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Preface

The continuous increase in the complexity of modern industrial systems and
objects as well as growing reliability demands regarding their operation and
control quality are serious challenges for further development of the theory
and practice of control and technical diagnostics. Thus modern control sys-
tems are complex in the sense of implementing numerous functions, such as
process variable processing, digital control, process monitoring and alarm in-
dication, graphic visualization of the course of a process, or data exchange
with other systems or databases. Moreover, modern control systems are in-
tegrated with management systems, which very often cover production and
corporate management problems. Hardware and software structures of con-
trol systems of complex processes are decentralized and space distributed.
Decentralization consists in dividing system operation into many function
units working simultaneously. In integrated systems, software for control and
visualization creates one information system with a common database. The
main driving force behind the development of modern control systems is rapid
evolvement of computer techniques, which have forced the standardization of
field networks and programming languages of control systems. The enormous
possibilities of technical and program realization of control systems permit
significant extension of their functions and tasks, including the introduction
of advanced algorithms of process modeling, control and diagnostics.

The present book conveys a description of the developed DiaSter system
as well as characteristics of advanced original methods of modeling, knowl-
edge discovery, simulator construction, diagnostics, control, and supervision
control applied in the system. The system gives the possibility of early recog-
nition of abnormal states of industrial processes and faults or malfunctions
of actuators as well as technological and measuring units. The universality
of solutions assumed in DiaSter allows its broad application, for example,
in power, chemical, pharmaceutical, metallurgical and food industries. The
system is a world-scale unique solution, and due to its open architecture it
can be connected practically with any other control systems.
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In the main part of the book, analytical and artificial intelligence methods
implemented in the DiaSter system are discussed. One of the first chapters
is devoted to problems of physical process modeling, fundamental in mod-
ern control, diagnostics, or designing and searching for alternative solutions.
The known analytical as well as neural, fuzzy and neuro-fuzzy models are
presented. Particularly the latter, that is, artificial intelligence methods, are
attractive for control systems as they give possibilities for describing nonlin-
ear processes in quite an easy way. In turn, taking into account the fact that
modern Distributed Control Systems (DCSs) as well as Supervision Control
And Data Acquisition (SCADA) systems allow collecting a huge amount of
process data coming from different sources, in another chapter methods and
algorithms of knowledge discovery in databases are considered. In DiaSter,
process data can be a source of diagnostic knowledge, which—obtained with
the techniques of knowledge discovery—can be used for fault detection and
localization of processes and systems.

An extensive chapter is devoted to describing diagnostics methods of pro-
cesses and systems, which can be found useful in industry and were imple-
mented in the DiaSter system. First of all, robust fault detection algorithms
designed by employing the adaptive decision threshold approach are dis-
cussed. Such thresholds were assigned for fault detection systems with dynam-
ical neural models such as multilayer perceptrons and the Group Method of
Data Handling (GMDH). Methods of fault localization are considered mainly
with the application of fuzzy logic. The proposed approach is based on in-
ference rules robust with respect to structure changes of diagnosed processes
or systems. It includes inference algorithms implemented in DiaSter for sin-
gle and multiple faults, different ways of dealing with symptoms occurrence
delays, or reference algorithms in a hierarchical structure. Moreover, taking
into account advantages and disadvantages of methods of symptom diagnos-
tics and the model based approach, in the book a belief-network-based model
is presented as well. It is a heuristical model that permits sequential appli-
cation of methods characteristic for both classes of diagnostic investigation.

In another chapter, methods of supervision control implemented in the
system are discussed. Elementary structures and algorithms of predictive
control, the so-called MPC (Model-based Predictive Control), including the
DMC (Dynamic Model Control) algorithm for linear models, are presented.
Also, fundamental methods of automatic adjustment of the PID control loop
followed by precision adjustment and adaptation are considered. Describing
a set point control system, the way of transmitting the set amount generated
in the optimization layer of the process working point to the control loop in
the direct control layer is presented.

The last chapter illustrates the operation of different functions of DiaSter
with a simple system of three tanks. The chosen plain example has many
educational advantages and gives an excellent possibility for exact study-
ing of fundamental characteristics and possibilities of the DiaSter system.
By using system tools, a simulator of the three-tank system, dynamical
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models of the GMDH and the multilayer perceptron type as well as the TSK
(Takagi–Sugeno–Kang) model were built. The realization of diagnostic tasks
was shown both for systematic diagnostics of abrupt faults as well as the de-
tection and tracking of the development of slowly increasing faults. Here, the
control systems used in the object, that is, traditional PID controllers with
automatic adjustment of settings and predictive controllers, are presented
as well.

The present monograph is in a sense a continuation of our earlier
book entitled Fault Diagnosis. Models, Artificial Intelligence, Applications
(Springer, 2004), and its first edition was published in Polish by Wydawnictwa
Naukowo-Techniczne, WNT, in 2009, (Warsaw, Poland). This english lan-
guage version is not merely a translation of the original—many chapters
contain some significant improvements, such as new or extended parts and
examples, found especially in Chapter 7. The book presents theoretical and
practical results of research into fault diagnosis and control conducted over
many years within cooperation between Polish research teams from the War-
saw University of Technology, the University of Zielona Góra, the Silesian
University of Technology in Gliwice, and the Technical University of Rzeszów.
In the years 2007–2009, the above-mentioned consortium of universities con-
ducted a developmental project entitled Intelligent diagnostic and control
assistance system for industrial processes DiaSter.

The editors wish to express their gratitude to all authors for preparing
joint chapters and for very fruitful collaboration during the editorial process.

July 2010
Zielona Góra/Warsaw

Józef Korbicz
Jan Maciej Kościelny
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Krzysztof Janiszowski, Józef Korbicz, Krzysztof Patan,
Marcin Witczak
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Analytical Models and Modeling . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Basic Relations for Balance Dependencies . . . . . . . . . . 58
3.2.2 Integration Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



X Contents

3.2.3 Pneumatic Cylinder: A Balance Model . . . . . . . . . . . . . 64
3.2.4 Pneumatic Cylinder: A Block Model . . . . . . . . . . . . . . . 70

3.3 Linear Models: Local Approximation of Dynamic
Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3.1 Dynamic Model Linearization . . . . . . . . . . . . . . . . . . . . . 72
3.3.2 Pneumatic Cylinder: A Linear Model . . . . . . . . . . . . . . 74
3.3.3 Pneumatic Cylinder: An Optimized Linear Model . . . 78

3.4 Parametric Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.4.1 Discrete Linear Parametric Models . . . . . . . . . . . . . . . . 83
3.4.2 Identification of the Coefficients of Parametric

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.4.3 Pneumatic Cylinder: A Parametric Linear Model . . . . 89

3.5 Fuzzy Parametric Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.5.1 Fuzzy Parametric TSK Models . . . . . . . . . . . . . . . . . . . . 92
3.5.2 Estimation of Fuzzy TSK Model Coefficients . . . . . . . . 94
3.5.3 Pneumatic Cylinder: A TSK Fuzzy Model . . . . . . . . . . 96

3.6 Neural Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.7 Neural Networks with External Dynamics . . . . . . . . . . . . . . . . 100

3.7.1 Recurrent Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.7.2 State Space Neural Networks . . . . . . . . . . . . . . . . . . . . . 103
3.7.3 Locally Recurrent Networks . . . . . . . . . . . . . . . . . . . . . . 104
3.7.4 GMDH Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.7.5 Implementation of Neural Models in the DiaSter

System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4 Knowledge Discovery in Databases . . . . . . . . . . . . . . . . . . . . . . 119
Wojciech Moczulski, Robert Szulim, Piotr Tomasik,
Dominik Wachla
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.2 Selection of Input Variables of Models . . . . . . . . . . . . . . . . . . . . 121

4.2.1 Correlation-Based Feature Selection . . . . . . . . . . . . . . . 122
4.2.2 Measures Based on Correlation . . . . . . . . . . . . . . . . . . . . 123
4.2.3 Searching through the Feature Space . . . . . . . . . . . . . . . 124

4.3 Discovery of Qualitative Dependencies . . . . . . . . . . . . . . . . . . . 125
4.4 Discovery of Quantitative Dependencies . . . . . . . . . . . . . . . . . . 128

4.4.1 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.4.2 Methods Involving Case-Based Reasoning . . . . . . . . . . 134

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5 Diagnostic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
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Technology, ul. Św. Andrzeja Boboli
8, 02–525 Warsaw, Poland
p.wnuk@mchtr.pw.edu.pl



Chapter 1
Introduction

Jan Maciej Kościelny

1.1 Control System Structures

Modern control systems are complex, i.e., they implement many different functions.
The basic ones include process variables processing, binary control, direct digi-
tal control, supervisory control, batch control, balance calculations, statistic indices
calculation, process protection, the sequence of event processing, alarm signaling, as
well as data storing in archives, reporting, graphic visualization of process changes,
hardware structures configuration, data exchange with other systems or databases,
calculation sheets, etc., control with the use of recipes, statistic process control.

The functional structure defines the set of implemented tasks and relations that
exist between them. Modern control systems and manufacturing management have
a hierarchical functional structure (Isermann, 2006; Niederliński, 1984; Tatjew-
ski, 2007; Korbicz and Kościelny, 2009). The hardware-software structure defines
the way of technical implementation of tasks with the use of hardware and soft-
ware. Many different hardware-software systems can correspond with the functional
structure.

Within the automatic control system functional structure, one can distinguish the
following:

• the process automatic control system, containing

– the control subsystem,
– the visual presentation and maintenance subsystem,
– the safety subsystem,
– the plant equipment maintenance subsystem;

Jan Maciej Kościelny
Institute of Automatic Control and Robotics,
Warsaw University of Technology,
ul. Św. Andrzeja Boboli 8, 02–525 Warsaw,
Poland
e-mail: jmk@mchtr.pw.edu.pl



2 J.M. Kościelny

• the management system, containing

– the manufacturing management subsystem,
– the company management subsystem.

The following levels are included in the control subsystem (Fig. 1.1):

Fig. 1.1 Functional structure of the control and manufacturing management system

• the measurement and controlling action level: in the hardware structure, this
is the set of instruments and actuators. More and more often, it consists of
the so-called intelligent transducers and actuators equipped with microprocessor
units that implement many functions of preprocessing signal conversion, actuator
position control and communication with control units via Fieldbus;

• the direct digital control level: control and discrete automatic control are the main
tasks of this level. Different kinds of controllers and control devices are placed
within this level;

• the supervisory control level: it implements control algorithms, disturbance com-
pensation algorithms, adaptation algorithms and optimum control of particular
technology nodes algorithms. Optimal control signals worked out at this level do
not act directly on actuators but are inputs assigned (lead) to algorithms at the
direct control level. Algorithms at the supervisory control level may be imple-
mented both by high capacity controllers (called “process” stations in Distributed
Control Systems (DCSs)) as well as computers;
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• the supervisory, co-ordination and process optimization level: the surveillance
includes the tasks of detection, registration and the signaling of alarms. Con-
trol tasks implemented for continuous processes at this level include the co-
ordination of flows of materials and energies that flow between different parts
of the process (technological nodes), as well as the optimization of the process
points of operation. For discrete processes, algorithms for the cooperation of
groups of machines and devices are implemented. These functions are executed
by computers.

The characteristic features of the hierarchical structure of the automatic control
structure include the fact that lower levels of the automatic control structure are
attributed to particular parts of the process, but higher levels of the automatic con-
trol structure may be common for several parts or even for the whole process. The
functional structure is therefore characterized by vertical divisions, i.e., particular
parts of the control system are attributed to the existing parts of the process (techno-
logical nodes, stations or manufacturing departments). Even smaller manufacturing
subsystems are isolated. For instance, in a sugar factory, in the raw state subprod-
uct station, the following substations can be distinguished: the sugar beet juice ex-
traction substation, the juice refining substation, and the evaporator substation. The
sugar factory power station consists of the boiler house substation, the turbine room
substation, and the boiler water conditioning substation. For each one of the substa-
tions, most often separate subsystems are implemented which include process mea-
surements and actions as well as direct control. However, the supervisory control
and surveillance levels may be selected individually for each substation, but most
often they are common for the whole raw state subproduct station or the thermal-
electric power station.

In automatic control structures, higher-level algorithms calculate parameters for
lower-level algorithms, but the latter are usually implemented more often than the
former (Niederliński, 1984). For example, supervisory control algorithms calculate
set-point values for control algorithms and they in turn direct control signals to
the level of acting on the process where the actuators (often servo-mechanisms)
follow control signals changes. Supervisory control algorithms, however, are usually
implemented with much lower frequencies (e.g., several times per hour) than the
control algorithm (several or several dozens of times per second).

The main task of the supervision subsystem is to ensure proper process opera-
tion. Stations can present adequately converted and prepared data from other levels.
Process changes can be observed with the use of synoptic diagrams of the process,
process variables diagrams, lists of events and alarms, etc. Not only current data
can be observed but also past ones extracted from the archives. Reports give the op-
erators data composed adequately to the users’ needs. Operators’ stations allow us
to observe the process changes and to implement necessary actions (switching the
devices on or off, set-point changes, manual control, etc.). Engineers’ stations allow
us to make hardware configuration changes, software (algorithm) changes of the
system and to introduce modifications, but surveillance stations allow us to observe
the visual presentation of the process and data changes only.
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Each process has its safety subsystem that is independent of the automatic control
system at the measurements and actions level, as well as at the control level. This
means that the protection functions are implemented with the use of other devices
(acting usually in the redundancy structure) such as the ones applied for control
tasks. The visual presentation for control and process safety is usually integrated.

During the last couple of years, automatic control systems have begun to im-
plement additional tasks related to the service of intelligent plant-based devices.
They can be separated into individual subsystems that contain databases in which
all configuration-related parameters of measuring devices and actuators are gath-
ered, along with information on the implemented modifications of these parameters
and device repairs, etc. Such a subsystem also permits remote configuration and
calibration of plant-based devices, as well as off-line diagnostics (when a device
does not work within the process) and—more and more often—current (on-line)
diagnostics of the measuring devices and actuators that work within the process.

Modern automatic control systems are integrated with management systems.
Such an integrated control and management system is presented in Fig. 1.1. It
possesses two additional levels: one for manufacturing management and the other
one for company management implemented in computer-based technology exclu-
sively. The management tasks are implemented by Manufacturing Execution Sys-
tems (MESs) and Enterprise Resource Planning (ERP) systems.

In the hardware structure of automatic control systems one can distinguish the
following units:

• measuring devices and actuators,
• controlling devices (Programmable Logic Controllers (PLCs), Programmable

Automation Controllers (PACs), apparatus controllers, process stations),
• operators’ panels and stations,
• engineers’ and surveillance stations,
• servers,
• networks.

Networks unite all of the remaining devices into one system. In automatic control
systems, both computer-based Local Area Networks (LANs) as well as field (indus-
trial) networks usually called “Fieldbus” are applied. In the structure of the system,
not just one network exists but usually several ones, adapted to different needs, con-
ditions and technical requirements concerning data transmission in various places
of the system structure. Separate networks are usually applied to connect of intel-
ligent measuring devices and actuators with controlling devices, controlling units
with observation units and devices for controlling system maintenance as well as
the control and management system.

Hardware-software structures of systems controlling complex industrial pro-
cesses are de-centralized and space-distributed. De-centralization consists in the
distribution of system operation into many functional units working in parallel at-
tributed to different parts of the process and (usually) placed apart one from the
other. Most often, two kinds of hardware-software structures are applied:
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• integrated systems (Distributed Control Systems (DCSs) class),
• systems implemented with the use of Supervisory Control And Data Acquisition

(SCADA) monitoring systems as well as programmable controllers.

In integrated systems, software for control and visual presentation creates one sys-
tem with a common database and is supplied by one manufacturer. The second group
of solutions, however, is characterized by the fact that systems are composed from
the SCADA monitoring system and programmable controllers. The controlling de-
vices can be supplied by manufacturers different than the ones that supply us with
the SCADA system. Therefore, the controlling system is composed of separate soft-
ware systems for the monitoring and control of the process.

To the control of the largest technical installations in the power, chemical, iron
and steel industries, DCSs are applied. They are characterized by the following:

• the possibility of controlling large processes—up to 50 to 200 thousand process
variables;

• the possibility of the redundancy of all elements of the system structure;
• autodiagnostics;
• the scaling ability—the possibility to obtain economically rational solutions for

large, medium and small plants, and structure expansion as the plant is enlarged;
• complexity—the possibility of the implementation of all tasks mentioned in

Chapter 3;
• backward compatibility—compliance with the rule that new generations of the

system should cooperate with the earlier ones so that system expansion is possi-
ble without additional costs of the modernization of parts installed earlier;

• the use of real-time operational systems (e.g., VxWorks, VRTX, OS9) in control-
ling devices;

• the possibility of inserting I/O modules in to the automation system be means of
hot swap;

• the possibility of system software upgrading in the run mode without disturbing
the controlled process itself or its control;

• the use of the time stamp for measuring signals, events and alarms;
• the availability of intrinsically safe I/O modules;
• the availability of safety controllers;
• the availability of software needed for the implementation of advanced modeling

functions, diagnostics and automatic control.

The hardware structure does not always correspond with the hierarchy of the func-
tional structure. Figure 1.2 presents an example of the hardware structure of a system
(without transducers and actuators).

1.2 Trends in the Development of Modern Automatic Control
Systems

The progress of information technology gave impetus towards the development
of control systems: computational power of the new generation of processors,
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Fig. 1.2 Example of the hardware structure of a control system (based on the Honeywell
company’s materials)

memory capacity, the speed of data transmission in LANs and Fieldbus networks,
the development of the Internet and system software. Another element that changed
automatic control systems was the standardization of software languages of auto-
matic control systems and field networks. One could mention the following direc-
tions of the development of automatic control systems observed in the last couple
of years:

• the application of standard computers and operating systems for process
monitoring and surveillance. The dominating position is occupied here by the
Windows operating system. The Unix system is applied more rarely. The use of
non-standard operation systems, so often applied a dozen or so years ago, has
been completely abandoned;

• the application of the Intranet and Internet for interchanging information on pro-
cess changes within the plant as well as long-range data transmission;

• the introduction of standard field networks (Profibus FMS/DP/PA, CAN, Field-
bus Foundation H1, H2);

• the development and gradual implementation of wireless technology for data
transmission for measuring devices and actuators;

• broadening the system structure by the introduction of an additional level of in-
formation stations assigned for plant management, engineering supervision, etc;

• the introduction of intelligent measuring devices and actuators, i.e., devices sup-
plied with microprocessor-based units connected with control devices with the
use of field networks;

• the introduction of the IEC 61131 standard, which defines five languages for
process automatic control (FBD, LD, SFC, DT, IL, CFC);

• the increase of the system openness degree;
• the ensurance of system reliability factors at acceptable levels as a compromise

between system safety demands and costs. This is implemented by optional (and
not obligatory) application of the redundancy of particular units of the system;
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• the introduction of the diagnostics (autodiagnostics) of the automatic control sys-
tem (process and operators’ stations as well as network elements) in integrated
systems;

• ensuring the scalability of systems, which allows us to apply it to automatic con-
trol of large, medium and small plants;

• the application of multi-media and management techniques to operators’ and
information stations;

• the integration of automatic control and management systems with the use of
data warehouses;

• the introduction of new functions of automatic control systems, such as advanced
modeling, control and process diagnostics algorithms.

The above-mentioned directions of automatic control systems development prob-
ably do not exhaust all of the tendencies that appear in new solutions. However,
they do show that the new generation of automatic control systems is better than the
previous ones. It has better openness, high comfort of service, the easiness of de-
sign, the possibility of application to technical installations of various dimensions.
Integrated controlling software, as well as software for visual presentation and con-
figuration, ensures also current update of the system documentation and easy access
to it. New functions of automatic control systems are becoming—apart from the
development and standardization of hardware and software—one of main areas of
rivalry between manufacturers offering automatic control systems. These new tasks
of automatic control systems are characterized in Section 1.3.

1.3 New Functions of Advanced Automatic Control Systems

Process control and supervision functions in automatic control and monitoring of
industrial processes are still relatively limited. In control, mainly classic PID con-
trollers are applied, and software for advanced control is available in few modern
integrated systems or separate software packages. Supervision functions rely on the
detection and signaling of events and alarms. Such a supervision functional range
can be described as basic.

This situation, however, is rapidly changing. Recently, fast development of meth-
ods and software for advanced automatic control modeling and process diagnostics
has been observed. Very many papers are written on the subject. The implemen-
tation of advanced calculation algorithms is possible thanks to modern computer
technology, while modern teaching programs at universities allow us to break down
the barrier related to the necessity of training specialists prepared for the implemen-
tation and use of advanced modeling, control and diagnostic techniques.

Models of processes are necessary for the implementation of advanced algo-
rithms of process control optimization, fault detection, the implementation of virtual
sensors, analyzers and simulators of processes. Problems of process identification
and modeling are broadly discussed by Walter and Pronzato (1997), Ljung (1999),
Janiszowski (2002), Duda (2003), Landau and Zito (2006), Isermann and Münchhof
(2009). Apart from analytic methods of modeling, neural and fuzzy techniques are
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also widely applied (Ying, 2000; Piegat, 2001; Rutkowski, 2004b; Witczak, 2007;
Patan, 2008b; Świątek, 2009; Talebi et al., 2010).

Software for physico-chemical modeling and modeling based on available mea-
surement data is also being developed. With the use of process models, virtual sen-
sors and analyzers are built that constitute information redundancy of measured
signals. Measurements of some physical quantities are costly, so in many cases it
is more profitable to use process models to calculate signal values using other mea-
sured process variables than to use hardware redundancy. When the measuring path
is faulty, the variable value can be reconstructed based on the virtual sensor or ana-
lyzer. Thus, we obtain system robustness to faults of these measuring lines for which
virtual substitutes exist. In the power industry, it is especially advisable to construct
virtual analyzers of NOx and COx emissions since hardware analyzers cause many
exploitation problems. Process simulators are more and more widely applied mainly
to the training of operators. They can also be applied to the testing of new control
strategies, process state changes predictions, etc.

In modern automatic control systems, advanced control algorithms are more and
more widely applied. Advanced control techniques use algorithms which are more
complex than classic PID algorithms (Tatjewski, 2007). Classic PID type algorithms
and their expansions are still the dominating solution at the direct control level,
which results from their robustness, the fact that operators are familiar with them,
and their simple service. In distributed control systems, self-tuning and control loop
adapting methods are applied (Bobál et al., 2005; Świder and Trybus, 2009).

The development of new automatic control techniques results from difficulties
that arise during the control of difficult processes. Control difficulties are related
to strong non-linearities, high time-delays, signal limitations, the necessity to en-
sure control robustness, as well as to the fact that processes are multi-dimensional.
Many monographs are available that deal with modern automatic control tech-
niques (Åström and Wittemark, 1997; Grimble, 2001; Goodwin et al., 2001; Ack-
ermann, 2002; Duda, 2003; Grega, 2004; Albertos and Sala, 2002; Christofides and
El-Farra, 2005; Rosenwasser and Lampe, 2006; Bańka, 2007; Astolfi et al., 2008;
Chernous’ko et al., 2008; Zecevic and Siljak, 2010).

At the direct automatic control level, fuzzy control algorithms are more and more
widely applied (Kacprzyk, 1996; Palm and Driankov, 1997; Ying, 2000; Piegat,
2001; Tatjewski, 2007), and they are especially useful for non-linear installations.
To loops having difficult dynamics, predictive controllers are also applied.

Model Predictive Control (MPC) is an effective way to control multi-dimensional
processes with difficult dynamics (Maciejowski, 2002; Camacho and Bordons,
2004; Tatjewski, 2007; Huang and Kadali, 2008). Because of that, it is applied more
and more often at the supervisory control level, where slowly changing process
variables are to be controlled that have a key significance for obtaining the required
product quality. The advantage of this technique is the possibility of taking into
account the limitations of control and output signals.
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At the optimization level, algorithms for the optimization of operational points
are applied. They should define set-points for the control loops implemented at
lower levels (Brdyś and Tatjewski, 2005; Tatjewski, 2007).

Figure 1.3 presents classic single loop control systems and multi-dimensional
predictive control. Figure 1.4 shows the possibility of reaching the optimum point
of operation with the use of advanced control algorithms.

Fig. 1.3 Classic and advanced control (based on the Foxboro company’s materials)

Fig. 1.4 Reaching the optimum point of operation (based on the ABB company’s materials)
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Fault-Tolerant Control (FTC) algorithms (mainly of measuring loops and ac-
tuators) define a different dimension in research and development. The ability
of fault tolerance (Mahmoud et al., 2003; Hajiyev and Caliskan, 2003; Blanke
et al., 2003; Héctor and Fabián, 2005; Isermann, 2006) is obtained first of all by
the implementation of current fault diagnostics and the re-configuration of the hard-
ware or software structure of the automatic control system with states with faults
(Fig. 1.5).

Fig. 1.5 Structure of the fault-tolerant system (n: measurement noise, d: disturbance, f: faults)

Modern computer systems allow us to apply complex (in the sense of cal-
culations) algorithms developed on the grounds of computer science, automatic
control, diagnostics and knowledge engineering. They use artificial intelligence
techniques such as artificial neural networks (Tadeusiewicz, 1993; Hrycej, 1997; Os-
owski, 2000; Gupta et al., 2003; Dreyfus, 2005; Rutkowski, 2004a; Talebi et al.,
2010), fuzzy logic (Kacprzyk, 1996; Palm and Driankov, 1997; Fuller, 2000; Piegat,
2001; Rutkowski, 2004a), rough sets (Pawlak, 1991), evolution algorithms (Tenne,
2010; Rutkowska et al., 1997), as well as expert systems (Mulawka, 1996; Ligęza,
2005), methods for knowledge detection using databases (Moczulski, 2002a). Ad-
equate software has the form of special software modules being an element of the
automatic control system, or expert systems integrated with the automatic control
system. During the last dozen of years we have observed significant
development of current diagnostics of industrial processes. There have been
published monographs that present methods for fault detection and isolation in mea-
surement instruments, actuators, and components of the process (Basseville and
Nikiforov, 1993; Chen and Patton, 1999; Gertler, 1998; Patton and Frank, 2000;
Kościelny, 2001; Chiang et al., 2001; Simani et al., 2003; Korbicz et al., 2004; Is-
ermann, 2006; Witczak, 2007; Sobhani-Tehrani and Khorasani, 2009), along with
many survey papers. The developed methods make the basis of modern diagnostic
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systems. The need for early and accurate fault recognition arises from the aspira-
tion for increasing process safety as well as the limitation of losses in abnormal
and faulty states. In technical installations of the power, chemical, iron and steel,
food and many other industries, faults of components of the technical installation,
measuring devices and actuators still appear despite the application of high relia-
bility elements. In systems of automatic control of industrial processes, the module
for alarm signaling is applied to the recognition of abnormal and faulty states. It is
a simple version of the diagnostic system. The main disadvantage of alarm systems
is the high number of signaled alarms. According to the data collected by the En-
gineering Equipment & Materials Users’ Association (EEMUA), the average daily
number of faults should not exceed 144 but, in reality, it is much higher, e.g., about
1500 in the oil industry and nearly 2000 in the power industry. Alarms appear espe-
cially often in states with faults. The interpretation of such a high number of alarms
is a very serious problem for the operator. The information overload phenomenon
comes into being here, as well as the stress as its result. This can lead to the exis-
tence of additional operators errors that, cumulating with earlier faults, cause serious
breakdowns. The mechanism of such unfortunate (positive) feedback is presented in
Fig. 1.6. It was the cause of many serious faults in nuclear power and conventional
plants as well as in chemical industry installations.

Fig. 1.6 Causes and results of abnormal and faulty states
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However, classic methods applied to alarm detection and signaling have many
disadvantages, including the following:

• a lack of the possibility of detecting some faults whose symptoms are masked by
control loops (see Fig. 1.7);

• high detection delays;
• a lack of inference mechanisms that allow us to formulate diagnoses on faults;
• the alarm presentation method has its disadvantages, too: a fault manifests it-

self usually as the appearance of many alarms at different levels of the process,
but alarms being the result of different faults are signaled together in the same
picture.

Fig. 1.7 Toxic substance leak masked by the level control system

The above-mentioned disadvantages make diagnosis formulation difficult for op-
erators, i.e., the recognition of the cause of alarm set existence, which is necessary
in many cases to undertake the proper protection action. Therefore, proper diagnosis
formulation depends only on the operator’s knowledge and his/her psycho-physical
state.

Alarm system imperfection is the cause of the development of diagnostic sys-
tems for industrial processes. The diagnostic system’s task is to detect and recog-
nize faults understood as various events that destruct the process run. Diagnostic
systems can implement the following functions: the detection, isolation, identifica-
tion of faults, logging the data on faults into archives, diagnostic reports generation,
visual presentation of faults, diagnoses justification, helping operators to arrive at a
decision in states with faults.

Diagnoses that were accurately and quickly obtained make it possible to under-
take necessary protection actions. The diagnostic system, together with adequate
protection actions, makes therefore the second, higher level of the process protec-
tion system, while Safety Instrumented Systems (SISs) make the first, lower level
of process protection system. The higher level of the process protection—thanks
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to accurate and quick diagnosis—gives us the possibility to reduce or even elimi-
nate fault consequences (process run presented as a dashed line in Fig. 1.8). It also
allows us to avoid the action of the lower-level protections, which in many cases
causes a process shutdown or lowers its efficiency.

Fig. 1.8 Process changes in a system without and with diagnostics

The above-characterized new modeling, advanced control and diagnostic func-
tions in processes were implemented in the DiaSter system. This monograph con-
tains a description of the system and the characteristics of modeling knowledge
invention, simulator construction, diagnostics and supervisory control methods ap-
plied in the system, as well as methods of their implementation. Examples of simple
applications of the system are also given.



Chapter 2
Introduction to the DiaSter System

Jan Maciej Kościelny, Michał Syfert, and Paweł Wnuk

2.1 Introduction

The DiaSter software platform is a set of programs working together to realize
functionality related to process modeling, variables processing, fault detection and
diagnosis, advanced control, and decision support. This chapter begins with short
descriptions of main applications of the DiaSter system as a convenient tool to re-
alize multiple functions. Then a more detailed description of the DiaSter platform
is given, starting with a presentation of the information model handled in the sys-
tem. The possibility of data exchange between modules, different work modes and
system extension mechanisms are presented. Finally, all main DiaSter modules are
described, including off-line and on-line variables processing and visualization.

2.2 System Structure and Tasks

2.2.1 Main Uses of the System

The main application areas of the DiaSter system are advanced process modeling,
supervisory control, process optimization and diagnostics (Fig. 2.1). The system
gives a possibility to implement advanced supervisory and control algorithms and
set-points optimization. In additionally, tools for control loop adjustment and on-
line tuning are included, with a possibility to work with control loops embedded in
a DCS and/or PLC controllers.

Jan Maciej Kościelny · Michał Syfert · Paweł Wnuk
Institute of Automatic Control and Robotics,
Warsaw University of Technology,
ul. Św. Andrzeja Boboli 8,
02–525 Warsaw,
Poland
e-mail: {jmk,msyfert,p.wnuk}@mchtr.pw.edu.pl
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Fig. 2.1 Main uses of the DiaSter system

Fig. 2.2 DiaSter in industrial processes management tasks

DiaSter provides tools for early and precise detection and recognition of im-
proper states of industrial processes as well as technological units, actuators and
measurement faults. In abnormal and faulty states, DiaSter supports process opera-
tors through diagnosis presentation with optional advisory messages and operating
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instructions. The diagnosis given by the system is much more precise than the stan-
dard alarm sequence.

The system is intended for use in the power generation, chemical, pharmaceuti-
cal, steel or food production and many other industries. It is fully prepared to work
in cooperation with other systems used by the industry (Fig. 2.2). The development
of the system was supported by a Polish government grant entitled Intelligent diag-
nostic and control support system for industrial processes DiaSter. The work was
conducted by a research team composed of specialists from the Warsaw University
of Technology, the Silesian University of Technology, the Rzeszów University of
Technology and the University of Zielona Góra. DiaSter is a new, extended ver-
sion of the AMandD system, developed at the Institute of Automatic Control and
Robotics of the Warsaw University of Technology.

The system is a world-scale unique solution. It includes the implementation of
a wide range of the latest algorithms in the field of intelligent computation, used
in system modeling, supervisory control, optimization, fault detection and isolation.
Thanks to its open architecture, connections to virtually any automation system are
possible and easy to implement.

2.2.2 System Functionality

2.2.2.1 Process Variables Processing

The system gives a possibility to freely design processing paths for each variable.
This objective is realized by the module PExSim, similarly to the solution used
in the Matlab Simulink package (Fig. 2.3). The user has access to several blocks

Fig. 2.3 Signal processing defined as paths: PExSim module
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with predefined core operations: mathematical and logical operations, IO blocks,
flow control, operators, integration and differentiation, filtration and many others.
Moreover, thanks to the system’s open architecture, easy expansion and creation of
new specialized units compiled as plug-ins are possible.

2.2.2.2 Simulation and Modeling

Applying new management strategies, control, optimization and diagnostic pro-
cesses requires the whole process model or its part. To create a global model of
an industrial installation, the system uses a module called PExSim. Partial models
of the process or its fragments are usually obtained through identification, carried
out by using the existing archival measurements database. To identify such models
in DiaSter, the MITforRD (Model Identification Tool for Reconstruction and Diag-
nosis) module is provided.

Identification is conducted in the off-line mode, with the use of archival datasets
imported from a DCS or a SCADA system. MITforRD provides a possibility to iden-
tify static as well as dynamic models. Currently implemented modeling techniques
include the linear transfer function, neural networks and fuzzy models.

Fig. 2.4 MITforRD Model Builder functions in the off-line mode

The software facilitates comfortable work with measurement data. In addition to
identification, MITforRD allows us to preprocess and analyze process variables as
well as verify the obtained models (Fig. 2.4). Data analysis is possible with the use
of a series of plug-ins, allowing, among others, the calculation and display of cor-
relation, the power spectrum, histograms, trends, freely configurable filtration and
the transformation of signals according to the user-defined mathematical expres-
sion (Fig. 2.5). Additionally, the set of data import/export filters is also provided as
separate plug-ins.

The identification process is based on well known wizards helping the user with
parameter selection (Fig. 2.6). Usually, the user only needs to answer some simple
questions and give basic parameters (or accept the default ones), e.g., indicate input
signals or select the model type (linear, neural, fuzzy, etc.). In the MITforRD mod-
ule, sophisticated computational intelligence algorithms (genetic, particle swarm,
machine learning) are used for the automatic search of the model structure. They
allow achieving high quality modeling even in the case of insufficient knowledge of
the modeled process.
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Fig. 2.5 Data analysis and preprocessing in MITforRD Model Builder

Fig. 2.6 Identification and model management in MITforRD Model Builder
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2.2.2.3 Process Simulators

At present, industrial installations are increasingly saturated with modern process
control devices and technology solutions, which are also becoming more and more
complex. At the same time, requirements for installation reliability, operation conti-
nuity as well as maintaining the process working point close to the point of maximal
efficiency increase. Such demands require reliable automation systems, diagnostic
procedures and process optimization along with well trained and prepared opera-
tors. The requirement for operators training is especially difficult to meet. It has
been found that, with the increasing degree of automation and reliability of the pro-
cess installation, the competences of the operators to undertake appropriate actions
in the case of unusual and emergency situations are reduced. In addition, training
the operators with the use of a real, running installation is ineffective due to the
lack of the possibility to simulate abnormal and emergency states. It is possible to
avoid the above-mentioned disadvantages by using process simulators. They can be
realized in the DiaSter system. The process simulator developed for the training of
the operators can be later used to test new strategies of control or to optimize the
process.

2.2.2.4 Virtual Sensors and Analyzers

Virtual sensors based on analytical, neural network or fuzzy models can be treated
as information redundancy for real measurements. In many situations, the prepara-
tion and use of partial process models instead of hardware redundancy is cheaper.
The process variable can be reconstructed based on a virtual sensor when the real
measurement is unavailable (Fig. 2.7). Thus, software redundancy exists for each
measurement with the corresponding virtual sensor.

Fig. 2.7 Example of measurement validation with soft sensoring
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2.2.2.5 Fault Detection

In the DiaSter system, methods based on analytical, neural network or fuzzy mod-
els as well as heuristic tests utilizing different kinds of relations between process
variables are used for fault detection (Fig. 2.8). Such detection methods give a pos-
sibility of early detection of a much higher number of faults than is the case with
a classic alarm system.

During on-line work, the system calculates residual values, i.e., the differences
between measured and modeled process variable values. The values of the resid-
uals significantly different from zero are fault symptoms. The main advantage of
the employed approach is the capability of early detection of faults, including those
of a small size. On the other hand, heuristic tests are based on simple as well as
more complex relations between process variables. The knowledge of these rela-
tionships is usually held by process engineers as well as automation and process
operators, even if the process model is unavailable. Its skilful use enables robust
fault detection.

Fig. 2.8 Fault detection schema with informational redundancy and heuristic tests

During the configuration of a diagnostic system for industrial processes it is hard
to define proper threshold residuals, whose exceeding values testify that a fault
occurred. One of the known and effective techniques used to handle imprecise
and/or uncertain information is fuzzy logic. In the DiaSter system, fuzzy logic
is used to evaluate residual values (Fig. 2.9). The parameters of fuzzy sets can
be obtained automatically by the analysis of statistical description of the residual
signal in a fault-free process state, or they can be assigned manually by a system
engineer.
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Fig. 2.9 Three-valued fuzzy residual evaluation

2.2.2.6 Fault Diagnosis

In the DiaSter system, two independent diagnostic inference mechanisms are imple-
mented. The first one allows fault isolation based on the analysis of the set of actual
fuzzy diagnostic signal values and the relation between faults and symptoms stored
in the base of knowledge. This relation takes the form of rules: if a symptom s j oc-
curred, then the faults fk, fm,. . . , fs are its possible cause. The inference is conducted
according to the industrial Dynamic Table of States (iDTS) method developed at the
Institute of Automatic Control and Robotics of the Warsaw University of Technol-
ogy. The elaborated diagnoses point out faults together with certainty factors of their
existence.

A diagnosis given by the system can be either presented directly in DiaSter or
sent to a DCS or a SCADA system. DiaSter provides a native visualization module
called InView. The main task of this module is to show faults on process mimics and
specialized diagnostic windows (Fig. 2.10).

The second diagnostic mechanism uses belief networks and multi-faced models.
In those networks the nodes represent statements while direct graph arcs between
nodes are interpreted as conditional probability counterparts. The solution of infer-
ence is achieved when the network achieves an equilibrium state (nodes values are
equal to the corresponding statements values). A value change in any of the nodes
(statement), caused, e.g., by system observation, results in corresponding changes
of other nodes values and network transition to a new equilibrium state.

The methodology of diagnostic system construction based on multi-faced models
is currently under development and it is expected that it will be of particular interest
in near future. It is anticipated that systems using such models will be a convenient
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Fig. 2.10 Faults visualization in DiaSter: example of control valves and measurements in
the H302 furnace. Each fault considered has its own indicator showing the certainty factor
regarding its existence. If the factor value is high, then the corresponding display is red. When
the value is lower, the color is changing accordingly to purple, yellow, up to white for low
values.

tool for both the representation of knowledge from various fields and its application
to reasoning about the state of the system and the degree of risks associated with
its operation. The results of a comparison of a multi-faced model with the system
are written down in the form of statements. This allows building a hybrid system,
in which statements describing the results of the comparison are introduced to the
statements network. Then, the network based on such inputs designates conclusions
about the state of the process together with their explanations. The main advantage
of such systems is the fact that there is a possibility to use knowledge obtained in
different forms. This knowledge can be made available in the form of different kinds
of models as well as in the form of relations directly defined in the sets of statements
with the use of belief network.

2.2.2.7 Monitoring of the Degradation Degree of Technological Equipment

In technological devices, slowly developing destructive changes often take place.
The reasons for these changes are the processes of materials wearing, sedimenta-
tion of various substances on equipment elements, etc. If there exist measurable
symptoms of such changes, the system allows their early detection and tracking the
degradation degree (Fig. 2.11). Such a procedure permits replacing periodical in-
spections and renewals with the strategy of carrying out the maintenance based on
on-going evaluation of the technical state of the process or device.
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Fig. 2.11 Operator Display: coking rates visualization and the estimated time for repair

2.2.2.8 Support of Process Operators’ Decisions

On the basis of the elaborated diagnosis, the DiaSter system can additionally support
process operators’ decisions in abnormal and emergency states. The management
strategies for some or all system faults can be developed during the design phase.
After fault isolation, these strategies, together with the diagnosis, are, in realtime,
displayed for the operators. They take the form of any document prepared in advance
by the designers of the system and may contain the procedure to be followed, the
diagrams of faulty equipment or reconfiguration procedures.

2.2.2.9 Knowledge Discovery in Databases

The databases of DCSs and SCADA systems contain a lot of data carrying in-
formation about the process, its attributes (process variables, parameters) and the
relationships between them. The system is equipped with mechanisms for knowl-
edge discovery that may be used in diagnostic reasoning. The subject of knowledge
discovery useful for constructing dynamic models can be widely understood reg-
ularities in the data. Some pattern and the scope of its validity determined by a
subset of the set of attributes and/or records are understood as regularity. Such un-
derstood regularities can be represented as trees, rules, relationships, associations,
and fuzzy and neural networks representations. The employed algorithms are based
on the selection of attributes, which applies Support Vector Machines (SVMs) and
genetic algorithms. The new knowledge represented by both dynamic qualitative
and quantitative models is a result of dedicated module operation. Such models can
be used in case-based and model-based diagnostic reasoning.
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2.2.2.10 Advanced Control and Optimization

Predictive control algorithms are currently the dominant advanced automatic con-
trol technique used in modern industrial control systems. A algorithms of superior
predictive control (DMC—Dynamic Matrix Control, GPC—Generalized Predictive
Control) using linear models, as well as algorithms based on non-linear models,
in particular on fuzzy and neural networks, are implemented in the DiaSter system
modules. Moreover, the procedures of current optimization of the set-points for con-
trol systems are also implemented. Such design of predictive control algorithms and
procedures of set-point optimization enables setting up modern optimizing control
structures for a practically important situation when the variability of disturbances
is comparable with the system dynamics.

2.2.2.11 Superior Tuning and Adaptation of Control Loops

Automatic tuning of control loops consists of two stages:

• preliminary tuning (pre-tune) in an open or a closed loop,
• precise tuning (fine-tune) in a closed loop.

Both pre-tuning and fine-tuning in an open system can be carried out with the use
of the step response or frequency methods. The adaptation is performed by the step
response method. The user interface allows selecting pre- or fine-tuning versions or
the adaptation together with the required parameters (pitch, amplitude, frequency
range, realignment, recovery time, etc.). The calculation results are presented to
the user in the form of the table of values and the graphs of dynamic and frequency
characteristics. After acceptance, the new settings are sent to the automation system.

2.2.3 System Structure

The DiaSter system is a freely configurable and extensible computing environment
that provides, in addition, the ability to store and visualize processed information.

The “configurability” is realized by

• the availability of a number of tools allowing the design of advanced processing
of process variables in a flexible way;

• scalability, i.e., the possibility of implementing both simple (e.g, dedicated to
individual devices) and complex applications (e.g., for complex industrial pro-
cesses);

• the ability to add new interfaces to external systems in an easy way;
• the ability to operate in a distributed environment (important for the implemen-

tation of computationally complex algorithms) using separate computers and
Ethernet-based communication.
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The “extensibility” is realized by

• the possibility to easily expand the functionality of the system by creating spe-
cialized plug-ins and modules for archival and on-line data processing, modeling,
visualization;

• the possibility to create user-defined data types and dedicated tools for their pro-
cessing and visualization;

• the ability to create user-defined (dedicated to a particular application) descrip-
tion of the configuration elements in order to facilitate the management of the
information processed in the system.

The system consists of a software platform and a number of specialized packages
cooperating within the platform (Fig. 2.12).

Fig. 2.12 DiaSter system structure. Dark blocks symbolize various software components that
interact with the system platform

The software platform is a key element of the system. It includes tools and en-
vironments for the implementation of the system applications and for running spe-
cialized packages. The main platform components include a module of archival data
processing and model identification based on these data (MITforRD), an on-line sys-
tem variables processing module (PExSim), a visualization module (InView), central
archival/configuration databases and a communication server.
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The basic system modules provide the appropriate environment for the imple-
mentation of advanced tasks related to the modeling, advanced control, and diagnos-
tics of processes and systems. These modules consist of a set of standard elements
allowing only the basic processing. Advanced functionality is provided by special-
ized packages. These packages are implemented as independent software modules
cooperating with the rest of the platform and other modules through the communi-
cation mechanisms provided by the platform, or in the form of dynamically loaded
plug-ins of modeling, variables processing and visualization modules.

2.3 Software Platform

The software platform of DiaSter is an information system providing mechanisms
for processing information of a specified structure and a set of tools for easy imple-
mentation of additional functions performed by specialized modules (called “user
modules”). The structure of information processed by the platform is determined by
its information model. This model provides common definitions of the system compo-
nents and their mutual relations. This is a necessary element to ensure data exchange
between the system elements and their consistent interpretation. The system seman-
tics and the data definition are common for all elements of the system. This feature
allows the implementation of the standard platform mechanisms responsible for basic
operations such as archiving, process structure analysis, visualization and communi-
cation. The basic modules and mechanisms of the system are shown in Fig. 2.13.

Fig. 2.13 Method of data exchange and access for the components of the DiaSter system
software platform
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Central configuration and archival database. The configuration database is used
as a single repository of configuration data used by the system modules, whereas the
archival database is a center for storing and sharing both measured and calculated
variables in the DiaSter system. The structure of the data stored in these databases is
consistent with the platform information model. Each system component (including
specialized packages in the form of independent software modules or plug-ins of the
basic modules) can access the configuration and archival data through specialized
interfaces.

Server and communication libraries. The platform provides a communication
server together with a communication library to enable data exchange between all
system modules. The communication mechanism is developed to be used on-line,
mostly for periodic exchange of processed variables values. Additionally, it enables
Remote Procedure Calls (RPCs) of particular modules, including the control of their
behavior (suspending and resuming calculations, reconfiguration, etc.). Communi-
cation works over any TCP/IP network but can be used also locally on a stand-alone
PC.

Module for archival data analysis, processing and model identification. This
module works mostly off-line and is designed to fulfill the tasks connected with the
visualization, selection and processing of archival process data. Another important
task is to provide an interface and environment to build parametric models on the
basis of archival measurements, i.e., model identification. The module can be easily
extended with the use of plug-ins that can provide almost any kind of static as well
as dynamic parametric model. It is possible to use the DiaSter databases to read
archival data as well as to store identified models. The configuration information
(e.g., relations between variables) can also be used during data analysis.

On-line variables processing module. The on-line calculation module executes
system variables processing according to algorithms written in the form of block
diagrams. Processing paths (schemes) are created in a specially designed graphical
environment with the use of standard or dedicated (supplied by specialized pack-
ages) function blocks. The system can run several processing modules in parallel.
They communicate via the communication server and/or the database. In this way,
it is possible to implement distributed calculations on multiple computers.

Visualization. This module is designed to implement a graphical user interface,
which presents information processed by the system. An important feature of the
visualization module is its consistency with the platform information model. This
allows creating dedicated displays for user data types and automatical linking of the
displayed information to the system configuration.
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Communication bridges. This is a group of modules responsible for data exchange
with external systems (single devices as well as complex systems such as DCSs or
SCADA systems). New modules can be easily added to the system. These modules
communicate with the rest of the system through the communication server.

In addition, a series of utility modules, used during application development, are
provided. These modules include an implementation of additional features, such as
communication monitoring, real time archives playback from the archive database
(including the simulation acceleration factor), archiving system variables in the
archival database and others.

2.3.1 Information Model and the System Configuration

The DiaSter system software platform consists of several modules which can work
in a distributed environment, carrying out various tasks in the field of advanced
control, modeling, simulation and diagnostics. At the same time, the platform is
a computational runtime environment for different types of specialized software
packages. To enable the cooperation of all system components, it was necessary to
develop

• a system information model,
• a central configuration database.

Information model. The information model defines the common part of the
information processed by the platform modules and used to describe supervised
processes and realized tasks. This model is a foundation for information exchange
inside the system, including the configuration as well as processed signals. Its im-
plementation by particular system modules ensures common understanding of pro-
cessed data and allows, among others,

• data exchange via the DiaSter communication channels;
• using a single description of signals transmitted/processed by various elements

of the platform/system;
• providing a uniform mechanism for archiving system variables;
• creating a central system configuration, which enables the analysis of the data

stored in it by various system modules.

The information model primarily defines the elements associated with a description
of the process/system (division into component parts, the set of process variables,
etc.), logical objects related to the processing algorithms implemented by the plat-
form (models, residuals, modeled and calculated variables, faults, etc.) and their
mutual relations. In addition, it contains a description of the objects necessary for
the operation of the system but not directly connected with implemented algorithms
(definition of the subjects of distributed messages, projects definitions, system mod-
ules, etc.).

The information model also includes a definition of the types of system variables
supported by the platform. There are the following built-in variable types: floating
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Fig. 2.14 Basic information model objects and their links related to the description of the
process and implemented algorithms. Light-grey boxes represent superior classes, while dark
ones represent objects and concepts.

point and integer numbers, binary signals, text strings, binary data fields and vectors
of any types of constituent elements (each vector element can be of the mentioned
types, including the vector itself). An overview of information model objects is pre-
sented in Fig. 2.14.

The information model is the backbone of process and processed variables de-
scription. It was designed to be extendible according to the needs of particular pack-
ages (Fig. 2.15). In relation to this, the platform allows

• creating user-defined data types. A user-defined data type is virtually equivalent,
in terms of its use by the platform, to built-in data types. This means that the
variables of such a type can be fully supported by the platform, i.e., stored in the
archives and in the configuration, transmitted through the communication server
and processed by the function blocks of the calculation module;

• creating user-defined types of system variables. Such variables can be stored in
the central configuration; however, their full utilization is possible only by system
elements familiar with their definitions;

• defining user-defined groups of variables and types of process components for
the purpose of better process/system structure management;

• defining user-defined relationships binding the elements of process description
with the objects of processing algorithms implemented by the platform modules.
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Central configuration environment. This is a repository of configuration data for
all modules and computing elements of the platform used in a particular applica-
tion. Such a repository is necessary to ensure configuration data consistency, enable
their automatic analysis (at a general level) and process data storage in the central
archives.

The central configuration environment consists of

• the central configuration database: it is a relational database that can be accessed
by individual modules through specialized interfaces (Fig. 2.16). The data model
of this database is consistent with the platform information model;

• the set of configuration interfaces through which the platform modules (and their
components, including plug-ins) have access to the system configuration. This
layer provides separation of user data from the physical layer. It also validates
the stored configuration. The interfaces provide a set of necessary and convenient
functions for manipulating objects in the configuration;

• the set of interfaces to create and access user databases: such databases can be
used to store any data specific to a particular package (or a group of packages).
Such data do not need to be consistent with the information model. The platform
does not analyze those data;

• the central configuration module called SysConfig: this module allows manag-
ing the system configuration at a general level consistent with the information
model. Individual packages are responsible for managing additional information
introduced by them.

2.3.2 Central Archival Database and User Databases

Historical values of the system variables (both process variables and other variables
processed in the system: model outputs, residuals, faults, and user variables) are
stored in the system with respect to

• the need to create archives of process variables for the subsequent search and
analysis. Mainly, the sets of data used for model identification are created based
on available archives;

• the need to back up the information produced by the components running on the
platform. Such data are further used for the purpose of the analysis of historical
records and the operation of the system in order to improve its future work.

The software platform provides two mechanisms of creating archives of pro-
cessed system variables:

• in a central archival database,
• in the databases of user-defined packages.

Central archival database. Any system variable defined in the system configura-
tion can be stored in the central archival database. Data of this type are transmitted
(usually periodically) during normal system operation among computing modules
via the communication server. There is a possibility to store variables of built-in
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Fig. 2.16 Sample interface to process variables stored in the common configuration
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types (process variables, residues, faults, etc.) as well as user-defined ones. Also, the
type of values is unrestricted. Both built-in (floating point, integer, Boolean, etc.)
and user types are handled. Values in the archive database are stored with a time
stamp and the value status. The configuration parameters of the system variables
(name, range of values, physical units, etc.) are stored in the system configuration.

Each system component working on the platform (plug-ins for modeling, pro-
cessing, visualization as well as user-defined modules) has access to the uniform,
common interface to archival data (Fig. 2.17: ICArchivesCont). The user has access
to functions such as downloading the list of variables available in the archives, iden-
tifying the time period from which each variable is available, etc. The real exchange
of data takes place through a specially prepared, at the user’s request, temporary
recordset (Fig. 2.17: ICRecordSet). After determining the parameters of a recordset
(defining a set of system variables, the time period, the sampling rate, etc.), the user
can download/upload the entire data set or read sample by sample.

Fig. 2.17 Interfaces and objects for accessing (read/write) archival data

The central database supports both short- and long-term archives (Fig. 2.18). The
system administrator determines which variables have to be archived, and which are
to be placed in long-term archives. From the user’s point of view it does not matter
whether the data come from short- or long-term archives. If the case of the need
to download the “old” data, the database interface automatically searches for the
appropriate long-term archive and retrieves the data if they are available. The user
can limit the search to short-term archives by setting the appropriate option in the
system configuration.
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Fig. 2.18 Support for short- and long-term archives

User-defined databases. Data specific to a particular package (or a group of pack-
ages) can be stored in user-defined databases. These data do not need to be consistent
with the platform information model as the platform does not analyze them. It only
provides a mechanism of automatic creation and access to such databases for each
package (Fig. 2.19: ICUserDBFactory interface). The package must be registered in
the system to be able to use this mechanism. The provided interface allows packages
to execute any queries on their dedicated databases (Fig. 2.19: ICUserDB interfaces
and ICQueryResult).

Fig. 2.19 Interfaces and objects for accessing user databases

An example of such a database is the database of diagnostic messages generated
by the specialized diagnostic module iFuzzyFDI. The generated diagnostic mes-
sages stored in the database are further used by dedicated components of the visu-
alization module (Fig. 2.20).
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Fig. 2.20 Example of a dedicated interface in the visualization module intended for view-
ing and managing diagnostic messages generated by the specialized diagnostic module
iFuzzyFDI

Fig. 2.21 DBArchiviser and PVPlayer modules used for archival data grab/play
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The platform also provides additional useful modules designed to work with the
central archives:

• the PVPlayer module is used to retrieve data from the database and send them
through the server in real (or accelerated) time (Fig. 2.21). This module repro-
duces the data from a particular time period. It is used to simulate the data re-
ceived from external systems in order to replay system operation from the past;

• the SVArchiviser module is responsible for creating archives (Fig. 2.21). Current
values of chosen system variables are automatically grabbed from communica-
tion and placed in system archives.

2.3.3 Data Exchange

Communication modes in the DiaSter system can be divided into two main groups:

• internal communication between system modules,
• external communication with the outside environment.

Communication between system modules. DiaSter is a fully distributed system,
with the possibility of working on multiple computers connected via the standard
TCP/IP protocol to a local network of any kind. The communication subsystem
used within the software platform is a native solution, using a specially designed
communication protocol, without the need to employ any external software.

The primary method of communication in the DiaSter system is based on the
transmission of messages between the modules. This can be done in two modes:
a direct connection between the two modules and broadcasting. The messages are
always exchanged via the MRIaS server, a part of the DiaSter software platform.
MRIaS is only used to transmit information between modules and to provide trans-
mission errors maintenance. It is not responsible for message analysis or storage.
From the user point of view, this type of communication can be described as state-
less. It is done via the TCP/IP socket, regardless of whether the modules work on
a stand-alone computer or on multiple networked PCs. When any program that uses
the MRIaS server starts communication, a bilateral connection between the pro-
gram and the server is established and maintained throughout all the working time.
The communication protocol (structure and sequence of messages sent between the
server and each of the modules) is designed especially for the system. A typical
communication cycle is presented in Fig. 2.22.

Publish/subscribe mode. In the publish-subscribe mode, each message is sent un-
der a specific topic. Any number of other modules can be subscribed to topics. Each
subscriber will receive all messages published under the subscribed topics. Current
values of measurements collected from the automation system are distributed in this
mode.

Direct mode. In the case of sending a message to a specific recipient, the sender
needs to give the recipient’s name (system-wide unique). The message is sent via
the MRIaS server, which delivers it to the recipient, or, in case of failure, informs
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Fig. 2.22 Diagram of communication between the DiaSter modules

the sender. The recipient’s name comes from the system configuration and is inde-
pendent of its IP address or DNS name.

The mechanisms discussed above are mainly used to transmit rapidly and fre-
quently changing data, e.g., the values of measurements, the result of current calcu-
lations, etc. Any type of value acceptable by the software platform (floating point
numbers, binary signals, fuzzy values, arrays, etc.) can be transmitted this way. Ad-
ditionally, it is possible to call remote procedures—both via direct communication
(a module A calls a procedure executed by B and receives the results) and broad-
casting (e.g., the configurator module sends a request to “reconfigure” to all modules
within a single RPC).

More sophisticated communication mechanisms are provided by some modules.
Additional communication interfaces built on the basis of the CORBA standard are
used to access the properties and methods of each function block embedded in the
PExSim module, and to remotely control the process of simulation/calculations re-
alized by this module. A similar mechanism is used in visualization. It allows trans-
mitting complex as well as infrequently changing information and direct access to
system objects.

Interfacing external systems. DiaSter is able to cooperate with various decentral-
ized automation systems (DCSs) as well as SCADA systems. The measurements are
collected with the use of digital transmission between DiaSter and the automation
system using the standard OPC link or other communication solutions presented in
Fig. 2.23.

In the core DiaSter platform, the following modules, among others, are included:

• OPCLink: communication with OPC servers (most automation systems),
• OleDBLink: communication via OLE DB (most databases),
• PILink: a dedicated link to PI OSI-Soft,
• DTMLink: a dedicated link to the DSS-CHEM system.

New communication modules can be quickly developed if there is a need to connect
to other software platforms.
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Fig. 2.23 Examples of communication between DiaSter and external automation systems

2.3.4 Modeling Module

For identification purposes, the MITforRD module is designed in the DiaSter sys-
tem. It allows creating models without the knowledge of the analytical form of
the relationship between the modeled variables. MITforRD allows identifying both
static and dynamic models of different types, starting from well-known linear trans-
mittances to neural networks or fuzzy-logic-based models. Identification is carried
out off-line using measurement data collected from automation systems (DCSs or
SCADA systems).

Module structure. The MITforRD module facilitates quick and easy development
of the number of models based on the values of archival measurements. The mod-
els implemented in MITforRD belong to the group of partial parametric models of
process variables (time series). The models are obtained in a semi-automatic identi-
fication process. A deep knowledge of processes and their physical characteristics is
not necessary. The module effectively supports users unfamiliar with identification
techniques during the whole identification process.

The main features of the software include the following:

• a common interface to many kinds of models;
• the user does not necessarily need to be an expert in system identification;
• a flexible, self-configurable distributed calculation environment allows the use of

free computing power of office PCs;
• a plug-in-based architecture allows easy extension of module functionality by

independent software vendors.
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The MITforRD module consists of the following programs:

• Model Builder: a stand-alone tool for model identification,
• Calc Server: a calculations server running on multiple networked PCs.

Fig. 2.24 General package structure

Model Builder is a core of the MITforRD module. It is split into parts supporting
users in each step of the identification process. A general schema of the module
structure is shown in Fig. 2.24.

There are four main parts of the MITforRD module:

• data preprocessing, used to import and preprocess measured values;
• model identification, responsible for the identification process;
• model verification, which allows validating identified models. The MITforRD

module allows simulating models in two modes: standard (based on measured
output values in the past) and the Model Reference Output (MRO), based on
internal autoregression. The quality indexes are calculated during the validation.
Also parallel simulation and displaying output signals are possible;

• MITforRD CS, which represents cooperating calculation servers.

The whole MITforRD module is designed for users who are not experts in the field
of identification.

Data preprocessing. MITforRD allows editing process archives inside the embed-
ded editor without restrictions on file/data size. Built-in data visualization is capa-
ble of displaying one or more time series with zooming and moving charts, change
scales, and comparing signals with common or independent scales. Additional fea-
tures are available via attached plug-ins: data import and export (currently from text
or CSV files and the DiaSter archival database), data analysis (histograms, statistical
parameters, frequency-domain analysis, correlations), data preprocessing (transfor-
mation according to a given mathematical expression, filtering, numerical differenti-
ation and integration). Extra functionality is provided to work with process archives
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(filling-in missing samples, signal validation). New features can be added by the
user by creating a new plug-in.

Model identification. One of the main assumptions behind the MITforRD module
was to make it flexible and expandable. Therefore, the main program, MITforRD
Model Builder, does not implement a possibility of estimating models of any type.
All model types are implemented as plug-ins, dynamically loaded into the program.
In the DiaSter platform, two plug-ins of linear models are included:

• a simple version, which allows estimating linear difference equation parameters
with the LS algorithm and Singular Value Decomposition (SVD). All parameters
of the equation structure (model order, delays) need to be given by the user;

• a more sophisticated version, which allows an automatic search for difference
equation structures through optimization with a user-defined quality index.

To make the implementation of different model types (static as well as dynamic)
possible, an additional wrapper for the Multi-Input Multi-Output (MIMO) model is
placed inside the MITforRD module. A block diagram of the wrapper is presented
in Fig. 2.25.

Fig. 2.25 MIMO model structure

Each MIMO wrapper can consist of one or more MIMO models of different
types. Individual plug-ins include the implementation of the MIMO models. The
task of the model wrapper is to make a common, uniform envelope for all MIMO
models. Thus, the model exchanges data with the surroundings (collects data and
sends the results) only by its input and output connectors. Input connectors gather
data from relevant sources, either from the archival data set during the identification
phase or from the actual process in the on-line mode. They also validate and scale
the values if necessary. Short-term buffers containing the last measurements for dy-
namic models are kept inside the connectors. The output connectors are responsible
for values re-scaling (optionally) and transmitting the results to the automation sys-
tem or display. In addition, there are special connectors for automatically calculated
residuals associated with the output connectors. They can be used, among others, to
generate diagnostic signals.
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The following tasks of the identification part of MITforRD Model Builder can be
specified:

• providing the input data to the model including compression without loss of in-
formation about the system dynamics;

• a common definition of the MIMO model structure (selecting input and output
signals with the possible value range, selecting the internal models type);

• providing routines for saving and loading the model, process synchronization,
data buffering and managing the list of models;

• providing access to the distributed calculation environment for identification al-
gorithms.

Each plug-in needs to realize pure computational tasks only. Therefore, the pro-
grammer responsible for plug-in creation can focus on the main task—the develop-
ment of an identification algorithm.

Plug-ins mechanism. The plug-in mechanism implemented in MITforRD as well as
in other DiaSter modules is based on Dynamic Link Libraries (DLLs). In the basic
specification of DLLs, only the export of functions is allowed. Thus, in the DiaSter
system an additional layer is added that allows working with objects.

Because Windows always creates the same virtual functions table (regardless of
the programming language used), it is possible to load the object from the DLL
only if it inherits the abstract base class and is created and destroyed by the functions
exported from the library. The abstract class is a class having all methods virtual and
abstract. In order to ensure the two-way communication between the main program
and the plug-in abstract, classes are used as interfaces for core MITforRD services.

The MIMO models implemented for the MITforRD module can be divided into
two types. The first one does not use the distributed calculation environment during
the identification, while the second one does.

Distributed calculation environment. The MITforRD module may employ a wide
range of evolutionary algorithms in order to explore the structure of linear or
fuzzy models. Such algorithms, besides many advantages, also have one serious
disadvantage—they are usually very time consuming. Genetic optimization requires
repeated calculation of the objective function. In the case of the model structure
search, each objective function calculation requires the inverse of large matrices.
This means that time for calculating the objective function clearly dominates dur-
ing optimization—over 95% of the total optimization time. To reduce the compu-
tation time, most important is the reduction of the time of single objective function
calculation.

There is provided a distributed computing environment with the MITforRD mod-
ule. It can be used to utilize free computation power of classic office PCs running
Windows and connected to a local area network. The environment does not require
any change in the local PC’s configuration and does not disturb its normal operation.
The idea is to provide the environment with a configuration as simple as possible,
and with minimal requirements for additional software to be installed on the com-
puters comprising the cluster. The structure of the provided distributed environment
is presented in Fig. 2.26.
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Fig. 2.26 MITforRD distributed calculation environment

The main PC running MITforRD Model Builder is a control center for the cal-
culations. There is a built-in calculation manager inside Model Builder, capable of
distributing the calculations among the local host as well as remote PCs available
at the moment. On the remote PCs, a simple program called MITforRD CS (Cal-
culation Server) is running. When MITforRD CS is started, it publishes over the
network its willingness to perform calculations. After receiving such a datagram,
the calculation manager tries to connect to the calculation server. If the connection
is successful, the new client is added to the list of available servers. Then, before the
real calculation starts, the configuration stage has to be performed. The first step of
the configuration stage is checking if the calculation server is ready and will accept
new request. Then, the identification data are sent together with the general identifi-
cation parameters. During the real identification process, the manager sequentially
distributes calculations generated by the identification algorithm between the con-
figured servers. MITforRD CS performs calculations and sends the results back to
the manager, then starts to listen for the next commission. The communication be-
tween the servers and the manager is done via TCP/IP with the native protocol.
The computation environment built-in into the MITforRD module has the following
features:

• no configuration phase is required. During the start-up of the server program
(MITforRD CS) on the user computer, it is automatically attached to the list of
available servers. When the server is stopped, its work is automatically trans-
ferred to other servers;

• the communication mechanism used allows avoiding any possible overhead
caused by technologies like COM, CORBA, etc. This feature allows achieving
high speed of data transfer and low delay (less than 10 ms for 100 MB Ethernet);
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• data transfer and the management of the calculation servers are invisible to the
user who implements the identification algorithm. This clearly facilitates the use
of the modeling environment while creating new algorithms;

• a lack of the possibility to link the data into larger packages and the ability to
set synchronization points within the code makes the calculation environment
ineffective in the case of a small amount of data sent to each calculation server.
Approximately linear scaling (calculation acceleration directly proportional to
the number of available computing servers) occurs when the processing time of
one calculation order exceeds 100 ms.

The main goal of creating a distributed computation environment was to use it to
estimate the coefficients of individual models (one model is calculated on a sin-
gle server), and to calculate the quality indexes for evolutionary algorithms. With
this approach, the assumption about the processing time for single calculations or-
der usually meets the limits mentioned above. Thus, n-times computations speed
up on n computers becomes available. In addition, this technology allows utilizing
dual, or more complex, processor computers, or multi-core processors, increasingly
available on the market.

2.3.5 On-line Calculation Module

The main element of the DiaSter platform for on-line use is a calculation module
called PExSim (Fig. 2.27). It is dedicated to advanced system variables processing.
The processing algorithms are written and stored in the form of configurable func-
tion block diagrams.

Fig. 2.27 PExSim main window



2 Introduction to the DiaSter System 45

The primary task of the PExSim module is to process the information circulating
in the system in a way defined by the user. From this point of view, the PExSim
module can be treated as a specialized programming language. The algorithm of
information processing is defined graphically by creating the so-called processing
paths. Each path consists of a set of interconnected function blocks. Each function
block carries out various tasks on signals. The signal is treated as a “medium for
information changed in time”. The proper signal flow is carried out by connecting
block inputs and outputs.

Function blocks. Algorithms for variables processing are made of blocks responsi-
ble for different operations on signals. The following types of blocks can be distin-
guished:

• sources: elements used to collect (from outside the PExSim module, e.g., buffers,
files, external systems) or generate input data for processing paths. Such blocks
are placed at the beginning of the path;

• processing elements: core elements responsible for processing input signals into
output signals according to a given algorithm;

• sinks elements: these are used to send (outside the PExSim module, e.g., to files,
buffers, external systems) or display (e.g., via numeric displays, different charts,
etc.) output data from the processing paths. Usually such blocks are placed at the
end of the path;

• subpaths: special elements used to create subpaths, i.e., subsystems. They allow
building a hierarchical structure of the processing paths.

All the function blocks are provided as PExSim plug-ins. None is embedded in the
calculation module. Single blocks are grouped into libraries according to fulfilled
tasks. The standard installation of the DiaSter platform includes the set of the fol-
lowing basic libraries:

• mathematic operators: basic mathematic operators,
• discrete operations: basic discrete operations (with time dependent and indepen-

dent parameters),
• execution control: the control of paths execution,
• linear dynamics: basic blocks implementing linear transfer functions,
• crisp logic: binary logic operations,
• non-linear elements: non-linear, static elements (e.g., a loop-up table),
• ports and subsystems: subsystems and related tools,
• signal routing: the control of signal routings,
• sinks: signal sinks (path outputs),
• sources: signal sources (path inputs),
• statistic operators: basic statistical functions,
• scripts: additional blocks that allow creating user scripts coded in C++.

The above list of standard libraries can be easily extended with the use of the plug-
ins mechanism. There is also a possibility to create user libraries, without access
to the whole code of the PExSim module. User blocks and libraries are treated in
the same way as the original standard PExSim libraries. Each block can have a set
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of configuration parameters of different types. The parameters are split into two
groups:

• transform: parameters characterizing the processing algorithm, e.g., the number
of inputs/outputs, gain, time constant, etc.;

• display: parameters that control the way of block displaying on the screen in
the PExSim graphical user interface, e.g., the width or height of the block, its
color, position, etc. Parameters from this group do not influence signal processing
conducted by the block.

Each function block has a set of general parameters common for all the blocks as
well as a set of its own parameters. The latter is determined by the plug-in creator.

Individual function blocks are combined into a signal processing structure by
connecting appropriate outputs to the inputs of subsequent blocks. Each input can
be connected to a single output only, but one output can be connected to multiple
inputs. Various inputs and outputs can transmit data of various types (e.g., floating
numbers, fuzzy values, vectors of floating numbers, etc.). The types of inputs and
outputs depend on the nature of the block. Only inputs and outputs of compatible
types can be connected.

Processing paths. The group of connected blocks working together in order to real-
ize the defined task create the so-called “processing path” (Fig. 2.28). The following
path types can be distinguished:

Fig. 2.28 Tree-like structure of processing paths with function blocks
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• main processing paths: they are placed on the top of the hierarchy. The user
attributes the path to one of the existing groups. The type of calculations (syn-
chronous or asynchronous) and the sampling rate (multiple of the main module
sampling rate) are attributed to each group. Paths belonging to the same group
are processed cyclically—from the first one to the last;

• subpaths: they are used to divide the whole system into subsystems. Subpaths
can be embedded in main paths or other subpaths. In this way the hierarchical
structure of the processing is built. Each subpath has exactly one parent path.
Each path can have multiple subpaths embedded at any depth.

The main paths play the main role from the perspective of calculations. Subpaths
are only a convenient tool to arrange the algorithm structure inside the PExSim
application. The main paths can be calculated in different modes, depending on the
source of processed data (generated or acquired from external sources) and the time
limits for processing (defined or not).

Internal variables. Except the standard inputs and outputs, the internal buffers can
be used to exchange data between the paths. These buffers are called “internal vari-
ables”. This mechanism is provided by two functional blocks: Internal Variable
(Sinks library) and Internal Variable Input (Sources library). After placing the Inter-
nal Variable block on a path, the internal variable is automatically created. The list
of internal variables is visible on the Variables tab. The user can place Internal Vari-
able Input in any place on other paths and connect it with the appropriate internal
variable. The length of each buffer can be set individually by the user.

Simulation and data synchronization modes. The PExSim module can run as
a stand-alone tool (simulator mode), or as a module working in a distributed sys-
tem (multi-module mode). The multi-module mode allows exchanging data with
other DiaSter modules. The possibility to exchange data rises the question about
synchronizing external data with the internal simulation clock. Thus two additional
options for simulation triggering are available in the multi-model mode (Fig. 2.29):
external and mixed triggering.

The process of executing calculations in the paths is controlled by the simulation
kernel. The kernel is responsible for executing successive simulation steps, synchro-
nization with external systems and proper simulation timing.

The order in which the blocks are executed inside a path is controlled by sig-
nal propagation. First, the source blocks in the path are triggered. After the block
finishes its calculation step, it sends a triggering signal to each consecutive block
(connected to its outputs). Such a mechanism protects against infinite, algebraic
loops.

The PExSim module can speed up/slow down the simulation time when acting
as a simulator. When it is connected to an automation system, it can be triggered
by this system or use its own internal clock to initialize the consecutive steps of the
calculations.
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Fig. 2.29 Simulation triggering in PExSim

Each main path of the calculation module can be assigned to one of the following
groups:

• synchronous paths: in this case the simulation kernel triggers a given path with
a constant, previously defined time period, or its multiplicity. Such a time period
is called the “sampling time”;

• asynchronous paths: these paths are triggered by events generated internally (via
a specialized block) or coming from the outside world (message, RPC, etc.).

2.3.6 Visualization Module

Information generated by the DiaSter system is usually used in two ways:

• it is send back to external systems (usually to the control or monitoring layer),
e.g., new settings for controllers;
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Fig. 2.30 Example process mimics of the InView module with standard display components

• it is presented to the operators, usually in a graphical mode, in order to inform
them and take appropriate actions related to the supervised process control or
reconfiguration (Fig. 2.30).

The graphical presentation can be implemented in two ways:

• through the graphical interfaces of external systems (e.g., process mimics in
SCADA systems or DCSs),

• with the use of the built-in PExSim visualization module.

Which of the mentioned presentation methods is used depends on the specific ap-
plication and engineers’ requirements. In some cases only external information sys-
tems are used while in others the major operator interface is realized in the native
DiaSter environment. However, the second approach allows displaying more ad-
vanced information, e.g., fuzzy signals or values of process variables related to the
process information model.

