and compares favourably with other asymptotically
equivalent statistics.

We can also calculate tests of predictive accuracy for h-step forecasts.
To do so, we will explicitly consider forecasts for {yt } based on a time-
series model, in contrast to (2.38). We consider the Box and Tiao (1976)
test, proposed as a way of testing for parameter change at a particular
point. {yt } is a scalar process given by the Wold representation:

yt = ψ(L)εt , (2.40)

where εt ∼ i.i.d. N(0, σ2
ε ), ψ(L) = ψ0 + ψ1L + ψ2L2 + · · · , and ψ0 = 1.

Assuming ψ(L) is invertible gives the AR representation:

φ(L)yt = εt , (2.41)

where φ(L) = ψ(L)−1. The actual value of the process at T +h using (2.40)
can be split into the sum of two sets of disturbances: those relating to the
(present and) past relative to T , the date at which the forecast is made,
and those relating to the future, that is:

yT+h =
∞∑

j=h

ψjεT+h−j +
h−1∑
j=0

ψjεT+h−j.

The MMSEP is:

yT+h|T =
∞∑

j=h

ψjεT+h−j,
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because ET (εs) = εs for s ≤ T , but ET (εs) = 0 for s > T . Thus when the
parameters {ψj} are known:

eT+h|T = yT+h − yT+h|T =
h−1∑
j=0

ψjεT+h−j. (2.42)

The multi-period errors in forecasting (yT+1, . . . , yT+h) conditional on
period T are stacked in the vector eh = (eT+1|T , . . . , eT+h|T ), which can
be related to the disturbances {εt } by:

eh = ψεh, (2.43)

where εh = (εT+1, . . . , εT+h)
′, and:

ψ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0
ψ1 1 0 · · · 0 0

ψ2 ψ1 1
. . . 0 0

...
...

. . .
. . . 0 0

ψh−2 ψh−3 · · · ψ1 1 0
ψh−1 ψh−2 · · · ψ2 ψ1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Because ψ is non-singular, we can invert (2.43):

εh = φeh, (2.44)

where φ = ψ−1, so that (2.43) and (2.44) give the relationship between
the forecast errors and the vector of disturbance terms.

The covariance matrix of the forecast errors is:

�h = E(ehe′
h) = ψE(εhε

′
h)ψ

′ = σ2
εψψ

′,

because E(εhε
′
h) = σ2

ε Ih. Thus, if the model appropriate over (1, . . . , T)

remains so over the forecast horizon (T + 1, . . . , T + h), then:

Q = e′
h�

−1
h eh ∼ χ2

(h). (2.45)

Under the null, eh ∼ Nh(0,�h), so the distribution of Q follows from that
of a quadratic form in normally distributed variables (see, e.g., Lütkepohl
(1991, Proposition B.3, p. 481)).
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Again following Box and Tiao, it is straightforward to show that we can
replace the multi-step forecast errors eh in (2.45) by 1-step ahead forecast
errors made over the period (eT+1|T , . . . , eT+h|T+h−1), noting that the latter
are simply (εT+1, . . . , εT+h), because �−1

h = σ−2
ε ψ−1′ψ−1 = σ−2

ε φ′φ. Thus:

Q = e′
h�

−1
h eh = e′

hφ
′φeh

σ2
ε

= ε ′
hεh

σ2
ε

= σ−2
ε

h∑
j=1

ε2
T+j. (2.46)

Since in practice we will require an estimate of σ2
ε to calculate Q, Box and

Tiao suggest an approximate F-variant defined by:

Q̂ =
∑h

j=1 ε2
T+j

hs2
∼ Fh

T−p, (2.47)

where p denotes the number of parameters estimated in the model when
obtaining s2. This test statistic is formed as the ratio of two chi-squared
statistics exactly as for (2.39), where the h in the denominator appears as
it is the degrees of freedom of the numerator statistic (given by (2.46)).

2.4.2 Tests of equal accuracy and encompassing when
parameters are estimated

The asymptotic distributions of tests of predictive accuracy may be
affected by parameter estimation error: see West (1996), West and
McCracken (1998) and McCracken (2000). We will illustrate the gen-
eral argument with the example of testing for unbiasedness taken from
West and McCracken (2002, Section 14.3.1). For some tests of predictive
ability, such as the Diebold–Mariano test of equal mean squared errors
between two sets of forecasts (discussed in Section 2.3.1), the limiting
distribution of the test statistic remains standard normal even in the pres-
ence of parameter estimation uncertainty. West and McCracken (2002)
provide a readable account, setting out a general framework for inference
about predictive ability, the conditions under which parameter estima-
tion can be ignored (at least asymptotically), and ways of correcting test
statistics.

For testing unbiasedness, West and McCracken (2002) consider the
following set up. The model is:

yt = X′
t−1β

∗ + εt ,
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where X′
t−1 = (1, xt−1), and εt is i.i.d. (0, σ2). β̂ = (

∑R
s=1 Xs−1X′

s−1)
−1 ×

(
∑R

s=1 Xs−1ys) is the OLS estimator of β∗ on the sample 1, . . . , R. 1-step
forecasts are given by yt+1|t = X′

t β̂ for t = R, . . . , R + P − 1, with forecast
errors et+1|t = yt+1 − yt+1|t .

The test for unbiasedness is the t-statistic for the null that α = 0 in the
regression:

et+1|t = α + υt+1

for the P forecast errors. The standard t-statistic is:

P−1
∑R+P−1

t=R
et+1|t√

s2

(∑R+P−1

t=R
12
)−1

=
P−1/2

∑R+P−1

t=R
et+1|t√

1
P−1

∑R+P−1

t=R
(et+1|t − ē)2

(2.48)

from substituting s2 = (P − 1)−1∑R+P−1
t=R (et+1|t − ē)2, and where ē is the

sample mean of the forecast errors. This statistic will have a limiting
standard normal distribution if the numerator is asymptotically nor-
mal with limiting variance �, say, and the denominator converges in
probability to �1/2.

We consider the numerator, noting that we can write et+1|t as:

et+1|t = yt+1 − yt+1|t

= εt+1 + X′
t (β

∗ − β̂)

= εt+1 − X′
t

(
R∑

s=1

Xs−1X′
s−1

)−1 ( R∑
s=1

Xs−1εs

)
, (2.49)

where the third line follows from β̂ −β∗ = (
∑R

s=1 Xs−1X′
s−1)

−1(
∑R

s=1 Xs−1εs).
Substituting into the numerator of (2.48) gives:

P−1/2
R+P−1∑

t=R

et+1|t

= P−1/2
R+P−1∑

t=R

⎛
⎝εt+1 − X′

t

(
R∑

s=1

Xs−1X′
s−1

)−1 ( R∑
s=1

Xs−1εs

)⎞⎠
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= P−1/2
R+P−1∑

t=R

εt+1 − P−1/2
R+P−1∑

t=R

X′
t

(
R∑

s=1

Xs−1X′
s−1

)−1 ( R∑
s=1

Xs−1εs

)

= P−1/2
R+P−1∑

t=R

εt+1 − P−1
R+P−1∑

t=R

X′
t

(
R−1

R∑
s=1

Xs−1X′
s−1

)−1

×
((

P
R

)1/2

R−1/2
R∑

s=1

Xs−1εs

)
.

The third line scales the sums of random variables.
An assumption then has to be made about the relative rates at

which R, the number of in-sample observations, and P, the number
of out-of-sample predictions, get large. We assume that P, R → ∞, and
P/R → π < ∞. In that case:

P−1/2
R+P−1∑

t=R

et+1|t = P−1/2
R+P−1∑

t=R

εt+1 − (EX′
t )(EXtX′

t )
−1

×
(

π1/2R−1/2
R∑

s=1

Xs−1εs

)
+ op(1)

=
(
1 : − (EX′

t

) (
EXtX′

t

)−1
)

×

⎛
⎜⎜⎜⎜⎝

P−1/2
R+P−1∑

t=R

εt+1

π1/2R−1/2
R∑

s=1

Xs−1εs

⎞
⎟⎟⎟⎟⎠+ op(1)

under general conditions.
Given the assumptions about the {ε}, the two components of the

column vector are independent, and so:

⎛
⎜⎜⎜⎜⎝

P−1/2
R+P−1∑

t=R

εt+1

π1/2R−1/2
R∑

s=1

Xs−1εs

⎞
⎟⎟⎟⎟⎠

d−→ N

(
03×1, σ2

(
1 0
0 π(EXtX′

t )

))
.

Thus the numerator in (2.48) is a linear combination of two independent
zero-mean normally distributed random variables, and so it is itself a
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zero-mean normal random variable:

P−1/2
R+P−1∑

t=R

et+1|t
d→ N(0, �),

where:

� = σ2 + σ2π(EX′
t )(EXtX′

t )
−1(EXtX′

t )(EXtX′
t )

−1(EX′
t )

= σ2(1 + π(EX′
t )(EXtX′

t )
−1(EX′

t )).

One can show that the denominator of (2.48) converges in probability
to σ2 (see West and McCracken (2002, pp. 306–307) for details), so that
the asymptotic distribution of the t-statistic is N(0, V), where:

V = �

σ2
= 1 + π(EX′

t )(EXtX′
t )

−1(EX′
t ).

Because V > 1, the asymptotic distribution of the test of unbiasedness
when the null is true is not standard normal, but has a variance in excess
of unity, so that using critical values taken from the standard normal will
lead to the null being rejected too often – we will tend to falsely infer
that forecasts are biased if we fail to take account of parameter estima-
tion uncertainty. Notice that when there are a large number of in-sample
observations relative to forecast period observations the problem will be
less acute (π positive but close to zero) and for low values of π can per-
haps be ignored. Intuitively, there are sufficient in-sample observations
relative to periods being forecast that the estimation error will be small.

Some of the above expressions simplify considerably if we assume that
the model simply consists of an intercept:

yt = β∗ + εt

corresponding to Xt−1 = (1). Then:

P−1/2
R+P−1∑

t=R

et+1|t = (1 − 1)

⎛
⎜⎜⎜⎜⎝

P−1/2
R+P−1∑

t=R

εt+1

π1/2R−1/2
R∑

s=1

εs

⎞
⎟⎟⎟⎟⎠
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and:

⎛
⎜⎜⎜⎜⎝

P−1/2
R+P−1∑

t=R

εt+1

π1/2R−1/2
R∑

s=1

εs

⎞
⎟⎟⎟⎟⎠

d−→ N

(
02×1, σ2

(
1 0
0 π

))

so V(P−1/2∑R+P−1
t=R et+1|t ) = σ2(1 + π). This corresponds to the simple case

of testing whether the mean of a sample of i.i.d. normal variables is an
unbiased predictor of the mean of another i.i.d. sample from the same
population.

In the absence of estimation error, or assuming β̂ = β
∗

in (2.49), so
that et+1|t = εt+1,

P−1/2
R+P−1∑

t=R

et+1|t = P−1/2
R+P−1∑

t=R

εt+1

and

P−1/2
R+P−1∑

t=R

εt+1
d→ N(0, σ2)

resulting in V = 1.
West (2001) shows that the forecast encompassing test based on

E(dt ) = 0, where dt = e1t (e1t − e2t ) (see Section 2.3.2) will tend to reject
too often when forecasts are based on models with estimated parameters,
and no allowance is made for this. As suggested by the example of test-
ing for unbiasedness outlined above, the problem will be more acute the
larger π. West concludes that the Harvey et al. (1998) modified forecast
encompassing tests may perform reasonably well when parameters are
estimated provided that either P is small (P ≤ 8) or less than 10% of the
total observations are assigned to the forecast period (P < 0.1(P + R)).

Finally, Clark and McCracken (2001) show that the asymptotic dis-
tributions of tests of equal forecast accuracy and encompassing will
differ when the models are nested, rather than non-nested (as assumed
hitherto). When the models are nested (and abstracting from parameter
estimation uncertainty by assuming the models’ parameters are known
in advance) then the forecast errors are identical under the null, and the
standard distribution theory does not apply. They tabulate critical values
for a test statistic that is applicable in this case. The distribution depends
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on π and the number of excess variables in the nesting model, as well as
whether the parameter estimates are continuously updated (or estimated
once on the data to R and kept fixed, as above).

2.5 Non-linear models and forecasting

We consider in this section non-linear models of the sort that characterize
processes which switch between two or more regimes. Models with two
or more regimes are a natural generalisation of ‘one-regime’ linear ARMA
time-series models. Such models have been found to be a useful way of
capturing business-cycle regimes in the empirical macroeconomics liter-
ature, as well as describing high and low volatility regimes in financial
market returns variables. For linear ARMA models the best point fore-
cast assuming squared-error loss is simply the conditional expectation,
which is simple to calculate and has a closed analytical form. For one
of the two types of regime-switching models we consider, namely the
Markov-switching autoregessive models (MSAR), the conditional expect-
ation has a closed form solution, whereas for the threshold models the
conditional expectation needs to be found by simulation or numerical
integration. As well as the issue of how to generate forecasts from non-
linear models, we consider issues that arise in the evaluation of forecasts
from such models.

In Section 2.5.1 we provide a simple proof that the conditional expect-
ation is the MMSE predictor whether the model is linear or non-linear,
to motivate the relevance of calculating the conditional expectation for
the non-linear models discussed in this section. In Section 2.5.2 we
show why the calculation of multi-step forecasts for a generic non-linear
model may not be as straightforward as for linear models. Section 2.5.3
introduces the class of threshold models, and Section 2.5.4 MSAR.
Section 2.5.5 considers issues that might be particularly relevant to the
evaluation of forecasts from non-linear models.

2.5.1 The conditional expectation is the MMSE predictor

Provided the first two moments of the process exist, forecasts calculated
as the conditional expectation yt+h|t = E(yt+h|Yt ) are unbiased (where
Yt = (y1 · · · yt )), and no other predictor conditional on Yt alone has a
smaller MSFE, E[(yt+h −yt+h|t )2|Yt ]. We sketch out a proof of this result for
h = 1: see, for example, Clements and Hendry (1998, ch. 2) for h > 1.
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Consider any alternative predictor that depends on the same inform-
ation set, Yt , say ỹt+1|t = g(yt+1|Yt ) such that:

E( ỹt+1|Yt ) = E[g(yt+1|Yt )] = E[yt+1|YT ],

so ỹt+1|t is also conditionally unbiased. Then:

E[(yt+1 − ỹt+1|t )2|Yt ] = E{[(yt+1 − yt+1|t ) − ( ỹt+1|t − yt+1|t )]2|Yt }
= E[(yt+1 − yt+1|t )2 + ( ỹt+1|t − yt+1|t )2|Yt ]
= E[(yt+1 − yt+1|t )2|Yt ] + υ

≥ E[(yt+1 − yt+1|t )2|Yt ], (2.50)

as υ ≥ 0, and the cross product:

E[(yt+1 − yt+1|t )(ỹt+1|t − yt+1|t )|Yt ] = 0

by the unbiasedness of yt+1|t and the fact that both yt+1|t and ỹt+1|t are
conditional on Yt . Thus, yt+1|t has desirable properties. It is conditionally
unbiased and no other unbiased predictor has a smaller variance.

For the AR(1) model given by (2.9) in Section 2.1.1, yt = φyt−1 + υt , we
can write yt+h as:

yt+h = φhyt +
h−1∑
t=0

φiυt+h−i

(by substituting for yt+h−1 = φyt+h−2 + υt+h−1 in yt+h = φyt+h−1 + υt+h

to give yt+h = φ2yt+h−2 + υt+h + φυt+h−1, and then substituting for yt+h−2,
and so on). The conditional expectation is:

yt+h|t ≡ E(yt+h|Yt ) = E

[(
φhyt +

h−1∑
t=0

φiυt+h−i

) ∣∣∣∣Yt

]
= φhyt

because:

E

(
h−1∑
t=0

φiυt+h−i|Yt

)
=

h−1∑
t=0

φiE(υt+h−i|Yt )

and E(υt+s|Yt ) = E(υt+s) = 0 for all s > 0.
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2.5.2 Multi-step forecasts and non-linear models

To see why a closed-form solution for the conditional expectation of a
non-linear model may not exist, consider:

yt = g(yt−1; φ) + εt , (2.51)

where g(y, φ) is a non-linear function. For example, g(y, φ) = φy2 gives a
non-linear equation, while g(y, φ) = φy specifies an AR(1). As usual, {εt } is
assumed to be a zero-mean, i.i.d. random variable, E(ε2

t ) = σ2
ε , with dis-

tribution function F (so that Pr(εt < ε) = F(ε)). Assuming g(·) is known,
the conditional expectation is simply:

yt+1|t ≡ E[yt+1|Yt ] = E[(g(yt ; φ) + εt+1)|Yt ] = g(yt ; φ). (2.52)

whatever the form of g( ). So 1-step forecasts from non-linear models are
obtained in the same way as 1-step forecasts from linear models.

Consider now the 2-step forecast (suppressing the dependence of g( )

on φ for convenience):

yt+2|t ≡ E(yt+2|Yt ) = E[(g(yt+1) + εt+2)|Yt ]
= E[g(yt+1)|Yt ] + E(εt+2|Yt )

= E[g(yt+1)|Yt ].

Consider E[g(yt+1)|Yt ].

E[g(yt+1)|Yt ] = E[g(g(yt ) + εt+1)|Yt ]
= E[g(yt+1|t + εt+1)|Yt ],

where the second line follows from using (2.52). The point to note is
that for a non-linear function:

E[g(·)] �= g(E[·])

so that:

E[g(yt+1|t + εt+1)|Yt ] �= g[E(yt+1|t |Yt ) + E(εt+1|Yt )].

When g(y) is linear (e.g., as for the AR(1) model above):

E[(φyt+1|t + φεt+1)|Yt ] = φyt+1|t ,
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but for g(y) = φy2:

E[(φy2
t+1|t + φε2

t+1 + 2φyt+1|tεt+1)|Yt ] = g(yt+1|t ) + φσ2
ε .

Only when σ2
ε = 0 will it be true that yt+2|t = g(yt+1|t ). And then {yt } is

non-stochastic.
Granger and Teräsvirta (1993, ch. 8) consider four alternative methods

for forecasting 2-steps ahead, based on:

yt+2|t = E[g(yt+1)|Yt ]
= E[g(yt+1|t + εt+1)]. (2.53)

Naive or skeleton method This method assumes that E[g(·)] = g(E[·]), such
that yn

t+2|t = g(yt+1|t ). The random variable {εt+1} in (2.53) is effectively
replaced by its mean value of zero. This method is generally not to be
recommended.

Exact method Requires numerical integration to solve (2.53):

ye
t+2|t =

∫ ∞

−∞
g(yt+1|t + z)dF(z). (2.54)

Monte Carlo As an approximation to the exact method, we can instead
average over g(·) evaluated at a number of randomly chosen values of
{εt+1}. The random variables {zj} are drawn from the distribution F. There-
fore, values of the random variable with a higher probability under F will
be drawn more frequently than low probability values (e.g. values around
zero compared to values less than −2 or greater than +2, in the case of a
normal random variable). This performs the role played by F(z) in (2.54).

ymc
t+2|t = 1

R

R∑
j=1

g(yt+1|t + zj).

Bootstrap Similar to Monte Carlo, except that the random variables
{ε̂j} are drawings from the model’s estimated error terms, and may be
preferred when F is unknown or cannot be easily sampled from.

ybs
t+2|t = 1

B

B∑
j=1

g(yt+1|t + ε̂j).
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As the number of replications R is increased the Monte Carlo method
(and the bootstrap) will provide an increasingly good approximation to
the exact method, and is no more difficult computationally to imple-
ment for longer horizon forecasts. By way of contrast, the exact method
requires numerical evaluation of a double integral for h = 3, and for
longer forecasts soon becomes an unattractive method. For 3-steps
ahead:

yt+3|t = E[g(yt+2|t + εt+2)]
= E[g(g(yt+1|t + εt+1) + εt+2)]
= E[g(g(g(yt ) + εt+1) + εt+2)].

Simulation-based forecasting methods can also be fairly easily extended
to look at the effects on forecast performance of parameter estimation
uncertainty (the effects of having to estimate the model’s parameters)
and model uncertainty, whereby the model specification (e.g. an AR(1)

versus an AR(2)) is not known but needs to be determined in some way,
perhaps using a model selection criterion.

2.5.3 SETAR models and multi-period forecasts

The threshold autoregressive (TAR) model was first proposed by Tong
(1978, 1983), Tong and Lim (1980) (see also Tong 1995a). At each point in
time, yt is determined by one of a small number of linear autoregressions.
Which autoregression is in force depends upon the value of some past
lag of the process relative to a threshold (or set of thresholds), or altern-
atively it may depend on the value of an extraneous variable. When the
threshold variable is a lag of yt , say, yt−d , so that d is the length of the
delay, then the model is ‘self-exciting’, giving rise to the acronym SETAR.
When there are two regimes, then the process is in regime i = 1 at period
t when yt−d ≤ r, and otherwise (yt−d > r) in regime i = 2:

yt = φ
{i}
0 + φ

{i}
1 yt−1 + · · · + φ

{i}
p yt−p + ε

{i}
t ,

ε
{i}
t ∼ i.i.d.(0, σ2{i}), i = 1, 2, (2.55)

where the superscripts {i} indicate parameters that may vary across
regime. As written, the model allows the variance of the disturbances
to depend upon the regime. Stationarity and ergodicity conditions are
discussed in, for example, Tong (1995a).
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If we assume for the moment that σ2{i} = σ2 (no regime-dependent
heteroskedasticity) then in terms of the generic notation of Section 2.5.2
we can write the model as:

yt = g
(
yt−1; φ{1}, φ{2}, r

)+ εt

when p = d = 1 and with g(yt−1; ·) given by:

g(yt−1; φ{1}, φ{2}, r) = [φ{1} + 1(yt−1 > r)(φ{2} − φ{1})]yt−1. (2.56)

In equation (2.56) 1(·) is the indicator function, that is, 1(yt−1 > r) = 1
when yt−1 > r and 1(yt−1 > r) = 0 when yt−1 ≤ r.

The exact 1-step ahead point forecast defined by yt+1|t ≡ E(yt+1|Yt ),
where Yt = yt , yt−1, . . . , is given by:

yt+1|t = E[(g(yt ) + εt+1)|Yt ] = g(yt ).

However, for 2-steps ahead:

yt+2|t ≡ E(yt+2|Yt ) = E[(g(yt+1) + εt+2)|Yt ] = E[g(yt+1)|Yt ]. (2.57)

From (2.56):

g(yt+1; ·) = [φ{1} + 1(yt+1 > r)(φ{2} − φ{1})]yt+1

= [φ{1} + 1(yt+1|t + εt+1 > r)(φ{2} − φ{1})](yt+1|t + εt+1). (2.58)

The second line comes from replacing yt+1 by yt+1|t + εt+1: the forecast
value plus the ‘forecast error’. The non-linearity in the forecast function
arises from the presence of {εt+1} in the indicator function and the condi-
tional mean. Calculating the conditional expectation of (2.58) requires
numerical integration or use of a simulation method, as described in
Section 2.5.2.

The Monte Carlo method

Given its popularity, we outline the Monte Carlo method (denoted MC)
for generating forecasts from a SETAR model. This simulation method
can be applied as easily to complex models (high autoregressive lag
orders, several regimes) as to the simple two-regime SETAR model with
p = d = 1. For forecasting the t + 1 to t + h observations conditional on
Yt , we draw a vector of i.i.d. variables from F, the distribution function of
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the {εt }, which we label as {z2,j, . . . , zh,j}, where j denotes the replication.
For the jth replication, we solve the following equations:

yt+1|t = [φ{1} + 1(yt > r)(φ{2} − φ{1})]yt

y j
t+2|t = [φ{1} + 1(yt+1|t + z2,j > r)(φ{2} − φ{1})](yt+1|t + z2,j)

y j
t+3|t = [φ{1} + 1(y j

t+2|t + z3,j > r)(φ{2} − φ{1})](y j
t+2|t + z3,j)

y j
t+4|t = [φ{1} + 1(y j

t+3|t + z4,j > r)(φ{2} − φ{1})](y j
t+3|t + z4,j)

and:

y j
t+h|t = [φ{1} + 1(y j

t+h−1|t + zh,j > r)(φ{2t} − φ{1})](y j
t+h−1|t + zh,j).

Repeating for j = 1, . . . , R gives a sample of k-step ahead forecasts (k =
1, . . . , h), {y1

t+k|t , . . . , yR
t+k|t }, and averaging yields the MC estimator of the

point forecast:

ymc
t+k|t = 1

R

R∑
j=1

y j
t+k|t .

If there is regime-dependent heteroskedasticity, then the drawing of {zi,j},
say, can be scaled to have a variance appropriate to the regime the process
is in at period t + i, as determined by y j

t+i−1|t .

Smooth transition threshold models

The SETAR model features an abrupt switch from one regime (linear
autoregression) to another as yt−1 (with d = 1) crosses the threshold
value, r. Smooth transition autoregessive (STAR) models allow for a more
gradual adjustment, whereby the process is typically determined by some
weighted average of the two regimes, and the relative importance of the
two regimes in the average depends upon yt−1. The two-regime STAR
model can be written as:

yt = [φ{1} + G(γ, c; yt−1)(φ
{2} − φ{1})]yt−1 + εt ,

which is equivalent to the SETAR process in (2.56), except that 1(yt−1 > r)
is replaced by G(γ, c; yt−1), where, for example:

G(γ, c; yt−1) = (1 + exp{−γ(yt−1 − c)})−1, γ > 0. (2.59)

The transition function increases monotonically from zero to unity as
yt−1 goes from minus to plus infinity. The smoothness parameter γ

controls the slope of the transition function, that is, the speed with
which the process moves between regimes as yt−1 varies. When yt−1 = c
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the two regimes each receive an equal weight, G(γ, c; c) = 1
2 . As γ → ∞

then (2.59) becomes a step function, G(γ, c; yt−1) → 1(yt−1 > c). As γ → 0
then G(γ, c; yt−1) → 1

2 , and the model becomes linear, with the AR
parameter φ not depending on yt−1. This model may be used to cap-
ture different dynamic behaviour in expansions and contractions, for
example. A model with transition function given by (2.59) is often
known by the acronym LSTAR, for logistic STAR model.

Any function which is bounded between zero and one is a suitable
candidate for G(·). Another popular choice is the exponential function:

G(γ, c; yt−1) = 1 − exp{−γ(yt−1 − c)2}

giving rise to the ESTAR model. G(·) is symmetric about 0 (attained when
yt−1 = c), and approaches unity as yt−1 → ±∞. The dynamics of the
model are therefore similar as yt−1 departs from c in either direction,
but differ in a band around c. Such a transition function be useful in
describing bands of inactivity around an equilibrium in the presence of
adjustment costs: see, for example, Anderson (1997). The specification,
estimation and evaluation of smooth transition models is described in
Teräsvirta and Anderson (1992) and Teräsvirta (1994), inter alia.

2.5.4 Markov-switching models

In MSAR processes the switch between regimes is determined by a
stochastic process, whereby at each period t there is a constant probabil-
ity of remaining in a given regime, say regime 1, which we denote by p11,
and therefore a probability of switching into the other regime (assuming
a two-regime model) of p12 = 1 − p11. Similarly, p22 is the probability
of remaining in regime 2, and p21 = 1 − p22 the probability of switch-
ing from regime 2 to 1. The stochastic process just described is a Markov
process, because we assume that the transition probabilities depend only
on the current state. More formally, the transition probabilities can be
written as:

pij = Pr(st+1 = j|st = i),
2∑

j=1

pij = 1 ∀i, j ∈ {1, 2},

where the unobservable states are given by st = 1, if the process is in state
(regime) 1 at period t , and otherwise st = 2, indicating state or regime 2.
The assumption of fixed transition probabilities pij has been relaxed by
a number of authors.5

Whilst the states {st } evolve independently of the observed values {yt },
from the data {yt }T

t=1 we can infer the state the process was in at each
period t . In the seminal paper by Hamilton (1989), yt was the growth rate
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of US GNP. The Hamilton model of the US business cycle fits an AR(4) to
the quarterly percentage change in US real GNP from 1953 to 1984:

yt − μ(st ) = α1(yt−1 − μ(st−1)) + · · · + α4(yt−4 − μ(st−4)) + ut , (2.60)

where ut ∼ i.i.d. N[(0, σ2
u )]. The conditional mean μ(st ) switches between

two states:

μ(st ) =
{

μ1 > 0, if st = 1(‘expansion’ or ‘boom’),

μ2 < 0, if st = 2(‘contraction’ or ‘recession’),

Maximum likelihood (ML) estimation of the MSAR model entails an
iterative technique, based on an implementation of the expectation
maximization (EM) algorithm proposed in Hamilton (1990). The EM
algorithm of Dempster et al. (1977) is used because the observable time
series depends on the st , which are unobservable stochastic variables.

Forecasting is straightforward. While the MMSEP is not linear, it can
be derived analytically (contrast the threshold models in Section 2.5.3).
For convenience, suppose the process is first order:

yt − μ(st ) = α(yt−1 − μ(st−1)) + ut .

The 1-step ahead conditional expectation is:

yt+1|t ≡ E(yt+1|Yt ) = μ̂t+1|t + α(yt − μ̂t |t ),

where μ̂t+i|t = E(μ(st+i)|Yt ). μ̂t+1|t is the forecast value of the mean in
period t + 1. The forecast of the mean is a weighted average of μ1 and
μ2, where the weights are the predicted probabilities of the two regimes:

μ̂t+1|t =
2∑

j=1

μjPr(st+1 = j|Yt ).

The predicted regime probabilities are given by:

Pr(st+1 = j|Yt ) =
2∑

i=1

Pr(st+1 = j|st = i)Pr(st = i|Yt )

=
2∑

i=1

pijPr(st = i|Yt ).



Point Forecasts 39

They depend on the transition probabilities, {pij}, and the filtered
probablilities of the regimes at period t , {Pr(st = i | Yt )}. μ̂t |t can be
calculated from the filtered probabilities alone:

μ̂t |t =
2∑

j=1

μjPr(st = j|Yt ).

Multi-step forecasts can be built up from the recursion:

yt+h|t = μ̂t+h|t + α(yt+h−1|t − μ̂t+h−1|t )

with initial values yt+s|t = yt+s for s ≤ 0, and where the predicted regime
probabilities are given by:

Pr(st+h = j|Yt ) =
2∑

i=1

Pr(st+h = j|st = i)Pr(st = i|Yt ). (2.61)

Collecting the transition probabilities in the matrix P:

P =
[

p11 p12

p21 p22

]

it is straightforward to show that Pr(st+h = j|st = i) = {(P′)h}j,i, that is,
the probability of being in regime j, h periods after being in regime i, is
given by the {j, i} element of (P′)h.

When pij = pj, i, j = 1, 2, the regimes are unpredictable, where pj is the
unconditional probability of regime j (given by the relative frequency of
occurrence of regime j). Then Pr(st+h = j|Yt ) = pj, μ̂t+h|t =∑2

j=1 μjpj = μ̄,
say, and the h-step forecasts are given by:

yt+h|t = μ̄ + α(yt+h−1|t − μ̄)

= μ̄ + αh(yt − μ̄)

matching the forecast function of a linear AR(1) model.

2.5.5 Evaluating non-linear model forecasts

A number of considerations arise when forecasts from non-linear models
are involved.

First, it is often argued that non-linear models will be better in some
states than others, for example, Tong (1995b, pp. 409–410, ‘how well
we can predict depends on where we are’ and that there are ‘windows
of opportunity for substantial reduction in prediction errors’. If those
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occasions which favour the non-linear model are relatively infrequent,
then the good performance at those times may be diluted by averaging
squared forecast errors over all periods. This will be especially misleading
if those occasions happen to be times when the user particularly values
accurate forecasts (e.g. at turning points in the economy). This has led to
the practice of reporting MSFEs for specific regimes, where the regimes
are determined by the model designation at the time the forecast is made.

Second, the value of non-linear models may not be apparent from
empirical forecast comparison exercises if the ‘non-linearity’ fails to
persist into the future (e.g. Granger and Teräsvirta (1993, p. 164).

