
Paul S,erban Agachi, Zolt�n K. Nagy,

Mircea Vasile Cristea, and �rp�d Imre-Lucaci

Model Based Control



Related Titles

Robert Haber, Ruth Bars, Ulrich Schmitz

Predictive Control in Process
Engineering

2007

ISBN-10: 3-527-31492-X

ISBN-13: 978-3-527-31492-8

Frerich J. Keil (ed.)

Modeling of Process
Intensification

2007

ISBN-10: 3-527-31143-2

ISBN-13: 978-3-527-31143-9

Alexandre C. Dimian, C. Sorin Bildea

Chemical Process Design
Computer-Aided Case Studies

2007

ISBN-10: 3-527-31403-2

ISBN-13: 978-3-527-31403-4

Luis Puigjaner, Georges Heyen (eds.)

Computer Aided Process and
Product Engineering
2 Volumes

2006

ISBN-10: 3-527-30804-0

ISBN-13: 9783-527-30804-0

Sebastian Engell (ed.)

Logistic Optimization of
Chemical Production Processes

2006

ISBN-10: 3-527-30830-X

ISBN-13: 978-3-527-30830-9

Kai Sundmacher, Achim Kienle, Andreas Seidel-
Morgenstern (eds.)

Integrated Chemical Processes
Synthesis, Operation, Analysis, and Control

2005

ISBN-10: 3-527-30831-8

ISBN-13: 978-3-527-30831-6

Zivorad R. Lazic

Design of Experiments in
Chemical Engineering
A Practical Guide

2004

ISBN-10: 3-527-31142-4

ISBN-13: 978-3-527-31142-2



Paul S,erban Agachi, Zolt�n K. Nagy,
Mircea Vasile Cristea, and �rp�d Imre-Lucaci

Model Based Control

Case Studies in Process Engineering



The Authors

Prof. Dr. Paul S,erban Agachi
Babes, -Bolyai University
Dept. of Chemical Engineering
M. Kogalniceanu 1
400084 Cluj-Napoca
Romania

Prof. Dr. Zolt�n K. Nagy
Loughborough University
Chemical Engineering Department
Loughborough, LE11 3TU
United Kingdom

Prof. Dr. Mircea Vasile Cristea
Babes, -Bolyai University
Dept. of Chemical Engineering
M. Kogalniceanu
400084 Cluj-Napoca
Romania

Prof. Dr. �rp�d Imre-Lucaci
Babes, -Bolyai University
Dept. of Chemical Engineering
M. Kogalniceanu
400084 Cluj-Napoca
Romania

Cover Adam Design, Weinheim

L All books published by Wiley-VCH are carefully
produced. Nevertheless, authors, editors, and pub-
lisher do not warrant the information contained in
these books, including this book, to be free of errors.
Readers are advised to keep in mind that statements,
data, illustrations, procedural details or other items
may inadvertently be inaccurate.

Library of Congress Card No.:
applied for

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the
British Library.

Bibliographic information published by the
Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publica-
tion in the Deutsche Nationalbibliografie; detailed
biliographic data are available in the Internet at
<http://dnb.d-nb.de>.

� 2006 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim

All rights reserved (including those of translation
into other languages). No part of this book may
be reproduced in any form – by photoprinting,
microfilm, or any other means – nor transmitted or
translated into a machine language without written
permission from the publishers.
Registered names, trademarks, etc. used in this book,
even when not specifically marked as such, are not
to be considered unprotected by law.

Typesetting Dçrr + Schiller GmbH, Stuttgart
Printing betz-druck GmbH, Darmstadt
Binding Litges & Dopf, Heppenheim

Printed in Germany
Printed on acid-free paper

ISBN-13: 978-3-527-31545-1
ISBN-10: 3-527-31545-4

IV



Table of Contents

Preface IX

1 Introduction 1
1.1 Introductory Concepts of Process Control 2
1.2 Advanced Process Control Techniques 5
1.2.1 Key Problems in Advanced Control of Chemical Processes 5
1.2.1.1 Nonlinear Dynamic Behavior 5
1.2.1.2 Multivariable Interactions between Manipulated and Controlled

Variables 7
1.2.1.3 Uncertain and Time-Varying Parameters 7
1.2.1.4 Deadtime on Inputs and Measurements 8
1.2.1.5 Constraints on Manipulated and State Variables 9
1.2.1.6 High-Order and Distributed Processes 9
1.2.1.7 Unmeasured State Variables and Unmeasured and Frequent

Disturbances 10
1.2.2 Classification of the Advanced Process Control Techniques 11

2 Model Predictive Control 15
2.1 Internal Model Control 15
2.2 Linear Model Predictive Control 17
2.3 Nonlinear Model Predictive Control 23
2.3.1 Introduction 23
2.3.2 Industrial Model-Based Control: Current Status and Challenges 26
2.3.2.1 Challenges in Industrial NMPC 30
2.3.3 First Principle (Analytical) Model-Based NMPC 32
2.3.4 NMPC with Guaranteed Stability 35
2.3.5 Artificial Neural Network (ANN)-Based Nonlinear Model Predictive

Control 37
2.3.5.1 Introduction 37
2.3.5.2 Basics of ANNs 38
2.3.5.3 Algorithms for ANN Training 39
2.3.5.4 Direct ANN Model-Based NMPC (DANMPC) 43
2.3.5.5 Stable DANMPC Control Law 46

Table of Contents V

Agachi/Nagy/Cristea/Imre-Lucaci. Model Based Control
Copyright � 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-31545-4



2.3.5.6 Inverse ANN Model-Based NMPC 47
2.3.5.7 ANN Model-Based NMPC with Feedback Linearization 49
2.3.5.8 ANN Model-Based NMPC with On-Line Linearization 51
2.3.6 NMPC Software for Simulation and Practical Implementation 52
2.3.6.1 Computational Issues 52
2.3.6.2 NMPC Software for Simulation 56
2.3.6.3 NMPC Software for Practical Implementation 58
2.4 MPC General Tuning Guidelines 59
2.4.1 Model Horizon (n) 61
2.4.2 Prediction Horizon (p) 61
2.4.3 Control Horizon (m) 62
2.4.4 Sampling Time (T) 62
2.4.5 Weight Matrices (ˆl y and ˆl u) 62
2.4.6 Feedback Filter 63
2.4.7 Dynamic Sensitivity Used for MPC Tuning 63

3 Case Studies 73
3.1 Productivity Optimization and Nonlinear Model Predictive Control

(NMPC) of a PVC Batch Reactor 73
3.1.1 Introduction 73
3.1.2 Dynamic Model of the PVC Batch Reactor 74
3.1.2.1 The Complex Analytical Model of the PVC Reactor 75
3.1.2.2 Morphological Model 86
3.1.2.3 The Simplified Dynamic Analytical Model of the PVC Reactor 91
3.1.3 Productivity Optimization of the PVC Batch Reactor 93
3.1.3.1 The Basic Elements of GAs 94
3.1.3.2 Optimization of the PVC Reactor Productivity through the Initial

Concentration of Initiators 97
3.1.3.3 Optimization of PVC Reactor Productivity by obtaining an Optimal

Temperature Policy 99
3.1.4 NMPC of the PVC Batch Reactor 101
3.1.4.1 Multiple On-Line Linearization-Based NMPC of the PVC Batch

Reactor 104
3.1.4.2 Sequential NMPC of the PVC Batch Reactor 111
3.1.5 Conclusions 114
3.1.6 Nomenclature 116
3.2 Modeling, Simulation, and Control of a Yeast Fermentation

Bioreactor 118
3.2.1 First Principle Model of the Continuous Fermentation Bioreactor 118
3.2.2 Linear Model Identification and LMPC of the Bioreactor 125
3.2.3 Artificial Neural Network (ANN)-Based Dynamic Model and Control of the

Bioreactor 128
3.2.3.1 Identification of the ANN Model of the Bioreactor 128
3.2.3.2 Using Optimal Brain Surgeon to Determine Optimal Topology of the

ANN-Based Dynamic Model 133

Table of ContentsVI



3.2.3.3 ANN Model-Based Nonlinear Predictive Control (ANMPC) of the
Bioreactor 137

3.2.4 Conclusions 141
3.2.5 Nomenclature 143
3.3 Dynamic Modeling and Control of a High-Purity Distillation

Column 145
3.3.1 Introduction 145
3.3.2 Dynamic Modeling of the Binary Distillation Column 146
3.3.2.1 Model A: 164th Order DAE Model 148
3.3.2.2 Model B: 84th Order DAE Model 150
3.3.2.3 Model C: 42nd Order ODE Model 150
3.3.2.4 Model D: 5th Order ODE Model 151
3.3.2.5 Model E: 5th Order DAE Model 152
3.3.2.6 Comparison of the Models 153
3.3.3 A Computational Efficient NMPC Approach for Real-Time Control of the

Distillation Column 158
3.3.3.1 NMPC with Guaranteed Stability of the Distillation Column 158
3.3.3.2 Direct Multiple Shooting Approach for Efficient Optimization in Real-

Time NMPC 160
3.3.3.3 Computational Complexity and Controller Performance 164
3.3.4 Using Genetic Algorithm in Robust Optimization for NMPC of the

Distillation Column 180
3.3.4.1 Motivation 180
3.3.4.2 GA-Based Robust Optimization for NMPC Schemes 180
3.3.5 LMPC of the High-Purity Distillation Column 184
3.3.6 A Comparison Between First Principles and Neural Network Model-Based

NMPC of the Distillation Column 184
3.3.7 Conclusions 189
3.3.8 Nomenclature 190
3.4 Practical Implementation of NMPC for a Laboratory Azeotropic

Distillation Column 192
3.4.1 Experimental Equipment 192
3.4.2 Description of the Developed Software Interface 193
3.4.3 First Principles Model-Based Control of the Azeotropic Distillation

Column 200
3.4.3.1 Experimental Validation of the First Principles Model 200
3.4.3.2 First Principle Model-Based NMPC of the System 206
3.4.4 ANN Model-Based Control of the Azeotropic Distillation Column 208
3.4.5 Conclusions 211
3.5 Model Predictive Control of the Fluid Catalytic Cracking Unit 213
3.5.1 Introduction 213
3.5.2 Dynamic Model of the UOP FCCU 214
3.5.2.1 Reactor Model 215
3.5.2.2 Regenerator Model 218
3.5.2.3 Model of the Catalyst Circulation Lines 219

Table of Contents VII



3.5.3 Model Predictive Control Results 221
3.5.3.1 Control Scheme Selection 221
3.5.3.2 Different MPC Control Schemes Results 223
3.5.3.3 MPC Using a Model Scheduling Approach 227
3.5.3.4 Constrained MPC 227
3.5.4 Conclusions 229
3.5.5 Nomenclature 230
3.6 Model Predictive Control of the Drying Process of Electric Insulators 233
3.6.1 Introduction 233
3.6.2 Model Description 233
3.6.3 Model Predictive Control Results 236
3.6.4 Neural Networks-Based MPC 238
3.6.4.1 Neural Networks Design and Training 238
3.6.4.2 ANN-Based MPC Results 239
3.6.5 Conclusions 241
3.6.6 Nomenclature 243
3.7 The MPC of Brine Electrolysis Processes 244
3.7.1 The Importance of Chlorine and Caustic Soda 244
3.7.2 Industrially Applied Methods for Brine Electrolysis 244
3.7.3 Mathematical Model of the Mercury Cell 245
3.7.3.1 Model Structure 247
3.7.3.2 The Main Equations of the Mathematical Model 247
3.7.4 Mathematical Model of Ion-Exchange Membrane Cell 250
3.7.4.1 Model Structure 251
3.7.4.2 The Main Equations of the Mathematical Model 252
3.7.5 Simulation of Brine Electrolysis 255
3.7.5.1 Simulation of the Mercury Cell Process 255
3.7.5.2 Simulation of the Ion-Exchange Membrane Cell Process 255
3.7.6 Model Predictive Control of Brine Electrolysis 255
3.7.6.1 MPC of Mercury Cell 259
3.7.6.2 MPC of IEM Cell 261
3.7.7 Conclusions 264
3.7.8 Nomenclature 264

Index 275

Table of ContentsVIII



Preface

Today, the process industries are challenged by a dynamic and difficult-to-predict
market, leading to consumer-oriented manufacturing and tailor-made products.
Those times which were characterized by constant mass production are over and,
due largely to globalization, manufacturers are now obliged to react to exquisite
demands in a very short time, with a wide variety of quality specifications, and
with competitive prices. Moreover, environmental regulations have placed stricter
limitations on the production of pollutants. Some actors in the field of process
industries complain that all their benefits are consumed in satisfying the “fiercely
enforced” environmental regulations. Indeed, environmental considerations have
led to the design of smaller storage capacities in order to reduce the risk of major
accidents. Likewise, large increases in energy costs (today’s costs for oil and natural
gas prices have doubled since 2004) have encouraged the design of thermally
highly integrated plants for which dynamic stability and control offer real chal-
lenges; additionally, every last morsel of saved energy or raw materials demands a
sustainable development approach, and this is reflected not only in costs and prices
but also in the preservation of reserves.

The above-mentioned facts explain the current interest in new process control
techniques that enable the operation of flexible, high-performance, optimized and
variable-capacity production lines. The improved control of chemical processes
means greater production for the same production equipment, improved product
quality, reduction of waste and pollution, and reduced energy consumption.
Advanced control is one of the most important ways in which the production
situation can be improved, and model-based control offers a very direct and feasible
solution for an appropriate operation.

The roots of my interest in Model Predictive Control (MPC) stem from my days
at Caltech, Chemical Engineering Department where, during 1991 and 1992, I
worked in the group of Professor Manfred Morari. This American experience was
extraordinary, because it was at the start of a new era of the scientifically oriented
software packages Matlab and Simulab (currently Simulink), and also at the start of
MPC implementation on a larger scale and on complicated industrial processes. At
the time, nobody at Caltech had any great knowledge of using this software
correctly, and many nights and weekends were spent attempting to find rapid
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solutions for complicated models of the Fluid Catalytic Cracking Unit (FCCU),
using a Matlab package that ran slowly, without a compiler at that time, together
with my colleagues Argimirio Secchi (now Professor of Chemical Engineering in
Brazil) and Richard Braatz (now Professor of Chemical Engineering in the US). I
owe them a lot, and I thank them in this way. Together with our Italian colleague
Bruno Donno, and students John Bomberger and Iftiqar Huq, we have succeeded
in elaborating the first MPC controller in Simulink, and have also identified some
approximate rules for the optimal tuning of MPC parameters. I remember the
weekly discussions with Professor Morari which contributed greatly to the progress
of knowledge in this field, and I thank him sincerely for the opportunity given not
only at that time but also subsequently as Professor at ETH, Z�rich. My collabo-
ration with Chevron Research and Development during this project was remark-
able when, together with Ron Soerensen, we tried to implement the FCCU
mathematical model and the MPC theory in their refinery at El Segundo. Later,
collaboration with Professor Frank Allgçwer, former colleague and friend at
Caltech, and now Head of the Institute for Systems Dynamics at the University
of Stuttgart, was also highly profitable from an MPC research point of view.

On returning to Romania, my students and now colleagues – some of whom are
coauthors of this book – took up the challenge and continued with great enthusi-
asm in this challenging field of MPC. Together, we have applied the elaborated
theory (which we have enriched with modesty and patience) to several processes,
beginning with our laboratory of Automatic Control in Process Engineering. We
have largely used our data bank of Chemical Process Dynamic Models, the content
of which covers an activity period of more than twenty years.

The aim of this book is first to present very briefly the general issues related to
MPC, which have long been reported in the literature, in addition to the innova-
tions of our group in specific algorithms. Second – and we consider this is the real
“added value” of the book – we have presented several complicated applications of
model-based control to several processes, ranging from the petrochemical industry
to the ceramic or chlorine industries and to bioengineering. We have added –
proudly I may say – the “real” laboratory application of MPC of a pilot distillation
column, which in reality has demonstrated the superiority of model-based techni-
ques in relation to classic control methods.

The book is structured in three parts:
• Chapter 1 – the Introduction – treats issues related to the concepts of process

control, the progress of modern control theory, and its applications. The evolu-
tion was strongly related to – and even determined by – the progress of the
computer industry. The features of processes controlled by advanced control
techniques are briefly presented. Finally, a classification of Advanced Control
Techniques is introduced.

• In Chapter 2, MPC is directed towards Internal Model Control (IMC), Linear
MPC (LMPC) and Nonlinear MPC (NMPC), with the history and basics theory of
these types of algorithm. The final section of this chapter provides the methods
for tuning MP controller parameters.
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• Chapter 3, which is the most elaborate, includes the Case Studies. This chapter
contains several applications of MPC, each starting with the elaboration of a
dynamic model shaped in a form to be appropriate for control. The chapter
includes original dynamic models of the FCCU, polyvinyl chloride reactor, yeast
fermentation reactor, distillation column, ceramic dryer, amalgam, and ion-
exchange membrane (IEM) electrolyzers which are not normally (or are perhaps
rarely) found in the literature. These models have been elaborated in the
Department of Chemical Engineering and Oxide Material Science of the Uni-
versity “Babeş-Bolyai” in Cluj-Napoca, Romania, more precisely in the group of
Computer-Aided Process Engineering. They have been developed on the basis of
both literature and industrial data, using the experience of the group members,
and are aimed at improving process operation by the implementation of model-
based control techniques. The chapter also provides the MPC solutions that are
compared with other control solutions.

We would like to emphasize that process control continues to be a research
battlefield where challenging industrial problems await their particular solutions.
Nonlinear control strategies, artificial intelligence techniques, process integration
and process optimization are important research areas with an increasing number
of industrial products and commercial applications.

This book is addressed to a broad category of technical staff, ranging from
researchers, plant engineers and technicians to students and academic personnel
with control engineering or chemical engineering backgrounds, and who are
interested in the exciting intertwined fields of process engineering, industrial
economics, process modeling, optimization, artificial intelligence and process
control.

We are very much indebted to the Wiley-VCH Editing House, which showed
interest in the topics treated in this book, and particularly to Ms. Karin Sora and
Ms. Waltraud W�st who provided valuable advice during our writing of the book,
and also during its editing and presentation to the market.

Paul Şerban Agachi
Professor of Process Control

Department of Chemical Engineering and Oxide Material Science
University “Babeş-Bolyai”, Cluj-Napoca, Romania

Cluj-Napoca, July, 2006
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1
Introduction

Process control, as it has been known for many years, was first developed in the
process industries. Although starting with local measurement devices, the system
has since progressed to centralized measurement and control (central control
rooms) and computer hierarchical/plantwide control. Recent developments in
process control have been influenced by improvements in the performance of
digital computers suitable for on-line control. Moreover, while the performance of
these units has improved significantly, their prices have fallen drastically. The price
trends for small but more sophisticated minicomputers, despite the inclusion of
more reliable electronics and increasing inflation, is shown graphically in Figure
1.1. By having high speeds of operation and storage capacities, the process com-
puter can be used effectively in process control due to its insignificant capital cost.
Once in place, the computer is usually operated in a timesharing mode with large
numbers of input/output operations, so that the central processing unit (CPU) is
typically in use only for about 5% of the time. Thus, many industrial plants have
95 % of the computing power of a highly capable minicomputer programmable in a
high-level language such as Fortran, C, Visual Basic, LabVIEW, etc., and available
for implementing sophisticated computer-controlled schemes.

1

Agachi/Nagy/Cristea/Imre-Lucaci. Model Based Control
Copyright � 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-31545-4

Figure 1.1 Price trends for real-time minicomputers.



During the same time, modern control theory has undergone intense develop-
ment, with many successful applications covering many areas of the industry. Most
recently, several process control research groups have applied new sophisticated
control algorithms and schemes to simulated, laboratory-scale – and even full-scale
– processes. As a consequence, it is necessary for the process control engineer to
design an economically optimal process control scheme based on a judicious
comparison of the available control algorithms. The aim of this book is to offer
assistance in this respect, and to provide a brief introduction to the theory and
practice of the most important modern process control strategies. This is achieved
by using industrially relevant chemical processes as the subjects of control per-
formance studies.

1.1
Introductory Concepts of Process Control

A control system is a combination of elements which act together in order to bring a
measured and controlled variable to a certain, specific, desired value or trajectory
termed the “set/point of reference”. The basis for an analysis of such a system is
the foundation provided by linear system theory, which assumes a linear cause–
effect relationship for the components of a system. Therefore, a component or
process to be controlled can be represented by a block, as shown in Figure 1.2. The
output variables are the “interesting” ones (technological parameters, yield, etc.),
while the input variables are those which influence the outputs (e.g., mass or
energy flows, environmental variables, etc.). Figure 1.2 illustrates the different
types of input and output parameters used in the development and study of control
algorithms. We refer to a variable as an input if its value is determined by the
“environment” of the system to be controlled. We distinguish disturbance inputs
and manipulated or control inputs. We are free to adjust the later but not the former.
Variables, the values of which are determined by the state of the system, are
referred to as outputs – some of these are measured, but others are not. Controlled
variables must be maintained at specified setpoints. Associated variables are only
required to stay within certain bounds, their exact value within bounds being of
little interest.

An open-loop control system uses a controller or control actuator in order to
obtain the desired response, as shown in Figure 1.3. In contrast to an open-loop
control system, a closed-loop control system uses an additional measure of the

1 Introduction2
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actual output in order to compare the actual output with the desired output
response. The measure of the output is called the feedback signal. A simple
closed-loop feedback control system is shown in Figure 1.4. A standard definition of
a feedback control system is as follows: A feedback control system is a control system
that works to maintain a prescribed relationship between one system variable and another
by comparing functions of these variables and using the difference as a means of control.

A feedback control system often uses a function of a prescribed relationship
between the output and the reference input to control the process. Often, the
difference between the output of the process under control and the reference input
is amplified and used to control the process, so that the difference is continually
reduced. The feedback concept has been the foundation for control system analysis
and design.

Classical control theory is essentially limited to single-input single-output (SISO)
systems described by linear differential equations with constant coefficients (or
their corresponding Laplace transforms). However, the so-called modern control
theory has developed to the point where results are available for a wide range of
general multivariable systems, including those described by linear, variable-coef-
ficient differential equations, nonlinear differential equations, partial differential,
and integral equations.

The results of modern control theory include the so-called optimal control theory,
which allows the design of control schemes, which are optimal in the sense that the
controller performance minimizes some specified cost functional.

In addition to controller design, modern control theory includes methods for
process identification and state estimation. Process identification algorithms have
been developed for determining the model structure and estimating the model
parameters, either off-line or adaptively on-line. These are useful both in the initial
control system design and in the design of adaptive control systems which respond to
such changes in the process characteristics. These might arise, for example, with
the fouling of heating exchanger surfaces or the deactivation of catalyst in chemical
reactors. State estimation techniques are on-line methods either for estimating

1.1 Introductory Concepts of Process Control 3
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system state variables which are not measured, or for improving the quality of all
the state-variable estimates in the presence of measurement errors. In those
processes where some sensors are not available, or are too expensive to be installed,
on-line state estimation can be of significant practical importance.

The way in which all the components of a comprehensive computer process
control scheme might fit together for a particular process is illustrated in Figure
1.5. Such a control scheme would consist of the following parts:
• The Process, which responds to control inputs u; to natural process disturbances

d1; and to special input disturbances d2 used for identification. The true process
state x is produced, but this is seldom measured either completely or precisely.

• Measurement devices, which usually are able to measure only a few of the states or
some combination of states, and are always affected by measurement errors. The
measurement device outputs y are fed to the –

• State estimator, which uses the noisy measurements y along with a process model
to reconstruct the best possible process state estimates xest. The process state
estimates are passed to the –

• Controller, which calculates what control actions must be taken based on the state
estimates xest, the setpoints r (which themselves may be the subject of process
optimization), and the controller tuning parameters. The controller parameters
can be calculated either off-line or adaptively on-line, based on current estimates
of the model parameters. The process model parameters must be determined
from the –

1 Introduction4
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• Process identification block, which takes user measurements from the process as
raw data y (and may choose to introduce experimentally designed input distur-
bances d1) in order to identify the process model parameters Æ. If the parameters
are time-invariant, the identification is unique; however, if the process changes
with time, then the identification scheme must be activated periodically to
provide adaptation to changing conditions.

In most applications only a few of the components of this control structure are
required.

1.2
Advanced Process Control Techniques

1.2.1
Key Problems in Advanced Control of Chemical Processes

The main features of chemical processes that cause many challenging control
problems [1–3] are shown schematically in Figure 1.6.