The InView module is designed to create graphical user interfaces, i.e., a different
kind of process mimics. The module has a structure similar to graphical tools used
in DCSs or SCADA systems. A set of synoptic screens is prepared during system
configuration for a particular application. Several displays can be placed on such
screens. The displays present values of variables or a set of variables in a predefined
way depending on the type of display. Additionally, static elements (backgrounds,
graphics, text areas, labels, etc.) as well as navigation buttons can be added.
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Fig. 2.31 Hierarchical structure of synoptic screens with base navigation methods

For easy navigation, the mimics (process and dedicated screens) are combined
in a hierarchical structure (Fig. 2.31). There is available a built-in, automatic
mechanism of navigation is such a hierarchical structure, e.g., buttons for transi-
tion to a higher or the highest level screen.

The InView visualization module exchanges data with other system modules
with the use of several communication channels available in the DiaSter platform
(Fig. 2.32):

• the current values of the system variables are received and send via a native
communication server;

• historical plots are created based on the data retrieved directly from central sys-
tem archives;

• it is also possible to use a direct connection between displays placed on the mim-
ics and the corresponding calculation blocks in the PExSim module. The con-
nection is made according to the CORBA standard. It is available to the block–
display pairs that implement this standard. Such a mechanism is used mainly to
realize atypical tasks, e.g., the connection between the operator station for a PID
controller and a block that implements the control algorithm itself.
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Fig. 2.32 Data exchange mechanisms implemented in the InView module

Fig. 2.33 Example displays in InView
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Fig. 2.34 Dedicated display for faults presenting the certainty factor value as well as diagnos-
tic signals values

Fig. 2.35 Example of display markers linkage to different elements of the system configura-
tion: faults, residuals, objects (system components), and documentation

Each graphical display is implemented as a plug-in. The set of standard displays is
provided (Fig. 2.33). The plug-ins technology makes it possible to develop and use
specialized displays, e.g., to display fuzzy signals.

The InView visualization module is compliant with the information model of the
DiaSter system. It makes it possible to use many unique features of the DiaSter
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system, not available in the case of displaying the results through external systems.
The system user has the possibility

• to design specialized visualization displays for user-defined data types (Fig. 2.34);
• to create connections between the components of the mimics (displays), the

supervised process structure and system elements (Fig. 2.35). The connections
make the navigation easy and help us understand (explain) the presented infor-
mation, e.g, dedicated displays of faults with automatically created explanation
panels linked;

• to make direct connections to processing blocks from visualization. This feature
allows controlling the execution of a block and displaying its parameters;

• to make a direct connection to system archives and/or user databases. This way
each display can have access to virtually an unlimited number of data.

Another way of displaying the information provided by the system is to use special-
ized modules developed by the user. Such modules are software units cooperating
with the DiaSter platform though one or all of the communication channels.



Chapter 3
Process Modeling

Krzysztof Janiszowski, Józef Korbicz, Krzysztof Patan,
and Marcin Witczak

3.1 Introduction

Process models in the problems of advanced automatic control, diagnostics or de-
sign and investigation of alternative solutions are the grounds for the implementation
of intended aims. This chapter is devoted in general to the creation of the investi-
gated process model in a form that would be useful for the conducted investigations
or designs. It could be implemented by modeling or identification. Taking into ac-
count practical requirements of the diagnostic system designed for more or less
complex processes, analytical, fuzzy, neural and nero-fuzzy models are considered.

For automatic control purposes it is required to know the reaction of the process
which is to be controlled, so accurate that one could evaluate the reserves of oper-
ation of units (programmer/controller, actuator, process) in order to avoid changes
after the design is completed and the system is ordered or manufactured (Åström
and Hägglund, 1995). Such changes may be very costly. In the problems of diag-
nostics, the adequate model determines the success of the intended aim; the proper
reaction of the model to the activation is a requisite of the determination of the er-
ror residual, without which the diagnosing cannot be implemented in a proper way.
During the design and investigation of alternative solutions, the fast prototyping
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technique is the base for the selection of two/three alternative solutions that are, in
turn, examined with great care with the use of system elements. In this case, only
the modeling-based approach leads to the acquisition of proper decisions and al-
lows us to radically shorten design preparation as well as examination conducting
times. A vital advantage of this approach is its repeatability. Examinations with the
use of a real process are rarely conducted always in the same conditions. Model-
ing has the advantage that it allows examining step-by-step the successive phases of
the investigated process in the same conditions, as well as correcting the procedure
(automatic control, diagnosis, design, control) in a way that would be profitable for
the intended aim. Model acquisition methodology (modeling or identification) is not
the basic problem. The most important is the aim—the functionality of the model in
the intended task. Therefore, different kinds of approaches are applied in the case
of the above-mentioned tasks. Each of the approaches has its properties that may
create some additional possibilities for the user. Thus, it is good to have general in-
formation on the employed methods before the decision is made on which method
is selected and given most of our efforts and time.

Modeling leads to the creation of analytical models based on the known descrip-
tion of the phenomena that exist in the process. The models are very attractive: they
can be applied for hierarchical control aims, start-up process analysis, changes of
the point of operation or the implementation of static interaction analyses. It can
also be applied to the design of automatic control algorithms in selected points of
operation after adequate simplifications (dynamic linearization) to the transfer func-
tion form have been conducted. Such models are usually complex in the calculation
sense but they allow us to investigate the problems of open loop control, static op-
timization and automatic control structure changes, or diagnostics and advanced
automatic control tasks in the case of the lack of available, adequately implemented
experiments. One should remember that many critical states of the process such as
overloads, extreme loads, failures, etc. are not usually available in the form of mea-
surement data. In such cases, the only way to recreate the potential reaction is the
analytical model (Spriet and Vansteenkiste, 1983; Takahashi et al., 1972). Beside
the above-mentioned advantages, models have also many disadvantages: their con-
struction requires a very accurate knowledge of the investigated phenomena, as well
as many coefficients that are either unknown or require us to implement arduous
verification examinations. Widespread different calculation type packages such as
ADAMS, SimulationX or Matlab tools may be applied only when the investigated
process has exclusively units belonging to a particular package, the appropriate co-
efficients are known, and we are able to pay for the purchase of an adequate license.
One should also remember that the description of this type is most often based on
simplifications that can limit its usefulness, e.g., for purposes of diagnostics, espe-
cially when the modeled failure situations are not typical and do not have equivalents
in the set of the package applied. The above-mentioned packages, ADAMS, MAT-
LAB and SimulationX, are readily applied in quick prototyping tasks when certain
decisions should be quickly arrived at and the lack of information from measure-
ments forces us to choose just such an approach.
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Modeling is very often tied to the concept of identification since the aim of both
tasks is the creation of a particular model. However, one should clearly differentiate
between these two approaches. Modeling methodology relies on the imitation of the
operation of a particular process by creating a mathematical description that would
recreate known phenomena which occur in the process in a more or less precise
way, and measurement data are most often used for the verification of description
coefficients that are not adequately known. In the case of simple or well-recognized
processes, verification is not necessary, and the model will be good.

Identification is implemented exclusively on the basis of measurement data, and
their quality decides on the success of the calculations and the quality of the result-
ing model. Depending on the number of collected measurements as well as their
quality and completeness, that information may be much more precise than an-
alytical description based on approximate assumptions and the initially assumed
coefficients since it takes into account real conditions of process operation, exist-
ing coefficients, appearing disturbances, etc. The identified parametric model in the
form of standard equations or transfer functions estimated from adequately selected
or implemented experiments usually yields more analytical models. Therefore, it is
more suitable to apply advanced automatic control techniques or diagnostic applica-
tions than the analytical description. Parametric models having the form of Takagi–
Sugeno–Kang (TSK) fuzzy models are the most precise form of process dynamics
description, and—what is very important—they have extrapolation properties. Such
models allow us to imitate the process dynamics in areas close to these areas of
operation that appeared in the data used for the estimation of the coefficients of
the model. If one wants to evaluate parametric models well, one should have the
initial information on the process properties, approximate evaluation of the model
order, appearing time delays, as well as instructions leading us to an adequate way
of dividing variables that cluster areas in which the investigated process has similar
properties.

In the last part of the chapter, models in the form of artificial neural networks
are presented. They have an important property according to which any continuous
non-linear relation can be approximated with arbitrary accuracy. However, the ap-
plication of neural networks to fault diagnosis of control systems requires taking
into account the dynamics of the processes or systems considered. Therefore, state
space neural networks, locally recurrent networks with the neuron model contain-
ing an additional infinite impulse response filter and the so-called GMDH (Group
Method of Data Handling) networks with dynamics neurons are presented. It is im-
portant to notice that neural modeling does not require analytical knowledge with
respect to the process considered, but it needs a representative set of training data.

3.2 Analytical Models and Modeling

Analytical models are a description in the form of differential ordinary equations
(linear or non-linear ones), or partial equations which are derived from balances of
quantities that are characteristic for the investigated system.
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Balance equations may be directly applied to model creation but empirically ob-
tained laws or dependencies require us to know adequate coefficients that should be
obtained with the help of tables, earlier experiments, or verified by examinations.

3.2.1 Basic Relations for the Description of Balance
Dependencies for Modeled Physical Processes

This section describes the basic relations existing in processes described by models
having lumped constants. The description of the dependencies will be directed to
the exposing of similarities existing between different modeling fields in order to
prove an oft-used analogy between different dynamic processes. Understanding the
analogy allows us to better model complex processes exhibiting phenomena from
several fields, as well as to substitute, e.g., the description of dynamic effects in me-
chanics with the use of a description typical for electric circuits. The basic balance
relations will be supplemented with time dependent relations applied to elements
of different types of circuits together with the description in the time domain that
allows us to obtain Laplace transfer functions.

Considering different kinds of circuits one by one, it is possible to use the fol-
lowing dependencies having a balance character.

Two Kirchhoff laws in electric circuits:

∑
k

ek(t)−∑
j

u j(t) = 0, (3.1)

∑
k

ik(t) = 0, (3.2)

where ek(t) denotes stimulations—electromotive forces, u j(t) are reactions of the
circuit elements for the stimulations, i.e., voltage drops at elements of a selected loop
of the circuit (taking their directions into account), and ik(k) is reaction intensity
described by the current values in a selected node of the circuit. Electric energy
is dissipated by circuit resistance R, and inductance L and capacitance C store the
energy, which is described by the following dependencies (in the domain of time t
and operator s):

u(t) = Ri(t) = R
dq(t)

dt
⇔ i(s) = Ri(s), (3.3)

uL(t) = L
di(t)

dt
⇔ i(s) = sLi(s)−Li0u, (3.4)

uC(t) =
q(t)
C

=
1
C

∫ t

t0
iC(τ)dτ ⇔ u(s) = uC0 +

i(s)
sC

, (3.5)

where the index “0” denotes the initial condition related to the element.
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The Ampere and Gauss laws in magnetic circuits:

∑
k

Θk(t)−∑
j

l jHj(t) = 0, (3.6)

∑
k

Φk(t) = 0. (3.7)

In the selected loop of a magnetic circuit, the laws connect the stimulations—
magnetic flow Θk(t) with the magnetic voltage drop at the magnetic circuit section
having the length l j and the magnetic field intensity Hj(t). They also balance values
of magnetic fluxes in the selected node of the circuit. Linear description as in (3.3),
(3.4) and (4.12) is not applied since they usually are strongly non-linear circuits.

The d’Alambert law in mechanical systems for the linear or rotary motion:

∑
k

Fek(t)−∑
j

Fr j(t) = 0, (3.8)

∑
k

Fek(t)−∑
j

Fr j(t) = 0, (3.9)

where Fe(t) and Me(t) denote external forces and moments being the stimulations,
respectively, and Fr(t) and Mr(t) are the forces and moments of reactions related to
the inertia of the system elements or the friction, respectively. The second relation
is the result of the momentum conservation law,

∑
k

mkvk(t) = 0, (3.10)

∑
k

Jkωk(t) = 0, (3.11)

where mk(Jk) denote measures of the system element inertia, and vk(ωk) are the
velocities.

The system energy is dissipated by the friction FR represented in the form of
a damper D, while the potential energy is stored by the elastic element S and the
kinetic inertia m or J, producing forces denoted as FS and FB, respectively, for the
linear motion:

FR(t) = Dv(t) = D
dx(t)

dt
⇔ FR(s) = Dv(s) = sDx(s), (3.12)

FS(t) = Sx(t) ⇔ FS(s) = Sx(s), (3.13)

FB(t) = ma(t) = m
dv(t)

dt
⇔ FB(s) = ma(s) = smv(s), (3.14)
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and for the rotary motion:

FR(t) = Dω(t) = D
dα(t)

dt
⇔ FR(s) = Dω(s) = sDα(s), (3.15)

FS(t) = Sα(t) ⇔ FS(s) = Sα(s), (3.16)

FB(t) = Jε(t) = J
dω(t)

dt
⇔ FB(s) = Jε(s) = sJω(s). (3.17)

In hydraulic and pneumatic systems, rules very similar to the description of a
state in electric circuits are in force:

∑
k

pk(t)+∑
j

Δ p j(t) = 0, (3.18)

∑
k

fk(t) = 0, (3.19)

where pk(t) denote stimulating pressures of pumps, Δ p j(t) are pressure drops at
homogeneous channels, and fk(t) are flows in the junction node. Unlike in elec-
tric circuits, the ideal liquid (gas) flowing through channels has—beside the kinetic
energy—also the potential energy related to the gravity g. Due to that, the state of
the liquid is described by Bernoulli’s principle:

p(t)+
ρv2(t)

2
+ ρgh(t) = const, (3.20)

where p(t) denotes the pressure value, v(t) is the velocity, and h(t) stands for the
height of the column of the liquid.

Within the range of laminar flows, one can apply dependencies that define the
pressure drops Δ p at elements that dissipate the energy of the liquid (hydraulic
resistances Rh) and elements that store the potential energy (capacitance B) and the
kinetic energy (inertia of stream having the mass M):

Δ pR(t) = R f (t) = R
dm(t)

dt
⇔ Δ pR(s) = R f (s) = sRm(s), (3.21)

Δ pB(t) =
B
V

∫ t

t0
f (τ)dτ ⇔ Δ pB(s) =

B
sV

f (s), (3.22)

Δ pM(t) = M
d f (t)

dt
⇔ Δ pM(s) = Ms f (s). (3.23)

In thermodynamic systems, in which the gas thermal energy changes, the depen-
dencies are more complex since the third factor in the form of the gas internal en-
ergy should be taken into account beside the kinetic and the potential energy. Due to
that, descriptions of appropriate changes differ very much from the ones described
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earlier, and the analogy mechanism is not applied. From the first law of thermody-
namics, one can formulate the general law of the gas energy balance:

ΔU = ΔW + ΔQ, (3.24)

where ΔU denotes the gas internal energy increase, ΔW is the executed work, and
ΔQ is the delivered heat.

The gas momentary state is described by Clappeyron’s equation,

p(t)V (t)M = Rm(t)T (t), (3.25)

where p(t), V (t), m(t) and T (t) denote the gas pressure, volume, mass and tempera-
ture, respectively, R is the gas constant, and M denotes the gas molecular mass. The
internal energy U of one kilomole of gas depends on its temperature and the number
ϕ of degrees of freedom,

U(t) = 0.5ϕRT(t), (3.26)

which have integer values depending on the type of gas: ϕ = 3 for one-atom gases,
ϕ = 5 for two-atom particles, and ϕ = 6 for others. The internal energy increase ΔU
may also be expressed in a form that depends on the specific heat cv (with a constant
volume):

ΔU = cvmΔT. (3.27)

The relation between the specific heat cv value and the specific heat with a constant
pressure is defined by the coefficient κ :

κ =
cp

cv
=

ϕ + 2
ϕ

. (3.28)

Changes in gases are described by dependencies defined for different conditions of
the changes and are called Boyle–Mariott’s law for constant temperature and slow
compression:

T (t) = const ⇒ p(t)V (t) = const, (3.29)

for rapid changes, e.g., in a pneumatic cylinder:

T (t) = const ⇒ p(t)V κ(t) = const. (3.30)

For a constant pressure, Poisson’s law in the following form is in force:

ΔQ = 0 ⇒V κ−1(t)T (t) = const ∪V κ(t)p(t) = const ∪ pκ−1(t)
T κ(t)

= const. (3.31)

Considering the dependencies (3.1) to (3.23), one can notice several relations hav-
ing similar forms of description, as well as relations existing between quantities
appearing in these dependencies. The relations are defined as analogies between
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Table 3.1 Analogies between descriptions and variable quantities

Type of Type and reaction of system elements
system Dissipating Accumulating Accumulating Kind of stimulation

the energy the potential energy the kinetic energy

Electric Resistor R Capacitor C Inductance L Voltage source Current source
u = Ri u = 1

C

∫
idt u = L di

dt E
i = Gu i = C du

dt i = 1
L

∫
udt I

u = Rq̇ u = q
C u = L d2q

dt2 q̇
Mechanic Friction D Spring S Mass m

linear F = D dx
dt F = Sx F = m d2x

dt2 Force F
motion F = Dv F = S

∫
vdt F = m dv

dt Velocity v
Mechanic Damper D Spring S Inertia J

rotary M = D dα
dt M = Sα M = J d2α

dt2 Moment M Velocity ω
motion M = Dω M = S

∫
ωdt M = J dω

dt
Hydraulic Resistance Capacity Mass
Pneumatic R B/V M

Δ p = R f Δ p = B
V

∫
ddt Δ p = M d f

dt Pressure p Flow f

elements applied to the description, as well as between laws that connect the
physical quantities. Understanding these analogies allows us to analyze the exist-
ing phenomena, as well as apply adequate forms of description. Table 3.1 shows
main connections between the quantities and the essence of the function of particu-
lar elements of the system.

The table motivates the often-used technique of different types of dynamic sys-
tems modeling with the use of the formula for electric circuits. Surely, the presented
dependencies do not give all of the laws and models applied to the recreation, but
they allow us to notice distinct similarities existing between different kinds of dy-
namic processes, as well as distinct differences, e.g., in the description of phenom-
ena that accompany dynamic processes and, for example, mechanic or electric ones.
The creation of equations describing more complex processes requires us to conduct
additional studies, and, even after the creation of the correct description of the ana-
lyzed process in the form of sets of differential equations having known coefficients,
it does not guarantee success during modeling. A very important thing is the proper
choice of parameters of the modeling process itself: the solver algorithm and the
calculation step.

3.2.2 Integration Methods and Integration Step Selection for
Simulation

The created analytical description of the process allows modeling dynamic reac-
tions, but in order to implement this, one has to develop numerical integration of
proper differential equations. Numerical integration methods are an important prob-
lem (Spriet and Vansteenkiste, 1983).
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The numerical integration problem consists in finding the values of the function
y(t) that is defined as d

dt y(t) = f [u(t),u(t),t], f ,y∈Rn, u∈Rm, t ≥ 0 with the known
initial condition y0 = y(t0). The relation in this form defines a priori the character
of changes of the function y(t). It is a continuous function at least of class C. The
easiest way to calculate the function in a numerical way is integration:

y(t) =
∫

t0
f [u(τ),y(τ),τ]dτ, y0 = y(t0) ∈ Rn. (3.32)

In practice, in order to numerically calculate the task (3.32), Runge–Kutta’s integra-
tion algorithms are very often applied (Spriet and Vansteenkiste, 1983). They are
non-extrapolation methods, i.e., they are not based on the estimation of the inte-
grand y(·) beyond the integration range and are methods having the repeatable step.
Depending on the multiplication factor of the division of the integration range and
the number of repeats, there exist several versions of Runge–Kutta’s method. Four
of these algorithms are implemented in the PExSim package.

In order to explain the principle of operation, we present the description of the
4-th order Runge–Kutta method algorithm. The method is applied to most packages
for dynamic system modeling. In the description, discrete time symbolism will be
used, i.e., the integral y(t) or the integrand f [u(t),y(t),t] value will be calculated for
the moment t = n ∗Δ , where Δ denotes the integration step, and it will be denoted
as y(n) or f [u(n),y(n),n], respectively.

The integrated function estimated value is defined according to the rule

y(n+1) = y(n)+
Δ
6

[
f (n)+ 2 fp1

(
n +

1
2

)
+ 2 fp2

(
n +

1
2

)
+ fp (n + 1)

]
, (3.33)

where the first estimation of the function value in the middle of the range fp1
(
n + 1

2

)
is defined as follows:

fp1

(
n +

1
2

)
= f

[
u

(
n +

1
2

)
,

[
y(n)+

Δ
2

f [u(n),y(n),n]
]
,

(
n +

1
2

)
Δ
]
. (3.34)

The second estimation of the function value fp2
(
n + 1

2

)
in the middle of the inte-

gration range is created on the grounds of the first one:

fp2

(
n +

1
2

)
= f

[
u

(
n +

1
2

)
,

[
y(n)+

Δ
2

fp1

(
n +

1
2

)]
,

(
n +

1
2

)
Δ
]
, (3.35)

and the initial estimation at the end of the range is equal to

fp(n + 1) = f

[
u(n + 1),y(n)+ Δ fp2

(
n +

1
2

)
,n

]
. (3.36)

The above algorithm shows us the course of the numerical integration process.
Recurrences repeated inside the integration range definitely improve calculation
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accuracy and allow a significant increase in the integration range (from a dozen
to tens of times over in comparison with the ordinary Euler procedure).

The modeling of processes that are described in an analytical way must be carried
out with correct selection of the integration step. When the step is not correctly
chosen, the solution may show oscillatory character (when the step is too long) or
may last a long time (when the step is too short).

The selection of the step depends on the dynamic properties and the presence of
active stimulations of, e.g., control or regulation, and—since the differences may be
very large—Table 3.2 below presents suggested integration step values for different
kinds of processes and physical quantities (Isermann, 1988).

Table 3.2 Suggested ranges of integration step selection

Kind of quantity (process) Integration step [s]

Controlled hydraulic flows 10−5 to 10−3

Controlled pneumatic flows, electric drives 10−4 to 10−2

Pressures in hydraulic and pneumatic circuits 10−3 to 10−1

Forces, accelerations in mechanical systems 10−3 to 10−1

Hydraulic and pneumatic free flows 10−2 to 10−1

Temperatures 101 to 103

Concentrations of gases and fluids 101 to 103

Chemical processes, redox type reactions 101 to 104

Biological processes, population growth 103 to 106

3.2.3 Pneumatic Cylinder Controlled by a Servo-Valve: A Balance
Model of the System

The method of analytical model construction will be presented with the use of a
seemingly simple system we know almost everything about—a servo-valve con-
trolled pneumatic cylinder. The system is described by both balance equations of
flux flows and thermodynamic processes resulting from the phenomena of rapid air
compression and de-compression. The existence of friction phenomena that have
non-linear and discontinuous character makes the modeling process complex and
non-trivial.

The system considered has been analyzed in the literature for over sixty years
(Shearer, 1960), but it still does not have a complete description that would allow
precise modeling of all of its reactions. The main reason is the lack of a good, easy-
to-define (concerning its parameters) and numerically stable model of friction forces
in the pneumatic cylinder.

With the help of an example, we will discuss different approaches to obtain the
model of the system together with its specifics, advantages and limitations:

• the analysis of phenomena existing in the process, as well as the creation of a
non-linear set of differential equations;
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• the quickest and easiest modeling method is the use of ready templates of ele-
ments from the library adapted to the modeling of such systems;

• a simplification of the differential equation set to the linear form, and an attempt
to define the resulting transfer function, and then the estimation of this transfer
function’s parameters by the way of optimization through the comparison of the
modeling results by measured sequences of input-output data;

• the last method is the use of statistic identification methods based on known,
sufficiently representative sequences of measurements, and the creation of the
parametric model of the process as well as a fuzzy TSK type model.

The structure of the system considered is presented in Fig. 3.1. The
electro-pneumatic five-way valve controls the air flow to the cylinder chambers and
causes the movement of the piston. Dynamic and static behavior is defined by sev-
eral quantities. Overall dimensions—cylinder sections A1 and A2, chamber volumes
V1 and V2, dead volumes Vm1 and Vm2, the piston middle position x, the piston thick-
ness d, air pressure values in chambers p1 and p2, as well as air temperature in
chambers T1 and T2, the mass of the piston and the moving unit M, supply pressure
pz, pressure at the run-off patm—all exert an obvious effect on piston behavior. Also
the dynamic reactions such as friction forces Ft and an external force Fe will have a
direct effect on the piston movement. Figure 3.1 presents the situation in which the
chamber 1 is filled and the piston moves right with the velocity v.

The method of cylinder chambers filling depends on the relation between the
pressures p1, p2, pz and patm and the flowing properties of the valve (Olszewski,
2007). Assuming that the chamber 1, (Fig. 3.1) is filled, the servo-valve slider opens
the sections 1 and 3, then the chamber 2 is emptied, and air flow conditions are
defined by the equations of the air flow qi to the chambers:

q1 = a1
√

2ρ1 pz

√√√√ κ
κ −1

[(
p1

pzas

)2/κ
−
(

p1

pzas

)(κ+1)/κ
]
,

q2 = a2
√

2ρ2 p2

√√√√ κ
κ −1

[(
patm

p2

)2/κ
−
(

patm

p2

)(κ+1)/κ
]
, (3.37)

where a1, a2 denote averaged sections of the inflow to chamber 1 and the outflow
from the chamber 2, ρ1 and ρ2 are air densities at the inlet and outlet from the
chambers, and κ = 1.4 is the polytrophic process coefficient (3.28). Values of a1

and a2 are not usually given by manufactures, values of ρ1 and ρ2 are not known
either—they correspond with a specified air temperature T and the pressure p value.

For the needs of system dynamics modeling, air flow q conditions may be ex-
pressed in a simplified form that assumes the lack of heat exchange by air flows:

q = α
√

Δ p, (3.38)

where α denotes the actual ability of the flow through the valve, and Δ p is the
pressure difference in appropriate chambers (pz − p1 or p2 − patm).
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1 2 3 4

Vm1 Vm2

p1 T V1 1 p2 T V2 2

M

patmpz

A1 A2

v

x F , Fe t

Fig. 3.1 Block diagram of the modeled process: piston position control with the use of the
flow servo-valve

The actual value of α in static conditions (and the set control signal for the valve)
depends on the level of the valve opening μ and the flow nominal value qnom given
by the valve manufacturer:

α = μ
qnom√

pznom − patm
= μβ , β =

qnom√
pznom − patm

, (3.39)

where pznom and patm most often equal 6 and 1 bar, respectively.
The servo-valve has its own dynamics (it is a proportional magnet having a small

but non-negligible mass), and its opening μ should be modeled as a reaction to the
level of the control signal u/umax:

d
dt

μ(t) =
1
Tz

[
u(t −T0)

umax
− μ(t)

]
, (3.40)

where Tz denotes the time constant of the valve (usually given by the manu-
facturer) and T0 is the time delay. The valve opening value has obvious limits
μ(t) ∈ 〈μmin,μmax〉. Using the description of the air flow to chambers, one can de-
fine the increase of the air mass in each of the chambers. The dependencies will be
given under the assumption that the chamber 1 is filled and the chamber 2 emptied
at the positive level μ > 0:

d
dt

m1(t) = q1 =
{

μ
√

pz − p1 μ > 0
μ
√

p1 − patm μ < 0

d
dt

m2(t) = q2 =
{−μ

√
p2 − patm μ > 0

−μ
√

pz − p2 μ < 0.
(3.41)

Assuming the isothermal process piVi = const, one can calculate the dependency
for the air mass in each of the chambers,
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mi = cwVi
pi

patm
= c′piVi, c′ = cw/patm, i = 1,2, (3.42)

where cw denotes the air specific gravity.
In more advanced calculation systems, air leak mp between chambers is also

modeled which depends on the pressure difference d
dt mp = ρ(p1 − p2), as well as

air leak from chambers through leakages of air supply, connections, seals, etc., in
the form d

dt mi = ρ(pi − patm). Unfortunately, the values of appropriate coefficients
ρ are difficult to define. A correctly installed and assembled unit should have leaks
more or less 10−8 times lower than the main flows, q1, and q2. Since these effects
are difficult to be precisely estimated, in the subsequent description they are omitted.
The dependency (3.42) is an approximation of a real description. In the investigation
of gas processes in pneumatic systems, the polytrophic process pκV = const (3.30)
with κ = 1.4 is sometimes assumed but, as examinations show, such a description
should be applied to long-time displacements, when temperature changes occur. In
single displacements, this effect modeling is not justified (too short time periods and
negligible energy changes).

One should remember that each of the masses m1, m2 has a changing volume
(due to the piston movement), and the mass change dynamics should be therefore
described as d

dt mi = c′ d
dt (piVi) = c′

(
pi

d
dt Vi +V d

dt pi
)
. The volume V1 increases with

the velocity v, and the volume V2 decreases with the same velocity. The final expres-
sions for mass changes will have the following form:

c′V1
d
dt

p1 = q1 − c′p1
d
dt

V1 = q1 − c′p1A1v, (3.43)

c′V2
d
dt

p2 = q2 − c′p2
d
dt

V2 = q2 + c′p2A2v. (3.44)

Using the equations (3.39) and simplifying the above dependencies, one can obtain
relations for pressure changes in the chambers:

d
dt

p1 = μ
√

pz − p1

c′V1
− p1v

x
, (3.45)

d
dt

p2 = μ
√

p2 − patm

c′V2
+

p2v
L− x

, (3.46)

where L is the maximum piston stroke. Knowing the pressure values in the cylinder
chambers, one can obtain the equation for the piston movement dynamics with the
use of the force balance,

p1A1 − p2A2 = Ma + Ft + Fe. (3.47)

The acceleration a value obtained from the above dependency defines the time-
derivative of the piston velocity v,
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d
dt

v =
1
M

[p1A1 − p2A2 − (Ft + Fe)] , (3.48)

which allows us to write the difference equation for the piston position x:

d
dt

x = v. (3.49)

The differential equations (3.40), (3.41), (3.45), (3.46), (3.48) and (3.49), together
with the set of initial conditions μ0, p10, p20, v0 and x0, define the servo-drive state
and allow us to model the one-, two- or rod-less system type. In the case of divided
controls (two control valves) in the equations (3.45), (3.46), there will appear two
different control signals, μ1 and μ2.

The external force Fe (3.48) is the stimulation that should be recognized as the
input quantity for the model, beside the control signal μ (3.45), (3.46). The friction
force Ft has a different character. This force depends on many construction factors,
most of all on piston velocity (Janiszowski, 2004).

Its model should be therefore given together with the description of the cylinder
itself. The friction measurement is difficult and, unfortunately, this force strongly
depends on the cylinder conditions of operation: temperature, lubrication, the type
and state of seals, the bearings of the moving part of the drive, humidity, cylin-
der idle time, pressure in the chambers, etc. The number of factors is so high that
deterministic formulae that would allow us to find the force value have not been
created yet. Figure 3.2 presents the measured course of the friction force after many
displacements (warm cylinder). One should notice (Fig. 3.2) the very low velocity
values for which the non-linear effect appears—lower than 75 mm/s. For higher
velocity values, the friction force change practically has linear character.

The most often used approximation of friction force changes vs. velocity v is
the so-called Stribeck curve with the shape described by functional dependencies
corresponding with Fig. 3.3:

0 25 50 75 100 125

18.56

150

37.62

56.68

75.75

94.81

113.90

132.90

175 200 225 250

152.00

171.10

190.10

Fig. 3.2 Measured friction force during the acceleration (upper curve) and deceleration of the
cylinder piston (lover curve)
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Fig. 3.3 Analytical approximation of friction force Ft changes vs. velocity: dot line—velocity
decrease, solid line—linear approximation

Ft(v)

= sign(v)α0 + β0v + sign(v)∗
{

(α1 −α0)exp(−β1|v|), |v| > v0 ∩ sign(av) > 0
(α2 −α0)exp(−β2|v|), |v| > v0 ∩ sign(av) < 0

.

(3.50)

The equation (3.50) is a precise description of changes presented in Figs. 3.2 and 3.3
but includes many sign() functions that are very inconvenient in modeling. It is
difficult to ascertain precisely what velocity v0 will be considered to be zero and in
what range the values α1, α2 will be changed. Simultaneously, the backlash caused
by the friction hysteresis (Fig. 3.3) forces us to apply very small integration steps
in order to avoid oscillations during the modeling. A more advantageous formula is
friction force description in the form of velocity functions:

Ft(v) = sign(v)
[
α0 + β0|v|

]exp(β |v|)+
{

α1+α2
2α0

−1
}

exp(β |v|) . (3.51)

The relation does not have the hysteresis observed in Figs. 3.2 and 3.3, but it is
obviously easier in modeling.

Considering the above description of the system, one can state that practically all
dependencies applied to the creation of the description of its operation are known:
dimensions, masses, pressures, etc., and the only uncertainty element is introduced
by friction force description, (3.50) or (3.51). Coefficient values appearing in the de-
scription (3.50) should be obtained by the way of response modeling and comparing
it with the measured changes.

Concluding the investigation of the pneumatic cylinder controlled by the pro-
portional valve, one can distinguish five variables in the presented description.
These define in a unique way process behavior, i.e., the state variables including
the μ position of the servo-valve throttle (3.40), two pressures p1 and p2 in the
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cylinder chambers (3.45), (3.46), the cylinder piston velocity v (3.48) and its po-
sition x (3.49). These variables, together with the algebraic equations (3.39) and
(3.50) or (3.51), as well as adequate initial conditions, give a complete description
of the examined process state.

The obtained model described the method for system analytical description that
unites several elements: a servo-valve, pneumatic lines, a cylinder and the mechan-
ical construction unit that is connected to the piston. Selected parameters in the
model description integrate properties of different elements, e.g., the mass M rep-
resented the overall mass of the cylinder moving unit and the driven construction,
the effective gain coefficient included the valve and conduit flow capacity, the fric-
tion characteristic included the overall friction of the cylinder and the driven unit,
etc. In the above approach, the model actually represented the complete servo-
drive together with the driven mechanism while the valve control signal acted as
the input, and the dynamic parameters of the driven unit—position, velocity and
acceleration—acted as the output.

3.2.4 Pneumatic Cylinder Controlled by a Servo-Valve: A Block
Model of the System

When attempting to model a system with the application of special blocks that rep-
resent particular components and the construction of their shell versions, one should
very carefully consider the way of description. The components should be connected
together in desirable structures, i.e., the outputs of a particular type of component
have to be compatible with the inputs of a component that is connected to it as an
energy receiver.

Fig. 3.4 Pneumatic Elements library components: pneumatic capacitance (a), pneumatic
cylinder (b), pneumatic line (c), cut-off valve (d), three-way switching valve (e), five-way
proportional valve (f)
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As an example, we can point out the Pneumatic Elements library included in the
PExSim package. Some selected components of the library are presented in Fig. 3.4.
The library contains models of pneumatic capacity, the cylinder, the supply line, the
cut-off valve, the three-way switching valve and the five-way proportional valve.

In order to model a system composed of these elements, one should select one out
of two rules of phenomena modeling in pneumatic elements: flows create pressure
differences or—what is applied more often—pressure differences decide on the flow
values (3.38), (3.39). A combined description is prohibited since it does not allow
us to create equation sets that would univocally define initial conditions that are
required for the modeling.

In the case of the mentioned library, the first method has been accepted: flows
create pressure differences. This allows modeling in a simple way, e.g., the states
that appear in pneumatic capacitance, cylinder, etc. As a rule, we have information
on the nominal supply and run-off pressure values, the nominal flow through the
valve, valve reaction time delay, inertia (or the limit frequency), etc. The introduced
models of components can be parameterized in such an approach (Fig. 3.5).

The second method of description would require giving information on pneu-
matic resistances as parameters of particular components. As a rule, they are not
given by manufacturers. The approach applied does not have universal character—
while describing electric circuits, one more often uses a description in which volt-
ages or voltage drops are the initiating factors since electric element characterization
is based more often on information such as resistance, inductance or capacitance.

The acceptance of a definite method of initiation requires us to model quantities
that would allow calculating the pressure values and to give this information back to
the structure elements that demand it. This situation is presented in Fig. 3.5, which
shows the position control system with the use of the pneumatic cylinder and the
supply unit (compressor with capacitance and relay). The outlet from the valve that

Fig. 3.5 Model of the structure of the position control system with the PID controller, supply
unit, proportional valve, and pneumatic cylinder
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supplies the cylinder is necessary for the calculation of the state of the tank that
supplies the valve. In the case of too high air consumption and a pressure drop in
the tank, the compressor must load up the tank to the required value. In the next stage
of the calculations, the state of the flow through the valve depends on the pressure in
the cylinder chambers; therefore, these values should be calculated in the cylinder
and turned back as inputs p_o1 and p_o2 to the valve. The next turning back is, for
instance, the modeling of the force value that loads the cylinder depending on the
piston velocity that defines the kinetic friction.

In order to avoid problems with initial states modeling (the simulation in PexSim
is carried out from signal sources to successive dynamic units), in loops of the turn-
back one should introduce one-step delays of modeling (symbol z−1), (Fig. 3.5).
The model created in this way allows us to simulate the reaction of the pneumatic
servo-drive system but, despite the introduction of all known dimensions, the value
of the mass, the external force Fe, one should not expect to achieve full conformity
between the simulated changes and the measured ones. The difference will result
from accepted friction force parametrization by the descriptions (3.50) or (3.51), as
well as the acceptance of unknown resistance values, e.g., at pneumatic terminals of
the cylinder. There exist many such parameters in the presented description: two in
the valve, six in the cylinder, two in the supply tank and one in lines—together 11
inaccurately defined parameters. One may expect that joined tuning of the parameter
values will be very time-consuming even with the use of very fast computers. As an
alternative, one can apply the following popular approach: to simplify the model to
basic interactions and to find values of several parameters only, with the use of the
optimization method.

3.3 Linear Models: Local Approximation of Dynamic
Properties

All dynamic processes examined in the full range of changes have non-linear char-
acter, but when they are analyzed in a sufficiently limited range, they can be approx-
imated by linear description with satisfactory accuracy.

3.3.1 Dynamic Model Linearization

Linearization should be carried out in a stable point x ∈ Rn of the process state
space. In such a point, the description is given by the non-linear differential state
space equation

d
dt

x = F(x,u, t), x ∈ Rn,u ∈ Rq, (3.52)

and the algebraic output equation

y = G(x,u,t) y ∈ Rm, (3.53)
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where the vector y is measurable in the equilibrium state. If the input u0 exists the
state vector x0, then the following equations are satisfied:

d
dt

x = F(x0,u0,t0) = 0,

y0 = G(x0,u0,t0). (3.54)

If, in the point p0 = {x0,u0}, functions F(·) and G(·) are continuous, one can use
Taylor’s formula and expand the set of differential equations and the output equa-
tions:

d
dt

x = F(x0,u0,t0)+
∂
∂x

F(x,u, t)
∣∣∣∣
p0

Δx +
∂

∂u
F(x,u, t)

∣∣∣∣
p0

Δu (3.55)

+RF(x0,u0,t0),

y = G(x0,u0,t0)+
∂

∂x
G(x,u, t)

∣∣∣∣
p0

Δx +
∂

∂u
G(x,u, t)

∣∣∣∣
p0

Δu (3.56)

+RG(x0,u0,t0),

where
Δx = x−x0, x0 = F(x0,u0, t0), (3.57)

and
Δy = y−y0, y0 = F(x0,u0, t0). (3.58)

The expansion range of these two functions, F and G, should be selected in such a
way that the assumption that the factors RF and RG in the expansions (3.55), (3.56)
can be omitted was justifiable. Remembering the properties of the point p0 (3.54)
and introducing new symbols for the partial derivatives calculated in (3.55), (3.56),
one may reach the following form of description:

d
dt

x = AΔx + BΔu (3.59)

and
Δy = CΔx + DΔu, (3.60)

where

A =
∂
∂x

F(x,u,t)
∣∣∣∣
p0

, B =
∂

∂u
F(x,u, t)

∣∣∣∣
p0

,

C =
∂

∂x
G(x,u,t)

∣∣∣∣
p0

, D =
∂

∂u
G(x,u, t)

∣∣∣∣
p0

, (3.61)
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which presents local properties of the dynamic system. The symbols x and y stress
the local character of the description. For compactness of presentation, a simplified
form of the linear description of the approximation of the equations (3.59), (3.60) is
most often used:

ẋ = Ax + Bu,

y = Cx + Du. (3.62)

The above relations are simple and the calculation of derivatives of analytical func-
tions should pose no problems if they are continuous functions. The state variables
system (3.62) allows us to obtain a description in the form of the transfer function
matrix:

G(s) = C
[
sI−A

]−1B+ D. (3.63)

While introducing linear description, future applications should also be considered,
e.g., to controller algorithm design. In such a case, one should think which state
variables are measurable or which transformations should be carried out in order
to obtain a description in a form more suitable for the intended application. This
approach is presented for the above description of the pneumatic drive.

3.3.2 Pneumatic Cylinder Controlled by a Servo-Valve: A Linear
Model of the System

The final set of differential equations (3.45) to (3.49), under the assumption of the
following state variables: μ—position of the servo-valve, x—position of the cylinder
piston, v—the piston velocity, p1 and p2—pressures in chambers, as well as two
external stimulations: the voltage control u of the valve and the external force Fe,
will have two forms dependent on the servo-valve throttle position (3.41). For μ > 0,
the description will have the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

μ =
1
Tz

[
u(t −T0)

umax
− μ

]
,

d
dt

x = v,

d
dt

v =
1
M

[p1A1 − p2A2 −Ft(v)−Fe] ,
d
dt

p1 = μ
√

pz − p1

c′A1(x)
− p1v

x
,

d
dt

p2 = −μ
√

p2 − patm

c′A2(L− x)
+

p2v
L− x

(3.64)

and, for μ < 0, the form
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

μ =
1
Tz

[
u(t −T0)

umax
− μ

]
,

d
dt

x = v,

d
dt

v =
1
M

[p1A1 − p2A2 −Ft(v)−Fe] ,
d
dt

p1 = μ
√

p1 − patm

c′A1(x)
− p1v

x
,

d
dt

p2 = −μ
√

pz − p2

c′A2(L− x)
+

p2v
L− x

.

(3.65)

The description is a relatively complex one and we can try to introduce simplifica-
tions in order to obtain a linear equations set suitable for, e.g., the design of a state
variables controller.

One should begin by analyzing which state variables change so rapidly that their
variations may be considered to be without inertia in comparison with the remaining
quantities. The servo-valve (FESTO MPY 5/3 type) with the proportional magnet
has a limit frequency of about 180 Hz, so the time constant Tz can be estimated as
having 3 to 4 milliseconds. Time delays τop measured in a laboratory were equal
to 2.5 and 2.8 milliseconds, respectively (for the control signal u > 0 and u < 0),
and the air flow through lines having approximately 1 m required also the time τdop

of about 3 milliseconds. Since free vibrations of the pneumatic cylinder that were
observed in the laboratory had a frequency of about 2 to 8 Hz, it was assumed that
the servo-valve operation would be represented by a proportional element having the
time delay of T0

∼= Tz +τop +τdop = 7 to 10 milliseconds. Hence, the first differential
equation out of the set (3.64) or (3.65) is replaced by the algebraic equation and
the description order is lowered by one. The control signal u will be included in
appropriate equations with a specified gain factor and the time argument delayed by
T0.

The friction force is a non-continuous function for v = 0 (3.50). In the range
|v| ≈ 0, the friction jump appears and the linearization cannot be carried out, but
for |v| > 0.05 m/s (see Fig. 3.3), one can assume that the equation (3.50) has linear
character, and it can be expressed in the following form:

Ft(v) = β0v. (3.66)

One may assume that such an approximation will be sufficiently good for fast piston
movement, but during the piston’s start and stop, some phenomena can appear that
depart from this description.

The next step consists in taking the effect of the controls u into account. Depend-
ing on the control signal sign, two different processes (3.41) exist: for μ > 0, the
chamber 1 is filled up (to the maximum pressure value of 6 bar), and for μ < 0,
the chamber is emptied down to the minimum pressure value of 1 bar. The air flows
practically through passage channels having the same construction, therefore it is
possible to recognize air flow resistance in both cases as comparable. In this case,
the value of the expressions

√
pz − p1 and

√
p2 − patm has a decisive effect. It was
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discovered during the experiments that the steady value of pressures in the symmet-
ric cylinder chambers (with two piston rods or rod-less) is equal to approximately
3.4 to 3.6 bar. Taking into account the values p2 = 6 bar and patm = 1 bar, it is easy
to discover that the expressions

√
pz − p1 and

√
p2 − patm will have similar values

and, as a result, directional gain values (μ > 0 and μ < 0) in (3.45), (3.46) can be
considered comparable. One can therefore give up two sets of equations (3.43) and
(3.45), and create a joint description in the form

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

x = v

d
dt

v =
1
M

[p1A1 − p2A2 −β0v−Fe]
d
dt

p1 = k1uu(t −T0)− k1vv

d
dt

p2 = −k2u(t −T0)+ k2vv

, (3.67)

where k1u
∼=

√
2,5

c′A1x , k1v = p1
x , k2u

∼=
√

2,5
c′A2(L−x) and k2v = p2

L−x .
The gain coefficient values k1u, k1v, k2u and k2v that appear in the above equa-

tions depend on the position and pressure values, but these values change relatively
slowly (in comparison with the velocity v) and, in a selected position, they can be
considered to be constant in (3.67).

Assuming the possibility of measurements of the cylinder piston position x and
the pressures p1 and p2 in the chambers (some proportional valves are equipped
with the measurement of the pressure in the chamber), the description of the exist-
ing phenomena depends on four state variables: the piston position x, its velocity
v, and pressures p1 and p2. The control signal u and the external force Fe act as
stimulations. Therefore, linear description may be introduced:

ẋ = Ax + Bu, (3.68a)

y = Cx + Du, (3.68b)

where

x =

⎡
⎢⎢⎣

x(t)
v(t)
p1(t)
p2(t)

⎤
⎥⎥⎦ , u =

[
u(t −T0)

Fe(t)

]
, y =

⎡
⎣ x(t)

p1(t)
p2(t)

⎤
⎦ (3.69)

and

A =

⎡
⎢⎢⎣

0 1 0 0
0 −β0

M
A1
M

−A2
M

0 −k1v 0 0
0 k2v 0 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 0
0 1

M
k1u 0
−k2u 0

⎤
⎥⎥⎦ , C =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , D =

⎡
⎢⎢⎣

0 0
0 0
0 0
0 0

⎤
⎥⎥⎦ .

(3.70)
When the measurement of the pressures p1 and p2 is not possible (as in the case of
the employed MPY 5/3 valve) and the position x measurement is available only, one
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should try to obtain parametrization that makes the above description independent
of the pressure values. To simplify the discussion, let us assume that the external
resistance force Fe = 0. The piston acceleration may be expressed in the form

a =
1
M

[
p1A1 − p2A2

]− 1
M

β0v, (3.71)

and its derivative may be defined from the equations (3.67):

d
dt

a =
1
M

[
ṗ1A1 − ṗ2A2

]− 1
M

β0v̇

=
A1k1u

M
u(t −T0)− A1k1u

M
v +

A2k2u

M
u(t −T0)− A2k2v

M
v− 1

M
β0a

= kuu(t −T0)− kavv− kaaa,

(3.72)

where ku = A1k1u
M + A2k2u

M , kav = A1k1v
M + A2k2v

M , kaa = β0
M .

The system will be described by three so-called phase state variables: x,v,a (posi-
tion, velocity and acceleration), and the whole description will have the form (3.68),

where x =

⎡
⎣ x(t)

v(t)
a(t)

⎤
⎦ , u = [u(t −T0)] and y = [x(t)] ∈ R1, and A =

⎡
⎣ 0 1 0

0 0 1
0 −kav −kaa

⎤
⎦,

B =

⎡
⎣ 0

0
−kaa

⎤
⎦ , C =

[
1 0 0

]
, D = [0].

This form is definitely simpler than the equations (3.64), (3.65), but it is an approx-
imation for which the coefficients ku, kav and kuv are clearly dependent on the point
of operation.

The introduced description may be presented in the form of transfer function
with the use of the transformation (3.63). Section 3.4 and 3.5 deal with looking for
parametric models of the discussed pneumatic drive in the form

Gvu(s) =
ku

s2 + kaas+ kav
e−sT0 (3.73)

obtained with the use of the statistic evaluation method.
The observed piston velocity reactions to the control signal u on the input of the

proportional valve have typical oscillatory character, therefore the transfer function
Gvu(s) should contain information on the velocity gain C, radial frequency of the
proper vibrations ω0 and the damping factor ξ ,

Gvu(s) =
Cω2

0

s2 + 2ξ ω0s+ ω2
0

e−sT0 . (3.74)
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Comparing (3.72) and (3.74), one can obtain dependencies for the parameters C, ω0

and ξ :

ω2
0 =

A1 p10

Mx
+

A2 p20

M(L− x)
,

Cω2
0 =

√
2,5

c′M

(
1
x

+
1

L− x

)
,

2ξ ω0 =
β0

M
. (3.75)

As is easy to observe, the frequency of proper vibrations ω0 of the system will
depend mainly on the mass M, pressure values in the chambers, the piston position
and the cylinder diameter. The remaining parameters strongly depend on ω0, but
they are more independent of the position and air pressures in the chambers. In the
case of a symmetric cylinder (A1 = A2 = A), the pressures (p10 = p20 = p0) in the
chambers in initial states are equal, and the parameters C, ω0 and ξ are described
by simple dependencies:

ω2
0 =

Ap0

M

(
1
x

+
1

L− x

)
,

C =
√

2,5
c′Ap0

,

ξ =
β0x(L− x)

2ALp0
, (3.76)

which means that the controlled cylinder will have the lowest frequency of proper
vibrations ω0 and the highest vibration damping ξ in the middle position of the pis-
ton, and the gain should be constant and dependent on the servo-valve flow capacity,
as well as inversely proportional to the piston surface A. This simple model will be
examined in the chapter on parametric models of the system.

3.3.3 Pneumatic Cylinder Controlled by a Servo-Valve:
An Optimized Linear Model of the System

While designing the analytical model, we usually know a part of parameters result-
ing from geometry, physical constants and laws that describe particular phenomena.
The remaining parameters are either difficult to be measured or they reflect some
approximate relations used for the derivation of the final description. Modeling the
process, we usually have additional knowledge in the form of recorded measure-
ments. One can ask if both sources of information may be used, and if a model
could be derived that has a partially defined description and will fit the gathered
measurements.
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A typical example of such a situation is the state variables description (3.72), in
which values of the mass M, the piston surfaces A1, A2 are relatively easy to be
determined, but the coefficients β0, k1u, k2u, k1v, k2v, which depend on the friction
conditions, flow resistances and servo-valve flow capacity, are not known.

In such a situation, the user can come to the conclusion that the usefulness of
shell models, e.g., the above-described pneumatic drive system having a description
based on analytical equations, is limited due to the lack of a method that would allow
us to define coefficients necessary for the modeling. One can then use the option of
parameter optimization (PExSim Optimizer) available in the PExSim package.

The option allows us to optimize selected coefficients of the model in the sense of
the minimization of the required evaluation index. The use of this approach will be
presented with the help of the above-described pneumatic cylinder model. Figure 3.6
presents transients measured during the experiment: changes of the valve control
signal, piston velocity and pressures in the cylinder chambers.

Let us assume that the simplest model of the whole system is required in the
form of the velocity transfer function (3.74), we do not know any of the examined
transfer function coefficients, and we assume that the structure is known and we
look for coefficients of both the numerator and the denominator:

Fig. 3.6 Transients of registered values of pressures in the cylinder chambers (a), servo-valve
control signal u and cylinder piston velocity v (b)
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G(s) =
x0 + x1s

1 + a1s+ a2s2 e−s0,005. (3.77)

The time delay value should be evaluated earlier and included in the examined
model (3.77). Next, one should create the system structure in the PExSim pack-
age for the optimization purposes (Fig. 3.7). One should also define the type of the
matched element, e.g., the transfer function, the pattern model, etc., and the form of
the evaluation index that will be minimized (e.g., the sum of absolute values of the
difference between the output from the model and the measured input), as well as
introduce the reference signals, e.g., the sequence of registered inputs and outputs
(“File with recorded input & output data” in Fig. 3.7).

Fig. 3.7 Diagram of the modeling structure for the optimization of transfer function coeffi-
cients in the PExSim package

Then, the coefficient tuning process is set in motion. At the first stage of the tun-
ing, global optimization algorithms are used, e.g., the Particle Swarm Optimization
(PSO) algorithm, which allows us to select at first one (or more) points around of
which optimum solutions will be looked for (Wnuk, 2006).

The optimization mechanism is an external thread for the PexSim package. It
consists in sequential setting into motion the simulation module of the package.
When the complete simulation cycle is achieved, the obtained results are evalu-
ated. When the index value is obtained, the next point is analyzed (in the model
coefficient space) according to the searching procedure applied. The range of pa-
rameter searching may be limited according to a priori knowledge of the person that
implements the optimization. One can also choose the mode of the free choice of
unknown values out of a very broad range, as in the presented example. Such a pro-
cess is relatively time consuming but it allows us to look for investigated parameters
in the sense of freely defined evaluation indices, e.g., the sum of absolute values of
errors of the model or the introduction of multi-criteria indices (Kreisselmeier and
Steinhauser, 1979).

The point chosen by the global optimization algorithm is then recognized as the
initial one for solution searching by the local searching methods. The optimization
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procedure is again set in motion, and selected parameters are tuned according to the
procedure described earlier. Figure 3.9 presents changes of the tuned coefficient x0

of the transfer function (3.77). As one can see, the value of the coefficient x0 at the
initial time instant was very distant from the final result, and the evaluation index
was (for a relatively long time, approximately 100 objective function evaluations)
practically constant, but the final result was quite satisfactory. The comparison of
changes obtained from the tuned model and results introduced as the reference data
is presented in Fig. 3.8.

Fig. 3.8 Changes of the values of the coefficient x0 of the transfer function (3.77) during
optimization (a), changes of the evaluation index during optimization (b)

The transfer function obtained in the above example had the form

G(s) =
0,0575 + 0,0342s

1 + 0,195s+ 0,0134s2e−s0,005 =
Cω2

0

s2 + 2ξ ω0s+ ω2
0

e−s0,005s, (3.78)

where ω0 = 8,63 rad/s, ξ = 0,84, C = 0,0575(m/s)/V.
While comparing the possibilities of recovering the recorded input-output data

by the model (3.78), Fig. 3.9, it can be considered quite satisfactory. Of course, the
system described by the 2-nd order transfer function will show more rapid changes
than the real system that is at least of the 4-th or the 5-th order (3.70), but dynamics
reproduction is correct.

Considering the relations (3.76), it is easy to notice that the value of the proper
vibrations ω0 is relatively easy to be estimated since it depends merely on the di-
mensions and mass of the moving assembly. In the case considered, the cylinder had
the overall length L equal to 0.5 m and the experiment was conducted in the cylin-
der center. Knowing the piston active surface A ≈ 0.0008 m2 and assuming that the
pressure value in the state of equilibrium is equal to p0 ≈ 3,5 bar, one can calculate
the value of ω0 as 8,48 rad/s (3.76), which agrees quite well with the value obtained
during the optimization experiment.

The above example presents the possibilities of the analytical modeling
technique—one can know the structural description of the investigated process but
the accuracy or knowledge of some parameters may be limited. The presented opti-
mization technique allows us then to effectively match these parameters to available
measurements.



82 K. Janiszowski et al.

Fig. 3.9 Changes of the output of the optimized transfer function (curve having sharp sum-
mits) and the measured transients having smooth value changes

3.4 Parametric Models

Parametric models, as well as neural ones, belong to the group of models determined
through identification, i.e., numerical processing of data collected during measure-
ments. Such models may recreate static or dynamic relations between the measured
signals. Unlike models in the form of artificial neural networks, parametric mod-
els better correspond with traditional forms of description, static characteristics or
transfer functions that describe the examined process dynamics. Since coefficients
of these models can be transformed into values of physical parameters that describe
the process dynamic properties: gain, time constants, time delays, etc., the models
are often called parametric. The DiaSter platform contains the MITforRD package,
which helps us to create parametric models in a broad range. As plug-ins, such
models may cooperate with the PExSim package.

Unlike analytical models, parametric ones depend on the data sampling inter-
val Δ . The description of the model will be calculated with the discrete time t = kΔ ,
i.e., both the modeled quantity signal y(k) and the signals of inputs ui(k), as well as
disturbances zi(k), will be introduced to the model in the form of sampled values.

The parametric models structure may be presented in a general form:

ŷ(k) = M(u,z,y,θ ), (3.79)

where u = [u1(k̃),u2(k̃), . . . ,uq(k̃)]T is the control vector at different discrete time in-
stants k̃ ∈ 〈k− l1,k− l2〉, l2 > l1, y is the output vector, z = [z1(k̃),z2(k̃), . . . ,zr(k̃)]T

is the disturbance vector and θ denotes the vector of unknown coefficients. The
structure of the model is very vital and depends on the planned application.

Models for controller design and automatic control applications will require the
exposition of the effect of stimulating factors—the output quantity y(k) should de-
pend on the control signals u and the disturbances z that do not depend on the con-
trol signals. In the structure of these models, it is better not to include information
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gathered in measured signals that depend on the controls u j. For example, investi-
gating the pneumatic drive dynamics model for the synthesis of the control algo-
rithm it would be undesirable to include the measurements of the pressures p1, p2

(in the chambers) as the input information. In order to obtain the compact form of
description and to take into account the proper dynamics of the process considered,
it is reasonable to include into the model structure M an evaluation of the output
signal ŷ, i.e., ŷ(k) = M(u,z, ŷ,θ ,k). Such models must have a form that allows us to
evaluate the future effect of the decisions made (therefore, l1, l2 ∈ N) and to design
a control or an algorithm of automatic control.

Models for diagnostic purposes will include information carried by all of the
signals u,z that are reliable measurements, in general, without the signal y that is
modeled, i.e., ŷ(k) = M(u,z,θ ,k). On the other hand, they can use future signal val-
ues in relation to the time instant k, if it improves the evaluation quality—therefore,
l1, l2 ∈ C. The aim of this model is the most reliable calculation of the signal value
at the current time instant k. Such a model may be also successfully used for the
so-called “soft measurements”, but then it is usually obtained during a special ex-
periment, where the measurement is implemented by the reference system and the
recorded pattern data allow us to calculate a precise model that may replace the
pattern measurement with given accuracy. All forms of models may be used in
this application, including models based on artificial neural networks, very popular
recently.

The third group consists of parametric models for prediction purposes. In this
case, the only limitation is the prediction horizon l2 ∈ N. As the input information,
one can use all measurable signals that are suspected to have an effect on the output
at time instants k− l2,k− l2 −1, i.e., ŷ(k) = M(u,z,y,θ ,k). The form of the models
is not limited.

The quality index of the estimated model is most often calculated in the form of
the sum of squares of the model errors:

ILS =
N

∑
k=1

[y(k)− ŷ(k)]2 , (3.80)

which is used very readily due to its analytical form and advantageous behavior
during minimization. The index of the sum of absolute errors

ISAE =
N

∑
k=1

|y(k)− ŷ(k)| (3.81)

has no analytical formula but can be more suitable for the comparison of the deter-
mined models.

3.4.1 Discrete Linear Parametric Models

Parametric dynamic models are often a representation of dynamic dependencies
between signals, expressed in the form of the state variables diagram (3.62) or the
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transfer function (3.63). Measurement data are sampled with the sampling interval
Δ , hence appropriate descriptions are also expressed in a form parameterized by Δ .
For example, equations of discrete state variables may be used:

x(k + 1) = Ãx(k)+ B̃u(k), (3.82a)

y(k) = Cx(k)+ Du(k), (3.82b)

where x ∈ Rn,u ∈ Rq,y ∈ Rm,Ã ∈ Rn×n, B̃ ∈ Rn×q,C ∈ Rm×n,D ∈ Rm×q, in which
the time argument k denotes the appropriate signal value at the time t = kΔ . The ma-
trices C and D appearing in this description are identical with those appearing in the
description (3.62), and the matrices Ã and B̃ may be obtained by the transformation
of the matrices A and B in the following way:

Ã = exp(AΔ),
B̃ = A−1(exp(AΔ)− I

)
B =

(
exp(AΔ)− I

)
A−1B, (3.83)

where Ã ∈ Rn×n, B̃ ∈ Rn×q, exp(AΔ) is the matrix function and I is the unitary
matrix having the appropriate dimension. In the case of small (in comparison with
the described process dynamics) value of the sampling interval Δ , one may use
approximate description being the result of the approximation of the expansion of
the function exp(AΔ) to the first term: Ã = I−AΔ , B̃ = ΔB, where Ã ∈ Rn×n,
B̃ ∈ Rn×q.

The description with the use of the transfer function (3.63) may also be expressed
in a form parametrized by the sampling interval Δ . It is usually convenient to apply
the description of a single modeled output y. One may try to use tables with trans-
forms of particular types of continuous transfer functions, but for more complex
descriptions (of the 3-rd order and higher), their application requires us to run many
calculations. Approximated formulae are applied.

Let us consider a continuous process of the description (3.63) that has j output
signals and is simulated by the signals ui(t), i = 1, . . . ,q,

y j(s) = ∑
i

Gi j(s)ui(s), (3.84)

having values sampled with the step Δ . Let us assume that the simulations change so
slowly that they can be considered constant in the time intervals 〈kΔ ,(k + 1)Δ). The
particular output signals y j(t) may be then described by the following dependency:

y j(z−1) = ∑
i

G̃i j(z−1)ui(z−1) = ∑
i

Bi j(z−1)
A j(z−1)

ui(z−1), (3.85)

in which z−1 is the shift back operator, x [kΔ ] z−p = x [(k− p)Δ ]. In order to simplify
the notation, let us denote the discrete time argument simply as k in our further
discussion. The expressions Bi j(z−1) and A j(z−1) are polynomials of the variable
z−1, and the polynomial A j(z−1) always has a0 = 1 for the term z0.
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The discrete transfer function forms G̃(z−1) may be calculated directly from the
description (3.83), applying different approximation formulae in which proper de-
pendency with the operator z−1 is introduced instead of the operator s (Spriet and
Vansteenkiste, 1983; Janiszowski, 1993).

Both ways of description, (3.82) and (3.85), lead us to the acquisition of the se-
lected output signal y j(k) in the form of the weighted sum of the stimulation signal
values ui(k). In order to simplify the notation, let us assume that the process de-
scribed by the dependency (3.85) has one output signal, and the stimulation signals
ui(k) have time delays Ti = diΔ . The description can be presented in the form

y(k)A
(
z−1)=

q

∑
i=1

Bi
(
z−1)ui (k−di) ⇔

y(k)
(
1 + a1z−1 + · · ·+ anz−n)

=
q

∑
i=1

(
bi0z−di + bi1z−1−di + · · ·+ binz−n−di

)
ui(k). (3.86)

The above equation leads to a simple recursive relation that describes the modeled
output value at t = kΔ as the effect of the measured signal values at previous time
instants:

y(k) = y(k)
(−a1z−1 + · · ·+ anz−n)

+
q

∑
i=1

(
bi0z−di + bi1z−1−di + · · ·+ binz−n−di

)
ui(k) ⇔

y(k) = −a1y(k−1)−·· ·−any(k−n)

+
q

∑
i=1

(bi0ui(k−di)+ · · ·+ binui(k−n−di)) . (3.87)

Relations of this kind are the basis for the creation of parametric models of the
process dynamics. The modeled output signal y(k) is determined by the vector v(k),
composed of measured signal values, as well as the vector of coefficients θ ,

y(k) = v(k)θ , (3.88)

where v(k) = [−y(k− 1), . . . ,−y(k − n),u1(k − d1), . . . ,u1(k − d1 − n), . . . ,uq(k −
dq), . . . ,uq(k− dq − n)] ⇔ v(k) = [v1(k),v2(k), . . . ,vm(k)] and θ = [a1, . . . ,an,b10,
b11, . . . ,b1n, . . . ,bq0,bq1, . . . ,bqn]T .

In further deliberations, the vector v(k) will be called the vector of model inputs
(one must not confuse it with inputs to the modeled process!), and the vector θ the
vector of the model coefficients. The vector v(k) of inputs of the model can have
various forms.

When looking for the transfer function model (3.86), the vector of the model in-
puts v(k) will have the form described by the equation (3.88) and will be called
the Auto-Regressive Moving Average (ARMA) structure. The name shows that
the vector θ contains coefficients of the ai type, which express the dependency of
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the output y(k) on previous values of the same signal (auto-regressive), as well as
coefficients of the bi j type, which show the relation having Moving Average (MA)
character with respect to the input values ui.

The vector v(k) may also have the signal values of inputs ui to the process only,
and such a structure of the model will be called MA or the Finite Impulse Response
(FIR).

The problem of the modeling of the output signal y(k) can be expressed, as the
above relation shows, in a form much simpler than the description (3.59), which
requires us to apply complex integration techniques. If the vector of coefficients
θ of the model is known, the vector of the model inputs v(k) is measurable, then
modeling with the use of an equation in the form of (3.87) is evidently simpler.

One should remember, however, that the representation (3.87) is local linear ap-
proximation of dynamic properties only, calculated for the given sampling interval
Δ , and it cannot be used for simulation with the step (of integration) Δ ′ < Δ . In fact,
the sampling interval change in the parametric model (3.88) is a difficult task and
requires us to implement very complex re-calculation of the coefficients θ of the
model.

For modeling purposes, the form (3.88) is very often completely sufficient. How-
ever, its acquisition may pose certain problems. In the case when the accurate de-
scription (3.82) or (3.85) is known, obtaining the formula (3.88) is simple. When
the description (3.88) should be calculated directly based on the knowledge of the
signal measurements that appear in the vector v(k), as well as the knowledge of the
output signal values u(k), one should apply one of the available methods for coef-
ficient vector θ value estimation, and the final result of the approach depends on
many factors.

3.4.2 Identification of the Coefficients of Parametric Models

The problem can be statistically defined in the following way: we are looking for a
reasonable approach to estimate the vector of the coefficients θ̂ in the model pre-
sented in the general form (3.88). The measurement sequences are given and their
values appear in the vector v(k), while the value of the output signal y(k) is subjected
to the effect of non-measurable disturbances η(k),

y(k) = v(k)θ + η(k) k = 1, . . . ,N. (3.89)

An intuitive way is to define a measure I(θ̂ ) of model errors:

ε(k) = y(k)−v(k)θ k = 1, . . . ,N, (3.90)

and calculate the estimation θ̂ that will result in the minimum value of the measure
I(θ̃ ). The simplest way is to apply the Least sum of Square (LS) errors method. In
this method, the vector of coefficients θ̂LS should be selected in such a way that the
sum of square errors of the process output reaches its minimum value:
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ILS(θ ) =
N

∑
k=1

[y(k)−v(k)θ ]2 ⇒ min
θ

I(θ ) = I(θ̂LS). (3.91)

The solution is a formula called the LS estimator:

θ̂LS =
[
VT V

]−1
VT y, (3.92)

where

V =

⎡
⎢⎢⎢⎣

v(1)
v(2)

...
v(N)

⎤
⎥⎥⎥⎦ ∈ RN×M, y =

⎡
⎢⎢⎢⎣

y(1)
y(2)

...
y(N)

⎤
⎥⎥⎥⎦ ∈ RN . (3.93)

The LS estimator will exist only when a determinant of the matrix VT V exists and
is not equal to zero. The estimator’s properties depend on the structure of the model
and signal values (Soderstrom and Stoica, 1988).

The LS estimator (3.92) is most often biased, i.e., E[θLS] �= θ . This effect is
caused by the introduction of the value of the signal y(k− i) to the vector v(k) of
the model inputs (3.89). Such a case appears when the ARMA-structured model is
estimated. This property does not have to have a decisive effect on the reproductive
properties of the model (3.92).

If there are some indications to suspect that the disturbance η(k) in the model
(3.89) is not a white noise signal, it is reasonable to investigate the parametric model
in an extended structure. LS estimator generalization, the so-called estimator of the
Generalized Least sum of Square (GLS) errors, allows us to estimate the vector of
coefficients of the ARMAX-structured model in which (beside stimulation signals)
also the estimation of the non-measurable disturbance effect exists:

y(k) = v(k)θGLS = [−y(k−1), . . . ,−y(k−n),u1(k−d1), . . . ,uqn(k−dq −n),

η(k−1), . . . ,η(k−n)] [a1, . . . ,an,b10, . . . ,bqn,c1, . . . ,cn]
T . (3.94)

The GLS estimator (Soderstrom and Stoica, 1988) allows us to obtain asymptoti-
cally unbiased estimations:

lim
N→∞

E [θGLS] = θ , (3.95)

under similar assumptions as in the case of the LS estimator but for the ARMAX
model, which can be more useful than the ARMA structured model.

The Instrumental Variable (IV) estimator has statistically better properties than
the LS estimator. Here, instead of the matrix V (3.92) consisting of the vectors of the
model inputs v(k), the matrix W is introduced which contains signals that should
not be correlated with the signal η(k), e.g., instead of the signal y(k− i) value, its
estimation ŷ(k− i) is introduced that should show no correlation with η(k):

θIV =
[
WT V

]−1
WT y, (3.96)
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where

V =

⎡
⎢⎢⎢⎣

v(1)
v(2)

...
v(N)

⎤
⎥⎥⎥⎦ ∈ RN×M, W =

⎡
⎢⎢⎢⎣

w(1)
w(2)

...
w(N)

⎤
⎥⎥⎥⎦ ∈ RN×M, y =

⎡
⎢⎢⎢⎣

y(1)
y(2)

...
y(N)

⎤
⎥⎥⎥⎦ ∈ RN .

(3.97)
The IV estimator (3.96) can lead to calculations of convergent and unbiased estima-
tions also for models having the ARMA structure.

Certainly, the better the statistic properties of the estimator, the higher the com-
fort of the investigator, but, as the experience shows, success in model creation for
diagnostic purposes or in the design of the control system depends on the data qual-
ity, i.e., stimulation properties of signals during the experiment.

In order to evaluate the quality of the obtained process parametric model, one
may use the index ILS (3.88) or ISAE , the Sum of Absolute Errors (SAE):

ISAE(θ ) =
N

∑
k=1

|y(k)−v(k)θ |. (3.98)

The universal application of LS, GLS or IV estimators results exclusively from the
possibility of easier introduction of calculation algorithms and the possibility of
proving estimation convergence with the index (3.91), whose derivative with respect
to the coefficients vector θ may be easily calculated. It does not mean, however,
that the index always has physical sense. For instance, when the error of the model
means the inaccuracy of the stock exchange rate, then the losses due to such an error
should be calculated in the currency of a given stock, e.g., in $ and not in $2.

While discussing the forms of indices and their usefulness, one should remember
the way in which modeling is implemented. When values of the output signals from
the process are included in the model inputs vector v(k), modeling can be imple-
mented in two ways. The first one allows us to evaluate the prediction properties
and then, in both of the indices (3.91) and (3.98), the formula for the calculation
of the output value of the model may contain measured values of the output signal
y(k). The second one consists in the replacement of the estimate value ŷ(k) instead
of the measured output signal y(k) in the vector v(k). The calculated index value
will be denoted by the MRO symbol:

IMRO =
N

∑
k=1

[y(k)−M (u,z, ŷ,θ ,k)]2 . (3.99)

It evaluates the model better with respect to the reaction of the model output to
stimulation (u and z) changes. In the MRO mode, the index SAE (3.98) may also be
applied.

While calculating the dynamics of the model with the use of identification, one
should make use of all available information about the examined process. One
should not approach the examinations with the assumption that we do not know
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anything about the model, it is a black box for us, but the identification algorithm
is very exquisite, it will find the model. The initial information that may be used
during identification implementation consists in the evaluation of the number of ac-
cumulators of energies that appear in the examined process. It allows us to make an
initial guess regarding the order of the model. Another very important information
is the expected delay time in interactions of particular stimulations. One can rela-
tively easily evaluate delays having transport type character. Both of the premises
allow initial fitting of the structure of the examined model. Very valuable is also
information from process operators since it can improve the structure or allow us to
verify the obtained results.

3.4.3 Pneumatic Cylinder Controlled by a Servo-Valve:
A Parametric Linear Model of the System

Experiments and investigation of pneumatic servo-drive systems were performed at
the Laboratory of Servo-drives of the Institute of Automatic Control and Robotics
of the Warsaw University of Technology. The stand for pneumatic servo-drive in-
vestigation was equipped with a very precise position measurement device optical
linear unit of the resolution of 1 micrometer, and a controller from dSPACE. Many
experiments were conducted and the obtained results were relatively broadly dis-
cussed (Janiszowski, 2002). A single case will be discussed below: the long jump
of the cylinder piston, by 600 mm (Fig. 3.10). During the displacement, the piston
achieved a relatively high negative velocity—approximately 1.5 m/s, and then the
braking began. The movement time was 800 milliseconds, and the sampling interval
was 1 millisecond.

In order to define the optimum state space feedback algorithm of the state vari-
able algorithm for the positioning drive, the model having the form (3.74) was
looked for. Due to that, the SAE index (3.98) in the MRO version (3.99) was ap-
plied to the evaluation of the quality of the model of the reaction of the piston ve-
locity v to the control signal level u. At the first stage of examinations, the delay
time was relatively accurately defined. The implemented tests with the use of the

Fig. 3.10 Changes of the cylinder piston position x and the velocity v at the stroke of
600 mm
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Fig. 3.11 Changes of the signal controlling the valve u and the acceleration a of the cylinder
piston at the stroke of 600 mm

proportional servo-valve showed that the minimum value of the delay introduced by
the valve was approximately 2.5 to 3 ms. Due to the length of connections, being
approximately of 1 meter, one should expect the delay of about 5 to 6 ms. At the
time instant of the start, the cylinder piston must overcome the adhesive friction
effect that introduces further delay. After many experiments (14 different displace-
ments were tested), the optimum delay value was established at 9 ms. The IMROSAE

value for transients presented in Figs. 3.10 and 3.11 had the minimum for the or-
der n = 6 of the model. The modeling results in the MRO mode are presented in
Fig. 3.12.

Comparing both transients, one may acknowledge that in the range of high ve-
locities the model correctly reproduces the process gain but presents rather too high
a damping value—the measured transients in Fig. 3.10 had a visible tendency for
oscillations. Simultaneously, during the piston braking, the model over-estimated
the velocity gain value for lower velocities—therefore one may conclude that the
servomotor valve-piston assembly had different properties in this range of velocity
than at the acceleration stage.