Third, the forecast user may often be interested in how well the dir-
ection of change of a variable is forecast, and less interested in the
magnitude of the forecast error per se. Tests of sign predictability were
developed by Henriksson and Merton (1981), inter alia, and are some-
times known as market-timing tests. To see why, consider an investor
who has to decide whether to buy or sell an asset. If the asset price rises
tomorrow, he would wish to have bought today, and otherwise to have
sold. A forecast of the sign will be valuable to the forecaster if it helps pre-
dict the actual sign: it will not be useful if the forecast sign is independent
of the sign of the actual movement. Related ideas in the macroeco-
nomic forecasting literature appear in, for example, Schnader and Stekler
(1990), Stekler (1994) and Pesaran and Timmermann (1992). Henriksson
and Merton (1981) show that the test of market timing is asymptotically
equivalent to the standard chi-squared test of independence for the 2×2
contingency table. A chi-squared (3 degrees of freedom) test of independ-
ence between the actual and predicted directions is calculated as:

4∑
i=1

(Oi − Ei)
2

Ei

based on:

outcome
up down

forecast up
down

[
nuu nud

ndu ndd

]
,

where the n’s are the number of occurrences of the joint events. Oi is the
observed number in cell i, where i is one of the four events, and Ei is the
expected number assuming independendence. For example, letting cell
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i = 1 refer to ‘actual up & predicted up’:

E1 = n
(

nuu + ndu

n
× nuu + nud

n

)
,

where (nuu + ndu)/n is the probability of ‘actual up’ and the probability
of ‘forecast up’ is (nuu + nud)/n.

Evaluating a model in terms of how well it forecasts the direction of
change of a variable would appear to be particularly relevant for business-
cycle models of output growth, such as the Hamilton (1989) MSAR
model, or for regime-switching models more generally. For example,
the threshold value for 2-regime SETAR models of post-War US out-
put growth is often found to be close to zero (e.g., Potter (1995)) so
that a correct prediction of the sign of output growth corresponds
to correctly predicting the (model-designated) regime. The ability of
the MSAR model to ‘predict’ regimes in-sample, that is, to give an
assignation of observations to regimes that closely matched the NBER
business-cycle chronology, was one reason for the popularity of the
Hamilton (1989) model. To illustrate, Figure 2.1 plots the smoothed and
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Figure 2.1 Filtered and smoothed regime-probability estimates for the Hamilton
(1989) two-regime MSAR model of US output growth, 1953–84
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filtered probabilities of the recessionary and expansionary regimes of
the Hamilton (1989) model for the original sample period of 1953:1 to
1984:4 (for quarterly, seasonally-adjusted US GNP growth rates, where
1953:1 refers to the first quarter of 1953, etc.). The smoothed full-
sample probabilities are the dotted lines, and the filtered probabilities
the vertical bars. The filtered regime probabilities are calculated as
Pr(st = i|Yt ) = Pr(st = i|yt , yt−1, . . . , y0), i = 1, 2, and the smoothed prob-
abilities as Pr(st = i|YT ) = Pr(st = i|yT , . . . , yt+1, yt , yt−1, . . . , y0). That is, the
latter use full-sample information, including observations known only
after period t . The NBER business-cycle recessions are superimposed on
the recession probability estimates in the top panel. It is clear that the
MSAR model does a good job at determining which observations come
from which regime. The time series of the quarterly growth rates is given
in Figure 2.2.

We close this chapter by reporting on a study by Clements and Smith
(1999) into the forecast performance of non-linear models, that addresses
a number of these issues. Those authors undertake a Monte Carlo study
to enable the multi-period forecast performance of non-linear models
to be gauged with some precision, and also to ensure that the future
realizations of the process have the same non-linear imprint as the past.
Data are simulated from estimated models for variables such as exchange
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Figure 2.2 US quarterly GNP growth, 1951–84
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rates, output growth, etc. so that the simulated data have properties that
match empirical processes. The Monte Carlo approach also allows us
to explore other aspects of forecasting with non-linear models which
have occupied recent investigators, such as the dependence on regime
at which the forecast is made, and the impact on forecast performance
of parameter estimation and model uncertainty. Here we assume that
the SETAR model has the same specification as the SETAR DGP and that
the values of the parameters are known. Forecasts for the SETAR model
are calculated by the Monte Carlo method (as described in Section 2.5.2)
and compared to those of a linear AR model. Thus, for each of R = 1000
replications a realization {yt }T+h

t=1 is generated from the SETAR DGP by
replacing the disturbances by normal random variates. Because of the dif-
ficulty of deducing the values of the AR model parameters, the AR models
are estimated on {yt }T

t=1, where T is large (T = 500) to ensure estimation
error for the AR is small. The choice of lag order for the AR model is done
pragmatically: we choose the AR process that gives the best forecasts. The
AR model is used to forecast the observations {y}T+H

T+1 , and the resulting
forecast errors are then stored. The SETAR model forecasts are obtained
by averaging over an additional Rf = 500 realizations of {y}T+H

T+1 for each
of the R replications. These realizations are generated from drawings of
the errors from the normal distribution with appropriate regime-specific
error variances.

Here we report only the results for US GNP. Tiao and Tsay (1994) com-
pare the empirical forecast performance of an AR(2) and a two-regime
SETAR model for real US quarterly GNP growth. They find a maximum
gain to the SETAR of only 6%, and that at 3-steps ahead. However, divid-
ing up the forecast errors into two groups depending upon the regime at
the forecast origin, and then assessing forecast accuracy for each regime
separately, the SETAR records gains of up to 15% in the first regime.
Because a clear majority of the data points (around three quarters) fall in
the second, expansionary regime, the linear model will largely be determ-
ined by these points and will match the second-regime of the SETAR
model. Thus the forecast performance of the two models is broadly sim-
ilar for data points in the second regime. However, data points in the
first regime of the SETAR model are characterized by different dynamics,
so it is here that the SETAR model can gain relative to the linear model.

We analyse a SETAR model similar to that estimated by Potter (1995),
who estimates a SETAR(2; 5, 5) but with the third and fourth lags restric-
ted to zero under both regimes. The delay lag d = 2, and the model is in
the expansionary regime when yt−2 > 0 (where yt is the difference of the
log of quarterly US GNP) and otherwise in the contractionary phase. The
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model we use is the same except that the zero values of the coefficients on
the third and fourth lags are not imposed (so that the model corresponds
to Potter 1995, table 2, p. 113). A summary of the results is given in
Table 2.2.

Comparing the SETAR model to an AR(2), we find a gain of around
17% at 1-step rising to 22% at 2-steps with little to choose between the
two thereafter. These 1 and 2-step horizon gains are significant judged
by the Diebold–Mariano test. Conditional on being in the Lower (reces-
sionary) regime, the gains at 1 and 2 steps are of the order of 35%. This
mirrors the empirical finding of improved forecast accuracy (relative to
the linear model) when the economy happens to be in the lower regime.
Conditional on the upper regime, the gain is only around 8% at h = 1
relative to an AR(2), rising to 16% at h = 2.

We have cast the SETAR model in the best possible light, by side-
stepping the inherent uncertainty in the selection and estimation of the
number of regimes, the delay lag, the threshold value, the autoregressive
lag order(s) and coefficient values in each regime. Accepting that each
of these will have to be determined empirically in practice may severely
limit the usefulness of the non-linear model. For example, estimating
the SETAR model autoregressive coefficients (everything else assumed
known) reduces the unconditional gain to 5% at h = 1 and a maximum

Table 2.2 An evaluation of SETAR and AR models of US GNP on simulated data

MSFE: AR/SETAR

Horizon, h Unconditional Lower regime Upper regime

MSFE ratio p-value MSFE ratio p-value MSFE ratio p-value

1 1.167 0.000 1.351 0.000 1.084 0.000
2 1.219 0.000 1.346 0.000 1.167 0.000
3 1.009 0.399 1.048 0.181 1.018 0.204
5 1.033 0.103 1.046 0.121 1.018 0.157

10 1.012 0.154 1.012 0.124 1.016 0.060

Notes: The p-values are of the null of equal MSFEs based on the Diebold and Mariano (1995)
test, given by (2.28):

d̄√
V̂(d̄)

app
˜ N(0, 1),

where a uniform lag window is assumed:

V̂(d̄) ≈ 1
T
(γ̂0 + 2

∑h−1
i=1 γ̂i).
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of 11% at h = 2. The gain relative to an AR(2) is now only 13% at h = 1
conditional upon the lower regime.

2.6 Summary

This chapter serves as a general introduction to the now well-established
methods of evaluating point forecasts, as well as reviewing more recent
developments. A point forecast is a statement that the rate of inflation
next year will be x%, for example. Methods of evaluating sequences of
point forecasts and forecast errors in terms of the properties of unbiased-
ness and efficiency are described, as are the reasons for choosing the
conditional expectation as the point forecast.

We also describe general tests of whether differences in the accuracy
of rival sets of point forecasts can be attributed to sampling variability,
as opposed to indicating that one set of forecasts is more accurate than
another. These tests are general in that they can be applied for a wide vari-
ety of loss functions or measures of forecast accuracy. In addition, tests
of forecast encompassing consider whether a sequence of forecasts from
one model (or source) provides useful information even though these
forecasts may be less accurate than the forecasts from another model.
That is, whether a combination of the two sets of forecasts may be more
accurate than the best individual set of forecasts.

We then consider a number of issues that arise when the forecasts are
model-based. The discussion of testing for unbiasedness, equal predictive
ability and forecast encompassing up to this point applies equally well to
survey-based forecasts. Tests of predictive accuracy are described, which
essentially compare an estimate of the forecast-error variance, based on
the past fit of the model to the observed squared forecast errors. We also
describe the impact of parameter estimation uncertainty on some of the
tests and sketch the implications for testing for unbiasedness.

Finally, we discuss the calculation of the conditional expectation for
commonly used examples of non-linear time-series models, as well as a
number of issues specific to the evaluation of forecasts from such models.



3
Volatility Forecasts

3.1 Introduction

Forecasting the conditional variance of a process is primarily of interest
if the conditional variance is changing over time.1 For a large number of
financial time-series, as well as some macroeconomic time-series (such
as inflation), time-varying conditional variances are an important fea-
ture. The autoregressive conditional heteroskedasticity (ARCH) model of
Engle (1982), and its generalizations,2 have become almost indispens-
able in the modelling of financial series. ARCH models are capable of
capturing variances that change (giving rise to clusterings of large (small)
changes in the series), as well as other features typical of many financial
series, such as thick-tailed unconditional distributions. As an example,
Figure 3.1 plots monthly observations on three-month US Treasury Bill
interest rates and ten-year Treasury bond interest rates (taken from the
Federal Reserve of St Louis database, www.stls.frb.org/fred) and the first
differences of these series. The clustering of large and small changes is
clearly evident.

Figure 3.2 plots the estimated densities of the changes in the two
interest rates, with matched Gaussian densities, illustrating the fat-
ter tails, and the QQ plots3 against Gaussian densities (with the same
means and variances) confirm the departures from normality of the
unconditional distributions.

Non-linear ARCH models are also capable of capturing the empirical
finding that negative shocks or ‘bad news’ affect volatility differently
from positive shocks. ARCH implies that there may be more uncertainty
surrounding the point prediction at some times than at others. Thus,
prediction or confidence intervals will vary not just with the forecast
horizon, but the whole forecast profile as the horizon lengthens may

46
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Figure 3.2 Densities and QQ plots of the series of interest rate changes
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depend upon yt , the value of the process at the time the forecast is
made, or yt , yt−1, . . ., more generally. In finance theory modelling the
conditional variance of a process has an importance and scope that goes
beyond the calculation of more accurate prediction intervals. Forecasts of
the conditional variance of the returns on a risky asset are a key ingredi-
ent in theories of asset pricing: see, for example, Engle and Bollerslev
(1986). In such theories a representative agent is assumed to allocate
wealth between the risky asset, and a risk-free asset, where their util-
ity depends positively on the mean return achieved next period but
negatively on the variance of next period’s return.

In Section 3.2 we begin by looking at the implications of time-varying
conditional variances for point forecasts, without specifying a model for
the way in which the conditional variance changes. That is, we are not
interested in modelling or forecasting the conditional variance at this
stage, but only in the extent to which a changing variance might tem-
per the conclusions we reached in Chapter 2 regarding what constitutes
the ‘best’ point forecast. Assuming squared-error loss, time-varying con-
ditional variances are shown not to affect the optimal point forecast.
Section 3.3 shows that for more general loss functions the optimal point
forecast may depend on the forecast variance. We will then consider the
popular ARCH and related approaches to modelling, and therefore fore-
casting, conditional variance, as well as forecasts based on exponential
smoothing: Section 3.4. Assessing the adequacy of conditional variance
forecasts raises a number of difficulties because the ‘actual’ conditional
variance is not observed. The problems that arise with traditional evalu-
ation criteria, such as realization-forecast regressions and mean squared
forecast error (MSFE), form the subject matter of Section 3.5. Some
alternative proposals for evaluating volatility forecasts are discussed in
Section 3.6.

3.2 Changing conditional-variances and
optimal point forecasts

Our discussion of point forecasting has been based on evaluating the
optimal forecast, which equates to the conditional expectation under
squared-error loss. Typically the conditional expectation depends on
the past of the process, yt+h|t = g(Yt ), and for linear models with known
parameters has a simple form, say:

yt+h|t = E(yt+h | Yt ) = φhyt
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for an AR(1), yt = φyt−1 + εt , where εt is i.i.d.(0, σ2
ε ), say. So whilst E(yt+h |

Yt ) depends on yt (or Yt more generally), V(yt+h | Yt ) will depend on h
but not Yt . In the case of the AR(1), for example:

yt+h = φhyt +
h−1∑
i=0

φiεt+h−i

so that:

V(yt+h | Yt ) ≡ E[(yt+h − E(yt+h))
2 | yt ]

= E

⎡
⎣(h−1∑

i=0

φiεt+h−i

)2 ∣∣∣∣Yt

⎤
⎦

=
h−1∑
i=0

φ2iE(ε2
t+h−i | Yt )

= σ2
ε

1 − φ2h

1 − φ2
. (3.1)

The third line follows because independence of the {εt } implies they
are serially uncorrelated, so that the covariance terms from the expec-
ted square of the sum in the second line are all zero. The ‘identically’
distributed part of the assumption on the disturbances gives E(ε2

s ) = σ2
ε

for all s.
Engle (1982) argued that the failure to allow for the possibility that

V(yt+h | Yt ) depends on Yt may be a serious shortcoming: better forecasts
of variance (and prediction intervals) may be attainable by modelling
the variance as a function of past values, Yt , rather than assuming the
forecast variances (for a horizon h) are all constant, and do not depend
on Yt . Just as one typically allows that E(yt+h | Yt ) depends on Yt , in what
has become a seminal paper, Engle proposed a class of ARCH models that
allow V(yt+h | Yt ) to depend on Yt .

One way of making the the conditional variance of yt+1 depend on Yt

is to specify a form of dependence of this type for the disturbance terms,
εt . We replace the assumption that εt is i.i.d.(0, σ2) with the assumption
that the {εt } remain serially uncorrelated but are no longer independent,
so allowing for dependence in higher-order moments. Specifically:

E(ε2
t | Yt−1) = ht ,
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where ht is a non-negative function of Yt−1, ht = h(Yt−1). That is, the
conditional variance of the disturbances depends on the past of Yt

(alternatively, εt , εt−1,. . .). Modelling the conditional variance as a func-
tion of the history of the series being analysed matches the univariate
time-series approach to modelling the conditional mean.4 It is usual to
define ht (Yt−1) such that

εt = zt

√
ht ,

where zt is i.i.d. N(0, 1).
It is then straightforward to establish the following properties of {εt }.

1. E(εt ) = 0

2. E(εt | Yt−1) = 0

3. E(ε2
t | Yt−1) = ht

4. E(ε2
t ) = E(ht )

(1) follows from E(εt ) = E(zt

√
ht ) = E(zt )E(

√
ht ) = 0 because zt is an

innovation on Yt−1, and ht = h(Yt−1). (2) follows from E(εt |Yt−1) =
E(zt

√
ht | Yt−1) = √

htE(zt | Yt−1) = 0. For (3), E(ε2
t | Yt−1) =

E(z2
t ht | Yt−1) = htE(z2

t |Yt−1) = ht . And finally, (4) from E(ε2
t ) = E(E(ε2

t |
Yt−1)) = E(ht ). When E(ht ) = σ2, that is, the unconditional variance
is constant, the {εt } process is weakly stationary, because the first- and
second-moments of the process are time invariant.

These properties immediately allow us to show that the conditional
expectation is unaffected by the {εt } exhibiting time-varying conditional
variances. For the AR(1) with εt = zt

√
ht :

E(yt+h | Yt ) = E

[(
φhyt +

h−1∑
i=0

φiεt+h−i

) ∣∣∣∣Yt

]
= φhyt

because E[∑h−1
i=0 φiεt+h−i | Yt ] = ∑h−1

i=0 φiE(εt+h−i | Yt ) = 0, using prop-
erty (2). We can also show that the conditional expectation remains
the MMSEP, assuming squared error loss, by noting that the proof in
Section 2.5.1 is unaffected by allowing for dependence in the higher
moments of {εt }.
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Dependence in the higher moments of {εt } will affect forecast variances
of yt+h. From (3.1):

V(yt+h | Yt ) = E

⎡
⎣(h−1∑

i=0

φiεt+h−i

)2 ∣∣∣∣yt

⎤
⎦

=
h−1∑
i=0

φ2iE(ε2
t+h−i | yt )

= φ2(h−1)E(ε2
t+1 | yt ) +

h−2∑
i=0

φ2iE(ε2
t+h−i | yt ), (3.2)

where from property (3) E(ε2
t+1 | yt ) = ht+1 = h(yt ). For h = 1 the second

term in the third line of (3.2) vanishes, so V(yt+1 | yt ) = ht+1 = h(yt ),
and the forecast variance depends on yt . For h > 1, the second term
is relevant. We have not as yet specified a model that allows one to
deduce E(ε2

t+s | yt ) for s > 1, but such terms will also depend on Yt in gen-
eral. Because the forecast variability in yt+h depends on yt , confidence
intervals (described in detail in Chapter 4) will depend on the observa-
tion at which the forecast was made (in contrast to confidence intervals
calculated from (3.1)).

3.3 Time-varying conditional variances and
asymmetric loss

Squared-error loss supposes that the cost function depends only on
|et+h|t |, that is, the absolute magnitude of the forecast error, such that
under and over-predictions of the same magnitude (i.e. positive and
negative forecast errors of the same size) attract the same penalty. It
is intuitively clear that it then makes sense to aim to make a zero fore-
cast error on average: positive and negative forecast errors will then be
realized in equal number due to the unpredictable random variation in
yt+i relative to yt+i|t+i−1. In the AR(1) with known parameters, the fore-
cast errors will be given by et+i|t+i−1 = εt+i. However, if positive errors are
penalized more heavily than negative errors, it will be optimal (in the
sense of minimizing the expected loss) to aim to make a negative expec-
ted forecast error, so that the stream of realized errors, {et+i|t+i−1}, will be
predominantly negative. Moreover, the greater the variablity of the pro-
cess, the larger the variability of the forecast errors. Assuming that large
positive forecast errors are penalized proportionately more heavily than
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small positive errors, it will be optimal to aim to make a larger expected
negative error on average to guard against the costly large positive errors
(which are the more likely the more variable the process).

These ideas are formalized by Granger (1969). Although the condi-
tional mean predictor is not optimal for asymmetric loss, for Gaussian
processes a simple fixed adjustment to the conditional mean yields the
optimal predictor, where the adjustment depends only on the form of
the loss function, and the forecast variance. An immediate implication of
the conditional expectation being non-optimal is that biased predictions
are consistent with rational behaviour: see Zellner (1986). Christoffersen
and Diebold (1997) generalize the results in Granger (1969) to processes
which are conditionally Gaussian. They show that if the forecast vari-
ance is time varying, the adjustment to the conditional mean that yields
the optimal predictor will not be constant. As a consequence, for an
asymmetric loss function time variation in the variance of the process
will affect the optimal point predictions.

One of the most popular asymmetric loss functions is the ‘linex’ loss
function of Varian (1975). This is commonly used as the optimal pre-
dictor that can be solved for analytically. Following Christoffersen and
Diebold (1997), we illustrate these ideas with linex loss:

C(et+h|t ) = b[exp(aet+h|t ) − aet+h|t − 1], a �= 0, b ≥ 0.

For a > 0, the loss function is approximately linear for et+h|t < 0 (‘over-
predictions’), and exponential for et+h|t > 0, (‘under-predictions’). For
small a, the loss function is approximately quadratic:

C(et+h|t ) � ba2

2
e2

t+h|t

from the first two terms of the Taylor-series expansion.5

The optimal predictor h-steps ahead solves:

arg min
ŷT+h

Et [b(exp(aet+h|t ) − aet+h|t − 1)], (3.3)

where et+h|t = yt+h − ŷt+h , ŷt+h is the optimal predictor, and is assumed
to have the form ŷt+h = yt+h|t + αt+h, where the process is conditionally
Gaussian:

yt+h | Yt ∼ N(yt+h|t , σ2
t+h|t ),
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and yt+h|t is the conditional expectation and σ2
t+h|t is the conditional vari-

ance (given by (3.2), for example). Substituting for et+h|t = yt+h − yt+h|t −
αt+h in (3.3) gives:

arg min
αt+h

Et [b(exp(a(yt+h − yt+h|t − αt+h)) − a(yt+h − yt+h|t − αt+h) − 1)]

and using the result that:

Et [exp(ayt+h)] = exp

(
ayt+h|t + a2σ2

t+h|t
2

)
,

and:

Et (yt+h) = yt+h|t

gives:

arg min
αT+h

b

[
exp

(
a2σ2

t+h|t
2

− aαt+h

)
+ aαt+h − 1

]
. (3.4)

The first-order condition is satisfied by:

αt+h = a
2

σ2
t+h|t

so that the optimal predictor becomes:

ỹt+h|t = yt+h|t + a
2

σ2
t+h|t . (3.5)

To interpret (3.5), assume that a > 0 and not close to zero.
Costs to under-prediction are weighted more heavily than those to
over-prediction. The optimal predictor then exceeds the conditional
expectation, so that the conditionally expected error will on average be
negative, that is, there will be a tendency to over-predict. The greater the
conditionally expected variation (σ2

t+h|t ) around the conditional expecta-
tion the greater the tendency to over-predict. As the degree of asymmetry
lessens (a → 0) so the optimal predictor approaches the conditional
expectation.
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3.4 Models of conditional variance

Recall from Section 3.2 that we are defining ht as the conditional variance
of {εt }:

E(ε2
t | Yt−1) = ht

such that:

εt = zt

√
ht , (3.6)

where zt is i.i.d. N(0, 1). Hitherto we have thought of {εt } as one com-
ponent of {yt }. For example, in the AR(1) model with εt given by (3.6)
we have:

yt = φyt−1 + εt , εt = zt

√
ht ,

which jointly models the conditional mean and conditional variance of
{yt }. For many financial returns series, especially those sampled at a high
frequency, there is little if any dependence in the mean of the series, at
least compared to the magnitude of the standard deviation of {εt }, and
the mean can be taken to be zero. In that case, what we have termed {εt }
is itself the returns series. For example, if Pt is the price of an asset at the
close of period t :

εt = Rt ≡ ln Pt − ln Pt−1 = ln
(

Pt − Pt−1

Pt−1
+ 1
)

� Pt − Pt−1

Pt−1
.

When εt is the return Rt , it is apparent from (3.6) that εt+1 | Yt ∼ N(0, ht+1),
given the assumption that {zt } is normal. That is, the one step-ahead con-
ditional distribution of returns is normal. When instead the conditional
mean is non-zero, for example, interpreting {yt } as the returns series,
yt+1 | Yt ∼ N(φyt , ht+1) so that the nature of the one-step conditional
distribution is unchanged.

3.4.1 ARCH models

The ARCH model of Engle (1982) models ht as a linear function of the
squares of the past shocks. Restricting the function to the last shock only,
εt−1, gives the ARCH(1):

ht = ω + αε2
t−1. (3.7)
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Because a variance must be non-negative, restrictions on the values that
the parameters can take are required. For the ARCH(1), we have ω, α > 0.
For more complicated models the restrictions are more involved.

From (3.7) a large value of εt−1 (of either sign) will give rise to a large
ht and, ceteris paribus, a large value of εt (of either sign), as zt in (3.6) is
scaled by

√
ht . This is the volatility clustering phenomenon that gives

rise to dependence in the squares {ε2
t } even though the {εt } are serially

uncorrelated. The ARCH model can also be written as an AR(1) in {ε2
t } to

underline this point. Letting ht = ε2
t − vt , substituting in (3.7) gives:

ε2
t − vt = ω + αε2

t−1

ε2
t = ω + αε2

t−1 + vt .

From vt = ε2
t − ht = ht (z2

t − 1), E[vt | Yt−1] = htE[(z2
t − 1) | Yt−1] = 0, so

that the disturbance term {vt } in the AR(1) model is uncorrelated with
the regressor, as required. From the AR(1) representation the condition
for covariance stationarity of {ε2

t } is |α| < 1,6 which given that α ≥ 0
requires that 1 > α ≥ 0. When this condition holds:

E(ε2
t ) = ω + αE(ε2

t−1)

and so:

E(ε2
t ) = ω

1 − α
.

Because V(εt ) = E(ε2
t ), the condition on α, that 1 > α ≥ 0, implies that

the unconditional variance is homoskedastic.
Taking the fourth moment of εt = zt

√
ht :

E(ε4
t ) = E(z4

t h2
t ) = E(z4

t )E(h2
t ).

From E(h2
t ) = V(ht )+E(ht )

2, and V(ht ) ≥ 0, it follows that E(h2
t ) ≥ E(ht )

2,
so that:

E(ε4
t ) = E(z4

t )E(h2
t ) ≥ E(z4

t )E(ht )
2 = E(z4

t )E(ε2
t )

2.

As zt ∼ N(0, 1), the kurtosis E(z4
t ) = 3. Defining σ2 = E(ε2

t ), it then follows
that E(ε4

t ) > 3σ4, so that the ARCH process {εt } exhibits excess kurtosis,
that is, it has thicker tails than the normal. Thus the ARCH process is
able to capture volatility clustering and thick tails.
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From the AR(1) representation for {ε2
t } it follows immediately that the

autocorrelation function is given by:

Cov(ε2
t ε

2
t−k)√

V(ε2
t )

√
V(ε2

t−k)

= αk.

This implies that the correlations will become small quite quickly in k,
especially if α is relatively small. However, a number of squared return
series exhibit autocorrelations which appear to decay less rapidly in k
than implied by the AR(1). A less rapid decay will result from specifying
a higher-order autoregression for {ε2

t }. This can be achieved by replacing
the ARCH(1) by an ARCH(p), p > 1:

ht = ω + α1ε
2
t−1 + α2ε

2
t−2 + · · · + αpε

2
t−p. (3.8)

Substituting ht = ε2
t − vt as in the case of the ARCH(1), we obtain:

ε2
t = ω + α1ε

2
t−1 + α2ε

2
t−2 + · · · + αpε

2
t−p + vt .

Assuming the stationarity of the process (the roots of (1 − α1z − α2z2 − · · ·
−αpzp) = 0 lie outside the unit circle) the unconditional variance exists
and is given by:

E(ε2
t ) = ω

1 − α1 − · · · − αp
.

An ARCH model is in many ways a very natural way of obtaining a
forecast of ht+1. The 1-period ahead forecast of volatility from the ARCH
model, E(ht+1 | Yt ), is given directly from the model as:

ht+1 = ω + α1ε
2
t + α2ε

2
t−1 + · · · + αpε

2
t−p+1.

The forecast of volatility in t + 1 is a weighted sum of the ε’s (which
we now interpret directly as returns) in the previous p periods, plus the
fixed amount ω. If we were instead to assume equal weights, αi = 1/p for
i = 1, . . . , p, and set ω = 0, we can forecast ht+1 as:

ht+1,a = 1
p

p−1∑
s=0

ε2
t−s,
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whereby the forecast of volatility in t +1 is a simple average of the p most
recently observed squared returns. When p = 1 one of the disadvantages
of the simple-average approach is most easily seen. Then ht+1,a = ε2

t ,
which will also be the forecast value of volatility j-periods ahead, j > 0.
High values of ε2

t will result in forecasts that volatility remains at that
high level for all j. By way of contrast, the ARCH(1) forecasts are empir-
ically more plausible. Substituting for ω from σ2 ≡ E(ε2

t ) = ω/(1 − α) in
(3.7) gives:

ht = σ2(1 − α) + αε2
t−1,

so that for period t + j we have:

ht+j = α(ε2
t+j−1 − σ2).

To calculate the forecasts, take the conditional expectation of ht+j based
on information up to period t :

ht+j|t − σ2 ≡ E(ht+j | Yt ) − σ2 = α(E(ht+j−1z2
t+j−1 | Yt ) − σ2),

= α(ht+j−1|t − σ2),

where we substitute ε2
t+j−1 = ht+j−1z2

t+j−1 and use E(ε2
t+j−1 | Yt ) = E(ht+j−1 |

Yt ) E(z2
t+j−1 | Yt ) = E(ht+j−1 | Yt ) = ht+j−1|t for j > 2. By repeated backward

substitution:

ht+j|t − σ2 = αj−1(ht+1|t − σ2)

= αj(ε2
t − σ2),

noting that ht+1|t = ht+1. The forecasts of ht+j|t → σ2 as j gets large
whatever the initial deviation of ε2

t from σ2, given the process is sta-
tionary (|α| < 1). The same is true of the general ARCH process of order
p. By combining the expressions for ht and σ2 as for the ARCH(1), we
obtain:

ht+1 − σ2 = α1(ε
2
t − σ2) + α2(ε

2
t−1 − σ2) + · · · + αp(ε

2
t−p+1 − σ2).

with σ2 the (unconditional) mean of ht+1. Forecasts of stationary pro-
cesses revert to the mean as the horizon increases (see, e.g., Clements
and Hendry 1998, ch. 4).
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3.4.2 Estimation

The method of estimation of ARCH models is not central to our primary
concerns of forecasting and forecast evaluation, but the general prin-
ciples involved will be mentioned briefly. At the level of generality of
our treatment, the discussion applies equally well to the generalizations
discussed in subsequent sections.

Maximum likelihood (ML) estimation involves choosing values of the
unknown parameters, θ (ω and αi, i = 1, . . . , p, for the conditional vari-
ance, but more generally values of the parameters of the conditional
mean as well: φ for the AR(1)) to make the observed sample as ‘likely as
possible’, in the sense of maximizing the assumed joint density function
of the whole sample of data with respect to the parameters. Given the
assumption that εt = zt

√
ht , and zt ∼ i.i.d. N(0, 1), εt | Yt ∼ i.i.d. N(0, ht ).

Then the conditional log likelihood, of observing εt is:

ln lt (θ) = ln

[
1√

2πht (θ)
exp
(

− ε2
t

2ht (θ)

)]

= −1
2

ln 2π − 1
2

ln ht (θ) − ε2
t

2ht (θ)
.

For simplicity, we interpret εt as the return series and assume the εt are
zero mean, thus ignoring conditional mean parameters. Given inde-
pendence, the log likelihood of the whole sample (ε1, . . . , εT ) is the
sum of the ln lt (θ),

∑T
t=1 ln lt (θ). The ML estimators are the values of

θ = (ω, α1, . . . , αp) that maximize
∑T

t=1 ln lt (θ):

θ̂ = arg max
θ

(
T∑

t=1

ln lt (θ)

)
.

Assuming the normality assumption for zt is correct, and that the con-
ditional mean and variance are correctly specified, θ̂ are consistent,
asymptotically normal, and have the smallest variance of all consistent
estimators.

The assumption that {zt } is normal may be inappropriate for some
returns series. The normality assumption implies that the conditional
distribution of returns is normal, whereas actual returns data may be
better characterized by conditional distributions with fatter tails than
the normal. A natural solution is to replace the assumption that {zt } is
normal with the assumption that the {zt } come from a Student’s t distri-
bution, say. One could then obtain the ML estimators by constructing
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the likelihood function assuming that εt/
√

ht have a Student’s t distribu-
tion with particular degrees of freedom. Because that particular choice
of distribution function could also be incorrect, rather than attempt-
ing to obtain the ML estimators, it is common to construct the quasi
ML (QML) estimators. QML is the name given to ML estimation assum-
ing normality of {zt } (i.e., using a Gaussian likelihood function) even
when this assumption is false. It can be shown that under general condi-
tions QML estimators are consistent and asymptotically normal, so long
as the conditional mean and variance functions are correctly specified,
although they will not be asymptotically efficient (ML using the cor-
rect distribution will be more precise): see, for example, Bollerslev and
Wooldridge (1992).