1.2.1.1 Nonlinear Dynamic Behavior
Nonlinear dynamic behavior of chemical processes causes one of the most difficult
problems in designing control systems. In the case of linear, lumped parameter
systems, a very general model in the time domain form can be written as:

1.2 Advanced Process Control Techniques 5

Figure 1.6 Common process characteristics, important in the
choice of control strategy.



dx
dt
¼ A � x þ B � u þ ˆ � d, xðt0Þ ¼ x0 (1.1)

y ¼ C � x (1.2)

where x, u, y, and d are the vectors of states, controls (manipulated variables),
outputs and disturbances, respectively. The state space matrices, A, B, C, and ˆ, can
be either constant or time-varying. For systems in Laplace transform domain,
involving transfer functions the model can be represented in the form:

�yðsÞ ¼ GðsÞ � �uðsÞ þ GdðsÞ � �dðsÞ (1.3)

with:

GðsÞ ¼ C sI � Að Þ�1B (1.4)

GdðsÞ ¼ C sI � Að Þ�1ˆ (1.5)

These representations show the linear dependence between the manipulated
inputs (u) and outputs (y); that is, a certain ˜u variation will cause, in a certain
time t, a linear proportional variation of y (˜y = Æt˜u). Assuming that d = 0, (there
is no unmeasured disturbance), once the linear model was identified (the coef-
ficients of A, B, C, and ˆ were determined), the trajectory of the outputs y can be
predicted for any changes of the manipulated inputs, ˜u, at any time using the
linear model in one of the forms described above [Eqs. (1.1)–(1.2) or (1.3)–(1.5)].

In the case of nonlinear processes, there is no linear dependence between control
variables and states (or manipulated variables), so that Eqs. (1.1)–(1.5) are no longer
valid, and for predictions a much more general model must be used. Mathemati-
cally, a general nonlinear process model can be represented as follows:
• dynamic modeling equations:

dx
dt
¼ f x; u; q; dð Þ (1.6)

with the initial conditions:

x t0ð Þ ¼ x0 (1.7)

• algebraic equations (equilibrium relationship, etc.)

0 ¼ g1 x; u; qð Þ (1.8)

• state-output relationship:

y ¼ g2 xð Þ (1.9)

where x are state variables, u are manipulated variables, q are parameters, d are
measured and unmeasured disturbances, and y is the output (measured) variable.

1 Introduction6



In contrast to the case of a linear model, for nonlinear process model there is
generally no analytical solution and the prediction must be made by numerically
solving the model. Consequently, for nonlinear process models, computational
demand is much higher than for the linear ones.

1.2.1.2 Multivariable Interactions between Manipulated and Controlled Variables
It is commonly believed that for SISO systems, well-tuned proportional, integral,
derivative (PID) controllers work as well as model-based controllers, and that PID
controllers are more robust to model errors. The offset-free constrained linear
quadratic (LQ) controller for SISO systems, may be implemented in an efficient
way so that the total controller execution time is similar to that of a PID [4].

Unfortunately, most multivariable systems have significant coupling between
outputs and controls, and these pose great difficulties in control system design. In
the case of multiple input-multiple output (MIMO) systems, any manipulated
input can have effects on more outputs. Thus, the choice of appropriate control
loops with the best control performances demands detailed study and can be very
difficult. One of the main advantages of most advanced control strategies is that
they can explicitly handle the multivariable interactions. Due to their multivariable
nature, advanced control strategies – such as model predictive control techniques
(MPC) – allow the control problem to be addressed globally. Thus, one must
determine only the best set of manipulated inputs for a certain set of controlled
outputs, and there is no need for detailed study of the individual interactions
between the inputs and outputs. However, in the choice of the best control set, a
study of the interaction problem for a certain MIMO system application is always
useful.

1.2.1.3 Uncertain and Time-Varying Parameters
Most chemical processes are characterized by having uncertain and/or time-vary-
ing parameters. Time-varying parameters are common for batch and semibatch
processes, when it is clear that most of the thermodynamic and physico-chemical
properties of the system vary with time. Moreover, even for continuous processes
when deviations from steady-state are frequent and the process variables vary in a
wide operating range, the dependence of parameters on time should be taken into
consideration.

For linear time-varying processes the state-space representation of the model
[Eqs. (1.1)–(1.2)] is still valid, but in this case the elements of the state-space
matrices A, B, C, and ˆ are functions of time. The general model of nonlinear
systems expressed by Eqs. (1.6)–(1.9), by its mathematical form takes explicitly into
consideration the variation in time of the process parameters.

Among the multitude of parameters of a chemical process model, a significant
number cannot normally be determined accurately, and this will lead to model/
plant mismatch. The importance of uncertainties is increasingly being recognized
by control theoreticians; consequently, they are being included explicitly in the
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formulation of control algorithms. MPC can handle model/plant mismatch in its
closed loop, feedback form, by continuously adjusting the uncertain parameters so
that the difference between the current measurements and the prediction from the
previous step is a minimum.

1.2.1.4 Deadtime on Inputs and Measurements
One especially important class of systems in chemical process control is that of
having time delays. This class of dynamic systems arises in a wide range of
applications, including paper making, chemical reactors, or distillation. The prin-
cipal difficulty with time delays in the control loop is the increased phase lag, which
leads to unstable control system behavior at relatively low controller gains. This
limits the amount of control action possible in the presence of time delays. In
multivariable time-delay systems with multiple delays, these problems are even
more complex. In these problems, the normal control difficulties due to loop
interactions are complicated by the additional effect of time delays. Consequently,
these aspects must be taken into consideration. The properly designed process
model in its general nonlinear form expressed by Eqs. (1.6)–(1.9) explicitly involves
time delays; however, to emphasize this feature in the literature one can often find
the following general mathematical expression of the nonlinear model:

dx
dt
¼ f x t��xð Þ; u t�¨ð Þ; q; dð Þ (1.10)

x t0ð Þ ¼ x0 (1.11)

0 ¼ g1 x; u; qð Þ (1.12)

y ¼ g2 x t��y
� �� �

(1.13)

where ¨ is the deadtime between manipulated and state variables, �y is the
deadtime between manipulated and output variables, and �x is the deadtime on
state variables.

From this model it can be seen that, in a very general form, deadtime can be
included on process inputs and control variables as well as on unmeasured states.
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For example, time-delay can be due to transport (flow through pipes) or measure-
ment delays (analytical instrumentation, etc.). A good example of a multivariable
time-delay nonlinear system with multiple delays is that of the distillation process.

A very general representation of systems having delays in the control variables
u(t), state variables x(t) and output variables y(t) is illustrated in Figure 1.7.

1.2.1.5 Constraints on Manipulated and State Variables
In chemical process control, constraints on state variables usually arise due to
technological specifications, while those on manipulated variables are caused
generally by the control hardware restrictions as well as the control system
characteristics. For example, in systems with time delay in the control loop, the
controller gain must be limited in order to avoid unstable behavior. In practice, the
operating point of a plant that satisfies the overall economic goals of the process
usually lies at the intersection of constraints. Therefore, in order to be successful,
any control system must anticipate constraint violations and correct them in a
systematic manner. Violations of the constraints must not be allowed while the
operation is kept close to these constraints.

Constraints on manipulated and output/state variables can be expressed math-
ematically as follows:

ymin � y � ymax (1.14)

umin � u � umax (1.15)

˜uj j ¼ ˜umax (1.16)

where the limits of the state/output variables (ymin, ymax) and those of control
inputs/manipulated variables (umin, umax, ˜umax) can be either constant or time-
varying.

The usual practice in process control is to ignore the constraint issue at the
design stage and then to “handle” it in an “ad hoc” way during the implementation.
Therefore, these control structures are very system-specific, and their cost cannot
be spread over a large number of applications, implying high design cost. Ad-
vanced control techniques usually provide intelligent methodologies to handle
constraints in a systematic manner during the design and implementation of
the control.

1.2.1.6 High-Order and Distributed Processes
On many occasions, the modeling of chemical processes leads to very high-order
models. Although the general nonlinear model expressed by Eqs. (1.6)–(1.9) is a
specific formulation for simple, low-order, lumped parameter systems which can
be described by ordinary differential equations, this form can be also used for high-
order and/or distributed parameter systems. Generally, in the case of high-order
systems, an nth order differential equation can be described by a system of n first-
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order differential equations by introducing n–1 fictitious state variables. For exam-
ple, for a high-order system with one state variable, described by the nth order
differential equation below:

an
dnx
dtn
þ an�1

dn�1x
dtn�1

þ . . . þ a1
dx
dt
þ a0x þ b ¼ 0 (1.17)

is equivalent with the following system of n first-order differential equations:

dx
dt
¼ x1

dx1

dt
¼ x2

..

.

dxn�1

dt
¼ � an�1

an
xn�1 � . . . � a1

an
x1 �

a0

an
x � b

an

(1.18)

where x1,…, xn–1 are fictitious states.
In this way, the general model described by Eqs. (1.6)–(1.9) can be extrapolated

for high-order systems. However, for a MIMO system every high-order equation
must be decomposed in a system of ordinary differential equations, and this –
usually in the case of very high-order MIMO systems – can cause computational
difficulties. For this reason, a model reduction is recommended in the case of high-
order systems.

Distributed parameter systems are distinguished by the fact that the states, controls
and outputs may depend on spatial position. Thus, the natural form of the system
model is represented by partial differential equations or integral equations.

1.2.1.7 Unmeasured State Variables and Unmeasured and Frequent Disturbances
In most industrial processes, the total state vector can seldom be measured, and the
number of outputs is much smaller than the number of states. In addition, the
process measurements are often corrupted by significant experimental error, and
the process itself is subject to random, unmodeled upsets. Both, unmeasured state
variables and unmeasured disturbances can lead to a substantial model/plant
mismatch, which appears as a reduction in quality control. However, each of these
difficulties individually causes a very challenging control problem (according to
most control specialists, the most important problem in MPC design): the con-
sequences for both problems are differences between the predicted (yp) and
measured (ym) outputs. Thus, the effects of the unmeasured disturbances can be
included in the model error caused by the unmeasured state variables, and treated
in the model/plant mismatch problem as a global, additive disturbance. Because
unmeasured state variables and unmeasured disturbances manifest themselves in
the quality of the predictions, which actually underlines the MPC strategies, the
state estimation is an essential problem in practical NMPC applications.
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1.2.2
Classification of the Advanced Process Control Techniques

The chemical process industry is characterized as having highly dynamic and
unpredictable marketplace conditions. For example, during the course of the
past 15 years we have witnessed an enormous variation in crude and product
prices. The demands for chemical products also vary widely, imposing different
production yields. It is generally accepted that the most effective means of gen-
erating the highest profit from plants, while responding to marketplace variations
with minimal capital investment, is provided by integrating all aspects of automa-
tion of the decision-making process [6], which are:
• Measurement. The gathering and monitoring of process measurements via

instrumentation.
• Control. The manipulation of process degrees of freedom for the satisfaction of

operating criteria. This typically involves two layers of implementation: the
single loop control which is performed via analogue controllers or rapid sam-
pling digital controllers; and the overall control performed using real-time
computers with relatively large CPU capabilities.

• Optimization. The manipulation of process degrees of freedom for the satisfac-
tion of plant economic objectives. This is usually implemented at a rate such that
the controlled plant is assumed to be at steady state. Therefore, the distinction
between control and optimization is primarily a difference in implementation
frequencies.

• Logistics. The allocation of raw materials and scheduling of operating plants for
the maximization of profits and the achievement of the company’s program.

Each of these automation layers plays a unique and complementary role in
allowing a company to react rapidly to changes. Therefore, one layer cannot be
effective without the others. In addition, the effectiveness of the whole approach is
only possible when all manufacturing plants are integrated into the system.

Although, in the past, the maintenance of a stable operation for the process was
the sole objective of control systems, this integration imposes more demanding
requirements. In the process industries, control systems must satisfy one or more
of the following practical performance criteria:
• Economic. These can be associated with either maintaining process variables at

the targets dictated by the optimization phase, or dynamically minimizing an
operating cost function.

• Safety and environmental. Some process variables must not violate specified
bounds for reasons of personnel or equipment safety, or because of environ-
mental regulations.

• Equipment. The control system must not drive the process outside the physical
limitations of the equipment.

• Product quality. Consumer specifications on products must be satisfied.
• Human preference. There exist excessive levels of variable oscillations or jaggedness

that the operator will not tolerate. There can also be preferred modes of operation.
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In addition, the implementation of such integrated systems is forcing the processes
to operate over an ever-wider range of conditions. As a result, we can state the
control problem that any control system must solve as follows [5]:

”On-line update the manipulated variables to satisfy multiple,
changing performance criteria in the face of changing plant
characteristics.”

Today, the entire spectrum of process control methodologies in use is faced with
the solution of this problem. The difference between these methodologies lies in
the particular assumptions and compromises made in the mathematical formula-
tion of performance criteria, and in the selection of a process representation. These
are made primarily to simplify the mathematical problem so that its solution fits
the existing hardware capabilities. The natural mathematical representation of
many of these criteria is in the form of dynamic objective functions to be mini-
mized and of dynamic inequality constraints. The usual mathematical representa-
tion for the process is a dynamic model with its associated uncertainties.

At present, there is an important number of advanced control techniques using
either specific algorithms for particular systems, or very general methods with a
wide application area and well-developed theory. A classification of these techni-
ques is difficult because many of the algorithms are very similar, being obtained
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from some more general methods with usually minor changes with regard to, for
example, the performance criteria, optimization method, prediction horizon, and
constraint handling. However, all of these algorithms have a common feature: all
are based on a process model, described in different ways. The proposed classi-
fication, based on this feature, is presented in Figure 1.8. According to this, the
advanced control techniques can be classified first in four conceptually different
categories. The first and most important approach, the Model Predictive Control
(MPC), can be classified further, for example, according to different model types
used for prediction in the controller. This feature is usually the most significant
difference among MPC algorithms.
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2
Model Predictive Control

2.1
Internal Model Control

It is an obvious fact that control system design is fundamentally determined by the
steady state and dynamic behavior of the process to be controlled. It is interesting to
investigate the way in which the process characteristics influence the controller
structure and tuning parameters. Although the transfer of process behavior into
the controller structure is an intrinsic part of every control algorithm design
developed along the historical evolution of the control systems, this procedure
was not always consciously performed. In the early age of automatics it led to ad
hoc control design methodologies able to cover only particular cases and lacking
comprehensiveness of the control problem approach. The situation improved
when the ability to build valid mathematical models was developed in association
with enhanced simulation tools. The Internal Model Control (IMC) viewpoint
appeared as an alternative to the traditional feedback control algorithm, marking
a qualitative step for direct linking of the process model with the controller
structure. The name itself denotes the fact that the process model becomes an
explicit part of the controller. Although the model-based control techniques have
been largely extended and gained prominence during the past decades, major steps
are expected in the future, especially for the nonlinear case.

The dawn of the structure that became later the IMC philosophy may be found
during the late 1950 s when the investigations of Newton, Gould and Kaiser [1]
pointed out the transformation of the closed-loop structure into an open one in
order to develop a H2-optimal controller, and when Smith [2] proposed a predictor
to “eliminate” the dead time from the control loop. Frank [3] was the first to
anticipate the value of the control structure having in parallel the model and the
plant. Brosilow [4], with his inferential control system, also addressed the IMC
structure. However, it was Morari and Garcia [5–7] who brought the major con-
tribution for the advance of the new control structure and for revealing it in distinct
theoretical framework. The studies of Morari greatly enlarged the IMC design
methods unifying the concepts referring to this control structure, and rendering
the name that is today recognized by the control community.
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The IMC approach to controlling a process has, at its basics, a very human style.
When the operator, in manual mode, attempts to maintain a controlled variable
close to a desired setpoint, he or she performs a simple calculation based on their
intuitive representation (model) of the process in order to set the proper value of
the manipulated variable. The operator calculates the difference between the actual
value of the controlled output and an estimation (prediction) of the effect of the
intended value of the manipulated variable on the plant output. The calculation of
this difference is the basic information on which relies the decision to set the
amplitude of the manipulated variable change that is sent to the plant. In fact, the
operator determines the necessary change of the manipulated variable on a model-
based estimation (performed in their mind) of the disturbance. Successive iter-
ations of this procedure lead to a desired behavior of the controlled variable. The
same fundamental control approach serves as the core of the internal model
control.

A schematic representation of the IMC structure is presented in Figure 2.1 [8,9].
In Figure 2.1, p(s) represents the process (plant) transfer function on the

manipulated variable to the controlled variable path, pd(s) the process transfer
function on the disturbance to the controlled variable path, pm(s) the mathematical
model (as transfer function) of the process, and q(s) the transfer function of the
IMC controller.

As may be observed from the block diagram of the IMC structure, there are two
parallel paths starting from the manipulated variable u(s): one passing through the
real process p(s); and one passing through the model of process pm(s). The role of
the parallel containing the model pm(s) is to make possible the generation of the
difference between the actual process output y(t) and an estimation (model-based
prediction) of the manipulated variable effect on the process output. Assuming that
the process model is a perfect representation of the real process pm(s) = p(s), the
difference de(s) represents the estimated effect of the disturbances (both measured
and unmeasured) on the controlled variable. If the process model is not perfect, the
difference de(s) includes both the effect of disturbances on the output variable and
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the process–model mismatch. The feedback of the control system is zero when the
model is perfect and there are no disturbances, resulting in a control loop being
open-loop. This fact leads to one of the most important conceptual usefulness of
the IMC structure referring to the stability issue. Namely, that the IMC control loop
is stable if – and only if – the process p(s) and the IMC controller q(s) are stable,
provided that the model is a perfect representation of the process pm(s) = p(s) and
the process is stable. It is only necessary to focus on IMC controller design for
avoiding difficulties associated with usual feedback stability problems [8,9].

Considering again the control structure of Figure 2.1, the disturbance estimation
de(s) may be regarded as a correction for the setpoint r(s) in order to generate an
improved target variable t(s) that allows the IMC controller to produce the manip-
ulated variable able to eliminate the disturbance estimation. It is also interesting to
note that the IMC controller acts as a feed-forward controller having the important
incentive of counteracting the effect of the unmeasured disturbances, as the feed-
back signal also represents the estimation of their effect on the process output and
the controller setpoint is adjusted consequently.

Even when the model of the process is not perfect and the model error deter-
mines a feedback signal in the true sense, it is possible to find (detune) the ideal
IMC controller q(s) to assure stability, with the only condition that the process is
stable by itself.

2.2
Linear Model Predictive Control

The Model Predictive Control (MPC) concept has its roots located about four
decades ago when Zadeh and Whalen [10] realized the connection between mini-
mum time optimal control and linear programming, and when Propoi [11] pro-
posed for the first time the moving horizon approach (which is one of MPC’s main
features). This was first denoted as “Open Loop Optimal Control”, but subse-
quently ignored until the late 1970 s. It was Richalet who restored the neglected
MPC importance, reporting successful applications of the so-named “heuristic
model predictive control” [12]. Shortly afterwards, Cutler and Ramaker [13] on one
side and Prett, Gillette [14] on the other side, developed the incoming MPC
concept, naming it “Dynamic Matrix Control”, and applying it to oil cracking
process control. Dynamic Matrix Control soon became one of the most tempting
control strategies [15–17], and several applications soon appeared, including MPC
of the steam boiler, pulp and paper processing, glass oven, or continuous and batch
reactors. The interest in MPC has grown continuously with in time [18–21], such
that today a large number of companies offer hardware and software products for
its application. Indeed, the success of application has made certain a rapid payback
of the implementation costs.

The large majority of successful MPC applications address the case of multi-
variable control in the presence of constraints, motivating its extensive distribution
for applications where traditional control usually comes close to its limits [22].
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Adaptive or robust MPCs have attracted much interest both in academia and
industry [23–25]. A rigorous and general theory, as well as an associated efficient
computational methodology, was developed that addresses the question of when
and what linear control is adequate for a nonlinear process [26].

As its name suggests, MPC relies on an explicit representation of the process to
be controlled, bringing the model of the process “inside” the control algorithm in a
straightforward manner. The core of MPC does not change with the particular
form of the model description; rather, it results in different mathematical formu-
lations and computation load [27,28]. Therefore, linear MPC (LMPC) may be found
both in input-output [29,30] or state space [31,32] formulations, for SISO or MIMO
cases, stable or integrating behavior [33–35], and explicit or implicit formulation of
the control law [36,37].

In order to introduce the main aspects of linear MPC a simple discrete input-
output model description will be assumed. For a stable MIMO linear process
having a q-dimensional input vector u(k) = [u1(k) u2(k) … uq(k)]T and v-dimen-
sional output vector y(k) = [y1(k) y2(k) … yv(k)]T, the set of unit impulse response
matrices Hi, i = 1…n, represents the synthetic information describing the process
dynamic behavior. The Hi matrix represents the impulse response coefficients at
the i-th moment of time (t = i·T, where T is the sampling time), having as elements
the response of each of the v-outputs to each of the q-unit impulse (Dirac) inputs:

H i ¼

H11ðiÞ H12ðiÞ � � � H1qðiÞ
H21ðiÞ H22ðiÞ � � � H2qðiÞ

..

. ..
. ..

. ..
.

Hv1ðiÞ Hv2ðiÞ � � � HvqðiÞ

2

6664

3

7775
(2.1)

Considering the discrete convolution operation, the output y(k) of the process (at a
certain moment of time t = k·T) may be computed by:

yðkÞ ¼
Xn

i¼1

H i � uðk� iÞ (2.2)

Equation (2.2) is usually denoted as the impulse response model.
For the impulse response model it has been assumed that all process outputs

become constant after the time t = n·T (n sampling moments) – that is, a truncated
time response is considered. The discrete convolution operation may be deter-
mined on the basis of the considered linear property of the process. First, the input
function may be described by a sequence (sum) of discrete impulse (Dirac)
functions, located at the sampling time moments, each having the impulse area
equal to the value of the discrete input signal at the respective sampling time
moment. Second, due to linearity, the response of the process to the sequence
(sum) of discrete impulse functions is the sum of the individual responses to all
previous (time) distributed inputs. As the MIMO case is addressed, each of the v
outputs cumulates the responses to all q considered inputs.
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Practical considerations make the unit impulse response set of matrices Hi less
convenient compared to the unit step response set of matrices Si, i = 1…n. It is well
known that the unit step response matrix Si may be directly related to the unit
impulse response matrix Hi by:

H i ¼ S i � S i�1 (2.3)

or

S i ¼
Xi

m¼1

H m (2.4)

Based on the unit impulse–step response relationship, the step response model of
the process emerges as:

yðkÞ ¼
Xn�1

i¼1

S i � ˜uðk� iÞ þ S n � uðk� nÞ (2.5)

where the input change vector ˜u(k) has been defined by:

˜uðkÞ ¼ uðkÞ � uðk� 1Þ (2.6)

The step response model is again a consequence of the assumed linearity of the
process. The input function may be described by a sequence (sum) of step
functions, each having the amplitude equal to the value of the discrete input signal
at the respective sampling time moment. The response of the process to this sum
of step inputs is the sum of the individual step responses to these input steps
considered for all transfer paths connecting all inputs to each output and taking
into account all previous (but truncated to n·T) moments of time.
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Based on the step response model the MPC algorithm may be straightforwardly
developed [15]. The MPC approach is simply presented in Figure 2.2.

The present moment is considered to be at t = k·T. The future process behavior is
considered for a time span ranging from t = k·T to t = p·T, the interval usually
being denoted as the output horizon. On the basis of the step input model and the
current measurements, the process outputs are predicted over the output horizon.
The predicted output is a function of the known past, but also of not-yet known
future manipulated variables. The future manipulated variables will be computed
on a time span ranging from t = k·T to t = m·T, with interval usually denoted as the
input horizon. The future manipulated variables will be computed such as the
predicted outputs conform to a desired (setpoint) output trajectory. The first
computed manipulated variable is sent to the process and maintained constant
up to the new sampling moment t = k + 1, when all the computation is performed
again with the output and input horizons shifted one time step forward. This
procedure produces the so-called moving or receding horizon control approach,
which is one of MPC’s characteristics.

Computation of the unknown future manipulated variables, over the input
horizon, is performed in an optimization framework, by minimization of the
(square) difference between the desired and the predicted output trajectories.
The Dynamic Matrix Control formulation uses a linear model for the prediction
of the future process behavior and a quadratic performance (programming) QP
index (square desired-predicted difference) for determining the unknown manip-
ulated variables. Other linear MPC approaches may consider the linear perform-
ance (programming) index or the infinite norm objective function [28]. The basic
form of DMC is presented in Eqs. (2.7) to (2.11):

min
˜uðkÞ:::˜uðkþm�1Þ

Xp

l¼1

yðkþ l j kÞ � rðkþ lÞk k2
ˆy

l
þ ˜uðkþ l � 1Þk k2

ˆu
l

� �
(2.7)

y kþ l j kð Þ ¼
Xl

i¼1

S i � ˜u kþ l � ið Þþ
Xn�1

i¼lþ1

S i � ˜u kþ l � ið ÞþS n � u kþ l � nð Þ þ d kþ l j kð Þ

(2.8)

d kþ l j kð Þ ¼ d k j kð Þ ¼ ym �
Xn�1

i¼1

S i � ˜u k� ið Þ�S n � u k� nð Þ (2.9)

Xp

l¼1

C j
yl
� y kþ l j kð Þ

� �
þ c j � 0 ; j ¼ 1 ::: nc1 (2.10)

Xp

l¼1

C j
u l

u kþ l � 1ð Þ
� �

þ c j � 0 ; j ¼ 1 ::: nc2 (2.11)

The notation y(k+l|k) has been used to denote the prediction of the process output
vector at the generic time moment t = k + l, on the basis of the information known
at the present moment t = k. The future behavior of the process output is predicted
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over the prediction horizon, i.e., l = 1,2…, p, and consists in the sequence of the
predicted process outputs: y(k+1|k), y(k+2|k),…, y(k+p|k).