The discrete transfer function of the velocity v [mm/s] as a reaction to the valve
control signal u [V] for the optimum structure (n = 6,d = 9 milliseconds) had the
form

v(k) = 1.94v(k−1)−0.5338v(k−2)−0.4789v(k−3)−0.5804v(k−4)

+1.008v(k−5)−0.3553v(k−6)+0.4124u(k−9)−0.2717u(k−10)

+0.3074u(k−11)−0.1638u(k−12)−0.1887u(k−13)−0.07809u(k−14).

(3.100)

The above form was inconvenient for model properties evaluation, but the step func-
tion response and the pulse response calculated for it (Fig. 3.13) suggested that the
lower-order description is possible.

The implemented reduction to the model having the order of n = 2, d = 9 led to
the form
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Fig. 3.12 Changes of the measured and the modeled velocity (in the MRO mode)

Fig. 3.13 Time responses of the examined cylinder model: step function response (a),
impulse response (b)

v(k) = 1.9465v(k−1)−0.9655v(k−2)+0.4661u(k−9)+0.3991u(k−10),
(3.101)

and approximation to the continuous domain allowed us to obtain the following
description:

Gvu(s) =
8.62 ·105

s2 + 33.17s+ 634.4
es0.008. (3.102)

The reduction quality was very good—time responses of the model before, and after,
the reduction calculated for the model (3.102) differed by less than 2% (this is why
they were not shown). Comparing the above description with the form (3.74), one
can calculate the transfer function parameters for the examined cylinder load and
conditions of displacement:

C = 1359[(mm/s)/V ], ω0 = 25.18[rad/s], ξ = 0.66. (3.103)

In the above example, a different cylinder was examined than the one described
by the model (3.78). The cylinder described by (3.102) had the length of 800 mm,
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a higher section A = 0.0019 m2, and it was weighted by the mass M = 10 kg, which
had an effect on the increase of the proper vibrations frequency ω0 and the gain C.

3.5 Fuzzy Parametric Models

The methodology of the fuzzy set approach finds newer and newer applications in
technology (Yager and Filev, 1994). The MITforRD package integrated with PExSim
helps us to calculate parametric fuzzy models. This approach is especially useful
for modeling—it yields the investigation of process operation regions in which the
process dynamics may have different local properties in a consistent way. It allows
us to integrate the model description and apply it to, e.g., diagnosing algorithm
synthesis, controller selection, etc., and sometimes also to detect new properties of
the process.

Fuzzy description is based on intuitive presentation of the expert’s knowledge in
the form of the creation of premises and conclusions. The most often used method of
premise definition is based on the definition of the set Xi to which there belongs the
event or state x describing the characteristic situation, followed by the conclusion
Kj. The mechanism for fuzzy inference system creation consists in the creation of
the set of rules having the form Ri j : i f (x ∈ Xi)thenKj, while the essence of the
approach is the fact that rules ranges Xi partially overlap one another. The sets Xi

do not divide the ranges of changes of the quantities xi ∈ ∑Xi in an acute way. The
application of the fuzzy set method should begin with the definition of ranges Xi

and the degree of affiliation x to this set, i.e., the membership function ϕi(x). This
function belongs to the range 〈0,1〉, while ϕi(x) = 0 ⇔ x /∈ Xi,ϕi(x) = 1 ⇔ x ∈ Xi

and x /∈ Xj �=i.
It is possible to define the membership function in different ways, e.g., one may

apply analytical functions (Gauss’ distribution or spline functions), or continuous
but non-analytical functions, e.g., trapezoidal distribution. The basic assumption
applied in the MITforRD package for the membership function is as follows:

∀i ϕi(x) ∈ 〈0,1〉 and ∀x ⊂ X
s

∑
i=1

ϕi(x) = 1, (3.104)

where s denotes the number of selected subsets of Xi and is called the number of
partitions. The second part of the definition is important since it introduces the con-
dition of necessary normalization of the membership function before the inference.
Such a mechanism protects the search against the introduction of numerically un-
stable models.

3.5.1 Fuzzy Parametric TSK Models

Fuzzy inference ends with a specific formula that usually results from taking into
account several premises Ps,s = 1, . . . ,k for which ϕs(x) > 0. The formula may have
the form of an algebraic dependency:
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F(x) =
k

∑
s=1

ϕs(x)Ks, (3.105)

where Ks are conclusions for the premises Ps. When the conclusions Ks are algebraic
formulae, the model (3.102) is called the Takagi–Sugeno–Kang model (Yager and
Filev, 1994). In the work of Wnuk (2006), the generalization of the above formula
in the field of parametric model identification was very successfully applied by the
introduction of the parametric model fuzzy form:

θ (x) =
k

∑
s=1

ϕs(x)θS ⇔ ŷ(k) = v(k)
k

∑
s=1

ϕs(x)θS, (3.106)

where θS denotes the local model calculated for data belonging to the subset Xs

according, e.g., to (3.92) or (3.96). All models θS must have the same structure
(inputs ui, order n, time delays di). The above model is the linear form of coefficients
of the models θS but, since they depend on the state of x, it introduces in general
non-linear dependencies between the stimulation signals ui and the reaction of the
output y that is modeled. This is especially visible after, e.g., static gains for the
partial models θS have been calculated.

The basic advantage of the fuzzy model is the possibility of good matching of
the partial models θS to the ranges Xs in which a defined process character dom-
inates. Such a linear form (3.106) is well understood by users. Local descriptions
of dynamic properties allow us to compare differences between particular partitions
and to consider if the accepted division is not too dense or too sparse. Having the
partial models θS one may think of a separate choice of controllers, models for soft-
measurement, prediction or diagnostics, etc. The algorithm applied in the MITforRD
package allows us to calculate fuzzy models with the use of the LS estimator (3.92).
LS estimation allows obtaining asymptotically un biased estimations exclusively for
a high number of measurements applied to calculation. In practice, the number of
measurements should be at least five to ten times higher than the number m of the
coefficients vector θ of the model.

The main disadvantage of TSK models is the necessity of a sensible definition
of borders of the sets Xi as well as the membership function ϕi. It is possible to
define the sets with the use of experts’ knowledge, or one can try various methods:
clusterization, GMDH, or running automatic optimization. In each one of the cases,
much effort is required, but it may considerably improve the model quality.

The number of fuzzy variables x j may be higher, j = 1, . . . , p. In such a case the
number of local models may be large and equal to

M =
p

∏
j=1

κ j, (3.107)

where κ j denotes the number of partitions (a set of x where ϕi(x) �= 0) of member-
ship functions for the successive fuzzy variables. During the calculation of the fuzzy
model of the m coefficients, the validation level of the models is very important:
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ρi(k) =
N

∑
k=1

ϕi
(
x(k)

)≥ 5m, (3.108)

where the argument k points summation after all gathered time instants. In many
cases, persons that run the identification experiment tend to choose a very com-
plicated structure of the model (too many partitions) in order to obtain seemingly
better matching of the model. One should always check the dependency (3.108),
especially for a high number of fuzzy variables.

3.5.2 Estimation of Fuzzy TSK Model Coefficients

The problem of a numerical run of estimation can cause some doubts—in many
cases, the point x considered may belong simultaneously to several partitions and
then the question is if it should be used for calculations, and if so, in what partition
it should be included.

The problem has a simple solution: since all vectors of inputs to the model in the
LS estimator (3.92), (3.93) are summed in the matrices VT V and VT y, then the se-
quence of the introduction of the vectors v(k) to the matrix V is not important. If the
vector of model inputs v(k) to the model belongs to the interval Pi (corresponding
to the model θi) to a degree ϕi < 1 only, then it may be included in the LS method,
together with the requirement that it recreate the part equal to ϕiy(k) of the mea-
sured output signal only. With such an approach to the problem of the estimation
of a fuzzy model composed of L partitions, one can decompose the solution of the
problem to the definition of models ϕi, i = 1, . . . ,L. Using an index in the form of
the least sum of error squares, the definition of each one of the partial models θi is
described by a relatively simple dependency:

N

∑
k=1

[
ϕi
(
P(k)

)
y(k)−ϕi

(
P(k)

)
v(k)θi

]2

= I(θi) ⇒ min
θi

I(θ̃i). (3.109)

The above shows the filtration of the sequence of the values of the output y(k), as
well as the vector of the model inputs v(k) by the function of membership values
ϕi
(
P(k)

)
, where P(k) denotes the fuzzy variable value at the discrete time instant k.

LS estimation of the vector of coefficients of the partial model θi is defined by the
following rule:

θ̃i =
[
VT

i V
]−1

VT
i yi, (3.110)

where

Vi =

⎡
⎢⎢⎢⎣

ϕi
(
P(1)

)
v(1)

ϕi
(
P(2)

)
v(2)

...
ϕi
(
P(N)

)
v(N)

⎤
⎥⎥⎥⎦ ∈ RN×M yi =

⎡
⎢⎢⎢⎣

ϕi
(
P(1)

)
y(1)

ϕi
(
P(2)

)
y(2)

...
ϕi
(
P(N)

)
y(N)

⎤
⎥⎥⎥⎦ ∈ RN . (3.111)
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After (3.110) has been calculated, the dependency (3.108) is verified. Among the
advantages of the estimation (3.110), one can list its simple algorithm and limited
calculation effort.

One should notice, however, that the condition (3.109) for the indices I(θi) to
reach their minimal values is not equivalent to global minimization of the sum of
error squares. The latter can be obtained by simultaneous optimization of the coef-
ficient values for all models described by the vectors θi. In the case of global mini-
mization, one looks simultaneously for the vector θ T =

[
θ T

1 ,θ T
2 , . . . ,θ T

L

]
composed

of L vectors θi that ensures the minimum value of the index

I(Θ) =
N

∑
k=1

[
y(k)−

L

∑
l=1

ϕl
(
P(k)

)[
v(k)θl

]]2

⇒ min
Θ

I(Θ̂). (3.112)

The above problem has a solution in another form:

Θ̂ =
[
VT V

]−1
VT y, (3.113)

where

V =

⎡
⎢⎢⎢⎣

ϕ1
(
P(1)

)
v(1) . . . ϕL

(
P(1)

)
v(1)

ϕ2
(
P(2)

)
v(2) . . . ϕL

(
P(2)

)
v(2)

...
ϕN
(
P(N)

)
v(N) . . . ϕL

(
P(N)

)
v(N)

⎤
⎥⎥⎥⎦ ∈ RN×(M×L)

y =
[

y(1), . . . ,y(N)︸ ︷︷ ︸ , . . . , y(1), . . . ,y(N)︸ ︷︷ ︸
]T ∈ RN , (3.114)

and it requires converting visibly larger matrices. The results of such a solution may
be better, but numerical problems with insufficient numeric conditioning due to poor
stimulation signals will also be higher. The higher calculation effort in the case of
the estimator (3.113) is caused by the inversion of a matrix having the order of L
times higher in comparison with the estimation (3.110). It will not be remarkable
in the case of a single estimator calculation, but if the estimator is applied to re-
cursive optimization calculations, then the calculation effort may limit application
possibilities.

Both of the estimators (3.110) and (3.113) may be used after the membership
function has been precisely defined. When one defines parametric fuzzy models,
the proper structure of fuzzyfication takes most of the time: the number of fuzzy
signals, partitions and the form of each function. In the determination of the fuzzy-
fication structure one may and should take into account the observations of process
operators, but such information is not always available. In this case, one should test
successive variants and verify values of selected indices for the calculated models.
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3.5.3 Pneumatic Cylinder Controlled by a Servo-Valve: A TSK
Fuzzy Model

Examinations of TSK fuzzy models for the pneumatic drive system were based on
laboratory experiment results gathered for a symmetric (two-piston rod) cylinder
having the length of 800 mm and the diameter of 50 mm. The results described in
Section 3.4 yield the conclusion that the parametric model of the pneumatic drive
can be improved when one relates the estimation results to cylinder piston velocity.
Observations made during parametric model calculations justified such an approach
due to strong dependency of the dynamic properties on the friction force, which is,
in turn, strongly dependent on piston velocity (Fig. 3.2). The second quantity that
may have an effect on the estimation of coefficients of the dynamic model is the
piston position x in the cylinder.

After different tests, conducted to find a proper choice of the membership func-
tion in the velocity range, final models were calculated with the division into parti-
cles presented in Fig. 3.16 (negative range of v).

Fig. 3.14 Selection of partitions for membership functions with respect to the piston velocity
v at the calculations of the TSK fuzzy model for the displacement presented in Figs. 3.10
and 3.11

The calculations were conducted in a similar mode as in the case of the paramet-
ric model (Section 3.4). TSK fuzzy models were calculated which had the structure
n = 6, d = 9 for each one of the partitions (Fig. 3.14), and then the reduction with
approximation to 2-nd order models was implemented. The results of the estimation
of the parameters C, ω0, ξ are presented in Table 3.3.

Table 3.3 Changes of approximated parameters of partial models θi as a function of the piston
velocity v

Velocity range C [mm/s/V] ω0 [rad/s] ξ [-]

|v| >700 mm/s 1514 25,2 0,49
140 mm/s < |v| <325 mm/s 667 43,1 0,57
40 mm/s < |v| <120 mm/s 197 84,2 0,96

|v| <10 mm/s 6,8 198 0,23

The above results should be commented on. The decrease of the value of the
gain C and the increase of the damping when the piston velocity decreases (for
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velocities |v| > 40 mm/s) can be expected (the higher participation of the friction
force should exert such an effect), but the range for the lowest velocities |v| < 10
mm/s was completely incomprehensible. The observed oscillations were initially
interpreted as an inaccuracy of the measuring technique, but the optic measurement
device used was not disturbed.

After other test sequences were examined more thoroughly, the same effects were
observed—micro-vibrations having a small amplitude and very low damping. This
effect resulted from vibrations of the piston suspended on elastic seals which, due
to the adhesive friction, were motionless in relation to the cylinder walls, but the
piston itself could vibrate with a high frequency. This effect was practically for the
first time observed and explained.

The estimated TSK fuzzy model was better than the single parametric model
(3.100). The quality of the output signal for this model, examined in the same way,
yielded the modeling result presented in Fig. 3.15. Successive tests were conducted
for two fuzzy quantities: the piston velocity v and the piston position x in relation to
the middle of the cylinder.

Fig. 3.15 Velocity signal generated by the TSK fuzzy model

In this case, we gave up the partition with micro-vibration (measurement series
without micro-vibration sequences were used), but models were calculated for 15
partitions. Three partitions parameterized changes of the models in relation to the
piston position x, and five partitions in relation to the velocity in the way presented
in Figs. 3.16 and 3.17.

Fig. 3.16 Parametrization of trapezoid partitions with respect to the piston position x
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Fig. 3.17 Parametrization of trapezoid partitions with respect to the piston velocity v

We expected, according to (3.76), that the pulsation of the proper vibrations ω0

would change in a symmetrical way together with the gain C by approximately 70
to 80% close to the covers of the cylinder with respect to the piston position x, and
the damping ξ would increase for low velocities. The obtained results have shapes
definitely different than we expected (Figs. 3.18 and 3.19).

The expected symmetry with respect to the velocity v and positive values of x
could have been observed, but the range for x < −250 mm was definitely different
than the expectations. Changes of properties appeared regularly (for negative values
of x, abnormalities appeared) but up to a certain extent. In successive tests, we de-
cided to replace the measurement system, and with a new system put in place, we
observed a very strong jam of the cylinder piston in the left cover (x = −400 mm),
caused by inaccurate tightening up of the mounts of two shears the mass load was
moved over. This fact completely explained the shown abnormalities that did not
appear during successive tests.

The above results show the main advantage of TSK fuzzy models. Locally they
can describe the dynamic properties very precisely. The quality of the TSK fuzzy

Fig. 3.18 Changes of the pulsation ω0 of the proper vibrations for parametrization with re-
spect to the position x and the velocity v
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Fig. 3.19 Changes of the damping factor ξ for parametrization with respect to the position x
and the velocity v

model can be so high that it can detect quite unexpected, new technical effects.
The close correspondence of the TSK fuzzy models to a linear representation yields
an easy explanation of the observed phenomena.

3.6 Neural Models

Artificial neural networks provide an excellent mathematical tool for dealing with
non-linear problems (Abdessemed et al., 2006; Nelles, 2001; Haykin, 1999; Gupta
et al., 2003; Deng et al., 2009). They have an important property according to which
any continuous non-linear relation can be approximated with arbitrary accuracy us-
ing a neural network with a suitable architecture and weight parameters. Their an-
other attractive property is the self-learning ability. A neural network can extract
the system features from historical training data using the learning algorithm, re-
quiring little or no a priori knowledge on the process. This provides the modeling
of non-linear systems with great flexibility (Nelles, 2001; Norgard et al., 2000).
However, the application of neural networks to the modeling or fault diagnosis of
control systems requires taking into account the dynamics of the processes or sys-
tems considered (Korbicz et al., 2004; Calado et al., 2001). A neural network, to
be dynamic, must contain a memory. The memory can be divided into a short-term
memory and a long-term memory, depending on the retention time (Arbib, 1989; El-
man, 1990; Mozer, 1994; Haykin, 1999). The short-term memory refers to a com-
pilation of knowledge representing the current state of the environment. In turn, the
long-term memory refers to knowledge stored for a long time or permanently. One
simple way of incorporating a memory into the structure of a neural network is the
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use of time delays, which can be implemented at the synaptic level or in the input
layer of the network. Another important way in which the dynamics can be built
into the operation of a neural network in a implicit manner is through the use of
feedbacks.

3.7 Neural Networks with External Dynamics

The neural network commonly and willingly used for modeling processes is a
multi-layer perceptron. Neural models of this class, however, are of a static type
and can be used to approximate any continuous non-linear, although static, func-
tion (Cybenko, 1989; Hornik et al., 1989). Therefore, neural network modeling of
control systems should take into account the dynamics of the processes or systems
considered. Two main methods exist to provide a static neural network with dy-
namic properties: the insertion of an external memory to the network or the use of
feedbacks. The strategy most frequently applied to model dynamic non-linear map-
ping is the external dynamics approach (Narendra and Parthasarathy, 1990; Hunt
et al., 1992; Haykin, 1999; Norgard et al., 2000; Nelles, 2001). It is based on the
non-linear input/output model:

ym(k + 1) = f
(
y(k), . . . ,y(k−m),u(k), . . . ,u(k−m)

)
, (3.115)

where f (·) is a non-linear function, u(k) is the input, y(k) and ym(k) are outputs
of the process and the model, respectively, m is the order of the process. The non-
linear model is clearly separated into two parts: a non-linear static approximator
(multi-layer perceptron) and an external dynamic filter bank (tapped delay lines)
(Fig. 3.20). As a result, a model known as a multi-layer perceptron with tapped de-
lay lines (time delay neural network) is obtained. Time delay neural networks can
describe a large class of systems but are not as general as non-linear state-space
models. Limitations are observed for processes with non-unique non-linearities,
e.g., hysteresis or backslash, where internal unmeasurable states play a decisive

ym(k +1)

u(
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−

m
)

u(
k
−

1)

y(
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−

m
)

y(
k)

Multi-layer perceptron

z−1z−1z−1z−1u(k) y(k +1)

... ...

... ...

Fig. 3.20 Realization of the external dynamics approach
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role, and partly for processes with non-invertible non-linearities (Zamarreno and
Vega, 1998; Nelles, 2001). Moreover, the problem of order selection is not satisfac-
torily solved yet. This issue is equivalent to the determination of relevant inputs for
the function f (·). If the order of a process is known, all necessary past inputs and
outputs should be fed to the network. In this way, the input space of the network
becomes large. In many practical cases, there is no possibility to learn the order of
the modeled process, and the number of suitable delays has to be selected experi-
mentally by using the trial and error procedure (Norgard et al., 2000).

Many papers show that the multi-layer perceptron is able to predict the outputs
of various dynamic processes with high precision, but its inherent non-linearity
makes assuring stability a hard task, especially when the output of the network is
fed back to the network input, as in the case of the parallel model (Narendra and
Parthasarathy, 1990; Norgard et al., 2000):

ym(k + 1) = f
(
ym(k), . . . ,ym(k−m),u(k), . . . ,u(k−m)

)
. (3.116)

Indeed, the architecture (3.116) uses its own delayed outputs as part of the input
space, and the neural network becomes a recurrent model. There are also situations
in which this type of network is not capable of capturing the whole plant state in-
formation of the modeled process (Williams, 1990; Zamarreno and Vega, 1998).
The use of real plant outputs avoids many of the encountered analytical difficulties,
assures stability and simplifies the identification procedure. This type of feedfor-
ward network is known as a series-parallel model (3.115), introduced by Narendra
and Parthasarathy (1990). Such networks are capable of modeling systems if they
have a weakly visible state, i.e., if there is an input-output equivalent to a system
whose state is a function or a fixed set of finitely many past values of its inputs and
outputs (Williams, 1990). Otherwise, the model has a strongly hidden state and its
identification requires recurrent networks of a fairly general type.

3.7.1 Recurrent Networks

Standard feed-forward networks are capable to represent static mappings only. How-
ever, neural network modeling of control systems requires taking into account the
dynamics of the processes or systems considered. This can be achieved by introduc-
ing tapped delay lines into the system model. Unfortunately, neural networks with
external dynamics have a number of drawbacks, listed in the previous section. These
shortcomings resulted in the fact that other neural models of a dynamic type have
been proposed. Such neural networks are called recurrent networks.

Recurrent networks are neural networks with one or more feedback loops. As a
result of feedback introduced to the network structure, it is possible to accumulate
the information and use it later. Feedback can be either of a local or a global type.
Taking into account the possible location of feedback, recurrent networks can be
divided as follows (Tsoi and Back, 1994; Haykin, 1999; Campolucci et al., 1999):
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• globally recurrent networks: there is feedback allowed between neurons of dif-
ferent layers or between neurons of the same layer. Such networks incorporate a
static multi-layer perceptron or parts of it. Moreover, they exploit the non-linear
mapping capability of the multi-layer perceptron;

• locally recurrent networks: there is feedback only inside neuron models. This
means that there are neither feedback connections between neurons of successive
layers nor lateral links between neurons of the same layer. These networks have
a structure similar to that of static feedforward ones but consist of the so-called
dynamic neuron models.

The most general architecture of recurrent neural networks was proposed by
Williams and Zipser (1989a; 1989b). This structure is often called the Real Time
Recurrent Network (RTRN), because it was designed for real time signal process-
ing. The network consists of m neurons, and each of them creates a feedback. Any
connections between neurons are allowed. Thus, a fully connected neural architec-
ture is obtained. Only M from m neurons are established as the output neurons.
The remaining H = m−M units are the hidden ones. The fundamental advantage
of such networks is the possibility of approximating a wide class of dynamic rela-
tions. Such a kind of network, however, exhibits some well-known disadvantages.
One of them is large structural complexity: O(n2) weights needed for n neurons.
Also, the training of the network is usually complex and slowly convergent (Hertz
et al., 1991; Haykin, 1999; Campolucci et al., 1999). Moreover, there are problems
with keeping network stability.

Partially recurrent networks have less general character (Stornetta et al., 1988;
Mozer, 1989; Elman, 1990; Jordan and Jacobs, 1990). Contrary to the case of the
fully recurrent network, the architecture of partially recurrent networks is based on a
feedforward multi-layer perceptron consisting of an additional layer of units called
the context layer. The Elman network is the best-known example of a partially recur-
rent neural network. The realization of such networks is considerably less expensive
than in the case of a multi-layer perceptron with tapped delay lines. The Elman net-
work consists of four layers of units: the input layer, the context layer, the hidden
layer and the output layer. The input and output units interact with the outside en-
vironment, whereas the hidden and context units do not. The context units are used
only to memorize the previous activations of the hidden neurons. A very important
assumption is that in the Elman structure the number of context units is equal to that
of hidden units. All the feedforward connections are adjustable; the recurrent con-
nections are fixed. Theoretically, this kind of network is able to model the s-th order
dynamic system, if it can be trained to do so (Haykin, 1999; Pham and Liu, 1996).
At some specific time k, the previous activation of the hidden units (at time k− 1)
and the current inputs (at time k) is used as inputs to the network. In this case, the
Elman network’s behavior is analogous to that of a feedforward network. There-
fore, the standard back-propagation algorithm can be applied to train the network
parameters. However, it should be kept in mind that such simplifications limit the
application of the Elman structure to the modeling of dynamic processes (Hertz
et al., 1991). Partially recurrent networks possess over fully recurrent networks
the advantage that their recurrent links are more structured, which leads to faster
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training and fewer stability problems (Haykin, 1999; Nelles, 2001). Nevertheless,
the number of states is still strongly related to that of hidden neurons, which severely
restricts their flexibility.

Another architecture can be found in the recurrent network elaborated by Par-
los (1994). A Recurrent Multi-Layer Perceptron (RMLP) is designed based on the
multi-layer perceptron network, and by adding delayed links between neighboring
units of the same hidden layer (cross-talk links), including the unit feedback itself
(recurrent links). Empirical evidence indicates that by using delayed recurrent and
cross-talk weights the RMLP network is able to emulate a large class of non-linear
dynamic systems. The feedforward part of the network still maintains the well-
known curve-fitting properties of the multi-layer perceptron, while the feedback
part provides its dynamic character. Moreover, the usage of past process observa-
tions is not necessary, because their effect is captured by internal network states.
The RMLP network has been successfully used as a model for dynamic system
identification (Parlos et al., 1994). However, a drawback of this dynamic structure is
increased network complexity strictly dependent on the number of hidden neurons
and the resulting long training time. For the network containing one input, one out-
put and only one hidden layer with v neurons, the number of the network parameters
is equal to v2 + 3v.

3.7.2 State Space Neural Networks

Figure 3.21 shows another type of recurrent neural network known as the state-
space neural network (Zamarreno and Vega, 1998; Haykin, 1999; Nelles, 2001).
The output of the hidden layer is fed back to the input layer through a bank of unit
delays. The number of unit delays used here determines the order of the system. The
user can choose how many neurons are used to produce feedback.

Let u(k) ∈ R
n be the input vector, x(k) ∈ R

q the output of the hidden layer at
time k, and y(k) ∈ R

m the output vector. Then the state-space representation of the
neural model presented in Fig. 3.21 is described by the equations

x(k + 1) = f(x(k),u(k)) , (3.117)

y(k) = Cx(k), (3.118)

bank of
unit

delays

non-linear
hidden
layer

linear
output
layer

bank of
unit

delaysu(k)

x(k)

x(k+1)

y(k+1) y(k)

Fig. 3.21 Block scheme of the state-space neural network with one hidden layer
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where f(·) is a non-linear function characterizing the hidden layer, and C is a matrix
of synaptic weights between hidden and output neurons. This model looks similar
to the external dynamic approach presented in Fig. 3.20, but the main difference
is that for the external dynamics the outputs which are fed back are known during
training, while for the state-space model the outputs which are fed back are unknown
during training. As a result, state-space models can be trained only by minimizing
the simulation error. State-space models possess a number of advantages, contrary
to fully and partially recurrent networks (Haykin, 1999; Nelles, 2001):

• the number of states (model order) can be selected independently of the number
of hidden neurons. In this way only those neurons that feed their outputs back
to the input layer through delays are responsible for defining the state of the
network. As a consequence, the output neurons are excluded from the definition
of the state;

• since model states feed the input of the network, they are easily accessible from
the outside environment. This property can be useful when state measurements
are available at some time instants (e.g., initial conditions).

The state-space model includes several recurrent structures as special cases. The
previously analyzed Elman network has an architecture similar to that presented in
Fig. 3.21, except for the fact that the output layer can be non-linear and the bank of
unit delays at the output is omitted.

In spite of the fact that state-space neural networks seem to be more promising
than fully or partially neural networks, in practice a lot of difficulties can be encoun-
tered (Nelles, 2001):

• model states do not approach true process states;
• wrong initial conditions can deteriorate the performance, especially when short

data sets are used for training;
• training can become unstable;
• the model after training can be unstable.

In particular, these drawbacks appear when neither state measurements nor initial
conditions are available.

On the other hand, a very important property of the state-space neural network
is that it can approximate a wide class of non-linear dynamic systems (Zamarreno
and Vega, 1998). There are, however, some restrictions. Approximation is only valid
on compact subsets of the state-space and for finite time intervals, thus interesting
dynamic characteristics are not reflected (Sontag, 1992; Haykin, 1999).

3.7.3 Locally Recurrent Networks

A biological neural cell not only contains a non-linear mapping operation on the
weighted sum of its inputs, but it also has some dynamic properties such as state
feedback, time delays hysteresis or limit cycles. In order to cope with such dynamic
behavior, a special kind of neuron model has been proposed (Gori et al., 1989; Back
and Tsoi, 1991; Frasconi et al., 1992; Poddar and Unnikrishnan, 1991; Gupta and
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Fig. 3.22 State-space form of the i-th neuron with the IIR filter

Rao, 1993). Such neuron models constitute a basic building block for design-
ing a complex dynamic neural network. Locally Recurrent Globally Feed-forward
(LRGF) networks (Tsoi and Back, 1994; Campolucci et al., 1999) have an architec-
ture that is somewhere inbetween a feedforward and a globally recurrent one. The
topology of such neural networks is analogous to that of the multi-layered feedfor-
ward ones, and the dynamics are reproduced by the so-called dynamic neuron mod-
els. Based on the well-known McCulloch–Pitts neuron model, different dynamic
neuron models can be designed. In general, differences between these depend on
the localization of internal feedback (Patan, 2008b).

One possible solution is to introduce an Infinite Impulse Response (IIR) filter
into the neuron structure. In this way, the neuron reproduces its own past inputs and
activations using two signals: the input ui(k), for i = 1,2, . . . ,n, and the output y(k).
The states of the neuron can be described by the following state equation:

x(k + 1) = Ax(k)+ Wu(k), (3.119)

where x(k) ∈ R
r is the state vector, W = 1wT is the weight matrix (w ∈ R

n, 1 ∈ R
r

is the vector with one in the first place and zeros elsewhere), u(k) ∈ R
n is the input

vector, n is the number of inputs, and the state matrix A has the form

A =

⎡
⎢⎢⎢⎢⎢⎣

−a1 −a2 . . . −ar−1 −ar

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦

. (3.120)

Finally, the neuron output is described by

y(k) = σ
(
g2(bx(k)+ du(k)−g1)

)
, (3.121)

where σ(·) is a non-linear activation function, b = [b1 − b0a1, . . . ,br − b0ar] is the
vector of feedforward filter parameters, d = [b0w1, . . . ,b0wn]. The block structure
of the state-space representation of the neuron considered is presented in Fig. 3.22.
Much more powerful modeling properties are exhibited by a neural network con-
sisting of a number of dynamic neurons.
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3.7.3.1 Network with one Hidden Layer

A neural model with one hidden layer is described by the following equations:

x(k + 1) = Ax(k)+ Wu(k), (3.122a)

y(k) = Cσ(G2(Bx(k)+ Du(k)−g1))T , (3.122b)

where N = v× r represents the number of model states, x ∈ R
N is the state vector,

u ∈ R
n, y ∈ R

m are input and output vectors, respectively, A ∈ R
N×N is the block

diagonal state matrix (diag(A) = [A1, . . . ,Av]), W∈R
N×n (W = [w11T , . . . ,wv1T ]T ,

where wi is the input weight vector of the i-th hidden neuron), and C ∈ R
m×v are

the input and output matrices, respectively, B ∈ R
v×N is a block diagonal matrix

of feedforward filter parameters (diag(B) = [b1, . . . ,bv]), D ∈ R
v×n is the transfer

matrix (D = [b01wT
1 , . . .b0vwT

v ]T ), g1 = [g11 . . .g1v ]
T denotes the vector of biases,

G2 ∈ R
v×v is the diagonal matrix of slope parameters (diag(G2) = [g21 . . .g2v ]), and

σ : R
v → R

v is the non-linear vector-valued function.
A locally recurrent network with only one hidden layer is represented by the lin-

ear state equation (Patan, 2004; Patan, 2007b). Thus, its ability to approximate non-
linear mappings is limited. Therefore, in order to model a wider class of dynamic
systems, a network with two hidden layers should be taken into account.

3.7.3.2 Network with Two Hidden Layers

A neural model composed of two hidden layers with v1 neurons in the first layer and
v2 neurons in the second layer is represented as follows:

x(k + 1) = g(x(k),u(k)) , (3.123a)

y(k) = h(x(k),u(k)) , (3.123b)

where g, h are non-linear functions. Taking into account the layered topology of the
network, one can decompose the state vector as follows: x(k) = [x1(k) x2(k)]T ,
where x1(k) ∈ R

N1 (N1 = v1 × r) represents the states of the first layer, and x2(k) ∈
R

N2 (N2 = v2 × r) represents the states of the second layer. Then the state equation
can be rewritten in the following form:

x1(k + 1) = A1x1(k)+ W1u(k), (3.124a)

x2(k + 1) = A2x2(k)+ W2σ
(
G1

2(B
1x1(k)+ D1u(k)−g1

1)
)
, (3.124b)

where u ∈ R
n, y ∈ R

m are inputs and outputs, respectively, the matrices A1 ∈
R

N1×N1 , B1 ∈ R
v1×N1 , W1 ∈ R

N1×n, D1 ∈ R
v2×n, g1

1 ∈ R
v1 , G1

2 ∈ R
v1×v1 have

a form analogous to that of the matrices describing the network with one hid-
den layer, A2 ∈ R

N2×N2 is the block diagonal state matrix of the second layer
(diag(A2) = [A2

1, . . . ,A
2
v2

]), W2 ∈ R
N2×v1 is the weight matrix between the first and
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second hidden layers defined in a similar manner as W1. Finally, the output of the
model is represented by the equation

y(k) = C2σ
(
G2

2(B
2x2(k)+ D2σ

(
G1

2(B
1x1(k)+ D1u(k)−g1

1)
)−g2

1)
)
, (3.125)

where C2 ∈ R
m×v2 is the output matrix, B2 ∈ R

v2×N2 is the block diagonal matrix
of the second layer feedforward filter parameters, D2 ∈ R

v2×v1 is the transfer matrix
of the second layer, g2

1 ∈ R
v2 is the vector of second layer biases, G2

2 ∈ R
v2×v2

represents the diagonal matrix of second layer activation function slope parameters.
The matrices B2, D2, g2

1 and G2
2 have a form analogous to that of the matrices of the

first hidden layer.
The presented neural network with two hidden layers possesses pretty good ap-

proximation abilities. In the work of Patan (2008a) it was proved that the network
with a suitably large number of neurons is able to approximate a state-space trajec-
tory produced by any Lipschitz continuous function with arbitrary accuracy.

3.7.3.3 Cascade Network

The universal approximation theorem for the locally recurrent network with two hid-
den layers makes it possible to design a less complex neural network. Modifications
are as follows:

1. to use in the second layer of the network linear neurons with finite impulse re-
sponse filters instead of non-linear neurons with IIR filters,

2. to introduce additional synaptic connections between the input and the second
layer of the network.

A cascade neural network obtained in this way (Patan, 2010) is presented in
Fig. 3.23. Let us consider a discrete-time neural network with n inputs and m out-
puts. The cascade locally recurrent network is composed of two processing layers
consisting of v1 and v2 neurons, respectively. Neurons of the second layer receive
excitation not only from the neurons of the previous layer but also from the external
inputs (Fig. 3.23) (Patan, 2008a; Patan et al., 2008). The first layer includes neu-

�IIR – neuron with the IIR filter

�FIR – neuron with the FIR filter

�L – static linear neuron

u(k)

y1(k)

y2(k)
FIR

FIR

FIR

IIR

IIR

L

L

Fig. 3.23 Cascade structure of the locally recurrent network
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Fig. 3.24 State space form of the neuron with the FIR filter

rons with IIR filters while the second one consists of neurons with finite impulse
response filters. The state-space representation block scheme of the neuron with the
FIR filter is presented in Fig. 3.24. The states of the i-th neuron with the FIR filter
are represented by (3.119), that is, in the same way as for the neuron with the IIR
filter. The difference is in the representation of the observation equation. The neuron
output is described as follows:

y(k) = cT x(k), (3.126)

where c ∈ R
r is the output vector. Next, let us consider a cascade locally recurrent

network with n inputs and m outputs. The state of the cascade network is represented
as follows:

x1(k + 1) = A1x1(k)+ W1u(k), (3.127a)

x2(k + 1) = A2x2(k)+ W2σ
(
G1

2(B
1x1(k)

+D1u(k)−g1
1)
)
+ Wuu(k), (3.127b)

where x1(k) ∈ R
N1 (N1 = v1 × r) represents the states of the first layer and x2(k) ∈

R
N2 (N2 = v2 × r) represents the states of the second layer, A1 ∈ R

N1×N1 and
A1 ∈ R

N2×N2 are the block diagonal state matrices of the first and second layers,
respectively, W1 ∈ R

N1×n is the input weight matrix, W2 ∈ R
N2×v1 is the weight

matrix between the first and second layers, Wu ∈ R
N2×n is the weight matrix be-

tween the input and the second layer, B1 ∈ R
v1×N1 is the block diagonal matrix of

feedforward filter parameters of the first layer, D1 ∈ R
v1×n is the transfer matrix,

g1
1 ∈ R

v1 denotes the vector of biases of the first layer, G1
2 ∈ R

v1×v1 is the diagonal
matrix of slope parameters of the first layer, and σ : R

v1 → R
v1 is the non-linear

vector-valued function.
The presented cascade neural network possesses pretty good approximation abil-

ities. In the work of Patan (2008b) it was proved that the cascade network (3.127)
with a suitably large number of neurons with IIR filters in the first layer and a suit-
ably large number of neurons with FIR filters in the second layer is able to approx-
imate a state-space trajectory produced by any Lipschitz continuous function with
arbitrary accuracy. Additionally, the cascade network has a less complex structure
(lower number of parameters), contrary to the locally recurrent network with two
hidden layers (Patan, 2008a; 2008b).
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3.7.3.4 Training of the Network

The neural network composed of dynamic neuron models does not include any
recurrent link between processing units, thus its training procedure is relatively
simpler than in the case of globally recurrent networks. To derive values of the
network parameters, the back propagation idea can be applied. The Extended Dy-
namic Back Propagation (EDBP) algorithm, developed for locally recurrent net-
works, can work in both off-line and on-line modes. The selection of the proper
training mode is dependent on the requirements and specificity of the problem to
be solved. However, taking into account the fact that a cost function to be mini-
mized usually has a non-linear multimodal form, gradient-based algorithms often
get stuck in local minima and training results are not satisfactory. Even the multi-
start technique does not improve the quality of the neural model. To avoid such prob-
lems, one can use global optimization methods, e.g., the Adaptive Random Search
(ARS) or Simultaneous Perturbation Stochastic Approximation (SPSA) (Patan and
Parisini, 2002; Patan, 2008a).

3.7.3.5 Neural Model of a DC Motor

In this section, neural modeling of the AMIRA DR300 laboratory system is pre-
sented. The laboratory system shown in Fig. 3.25 is used to control the rotational
speed of a DC motor with a changing load. The laboratory object considered con-
sists of five main elements: a DC motor M1, a DC motor M2, two digital incremental
encoders and a clutch K. The input signal of the engine M1 is an armature current
and the output signal is the angular velocity. The available sensors for the output
are an analog tachometer on an optical sensor, and a digital incremental encoder.
The available measurements of the plant are as follows: Im is the motor current of
the DC motor M1, Ig is the motor current of the DC motor M2, T is the tachometer
signal, and the control signals include Cm: the input of the motor M1, Cg: the input
of the motor M2. The separately excited DC motor is composed of two subsystems:

Fig. 3.25 AMIRA DR300 laboratory stand
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electrical and mechanical. The electrical subsystem is governed by a linear differ-
ential equation. In turn, the mechanical subsystem is in general non-linear. One of
the viscous components is the Stribeck friction, which is a non-linear component
occurring at low angular velocities. Therefore, to model a DC motor, a non-linear
modeling technique, e.g., the locally recurrent network, should be employed.

A separately excited DC motor was modeled by using the dynamic neural net-
work (3.127). The model of the motor was selected as follows:

T = f (Cm). (3.128)

The following input signal was used in the experiments:

Cm(k) = 3sin(2π1.7k)+ 3sin(2π1.1k−π/7)+ 3sin(2π0.3k + π/3). (3.129)

Using (3.129), a learning set containing 1000 samples was formed. The neural net-
work model (3.127) and (3.126) had the following structure: one input, three IIR
neurons with 1-st order filters and hyperbolic tangent activation functions, six FIR
neurons with 1-st order filters and linear activation functions, and one linear output
neuron (Patan, 2007a; Patan et al., 2007). The neural model structure was selected
using the trial and error method. The quality of each model was determined using the
Akaike Information Criterion (AIC) (Ljung, 1999). This criterion contains a penalty
term and makes it possible to discard too complex models. The training process was
carried out for 100 steps using the ARS algorithm (Walter and Pronzato, 1997; Patan
and Parisini, 2002) with the initial variance v0 = 0.1. The outputs of the neural model
and the separately excited motor generated for another 1000 testing samples are de-
picted in Fig. 3.26. The efficiency of the neural model was also checked during the
work of the motor in closed loop control. The results are presented in Fig. 3.27. Af-
ter transitional oscillations (Fig. 3.27(a)), the neural model settled at a proper value.
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Fig. 3.26 Outputs of the motor (solid) and the neural model (dash-dot): open loop control
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Fig. 3.27 Outputs of the motor (solid) and neural model (dash-dot): closed loop control

For clarity of presentation of the modeling results, in Fig. 3.27(b) the outputs of
the process and the neural model for 200 time steps are illustrated only. The above
results give a strong argument that the neural model mimics the behavior of the DC
motor pretty well and confirm its good generalization abilities.

3.7.4 GMDH Neural Networks

The group method of data handling (Ivakhnenko, 1971) enables automatic struc-
ture selection of a neural model. Initially, the method was designed for the identi-
fication of static Multi-Input-Single-Output (MISO) systems but, in practice, most
systems possess a dynamic structure. Thus, it is necessary to extend the GMDH
algorithm for the identification of dynamic systems. Unfortunately, there are only
few works in the literature dealing with this problem. All these techniques rely on
the introduction of external tapped delay lines into the model structure and usu-
ally lead to unstable models due to permanent structure changes of the GMDH
neural network during the identification procedure. This problem can be effec-
tively solved with the introduction of the so-called dynamic neurons (Witczak
et al., 2006; Witczak, 2007). Another problem is to modify the GMDH identification
strategy in such a way that it can be applied for Multi-Input-Multi-Output (MIMO)
systems (Mrugalski, 2004; Witczak et al., 2006; Mrugalski and Korbicz, 2007).

3.7.4.1 Synthesis of GMDH Models

The general idea of the GMDH consists in replacing the problem of designing the
entire model with the hierarchical structure of polynomial models. The synthesis of
the GMDH model (Fig. 3.28) consists in parameter estimation of the partial models
and combining them with appropriate selection methods in such a way that the re-
sulting structure evolves towards the best replica of the system being identified (in
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Fig. 3.28 Synthesis of the GMDH model

the sense of the identification criterion used). In a general case, the system can be
described by

y(k) = f (u1(k), . . . ,unu(k)), (3.130)

where y ∈R is the system output, u = [u1(k), . . . ,unu(k)]
T ∈ R

nu is the system input,
and f (·) is the system structure. The most important feature of the GMDH algorithm
is that the partial models are designed separately before introduction to the entire
model structure. The parameters of the partial models are estimated in such a way
as to achieve the best modeling quality of (3.130), which means that the response of
the partial model should be as close as possible to that of the system. The synthesis
procedure is stopped when the optimal structure of the entire model is attained. It is
assumed that the input vector of the partial models is composed of two inputs of the
system. The output of the partial model (cf. Fig. 3.28) can be described, in a general
way, by

y(l)
n = f (u) = f (u(l)

1 , . . . ,u(l)
nu ), (3.131)

where n = 1, . . . ,ny, while ny stands for the number of partial models in a layer,
l = 1, . . . ,L and L is the number of layers.

In the case of a GMDH neural network, there is a large degree of freedom in
defining (3.131), which describes the partial model. On the other hand, it cannot
be too complex because, due to the large number of partial models, it may lead to
a large computational burden. The general description of the GMDH model is as
follows:

y = f (u) = p0 +
nu

∑
i=1

piui +
nu

∑
i=1

nu

∑
j=1

pi juiu j+, . . . , (3.132)

where p stands for the parameter (weight) vector of the network.
In the classical approach (Ivakhnenko, 1971), it is assumed that the function par-

tial model is a polynomial of the second degree. Based on the set of nu available
inputs, the first layer of ny neurons is constructed for all combinations of input cou-
ples. In the case of the subsequent l-th layer, the number of newly created neurons
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depends on the number of neurons in the preceding layer ny
(l−1) and the selected

number of neuron inputs np:

ny
(l) =

(
ny

(l−1)

np

)
=

ny
(l−1)!

np!(ny
(l−1)−np)!

. (3.133)

The first layer of the GMDH network, for np = 2, is presented in Fig. 3.29. The
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Fig. 3.29 First layer of the GMDH model

responses provided by the particular neurons can be described by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(1)
1 = f (u(1)

1 ,u(1)
2 ),

. . .

y(1)
nu−1 = f (u(1)

1 ,u(1)
nu ),

y(1)
nu = f (u(1)

2 ,u(1)
3 ),

. . .

y(1)
2nu−3= f (u(1)

2 ,u(1)
nu ),

. . .

y(1)
ny = f (u(1)

nu−1,u
(1)
nu ).

(3.134)

The characteristic feature of the GMDH is the quality index Q(ŷ(l)
n ) (performance

error), which makes it possible to describe the performance of each partial model.
In order to achieve good generalization abilities, this quality index is evaluated with
the so-called validation data set T. This quality index is utilized for partial model
selection, i.e., a decision is made which of the neurons is introduced to the entire
structure of the network. The parameters of the neurons (partial models) of the newly
created layer remain unchanged during the remaining identification procedure of the
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GMDH neural network. The outputs of the selected neurons stand for the inputs for
the subsequent layer: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

u(l+1)
1 = y(l)

1 ,

u(l+1)
2 = y(l)

2 ,
. . .

u(l+1)
nu = y(l)

ny .

(3.135)

The remaining layers are created in an analogous way. The synthesis process is
continued until the entire structure achieves an optimal form in the sense of the

identification criterion used. Thus, Q(l)
min stands for the quality index for the best

performing partial model in the l-th layer:

Q(l)
min = min

n=1,...,ny
Q(ŷ(l)

n ). (3.136)

Q(l)
min are calculated for each layer and the synthesis process is stopped when

Q(L)
opt ≥ min

l=1,...,L
Q(l)

min. (3.137)

Thus, the synthesis process is continued until the quality index for the best per-
forming neuron is decreasing (Fig. 3.30) while introducing the subsequent layers.
In order to achieve the final structure of the GMDH model (Fig. 3.31), all but the
best performing neuron of the last layer are removed. In a similar way, the neurons
of the hidden layers are removed.

Q(l)
min

Q(L)
opt

L layer number

Fig. 3.30 Evolution of the quality index



3 Process Modeling 115

... ...

...

...

...

u(1)
1

u(1)
2

u(1)
3

u(1)
nu

y(l)
1

y(l)
n

y(l)
ny

y(L)
1

y(L)
ny

y(l)
n

y(L)
opt

Fig. 3.31 Final structure of the GMDH model

3.7.4.2 Selection Criteria of the Partial Models

The selection criterion of the partial models plays an important role in the synthesis
of the GMDH neural network. This choice may have a strong influence on various
properties of the resulting model, such as its generalization abilities. In the work
of Mrugalski (2004), a number of selection criteria were proposed, which can be
divided into three groups:

• criteria without the partitioning of the data set: the whole data set is used for
parameter estimation and validation of the partial models. Following Mrugalski
(2004), it can be observed that the models obtained with such criteria have good
prediction abilities. The quality measure of the partial model can be expressed in
the form of a variance error:

s2
τ =

1
τ

nD+τ

∑
k=nD+1

(y(k)− ŷ(l)
n (k))2 =

1
τ

nD+τ

∑
k=nD+1

ε(k)2, (3.138)

where τ stands for the prediction horizon, while nD denotes the number of ob-
servations. The expectation of the variance is

E (s2
τ) = σ2

ε +E
(1

τ

nD+τ

∑
k=nD+1

(y(k)− ŷ(l)
n (k))2

)
, (3.139)

where σ2
ε corresponds to an unknown ideal partial model. Among the most pop-

ular criteria without partitioning of the data set, three can be distinguished:

– the FPE (Final Prediction Error):

JFPE =
nD + np

nD −np
s2

e , (3.140)
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– the AIC (Akaike Information Criterion):

JAIC = nD logs2
e + 2np + c, (3.141)

– the convergence criterion i2(nD):

Ji2 =

nD

∑
k=1

(ŷ(l)
n (k)− y(k))2

nD

∑
k=1

y(k)2
, (3.142)

where s2
e = 1

nD

nD

∑
k=1

ε(k)2 = 1
nD

nD

∑
k=1

(y(k)− ŷ(l)
n (k))2, σ2

p stands for an estimate

of σ2
e , np is the number of parameters, c is a constant, and ŷ(l)

n is the response
of the partial model obtained with nD .

In practical applications, the convergence criterion (3.142) is most frequently
used;

• criteria with the partitioning of the data set: in this case, the data are partitioned
into the training nU and validation nT sets, respectively. The first one is uti-
lized by the training algorithm, while the second one is employed by selection
procedures. Thus, in this way, models with good generalization abilities can be
obtained. The underlying criteria can be divided into two groups:

1. Accuracy criteria:
• The regularity criterion

– non-symmetric:

Δ 2(U ) = ∑
k∈U

(y(k)− ŷ(l)
n (k)|T )2, (3.143)

Δ 2(T ) = ∑
k∈T

(y(k)− ŷ(l)
n (k)|U )2, (3.144)

– symmetric:
QΔ 2 = Δ 2(U )+ Δ 2(T ); (3.145)

2. The stability criterion:
– non-symmetric:

x2 = ∑
k∈U ∪T

(y(k)− ŷ(l)
n (k)|U )2, (3.146)

– symmetric:

S2 = ∑
k∈U ∪T

[(y(k)− ŷ(l)
n (k)|U )2

+(y(k)− ŷ(l)
n (k)|T )2], (3.147)
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where ŷ(l)
n (k)|U , ŷ(l)

n (k)|T stands for the models outputs, whose parameters
were estimated with U i T .
Consistency criteria express standard deviation of either parameters or outputs
of the partial models obtained for the training and validation data sets, respec-
tively. The main drawback of this approach is that the partial models have to
be designed for both the training and validation data sets, which significantly
increases the computational burden;

• combined criteria: these are developed as a result of the combination of selected
criteria, e.g.,

Ccomb =
√

βC2
1 +(1−β )C2

2, (3.148)

where C1 and C2 may represent two arbitrarily selected criteria from the above-
described list, while (0 < β < 1).

3.7.4.3 Selection Methods for GMDH Neural Networks

The selection mechanism of partial models of the GMDH neural network is respon-
sible for automatic selection of the entire model structure. This process is realized by
removing the worst performing partial models according to the selection criterion
used. In the literature, the most frequently used selection method is the constant
population one (Mrugalski, 2004). The method boils down to selecting g neurons

with the smallest processing error Q(ŷ(l)
n ), where g is selected in an empirical way.

The main advantage of this method is implementation simplicity, while the main
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Fig. 3.32 Structure of the GMDH model obtained with the optimal population method
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drawback is the fact that all layers have the same structure and hence their evolution
is impossible. A similar situation is the case of the so-called decreasing popula-
tion method. In this approach, a maximum number of neurons is assumed, which is
decreasing while new layers are introduced. Contrary to the above-mentioned ap-
proaches, the so-called optimal population method (Fig. 3.32) possesses the ability
of varying the number of neurons for the subsequent layers. The main principle of
this approach is to select all neurons for which the performance error is smaller than
an arbitrarily selected threshold, which can be different for different layers. The
value of this threshold is usually selected in an intuitive way, which depends on a
given example. This constitutes the main drawback of the presented approach.

3.7.5 Implementation of Neural Models in the DiaSter System

For the purposes of the DiaSter environment, two neural models were implemented:
locally recurrent networks and neural networks of the GMDH type. Additionally, for
both models, a robustness problem was considered in Chapter 5. In turn, implemen-
tation details of the plug-ins are presented in Chapter 7.



Chapter 4
Knowledge Discovery in Databases

Wojciech Moczulski, Robert Szulim,
Piotr Tomasik, and Dominik Wachla

4.1 Introduction

Contemporary SCADA systems allow collecting huge amounts of data that origi-
nates from diverse data sources. There are at least two groups of such sources:

• measuring systems installed on the object (machine or installation) that permit
the acquisition of data that are instant values of sampled analogue signals or
numeric/functional values of features of such signals;

• sources of messages which can be either automatic systems (e.g., systems for as-
sessing residuals in a model-based diagnostic system, supervisory systems gen-
erating warnings and/or alarms etc.), or process operators and other managing
personnel.

Data acquired from the enumerated data sources can be the carrier of important in-
formation on the process state. During the realization of the DiaSter project, partic-
ular meaning is assigned to the issue that these data can be the source of diagnostic
knowledge that might be used for automatic detection, localization and diagnostics
of faults in dynamic industrial processes.

The module described in this chapter includes several applications whose pur-
pose consists in discovering useful knowledge in databases. The most fundamental
concept that expresses a piece of raw (uninterpreted) knowledge is regularity. It is
defined as a pattern and a range within which this pattern appears (Żytkow and
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Zembowicz, 1993). Examples of patterns are contingency tables, equations and log-
ical equivalences. The range of appearance of regularity is defined as a subset of
data satisfying some complex condition that is a conjunction of simple conditions
(such as inequalities).

The task of knowledge acquisition from data is carried out by means of several
methods that are classified as Knowledge Discovery in Databases (KDD). Rapid
development of this subdomain of artificial intelligence started about the 1990s.
A good overview of the methodology is contained in the book by Cichosz (2000). It
is worth emphasizing, though, that the majority of work concerns the acquisition of
knowledge of static character, while the diagnostics of industrial processes focuses
our attention on knowledge that describes phenomena which develop with time.
Therefore, knowledge of dynamical processes is of great value.

The methodology of discovering static knowledge is developed quite well. Nowa-
days, commercial software is available on the market, allowing carrying out analy-
ses of data files with the general goal to find dependencies that might occur between
data. As examples of KDD tools for discovering static knowledge one can enumer-
ate STATISTICA Data Miner, Oracle Data Mining or the SPSS Clementine system.
However, functional dependencies of static character play a very limited role in pro-
cess diagnostics. This is because of the fact that the most crucial property of the
process consists in the change, which for the purpose of description requires depen-
dencies that either openly or even indirectly include the time variable. Further on,
such dependencies will be called dynamic dependencies (or models).

In contrast to well-expanded and quite commonly used methodology and soft-
ware for discovering static knowledge from databases, the methodology of discov-
ering knowledge represented by different dynamic models is not so satisfactorily
developed. Some attention should be paid to the results obtained by the authors of
this chapter. The first work concerning applications of KDD methodology to the
discovery of diagnostic knowledge was initiated by Moczulski and Żytkow (1997).
Although the object of research was mainly static models, the need for discovering
dynamic models was stressed.

A group managed by W. Moczulski subsequently carried out several research
projects focused on the development of the methodology of acquiring diagnostic
knowledge, with special attention paid to applications of KDD methodology. Some
PhD theses were carried out, too. They concerned methods of knowledge discovery
based on diverse ways of representing this knowledge. Particular attention should
be paid to the works of

• Cholewa (2004), concerning the representation of sequences of events for rea-
soning in technical diagnostics;

• Szulim (2004), developing methods of building a knowledge base containing
fuzzy dynamic models of processes, which allows inferring founded on Case-
Based Reasoning (CBR);

• Wachla (2006), concerning the identification of dynamic diagnostic models using
support vectors machines;

• Tomasik (2006), addressing methods of discovering models of processes with the
usage of approximation methods.
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Theoretic results of these theses (excluding the first one) have been the basis for
elaborating algorithms and then modules of the package Knowledge Discovery in
Databases of the System DiaSter. Several of them are the subject of this chapter,
which is composed as follows. This section deals with the issues of knowledge dis-
covery about dynamic processes. Section 4.2 concerns the fundamental task of the
selection of process variables. Section 4.3 deals with methods of discovering qual-
itative knowledge that are of particular usefulness at the introductory stages of the
KDD process. The next section (4.4) is devoted to three independent approaches
to the discovery of quantitative dependencies. The first one is based upon the SVM
algorithm and permits the discovery of models that can further be applied for predic-
tions of outputs of the modeled system or process. The two remaining approaches
allow building reasoning systems based on cases: the first one is founded on approx-
imation models of dynamic processes, whereas the other one utilizes an original
fuzzy description of process realizations. The chapter ends with conclusions.

4.2 Selection of Input Variables of Models

One of the phases of knowledge acquisition processes based on a learning data set is
the feature selection phase. Knowledge acquisition with high-quality learning data
including many features does not guarantee the acquisition of adequate models,
i.e., those which are characterized by simplicity and a high degree of generaliza-
tion. Therefore, the representativity of the data set used, together with properties of
the algorithms applied, plays a decisive role in the above-mentioned models. Con-
sequently, model identification should be preceded by the feature selection phase,
which results in the necessity of equipping knowledge acquisition systems with suit-
able algorithms.

The definition of relevant feature selection (Hall, 1998) determines this task as
the identification and elimination process of redundant features and those which do
not carry any important information (Kohavi, 1995; Hall, 1998). Accordingly, the
mentioned process results in the reduction of the space dimension of the problem
considered. This, in turn, increases the productivity and efficiency of knowledge ac-
quisition and, in some cases, enables obtaining models of higher exactness. Such
disciplines as statistics, machine learning and pattern recognition provide two gen-
eral solutions in the domain of feature selection (Kohavi, 1995).

The first one is called filter feature selection and is based on the use of some
measures (such as correlation, entropy, etc.) or algorithms (e.g., RELIEF (Kira and
Rendell, 1992)) which provide statistical information on relations between the pur-
pose feature and the selected subset of descriptive features which have been chosen
by means of a search algorithm.

The second approach is characterized by the fact that, for the evaluation of a given
subset of descriptive features, a learning algorithm is used, e.g., the tree induction al-
gorithm (Quinlan, 1986), the algorithm of the supporting vectors method (Schölkopf
and Smola, 2001), etc. The evaluation of the feature subset which has been pointed
out by the search algorithm is realized by creating a model on this set and by
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calculating chosen statistical evaluations. The determined statistics provide quan-
titative information on the model quality and, at the same time, on the quality of the
feature subset being analyzed. This approach is known as wrapper feature selection.

4.2.1 Correlation-Based Feature Selection

Correlation-based Feature Selection (CFS) (Hall, 1998) is a simple algorithm which
uses heuristic functions based on correlation for the evaluation of subset features.
This function is defined in the following way (Hall, 1998):

Hs =
kr̄c f√

k + k(k−1)r̄ f f
, (4.1)

where Hs is heuristic merit of subset S including k features, r̄c f is the mean value of
correlation determined between class feature fc and descriptive features fi from the
set S ( f ∈ S), r̄ f f is the mean value of correlation determined between descriptive
features fi from the set S ( f ∈ S).
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Fig. 4.1 Diagram of correlation-based feature selection (Hall, 1998)

Figure 4.1 shows particular phases of CFS algorithm operation as well as its cor-
relation with the general scheme of feature selection. The algorithm operation can
be described in the following manner: firstly, a copy of the training data set is cre-
ated, and then it undergoes discretization and is handed over to the CFS algorithm,
where the following values are calculated:
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• the mean value of r̄ f c correlation between the class feature and other descriptive
features,

• the mean value of r̄ f f correlation between descriptive features.

Based on these calculations, CFS determines values of the heuristic function Hs

(4.1), which is further transferred to the search algorithm. Subsequently, the algo-
rithm, based on the value of the heuristic function, generates a subset of descriptive
features to be checked. Information on a new subset is redirected to the CFS algo-
rithm, which calculates heuristic functions for that subset. Thus, the presented cycle
lasts until the stop criterion is fulfilled. As a rule, the search algorithm finishes its
operation when the feature subset of the biggest value of the heuristic function is
found. Information carrying the finally determined feature subset is used for feature
reduction in original sets of training and testing data. Consequently, both reduced
data sets are then used for model identification.

4.2.2 Measures Based on Correlation

The determination of r correlations constitutes the basic problem with practical us-
age of the CFS algorithm. For a data set consisting of features of continuous values,
the value of correlation r between two features fi and f j can be determined from
correlations:

r fi, f j =
∑
x∈T

(
fi(x)− f̄i(x)

)(
f j(x)− f̄ j(x)

)
√

∑
x∈T

(
fi(x)− f̄i(x)

)2 ∑
x∈T

(
f j(x)− f̄ j(x)

)2
, (4.2)

where

f̄i(x) =
1

card(T ) ∑
x∈T

fi(x), (4.3)

f̄ j(x) =
1

card(T ) ∑
x∈T

f j(x). (4.4)

Both continuous and nominal features occur in learning data sets frequently at the
same time. In such cases, r determination requires a different way of estimation
from the correlations described by (4.2). For the set of data including only nominal
features, r is determined in the form of a symmetric uncertainty coefficient (Press
et al., 1992):

SUC = 2.0×
[

gI

H( fi)+ H( f j)

]
, (4.5)

where gI is the information gain (Quinlan, 1986), and H( fi), H( f j) is information
entropy in fi, f j , respectively.

Suitable elements appearing in the correlation (4.5) are calculated in the follow-
ing way:
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gI = H( fi)−H( fi| f j) = H( f j)−H( f j| fi), (4.6)

H( f ) = − ∑
x∈T

p( f (x)) log2(p( f (x))), (4.7)

H( fi| f j) = − ∑
x∈T

p( f j(x))∑ log2(p( f (x))). (4.8)

For data sets including both continuous and nominal features or only continuous
ones, the discretization of those sets has to take place before the application of the
measure (4.5). Among other things, this can be done by means of the method devel-
oped by Fayyad and Irani (1993).

4.2.3 Searching through the Feature Space

In order to realize the CFS algorithm, it is necessary to use at least one method of
searching through the state space. The simplest way to achieve this is to use the
exhaust searching method, which is easy to implement. However, it requires check-
ing all possible combinations of feature subsets in order to determine the subset
with the biggest (or the smallest) value of the criteria function. This way of search-
ing gives a global solution and is effective for a data set with a very small number
of features. Even a small increase in the number of features means a drop of effi-
ciency. It results in the fact that exhaust searching is practically used only for data
sets with a small number of features. Therefore, only heuristic methods are used
in the selection process. Within the elaborated system, the Best First (BF) search
algorithm (Michalewicz and Fogel, 2004) has been implemented.

Practical usage of the above-mentioned search algorithm requires a suitable way
of representing feature subsets. Binary representation seems to be the most natural
one. Its essence consists in creating a binary sequence of the length corresponding
to the number of features in a given space of F features. Next, one of the fi features
belonging to the F space is attributed to each sequence element. The information if
a given feature fi should create the analyzed feature subset or not is determined on
the basis of the element value of the binary sequence which is connected with that
feature. It is assumed that, if the value of a given element of the binary sequence is 1,
then the feature connected with that sequence element is included in the analyzed
set of features. Otherwise, i.e., when the sequence element is of the 0 value, the
feature connected with that sequence element is not included. This concept of the
way of representation is presented in Fig. 4.2.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

[ 1 0 0 1 0 0 1 1 0 0 ]

Fig. 4.2 Scheme of coding solutions for the feature selection task
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The chosen way of feature subset representation and the number of discussed
features N = card(F) determine the searched state space (Fig. 4.3). In the case of the
best first algorithm, state space searching requires defining operators which would
allow gradual moving in the space. For feature selection with binary representation,
two operators are defined:

• the operator of adding a feature,
• the operator of deleting a feature.

Using these two operators leads to distinction between three categories of moving
in the state space:

• forward selection: the process starts from an empty feature set, transition to
the next state (feature subset) takes place when one of the inactive features is
activated;

• backward elimination: the process starts from a full feature set, transition to
the next state (feature subset) takes place when one of the active features is
deactivated;

• bi-directional: the process starts simultaneously from two directions, i.e., from
an empty and a full feature set.

The above-mentioned techniques of state space searching as well as the space itself
are presented in Fig. 4.3 for the problem of three features selection.

[0,0,0]

[1,0,0][0,1,0][0,0,1]

[0,1,1] [1,0,1] [1,1,0]

[1,1,1]

Fig. 4.3 Example of the state space for feature subset selection (Kohavi, 1995)

4.3 Discovery of Qualitative Dependencies

Contingency tables are used to represent qualitative dependencies between two ran-
dom variables (Aczel, 2001). Most frequently they take the form of tables either of
dimensions (2× 2) to quickly determine whether there are relationships between
attributes, or of tables of dimensions (n×m) in order to conduct an accurate search.
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The discovered dependencies, represented by data tables, are evaluated using the
confidence measure Q defined as the probability of random generation of a par-
ticular pattern for variables (features) which are independent. If in the contingency
table there is an essential dependency, then the probability of event Q is equivalently
low. It was concluded that it is necessary to use values of Q < 10−5, which means
there is a very low probability that patterns may have been derived in a random
way. Higher Q values cause the discovery system to identify numerous regularities,
amongst which very few are of interest on account of the low relevance value (and
thus the probability of being accidental is very low). This makes it difficult for fur-
ther selection of regularities and extends the operating time of the discovery system
(Żytkow and Zembowicz, 1996).

To determine Q, the statistic χ2 is used:

χ2 = ∑
i, j

(Ai j −Ei j)2

Ei j
, (4.9)

where Ai j represents frequencies calculated from the sample and Ei j represents ex-
pected frequencies in case of truth of the null hypothesis of no relationship between
two variables.

Distribution Ei j calculated from the sample is determined by the following
relationship:

Ei j =
nxi ·nyj

N
, (4.10)

where nxi is the sum of records for the i-th column of the contingency table, nyj

is the sum of records for the j-th row of the contingency table, and N is the total
number of records.

Most often the relevance of dependency represented by a given contingency table
is evaluated by the following:

• Cramer’s V measure (Żytkow and Zembowicz, 1993), defined as

V =

√
χ2

N ·min{(Mrow −1),(Mcol −1)} ∈ [0,1]. (4.11)

The higher value of the measure V , the more unique dependencies may be ac-
quired based upon the contingency table considered. An important feature of the
measure V is its independence of the size of the table and the number of records.
For V > 0.9, the dependency represented by the table can be considered an
equivalence;

• Pearson’s contingency coefficient C (Żytkow and Zembowicz, 1993):

C =

√
χ2

χ2 + N
∈ [0,1]. (4.12)
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The coefficient C may take values from the interval 0 to 1 (when the number
of cells in the table increases to infinity).The value of C is equal to 0 if there
is no correlation. The upper limit of the range of the coefficient C depends on
the number of rows and columns in the contingency table. The more rows and
columns, the higher the value of the coefficient C. Therefore, the value of the
coefficient C obtained from the calculations should be considered in relation to
its maximum value (Cmax) of the specified size of the contingency table. In the
case of a square table, the maximum value of the coefficient C is

Cmax =

√
{Mrow,Mcol}−1
{Mrow,Mcol} . (4.13)

For rectangular tables, the approximate maximum value of the contingency co-
efficient C can be obtained from the formula

Cmax =

√
Mrow−1

Mrow
+
√

Mcol−1
Mcol

2
. (4.14)

The adjusted value of the coefficient C is calculated as

Ckor =
C

Cmax
; (4.15)

• Czuprow’s convergence coefficient, defined as (Sobczyk, 2000)

T =

√
χ2

N ·√(Mrow −1) · (Mcol −1)
. (4.16)

It takes values from the interval [0,1].When T = 0, tested attributes are stochas-
tically independent, but when T = 1, the attributes are dependent functionally.
When the convergence coefficient is closer to zero, the relationship between the
attributes is weaker. In determining the convergence coefficient, it is not essential
which attribute is treated as dependent and which as independent, the fact that is
important in the study of dependency in the sense of correlation. This property of
the convergence coefficient is called symmetry (Sobczyk, 2000). The advantage
of this coefficient is that it can be used to measure correlation characteristics. Its
disadvantage is the fact that it does not indicate the correlation direction (it is
always non-negative).

Contingency tables can be used for pre-processing for methods of discovering
knowledge in databases, and for the selection of attributes due to the presence of
significant relationships between the attributes considered. Dependencies detected
using contingency tables are then used to search for equations.



128 W. Moczulski et al.

4.4 Discovery of Quantitative Dependencies

The previous section concerned methods of discovering qualitative knowledge.
However, if one examines potential applications of discovered models, crucial
meaning is born by methods of discovering regularities described by quantitative
dependencies. Such dependencies may be used for predicting values of outputs of
a process, so that they may be applied in process diagnostics, and even more—in
aiding the control of the process course.

This section contains descriptions of three independent methodologies of build-
ing dynamic models of a given process by means of the methodology of knowledge
discovery in process databases. The first one is based on the SVM algorithm, while
the latter concern applications of knowledge discovery methodology to the develop-
ment of systems of case-based reasoning.

4.4.1 Support Vector Machines

The method of support vector machines was developed on the basis of research
concerning statistic learning theory by Vapnik and Chervonenkis (Vapnik, 1995).
Initially, it was formulated for the problem of discrimination between two linear
separable populations. The main purpose of the method is to determine an optimal
hyperplane h(x) for which the distance between ρ and xi vectors closest to it is
maximal (Fig. 4.4). xi vectors, which are interpreted as free vectors, are data in
a multi-dimensional space.

4.4.1.1 Linear Model

If we assume that

• X = {(x1,y1), . . . ,(xN ,yN)} is a set of learning data, where xi is the learning
vector and yi ∈ {±1} is the class label (i = 1, . . . ,N);

• h(x) = wT x + w0 is the equation of a discriminative hyperplane,

as well as that
ρ =

τ
||w|| , (4.17)

where τ > 0 and
yi
(
wT xi + w0

)≥ 0 i = 1, . . . ,N,

then the task of determining the optimal hyperplane h(x) amounts to solving an op-
timization task (Schölkopf and Smola, 2001; Cristianini and Shawe-Taylor, 2000):

(
1
2
||w||2

)
−−−→
w,w0

min, (4.18)

subject to
yi
[
wTxi + w0

]≥ 1 i = 1, . . . ,N. (4.19)
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w

yi = –1
yi = +1

h(x)=0

H-

H+

x1

x2

x3

x4

x5

x6

x7x8

x9

x10

x11

x12

x13

Fig. 4.4 Optimal hyperplane h(x) (Schölkopf and Smola, 2001)

The above-presented problem of optimization may be solved only in the case of
linear separability of two populations. For linear inseparable data, the problem is
defined as (

1
2
||w||2 +C

N

∑
i=1

ξi

)
−−−−→
w,w0,ξ

min, (4.20)

subject to

yi
[
wTxi + w0

]≥ 1− ξi i = 1, . . . ,N, (4.21)

ξi ≥ 0. (4.22)

Entering ξi variables into the objective function (4.20) results in reducing the in-
equality (4.19). Owing to this, it is accepted that particular xi vectors lie at incorrect
sides of canonical planes H+ and H− which determine the margin ρ . The influence
of ξi on (4.19) is controlled by using a C parameter. It is a regulator by means of
which the stage of algorithm generalization (scope of the confidence margin) is con-
trolled. At the same time, the number of errors in a training data set is controlled as
well.
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The optimization problems (4.18) and (4.20) are solved by means of Lagrange’s
multiplier method. As an example, for the objective function (4.20) and the con-
straints (4.21) and (4.22), the following Lagrangian is constructed (Cristianini and
Shawe-Taylor, 2000; Schölkopf and Smola, 2001):

L(w,w0,ξ ,α,β ) =
1
2
||w||2 +C

N

∑
i=1

ξi

−
N

∑
i=1

αi(yi[xT
i w+ w0]−1 + ξi)−

N

∑
i=1

βiξi, (4.23)

where αi,βi ≥ 0 are Lagrange’s multipliers. Next, the Lagrangian (4.23) is min-
imized due to w, w0 and ξ , and maximized due to αi. For this purpose, partial
derivatives are determined:

∂
∂w

L(w,w0,ξ ,α,β ) = 0, (4.24)

∂
∂w0

L(w,w0,ξ ,α,β ) = 0, (4.25)

∂
∂ξ

L(w,b,ξ ,ρ ,α,β ,δ ) = 0. (4.26)

The result of differentiating the Lagrangian (4.23) with respect to w, w0 and ξ is
presented as the following set of equations:

w =
N

∑
i=1

αiyixi, (4.27)

N

∑
i=1

αiyi = 0, (4.28)

αi + βi = C, (4.29)

Subsequently, the equations (4.27), (4.28) and (4.29) are inserted into the La-
grangian (4.23), which results in a dual formulation of the optimization prob-
lem (4.20)–(4.22):

(
N

∑
i=1

αi − 1
2

N

∑
i, j=1

αiα jyiy jxT
i x j

)
−→
α

max, (4.30)

subject to
0 ≥ αi ≥C, i = 1, . . . ,N, (4.31)

N

∑
i=1

αiyi = 0. (4.32)
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According to the Karush–Kühn–Tucker theory (Schölkopf and Smola, 2001), a solu-
tion to the problem (4.30) subject to (4.31) and (4.32) is determined by the following
equations:

αi
[
yi(wT xi + w0)−1 + ξi

]
= 0, (4.33)

βiξi = (C−αi)ξi = 0. (4.34)

A set of Lagrange’s multipliers αi is the solution to (4.30)–(4.32). The xi vectors, for
which αi > 0, are called Support Vectors (SVs). Finally, the equation (4.35) gives
a general structure of the SVM model for classification:

ĥ(x) = sign

(
N

∑
i=1

αiyixT xi + w0

)
. (4.35)

The optimization problem (4.30), along with the constraints (4.31) and (4.32), is
solved by means of Quadratic Programming (QP) methods. In practice, however,
the Sequential Minimal Optimization (SMO) algorithm introduced by Platt (1998)
is most frequently used.

4.4.1.2 Non-linear Model

In the SVM, the h(x) hyperplane is not determined in the input space but in a partic-
ular high-dimensional space of features Φ . The Φ is usually a non-linear dot product
of particular base functions φ j(x) which are defined in the input space.