3.4.3 GARCH models

High-order ARCH models are not very common, in part because of the
difficulty of checking and imposing non-negativity and stationarity con-
ditions in estimation, but also because related models, Generalized ARCH
(GARCH: Bollerslev 1986) have been found to offer a useful description
of the volatility patterns in the returns of a wide range of underlying
price series. The simplest GARCH model includes ht−1 as an explanatory
variable:

ht = ω + αε2
t−1 + βht−1. (3.9)

By substituting for ht−1:

ht = ω + αε2
t−1 + β(ω + αε2

t−2 + βht−2)

and for ht−2, and so on:

ht = ω

∞∑
i=0

βi + α

∞∑
i=1

βi−1ε2
t−i

= ω

1 − β
+ α

∞∑
i=1

βi−1ε2
t−i

assuming β < 1. Thus, the GARCH model is an infinite order ARCH,
albeit that the coefficients on the {ε2

t−i} are constrained and depend on
only two parameters, α, β.

We have shown that the ARCH(1) implies an AR(1) for {ε2
t }. We can

show that the GARCH(1, 1) (one lagged ε2
t , one lagged ht ) implies an
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ARMA(1, 1) for {ε2
t }. Letting ht = ε2

t − vt , substitution into (3.9) gives:

ε2
t − vt = ω + αε2

t−1 + β(ε2
t−1 − vt−1)

ε2
t = ω + (α + β)ε2

t−1 + vt − βvt−1 (3.10)

an ARMA(1, 1) for ε2
t with vt as the disturbance. The stationarity of the

process depends on the AR polynomial, that is, whether the root of
1 − (α + β)z = 0 lies outside the unit circle. From z = 1/(α + β), and
α, β > 0, z > 1 if and only if (α + β) < 1.

When α + β < 1, the unconditional variance of the GARCH(1, 1) can
be obtained by taking expectations of (3.10) as:

E(ε2
t ) = ω + (α + β)E(ε2

t−1)

so that:

σ2 = E(ε2
t ) = ω

1 − (α + β)
.

Combining the equations for ht and σ2 for the GARCH(1, 1) gives:

ht − σ2 = α(ε2
t−1 − σ2) + β(ht−1 − σ2), (3.11)

which has the interpretation that the conditional variance will exceed
the long-run (or unconditional) variance if last period’s squared returns
exceed the long-run variance and/or if last periods conditional variance
exceeds the unconditional.

Just as ARCH forecasts are related to simple averaging of recent squared
returns, GARCH model forecasts can be related to exponential smoothing
of squared returns, that is an exponentially weighted moving average
(EWMA) of squared returns. The EWMA formula for forecasting t + 1
based on Yt is:

ht+1,ew = 1∑∞
s=0 λs

(ε2
t + λε2

t−1 + λ2ε2
t−2 + · · · )

= (1 − λ)

∞∑
s=0

λsε2
t−s, (3.12)

where λ ∈ (0, 1). The weights sum to one, but unlike simple averaging,
the largest weight is accorded to the most recent squared return, (1 − λ),
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and thereafter the weights decline exponentially, λ(1 − λ), λ2(1 − λ), . . . .
We can take the first term out of the summation to give:

ht+1,ew = (1 − λ)ε2
t +

∞∑
s=1

λsε2
t−s

= (1 − λ)ε2
t + λ

∞∑
s=0

λsε2
t−1−s

= (1 − λ)ε2
t + λht ,ew (3.13)

or ht+1,ew = ε2
t + λ(ht ,ew − ε2

t ). The forecast of volatility is equal to the
squared return plus a positive (negative) amount if the current-period
volatility exceeds (is less than) the squared return. From (3.13) expo-
nential smoothing corresponds to a restricted GARCH(1, 1) model with
ω = 0 and α + β = (1 − λ) + λ = 1.

Figure 3.3 presents a graphical summary of the results of estimating a
GARCH(1, 1) model for �rt , the change in the three-month treasury bill
rate plotted in Figure 3.1. The model contains four autoregressive lags,

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

–2.5

0.0

2.5

Δr and fitted values from an AR(4)–GARCH(1,1)

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

–2.5

0.0

2.5

5.0 Model residuals scaled by estimated conditional standard deviations 

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

1

2

Conditional standard deviation

Figure 3.3 Graphical output for an AR(4)–GARCH(1, 1) for the three-month �rt
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to capture the dependence in the conditional mean. Freely estimated,
α + β would exceed unity, and so is restricted to 1 in estimation. The
conditional variance ht is high around 1975, and especially in the early
1980s (bottom panel). The middle panel of Figure 3.3 plots the model
residuals scaled by

√
ht : these should be approximately N(0, 1) if the

GARCH model adequately accounts for the volatility in �rt .

3.4.4 GARCH model forecasts

The expected value of the conditional variance next period (one-step
ahead forecast) from GARCH models is given directly by the model.
E(ht+1 | Yt ) = ht+1, for the GARCH model (3.11) written for t + 1:

ht+1 − σ2 = α(ε2
t − σ2) + β(ht − σ2). (3.14)

Multi-period forecasts can be calculated as follows. First, write (3.14)
for ht+j:

ht+j − σ2 = α(ε2
t+j−1 − σ2) + β(ht+j−1 − σ2)

= α(ht+j−1z2
t+j−1 − σ2) + β(ht+j−1 − σ2),

where the second line substitutes ε2
t+j−1 = ht+j−1z2

t+j−1. Taking conditional
expectations:

ht+j|t − σ2 ≡ E(ht+j | Yt ) − σ2 = α(E(ht+j−1z2
t+j−1 | Yt ) − σ2)

+ β(E(ht+j−1 | Yt ) − σ2) = (α + β)(E(ht+j−1 | Yt ) − σ2)

using E(ht+j−1z2
t+j−1 | Yt ) = E(ht+j−1 | Yt ) for j > 2 (and E(ht+j−1 | Yt ) = ht+1

for j = 2). Using the recursive formula relating forecasts of t+j and t+j−1,
we obtain ( j > 0):

ht+j|t − σ2 = (α + β)j−1(ht+1 − σ2)

= (α + β)j−1[α(ε2
t − σ2) + β(ht − σ2)]. (3.15)

This derivation assumes the existence of σ2, that is, that α+β < 1. There-
fore ht+j|t → σ2 as j → ∞. α + β measures the persistence of the effect of
the current shock zt (more precisely, ε2

t = ht z2
t ) on the volatility forecasts,

but assuming stationarity, the forecasts revert (more or less quickly) to
σ2. The exponential smoother extrapolates forward ht+1,ew for all future
periods, and will over-(under-) state volatility in the medium/long term
if there is mean-reversion and ht+1,ew is greater (smaller) than σ2.
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3.4.5 IGARCH

Empirically, α + β is often found to be close to 1. α + β = 1 gives rise
to the Integrated GARCH (IGARCH). Some authors such as Lamoureux
and Lastrapes (1990) have argued that the IGARCH model may arise
through the neglect of structural breaks in GARCH models. They consider
standard GARCH models, and GARCH models which allow for structural
change through the introduction of a number of dummy variables, for a
number of daily stock return series, and use a bootstrap to test between
the two models.7

Figures 3.4 and 3.5 present forecasts using the AR-GARCH model of �rt

for three-month Treasury Bills discussed in previous sections. The first is
based on the model estimated up to 1991:10, and depicts 1 to 120 step
ahead forecasts (1991:10 is the tenth month of 1991, etc.). The second
presents 1 to 240 step ahead forecasts from 1981:10. Because α + β = 1
in both cases, the multi-step sequences of forecasts of ht increase in the
forecast horizon, leading to widening error bars. But notice the differ-
ence in scales of the two graphs – starting forecasting from the highly
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Figure 3.4 Forecasts from an AR(4)–GARCH(1, 1) for �rt , with α + β = 1, starting
in 1991:10

Note: The top panel displays the actual and forecast values with 95% error bars. The bottom
panel shows multi-step forecasts of ht .
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Figure 3.5 Forecasts from an AR(4)–GARCH(1, 1) for �rt , with α + β = 1, starting
in 1981:10

Note: The top panel displays the actual and forecast values with 95% error bars. The bottom
panel shows multi-step forecasts of ht .

volatile 1980s (Figure 3.5) generates much wider error bands throughout
the period.

There are numerous other extensions, including Fractionally Integ-
rated GARCH (FIGARCH) and ARCH in mean, which are discussed in
the references given at the beginning of Section 3.1.

3.4.6 Non-linear GARCH

In addition to the above models of conditional variance, non-linear
(G)ARCH models have been developed, primarily to allow positive and
negative shocks to have different impacts on the conditional variance
of the following observations. In the models considered so far, such as
the GARCH(1, 1) of (3.9), because the past disturbances enter as squares
the sign of the shock has no impact on the way shock is transmitted and
affects the volatility of subsequent shocks. Black (1976) argued that by
raising the ‘leverage of a firm’ (the firm’s debt to equity ratio) negative
shocks may increase the volatility of returns on the firm’s equity. We will
give only a brief review of a few non-linear GARCH models to present
the key aspects of generating and evaluating forecasts of volatility made
with such models.
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The Glosten et al. (1993) GJR–GARCH model is perhaps the most intu-
itive non-linear generalization of (3.9). The coefficient on ε2

t−1 depends
on whether the shock is positive or negative, so in place of αε2

t−1 we have
αε2

t−11(εt−1<0) + γε2
t−11(εt−1>0), giving:

ht = ω + αε2
t−1(1 − 1(εt−1>0)) + γε2

t−11(εt−1>0) + βht−1. (3.16)

A ‘leverage effect’ is operative if α > γ and absent if α = β, in which
case the model reverts to the linear GARCH. A natural generalization
of the ‘abrupt switch’ in ‘regimes’ from using the indicator function is
instead to allow for a smooth transition, parallelling the discussion in
Section 2.5.3 (in the context of modelling the conditional mean rather
than the conditional variance). For example, the indicator function 1(·)
in (3.16) can be replaced by:

G(εt−1) = 1
1 + exp(−θεt−1)

, θ > 0.

When εt−1 = 0, G(εt−1) = 1
2 , and the coefficient on ε2

t−1 in the equation for
ht is (α+γ)/2. For εt−1 < 0, the value of G(εt−1) < 1

2 , putting more weight
on ‘α’. For large θ the smooth transition becomes sharper and in the
limit the function is the indicator function. Both the GJR–GARCH and
smooth transition version could be generalized to allow the intercept ω

and the coefficient of ht−1, β, to switch between regimes (either abruptly,
or with some degree of smoothness). These models apply the threshold
switching ideas discussed in Section 2.5.3 to modelling ht . One could
equally suppose the regimes for ht are determined by an unobservable
Markov process (as assumed in modelling the conditional distributions of
output growth in Section 2.5.4). For these extensions, including allowing
for leverage effects, see Hamilton and Susmel (1994) and Hamilton and
Lin (1996).

Forecasting the conditional variance using non-linear GARCH models

In Section 2.5.2 we showed that multi-step ahead forecasts from non-
linear models of the conditional mean of a time series in general require
numerical or simulation methods. As an example, we considered a two-
step ahead forecast for a SETAR model. This required calculating the
conditional expectation of the expression given in (2.58), repeated here
for convenience:

g( yt+1; ·) = [φ{1} + 1(yt+1|t + εt+1 > r)(φ{2} − φ{1})](yt+1|t + εt+1).
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The problem arises because Et [(1(yt+1|t + εt+1 > r))εt+1] �= Et [1(yt+1|t +
εt+1 > r)] × Et (εt+1) – the value of the indicator function is more likely
to equal unity for positive values of εt+1. The similarity of threshold-
type non-linear GARCH models, such as (3.16), to the SETAR models of
conditional mean might suggest similar difficulties in obtaining multi-
period forecasts. But this is not the case, at least for the threshold models.
As for the standard GARCH, the 1-step ahead forecast of volatility from
GJR–GARCH is given directly by the model as:

ht+1 = ω + αε2
t (1 − 1(εt >0)) + γε2

t 1(εt >0) + βht .

The 2-step ahead forecast is defined by ht+2|t ≡ E(ht+2 | Yt ):

E(ht+2 | Yt ) = ω + αEt (ε
2
t+1(1 − 1(εt+1>0))) + γEt (ε

2
t+11(εt+1>0))

+ βEt (ht+1). (3.17)

We can obtain a simple form for ht+2|t when {εt } has a symmetric
distribution, because in that case:

Et (ε
2
t+11(εt+1>0)) = Et (ε

2
t+1)Et (1(εt+1>0)) = ht+1 × 1

2
.

The expectation of the product is the product of the expectations because
ε2

t+1 and 1(εt+1>0) are uncorrelated. When εt+1 is symmetric about zero:

Et (1(εt+1>0)) = 1 × Pr(εt+1 > 0) + 0 × (1 − Pr(εt+1 > 0)) = 1
2

given that Pr(εt+1 > 0) = 1
2 . Thus (3.17) becomes:

E(ht+2 | Yt ) = ω + ((α + γ)/2 + β)ht+1.

More generally, a j-step forecast can be computed recursively from:

ht+j|t = ω + αht+j−1|tEt (1 − 1(εt+j−1>0)) + γht+j−1|tEt (1(εt+j−1>0)) + βht+j−1|t

= ω + ((α + γ)/2 + β)ht+j−1|t ,
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which by backward substitution gives:

ht+j|t = ω + ((α + γ)/2 + β)ht+j−1|t

= ω + ((α + γ)/2 + β)(ω + ((α + γ)/2 + β)ht+j−2|t )

...

= ω

j−2∑
i=0

((α + γ)/2 + β)i + ((α + γ)/2 + β)j−1ht+1.

Noting that ω
∑j−2

i=0((α+γ)/2+β)i = ω[1−((α+γ)/2+β)j−1][1−((α+γ)/2+
β)]−1, for |((α + γ)/2 + β)| < 1, and letting σ2 = ω[1 − ((α + γ)/2 + β)]−1,
we obtain an expression for ht+j|t from the GJR–GARCH model which is
directly comparable to (3.15) for the linear GARCH model:

ht+j|t − σ2 = ((α + γ)/2 + β)j−1(ht+1 − σ2).

3.4.7 GARCH and forecasts of the conditional mean

In Section 3.2 we derived an expression for the conditional variance of
an AR(1), yt = φyt−1+εt , allowing for dependence in {ε2

t }, but not specify-
ing the form this might take – see equation (3.2). One can write down
expressions for general AR processes with general GARCH processes for
the {εt }, although the key intuition is evident from an AR(1) with a
GARCH(1, 1) for the disturbance. Because V(yt+j | Yt ) = V(et+j|t | Yt ),
where et+j|t = yt+j − yt+j|t , expressions for the conditional variance of
yt+j are also informative about the effects of (G)ARCH on the variance of
the conditional mean predictor about yt+j, so could in principle be used
to derive confidence intervals about yt+j|t .

From (3.2) for the AR(1):

V(yt+j | Yt ) =
j−1∑
i=0

φ2iE(ε2
t+j−i | yt )

=
j−1∑
i=0

φ2iE(z2
t+j−i | yt )ht+j−i|t

=
j−1∑
i=0

φ2iht+j−i|t .
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Substituting for ht+s|t from (3.15):

V(yt+j | Yt ) =
j−1∑
i=0

φ2i(σ2 + (α + β)j−i−1(ht+1 − σ2))

= σ2 1 − φ2j

1 − φ2
+ (ht+1 − σ2)

j−1∑
i=0

φ2i(α + β)j−i−1.

The first term on the second line is the forecast variance for a process
with i.i.d.(0, σ2) disturbances. This converges monotonically to V(yt ) =
σ2/(1 − φ2) as j gets large. The second term is due to the GARCH(1, 1)

dependence in the disturbances. It can be positive or negative, depending
on the sign of |ht+1 − σ2|, and can be larger or smaller for j than j − 1.
Although V(yt+j | Yt ) converges to V(yt ), it need not do so in a monotonic
fashion because of the influence of the second term, so that, for example,
there may be less uncertainty associated with medium-term forecasts
compared with short-term forecasts.

3.5 Evaluation of volatility forecasts

We have derived expressions for multi-step forecasts of volatility from
GARCH models. The next step is to evaluate these forecasts. It is natural
to consider the bias and variance of these forecasts. Letting et+j|t be the
error in the j-step ahead forecast of the conditional variance at t+j, based
on t (i.e., defining et+j|t as for conditional mean prediction), we have:

et+j|t = ht+j − ht+j|t

putting to one side for the moment the fact that the actual conditional
variance is unobserved. We assume that the GARCH model is correctly
specified, so that εt = zt

√
ht , and ht = αε2

t−1 +βht−1, with zt ∼ N(0, 1), say.
It then follows from the definition of ht+j|t that the errors in the volat-
ility forecasts are conditionally (and as a consequence unconditionally)
unbiased, Et (et+j|t ) = Et (ht+j − ht+j|t ) = 0.

Substituting for ht+j and ht+j|t we obtain:

et+j|t = ω + αε2
t+j−1 + βht+j−1 − Et (ω + αε2

t+j−1 + βht+j−1)

= βet+j−1|t + α(ε2
t+j−1 − ht+j−1|t )
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= βet+j−1|t + α(ε2
t+j−1 − ht+j−1 + ht+j−1 − ht+j−1|t )

= βet+j−1|t + α(vt+j−1 + et+j−1|t )

= (α + β)et+j−1|t + αvt+j−1,

where the fourth line uses ht = ε2
t − vt . Repeated backward substitution

results in:

et+j|t = (α + β)et+j−1|t + αvt+j−1

= αvt+j−1 + (α + β)[(α + β)et+j−2|t + αvt+j−2]
...

= α

j−2∑
i=0

(α + β)ivt+j−1−i + (α + β)j−1et+1|t

= α

j−2∑
i=0

(α + β)ivt+j−1−i

because et+1|t = 0. It is then a simple task to calculate the variance of the
forecast error. Note V(et+j|t | Yt ) = E(e2

t+j|t | Yt ), so that:

E(e2
t+j|t | Yt ) = α2

j−2∑
i=0

(α + β)2iE(v2
t+j−1−i | Yt ),

where the cross-products are zero because the {vt } are serially uncorrel-
ated. From vt = ht (z2

t − 1):

E(v2
t+j−1−i | Yt ) = E(z2

t+j−1−i − 1)2E(h2
t+j−1−i | Yt )

= (E(z4
t ) − 1)E(h2

t+j−1−i | Yt )

so:

E(e2
t+j|t | Yt ) = α2(E(z4

t ) − 1)

j−2∑
i=0

(α + β)2iE(h2
t+j−1−i | Yt ). (3.18)

In principle, if the model for volatility were correctly specified, then
we could use (3.18) to construct confidence intervals for the volatility
forecasts, and we would expect these intervals to contain the actual level
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of volatility the number of times indicated by the nominal coverage rate.
In practice, such a calculation is complicated by the fact that ht+j | Yt is
non-normal. Even given the mean and variance of the distribution, ht+j|t
and V(ht+j | Yt )( = E(e2

t+j|t | Yt )), non-normality warns against calculating

95% confidence intervals as ht+j|t ± 1.96
√

E(e2
t+j|t | Yt ), for example. This

would at best be an approximate 95% interval.
The main problem that arises in an attempt to evaluate the quality of

volatility forecasts is that volatility is unobserved. This means that even
if we were to calculate confidence intervals based on (3.18) for ht+j|t , there
is no readily available series for actual volatility to allow one to compare
the actual coverage rate to the nominal. Furthermore, parallelling the
point forecast evaluation literature, two ways of evaluating forecasts of
volatility are ‘realization-forecast’ regressions (e.g., equation (2.2)) and
comparisons based on MSFEs (e.g., equation (2.26)). But both require a
‘proxy’ or measure for actual volatility, ht+j. For example, the realization-
forecast regression takes the form:

ht+j = α + βht+j|t + νt+j, (3.19)

where, for example, t = 1, . . . , T and j > 0 is the forecast horizon, and
comparisons of rival volatility forecasts are based on:

1
T

T∑
t=1

(ht+j − h1,t+j|t )2

and:

1
T

T∑
t=1

(ht+j − h2,t+j|t )2

for sequences of volatility forecasts (h1,1+j|1, . . . , h1,T+j|T ) and (h2,1+j|1, . . .,
h2,T+j|T ). Suppose that j = 1. For both types of evaluation it is common-
place to proxy {ht+1} by {ε2

t+1}, the squared returns (or squared shocks).
The rationale for using the squared return is that, if the model is cor-
rectly specified (i.e., εt = zt

√
ht , with ht correctly specified and zt having

its assumed distribution):

Et (ε
2
t+1) = Et (z2

t+1ht+1) = ht+1,
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that is, the realized squared return is an unbiased proxy for actual
volatility.

Replacing ht+1 by ε2
t+1, we obtain the return-volatility forecast

regression:

ε2
t+1 = α + βht+1|t + νt+1. (3.20)

Because ht+1|t = ht+1, and the expected value of the dependent variable is
ht+1, the population values of α and β are α = 0 and β = 1, respectively. In
practice the dependent variable ht+1|t will be generated from a model with
estimated parameters (e.g., ω̂, α̂ and β̂ in the case of the GARCH(1, 1))
and is likely to measure ht+1 with error, for example, ht+1|t = ht+1 + υt+1.
Assuming that E(υt+1ht+1) = E(υt+1νt+1) = 0 as in the standard textbook
treatment of measurement error in an explanatory variable, we obtain:

β̂ = 1 − V(υt )

V(υt ) + V(ht )
(3.21)

when β = 1. The ordinary least squares (OLS) estimator β̂ will be down-
ward biased to the extent given by the second term in (3.21). For this
reason, tests based on the values of α and β may be misleading, and
a number of papers have instead focused on the R2 of this regression.
The R2 measures the proportion of the variability in squared returns
explained by the volatility forecasts of the particular model under scru-
tiny. A number of studies have found low values of R2, particularly for
daily data, suggesting that standard GARCH volatility models account for
little of the variability of ex post squared returns, and consequently that
such models produce poor volatility forecasts that are of limited prac-
tical value.8 Anderson and Bollerslev (1998) counter by showing that
low R2’s are not symptomatic of inaccurate forecasts of volatility. The
important point is that whilst squared returns are an unbiased proxy of
actual volatility they will typically be a very noisy proxy, especially for
high-frequency data, such as daily data. The variance of {ε2

t+1} is:

V(ε2
t+1) = E[(ε2

t+1 − E(ε2
t+1))

2]
= E[h2

t+1(z
2
t+1 − 1)2]

= h2
t+1(κ − 1),
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where the second line uses ε2
t+1 = ht+1z2

t+1 and E(ε2
t+1) = ht+1, and the

third E(z2
t+1 − 1)2 = E(z4

t+1) − 2E(z2
t+1) + 1 = κ − 1 (recall {zt } is stand-

ard normal, and κ ≡ E(z4
t+1) = 3). Thus the variance of the proxy is at

least twice9 the square of the actual volatility. The noisiness of the proxy
implies a low R2 even for forecasts from the conditional volatility model
that actually generated the returns.

Anderson and Bollerslev (1998) illustrate by deriving the population
value of the R2 for a returns-volatility forecast regression when the
GARCH(1, 1) volatility model is true. They obtain:

R2 = α2

(1 − β2 − 2αβ)
(3.22)

assuming the existence of a finite unconditional fourth moment. The
latter requires that κα2 + β2 + 2αβ < 1, so that substituting α2 < (1 − β2

−2αβ)/κ into the numerator of (3.22), we obtain the inequality that
the population R2 < κ−1 for a GARCH(1, 1) with a finite unconditional
fourth moment. So R2 is bounded from above by 1

3 when zt is nor-
mally distributed, and an even tighter bound is operative when zt is
Student t .

For a GARCH(1, 1) model estimated on daily percentage returns of the
Deutschemark-US dollar spot rate, 1 October 1987 to 30 September 1992,
they obtain α̂ = 0.068, and β̂ = 0.898. Plugging these values into the
above formula gives a population R2 of 0.064: this is the value of the R2

that we would calculate from (3.20) (barring sampling variability) if the
actual sample of daily percentage exchange rate returns were generated
by a GARCH(1, 1) with α and β given by the values of the OLS estim-
ates. The value of R2 for the the regression given by (3.20) for GARCH
model volatility forecasts of 1 October 1992 to 30 September 1993 was
0.047, similar in magnitude to the population value under correct spe-
cification, and to other estimates in the literature which have led to a
loss of confidence in volatility forecasts.

These comments also apply to less formal comparisons of MSFEs of
rival models where actual volatility is proxied by ex post returns. If one
has a number of volatility models, including GARCH and non-linear
GARCH models, the high values of the MSFEs for all the models might
tend to hide any (small by comparison) differences in MSFEs between
models, leading to the conclusion that none of the models offer a good
description of the volatility in the series.
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3.6 Recent developments in the evaluation of
volatility forecasts

In the previous section we argued that assessing the quality of volatility
forecasts by using ex post squared returns as a proxy for actual volat-
ility might be misleading. Ex post squared returns are likely to be a
very poor proxy for volatility, especially for high-frequency data. In this
section we discuss a number of alternative proxies. We postpone until
Chapters 4 and 5 an assessment of volatility forecasts based on the quality
of derived interval and density forecasts, concentrating here on the volat-
ility forecasts themselves. Christoffersen and Diebold (2000) consider
whether volatility is forecastable, but their techniques are closely related
to interval evaluation techniques and so will be discussed in Chapter 4.10

3.6.1 Realized volatility

Anderson and Bollerslev (1998) suggest replacing the unobserved volat-
ility series ht+1 in (3.19) by an estimate based on ex post squared returns
sampled more frequently than the underlying unit of observation on
which the volatility forecasts are based. They take the underlying unit
of observation to be a day, as in the daily exchange rate forecasts of
the Deutschemark-US dollar example reported in the previous section.
Thus, instead of replacing ht+1 by ε2

t+1, the dependent variable in (3.19)
becomes:

m∑
j=1

ε2
t+1,j

the sum of the corresponding squared intra-period returns, where
(ε2

t+1,1, . . . , ε2
t+1,m) are the m intraday squared returns for day t + 1. When

m = 1 there is one intraday observation, that is, one observation per
day, and ε2

t+1 ≡ ∑1
j=1 ε2

t+1,j. For m = 1 we reported Anderson and
Bollerslev’s finding of an R2 = 0.047 for the Deutschemark-US dollar
returns-volatility forecast regression. For m = 24, corresponding to
proxying daily volatility by summing the squares of hourly returns,
they report an R2 = 0.331. For m = 288 (five-minute intervals), the
R2 is close to 1

2 at 0.479. Estimates of volatility obtained in this way
are often referred to as realized volatility, and when used in place of
same-frequency squared returns give a very different picture regarding
the predictability of the volatility process using standard GARCH models.

A major drawback is of course that data recorded at a higher frequency
than the underlying unit of observation might not be available in any
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given instance: only recently has it become possible to obtain intradaily
data. Moreover, even when data are available, it is not clear how to
choose m. Setting m as high as possible would appear to be warranted on
the basis of the theoretical results reported by Anderson and Bollerslev,
but such a strategy would neglect potentially distortionary effects from
market microstructure effects and infrequent trading.

Andersen et al. (2003) set out a framework for modelling and fore-
casting realized volatility directly, rather than viewing realized volatility
solely as a proxy for actual volatility for forecast evaluation purposes.
They illustrate with estimates of daily volatility obtained by summing
30-minute returns for US $, Yen and DM exchange rates. Forecasts
from VAR models of the daily realized volatilities are found to fare
well compared to alternative forecasts (e.g., from GARCH models fit-
ted to daily returns). Their evaluation techniques include comparing
R2 from realization-forecast regressions where the dependent variable
is observed realized volatility. A number of authors, such as Blair et al.
(2001), have shown that adding realized volatility as an explanatory vari-
able in GARCH models may result in improved volatility forecasts, and
Koopman et al. (2004) find that realized volatility models produce more
accurate volatility forecasts than conditional variance models of the S&P
100 daily returns. The evidence suggests that the usefulness of realized
volatility estimates goes beyond the evaluation of volatility forecasts.
Time-series of daily realized volatility can be used to produce superior
volatility forecasts, either by direct modelling, or as an input to standard
GARCH models.

3.6.2 Intraday range

For daily data, an important source of intraday information is the daily
high (P{High}

t+1 ) and low (P{Low}
t+1 ), from which the daily intraday range is

simply {Rgt+1 = P{High}
t+1 −P{Low}

t+1 }. The intraday range has been suggested as
a proxy for daily volatility, and has the advantage of often being readily
available for daily equity price series. If we assume that the price follows
a geometric Brownian motion, as in the recent finance literature, then
the extreme value estimator of daily volatility due to Parkinson (1980) is
given by:

ĥt+1 = (ln P{High}
t+1 − ln P{Low}

t+1 )2

4 ln 2
.

See Parkinson (1980) for details, and Garman and Klass (1980).
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Anderson and Bollerslev (1998, p. 898) reference a number of stud-
ies using the range, and report some calculations which indicate that
the intraday range is on par with two or three hour intraday returns as
an estimator of underlying volatility. Finally, Bollen and Inder (2002)
suggest an approach to the estimation of daily realized volatility that
allows for heteroskedasticity and time-varying autocorrelations in intra-
day returns. The Anderson and Bollerslev (1998) estimator of daily
realized volatility that sums intraday squared returns requires that these
returns are uncorrelated, but this may not be the case due to market
microstructure effects. Bollen and Inder (2002) show that their estim-
ator compares favourably with the other methods we have reviewed,
such as extreme value estimators and summing squared returns. Bollen
and Inder (2002) also include in their comparisons the ‘simple’ volatility
estimator:

√
ĥt+1 = |εt+1|√

2/π
.

This estimator is unbiased by construction if returns are normally dis-
tributed, εt+1 ≡ ln Pt+1 − ln Pt ∼ N(0, ht+1), but inefficient in that only
one observation is used in its construction.

3.6.3 Utility-based measures and trading rules

West et al. (1993) evaluate the forecast performance of standard models
of the volatility of weekly exchange rates using a utility-based metric.
Specifically, they assume an investor with a mean-variance utility func-
tion, and calculate the expected values of making investment decisions
using the different volatility models. Maddala and Li (1996, section 5)
critically discuss the literature on the use of trading rules to evaluate
volatility models of stock market and exchange rate data.

3.7 Summary

This chapter considers models of volatility or conditional variance,
and the evaluation of forecasts of the conditional variance. Model-
ling and forecasting the conditional variance of a process is potentially
important and feasible when the second-moment is non-constant but
varies in a systematic fashion that is amenable to modelling. A large
number of financial time series and some macroeconomic time series
exhibit time-varying conditional variances capable of being represented
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by members of the autoregressive conditional heteroskedasticity class of
models begun by Engle (1982).

We show that for asymmetric loss functions time-varying conditional
variances will affect the optimal point forecasts, as well as the degree
of uncertainty around the point forecast. With ‘standard’ squared-error
loss functions, the optimal point forecast will be unaffected by the time-
varying nature of the conditional variance of the process, but the degree
of uncertainty will depend on when the forecast is made.

We describe the popular ARCH and GARCH models of conditional
variance, and compare the forecasts from these models to those obtained
by averaging past squared returns to bring out their distinctive features
from a forecasting perspective. The evaluation of conditional variance
forecasts is hampered by the absence of an ‘observable’ volatility series.
We review the critiques of using squared returns as a proxy for volatility
in traditional evaluation criteria, such as realization-forecast regressions
and MSFE comparisons, and discuss the use of realized volatility and
related measures.



4
Interval Forecasts

4.1 Introduction

In this chapter, we consider the evaluation of interval forecasts (also
commonly referred to as prediction intervals). An interest in interval
forecasts recognizes that the traditional emphasis on point estimates
neglects any measure or assessment of the uncertainty surrounding the
point forecast, or the ‘confidence’ that the forecaster has in the pre-
diction. Point forecasts are sometimes provided with simple summary
statistics about the forecaster’s historical track record, such as ex post
root mean squared errors calculated for past forecasts, as a tacit admis-
sion that in most practical settings the likely range of outcomes will
influence the usefulness of the forecast. Unfortunately the magnitude
or variability of past forecast errors may offer little guidance to the
uncertainties attached to current forecasts, if the conditional variance
of the process is changing over time, as in the volatility models of
Chapter 3.

An interval forecast is a prediction about the range in which the out-
come will occur (with a pre-assigned probability), and as such is a formal
way of conveying ex ante forecast uncertainty. In the next chapter, we
will consider forecast densities or probability distributions which provide
a complete description of the probabilities that the forecaster attaches to
all possible values or ranges of values of the outcome variable.