The notation d(k+l|k) has been used to denote the prediction of the disturbance
vector acting on the process output vector at the generic time moment t = k + l, on
the basis of the information known at the present moment t = k. The ym vector
consists in the measured values of the process output vector y(k) at the present
moment of time t = k.

The notation jjy jj2ˆ ¼ yT � ˆ � y has been used for the weighted 2-norm of the
vector y. The matrix ˆy

l is the so-called output weighting matrix and is used to
penalize the square difference term (between predicted and desired output trajec-
tories) of the optimization index. The matrix ˆu

l is the so-called input weighting
matrix and is used to penalize the manipulated variable move in order to avoid
excessive control action. ˆy

l and ˆu
l are usually diagonal matrices. C j

yl
; C j

ul
; c j are

constant matrices of the constraints.
The first term in the optimization index of Eq. (2.7) is the main term from the

control point of view as it drives the controlled output to follow the desired setpoint
by minimizing the weighted square difference between setpoint and predicted
output. The predicted output y(k+l|k) presented in Eq. (2.8) has three main terms.

The first term of Eq. (2.8) corresponds to the component of the output prediction
that accounts for the effects of manipulated variables that will be sent to the process
in the future, during the input horizon, starting at the present moment of time
t = k·T until time t = m·T. The values of these future manipulated variables are not
yet known, but they are the independent variables of the objective function that will
be determined by solving the QP minimization problem. In fact equivalently, the
mathematical formulation considers the change of the manipulated variables
˜u(k) (not the absolute value of the manipulated variables) as the unknown
variables.

The second and third terms of Eq. (2.8) correspond to the component of the
output prediction that accounts for the past, but known, effects of the (known)
manipulated variables that operated in the past t < k·T (starting from the present
time t = k·T, up to the truncation time t = (k – n)·T in the past).

If the predicted outputs were to consist only of the three terms presented above,
and the QP optimization problem were to be solved only on this basis, the resulting
control algorithm would be an open-loop optimal control. Consequently, the effects
on the output variables of the unmeasured disturbances and of the model–process
mismatch would not be taken into consideration, making the control inefficient.
Therefore, it is clearly necessary to bring feedback into the control algorithm. This
feedback is provided by the last term of Eq. (2.8), which brings the measured values
ym of the output variables onto the scene. In fact, this feedback term is the same as
that presented for the internal model control, as MPC is a particular case of the
general internal model control structure. The feedback term presented in Eq. (2.9),
which is the prediction (estimation) of the disturbances, is usually denoted as the
correction component of the predicted output. This correction component may be
simply introduced as a constant value, added to the first two components of the
prediction all over the prediction horizon, or it may be introduced as a time-varying
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function if additional information about the disturbance time evolution is available.
In its simplest form, the correction term of Eq. (2.9) consists of a constant vector
(along the prediction horizon) that is equal to the difference between the measured
output at present moment t = k·T and the model-based prediction of the output
vector for the same time moment.

The minimization problem is solved at the current moment of time t = k·T, but
only the first manipulated variable change ˜u(k) is implemented up until the next
sampling time t = (k + 1)·T, when the prediction, correction and minimization
steps are resumed. This receding horizon approach provides efficiency to the DMC
algorithm. For the unconstrained case it may be shown that a linear time-invariant
feedback control law may be obtained:

˜u kð Þ ¼ K DMC � E kþ 1jkð Þ (2.12)

where E(k+1|k) is the vector of future predicted errors for zero future manipulated
variable moves.

Equations (2.10) and (2.11) consist of the constraints set for the controlled and
manipulated variables. Their presence motivates the success that MPC has gained
in applications, despite the increased complexity brought to the minimization
problem.

It should be noted that the input m and output p horizons are not necessarily
equal. Usually, the output horizon is larger than the input horizon. However, for
the time period exceeding the input horizon, until the end of the output horizon,
the manipulated variable is considered to remain constant.

To conclude, the following features characterize the MPC algorithm:
• Prediction: In contrast to other feedback controllers that compute the control

action based on present or past information, MPC determines the control action
based on the predicted future dynamics of the system being controlled. The
model used for prediction can be either linear or nonlinear, time-continuous or
discrete, deterministic or stochastic. Due to the future prediction, early control
action can be taken, accounting for the future behavior.

• Constraints: In practice, most systems have to satisfy input, state or output
constraints, thereby placing limitations on the achievable control performance
(in the extreme case affecting stability). One of MPC’s incentives is the fact that
constraints on the controlled and manipulated variables can be specified in a
direct manner. The MPC algorithm is able to find the best (from an optimal
objective viewpoint) solution to satisfy all constraints. However, for the general
case the controller becomes nonlinear and time-dependent, and no simple
stability analysis is available when constraints are active. MPC is able to obtain
better control performance, as it can determine the current control action for
minimizing errors caused by reaching the constraints that are predicted to
become active in the future. Input constraints typically reflect limits on the
capacity of control actuators, such as valves or pumps, whereas state constraints
represent desirable ranges of operation for process variables, such as temper-
atures or concentrations. Constraints, however, limit the set of initial conditions,
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starting from where a process can be stabilized at a possibly open-loop unstable
steady state. Therefore, in the control of constrained processes, it is important to
obtain an explicit characterization of the region of closed-loop stability. MPC
provides a suitable framework for implementing control that respects manipu-
lated input and process variable constraints, while meeting prescribed perform-
ance objectives. Unfortunately, the implicit nature of the feedback law in MPC
(the control action is computed by solving on-line a constrained optimization
problem at each sampling time) makes the a priori computation of the closed-loop
stability region a very difficult task. However, such a computation is possible when
Lyapunov-based bounded control techniques are used to design controllers for the
stabilization of systems with manipulated input constraints [38].

• Optimization: The objective function specifying the desired control performance
is minimized on-line at each time step. This objective function is usually an
integral weighted square error between predicted controlled variables and de-
sired references.

• Discrete manipulated variables: The number of computed values in the manipu-
lated variable sequence is finite (finite input horizon) and discrete in time. They
are related to the fact that the involved optimization problem can only be solved
with numerical methods. A time-continuous approach can lead to numerically
extremely demanding problems.

• Multivariable character: Multivariable controllers are often the only solution able
to provide the desired control performance in the presence of interactions,
though MPC can directly handle such cases by using MIMO models.

2.3
Nonlinear Model Predictive Control

2.3.1
Introduction

Beginning during the past decade, nonlinear model predictive control (NMPC)
techniques have become increasingly important and now accepted in chemical
industries. The NMPC paradigm encompasses a significant number of different
approaches, each with its own special feature. All NMPC techniques rely on the
concept of generating values for process inputs as solutions of an on-line (real-
time) optimization problem using a nonlinear process model. The nonlinear
dynamic model can be used in different ways and in different phases of the control
algorithm, depending on the particular nonlinear model predictive control ap-
proach. Excellent reviews have been published recently, indicating the current and
continuously increasing interest directed toward this control strategy [39–48].
Here, we present a brief overview of the technology, the intention being to
demonstrate the diversity of the approaches. While this section represents a quite
extensive review of NMPC, the reader is referred to the aforementioned reviews
(and the references therein) for a comprehensive overview of the subject.
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Among the wide variety of chemical processes encountered, nonlinearity is the
rule rather than the exception. There are processes which present many challeng-
ing control problems, including: nonlinear dynamic behavior; multivariable inter-
actions between manipulated and controlled variables; unmeasured state variables;
unmeasured and frequent disturbances; high-order and distributed processes; and
uncertain and (variable) deadtime on inputs and measurements. Further, reliable
measurements of important variables to be controlled, such as quality-related
variables, are often difficult to obtain on-line. Today, the economic benefits of
applying advanced process control (APC) approaches in chemical industry has
been widely recognized, not only in academia but also in industry. The theoretical
economical optimal operating condition of a chemical process usually lies on active
constraints. Therefore, in practice the operating region must be chosen such that
the constraints are not violated, even in the case of strong disturbances. The quality
of control determines how close the process can be pushed to the boundary. APC
approaches allow the tighter control of process variables, hence permitting proc-
esses to be operated closer to the limits, and yielding greater profit. A simple
graphical explanation of the economical advantages of APC is shown in Figure 2.3.
The schematic representation in Figure 2.4 shows that the optimal operating
region given by APC is usually on active constraints, but provides higher quality
with lower variability than typical operating regions with classical control ap-
proaches.

A number of APC approaches and algorithms capable of handling some of the
aforementioned process characteristics have been presented during recent years.
Many of these approaches are unable to handle the various process characteristics
and requirements met in industrial applications, and this has resulted in a large
gap between the number of industrial and academic NMPC products. Although, it
is well recognized that the performance of a control system is mostly inherent in
how successfully it can cope with the nonlinearity of the process, chemical processes
have been traditionally controlled by using algorithms based on a linear time-
invariant approximate process model, the most common being step and impulse
response models derived from the convolution integral. One reason for this is that
in most LMPC applications reported, the goal is largely to maintain the process at a
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desired steady state (regulator problem, disturbance rejection; e.g., in refinery
processing), rather than moving rapidly from one operating point to another
(setpoint tracking problem). A carefully identified linear model, which usually
can be identified in a fairly straightforward manner from process test data, is
sufficiently accurate in the neighborhood of a single operating point. In addition,
by using a linear model and a quadratic objective, the nominal MPC algorithm
takes the form of a highly structured convex Quadratic Program (QP), for which
reliable solution algorithms and software can easily be found. This is important
because the solution algorithm must converge reliably to the optimum in no more
than a few tens of seconds if it is to be useful in manufacturing applications. For
these reasons, a linear model will in many cases provide the majority of the benefits
possible with MPC technology [49–51].
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Figure 2.5 Distribution of MPC application versus the degree of
process nonlinearity.



Nevertheless, there are cases where nonlinear effects are significant enough to
justify the use of NMPC technology. These include at least two broad categories of
applications [47]: (i) disturbance rejection control problems where the process is
highly nonlinear and subject to large frequent disturbances (pH control, bioreactor,
etc.) [52–54]; or (ii) setpoint tracking problems where the operating points change
frequently and incorporate a sufficiently wide range of nonlinear process dynamics
(batch process control, start-up problems, polymer manufacturing, etc.) [55–58].

An approximate distribution of the number of MPC applications versus the
degree of process nonlinearity is shown in Figure 2.5. MPC technology has not yet
penetrated deeply into areas where process nonlinearities are strong, and market
demands require frequent changes in operating conditions. Consequently, it is
these areas that provide the greatest opportunity for NMPC applications [47,50].

A direct extension of the LMPC methods results when a nonlinear dynamic
process model is used, rather than the linear convolution model. The nonlinear
dynamic model can be used in different ways and in different phases of the control
algorithm, depending on the certain NMPC approach [54,57].

2.3.2
Industrial Model-Based Control: Current Status and Challenges

Because of all the appealing features mentioned in the previous section, LMPC has
during the past 20–30 years – become a preferred control strategy for a large
number of processes. While the development of LMPC approaches and industrial
products has reached the fourth generation [59], with more then 4500 applications
(Fig. 2.6), there are only few NMPC providers (Table 2.1) with rather limited
number of applications. By the late 1970 s, DMC and IDCOM had been developed
which basically are at the basis of most of the current LMPC products. The vast
majority of LMPC products use a collection of SISO step response models. A
fourth-generation LMPC product not mentioned in Qin’s review is that of Pre-
dict&Control, which was developed by ABB. ABB’s approach is based on MIMO
state-space models, making it applicable for unstable processes. Process input and
output disturbances can be estimated using the incorporated Kalman filter ap-
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proach. The optimization problem is formulated as a multi-objective quadratic
optimization problem with prioritized control objectives and time-domain tuning
constraints.

Several commercial NMPC products, together with details of the supplying
companies, are listed in Table 2.1 (this list is by no means exhaustive). Several
other approaches are available, but these are either mainly applications to a
particular process, or the NMPC products are too new (Fischer-Rosemount,
ABB, Cybernetica, Ipcos, etc.) and were not included here due to lack of informa-
tion. One example would be ABB’s NMPC product which was recently applied
successfully to an industrial drum boiler [60,61]; alternatively, Cybernetica provides
a solution to challenge batch NMPC development. Although not all products are
included in the review, the technology sold by the companies in Table 2.1 is
representative of the current state of the art [59,62].

Table 2.1 NMPC companies and product names.

Company Product name (Acronym)

Adersa Predictive Functional Control (PFC)

Aspen Technology Aspen Target

Continental Controls Multivariable Control (MVC)

DOT Products NOVA Nonlinear Controller (NOVA-NLC)

Pavilion Technologies Process Perfect

Cybernetica Batch NMPC

IPCOS INCA

Excellent reviews and descriptions of these NMPC products have been provided
[47,59]. Information on the details of each algorithm, including the model types
used, options at each step in the control calculation, and the optimization algo-
rithm used to compute the solution, is provided in Table 2.2.
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Table 2.2 Comparison of industrial NMPC control technology
(from [177]).

Company Adersa Aspen
Technology

Continental
Controls

DOT Products Pavilion
Technologies

Algorithm PFC Aspen Target MVC NOVA-NLC Process Perfect

Model Forms1 NSS-FP, S, I, U NSS, S, I, U SNP-IO, S, I NSS-FP, S, I NNN-IO, S, I, U

Feedback2 CD, ID CD, ID, EKF CD EKF CD

SS. Opt. Obj.3 Q [I,O] Q [I,O] Q [I,O] - Q [I,O]

SS. Opt. Const.4 IH, OH IH, OH IH, OS - IH OH

Dyn. Opt. Obj.5 Q [I,O] Q [I,O,M] Q [I,O,M] (Q,A) [I,O,M] Q [I,O]

Dyn. Opt. Const.6 IC, OS IH, OH, OS IH, OS IH, OS IH, OH

Output Traj.7 S, Z, RT S, Z, RT S, Z, RT S, Z, RT S, TW

Output Horiz.8 FH, CP FH, CP FH FH FH

Input Param.9 BF, SM MM SM MM MM

Sol. Method10 NLS QP, QP-QUICK GRG, GRG2 MINLP-Nova GD

1 Model Form: IO = Input-Output; FP = First-Principles; NSS = Nonlinear State-Space;
NNN = Nonlinear Neural Net; SNP = Static Nonlinear Polynomial; S = Stable; I = Integrating;
U = Unstable.

2 Feedback: CD = Constant Output Disturbance; ID = Integrating Output Disturbance;
EKF = Extended Kalman Filter.

3 Steady-State Optimization Objective: Q = Quadratic; I = Inputs; O = Outputs.
4 Steady-State Optimization Constraints: IH = Input Hard maximum, minimum, and rate of

change constraints; OH = Output Hard maximum and minimum constraints.
5 Dynamic Optimization Objective: Q = Quadratic; A = One norm; I = Inputs; O = Outputs;

M = Input Moves.
6 Dynamic Optimization Constraints: IH = Input Hard maximum, minimum, and rate of

change constraints; IC = Input Clipped maximum, minimum, and rate of change constraints;
OH = Output Hard maximum and minimum constraints; OS = Output Soft maximum and
minimum constraints.

7 Output Trajectory: S = Setpoint; Z = Zone; RT = Reference Trajectory; TW = Trajectory
Weighting.

8 Output Horizon: FH = Finite Horizon; CP = Coincidence Points.
9 Input Parameterization: SM = Single Move; MM = Multiple Move; BF = Basis Functions.

10 Solution Method: NLS = Nonlinear Least Squares; QP = Quadratic Program;
GRG = Generalized Reduced Gradient; GD = Gradient Descent; MINLP = Mixed Integer
Nonlinear Program.

An approximate summary of industrial NMPC applications, together with a break-
down of the different areas of application, is shown in Figure 2.7.
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It is of interest to note that the recent distribution of NMPC applications has
changed significantly compared to LMPC applications. In refining, where proc-
esses are operated around a steady-state, LMPC is effective and the additional
burden related to NMPC is probably not necessary, but for polymers and chemicals
(e.g., pharmaceuticals) NMPC appears to offer the best approach. In fact, while half
of the NMPC applications are in these two areas, only a very small percentage of
LMPC applications are used. The explanation for this might be due to the fact that
these industries are dominated by highly nonlinear and unstable batch processes,
where LMPC approaches usually fail. An analysis in these areas showed that these
applications are for continuous processes where LMPC approaches (sometimes
with gain scheduling) can function around the operating points. For example,
INCA� (the product of IPCOS Technology [63]) in the actual control calculations
uses linear models carefully identified for the operating points, but this approach is
more difficult to use efficiently for batch processes. Likewise, for polymers and
chemicals (e.g., pharmaceuticals), the objectives are in terms of distribution control
of the final product quality, which is difficult to express in the LMPC framework.
An interesting observation from the analysis of the NMPC applications showed
that almost all literature-reported applications were for continuous processes, and
that many of the presented products were not produced for discontinuous highly
nonlinear and unstable processes with wide variations in process gain. The need
for NMPC in continuous polymerization processes can be explained by the fre-
quent grade changeover operations of the reactors in order to meet the diversified
demands of the market. However, even in these cases a relatively simpler NMPC
approach based on linear model scheduling can be successful, and may be applied.
In the case of batch polymerization and certain fine chemical processes, the
physico-chemical properties of the system (viscosity, density, heat capacity) can
alter dramatically during the process, leading to changes in the gain – sometimes
of two orders of magnitudes. In these cases, the controller must cover a wide range
of operating conditions and cope with highly nonlinear process dynamics.

2.3 Nonlinear Model Predictive Control 29

Figure 2.7 Summary of nonlinear model predictive control
(NMPC) applications by area.



2.3.2.1 Challenges in Industrial NMPC
The flow of tasks to be performed in generic industrial NMPC applications is
presented schematically in Figure 2.8. Each block represents a specific problem
which must be discussed in more detail, and can represent the main framework of
industrial NMPC assessments. Even the link of the NMPC to the process through
the input/output devices (I/O) is an important issue, where communication
protocols between process and controller – or even between different task-blocks
within the NMPC – need to be compared (OPC, DDE, UDP, TCP/IP, etc.). Clearly,
not all blocks are present for all NMPC applications. However if the goal is to
develop generic NMPC tools adequate for SISO, or thin (CVs > MVs), fat (CVs <
MVs), or square (CVs = MVs) MIMO plants, then all components must be con-
sidered, and those not needed for a certain application will be turned off. For
example, in the case of SISO control systems the determination of process subsets
and ill-conditioning is not an issue, and the corresponding modules will be
bypassed in the controller.

Some of the major challenges related to industrial NMPC applications include
the following.

2.3.2.1.1 Efficient Development and Identification of the Control-Relevant Model
The importance of modeling in NMPC applications is well acknowledged. Unlike
traditional control, where modeling and analysis represent a small part of the effort
in the application development, it is estimated that up to 80 % of time and expense
in the design and installation of a NMPC is attributed to modeling and system
identification. The design effort involved in NMPC design versus traditional
control is shown schematically in Figure 2.9.

All LMPC (and most NMPC) products use empirical models identified through
plant tests. It is attractive to use first-principles (FP) models, which provide the most
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inside information about the process. FP models are globally valid and therefore well
suited for optimization that can require extrapolation beyond the range of data used
to fit the model. Despite the clear advantages of using FP models, most NMPC
approaches are based on empirical nonlinear models. The reasons for this relate to
the difficulty in developing proper process models, and in the increased computa-
tional burden required to solve FP models. Since the modeling is a time-consuming
part of the NMPC design, the choice of a correct modeling environment is crucial.
Almost all industrial NMPC approaches attempt to benefit from the power of
chemical modeling software (ASPEN, gPROMS, Hysys, etc.) rather than building
and solving the models from scratch. The model identification is important, even if
FP models are used, and in this case offline parameter identification has usually to
be performed. It is very important to bear in mind (however often overlooked) that
models (whether empirical or FP) are imperfect (both in terms of structure and
parameters); therefore, robustness is a key issue in NMPC applications. Robustness
has also been identified as one of the major deficiencies of current NMPC products
(actually none of the products presented here has any systematic treatment of robust
performance except the inherent robustness due to feedback, and penalization of
excessive control movements). How to choose the correct plant tests to identify the
best model is an important question [64,65]. For example, many vendors believe that
the plant test is the single most important phase in the implementation of DMC-
plus controllers. Optimal experimental design, even if not the optimal design, can
provide an answer/recipe to the model identification question. Additionally, robust
NMPC design can lead to significant performance improvement [66,67]. Another
important problem which must be assessed in the case of FP model-based NMPC
approaches, is the trade-off between the model accuracy (hence complexity) and
computational requirement. Often, the control-relevant model is not necessarily the
most accurate, and identifying the correct balance between the accuracy of the model
and computational burden is usually very challenging. The inclusion of many details
into the model can lead to a large number of states, resulting in unobservable models
based on available measurements, in addition to a prohibitively large computational
burden. Determination of the control-relevant model must always be carried out in
conjunction with the observer design.
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2.3.2.1.2 State and Parameter Estimation
The lack of reliable sensors is one of the major bottlenecks in industrial NMPC
applications; this problem is crucial when FP models are used [68]. In many
industrial applications software sensors must be developed based on additional
empirical models (most often neural networks are used for this purpose, e.g.,
INCA, [63]).

2.3.2.1.3 Managing the On-Line Computational Load
Although an exorbitant computational load is involved in NMPC approaches, the
use of an efficient optimization approach is crucial [69–73]. Other important
problems that are related to computations involved in NMPC, and which must
be assessed for successful practical implementation, include the robustness of
optimization, the choice of proper objective functions, and the optimization prob-
lem set-up for efficient solution.

2.3.2.1.4 Design as an Integrated System
In industrial NMPC, optimization is involved in several steps of the controller
design (steady-state optimization, dynamic optimization, state estimation, and
model identification). An efficient approach to design model, estimator (of model
parameters and states), and optimization algorithms as an integrated system
(simultaneously optimized) rather than as independent components should be
the capstone of modern NMPC designs.

2.3.2.1.5 Long-Term Maintenance of Control System
Although it is clear that the implementation complexity of NMPC approaches is
high, it is important to asses how long-term maintenance can be performed, and
also to identify the limits of the approach in the face of changing process and
operating conditions.

2.3.3
First Principle (Analytical) Model-Based NMPC

The objective of NMPC is to calculate a set of future control moves (control
horizon, Tc, or M) by minimization of a cost function, such as the squared control
error on a moving finite horizon (prediction horizon, TP or P). The optimization
problem is solved on-line based on predictions obtained from a nonlinear model.
Here, it is possible to use different empirical nonlinear models for predictions in
the controller, but the most attractive approach is to use FP models. These are
globally valid and therefore well-suited to an optimization which might require
extrapolation beyond the range of data used to fit the model [74,75].

A general mathematical formulation of the NMPC problem, when the process is
described by ordinary differential equations (ODEs), is:
• Objective function:

min
uð�Þ;P;M

J x tð Þ; uð�Þ;P;Mð Þf g (2.13)
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• Constraints:

dx
dt
¼ f x; u; q; dð Þ (2.14)

x kð Þ ¼ xest kð Þ (2.15)

0 ¼ g1 xð Þ (2.16)

yp ¼ g2 xð Þ (2.17)

umin kþ ið Þ � u kþ ið Þ � umax kþ ið Þ (2.18)

u kþ i� 1ð Þ � ˜umax � u kþ ið Þ � u kþ i� 1ð Þ þ ˜umax (2.19)

u kþ ið Þ ¼ u kþM � 1ð Þfor alli ¼ M � 1;P (2.20)

xmin kþ ið Þ � x kþ ið Þ � xmax kþ ið Þ (2.21)

ymin kþ ið Þ � yp kþ ið Þ � ymax kþ ið Þ (2.22)

where x = state variables, u = manipulated variables, q = parameters, d = measured
and unmeasured disturbances, and y = output variables.