The application of base functions requires that the transformation of input space
be explicitly provided. Such a task, including a two-, three- and four-dimensional
space, is a fairly simple one. In the case of a bigger number of dimensions, explicit
definition of input space transformation is more complicated.

The solution to the mentioned problem is based on the application of the dot
product of the base functions φ j(x), ( j = 1,2, . . . ,m). This dot product is represented
by a kernel function:

K(xi,x) = φ j(x)Tφ j(xi). (4.36)

It is expected that the kernel functions K representing the dot product of base func-
tions φ j(x) will meet Mercer’s condition (Vapnik, 1995; Schölkopf and Smola,
2001), i.e., that they will be symmetrical and positively defined:

∫ ∫
K(xi,x j) f (xi) f (x j)dxidx j > 0, (4.37)

for
f �= 0,

∫
f 2(x)dx < ∞. (4.38)

Among the most frequently applied functions of the kernel K one finds the follow-
ing (Cristianini and Shawe-Taylor, 2000; Schölkopf and Smola, 2001):
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• a linear kernel:
K(x,xi) = xTxi; (4.39)

• a polynomial kernel:
K(x,xi) =

[
γxTxi + θ

]q
, (4.40)

(K is positively defined when θ ∈ {0;1} and q ∈ N and γ ≥ 0.);
• an RBF kernel:

K(x,xi) = exp
(−γ||xT −xi||2

)
= exp

(
−||x−xi||2

2σ2

)
, (4.41)

where γ = 1/2σ2 ≥ 0;
• a sigmoid kernel:

K(x,xi) = tanh
(
γxTxi + θ

)
. (4.42)

Considering the kernel function K, the equation of the optimal hyperplane takes
the following form:

h(x) =
N

∑
i=1

wiK(xi,x)+ w0. (4.43)

In turn, the form of the SVM model for the decision problem involves the following
functional dependency:

ĥ(x) = sign

(
N

∑
i=1

αiyiK(xi,x)+ w0

)
. (4.44)

In practice, introducing the kernel function K into the SVM allowed the acquisi-
tion of a method for any data analysis. Applying it to a particular problem is con-
ditioned by the presence of an adequate function of the kernel K. Proper selection
of the function and values of its parameters is essential for ensuring the quality of
the acquired model (4.44). In practice, kernel functions presented here are most fre-
quently used. It is possible to define given kernel functions adjusted to particular
tasks; however, the functions have to meet the conditions specified by kernel func-
tions theory (Schölkopf and Smola, 2001).

4.4.1.3 Regressive Model

The SVM method was defined for regression problems as well. In the input space,
a regressive model is defined in the form of a linear approximator (Vapnik, 1995;
Schölkopf and Smola, 2001):

h(x) = wTx + w0, (4.45)

where the quality of approximation is measured by means of the ε-insensitive loss
function (Vapnik, 1995):
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L(y,h(x)) =
{

0 for |y−h(x)| ≤ ε
|y−h(x)|− ε otherwise.

(4.46)

Figure 4.5 presents the idea of SVM formulation for a regressive model along with
the consideration of (4.46).

L (y, f (x,w))*

-+

*
-

+

Fig. 4.5 SVM formulation for regression (Schölkopf and Smola, 2001)

The regressive model is accomplished by taking the values of the loss func-
tion (4.46) into consideration with simultaneous reduction of the complexity of the
model. The reduction of model complexity takes place when the ||w||2 norm is min-
imized. This problem is solved by means of two (non-negative) ξi, ξ ∗

i , i = 1, . . . ,n
slack variables which measure the deviation of the xi vector from the zone de-
termined by the ε-insensitive loss function. The task of the identification of the
model (4.45) with the consideration of the loss function (4.46) is examined as
the task of the optimization of the following objective function (Cristianini and
Shawe-Taylor, 2000; Schölkopf and Smola, 2001):

(
1
2
||w||2 +C

N

∑
i=1

(ξi + ξ ∗
i )

)
−−−−−−−→
w,w0,ξ ,ξ ∗,ε

min, (4.47)

subject to

h(xi)− yi ≤ ε + ξi i = 1, . . . ,N, (4.48)

yi −h(xi)≤ ε + ξ ∗
i , (4.49)

ξi,ξ ∗
i ≥ 0. (4.50)
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Similarly to the case of the linear model (Sec. 4.4.1.1), the task of optimiza-
tion (4.47) is transformed into a dual optimization problem by means of the method
of Lagrange’s multipliers. Having taken the space of the base function φ j(x) into
account, the objective function is presented as

L(α,α∗) −−−→
α ,α∗ max, (4.51)

L(α,α∗) = −ε
N

∑
i=1

(α∗
i + αi)+

N

∑
i=1

(α∗
i −αi)yi

−1
2

N

∑
i, j=1

(α∗
i + αi)(α∗

j + α j)K(xi,x j), (4.52)

subject to
N

∑
i=1

(αi −α∗
i ) = 0 i = 1, . . . ,N, (4.53)

0 ≤ αi,α∗
i ≤C. (4.54)

The problem of optimization (4.52) may be solved, e.g., by means of an appro-
priately modified Sequential Minimal Optimization (SMO) algorithm (Platt, 1998).
Such a modification was proposed, among others, by Schölkopf and Smola (2001)
as well as by Flake and Lawrence (2002).

Finally, the regressive model including the function space φ j(x) takes the follow-
ing form:

ĥ(x) =
N

∑
i=1

(α∗
i −αi)K(xi,x)+ w0. (4.55)

In Fig. 4.6, a manner of determining the SVM model output is presented.

4.4.2 Methods Involving Case-Based Reasoning

Case-based reasoning is a method which assumes using experience to solve new
problems. At a high level of generalization it is possible to compare this method to
the way human reason is applied when dealing with a problem or situation. A new
problem which is similar to another one solved in the past can also be solved in
a similar way. The result should be similar, too. CBR is a method which searches
in a database of historical cases for the case most similar (or similar enough) to the
current one and applies the solution from the past to this case.

At a high level of generalization, the implementation of the method can be de-
scribed by four groups of operations (Aamodt and Plaza, 1994), Fig. 4.7:

• retrieve: at this stage, searching for the most similar cases from the available
database is accomplished. The activity can be divided into feature identification,
searching, preselecting and case selection;
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(x1) (x2) (x) (xn)…

1 2 n…

( • ) ( • ) ( • )…

w1 w2 wn

Output 
wi K(x,xi) + b

Weights  wi = iyi

Dot product 
( (x) (xi)) = K(x,xi)

Mapped vectors 
(x), (xi)

Support vectors 
x1,…,xn

Test vector  x 

Fig. 4.6 Determining the output of the SVM (Schölkopf and Smola, 2001)

Fig. 4.7 CBR cycle
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• reuse: during the reuse stage two aspects must be considered, i.e., differences
between the current and the discovered case, and which features describing the
case found can be applied to the new case. It is possible to use the archival case
as a solution or use a method which would lead to the elaboration of a solution;

• revise: a solution found in the database of cases at the previous stage and applied
to a new case is not always good. Once the case had been used it is possible
to compare results obtained after its application. Different approaches can be
used as presentation results for the expert to estimate the quality. In the case of
differences in results of the stored and the current case, it is possible to modify
the case in a database to achieve better fitness to the obtained results;

• retain: when the problem is solved, the system can store the new case in the
database. If the problem was solved using a historical case, the new case can be
stored fully in the database or can only modify the historical one. If the problem
was solved in a different way (e.g., by asking the expert), the case will be stored
as a brand new case. The explanation of the case can be stored, too.

To search for similar cases in the database, a special mechanism of comparing cases
stored in the database is necessary. The result of the comparison should be a value
of similarity. To compare the cases, different similarity measures can be used, but
many times it is necessary to elaborate a special dedicated similarity measure.

4.4.2.1 Approximation Models of Periodic Processes

Data collected while monitoring cyclical, complex industrial processes may carry
information concerning the way of controlling these processes. These data are col-
lected in archival databases and acquired either from different sensors or directly
from the operator of the given device.

The control of a complex process can be carried out in an open loop by the
operators of the process. The quality of managing the process depends largely on
their knowledge and experience. The formalized procedure of conducting such a
process is not always sufficiently defined. The operators cannot communicate their
knowledge in a way that would enable the identification of a procedure to carry out
optimal control of the object/process. However, one can assume that each operator
would have his or her own method of managing the process that likely differs from
those applied by other operators.

Additional tasks performed by the operators include compliance with certain
ranges of the parameters. Exceeding the parameters of both the value and duration
of such a state could seriously affect the state of a certain industrial object and/or
may have a negative effect on other objects. During the production cycle it is re-
quired to maintain synchronization between the objects of the process due to the
mass flow between them.

As a result of a review of the state-of-the-art concerning methods of modeling
slowly varying processes, it was found to be useful to base modeling processes
on simple methods of data processing. New methods of modeling processes were
proposed which are represented by a multi-dimensional time series. These methods
are based on measures of distance and character sequences to determine the degree
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of similarity between different realizations of the process. The obtained models of
individual cycles of the process are global in nature. They can be used in reasoning
based on examples.

The methods outlined below are described in detail by Tomasik (2006). This
chapter presents selected parts of the methodology without detailed descriptions.

Method of Time Normalization of Continuous Courses of Process Parameters

Time normalization relates to solving the problem of the need to compare the cycles
or phases of different time duration.

In the case of cycles consisting of repeated phases, it was suggested that time nor-
malization would be related to partial phases by designating the adopted parameter
of scale for each of the phases on the basis of the following dependency:

ScaleT n( j,k) =
T n( j)
T n(k)

, (4.56)

where k, j,n is the index of the compared cycle reference and cycle phase,
ScaleTn(k, j) is the time-scale between various cycles with indices (k, j) for the
phase of the cycle with index n, and T n( j),T n(k) are the durations of the compared
cycle with index ( j) and the reference cycle or pattern cycle with index (k) for a
given cycle phase with index n. If we consider the whole cycle, then the value of n
shall equal 0.

Using a scale defined in such a manner results in the following:

• for cycles or phases longer than the pattern, a scale smaller than 1 was obtained
(reducing the sampling frequency of attribute values);

• for cycles or phases shorter than the pattern, a scale larger than 1 was obtained
(increasing the sampling frequency of attribute values).

The effect of an increase or a decrease in the sampling frequency of the examined
cycles by introducing a fixed scale relates to data approximation of the examined
cycles (to be compared and the reference one), resulting in a fixed number of points
approximating the cycle (or its specified phase) in the group of tested cycles.

In order to approximately represent cycles for processes attributes, the Bezier
curves approximation (free curves) was used.

Method of Determining Similarities Based on the Absolute Distance Measured
by the Euclidean Metric

This method is used to determine the values of similarities between the compared
cycles using the measure based on the Euclidean distance determined by the formula

Dn
2i(k, j) = [

P

∑
p=1

(Y (k)n
i,p −Y ( j)n

i,p)
2]

1
2 , (4.57)

where i is the index of the process attribute, p is the index of the point approximating
the cycle (p = 1 . . .P), P is the number of points approximating the cycles for which
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the Euclidean distance is calculated, Dn
2i(k, j) is the Euclidean distance calculated

for a given attribute with index i for a given cycle phase with index n; the distance
is calculated between the graphs of cycles with indices (k, j), and Y (k)n

i ;Y ( j)n
i are

values of the attribute with index i in individual approximation points for the cycles
with indices (k, j) and the cycle phase with index n. Absolute distances in this case
are calculated as differences between the values of these points (samples) in the
adopted reference system.

Based on the Euclidean distance calculated this way, values of similarities be-
tween cycles with indices (k, j) for a given attribute with index i and the phase
of the cycle with index n on the basis of the similarity measure defined below are
estimated (4.58):

Π n
i (k, j) = 1− Dn

2i(k, j)
max(Dn

2i(k, j)) for max(Dn
2i(k, j)) �= 0,

Π n
i (k, j) = 1 for max(Dn

2i(k, j)) = 0,

(4.58)

where Π n
i is the similarity between various individual cycles with indices (k, j)

within the individual cycle phase with index n for a given attribute with index i and
max(Dn

2i(k, j)) is the furthest Euclidean distance for a given attribute of index i, and
the cycle phase with index n for cycles with indices (k, j).

The introduced measure for determining similarities yields a linear change of
the similarity value versus distance. Such a simple measure of similarity has been
adopted to facilitate subsequent modification of similarities.

For the values of similarities for individual phases of the compared cycles deter-
mined this way, the values of total similarities are defined based on the following
relation:

ΠCi(k, j) = 1
N

N
∑

n=1
wn ·Π n

i (k, j),

N
∑

n=1
wn = N,

(4.59)

where ΠCi(k, j) is the overall similarity between the cycles with indices (k, j) for
a given attribute with index i, N is the number of phases of the tested cycle, and
wn represents weights dependent upon the cycle phase, which may be adopted on
the basis of an expert’s opinion, or, if unknown, take the value wn = 1 (where n =
1, . . . ,N); the weights shall determine the impact of the similarity of phases of the
cycle on the overall similarity of the cycles.

Since for such a method of determining values of similarities between the cycles
with indices (k, j) for a phase with index n the following may occur:

ΠCi(k, j) �= ΠCi( j,k), (4.60)
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to fulfill the symmetry axiom for the similarity value ΠCi(k, j) = ΠCi( j,k), the con-
cept of average similarity ΠMCi(k, j) was introduced and expressed by the relation

ΠMCi(k, j) = ΠMCi( j,k) =
ΠCi(k, j)+ ΠCi( j,k)

2
, (4.61)

where ΠMCi(k, j),ΠMCi( j,k) are average integral similarities between cycles with
indices (k, j) for a given attribute with the index i.

The value of the total similarity between the cycles with indices (k, j) for all the
chosen parameters is determined based upon the relation

ΠALL(k, j) = 1
I

I
∑

i=1
wi ·ΠMCi(k, j),

I
∑

i=1
wi = I,

(4.62)

where ΠALL(k, j) is the overall similarity between cycles with indices (k, j) for all
the selected attributes (i = 1, . . . , I), I is the number of process attributes selected for
the study, and wi are weights for each process attributes (i = 1, . . . , I).

Method of Sequences of Signs

The distance method, based on the Euclidean measure in a selected similarity value,
does not consider the influence of the shape of the course of the compared cycles
but only the differences between the corresponding values of the data describing the
cycle.

To express the similarity of shapes of the curves describing the analyzed course, a
method has been developed involving the discretization of the courses using straight
line segments, whose number is equal to (P−1), where P is the number of approxi-
mation points. Any two consecutive points of approximation designate one segment
of the description. The greater the number of points of approximation, the more seg-
ments and the more accurate approximation of describing the course of the cycle.

A glossary has been introduced describing the membership of the slope angle
of the segment to a discretized set of intervals (NS) (an odd number of intervals),
described by a predefined alphabet (Cholewa, 2004). The length of the sequence is
dependent upon the number of points of approximation P and equals (P−1). Char-
acters that are used in the alphabet are dependent upon the number of intervals NS.
For NS = 3, characters are from the set (A,B,C), and for NS = 7 from the inter-
val A−G,(A,B, . . . ,F,G). Comparing corresponding characters in the sequences is
based on the ASCII codes of these characters, while similarity values are assigned
according to (4.63). For the presented dependency, the similarity value of charac-
ters of the accepted glossary has been determined in relation to the character A. An
additional assumption is to compare character sequences of the same length.
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Signs Similarity
A → (1)

B → 1− ( 1
NS−1)

C → 1− [2 · ( 1
NS−1)]

...
...

SIGN(NS−1)→ 1− [(NS−2) · ( 1
NS−1)]

SIGN(NS) → (0)

, (4.63)

where SIGN(NS) is the final character dependent on the number of intervals (e.g.,
NS = 3 → SIGN(NS) = C).

Method of Determining Similarities Based on the Relative Distance Measured
by the Euclidean Metric

Described below are two ways applied in the discussed method that use the values
of relative distances to determine the similarity of the compared cycle values. The
first way discussed used relative distances between the points of approximation of
two compared cycles for a selected process attribute. The second way of proceeding
used the distance values of the relative slope angles of the two segments connecting
the next two approximation points of the two compared cycles for a given process
attribute.

To determine similarities based on the relative distances between successive
points in compared cycles, the relation has the form (4.64)

ΠDKS
i (k, j) = 1− DKS

i (k, j)
max(DKS

i (k, j))
for max(DKS

i (k, j)) �= 0,

ΠDKS
i (k, j) = 1 for max(DKS

i (k, j)) = 0.

(4.64)

Depending on the different relative location of individual points of approximation,
two options for calculating the distance between these points for the curves K and S
were introduced:

DK
i = Y K

i,p −Y K
i,(p+1),

DS
i = Y S

i,p −YS
i,(p+1),

(4.65)

where DK
i ,DS

i are values of differences of absolute distances between points with
indices p and (p+1) describing the attribute course with index i for the curves K and
S, and Y K

i,p,Y
K
i,(p+1),Y

S
i,p,Y

S
i,(p+1) is the attribute value with index i in approximation
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points with indices p and (p + 1) for the curves K and S describing the compared
cycles.

Dependency 1. When DK < 0 and DS > 0 and DK > 0 and DS < 0:

DKS
i = |DK

i |+ |DS
i |; (4.66)

Dependency 2. When DK < 0 and DS < 0 and DK > 0 and DS > 0:

DKS
i = |DK

i |− |DS
i |, (4.67)

where DKS
i is the relative distance between the compared segments of the curves K

and S for the attribute with the index i.
For the second method based on the values of the relative distances of various

slope angles of the segments joining the successive points of approximation of the
cycle for the selected process attribute, the similarity is calculated using the follow-
ing formula:

ΠαKS
i (k, j) = 1− αKS

i (k, j)
max(αKS

i (k, j))
for max(αKS

i (k, j)) �= 0,

ΠαKS
i (k, j) = 1 for max(αKS

i (k, j)) = 0.

(4.68)

The relative angular distance between two corresponding segments approximating
the compared courses of a given process attribute is defined from the relationship

αKS
i = |αK

i −αS
i |. (4.69)

Verification of the Developed Methods

The developed methods for modeling slowly changing processes have been verified
on data collected from an actual object. The available archival database contained
registered values of about 200 attributes describing the process run on a furnace de-
copperizing slag. This object is one of many in a complex process line. The process
conducted on it is cyclic and has a standard cycle time equal to 480 mins. Cycles
consist of three phases (loading, reduction, release).

From the database, 26 attributes were selected describing control activities and
process states (electrical parameters, electrode position, pressure in the oven), six
attributes describing the input (chemical composition and quantity of the entering
slag) and six attributes describing the output (chemical composition and quantity of
the slag, quantity of the de-copperized slag and the total energy consumed during the
cycle). For the verification, 130 complete cycles were selected from the database.

Table 4.1 describes selected results of searching for cycles similar to the refer-
ence cycle with ID 1534 for similarities identified by the above-described meth-
ods. To optimize the selected values of similarities, a sigmoidal modifying function
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Table 4.1 Selected set of cycles with various similarities to the cycle 1534 (weighted impor-
tance of the parameters with the time parameter included) for averaged values of similarities
for tested cycles with the help of the methods to be verified

Similarity

ID Cycle Input
Slow-changing

parameter
Output All

4531 0,97 0,84 0,99 0,93
1660 0,92 0,86 0,86 0,88
. . . . . . . . . . . . . . .

1474 0,67 0,85 0,67 0,71
. . . . . . . . . . . . . . .

4615 0,57 0,73 0,45 0,59
1456 0,55 0,71 0,49 0,58

was used and weights for selected parameters were determined using the genetic
algorithm. After averaging the values of the similarities identified by the described
methods, a search of similar realizations was performed. Detailed descriptions and
results of studies conducted for diversified methods can be found in the work of
Tomasik (2006).

In order to verify the correct operation of the developed methods, the results
obtained from averaged values of similarities identified by the developed methods
were evaluated. The density of empirical distribution of similarity values was mod-
ified by the sigmoidal modifying function in order to achieve a significant number
of cycles similar to those specified in the various areas of similarities.

Table 4.2 summarizes the results of the study for different threshold values of
the similarities of particular classes of parameters and different count thresholds
for these parameters. The evaluation measure of the developed elements of the
CBR system was the average value of the defined coefficient EST (4.70) from each
sample:

EST = (
NSUCC

NT EST
)100%. (4.70)

Based on the results, one can state that the adopted criterion is met for the pre-
pared set of examples of cycles. The obtained high values of the estimator allow
one to state that the constructed elements of the inference system based on exam-
ples, i.e., the way of presenting examples and the measure of similarity of examples,
enable the selection of similar cycles of the process, and that this selection is effi-
cient enough.
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Table 4.2 Evaluation results of the developed CBR system components

Input Control Output Number of tests Estimator
ΠIN ≥ NOUT ≥ ΠCONTR ≥ NCONTR ≥ ΠOUT ≥ NTEST EST [%]

0,9 20 0,8 10 0,7 21 83
0,9 20 0,8 5 0,7 66 85
0,9 20 0,85 10 0,75 5 85
0,9 20 0,8 10 0,75 21 78
0,9 20 0,8 10 0,8 21 71

Application

The developed methods allow constructing a knowledge base as a base for slowly
changing cyclical patterns of industrial processes. This database can be used to assist
the managing of an industrial process. A suitable system can generate information
for process operators about the state of the current phase of the process in relation to
archival data represented by properly searched models in the database of patterns.
This information may relate to the predicted quantitative values for output attributes
for a given process control. Moreover, it is also possible to inform the operators
about other possible ways of control which can bring a better final effect in relation
to values of output attributes.

4.4.2.2 Models Based on Fuzzy Description of Periodic Processes

In this chapter a method of data acquisition is presented which might be used for
many industrial objects realizing complex periodical process with the influence of
random factors (Szulim, 2004). The method can be used to build expert systems
using archival measurement data. The knowledge base will use CBR for searching
for similar cases. The elaborated method of data acquisition defines a systematic
approach embracing

• suitable data representation for fast comparing and searching for similar realiza-
tions of processes. It has fuzzy character;

• building a similarity measure of the cases which is process oriented and able to
compare fuzzy process representations.

Process Data Representation

The elaborated method can be used for industrial objects realizing dynamical pro-
cesses. The data describing the process can be divided into the following parts:

• input data of static character describing the process at its start: these data can be
represented by process values like the amount of material and its characteristics
together with the data describing the state of the object at a given moment;
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• data describing the control of the process with dynamic character: these data
are often represented as a time series consisting of values of a selected physical
quantity describing process control;

• output data of static character describing the process in the final state: there can
be quantities describing the final product or its quality description.

Cases Representation

The representation of cases in the database is strongly determined by features of the
object (or the process) and the type of archival measurement data. The criteria which
might be used to define the way of representation are fast searching and updating,
effective usage of computer resources, an easy way of presenting the cases for the
personnel, and the elimination of random distortions in the data.

The amount of data often imposes using special data preprocessing in order to
achieve reduction in the amount of information. This is particulary important es-
pecially when comparing time series. Reducing the amount of information should,
among others, allow fast storing and searching of cases as well as comparing cases
with a different number of measurement points. One possible way of reducing in-
formation in the time series is to use approximation, which can be accomplished in
many ways. It might be piecewise linear approximation (Keogh et al., 2003), which
was used in the presented method of building the knowledge base. In such a case,
database structures should be prepared to store data in an approximated way.

Cases can be stored in database tables. Because of complex structures describ-
ing one case, it might be necessary to elaborate special tables and the relation be-
tween them. Data describing the process may have different character. They might
be records about the beginning and the end of the process like the amount of produc-
tion material with its quality description, etc. Data of this type, because of their static
character, can be stored in the main table as records describing one case. For every
case it is necessary to store the time series of control activities together with its ap-
proximated representation. Every case needs storing information about the control
course as a list of records.

Searching for Similar Cases

Searching for similar cases is a key element of the case-based reasoning method.
The performance of the expert system strongly depends on that of the search for
similar cases.

The search for similar cases can be boosted by means of indexing. The possi-
bility of using this mechanism depends on the way of representing the cases in the
database. The index can be built using a fixed number of parameters which describe
every case. Using indexing can be difficult when working with the time series. In
such a case it is possible to search for cases in a sequential way according to the al-
gorithm presented in Fig. 4.8. It is necessary to elaborate and use a special similarity
measure of cases. Every historical case is compared using a similarity measure with
the given new case. As a result of the work of the algorithm, a set of cases similar
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Fig. 4.8 Algorithm of searching for similar cases

enough might be returned. From the set of similar cases, the most similar one might
be selected.

Searching for similar cases can be realized in a few stages (Fig. 4.8). During the
first stage, searching for cases similar to the new one according to the initial state
(input) will be accomplished. The program realizes this operation in a loop. Every
case in the database is compared using the similarity measure and certain attributes
of the initial state with the new case. The results will be stored in a special table or
in the memory. Then they can be sorted according to the similarity value with the
threshold value to find cases similar enough.

In the next step, from the set of similar cases according to the input data, search-
ing for similar cases according to process control will be accomplished. The same
algorithm is used but a different similarity measure is applied to compare the cases
as a series of lines approximating every case. The result can also be sorted and
compared with the given threshold value.

In the same way, from the set of similar cases according to the input and control
states, a set of similar cases according to the output state can be derived for the given
threshold value.

Similarity Measure

The knowledge base as a database of cases requires defining the similarity measure
of cases. Processes realized by complex objects of dynamic character require defi-
nitions of the similarity measure for data of static character (representing the initial
state) and the similarity measure for control represented in a dynamic way. Usually
there is no universal similarity measure possible to be used in every situation for
static and dynamic case representation. Special similarity measures were elaborated
for a given method of representation of cases. These similarity measures have fuzzy
character.
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Similarity Measure of Static Data

Data known at the beginning of the cycle and at the end of the cycle have static
character. These data can be a set of values of attributes describing the process in the
space of values of states. For a given set of objects (cases) {Op}, p = 1..n and their
symbolic labels C{Op}, numerical features X p

j = Xj(Op), j = 1..N characterizing
those objects are defined. Two realizations are described by vectors of feature values
r1 and r2.

The similarity of two cases is calculated using a fuzzy similarity measure. The
similarity measure is process oriented and strongly depends on properties of a set of
process realizations.

Hence, the similarity measure to be defined shall satisfy the following common-
sense criteria:

• for realizations that significantly differ between each other their similarity ought
to be small;

• two realizations that seem to be similar enough for a human observer shall have
a high similarity value.

The similarity measure is defined in the following general form:

Π(r1,r2) = Π(r1,r2, p), (4.71)

where p = [p1, p2, . . . , pm] is a vector of parameters that determine specific proper-
ties of the similarity measure under consideration. Hence, these properties may have
been optimized using, e.g., an evolutionary algorithm.

The similarity of the two realizations r1,r2 is calculated as

Π(r1,r2) = πA1πA2 . . .πAN , (4.72)

where N is the number of features, and πA j , j = 1,2, . . . is a partial similarity of the
same feature for two compared realizations.

For every feature, respective fuzzy sets must be defined. The membership func-
tion can be of trapezoid shape. To calculate partial similarity for a given feature A j,
vectors of membership functions for fuzzy sets defined for a given variable are used.
If for the attribute A j there is defined a fuzzy set family {Ã j1, . . . , Ã j,n j}, where n j is
defined as number of fuzzy sets for the attribute A j, then values of the membership
function form a vector [r j1, . . . ,r j,n j ].

Partial similarities πAx for every attribute feature value are calculated according
to the formula

πA j =
d(r1 j,r2 j)2

d(r1 j,r1 j)d(r2 j,r2 j)
, (4.73)

where d is weighted distance between vectors of values of functions of membership
to fuzzy sets of features of a pair of realizations:

d(x,y) = xWyT , where yT is a transposed matrix. (4.74)
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W is a given matrix of similarities between fuzzy sets. Values of similarities of
two fuzzy sets are in the range 0..1 (where 0 means values of low similarity and
1 stands for fully similar fuzzy sets). Values of similarities on the main diagonal
equal to 1 show the similarity of the same fuzzy sets. The W matrix is of symmetric
character. Its size depends on the number of fuzzy sets used. For every feature there
is a definition of its own matrix of similarities between fuzzy sets. An example
matrix for an attribute with three fuzzy sets defined is

WCu =

⎛
⎝1.0 0.8 0.3

0.8 1.0 0.8
0.3 0.8 1.0

⎞
⎠ . (4.75)

The similarity measure returns a value from the range 0..1 as a result. An example
measure satisfies

0 ≤ Π(r1,r2) ≤ 1. (4.76)

This relation can be easily proven since

0 ≤ ΠA j (r1,r2) ≤ 1, because d(r1,r2)2 ≤ d(r1,r1)d(r2,r2). (4.77)

The similarity measure is not insensitive to differences in ranges of feature val-
ues. Values can be either integer or float. Normalizing the values before the calcu-
lation of similarity is unnecessary. It is possible to define any number of fuzzy sets
for every feature describing a case. Thanks to using fuzzy sets and their similarity
matrices, it is possible to tune the similarity measure in order to achieve desired
properties of similarities.

Dynamic Data Similarity Measure

The similarity measure of dynamic data is used to estimate the similarity of two
control courses. The control courses can have different number of measurements,
there might be distortions, values might be off-set along both the axes. The similarity
measure should deal with such cases and calculate similarity for them, too.

Reduction of information. The time series can contain many values, they can be
contaminated with noise, there may be sudden changes of values. For these data,
special partitions of the time interval into subintervals are identified taking into con-
sideration remarkable trends of values of the attribute (e.g., the attribute value is
stable, raises or drops), Fig. 4.9. The method consists in approximating the course
by means of a series of line segments (piecewise linear approximation) according
to the momentary changes of the control course of the given process. There are
many approximation methods elaborated (Keogh et al., 2003; Batyrshin and Wa-
genknecht, 2002). For the needs of the similarity measure, the bottom-up algorithm
was implemented (Batyrshin and Wagenknecht, 2002).
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t

x(t)

Fig. 4.9 Piecewise linear approximation example

It consists in creating a linear segment approximating consecutive measuring val-
ues until the preset threshold MS value of the error of approximation (parameter of
the method) is exceeded. If the next value causes the approximation error to ex-
ceed the threshold, it needs not be added to the segment under construction. On the
contrary, this value has to start the next segment.

Fuzzy description. Every segment approximating the course is represented by
a dynamic fuzzy statement called an event which is represented by the following
attributes:

< Type,Value,Duration > (4.78)

that correspond to the event type, the beginning value of the event, and the duration
of the event, respectively.

Values of every attribute are represented in a fuzzy way using vectors of values
of membership to fuzzy sets.

Fuzzy sets definition. Similarly to the static similarity measure, for every attribute
used to describe events approximated by the straight segments there have to be pre-
viously defined fuzzy sets and similarity matrices must own matrices.

Attribute Type. The fuzzy sets definition for the attribute Type must take into ac-
count the character of the event. There can occur both positive and negative values
corresponding to the rise and fall of the attribute values along the given segment,
respectively. Values can be calculated from measurement data based on the formula

Type =
lk − lp

d
, (4.79)

where lk is a value at the end of the segment representing the control event, lp is a
value at the beginning of the segment representing the control event, and d is the
duration of the event.
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Fig. 4.10 Example fuzzy sets for the Duration attribute

Attribute Duration. In Fig. 4.10, example fuzzy sets for the attribute Duration are
presented. In this case, an additional singleton was introduced with duration equal to
0 which is used in a procedure to calculate similarity between process realizations.
It is necessary to calculate the similarity of NIL events (described later).

Attribute Value. Fuzzy sets for this attribute are defined based on available mea-
surement data. Values of the membership functions are defined at the beginning of
every event.

Similarity of two realizations

t

x(t)

Fig. 4.11 Courses similarity calculation

The total similarity of two process realizations s1,s2 represented by a list of
events corresponding to segments obtained by means of piecewise approximation
is calculated as the weighted average of similarities of complying pairs of events
(Fig. 4.11):
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Π(s1,s2) =

n

∑
i=1

π(e1i,e2i)wi

n

∑
i=1

(wi)
. (4.80)

The similarity of a pair of events π(e1i,e2i) is determined as the product of partial
similarities of individual attributes that describe the given pair of events (segments)
approximating the respective courses:

π(e1i,e2i) = πtπvπd, (4.81)

where the similarities πt ,πv,πd correspond to the similarity of pairs of attributes:
Type, Value, and Duration, respectively.

Partial similarities πα , where α ε {πt ,πv,πd} for the given attribute, are calcu-
lated using the formula

πα =
dα(e1i,e2i)2

dα(e1i,e1i)dα(e2i,e2i)
, (4.82)

where dα() is the distance between vectors of values of membership functions:

dα(x,y) = xWα yT . (4.83)

The Wα matrix defines similarities between individual fuzzy sets. The matrix can
be similar to that used in the static data similarity measure.

It is worth stressing that events identified from the data are assigned segments
of differing lengths. It is expected that the segments of longer duration should have
greater impact on the similarity of two realizations. This manifests itself in the value
of the weight wi in (4.80) that is a function of the attribute Duration defined as

wi = MAX(ed1i,ed2i) , (4.84)

where values ed are calculated as

ed = d(wd)T , (4.85)

and d is the vector of values of membership functions of the attribute Duration, and
wd is a vector of weights for this attribute that may be defined as follows:

wd =
[

0.01 2,5 30 100
]
. (4.86)

Similarity for Different Numbers of Events

The equation (4.80), defining the total similarity of realizations, requires that both
realizations to be compared be represented by the same number of events. However,
in many cases it may be necessary to compare two realizations of differing numbers
of events. In this case, the realization represented by the smaller number of segments
is supplemented with a special dummy event type NIL (Not In List). NIL has the
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value of Duration equal to 0, while the remaining attributes take their values from
the neighbors. For two realizations represented by n1,n2,n1 > n2 events, there are

N =
(

n1

n2

)

possible insertions of NIL events into the shorter realization.
Let us consider, e.g., two realizations, where the first one includes three events

and the other one two. All the possible insertions of the dummy event NIL are shown
in Fig. 4.12.

The algorithm for calculating similarity between two realizations with differing
numbers of events analyzes all the possible insertions of dummy events into the se-
quence of events of the shorter realizations. The similarity value is calculated for
each combination of insertions, and the combination which brings the greatest simi-
larity is selected. However, due to very small weight of duration of the dummy event
(4.86), the insertion of the event adds a very small amount to the total similarity, thus
only slightly distorting the actual similarity.

Fig. 4.12 Different possibilities to supplement the shorter realization with the dummy event
NIL in order to achieve the same number of events

Verification of the Method

To verify the system built so far, a very intuitive attempt was adopted that consisted
in the verification of the following hypothesis:

If among the set of realizations R represented by means of the fuzzy description
one selects a subset R1 ⊂ R of realizations that have initial states sufficiently similar
to each other, and in this subset R1 again selects a subset R2 ⊆ R1 of a sufficiently
similar course of control (dynamic part of the data), then the final states of realiza-
tions will also be sufficiently similar to each other.

The verification was conducted using data coming from a real industrial object,
i.e., an electrical furnace working in a copper factory (Szulim, 2004).

Features of the Similarity Measure for Comparing Dynamic Control Data

The presented similarity measure is able to calculate the similarity of two courses
in the range [0..1] (similarly to the static data similarity measure). Thanks to us-
ing course approximation and the NIL insert mechanism, it is possible to compare
courses with a different number of events and the reduction of the influence of shift



152 W. Moczulski et al.

in the time axis. Owing to fuzzy comparison of values describing particular events,
it is possible to minimize chaotic and random changes of course values. The algo-
rithm realizing approximation and similarity calculation is not complicated. There-
fore, it is possible to achieve good performance when searching for similar cases,
which is a significant advantage of the method. It is possible to adjust features of the
similarity measure by tuning parameters of the method like fuzzy sets borders and
similarity matrices.

4.5 Conclusion

In this chapter, theoretical fundamentals of the developed methodology of knowl-
edge discovery in databases was presented. The discussed methods concern the se-
lection of attributes, discovering qualitative dependencies (which can be applied for
selecting attributes and projecting records contained in source databases), and dis-
covering quantitative dependencies. Descriptions of these methods helped the au-
thors to prepare and implement algorithms, and then allowed implementations of
these algorithms in the form of respective modules of the DiaSter system.

The modules of DiaSter, together with the procedures of the basic layer of the
system, allow carrying out the complete process of knowledge discovery, starting
from data selection, through data preprocessing, transformation, and exploration.
By their implementation, it is possible to extensively automate numerical computa-
tions, which is typical for the methodology of automated discovery of knowledge
(Żytkow and Zembowicz, 1993). The assumed open structure of the DiaSter sys-
tem facilitates further development of the modules of knowledge acquisition from
databases, which is the goal of our further work.



Chapter 5
Diagnostic Methods

Wojciech Cholewa, Józef Korbicz, Jan Maciej Kościelny,
Krzysztof Patan, Tomasz Rogala, Michał Syfert, and Marcin Witczak

5.1 Introduction

The chapter focuses on selected methods of diagnostics which have been imple-
mented in the DiaSter system. Taking into account the specificity of industrial pro-
cesses diagnostics, the robust fault detection problem is presented in the first part
of the chapter. Considering the robust neural model, the passive approach based on
model error modeling is described. On the other hand, the active robust approach
using the dynamic neural model is based on the bounded error approach. Knowing
the model structure and possessing knowledge about parameters uncertainty, the
adaptive threshold can be defined and the robust fault detection scheme is designed.
Next, based on the diagnostic signal generated by detection algorithms, the fault iso-
lation problem with the use of fuzzy logic is presented. Here reasoning algorithms
for single and multiple faults described by the binary diagnostic matrix and rules
are considered. Then, taking into account the complex structure of industrial plants,
reasoning algorithms are extended on the hierarchical structure of the diagnostic
system. Such a diagnostic system reflects the structure of the process and/or control
system. The rest of the chapter outlines the so-called belief-network-based diagnos-
tic model. This approach is an alternative to the well-known model-based one and is
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called symptom-based diagnostics. Such a model allows simultaneous representa-
tion of diagnostics knowledge acquired from passive as well as active experiments,
diagnostic relations, and generic knowledge described by physics laws.

5.2 Specificity of the Diagnostics of Industrial Processes

Diagnosing (recognition of states) is treated as a process of fault detection and iso-
lation in a system due to the collection, conversion, analysis and evaluation of di-
agnostic signals. One can list three different stages of diagnosing (Isermann and
Ballé, 1997; Kościelny, 2001; Korbicz et al., 2004):

• fault detection: fault existence in the system is noticed and the moment of detec-
tion is defined;

• fault isolation: the type of the fault, its location and time of appearance are de-
fined. It is carried out after fault detection;

• fault identification: the fault size and the character of its change in time are de-
fined. It is carried out after fault isolation.

At the detection stage, values of diagnostic signals are calculated based on the con-
trol and measured signals with the use of models of the system. The diagnostic
signal carries information on the state of the system. The fault symptom is the ex-
istence of such a value of the diagnostic signal that testifies that a fault appeared in
the controlled part of the system.

At the fault isolation stage, diagnoses are formulated based on current values of
the diagnostic signals as well as the knowledge of relations existing between the
faults and the symptoms. The diagnoses show existing faults. Based on the diag-
noses, the system can also aid the operators, presenting them with instructions on
how to deal with abnormal or emergency states.

Fault identification consists in more precise definition of the fault, e.g., its size
and location of a leak from the installation. In practice, the identification stage oc-
curs only rarely in the case of the diagnostics of abrupt faults, and sometimes it is
united with the fault isolation stage. However, fault identification has fundamental
meaning in the case of incipient (slowly developing) faults. The fact that degrading
processes exist is usually well known, but the aim of diagnosing is the monitoring
of the degradation degree.

In the DiaSter system, the detection and isolation of abrupt faults, as well as the
detection and keeping track of the development (identification) of incipient faults,
are carried out.

The task of diagnostic systems for industrial processes is the detection and iso-
lation of faults, and aiding the operators in abnormal and emergency states. The
implementation of the above tasks is very difficult due to the complexity of diag-
nosed installations, which have hundreds or even thousands of devices, operating
most often in difficult and changing conditions, which increase the diversity of pos-
sible faults.
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Diagnosis must be carried out in real time with the use of exclusively working
data from normal process operation since it is impossible to disturb the process with
test stimulations. The process structure often changes, which is related to switch-
ons and -offs of the technological apparatus, switch-offs of measuring devices to be
serviced, etc. This structure variation is a very difficult factor in the design of the di-
agnostic system. Moreover, many installations have unique character. Measurement
uncertainties are also typical for industrial installations.

Another difficulty is the lack of measurement data for emergency states. In the
databases of automatic control systems (DCSs, SCADA systems), large sets of mea-
surement data are available, but archived changes concern normal system operation
only together with merely few registered abnormal and emergency states. However,
it is required that the first-time faults be isolated or, at least, properly detected. This
fact limits the possibility of the application of many known diagnostic methods.

In the diagnostics of complex technological installations, the key problem is the
selection of proper methods for fault detection and isolation that would be suitable
for industrial applications. The diagnostic methods used in the DiaSter system are
described in this chapter.

5.3 Fault Detection Methods

Fault detection is the process consisting in the generation of diagnostic signals S
based on the generation of known input U and output Y variables of the system in
order to detect faults. The task of detection algorithms is therefore symptom extrac-
tion. The diagnostic signals should have information on faults. During the detection,
the space of process variables X = {Y,U} is mapped into the space of diagnostic sig-
nals S. Symptom detection can be signaled in the form of an alarm, and it should
initiate the fault isolation procedure. In process diagnostics, fault detection is carried
out automatically by the diagnosing computer.

There are many fault detection methods known. The most comprehensive de-
scription can be found in the books by Basseville and Benveniste (1986), Chen
and Patton (1999), Gertler (1998), Isermann (2006), Kościelny (2001), Korbicz
et al. (2004), Patton and Frank (2000), Witczak (2007), the survey papers of Cal-
ado et al., (2001), Frank, (1987; 1990), Korbicz, (2006) as well as the conference
proceedings of SAFEPROCESS and the Workshop on Principles of Diagnosis, and
others. Methods based on system models have fundamental significance in process
diagnostics. They are characterized by high sensitivity, which enables early detec-
tion of small size faults.

The most complete models of selected parts of the process can be obtained di-
rectly from physical equations, e.g., balance ones. Such a model reflects system
properties in the whole range of operation. However, the calculation of analyti-
cal models is very difficult or even impossible for many systems. This fact limits
the application of this method to systems that are described by relatively simple
equations.
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Due to the difficulties and limitations of analytical models application, the great-
est significance in industrial process diagnostics is assigned to neural and fuzzy
models as well as their combinations. Such models are tuned based on measure-
ment data registered during process operation. They map well system operation in
the range of signal variations they were trained on the basis of. In the case of fuzzy
models, their application is limited to systems having a low number of inputs. This
is related to rapid growth of the number of rules together with the growth of the
number of inputs and the number of fuzzy sets for particular inputs of the model.
However, in industrial processes diagnostics, partial models are applied that have a
low number of inputs so the limitation is not so vital.

Heuristic detection algorithms are based on the control of simple relations
between process variables. They use hardware redundancy of measurements, the
control of feedback signals, the control of relations between variable values, the con-
trol of the consistency of signal changes directions, etc. (Kościelny, 2001; Korbicz
et al., 2004). Knowledge about such relations is familiar to technologists, automatic
control engineers and process operators. Therefore, such methods are especially
well suited to be applied at the first stage of diagnostic system construction. They
can be quickly and cheaply implemented, while the application of methods that
make use of system models requires us to have more time for system identification
as well as higher financial expenditure.

A vital problem that must be taken into account during diagnostic system design
is that knowledge about diagnosed processes is usually not uniform. For some parts
of the process, analytical models can be known, but for some others, it is possible
to obtain neural or fuzzy models based on measurement data. On the other hand,
for the parts of the system that do not have many measurement data available, only
simple heuristic relations or limit control may be used for fault detection. Due to
that, diagnostic systems should have the ability of the application and integration of
various fault detection methods.

In the DiaSter system, some modules exist that make it possible to apply de-
tection algorithms based on different types of models, as well as the procedures of
heuristic tests that can be configured with the use of expert knowledge of the pro-
cess. The following kinds of models can be applied: those that describe physical
phenomena existing in the process (e.g., balance models), MLP type neural models,
TSK type fuzzy models, linear and multinomial models. Currently, new modeling
methods are being developed (see Chapter 3) that will be applied to residual gen-
eration. Generated diagnostic signals that make detection algorithms outputs are
uniformly interpreted by the fault isolation module.

The PExSim module in the DiaSter system is applied to the creation of models
based on physical equations. The user has several blocks at his/her disposal that
implement basic mathematical and logic operations, input and output operations,
signal flow control, integration and differentiation operators, filtration, and many
others. The conversion structure that implements the system model (Fig. 5.1) is
composed of these blocks. Due to the open architecture, easy expansion and creation
of new specialized blocks having the form of plug-ins are possible.
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Fig. 5.1 Example realization of the model-based detection algorithm

In the DiaSter system, the MITforRD module is applied to model identification
with the use of measurement data collected and archived in automatic control sys-
tems such as DSCs or SCADA systems. The module implements off-line three basic
tasks: initial data processing, identification and verification of models.

The MITforRD module calculates on-line process variables being the outputs of
the models based on current measurement values. Thus, information redundancy
is implemented. Reconstructed values are used to generate residuals (Fig. 5.2). In
the case of a fault, values of residuals sensitive to this fault stray from zero. The
evaluation of the residual value allows the detection of fault symptoms.

Other kinds of tests are implemented in the PExSim module with the use of avail-
able functional blocks. These are tests that use the evaluation of statistic parameters
and heuristic tests based on the control of simple quantity or quality relations be-
tween process variables. These test algorithms were implemented as typical func-
tional blocks. Binary diagnostic signals (0 denotes the lack of a symptom, 1 denotes
symptom existence) are outputs of these algorithms.

Each detection algorithm, apart from the residual generation procedure, contains
the part in which the decision is made on fault symptom detection. The simplest
decision algorithm is threshold evaluation of residual values or process variables
parameters. In order to increase fault detection robustness to the effect of pulse elec-
tromagnetic disturbances, the decision should be made based not on the momentary
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Fig. 5.2 Diagram of fault detection with the use of the process model

Fig. 5.3 Fuzzy, triple-valued residual evaluation

residual value but on its average value in the moving window including N last values
of the residual.

In the DiaSter system, fuzzy evaluation of residual values is applied. To each one
of the residuals r j, one may attribute the linguistic variable that describes diagnostic
signal values. The space of the linguistic variable Vj is the set of all linguistic val-
ues applied to the evaluation of this variable. Fuzzy sets spread on the residual axis
correspond to particular values of the linguistic variable. In the case of two-value
evaluation of the residual absolute value, the set Vj contains two values Vj = {0,1}.
“0” denotes the lack of a symptom and “1” denotes the existence of a symptom.
With three-value evaluation, the residual sign is also taken into account, which may
increase fault distinguishability (Kościelny, 2001; Kościelny et al., 1999; 2006). Fig-
ure 5.3 presents fuzzy three-value evaluation of residuals Vj = {0,−1,+1}. It is
assumed that it fulfills the condition μ j(0) + μ j(−1) + μ j(+1) = 1.

Fuzzy diagnostic signals are results of fuzzy logic application to residual evalua-
tion. The fuzzy signal value is defined by the coefficients of the membership of the
calculated residual value to particular fuzzy sets:
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s j = {〈μ ji,ν ji〉 : ν ji ∈Vj}, (5.1)

where μ ji is the coefficient of the membership of the j-th residual to the fuzzy set ν ji.
Fuzzy logic application allows us to take into account uncertainties related to

modeling errors, disturbances, measurement noise and difficulties with threshold
values definition. In the simplest case, fuzzy two-value evaluation of the residual
absolute value is applied.

Fig. 5.4 Graphical user interface for setting the parameters of residual fuzzy evaluation in the
DiaSter system

The system gives us the possibility of automatic definition of parameters of fuzzy
sets applied to decision making in relation to the existence of a fault. The parameters
are calculated based on the analysis of statistic parameters of the residual value
change in the normal state of process operation, which is illustrated in Fig. 5.4.
There also exists the possibility to define these parameter values by the system of
engineer.

An example of fault detection with the use of the neural model of a control valve
is presented in Fig. 5.5.
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Fig. 5.5 Example of fault detection for the actuator unit consisting of a servomotor and a
control valve: changes of signals of the measured and the modeled flow as well as the residual

5.4 Robust Fault Diagnosis

In recent years, great emphasis has been put on providing uncertainty descriptions
for models used for control purposes or fault diagnosis design (Blanke et al., 2003;
Korbicz et al., 2004; Korbicz, 2006; Mrugalski et al., 2008). These problems can
be referred to as robust identification. The robust identification procedure should
deliver not only a model of a given process, but also a reliable estimate of uncer-
tainty associated with the model. There are three main factors which contribute to
uncertainty in models fitted to data (Quinn et al., 2005):

• noise corrupting the data,
• changing plant dynamics,
• selecting a model form which cannot capture the true process dynamics.

Two main philosophies exist in the literature (Chen and Patton, 1999; Puig et al.,
2006; Patan et al., 2008):

• bounded error approaches or set-membership identification: this group of ap-
proaches relies on the assumption that the identification error is unknown but
bounded. In this case, identification provides hard error bounds, which guaran-
tee upper bounds on model uncertainty (Gunnarsson, 1993). In this framework,
robustness is hardly integrated with the identification process;

• statistical error bounds: in these approaches, statistical methods called soft error
bounds are used to quantify model uncertainty. In this framework, identification
is carried out without examining robustness and then one considers it as an ad-
ditional step. This usually leads to least-squares estimation and prediction error
methods (Reinelt et al., 2002).

In the framework of Fault Detection and Isolation (FDI), robustness plays an im-
portant role (Korbicz and Witczak, 2008). Model-based fault diagnosis is built
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on a number of idealized assumptions. One of them is that the model of the sys-
tem is a faithful replica of the plant dynamics. Another one is that disturbances and
noise acting upon the system are known. This is, of course, not possible in engi-
neering practice. The robustness problem in fault diagnosis can be defined as the
maximization of the detectability and isolability of faults and simultaneously the
minimization of uncontrolled effects such as disturbances, noise, changes in inputs
and/or the state, etc. (Chen and Patton, 1999). In the fault diagnosis area, robustness
can be achieved in two ways (Chen and Patton, 1999; Ding, 2008):

• active approaches, based on generating residuals insensitive to model uncertainty
and simultaneously sensitive to faults;

• passive approaches, enhancing the robustness of the fault diagnosis system to the
decision making block.

Active approaches to fault diagnosis are frequently realized using, e.g., unknown
input observers, robust parity equations or H∞. However, in the case of models with
uncertainty located in the parameters, perfect decoupling of residuals from uncer-
tainties is limited by the number of available measurements (Gertler, 1998). An
alternative solution is to use passive approaches, which propagate uncertainty into
residuals. Robustness is then achieved through the use of adaptive thresholds. The
passive approach has an advantage over the active one because it can achieve the
robustness of the diagnosis procedure in spite of uncertain parameters of the model
and without any approximation based on simplifications of the underlying parame-
ter representation. The shortcoming of passive approaches is that faults producing a
residual deviation smaller than model uncertainty can be missed.

5.4.1 Robust Neural Model: The Passive Approach

The robust identification procedure should deliver not only a model of a given pro-
cess, but also a reliable estimate of uncertainty associated with the model. Two
main ideas exist to deal with such uncertainty. The first group of approaches, the
so-called set membership identification (Milanese, 2004; Duzinkiewicz, 2006) or
bounded error approaches (Walter and Pronzato, 1997), relies on the assumption
that the identification error is unknown but bounded. In this framework, robustness
is hardly integrated with the identification process.

In this section, a somewhat different approach is described. The idea behind
Model Error Modeling (MEM) is to identify the process without examining ro-
bustness first, and then consider it as an additional step. This usually leads to least
squares estimation and prediction error methods. MEM employs prediction error
methods to identify a model from input-output data (Reinelt et al., 2002). After that,
one can estimate the uncertainty of the model by analyzing residuals evaluated from
the inputs.

Uncertainty is a measure of unmodeled dynamics, noise and disturbances. The
identification of residuals provides the so-called model error model. In the origi-
nal algorithm, a nominal model, along with uncertainty, is constructed in the fre-
quency domain, adding frequency by frequency the model error to the nominal
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model (Reinelt et al., 2002). Below, an algorithm to form uncertainty bands in the
time domain is proposed, intended for use in the fault diagnosis framework (Patan
and Korbicz, 2007; Patan, 2008b). The designing procedure is described by Al-
gorithm 1. The model error modeling scheme can be carried out by using neural
networks of the dynamic type. Both the fundamental model of the process and the
error model can be modeled utilizing neural networks of the dynamic type. As-
suming that the fundamental model of the process has already been constructed
(according to Algorithm 1, Step 3), the next step is to design the error model. The
training process of the error model is illustrated in Fig. 5.6. In this case, a neural
network is used to model an “error” system with the input u and the output r. After
training, the response of this model is used to form uncertainty bands as presented
in Fig. 5.7, where the center of the uncertainty region is obtained as a sum of the
output of the system model and the output of the error model. Then, the upper band
can be calculated as

Tu = ym + ye + tβ v, (5.2)

and the lower band in the following way:

Algorithm 1 Robust model design procedure

Step 1 Construct the fundamental model of a system using measurements {ui,yi}N
i=1,

where u represents input, y represents output, and N is the number of samples;
Step 2 Using a model of the process, compute the residual r = y− ym, where y and ym are

desired and model outputs, respectively;
Step 3 Collect the data {ui,ri}N

i=1 and identify an error model using these data. This model
constitutes an estimate of the error due to undermodeling, and it is called the error model;

Step 4 Derive the center of the uncertainty region as ym +ye;
Step 5 If the model error model is not falsified by the data, one can use statistical properties

to calculate a confidence region. It forms uncertainty bands around the response of the
error model.
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Fig. 5.6 Error model training
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Fig. 5.7 Confidence region construction

Tl = ym + ye − tβ v, (5.3)

where ye is the output of the error model on the input u, tβ is the N (0,1) tabulated
value assigned to the confidence level, e.g., β = 0.05 or β = 0.01, v is the standard
deviation of ye. It should be kept in mind that ye represents not only the residual but
also structured uncertainty, disturbances, etc. Therefore, the uncertainty bands (5.2)
and (5.3) should work well only assuming that the signal ye has normal distribution.
The center of the uncertainty region is the signal ym + ye ≈ y. Now, observing
the system output y, one may make a decision whether a fault occurred or not. If
y is inside the uncertainty region, the system is healthy. The idea of model error
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modeling in the time domain is presented in Fig. 5.8. The output of the system y
is marked with the solid line. In turn, the sum of the outputs of the model ym and
the error model ye is marked with the dotted line. This signal constitutes the center
of the uncertainty region. Using a certain significance level, confidence bands (Tu

and Tl marked with the dashed lines) are generated around the center. Thus, the
uncertainty region has been determined. As long as the process output lies within
the uncertainty region, a fault is not signaled.

The key question is to find a proper structure of the error model. As was discussed
by Reinelt et al. (2002), one can start with an a priori chosen flexible structure, e.g.,
the 10-th order FIR filter. If this error model is not falsified by the data, it has to be
kept. Otherwise, model complexity should be increased until it is unfalsified by the
data. To construct an error model, a dynamic neural network can be used as well.
In Section 5.4.4, a robust model design example using dynamic neural networks is
discussed.

5.4.2 Fuzzy Adaptive Threshold: The Passive Approach

Adaptive thresholding can be successfully realized using the fuzzy logic approach.
Threshold changes can be described by fuzzy rules and fuzzy variables (Sauter et al.,
1993; Schneider, 1993). The threshold is adapted based on the changes of the values
of u and yp. The idea is presented in Fig. 5.9. The inputs u and the outputs yp are
expressed in the form of fuzzy sets by proper membership functions, and then the
adaptation of the threshold is performed with the help of fuzzy sets. The resulting
relationship for the fuzzy threshold adaptation is given by

T (u,yp) = T0 + ΔT (u,yp), (5.4)

ΔT large

ΔT medium

ΔT small

T0

nominal

u

yp

Fig. 5.9 Illustration of fuzzy threshold adaptation
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Fig. 5.10 Scheme of a fault detection system with threshold adaptation

where T0 denotes the constant (nominal) threshold and ΔT (u,yp) denotes the effect
of modeling errors, due to deviations of the process from its operating point. The
value of the nominal threshold T0 can be set as follows:

T0 = m0 + v0, (5.5)

where m0 is the mean value of the residual under nominal operating conditions and
v0 denotes the standard deviation of the residual under nominal operating conditions.
Other methods useful for selecting the nominal threshold T0 can be found in the
works of Basseville and Nikiforov (1993) and Patan (2008b).

A general scheme of a fault detection system using the adaptation of the thresh-
old, in the framework of model-based fault diagnosis, is shown in Fig. 5.10. The
main idea is to use fuzzy conditioned statements operating on fuzzy sets which rep-
resent the inputs u and the outputs yp. The residual r, calculated as a difference
between the process output yp and the model output y, is compared with the adap-
tive threshold T in the decision logic block. If the value of the residual r is greater
than the threshold, then a fault is signaled. The adaptation of thresholds can be
also interpreted as that of membership functions of residuals (Frank and Köppen-
Seliger, 1997).

The idea of the fuzzy threshold is presented in Fig. 5.11 The first maximum of
a residual represents a disturbance, while the second one a fault. In the classical
manner, illustrated in Fig. 5.11(a), the first maximum does not exceed the threshold
T , but in the case of a small disturbance a false alarm would appear. Figure 5.11(b)
presents fuzzy threshold selection when the threshold is split up into an interval
of a finite width, the so-called fuzzy domain, as presented in Fig. 5.11(c). Now, a
small change of the value of the first or the second maximum around T causes small
changes in false alarm tendency and, consequently, a small change in the decision
making process. By the composition of the fuzzy sets {healthy} and {faulty}, the
threshold can be fuzzified as depicted in Fig. 5.11(c). If required, a threshold can
be represented by more fuzzy sets, e.g., {small}, {medium}, {large}. In general, the
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fuzzyfication of the threshold can be interpreted as that of the residual (Frank and
Köppen-Seliger, 1997). The application of fuzzy adaptive thresholding is illustrated
in Section 5.4.4.

5.4.3 Robust Dynamic Model: The Active Approach

The usual statistical parameter estimation framework assumes that data are
corrupted by errors which can be modeled as realizations of independent random
variables, with known or parameterized distribution. A more realistic approach is
to assume that errors lie between priorily given bounds. This is the case, for exam-
ple, for data collected with an analog-to-digital converter or for measurements per-
formed with a sensor of a given type. Such reasoning leads directly to the Bounded-
Error Approach (BEA) (Milanese et al., 1996; Walter and Pronzato, 1997).

Let us consider the following system:

y(k) = rT (k)p + ε(k), (5.6)

where y(k) ∈ R is the system output, r(k) ∈ R
np is the regressor vector, p is the

parameter vector, while ε(k) is the noise/disturbance vector bounded according to

εm(k) ≤ ε(k) ≤ εM(k), (5.7)

while the bounds ε(k)N
k and ε(k)M

k (ε(k)N
k �= ε(k)M

k ) are known a priori. These
bounds can be determined in either an intuitive or an empirical way. The idea un-
derlying the bounded-error approach is to obtain a feasible parameter set (Milanese
et al., 1996). This set can be defined as

P =
{

p ∈ R
np | y(k)− εM(k) ≤ rT (k)p

≤ y(k)− εm(k) ,k = 1, . . . ,nU } (5.8)
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Fig. 5.11 Idea of the fuzzy threshold
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and perceived as a region of the parameter space that is determined by nt pairs of
hyperplanes:

P =
nU⋂
k

S(k), (5.9)

where each pair defines the parameter strip

S(k) =
{

p ∈ R
np | y(k)− εM(k) ≤ rT (k)p ≤ y(k)− εm(k)

}
. (5.10)

pmax
2

pmin
2

pmin
1 pmax

1

P
p2

p1

p̂

Fig. 5.12 Example feasible parameter set

Any parameter vector contained in P is a valid estimate of p. In practice, the
center (in some geometrical sense) of P (cf. Fig. 5.12 for np = 2) is chosen as the
parameter estimate p̂, e.g.,

pmin
i = argmin

p∈P

pi, (5.11)

pmax
i = argmax

p∈P

pi, (5.12)

p̂i =
pmin

i + pmax
i

2
, i = 1, . . . ,np. (5.13)

The problems (5.11) and (5.12) can be solved with the well-known linear pro-
gramming techniques (Milanese et al., 1996), but when nt and/or np are large, the
computational cost may be significant. This constitutes the main drawback of the
approach. One way out of this problem is to apply a technique where constraints
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are executed separately one after another, although this approach does not consti-
tute a perfect remedy for the computational problem being considered. This means
that the described BEA can be employed for tasks of a relatively small dimension,
as is the case for GMDH neurons (Puig et al., 2007; Korbicz and Mrugalski, 2008).
In spite of the above-mentioned computational problems, the technique described
by Korbicz and Mrugalski (2008) was implemented and used in DiaSter. The main
difficulty associated with the BEA concerns a priori knowledge regarding the error
bounds ε(k)N

k and ε(k)M
k . However, these bounds can also be estimated (Milanese

et al., 1996) by assuming that ε(k)N
k = ε(k)N , ε(k)M

k = ε(k)M , and then suitably
extending the unknown parameter vector p by ε(k)N and ε(k)M .

As has already been mentioned, the neurons in the l-th (l > 1) layer are fed with
the outputs of the neurons from the (l − 1)-th layer. Thus, the parameters of the
neurons in the layers have to be obtained with an approach that solves the problem
of an uncertain regressor (Milanese et al., 1996).

In order to modify the above-presented approach, let us denote an unknown
“true” value of the regressor rn(k) by a difference between a known (measured)
value of the regressor r(k) and the error in the regressor e(k):

rn(k) = r(k)− e(k), (5.14)

where it is assumed that the error e(k) is bounded as follows:

em
i (k) ≤ ei(k) ≤ eM

i (k), i = 1, . . . ,np. (5.15)

Substituting (5.14) into (5.15) yields

εm(k)− eT (k)p ≤ y(k)− r(k)T p ≤ εM(k)− eT (k)p. (5.16)

Unfortunately, for the purpose of parameter estimation, it is not enough to introduce
(5.14) into (5.15). Indeed, the bounds of (5.16) depend also on the sign of each
pi. It is possible to directly obtain these signs only for models whose parameters
have physical meaning. For models such as GMDH neural networks this is rather
impossible. In the work of Milanese et al. (1996, Chapters 17 and 18), the authors
proposed some heuristic techniques, but these drastically complicate the problem
(5.16) and do not seem to guarantee that these signs will be obtained properly.

Bearing in mind the fact that the neuron contains only a few parameters, it is
possible to replace them with (Witczak et al., 2006)

pi = p′i − p′′i , p′i, p′′i ≥ 0. (5.17)

Although the above solution is very simple, it doubles the number of parameters,
i.e., instead of estimating np parameters it is necessary to do so for 2np parame-
ters. In spite of that, this technique is very popular and widely used in the litera-
ture (Milanese et al., 1996). Due to the above solution, (5.16) can be modified as
follows:
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εm(k)− (eM(k)
)T

p′ +(em(k))T p′′

≤ y(k)− rT (k)(p′ − p′′) ≤ (5.18)

εM(k)− (em(k))T p′ +
(
eM(k)

)T
p′′.

Thus, it is possible to show that the model output uncertainty is of the form

ỹm(k) ≤ rn(k)p ≤ ỹM(k). (5.19)

In order to adapt the above approach to parameter estimation of a non-linear neuron
model with an activation function ξ (·), it is necessary to transform

εm(k) ≤ y(k)− ξ
(
(r(k))T p

)
≤ εM(k) (5.20)

with ξ−1(·) into

ξ−1 (y(k)− εM(k)
)≤ (r(k))T p ≤ ξ−1 (y(k)− εm(k)) . (5.21)

Knowing the model structure and possessing knowledge about its uncertainty, it is
possible to design a robust fault detection scheme with an adaptive threshold:

ỹm(k)+ εm(k) ≤ y(k) ≤ ỹM(k)+ εM(k). (5.22)

Thus, robust fault detection boils down to checking if the system output satisfies
(5.22).

5.4.4 Robust Model Design Examples

5.4.4.1 Neural Model Error Modeling

Let us consider the problem of Fluid Catalytic Cracking (FCC) process modeling
(Patan and Korbicz, 2007). Here we focus our attention on determining the uncer-
tainty of the already constructed model. To derive model uncertainty, the MEM
technique is applied (see 5.4.1).

The error model was designed using Neural Networks AutoRegresive with eX-
ogenous input (NNARX) (Norgard et al., 2000; Patan, 2005). Many neural archi-
tectures have been examined by the trial and error method. The best performing
two-layer network consists of four hidden neurons with hyperbolic tangent activa-
tion functions and one linear output element. The number of the input delays na and
the output delays nb is equal to 5 and 15, respectively. The conclusion is that, to
capture, residual dynamics, a high order model is required. The output of the error
model (dashed line), along with the residual (solid line), is shown in Fig. 5.13. To
determine confidence bands, the 95% significance level was assumed (β = 0.05).
According to (5.3) and (5.2), two adaptive thresholds were generated. The uncer-
tainty region (dashed lines), along with the output of the healthy system (solid line),
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Fig. 5.13 Residual (solid) and the error model output (dashed) under nominal operating con-
ditions

is shown in Fig. 5.14. This case illustrates the work of the system in normal op-
erating conditions. When there are rapid changes of the output signal with a large
amplitude, the uncertainty region is relatively narrow. This situation is depicted in
Fig. 5.14 at the 40-th time step, when the output signal exceeds the uncertainty
region. However, the false detection rate in this case is equal to 4.72%, which is rel-
atively small. For comparison, when using simple thresholding, the false detection
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Fig. 5.14 Confidence bands (dashed) and the system output under nominal operating condi-
tions (solid)
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Fig. 5.15 Fault detection results

rate is equal to 7.34%. This is a result more than 1.5 times worse in relation to the
adaptive technique based on MEM.

The results of fault detection are presented in Fig. 5.15. The fault start up time is
equal to 7890. It is clearly shown that, after 12 time steps, the output of the system
permanently exceeds the uncertainty region, which means that a fault is signaled.
This experiment shows that the proposed method gives promising results. An open
issue here is to find a proper error model. This problem seems to be much more
difficult to solve than finding a fundamental model of the system.

5.4.4.2 Fuzzy Adaptive Threshold

Analyzing the residual signal in the fault-free case, one can see that in some time
intervals there are large deviations of the residuals from zero. Unfortunately, these
deviations, caused by disturbances or modeling errors, can generate false alarms
during residual evaluation. In order to avoid false alarms, it is necessary to analyze
how changes of inputs and outputs of the process influence deviations of the residual
from zero. Such knowledge can be elaborated in the form of the adaptive threshold
by means of fuzzy rules (see 5.4.2) .

Let us consider the temperature model of the evaporation station of the Lublin
Sugar Factory in Poland (Patan, 2000; Patan and Parisini, 2005). Two sample fuzzy
rules, which take into account the modeling mismatch of the vapor model, are given
below:

R1: If {u is zero} and {yp is zero} then {ΔJ is large};

R2: If {u is small positive} and {yp is zero} then {ΔJ is medium}.



172 W. Cholewa et al.

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 500 1000

R
e
s
id

u
a
l
w

it
h

th
e

a
d
a
p
ti
v
e

th
re

s
h
o
ld

1500 2000 2500 3000

false alarms

threshold

Time

Fig. 5.16 Normal operating conditions: residual, adaptive threshold

Fig. 5.17 Residual for different faulty situations

The linguistic variables zero, large, small positive and medium are defined by the
relevant membership functions. To realize such a kind of threshold, the Fuzzy Logic
Toolbox for Matlab 5.3 was used. The number of linguistic variables, as well as
the shape of membership functions, is chosen experimentally. The defuzzification
process is carried out using the center of area method. The adaptive threshold
is presented in Fig. 5.16. It adjusts to the changes of the residual. In this case,
the false detection rate is equal to 4.42%. For comparison, using classical simple
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thresholding, the false detection rate is equal to 11.3% (Patan, 2000; 2008b). The
faults were simulated by increasing or decreasing the values of particular signals by
5, 10 and 20% at specified time intervals. Figure 5.17 presents the absolute value
of the residual signal for the vapor model. It is observed that the faults are detected
immediately and surely. Taking into account the sensitivity of the proposed fault
detection system, it can be stated that even sensor failures smaller than 5% can be
detected easily. Moreover, using the adaptive threshold technique, the fault detection
system can avoid a certain number of false alarms.

Taking into account these experimental results, one can conclude that the pro-
posed robust fault detection system is very sensitive to the occurrence of faults.
Using the adaptive threshold technique, it is possible to considerably reduce the
number of false alarms caused by modeling errors. However, problems of the se-
lection of fuzzy model components such as the number of linguistic variables, the
shape of membership functions or the generation of rules are still open.

5.4.4.3 Design of a Robust GMDH Model

The main objective of this section is to present a comprehensive model design study
regarding a valve actuator being a part of the evaporation station of the Lublin Sugar
Factory. A detailed description of the valve as well as possible fault scenarios can be
found in the work of Bartyś et al. (2006). The valve actuator is shown in Fig. 5.18,
while the list of the measured variables is given in Tab. 5.1.

A1

A5A4

A3

A2

A6

A7

Z1

Z2

Z3

P1 P2 P3

P4

P5

P6

Valve

Fig. 5.18 Actuator scheme

The objective of the subsequent part of this section is to design a GMDH model of
the form

F = rF(X ,P1,P2,T1). (5.23)
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Table 5.1 List of process variables

Name Description

F Juice flow at the outlet of the valve
X Servomotor rod displacement

CV Control value
T1 Juice temperature at the outlet of the valve
P1 Juice pressure at the inlet of the valve
P2 Juice pressure at the outlet of the valve

First, the data collected at the valve actuator were suitably preprocessed. Subse-
quently, to avoid the saturation of the activation function, this range was further
decreased to [−0.8,0.8]. In order to perform data transformation, linear scaling was
used. The choice of the neuron structure and the selection method for the neurons
in the GMDH network are other important problems of the proposed technique. For
that purpose, dynamic neurons were employed. The dynamics in this neuron are re-
alized by the introduction of a linear dynamic system—an infinite impulse response
filter. As has previously been mentioned, the quality index of a neuron for the vali-
dation data set was defined as

QT =
1

nT

nT

∑
k=1

∣∣(yM(k)+ εM(k)
)− (ym(k)+ εm(k))

∣∣ . (5.24)

Based on the achieved numerical values of the quality index QT , suitable partial
models were selected with the constant population method. As a result, the final
structure of the GMDH neural network is shown in Fig. 5.19. Figure 5.20 shows

X

P1

P2

T

F

Fig. 5.19 Structure of the GMDH neural network of F = rF(·)

the performance of the achieved GMDH model. As can be observed, the response
of the model is not a perfect replica of that of the system. Indeed, this is a result of
model uncertainty. On the other hand, it can be observed that the confidence interval
covers the system response and hence it can be used as an adaptive threshold for fault
detection.
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Fig. 5.20 Confidence intervals of F = rF(·) for validation data

5.4.5 Implementation of Neural Models in the DiaSter System

One of components of the DiaSter system is a block named MITforRD, which is
used for modeling/identification purposes. This block makes it possible to design
models of a technical process without knowledge about its mathematical descrip-
tion but using measurably available data. The modeling is realized in an off-line
mode. Each identification, modeling or parameter estimation algorithm is imple-
mented in the form of a dynamically loaded plug-in. The plug-in mechanism of the
MITforRD block is shown in Fig. 5.21. The remainder of this section is devoted to
the implementation of the neural network modeling plug-ins.

5.4.5.1 LRGFnet Plug-In

In the framework of the plug-in, the locally recurrent network, together with the
training procedure, is implemented. Network parameters are derived using the adap-
tive random search algorithm (Walter and Pronzato, 1997; Patan and Parisini, 2002).
It belongs to the class of global optimization methods. The training algorithm guar-
antees the stability of the neural model because it uses special stabilizing tech-
niques such as Gradient Projection (GP) and Minimum Distance Projection (MDP)
(Patan, 2007b; 2008a). The uncertainty of the neural model is derived using the
model error modeling technique by means of neural networks with tapped delay
lines. Such a kind of dynamic neural network makes it possible to set the dynamics
of the model independently of its approximation abilities. Using both neural net-
works, the fundamental and error models, a center of the uncertainty region is cal-
culated. The uncertainty bands are calculated assuming a certain confidence level.
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Fault detection is realized by checking whether the output of the system lies inside
the uncertainty region. If not, the plug-in signals a fault.

Fig. 5.21 Illustration of the plug-in mechanism in MITforRD

Fig. 5.22 Graphical user interface of neural model training parameters
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In order to investigate how the network configuration or training parameters in-
fluence modeling results, the plug-in delivers a graphical user interface, which is
shown in Fig. 5.22. This interface makes it possible to set the following parameters:

• the number of hidden layers,
• the number of neurons in layers,
• the network order,
• the activation function,
• stopping criteria of the training: the maximal number of training epochs or reach-

ing the assumed modeling accuracy,
• initial variance for the ARS algorithm,
• the selection of the stabilization algorithm,
• parameters of the selected stabilization method.

The plug-in is implemented in the CodeGear TM C++ Builder R© environment.
The C++ programming language makes it possible to implement the plug-in to be
portable. This will be very important when the DiaSter system is realized for other
operating system environments, e.g., UNIX/Linux.

The plug-in is fully compatible with the MITforRD component, the part of the
DiaSter system responsible for designing a model in the off-line mode. The model
designed in MITforRD can be then used in the on-line mode in the simulation
component—PExSim.

The main part of the plug-in is the class defining the locally recurrent network, in-
cluding interfaces for parameter setting, network training and network testing. The
class possesses also methods for reading parameters of already stored neural net-
works as well as writing parameters of newly trained neural networks. Additionally,
the plug-in implements all required matrix operations.