In addition to conveying uncertainty around a point forecast, agents
involved in financial markets place a great deal of emphasis on interval
forecasts, as they form the basis of the popularly employed Value-at-
Risk (VaR) analysis.1 For horizons in excess of a trading day, the long-
run solvency of the institution is the appropriate risk to be hedged. By
contrast, intraday horizons are important to traders seeking to manage

77
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the risk of the trading desk. An empirical example is provided of the
evaluation of intraday interval forecasts.

Section 4.2 considers the calculation of interval forecasts for lin-
ear autoregressions with independent disturbances. The assumption of
independence rules out autoregressive conditional heteroskedasticity
(ARCH)-effects, and would appear to be unduly restrictive. Neverthe-
less, many of the considerations that arise are equally pertinent when
there is ARCH. We run through the Box–Jenkins approach and bootstrap
techniques. We describe a setting where we have data from t = 1 to T ,
and wish to construct an interval forecast for period T + 1 (1-step) or
T + j, j > 1 more generally. We look at whether the actual coverage is
close to the nominal coverage for intervals calculated in various ways,
and report on some of the results of a Monte Carlo study undertaken by
Clements and Taylor (2001). A bootstrap procedure for ARCH processes
due to Pascual et al. (2000) is briefly reviewed.

In Section 4.3, we define desirable properties of interval forecasts when
explicit recognition is made that the conditional variance of the series
may be changing over time. A close match between actual and nom-
inal coverage rates is then necessary but not sufficient. To capture the
potential importance of ARCH-type effects, the evaluation focuses on
sequences of interval forecasts for periods during which the conditional
variability of the series is changing. Section 4.4 outlines a procedure
for testing whether a sequence of interval forecasts are conditionally
efficient, as defined in Sections 4.3, and 4.5 considers regression-based
tests of conditional efficiency, drawing on Christoffersen (1998), Engle
and Manganelli (1999) and Clements and Taylor (2003). Section 4.6
presents a suggestion by Granger et al. (1989) for calculating interval
forecasts when there is ARCH. The empirical illustration in Section 4.7
explores the usefulness of some of the tests of interval forecasts for
hourly returns data, based on FTSE100 index futures. This example
also illustrates the Generalized ARCH (GARCH) models discussed in
Chapter 3.

4.2 Calculating interval forecasts

In this section, we follow the mainstream literature by considering the
calculation of interval forecasts for a linear AR(p). The specification of
the model is assumed to be known, but we allow that the parameters
of the model are unknown. In practice, ‘model uncertainty’ might be at
least as important as parameter estimation uncertainty: see, for example,
Chatfield (1993, 1995) and Draper (1995).
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The Box–Jenkins method (Box and Jenkins 1976, henceforth BJ) is
the simplest approach, and will give interval forecasts with the exact
coverage rates in certain circumstances. Consider the AR(p):

yt = δ + φ1yt−1 + · · · + φpyt−p + εt , (4.1)

where the {εt } sequence is i.i.d. with distribution function Fε, E(εt ) = 0
and E(ε2

t ) = σ2
ε < ∞. If {δ, φ1, . . . , φp, σ2

ε } are known, and Fε is the normal
distribution function, then the 1-step forecast density at period T + 1
given information available up to period T is YT+1 | IT = N(yT+1|T , σ2

ε ),
where IT = (yT , . . . , yT−p+1) and yT+1|T = E(YT+1 | IT ) = δ + φ1yT + · · · +
φpyT−p+1. The standard BJ interval forecast with a nominal coverage rate
of (1 − α) × 100% is given by:

{yT+1|T + zα/2σε, yT+1|T + z1−(α/2)σε}, (4.2)

where zγ is the γ quantile of the standard normal, that is, γ = �(zγ ),
where � denotes the standard normal distribution function. Typical val-
ues of α might be 0.05, 0.1 and 0.2, to give intervals with coverage rates
of 95, 90 and 80%, respectively. Notice that z1−(α/2) = −zα/2 so that we
can write the interval as:

{yT+1|T ± zα/2σε}.

By construction:

Pr(YT+1 ∈ {yT+1|T ± zα/2σε}) = 1 − α

because:

Pr
(

zα/2 <
YT+1 − yT+1|T

σε

< z1−(α/2)

)
= Pr

(
zα/2 <

εT+1

σε

< z1−(α/2)

)

= 1 − 2�(zα/2) = 1 − α.

Multi-step intervals can be derived similarly, so that a k-step ahead
interval is given by:

{yT+k|T ± zα/2σε,k},

where yT+k|T = E(YT+k | IT ), and σε,k = √V(YT+k | IT ).
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We have assumed that the parameters are known, and that disturb-
ances have a normal distribution. The BJ approach can be used when
neither of these assumptions hold. For example, the unknown para-
meters can be estimated, and the population values of {δ, φ1, . . . , φp, σ2

ε }
used to construct yT+1|T and σε can simply be replaced by the estimates.
Ignoring the estimation uncertainty – by treating random variables as
if they were the population values – is likely to result in intervals that
are ‘too narrow’ with actual coverage less than the nominal. Similarly,
the normality of the disturbances can be assumed to construct the inter-
vals, but is likely to lead to poor intervals to the extent that the normal
distribution provides a poor approximation to the true distribution.

One method of improving on BJ is to estimate the density of the predic-
tion errors by bootstrap methods (BS), for example, Findley (1986), Stine
(1987) and Masarotto (1994). A second approach is to directly estim-
ate the distribution of YT+k conditional on YT , . . . , YT−p+1, circumventing
the need to calculate the prediction error distribution. In this tradition,
Thombs and Schucany (1990) propose a BS method that uses bootstrap
replicates generated backward in time to ensure that the probability dis-
tribution for future values of the process is conditional on the history of
the process actually observed: see also Breidt et al. (1995), McCullough
(1994) and Kim (2001, 2003). Pascual et al. (2001) propose a method
that does not require re-sampling through the backward representation
of the process, and Clements and Taylor (2001) ally to this the bootstrap
bias-correction of Kilian (1998b). The rest of this section reviews these
developments.

4.2.1 Bootstrap the forecasts

A standard bootstrap procedure is as follows. Estimate (4.1) for t =
p+1, . . . , T , to give {δ̂, φ̂1, . . . , φ̂p, σ̂2

ε } and residuals {ε̂t }. Denote the empir-
ical distribution function (EDF) of the residuals by Fε̂.2 Obtain {ε∗

b,t }, for
t = T + 1, . . . , T + k, by sampling from Fε̂, and then generate a bootstrap
sample recursively from:

y∗
b,t = δ̂ + φ̂1y∗

b,t−1 + · · · + φ̂py∗
b,t−p + ε∗

b,t (4.3)

for t = T + 1, . . . , T + k and where y∗
b,T+s = yT+s for s ≤ 0. Repeat

B times, so we have a bootstrap resample {y∗
b} for each b = 1, . . . , B (where

y∗
b = (y∗

b,T+1, . . . , y∗
b,T+k)

′). The EDF of {y∗
b} is the bootstrap estimate of the

unknown forecast distribution conditional on the parameter estimates
{δ̂, φ̂1, . . . , φ̂p, σ̂2

ε } and the observed values {yT , yT−1, . . . , yT−p+1}.
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The Efron percentile method uses the quantiles of the empirical dis-
tribution to define the upper and lower critical points of the interval
forecast. That is, if we let F∗

k be the EDF of the {y∗
b,T+k, b = 1, . . . , B}, then

formally the interval is given by:

[F∗−1
k (α/2), F∗−1

k (1 − α/2)], (4.4)

where for an interval with 90% coverage and B = 100 replications, α =
0.1, and F∗−1

k (0.05) = Lk = y∗(5)

T+k, F∗−1
k (0.95) = Uk = y∗(95)

T+k . That is, Uk

and Lk are set to the given 5th and 95th largest values of {y∗
b,T+k, b =

1, . . . , B}. Hall (1988, p. 933, 937–8) suggests an alternative approach,
often referred to as ‘Hall’s percentile interval’, which is used in the Monte
Carlo of Section 4.2.5. This interval is given by:

[ŷT+k − t1−α/2, ŷT+k − tα/2], (4.5)

where ŷT+k is the k-step ahead forecast based on the sample parameter
estimates and yT , . . . , yT−p+1, that is:

ŷT+k = δ̂ + φ̂1ŷT+k−1 + · · · + φ̂pŷT+k−p, (4.6)

where ŷT+s = yT+s for s ≤ 0, and tα/2 and t1−α/2 are the quantiles of the
bootstrap distribution of Y∗

T+k−ŷT+k.3 Clements and Taylor (2001) discuss
these and other bootstrap intervals, and see also Davison and Hinkley
(1997) and Kilian (1998a).

4.2.2 Allowing estimation uncertainty

The bootstrap explained above dispenses with the assumption of nor-
mality but ignores the variability in the parameter estimates – estimates
are treated as if they were the population values. To allow for estima-
tion uncertainty, a bootstrap sample of T observations is generated by
sampling from Fε̂ to obtain {ε∗

b,t } for t = p + 1, . . . , T , and by recursive
calculation of:

y∗
b,t = δ̂ + φ̂1ŷ∗

b,t−1 + · · · + φ̂py∗
b,t−p + ε∗

b,t (4.7)

for t = p + 1 to T given the observed initial values {y1, . . . , yp} (so y∗
b,t =

yt for t = 1, . . . , p). This gives a sample {y∗
b,p+1, . . . , y∗

b,T }. Create B such
samples. On each of these estimate the model (4.1) to give parameter
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estimates θ∗′
b = (δ̂b, φ̂1,b, . . . , φ̂p,b), and then solve recursively:

y∗
b,t = δ̂b + φ̂1,by∗

b,t−1 + · · · + φ̂p,by∗
b,t−p + ε∗

b,t t = T + 1, . . . , T + k, (4.8)

where as before {ε∗
b,T+1, . . . , ε∗

b,T+k} are drawn from Fε̂. The empirical dis-
tribution of {y∗

b} (for a given k) is the bootstrap estimate of the unknown
k-step ahead forecast distribution. The effect of estimation uncertainty
has now been incorporated, because on each of the bootstrap replicates
the ‘past’ data is re-drawn, and the forecasts are calculated from a model
with parameters estimated on the simulated data. However, the predic-
tion distributions no longer condition on the observed realization of the
process {yT−p+1, . . . , yT } (but only on y1, . . . , yp).

4.2.3 Conditional intervals and estimation uncertainty

In some cases, such as calculating confidence intervals for impulse
responses, unconditional distributions are of interest, but an interval
forecast is a probability statement for the future values of the process
given the history of the process that was actually observed. Thombs and
Schucany (1990) suggest a way of obtaining forecast intervals (that allow
for estimation uncertainty) based on backcasting, but a simpler proposal
of Pascual et al. (2001) is to use (4.8) but with:

y∗
b,T+s = yT+s for s ≤ 0, (4.9)

so that {y∗
b,T−p+1, . . . , y∗

b,T } are replaced by {yT−p+1, . . . , yT } for all b.

4.2.4 Bias-correcting the parameter estimates

The bootstrap replicates are generated from the original parameter estim-
ates θ̂

′ = (δ̂, φ̂1, . . . , φ̂p). However, when the sample size is small and there
are roots close to the non-stationary region, the estimators will be sub-
ject to small-sample biases, which might result in intervals with poor
coverage. Let θ ′ = (δ, φ1, . . . , φp), and let 
 denote the bias in estimating
θ , 
 = E(θ̂ − θ). An estimate of this term can be obtained by a bootstrap.
That is, calculate 
̂ = θ̄

∗ − θ̂ , where θ̄
∗ = B−1∑B

b=1 θ
∗
b, and the θ∗

b are the
estimates of the parameters of (4.1) for each of the B bootstrap replicates
generated using θ̂ and Fε̂.

For models with roots close to the unit circle, care is required in ensur-
ing that the bias-correction does not change the number of unit roots
in | φ̂(z) | = 0 (where φ̂(L) = 1 − φ̂1L − · · · − φ̂pLp). This is considered
below: for now suppose θ̂ falls within the stationarity region, as does the
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bias-corrected estimate θ̃ = θ̂−
̂. Then θ̃ simply replaces θ̂ in (4.7) to gen-
erate the B bootstrap samples. The parameter estimates obtained on these
samples denoted by θ∗

b are then bias-corrected using 
̂, θ̃
∗
b = θ∗

b − 
̂. In
principle, one could estimate specific bias-correction factors for each θ∗

b.
In performing the bias-corrections, we wish to ensure that the cor-

rection does not cause stationary forecasts to become non-stationary.
Kilian (1998b) suggests the following. Let m(θ̂) denote the modulus of
the largest root of the characteristic equation formed using the autore-
gressive parameters in θ̂ . If m(θ̂) ≥ 1 (non-stationary), then θ̃ = θ̂

(and similarly, θ̃
∗
b = θ∗

b if m(θ∗
b) ≥ 1) so the coefficients θ̂ (or θ∗

b) are
not adjusted when the roots of the associated characteristic equations
are non-stationary. Thus, the bias-adjustment scheme does not rule out
non-stationary forecasts, but merely prevents these from occurring as a
result of the bias-adjustment scheme. If m(θ̂) < 1, construct θ̃ = θ̂ − 
̂.
If m(θ̃) ≥ 1, let 
̂1 = 
̂, set τ1 = 1 and define 
̂ i+1 = τi
̂ i and
τi+1 = τi − 0.01, for i = 1, 2, . . .. Then iterate on θ̂ i = θ̂ − 
̂ i, i = 1, 2, . . .
until m(θ̂ i) < 1 and m(θ̂ i−1) > 1. Setting θ̃ = θ̂ i imposes the largest bias-
correction possible subject to the largest root remaining stationary. The
θ∗

b are similarly treated, to give θ̃
∗
b. This scheme lacks a theoretical basis

but seems reasonable for stationary processes.
Having obtained the bias-corrected θ̃

∗
b, we generate y∗

b,T+k, k = 1, . . . , K

recursively by plugging θ̃
∗
b into (4.8) and making random draws from Fε̂,

but conditioning on the ‘observed’ data. Thus we have a sample of B sets
of future values of the series, {y∗

b,T+k, . . . , y∗
b,T+k}. For each k, we calculate

intervals with the desired coverage.

4.2.5 Monte Carlo evaluation: step-by-step guide

In summary, a Monte Carlo evaluation of the bootstrapped interval
forecasts calculated with bias-corrected parameter estimates proceeds as
follows:

Step 1. Simulate a series {y1, . . . , yT } of length T from a data generation
process (DGP) (such as (4.1)) with an error distribution Fε. Simu-
late R continuations of the series of length K, the maximum forecast
horizon. Use the true parameter values, draw from the true error dis-
tribution, Fε, and condition on {yT−p+1, . . . , yT } (for a p-order process).
These continuations are ‘possible future realizations’, and will be used
to estimate the coverage of the intervals.

Step 2. Estimate θ̂ and Fε̂ on {y1, . . . , yT }. Perform a bootstrap to bias-
correct θ̂ : this gives θ̃ .
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Step 3. Simulate B bootstrap replicates of length T using θ̃ and drawings
from Fε̂. On each of these, estimate (4.1) to give θ∗

b. Use the estimate
of the bias from Step 2 to bias-correct these estimates to give θ̃

∗
b.

Step 4. Conditional on {yT−p+1, . . . , yT }, for each θ̃
∗
b (and drawings from

Fε̂), generate a continuation of the series. This gives {y∗
1,T+k, . . . , y∗

B,T+k},
k = 1, . . . , K. Let L∗

k and U ∗
k denote the interval endpoints. Then,

λ∗
k = U ∗

k − L∗
k is the length of the interval, and the coverage β∗

k =
R−1∑R

r=1 1(L∗
k ≤ yr

T+k ≤ U ∗
k ), where r indexes the rth element of

the R continuations simulated at Step 1. We also record the propor-
tion above and below the interval: β∗

k,a = R−1∑R
r=1 1(yr

T+k > U ∗
k ) and

β∗
k,b = R−1∑R

r=1 1(yr
T+k < L∗

k).

Step 5. Repeat Steps 1–4 M times, and index the values obtained on each
iteration by m, m = 1, . . . , M .

Step 6. Calculate the Monte Carlo estimates of length and coverage,
and the variability of these estimates, as:

β̄ ∗
k = 1

M

M∑
m=1

β∗
k,m

SE(β̄∗
k) =

√
1
M

√√√√ M∑
m=1

(β∗
k,m − β̄∗

k)
2/(M − 1)

λ̄∗
k = 1

M

M∑
m=1

λ∗
k,m

SE(λ̄∗
k) =

√
1
M

√√√√ M∑
m=1

(λ∗
k,m − λ̄∗

k)
2/(M − 1)

and β̄∗
k,a and β̄∗

k,b are calculated in the obvious way.
The data generating process is taken to be an AR(2) model with normal

errors.4

yt = 1.75yt−1 − 0.76yt−2 + εt .

The AR parameters were chosen to give roots close to the stationarity
boundary to mirror the properties of actual economic time series. We
consider two estimation sizes T = {25, 50}, a maximum forecast horizon
K = 10 and a nominal coverage level (c = 1 − α) of 95%.

The results for the AR(2) DGP with normal disturbances and a c = 95%
coverage level are given in Table 4.1. The actual coverage levels of the
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Table 4.1 AR(2) simulation results (normal errors and c = 95%)

k λ̄
∗
k SE(λ∗

k) β̄
∗
k SE(β∗

k) β̄
∗
k,b β̄

∗
k,a

T = 25
BJ 1 3.87 0.02 91.49 0.20 4.24 4.27
BS 5.26 0.06 92.70 0.24 3.80 3.49

BJ 3 10.98 0.07 84.81 0.43 7.61 7.58
BS 18.36 0.26 89.34 0.44 5.60 5.06

BJ 5 16.65 0.15 77.90 0.60 11.10 11.00
BS 31.79 0.48 86.38 0.58 7.27 6.35

BJ 10 23.96 0.33 65.66 0.73 17.17 17.17
BS 62.77 1.13 83.08 0.74 8.89 8.03

T = 50
BJ 1 3.89 0.01 93.35 0.11 3.27 3.38
BS 4.40 0.02 94.25 0.13 2.92 2.83

BJ 10 28.24 0.25 79.02 0.53 10.21 10.76
BS 53.33 0.64 90.22 0.48 5.04 4.73

Notes: This table presents the results of a Monte Carlo comparison of two
methods of constructing prediction intervals – BJ and BS methods. The mean
length of the interval (λ̄∗

k), its associated standard error, the mean coverage
level (β̄∗

k), its associated standard error, and the mean proportions below (β̄∗
k,b)

and above (β̄∗
k,a) are reported. Coverage rates are given as percentages. For the

initial bootstrap (Step 2) and the bootstrap at Step 3 we carry out B = 499
replications. The actual coverage is calculated from R = 1000 continuations,
and the Monte Carlo evaluation is based on M = 1000 replications. We use
‘Hall’s percentile’ method to construct the Bootstrap (BS) intervals.

standard BJ intervals fall increasingly below the nominal for both sample
sizes as the horizon lengthens, matching Thombs and Schucany (1990,
table 1, p. 491) for example. A feature of the results is how much closer
actual coverages are to the nominal for the bootstrapped intervals (BS)
with bias-correction.

4.2.6 Bootstrapping ARCH processes

Pascual et al. (2000) consider the GARCH(1, 1) model:

εt = zt

√
ht ,

ht = ω + αε2
t−1 + βht−1,



86 Evaluating Econometric Forecasts

where zt is i.i.d. (0,1), and in the absence of any conditional mean
dynamics, {εt } is the return. As we noted in Section 3.4.7, the non-
normality of the conditional returns distribution at more than 1-step
ahead, even when zt ∼ N(0, 1), cautions against the use of the BJ inter-
val given by (4.2). Pascual et al. (2000) suggest a way of bootstrapping
both the conditional distribution of returns {εT+j|T } and the conditional
distribution of the volatility of returns {hT+j|T }, and they establish the
asymptotic validity of their procedures and investigate the small-sample
performance via Monte Carlo. The bootstrap is similar in spirit to that
for the linear AR model set out above. The bootstrap consists of the
following steps.

Step 1. Given {y1, . . . , yT } from the GARCH(1, 1) DGP, and given that
we wish to obtain the conditional distributions of εT+j and hT+j, we
begin by estimating a GARCH (1,1) by QML (see Section 3.4.2) to give
(ω̂, α̂, β̂) and:

ĥt = ω̂ + α̂ε2
t−1 + β̂ĥt−1, t = 2, . . . , T .

The residuals are given by ẑt = ε̂t/

√
ĥt , and we note their empirical

distribution function by Fẑ.

Step 2. In order to incorporate the effects of parameter estimation uncer-
tainty, simulate a bootstrap replicate of length T using (ω̂, α̂, β̂) and
drawings from Fẑ:

ĥ∗
t = ω̂ + α̂ε∗2

t−1 + β̂ĥ∗
t−1

ε∗
t = z∗

t

√
ĥ∗

t , t = 2, . . . , T .

ĥ∗
1 = ĥ1 and the {z∗

t } are the draws from Fẑ.

Step 3. Estimate the GARCH(1, 1) on this bootstrap replicate to give
(ω̂∗, α̂∗, β̂∗) and then generate forecasts of future values using the
recursions:

ĥ∗
T+k = ω̂∗ + α̂∗ε∗2

T+k−1 + β̂∗ĥ∗
T+k−1

ε∗
T+k = z∗

T+k

√
ĥ∗

T+k, k = 1, 2, . . . ,
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ε∗
T = εT , and:

ĥ∗
T = ω̂∗

1 − α̂∗ − β̂∗ + α̂∗
T−2∑
j=0

β̂∗j

(
ε2

T−j−1 − ω̂∗

1 − α̂∗ − β̂∗

)

(by backward substitution on (3.11), for example). The ĥ∗
T+1 only vary

across bootstrap replications because of the parameter estimation uncer-
tainty – this is a consequence of next period’s volatility being known
given the GARCH model.

We run through the above steps B times to obtain the bootstrap dis-
tribution functions {ε∗

b,T+k, b = 1, . . . , B} and {ĥ∗
b,T+k, b = 1, . . . , B} from

which the prediction intervals can be calculated. The Monte Carlo study
reported by Pascual et al. (2000) indicates that when the {zt } are non-
normal the BJ intervals can be poor, while the bootstrapped intervals
perform well. Further, provided {zt } is symmetric allowing for para-
meter estimation uncertainty (as above) is not important for the returns
intervals, but does matter for the conditional volatility intervals.

4.3 Desirable properties of interval forecasts

An interval forecast can be written as the triple {Lt |t−1, Ut |t−1, p}, where L
denotes the lower level, and U the upper level of the interval and p is
the nominal coverage rate. The subscripts attached to L and U indicate
a 1-step forecast of period t , made at t − 1. The nominal coverage p is
to be interpreted as follows. If we were to observe n realizations of the
process in period t , then the expected proportion lying in the interval
(Lt |t−1, Ut |t−1) is equal to p, that is:

Pr[Yt ∈ (Lt |t−1(p), Ut |t−1(p))] = p, (4.10)

where Yt denotes the random variable. Only a single realization is
observed for each t ,5 but as (4.10) holds for each t , we can compare
the nominal coverage rate p with the actual coverage rate derived from
a sequence of intervals and realizations for t = 1, . . . , n.

From the sequence of intervals and realizations, a ‘hit’ sequence is
derived as:

It =
{

1, if yt ∈ (Lt |t−1(p), Ut |t−1(p)),

0, otherwise,
(4.11)
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where each interval forecast is classified as a success (contains the realiza-
tion) or a failure (realization falls outside). If the interval forecasts are ‘well
specified’, in the sense that the probability that It takes the value 1 is equal
to the nominal coverage rate p, then E(It ) = (1 × p) + [0 × (1 − p)] = p.6

We can estimate E(It ) from the sample mean of {It }n
t=1, (1/n)

∑n
t=1 It , and

testing whether this is significantly different from p is a test of ‘uncon-
ditional’ coverage, set out formally below. This is a test of whether there
are the right number of ‘hits’ and ‘misses’ (or ‘1’s and ‘0’s) with no regard
to whether there are discernible patterns in these occurrences.

One could imagine a situation where misses are clustered together. For
example, if the process being forecast is subject to ARCH-type volatility
clustering, then unless the interval forecasts are wider in turbulent peri-
ods compared to relatively tranquil times there are likely to be too many
misses in the volatile periods. Also, the chances of It equalling zero (indic-
ating a miss) should not be related to variables known at t−1, in addition
to not depending on forecastable changes in volatility. These ideas under-
pin the notion of conditional efficiency. Christoffersen (1998) defines
a set of ex ante interval forecasts as being efficient with respect to the
information set (denoted �t−1) if the conditional expectation of It equals
p, that is E(It |�t−1) = p. If one restricts the information set to past values
of the indicator function, �t = {It , It−1, . . .} , then this is equivalent to
saying that {It } is i.i.d Bernoulli with parameter p.

Restricting the information set to lagged values of the indicator vari-
able gives rise to the tests of conditional efficiency discussed in the next
section.

4.4 Tests for conditional efficiency

Conditional efficiency requires the sequence {It } is Bernouilli (p) and i.i.d.
Below we consider the first part of this joint hypothesis. In Section 4.4.2
we consider the second part.

4.4.1 Unbiasedness

The test for correct unconditional coverage is sometimes termed a test
for unbiasedness. It is a test of whether the actual coverage equals the
nominal coverage (ignoring possible patterns in the hits and misses). The
null is E(It ) = p versus E(It ) �= p. For a hit probability of π, the likelihood
of the data is:7

L(π; I1, I2, . . . , In) = (1 − π)n0πn1 , π ∈ � = [0, 1], (4.12)
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where n1 =∑n
j=1 Ij and n0 = n − n1. The likelihood ratio statistic is:

LR = −2 ln
(

L(p; I1, I2, . . . , In)

L(π̂; I1, I2, . . . , In)

)

= −2
[
n0 ln

(
1 − p
1 − π̂

)
+ n1 ln

p
π̂

]
∼ χ2

1

that is, the ratio of the likelihood under the null hypothesis to the like-
lihood evaluated under the maximum likelihood estimate (MLE) π̂ of
π ∈ �. π̂ solves:

∂L
∂π

= n1π
(n1−1)(1 − π)n0 − n0(1 − π)(n0−1)πn1 = 0

to give π̂ = n1/n, the sample proportion of hits. Tests for correct uncon-
ditional coverage, or bias, can also be found in Granger et al. (1989),
Baillie and Bollerslev (1992) and McNees (1995).

4.4.2 Independence

Christoffersen (1998) suggests testing for independence by modelling the
indicator function as a binary first-order Markov chain with transition
probability matrix:

�1 =
[
π00 π01

π10 π11

]
. (4.13)

That is, we suppose that at any point in time there is a fixed probability
that the process will record a hit or a miss next period, where these
probabilities depend only on whether a hit, or a miss, was recorded this
period. π10 is the probability of a miss (‘0’) if a hit (‘1’) was recorded in
the current period, etc., so in general:

πij = Pr(It = j|It−1 = i).

A pth order Chain is characterized by It depending not just on It−1, but
also {It−2, . . . , It−p}. More generally, one might suppose that the probab-
ilities of the transitions are different at different times, and/or might be
affected by extraneous variables, so a very particular and simple form of
dependence in the {It } is being permitted here. Note that π00 + π01 = 1
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and π10 + π11 = 1, so that we can write (4.13) as:

�1 =
[

1 − π01 π01

1 − π11 π11

]
. (4.14)

Under independence, the state the process is in at t conveys no inform-
ation on the relative likelihood of it being in one state as opposed to
another at t + 1. This is achieved by restricting the transition probabilit-
ies by setting πij = πj, i, j = 0, 1 where πj = Pr(It = j) (the unconditional
probability of being in state j ). So under the null of independence:

�2 =
[

1 − π1 π1

1 − π1 π1

]
. (4.15)

The πij and πi, i, j = 1, 2, are estimated by their sample frequencies, and
the LR test is based on the unrestricted likelihood:8

L(�̂1) = (1 − π̂01)
n00 π̂

n01
01 (1 − π̂11)

n10 π̂
n11
11 (4.16)

relative to that with (4.15) imposed

L(�̂2) = (1 − π̂1)
(n00+n10)π̂1

(n01+n11), (4.17)

where nij is the number of times state i is followed by state j.
The usual LR test statistic has (asymptotically) a χ2 distribution with

one degree of freedom under the null hypothesis of independently dis-
tributed indicator function values. This test will be unaffected by any
divergence of the actual (unconditional) coverage from the nominal.
Thus, a sensible strategy is to combine the tests of independence9 and
correct unconditional coverage to obtain a test of correct conditional
coverage.

Granger et al. (1989, note c to table 1, p. 91) offer an alternative
approach to testing for independence. They use a ‘contingency table’
approach, based on whether the number of occurrences of (say) zeros
followed by zeros is consistent with there being no association between
the occurrence of a zero in one period, and the occurrence of a zero in
the following period.

Finally, Christoffersen and Diebold (2000) suggest using tests of cor-
rect conditional coverage as a (model-free) means of assessing whether
volatility is forecastable. If volatility is forecastable, then a fixed-width
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interval for t = 1, . . . , n, with an arbitrarily chosen coverage of p, should
not be conditionally correct. If the conditional variance of the process
varies over time, we have argued that fixed-width intervals will result in
clusterings of misses at high volatility times. The non-unit eigenvalue
of the matrix of transition probabilities (4.14) is proposed as a natural
measure of the degree of forecastability in volatility. λ = π11 −π01 solves:

∣∣∣∣∣λI2 −
[

1 − π01 π01

1 − π11 π11

]∣∣∣∣∣ = 0

and is also the first-order autocorrelation coefficient of {It }.

4.5 Regression-based tests of conditional efficiency

Tests of conditional efficiency that restrict the information set to lagged
values of the indicator variable, as described in Section 4.4, may in
some cases lack power. It almost goes without saying that extending the
information set is desirable – Clements and Taylor (2003) argue that this
is especially true for intradaily returns, and this is the focus of the empir-
ical example in Section 4.7. Engle and Manganelli (1999) give a general
argument as to why tests based on lagged indicator values only are neces-
sary but not sufficient to assess the performance of interval forecasts.
Suppose we have a sequence of interval forecasts of which a proportion p
are ‘very large’ and (1−p) are of close to zero length. Moreover, these two
classes of interval are independently distributed: the probability of the
interval being ‘large’ is p irrespective of the type of interval previously
observed. This sequence satisfies conditional efficiency on the restricted
information set, by construction. But at any point in the sequence, the
probability that the interval contains the actual is virtually zero or unity.
This parallels a similar argument made by Nordhaus (1987, p. 673) in the
context of assessing the efficiency of ‘fixed-event’ forecasts, suggesting
such tests have little bearing on ‘accuracy’, viz.

A baboon could generate a series of weakly efficient forecasts by simply
wiring himself to a random-number generator, but such a series of
forecasts would be completely useless.

The Engle–Manganelli sequence of interval forecasts could be rejected
if the information set was extended to include, for example, the length of
the current interval, since this would be highly (perfectly) correlated with
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{It }. The Markov chain approach can be adapted to incorporate explan-
atory variables by positing logit models for the transition probabilities,
for example, but a more attractive and conceptually simpler approach
is the regression-based approach of for example, Christoffersen (1998,
pp. 849–850) and Engle and Manganelli (1999).

The regression-based test assesses whether E(It |�t−1) = p in:

It = α0 +
S∑

s=1

αsIt−s + β ′Wt−1 + εt , t = S + 1, S + 2, . . . , n, (4.18)

where the information set now allows up to S lags of the indicator
variable as well as a general vector of variables Wt−1. The hypothesis
of conditional efficiency is thus more general than that {It } is i.i.d.
Bernoulli (p). The test of the independence part of the conditional effi-
ciency hypothesis is based on testing � = 0, where � = (α1, . . . , αS,β ′)′.
Non-zero αi suggest the {It } sequence is serially correlated, and the β �= 0
suggests that misses are associated with the values of variables which
were known when the forecasts were made. A test for correct conditional
coverage is a joint test of (�, α0) = (0, p), which implies E(It | �t−1) = p.

The binary nature of the dependent variable suggests fitting a regres-
sion model to a logistic transformation of the dependent variable
(Clements and Taylor 2003). In terms of (4.18), the logit model is:

Pr(It = 1) = �(α0,�; xt ), t = S + 1, . . . , n, (4.19)

where:

�(α0,�; xt ) = eα0+�′xt /(1 + eα0+�′xt )

and xt = (It−1, . . . , It−S Wt−1)
′. The tests for independence and correct

conditional coverage can be performed by using LR tests. In the case
of the latter test, the restricted regression involves setting � = 0 and
α0 = ln(p/(1 − p)), whereas the former requires only that � = 0.