Generally, the prediction and control horizon, respectively, are considered fixed
for an open-loop optimization. The objective function usually is chosen as the sum
of the squares of the differences between the predicted outputs and the setpoint
values over the prediction horizon of P time steps:

J xðtÞ; uð�Þð Þ ¼
ZtkþTP

tk

Q � Ek k2dt, J xðkÞ; uð�Þð Þ ¼
XP

i¼1

Qi r kþ ið Þ � yp kþ ið Þ
� ��� ��2

(2.23)
continuous form discrete form

Often, the objective function [Eq. (2.13)] includes a second term, which is the
squared sum of the manipulated variable changes over the control horizon (M):

J xðtÞ; uð�Þð Þ ¼
XP

i¼1

Qi r kþ ið Þ � yp kþ ið Þ
� ��� ��2 þ

XM

i¼1

Ri˜u kþ i� 1ð Þk k2 (2.24)

The second term was originally introduced by the unconstrained formulation of
LMPC in which constraints are handled artificially through the weighting factors
(matrices Qi and Ri). Since the constrained LMPC algorithms (likewise the NMPC
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methods) explicitly include constraints, there is no need for the second term in the
objective function, although in many constrained LMPC and NMPC applications
the authors also use this term. Instead of – or in addition to – the second term of the
objective function, a smooth control action can be assured by introducing another
term to minimize the deviations of the manipulated inputs from their set points. In
this way, a more general formulation of the performance function is obtained and
the optimization problem to be solved at each sampling time can be written as
follows:

min
u kð Þ...u kþM�1ð Þ

f
XP

i¼1

Qi r kþ ið Þ � yp kþ ið Þ
� ��� ��2 þ

XM

i¼1

Ri˜u kþ i� 1ð Þk k2þ

XM

i¼1

Rl u kþ i� 1ð Þ � uref kþ i� 1ð Þ
� ��� ��2g

(2.25)

The predicted values of the output variables (yp) can be considered equal to the
values obtained from the model (ym), but usually a correction is made to reduce the
cumulative error effect of the measurement errors and the model/plant mismatch.
The correction equation usually has the following form:

yp kþ ið Þ ¼ ym kþ ið Þ þ Kðkþ iÞ � ym kð Þ � yp kð Þ
� �

(2.26)

The decision variables in the optimization problem expressed by Eqs. (2.13) to
(2.22) are the control actions, M sampling time steps into the future (control
horizon). Generally, 1 £ M £ P, and it is assumed that manipulated variables are
constant beyond the control horizon [Eq. (2.20)]. Although the optimization pro-
vides a profile of the manipulated input moves over a control horizon (M), only the
first control action is implemented. After the first control action is implemented,
new measurements are obtained and are used for the compensation of plant/
model mismatch and for the estimation of unmeasured state variables. Finally, the
prediction horizon is shifted by one sampling time into the future and the
optimization is performed again.

In the NMPC approaches, absolute [Eq. (2.18)] and velocity [Eq. (2.19)] con-
straints for manipulated variables, as well as state- and output-variable constraints,
are explicitly included.

Since a constrained nonconvex nonlinear optimization problem must be solved
on-line, the major practical challenge associated with NMPC is the computational
complexity that increases significantly with the complexity of the models used in
the controller. Significant progress has been made in the field of dynamic process
optimization, with rapid on-line optimization algorithms which exploit the specific
structure of optimization problems arising in NMPC having been developed.
Moreover, real-time applications have been proven to be feasible for small-scale
processes. Nonetheless, the global solution for optimization cannot be guaranteed,
and the development of rapid and stable optimization techniques remains a major
objective in NMPC research [76].

2 Model Predictive Control34



2.3.4
NMPC with Guaranteed Stability

In addition to the constraints described in Section 2.3.3, another important require-
ment that the nonlinear model predictive controllers must meet (however seldom it
is taken into consideration for practical implementation) is that it should assure a
stable closed-loop system.

The most straightforward way to achieve guaranteed stability is to use an infinite
horizon cost functional (P = M = ¥) [77,78]. In this case, Bellman’s principle of
optimality implies that the open-loop input and state trajectories obtained as the
solution of the optimization problem are equal to the closed-loop trajectories of the
nonlinear system. Consequently, any feasible predicted trajectory goes to the
origin. [In this section we consider that the reference values for the controlled
and manipulated variables, respectively, are their steady states values (r = xs, uref =
us). Furthermore, without loss of generality, it can be assumed that the origin (xs =
0, us = 0) is the steady-state point of interest of the system.] However, using infinite
horizon in the performance criterion leads to a practically unsolvable optimization
problem. In order to cope with this disadvantage, and to guarantee stability, so-
called stability constraints (besides the input and state constraints) must be
included into the finite horizon open-loop optimization problem [79–83].

The most widely suggested stability constraint is the terminal equality con-
straint, which forces the states to be zero (equal to their steady-state values) at
the end of the finite horizon:

x tþ TPð Þ ¼ 0 (2.27)

Although using the terminal equality constraint to guarantee stability is an in-
tuitive approach, it also increases significantly the on-line computation necessary
to solve the open-loop optimization problem, and often causes feasibility problems
[84–86].

Another approach to guarantee stability is the so-called quasi-infinite horizon
nonlinear MPC (QIHNMPC), in which the prediction horizon is approximately
extended to infinity by introducing a terminal penalty term in the objective
function [87–92]. The basic idea of this approach consists of an approximation of
the infinite horizon prediction to achieve closed-loop stability, while the input
function to be determined on-line is of finite horizon only. The terminal penalty
term is determined off-line, such that it bounds from above the infinite horizon
objective function of the nonlinear system controlled by a local state feedback law
in a terminal region � [91,93–97].

The difference between this approach and that described above is that, rather
than using terminal equality constraints, a terminal region is used and the
objective function has an additional term, the terminal penalty term. The key
problem here is the choice of the form, and the off-line computation of the terminal
region and penalty term which, in general, and due to nonlinearity of the system, is
a difficult task. When using a local linear feedback law and a quadratic objective
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function, the terminal penalty term can be chosen to be quadratic. In this case, the
terminal penalty matrix Qp is the solution of a Lyapunov equation, and the on-line
control problem can be expressed as below:

min
�uð�Þ

J x tð Þ; �uð�Þð Þf g (2.28)

with

J x tð Þ; �uð�Þð Þ ¼def
ZtþTp

t

�x �; x tð Þ; tð Þk k2
Qþ u �ð Þk k2

R

� �
d�þ �x tþ Tp; x tð Þ; t

� ��� ��2
Qp

(2.29)

subject to:

d�x
dt
¼ f �x; �uð Þ;with initial condition :�x t; x tð Þ; tð Þ ¼ x tð Þ (2.30)

�u �ð Þ 2 U; � 2 t; tþ Tp

� �
(2.31)

�x �; x tð Þ; tð Þ 2 X ; � 2 t; tþ Tp

� �
(2.32)

�x tþ Tp; x tð Þ; t
� �

2 � (2.33)

where, xk k2
Q¼ xT �Q � x, with Q a positive-definite matrix, and the bar indicating

that the corresponding variables are predicted values. In this case, the procedure to
obtain the terminal penalty matrix and the terminal region is presented below
[90,98]:
• Step 1. Consider the Jacobian linearization of system (2.30) at the origin:

dx
dt
¼ A � x þ B � u (2.34)

where:

A ¼ @f
@x

����
ð0;0Þ

and B ¼ @f
@u

����
ð0;0Þ

(2.35)

• Step 2. Find a locally stabilizing linear state feedback u = Kx, by solving the
control problem based on the Jacobian linearization. Introducing u = Kx in Eq.
(2.34) one obtains:

dx

dt
¼ A � x þ B � u ¼ A � x þ B � K � u ¼ Aþ B � Kð Þ � x ¼ AK � x (2.36)

If Eq. (2.34) can be stabilized, then AK ¼
def

Aþ B � K is asymptotically stable, and the
Lyapunov Eq. (2.37) has a unique positive-definite and symmetric solution, Qp.
• Step 3. Choose a constant Œ ˛ [0, ¥), with Œ < –ºmax(AK), where ºmax(AK) denotes

the largest eigenvalue of the matrix AK , and solve the Lyapunov equation:
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AK þ Œ � Ið ÞT �Qp þ Qp � AK þ Œ � Ið Þ ¼ � Q þ KT � R � K
� �

(2.37)

• Step 4. Find the region defined by Eq. (2.38) with the largest possible Æ1:

�1 ¼
def

x 2 <njxT Qpx � Æ1
	 


(2.38)

such that �1 ˝ X and Kx ˛ U, for all x ˛ �1.
• Step 5. Find the largest possible terminal region:

� ¼def
x 2 <njxT Qpx � Æ
	 


(2.39)

by determining Æ ˛ (0, Æ1], via iteration, until the optimal value of the following
optimization problem is non-positive:

max
x

xT Qp�ðxÞ � Œ � xT QpxjxT Qpx � Æ
	 


(2.40)

where, �ðxÞ ¼def
f x;Kxð Þ � AK x.

2.3.5
Artificial Neural Network (ANN)-Based Nonlinear Model Predictive Control

2.3.5.1 Introduction
The analytical model-based NMPC has two main disadvantages:
• It requires the elaboration of a complex, analytical model of the process with

good accuracy which, in the case of the most chemical processes, might be very
arduous.

• In order to carry out the optimization problem by integrating the analytical
model for large scale, complicated processes may demand much computation
effort and time.

These shortcomings can be avoided by using ANNs as the nonlinear model to
control movement computation. The advantageous properties of neural networks,
such as parallel computation, nonlinear mapping and learning capabilities, make
them an alluring tool in many chemical engineering problems. In recent years,
there has been intense, growing interest in this field of artificial intelligence [99].
Neural networks have been used successfully for a wide variety of chemical
applications, including: the detection and location of gross errors in process
systems [100]; the detection of faults in control systems [101]; the optimal design
of chemical processes [102–104]; elucidating nonlinear input-output maps for
process data; the identification and modeling of linear and nonlinear systems
[105–109]; process control [110–113]; pattern recognition [114,115]; and several
other purposes [116,117]. In addition to the above-mentioned reports concentrating
on the applications of neural networks, there has been a recent increase in the
number of studies related to the control-relevant properties of neural networks
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[118], the improvement of network training by using different network structures,
transfer functions and learning algorithms [109,119–121], as well as the elucidation
of definite methodologies to determine network structures [122].

2.3.5.2 Basics of ANNs
A neural network is a computer program architecture for nonlinear computations,
which is composed of many simple elements operating in parallel. These elements,
termed “processing elements”, are inspired by biological nervous systems, and are
highly interconnected. An individual processing element (neuron) can have any
number of inputs, but only one output that is generally related to the inputs by a
transfer function. The most frequently used transfer functions include: sigmoid
function; hyperbolic tangent function; sine function; and linear and saturated linear
transfer function. The most frequently used transfer functions are listed in Table 2.3.
The argument for the transfer function is the sum of the input elements of the
corresponding neuron, with each input being multiplied by the associated weight;
this demonstrates the strength of the connection between two neurons.

Table 2.3 Transfer functions used in the artificial neurons.

Function name Expression Characteristics

Hard limit gðxÞ ¼ þ1; x > 0
0; otherwise

�
Nondifferentiable, step

Symmetric hard limit gðxÞ ¼ þ1; x > 0
�1; otherwise

�
Nondifferentiable, step

Log-sigmoid gðxÞ ¼ 1
1þ e�x

Nondifferentiable, step, positive mean

Tan-sigmoid gðxÞ ¼ tanhðxÞ Differentiable, step, zero mean

Radial gðxÞ ¼ e�x2�a2
Differentiable, impulse, positive mean

A neuron usually has an additional input, called bias, which is much like a weight
corresponding to a constant input of 1. A schematic representation of an individual
processing element (neuron) is shown in Figure 2.10.

The neurons are typically grouped into subsets, called layers, in which usually all
the process units have the same bias and transfer function. Among the various
architectures proposed for neural networks, the multi layer, feed-forward network
has been used most frequently for dynamic modeling and process control appli-
cations. A typical feed-forward neural network has one input layer (usually with the
identity transfer function; thus, it only distributes the inputs to the neurons from
the next layer), one output layer, and one or more hidden layers. The structure of a
feed-forward neural network is shown in Figure 2.11.
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The outputs of the neurons from a layer represent the inputs for the next layer.
The architecture of a network consists of a description of how many layers the
network contains, the number of neurons in each layer, the transfer function used
in each layer, and how the layers are connected to each other.

2.3.5.3 Algorithms for ANN Training
Training the ANN is the most time-consuming task in the ANN application
development. It is very difficult to recognize which training algorithm will be
the fastest for a given problem, as success will depend on many factors, including
the complexity of the problem, the number of data points in the training set, the
number of weights and biases in the network, and the error goal.

2.3.5.3.1 Back-Propagation Learning Algorithm
The most frequently used learning algorithm to train feed-forward networks is the
back-propagation learning algorithm, due mainly to its simplicity. The main
advantage of this algorithm is that it is easily implemented and requires little
computational power; thus, it can be used to train large networks. During the
training phase, the connection weights and biases are modified, using the back-
propagation learning rules, so that the network will learn the process features.

The back-propagation learning algorithms belong to the class of supervised
training algorithms; that is, there is a set of input-output data which is repeatedly
presented to the network when the weights are adjusted in order to minimize the
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Figure 2.10 An individual processing element of a neural net.

Figure 2.11 The structure of a general feed-forward neural net-
work.



error between the net output (AN) and the desired training output (D). The greater
the number of sets of input-output data (Q), the better the network will learn the
process. Hence, for a network the training data can be represented with the
following matrices:

P ¼

P 1; 1ð Þ P 1; 2ð Þ . . . P 1;Qð Þ
P 2; 1ð Þ P 2; 2ð Þ . . . P 2;Qð Þ

..

. ..
. ..

.

P S0; 1ð Þ P S0; 2ð Þ . . . P S0;Qð Þ

2

6664

3

7775
(2.41)

D ¼

D 1; 1ð Þ D 1; 2ð Þ . . . D 1;Qð Þ
D 2; 1ð Þ D 2; 2ð Þ . . . D 2;Qð Þ

..

. ..
. ..

.

D SN ; 1ð Þ D SN ; 2ð Þ . . . D SN ;Qð Þ

2

6664

3

7775
(2.42)

The back-propagation algorithm can be represented briefly as follows:

• Initialization of the weight coefficients with random values.
do
For each training input-output pair:
– the input array is presented to the network and the activation flux is propa-

gated layer by layer through the net (forward step).
– an error criterion is calculated and it is propagated back through the net

adjusting the weights in order to minimize the error criterion (backward step).
while (error is above the error goal).

• Forward step
In this step, the output of the net is calculated. For a feed-forward network with N
layers (the input layer is not counted), with Sj neurons in the jth layer and with the
same transfer function (Fj) in one layer, the output of the jth layer can be computed
with the following matrix with recurrent terms:

Aj ¼

Fj
PSj�1

i¼1
wj 1; ið Þ � Aj�1 i; 1ð Þ þ Bj 1ð Þ

 !

. . . Fj
PSj�1

i¼1
wj 1; ið Þ � Aj�1 i;Qð Þ þ Bj 1ð Þ

 !

..

. ..
. ..

.

Fj
PSj�1

i¼1
wj Sj; i
� �

� Aj�1 i; 1ð Þ þ Bj Sj

� �
 !

. . . Fj
PSj�1

i¼1
wj Sj; i
� �

� Aj�1 i;Qð Þ þ Bj Sj

� �
 !

2

66666664

3

77777775

(2.43)

with F0 = ` (identity function: `(x) = x) and A0 = P. For j = N the output of the
network is obtained.
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• Backward step
The most frequently used error criterion, calculated in this step is the sum-squared
error of the network, defined as:

E ¼
XSN

i¼1

XQ

j¼1

D i; jð Þ � AN i; jð Þð Þ2 (2.44)

The adjustment of the network weights and biases is made by continuously
changing their values in the direction of steepest descent with respect to error.
There are several improved methods to perform this task. One such algorithm is
the back-propagation learning with momentum [123]. Momentum (m) allows the
network to ignore shallow local minimums in the error surface, and can be added
to back-propagation learning by making weight changes equal to the sum of a
fraction of the last weight change and the new change suggested by the back-
propagation rule. This is expressed mathematically as:

w i; jð Þ hð Þ¼ w i; jð Þ h�1ð Þþlr � �w i; jð Þ hð Þ (2.45)

where

�w i; jð Þ hð Þ¼ m � �w i; jð Þ h�1ð Þþ 1�mð Þ � @E
@w i; jð Þ (2.46)

These two steps (forward and backward) are repeated until the sum squared error
(E) becomes less than the error goal.

2.3.5.3.2 The Levenberg–Marquardt Algorithm
In general, for networks which contain up to a few hundred weights, the Leven-
berg–Marquardt algorithm will have the fastest convergence. This advantage is
especially noticeable if very accurate training is required.

The Levenberg–Marquardt algorithm was designed to approach second-order
training speed without having to compute the Hessian matrix. When the perform-
ance function has the form of a sum of squares (as it is typically in training feed-
forward networks), then the Hessian matrix can be approximated as:

H ¼ JT J (2.47)

and the gradient can be computed as:

g ¼ JT e (2.48)

where J is the Jacobian matrix, which contains first derivatives of the network
errors with respect to the weights and biases, and e is a vector of network errors.
The Jacobian matrix can be computed through a standard back-propagation tech-
nique that is much less complex than computing the Hessian matrix.
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The Levenberg–Marquardt algorithm uses this approximation to the Hessian
matrix in the following update:

xkþ1 ¼ xk � JT Jþ �I
� ��1

JT e (2.49)

When the scalar � is zero, this is simply Newton’s method, using the approximate
Hessian matrix. However, when � is large, this becomes a gradient descentwith a small
step size. Newton’s method is faster and more accurate near an error minimum, so the
aim is to shift towards Newton’s method as quickly as possible. Thus, � is decreased
after each successful step (reduction in performance function) and is increased only
when a tentative step would increase the performance function. In this way, the
performance function will always be reduced at each iteration of the algorithm.

2.3.5.3.3 Using Bayesian Regularization to Obtain the Best ANN Model
One problem that occurs during neural network training is termed “overfitting”. The
error on the training set is driven to a very small value, but when new data are
presented to the network the error is large. The network has memorized the training
examples, but it has not learned to generalize to new situations. One method for
improving network generalization is to use a network, which is just large enough to
provide an adequate fit. The larger the network used, the more complex the
functions that the network can create. If a small enough network is used, it will
not have enough power to overfit the data. The problem is that it is difficult to know
beforehand how large a network should be for a specific application.

Among the ANN-based modeling society, much important effort has been
invested in the development of different algorithms, which can help to avoid the
phenomena of overfitting. Generally speaking, there are two ways to obtain the
ANN model with the best generalization properties [124]:
• Using special algorithms to determine the optimal topology of the ANN model

(Optimal Brain Damage, Optimal Brain Surgeon, etc.); this approach is de-
scribed in detail in Chapter 3.

• The second approach is based on introducing different modifications into the
training algorithms, so that the resulting network will not overfit the data (early
stopping, regularization, etc.).

One of the most advanced algorithms from the second approach is the so-called
“regularization”. This algorithm involves modifying the performance function,
which is normally chosen to be the sum of squares of the network errors on the
training set. It is possible to improve generalization if the performance function is
modified by adding a term that consists of the mean of the sum of squares of the
network weights and biases:

F ¼ ª � 1
SN
�
XSN

i¼1

1
Q
�
XQ

j¼1

Ai jð Þ � Ti jð Þð Þ2
 !

þ 1� ªð Þ � 1
Np
�
XNp

k¼1

w2
k (2.50)

where ª is the performance ratio.
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Using this performance function will cause the network to have smaller weights
and biases, and this will force the network response to be smoother and less likely
to overfit. The problem with regularization is that it is difficult to determine the
optimum value for the performance ratio parameter. If this parameter is made too
large, there may be overfitting, whereas if the ratio is too small, the network will not
adequately fit the training data. It is desirable to determine the optimal regulariza-
tion parameters in an automated fashion. One approach to this process is the
Bayesian framework of David MacKay [121]. In this framework, the weights and
biases of the network are assumed to be random variables with specified distribu-
tions. The regularization parameters are related to the unknown variances asso-
ciated with these distributions. These parameters can then be estimated using
statistical techniques. A detailed discussion of the use of Bayesian regularization,
in combination with Levenberg–Marquardt training, can be found in [125].

Besides the aforementioned algorithms, there is an important number of train-
ing algorithms. A new improved training algorithm, as elaborated by the present
authors, is presented in [126]. This algorithm combines the advantages of genetic
algorithms and the Levenberg–Marquardt algorithm, and is used to obtain the
ANN model of a fluid catalytic cracking unit.

2.3.5.4 Direct ANN Model-Based NMPC (DANMPC)
There are several ways to use ANNs in control. In the description of the control
algorithms based on ANN models, it is considered that the process model can be
written in a discrete form [99,127]:

y kþ 1ð Þ ¼ f y kð Þ; . . . ; y k� nþ 1ð Þ; u kð Þ; . . . u k�m þ 1ð Þð Þ (2.51)

where u kð Þ and y kð Þ, k ¼ 0; 1; . . . are input and output vectors at the time instances
k, n and m are the orders of {y(k)} and {u(k)} respectively, and f is a nonlinear
function which is thought to be unknown, though some idea of its structure is
probably apparent. Considering the correct time-delay of the process might be
crucial for obtaining the appropriate ANN model. The time-delay (d; d ‡ 0) of the
process can be introduced in the ANN model in the following way:

y kþ 1ð Þ ¼ f y kð Þ; . . . ; y k� nþ 1ð Þ; u k� dð Þ; . . . u k� d�m þ 1ð Þð Þ (2.52)

The order of the process outputs (n) as well as the time-delay (d) must be known.
Usually, these values can be estimated from experience.

The DANMPC relies on the consideration of an approximate function of f
expressed by an ANN. For this, it is considered that y kð Þ; . . . ; y k� nþ 1ð Þ,
u k� dð Þ; . . . ; u k� d�m þ 1ð Þ and y kþ 1ð Þ are the inputs and the outputs of
the network respectively, and an approximate dynamic model is constructed by
adjusting a set of connection weights and biases (W) via training using historical data:

ŷ kþ 1ð Þ ¼ fANN y kð Þ; . . . ; y k� nþ 1ð Þ; u k� dð Þ; . . . u k� d�m þ 1ð Þ; Wð Þ (2.53)
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This network can be used in a successive recursive way in a general NMPC structure,
to obtain the model prediction. This model can be used for prediction in several
ways. Below are presented two types of d-step ahead predictors to compensate the
influence of the time-delay.

2.3.5.4.1 Recursive d-Step Ahead Predictor
Based on the model in Eq. (2.53), one can use a successive recursive technique to
obtain the d-step ahead predictor expressed below:

ŷ kþ dþ 1ð Þ ¼ fANN ŷ kþ dð Þ; . . . ; ŷ kþ d� nþ 1ð Þ; u kð Þ; . . . ; u k�m þ 1ð Þ; Wð Þ
(2.54)

This predictor depends on the predictions at the previous steps within the pre-
diction horizon. The recursive property of the predictor enables the extension for
long-range prediction. Suppose the prediction horizon is P, the long-range pre-
dictor can be described as:

ŷ kþ ijkð Þ ¼ fANN ŷ kþ i� 1ð Þ; . . . ; ŷ kþ i�min i; nð Þð Þ; y kð Þ; . . . ; y k�max n� i; 0ð Þð Þ;ð
u kþ i� dð Þ; . . . ; u kþ i� d�mð Þ; WÞ; 1 � i � P (2.55)

where ŷ kþ ijkð Þ is the predicted value of y for the moment k+i obtained at moment
k based on the information available up to moment k.

2.3.5.4.2 Non-Recursive d-Step Ahead Predictor
The non-recursive d-step ahead predictor uses the sequences of both past inputs
and outputs of the process until sampling time k to construct the predictive model:

ŷ kþ dþ 1ð Þ ¼ gANN y kð Þ; . . . ; y k� nþ 1ð Þ; u kð Þ; . . . u k� d�m þ 1ð Þ; Wð Þ
(2.56)

Compared with the recursive d-step ahead predictor, the non-recursive predictor is
simple for d-step ahead prediction as it does not require the recursive procedure.
However, a bank of predictors should be used in a predictive horizon if there is any
intention to use this type of predictor for long-range prediction. The long-range
prediction using non-recursive i-step ahead predictor is shown below:

ŷ kþ ið Þ ¼ gi�d
ANN y kð Þ; . . . ; y k� nþ 1ð Þ; u kþ i� dð Þ; . . . u k� d�m þ 1ð Þ; Wð Þ;

d � i � P (2.57)

In the following, we derive the explicit forms of the aforementioned two neural
predictors. The feed-forward neural model, with q layers to represent the process
can be written as follows:

ŷ kþ 1ð Þ ¼ tq
f Wq � tq�1

f Wq�1 � . . . � t1
f W1 � I kð Þ
� �� �� �

(2.58)
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where Wj (j = 1, 2,…,q) is the weight matrix of the network connections between
layer j – 1 and j; tj

f �ð Þ is the transfer function of the neurons in layer j, and
I(k) = {y(k),…,y(k – n + 1, u(k – d),…, u(k – d – m + 1)}. We can derive the neural
network-based long-range predictor, which is expressed as follows:

ŷ kþ ijkð Þ ¼ tq
f Wq � tq�1

f Wq�1 � . . . � t1
f W1 � I kþ i� 1ð Þ
� �� �� �

; i ¼ 1; . . . ;P
(2.59)

where
I kþ i� 1ð Þ ¼ ŷ kþ i� 1ð Þ; . . . ; ŷ kþ i� nð Þ; u kþ i� dð Þ; . . . ; u kþ i� d�mð Þf g.
If i – l £ 0 (l = 1,…, n), ŷ kþ i� lð Þ ¼ y kþ i� lð Þ, which is equivalent to the for-
mulation of the argument of the function in Eq. (2.55).