5.4.5.2 GMDHnet Plugin

The synthesis process of the GMDH neural network can tackle the challenging prob-
lem related to the selection of an optimal structure of a neural network. Apart from
its unquestionable appeal, also in this case, there are some free parameters that have
to be selected by the designer. The module for designing non-linear discrete-time
dynamic systems requires parameter setting related to

• the neuron structure,
• the training algorithm.

The GMDH neural network is composed of uniform neurons formed in hidden lay-
ers. The neurons in hidden layers are two-input filters with an infinite impulse re-
sponse (Lyons, 1997). These neurons are configured according to Fig. 5.23 (Section
Neuron configuration), where na is the rank of the output delay, nb is the rank of the
input delay, f (·) is the activation function. The initial parameters of the neuron are
randomly selected with N (0,σ I2nb+na), where the standard deviation σ can be set
in the Initial parameters section. The network synthesis process is as follows. First,



178 W. Cholewa et al.

Fig. 5.23 User interface for designing non-linear dynamic models with the GMDH algorithm

all possible couples of input signals u ∈ R
nu are formed (ui,u j),i �= j. Each couple

is fed to the first layer of neurons. Thus, the first layer is composed of nu(nu −1)/2
neurons. The data are divided into two sets, namely, the training and validation data
sets, respectively (cf. Data partition section). Subsequently, the neurons of the first
layer are trained with the selected learning method (cf. Learning function section).
The next step is to test the neurons with the validation data set and the least square
criterion. Next, the best performing nu(nu − 1)/2 neurons are selected, whose out-
puts form the inputs to the subsequent layer. The procedure of extending the net-
work structure with new layers is continued until a maximum number of layers is
achieved (cf. Learning parameters section). Apart from the preferred bounded-error
algorithm, there are also two additional learning methods, i.e., the steepest descent
and Newton algorithms. In both cases, the gradient and the Hessian are computed in
an analytical way, while the line search is realized with the parabolic approximation
algorithm. Finally, it should be pointed out that all design parameters have some
default values, which facilitate the synthesis of a neural model.
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5.5 Process Fault Isolation with the Use of Fuzzy Logic

5.5.1 Forms of Diagnostic Relation Notation

Fault isolation is based on the analysis of diagnostic signals generated by detection
algorithms. The diagnosis pointing out the faults is a result of isolation. Knowledge
about the relation between diagnostic signal values and faults is necessary for fault
isolation. It can be obtained by three methods:

• based on the structure of mathematical models used for fault detection that are
designed taking into account the influence of faults on process outputs;

• as a result of learning;
• based on expert knowledge.

The model of the linear process in the form of state equations, which considers fault
influences, takes the form

ẋ(t) = Ax(t)+ Bu(t)+ Ef(t), (5.25)

y(t) = Cx(t)+ Du(t)+ Ff(t), (5.26)

where x is the vector of process state variables, y stands for the outputs vector, u
denotes the inputs vector, and f is the faults vector.

The following transmittance model complies with the above one:

y(s) = G(s)u(s)+ H(s)f(s). (5.27)

Process modeling that takes into account fault influence is very difficult and expen-
sive or, in many cases, even impossible. Such an approach can be used for rela-
tively simple systems. It is not suitable for the diagnostics of complex technological
installations and systems with non-repeatable properties. This is the main reason
why theoretically well grounded methods of fault diagnosis with the use of a bank
of Luenberger’s state observers, Kalman filters or unknown input observers (Chen
and Patton, 1999; Frank, 1987; 1990; Korbicz et al., 2004; Patton and Frank, 2000;
Witczak, 2007) do not apply, in practice, to such kinds of processes. The directional
residual method (Chen and Patton, 1999; Gertler, 1998; Korbicz et al., 2004) has
also limited applicability due to the lack of knowledge of unknown matrices E and
F in (5.25) and (5.26) or transmittances H(s) in (5.27).

The method of learning (Frank and Marcu, 2000; Isermann, 2006; Korbicz
et al., 2004; Patton et al., 1999) is a very attractive way of acquiring knowledge
about the relations between residual values and faults. However, measured data char-
acterizing all process states that should be recognized, including the normal process
state as well as states with faults, are necessary for learning. Obtaining such data is
usually impossible. Introducing faults in real systems is unacceptable and often un-
realizable. Thus, the usage of the method is limited by the knowledge of the process
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model that enables fault simulation. Such models can be built for relatively simple
processes.

Collecting measuring data for all process states is impossible in the case of indus-
trial processes. The number of possible faults is very large, while particular abnor-
mal and emergency states occur very seldom. Moreover, technological installations
in the chemical, power, food and other industries are most often unique or realized
in short series, whereas the diagnostic system should detect and recognize danger-
ous failures that have never occurred. Thus, the methods that need the determination
of the symptoms–faults relation during the learning phase have limited applicability
in the diagnostics of industrial processes. However, they can be very useful in the
diagnostics of products that are manufactured in series, like engines, pumps, valves,
etc.

In the diagnostics of complex technological installations, methods of designing
the faults–symptoms relation that utilize expert knowledge play the most impor-
tant role. Deep knowledge about process operation allows defining this relation in
a relatively simple way. Additionally, the diagnostic system designer can utilize the
knowledge of process engineers, operators and maintenance stuff.

Expert knowledge about the faults–symptoms relation can be transferred and reg-
istered in different forms. In the case of binary residual evaluation, it can take the
form of (Isermann, 2006; Kościelny, 2001; Korbicz et al., 2004): logic function,
diagnostic trees, a binary diagnostic matrix and rules.

The binary diagnostic matrix is most often used. An example of such a matrix is
presented in Fig. 5.24.

Fig. 5.24 Example of a binary diagnostic matrix

This matrix is defined on the Cartesian product of the set of faults

F = { fk : k = 1,2, . . . ,K} (5.28)

and the set of diagnostic signals

S = {s j : j = 1,2, . . . ,J}. (5.29)
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The matrix element in the j-th row and the i-th column has the value ν j( fk) = 1
if diagnostic signal s j detects fault fk , and the value ν j( fk) = 0 otherwise. In other
words, the occurrence of fault fk results in the occurrence of diagnostic signal s j = 1,
which is called a symptom.

The diagnostic relation RFS described by the binary diagnostic matrix can be
defined by attributing to each diagnostic signal the subset of faults F(s j) that are
detectable by this signal:

F(s j) ≡ F(s j = 1) = { fk ∈ F : ν j( fk) = 1}. (5.30)

It can be also defined by attributing to each fault fk ∈ F the subset of diagnostic
signals S( fk) that detect a particular fault:

S( fk) = {s j ∈ S : 〈s j, fk〉 ∈ RFS}. (5.31)

Thus, S( fk) determines the set of k-th fault symptoms.
The fault signature is defined as the vector of diagnostic signal values correspond-

ing to that fault:

V( fk) =

⎡
⎢⎢⎣

ν1( fk)
ν2( fk)

. . .
νJ( fk)

⎤
⎥⎥⎦ . (5.32)

The faults are unisolable if their signatures are identical.
Each column of the binary diagnostic matrix determines the rule of the type

(5.33), while the matrix rows correspond to the rules of the shape (5.34):

If (s1 = 0)∧ . . .∧ (s j = 1)∧ . . .∧ (sJ = 1), then fk, (5.33)

If s j = 1, then fa ∨ . . .∨ fk ∨ fk. (5.34)

The approximate information system (Kościelny, 2001; Kościelny et al., 1999;
2006; Korbicz et al., 2004) for fault isolation, called a Fault Isolation System (FIS),
is a generalization of the binary diagnostic matrix. It is an adaptation of the infor-
mation system proposed by Pawlak (1983). An example of the FIS is presented in
Fig. 5.25.

The extensions of the FIS with respect to the binary diagnostic matrix are as
follows:

• the individual set of values Vj can exist for each diagnostic signal s j;
• the set Vj can contain more than two elements;
• one value or subset of values of the diagnostic signal can be attributed to each

pair 〈s j, fk〉.
Multiple-valued diagnostic signals appear as a result of residual values quantiza-
tion. They can also result from limit checking of the process variable when several
threshold values are applied.
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Fig. 5.25 Example of an FIS

The FIS is defined as the following quadruple:

FIS = 〈F,S,Vs,q〉, (5.35)

where F = { fk : k = 1,2, . . . ,K} is the set of faults, S = {s j : j = 1,2, . . . ,J} is the
set of diagnostic signals, and VS is the set of all diagnostic signal values,

Vs =
⋃

s j∈S

Vj, (5.36)

while q denotes the function defined over the Cartesian product F ×S.
The function

q : F ×S → Φ(Vs) (5.37)

attributes to each pair fault–diagnostic signal 〈 fk,s j〉 the subset of diagnostic signal
values occurring in the case of particular fault existence:

Vjk = {ν jki ∈Vj}. (5.38)

Thus, the FIS is a table that determines pattern diagnostic signal values for particular
faults. The FIS simplifies to the binary diagnostic matrix if the set of all diagnostic
signal values is identical and equals VS = {0,1}.

The signature of the k-th fault corresponds to the FIS column. It is a generaliza-
tion of the signature (5.32) defined as

V( fk) =

⎡
⎢⎢⎣

V1k

V2k

. . .
VJk

⎤
⎥⎥⎦ . (5.39)

The following rule is equivalent to the above signature:

rk : If (s1 ∈V1k)∧ . . .∧ (s j ∈Vjk)∧ . . .∧
∧ (sJ ∈VJk) then fk. (5.40)
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The complex signature (5.40) can be represented by the particular number of simple
signatures that consist of single diagnostic signal values. The simple signatures are
constructed as the combination of different values for particular diagnostic signals.
The following rule corresponds to a simple signature:

rkn : If (s1 = ν1 ∈V1k)∧ . . .∧ (s j = ν j ∈Vjk)∧ . . .∧
∧ (sJ = νJ ∈VJk) then fk. (5.41)

Analogously to the case of the binary diagnostic matrix, the rules corresponding
to FIS rows can be defined. The number of rules for a single FIS row equals the
number of diagnostic signal values ν ∈ Vj different than zero (where “0” denotes
the value corresponding to a fault-free state):

rwi : If s j = ν ji �= 0 then fa ∨ . . .∨ fk ∨ fn. (5.42)

The robustness of the diagnostic system against changes of the diagnosed system
structure (including changes of the available measurements) plays a decisive role
during the selection of the notation of the relation between faults and diagnostic
signals. Logic functions, diagnostic trees, binary diagnostic matrices, information
systems designed during the stage of diagnostic system configuration are neither
flexible nor robust against process structure changes. In the rules of the type (5.33),
(5.40), (5.41), the set of consequences also varies during changes of the set of avail-
able measured signals. Moreover, in the case of large scale systems where the num-
ber of realized tests is very high, the rules corresponding to the columns of the
binary diagnostic matrix or information system are inconvenient due to a very large
number of premises.

The rules in the form (5.34) and (5.42) are a robust (with respect to possible
changes of the process structure) method of diagnostic relation notation—the sub-
sets of faults are attributed to the symptoms which they cause. This dependency is
invariable. Due to changes of the process structure or an earlier generated diagno-
sis, particular rules can be temporarily excluded from the set of active ones but their
from is constant. Besides, such rules have compact shape due to the small number of
possible faults pointed out in the conclusion, especially in the case of partial model
utilization.

Such notation of the faults–diagnostic signal values relation is used in the Di-
aSter system. This type of rules enables simple utilization of two-valued as well as
three-valued residual evaluation. The rules (5.34) and (5.42) can be rewritten in the
following simplified form:

If (s j = ν ji �= 0) then f ∈ F(s j = ν ji), (5.43)

while F(s j = ν ji) = { fk ∈ F : s j = ν ji ∈Vjk}.
Automatic reconstruction of rules that correspond to the fault signatures (5.33),

(5.40), (5.41) is possible based on the rules (5.42), (5.43). Such rules can be contra-
dictory, i.e., with the same premises and different consequences. They correspond
to unisolable faults.
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5.5.2 Reasoning Algorithm for Single and Multiple Faults

Diagnostics deals with the recognition of states of technical systems. Changes of
the state are caused by faults. State recognition consists in the indication of exist-
ing faults. Fault isolation is carried out based on diagnostic signals generated by
detection algorithms. A diagnosis showing existing faults is the result of isolation.
It is not always possible to obtain sure and unequivocal information about existing
faults. This is caused by incomplete and uncertain knowledge on the system, limited
fault distinguishability, diagnostic signals uncertainties, etc.

In the diagnostics of industrial processes, many problems and limitations exist
that must be taken into account and solved if the diagnostic system is to successfully
distinguish the appearing faults. The most important ones (Kościelny et al., 2006)
are stated below.

Ensuring that diagnosing is correct with structure changes. During system op-
eration, the industrial process structure may change. Some technological apparatus
may be switched off for a while. Measurement devices may also be disconnected
for the time needed for them to be aligned or maintained. Moreover, faults of these
devices may appear. As a result, adequate adjusting of the set of useful detection al-
gorithms is required. Changes of the set of implemented algorithms result also from
the organization of the diagnosing algorithm itself. Results of detection algorithms
that control faults recognized earlier become temporarily useless. They cannot be
used until complete efficiency of a given part of the system is restored. Therefore,
in the diagnostic system it is not possible to define constant rules of diagnostic in-
ference. They are often modified during system operation, so it is necessary to run
all of the operations of diagnostic inference in real time, taking into consideration
existing changes of the sets of process variables, diagnostic signals, faults and rela-
tions between these sets (Kościelny, 1995; 2001; Kościelny et al., 2006). Diagnostic
systems for industrial processes must take this problem into account and solve it
efficiently.

Taking into account time delays of fault symptom appearances. The system of
diagnosing is a dynamic one so some time passes between fault occurrence and the
appearance of a measurable symptom of this event. The time depends, among other
factors, on dynamic properties of the tested part of the system. The same fault is de-
tected after various time delays by different diagnostic signals. If the fault isolation
algorithm does not have built-in mechanisms that make the inference process robust
to symptom delays, it can generate false diagnoses. Various methods of solving this
problem were described in the works of Kościelny and Syfert, (2007) as well as
Kościelny et al., (2007; 2008b).

Ensuring that multiple faults are correctly isolated. In the case of complex indus-
trial installations, multiple faults may pose a serious problem. Methods of multiple
faults isolation were described by Blanke and Staroswiecki (2006), de Kleer and
Williams (1987), Kościelny (1995, 2001), Kościelny and Bartyś (2003), Ligęza and
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Kościelny (2007) as well as Watanabe and Hou (1992). Multiple faults can exist
as a sequence of successive faults or simultaneously. Simultaneous faults are most
difficult to isolate. It may appear that such a situation is very rare if independent
faults are considered. However, this problem exists practically with every start-up
of a system that diagnoses a large technical installation. During the start-up, all ear-
lier faults are seen by the system as simultaneous faults. The lack of a mechanism
for recognizing such faults may lead to incorrect operation of the diagnostic system.
The method of solving this problem in the DiaSter system was described by Koś-
cielny et al. (2006).

Necessity to recognize unknown states of the process. These are situations in
which the obtained signal values do not agree with fault signatures. Unknown states
of the system are a vital source of information since they show the possibility of the
existence of faults that were not taken into account at the design stage. The diag-
nosing algorithm that allows us to recognize such states is presented in the works of
Kościelny (2001) as well as Kościelny and Syfert (2006).

Need for the system to be decomposed into subsystems and for diagnosing in
a decentralized structure. The complex process is usually divided into techno-
logical nodes. However, in the case of nodes that contain many inter-connected el-
ements, further division is advisable to minimize indices of the inter-connection
between particular subsystems. A genetic algorithm (Wnuk et al., 2007) has been
applied to solve this problem. During the design of diagnostic systems of com-
plex installations, it is not possible to separate completely independent subsystems
of diagnosing. This means that symptoms of faults appearing in one of the sub-
systems can be observed also in other subsystems. Algorithms of diagnosing in
a decentralized structure that take this problem into account are presented by Koś-
cielny, (1998; 2001), Korbicz et al., (2004) and Kościelny et al., (2008b).

The diagnostic inference algorithm for the diagnostics of complex technological
installations should take into account the above-mentioned problems and solve them
in an efficient way.

There exist many different fault isolation methods. In the works of Isermann and
Ballé (1997) as well as Leonhardt and Ayoubi (1997), two basic groups were dis-
tinguished: classification methods and automatic inference ones. Due to variations
of the diagnosed system structure, the latter are more suitable for the diagnostics
of industrial processes. Uncertainties of diagnostic signals induce us to apply fuzzy
evaluation of residuals and inference with the use of fuzzy logic. Such a solution is
used in the DiaSter system. A general diagram of inference based on the applica-
tion of partial models to fault detection and fuzzy inference on faults is presented in
Fig. 5.26. What is characteristic is the lack of the sharpening block. The diagnosis
shows faults and rules activation degrees that correspond with the faults. The rules
are interpreted as indices of conviction that the particular faults really appeared.

The fault isolation algorithm used in the DiaSter system is an expansion
of the dynamic tables of the state methods DTS, F-DTS, I-DTS described by
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Fig. 5.26 Example FIS system

Kościelny, (1991; 1995; 2001), Korbicz et al., (2004) and Sędziak, (2002). An outline
of this algorithm is presented further on. It is implemented in the iFuzzyFDI module.

5.5.2.1 Reasoning Assuming Single Faults

In the DiaSter system, one of the essential features of the fault detection algorithm is
the Method of Dynamic Decomposition (MDD) of the diagnosed process (Kościelny
et al., 2006). In this method, the fault is searched in a specially created isolation sub-
process. The isolation subprocess is created based on the first observed symptom. It
is assumed that the symptom occurred if the coefficient of the membership function
of the fuzzy set νxi �= 0 of the diagnostic signal Sx is greater than the threshold A
(during n consecutive steps of test realization). The set of possible faults is deter-
mined based on the rule (5.43):

F1 = F(sx = νxi) : μxi ≥ A. (5.44)

This set contains all the faults pointed out in rule conclusion. Then, there are selected
such rules from the rule base which point out in their conclusion at least one of the
fault from the set F1. They form the subset RW 1. The subset of rules determined is
such a way is used for process state recognition. It unequivocally defines the set of
diagnostic signals:

S1 = {s j ∈ S : F1 ∩F(s j = ν) �= �}, (5.45)

which will be used for diagnosis elaboration. The diagnostic signal is eliminated
from the set S1 if it is currently unavailable. It usually decreases diagnosis precision
(fault isolability) but protects against reasoning errors.

The subsystem used to isolate faults is defined by the subsets F1, RW1 and S1.
The isolated subsystem can be represented in the form of an information system.
Rules RW1 of the type (5.43) correspond to table rows (Fig. 5.27). The system de-
fined in this way contains only currently available rules, i.e., corresponding to the
actual process structure. Additionally, there are isolated rules of the type (5.40) for
the defined subsystem. They are related to table columns. They form the set RK1.
The number of premises in those rules equals the number of diagnostic signals in the
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set S1. It is several times smaller than the number of simple premises in the rules of
the same form specified for the whole process. The discussed procedure is presented
in Example 5.1.

Example 5.1

Fig. 5.27 Example FIS

The following set of rules corresponds to the FIS presented in Fig. 5.27:

rw1 : i f s1 = 1 then f1 ∨ f3 ∨ f6,
rw2− : i f s2 = −1 then f2 ∨ f5 ∨ f7,
rw2+ : i f s2 = +1 then f4,
rw3− : i f s3 = −1 then f1 ∨ f3 ∨ f5 ∨ f6,
rw3+ : i f s3 = +1 then f2 ∨ f3 ∨ f5,
rw4 : i f s4 = 1 then f2 ∨ f3 ∨ f5 ∨ f6 ∨ f7,
rw5− : i f s5 = −1 then f1 ∨ f6,
rw5+ : i f s5 = +1 then f3 ∨ f4 ∨ f6.

As a result of symptom s2 =−1 detection, the set of possible faults F1 = { f2, f5, f7}
is created. Then, the set of rules RW 1 = {r2−,r3−,r3+,r4} that point out faults from
the set F1 is determined. Finally, the corresponding subset of diagnostic signals
S1 = {s2,s3,s4} is formulated. The application of dynamic process decomposition
allowed us to decrease the number of the faults considered from 7 to 3 and the
number of rules useful for isolation reasoning from 8 to 4. This illustrates the effec-
tiveness of the method, which increases with the increase of the diagnosed process
scale. The FIS shown in Fig. 5.27 was reduced to the form presented in Fig. 5.28.

The conclusions (faults) that do not belong to the set F1 are eliminated from the
rules RW1:

rw2− : i f s2 = −1 then f2 ∨ f5 ∨ f7,
rw3− : i f s3 = −1 then f1 ∨ f3 ∨ f5 ∨ f6,
rw3+ : i f s3 = +1 then f2 ∨ f3 ∨ f5,
rw4 : i f s4 = 1 then f2 ∨ f3 ∨ f5 ∨ f6 ∨ f7.

Following, the set of rules RK1 corresponding to FIS columns is created:
rk2 : i f (s2 = −1)∧ (s3 = +1)∧ (s4 = 1) then f2,



188 W. Cholewa et al.

Fig. 5.28 Reduced FIS

rk5 : i f (s2 = −1)∧ [(s3 = −1)∨ (s3 = +1)]∧ (s4 = 1) then f5,
rk7 : i f (s2 = −1)∧ (s3 = 0)∧ (s4 = 1) then f7.

Two rules with simple premises can be used instead of the rule rk5 with complex
premises:

rk5a : i f (s2 = −1)∧ (s3 = −1)∧ (s4 = 1) then f5,
rk5b : i f (s2 = −1)∧ (s3 = +1)∧ (s4 = 1) then f5.

The rule rk5 corresponds to the complex signature (5.40), while the rules rk5a, rk5b

correspond to the simple signature (5.41). The rules rk2 and rk5b are contradictory
because they have the same premises and different consequences. Faults pointed out
by these rules are unisolable with respect to the examined symptoms present in rule
premises.

Diagnostic reasoning is always conducted with the use of the above-described
MDD. It starts the isolation process and finishes itself by determining the sets F1,
RW1, S1 and RK1. Additionally, in further reasoning, the rule for the process fault-
free state is used. It has the following form:

rk0 : If (s1 = 0)∧ . . .∧ (s j = 0)∧ . . .∧ (sn = 0)

then OK, s j ∈ S1. (5.46)

Rules belonging to the set RK1 have the shape of the conjunction of sim-
ple or complex premises. Simple premises have the form (s = νi), while com-
plex premises are alternatives of simple ones. It is assumed that, in the case of
three-valued residual evaluation, only complex premises of the following form
occur: [(s = −1)∨ (s = +1)]. The premises of the type [(s = 0)∨ (s = −1)] and
[(s = 0)∨ (s = +1)] are not used because they testify about the lack of knowledge
of test sensitivity for a particular fault. Each rule of the type (5.40) that includes m
complex premises in the form [(s = −1)∨ (s = +1)] has corresponding 2m rules of
the type (5.41) with simple premises.

In the DiaSter system, the rules with complex premises from the set RK1 are
converted to corresponding subsets of rules with simple premises in the form

rkn : If (s1 = ν1)∧ . . .∧ (s j = ν j)∧ . . .∧ (sn = νn)

then fk, sJ ∈ S1,ν j ∈Vjk, fk ∈ F1. (5.47)
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Together with the rule (5.46) they form the set of rules RK∗. Further, rules with
the same premises and different conclusions are searched. Faults pointed out in such
a subset of rules are grouped into elementary blocks:

Em = { fk ∈ F1 : ∀k((s1 = ν1) ∧ . . .∧ (s j = ν j)∧ . . .∧
∧ (sn = νn))}. (5.48)

Thus, the elementary block contains unisolable faults with respect to diagnostic
signal values present in the premises of the rules being grouped. The elementary
blocks correspond to the rule in the following form:

rzm : If (s1 = ν1)∧ . . .∧ (s j = ν j)∧ . . .∧ (sn = νn)

then ( fk ∨ fm ∨ . . .), s ∈ S1, f ∈ Em. (5.49)

The set of elementary blocks

E = {Em : m = 0, . . . ,M} (5.50)

contains the block E0 corresponding to the OK state. Particular elementary blocks
do not have to be disjoint in the case of three-valued residual evaluation. In the case
of binary evaluation, they are disjoint. This results from the fact that in the case
of three-valued evaluation the same faults can be isolable for one combination of
diagnostic signal values and unisolable for another one (Kościelny, 2001; Kościelny
et al., 2006; Korbicz et al., 2004).

The new set of RM rules corresponding to elementary blocks is created when
grouping the rules with the same premises. Diagnostic reasoning consists in deter-
mining activation levels of particular rules form the set RM. The degrees of ful-
fillment of all premises in a rule must be calculated in order to determine the rule
activation level.

The simple premise fulfillment factor μ(s j,Em) depends on the actual value of the
membership degree of the fuzzy set corresponding to the pattern diagnostic signal
s j value present in the rule premise. For example, for the premise (s j =−1) and the
membership factor of the “−1” fuzzy set of the j-th diagnostic signal equal to 0.8,
the premise fulfillment factor μ(s j,Em) equals 0.8.

The activation level of the rule whose premise is a conjunction of simple premises
is calculated according to

rzm : μ( fk) = μ(Em,s1)⊗ . . .⊗ μ(Em,s j)⊗ . . .⊗ μ(Em,sn), (5.51)

where ⊗ denotes a generalized operator of fuzzy conjunction.
In the DiaSter system, T-norm operators are used as generalized operators of

fuzzy conjunction. During system configuration, the type of operator is selected.
There are two possibilities: product (PROD) and minimum (MIN) operators. Thus,
the activation factor is calculated according to

μ(Em)PROD = μ(Em,s1) · . . . ·μ(Em,s j) · . . . ·μ(Em,sn) (5.52)
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or
μ(Em)MIN = MIN{μ(Em,s1) · . . . ·μ(Em,s j) · . . . ·μ(Em,sn)}. (5.53)

The rule (5.49) activation level takes the values from the interval [0,1]. It is inter-
preted as the certainty factor of the existence of one of the faults pointed out in the
rule conclusion. The rule (5.46) activation level is interpreted as the certainty fac-
tor of the lack of faults in the subsystem considered. This information formulates
the diagnosis generated at the output of fuzzy fault isolation. It has the shape of
a set of pairs (certainty factor of the occurrence of one of the faults belonging to the
elementary block, the elementary block):

DGN = {〈μ(Em),Em〉 >: μ(Em > G), (5.54)

where G is some predefined threshold value of the activation level, e.g., G = 0,1.
The transformation of the set of rules RK1 into the set RM makes the new rule

base consistent. The application of the PROD operator for rule triggering level cal-
culation has one important advantage. It allows stating the completeness and con-
sistence of the rule base. If the sum of all rule simple premise fulfillment factors
equals 1, for any inputs (premises) state, then the rule base is complete and consis-
tent (Piegat, 2001):

m=M

∑
m=0

μ(Em)PROD = 1. (5.55)

The rule base used in a particular reasoning process is usually incomplete. It does
not include rules for all possible combinations of diagnostic signal values. In prac-
tice, not all the combinations are possible. However, the rule base is built under the
assumption of single faults. In practice, one cannot be sure that the assumed set of
faults includes all possible ones. The rules that are not considered in the rule base
also comply with process states with multiple faults and states with omitted faults.

The sum of all rule simple premise fulfillment factors calculated with the use of
the PROD operator is a measure of the achieved diagnosis certainty. The diagnosis
is more certain as the value of this sum is closer to 1. A low value of the sum can
testify to the omission of some faults in the rule base, the occurrence of multiple
faults or erasing false diagnostic signal values due to strong disturbances.

The DiaSter system calculates an additional output μUS. It is a measure of the un-
certainty of the generated diagnosis and, on the other hand, a measure of conviction
about the occurrence of an unknown process state. It is calculated in the following
way:

μUS = 1−
m=M

∑
m=0

μ(Em)PROD. (5.56)

Reasoning in a separate subsystem is realized by a standalone isolation thread usu-
ally conducted under the assumption of a single fault. The set of available diag-
nostic signals (as well as the set of employed rules) should be decreased by sig-
nals which are sensitive to detected faults pointed out in the elaborated diagnosis.
Their values are determined by the existence of an isolated fault. They can be again
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included in the set of available diagnostic signals after automatic detection of the
return to the fault-free state of a faulty component (Kościelny, 1991; 1995; 2001).

Several isolation threads can be conducted in parallel. Such a situation takes place
when multiple faults occur within very short time periods. The condition for proper
fault isolation assuming a single fault with the use of dynamic process decomposi-
tion, in such a case, is that the subset of diagnostic signals used in particular threads
be disjoint (Kościelny, 2001; Kościelny et al., 2006). If this condition is not satis-
fied, then the algorithm of fault isolation adjusted to the isolation of multiple faults
must be used.

Figure 5.29 shows the fault visualization method used in the DiaSter system. The
indicators corresponding to particular faults are drawn over the installation mimics.
They display the value of certainty factors of fault existence in the range 0–1. The
color of a bar graph is connected with the value of the fault certainty factor—faults
with high certainty factors are marked with red while those with a smaller factor are
displayed in orange, yellow and, finally, in white for values close to zero.

Fig. 5.29 Example of diagnosis visualization in the DiaSter system. The bar-graph represents
the isolated fault (pipe clogging). The figure displays the comparison of the measured and the
modeled value of the flow through the pipe. Additionally, the statement of certainty factors
for selected faults is shown on the right.



192 W. Cholewa et al.

5.5.2.2 Reasoning under the Multiple Faults Assumption

Reasoning assuming multiple faults, in practice only double ones, is started when
the value of an unknown process state factor exceeds some predefined value μUS >
B, e.g., B = 0.5.

In the general case, the problem of a very high number of possible process states
with different combinations of faults appears during multiple fault isolation. The
number of possible states equals 2K , where K is the number of faults. In the DiaSter
system, this problem is diminished by preliminary defining of the set of possible
faults F∗.

For each rule (5.42) and (5.43) it is possible to determine the set of faults F(s j)
pointed out in its conclusion. During reasoning conducted under the assumption
about single faults, the values of diagnostic signals from the set S1 are determined.
It is possible to state that the set of possible faults should contain faults for which
all the symptoms occurred. Faults whose symptoms are not observed are omitted.
In the case of three-valued residual evaluation, the set F∗ is defined according to

F∗ =
⋃

j:s j∈S1

F(s j) : μ j−1 > C1 ∪
⋃

j:s j∈S1

F(s j) : μ j+1 > C1 −
⋃

j:s j∈S1

F(s j) : μ j,0 > C0, (5.57)

where C1 and C0 are some predefined threshold values.
The rules for double faults are created based on (5.49) for a single fault. The val-

ues of diagnostic signals in rule premises are determined as alternatives to
the values of these signals for single faults, while the rule conclusion points out
the conjunction of elementary blocks:

If (s1 = ν1,k ∨ν1,m)∧ . . .∧ (s j = ν j,k ∨ν j,m)∧ . . .∧
∧ (sJ = νJ,k ∨νJ,m) then (Ek ∧Em). (5.58)

The way of rule generation in the case of rules pointing out a subset of unisolable
faults is identical, only the conclusion has a different form. In this case it points
out the conjunction of conclusions of the original rules. The contradictory rules are
joined together by the aggregation of their conclusions. The aggregated conclusion
is an alternative to conclusions of the original (contradictory) rules.

The rule (5.58) activation level is calculated according to the formulas (5.51)–
(5.53). The diagnosis takes the form

DGN = {〈μ(Em ∩En),(Em ∩En)〉 : μ(Em ∩En) > G}, (5.59)

where G is some predefined threshold value.
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5.5.2.3 Way of Taking into Consideration the Delays of Symptoms Forming

There are four approaches that differently take into account the problem of symp-
tom forming delays in the DiaSter system during diagnostic reasoning.

Approach 1. In this approach, in order to avoid false diagnosis, full information
about symptoms delays is used (Kościelny et al., 2008a). There are defined minimal
θ 1

k j and maximal θ 2
k j symptom delays for each pair: a fault and a diagnostic signal.

When the time passes, the algorithm takes into account consecutive diagnostic signal
values. The observed symptoms, as well as a lack of symptoms, in predefined time
intervals allow making the diagnosis more accurate. This approach is very seldom
used in the diagnostics of industrial processes. It is almost impossible to achieve
such precise knowledge about symptom delays. It practice, this approach can be ap-
plied for very simple processes for which mathematical description is known.

Approach 2. In this approach, in order to avoid false diagnoses, conclusions are for-
mulated only after all the symptoms have been determined (Kościelny, 1995; 2001).
There is a need to define, at the system configuration stage, the maximal symp-
tom delay θ j for each diagnostic signal. It is defined as a maximal period from the
moment of the occurrence of any of the faults from the set F(s j) till its symptom ap-
pears. After creating the set S1 (5.45) with the use of the MDD, the time to symptom
determination is defined. It equals

θ = max
j:s j∈S1

{θ j}. (5.60)

Other elements of the reasoning algorithm are consistent with the previously given
description.

Approach 3. It is the approach of reasoning called “reasoning based on symptoms”
(Kościelny and Syfert, 2007). In this case, zero values (representing the fault-free
state) of diagnostic signals are not taken into account. Thus, the algorithm does not
need information about symptom delays. The reasoning is carried out based on the
rules (5.42) and (5.43). The conversion to the form (5.49) is not used. The primary
diagnosis DGN1 = F1 includes all the faults from the set (5.30), which is determined
based on the first observed symptom. The occurrence of consecutive symptoms re-
sults in diagnosis refining. It points out the faults from the subset determined in the
following way:

DGNr = DGNr−1 ∩F(sn). (5.61)

Thus, the diagnosis is conducted according to the rules in the form

If (sx = −1)∧ . . .∧ (sn = +1) . . . then

f ⊂ F(sx = −1)∩ . . .∩F(sn = +1). (5.62)
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The rule activation level, calculated with the use of fuzzy conjunction, is the same
for all the faults pointed out in the diagnosis and equals

∀ fk∈DGNr : μ( fk) = μ( fk,sx)⊗ . . .⊗ μ( fk,sn). (5.63)

The above algorithm protects against false diagnosis generation caused by the de-
lays of symptom forming. However, the achieved fault isolability is smaller. Some
diagnoses indicate a higher number of faults than the diagnosis elaborated when “0”
diagnostic signal values are considered.

Approach 4. This approach is an extension of Approach 3. The idea of this exten-
sion is that additional heuristic knowledge (usually incomplete) about the sequence
of symptom forming (Syfert and Kościelny, 2009) is taken under consideration. De-
clared relations concerning the times of symptom forming of the k-th fault have the
form

θk, j < θk,m. (5.64)

Fig. 5.30 Assembly of a steam attemperator with the cooling water valve. U : control signal,
X : valve rod position, Pw: injection water pressure, Fw: water flow stream, Tp1, Tp2: water
temperatures before and after the attemperator, Fp: steam flow stream.

In this case, the rules of reasoning about faults are extended by the relations (5.64)
defined in the rule base. The relation between the delays θk, j and θk,m of two dif-
ferent symptoms forming in the case of the k-th fault can be determined based on
knowledge about the process and the structure of detection algorithms. It is illus-
trated in the example of a part of the steam attemperator of a power block boiler
(Fig. 5.30).

Assume the following residuals are used for the diagnostics of this process: r1 =
X − X̂(U), r2 = F − F̂(X ,PW ), r3 = F − F̂(U,PW ), r4 = Tp2− ˆTp2(Tp1,Fp,FW ), r5 =
Tp2 − ˆTp2(Tp1,U,PW ). Residuals r2, r3, r4, r5 are sensitive to the control valve fault.
This fault (denoted as k) will cause an immediate change of water flow Fw, and
shortly after a change of steam temperature Tp2. Thus, the following symptom delay
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relations for that fault are true: θk,2 < θk,4, θk,2 < θk,5, θk,3 < θk,4. Analogously,
denoting actuator fault by m, it is possible to state that θm,2 < θm,3 < θm,5.

The algorithm of reasoning founded on the symptom sequence based on the re-
lation (5.64) protects against generating a false diagnosis due to existing symptoms
delays. It also allows us to increase fault isolability compared with symptom-based
reasoning. The more complete the knowledge about the relations between symptoms
delays, the bigger the increase in fault isolability.

5.5.3 Algorithms of Reasoning in a Hierarchical Structure

The structure of industrial plants has often a hierarchical form. The technological
process and the installation used for its realization are organized into divisions, sec-
tions, control loops and devices. Horizontal and vertical divisions of such structures
can be distinguished. The vertical division is used to separate areas inside superior
units, while the vertical one mainly refers to the consecutive technological sections.
Also, the structure of control systems is often functionally decentralized and geo-
graphically distributed.

It is advantageous, in many cases, if the structure of the diagnostic system re-
flects that of the process and/or control system. This allows elaborating a diagnosis
which is much more meaningful. Designing such a diagnostic system is more in-
tuitive. The achieved system structure is easier to design, interpret and reconfigure.
Clear reconfiguration procedures are very important in the case of the diagnostics
of industrial processes, where a high number of faults and realized diagnostic tests
take place.

The possibility to conduct diagnostic algorithm decomposition is also important
when multiple-valued, fuzzy diagnostic test results are applied and when multiple
faults occurrence is possible. Particular subsystems for separated process sections
are defined during reasoning system decomposition. It is usually impossible to com-
pletely separate independent (disjoint) subsystems. Fault symptoms visible in one
subsystem are often observed in others. There is a necessity to apply specialized
reasoning algorithms. Such an algorithm must have the ability to accommodate the
diagnosis elaborated in dependent diagnostic subsystems, including certainty de-
grees of fault free and unknown process states.

On the other hand, the possibility of creating hierarchical reasoning systems does
not have to be connected with the hierarchy of the plant structure. The hierarchical
lay out of process sections and components can be used to define diagnostic sub-
systems (with respect to the set of faults and diagnostic tests) designed to analyze
particular process sections (Kościelny et al., 2008a; Korbicz et al., 2004), whereas
the application of diagnostic reasoning in a hierarchical structure can result from the
need for simplifying the reasoning process (Cholewa et al., 2009).

The basic version of diagnostic reasoning in a decentralized structure is presented
in the works of Kościelny et al. (2008a) and Korbicz et al. (2004). It utilizes binary
logic for diagnostic tests evaluation, the binary diagnostic matrix for the notation of
the diagnostic relation and single fault scenarios. Its extension introducing reasoning



196 W. Cholewa et al.

in a two-level structure and basic elements of fuzzy reasoning is described by Koś-
cielny et al. (2008). However, the extended algorithm does not directly deal with the
problem of multiple faults and multiple-valued residual evaluation in hierarchical,
decentralized structures of diagnostic reasoning.

Introducing fuzzy, multiple-valued residual evaluation and taking into account
multiple faults scenarios make the reasoning algorithm in the hierarchical struc-
ture significantly difficult, especially the phase of diagnosis justification between
separated subsystems. The algorithm presented in this section (implemented in the
DiaSter system) is an extension of the above-mentioned algorithms. It introduces
a simplified reasoning algorithm that takes into consideration fuzzy, multiple-valued
residual evaluation. It also defines the scheme of diagnosis elaboration in the case
of detecting the possibility of multiple faults existence, including the way of calcu-
lating the degree of certainty of fault-free and unknown process states.

5.5.3.1 Diagnostic Algorithm Decomposition

There are three levels (types) of decomposition used in the isolation module of the
DiaSter system:

Level 0. Static decomposition into independent reasoning systems (denoted as gFIS).
Completely independent subsystems are defined, with respect to the examined set
of faults as well as realized set of diagnostic tests. The final diagnosis is a direct
composition (sum) of diagnoses generated by particular subsystems. The degrees of
fault-free μ(OK) and unknown μUS process states, calculated according to (5.46)
and (5.56), are determined independently for each subsystem. This stage is omitted
in this section because its realization is described in Section 5.5.2.1.

Level 1. Defining dependent reasoning subsystems (denoted as sFIS). This stage is
also a part of static decomposition but the defined subsystems can have common
elements. The division can proceed due to different criteria: the minimization of
connections between subsystems, division with respect to logical sections of the
plant, etc. There is a need to proceed with accommodation of diagnoses generated
by particular subsystems, including the determination of the degrees of fault-free
and unknown process states for the whole system (i.e., the subsystem defined at
Level 1 of the decomposition). This stage is described in this section.

Level 2. Dynamic decomposition realized according to the MDD described in
Section 5.5.2.1.

The reasoning system that utilizes the notation of the faults–symptoms relation in
the form of the approximate information system (FIS) expressed as (5.35) and bi- or
three-valued fuzzy residual evaluation is considered. The presented mechanism can
also be used for complex (more than three-valued) residual evaluation.
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The fault isolation system (i.e., gFIS) is decomposed into N subsystems:

O = {on : n = 1,2, . . . ,N}, (5.65)

where each subsystem oi, defined as the following triplet:

on = 〈Fn,Sn,R
FS
n 〉, (5.66)

has the subsets of faults Fn, diagnostics signals Sn and, finally, the diagnostic sub-
relation RFS

n defined on the Cartesian product Fn × Sn attributed. This mapping at-
tributes to each pair 〈s j, fk〉 the set of diagnostic signal values Vjk. The subset Fn is
a subset of faults monitored in the n-th subsystem by diagnostic signals s j ∈ Sn plus
a fault representing a fault-free state denoted as “OK”:

Fn = {OK}∪
⎛
⎝ ⋃

s j∈Sn

F(s j)

⎞
⎠ , (5.67)

where F(s j) denotes the set of faults detected by diagnostic signal s j : F(s j) = { fk :
〈s j, fk〉 ∈RFS}. The degree of unknown process state μUS is calculated for the whole
system.

The decomposition into subsystems oi is realized in such a way that the following
conditions are fulfilled:

• subsets of diagnostic signals in all subsystems are disjunctive:

∀m�=nSn ∩Sm �= ∅; (5.68)

• subsets of isolable faults in all subsystems are not, in general, disjunctive (inde-
pendently of the OK state):

∃m�=nFn ∩Fm �= ∅; (5.69)

• each fault is attributed to at least one subsystem:
⋃

n=1...N

Fn = F; (5.70)

• each pair 〈s j, fk〉 belonging to the diagnostic relation RFS is attributed to at least
one subsystem:

∀ j∀k〈s j, fk〉 ∈ RFS ⇒∃(s j ∈ Sn ∧ fk ∈ Fn). (5.71)

For the purpose of diagnosis refining, two subsets of faults for each subsystem are
defined—the subset FI

n of faults attributed exclusively to the n-th subsystem and the
subset FII

n of faults attributed to at least two subsystems:

FI
n = { fk : ∀m�=n(Fn ∩Fm = ∅)} (5.72)
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and
FII

n = { fk : ∃m�=n(Fn ∩Fm �= ∅)}, (5.73)

while
Fn = FI

n ∪FII
n . (5.74)

The basic version of the reasoning algorithm uses diagnostic relation decomposition
in a single-level structure. Such a structure is able to conduct correct reasoning.
However, the reasoning algorithm has a two-layer structure itself. The lower layer
realizes independent reasoning at the level of particular subsystems. The superior
layer is responsible for adjusting diagnoses elaborated for particular subsystems.
This stage is necessary due to subsystems dependency.

Example 5.2

The example system used in this section contains six faults and six diagnostic sig-
nals. The diagnostic matrix for this system and its decomposition onto two subsys-
tems are shown in Fig. 5.31.

The following set of subsystems is defined:
O = {o1,o2},

with the following subsets of faults:
F1 = { f1 . . . f6,OK}, FI

1 = { f1, f2}, FII
1 = { f3 . . . f6},

F2 = { f3, f4, f7 . . . f10,OK}, FI
2 = { f7 . . . f10}, FII

2 = { f3, f4},
and subsets of diagnostic signals:

S1 = {s1 . . .s5}, S2 = {s6 . . . s8, s101,s102},
while bi- and three-valued evaluation is applied:

∀ j:1...J, j �=7Vj = {0,1}, V7 = {1−,0,1+}.

Fig. 5.31 Example system decomposed into two subsystems
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5.5.3.2 Reasoning Realized at the Subsystem Level

Reasoning at the subsystem oi level is realized completely independently for each
subsystem in accordance with the diagnostic transformation RFS

n with the use of
the algorithm described in Section 5.5.2.1. With respect to the possibility of the
existence of unisolable faults (with the same signature), the final diagnosis for the
n-th subsystem takes the shape of a set of elementary blocks (set of unisolable faults
in a particular subsystem):

DGNn = {〈En
m,μn

m〉 : m = 1 . . .Mn,∀m(μn
m > TI)}, (5.75)

En
m = fk,∨ . . . f1 : fk, . . . fl ∈ Fn, (5.76)

where TI is the isolation algorithm threshold, En
m is the m-th group of unisolable

faults (denoted as [ fk, . . . fl ]), μn
m denotes the degree of certainty of the m-th fault

group (∀k: fk∈En
m
(μn( fk) = μn

m), Mn is the number of groups of unisolable faults in
the n-th subsystem.

The fault is pointed out in the diagnosis (in the elementary block of unisolable
faults) if its certainty factor exceeds the defined threshold evaluation value TI . The
value TI > 0 can be used to avoid useless calculations in the case of very small values
of fault certainty factors; however, it will influence the accuracy of the elaborated
diagnosis.

Unisolable faults can appear in particular subsystem even if they are isolable in
respect to the global diagnostic relation RFS. “Local” unisolability is connected with
the shape of the relation RFS

n , which does not include all diagnostic signals.
The diagnosis points out one fault or elementary block of faults (Mn = 1) when

uncertainty is not related to diagnostic test evaluation (degree of membership to
fuzzy sets equals ‘0’ or ‘1’). In a particular case it can be a fault-free or an unknown
process state, e.g., DGNn = 〈OK,1〉.

When multiple fault scenarios are considered, each fault in the elementary block
can be a block of multiple faults, called a “multiple fault”. Such a group is denoted
as | fk, fl | or f|k,l| (an example for a “double fault”).

Multiple faults are interpreted as simultaneous faults, i.e., related by the logic
conjunction “and” (| fk, fl | ≡ fk ∧ fl), while unisolable faults are treated as alter-
native faults, i.e., connected with the logic conjunction “or” ([ fk, fl ] ≡ fk ∨ fl).
Particular sets of unisolable faults appearing when the uncertainty of test
result evaluation takes place are also treated as alternative faults
({〈 fk,μ( fk)〉,〈 fl ,μ(l)〉} ≡ ( fk with μk)∨ ( fl with μl)). In this case, it is important
to pass the information about elementary blocks to the superior layer. This infor-
mation is important for proper calculation of certainty factors of unknown process
states realized in the superior layer.
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Example 5.3

Assume the following symptoms:
s1 = {〈1,1〉}, s2 = {〈1,1〉}, s3 = {〈1,1〉},
s101 = {〈0,0.2〉,〈1,0.8〉}.

Fig. 5.32 Example of partial diagnosis elaboration in subsystems. Shaded diagnostic signals
are those for which symptoms are observed.

The elaborated diagnoses at the subsystem level take the following form:
DGN1 = {〈E1

1 = [ f|1,3|, f|1,4|,1〉},
DGN2 = {〈E2

1 = [ f4],0.8〉,〈E2
2 = [OK],0.2〉}.

The diagnosis for the first subsystem points out elementary block of two unisolable
multiple faults: ( f1∧ f3) and ( f1∧ f4). The diagnosis for the second subsystem points
out the fault f4 with the degree of certainty equal to 0.8 or a fault-free state with the
degree of certainty equal to 0.2.

5.5.3.3 Diagnosis Adjustment at a Superior Level

The final diagnosis for the whole system is elaborated at the supervisory level. It is
realized by the justification of the partial diagnosis generated for particular subsys-
tems. It is possible to formulate a more accurate final diagnosis if faults belonging
to more than one subsystem were pointed out at the basic level.

The resulting certainty factors for elementary blocks of unisolable faults are cal-
culated in the first stage. Then, it is tested if faults from the sets of unisolable faults
for a particular subsystem do not become isolable as a result of diagnosis justifi-
cation with another subsystem. Faults that remain unisolable are still treated as a
group in further steps. This is important with respect to the phase of calculating un-
known process state coefficients. The calculations are proceeded with according to
the following formula:
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μ(Em) = ∏
n=1...N

{
μn(Em) : Em ∈ Fn

μn(OK) : Em /∈ Fn
, (5.77)

where Em ∈ Fn means that all the faults from the elementary block Em belong to the
set Fn:

Em ∈ Fm ⇔∀ fk∈Em fk ∈ Fn. (5.78)

The formula (5.77) is written down in the general form. In practice, most of the
groups Em contain only one fault.

The fault-free state coefficient is determined based on fault-free certainty factor
values calculated for all subsystems:

μ(OK) = ∏
n=1...N

μn(OK). (5.79)

In the last stage, the coefficient of an unknown process state is determined according
to the following dependency:

μ(US) = 1− (μ(OK)+∑
m

μ(Em)). (5.80)

Example 5.4

Assume that for the symptoms
s6 = {〈1,1〉}, s7 = {〈0,0.2〉,〈1+,0.8〉},
s101 = {〈0,0.2〉,〈1,0.8〉},

the following partial diagnoses were elaborated at the subsystem level:
DGN1 = 〈OK,1〉,
DGN2 = {〈 f8,0.2〉,〈[ f9, f10],0.8〉},
DGN3 = {〈[ f4, f8],0.8〉,〈OK,0.2〉}.

Diagnosis adjustment according to (5.77) was carried out in the following way:
μ4 = μ1

4 ·OK2 ·μ3
4 = 0 ·0 ·0.8 = 0,

μ8 = OK1 ·μ2
8 ·μ3

8 = 1 ·0.2 ·0.8 = 0.16,

μ9 = OK1 ·μ2
9 ·OK3 = 1 ·0.8 ·0.2 = 0.16,

μ10 = OK1 ·μ2
10 ·μ3

10 = 1 ·0.8 ·0 = 0,

OK = OK1 ·OK2 ·OK3 = 1 ·0 ·0.2 = 0.

All the elementary blocks of unisolable faults were decomposed into components
because the faults pointed out were globally isolable. The final value of the unknown
process state degree was calculated as

US = 1− (∑μm + OK) = 0.68,

and the final diagnosis took the following shape:

DGN = {〈 f8,0.16〉,〈 f9,0.16〉,〈US,0.68〉}.
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Fig. 5.33 Example of diagnosis justification for three subsystems: case with symptoms
uncertainty

Due to uncertain symptoms, the reasoning system pointed out two potential faults
but also indicated an unknown process state as another possibility. It is interesting
that the faults f8 and f9 are isolable. Their simultaneous indication as alternative
faults results directly from uncertain evaluation of diagnostic test results and not
from the diagnostic relation.

5.5.3.4 Multiple Faults Issue

In the DiaSter system, the following assumptions considering multiple fault isola-
tion are used:

• symptoms of particular faults are not compensating each other while they are
simultaneously observed;

• the final diagnosis consists of the minimal set of faults that explains the observed
symptoms. There can be more than one such a minimal set indicated. In such a
case, they form a group of unisolable, multiple faults.

In the case of multiple fault analysis it is worth distinguishing two cases: (a) multi-
ple faults that appeared in the framework of one subsystem, (b) multiple faults that
occurred in separate subsystems. In the case (a), the necessity to analyze the possi-
bility of multiple fault existence appears if the diagnosis elaborated at least in one of
the subsystems is contradictory. In the case (b), diagnosis inconsistency is revealed
at the stage of the final diagnosis elaboration at the superior level. Inconsistent diag-
nosis takes place when neither faults (or a group of unisolable faults) nor fault-free
states are pointed out. In practice, it is assumed that a diagnosis is inconsistent if
the value of the certainty coefficient of an unknown process state exceeds some
threshold value TM(μ(US) ≥ TM). A general description of the algorithm taking
into account the multiple faults issue is presented in this section.
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In the case (a), reasoning for a subsystem is realized according to the description
presented in Section 5.5.2.2. The diagnosis formulated for a particular subsystem
with multiple faults takes the most general form | fk, . . . fl |. Diagnosis justification at
a superior level proceeds according to the rules presented in Section 5.5.3.3, but the
group of multiple faults is treated as one, cumulative fault.

In the case (b), potential multiple faults are created as combinations of faults
pointed out in the primary diagnosis. The diagnosis is formulated after these com-
binations are tested against observed symptoms and the defined diagnostic relation.
When faults of different multiplicity are possible (i.e., their combination explains
the observed symptoms), then the final diagnosis is formulated according to the fol-
lowing assumptions:

• the diagnosis contains multiple faults with the smallest multiplicity:

DGNn = {〈Dn
m,μn

m〉 : m = 1 . . .Mn,∀m(μn
m > TI)}, (5.81)

Dn
m = { fk,∧ . . . f1} : fk, . . . fl ∈ Fn,∀s j∈Sn:s j=1∃ fp∈Dn

m
( fk ∈ F(s j)) , (5.82)

where Dn
m is the m-th group of multiple faults, μn

m stands for the degree of cer-
tainty of the m-th fault group, Mn is the number of groups of multiple faults in
the n-th subsystem;

• multiple faults with higher multiplicity are also pointed out if their certainty fac-
tor is significantly higher than that of the fault with smaller multiplicity (see
Example 5.5).

Example 5.5

Assume that for the symptoms
s1 = {〈1,1〉}, s2 = {〈1,1〉}, s3 = {〈1,1〉},
s101 = {〈0,0.2〉,〈1,0.8〉}},

the following partial diagnoses were elaborated at the subsystem level:
DGN1 = 〈[ f|1,3|, f|1,4|],1〉,
DGN2 = 〈OK,1〉,
DGN3 = {〈[ f4, f8],0.8〉,〈OK,0.2〉}.

The diagnosis for the first subsystem includes multiple faults. Its justification pro-
ceeds in the following way:

f|1,3| = f 1
|1,3| ·OK2 · f 3

3 = 1 ·1 ·0 = 0,

f|1,4| = f 1
|1,4| ·OK2 · f 3

4 = 1 ·1 ·0.8 = 0.8,

f8 = OK1 · f 2
8 · f 3

8 = 0 ·0 ·0.8 = 0,
OK = OK1 ·OK2 ·OK3 = 0 ·1 ·0.2 = 0.

Finally, the unknown process state coefficient is calculated as
US = 1− (∑μm + OK) = 0.2,

and the final diagnosis takes the shape
DGN = {〈 f|1,4|,0.8〉,〈US,0.2〉}.
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Fig. 5.34 Example of reasoning in the case of multiple faults occurrence in the framework of
one subsystem

Example 5.6

Assume that for the symptoms
s2 = {〈1,1〉}, s3 = {〈1,0.2〉,〈1,0.8〉},
s7 = {〈1,1〉}, s8 = {〈1,0.2〉,〈1,0.8〉},

the following partial diagnoses were elaborated at the subsystem level:
DGN1 = 〈 f1,0.8〉,
DGN2 = 〈 f7,0.8〉,
DGN3 = 〈OK,1〉.

Fig. 5.35 Example of reasoning in the case of multiple faults occurrence in different
subsystems
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Diagnosis justification proceeds in the following way:
f1 = f 1

1 ·OK2 ·OK3 = 0.8 ·0 ·1 = 0,
f7 = OK1 · f 2

7 ·OK3 = 0 ·0.8 ·0 = 0,
OK = OK1 ·OK2 ·OK3 = 0 ·1 ·0.2 = 0,
US = 1− (∑ fm + OK) = 1.

The elaborated final diagnosis is contradictory. The system searches for the so-
lution analyzing the possibilities of multiple faults consisting of faults pointed out
in the primary diagnosis. Diagnosis justification proceeds in the following way:

f|1,7| = f 1
1 · f 2

7 ·OK3 = 0.8 ·0.8 ·1 = 0.64,
OK = OK1 ·OK2 ·OK3 = 0 ·1 ·0.2 = 0.

Finally, the unknown process state coefficient is calculated as
US = 1− (∑ fm + OK) = 0.36,

and the final diagnosis takes the shape
DGN = {〈 f|1,7|,0.64}.

In some cases, symptom uncertainty causes difficulties in diagnosis interpreta-
tion, especially in determining if a single or a multiple fault occurred (in general,
if an m-valued or an (m−1)-valued fault occurred). In the DiaSter system, in such
situations both scenarios are considered during diagnosis justification at a superior
level. In this particular case, the diagnosis containing the minimal set of faults that
explains observed symptoms is not chosen for further analysis. The decision con-
cerning which elementary block of faults should be taken into account during further
calculations is based on parallel analysis in which fuzzy information is omitted. The
diagnostic signal values are converted into crisp signals. It is assumed that the symp-
tom is observed (with the certainty factor equal to 1) if the value of its membership
function exceeded some threshold value TD.

Example 5.7

Assume that for the symptoms
s1 = {〈1,1〉}, s2 = {〈1,1〉}, s3 = {〈0,0.2〉,〈1,0.8〉},
s101 = {〈0,0.2〉,〈1,0.8〉},

the following partial diagnoses were elaborated at the subsystem level:
DGN1 = {〈[ f|1,3|, f|1,4|],0.8〉,〈[ f3, f4],0.2〉},
DGN2 = 〈OK,1〉,
DGN3 = {〈[ f4, f8],0.8〉,〈OK,0.2〉}.

The diagnosis for the first subsystem includes multiple faults as well as single
ones. Possible rejection of multiple faults is not correct because the observed symp-
toms point out, somehow, the possibility of their existence. Such a decision is made
because crisp evaluation for the threshold value TD = 0.2 points out multiple faults,
not single ones:

s1 = {〈1,1〉} s̄1 = 1

s2 = {〈1,1〉} TD=0.5−−−−→ s̄2 = 1
s3 = {〈0,0.2〉,〈1,0.8〉} s̄3 = 1
s101 = {〈0,0.2〉,〈1,0.8〉} s̄101 = 1
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Fig. 5.36 Reasoning in the case of multiple faults with strong symptoms uncertainty

¯DGN1 = [ f|1,3|, f|1,4|],
¯DGN2 = OK,
¯DGN3 = [ f4, f8].

Diagnosis justification proceeds in the following way:
f3 = f 1

3 ·OK2 · f 3
3 = 0.2 ·1 ·0 = 0,

f4 = f 1
4 ·OK2 · f 3

4 = 0.2 ·1 ·0.8 = 0.16,
f|1,3| = f 1

|1,3| ·OK2 · f 3
3 = 0.8 ·1 ·0 = 0,

f|1,4| = f 1
|1,4| ·OK2 · f 3

4 = 0.8 ·1 ·0.8 = 0.8,

OK = OK1 ·OK2 ·OK3 = 0 ·1 ·0.2 = 0.
The final value of the unknown process state coefficient is calculated according to

US = 1− (∑μm + OK) = 0.04,
and the final diagnosis takes the shape

DGN = {〈 f4,0.16〉,〈 f|1,4|,0.8〉,〈US,0.04〉}.

5.6 Application of Belief Networks in Technical Diagnostics

The current section outlines the so-called belief-network-based diagnostic model.
It describes a generic structure of the model as well as selected topics regarding
model identification and application. The model allows simultaneous representa-
tion of knowledge acquired from passive as well as active diagnostic experiments,
that collected from diagnostic relations, and generic knowledge made available with
physics laws, for example. One major advantage of the above model is its ability to
account for partial diagnostic knowledge expressed in the form of approximate, sub-
jective, context-based expert evaluations.
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5.6.1 Introduction

Technical object diagnostics can be executed in the form of (Natke and Cempel,
1997)

• model-based diagnostics,
• symptom-based diagnostics.

The following section reveals the prospects of developing a diagnostic model for
supporting both model-based diagnostics processes and symptom-based diagnostics
ones.

5.6.1.1 Model-Based Diagnostics

The essence of model-based diagnostics is the analysis of residua between object
observation results and model results. The model should account for object simula-
tions in a specified technical state of the object. Assuming that the simulation inputs
correspond to the observed ones, the simulation results can be compared with those
coming from the object. The operation is performed for the purpose of recognizing
a particular state class of the object under observation. The reasoning process on the
state of the object can be carried out as follows:

• every class of the state of an object corresponds to a different model, and model
application results from simultaneous simulations are compared with object ob-
servation results. Then, the most congruent simulation results point at object spe-
cific states;

• the reasoning process incorporates one model that is a representative of a well-
functioning object. Then the residua between the object and model observation
results are considered as inputs to symptom-based diagnostics.

To summarize, the quality of the model affects the efficiency of diagnoses. The
above methods are widely used in control system diagnostics as well as process
diagnostics (Korbicz et al., 2004). In particular, they can be used whenever a capable
deterministic model of an object can be developed.

5.6.1.2 Symptom-Based Diagnostics

An alternative to model-based diagnostics is symptom-based diagnostics. This par-
ticular branch of diagnostics assumes that object state changes are accompanied
by relevant symptoms. Most methods assume the processes under observation are
residual ones (Cempel, 1991) whose features are object state information carriers.
The relationships occurring between the specific features and the object state are
then formed as diagnostic relations. The essence of symptom-based diagnostics is
in the use of expert knowledge for indicating specific symptoms giving evidence to
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a particular state of an object. Methods in this field of diagnostics involve various
techniques for comparing observation results with symptom specifications.

The methods can be regarded as classification tasks in which class definitions are
symptom specifications pointing at a particular state of an object. Given known
symptom specifications, the problems can be solved. Initially, the specifications
were expert sourced; however, the complexity of analyzed objects and limitations
in formulating symptom specifications by experts prompted the development of
research methods for determining symptom specifications. The devised methods in-
volve knowledge acquisition methods (Moczulski, 2002b) as well as symptom iden-
tification methods based on passive and active diagnostic experiments. However, the
acquired diagnostic relations are often unreliable and inaccurate. Symptom-based
diagnostics is often used in scenarios where developing a good quality numerical
model is difficult. As a result, no straightforward application of model-based diag-
nostics is then possible.

5.6.1.3 Diagnostic Model

The purpose of diagnostic experiments is technical state recognition of an object
under observation, based on object operation information made available as obser-
vation results. The model projecting data on mutual interactions between the envi-
ronment and the object (or data on process variables of a process performed by the
object) is called the diagnostic model. The investigated model D (5.83) concerns
a model in which input and output values are recorded as the vectors xD and yD,
respectively:

D : xD → yD. (5.83)

The inputs xD of the diagnostic model are attribute values of the observed inter-
actions and values of parameters defining the object structure as well as operating
conditions. The model inputs include the following items:

• variables (variable values) describing object operating conditions (rotational speed,
loads, etc.);

• constant variables (e.g., object design parameters);
• variables whose values present object operation effects. The values can be deter-

mined via measurements or simulations (e.g., vibration amplitude).

The diagnostic model outputs yD incorporate variables whose values need to be de-
termined as a result of a diagnostic process. Then, the model output is the object
estimated state. Therefore, object state information can be represented with an at-
tribute (feature) value set of a state of an object under observation.
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5.6.1.4 Diagnostic Model Concept

The diagnostic model D as shown in (5.83) can be identified as a result of the object
inverse modeling process (Cholewa and White, 1993). Inverse modeling is used for
determining input-to-output transformations, where a particular state of an object
is the transformation parameter. The method requires the knowledge of a relevant
model of the object to describe precisely the state influence. However, in most sce-
narios such models are not known or they are difficult to define. In particular, defini-
tion problems concern objects in which destructive processes correspond to object
component wear processes. One basic method of diagnostic model identification as-
sumes an adequate and representative set of learning data VL (called the example set)
as shown in (5.84) in the form of pairs of the input and output values < xD,yD >k
of the sought-after model:

VL = {< xD,yD >k}. (5.84)

Among others, having a set of examples allows one to identify basic classes of
diagnostic models in the form of

• a neural network to describe the following transformation:

neur : xD → ŷD. (5.85)

The network can be used for determining the estimated value of the model output
yD based on the known input value xD;

• joint distribution of the multi-dimensional random variable (X ,Y ) described by
the following distribution:

F(xD,yD) = P(X < xD,Y < yD), (5.86)

which can be used for determining the boundary distribution of the random vari-
able Y representing the model output

F(yD) = P(Y < yD). (5.87)

One common issue with the models given by (5.85) and (5.86) is the requirement of
a sufficiently numerous (large) learning data set VL (5.84) for model identification.
A drawback of the model (5.85) is its inability to account for generic knowledge as
well as domain knowledge expressed in an explicit form. The required knowledge
can be incorporated to a model by means of pre-processed learning data (examples)
only. Due to the above, straightforward tuning of the model (5.85) is difficult.

The model (5.86) allows partial interpretation of its parameters and their modifi-
cation in line with the model tuning process. Moreover, any application of the model
(5.86) is bound by two essential issues, namely,

• determining probability values requires expensive experiments that may be diffi-
cult to execute. Therefore, there is a need to extend the probability definition and
its scope of application in subjective terms;
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Fig. 5.37 BNBM structure: model inputs and outputs

• the application of the multi-dimensional model (5.86), i.e., recording the multi-
dimensional distribution value requires huge data sets even with high-level gran-
ularity of data.

5.6.2 Belief-Network-Based Diagnostic Model

One essential advantage of symptom-based diagnostics is the ability to explicitly
utilize the possessed knowledge in line with developing the above models and apply-
ing them in real problems. For comparison, in model-based diagnostics the knowl-
edge can be applied while tuning simulation models. Both symptom-based diag-
nostics methods and model-based diagnostics ones utilize the development of ef-
ficient computer-aided diagnostic systems. As such, numerous advantages of inde-
pendently applied methods prompted the development of a generic method com-
bining both model-based diagnostics and symptom-based one. For example, one
method under consideration implied serial application of characteristic methods for
both classes of diagnostic experiments. The research resulted in the so-called Belief-
Network-Based Model (BNBM). Note that the BNBM is a heuristic one. By defini-
tion, a heuristic model guarantees correct results in a majority of scenarios; however,
it does not warrant good results in all cases. Heuristic procedures are most success-
ful when applied to solve routine tasks (e.g., classic umbrella problem).

5.6.2.1 Structure of the Model

The BNBM is a multi-stage model. Fig. 5.37 presents the general structure of the
model, model inputs and outputs (xD,yD), inputs and outputs of model consecutive
stages (xA,yA), (xB,yB), (xC,yC) and the corresponding blocks Ai, B j, Ck, block
inputs and outputs (xAi ,yAi), (xB j ,yB j), (xCk ,yCk), as well as fundamental config-
uration parameters qAi , qB j , qCk and tuned configuration parameters rAi , rCk . The
model was developed in order to allow straightforward application of knowledge
related to an object under consideration, or domain and expert-originated with ex-
pert knowledge or any knowledge repository.
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The diagnostic model (5.83) maps the input data xD into the output data yD. As
shown in Fig. 5.37, the BNBM comprises the stages A, B and C, which consist of
parallel blocks:

• the first stage incorporates the transformation blocks Ai carrying out data pre-
processing tasks;

• the second stage comprises the mapping blocks B j;
• the third stage includes the belief networks Ck;
• additional external blocks cooperating with the model are the presentation blocks

Pl for post-processing and result visualization.

Block outputs are selected outputs of the stage incorporating the given block as
follows:

xAi ⊆ xA; xB j ⊆ xB; xCk ⊆ xC; xPl ⊆ xP. (5.88)

The sets of consecutive stage outputs are then determined as the respective sums of
block outputs sets that are included in that stage:

yA =
⋃

i

yAi ; yB =
⋃

j

yB j ; yC =
⋃
k

yCk . (5.89)

By turns, the inputs of a particular stage (and the model outputs) are contained in
the preceding stage outputs (or the model inputs) as follows:

xA ⊆ xD; xB ⊆ yA; xC ⊆ yB; yD ⊆ yC; xP ⊆ yD. (5.90)

In order to meet BNBM needs, the set zD of the so-called additional variables was
introduced for representing attribute (feature) values occurring in real-life operating
conditions (yet being non-observable), or virtual interactions taking place between
an object and its environment or among particular object components. Note that
introducing the additional variables zD requires from a researcher extending the
learning data set VL definition (5.84) as follows:

VL = {< xD,yD,zD >k}. (5.91)

From the assumption that the additional variables are non-observable it follows that
the learning data set VL (5.91) cannot be acquired as a result of observations. The
learning sets of the additional variables zD can be determined in a fairly straight-
forward fashion by means of the object model or, alternatively, by using available
inputs and outputs of the object model with other models representing specific
knowledge in a given domain. In particular, one important assumption is the ability
to interpret the values of additional variables by an expert in a fairly simple manner.
The values can be restricted by numerous constraints existing for an object under
consideration. Moreover, one major advantage of the BNBM is its ability to in-
corporate specific knowledge by means of the additional variables zD. Also, another
interesting feature of selected additional variables is their high diagnostic sensitivity.
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An example of additional variables zD added to a data set for determining a diag-
nostic model used for estimating actual alignment conditions of a multi-supported
rotor from support vibrations can be reaction forces of rotor supports (Kiciński,
2006; Cholewa and Wojtusik, 2005; Cholewa and Urbanek, 2005; Rogala et al.,
2009). Such forces may be very useful for the recognition of the actual alignment,
but they are not observed (measured) directly. As a result, they are not included in
the input value set. However, their values can be determined during the process of
learning data acquisition in simulation experiments.

In BNBMs, additional variables are reconstructed from the input data xD using
first-stage (purpose-built) blocks.

5.6.2.2 Components of Successive Model Stages

The first-stage blocks perform data pre-processing operations. The blocks can carry
out numerous standard tasks, namely, data normalization, multi-dimensional scal-
ing, etc. BNBMs feature an extended set of such tasks and the so-called One-Class
Classifiers (OCCs).

For each set of input values, an OCCi determines the rate of its membership to the
i-th class. The membership rate can be interpreted as a characteristic function value
of a particular fuzzy set. As a result, a one-class classifier can be interpreted as the
definition of a fuzzy set. Therefore, an application of OCCs allows one to transform
input data into a space where subsequent coordinates assume values corresponding
to the rates of their membership to selected classes. The space is called an image
space.

During the identification process of a diagnostic model based on learning data,
neither explicit generic knowledge nor domain one is accounted for. The type of
knowledge can be accounted for while developing a simulator for learning data gen-
eration and learning data set completion. In order to enable explicit specification of
constraints for variables under consideration in the acquired knowledge context, an-
other stage is introduced into the BNBM. The new stage is used mainly for adjusting
additional variable values.

An example of the essence of the matter can be the above-mentioned additional
variables in the form of support reaction forces of a multi-supported rotor. In a diag-
nostic model for current rotor alignment estimation, the reaction forces are estimated
from model input data incorporating support and shaft vibration features. The esti-
mated reactions can be constrained due to rotor quasistatic equilibrium conditions.
Accounting for such restrictions in such a model increases estimation process accu-
racy of reaction forces and improves the quality of diagnosis on the rotor alignment
state compared to diagnoses based on input data only, i.e., diagnoses estimated with-
out any knowledge of rotor quasistatic equilibrium conditions.

The outputs yB j of the second stage blocks take values equal to the adjusted input
values xB j , or they are replicas of the input values xB j requiring no adjusting at all.

The BNBM’s third stage contains the blocks Ck represented by belief networks.
The network initial state is referred to default values of the network nodes.
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The values of the input nodes Ck are determined based on the network inputs xCk .
The application of the network results in the values yCk of the network output nodes
for which the data set is the model’s third stage output yC.

Finally, a selection of the third stage outputs is then made available to the external
blocks Pl for presenting (visualizing) network operation results to end users.

5.6.3 Input Data Images

The present section outlines operations carried out by selected blocks of the BNBM’s
first-stage (as shown in Fig. 5.37) for data pre-processing. Here, the model contains
the blocks Ai for calculating input data images in the following form:

Ai : xAi → yAi . (5.92)

The transformation was introduced primarily to reduce redundant attributes (fea-
tures) of diagnostic signals and processes variables. The blocks Ai have the inputs
xAi which accept quantitative values (e.g., values of signal attributes). The approach
facilitates representing input values in a metric space by a point whose coordinates
correspond to the input values. The essence of the proposed approach is not to de-
termine the point location in the input value space (values of signal features, values
of process variables) by its coordinates xAi , but with similarity measures of the point
to distinct element classes in that space. Such similarity values can be interpreted as
the element coordinates in the new space called the image space.

The derived method of representing additional variables influences the charac-
teristics of the transformation Ai. Moreover, it is possible to identify transforma-
tions for additional variables stored in a continuous form, e.g., by using quantitative
models. Also, the operation can be performed for high-level granulated additional
variables by developing qualitative models, fuzzy models, belief models, etc. In the
described model, the level of granularity for an additional variable is determined
by the number of examined classes of values. Recent research has shown that the
grained models can be regarded as some sort of a compromise between the accuracy
of the models, stability, and interpretability (Pedrycz, 2001), thus leading to generic
characteristics of models, given a careful selection of the data granularity level.

The transformation meets the following requirements imposed by technical
diagnostics:

• significant reduction of the number of space dimensions and effective distin-
guishability of its elements at the same time;

• the similarity of points. Points that are located close to one another in one space
preserve that distance in another space upon data transformation;

• distant points in one space remain such in another space upon data transformation
operations.

Considering the BNBM’s first stage as a set of parallel blocks facilitates the replace-
ment of a global model with easier-to-determine local models. Both spatial-oriented
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global model decomposition (subsystems) and local-description-based decomposi-
tion can be considered here. The introduction of the additional variables yA in the
form of the so-called instrumental variables in BNBMs facilitates the decomposition
of such models (Cholewa and Urbanek, 2005; Cholewa and Wojtusik, 2005; Rogala
et al., 2009).

The following sections describe in detail the data transformation method which
can be implemented using parallel classifiers. Moreover, a number of classifiers
for use with BNBM first-stage blocks, including an interesting group of one-class
classifiers, are described in sections that follow below.

5.6.3.1 Classifier-Based Data Transformation

With the number of examined classes as the primary criterion, classifiers can be cat-
egorized as multi-class classifiers, binary classifiers and one-class classifiers. The
majority of tasks requires classifiers that are capable of recognizing multiple classes.
Therefore, one particular group of classifiers are multiple ones. They are particularly
well suited for object assignation to appropriate classes. Simultaneous examination
of a large number of classes may lead to the development of complex boundaries
among particular classes. As a result, the classification process may be unsatisfac-
tory. One solution to eliminate the inefficiency is the replacement of one multi-class
classifier with a group of binary (two-class) classifiers or even one-class classifiers.
Moreover, it is possible to design a procedure where the classification process for k
classes can be performed using

• k binary classifiers for distinguishing objects that do not belong to a particular
class,

• k(k−1)/2 binary classifiers defined for every pair of classes,
• k one-class classifiers used for determining object class membership rates with a

particular type classifier.