4.6 Interval forecast construction and ARCH

The calculation of interval forecasts for AR models with independent
errors can be extended in a straightforward way to accommodate ARCH-
type error processes. Consider the AR(p) with εt ∼ N(0, ht ), where ht
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follows a volatility model as discussed in Chapter 3. The standard BJ
1-step interval is:

{yT+1|T + zα/2

√
hT+1, yT+1|T + z1−α/2

√
hT+1}, (4.20)

where recall that zγ = �(γ) (compare (4.2)). Even if {εt } is normal the
assumption of normality is not valid for more than 1-step ahead fore-
casts. But even for 1-step forecasts Granger et al. (1989) question the
wisdom of invoking the normality assumption (or the Student t assump-
tion) for calculating intervals (or quantiles of the distribution more
generally). Their suggestion is to consider in addition to (4.20) intervals
constructed as:

{yT+1|T + Q̂α/2

√
hT+1, yT+1|T + Q̂1−α/2

√
hT+1}, (4.21)

for a nominal (1 − α) × 100% coverage, where Q̂γ is the empirical
γ-percentile of the standardized residuals ε̂t/

√
ht . When the standard-

ized residuals are approximately normal, Q̂(γ) � �(γ) = zγ and the
two intervals are the same. When the standardized residuals have fatter
tails than the standard normal (i.e., excess kurtosis) then Q̂(α/2) < zα/2

and Q̂(1 − α/2) > z1−α/2 so that the intervals based on the empirical
distribution will be wider than those that assume normality.

In the empirical illustration of Section 4.7 we evaluate intervals con-
structed from (4.21) using the tests outlined in Sections 4.4 and 4.5.
Constructing an interval forecast can be interpreted as estimating two
quantiles (say, the 5% and 95% for α = 0.1). Granger et al. (1989) suggest
using quantile regression to combine different quantile estimates, and
to test for unbiasedness.10

For example, let Zt = yt |t−1 + Q̂p

√
ht be an estimate of the pth quantile

(in this case derived from the empirical distribution of the standardized
residuals). Suppose we have t = 1, . . . , n, and wish to test whether the
{Zt } are well-specified estimates of the conditional p quantile, versus, for
example, that the quantiles should be {δ + βZt }. We could undertake the
quantile regression (see Koenker and Bassett 1978, 1982):

min
δ,β

1
n

n∑
t=1

|yt − (δ + βZt )|[p × 1(yt ≥(δ+βZt ))

+ (1 − p) × 1(yt <(δ+βZt ))]. (4.22)
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If the {Zt } are unbiased, we would expect to find (δ, β) = (0, 1). Notice
that a separate regression needs to be undertaken for each p. To test for,
or estimate, a combination of quantile estimators, {δ + βZt } would be
substituted by, for example {δ + β1Zt + β2Z̃t } in (4.22), where Z̃t is a rival
estimator of the same quantile.

Some intuition into the form of (4.22) can be gained by considering
p = 0.5:

min
δ,β

1
n

n∑
t=1

|yt − (δ + βZt )| × 0.5.

The estimators so defined are the mean absolute deviation estimators.

4.7 Empirical illustration

The empirical illustration is taken from Clements and Taylor (2003) and
is based on hourly futures returns in the FTSE100 index futures mar-
ket. A number of specific issues arise for intradaily data, and these are
discussed in the following section before embarking on the illustration
proper.

4.7.1 Interval forecasts and intradaily data

A common feature of financial markets is that the volatility of returns
varies in a systematic pattern during each day: ‘Most high-frequency
asset returns exhibit seasonal volatility patterns’, to quote Bollerslev and
Ghysels (1996, p. 139), and see also Baillie and Bollerslev (1989) and
Gallant et al. (1992), inter alia. With specific reference to the FTSE100
index futures market, Tse (1999) finds that volatility is high during the
opening and closing of the floor trading periods, when investors have the
greatest desire to re-balance their portfolios. As a consequence, an obvi-
ous choice of variable to be included in {Wt−1} in (4.18) is a set of hourly
dummies, to check that the interval forecasts adequately reflect the chan-
ging volatilities in returns during the course of the day. Thus, β ′Wt−1 in
(4.18) includes

∑S−1
s=1 μsDs,t , where Ds,t = 1 when t = (N − 1)S + s, and

Ds,t = 0 otherwise. Here s indexes the hour in the day, of which there are
a total of S, s = 1, 2, . . . , S, and N = 1, 2, . . . , T/S is the number of days.
The inclusion of the {Ds,t } variables in �t allows us to test against the spe-
cific alternative that the forecast intervals are not adequately capturing
recurrent periodic effects, and are motivated by the nature of financial
data. Note that the {Ds,t } are known at t−1 because they are deterministic.
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The first-order Markov chain test is unlikely to have power to detect the
more complex dependence structures that may be present in intradaily
data – it will fare best when the dependency is between adjacent observa-
tions. When there are periodic patterns in volatility, such that periods of
high volatility occur every S observations (say), then we need tests with
power to detects such patterns in the misses. One possibility is to increase
the order of the Markov chain. For example, in other areas of empirical
macroeconomic research, such as the analysis of business cycle turning
points, second-order chains are routinely used (see, e.g., McQueen and
Thorley (1993)). However, specifying higher-order chains may be prob-
lematic when the order of periodicity is unknown and may be large,
leading to imprecise estimates and poor tests. A better idea is to specify
a ‘periodic lag’ in a first-order chain when the periodicity of the data is
apparent. That is, to calculate the transition probabilities based on the
periodicity of the underlying data. For S-periodic data we would calcu-
late πij,S = Pr(It = j|It−S = i) and nij,S = #{It = j, It−S = i}. The nij,S and π̂ij,S

can be plugged directly into (4.16) and (4.17) and the resulting statistic
remains asymptotically χ2 with 1 degree of freedom. Christoffersen’s test
is seen to emerge as a special case with S = 1.

4.7.2 Properties of futures returns data

FTSE100 index futures returns and trading volume were obtained from
the LIFFE Sterling Products Tick Data CD. We consider the returns to the
‘nearest’ futures contract over the one year sample period commencing
2 January 1998 and ending 29 December 1998. Hourly returns are con-
structed based on prices observed at 9, 10 a.m. through to 4 p.m., giving
seven observations per day, and with 239 full trading days during the
sample period, a total of 1673 observations.

The intraday volatility patterns are displayed in Panel A of Figure 4.1.
Volatility is highest during the first and penultimate hour of the floor
trading period, consistent with the findings of Tse (1999) on UK data and
Werner and Kleidon (1996) for the US. Also plotted in Figure 4.1 is the
intraday mean of trading volume. Comparing these plots reveals a clear
correspondence between the intraday patterns in volatility and volume.
These observations motivate the use of the GARCH models described
below.

Four GARCH-type models are considered. The first is a standard
GARCH(1,1):

Rt = μ + εt , εt |�t−1 ∼ N(0, ht ), (4.23)

ht = ω + αε2
t−1 + βht−1, (4.24)
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Panel A: Intraday volatility
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Figure 4.1 Intraday volatility of FTSE100 index futures returns and the trading
volume of FTSE100 futures contracts

Note: Intraday volatility is calculated by taking the means of absolute returns during various
five-minute intervals over the trading day. Intraday trading volume is calculated by taking
the sum of trading volume during various five-minute intervals over the trading day.

where Rt is the nominal return on FTSE100 index futures. Given the sim-
ilarity in the volatility and trading volume periodicity given in Figure 4.1,
the above GARCH model is augmented by allowing the 7th lag of trading
volume (i.e., trading volume observed during the same hour of the previ-
ous trading day) to enter the volatility equation. This gives the GARCH-V
model:

ht = ω + αε2
t−1 + βht−1 + δVt−7, (4.25)

where V denotes trading volume.
Two periodic GARCH (PGARCH) models were also considered to

capture the intraday patterns. These models allow for six hourly
dummy variables, ωi, i = 1, . . . , 6, in addition to the intercept ω in
the GARCH and GARCH-V models, and are denoted by PGARCH and
PGARCH-V.

These models are estimated by maximum likelihood using the
Marquardt algorithm. The resulting parameter estimates and their
associated heteroskedastic-consistent standard errors are given in
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Table 4.2.11 In addition, we record the fits of the models as given by the
Akaike Information Criterion (AIC) and Schwarz Information Criterion
(SIC). The PGARCH-V provides the best fit to the data.

Given the periodic pattern in volatility evident in Figure 4.1, estimates
of conditional volatility from a ‘good’ model should reproduce these

Table 4.2 Volatility model estimates

Test Model

GARCH GARCH-V PGARCH PGARCH-V

μ̂ −3.6300 4.0700 5.7000 7.5500
(9.9700) (7.5700) (7.7700) (6.8700)

ω̂ 3.1700 2.4600∗∗∗ 8.4300∗∗∗ 7.4100∗∗∗
(3.1500) (0.6440) (1.9500) (1.8800)

ω̂1 0.9600∗∗∗ 2.8500
(1.9500) (3.7200)

ω̂2 −11.3400∗∗∗−11.4000∗∗∗
(2.9400) (2.8000)

ω̂3 −0.9130∗∗∗ −7.6400∗∗∗
(0.2270) (1.9900)

ω̂4 −0.9330∗∗∗ −7.7100∗∗∗
(0.2120) (1.9600)

ω̂5 −0.6380∗∗∗ −5.7800∗∗∗
(0.2160) (1.9500)

ω̂6 −0.4170∗ −4.2300∗
(0.2490) (2.3300)

α̂ 0.0204∗∗∗ 0.2061∗∗∗ 0.1197∗∗∗ 0.1126∗∗∗
(0.0065) (0.0388) (0.0261) (0.0281)

β̂ 0.9775∗∗∗ 0.0383 0.6879∗∗∗ 0.4557∗∗∗
(0.0077) (0.0568) (0.0594) (0.1197)

δ̂ 0.0371∗∗∗ 0.0140∗∗∗
(0.0042) (0.0037)

AIC −8.4837 −8.4913 −8.5332 −8.5621
SIC −8.4708 −8.4751 −8.5008 −8.5263

Note: The columns record the parameter estimates and
heteroskedasticity-consistent standard errors (HCSEs) for the
GARCH-type models discussed in the text. Significance at the
1%, 5% and 10% level are denoted by three, two and one
asterisks, respectively.
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patterns. This can be formally tested by an OLS (ordinary least squares)
regression of the model-based estimates of return volatility on hourly
dummy variables:

σ̂t = γ0 +
6∑

i=1

γiDi,t + εt . (4.26)

In this regression σ̂t is the measure of the FTSE100 index intraday return
volatility, and the Di,t are hourly dummy variables. In addition to the
model-based measures of volatility, we also consider absolute returns and
squared returns as model-free estimates of volatility (where σ̂t = √ht ).
Table 4.3 records the results of these regressions and of tests that γi = 0,
i = 1, . . . , 6. The null of no periodicity in conditional volatility is clearly
rejected for the model-free and the GARCH-V, PGARCH and PGARCH-V
model estimates of volatility. The standard GARCH model is unable to
capture the periodic pattern, and produces an estimate of conditional
volatility that does not appear to have a periodic component. Con-
sequently, we would expect interval forecasts from the GARCH model
to be poorly specified, in the sense that the misses will tend to be
concentrated in the hours at the beginning and end of each day.

Static and dynamic interval forecasts are generated over the entire
sample period using full-sample parameter estimates. In the case of static
forecasts this involves calculating percentile points of the empirical dis-
tribution function of futures returns. The dynamic interval forecasts are
generated using estimated GARCH models according to the suggestion
in Granger et al. (1989, p. 89), as described in Section 4.6.

Interval forecasts designed to cover 95% of future outcomes are presen-
ted in Figure 4.2. The dynamic interval forecasts appear to be preferable
to static forecasts as they widen during periods of high volatility. How-
ever, as the results in Table 4.3 indicate the GARCH intervals fail to widen
during the beginning and end of the floor trading period. By contrast,
the PGARCH intervals have an intraday pattern of behaviour consistent
with the observed intraday volatility.

The results of applying the interval evaluation tests to the static and
dynamic interval forecasts with a nominal coverage of 95% are recorded
in Table 4.4. The tests are the two Markov chain tests (denoted MC(1) and
MC(7)), and various regression-based tests. In particular, four regression-
based LR tests are carried out, each based on a logit regression. The first
two exclude periodic dummies but allow various lagged values of the
indicator variable as explanatory variables. The LOGIT(1) test includes
the first lag only, and LOGIT(7) includes lags 1 through to 7. The third



Interval Forecasts 99

Return

–2.00.01.5

Return

–2.00.01.5

36
14

1
24

6
35

1
45

6
56

1
66

6
77

1
87

6

P
an

el
 A

: S
ta

tic
 In

te
rv

al

P
an

el
 B

: G
A

R
C

H
 In

te
rv

al

O
bs

er
va

tio
n

98
1

10
86

12
26

13
66

15
06

16
46

36
14

1
24

6
35

1
45

6
56

1
66

6
77

1
87

6

P
an

el
 C

: P
G

A
R

C
H

 In
te

rv
al

O
bs

er
va

tio
n

98
1

10
86

12
26

13
66

15
06

16
46

Return

–2.00.01.5

36
14

1
24

6
35

1
45

6
56

1
66

6
77

1
87

6

O
bs

er
va

tio
n

98
1

10
86

12
26

13
66

15
06

16
46

Fi
gu

re
4.

2
FT

SE
10

0
in

d
ex

fu
tu

re
s

re
tu

rn
s

(i
n

p
er

ce
n

ta
ge

te
rm

s)
to

ge
th

er
w

it
h

th
e

st
at

ic
in

te
rv

al
fo

re
ca

st
s

(P
an

el
A

)
an

d
d

yn
am

ic
in

te
rv

al
fo

re
ca

st
s

ba
se

d
on

an
es

ti
m

at
ed

G
A

R
C

H
m

od
el

(P
an

el
B

)
an

d
an

es
ti

m
at

ed
PG

A
R

C
H

m
od

el
(P

an
el

C
)

N
ot

e:
In

ea
ch

ca
se

th
e

in
te

rv
al

is
ba

se
d

on
95

%
co

ve
ra

ge
.



100
Ta

bl
e

4.
3

Te
st

in
g

fo
r

p
er

io
d

ic
h

et
er

os
ke

d
as

ti
ci

ty

V
o

la
ti

li
ty

m
ea

su
re

A
b

s.
rt

n
Sq

.r
tn

G
A

R
C

H
G

A
R

C
H

-V
P

G
A

R
C

H
P

G
A

R
C

H
-V

γ̂
0

34
.2

23
0∗

∗∗
0.

19
32

∗∗
∗

0.
13

25
∗∗

∗
0.

16
16

∗∗
∗

0.
17

27
∗∗

∗
0.

17
85

∗∗
∗

(1
.5

98
7)

(0
.0

18
0)

(0
.0

04
7)

(0
.0

05
4)

(0
.0

04
0)

(0
.0

03
6)

γ̂
1

2.
25

30
6

0.
05

44
∗∗

∗
0.

00
09

0.
00

43
0.

06
28

∗∗
∗

0.
06

26
∗∗

∗
(2

.2
60

9)
(0

.0
25

4)
(0

.0
06

6)
(0

.0
07

6)
(0

.0
05

0)
(0

.0
05

0)
γ̂

2
−6

.3
46

4∗
∗∗

−0
.0

57
8∗

∗∗
0.

00
33

0.
00

53
−0

.0
31

1∗
∗∗

−0
.0

48
4∗

∗∗
(2

.2
60

9)
(0

.0
25

4)
(0

.0
06

6)
(0

.0
07

6)
(0

.0
05

0)
(0

.0
05

0)
γ̂

3
−1

1.
61

61
∗∗

∗
−0

.0
95

8∗
∗∗

0.
00

33
−0

.0
27

6∗
∗∗

−0
.0

66
1∗

∗∗
−0

.0
77

8∗
∗∗

(2
.2

60
9)

(0
.0

25
4)

(0
.0

06
6)

(0
.0

07
6)

(0
.0

05
0)

(0
.0

05
0)

γ̂
4

−1
4.

28
61

∗∗
∗

−0
.1

12
1∗

∗∗
0.

00
25

−0
.0

52
3∗

∗∗
−0

.0
96

7∗
∗∗

−0
.1

02
1∗

∗∗
(2

.2
60

9)
(0

.0
25

4)
(0

.0
06

6)
(0

.0
07

6)
(0

.0
05

0)
(0

.0
05

0)
γ̂

5
−1

3.
84

13
∗∗

∗
−0

.1
14

8∗
∗∗

0.
00

15
−0

.0
55

1∗
∗∗

−0
.0

90
2∗

∗∗
−0

.0
95

2∗
∗∗

(2
.2

60
9)

(0
.0

25
4)

(0
.0

06
6)

(0
.0

07
6)

(0
.0

05
0)

(0
.0

05
0)

γ̂
6

−9
.7

21
6∗

∗∗
0.

08
00

∗∗
∗

0.
00

03
−0

.0
30

0∗
∗∗

−0
.0

64
0∗

∗∗
−0

.0
67

1∗
∗∗

(2
.2

60
9)

(0
.0

25
4)

(0
.0

06
6)

(0
.0

07
6)

(0
.0

05
0)

(0
.0

05
0)

F
-t

es
t

17
.0

00
0∗

∗∗
12

.4
12

0∗
∗∗

0.
08

30
23

.0
96

0∗
∗∗

25
6.

77
50

∗∗
∗

27
7.

01
00

∗∗
∗

N
ot

e:
T

h
e

ta
bl

e
re

co
rd

s
th

e
es

ti
m

at
ed

co
ef

fi
ci

en
ts

an
d

st
an

d
ar

d
er

ro
rs

ob
ta

in
ed

fr
om

th
e

O
LS

re
gr

es
si

on
,

σ̂
t
=

γ
0
+

6 ∑ i=
1

γ
iD

i,t
+

ε t
,

w
h

er
e

σ̂
t

is
a

m
ea

su
re

of
FT

SE
10

0
in

d
ex

in
tr

ad
ay

re
tu

rn
vo

la
ti

li
ty

an
d

D
i,t

is
a

d
u

m
m

y
va

ri
ab

le
th

at
ta

ke
s

a
va

lu
e

of
u

n
it

y
d

u
ri

n
g

th
e

it
h

tr
ad

in
g

h
ou

r
an

d
ze

ro
ot

h
er

w
is

e.
T

h
e

fi
rs

t
tw

o
co

lu
m

n
s

re
p

or
t

th
e

re
su

lt
s

fo
r

σ̂
t

m
ea

su
re

d
as

th
e

ab
so

lu
te

va
lu

e
of

th
e

re
tu

rn
at

ti
m

e
t,

an
d

th
e

sq
u

ar
e

of
th

e
re

tu
rn

at
ti

m
e

t,
re

sp
ec

ti
ve

ly
,a

n
d

th
e

re
m

ai
n

d
er

ar
e

th
e

m
od

el
-b

as
ed

vo
la

ti
li

ty
es

ti
m

at
es

.
T

h
e

F
-t

es
t

of
th

e
si

gn
ifi

ca
n

ce
of

al
l

th
e

p
er

io
d

ic
d

u
m

m
ie

s
is

re
p

or
te

d
in

th
e

fi
n

al
ro

w
of

th
e

ta
bl

e.
In

ea
ch

re
gr

es
si

on
th

e
d

ep
en

d
en

t
va

ri
ab

le
h

as
be

en
m

u
lt

ip
li

ed
by

10
,0

00
.S

ig
n

ifi
ca

n
ce

at
th

e
1%

,5
%

an
d

10
%

le
ve

l
ar

e
d

en
ot

ed
by

th
re

e,
tw

o
an

d
on

e
as

te
ri

sk
s,

re
sp

ec
ti

ve
ly

.



Interval Forecasts 101

Table 4.4 Evaluating interval forecasts

Test 95% interval forecast

Static GARCH GARCH-V PGARCH PGARCH-V

Panel A: Independence tests
MC(1) 0.03 0.36 0.31 0.97 0.31
MC(7) 0.08 0.17 0.04 0.59 0.24
RUNS 0.02 0.40 0.25 0.93 0.25
LOGIT(1) 0.03 0.36 0.50 0.97 0.31
LOGIT(7) 0.02 0.13 0.12 0.16 0.07
PLOGIT(7) 0.00 0.00 0.00 0.59 0.37
PLOGIT(7)-V 0.00 0.00 0.00 0.03 0.31
PLOGIT(7)-VX 0.00 0.00 0.01 0.05 0.30

Panel B: Conditional coverage tests
MC(1) 0.10 0.65 0.47 0.96 0.47
MC(7) 0.22 0.39 0.10 0.83 0.39
LOGIT(1) 0.10 0.65 0.50 0.96 0.50
LOGIT(7) 0.03 0.19 0.17 0.23 0.11
PLOGIT(7) 0.00 0.00 0.00 0.66 0.45
PLOGIT(7)-V 0.00 0.00 0.01 0.04 0.37
PLOGIT(7)-VX 0.00 0.00 0.01 0.06 0.36

Note: The table contains the p-values for various tests of interval forecast adequacy
for intervals generated by a number of alternative models.

regression-based test allows periodic dummies as explanatory variables
in addition to lags 1 to 7 of the indicator variable, and is referred to as the
PLOGIT(7) test. The same set of regressors augmented with the seventh
lag of trading volume is referred to as the PLOGIT(7)-V test. The test
PLOGIT(7)-VX includes in addition the first lags of absolute returns and
interval length as regressors. Finally, the independence of the indicator
series is tested using a runs test.12 For the other tests both independence
and correct conditional coverage is examined.

In terms of independence, the static intervals are clearly rejected at
the 10% level on the basis of all tests. However, only the PLOGIT(7),
PLOGIT(7)-V and PLOGIT(7)VX tests decisively reject the adequacy of
the GARCH and GARCH-V interval forecasts. The rejections on tests
of these forecasts is due to the inability of the GARCH and GARCH-V
models to generate intraday conditional volatility patterns that match
the data. When the PGARCH forecast intervals are considered it is only
the PLOGIT(7)-V and PLOGIT(7)-VX tests that reject their adequacy.
Finally, the PGARCH-V interval forecasts appear adequate when these
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tests are performed. This result is compatible with the superior fit of this
model of the volatility process. The marginal contribution from allow-
ing absolute returns and interval length as regressors (PLOGIT(7)-VX
compared to PLOGIT(7)-V) is in all cases small. Finally, as is apparent
from the table, similar conclusions are obtained when we test for correct
conditional coverage.

4.8 Summary

This chapter considers the evaluation of interval forecasts or prediction
intervals. An interval forecast gives a range within which the outcome
is expected to fall with a given probability. We begin by considering the
calculation of interval forecasts for linear autoregressions with independ-
ent disturbances, starting with the BJ approach, and then setting out a
bootstrap approach. A bootstrap procedure for models with ARCH dis-
turbances is also reviewed. The BJ and BS approaches are compared in a
Monte Carlo that calculates the actual coverage rates of intervals with a
given nominal coverage.

As well as having actual coverage rates close to the nominal, a ‘good’
set of interval forecasts should be conditionally efficient in the sense that
the probability of a hit (interval includes the actual) should not vary in
a systematic way with any variables in the agent’s information set at
the time the forecast was made. A number of tests of conditional effi-
ciency are described, and applied to the evaluation of interval forecasts
for hourly returns on FTSE100 index futures.



5
Density Forecasts

5.1 Introduction

In recent years there has been considerable interest in density forecasts.
This has been fuelled by the rapidly expanding field of financial risk
management, as well as by the literature on inflation forecasting.1 For
example, if the goal is to achieve an inflation rate in a certain range or
target band, a point forecast of inflation is of limited value. A histogram
(or density forecast) that assigns probabilities to inflation falling in cer-
tain intervals will be more informative about the likelihood of the target
being met. That said, the forecast histogram will only be of value to the
extent that the forecast probabilities accurately capture the true probab-
ilities. As in previous chapters, our focus will be on evaluation, where the
forecasts are now densities, or histograms, or probability distributions.

We begin by reviewing recent methods of evaluation based only on
the sequence of forecasts and the outcomes. Thus, no recourse is made to
the method of construction of the forecasts. This is appropriate when the
probability distributions are survey-based or the method of construc-
tion is unknown to the investigator. Kling and Bessler (1989) consider
purely model-based forecasts but evaluate the density forecasts without
regard to the model, and ‘re-calibrate’ their forecasts based solely on the
past performance of previously issued forecasts. Section 5.2 describes the
probability integral transform approach, Section 5.3 extensions to mul-
tivariate densities, and Section 5.4 the calibration of density forecasts. A
density forecast can be viewed as being comprised of a sequence of inter-
val forecasts generated by allowing the nominal coverage rate to vary
over all values in the unit interval. The evaluation of a sequence of inter-
val forecasts with a specific nominal coverage rate therefore assesses one
aspect of the underlying sequence of forecast densities. In Section 5.5 we
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exploit the relationship between interval and density forecasts to show
how the interval forecast evaluation techniques reviewed in Section 4.4
can be extended to provide ‘contingency-table-type’ goodness-of-fit tests
of densities, following Wallis (2003). Sections 5.6 and 5.7 describe applic-
ations to the evaluation of survey-based forecast densities of annual US
inflation and to the Bank of England inflation forecasts (see also Diebold
et al. (1999), Wallis (2003) and Clements (2003, 2004).

We then turn our attention to the evaluation of model-based condi-
tional forecast densities, and discuss contributions by Andrews (1997),
Li and Tkacz (2002) and Corradi and Swanson (2003) in Section 5.8.

5.2 Probability distribution forecast evaluation

The key tool in the recent literature on density forecast evaluation is
the probability integral transform. This can be traced back at least to
Rosenblatt (1952), with recent contributions by Shephard (1994), Kim
et al. (1998) and Diebold et al. (1998). Suppose we have a series of 1-step
forecast densities for the value of a random variable {Yt }, denoted by
pY ,t−1(y), where t = 1, . . . , n. The probability integral transforms (p.i.ts)
of the realizations of the variable with respect to the forecast densities
are given by:

zt =
∫ yt

−∞
pY ,t−1(u)du ≡ PY ,t−1(yt ) (5.1)

for t = 1, . . . , n, where PY ,t−1(yt ) is the forecast probability of Yt not
exceeding the realized value yt . In terms of the random variables {Yt },
rather than their realized values {yt }, we obtain random variables denoted
by {Zt }:

Zt =
∫ Yt

−∞
pY ,t−1(u)du ≡ PY ,t−1(Yt ).

When the forecast density equals the true density, fY ,t−1(y), it follows
that Zt ∼ U(0, 1), where U(0, 1) is the uniform distribution over (0, 1).
Even though the actual conditional densities may be changing over time,
provided the forecast densities match the actual densities at each t , then
Zt ∼ U(0, 1) for each t , and the Zt are independently distributed of each
other, such that the realized time series {zt }n

t=1 is an i.i.d. sample from a
U(0, 1) distribution.
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If we let qZ,t (z) denote the density of Zt , we can derive the result that
qZ,t (·) is the uniform distribution using a standard ‘change-of-variables’
argument. For Zt = PY ,t−1(Yt ), we obtain qZ,t (·) as:

qZ,t (z) = fY ,t−1(P−1
Y ,t−1(z))

∣∣∣∣∣∂P−1
Y ,t−1(Zt )

∂Zt

∣∣∣∣∣
= fY ,t−1(P−1

Y ,t−1(z))

pY ,t−1(P−1
Y ,t−1(z))

. (5.2)

When fY ,t−1(·) and pY ,t−1(·) are the same, qZ,t (z) = 1 for z ∈ [0, 1], that is,
Zt ∼ U(0, 1). This holds for each t , t = 1, . . . , n, so that the time subscript
on qZ,t is redundant.

This suggests we can evaluate whether the conditional forecast dens-
ities match the true conditional densities by testing whether {zt }n

t=1 is
i.i.d. U(0, 1). This is a joint hypothesis of independence and uniformity.2

Independence can be assessed informally by examining correlograms of
{zt − z̄}, where z̄ = n−1∑n

i=1 zi, and of powers of this series, {(zt − z̄)i},
i = 2, 3, . . ., as a check for dependence in higher moments, which
would be incompatible with the independence claim. Formal tests of
autocorrelation can also be performed. Uniformity can also be assessed
in a number of ways: whether the empirical cdf of the {zt } is signi-
ficantly different from the theoretical uniform cdf (a 45◦ line) using,
for example, the Kolmogorov–Smirnov (KS) test of whether the max-
imum difference between the two cdfs exceeds some critical value, or the
Cramer-von-Mises ‘integrated-squared’ distance measure. Because of the
possible distortions arising from dependence in {zt } (the i.i.d. assumption
not holding) when testing for uniformity, and for testing for autocorrel-
ation when ‘identically distributed’ fails, particularly in small samples,
formal tests are often supplemented with graphical analyses.

Other ways of testing probability distributions are given in Thompson
(2002), who suggests a frequency domain test of the uncorrelatedness
of the {zt } based on the cumulative periodogram approach of Durbin
(1969), and the generalized spectral approach of Hong (2001).

Finally, Berkowitz (2001) has suggested taking the inverse normal CDF
transformation of the {zt }n

t=1 series, to give, say, {z∗
t }n

t=1, on the grounds
that more powerful tools can be applied to testing the null that the
{z∗

t }n
t=1 are i.i.d. N(0, 1) (for h = 1) compared to one of i.i.d. uniform-

ity of the original {zt }n
t=1 series. He proposes a one-degree of freedom test

of independence against a first-order autoregressive structure, as well as a
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three-degree of freedom test of zero-mean, unit variance and independ-
ence. In each case the maintained assumption is that of normality, so that
standard likelihood ratio tests are constructed using the Gaussian likeli-
hoods. The assumption of normality of {z∗

t }n
t=1 is also amenable to testing,

for example, using the Shenton and Bowman (1977) two-degree of free-
dom asymptotic chi-squared test or the test recommended by Doornik
and Hansen (1994).

5.3 Joint probability distributions

Suppose now we have a joint forecast density for {y1t , y2t }, pt−1,Y1,Y2 (y1, y2).
The tests based on the probability integral transform described in Sec-
tion 5.2 can still be used. We begin by factoring the joint density into
the product of the conditional of y2t given y1t , and the marginal for y1t

(or vice versa),

pt−1,Y1,Y2 (y1, y2) = pt−1,Y2 | Y1(y2 | y1)pt−1,Y1(y1)

and calculate the probability integral transforms for the conditionals and
marginals separately. Let the p.i.t. sequence for the conditional of y2t

given y1t be {z2|1,t }n
t=1, and for the marginal for y1t be {z1,t }n

t=1. Under the
null that the predicted joint density is correct, that is, pt−1,Y1,Y2 (y1, y2) =
ft−1,Y1,Y2 (y1, y2), the two sequences will each be i.i.d. samples from a
U(0, 1) (and the two sequences will themselves be independent).

Diebold et al. (1998, p. 881) propose stacking the two sequences
of p.i.ts into a single 2n × 1 vector [z2|1,1, . . . , z2|1,n : z1,1, . . . , z1,n]′ (or
[z1|2,1, . . . , z1|2,n : z2,1, . . . , z2,n]′), and then testing for i.i.d. uniformity of the
stacked vector. Clements and Smith (2000) propose instead basing a test
on the n dimensional vector with typical element {zj

t = z2|1,t × z1,t }, that
is, on the products. This has the advantage of preserving the temporal
ordering and by doing so will have power to detect mis-specifications of
the correlations between the two variables. Clements and Smith (2000)
derive the distribution function for the ‘product’ for up to three vari-
ables (and indicate how it can be derived for any number of variables)
and this can be used to transform the {zj

t } series to an i.i.d. U(0, 1) sample
under the null that the forecast density is correctly specified. Clements
and Smith (2002) consider in addition tests based on ratios of the condi-
tional and marginal p.i.ts, with typical element {z2|1,t/z1,t }. The appendix
records the derivation of the distribution functions for the product and
ratio under the null. Clements and Smith (2002) provide Monte Carlo
evidence that compares the ‘stacked’, ‘product’ and ‘ratio’ tests under
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various forms of mis-specification of the forecast density for the true
(joint) density.