It can be observed that Eq. (2.59) depends on the previous prediction, so that it is
a so-called recursive predictor.

For non-recursive neural predictor, the explicit equation can be presented as:

ŷ kþ ið Þ ¼ tq
f Wq

i � t
q�1
f Wq�1

i � . . . � t1
f W1

i � I kþ ið Þ
� �� �� �

; i ¼ 1; . . . ;P (2.60)

where I kþ ið Þ ¼ y kð Þ; . . . ; y kþ 1� nð Þ; u kþ i� dð Þ; . . . ; u kþ 1� d�mð Þf g. It
should be noted that, in contrast to the recursive neural predictor, for the different
prediction steps within the prediction horizon, the values of the weights of the non-
recursive neural predictors are different.

Using the model predictions obtained with one of the procedures described
above, the control movement is determined by solving the following optimization
problem [128]:

min
u kð Þ...u kþM�1ð Þ

XP

i¼1

Qi r kþ ið Þ � ŷ kþ ið Þð Þk k2 þ
XM

i¼1

Ri˜u kþ i� 1ð Þk k2

( )

(2.61)

This leads to a non-convex nonlinear optimization problem, for which the global
solution is difficult to find; thus, special optimization algorithms should be used.
The schematic representation of the DANMPC is presented in Figure 2.12.
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Figure 2.12 Direct artificial neuronal network (ANN) model-
based NMPC. The controller is an iterative optimization scheme.



2.3.5.5 Stable DANMPC Control Law
The performance index of the optimization problem from Eq. (2.61) can be written
in matrix form as follows:

J kð Þ ¼ E kð ÞT �Q � E kð Þ þ ˜u kð ÞT �R � ˜u kð Þ (2.62)

where E ¼ r � ŷ is the model prediction error, k is the discrete time and Q and R
respectively are weighting matrices.

A stable control law can be developed to compute the control variable, u(k), so
that the performance index is minimized asymptotically. Using the index, J(k) in
Eq. (2.62) as a chosen Lyapunov function, clearly J(k)>0 for E(k) „ 0, "k. The
derivative of J(k) w.r.t. k is:

@J
@k
¼ �ET �Q � @ŷ

@u
þ ˜uT � R

� 
� @u
@k

(2.63)

It follows that if ð@u=@kÞ is given as

_u ¼
˜uT � R� ET � Q � @ŷ

@u

� �T
�ET �Q � E

˜uT � R� ET �Q � @ŷ
@u

���
���

2 (2.64)

then _J ¼ �ET �Q � E < 0. This proves that if control increases along the direction
given by Eq. (2.64), then index J will converge asymptotically to its minimal value.
The calculation of _u tð Þ is straightforward, except for ð@ŷ=@uÞ, which is according to
the structure of the ANN and can have different form.

We illustrate below how to compute this term for a radial basis function network,
with the thin-plane-spline non-linear function used as transfer function in the
neurons. The ANN model predictions can be obtained by the following equation:

ŷ ¼W � ç (2.65)

where W 2 Rnh is the weight matrix with the element wrj connecting the jth hidden
layer node to the rth output, nh the number of hidden layer nodes, and ç 2 Rnh is
the hidden layer output vector with its element given by:

’j ¼ z2
j � ln zj

� �
; j ¼ 1; . . . ; nh (2.66)

with

zj ¼ x � Cj

�� ��; j ¼ 1; . . . ; nh (2.67)

Here, x 2 Rq is the input vector of the network involving the process input
u 2 Rmas m elements, Cj 2 Rq; j ¼ 1; . . . ; nh, is the jth center vector associated
to the jth hidden layer node, and �k k is the Euclidean norm.
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For this network structure one can obtain:

@ŷ tþ 1ð Þ
@u tð Þ ¼

@ŷ tþ 1ð Þ
@ç tð Þ �

dç tð Þ
dz tð Þ �

@z tð Þ
@u tð Þ (2.68)

where

@ŷ tþ 1ð Þ
@ç tð Þ ¼W (2.69)
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dz
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z1

. .
.

znh

2
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3

75

1þ 2 ln z1ð Þ
. .

.

1þ 2 ln znhð Þ

2

64

3

75 (2.70)

@z
@u
¼

1
z1

. .
.

1
znh

2

664

3

775
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. ..
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3
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with Cj = [c1 j, …, cmj]T is the jth center. Thus:

@ŷ
@u
¼ W �

1þ 2 ln z1ð Þ
. .

.

1þ 2 ln znhð Þ

2

64

3

75 u� C1 . . . u� Cnh½ �T (2.72)

Computation of u(t) according to Eq. (2.64) can be realized in discrete form:

u tþ 1ð Þ ¼ u tð Þ þ¸ � t � _u (2.73)

where t is the sampling interval and ¸ 2 Rmxm is a diagonal matrix with its element
ºi,i being the learning rate of the ith control, ui. In order to achieve a fast convergence,
an adaptive learning rate should be used to obtain a stable control low.

2.3.5.6 Inverse ANN Model-Based NMPC
Conceptually, the most fundamental neural network-based controllers are probably
those using the inverse of the process as the controller. The simplest concept is
termed direct inverse control.

When solving Eq. (2.51) with respect to u kð Þ, one obtains the inverse dynamics of
the process:

u kð Þ ¼ f �1 y kþ 1ð Þ; y kð Þ; . . . ; y k� nþ 1ð Þ; u k� 1ð Þ; . . . u k�m þ 1ð Þð Þ (2.74)

As the function f is unknown, f –1 cannot be computed, and thus Eq. (2.74) cannot
be evaluated. Nonetheless, an ANN can be trained to approximate the function f –1:

2.3 Nonlinear Model Predictive Control 47



û kð Þ ¼ f �1
ANN y kþ 1ð Þ; y kð Þ; . . . ; y k� nþ 1ð Þ; u k� 1ð Þ; . . . u k�m þ 1ð Þ; Winvð Þ

(2.75)

where y kþ 1ð Þ; y kð Þ; . . . ; y k� nþ 1ð Þ, u k� 1ð Þ; . . . ; u k�m þ 1ð Þ and û kð Þ
are inputs and outputs of the ANN, respectively. By considering a control problem
for which the output y(k) tracks a series of setpoints r(k), k = 0, 1, … , the inverse
model is subsequently applied as controller for the process by inserting the
reference r(k + 1) as the desired output, instead of the output y(k + 1); thus, the
off-line optimization problem is eliminated:

û kð Þ ¼ f �1
ANN r kþ 1ð Þ; y kð Þ; . . . ; y k� nþ 1ð Þ; u k� 1ð Þ; . . . u k�m þ 1ð Þ; Winvð Þ

(2.76)

Usually, in the case of ANN-based control algorithms (even if the exact dynamic
model is constructed), an on-line learning must be carried out because the process
dynamics may change due to disturbances [129].

The inverse model is subsequently applied as the controller for the process by
inserting the desired output, the reference r(t + 1), instead of the output y(t + 1).
Several references are available which use this idea [99,127,130]. A schematic
representation of the direct inverse control is presented in Figure 2.13.

Before considering the actual control system, an inverse model must be trained.
There are two strategies for obtaining the inverse model, namely generalized train-
ing and specialized training [130]:
• In generalized training, a network is trained off-line to minimize the following

criterion (W specifies the weights in the network):

J Wð Þ ¼
XN

k¼1

u kð Þ � û kð Þð Þ2 (2.77)

An experiment is performed and a set of corresponding inputs and outputs are
stored. Subsequently, the Levenberg–Marquardt training method [131] is invoked.
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• Specialized training is an on-line procedure related to model-reference adaptive
control. The idea is to minimize the criterion:

J Wð Þ ¼
XN

k¼1

y kð Þ � ym kð Þð Þ2 (2.78)

where

ym kð Þ ¼ q�1 � Bm qð Þ
Am qð Þ r kð Þ (2.79)

The inverse model is obtained if Am = Bm = 1, but often a low-pass filtered version is
preferred. In this case, the result will be some type of “detuned” (or “smoothed”)
inverse model.

Specialized training is often said to be goal-directed because, as opposed to
generalized training, it attempts to train the network so that the output of the
process follows the reference closely. For this reason, specialized training is
particularly well suited for optimizing the controller for a prescribed reference
trajectory. This is a relevant feature in many robotics applications.

Specialized training must be performed on-line, and thus it is much more
difficult to carry out in practice than generalized training. Before the actual training
of the inverse model is initiated, a “forward” model of the process must be trained
as this is required by the scheme. This can be created from a data set collected in an
experiment performed in advance.

Unlike generalized training, the controller design is model-based when the
specialized training scheme is applied, as a model of the process is required.
Details on the principle can be found in [127]. For minimizing the optimization
criterion, different variations of the algorithm have been implemented, for exam-
ple, recursive back-propagation algorithm or different variations of the recursive
Gauss–Newton algorithm.

Specialized training is more complex to implement than generalized training
and requires more design parameters. The principle of specialized training is
depicted in Figure 2.14.

Although the inverse ANN model-based NMPC are the most alluring ANN-
based control techniques, they have a major drawback. Discrete-time neural net-
works mappings derived from time series can give rise to multiple trajectories when
followed backwards in time. Consequently, the invertibility of neural networks
[132] must be taken into consideration when a controller from this category is
designed.

2.3.5.7 ANN Model-Based NMPC with Feedback Linearization
Feedback linearization is a common method for controlling certain classes of
nonlinear processes [133]. In order to develop a discrete input-output linearizing
controller that is based on a neural network model of the process [134,135], a neural
network model with the following structure must be trained:
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ŷ kð Þ ¼ f y k� 1ð Þ; . . . ; y k� nð Þ; u k� 2ð Þ; . . . ; u k�mð Þð Þþ
g y k� 1ð Þ; . . . ; y k� nð Þ; u k� 2ð Þ; . . . ; u k�mð Þð Þ � u k� 1ð Þ

(2.80)

where f and g are two separate networks. A feedback linearizing controller is
obtained by calculating the controls according to:

u kð Þ ¼ w kð Þ � f y kð Þ; . . . ; y k� nð Þ; u k� 1ð Þ; . . . ; u k�m þ 1ð Þð Þ
g y kð Þ; . . . ; y k� nð Þ; u k� 1ð Þ; . . . ; u k�m þ 1ð Þð Þ (2.81)

Selecting the virtual control, w(k), as an appropriate linear combination of past
outputs plus the reference enables an arbitrary assignment of the closed-loop poles.
As for the model-reference controller, feedback linearization is thus a nonlinear
counterpart to pole placement with all zeros canceled [136]. The principle of this
controller is depicted in Figure 2.15.
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Figure 2.15 Discrete feedback linearization-based NMPC with
ANN model.

Figure 2.14 The principle of specialized training (model-refer-
ence adaptive control).



2.3.5.8 ANN Model-Based NMPC with On-Line Linearization
According to this technique, the ANN model is used to obtain at each sampling
instance the linearized process model. The linear model is used then to compute
the control low. This approach reduces the complexity of the optimization problem
of the NMPC, transforming it to one equivalent with the optimization from the
linear MPC.

The ANN model of the process having a form equivalent to Eq. (2.52) is derived:

y tð Þ ¼ f y tð Þ; . . . ; y t� nð Þ; u t� dð Þ; . . . u t� d�mð Þð Þ (2.82)

The state j(t) is introduced as a vector composed of the arguments of the function f:

’ tð Þ ¼ y tð Þ; . . . ; y t� nð Þ; u t� dð Þ; . . . u t� d�mð Þ½ �T (2.83)

At time t = �, one can linearize f around the current state j(�) to obtain the
approximate linear model:

~y tð Þ ¼ �a1~y t� 1ð Þ � . . .� an~y t� nð Þ þ b0 ~u t� dð Þ þ . . .þ bm ~u t� d�mð Þ (2.84)

where

ai ¼ �
@f ’ tð Þð Þ
@y t� ið Þ

����
’ tð Þ¼’ �ð Þ

(2.85)

bi ¼
@f ’ tð Þð Þ

@u t� d� ið Þ

����
’ tð Þ¼’ �ð Þ

(2.86)

and

~y t� ið Þ ¼ y t� ið Þ � y �� ið Þ (2.87)

~u t� ið Þ ¼ u t� ið Þ � u �� ið Þ (2.88)

Separating the portion of the expression containing components of the current
state vector, the approximate model may alternatively be written as:

y tð Þ ¼ 1� A q�1
� �� �

� y tð Þ þ q�d � B q�1
� �

� u tð Þ þ � �ð Þ (2.89)

where the bias term, �(�), is determined by:

� �ð Þ ¼ y �ð Þ þ a1y �� 1ð Þ þ . . .þ any �� nð Þ � b0u �� dð Þ � . . .� bmu �� d�mð Þ
(2.90)

and

A q�1
� �

¼ 1þ a1q�1 þ . . .þ anq�n (2.91)
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B q�1
� �

¼ b0 þ b1q�1 þ . . .þ bmq�m (2.92)

The approximate model may thus be interpreted as a linear model affected by an
additional disturbance, �(�), depending on the operating point. The idea of apply-
ing this principle to the design of the control system is illustrated in Figure 2.16.

2.3.6
NMPC Software for Simulation and Practical Implementation

2.3.6.1 Computational Issues
The prototypical NMPC formulation described in Section 2.4.3 requires that a
nonlinear programming problem be solved on-line at each time step in order to
determine the manipulated inputs. In general, the optimization problem is non-
convex because the model equations are nonlinear. Consequently, the major
practical challenge associated with NMPC is on-line solution of the nonlinear
program (NLP). Efficient and reliable NLP solution techniques are required to
make NMPC a viable control technique. In addition, it may be necessary to derive
alternative formulations of the NMPC problem with improved computational
properties [137–140]. Some general characteristics of the NLP problem are dis-
cussed below, and the most widely studied solution algorithms are presented.

2.3.6.1.1 Nonlinear Programming Problem
The prototypical NMPC formulation is based on a discrete-time state-space model
of the nonlinear process. Such a model can be derived by performing state-space
implementation on a discrete-time input-output model obtained via nonlinear
system identification. In many applications of practical interest an inherently
continuous-time nonlinear model derived via fundamental modeling is available
for NMPC design. In this case, a discrete-time nonlinear model can be obtained by
explicitly discretizing the fundamental model. However, discretization usually is
performed implicitly as part of the NLP solution using a numerical technique such
as orthogonal collocation [141]. Consequently, continuous-time models should be
considered when discussing computational issues [142–145].
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For a continuous-time model, the NMPC problem can be represented by Eqs.
(2.13) to (2.22). The constraint (2.14) represents the continuous-time model equa-
tions over the prediction horizon, while Eq. (2.20) enforces the requirement that all
inputs beyond the control horizon are held constant. The constraint (2.16) repre-
sents the algebraic equations in the model, while Eqs. (2.20) to (2.22) correspond to
the constraints on the input variables, state variables and output variables, respec-
tively. As discussed below, NMPC solution techniques differ primarily according to
the method used to handle the model Eqs. (2.14) and (2.16) [76,146–148].

The development of efficient and reliable solution methods for the NLP problem
is a challenging problem. The most obvious difficulty is that the optimization
problem is nonlinear and has a potentially large number of decision variables. The
NLP solution can be computationally too intensive for on-line implementation
using conventional process control computers. An equally important problem is
that the model constraints (2.14) and (2.16) generally lead to a nonconvex opti-
mization problem [94]. As a result, standard NLP techniques such as successive
quadratic programming (SQP) cannot be expected to find the global minimum.
Furthermore, there is no theoretical guarantee that any feasible solution can be
determined in the presence of nonconvex constraints [149–152].

2.3.6.1.2 Successive Linearization of Model Equations
The simplest way to deal with the model equations (2.14) and (2.16) is to perform
Jacobian linearization about a nominal operating point and discretize the resulting
linear model. This yields linear model predictive control if the objective function is
quadratic. Local linearization allows the optimization problem to be solved with
simple quadratic programming (QP) techniques, but it provides no compensation
for process nonlinearities. A straightforward extension of this idea is to use the
current operating point to linearize the model before each execution of the NMPC
controller [153]. The primary advantage of successive model linearization is that the
NMPC problem is reduced to a LMPC problem at each time step. However, this
approach only provides indirect compensation for process nonlinearities.

NMPC techniques based on successive model linearization have been proposed by a
number of investigators. Typically, the linearized model is used to predict future
process behavior, while the original nonlinear model is used to compute the effect of
past input moves [154]. The accuracy of the linear model can be improved by
linearizing the model equations several times over the sampling period [155], or by
linearizing the model along the computed system trajectory [156]. In the event that the
current operating point cannot be determined directly from available process meas-
urements, it becomes necessary to perform the linearization using an estimate of the
state variables [157,158]. A related approach is to perform on-line updating of the
linear model using the difference between the linear and nonlinear model responses.

2.3.6.1.3 Sequential Model Solution and Optimization
Improved closed-loop performance can be expected if the nonlinear model is used
directly in the NMPC calculations. However, standard NLP codes are not designed
to handle ODE constraints. This limitation can be overcome using a two-stage
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solution procedure in which a standard NLP solver is used to compute the
manipulated inputs and an ODE solver is used to integrate the nonlinear model
equations. This is known as sequential solution because the optimization and
integration problems are solved iteratively until the desired accuracy is obtained
[159]. First, according to the optimization algorithm, a sequence of control move-
ments is considered; with this sequence, the system of differential equations is
numerically integrated to obtain the trajectory of the controlled variables. Then, the
scope function is computed. Function of its value, the method of optimization
produces a new sequence of control movements and the algorithm is repeated until
the optimal sequence is obtained. Only the first value of the sequence is applied to
the process. A schematic representation of this approach is shown in Figure 2.17.

As compared to the simultaneous solution method discussed below, an impor-
tant advantage of the sequential approach is that the manipulated inputs are the
only decision variables. Disadvantages of the sequential approach include difficulty
in incorporating state/output constraints and poor reliability for large problems.

Several investigators have proposed NMPC solution techniques based on sequen-
tial solution of the NLP problem and the model equations. Gradients of the objective
function are obtained via simultaneous integration of the model and sensitivity
differential equations [160]. The model solution phase can be simplified by discretiz-
ing the differential equations (2.14). While other methods are available, the most
popular discretization technique is orthogonal collocation on finite elements. This
procedure yields nonlinear algebraic model equations of the form: WX = ˆ(X,U),
where X is a matrix of state values at the collocation points, U is a vector of inputs
which change over the finite elements, W is a matrix of collocation weights, and ˆ is
a matrix of nonlinear functions derived from the model function f. Further details
relating to this numerical procedure are presented in [161].
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2.3.6.1.4 Simultaneous Model Solution and Optimization
An alternative to the sequential solution approach is to solve the optimization
problem and the model equations simultaneously. The simultaneous solution
method requires the model equations to be discretized since ODEs cannot be
handled by standard NLP solvers.

In this approach, the differential equations are discretized and, together with the
algebraic ones, they represent the constraints of the optimization function [162].
The optimization problem is solved repeatedly at each sampling point, using a
nonlinear programming technique. Figure 2.18 represents the block diagram of this
approach. The decision variables are the inputs on each finite element and the state
variables at each collocation point. Therefore, the number of decision variables
increases as: (i) the sampling period is decreased and/or the prediction horizon is
increased (both increase the number of finite elements); or (ii) the number of
collocation points on each finite element is increased. The simultaneous approach
is best suited for large NLP problems with state/output constraints [163–165].
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Figure 2.19 SIMULINK library with the block of the nonlinear
predictive controller.



2.3.6.2 NMPC Software for Simulation
Although, MATLAB comes with well-developed toolboxes for control system sim-
ulations (MPC-T) until now a general-purpose NMPC toolbox has not been devel-
oped. The development of a general MATLAB/SIMULINK-based NMPC toolbox,
with a different NMPC algorithm, is presented later.

The new NMPC SIMULINK library (Fig. 2.19) contains two main, very general
functions:
• First principle model-based NMPC (FPNPMC). In this controller, the aforemen-

tioned sequential approach was implemented in a MATLAB S-function. Here,
each task is performed by a MATLAB function, which has a very general form. It
can also be used to simulate NMPC with guaranteed stability (QIH-NMPC). For
the optimization, three algorithms were developed. Besides the MATLAB im-
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plementation of the SQP algorithm (the fmincon function from the optimization
toolbox), two genetic algorithm (GA) -based optimization techniques were de-
veloped and implemented. For this, a GA-based optimization toolbox had to be
developed (if required, contact the authors for the software). The masked pa-
rameters of the FPNMPC block are presented in Figure 2.20.

• ANN model-based NMPC (ANMPC). In this controller the direct and inverse ANN
model-based control algorithms are implemented. The new adaptive approach of
these controllers in the structure described in distillation control section is also
implemented. For optimization, the aforementioned three algorithms were
implemented. The ANNMPC block permits the selection of the on-line training
algorithm for the adaptive control approaches. For this, besides the Levenberg–
Marquardt (LM), Bayesian regularization (BR) and back-propagation (BP), a new
combined GA-LM algorithm [166] is also implemented. The interface of the
ANMPC block is presented in Figure 2.21.

In addition to the controllers from the NMPC toolbox presented above, a computa-
tional efficient FPNMPC was also developed in collaboration with the research
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teams from the University of Heidelberg and University of Stuttgart, Germany.
This controller uses a special simultaneous approach to solve the control problem.
It is based on a tailored version of MUSCOD-II for NMPC [167,168]. MUSCOD-II
is an optimization tool that allows the rapid implementation and efficient solution
of optimal control problems for ODEs and DAEs using the partially reduced SQP
technique. It is based on the multiple shooting method, which is considerably
more stable and efficient than the single shooting approach, and allows an effective
treatment of both control and state constraints. This controller allows the simu-
lation of FPNMPC with guaranteed stability (both the QIH and zero terminal
constraint approaches). An extended Kalman filter (EKF) for the estimation of the
unmeasured process states is also introduced in the software package. In our
approach, MUSCOD-II was used only for the on-line control problem, which is
the most time-consuming task of the NMPC algorithm, the plant simulator and the
observer are implemented in MATLAB, and the data exchange is performed
through data files. The implementation used for the simultaneous approach is
shown schematically in Figure 2.18.

2.3.6.3 NMPC Software for Practical Implementation
The ANN model-based NMPC algorithm was implemented in a general form using
the high-level graphical programming language: LabVIEW (National Instruments,
SUA). LabVIEW� (Laboratory Virtual Instrument Engineering Workbench) is a

2 Model Predictive Control58

Figure 2.22 The main window of the ANN model-based
NMPC software.



powerful instrumentation and analysis software system that departs from the sequen-
tial nature of traditional programming languages and creates a graphical program-
ming environment with all the tools needed for data acquisition, analysis, and
presentation. With this programming language, programs can be created using a
block diagram approach. With its acquisition, analysis, and presentation tools, Lab-
VIEW is functionally complete. Any computation possible in a conventional program-
ming language is possible using the LabVIEW virtual instrument approach [169,170].

This book presents an application to a laboratory chemical plant. The scopes of
the experiments are: the study of the dynamic behavior of a cascade of three
pressurized vessels, and also the way in which the pressure in the system can be
controlled, either manually or by using ANN or PID controller. The main scope of
this application is educational, but practical implementation of the ANN model-
based controller and the first principle model-based controller for a pilot distillation
column is presented in Chapter 3 (Section 3.3). The application provides a detailed
description of the equipment and the theoretical background of PID and ANN
model-based NMPC control. The LM training algorithm was implemented and can
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be used for either on-line or off-line identification of the ANN model of the process.
The main window of the application is presented in Figure 2.22.

The window for the ANN model parameter selection is presented in Figure 2.23.
A particular feature of the developed software consists of the possibility for remote
data acquisition (DAQ) and control of the described laboratory process. Although
practical experience is a very important part of engineering education, it demands
great resources. with the design and construction of state-of-the-art experiments
taking time, money, and energy. Consequently, the sharing of experiments both
locally and remotely allows unique laboratory equipment to be used at a higher
capacity, reduces the experiment cost per student, and offers the student a wider
range of experiments.

It is on this basis that the “telelaboratory” paradigm has been implemented. The
remote control application is realized in a client/server structure, and consequently
the DAQ application, as described above, also acts as a DAQ server. This allows the
connection of authenticated clients, and the establishment of a communication
with each of the client applications via the TCP/IP protocol. In order to achieve the
feeling of “being there” between the DAQ server and client application, an on-line
image and sound transfer have been implemented. The main window of the
remote client application is presented in Figure 2.24, while a more detailed
description can be found in Refs. [171–173].
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2.4
MPC General Tuning Guidelines

The most significant tuning parameters that must be selected for the MPC
controllers are model horizon n, prediction horizon p, control horizon m, sampling
interval T, penalty weight matrices ˆl

y and ˆl
u, and a filter.