The data transformation (5.92) can be considered here in the form of a function
mapping every element xAi ∈ R

N into one element yAi ∈ R
M . An interesting group

of data transformation operations (due to numerous feature sets) includes transfor-
mations which facilitate the process of transforming multi-dimensional spaces into
spaces of lower number of dimensions N > M such as variable projection, group-
ing, classification, etc. A major advantage of such operators is their ability to define
transformation functions during machine learning. An example of such a transfor-
mation is classifiers.

In the area of technical diagnostics, classifiers can act as diagnostic models map-
ping a quantitative variable observation space into a space of value classes defined
with qualitative variables. The selection process of the number of class values in an
additional variable space depends on the employed global-to-local model decom-
position based on their local description. In turn, the above-mentioned images of
feature values can be interpreted as vectors of belief degrees of their membership to
sets of additional variable value classes or fuzzy sets of value classes. The solution
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requires the application of approximate one-class classifiers for determining image
space coordinates where input variable values are mapped onto belief degrees. The
transformation operation with an approximate one-class classifier is of the following
form:

Ai : xAi → yAi ∈ [0;1]. (5.93)

Assuming that the multi-class classification problem for M classes of additional
variable values can be accomplished with M one-class classifiers A1, · · · ,AM , the
solution is an attribute (feature) image in the form of a vector:

yA = [yA1;yA2 ; · · · ;yAM ]. (5.94)

The transformation is shown in Fig. 5.38. The approach has a number of advan-
tages, namely,

• the ability to obtain a simple and reduced description of belief degrees of mem-
bership to value classes of additional variables,

• the ability to apply various classifiers based on simple linear transformations as
well as complex non-linear operations.
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Fig. 5.38 Transformation of a 2D attribute value space into a 2D image space with two one-
class classifiers defined by means of potential functions

5.6.3.2 Selected Examples of Classifiers

Note that the application of classifiers as transformation operators (5.93) restricts the
set of applicable classifiers that are likely to be within the application scope. In many
scenarios, classifiers are defined in such a manner as to enable their straightforward
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Fig. 5.39 Family of functions s(d) as defined in (5.95) and (5.96)

association with the destination class (i.e., the class that a specific object belongs
to), and their major purpose is not performing the task (5.93) for input data image
generation.

Examining the transformation (5.93) requires explicit interpretation of identified
function value meaning. By definition, it should be the class assignation belief de-
gree. The measure value does not have any formal definition. However, it can be
interpreted in the form of a fuzzy set characteristic function value used for describ-
ing such classes. One convenient interpretation for engineering applications assumes
the belief degree is a subjective probability measure.

Due to the above, the identification task of the transformation (5.93) requires data
fitting operations applied to available learning data of the function Ai (5.91) defined
with input data. The desired effect can be obtained with a fairly routine procedure
for neural network identification. As the function requires multiple adjustment op-
erations, including the use of expert knowledge in a straightforward fashion, the
application of selected type classifiers should be accounted for in the process. Also,
note that at this point the procedure should consider the objective for which the
transformation (5.93) should utilize the function value Ai as estimated with a se-
lected classifier. The value is required only for the transformation operation shown
in Fig. 5.38. Within the scope of the block Ai, the value cannot be compared to a
threshold value or another (analogous) function value calculated for another class;
the main purpose of the block Ai is not class identification. The purpose of the
value Ai is to ensure the efficiency of the whole reasoning process performed with
a complete BNBM using all three stages of the model. The process is completed on
identifying an appropriate class in the blocks Ck—belief networks.

Classifier definitions can be based on either distance measures d(x1,x2) � 0 or
similarity measures s(x1,x2) ∈ [0;1] between the elements x1 and x2. Assuming
classification in the space R

N , various distance measures can be defined and used.
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Moreover, various similarity measures can be used. The measures can be de-
fined in a fairly straightforward manner or estimated based on the distance measures
d(x1,x2) (as shown in Fig. 5.39):

s(x1,x2) = s(d(x1,x2)) =
1

1 + α
(

d(x1,x2)
d0

)β , (5.95)

s(x1,x2) = s(d(x1,x2)) = exp(−α
d(x1,x2)

d0
), (5.96)

where d0 is the constant base distance. Selecting a relevant similarity measure as
well as a distance one influences classification efficiency. However, identifying op-
timal metrics can be difficult.

The majority of standard statistical classifiers for estimating the rate of the mem-
bership of an object to a class can be adapted for use with the transformation (5.92).
However, some major issues are encountered with binary classifiers applied in the
transformation (5.93). The classifiers assume positive values for elements assigned
to one class and negative values for other class elements. A convenient group of clas-
sifiers in such applications covers one-class classifiers that are defined using a set of
representatives (or examples) for the i-th class under examination of the following
form:

Ri = {r1,r2, · · · ,rMi}. (5.97)

The function (5.93) can be defined as the similarity function for the representatives
Ri as shown by the equation (5.96):

Ai(x) = exp

(
−α

d(x,Ri)
d0

)
, (5.98)

where the distance d(x,Ri) between the examined element x and the representative
set Ri (5.97) can be accounted for in the following form:

• the minimum distance:

d(x,Ri) =
Mi

min
m=1

d(x,rm), (5.99)

• the maximum distance:

d(x,Ri) =
Mi

max
m=1

d(x,rm), (5.100)

• the average (mean) distance:

d(x,Ri) =
1

Mi

Mi

∑
m=1

d(x,rm). (5.101)
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Assuming that there exists a basis for associating the representatives (5.97) with
relevant weights as follows:

wi = {w1,w2, · · · ,wMi}, (5.102)

the distance d(x,Ri) can be estimated as the weighted mean value,

d(x,Ri) =
1

∑Mi
m=1 wm

Mi

∑
m=1

(wm d(x,rm)) . (5.103)

A particular category of weight coefficients wi that can be used to change the exam-
ple influence covers the similarity measures (5.96) estimated for each example on
an individual basis as follows:

wm(x) = exp

(
−αm

d(x,rm)
d0

)
. (5.104)

Another potential modification of the above group of classifiers is restricting the
representative set (5.97) to a subset containing only the number M0 of pattern ex-
amples. The examples are the nearest neighbors of the element x.

Learning data applied to one-class classifier definitions do not have to be re-
stricted to a single class. For example, they may incorporate two subsets R1 and
R2, of which the subset R1 contains target examples (assigned to a particular class),
and the subset R2 includes outlier values (not assigned to that class). By using the
subsets R1 and R2, it is possible to interpret the function Ai as some form of rela-
tive density of target examples in the nearest neighborhood of the element x under
examination.

5.6.3.3 Classifier Learning and Defining

Classifiers can be interpreted as models subjected to supervised machine learn-
ing. Their learning methods change according to the classifier type. For example,
discriminative-function-based methods apply to non-parametric classifiers, whereas
probability-calculus-based algorithms are used with parametric classifiers. There-
fore, the methods for classifier learning are as follows:

• discriminative-function-based learning methods, where no direct implementation
of the knowledge of data partitioning in the output value class space is possible;

• generative methods, based on a model allowing new learning example acquisi-
tion. The new data form the basis for conditional probability estimation p(x|cn)
for which a posteriori probability is calculated using Bayesian calculus rules. The
method allows implementing the knowledge of data partitioning in the output
value class space given prior information on specific classes as well as probabil-
ity distribution of output value classes;

• discriminative-model-based probabilistic methods, where the conditional prob-
ability p(cn|x) is sought after instead of accurate estimation of discriminative
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functions. As a whole, the methods can be used for implementing knowledge of
the type of conditional probability density distribution;

• specialized learning methods using a hybrid model. The model combines both
the discriminative and the generative approach. Here, the latter type model is not
used for estimating the probability p(x|cn) but for generating a new learning ex-
ample. The examples can be then applied for defining the classifier discriminative
part. Such solutions have the ability of classifier learning based on incomplete
data sets where some elements lack class assignation information (labels).

It is possible to use classifiers that require no supervised learning. In such scenarios,
explicit formulations of discriminative functions are necessary, given the possessed
knowledge or direct observations of examples in a feature space. A major limitation
of such methods is, however, the substantial size of the attribute space in which data
partitioning is defined.

5.6.4 Additional Variables and Opportunities for Their
Adjustment

Additional variables (additional signal features) in BNBMs can be considered as
instrumental variables which

• allow one to introduce additional knowledge, e.g., in the form of a physics-based
equation system or a set of constraints whose variables are additional signals fea-
tures. One necessary pre-condition for carrying out such tasks is possessing rel-
evant and well-understood (physics-based) interpretation of examined attributes
of additional signals;

• allow global model decomposition in order to reduce the number of examined
input features. The global-to-local model approach delivers substantial benefits
in terms of reducing the number of usable features as well as the number of value
classes of additional variables. The approach leads to fewer model parameters as
well as a model identification process based on a smaller set of learning exam-
ples, and it improves classifier efficiency.

One remaining solution is the method of identifying model additional variables. In
recent studies related to multi-stage inverse model identification (Cholewa and Woj-
tusik, 2005; Cholewa and Urbanek, 2005; Rogala et al., 2009), features of additional
signals were often physical variables not accounted for in object state definitions.
They were concerned with observable (but not observed) real interactions. The sig-
nals were acquired using high-fidelity numerical models of dynamic objects.

To emphasize, additional variables can be the result of processing attributes which
can be considered BNBM type model inputs. Such operations can be carried out us-
ing various techniques to apply relevant transformations in order to ensure higher-
to-lower dimension transformation corresponding to classes of values of additional
variables. In such scenarios it is necessary to apply any available knowledge on
the sought-after additional variables. Any available knowledge on object behavior,
as well as domain knowledge, needs to be accounted for in the study. However,
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a random search for such attributes is a difficult task that does not guarantee any
satisfactory results.

5.6.4.1 Adjustment Blocks

The employed and formalized knowledge of additional variables is registered in the
BNBM’s second stage (see Fig. 5.37). The model blocks follow the transformation
rule

B j : xB j → yB j , (5.105)

where additional variables are images of the selected additional variables xB j , whereas
the output variables yB j are adjusted belief degrees of membership to the additional
variable class under examination. The belief degrees are obtained using an appro-
priate adjustment procedure. The purpose of this stage is to include constraints con-
ditions due to domain type knowledge on a particular object. If such knowledge is
missing, then the transformation (5.105) simplifies to

B j : yB j = xB j . (5.106)

If a need for adjustment procedures has arisen, constraint equations are formulated.
The equation variables are the additional features. Note that applying the BNBM’s
first stage results in a vector of belief degrees, not their exact values. This implies
there exist two options for registering constraint equations:

• the adjusted values xB j are considered as approximate values, and the boundary
equations are then approximate equations as well;

• the constraint equations are formulated as exact equations for the unknown exact
adjusted values x∗B j

.

The operation requires a pair of transformations of the following form:

hB j : xB j → x∗B j
(5.107)

h−1
B j

: x∗B j
→ xB j (5.108)

to estimate the exact value of the additional variable x∗B j
, corresponding to the image

xB j , and vice and versa.

5.6.4.2 Application of Adjustment Calculus Methods

Adjustments using the transformations (5.107) and (5.108) are possible provided
that the images xB j represent sets of approximate values of an additional variable,
for example, low load, medium load, high load. Provided that constraint equations
are linear, the adjustment process can be carried out using generic methods of
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adjustment calculus. Let us assume the block B j (for a vector of N adjusted val-
ues xB j ) contains R < N exact constraint equations of the following form:

gr

(
x∗B j

+ v
)

= 0. (5.109)

Therefore, accounting for (5.107),

gr
(
hB j (xB j )+ v

)
= 0, (5.110)

where v is a sought-after vector of adjustments fulfilling the constraint equations
(5.109). Equations can have infinitely many solutions. Therefore, the least squares
criterion for identifying the values v can be used as

f (v) = vT v =⇒ min . (5.111)

In turn, for low-level data granularity it could be necessary to replace the equation
(5.111) with a weighted least-squares criterion. For linear constraint equations of
the form revealed by (5.110), the error equations become

aT
1 v+ ω1 = a1,1v1 + a1,2v2 + ...+ a1,NvN + ω1 = 0,

aT
2 v+ ω2 = a2,1v1 + a2,nv2 + ...+ a2,NvN + ω2 = 0, (5.112)

...

aT
Rv + ωR = aR,1v1 + aR,2v2 + ...+ aR,NvN + ωR = 0,

where

ωr = gr
(
hB j(xB j)+ v

)−gr
(
hB j (xB j)

)
. (5.113)

Then, the system of equations (5.112) can be derived in the following form:

Av+ ω = 0. (5.114)

Given the condition (5.114), the extremum of the function (5.111) can be estimated
with the Lagrange multiplier method. Then, the Lagrange function takes the form

FL(v,λ ) = f (v)−2
R

∑
r=1

λr(arv+ ωr). (5.115)

Also, the optimum values of the adjustments vn are estimated from

∂FL

∂vn
= 2vn −2

R

∑
r=1

λrar,n = 0, (5.116)

leading to

vn =
R

∑
r=1

λrar,n (5.117)
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and

v = AT λ , (5.118)

where v is the vector of adjustments for minimizing/maximizing the function (5.115),
whereas λ is the vector of Lagrange multipliers given as

λ = (AAT )−1ω. (5.119)

Taking into consideration the equation (5.118), the transformation (5.105) imple-
mented by the block B j is as follows:

B j : xB j → yB j = h−1
B j

(
hB j(xB j)+ v

)
. (5.120)

5.6.5 Belief Networks

The present section outlines fundamental concepts of belief networks, their operat-
ing principles as well as algorithms for belief network development and application.

5.6.5.1 Graph-Based Models

The application of graphs in the form of a model for knowledge representation is
a well known approach (Wright, 1934). Other key concepts involve the so-called
Markov networks (Isham, 1981; Lauritzen, 1982), often investigated in the form of
contingency tables, and Bayesian networks (Pearl, 1988; Charniak, 1991; Henrion
et al., 1991), called belief networks. Over the years, belief networks have gained
more and more interest as an efficient and proven tool for approximate reasoning
processes.

A Markov type network is an undirected graph, whose every edge is assigned a
symmetric probability of the occurrence of states associated with each edge. The
network is not capable of knowledge representation of cause-and-effect relation-
ships in a direct fashion even if such relationships occur between the network nodes.

By definition, a belief network is an acyclic directed graph composed of nodes
and connecting directed edges. Each node is assigned a complete set of mutually
excluded states as well as vectors of node values to determine the state distribu-
tion represented by probabilistic values (a belief that a node is in a specified state).
Moreover, the nodes are assigned tables of conditional probability values for all el-
ements of the Cartesian product of superior node state sets and a node that the table
is assigned to. The conditional probability tables describe the relationships between
particular nodes. The relationships do not have to be cause-and-effect ones.

Any reasoning process using belief networks, including complete tables of con-
ditional probabilities, is based on adjustments of probability values assigned to sub-
sequent nodes in order to establish an equilibrium state. In this state, the Bayesian
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theorem on conditional probability is met. Any attempts to search for global solu-
tions may lead to NP-hard problems. One efficient solution method is based on the
identification of conditionally independent nodes, followed by restricting the scope
of a given task and a search process including subsequent nodes, their parent nodes
as well as child nodes. Some interesting concepts for formulating and solving such
tasks are reported in the works of Pearl (1988), Jensen (2002).

5.6.5.2 Random Variable Probability Distribution

Bayesian networks are not models of cause-and-effect relationships. Instead, they
are models of joint probability distributions of random variables. Consider the set X
of discrete random variables Xn as follows:

X = {X1,X2, · · · ,Xn, · · · ,XN}, (5.121)

where each random variable is defined over the set Ω(Xn) of atomic (elementary)
events x ∈Ω(Xn). The probability distribution of each random variable Xn is defined
by the following function:

p(x) = Pr[Xn = x] and ∑
x∈Ω(Xn)

p(x) = 1, (5.122)

where Pr[A] is the probability of the event A. Joint, discrete probability distribution
for a set of random variables X (5.121) is defined as follows:

p(x1, · · · ,xN) = Pr[X1 = x1, · · · ,XN = xn]. (5.123)

Taking into account the conditional probability definition, the equation (5.123) can
be rewritten as

p(x1, · · · ,xN) = p(xN |x1, · · · ,xN−1) · p(x1, · · · ,xN−1) (5.124)

and

p(x1, · · · ,xN) = p(xN |x1, · · · ,xN−1) · p(xN−1|x1, · · · ,xN−2) ·
· · · · p(x3|x1,x2) · p(x2|x1) · p(x1). (5.125)

The joint distribution of a set of the random variables X can then be revealed in
the form of a directed graph where each random variable Xn corresponds to one
node. The parent nodes are the nodes X1, · · · ,Xn−1 corresponding to variables spec-
ified in the conditional part of the conditional distribution in (5.125). The con-
ditional distributions are stored here as value tables. The tables are assigned to
specific nodes. For example, the parents of the node X3 are the nodes X1 and X2, re-
spectively. In general, this leads to a large number of edges that associate particular
nodes with their parents. Another key properties of random variables are statistical
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(a) (b)

Fig. 5.40 Example of a belief network with various known, fixed-value node sets: S7: Control
light is ON (100% yes) (a), S6: Kettle is warming up water (100% no) and S7: Control light
is ON (100% yes) (b)

independence and conditional independence. The properties facilitate the omission
of selected edges associating independent nodes in a graph.

Note that the above-mentioned directed graph is an image of the distribution
(5.125). It defines the direction of the edge between nodes. However, the right-
hand-side of the equation (5.125) depends on the sequence of nodes, and it can be
expressed in numerous ways. This implies a group of different yet equivalent graphs
illustrating the equation (5.125). The observation justifies the lack of any basis for
interpreting such graphs as cause-and-effect models.

Taking the opportunity to extend the probability definition, and to use it in the
context of the so-called subjective probability, the concept of a belief degree is in-
troduced. It is not based on any formal definition. By modifying the graph descrip-
tion (random variable probability distribution image), it is possible to conclude that
the probabilities in the graph can be replaced with equivalent belief degrees. Such
extension leads to networks called belief networks.

5.6.5.3 Example of a Basic Belief Network

Figure 5.40 illustrates an example of a belief network. The network is a very basic
example of a diagnostic model of an electric kettle. The illustration reveals values
of the belief degrees (expressed in percentage values) assigned to the states { yes,
no } of the nodes {S1,· · · ,S7} to represent the following variables:

S1 Kettle is switched on,

S2 Heater is powered on,

S3 Control light is switched on,

S4 Heater is out of order,

S5 Control light is out of order,

S6 Kettle is warming up water,

S7 Control light is on.
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The very first version of the network states as shown in Fig. 5.40(a) has the de-
fault value of the variable S4 Heater is out of order equal to yes = 2%, no = 98%,
and the variable S5 Control light is out of order that is equal to yes = 1%, no = 99%.
The only variable whose value is known is the variable S7 Control light is on yes =
100%. The remaining variables assume default values; no other information on the
kettle is known. Given the network initial state, it implies the variable S6 Kettle is
warming up water yes = 98%, no = 2%.

The other version of the network states as shown in Fig. 5.40(b) assumes the
value of the variable S6 Kettle is warming up water that is equal to no = 100%. The
additional information on the kettle results in the value change of the variable S4
Heater is out of order from yes = 2% to no = 100%.

Note that the network shown in Fig. 5.40 accepts default values of selected vari-
ables that are approved as the reasoning process outcome provided the available data
and knowledge result in unknown values of statements.

5.6.5.4 Belief Network Application

A belief network is prescribed over a set of nodes, directed edges connecting se-
lected nodes, and tables of conditional probabilities assigned to them. It defines the
probability distribution of the following form:

p(x1, · · · ,xN) =
N

∏
n=1

p(xn|parents(xn)) . (5.126)

The application of the network is related to a reasoning process that is based on
determining the boundary distribution of a random variable as shown in (5.126) or
variables given known values of other variables. Any straightforward application of
the equation (5.126) may lead to an NP-hard task. An efficient method is to exercise
operations that may change the graph shape, and to transform it into the form of a
tree or a set of trees for easy-to-use calculations. By definition, the basis for such
operations is identified independence of the network nodes and conditional inde-
pendence of the nodes. A key algorithm is the so-called junction tree approach. The
majority of detailed algorithm descriptions are available in the accessible literature
(Jensen, 2002).

5.6.5.5 Statement Networks

The present section introduces the concept of a statement. It permits the exami-
nation of statement networks (Cholewa, 2007; 2008) defined as complex (extended)
belief networks in which node sets are associated with corresponding statement sets.
Moreover, the section emphasizes the need for an accurate interpretation of exam-
ined facts and declared statements.
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5.6.5.6 Facts, Statements and Their Interpretation

By definition, diagnostic systems facilitate technical state recognition processes
based on available information on an object under observation. Such information
can be stored in the form of various statements describing events, processes and
regularities, as well as beliefs and speculations. For the observed system’s needs,
the stored information can take the form of a logical sentence, i.e., sentences result-
ing in a logical output, for example, true, false, the degree of possibility, the degree
of necessity, the belief of pertinence.

In the case of systems based on classical logical reasoning processes, such sen-
tences are represented by logical variables associated with their corresponding inter-
pretations. The reasoning process in such systems is deductive or reductive,
depending on the reason–conclusion relationship. Logical reasoning schemes can
be modified and extended to allow incomplete and uncertain reasoning. However,
most research studies in this domain are concerned with the formal side of the rea-
soning process. They assume that variable interpretation does not require any extra
operations. In the area of technical diagnostics such an assumption is groundless.

Research on applications of various expert systems shows that the issue of vari-
able (information) interpretation is a key factor for system successful operation. It
is fairly easy to forget that expert system developers, knowledge base architects and
system end users may utilize a different set of base concepts and conversation rules
for the communication flow control between them. Not adhering to one specific
standard of communication may lead to unexpected and false results. The informa-
tion that is transferred to a user as the system operation result may then be unclear
and incomprehensible.

While discussing interpretation issues it is critical to emphasize the decision-
making system specifics. Clearly, it is the end user who makes the final decision
(based on the information contained in the system knowledge database). Therefore,
one key question to answer would be as follows: Who is responsible for the system
operation end effect—users, knowledge database developers or system architects?
In this case, the law clearly states the issue is in the hands of the end user. It is fairly
obvious to assume here no end user has the ability to verify the knowledge database
content. Therefore, the system’s main task is to convince the user about the proposed
solution. In such scenarios expert systems utilize the so-called messaging functions
for providing insight into the reasoning process.

Also, such systems should feature the so-called statements for accelerating the
communication process with end users. Such statements can be considered objects
in the form of logical sentences. The sentences would contain a description of their
meaning (interpretation) in the form of a complex statement or an opinion on a given
topic. In the area of computer-aided technical diagnostics, statement application is
a convenient feature for solving tasks related to a unique interpretation of values
of observed process variables as well as diagnostic signal attributes and attribute
changes.
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5.6.5.7 Object State Statements

The output yD of the diagnostic model given by (5.83) can be considered a set of
state attribute (feature) values. However, many real-life applications do not require
any accurate knowledge of attribute values—approximate values are sufficient for
successful system operation. Instead, a convenient approach for representing ap-
proximate values is to indicate a class (of accurate values). The information on sin-
gle attribute (or a set of attributes) membership can then be stored as the statement
examined in the form of the pair

s =< c,b >, (5.127)

where c denotes the statement content and b is the statement value. In general, the
content c of the statement s is a sentence describing a given fact or representing
an opinion on it. The value b of the statement s is the acceptance measure of the
statement content. It is a measure of genuineness or a measure of conviction on
the genuineness of the statement s. It is assumed in statement-based systems that
the statement content is constant, whereas the statement values may be subject to
changes.

Let us assume the examined statement values are real values from the range [0;1].
Such statement values would then be approximate statements. Accurate statements
values belong to the 2-element set {0;1}. The mutually excluding statements (5.127)
on various values of an attribute or a set of attributes can be grouped into statement
sets of the following form:

s = {sn}. (5.128)

The statement sets can be stored as the vectors [sn]. If the statement set (5.128) is a
complete set, i.e., it contains statements on all values of an examined attribute or a
set of attributes, it is then specified by a multi-variant statement. The multi-variant
statement is stored in the form of the pair (5.129) including the vector of component
statement contents c and a vector of the statement values b:

s =< c,b >=< [cn], [bn] > . (5.129)

The above multi-variant definition is an extension of the statement definition (5.127).
Moreover, any statement application process emphasizes the difference between

an objective fact and a fact-related sentence. Every so often statements are incor-
rectly identified with facts. The application of statements has not introduced any
essential changes in reasoning process organization or course. However, they are
convenient tools for developing a complex help system including commentary, cross-
references, and various comments.
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5.6.5.8 Output Data Presentation

The BNBM’s third stage as shown in Fig. 5.37 contains the belief networks Ck. The
networks are associated with their corresponding statement sets (5.127) including,
for example, declarations on technical state class assignation for an observed ob-
ject, thus forming a statement network. According to the membership (5.127), the
statement is a content-and-statement-value pair. The content of a statement remains
constant (and is not subject to any changes), once established while building a net-
work. The network operation result is values of their output nodes. Given the output
values, their (equivalent) output statement values are adopted. The output statements
constitute the network output yCk .

A complete set of output statements, including both contents as well as statement
values, is made available to the blocks Pl for visualization purposes.

In the case of small BNBMs (including a relatively small number of the outputs
yCk ), the contents and the statement values can be relayed to a user in any acceptable
and comprehensive form. Accepted techniques include messaging or report printing,
including an information list in the following form:

Unstable oil film occurs in the bearing no. 3: 0.71. (5.130)

A more complex model for determining values of a numerous statement set requires
a specialized purpose-built interface for selecting observed statements. For instance,
the interface could permit different features:

• presenting statement current values,
• presenting statement values across a prescribed time span,
• hierarchical presentation of statements to enable users to select the inspected

content level of detail.

Applying a BNBM does not require any access to configuration data of the subse-
quent stages of the model. This type of access is required only throughout the sys-
tem development process. In complex statement sets, system operation can be aided
with appropriate explanation systems. The shell expert system DIADYN introduces
the concept of an explanation system, where a statement content is accompanied
by a commentary keyword. Both statement contents and keywords can be related
to one another, thus developing a network of linked text messages. Moreover, the
structure of the BNBM as shown in Fig. 5.37 contains a separate space for the exter-
nal presentation blocks Pl for the visualization of the system operation result. Their
ability to present historical data as well as to utilize a complex help system requires
database application. The presentation blocks cooperating with the databases are of-
ten subject to an independent development process (regardless of the primary block
processes). One advantage of the “external” location of these blocks is their ability
to be developed independently without interfering with the core package.
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5.6.6 Model Identification and Tuning

Assuming that learning data are made available, they can be considered data repre-
senting an instance of an unknown diagnostic model. The data incorporate the inputs
xD, the outputs yD and the additional variables zD. Due to BMBM complexity, any
thorough process of model development should incorporate the following stages:

• Stage I: Developing a complete model,
• Stage II: Model iterative improvement and tuning.

5.6.6.1 Model Initial Version Identification

The process of developing the initial version of a BNBM (Stage I of the development
process) is carried out for the stored set of learning data VL (5.91) in which a subset
of training data and a subset of test data are defined. The process is concerned with
implementing the following tasks:

• defining a set of model inputs and an initial statement output set due to fore-
seen model application, as well as statement content definition and model generic
structure selection;

• analyzing the examined object model and defining the additional variable set;
• the development of the adjusting blocks B j (based on the available knowledge);
• independent development (identification) of every classifier Ai based on the train-

ing data {xD,zD};
• independent development (identification) of the belief networks Ck based on the

training data {xD,yD} modified by the blocks Ai and B j, respectively. The blocks
are identified and developed before the belief networks;

• model testing—the application of subsequent stages of the model for data testing
purposes.

5.6.6.2 Model Tuning

The developed model can be subject to a continuous improvement process (Stage II
of the model development process). A multi-stage model incorporating parallel and
non-linear blocks is difficult to optimize and requires the use of relevant heuris-
tic algorithms. One generic group of methods for solving such problems includes
the so-called genetic algorithms (Michalewicz, 1996; Goldberg, 1989). The meth-
ods are based on biological genetics concepts and allow optimizing the solution set.
The process is based on examining the optimized set in the form of the t-th popu-
lation P(t) incorporating a number of individuals. By definition, attributes of indi-
viduals are represented by single chromosomes composed of genes in linear/serial
order. According to the criterion in the fitness function, the parents R(t) of the ex-
amined population P(t − 1) are subject to a selection process, followed by genetic
operations, namely, crossover and mutation. The children D(t) inherit advantageous
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procedure Genetic_Algorithm
{ t ← 0 ;

P(t) ← initialization( ) ;
while(not condition)
{ t ← t +1 ;

R(t) ← evaluation_and_selection( P(t −1) ) ;
D(t) ← reproduction( R(t) ) ;
N(t) ← evaluation_and_selection( P(t −1) ) ;
P(t) ← ( P(t −1)+D(t)−N(t) ) ;

}
}

Fig. 5.41 Simplified layout of a genetic algorithm

attributes of their parents and complement the output population. At the same time
the prescribed number of individuals N(t) is eliminated from the output popula-
tion. The operations result in the new generation P(t). The algorithm iterations are
illustrated in Fig. 5.41.

Some well-documented advantages of genetic algorithms include convergence to
a global solution and tolerance to local extremes of the test function. The disad-
vantages are a low or very-low convergence rate, limited accuracy of the indicated
solutions and a lack of the ability of individual self-learning.

Assuming that inheritance improves population individuals’ attributes, genetic al-
gorithms are capable of efficient optimization. However, research on live organism
evolution processes indicates that direct inheritance of selected attributes from par-
ents is not the only mechanism for population development. The so-called soft inher-
itance (concerned with culture, religion, fashion) is not limited to child–parent type
relationships. The study of memetics introduces the term “meme” (Dawkins, 1976)
as the basic unit of information that is reproduced on abstract concept exchange.
Using the ideas of memetics and the analogy to the terms “gene” and “meme”, a
new class of genetic algorithms has been coupled with an individual learning pro-
cedure. The operation utilizes the selection step in the generation P(t) of the elitist
individuals E(t), followed by altering the individuals with a local solution search
procedure. The algorithms are called memetic algorithms (Moscato, 1999). Their
structure, shown in Fig. 5.42, is fairly similar to that of genetic algorithms, illus-
trated in Fig. 5.41.

Memetic algorithm application in various domains (Krasnogor and Smith, 2005;
Wang et al., 2009; Hart, 1994) has shown that their performance is superior to that
of standard genetic methods.

Therefore, BNBM optimization should incorporate the model blocks of the stages
A, C as well as A +C. The block optimization procedure can then be carried out
with any memetic algorithm. Memetic algorithms employ a set of base configura-
tion parameters q. The parameters do not change, whereas the tuning configuration
parameter r can be modified during memetic algorithm application. The elements
r can be interpreted as an equivalent of genes and memes. Optimization should
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procedure Memetic_Algorithm
{ t ← 0 ;

P(t) ← initialization( ) ;
while(not condition)
{ t ← t +1 ;

R(t) ← evaluation_and_selection( P(t −1) ) ;
D(t) ← reproduction( R(t) ) ;
N(t) ← evaluation_and_selection( P(t −1) ) ;
P(t) ← ( P(t −1)+D(t)−N(t) ) ;
E(t) ← evaluation_and_selection( P(t) ) ;
E(t) ← local_optimisation( E(t) ) ;

}
}

Fig. 5.42 Simplified layout of a memetic algorithm

include the granularity level of the value set of additional variables (Bargiela and
Pedrycz, 2003). The graininess change will lead to the first stage block structure
change. The problem of granularity level optimization remains to be solved in fu-
ture research studies.

5.6.7 Implementation in the DiaSter Environment

The BNBM package of the DiaSter system includes an empty BNBM instance as
well as tools for model management. The package components allow model de-
velopment, identification, tuning and documentation development in the MITforRD
platform environment. Moreover, the DiaSter system includes an implementation
of selected BNBM components. The model’s first stage is represented by blocks
for developing a system of parallel one-class classifiers of the nearest neighbor
type. The classifier learning algorithm accounts for the possibility of defining erro-
neously classified examples. The second stage features adjustment calculus blocks
for adjusting additional variables. Finally, the third stage contains blocks for im-
plementing a belief network. The blocks utilize the junction tree. The system has
a maximization expectation algorithm for network training. Moreover, all configu-
ration parameters of the BNBM, as well as subsequent stages parameters and the
belief network are defined in the MITforRD platform environment, and a BNBM-
package-based model can be applied in that environment, too. Also, the model can
be used in the PExSim platform environment upon importing a complete set of con-
figuration data from the MITforRD platform.



Chapter 6
Supervisory Control and Optimization

Piotr Tatjewski, Leszek Trybus, Maciej Ławryńczuk,
Piotr Marusak, Zbigniew Świder, and Andrzej Stec

In the first part of this chapter, structures and algorithms of Model-based Predic-
tive Control (MPC) and on-line process set-point optimization are presented, corre-
sponding to implementations in the DiaSter system. The principle of MPC is first
recalled, as a special case of the general principle of “open loop with feedback opti-
mal control”. MPC is now the most important advanced feedback control technique,
widely used for supervisory feedback control and also implemented as a direct con-
trol algorithm, mainly where classical PID structures cannot deliver required control
performance, due to difficult dynamics, strong interactions, active constraints. It is
well known that a prerequisite for a successful MPC application is the use of a suf-
ficiently accurate process model. Different models can be used, leading to different
realizations of MPC algorithms. Two basic algorithms with linear models are pre-
sented: the Dynamic Matrix Control (DMC) algorithm, being one of the first to be
implemented in the industry and still very popular there, and the Generalized Pre-
dictive Control (GPC) algorithm. The algorithms are given both in analytical ver-
sions (control laws, suitable for simple controllers) and in full numerical versions
with constrained optimization problems solved at every sampling instant. A selected
MPC algorithm with a non-linear process model, based on non-linear prediction
and optimization using linearized models, is presented, considered by the authors
to be both simple and very efficient in practice. Next, on-line set-point optimization
for the MPC controller, integrated with its operation, is described. In the final part
of the section, two example applications using the DiaSter modules implementing
the presented techniques are discussed (obtained in the simulation mode, using the
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PExSim package): DMC control of concentration in a Continuous Stirred-Tank Re-
actor (CSTR) and two-dimensional GPC control of composition and temperature.

The second part of the chapter describes two basic methods for automatic tun-
ing (self-tuning) of PID loops, i.e., the step response and relay control, followed
by an adaptive algorithm. Having the plant step response, 1-st and 2-nd order mod-
els with delay are identified using least-squares approximation. Depending which
one turns out better, a PI or a PID controller is selected. The settings are chosen
by time constant cancellation and from the specification of overshoot or the set-
tling time. Relay control gives a single point on the frequency characteristic of the
plant. Having phase and gain margin specifications, PID settings can be calculated.
However, for a no-overshoot case, a non-standard structure of the PID controller
is needed. Relay control admits asymmetry. The adaptive algorithm employs three
template functions expressing overshoot, damping and frequency in terms of two
settings of the controller. The target point on such a plane is given by overshoot and
damping specifications, or by overshoot and frequency. The actual operating point
corresponds to a recent transient. The distance between the two points specifies
corrections of the settings made by the adaptive controller. The last part presents in-
put/output structures of PID, self-tuning and adaptive control blocks, together with
a set-point generator of internal or external set-points. The latter comes from the
higher level of the DiaSter software, e.g., from MPC or optimization.

6.1 Predictive Control and Process Set-Point Optimization

There are a few reasons for the tremendous success of the MPC technology in the
last decades, both in industrial applications as well as in the reception by the re-
search community, (see, e.g., the works of Morari and Lee (1999), Allgöwer et al.
(1999), Eder (1999), Mayne et al. (2000), Maciejowski (2002), Qin and Badgwell
(2003), Rossiter (2003), Blevins et al. (2003) or Tatjewski (2007)). MPC algorithms
can directly take into account constraints on both process inputs and outputs, which
often decide on the quality, effectiveness and safety of production. They generate
process inputs taking into account internal interactions within the process, due to
the direct use of a model. Thus, they can be applied to processes with difficult dy-
namics and to multivariable control, even when the numbers of manipulated and
controlled variables are uneven. Last but not least, the principle of operation of these
algorithms is comprehensible and relatively easy to explain to engineering and op-
erating staff, which is an important aspect when introducing new techniques into
industrial practice.

The most important factor regarding a successful application of an MPC algo-
rithm is the quality of the process model. Depending on the kind of the model used,
different realizations of MPC algorithms are obtained. The DMC algorithm, one of
the first and most successful in the industry, uses step response process models. In
the GPC algorithm, process models in the form of discrete transfer functions are
utilized. These two algorithms will be described in the following sections.
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When feedback control is combined with on-line process optimization, frequent
and possibly large changes of set-points for feedback controllers can occur, which
can lead to the necessity to apply non-linear feedback control to maintain high per-
formance, at least for strongly non-linear processes. Therefore, non-linear MPC
techniques have been developed, (see, e.g., the works of Mayne et al. (2000), Ma-
ciejowski (2002), Qin and Badgwell (2003), Rossiter (2003) or Tatjewski (2007)).
One of the most practical ones seems to be the MPC-NPL (MPC with Non-linear
Prediction and Linearization) algorithm structure, with non-linear prediction and
on-line model linearization for dynamic optimization (which is then a quadratic
programming problem).

The application of powerful computers and introduction of advanced control
algorithms increased the performance of feedback control systems and made it pos-
sible to apply on-line economic process optimization. In particular, on-line adjust-
ment of set-point values used in MPC algorithms as target values is of primary
importance.

6.1.1 Principle of Model-Based Predictive Control

The general principle of model-based predictive control can be described as follows:
At each consecutive sampling instant k (i.e., continuous time kTp, where Tp denotes
the controller sampling period), k = 0,1, . . ., having

• a dynamic process model, together with an assumed model of disturbances (un-
controlled process inputs) and models of constraints;

• measurements of current and past process outputs, together with past values of
control inputs (manipulated variables);

• known or assumed trajectories of set-points for the controlled variables (con-
trolled process outputs) for an assumed horizon of prediction,

the control inputs u(k) = u(k|k),u(k + 1|k), . . . ,u(k + Nu − 1|k) are calculated, as-
suming u(k + p|k) = u(k + Nu − 1|k) for p ≥ Nu, where Nu is the control horizon.
The employed notation “u(k+ p|k)” means a prediction of the control inputs for the
future sampling instant k + p, performed at the current instant k. The control inputs
are calculated in such a way as to minimize differences between the predicted con-
trolled outputs y(k + p|k) and the required reference values—the future set-points
ysp(k + p|k), over the prediction horizon N (p = 1,2, ...,N). The minimization of
differences is understood in the sense of minimizing a selected criterion of the con-
trol quality. Then, only the first element of the calculated sequence of control inputs
is applied to the process, i.e., the control input u(k) = u(k|k). At the next sampling
instant (k+1), there occurs a new measurement of the process outputs and the whole
procedure is repeated, with the prediction horizon of the same length N but shifted
by one step forward. Thus, the principle of a receding horizon is used, called also
the repetitive control principle, (see, e.g., the work of Findeisen (1974)).
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Fig. 6.1 Illustration of the principle of predictive control

The principle of predictive control, for the case of a SISO (single-input single-
output) process, is presented in Fig. 6.1, where the horizontal axis represents the
discrete time with k being a current sampling instant at which a decision about the
current process input signal u(k)= u(k|k) is to be made (with the value constant over
the whole sampling time interval [kTp,(k + 1)Tp). The variables which are needed
for calculating the input value u(k) are presented as appropriate trajectories of the
process control input and the controlled output. The figure presents two trajectories
of both the controlled output and the control input as well as a trajectory of the
set-point:

• a predicted controlled output trajectory y0(k+ p|k), p = 1,2, ...,N, corresponding
to the situation where the process input is kept constant over the entire prediction
horizon, with the value u(k − 1) calculated at the preceding sampling instant,
i.e., u(k + p− 1) = u(k− 1) for each p = 1,2, ...,N. Trajectories corresponding
to this case, of both the output and the input, are presented as dashed lines. The
trajectory y0(k + p|k) defined in this way presents the future process outputs as
dependent on the previous inputs only; we have no influence on this trajectory
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at a current time k. Therefore, it is often described as a free component of the
predicted output trajectory (in short, a free output trajectory);

• a predicted controlled output trajectory y(k + p|k), dependent both on past and
future control inputs, i.e., on past inputs up to the last one u(k− 1) and future
inputs u(k + p− 1|k), p = 1,2, ...,N − 1, which are calculated at a current time
k. It is assumed that the control horizon Nu (precisely, the horizon of process
control input variability) can be shorter than the prediction horizon N, Nu ≤ N.
The trajectories listed are presented as continuous curves in Fig. 6.1. Thin frag-
ments of the curves denote predicted parts of the input and output trajectories,
whereas thick parts denote the output trajectory which has already been realized
(measured) and the input trajectory applied earlier together with the last element
being applied to the plant at the current sampling instant;

• a known or foreseen trajectory of the set-points for the controlled output ysp =
ysp(k+ p|k), p = 1,2, ...,N, presented as a thick dashed line. The set-point for the
process output presented in Fig. 6.1 underwent a step change at sampling instant
k and then remains constant. Generally, it can be varying over the prediction
horizon.

A model of the process used for calculating the future process control inputs is
usually only an approximation of reality. Further, there is uncertainty in the uncon-
trolled inputs, which can be inaccurately measured or not measured at all. Therefore,
the output predictions usually differ from the (later) measured values. This fact is
depicted in Fig. 6.1 as an unmeasured disturbance d(k), d(k) = y(k)− y(k|k− 1),
occurring at the process output at sampling instant k, where y(k|k−1) is the process
output value predicted for the sampling instant k at the preceding one, (k−1). The
dependency of the trajectory of the process output (evaluated at sampling instant k)
on the currently measured value y(k), and not on the value y(k|k− 1), means that
discrete output feedback is applied in the control system.

The determination of the control inputs for the present sampling instant k and
for the future instants k + p in the control horizon, p = 1, ...,N, is realized in pre-
dictive algorithms on the basis of a process model, by minimizing a selected cost
function describing the control quality over the prediction horizon. A prime com-
ponent of this function is the cost of predicted control errors, i.e., deviations of the
predicted outputs from the set-points. Moreover, it is also typical to include into the
cost function penalties for control input changes. Considering the two mentioned
components, the following cost function (objective function) of the predictive con-
trol can be formulated, for the calculation of the optimal process input trajectory
over the control horizon:
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J(k) =
N

∑
p=N1

(ysp(k + p|k)−y(k + p|k))TQ(ysp(k + p|k)−y(k + p|k))

+
Nu−1

∑
p=0

�u(k + p|k)T R�u(k + p|k)

=
N

∑
p=N1

‖ysp(k + p|k)−y(k + p|k)‖2
Q +

Nu−1

∑
p=0

‖�u(k + p|k)‖2
R , (6.1)

where the vectors ysp(k + p|k) and y(k + p|k) are of dimensionality ny = dimy
(number of the controlled outputs), while the vector of process input increments
�u(k + p|k) is of dimensionality nu = dimu.

In (6.1), the predicted control errors ysp(k + p|k)− y(k + p|k) are considered,
starting from k + N1 until the end of the prediction horizon N, where 1 ≤ N1 ≤ N.
A value N1 > 1 is reasonable if there is a delay in the process causing a lack of
reaction of the outputs at first N1 − 1 sampling instants, k + 1, ...,k + N1 − 1, to the
change of the control input at instant k. However, often N1 = 1 is assumed even
for a general case with delays, to simplify the notation. Certainly, it is not an error,
but if implemented, it causes additional, useless computations. The length of the
control horizon Nu must satisfy the constraints 0 < Nu ≤ N. It is usually assumed
that Nu < N, as this results in decreased dimensionality of the controller dynamic
optimization problem and thus leads to reduced computational load.

The matrix Q is a diagonal matrix of weights enabling the scaling of the influence
of different components of the vector of predicted control errors in the cost function,
it may be also time dependent, in general, )see, e.g., the work of Tatjewski (2007)).
The role of the matrix R is, in turn, not only to introduce a scaling of individual
components of the vector of control input moves, but first of all to introduce a scaling
of the whole second sum in (6.1) against the first one representing the predicted
control errors. In the simplest case without scaling between individual components
of the vector of the input moves, we obtain R = λ I, where I is a unity matrix of
dimension nu ×nu. In the case without scaling also in the first sum (Q = I), the cost
function (6.1) takes the following simpler and often met form (see, e.g., the work of
Rossiter (2003)):

J(k) =
N

∑
p=N1

‖ysp(k + p|k)−y(k + p|k)‖2 + λ
Nu−1

∑
p=0

‖�u(k + p|k)‖2 , (6.2)

where the scalar λ ≥ 0 defines a weight attributed to damping the input moves
versus the reduction of the control errors. Let us emphasize that assuming λ = 0
is possible, but when there are no constraints on amplitudes and rates of change of
the process inputs, this often leads to practically unacceptable controller properties,
particularly to huge input changes and a lack of robustness against modeling errors.

To calculate the values y(k + p|k) in the prediction horizon, p = N1, ...,N, it is
necessary to have a process model. Generally, it can be a non-linear model. So far,
MPC algorithms with linear process models have been of the greatest importance.
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First of all, the range of direct applications of these algorithms is fairly wide. Sec-
ondly, they constitute a basis for constructing relatively simple and often very effi-
cient non-linear algorithms with linearized models.

In a linear case, applying the principle of superposition, it is possible to present
the trajectory of predicted outputs y(k+ p|k) in the form of a sum of a free trajectory
y0(k + p|k) dependent only on the realized (past) process inputs and a trajectory
�y(k + p|k) dependent only on the decision variables (current and future moves of
the process inputs �u(k + p|k)). Thus, the trajectory �y(k + p|k), p = N1, ...,N is
called a forced output trajectory (precisely, it is a forced component of the predicted
output trajectory). Thus we have

y(k + p|k) = y0(k + p|k)+�y(k + p|k), p = N1, ...,N. (6.3)

The above partition, although not necessary for the realization of a predictive control
algorithm, is computationally convenient, because the values y0(k + p|k), as depen-
dent only on the past of the process, are calculated by the control algorithm only
once for the current sampling instant k and remain then fixed parameters in further
dynamic optimization of the future input changes.

One of the appealing properties of the MPC technique is the ability to take various
constraints explicitly into account. The following constraints are important:

• constraints on values (amplitudes) and increments of process control inputs:

umin ≤ u(k + p|k) ≤ umax, p = 0,1, ...,Nu −1, (6.4)

−�umax ≤�u(k + p|k) ≤�umax, p = 0,1, ...,Nu −1; (6.5)

• constraints on values (amplitudes) of process outputs:

y(k + p|k)≤ ymax, p = N1,N1 + 1, ...,N, (6.6)

y(k + p|k)≥ ymin, p = N1,N1 + 1, ...,N. (6.7)

The controlled variables, for which desired (set-point) values are given, are in gen-
eral not the only process output variables directly influenced by the MPC controller.
There may be also components of the process output vector for which desired (ref-
erence) values are not given, but only the constraints are prescribed (one- or two-
sided). A concentration of the chlorine in a municipal water distribution system may
serve here as an example; its value should usually be only within prescribed mini-
mal and maximal limits. Such process outputs are often called constraint variables
(as opposed to controlled variables), see, e.g., the work of Blevins et al. (2003).
The above-formulated basic elements of the MPC algorithm, i.e., the cost function
and the constraints on outputs, also cover this case. One should only assign zero
values to diagonal elements of the matrix Q corresponding to the constraint vari-
ables and formulate the constraints for these variables in the form (6.6) and/or (6.7).
Therefore, we shall not distinguish controlled and constraint variables in the pro-
cess output vector until necessary, in order to avoid unnecessary complication of the
resulting notation.
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The reader interested in a detailed presentation of the history and basics of pre-
dictive control is referred to review, e.g., the papers and books by Mayne et al.
(2000), Maciejowski (2002), Qin and Badgwell (2003), Rossiter (2003), and Tat-
jewski (2007). In further sections, two most popular MPC algorithms with linear
process models will be presented—the DMC and GPC algorithms. These techniques
will then be a starting point for the description of computationally relatively sim-
ple and efficient MPC algorithms for non-linear process models, including fuzzy
models (in the Takagi–Sugeno structure) and neural models.

6.1.2 Dynamic Matrix Control Algorithm

In the DMC algorithm the process dynamics are modeled by discrete step responses
(Cutler and Ramaker, 1980; Garcia and Morshedi, 1986). Denoting subsequent co-
efficients of the unit step response of a SISO plant by s j, we have

y(k + 1) = y(0)+
k

∑
j=0

s j �u(k− j). (6.8)

Assuming that the unmeasured disturbances affect the process output, at current
sampling instant k they are modeled as a difference between the current measured
output value y(k) and the value of the output predicted at the previous sampling
instant, i.e.,

d(k) = y(k)− [y(0)+
k

∑
j=1

s j �u(k− j)]. (6.9)

In the DMC algorithm a lack of knowledge about future changes of the disturbances
on a prediction horizon is assumed, therefore the following model is used (called the
constant output disturbance model, or the DMC disturbance type model, see, e.g.,
the work of Maciejowski (2002)):

d(k + 1|k) = d(k + 2|k) = · · · = d(k + N|k) = d(k). (6.10)

For asymptotically stable processes (without integrated or runaway responses), the
output stabilizes, after a step change in the input, at a certain value s∞, where
limk→∞ sk = s∞. Therefore, it is enough to know a finite number, say D, of coef-
ficients of the step response, i.e., the number of steps after which the value of the
step response can be treated as constant, equal to the static process gain km = s∞ (D
can be called the horizon of the process dynamics). The estimation D ∼= (T0 +(3÷
4)T )/Tp usually proves correct, where T0 is a process time delay and T is a process
dominant time constant.

Using the process model (6.8), together with the disturbance model (6.9), (6.10),
it is easy to derive (Tatjewski, 2007) the following formula for the prediction of the
process output at sample k, which is the sum of the forced component �y(k + p|k)
and the free component y0(k + p|k) of the predicted output trajectory:
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y(k + p|k) = �y(k + p|k)+ y0(k + p|k), (6.11)

�y(k + p|k) =
p

∑
j=1

s j �u(k + p− j|k), p = 1,2, ...,N, (6.12)

y0(k + p|k) = y(k)+
D−1

∑
j=1

(s j+p − s j)�u(k− j), p = 1, ...,N. (6.13)

Consider now a multivariable, multi-input multi-output process with ny controlled
outputs and nu control inputs. We have the process model in the form of a set of
ny ·nu finite step responses {si j

l , l = 1,2, ...,D}, where i indexes controlled outputs,
i = 1,2, ...,ny, and j indexes process control inputs, j = 1,2, ...,nu. Therefore, com-
ponents of the vector si j = [si j

1 si j
2 ... si j

D] are elements of a step response of the i-th
output to a unit step on the j-th input (when all other inputs are kept constant). The
dynamics horizon D is taken as common for all responses, i.e., it can be assumed
that si j

l = const. for l ≥ D.
Let us define the multivariable step response {S1,S2,S3, ...} as consisting of

matrices:

Sl =

⎡
⎢⎢⎢⎢⎢⎢⎣

s11
l s12

l s13
l · · · s1nu

l
s21

l s22
l s23

l · · · s2nu
l

s31
l s32

l s33
l · · · s3nu

l
...

...
...

. . .
...

s
ny1
l s

ny2
l s

ny3
l · · · s

nynu
l

⎤
⎥⎥⎥⎥⎥⎥⎦

, l = 1,2, ...,D, (6.14)

each of them further consisting of coefficients si j
l of all step responses, i = 1,2, ...,ny,

j = 1,2, ...,nu, corresponding to the sampling instant l. Therefore, the process is
represented by D matrices Sl of dimension ny × nu, instead of ny · nu vectors of
dimension D. This model representation makes it possible to directly apply all the
formulae for SISO processes to the case of a MIMO process; only the matrices Sl

must be inserted in places of the scalar coefficients sl of a single-step response,
l = 1,2, ...,D. The formula describing predicted outputs is now as follows:

y(k + p|k)
= y0(k + p|k)+�y(k + p|k)

=
p

∑
j=1

S j �u(k + p− j|k)+ y(k)

+
D−1

∑
j=1

(S j+p −S j)�u(k− j).

(6.15)
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Define the vectors

Y sp(k) =

⎡
⎢⎣

ysp(k + N1|k)
...

ysp(k + N|k)

⎤
⎥⎦ , Y 0(k) =

⎡
⎢⎣

y0(k + N1|k)
...

y0(k + N|k)

⎤
⎥⎦ ,

ΔY (k) =

⎡
⎢⎣
�y(k + N1|k)

...
�y(k + N|k)

⎤
⎥⎦ , ΔU (k) =

⎡
⎢⎣

�u(k|k)
...

�u(k + Nu −1|k)

⎤
⎥⎦ ,

Y pred(k) = Y 0(k)+ ΔY (k) = [y(k + N1|k)T · · · y(k + N|k)T ]T ,

and the matrices Q =diag{Q, ...,Q}, R =diag{R, ...,R}. Then the cost function can
be written in the form

J(k) =
∥∥[Y sp(k)−Y 0(k)]−ΔY (k)

∥∥2
Q +‖ΔU (k)‖2

R (6.16)

or, if additionally Q = I and R =λ I, as

J(k) =
∥∥[Y sp(k)−Y 0(k)]−ΔY (k)

∥∥2
+ λ ‖ΔU (k)‖2 . (6.17)

Define also the vectors

Y (k) =

⎡
⎢⎣

y(k)
...

y(k)

⎤
⎥⎦ , ΔU P(k) =

⎡
⎢⎣

�u(k−1)
...

�u(k− (D−1))

⎤
⎥⎦ ,

where dimY (k) = nY = ny · (N −N1 + 1), dim�U P(k) = nu · (D−1). Now, the
vectors of free and forced output responses can be presented in the form

Y 0(k) = Y (k)+ MP�U P(k), (6.18)

ΔY (k) = MΔU (k) , (6.19)

where

MP =

⎡
⎢⎢⎢⎣

S1+N1 −S1 S2+N1 −S2 S3+N1 −S3 · · · SD−1+N1 −SD−1

S2+N1 −S1 S3+N1 −S2 S4+N1 −S3 · · · SD+N1 −SD−1
...

...
...

. . .
...

SN+1 −S1 SN+2 −S2 SN+3 −S3 · · · SN+D−1 −SD−1

⎤
⎥⎥⎥⎦ , (6.20)
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M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

SN1 SN1−1 · · · S1 0 · · · 0
SN1+1 SN1 · · · S2 S1 · · · 0

...
...

...
...

...
. . .

...
SNu SNu−1 · · · SNu−N1+1 SNu−N1 · · · S1

SNu+1 SNu · · · SNu−N1+2 SNu−N1+1 · · · S2
...

...
...

...
...

. . .
...

SN SN−1 · · · SN−N1+1 SN−N1 · · · SN−Nu+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.21)

According to definitions of the vectors Y 0(k), ΔY (k), ΔU P(k) and ΔU (k), the
dimension of the matrix MP is nY ×nΔU P = ny· (N −N1 + 1) × nu· (D−1), while
the dynamic matrix M is of dimension nY ×nΔU = ny· (N −N1 + 1) × nu·Nu.

Using (6.19), the cost function can be written in the form

J(k) =
∥∥[Y sp(k)−Y 0(k)]−MΔU (k)

∥∥2
Q +‖ΔU (k)‖2

R , (6.22)

which is a strictly convex function, provided R > 0.

6.1.2.1 Analytic (Explicit, Unconstrained) DMC Algorithm

If there are no constraints (or the constraints are neglected), then the vector of opti-
mal input moves minimizing the cost function follows from the necessary optimality
conditions; it is easy to calculate that (Tatjewski, 2007)

ΔÛ (k) = [MT QM+R]−1MT Q[Y sp(k)−Y 0(k)] = K[Y sp(k)−Y 0(k)], (6.23)

where
K =[MT QM+R]−1MT Q. (6.24)

Denote

K =

⎡
⎢⎢⎢⎣

K1

K2
...
KNu

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

K1,1 K1,2 · · · K1,N−N1+1

K2,1 K2,2 · · · K2,N−N1+1
...

...
. . .

...
KNu,1 KNu,2 · · · KNu,N−N1+1

⎤
⎥⎥⎥⎦ , (6.25)

where each submatrix Ki is of dimension nu ×nY = nu ×ny(N −N1 + 1), and each
submatrix Ki, j is of dimension nu × ny. The optimal control input increments cor-
responding to the current sampling instant are applied to the process only, i.e., the
vector �û(k|k) consisting of first nu elements of the vector of the optimal solution
(6.23):

�û(k) = �û(k|k) = K1[Y sp(k)−Y 0(k)]. (6.26)

Therefore, the obtained control law is linear feedback from the difference between
the set-point trajectory and the predicted free trajectory.
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The DMC control law can be presented in a form showing a direct dependency of
the optimal controller output on the past process inputs (i.e., past controller outputs)
and on the process outputs. Presenting the matrix MP in the form

MP =
[

MP
1 MP

2 · · · MP
D−1

]
, (6.27)

where each submatrix MP
j is of dimension nY ×nu = ny(N−N1 +1)×nu, and using

the structure (6.25) of the matrix K, we have

�û(k) = K1[Y sp(k)−Y (k)−MP�U P(k)]

=
N

∑
p=N1

K1,p−N1+1[ysp(k + p|k)−y(k)]−
D−1

∑
j=1

Ku
j�u(k− j), (6.28)

where Ku
j = K1 MP

j , j = 1,2, ...,D−1. (6.29)

The formula (6.28) presents the structure of the DMC control law designed ana-
lytically in the case without inequality constraints, or when the existence of these
constraints has been consciously neglected during the design. Thus, this controller
can be referred to as an unconstrained, explicit DMC controller; the description
analytical DMC controller can also be encountered (Tatjewski, 2007).

In continuous process control, one usually does not know when changes in the
set-point values will occur in the future, i.e., in the prediction horizon. Therefore,
it is common practice in the design of MPC algorithms for stabilization tasks to
assume that the set-points are constant over the prediction horizon and equal to the
current values,

ysp(k + N1|k) = ysp(k + N1 + 1|k) = · · · = ysp(k + N|k) = ysp(k). (6.30)

Then the control law (6.28) simplifies to the form

�û(k) =
N

∑
p=N1

K1,p−N1+1[ysp(k)−y(k)]−
D−1

∑
j=1

Ku
j�u(k− j)

= Ke[ysp(k)−y(k)]−
D−1

∑
j=1

Ku
j�u(k− j), (6.31)

where
Ke =

N

∑
p=N1

K1,p−N1+1. (6.32)

The structure of the linear control law (6.31) is illustrated in Fig. 6.2, where the
box with a diagonal matrix of discrete transfer functions 1

1−z−1 I implements dis-
crete vector integration—a summation of consecutive increments of the process in-
put vector in order to transform the control input increments into the control input
values. Further, the box in the internal feedback loop fed by consecutive values of
the controller output increments �u(k) should be treated as performing all that is
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Fig. 6.2 Structure of the analytic (unconstrained) DMC controller, with constant set-points
over the prediction horizon

necessary to implement the formula written in there, i.e., also keeping in its memory
D−1 last control input increments.

In practice, there are always constraints on process inputs resulting from physi-
cal limitations of actuators. If these constraints are active, then feeding the block of
internal feedback of the MPC controller with previous control increments resulting
from the control law formula (6.28) or (6.31) would lead to significant deterioration
of the control performance. The reason is that the control increments�u(k− j) cor-
responding to the control inputs u(k− j), which really affected the process, should
be used in the controller feedback loop. This is indicated in the structure shown in
Fig. 6.3, where z−1I denotes a diagonal matrix with unit delays on the diagonal, and
the non-linear blocks should be also understood as implementing vector constraints,
having vectors as inputs and outputs. The structure from Fig. 6.3 implements con-
straints on both amplitudes and rates of change, it also contains an additional feed-
back loop constraining integration of the controller signal (correcting the state of
the integrator) in a way which is similar to an anti-windup scheme used in struc-
tures of PID controllers, (see, e.g., the works of Åström and Wittemark (1997) or
Goodwin et al. (2001)). Applying the additional anti-windup loop introduces full
correction of the state of the integrator, with a unit delay—at a sampling instant k
the controller output signal �û(k) is added to the signal u(k − 1) which actually
affected the process at the previous sampling instant, i.e., to the signal uint(k− 1),
after passing through the amplitude constraining element (the actuator output signal
can also be directly used here).

6.1.2.2 DMC Algorithm in a Numeric Version

Treating the constraints on the controller output signal as presented in the previous
section, i.e., after the calculation of the unconstrained control law, is generally sub-
optimal though often leads to acceptable results. Moreover, it is much more difficult
to take into account in this way constraints on the process outputs, controlled and/or
uncontrolled. Taking the constraints into account explicitly during the calculation
of the optimal control signal leads to the necessity to solve a dynamic optimization
problem at each sampling instant. This is a quadratic programming problem min-
imizing the cost function (6.22) under the constraints (6.4), (6.5), (6.6) and (6.7).
Reformulating this problem to a standard form required by classic QP procedures,
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Fig. 6.3 Analytic DMC controller in the structure taking into account constraints on ampli-
tudes and rates of change of the process control inputs

e.g., QUADPROG from the Matlab package, is simple, (see, e.g., the work of Tat-
jewski (2007)). The standard QP procedures are effective and reliable, thus enabling
efficient implementations of predictive control algorithms.

The quadratic programming problem can be precisely and effectively solved;
however, under the condition that there is a solution to this problem, namely, that
the feasible set defined by all inequality constraints is not empty (the constraints
are not contradictory). Let us recall here only that the feasible set can happen to be
empty when there exist constraints on process output variables (controlled and/or
constraint variables). Because these constraints are usually soft, i.e., they may be
occasionally violated, the simplest and commonly applied technique assuring the
feasibility of the QP problem is to treat these constraints via penalty functions. That
is, there are additional variables vmin ∈ Rny , vmax ∈ Rny introduced in the optimiza-
tion problem, and the output constraints are relaxed on the prediction horizon to the
form

y(k + p|k)≤ ymax + vmax, (6.33)

−y(k + p|k)≤−ymin + vmin. (6.34)

Further, penalty terms are added to the cost function:

ρmax(vmax)T vmax + ρmin(vmin)T vmin, (6.35)

and additional inequality constraints vmin ≥ 0, vmax ≥ 0 must be added, too. The
above formulation is not the most general one possible. It describes the case when
there are lower- and upper-bound constraints on all process outputs, which may not
always be the case. Further, it does not exploit the possibility to use different penalty
coefficients for different components of the process output vector, to simplify the
notation.
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6.1.3 Generalized Predictive Control Algorithm

In the GPC algorithm, a discrete process model represented by difference equations
(or, equivalently, discrete transfer functions) is used (Clarke et al., 1987). The only
difference between the DMC and GPC algorithms is that the dynamic matrix M
and the free trajectory of predicted outputs are calculated using this model, and not
the step response one. Therefore, techniques showing the ways these quantities are
calculated will only be shown. In the literature, (e.g., the research of Camacho and
Bordons (2004) or Tatjewski (2007)), a general procedure based on the use of the
Bezout identity can be found, with integrated white noise as the disturbance model.
However, formulae defining the GPC algorithm can be derived in a simpler way,
provided the same disturbance model as in the DMC algorithm is assumed (i.e.,
constant output disturbance model).

Let us consider first a SISO model of the ARX type in the form

y(k) = −a1y(k−1)−·· ·−anAy(k−nA)+ b0u(k−1)+ · · ·+ bnBu(k−nB−1).
(6.36)

Assuming the input signal in the form of the unity step, the above model directly
yields the sequence of step response coefficients {s1,s2, . . .}, resulting from the
equation

sk = −
min{k−1,nA}

∑
i=1

aisk−i +
min{k−1,nB}

∑
i=0

bi. (6.37)

Finally, these coefficients directly define the dynamic matrix M.
To calculate the elements y0(k + p|k) of the predicted free output trajectory, the

constant process input signal is assumed over the prediction horizon, equal to the
value u(k−1) calculated at the previous sampling instant (as in the DMC algorithm).
Under this input signal, the predicted values y0(k + p|k) are calculated sequentially,
for p = 1, ...,N, from the equation

y0(k + p|k) = y(k + p)+ d(k), (6.38)

where the values y(k + p) are calculated from the equation (6.36) applied for k =
k+ p, but for k+ p− j > k inserting in place of yet unknown values y(k+ p− j) the
just calculated predictions y0(k + p− j|k). To the free outputs predicted in this way
for every sampling instant over the prediction horizon, the value of the disturbance
estimate d(k) is added, calculated at sampling instant k and treated as constant over
the prediction horizon (assumed constant output disturbance model):

d(k) = y(k)− y(k|k−1) = y(k)− [−
nA

∑
i=1

aiy(k− i)+
nB

∑
i=0

biu(k−1− i)]. (6.39)

The presented technique leads to the following final formula for elements of the free
components of the predicted output trajectory (Tatjewski, 2007):
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y0(k + p|k) = −
min{nA,p−1}

∑
i=1

aiy
0(k + p− i|k)−

nA

∑
i=min{nA,p−1}+1

aiy(k + p− i)+

+
min{nB,p}

∑
i=0

biu(k−1)+
nB

∑
i=min{nB,p}+1

biu(k−1 + p− i)+d(k),

p = 1,2, ...,N, (6.40)

where values of the disturbance estimate d(k) are defined by (6.39).

Fig. 6.4 Structure of the analytic GPC controller, with constraints on amplitudes and rates
of change of the control inputs taken (a posteriori) into account, supplemented with an anti-
windup loop

The formula (6.40) is recurrent and can be directly used for implementing the
numerical version of the GPC algorithm, where at each sampling instant first the
free output trajectory is calculated and then the quadratic programming problem is
solved. Certainly, the derivation of an explicit formula describing the dependency
of the free output trajectory on past process outputs and control signals is possible,
recurrently using the formula (6.40). In the unconstrained case (or ignoring the con-
straints when solving the QP problem), this leads to an analytic GPC controller hav-
ing the structure shown in Fig. 6.4 (Tatjewski, 2007). Comparing the structures of
the analytic DMC and GPC controllers, it can be observed that the GPC controller
is generally described by a significantly smaller number of feedback coefficients,
because usually D � nA and D � nB.

The generalization of the model (6.36) to the case of a MIMO plant, with nu

inputs and ny outputs, is of the form

A(z−1)y(k) = B(z−1)u(k−1), (6.41)

where A and B are polynomial matrices:
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A(z−1) = 1 + A1z−1 + A2z−2 + · · ·+ Anaz−nA , (6.42)

B(z−1) = B0 + B1z−1 + B2z−2 + · · ·+ Bnbz−nB , (6.43)

and z−1 denotes the unit time delay operator.
Assuming the DMC type disturbance model (constant output disturbance model)

for every output,we can easily generalize the equations (6.37) and (6.40) to the
MIMO case, using directly the process model. Assuming that the matrix A(z−1)
is diagonal, denote by Am(z−1) and Bm, j(z−1) polynomials (elements of the matri-
ces A(z−1) and B(z−1)) defining the response of the m-th output to the change of
the nu inputs:

ym(k) = −
nA

∑
i=1

am
i ym(k− i)+

nu

∑
j=1

nB

∑
i=0

bm, j
i u j(k−1− i), (6.44)

m = 1, ...,ny. (It was assumed here, without loss of generality, that all polynomials
are of the same degree, nm

A = nA, nm, j
B = nB.) Using (6.44), formulae for elements of

step responses can be easily obtained, for every pair ( j-th) input–(m-th) output:

sm, j
k = −

min{k−1,nA}
∑
i=1

am
i sm, j

k−i +
min{k−1,nB}

∑
i=0

bm, j
i , (6.45)

m = 1, ...,ny, j = 1, ...,nu (compare with (6.37)). Knowing elements of the multi-
variable step-response, elements of the dynamic matrix can be directly calculated
(as was shown in the DMC case), and thus elements of the forced trajectory of the
predicted outputs.

Further, reasoning analogously as in the SISO case, we can easily obtain recurrent
formulae for elements of free trajectories of the predicted outputs over the prediction
horizon, which are equivalents of (6.40) for the MIMO case, in the form

y0
m(k + p|k) = −

min{nA,p−1}
∑
i=1

am
i y0

m(k + p− i|k)−
nA

∑
i=min{nA,p−1}+1

am
i ym(k + p− i)+

+
nu

∑
j=1

[
min{nB,p}

∑
i=0

bm, j
i u j(k−1)+

nB

∑
i=min{nB,p}+1

bm, j
i u j(k−1 + p− i)

]
+ dm(k),

p = 1, ...,N, (6.46)

where

dm(k) = ym(k)−
[
−

nA

∑
i=1

am
i ym(k− i)+

nu

∑
j=1

nB

∑
i=0

bm, j
i u j(k−1− i)

]
(6.47)

are estimates of additive disturbances calculated at the sampling instant k,
m = 1, ...,ny.
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6.1.4 Non-linear Predictive Control

6.1.4.1 MPC Algorithms with Optimization Using Directly a Non-linear
Model

Implementations of MPC algorithms using directly a non-linear process model are
significantly more difficult than when linear models are used. The main reason is
that the dynamic optimization problem is then a non-linear programming problem,
generally a non-convex one, due to the non-linearity of process models. Certainly,
there are many non-linear programming procedures available now, but they are in
general not capable to assure properties required for on-line applications—to find
the true solution with assumed accuracy not exceeding a strictly prescribed time
limit. This can be particularly critical if a numerically complex non-linear process
model is used (e.g., having internal iterative procedures). Therefore, if the MPC
algorithm with dynamic optimization using directly a non-linear process model is
designed, which can be reasonable for processes with slower dynamics, then it is
recommended to use a model with possibly good numerical features in the optimiza-
tion procedure. First of all, the model should be sufficiently smooth, enabling the
application of gradient optimization procedures, it should assure sufficiently quick
calculation of the process outputs. If it is not the case with the original process
model available, then an often recommended procedure is to design numerically
more efficient approximation of this model for direct use in the MPC controller,
e.g., in the form of a fuzzy model (Marusak, 2008; 2009; Marusak and Tatjew-
ski, 2009) or a neural network model (Ławryńczuk, 2007; 2008; Ławryńczuk and
Tatjewski, 2008). These models can provide the required approximation quality and
have, as mentioned, good numerical properties for effective implementation of non-
linear optimization, although the optimization still remains non-linear and generally
non-convex, thus not guaranteeing the properties required for on-line applications.

6.1.4.2 MPC Algorithms with Linearizations of the Non-linear Model

A sound solution in practical non-linear MPC design is the tendency to apply lin-
earizations of the non-linear model (Morari and Lee, 1999). The reason is that this
results in the formulation of predictive algorithms in such a way that at each sam-
pling instant a strictly convex quadratic programming problem is solved. This QP
problem is successively modified, every few steps or even at each step (sampling
instant) of the MPC algorithm, to be consistent with the changes of the non-linear
process working point. In this way, generally suboptimal but usually efficient algo-
rithms are created (suboptimal with respect to the MPC algorithm solving the true
non-linear optimization problem).

The simplest solution which enables a natural generalization of well-known good
practical properties of predictive algorithms with linear process models to non-linear
predictive control are algorithms which at each sampling instant perform the lin-
earization of the non-linear model, at a current process state, and then calculate the
control inputs using a linear MPC algorithm, e.g., DMC or GPC, with the linearized
model (see, e.g., the work of Tatjewski (2007) and the extensive list of references
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given therein). This is a suboptimal approach, but the one which allows keeping the
fundamental, for practical applications, feature of control reliability, i.e., a guarantee
that at each of the successive algorithm steps an optimal solution of the (quadratic)
optimization problem will be found, and always within a predefined time. The dis-
cussed structure of suboptimal non-linear MPC control with model linearizations
will be called MPC-NSL (MPC Non-linear with Successive Linearizations). It is
presented in Fig. 6.5.

Fig. 6.5 Structure of a non-linear MPC algorithm with successive linearizations of the process
model (MPC-NSL algorithm)

For weakly non-linear processes, or operating close to certain equilibrium points
during longer time periods and under slowly varying disturbances, the linearization
may not be necessary at each sampling instant. It may then be sufficient to perform
it more rarely, e.g., only after every predefined number of samples. Such an example
is given by Maciejowski (2002).

A structurally more precise solution than the MPC-NSL algorithm, and at the
same time still simple in implementation and preserving the required good prop-
erties of a QP optimization problem, is to use a linearized model only in the op-
timization problem (only for the calculation of the forced trajectory of predicted
outputs), but to evaluate the free trajectory from a non-linear model, at each sam-
pling instant, see the research by Tatjewski (2007), where a list of references on the
subject is given. This structure will be called MPC with non-linear prediction and
linearization, and it is presented in Fig. 6.6.