5.4 Calibration

Provided a series of forecast densities are dynamically well-specified, it
may be possible to ‘correct’ future forecast densities for mis-specifications
that result in the {zt } sequence not being U(0, 1). More precisely, Diebold
et al. (1999, p. 663) assume that pY ,t−1(y) is a different member of
the location-scale family of distributions than fY ,t−1(), albeit that the
conditional mean and variance are correctly specified. ‘Calibration’ or
‘recalibration’ (e.g., Dawid 1984; Kling and Bessler 1989) is the process
of correcting future forecast densities for the mis-specifications appar-
ent from a consideration of pY ,t−1(y) and yt , t = 1, . . . , n. It requires that
the relationship between the (uncorrected) pY ,t−1(y) and fY ,t−1(y) remains
the same in future, t = n + 1, . . ., as it was in the past (t = 1, . . . , n). The
assumption that the {zt }n

t=1 are i.i.d. allows us to rearrange (5.2) to give:

fY ,t−1(y) = pY ,t−1(y)qZ(z)

dropping the time subscript on qZ,t (). The i.i.d. assumption allows us to
estimate qZ() as the empirical pdf of {zt }n

t=1, which we denote as q̂Z(), and
using this in place of qZ(), the re-calibrated forecast densities are given
by:

p̂Y ,t−1(y) = pY ,t−1(y)q̂Z(z)

for t = n + 1, . . .. The p̂Y ,t−1(y) may provide a closer match to fY ,t−1(y)

than the pY ,t−1(y).
Calibration extends in a straightforward fashion to the multivari-

ate case. Suppose we have two variables, with actual joint pdf.
ft−1,Y1,Y2 (y1, y2), forecast pdf pt−1,Y1,Y2 (y1, y2), then:

ft−1,Y1,Y2 (y1, y2) = pt−1,Y1,Y2 (y1, y2)q(z1, z2),

where we have assumed the qt ,Z1,Z2 () time subscript can be dropped. The
re-calibrated forecasts are:

p̂t−1,Y1,Y2 (y1, y2) = pt−1,Y1,Y2 (y1, y2)q̂(z1, z2).
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Diebold et al. (1999) provide an illustration of the evaluation and cal-
ibration of multivariate density forecasts of high-frequency exchange
rate data.

5.5 Density and interval forecasts

In Section 4.4 we tested for correct unconditional coverage of a sequence
of interval forecasts by performing a likelihood ratio test of the restricted
likelihood for a nominal coverage rate of p against the likelihood for a
coverage rate of π̂ = n1/n. The likelihoods were given by:

L(p) = (1 − p)n0pn1 (5.3)

and:

L(π̂) = (1 − π̂)n0 π̂n1 , (5.4)

respectively. As discussed by Wallis (2003), this can be viewed as a likeli-
hood ratio goodness-of-fit test where there are two classes with unequal
probabilities. The first class is that a hit occurs with probability p under
the null, and the second class is ‘no-hit’ with probability of (1 − p). In
terms of Pearson’s chi-squared statistic:

K∑
i=1

(Oi − Ei)
2

Ei
,

K = 2, and O1 and O2 are the number of observed hits and misses, n1

and n0, and E1 and E2 are the expected number under the null, pn and
(1 − p)n respectively.

We can obtain goodness-of-fit tests for densities if we extend K
beyond 2, and in so doing use equiprobable classes. For example, for
K = 4, the classes are defined by (−∞, c0.25], (c0.25, c0.5], (c 0.5, c0.75] and
(c0.75, ∞), where cα is such that α = F(cα) and F is the distribution func-
tion (which typically will be time-subscripted). Then Ei = n/K for all i,
so the Pearson statistic is given by:

K∑
i=1

(ni − n/K)2

n/k
= K

n

K∑
i=1

n2
i − n,

which has a limiting chi-squared distribution with K − 1 degrees of
freedom.
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An asymptotically equivalent statistic can be written down that gen-
eralizes the likelihoods given by (5.3) and (5.4) for interval forecast
evaluation to the evaluation of density forecasts. Suppose the classes
are defined for the p.i.ts, {zt }, such that for K equiprobable classes we
have boundaries j/K where j = 0, 1, . . . , K. Then nj =∑n

i=1 1(( j − 1)/K <

zi < j/K), j = 1, . . . , K. Under the null, Pr(( j − 1)/K < z < j/K) = K−1 for
all j. Under the alternative, Pr(( j −1)/K < z < j/K) = nj/n for j = 1, . . . , K
(the MLEs).

Thus, the likelihoods under the null and alternative are given by:

L
(

1
K

, . . . ,
1
K

)
=

K∏
i=1

(
1
K

)ni

=
(

1
K

)n

(5.5)

given that
∑K

i=1 ni = n, and:

L
(n1

n
, . . . ,

nk

n

)
=

K∏
i=1

(ni

n

)ni
. (5.6)

The arguments of L(·) are the probabilities at which the functions are
evaluated. The likelihood ratio statistic is:

LR = −2 ln

(
L( 1

K , . . . , 1
K )

L(
n1
n , . . . , nk

n )

)

= −2

[
−n ln K −

K∑
i=1

ni(ln ni − ln n)

]

= 2
K∑

i=1

ni ln
(

Kni

n

)
,

which is chi-squared with K − 1 degrees of freedom.
Wallis (2003) also notes that tests of independence can be based on

Pearson goodness-of-fit tests. Such tests arise quite naturally for inter-
val forecasts where the 2 × 2 contingency-table is appropriate, as in
Granger et al. (1989). But they would appear to be less suitable for testing
independence in the case of density forecasts, where increasing K much
beyond 2 is likely to result in cells with zero entries unless the number
of forecasts is large.
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5.6 Empirical illustration (I): the SPF probability
distributions

The SPF3 is a quarterly survey of macroeconomic forecasters of the US
economy that began in 1968 as the ASA–NBER survey, administered by
the American Statistical Association (ASA) and the National Bureau of
Economic Research (NBER), and since June 1990 has been run by the
Philadelphia Fed, as the Survey of Professional Forecasters (SPF). The
majority of the survey questions ask respondents to report their point
forecasts for a number of variables at various forecast horizons, from
which median forecasts are calculated, but respondents are also asked
to report discrete probability forecasts, or histograms, for output growth
and inflation for the current and following year, which are then averaged
to produce the forecast distributions.4

Diebold et al. (1999) discuss the survey and the complications that arise
in using the inflation forecasts. In order to obtain a non-overlapping
series of forecasts – in the sense that the realization of inflation in
period t is known before making the forecast of the next period –
they take the density forecasts made in the first quarter of each year
of the annual change in that year on the preceding year. This avoids
the counterpart of the problem in the point forecast evaluation liter-
ature that optimal h-step forecasts that overlap will be autocorrelated:
see Section 2.1.1. Further complications are that both the base years of
the price indices and the indices themselves have changed over time.
The change in base years is likely to have had a minor effect on the
inflation rate, and we construct a series of realizations of annual infla-
tion that matches the indices for which probability assessments were
requested. Thus, for 1969 to 1991 we use the implicit GNP deflator,
for 1992 to 1995 the implicit GDP deflator, and for 1996 to 2002 the
chain-weighted deflator, correcting for the changes in the definition of
the index but not for base-year changes. Moreover, we use the latest
available estimates of the realized values.5 Finally, as documented by
the Philadelphia Fed, the form in which the respondents report their
probability assessments has changed over time, with changes in the
number of bins and/or their locations and lengths as the perceived
likely ranges of the target variables has changed. We calculate crit-
ical values and probabilities from the histograms by piecewise linear
approximation.6

Figure 5.1 portrays the inflation density forecasts as Box–Whisker
plots along with the realizations. The observations for 1969 to 1996
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Figure 5.1 Inflation forecast probability distributions shown as Box–Whisker
plots and realizations

Notes: The boxes represent the inter-quartile range, the outer ‘whiskers’ the 10 and
90th percentiles, and the inner line the median. The realisations are circles with dots at the
centres.

are discussed by Diebold et al. (1999). The forecasts and realizations for
1997 and 1998 indicate a continuation of the tendency in the 1990s to
both overestimate the uncertainty and level of inflation. The forecast dis-
tributions appear too dispersed and the central tendencies consistently
indicate higher inflation rates than actually materialize.

Table 5.1 presents the results of the formal tests. The Kolmogorov–
Smirnov test statistic of the uniformity of {zt }n

t=1 offers no evidence
against the distributional assumption. The Pearson goodness-of-fit test
(outlined in Section 5.5) applied to {zt } with K = 4 did not offer any
evidence against uniformity at conventional significance levels. The tests
of independence and normality are based on {z∗

t }n
t=1. Both the 1 and 3-

degree-of-freedom tests reject at the 1% level. Tests of the normality of
{z∗

t } return p-values of 0.10 and 0.01, although these tests of distribution
do assume a random sample. The formal tests reject the SPF densities
confirming the impression gained from the Box–Whisker plots.
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Table 5.1 Tests of SPF density forecasts of inflation (1969–
2002) based on p.i.ts

Null hypothesis Test Outcome

Distribution
KS test of uniformity 0.16

Independence
Bowman–Shenton 0.10
Doornik–Hansen 0.01
Berkowitz I 0.00
Berkowitz II 0.00

Notes: The test outcomes are recorded as p-values, except for the KS
test, which is the test statistic value, for which the 5% critical value
is 0.23. The Bowman–Shenton test is a two-degree of freedom test
with an asymptotic chi-squared distribution, whilst the Doornik–
Hansen test may have better small-sample properties. Berkowitz I is a
1-degree-of-freedom test of no first-order autocorrelation of the trans-
formed p.i.ts assuming N(0, 1). Berkowitz II is a 3-degree-of-freedom
test of zero-mean, unit-variance and no first-order autocorrelation of
the transformed p.i.ts assuming normality.

5.7 Empirical illustration (II): the MPC inflation forecasts

Since August 1997, in the mid month of every quarter the Bank of
England Inflation Report has contained density forecasts of RPIX infla-
tion for the current quarter and for every quarter up to two years ahead,
produced by the Monetary Policy Committee (MPC).7 The forecasts
are given analytically by the two-piece normal (2PN) distribution, and
graphically by the ‘rivers of blood’ fan chart.8 This is a useful way of cap-
turing perceived asymmetries between upside and downside risks, whilst
allowing probability calculations to be undertaken using the stand-
ard normal distribution. The 2PN distribution can be parameterized as
{μ, σ1, σ2} where μ is the (common) mode and σ1 and σ2 are the standard
deviations of the two normal distributions on which the 2PN is based.

Two sets of projections are included in each report, one based on the
assumption that interest rates remain constant throughout the forecast
period and the other based on the assumption that interest rates follow
market expectations. Only for the former are projections available back
to August 1997, and this is the series which we use. The RPIX inflation
rate is the annual percentage growth in quarterly RPIX (RPI excluding
mortgage interest payments, ONS code CHMK). The current quarter fore-
casts can be viewed as 1-step ahead forecasts, and the year-ahead forecasts
correspond to a five-step ahead horizon.
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Table 5.2 MPC one-year ahead inflation forecasts

Inflation Mode σ1 σ2 Skew Outcome z
report (Mean − Mode)

Aug. 97 1.99 0.651 0.914 0.210 2.55 0.683
Nov. 97 2.19 0.385 1.05 0.530 2.53 0.454
Feb. 98 2.44 0.447 0.557 0.088 2.53 0.513
May 98 2.37 0.790 0.515 −0.220 2.30 0.563
Aug. 98 2.86 0.531 0.706 0.140 2.17 0.084
Nov. 98 2.59 0.554 0.717 0.130 2.16 0.190
Feb. 99 2.52 0.586 0.661 0.060 2.09 0.219
May. 99 2.23 0.533 0.671 0.110 2.07 0.335
Aug. 99 1.88 0.488 0.676 0.150 2.13 0.584
Nov. 99 1.84 0.584 0.521 −0.050 2.11 0.717
Feb. 00 2.32 0.508 0.633 0.100 1.87 0.168
May 00 2.47 0.521 0.584 0.050 2.26 0.325
Aug. 00 2.48 0.540 0.540 0.000 2.38 0.426
Nov. 00 2.19 0.531 0.594 0.050 1.95 0.309
Feb. 01 2.09 0.584 0.521 −0.050 2.37 0.721
May 01 1.94 0.584 0.521 −0.050 1.86 0.473
Aug. 01 1.96 0.550 0.550 0.000 1.98 0.509
Nov. 01 2.06 0.464 0.714 0.200 2.61 0.732
Feb. 02 2.13 0.454 0.705 0.200 2.89 0.829

Notes: These are one-year ahead forecasts, so that the forecast published in the
Aug. 1997 Inflation Report, for example, relates to the third quarter of 1998. The
mode μ, σ1 and σ2 correspond to the parameterisation of the 2PN discussed in
the text. z is the probability integral transform.

The numerical values of the 2PN parameters for the {μ, σ1, σ2} para-
meterisation are contained in Tables 5.2 and 5.3 for the current and
year-ahead forecasts, respectively. We also report the skewness of the
2PNs (calculated as mean minus mode) as well as the outcomes and the
p.i.ts {zt }. Notice that when σ1 = σ2 = σ (say), the distribution is sym-
metric and the 2PN collapses to the N(μ, σ2). When σ2 > σ1, the mean
exceeds the mode and the ‘upside’ risks of inflation exceeding the mode
outweigh the ‘downside’ risks.

5.7.1 Point forecast performance

Table 5.4 shows the point forecast performance of the mean of the MPC
2PN forecast densities for the current, next quarter and the year ahead.
None of the forecasts are significantly biased. Wallis (2003) finds the
year ahead forecasts significantly overestimate the rate of inflation at the
5% level using a one-sided t-test on a shorter data set, but the positive
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Table 5.3 MPC current quarter inflation forecasts

Inflation Mode σ1 σ2 Skew Outcome z
report (Mean − Mode)

Aug. 97 2.65 0.131 0.181 0.040 2.81 0.788
Nov. 97 2.60 0.077 0.210 0.106 2.80 0.744
Feb. 98 2.60 0.180 0.223 0.035 2.59 0.427
May 98 2.83 0.318 0.205 −0.090 2.94 0.772
Aug. 98 2.51 0.215 0.277 0.050 2.55 0.495
Nov. 98 2.54 0.166 0.216 0.040 2.53 0.414
Feb. 99 2.49 0.175 0.200 0.020 2.53 0.541
May 99 2.48 0.161 0.199 0.030 2.30 0.118
Aug. 99 2.31 0.148 0.198 0.040 2.17 0.151
Nov. 99 2.20 0.175 0.156 −0.015 2.16 0.429
Feb. 00 1.93 0.152 0.190 0.030 2.09 0.791
May 00 1.88 0.156 0.175 0.015 2.07 0.851
Aug. 00 2.38 0.162 0.162 0.000 2.13 0.059
Nov. 00 2.36 0.159 0.178 0.015 2.11 0.061
Feb. 01 1.94 0.175 0.156 −0.015 1.87 0.373
May 01 1.90 0.175 0.156 −0.015 2.26 0.990
Aug. 01 2.31 0.165 0.165 0.000 2.38 0.665
Nov. 01 2.00 0.232 0.357 0.100 1.95 0.328
Feb. 02 2.14 0.227 0.352 0.100 2.37 0.685
May 02 2.02 0.259 0.259 0.000 1.86 0.272
Aug. 02 1.84 0.253 0.253 0.000 1.98 0.704
Nov. 02 2.64 0.242 0.242 0.000 2.61 0.458
Feb. 03 2.77 0.280 0.280 0.000 2.89 0.668

Note: The entries in this table relate to current quarter (one-step ahead forecasts), so that
the forecast published in the August 1997 Inflation Report, for example, is of 1997: 3.

Table 5.4 Point forecast evaluation summary statistics

Test 1-step 2-step 5-step
(current qtr) (next qtr) (year ahead)

MPC forecasts
Bias 0.007 0.024 −0.073
Standard error of bias 0.034 0.058 0.086
MSFE 0.025 0.070 0.137

No change benchmark forecasts
Bias 0.014 0.006 −0.105
Standard error of bias 0.060 0.074 0.086
MSFE 0.078 0.115 0.144

Notes: The MPC point forecasts are taken to be the means of the 2PN densities. The current
quarter no-change forecasts are based on the previous quarters’ inflation rate, so that the
forecast for 1997: 3, for example, is the actual rate of inflation in 1997: 2. The 2-step or
next quarter no-change forecast of 1997: 4 is the recorded rate in 1997: 2, etc.
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Figure 5.2 Annual rate of quarterly price inflation – RPI excluding mortgage
interest payments

forecast errors of 0.35 and 0.55 for November 2002 and February 2003
respectively reduce the overall average bias to around −0.07 percentage
points. The third row gives the mean squared forecast error (MSFE) asso-
ciated with the point forecasts. These are hard to interpret except relative
to a rival set of forecasts or a benchmark (as discussed in Section 2.3). Any
one of a number of time-series models, or more structural models, could
be used to generate forecasts for this purpose, but would be unlikely to
pose a particularly stern test unless they adequately captured the dra-
matic slowdown in inflation to the historically low rates observed over
the last ten years: see Figure 5.2. Given the arguments in Clements and
Hendry (1999), we record the results for a ‘no-change’ forecast.9

The MPC current quarter performance is well judged against the
benchmark. The MPC forecasts are significantly more accurate than the
no-change forecasts using the Harvey et al. (1997) small-sample modi-
fications to the Diebold and Mariano (1995) statistic. A p-value of 0.013
was obtained for a one-sided test of the null of equal forecast accuracy
versus the alternative that the MPC forecasts are more accurate. At a year
ahead the MPC’s MSFE is similar to that of the unconditional bench-
mark. The relatively poor performance of the no-change forecasts of the
current quarter compared to those of the MPC is consistent with the
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finding of Montgomery et al. (1998). They show that using information
on the first month in a quarter to forecast that quarter may significantly
improve forecast accuracy. The MPC forecasts make use of current quarter
information although the no-change forecasts do not.

5.7.2 Evaluation of forecast densities

Figure 5.3 presents time series and histograms (of the quartiles) for the
p.i.ts for the MPC forecasts. The results of applying the testing procedures
outlined in Section 5.2 are recorded in Table 5.5.

There is no evidence against the MPC current or next quarter forecasts.
The year-ahead forecasts are rejected by the Berkowitz test of zero mean
and unit variance of the transformed p.i.ts. This finding for the year-
ahead forecasts is consistent with Wallis (2003), who finds that too much
probability mass is put on relatively high inflation rates: from Figure 5.3
it is apparent that only the last z-value is in excess of 0.75, whereas we
would expect 25% of the {zt } values to exceed 0.75. The forecasts are
unduly pessimistic one year-ahead. Recall from the evaluation of the
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Figure 5.3 Probability integral transforms of the MPC two-piece normal density
forecasts of the quarterly annual inflation rate

Note: The figures in the left column are time-series plots, those in the right column are the
corresponding histograms.
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Table 5.5 Probability integral transform-based testing of inflation
density forecasts

Test 1-step 2-step 5-step
(current qtr) (next qtr.) (year ahead)

Bowman–Shenton
normality

0.850 0.913 0.759

Doornik–Hansen
normality

0.252 0.893 0.859

Berkowitz I 0.694 0.568 0.025
Berkowitz II 0.774 0.745 0.031

Notes: The entries in the table are p-values. The first Berkowitz test is a
2-degree-of-freedom test of zero mean and unit variance, with a maintained
hypothesis of normality. The second is a 3-degree-of-freedom test of zero-
mean, unit variance and zero first-order autocorrelation, with a maintained
hypothesis of normality of the inverse-normal cdf transformation of the p.i.ts.

point forecasts that the year ahead forecasts appear to be unbiased, so
that the rejection on the Berkowitz test is not due to the forecast densities
being incorrectly centred.

5.8 Model-based density evaluation

So far in this chapter, we have considered the evaluation of sequences
of density forecasts when the forecasts are not explicitly derived from
a given model. The forecast densities are given: in the case of the SPF
probability distributions, as histograms; for the Bank of England inflation
forecasts, specified as 2PN distributions with particular parameter values.
A natural question is how to evaluate whether the forecast densities from
a particular conditional parametric model are correctly specified, where
the model is defined up to an unknown vector, θ . That is, the parametric
family of conditional densities is given by, say,

{f (y | x, θ) : θ ∈ �}

so the question is whether there is an admissible θ such that f (y | x, θ)
equals the true conditional distribution of Y given X. The unknown
parameter vector θ is replaced by an estimator θ̂ which is assumed to be
a ‘

√
T ’-consistent estimator of the true value of θ , θ0, when the null is

true. The evaluation procedure will need to take into account the effect of
parameter estimation error, as discussed in Section 2.4.2 in the context of
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evaluating point forecasts. We assume strict stationarity, so that the same
conditional density holds at all t = 1, . . . , T . Recall that in Section 5.7 the
‘unconditional’ 2PN distributions that constituted the Bank of England
inflation forecasts had parameter values that depended on t , and that in
the case of the SPF probability distributions (Section 5.6) not even the
form of the distribution was assumed constant over time.

Andrews (1997) introduces a specification test for independent obser-
vations, and Corradi and Swanson (2003) discuss the implementation of
this test in a time-series context (where the observations are generally
dependent). To make matters concrete, suppose the null hypothesis is
that the family of conditional distributions are generated by an AR(1)

with Gaussian disturbances. That is, the parametric model is given by:

yt = α1yt−1 + εt , εt ∼ i.i.d., N(0, σ2
ε )

so that the conditional distributions are given by:

yt | yt−1 ∼ N(α1yt−1, σ2
ε )

under the null, or:

F(y | yt−1, [α1, σε]) ≡ Pr(yt < y | yt−1, [α1, σε])

= 1√
2πσε

∫ y

−∞
exp
(

(yt − α1yt−1)
2

2σ2
ε

)
dyt . (5.7)

Under the null that the data are generated by a Gaussian AR(1), α1

is consistently estimated by the maximum likelihood estimator (MLE)
(conditional on y0):

α̂1 =
∑T

t=1 ytyt−1∑T
t=1 y2

t−1

and σ2
ε by:

σ̂2
ε = 1

T

T∑
t=1

(yt − α̂1yt−1)
2.

The Conditional Kolmogorov (CK) statistic of Andrews (1997) compares
the empirical joint distribution function (EDF) of {yt , yt−1; t = 1, . . . , T}
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with the product of the conditional distribution given by the parametric
model and the EDF of {yt−1, t = 1, . . . , T}. That is:

CKT = √
T sup

u×v∈U×V

∣∣∣ĤT (u, v) − F̂T (u, v)

∣∣∣ .
ĤT (u, v) denotes the joint EDF of {yt , yt−1}:

ĤT (u, v) = 1
T

T∑
t=1

1(yt ≤ u)1(yt−1 ≤ v),

and F̂T (u, v) is the ‘semi-parametric/semi-empirical’ distribution function
of {yt , yt−1} defined by:

F̂T (u, v) = F̂(u | yt−1, [α̂1, σ̂ε]) × ĜT (v).

Here, F̂(u | yt−1, [α̂1, σ̂ε]) is the parametric conditional distribution from
(5.7) (with [α1, σε] replaced by the MLEs [α̂1, σ̂ε]):

F̂(u | yt−1, [α̂1, σ̂ε])
∫ u

−∞

1√
2πσ̂ε

exp
(

(yt − α̂1yt−1)
2

2σ̂2
ε

)
dyt ,

and ĜT (v) is the empirical DF of {yt−1, t = 1, . . . , T}:

ĜT (v) = 1
T

T∑
t=1

1(yt−1 ≤ v).

Thus:

F̂T (u, v) = 1
T

T∑
t=1

F̂(u | yt−1, [α̂1, σ̂ε])1(yt−1 ≤ v).

The test statistic can then be written as:

CKT = √
T sup

u×v∈U×V

∣∣∣ĤT (u, v) − F̂T (u, v)

∣∣∣
= sup

u×v∈U×V

∣∣∣∣∣ 1√
T

T∑
t=1

[1(yt ≤ u) − F̂(u | yt−1, [α̂1, σ̂ε])]1(yt−1 ≤ v)

∣∣∣∣∣ .
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It is based on the maximum difference between ĤT (u, v) and F̂T (u, v).10

Andrews (1997) shows that the asymptotic null distribution of the CK
statistic depends upon nuisance parameters, so that general-purpose
critical values cannot be tabulated, and instead proposes a paramet-
ric bootstrap. Corradi and Swanson (2003) discuss bootstrap techniques
relevant for time-series models.

An alternative approach by Li and Tkacz (2002) compares a kernel
estimate of the true conditional density function to the model’s paramet-
ric conditional density function. They obtain a test statistic which has a
limiting standard normal distribution under the null of correct specifica-
tion, although Monte Carlo evidence suggests that bootstrapped critical
values are likely to prove more reliable for inference.

Finally, if we wished to test the null that the AR(1) model conditional
forecast densities were correctly specified for a given θ = θ1, say (i.e.,
[α1, σε] = [0.9, 1]) then we could simply calculate:

zt = F(yt | yt−1, [0.9, 1]) = 1√
2π

∫ yt

−∞
exp
(

1
2

(w − 0.9yt−1)
2
)

dw

for t = 1, . . . , n and apply the tests outlined in Section 5.2 to the {zt }n
t=1.

5.8.1 Model mis-specification

The approach to density specification testing in Corradi and Swanson
(2003) allows for dynamic mis-specification under the null hypothesis,
in the sense that the test is for correct specification given a particular
information set, rather than being a test of correct specification with
all the relevant history included. As an example, consider testing the
AR(1) model density forecasts described above, when the data generating
process is actually a second-order Gaussian AR model:

yt = γ1yt−1 + γ2yt−2 + νt , νt ∼ N(0, σ2
ν ). (5.8)

The true conditional densities are yt | yt−1, yt−2 ∼ N(γ1yt−1 + γ2yt−2, σ2
ν ).

Nevertheless, if we take the information set to be yt−1 (rather than yt−1

and yt−2) the AR(1) model densities, yt | yt−1, are still ‘well specified’,
given the properties of the normal distribution, in that yt | yt−1 for
(5.8) has a normal distribution, but note that α1 and σε in yt | yt−1 ∼
N(α1yt−1, σ2

ε ) will not equal γ1 and σν (e.g., α1 will be the first-order
autocorrelation coefficient for an AR(2)). Ignoring parameter estimation
uncertainty, the {zt } for the yt | yt−1, yt−2 densities will be i.i.d. U(0, 1),
while the {zt } for the yt | yt−1 densities (with mean and variance derived
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from the AR(2)) will be U(0, 1) but not i.i.d. because of the dynamic
mis-specification. Corradi and Swanson (2003) outline the derivation
of appropriate bootstrap critical values for CK-type tests that allow for
dynamic mis-specification under the null.

5.9 Summary

This chapter reviews some of the recent literature on the evaluation
of density (or histogram) forecasts. Whilst an interval forecast posits a
range and a probability of the actual falling within that range, a density
forecast gives a complete description of the probabilities attached to all
possible values or ranges of values of the outcome variable. The key tool
for the evaluation of survey-based histograms is the probability integral
transform. This is described and used in an evaluation of the SPF US infla-
tion probability distributions and the Bank of England inflation density
forecasts

We also describe the application of this approach to the evaluation
of joint probability distribution functions. Calibration is discussed –
the adjustment of future probability assessments prompted by system-
atic past errors. A relationship between interval and density forecast
evaluation is established by showing that certain interval forecast eval-
uation techniques can be extended to provide ‘contingency-table-type’
goodness-of-fit tests of densities.

Finally, we consider a different problem in density evaluation, which
is whether an observed sample comes from a particular parametric dens-
ity defined up to an unknown parameter vector. This approach to the
evaluation of model-based conditional forecast densities contrasts with
the evaluation of the survey-based SPF histograms and the Bank dens-
ities. For both the SPF and Bank forecasts the question is whether a
sequence of histograms (SPF), or parametric densities with given location
and scale parameters (Bank), is consistent with an associated sequence
of outcomes.

5.10 Appendix: multivariate forecast density
probability integral transform tests

Let Z1 and Z2 be independent U(0, 1) random variables. We begin by
deriving the distribution function for their product. Because of inde-
pendence, the joint distribution function FZ1Z2 is the product of the
distribution functions of Z1 and Z2, FZ1Z2 (z1, z2) = z1z2, and fZ1Z2 =
fZ1 fZ2 = 1.
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Using a change of variables:

Z∗
1 = Z1Z2

Z∗
2 = Z2

for which the determinant of the Jacobian for the inverse transform-
ation is:

J = det
∂(Z1, Z2)

∂(Z∗
1, Z∗

2)
=
∣∣∣∣∣

1
Z∗

2
− Z∗

1
Z∗2

2

0 1

∣∣∣∣∣ = 1
Z∗

2

the joint density function of (Z∗
1, Z∗

2) is then:

fZ∗
1Z∗

2
= f
(

Z∗
1

Z∗
2

, Z∗
2

)
× 1

Z∗
2

= 1
Z∗

2

, (5.9)

where 0 < Z∗
1 < Z∗

2 < 1.
Since Z∗

1 is the random variable of interest, integrating Z∗
2 out of fZ∗

1Z∗
2

over the permissible range gives:

fZ∗
1

=
∫ 1

Z∗
1

Z∗−1
2 dZ∗

2 = [ln Z∗
2]1

Z∗
1

= − ln Z∗
1.

The distribution function is:

FZ∗
1

= Z∗
1 − Z∗

1 ln Z∗
1, 0 < Z∗

1 < 1.

The probability integral transform of Z∗
1 with respect to fZ∗

1
, that is:

z∗
t =
∫ z∗

t

0
fZ∗

1
(u)du t = 1, . . . , n (5.10)

yields an i.i.d. U(0, 1) sequence under the null. Thus, we need simply
to evaluate FZ∗

1
at Z1t × Z2t , t = 1, . . . , n, and test whether {z∗

t }n
t=1 con-

stitutes an i.i.d. sample from a U(0, 1), using the methods described in
Section 5.2.

Now consider the ratio. Again using a change of variables:

Z∗
1 = Z1/Z2

Z∗
2 = Z2



Density Forecasts 123

for which the determinant of the Jacobian for the inverse transform-
ation is:

J = det
∂(Z1, Z2)

∂(Z∗
1, Z∗

2)
=
∣∣∣∣∣Z

∗
2 Z∗

1

0 1

∣∣∣∣∣ = Z∗
2

the joint density function of (Z∗
1, Z∗

2) is then:

fZ∗
1Z∗

2
= f
(

Z∗
1

Z∗
2

, Z∗
2

)
× Z∗

2 = Z∗
2, (5.11)

where 0 < Z∗
2 < 1, 0 < Z∗

1 < ∞.
Since Z∗

1 is the random variable of interest, integrating Z∗
2 out of fZ∗

1Z∗
2

over the permissible range gives:

fZ∗
1

=
∫ 1

0
Z∗

2dZ∗
2 = 1

2
,

when Z∗
1 < 1 or:

fZ∗
1

=
∫ 1/Z∗

1

0
Z∗

2dZ∗
2 = 1

2(Z∗
1)

2
,

when Z∗
1 > 1. The distribution function is:

FZ∗
1

=
{

Z∗
1/2, 0 < Z∗

1 < 1,

1 − (1/2Z∗
1), 1 < Z∗

1 < ∞.



6
Decision-based Evaluation

6.1 Introduction

Forecasts are generally made for a purpose. If we suppose an environment
whereby agents make decisions (equivalently, select actions) based on
a particular forecast, then we can evaluate that forecast in terms of
its expected economic value (equivalently, expected loss), where the
expectation is calculated using the actual probabilities of the states of
nature. Typically, we might expect users to have different economic
value (or loss) functions, so that the actions and expected losses induced
by two rival sets of forecasts need not be such that each user’s expec-
ted economic value is maximized by the same set of forecasts. In
Section 6.2 we show following Diebold et al. (1998)1 that only when
a density forecast coincides with the true conditional density will it
be optimal (in the sense of maximizing economic value) for all users
regardless of their loss functions. This is a compelling reason to assess
how well the forecast distribution matches the actual distribution, as
in Section 5.2 – a forecast density that provides a close match to the
true density can be used by all with equanimity, no matter what their
individual loss functions. For decision-based evaluation in general we
require the whole forecast density. Only in exceptional circumstances
will the minimum mean squared forecast error (MSFE) point forecast be
sufficient to generate optimal decisions and maximize economic value –
see Section 6.3.

The importance of the principle of decision-based assessment of fore-
casts has been widely accepted for a long time. That said, there is
little decision-based forecast evaluation in macroeconomics, although
it is common in meteorology (see, e.g., Katz and Murphy (1997)), and
occurs in empirical finance (see, e.g., Leitch and Tanner (1991, 1995)).