The choice of these parameters has a profound effect on the nominal stability,
robustness, and controller performance of the MPC algorithms. In applications,
the most important criteria that must be satisfied by the controllers are stability and
robustness. Thus, it would be convenient to specify a range of control parameters
which provides stability and robustness, and then to select from this interval the
values for the parameters, which provide the best control performance in accord-
ance with certain control objectives. For linear systems, algorithms are developed
to obtain those sufficient conditions which guarantee nominal stability and robust-
ness [174–176]. However, for nonlinear systems the known sufficient conditions
[177] are usually much too strong to be met for practical implementation, and one
must resort to a set of heuristics based on the extrapolation of linear systems,
simulations and experiments.

Hence, the following effects of the tuning parameters on control performance
were observed, based on the authors’ experience and using examples reported in
the literature [178–182].

2.4.1
Model Horizon (n)

The model horizon should be selected such that n·T exceeds 95 % of the open-loop
settling time of the process. Typical values of n vary between 20 and 70. If n is too
small, truncation problems arise in calculating the predictions, and this can lead to
an undesired impulse in the response of the controlled system at time t = n·T when
the model error first becomes relevant. It is recommended that a value of n such as
the last considered value of the impulse response is of the order of magnitude
comparable to the measurement error for the output variable.

2.4.2
Prediction Horizon (p)

This is generally determined in correlation to the sampling time, T. The simple
consideration to be taken into account is that the product of the prediction horizon
and sampling time, p·T , should cover the time necessary for the closed-loop
system to achieve steady state (exceeding three to four times the dominant time
constant for a first-order process). Typical values for p are between 20 and 30. The
dimension of the prediction horizon has an important effect on the dimension of
the involved MPC matrix, leading to a higher computational effort or even ill-
conditioned problems as the dimension increases. In order to overcome this
shortcoming, especially for the case of multivariable systems, the prediction
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horizon may be reduced. Too-short values of p may lead to a more aggressive
control action and, in the extreme case, to instability. Usually, a longer prediction
horizon leads to a less aggressive control action and slower response. There is a
critical minimum horizon length to achieve a stable closed-loop system; this is
suggested at the setting p = n + m.

2.4.3
Control Horizon (m)

When the number of control moves is increased, a more aggressive control action
can be observed. This is due to the increased degree of freedom in calculating the
control moves that perform a better control at the expense of larger control moves.
In this case, the system response is faster, more sensitive to disturbances, and less
robust. Additionally, increasing the control horizon leads to increasing dimension
of matrices involved in MPC calculations and more complicated optimization
problems arise, especially for the nonlinear case. Preserving m as relatively small,
with typical values between 1 and 4, conserves good control performance with
reduced computational effort and robustness. It is recommended that m be about
one-fourth to one-third of the prediction horizon, or alternatively, that m·T should
be equal to the time needed for the open-loop response to reach 60 % of its steady-
state value. For m = p, a minimal prototype controller is obtained. Usually, there is
an upper band on the control horizon established by the controller performance
and the computational complexity of the problem.

2.4.4
Sampling Time (T)

In order to ensure good closed-loop performance, the sampling time should be
small enough to capture adequately the dynamics of the process, and at the same
time large enough to provide feasibility for real-time implementation (the compu-
tational time necessary to solve one open-loop control problem should be smaller
than the sampling interval). A simple rule of thumb is to choose T = 0.1(�m+Td),
where �m and Td are the dead time and the dominant time constant of the closed
loop system, respectively. Zafiriou and Morari proposed some criteria to select the
sampling interval for stable linear SISO systems [183]. For unstable systems,
robustness depends on the sampling time, and there is a direct relationship
between the model error and the maximum allowable size of the sampling time.

2.4.5
Weight Matrices (ˆl

y and ˆl
u)

Weighting of the controlled variables is specified in the usually diagonal positive
definite matrix, ˆl

y. The value of the diagonal elements in the ˆl
y matrix is a

measure of the importance of the control effort assigned for each of the controlled
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variables. As the value of one element from ˆl
y is increased, the deviation from

setpoint of the corresponding controlled variable is decreased.
Adding in the performance index (a term for penalizing the movement of the

manipulated variables) reduces the excessive manipulated variable move. This is
performed by use of the usually diagonal positive definite matrix ˆl

u for weighting
the manipulated variable move. Increasing the value of one element from ˆl

u

decreases the corresponding manipulated variable change with effect on degrada-
tion of the control performance but increasing robustness.

Some attempts to obtain these parameters have been presented in the literature
[184].

It is important to note that the relative magnitudes of ˆl
y and ˆl

u have to be
considered as the magnitudes for the controlled and manipulated variables may be
of different order of magnitude.

The weight matrices ˆl
y and ˆl

u may be considered nondiagonal, as interactions
between controlled variables are important and time-varying as control perform-
ance has to be dynamically changed. Unfortunately, there are no reliable tuning
guides for these approaches due to the hidden influences between the tuning
parameters and the control performance.

2.4.6
Feedback Filter

The use of a well-tuned filter on the feedback signal provides good disturbance
rejection and fast system response. However, the choice and effects of the filter
depend heavily on the certain system [185]. An example of the effects of the
Extended Kalman Filter (EKF) used in the NMPC of a high-purity distillation
column is presented in Chapter 3 (Section 3.3).

2.4.7
Dynamic Sensitivity Used for MPC Tuning

Usually, tuning difficulties are related to the MIMO characteristics of the control
problem, and to the poor prediction of the effect of tuning parameters on control
performance criteria. These difficulties become more important when nonlinear
behavior of the model is present. Due to this, the model predictive controller tuning
may become an iterative character and control performance may be enhanced, to a
large extent, by repeated simulations (i.e., involving heuristic approaches).

For evaluating the closed-loop influence of the generic tuning parameter p on
(controlled) variable y, the sensitivity functions may be determined according to
equation:

Sy
pðtÞ ¼ Syi

pj

h i
¼ @ yi

@ pj

pj

yi

� �
(2.93)
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where Sp
y is the matrix of the scaled sensitivity of variable yi with respect to

parameter pj, calculated for step initial variations.
The dynamic sensitivity of both the controlled variables and of the square error

(between the controlled variables and the setpoint, i.e., the performance index) with
respect to the tuning parameters may be determined. The considered tuning
parameters may be: the prediction horizon p; the number of manipulated variable
moves (input horizon) m; and the elements of the diagonal input and output
weighting matrices ˆl

u, ˆl
y of the MPC optimization objective function. Useful

information for parameter tuning can be obtained by analyzing the value of the
sensitivity of the square error. Usually, small values of these sensitivity functions
with respect to different tuning parameters denote appropriate tuning. It is
important to note that the scaled sensitivity functions offer a quantitative measure
for evaluating the influence of tuning parameters on the quality of control (square
error index). As a consequence, a direct indication of the tuning parameter to be
changed, as well as its best value, may be obtained [181,182].
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3
Case Studies

3.1
Productivity Optimization and Nonlinear Model Predictive Control (NMPC)
of a PVC Batch Reactor

3.1.1
Introduction

Polyvinyl chloride (PVC) is one of the most important products of the polymer
industry. The product is characterized by: Kw, a number related to the average
molecular weight; molecular weight distribution (MWD); particle diameter; particle
size distribution; and porosity. Thermal properties, stress–strain properties, impact
resistance, strength and hardness of films of polymers are all improved by narrowing
the MWD [1,2]. Therefore, the typical goal in operating a batch polymerization reactor
system is to minimize polydispersity and to achieve a minimum MWD and reaction
time [3–8]. Hence, the development of methodology for adjusting the MWD, and
reducing the reaction time is desired in many of the polymer industries. A proper
fabrication recipe (initial concentration of initiators) or temperature policy would keep
all of those parameters which characterize the polymer within certain limits, but with
one or two of them possibly being optimized [2,9–12]. In the suspension technology,
PVC is obtained in batch reactors at constant temperature. The operation of the
process following a certain policy of temperature is a practical problem with important
economical effects. It has been shown that for a batch polymerization process, with
radical mechanism, optimal policies of temperature can be determined, so that the
MWD or the reaction time can be held at a minimum [13]. A genetic algorithm (GA)
has been used to determine the optimal fabrication recipe and temperature profile for
improving PVC reactor productivity, through minimization of the reaction time and
narrowing of the MWD. The results obtained can be used in practice only if an
appropriate control technique, which is capable of controlling the process along the
obtained optimum temperature profile, exits. In this way, the objectives of this
research are on the one hand to optimize the productivity of the reactor, and on the
other hand to demonstrate that, with appropriate advanced control algorithms, the
temperature control of the reactor can be improved and the results of the optimization
can be implemented in practice. These main objectives are summarized in Figure 3.1.
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3.1.2
Dynamic Model of the PVC Batch Reactor

In the simulations performed, two models were used:
• An “external” model, representing the plant, was more complicated and con-

tained the equations for MWD, Kw, porosity, and PVC particle diameter.
• An “inner”, simplified model, which was used by the predictive controller to

compute the control movements, and which contains only those equations
needed to model the dynamics of temperature (the controlled variable), and the
function of the cooling medium flow (manipulated variable).

The first model was used in the optimization, and its main structure is illustrated
in Figure 3.2.

The process takes place in a batch reactor (Fig. 3.3), following the known
mechanism of free-radical polymerization. The process has mainly three stages:

1. Heating of the mass of reaction from room temperature to the polymer-
ization temperature, by introducing steam into the reactor jacket (ca. 1 h).

2. Polymerization is initiated in the first stage and continues for approximately
8–10 h, the heat of reaction being evacuated by the cooling medium.

3. Inhibition of the reaction and cooling of the reactor when a conversion of
90 % has been attained. This third stage is not controlled.
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Figure 3.1 Main objectives, and research strategy for the
optimization of the PVC reactor.



During the first stage (heating) the temperature is controlled using a PID con-
troller; its main target is to attain the polymerization temperature as rapidly as
possible, but not to exceed it. At 2 �C below the polymerization temperature the
steam injection is stopped and control is switched to the cooling system. The main
stages and applied control techniques in the reactor operation are illustrated
schematically in Figure 3.4.

3.1.2.1 The Complex Analytical Model of the PVC Reactor

3.1.2.1.1 The Physico-Chemical Properties of the Mass of Reaction
The mass of reaction consists of water, vinyl chloride (VC) and PVC as the main
components; thus, the physico-chemical properties depend mainly on the afore-
mentioned components:
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Figure 3.2 The structure of the PVC model used for optimization
and simulation as the plant.

Figure 3.3 The batch polymerization reactor of vinyl chloride. For
details of terms, see Section 3.1.6.



• the density of the mixture

ær ¼
1
P xi

æi

(3.1)

• the specific heat

Cp ¼
X

xi � cpi (3.2)

where:

xi ¼
wa � ær

mr � æa

xp ¼
m0 � � � æp

mr � æp

xVC ¼
ð1� �Þ �m0 � ær

mr � æVC

Then, Eq. (3.2) becomes:

ær ¼
mr

ma

æa
þm0 � �

æp
þm0 � 1� �ð Þ

æVC

(3.3)

• the thermal conductivity of the mixture is expressed using Maxwell’s equation,
written for the electrical conductivity of discontinuous media:

ºr ¼ º1 �
2 � º1 þ ºp � 2 � � � º1 � ºp

� �

2 � º1 þ ºp þ � � º1 � ºp

� � (3.4)

The experimental data deviate from the computed values only in the range of 5%
for � ¼ 0; 01; for � ¼ 0; 3, the deviations are about 30%. In the case of the practical
application followed, conversion has greater values around 0.75; hence, we pre-
ferred to use the relationship (3.5), which is simple and additive in nature:

ºr ¼
wa � ºa þmVC � 1� �ð Þ � ºVC þmVC � � � ºp

mr
(3.5)
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Figure 3.4 The three main stages in the PVC batch reactor
operation.



• the viscosity of the liquid is:

�1 ¼
xa þ xVC
xVC

�VC
þ xa

�a

(3.6)

• and that of the suspension:

�s ¼ �1 �
0; 59

�c � xp

� �2 (3.7)

The dependencies of the main physico-chemical properties on temperature are
listed in Table 3.1 [14,15]. Temperatures are expressed in degrees Celsius.

3.1.2.1.2 Kinetics of the Reaction and Balance Equations
The polymerization reactions take place following the well-known free-radical
polymerization mechanism presented in Figure 3.5.

Based on the multitude of kinetic studies reported in the literature [16,17], a
model was developed based on Ugelstad’s relationships [18]. Changing some of the
relationships with others from models in which these parts have a better theoretical
basis might lead to a more detailed model. Thus, the developed kinetic model is a
combination of Ugelstad’s model and those developed by Hamielec and Bulle [16].

This model is valid with the condition that the distribution equilibrium of
radicals between the two phases is reached quickly, so that there is an interface
change of radicals. Thus, the ratio (3.8) is constant:

Q ¼ CP
R

CL
R

¼ ka

kd
(3.8)
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Figure 3.5 The mechanism of free-radical polymerization.



Table 3.1 The physico-chemical properties of the main
components of the mass of reaction.

Component Properties Expression UM

Water æ 1001.23 � (1 + 7.95 � 10–5�t + 3.74 � 10–6�t2) kg m–3

cp 4.19 – 1.048 � 10–3�t + 1.31 � 10–5�t2 kJ (kg�K)–1

º 1.999 � (1 + 0.003 � t) kJ (m�h�K)–1

Å 2.78 � 10–5�exp[528/(126.52 + t)] kg (m�s)–1

VC æ 947.1 – 1.746�t – 3.24 � 10–3�t2 kg m–3

cp 1.2456 + 0.0054�t kJ (kg�K)–1

º 0.4806 – 12.351 � 104�t kJ (m�h�K)–1

Å 1.352 � 10–5�exp[745/(273.15 + t)] kg (m�s)–1

PVC æ 1400 kg m–3

cp 0.5995 + 0.0025�t kJ (kg�K)–1

Å 0.59 kJ (m�h�K)–1

UM = unit of measurement.

In this case, the quasi-steady-state condition for the number of radicals is written as:

dnL
R

dt
¼ 2 � ki � ni � ka � CL

R þ kd � CP
R � 2 � ktL � CL2

R � VL ¼ 0 (3.9)

dnP
R

dt
¼ 2 � ki � ni þ ka � CL

R � kd � CP
R � 2 � ktP � CP2

R � VP ¼ 0 (3.10)

From Eqs. (3.8) to (3.10) we can obtain:

CL
R ¼

2 � ki � ni

ktL � VL þQ2 � ktP � VP

� �1
2

(3.11)

Taking into consideration that:

� dnM

dt
¼ kC � CL

M � CL
R � VL þ kP � CP

M � CP
R � VP (3.12)

one obtains:

� dnM

dt
¼ kP �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � ki � ni

ktL � VL þ Q2 � ktP � VP

s

� nL
M þQ � nP

M

� �
(3.13)

where:

CL
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kn1 � nI1 þ kn2 � nI2

ktL � VL þ ktP � VP � Q2

s

for � > 0:01 (3.14)
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CL
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kn1 � nI1 þ kn2 � nI2

ktL � VL

s

for � � 0:01 (3.15)

CP
R ¼ Q � CL

R for � > 0:01 (3.16)

CP
R ¼ 0 for � � 0:01 (3.17)

The volumes of the two phases are computed using the following equations:

VL ¼
nL

M

æVC
¼ m0 �mP �mp

M

æVC
¼ m0 � 1� �� A � �ð Þ

æVC
¼ V0 � 1� �� A � �ð Þ (3.18)

VP ¼
mPVC

æPVC
þ mP

M

æVC
¼ m0 � �

æPVC
þ A �m0 � �

æVC
¼ V0 � � � Aþ æVC

æPVC

� �
(3.19)

Substituting in Eq. (3.13), one can obtain the expression giving the evolution of the
conversion with time:

d�

dt
¼ kP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ki � ni

ktL � V0 � 1� �� A � �ð Þ þ Q2 � ktP � V0 � � � Aþ æVC

æPVC

� �

vuuut
1� �� A � �þ Q � A � �ð Þ

(3.20)

The moment when the free monomer has been consumed is marked by the critical
conversion �C , determined from the condition VL ¼ 0.

Variation of the number of the moles of initiator is described by:

dni

dt
¼ �ki � ni (3.21)

At conversions higher than the critical one (�C), the liquid phase disappears and
the reaction takes place only in the polymer phase. Hence, the kinetic equation
becomes:

d�

dt
¼ kP �

ki � ni

ktP � VP

� �1
2

� n
P
M

n0
M

(3.22)

or

d�

dt
¼ kP �

ki � ni

ktP � VP

� �1
2

� 1� �ð Þ (3.23)

where VP, the volume of polymer can be computed:

VP ¼
mPVC

æP
þ mP

M

æVC
¼ m0 � �

æP
þ 1� �ð Þ �m0

æVC
(3.24)
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or, in a simpler form:

VP ¼ V0 � 1� �þ æVC

æP
� �

� �
(3.25)

When a mixture of initiators is used, the term ki ni is used rather than
P

ki ni.
Usually, as noted previously, two initiators are used (fast and slow) in order to
obtain a rate of reaction which is more uniform along the batch.

The balance on monomer is given in Eq. (3.26):

m0 ¼ m1 þmP þmG þ wP þmm (3.26)

These terms are computed as follows:

wP ¼ m0 � � (3.27)

mw ¼ Ksol � wa (3.28)

where Ksol , the constant of solubility of monomer in water is:

Ksol ¼ 0; 0472� 11; 6
Tr

(3.29)

mP ¼ A � wP ¼ A �m0 � � (3.30)

The constant A has the following dependence on temperature:

A ¼ 0; 18856� 0; 0044593 � Tr þ 0; 0001413 � T2
r (3.31)

For conversions greater than �C , A is obtained by solving the Flory–Huggins
equation:

ln
pm

p0
m

¼ lnð1� ’Þ þ 1� 1
n

� �
� ’þ å � ’2 (3.32)

where:

å ¼ 1286; 4
Tr

� 3:02 (3.33)

Because n is a large number (»100), 1� 1
n
� 1:

A ¼ æm

æP
� 1
’
� 1

� �
(3.34)

and then:

æ ¼ 1

1þ A � æP

æm

(3.35)
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Because there exist free monomer still (� < �C):

pm ¼ p0
m ¼ 12722 � e

�2411;7
Trð Þ (3.36)

mG ¼ VG �
p0

m �MVC

R � Tr
¼ VG � æG (3.37)

VG ¼ VR � Vu (3.38)

Vu ¼
wa

æa
þ wP

æP
þmP

æm
þ ml

æm
(3.39)

mG ¼ æG � VR �
wa

æa
� wP

æP
�mP

æm
� ml

æm

� �
(3.40)

From Eqs. (3.23) to (3.25), (3.27), and (3.39) one obtains:

mL ¼
m0 � æGVR � 1� æG

æm

� �
Ksol �

æG

æa

� �
wa � 1� æG

æP

� �
þ A 1� æG

æm

� �� �
m0�

1� æG

æm
(3.41)

The volume of liquid monomer, being:

VL ¼
mL

æm
(3.42)

At VL ¼ 0, one computes the critical conversion �C :

�c ¼
m0 � æG � VR � 1� æG

æm

� �
� Ksol �

æG

æa

� �
� wa

m0 � 1� æG

æP

� �
þ A � 1� æG

æm

� �� � (3.43)

For � greater than �C , the balance on monomer is written:

m0 ¼ mG þmw þmP þ wP (3.44)

• where the mass of the monomer solved in water:

mw ¼ Ksol � wa �
pm

p0
m

(3.45)

• the mass of polymer:

wP ¼ m0 � � (3.46)

• the mass of monomer solved in polymer:

mP ¼ A �m0 � � (3.47)
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• the mass of monomer in vapor phase:

mG ¼ VR � Vuð Þ � pm �Mm

R � Tr
(3.48)

mG ¼
pm �Mm

R � T � VR �
wa

æa
� wP

æP
�MP

æm

� �
(3.49)

Substituting in Eq. (3.44) all of the computed terms in Eqs. (3.45) to (3.49), A
becomes:

A ¼
1� 1� æG

æP

� �
� �

� �
�m0 � 1� æG

æm

� �
� Ksol �

pm

p0
m

� æG

æm

� �
� wa � æG � VR

m0 � � � 1� æG

æm

� �
(3.50)

3.1.2.1.3 Calculation of Pressure in the Reactor
At conversions less than �C , there exists a liquid phase of the monomer, and the
partial pressure is then equal to the vapor pressure. The total pressure of the
system is:

pt ¼ p0
m þ p0

a (3.51)

where:

p0
a ¼

1
760
� exp 47; 9� 4; 03 � ln Tr �

6493; 3
Tr

� �
(3.52)

and p0
m is given by Eq. (3.36).

At conversions greater than �C , in order to compute the partial pressure of
monomer, the mass transfer from vapor space through the liquid towards the
reaction zone should be considered:

dnm

dt
¼ kg � ATR � pm � pe

m

� �
(3.53)

nm ¼
VG � pm

R � Tr
(3.54)

From Eqs. (3.50) and (3.51), the result is:

dpm

dt
¼ R � Tr

VG
� kg � ATR � pm � pe

m

� �
(3.55)

The equilibrium pressure is calculated using the Flory–Huggins equation written
in another form:

pe
m ¼ p0

m � exp ’þ å � ’2
� 	

� 1� ’ð Þ (3.56)
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The total pressure of the reactor is then computed with Eq. (3.51).

3.1.2.1.4 Determination of the Average Molecular Weight
The weight fraction of the polymer of a chain length r,

wr ¼ g1 � wr1 þ gP � wrP (3.57)

wr ¼ �2 � r � e ���rð Þ (3.58)

where:

� ¼ rtrm þ rt

rP
(3.59)

Substituting the expressions of rate of reaction:

�1 ¼
ktrm

kP
þ kt1 � CL

R

kP � CL
M

� ºL þ 1
2

�P ¼ ktr �
m
kP
þ ktP � CP

R

kP � CP
M

� ºP þ 1
2

(3.60)

where ºL;P 2 0; 1½ �,
º ¼ 1 for 100% termination by disproportioning, and
º ¼ 0 for 100% termination by reunification of two radicals.

When � > �C we have only:

�P ¼
ktrm

kP
þ ktP � CR

kP � CP
M

� ºP þ 1
2

(3.61)

CL
M ¼

æm

mVC
(3.62)

CP
M ¼

mP

VP �mVC
(3.63)

The weight fractions of the polymer in the two phases are:

gl ¼
rl

P

rP
and gP ¼

rP
P

rP
(3.64)

where:

rl
P ¼ kP � CL

R �
ml

m0
(3.65)

rP
P ¼ kP � CP

R �
mP

m0
(3.66)
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It is then possible to compute the weight distribution:

��1 ¼
Z1

0

wr

r
�dr ¼ gl � �l þ gP � �P

�0 ¼
Z1

0

wr � dr ¼ 1

�1 ¼
Z1

0

r � wr � dr ¼ 2 � gl

�l
þ gP

�P

� �

(3.67)

• The number-average molecular weight is:

�Mn ¼
�0

��1
�mm ¼

mm

gl � �l þ gP � �P
(3.68)

• The weight-average molecular weight:

�Mw ¼
�1

�0
�mm ¼ 2 � gl

�l
þ gP

�P

� �
�mm (3.69)

The means are computed at small time intervals during which the polymerization
speed can be considered constant and, ultimately, the overall mean is calculated:

�M ¼ 1
�f
�
Xn

i¼1

�iþ1 � �ið Þ �Mi (3.70)

The parameter Kw is computed via empirical equation from Mn:

Kw ¼ 31þ 6:222 � 10�6 �Mn (3.71)

3.1.2.1.5 Heat Balance
The equations describing heat balance are mainly those written for the reaction
space and jacket:

d
dt

mr � cpr � Tr

� �
¼ Qr � QT (3.72)

d
dt

Vm � æag � cpag � Tag


 �
¼ QT þGag � cpag � Tiag � Teag

� �
(3.73)

Qr ¼ �˜Hr �m0 � d�

dt
(3.74)

QT ¼ KT � AT � ˜Tmed (3.75)
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Taking into account a fraction D of the cooling water at the exit of the jacket is
recycled:

Gag ¼ Dþ FA þ Gab (3.76)

Gag � Tiag ¼ D � Teag þ FA � Ta þ
iab

cpa
�Gab (3.77)

The overall heat transfer coefficient KT is calculated from the equations:

KT ¼
1

1
Æi
þ
P

ri þ 1
Æe

(3.78)

Æi ¼
Nui � ºr

Dr

Æe ¼
Nue � ºag

de

(3.79)

Nui ¼ 0:38 � Re0:67
i � Pr0:33

i � dag

dr
(3.80)

Rei ¼
D2

ag � nrot � ær

�s
(3.81)

For the spiral jacket, the Nusselt number is calculated with the formula for
turbulent flow fully developed:

Nue ¼ 0:021 � Re0:8
e � Pr0:63 � Pr

Prp

� �0:25

(3.82)

where:

Pr
Prp

� �0:25

¼ 1 for cooling
0:93 for heating

� 

Re ¼
de � æag � v

�ag

Pr ¼ cpa � �a

ºag

(3.83)

The thermal resistances considered are those of the wall, of the inner polymer
crust, and of the outer deposit from water:

X
ri ¼ rw þ rdep þ rcr (3.84)

rcr ¼
�cr

ºVC
(3.85)
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The thickness of the crust is approximated as a function of time:

�cr ¼ 1:4 � 10�7 � t (3.86)

During the batch, KT decreases from values around 710
W

m2 � K to values of 450
W

m2 � K. This shows that, towards the end of reaction, the system has a more difficult

task to remove the heat. It is possible then, that the peak rate of reaction can be
predicted and the system be cooled in advance.