In fact, there is no reason to give up a non-linear prediction of a free output tra-
jectory having a non-linear process model. This is a relatively easy task, performed
only once at each sampling instant of the MPC controller. Thus, it does not signif-
icantly affect the total amount of calculations performed at each sampling instant,
which is first of all determined by a numerical solution of the optimization problem,
even if it is a quadratic programming one. Thus, MPC-NPL algorithms should be
preferred to MPC-NSL algorithms.
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Fig. 6.6 Structure of the MPC-NPL algorithm

To calculate the free component Y 0(k) of a trajectory of predicted outputs on
a prediction horizon, it is necessary to have not only values of the already applied
(past) process input and output signals, but also to assume certain (initial) values of
future process inputs in the prediction horizon, i.e., an initial trajectory of control
inputs U 0(k). Proceeding identically as in the case of MPC algorithms with linear
models, in order to evaluate the free output trajectory we can assume zero incre-
ments of process input signals in a prediction horizon, i.e., process inputs constant
and equal to u(k−1). Another, in non-linear cases often better, approach is to apply
an appropriately adopted optimal control trajectory evaluated at a previous sampling
instant as the current initial control trajectory (Tatjewski, 2007). In the dynamic op-
timization task of the MPC-NPL controller, future control increments are calculated
with respect to the initial trajectory U 0(k), and the dynamic matrix M needed for
these calculations is derived from the linearized model. Thus, the cost function for
the QP dynamic optimization problem will be

∥∥∥Y zad(k)−Y 0(k)−M(k)ΔU (k)
∥∥∥2

Q
+‖ΔU (k)‖2

R , (6.48)

which is optimized subject to constraints on amplitudes and rates of change of con-
trol increments, and subject to constraints of process outputs, which are constructed
also with non-linear prediction and linearization:

Ymin ≤ Y 0(k)+ M(k)ΔU (k) ≤ Ymax. (6.49)

The smaller the optimal control input increments evaluated as a solution of the QP
problem, the better the MPC-NPL algorithm should operate. Therefore, it may de-
liver almost optimal behavior even for strongly non-linear processes and for transi-
tions to distant operating points, as long as the trajectories are smooth and realized
with a sequence of relatively small process input changes.
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6.1.4.3 Fuzzy and Neural Models in Non-linear MPC Algorithms

As mentioned earlier, a non-linear model used in non-linear MPC with on-line non-
linear optimization should have good numerical properties. In MPC approaches
which are based on linear approximations of the non-linear model of the process
(the MPC-NSL and MPC-NPL algorithms) calculated on-line, linearization should
be calculated in a relatively uncomplicated and numerically reliable manner. Thanks
to their advantages, two kinds of non-linear models, i.e., fuzzy models, in partic-
ular Takagi–Sugeno (TS) structures, and neural networks, are important. It is a
well-known fact that both of the mentioned model types are good approximators
of non-linear relations (Pedrycz, 1993; Haykin, 1999). Moreover, they have simple
structures, which is particularly important from the numerical point of view.

In non-linear fuzzy modeling, taking into account applications of models in MPC,
Takagi–Sugeno fuzzy models play a vital role. In such models, consequents of fuzzy
rules (THEN-parts) are functions. Usually, in consequents, linear models are used.
These models constitute local linear approximations of the original non-linear mod-
els. These local models are switched using the fuzzy approach. The fuzzy combina-
tion of local linear models constitutes a non-linear fuzzy model (Pedrycz, 1993; Jang
et al., 1997; Piegat, 2001; Tatjewski, 2007).

Let us assume that the fuzzy model consists of r rules, and that all consequents are
linear models in the form of discrete difference equations corresponding to the linear
model (6.36) used in the GPC algorithm. The fuzzy model can then be formulated
as consisting of the following rules:

Ri : IF y(k) is Ai
0 and y(k−1) is Ai

1 and · · · and y(k−nR) is Ai
nR

and u(k) is Bi
0 and u(k−1) isBi

1 and · · · and u(k−mR) is Bi
mR

THEN yi(k + 1) = −ai
1y(k)−·· ·−ai

nA
y(k−nA + 1) (6.50)

+ bi
0u(k)+ · · ·+ bi

nB
u(k−nB),

where i indexes rules (i = 1, . . . r) and at the same time subdomains of the fuzzy
TS model, Ai

j ∈ Y j, Bi
j ∈ U j, while ai

j and bi
j are coefficients of functions in rule

consequents.
Elements of each of the sets Y j are fuzzy sets covering the area of the vari-

able y(k − j), j = 0, . . . ,nR; analogously, U j for u(k− j), j = 1, . . . ,mR. Usually,
partitions of the domain of y(k) are the same, independent of time delays, i.e.,
Y0 = . . . = YnR = Y; analogously, U1 = . . . = UmR = U (Tatjewski, 2007).

The set of rules is complemented by the standard formula for a final conclusion,
namely, for the model output

y(k + 1) =
r

∑
i=1

w̃i(k)yi(k + 1), (6.51)

where w̃i(k) are normalized activation levels of the rules (6.50). Activation levels of
the rules depend at the sampling instant k on nR+1 values of outputs (i.e., y(k),y(k−
1), . . . y(k−nR)) and mR +1 values of the output (i.e., u(k),u(k−1), . . . ,u(k−mR)).
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Precisely, they depend on grades of the membership of these outputs and inputs to
the fuzzy sets Ai

j and Bi
j, where, in general, nR �= nA and mR �= nB.

A concise description of the fuzzy model (6.50), (6.51), compliant with the model
used in the GPC algorithm (6.36), is

y(k + 1) =−a1(k)y(k)−·· ·−anA(k)y(k−nA + 1) (6.52)

+ b0(k)u(k)+ · · ·+ bnB(k)u(k−nB),

where

a j(k) =
r

∑
i=1

w̃i(k)ai
j, b j(k) =

r

∑
i=1

w̃i(k)bi
j. (6.53)

Thus, the non-linear TS fuzzy model has the same structure as the linear model
used in the GPC algorithm, but coefficients of the fuzzy model depend on the current
operating point of the process. It is necessary to emphasize the fact that, thanks to
this property, the linearization of the non-linear TS model is straightforward and can
be performed very efficiently during on-line control. Details are given in the works
of Tatjewski and Ławryńczuk, (2006), Tatjewski, (2002; 2007).

Thanks to their properties, neural networks constitute the second class of non-
linear models which are recommended for MPC. Let us consider a non-linear NARX
model of a SISO dynamic process:

y(k) = f (u(k− τ), . . . ,u(k−nB −1),y(k−1), . . . ,y(k−nA)). (6.54)

Such a model corresponds to the linear model (6.36) used in the GPC algorithm.
The structure of a feedforward neural model with two layers (Haykin, 1999) which
realizes the NARX model is depicted in Fig. 6.7. The output signal of the model is
calculated from

y(k) = w2
0 +

K

∑
i=1

w2
i ϕ(zi(k)), (6.55)

where zi(k) is the sum of inputs of the i-th hidden node, ϕ : R → R denotes a non-
linear transfer function used in the hidden layer (usually the tanh function is used
for this purpose), K is the number of hidden nodes. From (6.54), one has

zi(k) = w1
i,0 +

Iu

∑
j=1

w1
i, ju(k− τ + 1− j)+

nA

∑
j=1

w1
i,Iu+ jy(k− j). (6.56)

Weights of the first layer are denoted by w1
i, j, i = 1, . . . ,K, j = 0, . . . ,nA +nB−τ +2,

while w2
i , i = 0, . . . ,K, denotes weights of the second layer, Iu = nB − τ + 2. When

the process considered has as many as nu inputs and ny outputs (MIMO process),
the neural model usually consists of ny neural networks, and each network has one
output:
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Fig. 6.7 Structure of the neural model of a SISO dynamic process

y1(k) = f1(u1(k− τ1,1), . . . ,u1(k−n1,1
B ), . . . , (6.57)

unu(k− τ1,nu), . . . ,unu(k−n1,nu
B −1),

y1(k−1), . . . ,y1(k−n1
A))

...

yny(k) = fny(u1(k− τny,1), . . . ,u1(k−n
ny,1
B ), . . . , (6.58)

unu(k− τny,nu), . . . ,unu(k−n
ny,nu
B −1),

yny(k−1), . . . ,yny(k−n
ny
A )).

Functions fm, m = 1, . . . ,ny are realized by separate neural networks. Their struc-
tures are similar to those of a neural network model of a SISO dynamic model shown
in Fig. 6.7. Alternatively, it is possible to use only one neural network as a MIMO
dynamic model, then this network has ny output nodes (i.e., y1(k), . . . ,yny(k)). How-
ever, such a model is usually more complicated than that which consists of ny net-
works with one output. Moreover, training neural networks with many outputs is
more difficult because all parameters (weights) are optimized at the same time.

Taking into account the very specific role of a dynamic model in MPC algorithms
with a long-range horizon, it is necessary to stress the advantages of neural models.
First of all, two-layered neural networks with one non-linear hidden layer are univer-
sal approximators which are able to approximate any continuous non-linear function
with arbitrary accuracy. Thanks to this property, it is possible to use neural networks
as sufficiently precise but simpler models of full scale complex dynamic models.
Neural networks have a very simple and regular structure, their number of param-
eters (weights) is usually moderate. As a result, neural models of processes can
be used efficiently in non-linear MPC algorithms. Non-linear prediction, lineariza-
tion, calculation of the non-linear free trajectory as well as unmeasured disturbance
estimation are calculated in a straightforward way. Implementation details of the
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MPC-NSL and MPC-NPL algorithms in which neural models are used are given by
Ławryńczuk (2007), Tatjewski and Ławryńczuk (2006) and Tatjewski (2007).

6.1.5 Optimization of Set-Points

The basic multi-layer control structure with an MPC supervisory feedback control
layer is shown in Fig. 6.8 (Tatjewski, 2007; 2008). The upper most layer represents

Fig. 6.8 Structure of multi-layer control with an MPC supervisory feedback control layer

economic Steady-state Set-point Optimization (SSO), usually performed using a
non-linear, comprehensive model of the underlying process, appropriately adapted
to changing environment conditions (slowly varying disturbances, production re-
quirements) with frequency significantly smaller than the intervention frequency of
the underlying MPC controller. A typical form of the SSO problem involves a linear
economic cost function with
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max
uss ,yss

{qT yss −pT uss}, (6.59a)
⎧⎨
⎩

umin ≤ uss ≤ umax,
ymin ≤ yss ≤ ymax,
yss = F(uss,w),

(6.59b)

where the operator F represents a non-linear static process model, for current values
of its parameters w (estimates of disturbances, tunable parameters). Algorithms used
to solve the SSO problem are specialized (when needed) or standard non-linear
programming routines, e.g., Sequential Quadratic Programming (SQP) procedures,
which are regarded now as very efficient (Fletcher, 1987; Bertsekas, 1995). Let us
denote the optimal solution point of (6.59b) by (ûss, ŷss).

Since the MPC controller is executed significantly more frequently than the SSO
optimizer, controlling the process under disturbances and constraints, then it oc-
curred reasonable to adopt additionally the set-point, before every MPC dynamic
optimization (see, e.g., the research by Rao and Rawlings (1999), Kassman et al.
(2000), Blevins et al. (2003) or Tatjewski (2007)). Such an algorithm of auxiliary
set-point optimization (recalculation) can be called Steady-State Target Optimiza-
tion (SSTO) (Kassman et al., 2000).

The simplest way to define the SSTO problem is to apply the statics of the dy-
namic process model used in MPC as a steady-state process model in SSTO. In the
case of a linear model, used, e.g., in the DMC or GPC algorithms, this is simply
the gain matrix G corresponding to this model. Two alternative formulations of the
SSTO problem can be found, differing in the optimization goal:

SSTO1: To find steady-state targets (uss,yss) as close as possible to the set-points
(ûss, ŷss), despite static process model limitations and input and output constraints,
solving an appropriate optimization problem, e.g., the one with a quadratic penalty
function:

max
Δuss

{||yss − ŷss||2 + ||uss − ûss||2}
umin ≤ uss ≤ umax

ymin ≤ yss ≤ ymax

yss = y0(k + N|k)+ GΔuss

uss = u(k−1)+ Δuss,

(6.60)

where y0(k +N|k) denotes values of the outputs at the end of the prediction horizon
calculated provided the control signal is constant over the whole prediction horizon
and equal to the last (at a previous sampling instant, k−1-th) value u(k−1) applied
(Rao and Rawlings, 1999);

SSTO2: To calculate the steady-state targets (uss,yss) on the basis of the original
economic performance function (as in SSO), but using a simple steady-state model
and all constraints, i.e., solving at the current sampling instant the optimization prob-
lem of the form (Kassman et al., 2000; Blevins et al., 2003)
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max
Δuss

{qT Δyss −pT Δuss}
umin ≤ uss ≤ umax

ymin ≤ yss ≤ ymax

yss = y0(k + N|k)+ GΔuss

uss = u(k−1)+ Δuss.

(6.61)

Notice that, in both cases, the modification of the set-points is relative to the current
“steady-state” (u(k−1),y0(k + N|k)). This means that, before solving the problem
(6.60) or (6.61), the MPC controller calculates the free trajectory of predicted out-
puts, transfers the last calculated value y0(k + N|k) to the SSTO problem, which
then calculates the corrected set-point (uss,yss) and sends it back to MPC. Finally,
the MPC Dynamic Optimization (MPC-DO) problem is solved.

The desired set-point (ûss, ŷss) may be calculated in the SSO problem, but it may
also stem directly from certain requirements, like, e.g., norms in the case of de-
sired water purity or allowed air pollution, in drinking water distribution or energy
production systems—this is the case when SSTO1 can be a reasonable formulation.

The quality of the target set-points (uss,yss) generated in SSTO2 depends on that
of the static process model used, i.e., the gain matrix G. If the process is truly non-
linear, then its static characteristics change with the changes of the set-point. The
MPC controller designed as a robust one should then work properly, but with dif-
fering performance. However, the values of the constant matrix G can be, for many
set-points, far from correct and thus the results of SSTO may be far from optimal.
The solution is then the adaptation of G, based on the non-linear model used in
the higher SSO layer (Ławryńczuk et al., 2007; 2008; Tatjewski, 2007; 2008). The
adaptation would be best if preformed at every sampling instant, but this may be
unrealistic or unnecessary—it may be then performed more rarely, e.g., after every
predefined number of samples. The SSTO2 problem with an adaptively changing
gain matrix would have the form

max
Δuss

{qT Δyss −pT Δuss} (6.62a)
⎧⎪⎪⎨
⎪⎪⎩

umin ≤ uss ≤ umax

ymin ≤ yss ≤ ymax

yss = F(u(k−1),w)+ G(k)Δuss

uss = u(k−1)+ Δuss,

(6.62b)

where F(u(k − 1),w) is the process output calculated from the non-linear SSO
model, for current values of the input u(k−1) and disturbance w. The corresponding
control structure is shown in Fig. 6.9.
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Fig. 6.9 Multi-layer structure with adaptive SSTO based on linearizations of the SSO model

6.1.6 Examples

6.1.6.1 CSTR with the Van de Vusse Reaction

The example control plant is a non-linear chemical reactor in which the van de
Vusse reaction is carried out (Fig. 6.10). The equations describing the process are
as follows (Doyle III et al., 1995):

dCA
dt = −50 ·CA−10 ·C2

A + F(CA f −CA)
dCB
dt = 50 ·CA−100 ·CB−F ·CB,

(6.63)

where CA, CB are concentrations of substances A and B, F is the raw flow rate (it
is assumed that the volume in which the reactions takes place is constant), CA f is
the concentration of substance A in the inlet flow. The output of the process is the
concentration CB and the manipulated variable is the flow rate of the raw substance
F measured in l/h.

The control plant has an inverse response which clearly manifests itself in the
step response obtained near the operating point CB = 1.12 mol/l, F = 34.3 l/h
(Fig. 6.11). Thus, the reactor is hard to control and it is advisable to apply a predic-
tive control algorithm for it.

The simulation experiments were carried out using PExSim—an element of the
DiaSter package. The DMC controller was designed for the control plant. In order
to do so, first the control plant was simulated using the Non-linear dynamic block.
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Fig. 6.10 Diagram of the CSTR with the van de Vusse reaction

Fig. 6.11 Step response of the CSTR

The normalized step response was registered using the Text file output block. The
diagram of the system used to perform the experiment is shown in Fig. 6.12.

Next, the DMC algorithm block, containing the implementation of the DMC al-
gorithm, was used. The sampling period Ts = 0.12 min and the dynamics horizon
D = 40 were assumed along with the following parameters of the controller: predic-
tion horizon N = 40, control horizon Nu = 20, λ = 0.001.

Responses obtained after changes of the set-point value are shown in Figs. 6.13
and 6.14. The obtained results are satisfactory for both kinds of set-point changes
(to lower as well as upper values). The overshoot is in both cases small. The change
of the set-point value to CB,sp = 1.2 l/mol is slower because of the non-linearity of
the control plant.
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Fig. 6.12 System of connections used to obtain the step response

6.1.6.2 MIMO Chemical Reactor

In order to demonstrate the efficiency of the GPC algorithm in controlling multi-
variable processes and handle constraints, a chemical reactor, shown in Fig. 6.15
(Camacho and Bordons, 2004), is considered. The process has two inputs and two
outputs, while its continuous-time transfer function model is (time constants in
minutes)

[
Y1(s)
Y2(s)

]
=

⎡
⎢⎣

1
1 + 0.7s

5
1 + 0.3s

1
1 + 0.5s

2
1 + 0.4s

⎤
⎥⎦
[

U1(s)
U2(s)

]
, (6.64)

where dimensionless manipulated variables include U1: the flow rate of the feed,
and U2: the flow rate of the cooling substance; dimensionless controlled variables
are Y1: the concentration of the product, and Y2: the temperature in the reactor. Using
the sampling period 0.03 min, one obtains the discrete-time dynamic model



262 P. Tatjewski et al.

Fig. 6.13 Response of the control system to the change of the set-point value to
CB,sp = 1 l/mol

y1(k) =0.041951u1(k−1)−0.037959u1(k−2) (6.65)

+ 0.475812u2(k−1)−0.455851u2(k−2)
+ 1.862885y1(k−1)−0.866877y1(k−2),

y2(k) =0.058235u1(k−1)−0.054027u1(k−2) (6.66)

+ 0.144513u2(k−1)−0.136097u2(k−2)
+ 1.869508y2(k−1)−0.873715y2(k−2).

All experiments are carried out in PExSim. At first the simulated process is im-
plemented using the elementary block 1st order inertia, which belongs to the Linear
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Fig. 6.14 Response of the control system to the change of the set-point value to
CB,sp = 1.2 l/mol

dynamic group. The implementation of the simulated chemical reactor is shown in
Fig. 6.16.

Two versions of the GPC algorithm are compared: the explicit one and the nu-
merical one. In both algorithms the same parameters are used: the prediction hori-
zon N = 10, the control horizon Nu = 2, weighting matrices are Q = I2×2 and
R = 0.1I2×2, where I is an identity matrix of appropriate dimensionality.

At first the explicit (unconstrained) GPC algorithm is considered. The algorithm
is realized by the block GPC algorithm (from the MPC algorithms group). Fig-
ure 6.17 shows the implementation of this algorithm for the MIMO chemical reac-
tor in PExSim. The obtained simulation results are depicted in Fig. 6.18 (four top
panels). It is assumed that set-points for both outputs (y1, y2) change from 0 to 1 at
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Fig. 6.15 Chemical reactor with two inputs and two outputs

Fig. 6.16 Implementation of the MIMO chemical reactor in PExSim (simulated process)

the beginning of the simulation. For chosen weighting matrices Q and R, output tra-
jectories are fast (i.e., the process converges to new set-points quickly), but changes
of manipulated variables are very fast, particularly during the first three iterations
of the algorithm. (In spite of the fact that, in the rudimentary explicit GPC
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Fig. 6.17 Implementation of the explicit GPC algorithm for the MIMO chemical reactor

algorithm, constraints are not taken into account, in the algorithm available in PExSim
it is possible to use a constraint projection mechanism, i.e., calculated manipulated
variables for the current sampling instant are projected onto the admissible set of
constraints.)

Next, in order to demonstrate the advantages of the numerical GPC algorithm, the
explicit algorithm is replaced by its numerical version. The algorithm is realized by
the QGPC algorithm block (from the MPC algorithms group). This
algorithm takes into account all imposed constraints in the quadratic programming
optimization problem solved at each sampling instant. Constraints imposed on val-
ues of manipulated variables are u1min =−2, u1max = 2, u2min =−0.5, u2max = 0.5,
constraints imposed on increments of manipulated variables are Δu1max = 0.5,
Δu2max = 0.2. Figure 6.18 (four bottom panels) depicts simulation results. In com-
parison with simulations obtained in the explicit GPC algorithm, output trajectories
are slightly slower, but all constraints are satisfied in consecutive sampling instants
(iterations of the algorithm).
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Fig. 6.18 Simulation results of the MIMO chemical reactor: explicit (unconstrained) GPC
algorithm (four top panels), numerical GPC algorithm (four bottom panels)
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6.2 Self-tuning and Adaptation of Control Loops

The purpose of this section is to present of practical algorithms for self-tuning and
adaptation of PID loops implemented in the DiaSter package (also in some instru-
ment controllers and PC-based soft controllers). Self-tuning can be executed by
means of the step response or relay control (Åström et al., 1993). The step response
is applied if the same steady-state follows the same input, i.e., when the plant re-
mains relatively isolated. Relay self-tuning is less demanding, as it tolerates plants
with interactions, load disturbances, etc. If the closed loop response does not appear
precisely specified, some corrections of controller settings, called fine-tuning, are
needed. The standard version of relay self-tuning is extended here by making the
tuning condition dependent on plant dynamics. Overshoot is avoided by choosing
an appropriate controller structure. Relay control does not have to be symmetric.

Adaptation means automatic adjustment of controller settings after a major change
of the process dynamics. Comparing several adaptive controllers revealed that the
EXACT algorithm from Foxboro (now in Invensys) is particularly useful (Kraus and
Myron, 1984). Details of EXACT have not been disclosed, however. An alternative
algorithm presented here uses the same specifications as EXACT. During operation
it employs three two-dimensional surfaces expressing overshoot, damping and fre-
quency in terms of loop gain and controller zero. The algorithm executes steps on
those surfaces to get to the target given as the crossing of some contour lines.

The last part deals with the input/output structure of PID, self-tuning and adapta-
tion blocks, and explains how they cooperate. The internal or the external set-point
can be chosen. The latter comes from MPC, optimization or other DiaSter compo-
nents. Remarks on bumpless switching are also given.

The algorithms presented here are tested on two benchmark plants:

A :
1

(20s+ 1)(0.5s+ 1)4 , B :
e−2s

(1.2s+ 1)5 , (6.67)

used originally by Kraus and Myron (1984) to demonstrate the convergence of EX-
ACT. Such plants are considered bracketing extremes for most processes encoun-
tered in practice. The plant A is “easy”, the plant B “difficult”. So one can hope that
reasonable results obtained for A and B will be also available elsewhere.

Unlike in the earlier section, here we apply a continuous approach to simplify ex-
planations, and because loop control is usually executed much faster than prediction
and optimization.

6.2.1 Step Response Method

As indicated above, step response self-tuning is feasible when the plant exhibits a re-
peatable steady-state. Besides, the plant must remain in the steady-state before the
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step input is applied. The algorithm implemented in DiaSter constructs two models
of the plant at the same time, i.e.,

G1(s) =
ko

T s+ 1
e−τs , G2(s) =

ko

(T s+ 1)2 e−τs. (6.68)

The one that provides better approximation is selected. If the first model turns out
better, the PI controller is chosen. PID is suitable for the second one. The conver-
gence of identification is fast due to the simplicity of the models. Integral time and
derivative time (for PID) are set to cancel time constants. Then, after the 1-st or-
der Padé approximation of the delay term e−τs, the closed loop transfer function
assumes the standard 2-nd order form. This in turn allows us to develop explicit
rules for controller gain. Note that the extensive set of PI and PID tuning rules was
collected by O’Dwyer (2003).

6.2.1.1 Plant Identification

Figure 6.19(a),(b) shows step responses of the benchmark plants A, B, supplemented
with some noise. The input step is 1.0 (100%), standard deviation of the noise is
0.015 (1.5%). Before the step is applied, the controller monitors the output for some
time and determines the initial mean value. After applying the step, the controller
records the response in some time horizon TH , until the steady-state is reached. For
the responses of Fig. 6.19(a),(b) we have A: TH = 100, B: TH = 25 (counting from
the moment the step is applied).

After recording the response, the controller calculates

• delay τ from the initial part,
• moment TT at which the dynamic part of the response terminates,
• the steady-state mean value in the interval from TT to TH ,
• plant gain ko from the input step and initial and steady-state means,
• time constants T of the two models by least-squares approximation of the dy-

namic part,
• identification errors of the two approximations.

The delay τ is determined as the last moment at which the response does not exceed
the initial mean. This yields τ = 2.1 and τ = 3.7 for the plants A, B, respectively
(Fig. 6.19(a),(b)). Likewise, TT is the first moment at which the response exceeds the
final mean. So TT = 70.3 and TT = 14.1, respectively. It should be clear, however,
that such numerical values characterize a particular realization of the noise. Any
other realization would give slightly different results. The gains ko computed from
the means are both 0.99.

Identification of T. Let us begin with the 1-st order model of (6.68). It can be written
as

ẏ+ ay = akou , a =
1
T

, (6.69)



6 Supervisory Control and Optimization 269

(a)

� TT TH

(b)

� TT TH

Fig. 6.19 Step response: plant A (a), plant B (b)

for t > τ , where the input u is constant. We shall identify the coefficient a by mini-
mizing the criterion

I(a) =
TT∫

τ

[y(t,a)− z(t)]2Dt , (6.70)

where z(t) denotes the step response of the plant and y(t,a) is a solution of (6.69).
Let η(t,a) = ∂y(t,a)/∂a be the sensitivity function of y with respect to a. Differ-
entiating both sides of (6.69) with respect to a yields the equation

η̇ + aη = ko − y. (6.71)

The gradient and the Hessian of the criterion I are given by

∂ I
∂a

= 2

TT∫

τ

(y− z)
∂y
∂a

Dt = 2

TT∫

τ

(y− z)ηDt = Ia, (6.72)

∂ 2I
∂a2 = 2

TT∫

τ

[ηη +(y− z)
∂η
∂a

]Dt
∼= 2

TT∫

τ

η2Dt = Iaa. (6.73)
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Simplification in the second integral above is justified for small errors (y− z). The
Newton formula for iterative calculation of a has the form

ai+1 = ai − Ia

Iaa
. (6.74)

The time constant T is an inverse of the resulting a. Note that ẏ, I, η , ∂ I/∂a and
∂ 2I/∂a2 can be computed in parallel.

The 1-st order transfer functions that approximate the responses are given in the
first row of Table 6.1, together with values of the criterion I. Convergence is reached
in just two iterations, provided that (2...3)/(TT − τ) is taken as the starting value
for a.

Table 6.1 Models of the benchmark plants A, B

Model Plant A Plant B

Ident. criterion 1
(20s+1)(0.5s+1)4

e−2s

(1.2s+1)5

ko
T s+1 e−τs 0.99

19.5s+1 e−2.1s 0.99
4.7s+1 e−3.7s

I 1.1 ·10−4 2.7 ·10−4

ko
(T s+1)2 e−τs 0.99

(9.3s+1)2 e−2.1s 0.99
(2.2s+1)2 e−3.7s

I 6.9 ·10−4 3.9 ·10−5

Now consider the 2-nd order model of (6.68). The model and sensitivity equa-
tions become

ÿ+ 2aẏ+ a2y = a2kou , a =
1
T

, (6.75)

η̈ + 2aη̇ + a2η = 2a(kou− y)−2ẏ. (6.76)

Note that both y and ẏ are needed here to calculate η . Results are given in the second
row of Table 6.1. Two iterations suffice if a starts from 4/(TT − τ).

Values of the criteria I indicate that the 1-st order model is suitable for the plant
A and the 2-nd order one for the plant B. Thus

Amodel :
0.99

19.5s+ 1
e−2.1s , Bmodel :

0.99
(2.2s+ 1)2 e−3.7s. (6.77)

The plant and model responses are shown in Fig. 6.20(a),(b) (noise removed).
We remark that the increase of the noise makes the delay τ a little larger at the

expense of the time constant T .
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(a)

plant

model

(b)

model

plant

Fig. 6.20 Step responses of the plant and the model: plant A (a), plant B (b)

6.2.1.2 Controller Settings

The typical tuning objective is to get a closed loop response with a short setting time
and a shape similar to that of the standard 2-nd order transfer function:

GII(s) =
ω2

n

s2 + 2ξ ωns+ ω2
n
. (6.78)

The shape is determined by the damping factor ξ , i.e., critical damping for ξ = 1,
oscillation for ξ < 1 and overdamping for ξ > 1. The percentage overshoot p% and
the settling time ts are related to ξ and ωn by textbook formulae:

ξ = | ln(
p%

100
)|/
√

π2 + ln2 p%

100
, ts =

4
ξ ωn

. (6.79)

As indicated at the beginning, the controller is set to cancel the time constant of
the plant, since cancellation makes the loop quite fast. Hence the tuning objec-
tive is reduced to getting a response with a specified overshoot p% or, equivalently,
with a specified damping factor ξ . However, if the resulting controller turns out too
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sensitive (large gain), the objective must be replaced by the specification of the set-
tling time ts for the overdamped response.

PI controller. Consider the controller kp(1 + 1/(Tis)) for the model koe−τs/(Ts +
1). The time constant is canceled by setting Ti = T . The 1-st order Padé approxima-
tion of e−τs yields the following open loop transfer function:

Gopen(s) =
ko

T s+ 1
e−τs kp(1 +

1
Ts

) =
kpko

Ts
∼= kpko

T s

−τ
2 s+ 1
τ
2 s+ 1

=

= k′
−s′ + 1

s′(s′ + 1)
= k′G′(s′) , k′ =

kpko

2
τ
T

, s′ =
τ
2

s.

(6.80)

The closed loop transfer function becomes

Gclosed(s′) =
k′G′(s′)

1 + k′G′(s′)
=

k′(−s′ + 1)
s′2 +(1− k′)s′ + k′

. (6.81)

Now the goal is to find an expression for the relative gain k′, so that the characteristic
polynomial s′2 +(1− k′)s′ + k′ would have a specified damping factor ξ .

Critical damping (ξ = 1). k′ must solve the equation (1− k′)2 − 4k′ = 0. Hence
k′ = 3− 2

√
2 ∼= 0.17. Closed loop poles are s′1,2 = (k′ − 1)/2 = 1−√

2, so the

relative settling time t ′s may be evaluated as 4/(
√

2−1)∼= 9.6 (four time constants).

Oscillation (ξ < 1). Expressions for k′ and t ′s in terms of specified ξ are as follows:

k′ =
(R2 + R− t2R2)(R−1)+ t2R2(2R + 1)

(R−1)2 + t2R2 , t ′s =
4
|R| , (6.82)

where t =
√

1−ξ 2

ξ , R = 1−
√

t2+2
t2+1

. They were developed by Trybus (2005) using root

locus. Several sets of ξ , k′, t ′s for typical p% are given in Table 6.2 for reference.

Table 6.2 Overshoot, damping factor, relative gain, settling time

p% 0 5 10 15 20 25 30

ξ 1 0.69 0.59 0.52 0.46 0.40 0.36
k′ 0.17 0.27 0.32 0.37 0.41 0.45 0.49
t ′s 9.6 11 11.9 12.7 13.6 14.7 15.8

Overdamping (ξ > 1). As seen from Table 6.2 and k′ in (6.80), the smallest gain
kp corresponding to critical damping equals 0.34(T/τ)/ko. If such gain is too large
because of practical limitations, the specification of the overshoot p% must be re-
placed by the specification of the settling time ts. This often happens for small delay
τ . Specified ts may be expressed in terms of the time constant T , i.e.,
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ts = αT, (6.83)

with some design parameter α . For α = 1 we have ts = T , so the loop will be four
times faster than the plant (four time constants). The dominating pole of Gclosed(s′)
in (6.81) is s′1 = (k′ − 1 +

√
1−6k′+ k′2)/2, so the relative settling time may be

evaluated as t ′s = 4/|s′1|. Since ts = t ′sτ/2, from (6.83) and the expression for s′1 we
get the following equation:

|k′ −1 +
√

1−6k′+ k′2| = 4
α

τ
T

(6.84)

to compute k′. A two-dimensional look-up table with α and τ/T coordinates is used
in DiaSter to get k′.

The rules for absolute settings and the settling time (needed for specified p%) are
as follows:

PI : kp = 2k′
T
τ

1
ko

, Ti = T , ts = t ′s
τ
2
. (6.85)

PID controller. Consider now the controller kp(1 + 1/(Tis) + Tds) for the plant
model koe−τs/(T s + 1)2. Let Td = Ti/4; thus the controller becomes kp(Ti/(2s)+
1)2/(Tis). The time constant T is canceled by Ti = 2T . The open loop transfer func-
tion is almost the same as (6.80), so

Gopen(s) = kpko
1

2T
e−τs, (6.86)

except for 2T instead of T . This, however, does not affect the expressions for k′ and
t ′s. Absolute settings and the settling time are given by

PID : kp = 4k′
T
τ

1
ko

, Ti = 2T , Td =
Ti

4
, ts = t ′s

τ
2
. (6.87)

Noise filter. Since the dynamics of the loop are known, we can design a low-pass
filter for the plant output. The filter is particularly useful for the PID controller.
Recall that τ/2 is a “time constant” of the open loop (see (6.80)). The dynamics of
the loop designed for specified p% (using Table 6.2) will not be affected if we take
the time constant of the filter a few times less than τ/2, say τ/(8...10). For the loop
designed for ts (using (6.84)), the filter time constant can be about ts/20.

6.2.1.3 Initial Response and Gain Fine-Tuning

Plant A. For the model 0.99e−2.1s/(19.5s + 1), from (6.77) the rules (6.85) yield
PI: kp = 18.7k

′
, Ti = 19.5, ts = 1.05 t

′
s. We shall consider two cases:

• critical damping with ξ = 1 (p% = 0),
• oscillation with the overshoot p% = 20.
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From Table 6.2 we have k′ = 0.17,0.41 and t ′s = 9.6,13.6, respectively, for the
two cases. The absolute values are kp = 3.2,7.7 and ts = 10,14. The time constant of
the filter is 2.1/10 = 0.21. Filtered closed loop responses are shown in Fig. 6.21(a).
The response y1 for the first case appears satisfactory. However, the 32% overshoot
of y2 exceeds 20% too much, so some correction is needed. The actual settling times
are somewhat longer than expected.

(a)

y1

y2

(b)

y1

y2

Fig. 6.21 Closed loop responses for preliminary tuning: plant A (a), plant B (b)

Plant B. For the model 0.99e−3.7 s/(2.2s + 1)2 and the rules (6.87), we have PID:
kp = 2.4k′, Ti = 4.4, Td = 1.1 and ts = 1.05 t ′s. Hence kp = 0.41, 0.98 and ts = 18, 27
for the two cases (p% = 0, 20). The filter time constant is 3.7/10 = 0.37. The PID
transfer function kp(1 + 1/(Tis)+ (Tds/D+ 1)) with a typical divisor D = 5 is im-
plemented. The filtered responses are shown in Fig. 6.21(b). As before, we may be
satisfied with the damped response y1. However, the 55% overshoot of y2 is far too
large than the required 20%.

The two examples indicate that if oscillatory responses are needed, due to the
difference between the dynamics of the plant and its model, the closed loop response
may differ considerably from specification, so controller settings must be corrected.



6 Supervisory Control and Optimization 275

Such corrections are usually called fine-tuning. However, fine-tuning is rarely dealt
with in the literature, being rather left to engineering experience.

Fine-tuning applied here is restricted to the correction of the gain kp, based on
the measurement of the overshoot p%. Ti and Td are left unchanged. The underlying
theory is explained below.

Let p% be the overshoot obtained initially and ξ the corresponding damping fac-
tor. For p% = 32,55 of the y2 plots in Fig. 6.21(a),(b), we have ξ = 0.34,0.19,
respectively. Using s′ = s τ/2 in the close-loop transfer function GII(s) of (6.78),
we write its denominator as (s′2 + 2ξ ω ′

ns′ + ω ′2
n ). However, the denominator may

be also written in the form (s′2 +(1− k′)s′ + k′) from (6.81). Such k′ corresponds
to the response with the actual damping ξ . By comparing coefficients of the two
representations we obtain

k′ =
(√

ξ 2 + 1− ξ
)2

. (6.88)

This value will be interpreted as relative gain of the loop, corresponding to a real
response.

To develop an iterative procedure, assume that at a step i, for some controller gain
kp,i, a closed loop response with the damping ξi is obtained. We are looking for a
new gain kp,i+1 that will provide a response with a specified damping ξspec. Since
kp is proportional to k′ (see (6.85), (6.87)), by using (6.88) we may write

kp,i+1 = kp,i

⎛
⎝
√

ξ 2
spec + 1− ξspec√

ξ 2
i + 1− ξi

⎞
⎠

2

. (6.89)

This formula will be applied in fine-tuning steps. We take p%,spec = 20 as before,
thus ξspec = 0.456.

Plant A. Let i = 0 denote the initial tuning, hence kp,0 = 7.7, ξ0 = 0.34 (see above).
For ξspec = 0.456, the formula (6.89) yields kp,1 = 6.2. The response y1 shown in
Fig. 6.22(a) has p% = 19.3. Another tuning step is not needed.

Plant B. Now kp,0 = 0.98 and ξ0 = 0.19 (for p% = 55). kp,1 = 0.59 results in y1

with p% = 11 (Fig. 6.22(b)), so ξ1 = 0.57. Now we need to increase the gain to get
p%,spec = 20%. kp,2 = 0.73 yields y2 with p% = 27 (ξ = 0.38). In the third step we
apply kp,3 = 0.64 and get y3 with p% = 16.4. It seems reasonably close to 20%, so
fine-tuning may be terminated.

Finally we recall that, due to a small τ/T ratio (2.1/19.5 = 0.11), the PI con-
troller designed as above, i.e., for p% specification, is quite sensitive. In Section 7.4.2
we consider a plant with similar τ/T , but with the PI controller designed for a spec-
ified settling time ts.
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(a)

y1

y0

(b)

y1

y0

y2 y3

Fig. 6.22 Close loop responses during fine-tuning: plant A (a), plant B (b)

6.2.2 Relay Self-tuning

Self-tuning based on relay oscillations is a method for automatic execution of the
well known Ziegler–Nichols experiment. Requirements on the steady-state are not
as strict as for the step response. However, one cannot expect particularly good
results, since relay oscillations provide information on the plant dynamics only, and
not on the steady-state gain.

6.2.2.1 Åström and Hägglund Method

In 1943, Ziegler and Nichols presented a limit cycle method for experimental tuning
of PID controllers, based on bringing the loop with a P controller to the stability
limit. Having critical gain kcr and oscillation period Tcr, the settings of the P, PI or
PID controller, whichever preferred, are calculated from simple rules, e.g., P: kp =
0.5 kcr, PI: kp = 0.45 kcr, Ti = 0.85 Tcr (O’Dwyer, 2003). As can be seen, the loop
with the P controller has the gain margin GM = 2 (= 1/0.5).

The Ziegler–Nichols experiment is somewhat cumbersome due to step-by-step
adjustments of the gain while approaching the stability limit. Hence broad interest,
25 years ago, in the simple idea of Åström and Hägglund (1984), who proposed
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automatic realization of the experiment by replacing the P controller with relay, as
shown in Fig. 6.23(a). The relay generates on-off control with some magnitude U ,
so the loop exhibits sustained oscillation, whose amplitude Acr and period Tcr are
measured (Fig. 6.23(b)). By employing the describing function of the relay, one can
calculate controller settings using frequency methods.

(a)

PID

Plant

-

uw

T

y

(b)

+U

+H
Acr

Tcr

-U

-H

u

y

Fig. 6.23 Loop with relay self-tuning (a), typical time diagrams (b)

Plant magnitude and angle. The describing function of the relay with hysteresis H
is given by

N(A) =
4U
πA

⎛
⎝
√

1−
(

H
A

)2

− j
H
A

⎞
⎠ . (6.90)

Let R and I denote absolute values of real and imaginary parts of the plant transfer
function at frequency ωcr = 2π/Tcr. Hence

Go( jωcr) = −R− jI = M e− jφ ,

M =
√

R2 + I2 , φ = π − arctan I
R .

(6.91)

The Nyquist condition 1 + N(Acr)Go( jωcr) = 0 for the limit cycle yields

R =
π

4U

√
A2

cr −H2 , I =
πH
4U

. (6.92)

So we have a single point of the plant frequency characteristic (Fig. 6.24(a)). This
is merely a single point, hence one cannot expect particularly good final results.

Design condition. To calculate controller settings, the following condition was ap-
plied by Hägglund and Åström (1991):

Go( jωcr)GPID( jωcr) =
1

GM
e− j(π−PM), (6.93)
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with the gain margin GM = 2 and the phase margin PM = π/4 (45◦). Figure 6.24(b)
shows how a single point of the open loop characteristic is affected by this condition,
when the plant angle φ exceeds 3

4 π (145◦). Such φ is common in practice, since
Acr is substantially grater than H for sufficiently large U . It is clear from (6.91) and
(6.93) that the controller must provide phase shift φ −π +PM at ωcr. Since φ > 3

4 π ,
for PM = π/4 we have positive shift φ − 3

4 π . Such shift can be introduced by the
PID controller only, and not by PI (to design PI we would have to take PM = 0).
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Fig. 6.24 Frequency characteristic: plant (a), single point of the open-loop for GM = 2,
PM = π/4 (b)

PID settings. The condition (6.93) gives two relations for the calculation of three
settings. From Ziegler–Nichols rules, we take Td = Ti/4 as the third one. By using
(6.91) and kp(1 + 1/(Tis)+ Tds) in (6.93), one obtains

kp =
GM
M

ωcrTi

(ωcrTi)2 + 4
, Ti =

2
ωcr

tan
1
2

(
φ − π

2
+ PM

)
, Td =

Ti

4
. (6.94)

For small or large delays, a PI controller with

small delay : kp = 0.5 1
M , Ti =

4
ωcr

(6.95)

large delay : kp = 0.25 1
M , Ti =

1.6
ωcr

(6.96)

is recommended by Hägglund and Åström (1991). They do not specify, however,
when to switch from PID to PI.

We will look at loop responses for the margins GM = 2 and PM = π/4.

Plant A. Relay control simulated for the on-off magnitude U = 0.22 (22%) and the
hysteresis H = 0.005 gives Acr = 0.016 and Tcr = 9.1. From the expressions (6.91),
(6.92), we get R = 0.055, I = 0.018, M = 0.058, φ = 2.83 (162◦), and from (6.94),
the PID settings kp = 7.7, Ti = 4.7, Td = 1.2. The response of the standard unity
feedback loop, i.e., with the PID controller driven by the control error (w− y), is
shown in Fig. 6.25(a). The overshoot is 31% and still remains, although reduced
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roughly by half, if we split the controller by leaving the I component driven by the
error and driving PD by the negative output −y. The PI controller tuned according
to (6.96) and split into I+P exhibits oscillations and a much longer settling time.

Plant B. Due to remarkable delay, the magnitude U must be much smaller than
before to avoid excessive output changes. U = 0.05 (5%) and H = 0.005 give Acr =
0.038 and Tcr = 16. Now R = 0.59, I = 0.078, M = 0.60, φ = 3.0 (172◦). PID
settings are kp = 0.66, Ti = 10, Td = 2.5. The response of the standard loop shown
in Fig. 6.25(b) seems quite poor. Much better is the response for the PI controller
tuned according to (6.96), i.e, kp = 0.42, Ti = 4.1.

(a)

I+P
I+PDPID

(a)

PID

PI

Fig. 6.25 Closed loop responses for different controllers: plant A (a), plant B (b)

6.2.2.2 Plant Dependent Margins

The examples reveal that the margins GM = 2 and PM = π/4 do not satisfy all
cases. It would be better to relate them to plant dynamics, evaluated somehow by
looking at relay oscillations more carefully.

Delay and period. Consider a typical plant koe−τs/(T s+ 1) whose dynamics may
be characterized by relative delay τ/T . The equation τωcr + arctan(Tωcr) = φ
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describes relay oscillations (see (6.90)–(6.92)). Thus the ratio τ/Tcr, being a func-
tion of τ/T and φ , may also characterize the plant dynamics. The angle φ does not
change much, assuming values in a fairly narrow interval (say 155...175◦, Fig. 6.24).
The delay τ can be read out from the oscillation plot, as the time interval be-
tween the control change and the extremum of the output, shown in the right hand
side of Fig. 6.23(b). Simulations of relay control for the plants koe−τs/(Ts + 1),
τ/T ∈ (0.05,2) and ko/(T s + 1)n, n = 1,2,3... have indicated that the ratio τ/Tcr

increases from about 0.1 for small τ/T or n up to about 0.3 for large τ/T or n.
Therefore, τ/Tcr will be used here as an indicator what plant we are dealing with.

GM, PM vs. τ/Tcr. In our modification of relay self-tuning the margins GM, PM are
not constant but related to τ/Tcr according to the nomograms of Fig. 6.26(a),(b). For
τ/Tcr close to 0.2, we have GM ∼= 2 and PM ∼= π/4, as in the work of Hägglund and
Åström (1991) (H–A dotted lines in Fig. 6.26). By adjusting GM, PM to the plant
dynamics, roughly similar responses are obtained for delays in a typical range. The
behavior of the PID controller for τ/Tcr

∼= 0.1 and 0.3 resembles that of PI, so there
is no need to switch the controllers for small or large delays. The responses of the
standard unity feedback loop exhibit modest overshoot of about 10...15%.
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Fig. 6.26 Nomograms of design margins in terms of τ/Tcr: GM (a), PM (b)

Overshoot elimination. A number of applications, e.g., temperature control, do not
tolerate overshoot after the set-point change. It turns out, however, that controller
settings obtained from relay self-tuning very often produce overshoots, even if PID
is split into I and PD components. Removing the overshoot in all cases is by no
means easy, as indicated by (Åström et al., 1993). After numerous trials and com-
parison tests, the PID controller structure shown in Fig. 6.27 is recommended to
avoid overshoot. The P component is driven by the control error (w− y), D by the
negative output −y, and I by modified error wf − y, with a filtered set point wf

coming from a low pass filter 1/(Tis/2 + 1). Such a structure has been favorably
evaluated in a number of temperature loops with relay self-tuning. Sample tuning
and response are shown in Section 7.4.2.
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Fig. 6.27 No-overshoot loop with a PID controller of a dedicated structure

6.2.2.3 Relay Asymmetry

The method of Åström and Hägglund (1984; 1991) assumes the symmetry of the
relay (Fig. 6.23(a)), which requires either the selection of the magnitude U or proper
adjustment of the limits Umin, Umax. This sometimes does not happen, especially if
the tuning algorithm must be service free.

Suppose the set-point w, control u and output y are all in the range 0...1 (0...100%),
so Umin = 0.0 and Umax = 1.0. The symmetry of the relay is provided only for
w = 0.5 and a linear plant with unity gain ko = 1. Any deviation from these val-
ues causes asymmetry, extending the oscillation period Tcr and, if expressions for
controller settings remain unchanged, deteriorating close loop responses.

Here the asymmetry is dealt with as follows:

• the switch-on time ton is determined from relay control (Fig. 6.28(a)) and the
ratio ton/Tcr expressing the degree of asymmetry is calculated;

• using the ratio ton/Tcr and the nomogram of Fig. 6.28(b), the value of the cor-
recting divisor f (ton/Tcr) is determined;

• the corrected period T ∗
cr defined by

T ∗
cr =

Tcr

f (ton/Tcr)
(6.97)

is used in GM and PM nomograms of Fig. 6.26(a),(b) instead of original Tcr.

If relay control is symmetric, i.e., f (ton/Tcr = 0.5) = 1, then T ∗
cr = Tcr. In other

cases we have T ∗
cr < Tcr, so the extension of the period Tcr due to asymmetry is

compensated (better or worse). The nomogram of Fig. 6.28(b) has been developed
under the assumption that settings obtained for the linear plant at any set-point w
must be almost the same as those obtained for w = 0.5. This is also valid for the
plant with the gain ko �= 1.

A compensation of relay asymmetry according to (6.97) gives good results for
linear plants, where changes of settings for different w and ko do not exceed 10%...15%.
The results are worse for non-linear plants, but in general they are still better than
those obtained while neglecting asymmetry altogether.
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Fig. 6.28 Asymmetry of the relay: control (a), nomogram of the period correcting divisor (b)

6.2.3 Loop Adaptation

As has been mentioned at the beginning, the EXACTPID algorithm (Kraus and My-
ron, 1984) has been found particularly useful for industrial applications. Given an
error transient after a set-point change or strong disturbance, the algorithm makes
such adjustments of controller settings so as to get transients with specified over-
shoot and damping, and a short settling time. The simplicity of specifications and
robustness even for a large change of plant properties are basic advantages of EX-
ACT. However, algorithmic details are protected by a patent.

An alternative algorithm based on the same specifications and operating similarly
is described below (Świder and Trybus, 2004). The algorithm employs three two-
dimensional surfaces (“maps”) that express overshoot, damping and frequency in
terms of two settings of the controller. The maps are given in the form of look-up ta-
bles with contour lines. After detecting a transient, the algorithm determines a point
where the loop operates, as the crossing of contours for overshoot and damping,
or frequency. User specifications, i.e., the required overshoot and damping, deter-
mine the target point. Having the distance between the two points, the settings are
adjusted accordingly.

6.2.3.1 Overshoot, Damping and Frequency vs. Settings

EXACT algorithm. Consider the standard control loop of Fig. 6.29 and assume that
the controller has been pre-tuned initially. The expected error transients to load-
step disturbance d are shown in Fig. 6.30. If the actual transient does not meet
specifications, EXACT executes adaptation by adjusting PID settings in a number
of steps. Each step follows a reference or disturbance excitation. Here, however, we
restrict ourselves only to disturbances, since internal structures of PID controllers
affecting reference responses may be different (see Fig. 6.27).
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Fig. 6.29 Control loop structure during adaptation

The EXACT algorithm uses two indicators of the shape of the transient, namely,
overshoot OVS and damping DMP, defined by

OVS = −E2

E1
, DMP =

E3 −E2

E1 −E2
, (6.98)

using the “peaks” E1, E2 and E3 (E2 < 0 for A, B in Fig. 6.30). The algorithm also
employs the period Tp to determine the time-scale. Tuning specifications involve
the required overshoot OVS∗ and damping DMP∗. Both OVS∗ and DMP∗ must be
non-negative, which means that a transient such as A, B or D may be specified as a
target. The transient C is excluded due to rapid changes of control.
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Tp
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Fig. 6.30 Error transients for load-step disturbances

Default specifications of the overshoot and damping provided initially by EX-
ACT are OVS∗ = DMP∗ = 0.3, which implies 2-nd order damped oscillatory re-
sponses. Notice, however, that the equality OVS∗ = DMP∗ does not determine loop
behavior uniquely, because the same overshoot and damping can be often obtained
both for slow and fast responses. For obvious reasons, EXACT tunes for a fast re-
sponse in such a case.
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Relative frequency. The transients A, D, most interesting in practice, can be de-
scribed by

E(s) =
c

s2 + 2ξ ωns+ ω2
n

, A : ξ < 1, D : ξ ≥ 1. (6.99)

B and C may have other components in the numerator and the denominator. The
natural frequency ωn of the transient A is calculated from standard expressions:

ωn =
ω√

1− ξ 2
, ξ =

σ
σ2 + ω2 , ω =

2π
Tp

, σ =
− ln |E2/E1|

Tp
.

(6.100)
We will return to the transient D further on.

The PID transfer function kp + 1/(Tis)+ Tds for Td = Ti/4 may be written as

PID :
kp

2z
(s+ z)2

s
, z =

2
Ti

. (6.101)

The controller has two independent settings, gain kp and zero z. Let e be a transient
A with certain natural frequency ωn, obtained for some kp and z. To relate ωn to z,
we define relative natural frequency:

OMN =
ωn

z
. (6.102)

It will be a third indicator used for adaptation.

Settings plane. Consider the following typical plant:

G(s) =
ko

T s+ 1
e−τs. (6.103)

Taking the PID controller (6.101), one can simulate the closed loop response for
some settings kp, z. From the error transient, we measure E1, E2, E3, determine OVS
and DMP, and, for the transient A (or B close to A), calculate ωn and, finally, OMN.

Define the relative zero of the controller as the product zτ and loop gain as kpko.
The plane with logarithmic coordinates,

a = log(zτ) , b = log(kpko), (6.104)

will be called the settings plane for the PID controller (6.101) and the plant (6.103).
Suppose now that an extensive number of simulations have been performed and

the corresponding indicators OVS, DMP and OMN evaluated. Points at which OVS =
consti, DMP = const j, OMN = constk can be connected together giving sets of con-
tour lines of three surfaces OVS(a,b), DMP(a,b), OMN(a,b) on the settings plane.
The contours for four plants with τ/T = 0.05, 0.2, 1 and 4 are shown in Fig. 6.31.
Areas A, B, C, D. The interval τ/T ∈ [0.05,4] satisfies most industrial plants. The
1.5 decade range along both axes in Fig. 6.31 covers a fairly large span of the settings
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Fig. 6.31 Contour lines of OV S, DMP and OMN for τ/T = 0.05,0.2,1,4 on the settings plane

kp, z (101.5 ∼= 31.6). The squares with characters A, B, C, D indicate areas where
error transients look like in Fig. 6.30. In particular, the transient A occurs for large
a (a strong I action in PID) and small or modest b. The transient B corresponds
to modest a and large b (a strong P action). Instability occurs above the contour
OVS = 1.0 on the right and DMP = 1.0 on the left. The relative frequency OMN
increases while moving up from the bottom (increase of gain). The OMN contours
are spaced by one fifth of decade (log0.4 = −0.4, log0.63 = −0.2, etc.). Hence a
step from one OMN contour to another changes the settling time roughly by 1/3
(ts = 4/(ξ ωn); 1.0−0.63 = 0.37 ∼= 1/3 in Fig. 6.31).

6.2.3.2 Fine-Tuning for Known τ/T

Target point. The contours of Fig. 6.31 reveal to what target our algorithm will con-
verge. Given some equality specifications OVS∗ = DMP∗ (transient A), the target
is a point at which the contours OVS∗, DMP∗ begin to diverge (a black square in
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Fig. 6.32(a)). If, however, OVS∗ < DMP∗, the target is a crossing point of the con-
tours OVS∗, DMP∗ (Fig. 6.32(b)). The divergence point is particularly important,
since it determines a limit transient A having the largest frequency OMN, hence the
shortest settling time. Any increase in controller sensitivity beyond the divergence
point results in a transient with the shape B (Fig. 6.30).

(a)

T
�

� 0.05

(b)

T
�

� 0.05
T
�

�1.0

Fig. 6.32 OV S∗ and DMP∗ contours: divergence point (a), crossing point (b)

To demonstrate how the contours of Fig. 6.31 can be employed for controller
tuning, assume temporarily that the relative delay τ/T of the plant (6.103) is known,
e.g., from preliminary tuning. Having τ/T , we can create three surfaces OVS(a,b),
DMP(a,b), OMN(a,b) and, given a starting point, use them to get to the target. This
is done as follows:

1. the starting point: suppose some initial settings k0
p, z0 yield a transient e0 from

which E0
1 , E0

2 , E0
3 are measured and OVS0, DMP0 computed.

• If OVS0 = DMP0, which means that e0 is a transient A, ω0
n is calculated from

(6.100) and OMN0 from (6.102). The starting point (a0, b0) is the crossing of
the contours OVS0, OMN0;

• If OVS0 < DMP0 (both positive), e0 represents the transient B, the crossing
of the contours OVS0, DMP0 becomes the starting point (a0, b0). Frequency
OMN0 is not needed here;

2. the target point: coordinates (a∗, b∗) of the target are determined either as the
divergence point (OVS∗ = DMP∗) or the crossing (OVS∗ < DMP∗). The first
case is shown in Fig. 6.33(a),(b);

3. new settings: measure the distances

Δa = a∗ −a0 , Δb = b∗ −b0 (6.105)

(Fig. 6.33(a),(b)) and compute the final settings

k∗p = k0
p 10Δb, z∗c = z0

c 10Δa. (6.106)
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Fig. 6.33 Convergence for the plant with τ/T = 0.2, the target point OV S∗ ∼= DMP∗ ∼= 0.3,
and the starting point in A or B: area A (a), area B (b)

As seen, if τ/T is known, the target can be reached in one step.
Such an algorithm is able to operate in the areas A, B. If the starting point is in

C or D (Fig. 6.31), we first have to get to A or B. Increasing a (stronger I action)
moves the operating point from D to A, and decreasing b (weaker P) from B to D.

6.2.3.3 Adaptation for Unknown τ/T

Now consider the case of unknown τ/T . To keep our algorithm unchanged, a cer-
tain generally applicable template value of τ/T must be chosen, such that the cor-
responding three surfaces OVStmpl(a,b), DMPtmpl(a,b), OMNtmpl(a,b) could be
applied for all plants. Hence the question arises as to what value of τ/T can be used
as a template. Before giving the answer, we recall that plants with large delay τ
are considered “difficult”. Thus it should not be surprising that the template we are
looking for will involve relatively large delay.

Consequences of template surfaces. The problem is illustrated in Fig. 6.34 by the
contours OVS = 0.3 for τ/T = 0.05, 0.2, 1 and 4. The contours have been moved
to have a common crossing at OMN = 1.0, near the divergence point of OVS and
DMP. As seen, for the transients B (upper left part), the contours almost overlap,
so τ/T does not really matter. The situation is different for the transients A (lower
part). Suppose that the starting and target points both lie on the same contour, i.e.,
OVS0 = OVS∗. This means that the initial transient has proper overshoot but is too
slow. If we choose the template at, say τ/T = 1, then only for points with τ = T the
algorithm will be able to reach the target in one step (thickest arrow in Fig. 6.34).
For τ < T , as for a majority of industrial plants, the step made from OMN0 < 1.0
along the contour for τ/T = 1 will be oriented inwards, because the contours for
τ/T < 1 run more vertically than for τ/T = 1 (compare τ/T = 0.05, 0.2 with 1 in
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Fig. 6.34). The step inwards means a decrease in the overshoot, so in the next step
the algorithm will have to turn right, to return to OVS∗.
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Fig. 6.34 Contours OV S = 0.3 for τ/T = 0.05, 0.2, 1, 4 and steps towards the target made
along the contour for τ/T = 1

The situation is different for plants with τ > T (dominant delay). When we start
from OMN0 < 1.0, the step along the contour for τ/T = 1 results in somewhat big-
ger overshoot than the initial OVS0 = OVS∗. Fortunately, the increase in the over-
shoot is small because the slope of the contours for τ/T > 1 is only slightly smaller
than for τ/T = 1 (compare τ/T = 1 with 4 in Fig. 6.34). In the second step, the
algorithm will decrease the overshoot by turning left.

Template surfaces. Taking above into account, OVStmpl(a,b), DMPtmpl(a,b),
OMNtmpl(a,b) for τ/T = 1 are chosen as template surfaces, i.e., for the plant whose
delay is the same as the time constant (“difficult” plant). Contour lines are obtained
for

Gtmpl =
e−s

s+ 1
(6.107)

and have already been shown in Fig. 6.31 (lower left).
We must add, however, that the template τ/T = 1 is suitable only if the target

point is close to the “top” of the contours, as in Fig. 6.34. Then OMN0 < OMN∗ ∼=
1.0, so the tuning will decrease the settling time. If we would like to slow down the
loop having OVS∗ < OVS0 < 1.0, a step down should be made. By comparing the
cases in Fig. 6.31, one can find that such a step has to go down almost vertically, not
along the slope of τ/T = 1, to avoid getting into the instability area (left side) for
plants with small τ/T . So when we want to make the loop slower, e−0.05s/(s+1) is
taken to create another three template surfaces.
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6.2.3.4 Implementation Issues and Tests

Damped response. To tune the controller for the transient D (Fig. 6.30), the follow-
ing negative overshoot is defined:

OVS = −e−π(2−ξ )/
√

1−(2−ξ )2
for ξ ∈ (1,2), (6.108)

and the corresponding contour lines are developed. ξ is calculated from three values
of time at which the transient overcomes the initial level (say 2%), reaches maxi-
mum E1 and falls below the initial level. The limit contour OVS = −0.1 in Fig.
6.35 represents ξ ∼= 1.4 (poles of E(s) = c/(s2 +2ξ ωns+ω2

n ) differ six times). The
transient D is further classified according to OVS and OMN as

DA : close to A − OVS ∈ [0,−0.1], OMN ≤ 1.0
DB : close to B − OVS ∈ [0,−0.1], OMN > 1.0
DD : “deep” in D − ξ ≥ 1.4.

(6.109)

The notion of negative overshoot has also been used in EXACT (Kraus and Myron,
1984).
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Range of contours. Look-up tables with template contours must be restricted for
implementation reasons. So only the most important area of the settings plane re-
stricted from the bottom by OMN = 0.25 and from above by OMN = 1.58 is cov-
ered by the surfaces OVStmpl(a,b), DMPtmpl(a,b), OMNtmpl(a,b). The low limit
OMN = 0.25 provides transients up to four times slower than the divergence point
OVS = DMP (or OMN = 1.0). If the starting point belongs to this area, the settings
are computed according to (6.106).

Fixed steps. If the starting point lies outside the area between OMN = 0.25 and
OMN = 1.58, then certain fixed steps Δa, Δb associated with the particular location
are applied in (6.106). Such steps are indicated in Fig. 6.35 by arrows with area
symbols in squares. Lengths and orientations of these arrows vary from area to area.

Instability. A large, rapid change of the process dynamics may cause instability
indicated by the overshoot OVS > 1.0. Based on such OVS and also on DMP, the
corresponding point is assigned to one of the areas NA, NB, NC. Fixed steps indi-
cated by the arrows (Fig. 6.35) are applied to bring the loop back into the stability
area.

Band-pass filter. Following Hägglund and Åström (1991), the error transient, be-
fore being processed by the adaptation algorithm, is first fed into the band-pass
filter. This protects the algorithm from being triggered by slow or fast periodic dis-
turbances, which could eventually de-tune the loop. The medium frequency of the
filter is 2/Ti.

Tests. For the standard plant (6.103), the algorithm converges in steps shown in
Fig. 6.34. Convergence for the benchmark plants A, B of (6.68) is illustrated in
Fig. 6.36. As can be seen, no matter where the starting point is, the adaptation con-
verges in several up to about ten steps. We remark that a somewhat simplified ver-
sion of the algorithm has been implemented in the RF-537 instrument controller
manufactured by the ZPDA company from Ostrów Wlkp. in Poland.
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Fig. 6.36 Plant contours and adaptation convergence: plant A (a), plant B (b)



6 Supervisory Control and Optimization 291

6.2.4 Function Blocks

This section presents input-output structures and principles of cooperation between
basic function blocks of control loops, i.e., PID controllers, self-tuning blocks and
the adaptive control block. Providing a standard control loop with self-tuning or
adaptation functionality requires placing an appropriate block in front of the PID
controller. The higher level of the DiaSter software is interfaced to the loop by
means of a set-point generator that selects either an internal or an external set-point.
The latter may come from DMC, GPC or optimization algorithms described in the
first part of the chapter. The cascade loop can also be built in this way. Brief indica-
tions on bumpless switchings are given.

6.2.4.1 PID, SELF and ADAPT

Two PID controllers, SELF_step, SELF_relay and ADAPT blocks, together with
typical connections, are shown in Fig. 6.37(a),(b), respectively. The first PID is stan-
dard, the second one structured according to Fig. 6.27.

(a)

(b)

Fig. 6.37 Controller, self-tuning and adaptive control blocks (a), typical connections (b)

PID. The inputs denote, respectively, SP: set-point, PV: process variable, Kp, Ti,
Td : controller settings, A_M: Automatic/Manual mode, CVm: control variable for
Manual. The outputs include CV: control variable, STA: block status (earlier in this
section the variables SP, PV and CV have been denoted by w, y and u, respectively).
A_M = 1 sets the controller to Automatic, A_M = 0 to Manual. CV equals CVm
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in Manual. The status STA can be 0: ready, another value: error (e.g., settings out
of range). Ranges of the settings Kp, Ti, Td and other limits are set in the block
properties window, but we will not show it here. After switching from Manual to
Automatic, CV begins from CVm to provide bumpless transfer. It is recommended,
however, to keep SP close to PV before switching. Bumpless transfer from Auto-
matic to Manual requires setting CVm close to CV.

SELF. Before self-tuning begins, the controller is usually in the Manual mode (A_M
= 0; although it is not necessary). Setting TUNE to 1 activates the procedure. The
SELF block sets the A_M output to 0, placing PID into Manual (if not in it al-
ready). Then, depending whether SELF_step or SELF_relay is used, a control step
or relay control appears at the output OUT connected to CVm in PID. In the case of
SELF_step, the step is made from the level at the CV input (usually connected to the
CV output of PID). SELF_relay operates as an on-off controller with a set-point SP
and a process output PV. The size of the control step, relay limits, hysteresis, etc. is
set in block properties. While the experiment goes on, SELF monitors the inputs and
executes corresponding calculations. Termination is indicated by the output status
STA = 2: success. Other types of status denote, respectively, 0: ready, 1: experiment
on, 3,4...: errors. When STA = success, PID settings appear at the outputs Kp, Ti,
Td . Now the user may deactivate self-tuning by setting TUNE to 0. The SELF block
becomes transparent, i.e., the inputs SP, PV, A_M and CVm are directly transferred
to the outputs. If A_M is set to Automatic, the PID controller acquires Kp, Ti, Td

from SELF and begins feedback control.
We remark that SELF_step does not provide gain fine-tuning if the closed loop

response is not exactly as specified (Sec. 6.2.1.3). This can be done manually by
measuring the overshoot and adjusting the gain according to (6.89).

ADAPT. If RUN is 1: on, ADAPT executes the “walking on the map” algorithm
described in Section 6.2.3. So when a transient (at least medium size) settles down,
new settings Kp, Ti, Td are output and acquired by the PID controller. The status
STA may be 1: off (RUN = 0), 0: waiting or tracking a transient, 1: new settings
ready, 3,4,...: errors. STA = 1 is a pulse, so it appears only briefly. For RUN = 0, the
inputs Kp0, Ti0, Td0 are transferred to the outputs (ADAPT is transparent). Normally,
before ADAPT is switched on, Kp0, Ti0, Td0 are set to values received from SELF.

6.2.4.2 Set-Point Control

The connection of the control loop to a higher level is provided by the SP gener-
ator, whose structure is shown in Fig. 6.38. The output SP is a set-point for PID,
SELF and ADAPT. By means of Switch and SPC (set-point control), the generator
switches between internal (upper) and external (lower) set-points.

Options for the internal set-point include SP manual, Sinusoid, and a time sched-
uler composed of Time line (time base), Lookup table and Gain (scaling). Mode = 1
selects SP manual in Selector. The External SP block at the bottom acquires a value
from a buffer, written by DMC, GPC, an optimum operating point or by the InView
environment. A DiaSter subpath of External SP transfers the value to the SP Ext
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Fig. 6.38 Structure of the SP generator for a set-point

output. External SP is selected for SPC = 1 (Switch in lower position). The internal
and external set-points must be equal for bumpless switching.
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7.1 Introduction

The functions of the DiaSter system are realized by means of specialized user
packages. These packages cooperate by means of the system software platform.
Particular packages can be developed as specialized libraries of modeling, system
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Maciej Ławryńczuk · Piotr Marusak
Institute of Control and Computation Engineering, Warsaw University of Technology,
ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
e-mail: {m.lawrynczuk,p.marusak}@ia.pw.edu.pl

Krzysztof Patan · Marcin Witczak
Institute of Control and Computation Engineering, University of Zielona Góra,
ul. Podgórna 50, 65–246 Zielona Góra, Poland
e-mail: {k.patan,m.witczak}@issi.uz.zgora.pl

Andrzej Stec
Department of Computer and Control Engineering, Rzeszów University of Technology,
W. Pola 2, 35–959 Rzeszów, Poland
e-mail: astec@prz-rzeszow.pl

Robert Szulim
Institute of Electrical Metrology, University of Zielona Góra
ul. Podgórna 50, 65–246 Zielona Góra, Poland
e-mail: r.szulim@ime.uz.zgora.pl



296 M. Syfert et al.

variables processing and visualization modules or as stand-alone software modules.
Individual packages or a specified set of packages can be used to implement partic-
ular tasks connected with process modeling, supervisory control, optimization and
diagnostics. The functions of individual packages complete each other, giving the
possibility to realize even more complex tasks.

Simple, unrelated examples were presented in previous chapters. They were used
to illustrate the presented theory and functioning rules of particular algorithms of
the DiaSter system. The aim of this chapter is to present a complete example where
different tasks are realized by different packages and the DiaSter platform for a cho-
sen object of automatic control, monitoring and diagnostics. Due to educational pur-
poses and clarity of presentation, the relatively simple set-up of a three tank system
was chosen.

7.2 System of Automatic Control and Diagnostics

The application of selected DiaSter modules and packages is presented with the use
of an example of the realization of control and diagnostic tasks for a Three Tank
(TT) system. This system consists of

• three serially connected tanks,
• a water supply system composed of the pump and the control valve together with

the positioner.

The water is supplied through the control valve to Tank 1. From the outlet of Tank 3,
the water freely pours out due to gravity. A diagram of the system with indicated
process variable measurements and control loops is presented in Fig. 7.1.

The control of the water level in Tank 3 is realized in the basic configuration.
The water level of 0.25 m is selected as a default working point. An additional
(nominally constant and not measured) water inflow to Tank 3 is considered. The
fluctuations of that flow are chosen as the main, unmeasured process disturbance.
The level of that flow changes randomly round a fixed constant value equal to about
2,7 l/min.

Process variables. The set of process variables, together with their descriptions
and value ranges, is presented in Table 7.1. These variables are the main process
variables that would be available (measured) in a real process of a similar kind.
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Fig. 7.1 Process and instrumentation diagram of the TT system together with symbolic des-
ignation of faults

Table 7.1 Set of process variables for the TT system

Symbol Description Value range

SP(LIC.4.1.SP) Control value of the system (desired position 0...0.5m
of the valve plug on the water inlet to Tank 1)

CV (LIC.4.1.CV) Feedback signal of the position of the valve plug 0...100%
on the water inlet to Tank 1

G(GT.4.2.01) Water outflow from Tank 1 0...100%
F1(FT.4.1.01) Water inflow to Tank 1 0...28 l/min
L11(LT.4.1.11) Water level in Tank 1 0...1m
L12(LT.4.1.12) (two redundant sensors)
L21(LT.4.1.21) Water level in Tank 2 0...1m
L22(LT.4.1.22) (two redundant sensors)
L31(LIC.4.1.PV) Water level in Tank 3 0...1m
L32(LT.4.1.32) (two redundant sensors)
F2(FT.4.1.02) Water outflow from Tank 3 0...33 l/min
P1(PT.4.1.01) Pressure in the inlet to the control valve 80...260kPa

(pressure of the pump)
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Faults. The set of examined faults for the TT system consists of the faults of instru-
ments, actuators and process components. Symbolic locations of fault introduction
are shown in Fig. 7.1, while fault specification is given in Table 7.2.

Table 7.2 Set of discussed faults for the TT system

fk Description

f1 Water pump operation stoppage (switch-off)
f2 Decrease of water pump efficiency
f3 Fault in the CV signal path
f4 Fault of the control valve servomotor
f5 Fault of the G valve position measuring path
f6 Fault of the control valve plug or seat
f7 Fault of the F1 flow measurement path
f8 Fault of the level L11 measurement path
f9 Leakage from Tank 1
f10 Partial clogging of the pipe between Tanks 1 and 2
f11 Fault of the level L21 measurement path
f12 Leakage from Tank 2
f13 Partial clogging of the pipe between Tanks 2 and 3
f14 Fault of the level L31 measurement path
f15 Leakage from Tank 3
f16 Partial clogging of the outlet from Tank 3
f17 Fault of the F2 measurement path
f18 Fault of the L12 measurement path
f19 Fault of the L22 measurement path
f20 Fault of the L32 measurement path
f21 Pressure P measurement path fault

7.3 Process Information Model in the DiaSter Platform

Basic process components and their relations that reflect the process structure are
defined in the DiaSter system configuration. These elements form the information
model of the process and the whole system. Particular packages use this model to
manage the processed information and the stored configuration.

Several subsystems and particular constituent components are distinguished
in the process structure. They are called assets. The following basic types of as-
sets are used: process (element symbolizing the whole TT system), section
(separate subsystems consisting of other subsystems or individual components),
component (representation of a single device), measuring device (compo-
nent type), actuator (component type) and pipeline (component type: water
transportation elements connecting particular devices). The additional task type is
used for organizational purposes.
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Fig. 7.2 Graphical representation of the component hierarchical structure

The set of defined assets is show in Fig. 7.2. The assets connected by the re-
lation “belongs to” formulate a hierarchical structure corresponding to the process
structure.

The relation “belongs to”, shown in Fig. 7.2, is just one of the relations defining
connections between process and system components that can be defined in the
DiaSter platform information model. There is also a possibility to use several other
built-in relations as well as user-defined ones. The following are defined and used
at a general software platform level (generally available in all system packages):

• the relation “connected as in/out”, which defines the direction of material/signals
flow between assets;

• the relation “delivered by”, which points out measuring devices that “produce”
particular process variables;

• the relation “of ”, which determines the connection between assets and their
faults.

The above relations were defined for all analyzed assets, process variables and
faults. Their graphical representation is shown in Figs. 7.4 and 7.5.
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Fig. 7.3 Graphical representation of the relations “delivered by” and “of”

Figure 7.5 presents the user interface of the main DiaSter configuration mod-
ule. The tree structure shown in the left hand window represents the hierarchical
structure of the process and system components as well as their relations.
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Fig. 7.4 Graphical representation of the component hierarchical structure

Fig. 7.5 Configuration user interface used to define process and system components as well
as their relations



302 M. Syfert et al.

7.4 Applications of the DiaSter System Packages

Different modules and packages of the DiaSter system were applied to fulfill the
tasks of simulation, control, advanced monitoring and diagnostics of the process
presented in Section 7.2. The general structure of the system is presented in Fig.7.6.

Fig. 7.6 Structure of the DiaSter system module for an example application. White blocks
represent platform modules while grey ones represent different user packages (realized as
system module plug-ins or stand alone modules).