124
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As will become evident from the description of the simple two-state,
two-action decision problem in Section 6.4, the implementation of this
approach to forecast evaluation requires information that may not be
readily available. For example, a full specification of the decision prob-
lem is needed, including a mapping from forecasts to decisions (or
actions), and quantification of the economic costs and benefits eman-
ating from those actions in different states of nature. Moreover, when
we consider the behaviour of the government, as in the case of the
Central Bank making decisions on interest rates, actions may affect
the probabilities of outcomes. In meteorological applications, the like-
lihoods of different outcomes will usually be independent of agents’
actions.2 In Section 6.5 we consider how the simplest decision problem
in Section 6.4 might be generalized to make it relevant for an analysis of
the Bank of England’s inflation targeting and interest-rate setting prob-
lem. Section 6.6 examines the relationship between economic value
and simple commonly used measures of forecast performance, such
as the LPS and QPS scores. Section 6.7 calculates these measures for
a simplified version of the decision problem faced by the Bank of
England.

In the decision approach, the loss function depends on actions and the
state of nature. Because the (optimal) action depends on the forecast, this
induces a loss function defined on the forecast and the state of nature.
By highlighting the linkage between actions and forecasts, and the res-
ulting dependence of the loss function on the context, the decision
approach leads us to question the general reliance on squared-error
loss, when obtaining the properties of optimal forecasts, for example.
We saw in Section 3.3 that optimal forecasts will be biased when the
loss function is asymmetric, and that in the specific case of linex loss,
an analytic expression for the bias can be obtained in terms of the
degree of asymmetry and the conditional forecast error variance. As
noted by Patton and Timmermann (2003), for example, this suggests
that one should be wary of testing for ‘forecast rationality’ by testing
for the properties that optimal forecasts have under squared-error loss.
That optimal forecasts may be biased is perhaps unsurprising, but as
Patton and Timmermann (2003) show, a number of other properties,
such as that h-step forecasts will be correlated of order at most h − 1
(see Section 2.1.1), may not characterize optimal forecasts allowing for
general loss functions and data generating processes. Given that the
form of the loss function may not be known to the econometrician, in
Section 6.8 we consider testing forecast rationality allowing for general
loss functions.
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6.2 Decision-based evaluation – some basic results

Diebold et al. (1998) consider a user with a loss function L1(a, y), where
a refers to an action, and y is the random variable y ∼ f (y); f (y) is
unknown to the user. The user chooses an action to minimize their expec-
ted loss over all possible states (here, values of y) based on a forecast of
the probabilities of the states, p1(y). Here y is a continuous random vari-
able so that there is a continuum of states. (In Sections 6.4 and 6.5 we
illustrate with a few discrete states). Thus a∗

1 is chosen such that:

a∗
1 = argmin

a∈A

∫
L1(a, y)p1(y)dy. (6.1)

That is, given p1(y), a∗
1 is the action in the admissible set A which min-

imizes the user’s expected loss. Substituting a∗
1 in the loss function gives

loss L1(a∗
1, y), a random variable as it depends on y. The loss that will

eventuate on average is determined by the actual density for y, f (y),
that is:

E[L1(a∗
1, y)] =

∫
L1(a∗

1, y)f (y)dy. (6.2)

The dependence of the optimal action a∗ on L() is apparent. For L1 (and
p1(y)) we obtain a∗

1, and expected loss given by (6.2). For the same fore-
casts p1(y) changing the loss function will typically change the optimal
action, and for the same loss function L1(), changing p(y) will typically
give rise to a different a∗ and value of (6.2). For a given loss function
and forecasts p1(y) and p2(y), the better forecast will be that with a lower
value of (6.2).

Formally, p1(y) is preferred to p2(y) if:

E[L1(a∗
1(p1(y)), y)] < E[L1(a∗

2(p2(y)), y)],

where the notation a∗
i (pi(y)) makes it plain that a∗

i is the optimal action
for forecast pi(y).

However, for arbitrary density forecasts p1(y) and p2(y) we can always
find a loss function L2() such that:

E[L2(a∗
1(p1(y)), y)] > E[L2(a∗

2(p2(y)), y)],

establishing that we are in general unable to establish a ranking of p1(y)

and p2(y) with which all users will agree, regardless of their loss functions.
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Diebold et al. (1998, p. 866) illustrate for specific f (y), pi() and Li(),
i = 1, 2). This suggests that it might in general be difficult to rank density
forecasts without recourse to a specific loss function.

The key result stated in the introduction is that if p1(y) = f (y) (the first
forecast density coincides with the true density) then:

E[L(a∗(f (y)), y)] < E[L(a∗
2(p2(y)), y)].

The optimal action with respect to f (y) will have smaller expected loss
than the optimal action for all other forecast densities, here given by
p2(y) (not equal to f (y)) for all loss function. That is, p1(y) = f (y) will be
ranked first by all users irrespective of their loss functions.

6.3 Quadratic loss functions

When the cost function is quadratic, the optimal decision depends only
on the conditional expectation of the variable being forecast rather
than the whole forecast density. Further, economic value, the evalu-
ation criterion in the decision-based context, is proportional to the MSFE
criterion. In these circumstances, the minimum MSFE point forecast is
sufficient to generate optimal decisions and maximize economic value.
This result holds when there are constraints but these are linear, giving
rise to the Linear-Quadratic (LQ) decision problem, but here we illus-
trate without any constraints. In general, though, decision-based forecast
evaluation criteria will not coincide with traditional statistical measures
of forecast accuracy, such as MSFE.

Consider a quadratic loss function:

L(at , yt+1) = c1a2
t + 2c2atyt+1 + c3y2

t+1, (6.3)

where relative to Section 6.2 we have time-dated the state variable y and
the decision variable a to make it explicit that at time t a forecast will be
required of yt+1. The parameters c1, c2 and c3 of the loss function must
satisfy c1 > 0 and c1c3 − c2

2 > 0 to ensure L() is globally convex in both
its arguments. We need to solve for a∗

t such that:

a∗
t = argmin

at ∈A

∫
L(at , yt+1)pt (y)dy (6.4)

= argmin
at ∈A

∫
(c1a2

t + 2c2atyt+1 + c3y2
t+1)pt (y)dy, (6.5)
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where pt (y) is the forecast density of yt+1 based on period t informa-
tion. We can take the derivative of L(at , yt+1) within the integral (i.e.,
expectations operator) to obtain the first-order condition:

∫
∂L(at , yt+1)

∂at
pt (y) dy = 0,

∫
(2c1at + 2c2yt+1)pt (y) dy = 0,

which gives a∗
t = −(c2/c1)

∫
yt+1 pt (y)dy = −(c2/c1)Êt (yt+1), where Êt (yt+1)

denotes the 1-step ahead conditional expectation of yt+1 based on the
forecast distribution.

Substituting a∗
t in (6.3) gives:

L(a∗
t , yt+1) = c2

2

c1
Êt (yt+1)

2 − 2
c2

2

c1
Êt (yt+1)yt+1 + c3y2

t+1

=
(

c3 − c2
2

c1

)
y2

t+1 + c2
2

c1
(yt+1 − Êt (yt+1))

2.

The expected loss is determined by the actual density for yt+1, ft+1(y),
that is (dropping the subscript on f for convenience):

E[L(a∗
t , yt+1)] =

∫
L(a∗

t , yt+1)f (y)dy

=
∫ [(

c3 − c2
2

c1

)
y2

t+1 + c2
2

c1
(yt+1 − Êt (yt+1))

2
]

f (y)dy

=
(

c3 − c2
2

c1

)∫
y2

t+1f (y)dy + c2
2

c1

∫
(yt+1 − Êt (yt+1))

2f (y)dy.

The first term is (c3 − (c2
2/c1)) > 0 times the second (uncentred) moment

of yt+1, and so does not depend on the pt (y). The second term
∫
(yt+1 −

Êt (yt+1))
2f (y)dy is the expected squared-error loss, so that expected eco-

nomic loss is proportional to the MSFE. Thus, an alternative forecast
density p̃t (y) would be preferred (worse) on economic value if the corres-
ponding point forecast (

∫
yt+1p̃t (y)dy) was preferred (worse) in terms of

MSFE. That is, we can decide between pt (y) and p̃t (y) by considering the
MSFEs of the associated point forecasts, without needing to know the
parameters of the quadratic loss function (c1, c2 and c3).
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Table 6.1 Payoff matrix for a two-state, two-action decision
problem

States (st+1)

Bad (st+1 = 1) Good (st+1 = 0)

Decisions (yt ) Yes (yt = 1) Ut+1,by Ut+1,gy
No (yt = 0) Ut+1,bn Ut+1,gn

6.4 Two-state, two-action decision problems

The ideas in the previous section can be illustrated with a simple
example where there are two states and two actions. Our treatment fol-
lows Granger and Pesaran (2000a, b) and Pesaran and Skouras (2002),
although the analysis is standard. The two possible states in period t + 1
are ‘Bad’ (st+1 = 1) and ‘Good’ (st+1 = 0), and there are two possible
actions open to the decision-maker in period t . To take action, ‘Yes’,
indicated by yt = 1, or to decline to take action, ‘No’, yt = 0. Thus,
actions are taken in advance. The payoff matrix associated with this
decision problem is given in Table 6.1. In the Payoff Matrix, Ut+1,by rep-
resents the decision maker’s utility if the bad state occurs after the yes
decision is taken, and so on.

Given this Payoff Matrix, which maps combinations of outcomes (or
realized states) and (prior) actions to economic values (U ), what is the
value at period t to the decision maker of a particular forecast probab-
ility of the Bad event occurring in period t + 1? Let πt+1 be the actual
probability that st+1 = 1, πt+1 = Pr(st+1 = 1), and π̂t+1 the forecast
probability.3 We assume that the probabilities are independent of actions.
Then, the expected utility of taking action (yt = 1) based on the forecast
probabilities is given by:

Ut+1,byπ̂t+1 + Ut+1,gy(1 − π̂t+1) (6.6)

and of not acting:

Ut+1,bnπ̂t+1 + Ut+1,gn(1 − π̂t+1). (6.7)

For the forecast probabilities of the two states given by π̂t+1 and (1−π̂t+1),
action will be taken if (6.6) exceeds (6.7), that is, if:

π̂t+1 > qt+1
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where4

qt+1 = δt+1,g

δt+1,g + δt+1,b
,

and

δt+1,g = Ut+1,gn − Ut+1,gy , δt+1,b = Ut+1,by − Ut+1,bn.

Thus, the link between the decision (yt ) and the forecast of the bad state
(π̂t+1) is given by:

y∗
t = 1(π̂t+1 > qt+1),

so action will be taken (yt = 1) if π̂t+1 > qt+1.
The economic benefit that accrues at period t +1 will depend on which

state materializes and the action taken at period t :

υt+1(yt ; st+1) = Ut+1,byst+1yt + Ut+1,gy(1 − st+1)yt

+ Ut+1,bnst+1(1 − yt ) + Ut+1,gn(1 − st+1)(1 − yt ).

Using the optimal decision rule:

υt+1(y∗
t ; st+1) = Ut+1,byst+1y∗

t + Ut+1,gy(1 − st+1)y∗
t

+ Ut+1,bnst+1(1 − y∗
t ) + Ut+1,gn(1 − st+1)(1 − y∗

t ). (6.8)

If we substitute y∗
t = 1(π̂t+1 > qt+1), we obtain υt+1 as a function of the

forecast probability, υt+1(π̂t+1; st+1):

υt+1(π̂t+1; st+1) = at+1 + bt+1(st+1 − qt+1)1(π̂t+1 > qt+1), (6.9)

where at+1 = st+1Ut+1,bn + (1 − st+1)Ut+1,gn and bt+1 = Ut+1,by − Ut+1,bn +
Ut+1,gn − Ut+1,gy . Notice that the part of the economic value given by the
term at+1 does not depend on the probability forecast estimate, π̂t+1, and
can be ignored when comparing two or more rival forecast probabilities
(say, π̂t+1 and π̃t+1).

The expected economic value of using the probability forecast π̂t+1 is
given by

E[υt+1(π̂t+1; st+1) | �t ] = E(at+1 | �t )

+bt+1(πt+1 − qt+1)1(π̂t+1 > qt+1), (6.10)
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where expectations are taken with respect to the true conditional prob-
ability distribution of st+1, denoted by E(· | �t ), and πt+1 = E(st+1 | �t ) =
Pr(st+1 = 1 | �t ), 1 − πt+1 = Pr(st+1 = 0 | �t ). In our set-up, the optimal
decision is that yt = 1 whenever the true probability of the Bad state, πt+1,
exceeds qt+1, and yt = 0 whenever πt+1 < qt+1. So any forecast π̂t+1 that
satisfies π̂t+1 > qt+1 when πt+1 > qt+1, and π̂t+1 < qt+1 when πt+1 < qt+1,
belongs to the optimal set. But only when π̂t+1 = πt+1, is it the case that
correct decisions will be made on the basis of π̂t+1 regardless of the rel-
ative values of δt+1,g and δt+1,b, illustrating the point made in Section 6.2
(because different values of δt+1,g and δt+1,b can be viewed as defining
different loss functions).

6.5 Decision problem for inflation-targeting and
interest rate setting

Suppose a central bank seeks to maintain the rate of inflation in a certain
band. There are three events: inflation falls below the band (st+1 = 1),
within the band (st+1 = 2) and above the band (st+1 = 3). There are also
three decisions/actions to be made in the previous period: cut interest
rates (yt = 1), leave interest rates unchanged (yt = 2) and raise rates
(yt = 3). We assume that the actions are taken in period t in order
to influence the likelihoods of the three states, so that we are imme-
diately at odds with the assumption in Section 6.4 that st+1 does not
depend on yt . The payoff matrix associated with this decision problem
is given in Table 6.2, where Ut+1,ij is the payoff when yt = i and st+1 = j
eventuates.

As in the two-state, two-action case, combinations of outcomes and
actions are thus mapped into economic values (U). When the prob-
abilities of the states depend on the actions, we define the true joint

Table 6.2 Payoff matrix for a three-state, three-action decision
problem

States

Below Within Above
(st+1 = 1) (st+1 = 2) (st+1 = 3)

Decisions Cut (yt = 1) Ut+1,11 Ut+1,12 Ut+1,13
Unchanged (yt = 2) Ut+1,21 Ut+1,22 Ut+1,23

Raise (yt = 3) Ut+1,31 Ut+1,32 Ut+1,33
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probabilities as:

πt+1,ij = Pr(yt = i and st+1 = j).

To apply the decision approach, we require nine forecast probabilites:

π̂t+1,ij = Pr(yt = i and st+1 = j).

The expected utility of yt = i, given these forecast probabilities, will be:

EUt+1,i =
3∑

j=1

Ut+1,ijπ̂t+1,ij

for i = 1, 2, 3. The optimal action (conditional on {π̂t+1,ij}) will be yt = i
for that i which is the maximum of {EUt+1,i}, i = 1, 2, 3. We can denote
this value of yt as y∗

t , as in Section 6.4. The economic value that accrues
in t + 1 from y∗

t is given by:

υt+1(y∗
t ; st+1) =

3∑
j=1

1(st+1 = j)Ut+1,y∗
t ,j,

where the dependence of y∗
t on {π̂t+1,ij} is implicit. The expected economic

value of using these forecasts (evaluated using the true probabilities) is
given by:

E[υt+1(y∗
t ; st+1)] = E

⎛
⎝ 3∑

j=1

1(st+1 = j)Ut+1,y∗
t ,j

⎞
⎠ (6.11)

=
3∑

j=1

(E[1(st+1 = j)])Ut+1,y∗
t ,j, (6.12)

where the E[1(st+1 = j)] are the actual probabilities of st+1 = j ( j = 1, 2, 3)
given y∗

t , because the probabilities depend on the actions taken.
The informational requirements for a decision-based evaluation of the

Bank of England inflation density forecasts (described in Section 5.7)
along the lines outlined in this section make such a task infeasible. For
example, we can derive forecast probabilities of the states, but these are
perhaps best viewed as being conditional on the interest rate changes
made at the times the forecasts are released.5 Moreover, it is difficult to
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assign values to the nine U ’s in Table 6.2. Some progress is possible if
the problem is shoe-horned into the two–state, two-action framework of
Section 6.4.

We now outine how that might be done. In principle, the MPC sets
the base rate to bring about a satisfactory profile of inflation up to the
medium term, two year ahead horizon, taking into account likely devel-
opments in the economic environment. Given the delays in the effects of
changes in monetary policy impacting on the economy, and especially
the rate of inflation excluding mortgage interest payments, one might
treat the short-horizon (say, current and next quarter) actual probabilit-
ies and forecast probabilities as being independent of changes in the Repo
rate. Second, we assume that there are just two states. The Good state is
defined by inflation being below the target rate of 2 1

2 % (st+1 = 0). Then
the standard two-state, two-action decision-based evaluation framework
becomes applicable. If we assume that the MPC’s credibility may be less
harmed when inflation exceeds the target in t + 1 if interest rates had
been raised in period t , that is, it is better to ‘be seen to be doing some-
thing’, then δt+1,b = Ut+1,by − Ut+1,bn > 0 as assumed in the Section 6.4.
Moreover, δt+1,g = Ut+1,gn − Ut+1,gy > 0 as there are output costs to raising
interest rates unnecessarily.

6.6 Statistical measures related to economic value

Ignoring the dependence of probabilities on actions, from (6.10) the part
of the expected economic value that depends on the probability forecast
π̂t+1 is given by:

E[υt+1(π̂t+1, st+1) | �t ] = bt+1(πt+1 − qt+1)1(π̂t+1 > qt+1). (6.13)

Suppose we have a set of probability forecasts and states for t = 1, . . . , T ,
then the expectation in (6.13) can be evaluated by averaging over the
observations to give the average realized economic value (that depends
on the forecasts) as:

υ = 1
T

T∑
t=1

bt (st − qt )1(π̂t > qt ). (6.14)

Probability forecasts are often evaluated using the quadratic probability
score (QPS) of Brier (1950) and the log probability score (LPS). These are
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defined as:

QPS = 2
T

T∑
t=1

(π̂t − st )
2

LPS = − 1
T

T∑
t=1

[st ln π̂t + (1 − st ) ln(1 − π̂t )]. (6.15)

The QPS is bounded between 0 and 2, with lower numbers denoting more
accurate. It is of course just twice the standard MSFE measure. The MSFE
(or root MSFE) is a popular measure for comparing prediction errors from
point-forecasting exercises that range over the real line, as discussed in
Chapter 2. As a squared measure, large mistakes attract disproportion-
ately greater penalties than small errors. The LPS is non-negative, and
penalizes large mistakes more heavily than QPS. The LPS is the negative
of the average log likelihood for the logit binary choice model.

The Kuipers score (Ks) is defined as:

Ks = H − F,

where H is the ‘hit rate’, the proportion of the total number of Bad states
that were correctly forecast, and F is the ‘false alarm’ rate, defined as the
proportion of the total number of Good states that were incorrectly fore-
cast as being Bad states. The advantage of the Ks statistic over measures
such as QPS and LPS is that always forecasting the Bad state to occur (or
always forecasting the Good state) will score zero, whereas such strategies
may fare well on QPS and LPS. Notice that the Ks evaluates forecasts of
events (whether the Bad or Good state is forecast to occur) rather than
forecasts of the probabilities of events. Given the latter, we can obtain
the former using 1(π̂t+1 > qt+1) in the spirit of decision-based evaluation,
so that the Bad state is forecast to occur when 1(π̂t+1 > qt+1) = 1. Then,
H and F can be expressed as:6

H =
∑T

t=1 st1(π̂t > qt )∑T
t=1 st

, F =
∑T

t=1(1 − st )1(π̂t > qt )∑T
t=1(1 − st )

.

Granger and Pesaran (2000b) show that in special circumstances the
economic value criterion is proportional to Ks:

υ = bs̄(1 − s̄)Ks,
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where s̄ = T−1∑T
t=1 st , the estimate of the (unconditional) probability of

the Bad state. To obtain this expression, the decision problem has to be
simplified by assuming that bt = b, all t , qt = q = s̄, all t .

However, we can also calculate economic value under a less restrictive
set of assumptions concerning the decision problem. In that case, the
proportionality between economic value and Ks does not hold, and the
simple decision-based framework may yield useful additional inform-
ation on the relative quality of the MPC forecasts compared to the
benchmark forecasts. We again assume that bt+1 = b for all t (as above),
so that the relative comparisons of economic value do not depend on
the b’s. We also need to assume that qt+1 = q, for all t (again as above).
Then the relative economic value of the MPC to benchmark forecasts is
given by:

υMPC

υbench.
= (1/T)

∑T
t=1(st − q)1(π̂t > q)

(1/T)
∑T

t=1(st − q)1(π̃t > q)
. (6.16)

(The π̃t denote the benchmark forecast probabilities of the bad state).
Recall that q depends on δg and δb: the output costs of raising interest
rates in the good state (in utility terms), and the utility gains of rais-
ing rates in the bad state. In ignorance of the relative importance to be
attached to these two, we consider a grid of values on the unit interval
[0, 1] for q. Finally, we stress that the interpretation of these calculations
as representing ‘economic value’ rests on the simple decision-problem
setting with action-independent state probabilities. At best this may be a
reasonable interpretation for the current and next quarter MPC forecasts.

6.7 The Bank of England MPC inflation forecasts

The MPC inflation forecasts are described in Section 5.7. Here we record
some of the measures of forecast performance described in this chapter
for a simplified decision-based evaluation of the forecasts. Table 6.3 gives
the LPS and QPS scores of the MPC probability forecasts of the Bad event
(inflation in excess of 2 1

2 %), along with the scores for unconditional
probability forecasts, for the current, next quarter, and one-year ahead
horizons. The unconditional forecasts of the bad state, calculated as the
sample frequency of st = 1 ( s̄ = T−1∑T

t=1 st ) can be viewed as a bench-
mark for the MPC forecasts. The MPC forecast probabilities are calculated
by reading off the probabilities that inflation will exceed 2 1

2 % given the
2PN with the specific values of the mode and two standard deviations.
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Table 6.3 Comparisons based on statistical meas-
ures, LPS and QPS

LPS QPS

π̂ s̄ π̂ s̄

Current quarter 0.208 0.669 0.106 0.474
Next quarter 0.399 0.656 0.259 0.463
One year ahead 0.623 0.576 0.441 0.388

Note: π̂ are the MPC probability forecasts, and q̄ are the
unconditional forecasts, defined by s̄ = T−1

∑T
t=1 st , of the

bad state (inflation exceeds 2.5%).

Table 6.4 Comparisons based on economic value

q Current quarter Next quarter Year ahead

π̂ s̄ π̂ s̄ π̂ s̄

0.1 0.326 0.291 0.286 0.264 0.168 0.163
0.2 0.287 0.191 0.236 0.164 0.095 0.063
0.3 0.261 0.091 0.150 0.064 0.042 0.000
0.4 0.217 0.000 0.100 0.000 −0.063 0.000
0.5 0.174 0.000 0.091 0.000 −0.053 0.000
0.6 0.122 0.000 0.091 0.000 −0.063 0.000
0.7 0.035 0.000 0.010 0.000 0.000 0.000
0.8 0.000 0.000 0.000 0.000 0.000 0.000
0.9 0.000 0.000 0.000 0.000 0.000 0.000
1.0 0.000 0.000 0.000 0.000 0.000 0.000

Note: Columns 2–7 evaluate equation (6.14) with bt = b = 1, ∀t
and qt = q, ∀q, at different values of q. π̂ are the MPC event prob-
ability forecasts, and s̄ are the unconditional forecasts, defined
by s̄ = T−1

∑T
t=1 st . The bad state is that inflation exceeds 2.5%.

At the short-horizons the MPC forecasts are clearly preferred, though s̄
has smaller LPS and QPS scores than π̂ at the one-year ahead horizon.

Table 6.4 records the decision-based evaluation calculations at values
of q between 0.1 and 1 (in steps of 0.1). A range of values of q is used
because of ignorance of the payoffs: see Section 6.6. When q = s̄ = 0.35
(for the current quarter forecasts), economic value is proportional to the
Ks (see Section 6.6). For both the current and one-quarter ahead horizons
the MPC forecasts have higher economic value than s̄ for q < 0.8. For
the year-ahead forecasts the interpretation of the figures in the table as
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representing ‘economic value’ is more strained, but the superiority of the
unconditional forecasts for q > 2 is clear. Intuitively, the MPC probability
forecasts generally overstate the likelihood of the Bad state relative to
s̄, which is the proportion of Bad states that actually materializes. Thus
1(π̂t > qt ) = 1 in (6.14) for a number of observations for which st −qt < 0
(because st = 0), for values of q in the range 0.3–0.6. For q > 0.6, the
part of economic value that varies with the forecast probability is zero
because 1(π̂t > qt ) = 0 for all t .

6.8 Properties of optimal forecasts for general loss functions

Under squared-error loss, the following four properties of optimal
forecasts can be easily established:

Property (1). Unbiased forecasts.

Property (2). Forecast-error variance is monotonically non-decreasing
in the forecast horizon.

Property (3). h-step forecast errors follow an MA process which is at
most of order h − 1.

These properties follow more or less immediately for the AR(1) process
discussed in Section 2.1.1, and can be obtained with little more effort for
a stationary ARMA process via the Wold representation (infinite moving
average). For the stationary AR(1) yt = φyt−1 + vt ,7 property (1) follows
from:

et+h|t = yt+h − yt+h|t =
h−1∑
i=0

φivt+h−i, (6.17)

where yt+h|t ≡ E(yt+h | �t ) is the MMSEP (the optimal forecast for squared-
error loss),

yt+h|t = E

[(
φhyt +

h−1∑
i=0

φivt+h−i

) ∣∣∣∣∣ �t

]
= φhyt .

Then E(et+h|t ) = 0.
Property (2) is shown by considering Var(et+h+s|t ) = E(e2

t+h+s|t ) compared
to Var(et+h|t ) = E(e2

t+h|t ), and establishing that Var(et+h+s|t ) ≥ Var(et+h|t ) for
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s > 0.8 Thus:

E(e2
t+h+s|t ) = E

(
h+s−1∑

i=0

φivt+h+s−i

)2

= σ2
h−1∑
i=0

φ2i + σ2
h+s−1∑

i=h

φ2i

≥ E(e2
t+h|t ) = σ2

h−1∑
i=0

φ2i

Property (3). Consider the h-step forecast errors for s = 1, 2, . . . :

et+s+h|t+s = yt+s+h − yt+s+h|t+s =
h−1∑
i=0

φivt+s+h−i (6.18)

and the covariances:

Cov(et+s+h|t+s, et+r+h|t+r) = E(et+s+h|t+s, et+r+h|t+r)

for r = 1, 2, . . . and s ≥ r.

E(et+s+h|t+s, et+r+h|t+r) = E

[(
h−1∑
i=0

φivt+s+h−i

)(
h−1∑
i=0

φivt+r+h−i

)]
. (6.19)

The forecast errors will be correlated whenever some same-dated v’s
are common to both the summations. This will not be the case when
s − r > h − 1. For h = 1, this condition is satisfied when s > r, so that
sequences of optimal 1-step forecasts are serially uncorrelated (s = r gives
the variance). For s − r ≤ h − 1, examination of (6.19) indicates that the
maximum order of correlation is h − 1.

Granger (1999) and Patton and Timmermann (2003) establish that
none of these properties need hold for optimal forecasts when the
loss function is something other than squared-error loss. Patton and
Timmermann (2003) show that under certain assumptions about the
nature of the data generating process, property (3) (‘lack of serial correla-
tion in excess of h−1’) can be established for asymmetric loss functions,
thus allowing one aspect of forecast rationality to be tested without need-
ing to assume squared-error loss. The restrictions on the process are that
higher-order conditional moments (e.g., the conditional variance) are
constant. They allow for non-linear regime-switching processes, that
is, conditional mean dynamics, but rule out non-constancy in all other
conditional moments. As Patton and Timmermann (2003) argue, such
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an assumption is clearly unattractive for financial time series, but may
be less contentious for macroeconomic time series. The example of the
linex loss function with conditional variance dynamics in Section 3.3 is
clearly at odds with these conditions. If we replace the data generating
process we used there:

yt+h | Yt ∼ N(yt+h|t , σ2
t+h|t ),

(where yt+h|t is the conditional expectation and σ2
t+h|t is the conditional

variance) with:

yt+h | Yt ∼ N(yt+h|t , σ2
h )

then we can obtain the optimal predictor assuming a constant condi-
tional variance by simply re-working the steps in Section 3.3. That is,
the optimal predictor solves:

argmin
αt+h

Et [b(exp(a(yt+h − yt+h|t − αt+h)) − a(yt+h − yt+h|t − αt+h) − 1)],

where ỹt+h = yt+h|t − αt+h. Noting that:

Et [exp(ayt+h)] = exp
(

ayt+h|t + a2σ2
h

2

)
,

gives:

argmin
αT+h

b
[
exp
(

a2σ2
h

2
− aαt+h

)
+ aαt+h − 1

]
. (6.20)

The first-order condition is satisfied by:

αt+h = a
2

σ2
h

so the adjustment to the conditional expectation depends only on h
(and the parameter a of the linex loss function). The optimal predictor
becomes:

ỹt+h|t = yt+h|t + a
2

σ2
h . (6.21)
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The proof that the covariance between the forecast errors (using the
optimal predictor under linex loss) is zero for forecasts made j steps
apart, when j ≥ h, follows immediately. Defining et+h|t = yt+h − yt+h|t , the
forecast error using the optimal forecast under squared-error loss, and
ẽt+h|t = yt+h − ỹt+h|t , the forecast error using the optimal predictor under
linex loss, then we have by property (3) for squared-error loss that:

Cov(et+h|t , et+h−j|t−j) = 0, j ≥ h.

Because ẽt+h|t = et+h|t − a∗
h, where a∗

h = (a/2)σ2
h , then:

Cov( ẽt+h|t , ẽt+h−j|t−j) = 0, j ≥ h.

6.8.1 General loss functions and the generalized forecast error

Whilst the properties listed at the head of this section will not hold in
general for optimal forecast errors under asymmetric loss without restric-
tions on the higher moments of the data generating process, Granger
(1999) establishes that these properties do hold for a ‘generalized fore-
cast error’, where the generalized forecast error is the derivative of the
loss function with respect to the forecast error. Patton and Timmermann
(2003) present a slightly more general analysis, where loss depends on
Yt+h and Ŷt+h (the forecast), L(Yt+h, Ŷt+h), rather than restricting the two
arguments to enter as L(Yt+h − Ŷt+h). Under some (technical) assump-
tions on L(·) and the generating process, the generalized forecast error
is derived by calculating the optimal forecast (Ŷ∗

t+h) for the general loss
function:

Ŷ∗
t+h = argmin Et

Ŷt+h

[L(y, Ŷt+h)],

Ŷ∗
t+h = argmin

Ŷt+h

∫
L(y, Ŷt+h)ft+h,t (y)dy,

where ft+h,t (y) is the density of Yt+h | �t . Then the first-order condition
satisfies:

∂Et [L(y, Ŷ∗
t+h)]

∂Ŷt+h

= 0
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or:

Et

[
∂L(y, Ŷ∗

t+h)

∂Ŷt+h

]
=
∫

∂L(y, Ŷ∗
t+h)

∂Ŷt+h

ft+h,t (y)dy = 0. (6.22)

The optimal generalized forecast error is defined by:

ψ∗
t+h|t = ∂L(y, Ŷ∗

t+h)

∂Ŷt+h

(6.23)

so that from (6.22) with (6.23):

Et (ψ
∗
t+h|t ) =

∫
ψ∗

t+h|t ft+h,t (y)dy = 0. (6.24)

The generalized forecast error is conditionally (and therefore also uncon-
ditionally) unbiased from (6.24) and the other properties can also be
established. Note that for squared-error loss, L(Yt+h − Ŷt+h) = (Yt+h −
Ŷt+h)

2, the generalized forecast error is:

ψ∗
t+h|t = −2(Yt+h − Ŷ∗

t+h)

that is, twice the standard forecast error.
Artis and Marcellino (2001) use the optimality properties of generalized

forecast errors to evaluate fiscal forecasts (assuming particular non-linear
loss functions).

6.9 Summary

In this chapter, we assume that forecasts are made in order to guide
actions or decisions in an uncertain environment. So actions depend on
forecasts, and the payoff or return to a particular action depends on the
state of nature that eventuates. For a particular forecast we can calculate
the expected economic value (or expected loss), where the expectation is
calculated by weighting the returns to that action in the different states
of nature by the actual probabilities of those states. This allows a rank-
ing of forecasts. However, users with different loss functions may rank
two rival sets of forecasts differently – each user’s expected economic
value need not be maximized by the same set of forecasts. An import-
ant result is that a density forecast that coincides with the true density
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will maximize economic value of all users regardless of their loss func-
tions. Furthermore, for general loss functions the whole forecast density
is required to calculate economic value – only in exceptional circum-
stances will the minimum MSFE point forecast be sufficient to generate
optimal decisions and maximize economic value.