3.1.2.2 Morphological Model
During polymerization of the VC, a sequence of particle formation and congestion
takes place inside the VC drop, at the microscopic level.

In order to explain the formation of the PVC particle structure, the following
terminology is used:
• Microparticles: size 10 to 20 nm; these are aggregations of polymer chains or

germs of polymerization.
• Domains: size 100 to 200 nm; these are aggregations of microparticles or nu-

clides of primary particles.
• Primary particles: size 600 to 800 nm; these are aggregations of domains.
• Conglomerate: size 1000 to 10 000 nm; these are aggregations of primary par-

ticles.
• Subgranules: size 10 000 to 15 000 nm; the PVC granules formed from one VC

drop.
• Granules: size 50 000 to 250 000; PVC granules formed from aggregations of VC

drops.

The stages of the PVC morphogenesis are:
• The formation of macromolecules and dispersion of chains with the formation of

domains or microparticles � ¼ 0ð Þ:
• Aggregation and growing until the formation of primary particles � � �1ð Þ:
• Formation and consolidation of the agglomerations of primary particles

�1 < � < �2ð Þ:
• Growing of agglomerations up to the steric constraint � ¼ �3ð Þ:
• Growing of agglomerations until the pressure begins to decrease � < �cð Þ:
• Formation of structure of the subgranules and granules until the final conver-

sion �c � � � �f


 �
:

3.1.2.2.1 Stage 1
The polymer chains, initiated by the radical mechanism, grow until a length of 25
to 32 units is reached. In electronic microscopy studies it was shown that in some
cases, the polymer chains might reach a length of 200–500 monomer units.
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The number and diameter of the polymerization germs can be obtained using
Eqs. (3.87) to (3.90):

N ¼ �cr1 �
æm � AV � VR

Pn;k �MCV � zK
(3.87)

where the volume of the reaction medium VR is:

VR ¼
m0

m

�æ
(3.88)

and the density of the medium is computed with the following equation:

�æ ¼ 1
�

æp
þ 1� �

æm

(3.89)

The diameter of the microparticles is:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
6 � VG

� � N
3

r

(3.90)

The volume and the density of the gel phase VG are:

VG ¼
� �m0

m

�c � æG
(3.91)

æG ¼
1

�c

æp
þ 1� �c

æm

(3.92)

The critical conversion of saturation �cr1 is difficult to determine. It is defined as
the conversion at which the saturation concentration of the polymer germs is
reached. When this concentration is reached, it is considered that every zK polymer
chain with a length of Pn;k will aggregate spontaneously, leading to a microparticle.
At moment tk, corresponding to this conversion, the diameter of the particles is
given by Eq. (3.90). Between the conversions �cr1 and �1, the dispersibility of the
microparticles has a constant value (i.e., N1 ¼ N ¼ constant:). When conversion �1

is reached, the formation of the first conglomeration of microparticles is possible
due to collisions which take place.

3.1.2.2.2 Stages 2 and 3
Once conversion �1 is achieved, N decreases and the diameter of particles increases
due to polymerization, conglomeration, and inhibition with monomer. The aver-
age distance ˜�x0 between the surfaces of particles is computed using the following
relationship:

˜�x0 ¼
VR

N

� �1
3

�d (3.93)
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The time interval between collisions is:

˜t ¼ ˜�x0

2 � D (3.94)

where D is the coefficient of diffusion m
s

2
h i

given by the following relationship:

D ¼ R � Tr

3 � AV � � � � � d
(3.95)

Considering the conglomeration coefficient K:

K ¼ 3 � AV � �
2 � R (3.96)

one obtains:

˜t ¼ K � ˜�x2
0 � d � �
Tr

(3.97)

The conglomeration process was discretized by considering the following assump-
tions:
• not every statistical collision of two particles lead to conglomeration;
• every z1 particle constitutes a larger particle which can conglomerate later; and
• after a step of conglomeration the number and the diameter of particles become

N ¼ N
z1

(3.98)

d ¼ z1

1� �1

� �1
3

�d (3.99)

where �1 is the porosity in the conglomerate.
The number of particles decreases not only due to the conglomeration of each z1

particle, but also because of the formation of a film of protection. This film is
formed due to the centrifugal forces caused by rotation of the drops. The force
balance written for a spherical particle inside a VC drop is:

Fr ¼ Fd (3.100)

where Fr�is the resistance of the medium N½ �;, and Fd� is the moving force N½ �:
Writing explicitly the forces, which act upon a particle, Eq. (3.100) becomes:

º � æm � v � d2 � �
8
¼ a � d3 � æG �

�

6
� a � d3 � æm �

�

6
(3.101)

where

v ¼ dr
dt
� the moving velocity

m
s

h i

a ¼ rø2
T� acceleration

m
s2

h i
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Using the following relationships:

º ¼ 24
Re

(3.102)

Re ¼ v � d � æm

�m
(3.103)

where: º� is the frictional coefficient,

�m� is the viscosity of VC
kg

m � s

� �
; and

øT� is the rotational velocity s�1½ �:

One can rewrite Eq. (3.101) in the following form:

v ¼ dr
dt
¼ r � ø2

T � d2 � æG � æmð Þ
18 � �m

(3.104)

Integrating Eq. (3.104), one obtains:

h � r

rp
¼ �ø2

T � d2 � ˜trot � æG � æmð Þ
18 � �m

(3.105)

By considering the relationships below:

˜trot ¼ � � ˜t (3.106)

Krot ¼
ø2

T � � � æG � æmð Þ
18 � �m

(3.107)

the following equation can be derived:

r ¼ rp � e �Krot�d2�˜tð Þ (3.108)

The number of particles participating in the formation of the film of protection is:

˜N ¼ N � N � V

Vp
¼ N � 1� r

rp

� �3
" #

(3.109)

or

˜N ¼ N � 1� e Krot�d2�˜tð Þ
h i3

(3.110)
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3.1.2.2.3 Stage 4
One characteristic of the model is that, initially, the conglomeration steps are very
small, but subsequently ˜t increases rapidly. Thus, particles grow until the steric
limitation, when ˜x0 becomes negative and � ¼ �2 and d ¼ d2, respectively,
correspond to the last positive value of ˜x0.

From the condition ˜x0 ¼ 0 one can obtain �3 and d3:

�3 ¼

�

6
� 1

æm
�N � d3

2

m0
m

� �
þ �2

�c � æG

�

6
� 1

æm
� 1

æP

� �
þ 1

�c � æG

(3.111)

d3 ¼
ffiffiffiffiffiffi
VR

N
3

r

(3.112)

3.1.2.2.4 Stage 5
The growing of conglomerates, due to increased conversion and repeated con-
glomeration, leads to rupture of the membrane and the formation of subgranules
of irregular shape. The volume, V, of these subgranules can be obtained using Eq.
(3.113):

V ¼ N � � � d3

6
� zB �

�

12
� d� d3ð Þ2� dþ d3

2

� �� �
(3.113)

where zB ¼ 6�is the coordination number.

3.1.2.2.5 Stage 6
Once the critical conversion �c is reached, the volume of the conglomerates begins
to decrease, because the monomer inside it is consumed. In this case, the volume
of the particles is computed as follows:

V ¼ V0 þm0
m � �� �cð Þ � 1

æp
� 1

æm

 !

(3.114)

where V0� is the volume of the subgranule at the critical conversion �c

The decrease in particle diameter due to volume contraction can be obtained
using the as follows:

˜V ¼ V 0 � V0 (3.115)

where the final diameter of the subgranule is the diameter of the sphere with
volume V 0:
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3.1.2.3 The Simplified Dynamic Analytical Model of the PVC Reactor
In order to improve the real-time feasibility of on-line optimization problems
associated with analytical model-based NMPC strategies, only the most important,
control-relevant modeling equations were retained in the model used to predict the
controller, and these described the dynamic behavior of the reactor with appro-
priate accuracy. Consequently, the morphological model is completely omitted,
together with some of the equations describing average molecular weights and
distribution. All of the modeling equations used in this simplified model are
described in the complex analytical model, but for consistency, these equations
are presented here briefly:
• Physico-chemical properties

ær ¼
mr

mw

æw
þ m0 � �

æPVC
þ m0 � ð1� �Þ

æVC

(3.116)

cp;r ¼ w�w � cp;w þ wPVC � cp;PVC þ wVC � cp;VC (3.117)

ºr ¼
mw � ºw þ m0 � � � ºPVC þ m0 � ð1� �Þ � ºVC

mr
(3.118)

Ksol ¼ 0:0472 � 11:6
Tr

(3.119)

˜Hr ¼ �1:64 � 106 þ 157:2 � Tr (3.120)

The physico-chemical properties of the main components of the mass of reaction,
as a function of the temperature, are listed in Table 3.1 [14,15].
• Kinetic equations; two initiators are used: a fast one (peroxydicarbonic acid bis (1-

ethylhexyl) ester; DEHPC), and a slow one (bis (1- oxododecyl) peroxide; LPO).

kI1 ¼ 4:4 � 1017 � e
�29833
R �Tr (3.121)

kI2 ¼ 8:5 � 1016 � e
�30450
R �Tr (3.122)

kp ¼ 9:7 � 107 � e
�3700
R �Tr (3.123)

kt L ¼ 2:87 � 1016 � e �5 � � � 4200
R �Trð Þ (3.124)

kt P ¼ 6 � 109

dnI 1

dt
¼ �kI 1 � nI 1 (3.125)
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dnI 2

dt
¼ �kI 2 � nI 2 (3.126)

for � < �c

A ¼ 0:1856� 4:456 � 10�3 � Tr þ 1:413 � 10�4 � T2
r (3.127)

d�

dt
¼ kP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kI 1 nI 1 þ kI 2 nI 2

kt LV0 ð1� �� A �Þ þ Q2kt PV0 � A þ æVC
æPVC


 �

vuut 1� �� A �þ QA �ð Þ

(3.128)

for � > �c

’ ¼ 1

1 þ A � æPVC

æVC

(3.129)

å ¼ 1286:4
Tr

� 3:02 (3.130)

p0
VC ¼ 12722 � e

�2411:7
Trð Þ (3.131)

pe
VC ¼ p0

VC � ð1� ’Þ � e ’ þ å � ’2ð Þ (3.132)

dpVC

dt
¼ R � Tr

VR � Vu
� kg � Amt � pVC � pe

VC

� �
(3.133)

æG ¼
pVC � MVC

R � Tr
(3.134)

A ¼
1� 1� æG

æPVC

� �
� �

� �
� m0 � 1� æG

æVC

� �
� Ksol �

pVC

p0
VC

� æG

æVC

� �
� mw � æG � VR

m0 � � � ð1� æG

æVC

�

(3.135)

d�

dt
¼ kp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kI 1 � nI 1 þ kI 2 � nI 2

kt P � 1� �þ æVC

æPVC

� �
� V0

vuuut
� 1� �ð Þ (3.136)

• Energy balance

d
dt

mr � cp;r � Tr

� �
¼ �˜Hr �mo � d�

dt
� KT � AT � Tr � Tag

� �
(3.137)

d
dt

Vj � æag � cp;ag � Tag


 �
¼ KT � AT � ðTr � TagÞ þ Gag � cp;ag Tin;ag � Tout;ag

� �

(3.138)
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Tout;ag ¼ 2 � Tag � Tin;ag (3.139)

Gag ¼ D þ Fw þ Fst (3.140)

Tin;ag ¼
D � Tout;ag þ Fw � Tw þ ist

cp;w
� Fst

Gag
(3.141)

In Eqs. (3.140) and (3.141) during the heating, Fw = 0 and Fst = u (manipulated
variable), but during the reaction, Fst = 0 and Fw = u.

KT ¼
1

1
Æi
þ 1

Æe
þ
X

rT

(3.142)

Æi ¼
º r

dR
� 0:38 � d2

a � nrot � ær

�r

� �0:67

� cp;r � �r

º r

� �0:33

� da

dR
(3.143)

Æe ¼
ºag

de
� 0:021 �

de � æag �
Gag

Aj

�ag

0

BB@

1

CCA

0:8

� cp;ag � �ag

ºag

� �0:43

� Pr
Prp

� �0:25

(3.144)

where
Pr
Prp

� �0:25

¼ 1 for cooling
0:93 for heating

�

X
rT ¼ rwall þ rcr (3.145)

rcr ¼
�cr

ºPVC
(3.146)

�cr ¼ 1:4 � 10�7 � t (3.147)

With Eq. (3.147), the increase of the polymer deposit is estimated as a function of
time.

Thus, the model computes a differential equations system, x = f(x, u) and an
algebraic equations one g(x, u) = 0, which is much simpler than the detailed model,
but it is still complex enough to describe the dynamic behavior of the batch
polymerization reactor sufficiently accurately for an appropriate temperature con-
trol of this system.

3.1.3
Productivity Optimization of the PVC Batch Reactor

In this section, a brief explanation is provided as to why unconventional techniques
should be used to run the process, and why MPC techniques are absolutely
necessary.
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In the first stage of the process (the heating stage), the reaction conversion barely
achieves 0.5–1%. Thus, this stage is considered insignificant in terms of the final
quality of the product, its role being simply to bring the reaction medium to the
reaction temperature as fast as possible. Consequently, during the optimization
only the second stage is taken into consideration, and it may be assumed, with a
good approximation, that the reaction starts only at this stage. In the simulation
and optimization, the complex analytical model described in Section 3.1 was used,
containing the kinetic, thermodynamic equations and the morphological model
describing the qualitative properties of the product (MWD, Kw, porosity, PVC
particle diameter, etc.). The polymer characteristics and process parameters cur-
rently used in industry, to produce the type of PVC used as a reference in the
simulation and optimization, are presented in Table 3.2.

Table 3.2 PVC characteristics used as reference values in the
optimization.

Reaction
temperature

in stage 2

Quantity of
fast initiator

(m1) [kg]

Quantity of
slow initiator

(m2) [kg]

Kw Porosity Reaction
time [min]

MWD

52 �C, constant 1.5 5.48 70.60 1.90 567.5 57 330

Two optimization methods were used to minimize the reaction time and MWD
through the two strategies presented in Figure 3.1, namely optimization of the
recipe, and determination of the optimum temperature profile:
• Sequential Quadratic Programming (SQP) algorithm.
• Genetic Algorithm (GA).

The SQP is a powerful optimization algorithm in which a Quadratic Programming
(QP) subproblem is solved at each iteration, and the Hessian matrix is updated
using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) formula. Here, the MAT-
LAB function fmincon(•) from the Optimization toolbox [19] was used to solve the
optimization problem. The main goal here was to test the GA toolbox developed by
the author. Likewise, the reason for solving the optimization with the SQP
technique was to provide a fair comparison between GA and a new optimization
technique, and to stress the advantages and disadvantages of the GA approach.

3.1.3.1 The Basic Elements of GAs
Genetic algorithms are randomized search algorithms that are based on the me-
chanics of natural selection and genetics [20]. They combine the principles of natural
selection based on “the survival of the fittest”, with a randomized information
exchange in order to form a search and optimization algorithm. Although genetic
algorithms can be used for a variety of purposes, their most important application is
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in the field of optimization due to their ability to search efficiently in large search
spaces. This makes them more robust than the more conventional optimization
techniques with respect to the complexity of the optimization problem.

Since Holland first proposed the idea of GAs in 1975 [21], many research groups
have suggested extensions and variations to the basic GA. With the advent of
artificial intelligence techniques, many applications of GAs have also been reported
[22–24], especially in combination with techniques such as neural networks and
fuzzy systems. Gradually, GAs are becoming an important part of hybrid intelli-
gent systems. Their importance in the field of control is also increasing, as can be
seen from a number of recent publications on the subject [25–29].

Genetic algorithms code the candidate solutions of an optimization algorithm as
a string of characters, which are usually binary digits. In accordance with termi-
nology borrowed from the field of genetics, this bit string is usually named a
chromosome. The solution, which is represented by its chromosome, is called an
individual. The GA considers a number of individuals, which together form a
population. It modifies and updates the individuals in a population iteratively,
searching for good solutions of the optimization problem. Each iteration step is
called a generation.

The GA evaluates the individuals in a population by using a fitness function. This
function indicates how good a candidate solution is, and can be compared with an
objective function in classical optimization. Inspired by the idea of the “survival of the
fittest”, the GAs maximize the fitness value, in contrast to classical optimization,
where one usually minimizes the objective function. The specification of the fitness
function is a very important aspect of the design of GAs, as the solution of the
optimization problem and the performance of the algorithm depend on this function.

The GA evaluates a number of solutions (values) and then generates new
solutions for the next step of the iteration, depending on the previous information.
The GAs are distinguished from other numerical optimization methods by the way
in which they generate new solutions. A schematic representation of a GA and
examples of the main steps of the algorithm are depicted in Figure 3.6. The
algorithm starts with the generation of an initial population that contains individ-
uals; this represents initial estimates for the optimization problem. It should be
noted that GAs evaluate a set of solutions in the population at each iteration step, in
contrast to methods such as gradient descent, which evaluate a single solution at
each iteration step. The fitness of the individuals within the population is assessed,
and new individuals are generated for the next generation. A number of genetic
operators are available for this purpose:
• The reproduction or selector operator chooses chromosomes according to their

fitness for mating (i.e., for producing offspring). Fitter individuals have a higher
probability of mating, and thus their genetic material is exploited.

• Crossover exchanges genetic material in the form of short allele strings between
the parent chromosomes. This reordering or recombination includes the effects
of both exploration and exploitation.

• Mutation introduces new genetic material by random changes to explore the
search space.
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GAs have been identified as valuable optimization tools, especially for non-convex
optimization in the presence of constraints. A theoretical understanding of the
GA’s working principle is provided by the building block hypothesis [20]. Basically, it
can be said that a good individual is built up of building blocks of various sizes. The
crossover and mutation operators then shuffle the elements of the building blocks,
searching for even better ones. Since individuals with high fitness can reproduce
more readily, the successful building blocks will have a greater chance of survival
across the generations. Thus, evolution will exploit the available genetic material to
explore the search space and accumulate successful genetic material as it contin-
ues. As each chromosome includes several building blocks, many more blocks than
individuals are processed simultaneously during the evolution. This is one reason
for the efficiency of GAs in searching complex spaces.

The practical implementation of GAs requires the selection of a number of
operators, as well as the values of various parameters of these operators. The
operators used most often in the literature include roulette-wheel reproduction, fitness
ranking, probabilistic and deterministic tournament selection, and steady-state reproduc-
tion for the reproduction; multipoint crossover and uniform crossover for the cross-
over; and uniform mutation and dynamic mutation for the mutation [20]. The
convergence of a GA is not uniquely defined, and the evolution can, in principle,
continue indefinitely. Therefore, some termination conditions are required for
stopping the evolution. Usually, evolution is allowed to continue for a fixed number
of generations. Other termination conditions can also be used, such as the number
of generations during which the best individual in the population does not change,
or the number of generations during which the highest fitness that is achieved
does not change.

3 Case Studies96

Figure 3.6 Flowchart of the basic genetic algorithm (GA).



GAs have been shown to solve linear and nonlinear problems by exploring all
regions of the state space and exponentially exploiting promising areas through
mutation, crossover, and selection operations applied to individuals in the popu-
lation. GA usually finds the neighborhood of the optimal solution very rapidly, but
presents a slower convergence in finding the exact optimal values.

According to the above-described algorithm, a MATLAB GA Toolbox was devel-
oped as a general purpose GA-based optimization tool, which can be utilized for
different optimization-related problems. Some of these applications, using differ-
ent software but based on this toolbox, are presented in this book.

3.1.3.2 Optimization of the PVC Reactor Productivity through the Initial
Concentration of Initiators

Vinyl chloride polymerization is led using two initiators:
• a fast one: peroxydicarbonic acid bis(1-ethylhexyl) ester (DEHPC); and
• a slow one: bis(1-oxododecyl) peroxide (LPO).

The data in Figure 3.7 demonstrate that the concentrations of these initiators have
important effects not only on reaction time but also on the morphological param-
eters (especially Kw) that determine the polymer’s thermal properties, stress–strain
properties, impact resistance, strength, and film hardness.

The optimization problem in the case of the SQP algorithm was formulated as:

min
m1;m2

tr þ wMWD �MWDf g

Subjection to the constraints below ensures that a certain type of PVC is produced:

70.50 £ Kw £ 70.70

1.8 £ poros £ 2.0

A weighting factor wMWD = 0.001 was used, which means that the minimization of
reaction time is a more important criterion in the scope function. The best results
achieved with the SQP algorithm are presented in Table 3.3.

In the GA, the population consists of the quantity of the two initiators (m1 and
m2). One population with 16 members was used, the individuals being coded in a
16-bit chromosome representation. The probability of crossover was 1, and that of
mutation was 0.03. Because our GA algorithm was developed to identify the
maximum value of the scope function, the fitness of individuals was computed
with Eq. (3.148). To cope with the constraints, they were introduced as penalty
terms in the objective function. Thus, the optimization problem in this case is
expressed below:

max
m1;m2

Fitnessf g
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with:

Fitness ¼ 1
tr
þ wMWD

MWD
þ wKw

1þ Kw � 70:60ð Þ2
þ wpors

1þ poros� 1:90ð Þ2
(3.148)

ADDDDDDDBDDDDDDDC

Constraints introduced as penalty terms

In the optimization, several different weighting factors were tried, and the best
results were obtained with wMWD = 0.01, wKw = 0.006 and wporos = 0.001.

Figure 3.7 (fitness representation) illustrates how the GA functions. While the
first generation is evenly distributed on the fitness surface, the members of the last
generation (obtained after only 20 generations) are mostly grouped in the neigh-
borhood of the optimal value.
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The final results are presented in Table 3.3. It can be observed that both
optimization algorithms reduced the reaction time (tr) as well as the MWD. The
GA outperformed the SQP from the point of view of optimization results. With
regard to the speed of convergence expressed as the number of objective function
evaluations needed to find a final solution, GA and SQP showed similar perform-
ances. However, for this small dimensional problem SQP had a faster convergence
in finding the final solution.

Table 3.3 Results obtained with SQP and GA in the
determination of the optimal recipe.

Optimi-
zation

method

Functions
evaluated

[n]

Reaction
temp.

in stage 2

Quant.
of fast

initiator
(m1) [kg]

Quant.
of slow
initiator
(m2) [kg]

Kw Porosity Reaction
time (tr )

[min]

MWD

SQP 212 52 �C,
constant

1.6059 5.4433 70.55 1.91 552.44 57 259

GA 320 52 �C,
constant

1.5230 6.6542 70.52 1.91 536.20 57 211

When comparing results obtained with the reference values in Table 3.2, it is clear
that with SQP the reaction time was reduced by 15 min (2.7 %), and the MWD by
0.13 %. The results obtained with GA were better: the reaction time was decreased
by 31 min (5.5 %), and MWD by 0.21 %. At an industrial level these results would
lead to a significant improvement in the productivity of a PVC plant.

3.1.3.3 Optimization of PVC Reactor Productivity by obtaining an Optimal Tem-
perature Policy

In general, although industrial PVC reactors are operated at a constant temper-
ature, it has been shown that an optimal temperature policy can be obtained for
batch polymerization reactors, thereby reducing reaction time and/or MWD.
Several different algorithms have been reported which determine the optimal
temperature profile. In our studies, it was proposed that a step-shape temperature
profile be used, wherein each temperature step was a separate variable in the state
space of the optimization problem. The duration of each step (the time for which
temperature is considered constant) is chosen carefully, taking into account the
settling time of the system. Consequently, steps with duration of 70 min were
used.
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The optimization problem for the SQP method is expressed as follows:

min
T1;T2;...TN

tr þ wMWD �MWDf g (3.149)

subjected to:

70.50 £ Kw £ 70.70 (3.150)

1.8 £ poros £ 2.0 (3.151)

In the case of the GA, a fitness function was used with a similar form as Eq. (3.148),
though the states were the temperature values in the different time intervals:

min
T1;T2;...TN

Fitnessf g (3.152)

Optimization was commenced from the optimal recipe found with GA in the
previous section; the results are shown in Figure 3.8 and Table 3.4.
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Table 3.4 Results obtained with SQP and GA in the
determination of the optimal temperature policy.