The way of realizing particular tasks, together with examples of test results, is
presented in the succeeding sections. The performed tasks are described in an order
that corresponds to the logic of the implementation of the described system modules
for a real application. The following groups of tasks are distinguished:
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• the way of realizing the process simulator with the use of tools available in the
DiaSter system: the simulator plays the role of a “pattern process”—other system
features are presented with its use. The simulator is realized directly in the main
system calculation module PExSim (Block 1a in Fig.7.6) with the use of a spe-
cialized function block representing process components (Block 1b in Fig. 7.6);

• the example of control loop realizations that utilize the traditional PID controller
(with the auto-tuning capability) as well as predictive control: these tasks are
fulfilled by specialized calculation module plug-ins of the STA package (Self-
tuning and Adaptation, Block 2a in Fig. 7.6) and the SCO package (Supervisory
Control and Optimization, Block 2b in Fig. 7.6);

• the application of modeling based on collected archival data sets for the purpose
of process variable reconstruction and fault detection: TSK, SVM regression
and neural network models (locally recurrent networks and GMDH dynamic net-
works) were applied for this purpose. Models are identified in an off-line mode
with the use of the archival data analysis and modeling module MITforRD (block
3a in Fig. 7.6). The process of model input selection was supported by automatic
features selection realized by the KDD-FS package (Knowledge Discovery in
Database—Selection of Model Input Variables). Then, the models are used in
the PExSim module in an on-line mode to estimate selected process variables
(Block 3b in Fig. 7.6). Both kinds of models are realized as MITforRD plug-ins
(Blocks 3d, 3e and 3f in Fig. 7.6) of the TSK (Takagi–Sugeno–Kanga) models,
DNN (Locally Recurrent Neural Networks), dGMDH (Dynamic GMDH Neural
Networks) and SVM (Support Vector Machines Regression Models);

• the realization of diagnostic tasks with respect to current process diagnostics of
abrupt faults as well as detection, tracking and development prediction of in-
cipient faults (slow process degradation): two different approaches for current
process diagnostics are presented. One utilizes detection based on the set of par-
tial models and fuzzy reasoning, while the other is based on a belief network.
The former is realized as a standalone system module (Block 4a in Fig. 7.6) of
the HFD package (Fuzzy Diagnostics in the Hierarchical Structure) while the
latter is a MITforRD plug-in (Block 4b in Fig. 7.6) of the STN package (Belief
Networks Models). Incipient fault monitoring is realized by a specialized plug-in
of the PExSim calculation module (block 4c in Fig. 7.6) in the SlowFDP package
(Incipient Fault Tracking);

• specialized tasks of cyclic process modeling and recognition of the process state
with the use of the base of cases realized by the CBR and CBRFuzzy (Fuzzy Case
Base Reasoning Models for Cyclic Processes, Block 5 in Fig. 7.6) packages.

7.4.1 Process Simulator

The process simulator was realized in the variable processing module PExSim.
Figure 7.7 shows a block diagram of the TT system simulator. The described blocks
represent main simulator components:
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• pump + pipe + control valve: a water supply subsystem (including the control
valve and inflow pipes);

• tanks: a physical (balance) model of three tanks and pipelines;
• noise: a special subsystem responsible for generating measurement noise;
• disturbance: a special subsystem responsible for generating process disturbance.

The simulator has several parameters that influence its behavior. These parameters
were tuned in a way that would reflect, with satisfactory accuracy, the operation of
a real three tank system located at the Institute of Automatic Control and Robotics
of the Warsaw University of Technology.

Fig. 7.7 Block diagram of the TT system simulator

The following techniques were used during simulator development: the modeling
of selected process components based on real process data (pump model), theoret-
ical characteristics describing the actuator (valve model), balance equations of the
medium flows in consecutive tanks, and a theoretical physical law for the unbounded
gravity outflow from Tank 3.

The model of the pump was realized as a set of soft switched (with the use of
fuzzy logic) characteristics P(F) for different pump control signals MP. Functional
dependencies P = f (F,MP) of the assembly: a pump with a pipe between the pump
and the control valve) were identified from archival process data acquired during the
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operation of a real pump in a laboratory set-up. These characteristics are presented
in Fig. 7.8.

Characteristics of the control valve were modeled as the composition of a linear
part (in the range 0–10% of the opening degree) and a non-linear one (in the range
10–90% of the valve plug opening degree) calculated according to the formula

F = Kv (Sv)
√

p1v − p2v

ρ
, (7.1)

where p1, p2 denote pressure on the inlet and outlet of the pump, ρ denotes specific
water density, Kv is a theoretical flow factor for the valve and Sv is a cross-section
of the valve opening.

Fig. 7.8 Actuator (pump) non-linear characteristics for different control signals MP

The parameters of the equation (7.1) were selected based on the analysis of
archival process data acquired during the operation of a real actuator installed at
a laboratory. A block diagram of the control valve model realized in the PExSim
calculation module is presented in Fig. 7.9.

The following balance equations were formulated for each tank (1,2 and 3):

S1
dL11

dt
= F −α12S12

√
2g(L11 −L21), (7.2)

S2
dL21

dt
= α12S12

√
2g(L11 −L21)−α23S23

√
2g(L21 −L31), (7.3)

S3
dL3

dt
= α23S23

√
2g(L21 −L31)−α30S30

√
2gL31, (7.4)
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where S1, S2, S3 denote tank cross-sections, S12, S23 stand for cross-sections of the
pipes connecting consecutive tanks, and α12, α23 are flow coefficients.

Fig. 7.9 Block diagram of the control valve model realized in the PExSim module. The
“kv_max”, “alfa”, “ro” and “lin_range” blocks generate the parameters used to reconstruct
the Kv (Sv) function in (7.1).

Geometric parameters of the tanks were defined based on the dimensions of tanks
in a real, laboratory set-up. Values of the αxySxy products, determining the water
flow between the tanks, were assigned experimentally in such a way that the time
constants for the simulator were close to those achieved in a real laboratory set-up.
A similar procedure was used for calculating coefficients connected with leakages
(time constants of tank emptying).

A block diagram of the modeled three tanks in the PExSim calculation module is
presented in Fig. 7.10.
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Fig. 7.10 Block diagram of a three parallel tanks model realized in the PExSim module

Possibility of fault simulation. The elaborated simulator provides the capability
of simulating all faults considered for the TT system. Fault simulation is carried out
by

• functional blocks that modify signal values (additive or multiplicative changes)
for the faults of measurement paths,

• physical modeling (e.g., additional gravity water outflow from the tank) for the
faults of process components and actuators.
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An example of physical fault modeling is presented in Fig. 7.11 The leakage from
Tank 1 (fault f9) is calculated according to the following formula for a free gravity
outflow:

F10 = kw

√
2gL1, (7.5)

where F10 denotes the volume of the gravity outflow and kw denotes a constant
coefficient dependent on the resistance and cross-section of the leakage (hole).

Fig. 7.11 Example of physical fault modeling: leakage from Tank 1

7.4.2 Self-tuning: Selection of PID Settings

Blocks from the Self-tuning and Adaptation library and the three tank plant de-
scribed above are used here to demonstrate the operation of self-tuning loops while
selecting settings.

7.4.2.1 Control Loop Diagram

The controller governs the water level in the third tank by an inflow to the first tank.
The main path of control involving a general PIDSELF controller and accompanying
blocks is shown in Fig. 7.12. “SP generator” provides the set-point SP (internal or
external), the constants “CV Man”, “Man/Auto” and “Tune” set manual control and
operating modes. The water level expressed in meters is the process variable PV (up
to 0.5 m), and the opening of the inflow valve in percentage points is the controlled
variable CV . “Plant monitor” displays SP, PV and CV (m, %).
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Fig. 7.12 Main path of control with the PIDSELF controller

PIDSELF. The internal structure of “PIDSELF” (subpath) is shown in Fig. 7.13.
“SELF_step” executes tuning using the step response. PID is a standard controller
with P, I and D components driven by the control error SP−PV . “SELF_step” and
PID perform calculations on numbers in a normalized interval < 0.0,1.0 >. Since
SP and PV belong to the interval < 0.0,0.5 > m, the gains of “Gain SP” and “Filter
PV” are 2. Likewise, because the plant requires CV in < 0.0,100 > %, we have
0.01 in “Gain CVm” and 100 in “Gain CV”. The filter time constant of 3 seconds
is about 20 times smaller than the time constant of the plant (see Table 7.3 below).
The status STA indicates the current state of the “SELF_step” block (Ready, Busy,
Success, an error code). The diagram also involves two display blocks, “CV, SP, PV,
CVm” for the observation of signals (normalized), and “Kp, Ti, Td” to read out the
settings.

Fig. 7.13 Subpath of PIDSELF for step response tuning
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Plant responses. To get some feeling of the plant dynamics, three step responses
recorded for “CV man” = 40, 70 and 100% are shown in Fig. 7.14 (ManAuto = 0,
the Manual mode). The responses exhibit a single dominating time constant and
small delay. Hence koe−τs/(Ts+ 1) may be expected as an appropriate model. It is
clear by looking at settling times that the plant is non-linear.

Fig. 7.14 Step responses of the TT plant

7.4.2.2 Step Response Self-tuning

Due to non-linearity, self-tuning will be executed at a few operating points. Be-
sides, to avoid excessive sensitivity of the controller, the settling time of over-
damped responses, and not overshoot, will be chosen as the tuning specification
(in “SELF_step” properties). Recall that, before self-tuning is on, the plant must
remain in a steady-state.

Operation. Self-tuning begins when “Tune” is switched from off (value 0) to on
(1). “SELF_step” sets PID into Manual (A_M = 0), changes CVm from the current
value by the CV step, and replaces Ready (0) as the status STA by Busy (1). After
some time, when the process variable PV settles down at the new level, “SELF_step”
announces Success (2) at STA, presents calculated settings at the outputs K p, Ti,
T d and places the PID controller in Automatic (A_M = 1). The user may now
change the set-point SP to verify the closed loop response. By setting SAVE (1)
in “SELF_step” properties, the settings are stored permanently. Self-tuning is ter-
minated by switching “Tune” back to off. The controller returns to the pre-tuning
mode (Manual or Automatic), STA becomes Ready again.

Switching “Tune” to off before Success stops the procedure, leaving the settings
unchanged. The same happens if for some reason “SELF_step” fails and outputs
an error code at the STA output.



7 Application of the DiaSter System 311

Results. The following data are selected for self-tuning demonstration:

• operating points at SP = 0.1,0.3,0.5,0.7,0.9,
• control steps of magnitude 0.2 (increase/decrease),
• the noise level 0.002 (0.2%),
• a multiplier α = 1 for settling time specification ts = αT (6.83).

ts = T means that the closed loop response will settle down four times faster than the
plant itself. Table 7.3 presents plant parameters ko, T , τ and calculated settings Kp,
Ti for the five operating points. As seen, “SELF_step” chooses PI control (Td = 0)
due to the single time constant. The ratio τ/T is in < 0.11,0.22 >, so the plant may
be considered “easy”.

Table 7.3 Plant model parameters and controller settings

SP CV step ko T τ Kp Ti

0.1 +0.2 0.46 49.5 11.2 3.11 49.5
0.3 +0.2 1.02 86.2 12.8 2.12 86.2
0.5 –0.2 1.01 77.9 12.8 1.94 77.9
0.7 –0.2 1.29 95.2 12.8 1.85 95.2
0.9 –0.2 1.43 112.8 12.8 1.99 113

Single settings. To verify how the control loop behaves when a single set of settings
is applied in the whole range, the set-point SP is changed from 0.0 to 0.9 in three
equal steps, while keeping the settings at constant values determined for SP = 0.5,
i.e., as Kp = 1.94, Ti = 77.9 (Table 7.3). Responses are shown in Fig. 7.15. They do
not differ much (the upper limit of CV is reached in the third case), so a single set
of settings suffices for this plant.

Fig. 7.15 Closed loop responses for a single set of PID settings



312 M. Syfert et al.

7.4.2.3 Relay Self-tuning

A block diagram of Fig. 7.13 should now involve “SELF_relay” instead of “SELF_
step” and a dedicated PIDTC controller instead of standard PID. Due to the inter-
nal filter and a non-standard structure (Fig. 6.27), PIDTC provides none or small
overshoot. “SELF_relay” does not have CV input, since relay tuning is executed in
a closed loop. Besides, the plant does not have to be in a steady-state.

Sample run. Tuning transients and resulting responses shown in Fig. 7.16 are ob-
tained for the following steps:

1. the initial Manual mode of PIDTC (A_M = 0) with CVm = 0.0;
2. SP = 0.5 as a relay set-point (0.25m in the third tank);
3. “Tune” switched from off to on, relay control begins;
4. waiting for Success at the STA output;
5. reading out K p, Ti, T d and SAVE in “SELF_relay”;
6. the mode changed to Automatic (A_M = 1), “Tune” switched back to off ;
7. the verification of closed loop responses by decreasing SP to 0.4 and increasing

to 0.6 later.

Fig. 7.16 Relay tuning transients and closed loop responses

As seen, “SELF_relay” is able to complete self-tuning after five switchings.
The oscillation period Tcr is 57 seconds, relay control exhibits slight asymmetry
with the filling ratio ton/Tcr = 0.64 (Fig. 6.28). Settings of PIDTC are Kp = 4.3,
Ti = 15.8, Td = 3.86. Note that they differ substantially from Table 7.3, despite the
fact that responses look reasonably similar (5% overshoot in Fig. 7.16). The differ-
ence should not be surprising, however, since step response tuning and relay tuning
use different information on plant properties. The settling time is now about 50
seconds.
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Disturbance suppression. The reaction of the loop to a temporary leak of water
from one of the tanks is shown in Fig. 7.17. The leak is fairly large, since a steady-
state increase of CV by 40% from the last value is needed to compensate for it.
Nevertheless, the maximum drop of the water level in the third tank does not exceed
10% (from the last value).

Fig. 7.17 Response to temporary step disturbance

7.4.3 Reconstructing Process Variables with TSK Models

This section presents the use of TSK models to build partial models reconstruct-
ing selected process variables. These models were identified using archival process
data. For this purpose, the MITforRD module was used. The main window of the
application is presented in Fig. 7.18.

Fig. 7.18 MITforRD module main window
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The identification of the models was conducted using the following algorithm
parameters:

• the model reference output: the type of simulation in the which the output value
is estimated on the basis of the model outputs from previous steps of simulation.
The absolute error index was optimized;

• the number of membership functions for each fuzzyfied variable could change
from 1 to 4;

• all fuzzyfication parameters, determining the position and shape of membership
functions, were optimized;

• the structure of the successor function is not assumed to be known:

– the order of the equation was limited to 2,
– the delay of the input signal could change from 0 to 3, the output signal from

1 to 3 (in the case of the MRO);

• the following genetic operators were used: the initialization operator (numerical
parameters describing the structure of the conditions and the conclusions are
randomly selected from the range of the variation of the specified parameter,
making the selection according to homogeneous distribution), the cross operator
(crossing conducted using the information contained in the encoded genome) and
the mutation operator (carrying out random disturbances of randomly selected
parameters).

The process of model building using the MITforRD module consists of four stages
during which the user is supported by wizard windows. The identification process
is shown in the example model of the level in Tank 1 (no. 3 in Table 7.4). The time
series of the modeled signal is shown in Fig. 7.19.

Table 7.4 List of three tank system partial models

No. Base partial model Description

1 Ĝ = f1(CV ) Model of the pneumatic actuator
2 F̂1 = f2(G) Model of the control valve
3 L̂1 = f3(F1,L21) Model of the water level in Tank 1
4 L̂2 = f4(L11,L31) Model of the water level in Tank 2
5 L̂3 = f5(L21) Model of the water level in Tank 3
6 dP̂1 = f6(G) Model of the pump (+ outlet pipe)
7 F̂2 = f7(L3) Model of the water flow on the outflow

from Tank 3
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Fig. 7.19 Example time series of the modeled L11 signal (water level in Tank 1)

Stage I. Defining the modeled signal (model output) is the first phase of model
identification. In our case, the L1 signal was selected (water level in Tank 1).

Fig. 7.20 Modeled signal selection window
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Stage II. Then the input signals were selected. In the presented example, the model
inputs (Fig. 7.21) are the water inflow to Tank 1 (F1), the water level in Tank 2 (L2)
and the water level in Tank 1 (L1, MRO mode).

Fig. 7.21 Input signals selection window

Stage III. The next step is the definition of the model type. The list of avail-
able model types is dependent on the number of available plug-ins implementing
the various modeling methods (classical linear models, fuzzy, neural, etc.) Using
the Configure button, it is possible to introduce additional parameters specific to the
particular algorithm. In our case, a TSK model was selected. The parameters of the
algorithm were set in accordance with the above-described assumptions.
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Fig. 7.22 Windows for model definition and defining algorithm parameters

Stage IV. The final stage of the model identification process is the estimation of
model parameters based on the analysis of process data. A special dialogue window
is used to display the progress of the identification process, allowing the control of
its course (Fig. 7.23).

Fig. 7.23 Parameter estimation window

As a result of the identification process, a TSK model, which reproduces the
water level in Tank 1 with specific input signals, was obtained. The model response,
obtained during the identification process, is shown in Fig. 7.24.
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Fig. 7.24 Simulation results of the TSK model of the water level in Tank 1 (real and modeled
output signal)

The division into membership functions for fuzzyfied signals is shown in Fig. 7.25.

Fig. 7.25 Division into partitions for fuzzyfied signals with trapezoidal membership functions
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The identification process was conducted analogously for the other partial models
presented in Table 7.4.

7.4.4 Process Modeling with Neural Networks

In this section, neural networks of the dynamic type are used to model the water
level in the three tank laboratory system. The neural models considered realize the
dynamics using internal feedback, but both approaches provide one global model of
a system, unlike TSK methodology, which uses local models.

7.4.4.1 Locally Recurrent Networks

Here, the locally recurrent network is applied to build a model of the three tank
system. Analyzing knowledge about the system and measurably available data, the
following signals were selected as inputs: the control value of the valve on the inlet
of Tank 1—CV , the flow on the inlet of Tank 1—F1, and the pressure before the
control valve—P. The output was the water level in Tank 3—L32. Generally, the
three tank system model may be represented in the following form:

L = fNN(CV,F1,P), (7.6)

where fNN is non-linear mapping realized by the neural network. In the next step, it
is necessary to choose the modeling/identification method. In the case considered,
it is a locally recurrent network realized in the form of the LRGF plug-in. The se-
lection of process variables and the model type is carried out analogously to the
procedure presented in Section 7.4.3, Stages I–III.
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Fig. 7.26 Network parameter selection dialogue window

After that, one can configure the structure of the neural model. This process is
shown in Fig. 7.26. The structure of the neural model was selected using the trial and
error method, taking into account the generalization ability of the model. The best
performing model has one hidden layer with seven neurons with the IIR filter of the
1-st order and a hyperbolic tangent activation function. The output layer consists of
one linear neuron. The model has three inputs according to (7.6). The neural network
was trained using the ARS algorithm with the initial variance σ0 = 0,1. Before the
training, input and output data were preliminarily preprocessed using linear scaling
to the range < 0,1 >. To perform this, the minimum and maximum values of the
process variables listed in Table 7.1 were used. The training was carried out off-
line for 200 steps with the training set including 2001 samples. The stability of the
model was guaranteed by the gradient projection method. The training process is
shown in Fig. 7.27. As one can see, the MITforRD component prepares training
samples (Fig. 7.27(a)), informs about the progress of the training (Fig. 7.27(b)) and
displays model configuration settings (Fig. 7.27(c)).
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(a)

(b)

(c)

Fig. 7.27 Training of the neural model: preparing the data (a), progress of the training (b),
configuration of the model (c)



322 M. Syfert et al.

Performance of the model in the fault-free state. The quality of training expressed
in the form of the Sum of Squared Errors (SSE) is equal to 0,57, and in the form
of the Mean Squared Error (MSE) it is 2,8 ·10−4. In order to investigate the gener-
alization abilities of the model, it was tested using a very long sequence of testing
data including 13089 samples. In this case, SSE=11,67 and MSE=8,9 · 10−4. The
achieved results are relatively good. The testing results (for about 7000 samples)
are presented in Fig. 7.28. The model mimics changes of the reference signal pretty
well. The residual, oscillating around zero, has a relatively small value, excluding
narrow spikes occurring during changes of the reference value. Data were collected
in closed loop control. The reference signal was composed of random steps, and
each step lasted 300 seconds.

Fig. 7.28 Neural model testing
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Performance of the model in the case of faults. The neural model was designed for
normal operating conditions. The question is how it will behave in the case of faults.
The DiaSter system makes it possible to simulate a number of faulty scenarios. The
specification of faults is presented in Table 7.2.
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Fig. 7.29 Fault detection: faults f1– f5 (a), faults f6– f12 (b), faults f13– f16 (c), faults
f17– f21 (d)

Figure 7.29 shows the residual in the case of all simulated faults. As one can
see, the residual is insensitive to the faults f8 (sensor fault L11), f11 (sensor fault
L21), f17 (sensor fault F2), f18 (sensor fault L12), f19 (sensor fault L22), f20 (sensor
fault L32). It is impossible to detect these faults because the model does not use
signals connected to them. In order to detect these faults, a more complex model
representing water levels in all tanks should be designed.
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7.4.4.2 Dynamic GMDH Neural Networks

The GMDH neural network with dynamic neurons (described in Chapter 3) is used
to design the model of a three tank system. The selection of input and output signals
is performed in the same way as in Section 7.4.2. In a general way, the model of
a three tank system can be described by (7.6), where fNN stands for a non-linear
function represented by the GMDH neural network. The next step boils down to
the selection of the identification/modeling method. In this case, the GMDH neural
network, implemented as a plug-in of the MITforRD system, is used. The subsequent
step consist in the selection of the appropriate configuration of the neural model
(Fig. 7.30).

Fig. 7.30 Parameter selection panel of the GMDH model

In the presented example, the algorithm is stopped when the identification error
achieves the level of 10e-3. Additionally, the structure of a neural network is con-
strained to five layers, while the maximum number of neurons in a layer is 100.
Similarly as in the case of a locally recurrent neural network, it is assumed that the
neuron activation function is tanh(·). Finally, the dynamics order of the input and
output of a neuron is 1. The next very important step is concerned with the selection
of the settings of the parameter estimation method. In the case of the bounded-error
estimation technique described in Chapter 3, the maximum bounds of the error de-
scribing the difference between the model and the system should be provided. The
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Fig. 7.31 Validation of the GMDH model

last parameter describes the proportion between the training and validation data sets.
It should also be pointed out that before learning the data were pre-processed in a
similar way as in the case of locally recurrent neural networks.

Performance of the model in the fault-free case. As a result of the identifica-
tion procedure, the training was finalized after two iterations, which means that the
GMDH neural network consists of two layers. The validation results, being a mea-
sure of the generalization abilities of neural networks, are presented in Fig. 7.31.
As can be observed, the model approximates the system with very high accuracy,
which confirms its high performance. The training data were collected for a three
tank system working with the PID controller. The reference signal was composed of
randomly selected values, where each one was held for 300 seconds. Comparing the
results presented in Figs. 7.28 and 7.31, it can be observed that the GMDH model
has better generalization abilities than the one designed with the locally recurrent
neural network, which is clearly confirmed by the smaller amplitude of the resid-
ual for the fault-free case. On the other hand, the neural models being considered
were designed with different criteria and optimization techniques, and hence their
quantitative comparison cannot be performed.

Performance of the model in the faulty case. The GMDH neural model was de-
signed with fault-free data. Thus, a natural question arises: What is the performance
of the GMDH neural model in the case of faults? The set of faults, along with a short
description, is given in Table 7.2. Apart from the fact that the GMDH neural model
has higher performance than the locally recurrent neural network, the fault detection
results were exactly the same for both networks. Indeed, the general structures of
the networks are the same, and hence all the limitations regarding fault detection
with a locally recurrent neural network are exactly the same for the GMDH neural
network.
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7.4.5 Incipient Fault Tracking

In order to demonstrate the tools for incipient fault monitoring available in the
DiaSter system, the algorithm for monitoring control valve sedimentation was con-
figured and started. The control valve is normally used for controlling the water
level in Tank 3.

The difference between the observed value of the flow and the flow retrieved
from the model was used to evaluate the degree of valve sedimentation. The TSK
model was previously identified and then used to reconstruct the value of the flow.
The model was achieved with the use of process data and the tools described in Sec-
tion 7.4.3. The data for identification were collected during normal process opera-
tion, when the control valve was in a fault-free state (see Fig. 7.32). The evaluation
of the valve state was performed by assessing residual changes.

Fig. 7.32 Example of reconstructing the water flow through the control valve for the fault-free
state

Valve sedimentation was simulated as the process of a slow change of the valve
cross-section (percentage change of the current cross-section dependent on the cur-
rent valve position). After the fault simulation was started (in the first stage the
valve was completely efficient), the cross-section was decreased with the speed of
1 %/min.

The task of fault detection (including the determination of the moment of its
initiation) and the monitoring of its development was realized with the use of the
function blocks of the incipient fault monitoring library slowFDI of the PExSim
calculation module. This task is conducted in two steps:
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• fault detection and monitoring. The value of the parameter used to evaluate
the state of the monitored component (in this case, the value of the calculated
residual) is evaluated in an on-line mode. Upon detecting significant variations,
the fault detection signal is generated and the moment when the fault started is
evaluated (in this case, the moment when fault simulation was started);

• fault development tracking. The detection signal triggers the procedure of fault
monitoring (development tracking) and estimating the time left to reach the crit-
ical component state. The critical state is specified by determining the limiting
(threshold) value of the evaluated parameter (signal).

Fig. 7.33 Operator interface used to visualize the control valve sedimentation process. Time
series inform about the changes of the value of the monitored parameter (in this case, the
difference between the measured and the estimated flow through the control valve) and the
calculated time to reach the critical component state.

In the presented example, the threshold value of the evaluated parameter was
set to 3.5 l/min. The algorithm of fault detection and searching for the moment of
its initiation was analyzing the data in a 60 s time window. Upon fault detection
(the detection signal is pointed out on the top graph in Fig. 7.33), the algorithm
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determined that the fault started 48 s earlier. The detection signal was generated and
the procedure of fault development tracking was started. It is important to note that
the detection of the trend in the observed signal occurred very quickly, when the
trend was practically impossible to be noticed by a human observer.

The automatic determination of the time left to reach the critical state was started
just after an appropriate number of data samples from the process with an existing
fault were collected (the width of the time window was set to 180 s). The first eval-
uated value of the predicted time was equal to about 1500 s. This value was updated
in consecutive calculation steps, when new data from the process were achieved and
processed. Analyzing Fig. 7.33 (bottom graph), one can observe that, when the fault
was developing and the time was passing, the predicted time to the critical state
gradually decreased.

7.4.6 On-Line Diagnostics with Fuzzy Reasoning

The process of diagnostic system configuration can be divided into several, con-
tractual steps. The main stages correspond to designing detection algorithms and
a proper mechanism of diagnostic reasoning. Others are related to additional tasks
such as data collecting and pre-processing, modeling, system tuning or tests. The
consecutive sections describe the application of current diagnostics for the TT sys-
tem based on partial models, fuzzy residual evaluation and fuzzy diagnostic reason-
ing. Firstly, individual implementation phases are describes. Then, the examples of
system tests are described. The presented application takes into account all kinds of
faults considered for the TT system.

7.4.6.1 Defining the Set of Detection Algorithms

The set of proposed detection algorithms is mainly based on the set of partial mod-
els reconstructing selected process variables. The proposed models were defined
according to available measurements as well as the knowledge about the process
and its structure (described in the information model by the set of assets and the
relation “belong to"). They cover as small parts of the process as possible. The set
of proposed models, together with the corresponding assets defined in the platform
information model, is shown in Fig. 7.34.
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Fig. 7.34 Separated partial models for the TT system

The first five models strictly correspond to process components: the servomotor,
the control valve and three tanks. Two other models reconstruct the outflow from
Tank 3 (kind of output pipe model) and the pressure before the control valve (kind
of pump + connecting pipe model). The second model is based on the relation
between the pressure produced by the pump and the position of the valve, e.g., the
resulting water flow.

The above-mentioned models are used to generate the first five residuals. Three
additional residuals are based on the existing hardware redundancy of the water
level sensors in consecutive tanks. No other additional heuristic tests (detection al-
gorithms) that would carry extra knowledge about the relations between process
variables were used.

The set of proposed residuals (together with the algorithm of their calculation) is
presented in Table 7.5. The set was defined taking into account the achieved and the
desired fault isolability. It is also possible to specify other residuals (based on other
models and dependencies) that would allow achieving similar (high) fault isolability.

It is worth stressing that the usability of models for fault detection purposes was
one of the most important features considered during the selection of the model
structures. Sometimes simple model structures, e.g., partial (local) models vs. global
ones, permit defining the diagnostic relation more easily and more certainly. As a
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Table 7.5 Detection algorithms defined for the TT system

Residual Description Evaluation
threshold

r-TTS2-01-m = G−G∗ Servomotor (+ positioner) model ±5(2)
G∗ = f (CV )

r-TTS2-02-m = F1 −F∗
1 Control valve model ±1.5(1)

F∗
1 = f (G)

r-TTS2-03-m = L1 −L∗
1 Tank 1 model ±1(0.5)

L∗
1 = f (F1,L2)

r-TTS2-04-m = L2 −L∗
2 Tank 2 model ±1(0.5)

L∗
2 = f (L1,L3)

r-TTS2-05-m = L3 −L∗
3 Tank 3 model ±1(0.5)

L∗
3 = f (L2)

r-TTS2-07-m = F2 −F∗
2 Outflow model ±1.5(1)

F∗
2 = f (L3)

r-TTS2-08-m = P1 −P∗
1 Pump model ±3(1)

P∗
1 = f (G)

r-TTS2-01-r = L11 −L12 Utilization of hardware redundancy ±0.8(0.2)
of Tank 1 level measurement

r-TTS2-02-r = L21 −L22 Utilization of hardware redundancy ±0.8(0.2)
of Tank 2 level measurement

r-TTS2-03-r = L31 −L32 of Tank II level measurement ±0.8(0.2)
of Tank 3 level measurement

consequence, the operation of the diagnostic reasoning algorithm is more robust,
although perhaps a little bit less accurate. Such a situation occurs in the case of the
residual r-TTS2-02-m, where flow F1 is reconstructed based on signal G without
taking into account signal P1. In this case, the pressure difference can be substituted
with the pressure before the valve because that after the valve is constant (equals
atmospheric pressure).

7.4.6.2 Residual Evaluation and Diagnostic Relation Determination

In the presented example, three-valued residual evaluation was used. Distinguishing
positive and negative residual values allowed increasing fault isolability. This results
from the fact that there are several faults which cause different (opposite with respect
to their sign) fault effects, e.g., leakages and pipe clogging.

The diagnostic relation was defined based on expert knowledge and the struc-
ture of diagnostic tests. The achieved diagnostic matrix is shown in Fig. 7.35. One
can notice that complete fault detectability and almost complete isolability were
achieved. There exist only two groups of unconditionally unisolable faults: ( f3, f4)
and ( f10, f12).
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Fig. 7.35 Diagnostic matrix (notation of diagnostic relation) for the TT system. With respect
to simplifications only the pattern directions of residual changes are depicted in the table.
Particular rows correspond to pattern (expected) residual values in the case of particular fault
existence. The sign “±” denotes that the direction of the residual change is unknown (or
unimportant) but the change would occur. Two different columns (fault signatures) attributed
to one fault (in the case of sensor faults) denote two different, possible combinations of resid-
uals that can be observed according to the type of measurement disturbance (lower or higher
value).

The faults ( f3, f4) cannot be distinguished without installing additional sensors.
Possible isolation of the faults ( f10, f12) could be achieved by applying additional,
more complex models or reasoning techniques, e.g., directional residuals. However,
such solutions were not considered.

7.4.6.3 Data Collecting and Model Identification

Data recorded during normal process operation in a fault-free state were used for
the model identification purpose. During the experiment, the step changes of SP
covering the whole operation range were used. The data were collected with a 1s
sampling time.

For model-based residuals (1...5), TSK models, described in Section 7.4.2, were
used. The achieved accuracy was about 1–1.5% of the signal range. Only the model
reconstructing valve position (signal G) was less precise. In this case, the accuracy
was about 5%. The lower accuracy of this model results mainly from the assumed
sampling time, which is too long with respect to the valve dynamics. An example
result of the reconstruction of the water level in Tank 3 is shown in Fig. 7.36.
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Fig. 7.36 Example of the modeling quality for the model reconstructing the level in Tank 3

7.4.6.4 Setting the Parameters of Fuzzy Residual Evaluation

Trapezoid membership functions were used for fuzzy residual evaluation. The func-
tion parameters were determined based on the evaluation of statistical parameters
of residual time series for normal operation in a fault-free state. In fact, only the
parameters of a fuzzy set Z describing normal residual values (in a fault-free state)
had to be calculated. The parameters of two other sets, N and P, corresponding to
positive and negative residual values, were selected automatically according to the
rule stating that the sum of all membership functions should equal 1.

The boundaries of the residual values in a fault-free state together with the widths
of the transition regions between fuzzy set Z and sets P and N, are given in Table 7.5.
Figure 7.37 shows the window of the fuzzy residual parameters set-up.

Additionally, simple filtering in a time window of three samples width was used
for all the residuals. Such an operation is conducted very often because it introduces
small delay in detection and significantly decreases the possibility of generating
false alarms arising from residual value variations.
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Fig. 7.37 Example of selecting fuzzy residual evaluation parameters for the
r−T T S2−05−m residual

7.4.6.5 Setting the Parameters of the Reasoning Algorithm

Proper diagnostic reasoning is conducted with the use of the iFuzzyFDI package.
The algorithm implemented in this package allows conducting fuzzy reasoning in
a hierarchical structure. This algorithm has several parameters that control its be-
havior. They had to be selected during the configuration stage. Finally, the following
diagnostic reasoning parameters were set up:

• only one reasoning subsystem containing all faults and residuals was used. There
was no need to perform decomposition in the case of such a simple process as
the TT system;

• the option of dynamic decomposition was switched on. In this mode, the first ob-
served symptom causes automatic determination of the subset of possible faults
and useful residuals (in reasoning). Further reasoning is conducted only for a sub-
system created in such a way;

• the fault isolation mode was set to a safe mode that takes into account only ob-
served symptoms. This mode is useful in the case when the symptom dynamics
are not taken into account. This provides protection against false diagnoses in the
symptoms formulation phase;
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• when detecting contradictory diagnoses elaborated at the basic level (assuming
single fault scenarios), the system was set to switch automatically to a special
mode dedicated to analyze multiple faults scenarios.

7.4.6.6 Configuration of the Operator Interface

In the final step, a specialized graphical interface for the operator of the diagnostic
system was configured. The interface was realized in the InView visualization mod-
ule of the DiaSter platform. It consists of several screens used to display diagnoses
as well as to evaluate them. The main screen is presented in Fig. 7.38.

Fig. 7.38 Visualization of the process state in the InView module. Example of pointing out
unisolable faults ( f8, f10, f11, f9): case when the fault f10 was introduced. Additional faults
( f8, f11, f9) are unisolable according to the selected isolation mode that takes into account
only observed symptoms.

It contains a graphical representation of the process structure (similar to the one
used during normal process control) and special indicators displaying the fault cer-
tainty factors. These indicators are visualized in the form of the bar graphs placed
on the standard process mimics near to the corresponding components and measure-
ments. Additionally, the certainty factor of fault-free and unknown process states
are displayed. The colour of a graph bar is connected with the value of the fault
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certainty factor—faults with high certainty factors are marked with red while those
with smaller factor are displayed as yellow.

7.4.6.7 Examples of System Tests

The utilization of the process simulator allowed investigating several diagnostic sys-
tem tests. Below, examples of results for two fault scenarios are presented:

• a single fault of the process component—partial clogging of the pipe between
Tanks 1 and 2 ( f10),

• multiple fault scenario—simultaneous simulation of the faults of the measuring
path L21 ( f11) and P1 ( f21).

Fault of the process component f10. In this scenario, partial clogging (50% de-
crease of the pipe cross-section) of the pipe connecting Tanks 1 and 2 was simu-
lated. The time series of the residuals and the elaborated diagnosis are presented in
Fig. 7.39.

Fig. 7.39 Time series of residuals and the elaborated diagnosis in the case of fault f10 simu-
lation. The presented diagnosis was elaborated for the moment 00 : 15.

The preliminary diagnosis elaborated in the first stage, after the first symptom
occurred, was very imprecise. However, the final diagnosis was elaborated already
after about 5 s—the faults f8, f10, f11 and f12 were pointed out as possible ones.
They are unisolable, in this case, due to the selected isolation mode, which takes into
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account only observed symptoms. In the case of the fault f8 or f11, the occurrence
of additional symptoms of residuals s5-m or s2-r would increase isolability and the
elaborated diagnosis would be more precise (Fig. 7.40).

Fig. 7.40 Simulation of the fault f10: problem of variable fault isolability in the case of the
utilization of the isolation mode based only on observed symptoms. When the fault f11 is
simulated, the additional symptoms (s5-m, s2-r) make unique isolation of that fault possible

Multiple sensor faults f11 and f21. The reasoning algorithm applied also has the
ability to infer about multiple faults. In this scenario, first the fault of the measuring
path P1 ( f21, multiplicative change of −5%) was introduced. The diagnostic system
started the first isolation thread which produced a diagnosis pointing out unisolable
faults ( f5, f6, f21) for the observed symptoms s8-m(−). The time series of the resid-
uals and the elaborated diagnosis are shown in Fig. 7.41.
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Fig. 7.41 Time series of residuals and the elaborated diagnosis in the case of simultaneous
simulation of the faults f21 and f10

While the first fault was still present, the second one was introduced—the fault of
the measurement path L21 ( f11, additive fault of the value −0.05m). The reasoning
system started the second isolation thread. For the second thread, disjoint subsets of
possible faults and useful residuals were selected. This unequivocally pointed out
the fault f11. The idea of creating two independent isolation threads (with disjoint
subdiagnostic relations) is illustrated in Fig. 7.42.

The final diagnosis elaborated by the diagnostic system took the following conjunction-
alternative form: DGN = f11 ∨ f5 ∨ f6 ∨ f21 (the user interface visualizes the diag-
nosis in a simple form; the diagnostic messages explain its conjunction-alternative
form).



338 M. Syfert et al.

Fig. 7.42 Example of creating two independent isolation threads in the case of simultaneous
simulation of the faults f21 and f11

7.4.7 Belief Networks in a Diagnostic System

DiaSter allows employing diagnostic models which are the basis for reasoning on a
technical state of different objects or processes. An example is the belief-network-
based model, where reasoning is performed with the use of belief networks. The
model allows incorporating knowledge from different sources: passive and active
diagnostic experiments, experts who formulate subjective opinions, general domain
knowledge about the observed objects or processes considered. The implementation
of this model was contained in a plug-in of the MITforRD module.

This section presents an example of the identification of the diagnostic belief-
network-based model for the diagnosis of the TT system. A basic introduction to the
subsequent identification phases is also provided. Detailed explanations concerning
the theoretical basis of BNBMs were presented in Chapter 5.

7.4.7.1 Identification of the BNBM

The BNBM is a special diagnostic classifier which assigns learning examples rep-
resented by values of process variables to the classes of the technical state. In the
example considered, the structure of the BNBM consisted of

• the first stage (OCCs), which was represented by the set of parallel connected
one-class classifiers. This stage allows preprocessing the input data and mapping
them into the space of additional variables. They perform the function of instru-
mental variables which allow obtaining the interpretability of the parameters of
the model and incorporating additional knowledge;

• the second stage, which contained the procedure of adjustment calculus (equal-
ization and balance) of additional variables according to the set of user-defined
constraint equations. Adjusted variables are the outcome of this stage;
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• the third stage, which was represented by the belief network. In BNBMs, belief
networks deal with the interpretation of adjusted (or non-adjusted) additional
variables and drawing conclusions about the technical state of the object.

The general structure of a BNBM can comprise two or three stages. One can use
the BNBM as a composition of the first and the third stage only. When additional
domain knowledge about an object is given and constraint equations can be defined,
all three stages should be used. In this section, all stages are used intentionally in
order to present the main capabilities of the BNBM.

A typical process of the identification of the BNBM consists in

• setting up the initial version, which is conducted in the example considered;
• tuning model parameters, which is intentionally omitted in this section.

The determination of the initial version requires two steps: the assumption of the
structure of the model and the identification of the model parameters. Both steps
had to be preceded by the preparation of learning examples.

In contrast to dynamical or regressive models, classifiers, like the BNBM, assign
learning examples represented by values of process variables to the classes of the
technical state. In the example considered, an individual class of technical states was
represented by a binary individual output variable (e.g., f13 presented in Fig. 7.43).
They corresponded to 1 if the technical state (fault) considered occurred and 0
otherwise.

The binary values of output variables (presented in Fig. 7.43) which equal 1 were
established on the basis of known time intervals for the learning data set when in-
dividual faults occur. Because the intervals for individual faults comprised also un-
steady states, the learning examples which correspond to these states were excluded
additionally on the basis of the known time constant of the TT system. Finally, the
set of these variables formed the output data set of the BNBM.
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Fig. 7.43 Example output binary signals for different faults

Fig. 7.44 Selection of output binary signals which represents the technical states considered

After the preparation of output variables, the set of inputs was indicated. To di-
agnose the TT system, the following monitored variables were selected:

xD = {F1,F2,G,CV,P}. (7.7)
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In the example considered, the set of input variables was established on the basis
of subjective evaluation of the usefulness of process variables followed by the ob-
servation of their changes for different technical states. This approach is possible if
the diagnosis of a simple object is considered. In more complex cases, for a large set
of process variables, special methods of selection or extraction of process variables
should be used.

Second stage of the BNBM. This stage allows incorporating general domain knowl-
edge about an observed diagnostic object. This knowledge can be represented by
physical laws expressed in the form of constraint equations, which often shows the
relations between non-monitored additional variables and monitored process vari-
ables or known constants. The second stage is used to adjust additional variables
according to the constraint equations applied.

The process of BNBM construction with the application of adjustment blocks in
the second stage allows presenting additional capabilities of the model. To show it,
an assumption associated with conscious resignation from the faults concerned with
leakages was made intentionally. The subtraction of faults concerned with leakages
allowed incorporating general domain knowledge about the TT system.

One can state, after omitting leakages, according to the mass balance equations,
that the amount of liquid which inflows and outflows the TT system and the change
in the storage of liquid for a limited increment of time must be in balance and can
be expressed in the following form:

F1 −F2 = Z1 + Z2 + Z3, (7.8)

where

Z1 = S1
dL11

dt
, Z2 = S2

dL21

dt
and Z3 = S3

dL31

dt

are additional variables which describe changes of the liquid amount in Tank 1,
Tank 2 and Tank 3, where S1, S2, S3 are cross-sections of the tanks, and L11, L21,
L31 are the monitored liquid levels in containers. The additional variables Z1, Z2,
Z3 resulted from numerical differentiation of the monitored variables L11, L21, L31.
In the example considered, the variables Z1, Z2, Z3 were treated as directly non-
monitored, inaccessible variables in a real monitoring process whose values will be
reconstructed by the set of one-class classifiers during real time use of the diagnostic
model.

For the purpose of incorporating the constraint equation in the BNBM, the fol-
lowing set of additional variables was defined:

z = {Z1,Z2,Z3}. (7.9)

The BNBM plug-in allows representing the additional variables as discrete, in
the form of the classes of values of additional variables. Every additional variable
may be described by many classes of its values (intervals). In the example consid-
ered, the choice of the number of classes for individual variables was preceded by
the observation of changes of values of process variables. The choice had finally



342 M. Syfert et al.

significant influence on the efficiency of the diagnostic system built on the BNBM.
For the set considered, (7.9), seven classes for Z1, six for Z2 and Z3 were defined in
the examined example (Fig. 7.45).

Fig. 7.45 Defining classes of additional values in the MITforRD platform. Six classes for
variable Z1 are shown as an example.

To form the constraint equation shown in (7.8), monitored variables F1 and F2

were added as continuous variables. Their difference expression is stated in the left-
hand side of the equation (7.8). To obtain the equality of the equation considered,
the vector of corrections cz1,cz2,cz3 for estimated additional variables Ẑ1, Ẑ2, Ẑ3 was
calculated by the BNBM plug-in. The equation (7.8) takes the form

F1 −F2 = (Ẑ1 + cz1)+ (Ẑ2 + cz2)+ (Ẑ3 + cz3), (7.10)

where Ẑ1 + cz1, Ẑ2 + cz2, Ẑ3 + cz3 are reconstructed additional variables after
adjustment.

The interface presented in Fig. 7.46 shows an example of a defined homogeneous
constraint equation on the basis of different variable coefficients. Depending on em-
ployed values (1 ,-1, or 0) of coefficients, the variables are summed, subtracted or
extracted from the equation.
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Fig. 7.46 Interface of the second stage. Coefficients for the homogeneous form of (7.8) are
shown as an example

First stage of the BNBM: One-class classifiers. Generally, there is no universal
classifier which allows obtaining sufficient efficiency of the classification task for
every learning data set. This means that classifiers depend on the characteristics of
the data to be classified and that classifier systems need to be especially evaluated.

For this purpose, various types of classifiers had been tested and selected before
they were used in the first stage. This concerned their types as well as parameters,
which were also initially determined during testing with the use of different val-
idation methods. Good classification efficiency as well as sensitivity results were
obtained for the nearest neighbor type of one-class classifiers. These classifiers pre-
sented good generalization properties during the reconstruction of additional vari-
ables and were finally used in the example considered.

The interface of the first stage in Fig. 7.47 presents individual one-class classifier
parameters defined for an individual class of values of the additional variable. An-
other one is the fraction of rejected objects. This parameter deals with the fraction
of examples which are not taken into account during the learning process. In nearest
neighbor one-class classifiers, rejected objects are the outermost distance examples
(objects), which often results from mistakes or non-extracted unsteady states and
can be additionally omitted. The value of this parameter was adjusted iteratively to
obtain sufficient efficiency of individual one-class classifiers.
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Fig. 7.47 First stage interface of the BNBM

Third stage of the BNBM: The belief network. The learning process of the be-
lief network can be carried out in two ways. The first approach allows defining the
conditional probabilities and prior probabilities by hand, based on one’s own expe-
rience. In the second approach, examples in the form of additional (or reconstructed
additional) and output variables are used to learn the parameters of the network.
Both ways were used in the example considered.

Fig. 7.48 Example structure of the BNBM for the TT system
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The procedure of network learning stared from supervised learning on examples.
The input set xC (according to Fig. 7.48) of the third stage included

• adjusted additional values Z1, Z2, Z3, which were the outcomes of the second
stage;

• discrete values of variable G.

The output set of yC contained all analyzed classes of technical states and was equiv-
alent to the output set yD of the BNBM.

Fig. 7.49 Editor of belief network parameters: Stage III

In the BNBM plug-in, the Quick Medical Reference (QMR) structure of the be-
lief network is a default structure. Two types of nodes can be distinguished in this
structure: observation nodes and query nodes. The former represent diagnostic ob-
servation and the latter are answers of diagnostic queries. The observation nodes cor-
respond to the input variables xC and the query nodes to the technical state classes.
In the example considered, all nodes were represented by discrete nodes. The calcu-
lation of Conditional Probability Tables (CPTs) was realized using the Expectation-
Maximization (EM) algorithm for 600 of iterations and a 1,0e−6 learning error. The
interface of Stage III is presented in Fig. 7.49.

The initial structure as well as the conditional probabilities obtained after learn-
ing on examples can be redefined for additional knowledge incorporation. If the
additional expert knowledge is known, the change of the default structure and its
parameters is especially required. To show it, the additional expert knowledge about
the object considered was assumed intentionally in the analyzed example. The de-
tails are given in the next section. The redefined structure of the belief network is
presented in Fig. 7.50.
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Fig. 7.50 Belief network structure of the BNBM for the TT system

The structure of the BNBM for the TT system and the input-output variables for
individual stages are shown in Fig. 7.48.

7.4.7.2 Model Testing

The identified BNBM for the TT system was tested within the MITforRD frame-
work. Individual faults were simulated, hence only the maximum likelihood value
from the set of output states values of the belief network was treated as a conclusion
of diagnostic BNBM operation. An example result of the recognition of f1 (Water
pump operation stoppage) is shown in Fig. 7.51.

The BNBM classifier was initially tested with the resubstitution method. Full
recognition of the following faults was confirmed:

f = { f1, f2, f5, f6, f7, f10, f13, f16, f17}. (7.11)

An indistinguishable pair of the faults f3, f4 was observed. In the BNBM, distin-
guishability can be improved using domain knowledge elicitation from experts. This
knowledge can be expressed in the form of a subjective opinion about faults. In the
example considered, information on the coexistence of the faults f3, f4 with other
faults was employed. For instance, experts may state that the fault f3 is more likely
when faults (e.g., f7) concerning measurement equipment appear simultaneously
and unlikely for the fault f4. This information can be incorporated in the network by
direct association of nodes connected with measurement equipment with the nodes
Fault_3 and Fault_4. However, if the number of measurement equipment faults is
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Fig. 7.51 Example results in recognizing f1 during the verification of the BNBM with the
MIDforRD module

large, then the specification of CPT numbers in the nodes Fault_3 and Fault_4 can
be difficult. To avoid that, an additional node Aux was used between node measure-
ment equipment faults (e.g. f7) and the nodes Fault_3 and Fault_4.

The new numbers of the CPT of the nodes Aux, Fault_3 and Fault_4 can be
specified on the basis of individual expert opinions or, like in this example, on the
aggregation of individual expert opinions by a knowledge engineer. The informa-
tion that the fault f3 is more likely when faults (e.g., f7) concerning measurement
equipment appear simultaneously and unlikely for the fault f4 can be represented
by conditional probabilities P for the nodes Fault_3 and Fault_4. For example,

P(Fault_3 = Yes)|Aux = Yes) = 97% (7.12)

P(Fault_4 = No)|Aux = Yes) = 93%.

Analogously, one can state that the assertion faults concerning measurement equip-
ment occur is more certain if more faults connected with this equipment appear
simultaneously. In this case, the probabilities P for the node Aux can be specified.
For example,

P(Aux=Yes|Fault_7 = Yes,Other_ f aults = Yes) = 99% (7.13)

P(Aux=Yes|Fault_7 = Yes,Other_ f aults = No) = 80%.
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Fig. 7.52 Part of the belief network with an additional node Aux and query nodes with defined
belief degrees as a result of an inference process: Fault_3 = Fault f3 has occurred. High
belief degree, Fault_4 = Fault f4 has occurred. High belief degree, Fault_7 = Fault f7 has
occurred. Low belief degree (a); Fault_3 = Fault f3 has occurred. Very high belief degree,
Fault_4 = Fault f4 has occurred. Low belief degree, Fault_7 = Fault f7 has occurred. Very
high belief degree (b).

The part of the belief network with the node Aux is presented in Fig. 7.52. Note
that other associations between other measurement equipment faults which affect
Fault_3 and Fault_4 are intentionally omitted in this picture. The examined nodes
associated with variables represent the following statements:

Fault_3 Fault f3 has occurred with states {Yes, No},
Fault_4 Fault f4 has occurred with states {Yes, No},
Fault_7 Fault f7 has occurred with states {Yes, No},
Aux Faults of measurement equipment have occurred with states {Yes, No}.

Figure 7.52(a) presents the case of the undistinguishable faults f3 and f4. The
belief degrees of the variables Fault_3 and Fault_4 were defined as a result of the
inference process. The belief degrees of the variable Fault_3 (Fault f3 has occurred)
Yes = 79% and the variable F4 (Fault f3 has occurred) Yes = 80% are very high and
show that these faults are very likely. The rest of the belief degrees of fault nodes are
close to 50% and do not give any certain information to draw further conclusions.
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Figure 7.52(b) presents an example showing that additional information about the
variable Fault_7 (Fault f7 has occurred) Yes = 99% allows concluding that the fault
f3 is much more likely (Fault_3 (Fault f3 has occurred) Yes = 99%) than the fault
f4, where the belief degree is equal to Yes = 67% . The presented example shows that
the use of additional knowledge can be helpful in obtaining the distinguishability of
the faults f3 and f4.

An example process of BNBM construction was presented. It was shown how the
BNBM allows integrating knowledge from different sources. Supervised learning on
examples, the incorporation of general knowledge in the form of physical equations,
and adding expert knowledge represented by subjective opinions were shown. Full
distinguishability of the BNBM for the examined set of faults was achieved.

It is worth pointing out that the assumed structure of the BNBM for the object
considered is not the only one. For instance, there are many equivalent belief net-
work structures in the sense of the joint probability distribution which allow adding
the same additional expert knowledge. Also, some associations between nodes may
be unnecessary and could be removed with the use of structure learning algorithms.
The BNBM may also require the application of the tuning procedure, especially for
more complex diagnostic objects.

All the operations concerning the subsequent phases of BNBM identification
were conducted in the MITforRD module. The application of an identified BNBM
in on-line diagnostics can be done using the PExSim module.

7.4.8 Knowledge Discovery in Databases

The methods presented in Chapter 4 have been used for the data that had been pre-
pared by means of the simulator described in Section 7.4.1. The KDD package in-
cludes four applications. Two of them—selecting process variables and building
SVM models—require typical process data, such as those described in Section 7.2.
Two other modules are used for modeling cyclic processes and thus require data
of a special kind. Therefore, at the very beginning of this section we start with the
description of a numerical experiment that has been run for preparing data suitable
for modeling cyclic processes. Then we give examples of applications of programs
that allow building models of dynamic processes.

7.4.8.1 Simulation Data for Cyclic Processes

Due to the nature of the two discussed methods of case-based reasoning (based on
approximations models and on fuzzy models of processes), which are used within
the DiaSter system to build knowledge bases for cyclic processes, it was necessary
to prepare an adequate set of test data. For this purpose, it was necessary to use the
TT system simulator realized in the PExSim module to allow an experiment to be
carried out on the TT system simulator.
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It was decided that the simulated process would be cyclic and built of three
phases, with their nature differing substantially among the phases. All the phases
have a fixed duration (Table 7.6). The whole cycle takes 1000 s. Phase 0 is used to
determine the starting point of the process and defines the initial level in Tank 3.

Table 7.6 Times of process phase changes

Phase Start time (s)

0 0
1 110
2 300
3 800

For each phase, a target level of the liquid in Tank 3 was applied using nine
different configurations (Table 7.7). Figure 7.53 shows the model of the process in
the PExSim module.

Table 7.7 Levels applied in Tank 3

Level L3 Phase 0 Phase 1 Phase 2 Phase 3

1 0 0,15 0,3 0,05
2 0,05 0,15 0,3 0,05
3 0,1 0,15 0,3 0,05
4 0 0,2 0,35 0,1
5 0,05 0,2 0,35 0,1
6 0,1 0,2 0,35 0,1
7 0 0,25 0,4 0,15
8 0,05 0,25 0,4 0,15
9 0,1 0,25 0,4 0,15

It was determined that single distortions, in the form of faults applied to the
actuators and measuring elements, would only be introduced in the second phase.
Such faults may be of a temporary or a permanent nature. The experiment was
carried out for the two employed values of the fault levels of each component and
for the faultless state. Table 7.8 shows a description of individual faults simulated
during the experiment.
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Fig. 7.53 Configuration of the simulator cycle
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Table 7.8 Simulated faults

Fault Index Description

Damage of actuator f2 Efficiency drop in the pump
Leak f15 Leak from Tank 3
Block f10 Partial blocking of the channel between Tanks 1 and 2

Damage of holes f14 Damage of the measuring path of the level in Tank 3

The result of the experiment was simulation data obtained for 12 process vari-
ables of the simulator in the form of 81 cycles with the sample rate 1 s, representing
different process states.

7.4.8.2 Selection of Input Variables

One of the stages of mathematical model identification on the basis of experimental
data includes the stage of input selection. This stage may be, among others, auto-
mated by applying a method of feature selection developed within the domain of
data mining. In this subsection, an example use of the Feature Selection plug-in for
selecting model inputs is presented. The algorithm implemented in the plug-in is
based on the approach known as filter feature selection. In particular, the presented
plug-in is based on the algorithm of correlation-based feature selection with BF
search.

The user interface of the plug-in includes three tab pages (Fig. 7.54). The user
chooses the output variable in the Output tab page. The Inputs tab page facilitates
the choice of input variables and the delays range for each variable. The third tab
page, Selection (Fig. 7.54), allows defining parameters of the search process and
displays the obtained results. Particularly, the user may not only set the direction of
the search, but also determine the stop criterion.
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(a)

(b)

Fig. 7.54 User interface of the Feature Selection plug-in (Selection tab): calculation (a),
obtained results (b)
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The use of the plug-in was presented as an example of a task consisting in se-
lecting input variables of the model (7.14). The purpose of the model is to emulate
changes of the water levels in the 3-rd tank (L31). The tank belongs to the TT system.
The L21 variable representing the water level in the 2-nd tank is the second variable
considered in the model:

L̂31(k) = f (L21(k−1), . . . ,L21(k−10),L31(k−1), . . . ,L31(k−10). (7.14)

The essential data was acquired by means of the simulator. One of pre-defined simu-
lation scenarios was applied. The chosen scenario includes programmed changes of
the water level in the 3-rd tank (working point) and noise in measurement channels.
During the simulation, no faults of the installation were considered. The system
simulation took 220 minutes, whereas a sampling period was 1 second. As a result,
time series of 12 process variables were obtained. The stage of data preparation
consisted in selecting data samples with indices from 1000 to 4000. Due to a vast
state space (approx. 230), the limited search method along with the stop criterion af-
ter 10000 iterations was applied in the experiment. The obtained results for various
configurations of the search process are presented in Table 7.9.

Table 7.9 Example results for input selection of the model (7.14)

Search termination Search direction Selected inputs Score

user defined forward L21(k − 1), L21(k − 2),
L21(k − 5), L31(k − 1),
L31(k−2), L31(k−3)

0.9998711

user defined backward L21(k − 1), L21(k − 3), L31(k −
1), L31(k−2), L31(k−3)

0,9998712

7.4.8.3 Predicting Process Variables by SVM models

The method of support vector machines is one of the most frequently used methods
of data modeling within the domain of data mining. Generally, it may be applied for
tasks of data classification and approximation. In this subsection, an example use of
the SVM Regression plug-in is presented. The plug-in is based on the SVM method
and its aim is to identify autoregressive models. Particularly, the presented plug-in
was developed on the basis of the SMO algorithm.

A user interface consists of a number of tab pages. The given tab pages allow
determining the SVM model parameters as well as the parameters of the algorithm
defining the model. In Fig. 7.55, main plug-in tab pages are presented. The General
tab page (Fig. 7.55(a)) is used for defining the basic parameters of the SMO algo-
rithm. Moreover, the Inputs and Kernel (Fig. 7.55(b)) tab pages facilitate precise
determination of the features of the SVM model to be identified.
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(a)

(b)

Fig. 7.55 User interface of the SVM plug-in: General tab (a), Kernel tab (b)

Similarly as in the case of input variables selection, the task of identifying the
model (7.14) is presented as an example of plug-in use. The same set of data was
applied. Variables identified in the selection process were introduced as the model
inputs. Particularly, these included L21(k − 1), L21(k − 2), L21(k − 3), L21(k − 4),
L21(k−5), L21(k−6), L31(k−1), L31(k−2), L31(k−3).

During the experiment, various configurations of the model and the learning algo-
rithm were examined. Among others, models with linear and radial kernel functions
were analyzed. In particular, a model consisting of 100 support vectors was ob-
tained. Moreover, the following parameters of the learning algorithm were applied:
C = 1 and ε = 0.001. Results of model verification, i.e., the model response and the
residuum, are presented in Fig. 7.56. Furthermore, the mean square error as well as
the Mean Absolute Error (MAE) were calculated:

• MSE: e2 = 2.24502e−06,
• MAE: |e| = 0.00119368.
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(a)

(b)

Fig. 7.56 Results of SVM-based model identification of the L31 variable: model response (a),
residuum (b)

7.4.8.4 Approximation Models of Cyclic Processes

The CBR module allows building a process model of a cyclic nature in the form
of a base of models describing similarities between applications of selected groups
of process variables. During modeling, the CBR module uses archival data in the
form of MITforRD module data files (mbbin files) and stores information about the
model (tables of similarities), and the configuration of the individual module in a
specialized CBR package database stored in the DiaSter platform configuration.

As a first step, it is necessary to prepare an appropriate archival database. Such a
database must contain information regarding the cycles of the studied process in the
form of appropriate indices of the cycles for the data stored in the archival database.
During the preparation of the model, the user selects the desired variables from the
set of process variables available in the DiaSter platform configuration and indicates
the type of the model to be created.

After selecting the CBR model, the user interface window appears to configure
additional information selected from the database (Fig. 7.57). It is now possible to
enter information about the new cycle, or delete an existing cycle of the selected
database for modeling. At this time it is also possible to configure the type for the
selected process variables (INPUT , OUTPUT , CONT ROL). This information is
automatically stored in the database of the CBR module.
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Fig. 7.57 CBR module windows: cycle configuration

In the next window of the interface (Fig. 7.58), the user has the ability to browse
the archival data regarding the preparation of the modeling process. The user may
view the approximated process cycles for different numbers of approximating points.
Approximation is conducted in accordance with the described method of modeling
cyclic processes.
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Fig. 7.58 CBR module windows: parameters of the method

After the configuration, the user can go to the model estimation window or open
another window to analyze the model already created (Fig. 7.59). As a result of
the CBR module, a knowledge base is created in the form of tables of similarities
between archival realizations for the selected process variables. This table is then
stored in the database.

During the search for a process similar to the one currently being conducted,
the module returns the tables of values of similarities with respect to the process
realization under consideration. The table contains values of similarities for process
variables selected during the phase of identification. The similarities relate to the
inputs, outputs and controls for the different process realizations. A complete table
of similarities is returned, which allows sorting results by the user and provides
him/her with the possibility to view selected realizations.
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Fig. 7.59 CBR module windows: results of searching for a similar cycle

7.4.8.5 Fuzzy Models of Cyclic Processes

The CBRFuzzy module allows building a database of cases with fuzzy represen-
tation of every case. The database of cases can be used for searching for similar
realizations using a special fuzzy similarity measure.

Building the database of cases. A database of cases stores historical control courses
of a given process. Every case in the database consists of a description of process
realization and the data representing control time series (Fig. 7.60).

Fig. 7.60 Examples of cases representing different classes
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The description of every case can be realized as a string describing the class of the
example, e.g., process OK, a leak of the valve, a blockage of the valve, etc. Usually,
the database of cases could be built using real process data and the cases could be
described by experts conducting given a process. However, the description consists
of analyses carried out using data obtained as a result of the numerical experiment.

Depending on the representation of the cases it might be necessary to set infor-
mation about the representation of the parameters of a course. When using linear
approximation, it is necessary to set the maximal approximation error, fuzzy sets
borders and matrices of similarity of fuzzy sets. Parameter values have significant
influence on the effectiveness of searching for similar realizations.

Preprocessed data can be loaded into a plug-in private database of cases by means
of special procedures. Every case should be described by failure class membership.
It is possible to use operators’ opinions to provide additional information about
stored data representing an archival realization. Operators can provide data with
their own descriptions, both of them stored in the database of cases. Those pieces of
information can then be used during the presentation of the results of searching for
similar realizations.

Testing the database of cases. During the work with the simulated system consist-
ing of three tanks, experiments with searching for similar realizations in the database
of cases were conducted. The database contained realizations corresponding to the
control of the valve. At a certain stage of the cycle, searching for courses similar to
the current one was carried out. The moment of triggering the searching operation
can be defined as fixed time of the realization of a certain stage of a given process.
Every similar example found is described by the value of membership to the fault
class. This information can be presented to the operator of the process.

The case much less similar looked like in Fig. 7.62. It is possible to limit the
number of found realizations by setting the threshold value of similarity. The value
of similarity is strongly determined by values of parameters of the module. The most
similar case found can be used as the description of the current realization by the
operators of the process. This description can be used by the operator as advice on
how to deal with the current process. For a majority of cases in the database, the
most similar case found belonged to the same class (Table 7.10).
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Fig. 7.61 Results of searching for similar courses: high similarity

Fig. 7.62 Results of searching for similar courses: low similarity
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Table 7.10 Performance of the database of cases and the similarity measure

Class Number of cases Performance index [%]

Number of all cases in the database 15
Same class of the found case 12 80
Different class of the found case 3 20

Using models based on fuzzy description. It is possible to use a DiaSter solution
founded on CBR to build the system of fault detection in the production process.
For the example process, it is possible to compare the current control course with
the cases stored in the database. The most similar case found should be described in
the database by additional information which may indicate the state of the process,
like “possibility of a valve fault”. This information can be presented in a synoptic
screen of PExSim as a text description of the state of the given process at the end of
a certain stage. The work of the plug-in begins at the end of a certain stage of the
process or is triggered by the operator. The control course of the current process is
downloaded from the DiaSter system and processed to a form that can be compared
with the cases stored in the knowledge base. Then searching for a similar realization
in the database begins. Based on information regarding the most similar realization,
a conclusion about the current process can be formulated. This conclusion can be
presented in a synoptic screen of the DiaSter system.

7.4.9 Model Predictive Control with Constraints and Faulty
Conditions

The DMC predictive algorithm was designed for the control plant. In order to do
that, first the control plant was simulated using the PExSim module—an element
of the DiaSter software platform. The normalized step response was obtained using
the “Text file output” block. After a series of simulation experiments, the following
parameters of the DMC controller were assumed: λ = 0.0001, D = N = 100, Nu = 2.
The analytical version of the DMC algorithm was used. Thus, the control signal is
generated using an explicit control law. The constraints are taken into consideration
by projecting the obtained control values on the constraint set. Figure 7.63 shows
the configuration of the DMC algorithm for the triple tank system in the PExSim
module.

7.4.9.1 Control with Constraints

In Fig. 7.64, results obtained during control system simulation after a change of the
set-point of the level in the third tank from 0 to 0.35 are shown. Two cases were
considered: without and with constraints taken into consideration by the controller,
using the mechanism of control projection. In the first case, the control signal gen-
erated by the controller is much higher than the upper allowed bound (100% of the
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valve opening). Because of that, relatively big overshoot was obtained. After using
the control projection mechanism, the operation of the control system improved.
The overshoot is now much smaller and the control signal is much shorter on the
boundary.

Fig. 7.63 DMC algorithm for the triple tank system simulated in the PExSim module
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Fig. 7.64 Result obtained in the control system with the analytical DMC algorithm without
(a) and with (b) constraints taken into consideration

7.4.9.2 Control in Faulty Conditions

The operation of the control system in faulty conditions is very interesting. The
robustness of the control system with the predictive controller based on the nominal
process model (no information about faults was used) was checked. Many faulty
scenarios were tested. The most interesting results are presented in the subsequent
figures. In Fig. 7.65, results of control system simulation in the case when a leakage
from Tank 1 occurs (fault f9) are shown. 50% of the maximal leakage was assumed.
Despite such a huge disturbance, a satisfactory response was obtained. The control
time is a little bit longer than in the case before fault occurrence, but there is no
overshoot. By observing the control signal one can notice that the operating point
changed (the control signal settles near 92% instead of 78%). Similar behavior of
the control system was observed in the case of leakages from the other two tanks.
However, in the case of huge leakages, it is impossible to achieve the assumed set-
point value.

The next group of faulty situations which were simulated are jammings of the
pipes leading from the tanks. In Fig. 7.66, results of control system simulation in the
case when the pipe between Tanks 2 and 3 was jammed (fault f13) are shown. 50%
of the maximal flow rate was assumed. Despite the fault, the obtained responses are
very close to those before fault occurrence. A similar result was obtained in the case
of the jamming of the pipe between Tanks 1 and 2. These results are the evidence of
considerable robustness of the controller.
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Big differences in control system operation were observed after the jamming of
the outlet from Tank 3 (fault f16, Fig. 7.67). It is because Tank 3 can now be filled
in much faster than in the case before fault occurrence. As a result, huge overshoot
occurs. On the other hand, the control signal stays on the bound much shorter.

Summing up, in the case of most faulty situations, the predictive controller works
unexpectedly well despite the simplicity of its structure and the constraint handling
mechanism, as well as the fact that the controller was not reconfigured. The PExSim
module, however, makes it possible to design a few controllers for different faulty
scenarios and switching between them, depending on a particular fault.

Fig. 7.65 Result obtained in the control system with the analytical DMC algorithm with
constraints taken into consideration when a leakage from Tank 1 occurs (fault f9)
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Fig. 7.66 Result obtained in the control system with the analytical DMC algorithm with
constraints taken into consideration when the pipe between Tanks 2 and 3 was jammed (fault
f13)



7 Application of the DiaSter System 367

Fig. 7.67 Result obtained in the control system with the analytical DMC algorithm with
constraints taken into consideration when the outlet from Tank 3 was jammed (fault f16)



References

Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological variations,
and system approaches. AICom–Artificial Intelligence Communications 7(1), 39–59
(1994)

Abdessemed, F., Monacelli, E., Benmahammed, K.: A learning paradigm for motion control
of mobile manipulators. International Journal of Applied Mathematics and Computer
Science 16(4), 475–484 (2006)

Ackermann, J.: Robust Control. The Parameter Space Approach. Springer, Berlin (2002)
Aczel, A.D.: Complete Business Statistics, 5th edn. McGraw-Hill/Irwin, New York (2001)
DAMS, http://www.mscsoftware.com/products/adams.cfm.
Albertos, P., Sala, A.: Multivariable Control Systems. An Engineering Approach. Springer,

Berlin (2002)
Allgöwer, F., Badgwell, T., Qin, J., Rawlings, J., Wright, S.: Nonlinear predictive control and

moving horizon estimation—An introductory overview. In: Frank, P. (ed.) Advances in
Control—Highlights of ECC 1999, ch. 12. Springer, London (1999)

Arbib, M.A. (ed.): The Metaphorical Brain, 2nd edn. Wiley, New York (1989)
Astolfi, A., Karagiannis, D., Ortega, R.: Nonlinear and Adaptive Control with Applications.

Springer, Berlin (2008)
Åström, K.J., Hägglund, T.: PID Controllers, Theory, Design, and Tuning, Instrument Society

of America, Research Triangle Park (1995)
Åström, K.J., Hägglund, T.: Automatic tuninig of simple regulators with specifications on

phase and amplitude margins. Automatica 20(5), 645–651 (1984)
Åström, K.J., Hägglund, T., Hang, C.C., Ho, W.K.: Automatic tuninig adaptation for PID

controllers—A survey. Control Engineering Practice 1(4), 699–714 (1993)
Åström, K., Wittemark, B.: Computer Controlled Systems. Prentice Hall, Upper Saddle River

(1997)
Back, A.D., Tsoi, A.C.: FIR IIR synapses. A new neural network architecture for time series

modelling. Neural Computation 3(3), 375–385 (1991)
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Świątek, J.: Selected Problems of the Identification of Static Complex Systems. Warsaw Uni-
versity of Technology Press, Warsaw (2009) (in Polish)
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Michalewicz, M. (eds.) ISMIS 1996. LNCS (LNAI), vol. 1079, pp. 139–148. Springer,
Heidelberg (1996)



Index

ARMA (auto-regressive moving average)
model, 85

Artificial neural networks, 10, 99
cascade, 107
dynamic GMDH, 111, 324
GMDH, 57, 111, 168, 324
multi-layer perceptron (MLP), 100, 156
recurrent, 101

globally, 101
locally, 101, 104, 319

state space, 103, 105
with external dynamics, 100

ARX (autoregressive with exogenous input),
247

Automatic control system, 1, 7
direct digital control, 2
functional structure, 1
hardware structure, 6
hierarchical structure, 3
management, 1
modern, 1
predictive, 8
supervisory control, 2, 3, 15

BEA (bounded error approach), 160, 166
Belief networks, 206, 216, 338

application, 225
graph-based model, 222

Binary diagnostic matrix, 180
BNBM (belief-network-based-model), 210,

338

Cases representation, 144
CBR (case-based reasoning), 120, 135, 356

fuzzy description, 143, 359
CFS (correlation-based feature selection),

122
Classifier, 214, 343

binary, 214
learning, 218
multi-class, 214
OCC (one-class classifiers), 212

Control
advanced, 15, 25, 29
fault-tolerant, 10
generalized predictive, 247
horizon, 237
model-based predictive, 235
non-linear predictive, 250
predictive, 8, 234
set-point, 15, 292
supervisory, 3, 233
with constraints, 362

Cost function, 237
Criterion

identification, 114
selection, 115

correlation-based feature, 122
filter feature, 121

CSTR (continuous stirred-tank reactor),
234, 259

DC motor, 109
neural model, 109

DCS (distributed control system), 5, 15, 22,
29, 49, 155

Diagnostic matrix, 182
binary, 180, 195



382 Index

Diagnostic model, 208
belief-network-based, 210

Diagnostic reasoning, 193, 333
fuzzy reasoning, 328
hierarchical structure, 195

Diagnostic relation, 179, 330
Diagnostic signals, 182, 194

multiple-valued, 182
uncertainties, 184

Diagnostics
model-based, 207
symptom-based, 207

DMC (dynamic matrix control) algorithm,
25, 233, 364

analytic, 243
numeric, 245
unconstrained, 243

DTS (dynamic table of states), 22

EDBP (extended dynamic back propagation)
algorithm, 109

ERP (enterprise resource planning), 4
Estimation, 87, 94

parameter, 168, 175, 317
Expert systems, 10

Facts, 226
False diagnosis, 194
Fault, 7, 10, 22, 34, 52, 179, 192, 298

incipient, 326
isolability, 194
multiple, 184, 192, 202, 336
sensor, 336
signatures, 183, 185
simulation, 307
single, 184

Fault detection, 7, 12, 154, 327
model-based, 157, 207
neural model, 159
robust, 153, 169

Fault diagnosis, 22, 160
complex technological installations, 180
robust, 160

Fault identification, 12, 154
Fault isolation, 12, 22, 154, 179

by learning, 179
expert knowledge-based, 179
fuzzy reasoning, 328
mathematical model-based, 179

multiple faults, 184
reasoning algorithm, 184, 192
single faults, 184, 186

FDI (fault detection and isolation) system,
160

Field networks, 6
CAN, 6
Fieldbus, 6
Profibus, 6

Filter
band-pass, 290
Kalman, 179

FIR (finite impulse response) filter, 86
FIS (fault isolation system), 181, 187
FTC (fault tolerant control), 10
FTC (fault tolerant control) system, 10
Fuzzy logic, 10, 21, 153, 158, 172

Genetic algorithms, 229
GLS (generalized least sum of square)

method, 87
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dynamic, 257, 259
global, 80
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SMO (sequential minimal optimization),
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System
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control, 1
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