From the description of the simple two-state, two-action decision
problem it is apparent that the decision-based approach to forecast eval-
uation may often not be feasible: this is illustrated with regard to the
Bank of England’s inflation targeting and interest-rate setting problem.
We consider the relationship between economic value and some simple
statistical measures of forecast performance, and calculate these for the
Bank’s inflation forecast densities.

For general loss functions, a number of standard properties that hold
for optimal forecasts in the case of squared-error loss may be violated
(e.g., optimal forecasts will be biased for asymmetric loss functions). A
generalized forecast error can be defined for which these properties do
hold, but for which knowledge of the loss function is required.
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Postscript

In recent years, forecasts that give a more complete description of the
likely future values of economic and financial variables than the expec-
ted mean have become increasingly prominent, in academia as well as in
government and financial regulation. The focus of this book has been on
the evaluation of these forecasts. A number of the issues relevant to the
evaluation of point forecasts are equally germane to the evaluation of
interval and density forecasts. There are also new problems to be over-
come, such as the fact that volatility is unobserved, when forecasts of
conditional variance are evaluated.

A key distinction for all the types of forecast is whether the evalu-
ation makes reference to the method of construction of the forecast.
We considered evaluation methods for point, interval and density fore-
casts (in Sections 2.1, 4.4 and 5.2, respectively) that involves only the
sequence of forecasts and outcomes.1 A number of recent papers on dens-
ity evaluation have considered survey-based forecasts, such as the Survey
of Professional Forecasters histograms reviewed in Section 5.6, where the
method of construction is typically unknown to the econometrician, so
this method of evaluation is warranted. The recent point forecast liter-
ature considers the evaluation of model-based forecasts when account is
taken of estimation error (Section 2.4.2), either when testing a single set
of forecasts for unbiasedness, or when comparing rival sets of forecasts.
The approaches reviewed in Section 5.8 evaluate density forecasts which
are model-based.

Forecast evaluation that makes reference to the method of construc-
tion, that is, to the model underlying the forecasts (as in Section 2.4.1)
can become an exercise in the evaluation of the model, rather than of
the forecasts from that model. This would be the case, for example,
if models were selected and adopted for later use on the basis of their
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forecast performance. That a good out-of-sample forecast performance
lends credence to an econometric model, and to any economic theory
on which it might be based, has a commonsense appeal, and is often
expressed, for example:

any inflation forecasting model based on some hypothesized rela-
tionship cannot be considered a useful guide for policy if its fore-
casts are no more accurate than such a simple atheoretical forecast
(namely, next year’s inflation will equal last year’s). (Atkeson and
Ohanian, 2001)

and:

If a dynamic modeling approach is to be convincing, it needs to
say something about the behavior of unemployment out of sample.
(Carruth et al. 1998, p. 626)

However, Clements and Hendry (2003) suggest that out-of-sample
forecast performance may not be a reliable indicator of the validity of
an empirical model, nor therefore of the economic theory on which the
model is based. One reason is the prevalence of structural breaks and
instabilities in macroeconomic time-series relationships (see, e.g., Stock
and Watson 1996), such that a model may be a useful partial description
of the economic relations of interest even though it forecasts poorly:
Clements and Hendry (1999) examine the effects of structural shifts on
forecast performance. In addition, Clements and Hendry (2003) draw
attention to a number of aspects concerning the conduct of the forecast
evaluation exercise which may appear to be incidental but can turn out
to be decisive.

In focusing on evaluation, we have had little to say about these wider
issues relating to forecasting economic and financial variables, including
reasons why forecasts often turn out to be poor (see, e.g., Spanos 1989
and Wallis 1989 for some specific empirical instances), or the relative
merits of different models or methods. The wider picture is provided
by Clements and Hendry (1998, 1999) and the collection of papers in
Clements and Hendry (2002), inter alia.

The purpose of forecasting is not viewed as primarily an exercise
in evaluating a specific model, or choosing one model from a set of
models. But rather to inform decision-making, where actions are taken
today which have consequences in the uncertain future, as discussed
in Chapter 6. Ideally all forecasts would be made for a specific purpose
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and would be evaluated accordingly. But given informational costs and
deficiencies, forecasts are often ‘general purpose’, and may give a far from
complete description of the probabilities of the variable falling in certain
ranges, necessitating the evaluation techniques in Chapters 2–5.

The last ten years have witnessed significant progress in the develop-
ment of methods for evaluating forecasts that go beyond the most likely
or the expected outcome. New and improved methods of forecast eval-
uation can be expected in the near future as the trend towards more
informative forecasts continues.



8
Computer Code

Some sample code is given and described. The data sets and programs
can be downloaded from the Palgrave Macmillan web page www.

palgrave.com/economics/Clements/index.asp. The Gauss code
given below is for illustrative purposes. It is not meant to illustrate good
programming technique, or to be especially general. It is hoped that
the sample code might encourage the reader to experiment, and some
suggestions are given which may be taken up as simple exercises.

8.1 Sample Gauss code for the estimation and forecasting
of SETAR models

See Section 2.5.3. The Gauss code consists of two procedures in the file
SETAR.PRG. SETARe estimates a two-regime SETAR model for a given
lag order p. The two arguments are the lag order p and the variable y.
The second procedure, SETARf, generates multi-step forecasts by Monte
Carlo from the model estimated by SETARe. The two procedures are
followed by the main body of the program. Here the data series is
loaded from a plain text file, gnp92.dat, which contains observations
on the first difference of the log of quarterly US GNP, 1959:2 to 1996:2.
The data is multiplied by one hundred in the program, to give approx-
imate percentage growth rates. The SETAR estimation procedure is run
on the first 127 observations (1959:2 to 1990:4), the results are printed,
and the estimated model is then used to forecast 1991:1 to 1996:2. The
RMSFE (root mean squared forecast error) is printed, as is the RMSFE of
a forecast calculated as the mean of the estimation sample period.
SETARe works as follows. Construct the data matrix as X = (YT :

ι : YT−1 : · · · : YT−p), where YT = (yp+1, . . . , yT ), ι = (1, . . . , 1),
YT−1 = (yp, . . . , yT−1) and YT−p = (y1, . . . , yT−p). The data are then sorted
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on the d + 2th column, for d = 1, 2, . . . in turn. For a given d, a
grid search is carried out splitting the sample into two for all admiss-
ible values of r. That is, separate regressions are run on all the rows
of X for which the corresponding elements in Yt−d are less than r,
and on all the rows for which the elements of Yt−d exceed r. The
pair of {r, d} which minimizes the residual sum of squares (RSS) is
then identified. (The program stores the values of the model estimates
for the running smallest RSS. For a given {r, d}, the model estim-
ates are stored only if the associated RSS is smaller than the previous
smallest.

The forecast origin is taken by SETARf as the last observation of the
y vector (passed when the procedure is called). Thus passing the same
vector of observations to SETARe and SETARf results in ‘out-of-sample’
forecasts based on the estimated model. For p = 2, for example, SETARf
constructs X as the row vector (yT : yT−1), where yT is the last element
of the vector passed to the procedure. Then the j = 1 forecast is cal-
culated using either the lower or upper regime values depending on
whether X[1, d] (which is yT+1−d) is less than or greater than r. The
forecast value yT+1|T is then augmented with εT+1 = [σ11(yT+1−d ≤ r) +
σ21(yT+1−d > r)] νT+1, (νT+1 ∼ N(0, 1)), before replacing X by (yT+1|T +
εT+1 : yT : yT−1) and then calculating the 2-step ahead forecast when
j = 2, etc.

8.1.1 Extensions

The procedure SETARe conducts a grid search over the threshold value r
and the delay d for a user-input lag order p. A loop could be added to
search over p = 1, 2, . . . up to some pre-set maximum.

A third regime could be included, by partitioning the data into three
and performing a grid search over r1 and r2, where −∞ < r1 < r2 < ∞.

Sequences of 1 to h-step ahead forecasts could be produced by mov-
ing the forecast origin through the sample. That is, first estimate the
SETAR model on observations 1 to 127, and then forecast observations
128 on (as at present), then estimate the model on observations 1 to 128,
and forecast observations 129 on, etc. As an alternative to an expanding
data estimation window, a fixed window could be used, for example,
1 to 127, then 2 to 128 etc. Either could be easily accomplished by
putting the calls to the estimation and forecasting procedures in
a loop.

Tests for significant differences in RMSFE between the SETAR forecasts
and rival forecasts could be programmed.
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PROC(1) = SETARe(p, y);
Local d, pp, b1, b2, X1, X2, Y1, Y2, s1, s2,
X, Z, i, lo, hi, e1, e2, T, n1, n2,
Results, JRSS, JRSS0;

JRSS0 = 10000000;
Results = zeros(1,2*(p+1)+6);

X = y[p+1:rows(y),1]̃ ones(rows(y)-p,1);
pp = 1; @X contains dependent variable, intercept, @
do while pp <= p; @and the number of lags specified by p @
X = X̃ y[p+1-pp:rows(y)-pp,1];
pp = pp+1;
endo;

T = rows(X); lo = round(.15*T); hi = round(.85*T);

d=1; do while d <= p; @grid search over d @

Z = SORTC(X,2+d); @sort data matrix @

@loop over each value of r from lo to hi@
i = lo; do while i <= hi;

X1 = Z[1:i,2:p+2]; Y1 = Z[1:i,1];
X2 = Z[i+1:T,2:p+2]; Y2 = Z[i+1:T,1];

b1 =invpd(X1’X1)*X1’Y1; b2 =invpd(X2’X2)*X2’Y2;

e1 = Y1 - X1 * b1;
e2 = Y2 - X2 * b2;

JRSS = e1’e1 + e2’e2;

n1 = i; n2 = T - i;

s1 = SQRT((e1’e1)/(n1-(p+1)));
s2 = SQRT((e2’e2)/(n2-(p+1)));

if JRSS < JRSS0; JRSS0 = JRSS;
Results[1,1:p+1] = b1’; Results[1,p+2:2*p+2] = b2’;
Results[1,2*p+3:2*p+8] = s1̃ s2̃ n1̃ n2̃ Z[i,2+d]̃ d;
endif;

i = i+1; endo; @end loop over r@

d = d+1; endo; @end loop over d@

RETP(Results);
ENDP;
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PROC(1) = SETARf(y,a0,a1,b0,b1,r,d,p,s1,s2,f_reps,h);
Local X,pp,e,j,f,f_rep;

e = rndn(h,f_reps);
f = zeros(h,f_reps);

X = y[rows(y),1];
pp=1; do while pp <= p-1;
X = X̃ y[rows(y)-pp,1];
pp=pp+1; endo;

f_rep = 1; do while f_rep <= f_reps;

j = 1; do while j <= h;
f[j,f_rep]=

(a0 + X[1,1:p]*a1’) * (X[1,d] .<= r)
+ (b0 + X[1,1:p]*b1’) * (X[1,d] .> r);

X = ((s1*e[j,f_rep])*(X[1,d] .<= r)
+ (s2*e[j,f_rep])*(X[1,d] .> r) + f[j,f_rep] )̃ X;

j=j+1; endo;

f_rep = f_rep + 1; endo;
f = meanc(f’);

RETP(f);
ENDP;

load y[149,1] = gnp92.dat; @Diff log US GNP. 59:2 to 96:2@
y = y*100; @Approx. growth rates@
p = 2; @Two lags@

res = SETARe(p,y[1:127]); @Estimate 59:2 to 90:4@

@Estimation results@
r = res[1,2*p+7]; d = res[1,2*p+8];
a0 = res[1,1]; a1 = res[1,2:p+1];
b0 = res[1,p+2:p+2]; b1 = res[1,p+2+1:2*p+2];
s1 = res[1,2*p+3:2*p+3]; s2 = res[1,2*p+4:2*p+4];
"Threshold";; r;
"Regime 1 coefficients";
a0̃ a1;
"Regime 2 coefficients";
b0̃ b1;
"s1, s2, n1, n2, d";
s1̃ s2̃ res[1,2*p+5:2*p+6]̃ d;
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h = 22; f_reps = 100;
f = SETARf(y[1:127],a0,a1,b0,b1,r,d,p,s1,s2,f_reps,h);
@Forecast results@

"SETAR model RMSFE";; SQRT(meanc((y[128:149,1]-f)̂ 2));

"Mean RMSFE ";; SQRT(meanc((y[128:149,1]

-meanc(y[1:127,1]))̂ 2));

end;

@Results@

Threshold 0.32579019
Regime 1 coefficients

0.21674205 0.13649007 -0.22823162
Regime 2 coefficients

0.56852695 0.33262725 0.012922933
s1, s2, n1, n2, d

1.2172782 0.64313269 31 94 2
SETAR model RMSFE 0.38347886
Mean RMSFE 0.46811554

Figure 8.1 Gauss code. SETAR model estimation and forecasting

8.2 Estimation and forecasting GARCH(1,1) processes

The monthly observations on three-month US Treasury Bill interest rates
and ten-year Treasury bond interest rates (taken from the Federal Reserve
of St Louis database, www.stls.frb.org/fred) shown in Chapter 3
are contained in intrates.xls, for the period 1953:04 to 2001:10.
The AR(4)–GARCH(1,1) models, and the forecasts from those models
depicted in Figures 3.4 and 3.5, can easily be obtained using GiveWin
and PcGive (Doornik and Hendry, 2001). They were produced using the
menu-driven ‘Volatility models’ package of PcGive 10.0.

The main text illustrates the dependence of forecasts of conditional
variance on the volatility of the process at the forecast origin for
standard GARCH(1,1) models. Possible extensions include estimating
alternative GARCH models, such as non-linear threshold models, as
well as experimenting with alternative parameter restrictions given that
α + β > 1 freely estimated. What are the consequences of failing to
impose α + β = 1?
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These data series have been analysed by Clements and Galvão (2003),
inter alia, in the context of testing the expectations theory of the term
structure.

8.3 Monte Carlo evaluation of interval lengths and
coverages

In this section, we present Gauss code to perform a Monte Carlo eval-
uation of the coverage levels of two methods of calculating interval
forecasts for an autoregressive model. See Section 4.2. The two methods
are the Box–Jenkins (BJ) method, and a method that allows for para-
meter estimation uncertainty. The Gauss program is interval.prg: see
Figure 8.2. It makes use of procedures in the Gauss Time Series library
ARIMA to estimate and forecast ARIMA models, but as only an AR model
is considered, it is a relatively simple task to produce code to carry out
these calculations.

We first describe the program, and then suggest extensions.
In addition to the ARIMA library procedures arima and forecast,

which estimate and forecast an ARIMA(p, d, q) for given values of p, d
and q, a procedure called coverage appears at the top of the program.
For two h-dimensional vectors defining the upper and lower limits of the
intervals for 1 to h-step ahead forecasts, coverage calculates coverage
levels and interval lengths for an h × k matrix of continuations, where
the k column vectors are the ‘continuations’.

The data generation process (DGP) is an AR(2) with coefficients given
by coef. The model is correctly specified as an AR(2), and includes an
intercept (not present in the DGP). The Monte Carlo replications are over
j = 1, . . . , R. Within this loop, the following calculations are performed.

The Gauss procedure recserar is used to generate an n-dimensional
vector y from an AR(2), where y2 = y1 = 0, and the disturbances are
N(0, 1). The following line uses the same command to generate k vectors
of dimension h as continuations (each is constructed from the same yn

and yn−1: the last two elements of y). An AR(2) is then estimated using
arima, and the upper and lower intervals for the BJ method are gener-
ated automatically by forecast for a coverage level given by the global
variable _amcritl (set to 0.80).

The second method of calculating intervals to allow for parameter
estimation uncertainty is a little more complex. recserar is used
to generate b time series of length n, (y∗

1, y∗
2, . . . , y∗

b) using the estim-
ated parameter vector for the data y. On each of these, an AR(2)
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new;
library arima;
format /rd 7,4;

_amfprnt = 0; _am_opts={0,0};
_amcritl = 0.80; covlev = _amcritl;

proc coverage (w,ly,uy);
@w : h by #continuations @

@ly : lower interval, h by 1. @
@uy : upper interval, h by 1. @

local length,below,above,covg,n;
n = cols(w);
length = uy − ly;
below = sumc(w’ .lt ly’);
above = sumc(w’ .gt uy’);
covg = cols(w) - (below + above);

retp (length̃ below/ñ above/ñ covg/n);
endp;

n = 25; @ # of observations @
h = 10; @ # of step-ahead forecasts @
R = 10000; @ # of data replications @
k = 1000; @ # continuations to calculate coverages@
b = 100; @ # bootstrap replications@

pm = 2; dm = 0; qm = 0; @AR Model@
coef={0.9,−.7}; @AR DGP@

resBJ = zeros(h,4);
resBS = zeros(h,4);

j = 1; do while j <= R;

y = recserar(rndn(n,1), zeros (2,1), coef);
ysim = recserar(rndn(h+2,k),y[n-1:n,1]. *ones(1,k),coef. *ones(1,k));
ysim = ysim[3:h+2,.];

{coeffs,ll,resids,vcb,aic,sbc} = arima(0,y,pm,dm,qm,1);

f = forecast(coeffs,y,pm,dm,qm,1,resids,h);
ly = f [.,1]; uy = f[.,3]; @Box-Jenkins intervals@
resBJ = resBJ + coverage(ysim,ly,uy);

ystar = recserar(rndn(n,b)+coeffs[3,1] *ones(n,b),
zeros(2,1). *ones(1,b),coeffs[1:2,1]. *ones(1,b));

fstar = zeros(b,h);
i = 1; do while i <= b;
{coeffs,ll,resids,vcb,aic,sbc} = arima(0,ystar[.,i],pm,dm,qm,1);
f = recserar(rndn(h+2,1)+coeffs [3,1] *ones(h+2,1),

y[n-1:n,1],coeffs[1:2,1]);
fstar [i,.] = f[3:h+2]’;
i = i+1; endo;
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ly = zeros(h,1); uy = zeros(h,1);
s = 1; do while s <= h;
fsort = sortc(fstar [., s], 1);
ly[s,1]=fsort[ round(b*(0.5*(1-covlev)))];
uy[s,1]=fsort[ round(b*(0.5*(1+covlev)))];
s = s + 1; endo;

resBS = resBS + coverage(ysim,ly,uy);

j=j+1; endo;

"*************************************************"
"AR coefficients=" coef’ " n=" n " c= " covlev;"";

resBJ/r̃ resBS/r;

end;

**********************************************
AR coefficients= 0.9000 -0.7000 n=25.0000 c= 0.8000

2.4326 0.1308 0.1330 0.7362 2.7558 0.1023 0.1153 0.7824
3.1552 0.1461 0.1483 0.7057 3.5697 0.1193 0.1328 0.7479
3.2025 0.1407 0.1417 0.7177 3.6345 0.1173 0.1297 0.7530
3.4166 0.1384 0.1388 0.7228 3.7772 0.1174 0.1282 0.7544
3.5832 0.1410 0.1417 0.7173 3.8432 0.1202 0.1306 0.7492
3.6202 0.1355 0.1372 0.7273 3.8641 0.1160 0.1274 0.7567
3.6803 0.1369 0.1388 0.7243 3.9178 0.1185 0.1310 0.7506
3.7341 0.1410 0.1424 0.7167 3.9629 0.1228 0.1352 0.7420
3.7558 0.1393 0.1396 0.7210 3.9813 0.1227 0.1347 0.7426
3.7782 0.1378 0.1375 0.7247 3.9889 0.1221 0.1335 0.7444

Figure 8.2 Gauss code. Monte Carlo evaluation of interval forecasts

is estimated, and continuations are generated, conditioned on yn and
yn−1. The sample of b continuations are then sorted and the appropriate
percentiles of the empirical distributions are read off.

At the bottom of Figure 8.2 the results of running the program are
given. The first four columns are the estimates of interval length, the
proportion of actuals below, above, and within, the interval, for the BJ
method. The last four columns record the same information for the other
method. The rows relate to the forecast horizon (1 to 10).

8.3.1 Extensions

Obvious extensions are to assess the dependence of the results on the
sample size n (as given, n = 25), and on the assumption that disturbances
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are normal. The code also assumes that the process starts at y2 = y1 = 0
on each of the Monte Carlo replications. Instead of this ‘fixed startup’
assumption, the first two values of the process could be drawn from the
joint distribution of a Gaussian AR(2).

As coded, the y∗
i vectors are generated using random draws from

N(0, 1) for the errors. In the event that the variance of the AR(2) disturb-
ances is neither unity nor normal, the errors should be bootstrapped as
described in the main text. This can be achieved by replacing rndn(n, b)
by an n × b matrix of randomly drawn (with replacement) errors
from resids.

Further, code could be added to bias-correct the estimated parameters,
one could allow the model to be mis-specified for the DGP, and look at
the consequences of selecting the order of the AR (or ARIMA). Finally,
ARCH errors could be investigated, as discussed in Section 4.2.6.

8.4 Forecast density evaluation

This section provides a sketch of the application of the density evaluation
techniques discussed in Section 5.2. The probability integral transform
was defined as:

zt =
∫ yt

−∞
pY ,t−1(u)du ≡ PY ,t−1(yt ), (8.1)

where pY ,t−1(y), t = 1, . . . , n, is a sequence of 1-step forecast densities of
period t conditional on t−1, and {yt }n

t=1 are the corresponding outcomes.
In Section 8.1 the procedure SETARfwas used to estimate by Monte Carlo
the point forecast as the average across a number of simulated continu-
ations. The first row of the matrix f (calculated in SETARf) contains
the 1-step continuations (which are averaged to obtain an estimate of
the 1-step ahead point forecast) can be used to estimate the empirical
distribution function (EDF) as:

P̂t−1(u) = 1
R

R∑
i=1

1(yi
t |t−1 < u),

where yi
t |t−1, i = 1, . . . , R are the elements of the first row of f . The prob-

ability integral transform can be calculated as zt = P̂t−1(yt ), where yt is
the actual value. Assuming f is returned from the procedure SETARf, the
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following line of GAUSS code would calculate zt (where y is the actual):

z = meanc(f [1, .]′ . < y)

If the forecast origin were moved through the data, giving rise to a
sequence of 1-step EDFs, then the resulting sample {zt }n

t=1 could be tested
to see if it constitutes a random sample from a U(0, 1). Suppose {zt }n

t=1 is
sorted by size, small to large. The theoretical CDF for a U(0, 1) evaluated
at the points {zt }n

t=1 is just {zt }n
t=1, and the empirical CDF has probab-

ility 1/n attached to z1, 2/n attached to z2, etc. The following line of
Gauss code calculates the maximum absolute difference between the two
distributions (and forms the KS statistic):

diff = max c(abs(z − seqa(1/n,1/n,n))),

where z is the vector of sorted zt ’s.
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2 Point Forecasts

1. As an alternative to ‘powering-up’ the OLS or 1-step estimator φ̂, the
relationship between yt and yt−h can be estimated directly: Clements and
Hendry (1996) and Bhansali (2002) discuss ‘multi-step’ estimation.

2. Approximations to the variances of powers of estimated parameters are given
in Schmidt (1977), Baillie (1979a,b) and Chong and Hendry (1986) for general
models, and are reviewed in Ericsson and Marquez (1989, 1998) and Campos
(1992).

3. The combination of forecasts can be extended to an arbitrary number of fore-
casts, and weights can be allowed to vary over time: see, for example, Diebold
and Pauly (1987), Deutsch et al. (1994) and Donaldson and Kamstra (1996).

4. Monte Carlo is used extensively in econometrics. One use of Monte Carlo
is to obtain the small-sample distributions of test statistics, as here, where we
calculate the actual sizes of test statistics corresponding to the 5% nominal size
critical value of the asymptotic distribution (or, as in the case of the ‘Standard’
test with student t errors, of an assumed distribution). General references to
Monte Carlo methods include Hammersley and Handscomb (1964), Hendry
(1984), Ripley (1987), Davidson and MacKinnon (1993) and Clements and
Hendry (1998, Ch. 5).

5. See, for example, Diebold et al. (1993, 1994), Filardo (1994), Lahiri and Wang
(1994) and Durland and McCurdy (1994).

3 Volatility Forecasts

1. The terms ‘time-varying conditional variance’ and volatility will be used
interchangeably.

2. There is a vast literature on ARCH and related models: Engle and Bollerslev
(1987), Bollerslev et al. (1992), Bera and Higgins (1993) and Shephard (1996)
provide good reviews; and Engle (1995) is an edited selection of some of the
key papers. Franses and van Dijk (2000) provide a good recent treatment
of linear and non-linear ARCH-type models. Our focus is on forecasting:
see in particular Bera and Higgins (1993), Baillie and Bollerslev (1992) and
Poon and Granger (2003) for a recent review of volatility forecasting.

3. A cross-plot of the quantiles of an empirical distribution of the data against
the quantiles of an hypothesized distribution (here a normal distribution).
Departures from the 45◦ line indicate a poor match between the two
distributions.

4. As for modelling the conditional mean, in any specific instance there may be
useful extraneous variables that could be brought to bear, but the history of
the process is always available. Multivariate models are available but will not
be considered here.

156
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5. The Taylor-series expansion of C (x) about x = 0 is given by:

C (x) = C (0) + (x − 0) C′ (x) |x=0 + (x − 0)2

2
C′′ (x) |x=0 + · · ·

= ba2

2
x2

after substituting C′ (x) = ab exp (ax) − ab, and C′′ (x) = a2b exp (ax).
6. For a textbook treatment of unit roots and (non-)stationarity see, for example,

Banerjee et al. (1993).
7. Maddala and Li (1996) show that the bootstrap tests of Lamoureux and

Lastrapes (1990) are not valid, and outline appropriate bootstrap tests.
8. Anderson and Bollerslev (1998, p. 891) list a large number of studies reporting

low R2’s for daily and intra-daily returns, many of which are less than 0.05.
9. κ = 3 when {zt } is normal. For fatter-tailed distributions κ > 3, making for an

even noisier proxy.
10. Assessments of volatility forecasts based on the quality of derived interval and

density forecasts are not subject to the problems that arise from using noisy
proxies for actual volatility.

4 Interval Forecasts

1. See Lopez (1996) for a discussion of the relationship between VaR analysis
and interval forecasting.

2. The empirical distribution function assigns to each value {ε̂t }, t = p+1, . . . , T ,
a measure equal to 1/(T − p). So independent draws from Fε̂ correspond to
sampling the errors with replacement.

3. The realized values of Y∗
T+k are {y∗

b,T+k, b = 1, . . . , B}.
4. See, for example, Thombs and Schucany (1990), Pascual et al. (2001) and

Clements and Taylor (2001) for results for a range of distributional assump-
tions for the disturbance term {εt } and other AR models.

5. In the Monte Carlo described in Section 4.2.5 we simulate R future values at
Step 1 to perform this calculation.

6. It is a binary variable, taking the values of 1 and 0 with probabilities p and
(1 − p), under correct specification.

7. The likelihood is the product of the n individual densities given independ-
ence. Assuming f

(
Ij = 1

) = π and f (Ij = 0) = 1 − π, we obtain:

L(π; I1, I2, . . . , In) = f (I1) × · · · × f (In) = (1 − π)n0πn1 .

8. The likelihood is derived from decomposing the joint density into the product
of the 1-step conditionals f (It | It−1), t = 2, . . . , n, and f (I1), and then ignoring
the first observation I1:

L(�1) = f (I2 | I1)f (I3 | I2) × f (In | In−1).
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Then note that f (Ij = 1 | Ij−1 = 1) = π11, and this occurs n11 times, f (Ij = 0 |
Ij−1 = 0) = π00 = 1 − π01, and this occurs n00 times, f (Ij = 1 | Ij−1 = 0) = π01,
and this occurs n01 times, and f (Ij = 0 | Ij−1 = 1) = π10 = 1 − π11, and this
occurs n10 times.

9. ‘Independence’ is a misnomer because only second-order properties are being
considered.

10. See Taylor and Bunn (1998) for extensions.
11. The standard errors are calculated using the Bollerslev and Wooldridge (1992)

method.
12. For details of this runs test in an interval forecast evaluation setting see

Christoffersen and Diebold (2000).

5 Density Forecasts

1. See, for example, the recent survey article Tay and Wallis (2000).
2. Diebold et al. (1999) discuss errors in the specification of the sequence of

pY ,t−1(·)’s that would lead to either the i.i.d. or uniformity aspects failing
to hold.

3. Detailed information on the survey as well as the survey results are available
at the URL www.phil.frb.org/econ/spf. An academic bibliography of art-
icles that either discuss or use data generated by the SPF is also maintained
online.

4. Giordani and Söderlined (2003) consider a number of different ways of obtain-
ing measures of inflation uncertainty from the SPF, and in particular the
practice of aggregating individual respondents’ histograms.

5. The series were taken from the Federal Reserve Bank of St Louis database
(FRED), available at the URL www.stls.frb.org/fred/data/ and have the
codes GNPDEF, GDPDEF and GDPCTPI.

6. As an example, suppose we wish to calculate the forecast probability of
observing a value less than Y = 3.5. Suppose Pr (Y < 2) is 0.5, and the bin
defined by [2, 4) has a probability of 0.2. Then:

Pr(Y < 3.5) = Pr(Y < 2) + 1.5
2

Pr(Y ∈ [2, 4))

= 0.5 + 1.5
2

0.2 = 0.65.

Linear interpolation follows the assumption implicit in the histogram – that
probability mass is uniform within a bin. If a bin is bordered by a high prob-
ability bin and a relatively low probability bin, it might be desirable to attach
higher probabilities to points near the boundary with the high probability
bin. See Giordani and Söderlined (2003) for a discussion of this point and an
alternative approach.

7. Available for each quarter from 1997: 3 to the present from the Bank of
England web site (homepage www.bankofengland.co.uk). The forecasts
reported here were downloaded 6 August 2003.

8. See Britton et al. (1998) and Wallis (1999) for a discussion.
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9. Note that for the US, Atkeson and Ohanian (2001) find that no-change fore-
casts are more accurate on MSFE than Phillips Curve forecasts, but see also
Stock and Watson (1999b). In a study of forecasting inflation in the G7 coun-
tries Canova (2002) finds that bivariate and trivariate models are little better
than univariate models.

10. For i.i.d. observations Andrews (1997) takes the supremum over points in
the sample, {yt , yt−1; t = 1, . . . , T}. The exposition here follows Corradi and
Swanson (2003).

6 Decision-based Evaluation

1. See also Granger and Pesaran (2000a).
2. Whether the roads are gritted overnight will not affect the probability of tem-

peratures falling below freezing, for example. Of course, phenomena of the sort
typified by Douglas Adams’ Rain God, Rob McKenna (in ‘So Long, and Thanks
for All the Fish’, 1984, London: Pan Books Ltd.) are possible.

3. Because st+1 is binary, π̂t+1 and (1 − π̂t+1) constitute the complete forecast
density (the probabilities that st+1 = 1 and 0, respectively). Moreover, π̂t+1
is also the forecast of the conditional expectation of st+1 – the point forecast
and forecast density coincide. When st+1 is discrete but takes on a range of
values, or is a continuous random variable, a full elucidation of the probabilities
associated with each value is required, which will go beyond the point forecast.

4. qt+1 > 0 because δt+1,b > 0 and δt+1,g > 0 by assumption. U.,by > U.,bn because
‘action’ will alleviate the costs incurred in the bad state (having gritted the
roads when there is a frost will reduce the number of road traffic accidents).
U.,gn > U.,gy because gritting is costly and unnecessary when there is not a frost.
qt+1 will approach unity as δt+1,g gets large relative to δt+1,b, that is, the costs
of prevention (‘gritting’) are prohibitively expensive relative to the savings in
terms of a reduced number of accidents.

5. Consistent with this view, the forecast probabilities attached to the event that
inflation falls outside the target range of 1 1

2 to 3 1
2 are generally small.

6. From which it is evident that if the bad state is forecast to occur in each period,
for example, π̂t = 1, all t , ensuring 1(π̂t+1 > qt+1) = 1, all t , then Ks = 0
because H = F = 1. However, QPS will be small to the extent that the bad state
happens to occur each period.

7. Where {vt } is an i.i.d. zero-mean series (0, σ2) with E[vt | yt−1, yt−2, . . .] = 0, and
|φ| < 1.

8. Complications arise from parameter estimation error, but these are another
issue and are ignored here to sharpen the arguments.

7 Postscript

1. For the volatility forecasts, Section 3.6 noted a possible proxy for ‘actual’
volatility.
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