Optimi-
zation

method

Functions
evaluated

[n]

Reaction
temp.

in stage 2

Quant.
of fast

initiator
(m1) [kg]

Quant.
of slow
initiator
(m2) [kg]

Kw Porosity Reaction
time (tr )

[min]

MWD

SQP 40 000 Variable
(Fig. 3.8)

1.5230 6.6542 70.51 1.91 529.30 57 198

GA 16 000 Variable
(Fig. 3.8)

1.5230 6.6542 70.50 1.91 513.70 57 108

The SQP algorithm could barely cope with the dimensions of the problem. After
40 000 function evaluations, the reaction time was reduced by 7 min compared to
the best result obtained previously, while the GA after 50 generations (16 000
function evaluations) reduced the reaction time by an additional 23 min (4.3%) and
the MWD by 0.18 %.

By combining results obtained with the optimal fabrication recipe and the
optimal temperature profile, total reductions were obtained of 53.8 min (9.5%)
in reaction time, and of 0.4 % in MWD [30].

3.1.4
NMPC of the PVC Batch Reactor

The PVC batch polymerization reactor presents a series of characteristics that make
control of the system very difficult:
• The process is discontinuous; hence its physico-chemical properties are chang-

ing during the batch, with important modifications of heat and mass transfer.
Thus, temperature control becomes difficult.

• The disturbances that occur during the batch, especially when the heat of
reaction peaks towards the end of the polymerization, may present challenging
control problems, including nonlinear dynamic behavior. At maximum reaction
rate, heat removal is very difficult due to increased viscosity of the reaction
mixture and polymer deposition on the reactor walls. In this situation, especially
if there are other additional disturbances (e.g., variable temperature of the
cooling medium), the system may become unstable.

• The system is highly nonlinear (as shown in Fig. 3.9).
• The polymerization being a batch process, there is no steady-state operating

point. For this reason, the step response of the system depends on the moment at
which the identification of the uncontrolled process is initiated. In order to
identify the process needed in the control study, a step input ˜u at different
moments t˜u was applied, with the restriction that ˜u = 0 for t < t˜u. In Figure
3.10, the step response of the system can be seen to vary with t˜u , the system
being a “time-varying” in nature.
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Figure 3.9 Behavior of the system at different steps at the
same moment.

Figure 3.10 Behavior of the system at steps at different
moments.



• The behavior of the system depends on the sign of the input step. At a negative
step input, the system becomes exponentially unstable, whereas at a positive step
input – applied at the same time point – the system behaves in a stable manner.
Hence, the system will behave asymmetrically, depending on the control variable.

• The constraint imposed is a variation of temperature of maximum €0.5 �C
around the setpoint in order to ensure proper quality of the product.

All of these process characteristics suggest the use of an advanced nonlinear
control method. Several approaches have been proposed to use nonlinear model-
based control for batch polymerization systems [2,31,32], and several have been
validated on industrial reactors [33]. Here, we present details of two NMPC
methods developed for the PVC batch suspension polymerization reactor. A de-
tailed assessment of each approach is presented, together with comparisons of
their performance with classical proportional-integral-derivative (PID) control used
in practice in the studied plant.

In contrast, it is also shown here that the results of productivity optimization
(polymerization at a variable temperature profile) cannot be implemented in
practice with conventional PID controllers. However, if an appropriate advanced
control strategy is used, the practical implementation of these results is feasible
[34].

Valappil and Georgakis (2003) and Nagy and Braatz (2003) each elaborated
algorithms to account for batch reactor uncertainty in the nonlinear MPC of
end-use properties [35,36]. Likewise, �zcan, either working with Hapoglu and
Alpbaz (1998), or in conjunction with Kothare and Georgakis (2003), developed
optimal temperature profiles and elaborated a method for the strict control for co-
polymerization reactors [37,38]. The problems encountered in the PVC process –
namely molar mass and particle size distribution – were also mentioned by
Alhamad et al. [39] and by Shi et al., although the latter group were referring to
a crystallization process [40].

Here, two NMPC algorithms belonging to the two different classes of methods
(see Chapter 2) are presented. The first approach is a modified version of the
methods introduced in 1984 by Garcia [41] and in 1992 by Gattu and Zafiriou [42],
and belongs to the category of on-line linearization-based control techniques. This
approach considers the linearization of the model close to the operating point, the
linearized model being used either to solve the optimization problem, or to obtain
the “step” or “impulse response”, which serves the same purpose. The method was
applied to the temperature control of a batch polymerization of vinyl chloride
monomer (VCM) and tested for different disturbing effects. The results were
compared with a second NMPC technique; this was a first-principle model-based
NMPC (see Chapter 2, Section 2.3.3) with the sequential solution approach for on-
line optimization (see Chapter 2, Section 2.3.6.1). In both NMPC methods the
simplified analytical model (presented in Section 3.1.2.3) is used, albeit in two
different ways. The first method uses the analytical model to obtain the step
response matrix, which is then used to solve the QP problem. The second method
uses the first principle nonlinear model directly to solve the QP problem.
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3.1.4.1 Multiple On-Line Linearization-Based NMPC of the PVC Batch Reactor
Because the system studied is time-varying in nature, the step response matrix is
different at each sampling point and, consequently, it must be regenerated at each
sampling time. It also depends on the sign of the step input used to estimate the
matrix. Thus, in optimization, one must use the step response matrix obtained for
the step with the same sign as the control movement. The proper sign allocation is
completed by solving the QP problem twice at each sampling time. First, a
prediction is made with ˜u(k) = 0 and u(k) = u(k + 1) =… = u(k + P - 1) = u(k –
1) for the output of the system at k – 1, the corresponding step response matrix
being Sk

k�1 (model 1). With Sk
k�1, the optimization is solved for the first time, and

˜u(k) is obtained. If the sampling period is correctly chosen, this ˜u(k) will be
close to – and have the same sign as – the ˜u(k) obtained from the step response at
the moment k. The computed ˜u(k) (˜u(k)(1)) is then used to obtain the step
response matrix from the rigorous model. This second matrix, which represents
the controlled output from the moment k, is used to solve the QP problem for the
second time. The result of the optimization, ˜u(k)(2) is now applied to the process.

The main basis of this method is presented in Figure 3.11 [34,43]. The algorithm
is as follows:
Step 1: Measurements at moment k are obtained (ym(k)). We considered in this

case all state variables measured or calculated from the measured variables.
Thus, the vector xm(k) of the state measured variables is obtained.

Step 2: Using the rigorous model _x = f(x, u); g(x, u) = 0, a prediction is made by the
numerical integration of the model, having the initial conditions xm(k),
˜u(k) = 0 and u(k) = u(k + 1) = u(k + P – 1) = u(k – 1) Thus, the predicted
output at k – 1 , with ˜u(k – 1), is obtained:
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Yðkþ 1jkjk� 1Þ ¼

yðkþ 1jkjk� 1Þ
yðkþ 2jkjk� 1Þ

:
yðkþ Pjkjk� 1Þ

2

664

3

775
uðkÞ ¼ uðkþ 1Þ ¼ . . . ¼ uðkþ P � 1Þ ¼ uðk� 1Þ
˜uðkÞ ¼ ˜uðkþ 1Þ ¼ . . . ˜uðkþ P � 1Þ ¼ 0

(3.153)

where y(|k|k – 1) are the predictions based on the measurements at moment k and
with the step input at k – 1.

From Y(k + 1|k|k – 1) the step response matrix which is in fact that one at
moment k , but with ˜u(k – 1) is obtained:

Sk
k�1 ¼

yðkþ 1jkjk� 1Þ � ymðkÞ
˜uðk� 1Þ

yðkþ 2jkjk� 1Þ � ymðkÞ
˜uðk� 1Þ

:
yðkþ Pjkjk� 1Þ � ymðkÞ

˜uðk� 1Þ

2

66666664

3

77777775

(3.154)

Step 3: Sk
k�1 (model1) is introduced in an LMPC technique (for example, the cmpc

function from MathWorks’s MPC Toolbox), which solves the QP problem, obtain-
ing:

˜UðkÞð1Þ ¼
˜uðkÞð1Þ

˜uðkþ 1Þð1Þ
:

˜uðkþM � 1Þð1Þ

2

664

3

775 (3.155)

Step 4: A second prediction is made, integrating the model x = f(x, u), with the
initial conditions xm(k), but applying now the step input computed at Step 3. It is
obtained thus:

Yðkþ 1jkjkÞ ¼

yðkþ 1jkjkÞ
yðkþ 2jkjkÞ

:
yðkþ PjkjkÞ

2

664

3

775 uðkÞ ¼ uðkþ 1Þ ¼ . . . ¼ uðkþ P � 1Þ ¼ uðk� 1Þ þ ˜uðkÞð1Þ

˜uðkÞ ¼ ˜uðkÞð1Þ
˜uðkþ 1Þ ¼ . . . ¼ ˜uðkþ P � 1Þ ¼ 0

(3.156)
In this way, the step response matrix at moment k is obtained:

Sk
k ¼

yðkþ 1jkjkÞ � ymðkÞ
˜uðkÞð1Þ

yðkþ 2jkjkÞ � ymðkÞ
˜uðkÞð1Þ

:
yðkþ PjkjkÞ � ymðkÞ

˜uðkÞð1Þ

2

666666664

3

777777775

(3.157)
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Step 5: Sk
k (model 2) is reintroduced in the LMPC function, which produces the new

set of control movements:

˜UðkÞð2Þ ¼
˜uðkÞð2Þ

˜uðkþ 1Þð2Þ
:

˜uðkþM � 1Þð2Þ

2

664

3

775 (3.158)

Step 6: The first value from the previously computed vector is sent to the process.
Thus, the final control action at moment k is:

u(k) = u(k – 1) + ˜u(k)(2) (3.159)

k is incremented to k + 1 and the above steps are repeated at each sampling time.
For large sampling periods (T) or for regions where the nonlinearity of the

process is strong, Sk
k�1 may be very different to Sk

k; it is possible, after Step 3, to
obtain ˜u(k)(1) with the wrong sign. In such cases, Steps 3, 4, and 5 should be
repeated until sgn(˜u(k)(i)) = sgn(˜u(k)(i-1)).

Figure 3.12 illustrates the results of the simulations comparing two ways of
solving the QP problem: only once at each sampling point (Sk

k�1 is used) and twice
at each sampling moment (Sk

k�1 and Sk
k are used). It can be observed that a double

prediction is needed.
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Figure 3.12 Results of running with double and simple predic-
tion.



Figure 3.13 shows the block diagram of this on-line linearization-based NMPC
technique (NMPC1). The flowchart of the implementation of the NMPC1 function
in MATLAB programming language is shown in Figure 3.14.
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Figure 3.13 NMPC1 block diagram.

Figure 3.14 Flowchart of NMPC1.



The behavior of the control was studied by simulation, and the results are
presented in the next section. In general, this algorithm was seen to provide
good results in the first part of the reaction, where the rate is not so high, but
worse results in the region of strongest nonlinearity, at maximum reaction rate. In
considering the total batch time, the results of this NMPC algorithm can be
appreciated as being better than those of the PID system. The proposed method
is a modified version of Garcia’s QDMC [41], with the main differences being as
follows:
• The step response matrix is obtained directly from the rigorous nonlinear model,

without any previous linearization.
• At each sampling point, a preliminary detection of the step input sign used to

obtain the step response matrix is carried out. This detection is obtained by a
double or multiple (if necessary) solving of the QP problem. This feature of the
method is advantageous for processes with different types of behavior, depend-
ing on the sign of the applied step input.

• The main disadvantage of this method compared to that of Garcia (QDMC) or
Gattu and Zafiriou (NLQDMC) [42] is that our NMPC needs all states to be
measured or able to be computed from on-line measured variables. However, a
direct extension of our method to include a state estimator, is straightforward.

• Another disadvantage is that the QP problem must be solved at least twice at
each sampling time, whereas the above-mentioned methods require such sol-
ution only once in a sampling period.
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The quality of the MPC depends heavily on the parameters of the algorithm:
prediction horizon (P); sampling period (T); weight coefficients (uwt, ywt); and
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Figure 3.16 Effect of number of input moves (M).

Figure 3.17 Effect of control movement weight (uwt).



number of future moves (M). The effects of these parameters are known, but no
general tuning methods are available, although some attempts were made [44] (see
Chapter 2, Section 2.5 for some general guidelines).

Figures 3.15 to 3.18 illustrate the simulations performed for tuning the MPC
parameters for the process considered. It can be observed that:
• The quality of control decreases if P exceeds 5 (Fig. 3.15). For P = 5 with M = 1

and T = 10 min, the results are good.
• The value of M does not greatly influence the quality of control (Fig. 3.16). The

best results were obtained for M = 1, but with M > 1, the results are comparable.
Thus, from the point of view of computational volume, there is no need to choose
M > 1.

• Figure 3.17 illustrates the fact the value of the uwt:ywt ratio strongly influences
the quality of control: control is better for lower values of the ratio, the best
quality being obtained for uwt = 0.

• The effect of the value of sampling period (T) is illustrated in Figure 3.18. A very
small T produces oscillations, while a too-large T leads to important control
errors, because the step response matrix does not contain sufficient data de-
scribing the dynamics of the process. In the case of batch polymerization of VC, a
value of T = 5–10 min yields the best results.

• For different simulations, the best control results were obtained with different
MPC parameters corresponding to the two regions of rate of reaction (lower rate
of reaction and highest reaction rate). Based on this observation, an improved
MPC was tested with variable P and T values along the batch. Consequently,
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values of T = 10 min and P = 5 were used until the reaction rate exceeded a
certain limit, above which T = 5 min and P = 2 are used. The data in Figure 3.19
indicate that a very good control performance was achieved.

3.1.4.2 Sequential NMPC of the PVC Batch Reactor
Bequette [45] has pointed out that in future investigations into NMPC the issue of
studies comparing two or more NMPC methods at the same process will be of
major importance. In this approach, comparison is made between the above-
described method and another NMPC using the nonlinear analytical model rather
than the linear approach expressed by the step response matrix. Since the process
model was highly complex, a sequential method was chosen as this is more easily
implemented and requires less computing effort than the simultaneous method.
The block diagram of this NMPC (NMPC2) is shown in Figure 3.20.

The Scope function computes the optimization objective function, which is the
sum of the squares of the differences between the predicted outputs and the
setpoint values over the prediction horizon of P time steps for each set of ˜U(k)
obtained from the optimization algorithm. In this case, the predicted values
yp(k + 1), are inferred from the numerical integration of the rigorous model. The
nonlinear optimization method produces the vector U(k) which satisfies the
optimization criteria. Its first value, u(k), is then applied to the input of the process.
The golden section method was used as the optimization algorithm, and the
control horizon was M = 1. For M > 1 or for MIMO systems, it is possible to use
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other optimization algorithms (SQP, flexible polyhedron, pattern-search, gradient,
etc.). The data in Figure 3.21 indicate that this method is superior to those used
previously. A quasi-perfect control can be obtained even in the zone of maximum
reaction rate and for a short prediction horizon (P = 2, Tp = 20 min).
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Figure 3.20 Block diagram of the NMPC2 algorithm.

Figure 3.21 Results of running without external disturbances.



The major drawback of this algorithm is that the computation time of the control
movement is longer than that with the first method [34]. With the NMPC algorithm
it is possible to control the reactor temperature along the variable optimal profile
obtained previously, which is impossible with the conventional PID control. In
order to obtain the best control performance, the MPC was tuned via simulation by
varying the different parameters of the algorithm. Because using a long control
horizon significantly increases the computational effort, M = 1 was used in all
simulations. The best control performance can be obtained with uwt = 0, and
because the control structure is a SISO one, ywt has no influence on the control
performance. Consequently, the parameters that need to be tuned are the sampling
time (Tsamp) and the prediction horizon (P). Figures 3.22 and 3.23 show the effect of
these parameters on control performance.

It can observed that the best control performance is achieved with P = 2 and
Tsamp = 3 min. With these parameters, the optimal temperature profile can be
followed almost perfectly, as can be seen in Figure 3.24. This figure also shows
that a conventional PID controller is unable to control the process for the presented
variable setpoint.
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Figure 3.22 Effect of prediction horizon (P) on control
performance.



3.1.5
Conclusions

In this section, results concerning the modeling, optimization of productivity and
control of the PVC batch reactor have been presented. A rigorous model of this
difficult-to-control process was presented, which may be added to a library of
dynamic simulations of nonlinear processes. Using this model for optimization,
the reaction time and MWD were reduced by obtaining optimal quantities of the
slow and fast initiators, as well as by determining an optimal step shape temper-
ature policy. In comparing a SQP and GA to solve optimization problems, the latter
was found to outperform the former. By combining results obtained with the
optimal fabrication recipe with the optimal temperature profile, it was possible to
obtain a total reduction in reaction time of 53.8 min (9.5%), and in MWD of 0.4 %.
Taking into account the number of reactors and extent of production of PVC at the
industrial level, these results should, if implemented in practice, lead to significant
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Figure 3.23 Effect of sampling time (Tsamp) on control
performance.



improvements in productivity for an industrial PVC plant. With this in mind, the
implementation of advanced NMPC strategies was also studied, and the perform-
ance of two nonlinear model predictive control methods and PID control were
compared. The first algorithm, based on multiple (double or multiple) on-line
linearization in order to cope with nonlinear time-varying processes (NMPC1),
yielded good results for the whole batch with the exception of the peak of reaction,
where nonlinearity of the system was very strong. The main advantage of this
method (NMPC1) was that it allowed the use of MPC linear software. The second
NMPC method (NMPC2) used the rigorous model, with the control problem being
solved by the sequential method; this yielded, in each case, superior results
compared to the NMPC1 and PID control. With this algorithm, even the operation
of a process with a frequently changing temperature profile was possible, allowing
the PVC reactor to be controlled along its optimal temperature profile. The main
disadvantage of the algorithm was the longer time required to obtain control
movement. However, with appropriate control hardware, real-time feasibility can
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Figure 3.24 PID and NMPC control of the PVC reactor for the
optimal temperature profile.



be achieved and implemented, and significant increases in reactor productivity will
be possible. The software for both methods is written in MATLAB, and is available
at the University “Babeş-Bolyai” of Cluj, Romania, Faculty of Chemistry and
Chemical Engineering.

3.1.6
Nomenclature

A weight fraction of monomer contained in polymer
Amt mass transfer area of monomer from vapors to liquid phase (5.7 m2)
AT heat transfer area (20 m2)
cp specific heat (J kg–1�K)
D recycled mass flow of cooling water (2.6 kg s–1)
da diameter of the stirrer (3.4 m)
de equivalent diameter of the jacket (0.5 m)
dR diameter of the reactor (2.7 m)
Fst mass flow of the steam in the jacket (kg s–1)
Fw mass flow of fresh cooling water (kg s–1)
Gag mass flow of the medium in the jacket (kg s–1)
ist enthalpy of steam at 6 ata (2.7 � 106 cal kg–1)
kg mass transfer coefficient of VC from vapor phase (0.0047 mol m–2� s�atm)
kI1 fast initiator rate constant (min–1)
kI2 slow initiator rate constant (min–1)
Ksol constant of solubility of monomer in water
KT heat transfer coefficient at the wall (W m–2�K)
kp propagation rate constant (m3 kmol–1�min)
ktL termination rate constant in the liquid phase (m3 kmol–1�min)
ktP termination rate constant in polymer phase (m3 kmol–1�min)
M number of future input moves
MVC monomer molar weight (62.5 kg kmol–1)
MWD molecular weight distribution
m0 initial VC quantity (6593 kg)
mr mass of reaction (kg)
mw mass of water (kg)
nI1 number of kmol of fast initiator (kmol)
nI2 number of kmol of slow initiator (kmol)
nrot rotation speed of the stirrer (3.35 rot s–1)
P prediction horizon
Pr Prandtl criteria number
Prp Prandtl criteria number for the reactor wall
p0

VC vapor pressure of monomer (atm)
pe

VC equilibrium pressure of the monomer-water system [atm]
Q ratio of concentrations of radicals in monomer and polymer (200)
R universal gas constant (8314 J kg–1�K)
R(k + 1) setpoint matrix
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r setpoint vector
rcr thermal resistance of the polymer deposit on the inner wall of the reactor

(m2�K W–1)
rT total thermal resistance of the reactor wall (m2�K W–1)
rwall thermal resistance of the wall (5.3 � 10–4 m2�K W–1)
S step response matrix
t time
tr batch time
T, Tsamp sampling time
Tag temperature in the jacket (K)
Tin,ag input cooling/heating medium temperature (K)
Tout,ag output cooling/heating medium temperature (K)
Tr temperature in the reactor (K)
Tw temperature of the fresh water (K)
u manipulated variable
V0 initial volume of VC (m3)
Vj volume of the jacket (2.7 m3)
VR volume of the reactor (20 m3)
Vu volume of the mass of reaction (m3)
w molar fraction
x state variables
xm measured state
Y(�|�|�) predicted values
y output
yp predicted output
ym measured output

Greek Symbols
Æi,e partial heat transfer coefficients at the wall for its both parts, [W (m2�K)–1]
ˆ, ¸ diagonal weight matrices
ˆl, ¸l weight coefficients at moment l
˜Hr enthalpy of reaction (J kg–1)
˜U, ˜u manipulated variable change
�cr thickness of the polymer crust (m)
Å viscosity (Pa�s)
º thermal conductivity (W m�K–1)
� conversion in the reactor
�c critical conversion (when the liquid phase of monomer is zero)
æ density (kg m–3)
j volume fraction of polymer in the gel phase
å interaction parameter from Flory–Huggins equation

Subscripts
ag cooling/heating agent
PVC polyvinylchloride (polymer)
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r mass of reaction
VC vinyl chloride (monomer)
w water

Superscripts
(i) ith iteration in NMPC1 algorithm
k kth sampling period
T transpose

3.2
Modeling, Simulation, and Control of a Yeast Fermentation Bioreactor

3.2.1
First Principle Model of the Continuous Fermentation Bioreactor

Alcoholic fermentation is one of the most important biochemical processes known
to man. The attention directed towards this process has increased during the past
two decades, mainly because its product – ethanol – might represent an alternative
energy source when used as a partial substitute for gasoline as a fuel. Many models
of this process have been developed, all of which are based on different kinetic
considerations [46–48], although others (e.g., the Maciel Filho group, 2003) have
used fuzzy models for nonlinear bio systems identification [49]. Most of these
models, however, focus only on the kinetics of the process. The model presented
below, when used in simulations beside the detailed kinetic model, involves
equations which express the heat transfer, the dependence of kinetic parameters
on temperature and the mass transfer of oxygen, as well as the influence of
temperature and ionic strength on the mass transfer coefficient. The kinetic
equations used in our bioreactor model are modifications of the Monod equations
based on Michaelis–Menten kinetics proposed by Aiba and coworkers [50]:

dcX

dt
¼ �X � cX �

cS

KS þ cS
� e�KP �cP (3.160)

dcP

dt
¼ �P � cX �

cS

KS1 þ cS
� e�KP1�cP (3.161)

dcS

dt
¼ � 1

RSX
� dcX

dt
� 1

RSP
� dcP

dt
(3.162)

where RSX, RSP are yield factors defined as the ratios of cell and ethanol produced as
per the corresponding amount of glucose used for growth or ethanol production,
respectively. These equations express the production or consumption of the main
components, taking into account the inhibitory effect of ethanol. Our model uses
these kinetic equations and describes the continuous fermentation reactor shown
schematically in Figure 3.25.
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This reactor is modeled as a continuous-stirred tank with constant substrate feed
flow. There is also a constant outlet flow from the reactor that contains the product
and substrate, as well as the biomass. The reactor contains three distinct main
components:
• the biomass, which is a suspension of yeast and which is fed in batch systems

and evacuated continuously;
• the substrate, which is a solution of glucose that feeds the micro-organism

(Saccharomyces cerevisiae); and
• the product, ethanol – this is evacuated together with the other components.

In order to achieve a quasi-steady state with regard to the biomass, a low dilution rate
(Fe/V) is necessary – that is, the dilution rate must not exceed the biomass produc-
tion rate, according to Eq. (3.185). Consequently, the process has a very slow
dynamic. Inorganic salts are added together with the yeast, this being necessary
for the formation of coenzymes. Due to “salting-out” effects, the inorganic salts also
have a strong influence on the equilibrium concentration of oxygen in the liquid
phase. This influence of the dissolved inorganic salts, as well as that of temperature,
on the equilibrium concentration of oxygen in the liquid phase is modeled in detail
by Eqs. (3.163) to (3.180). The mathematical model of the system is presented below.

The initial data of the system are:

• Inorganic salts in the reaction medium:

mNaCl ¼ 500g

mCaCO3 ¼ 100g

mMgCl2 ¼ 100g

• The pH of the liquid phase:

pH = 6
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Figure 3.25 The continuous fermentation reactor.



• The inputs of the system:

FI = Fe = 51 L h–1

Tin = 25 ºC

CS,in = 60 g L–1

Tin,ag = 15 ºC

• Algebraic equations:
Molar concentrations of ions in the reaction medium are calculated as follows,
taking into account that the ion of Cl– is present in two salts (NaCl and MgCl2):

cNa ¼
mNaCl

MNaCl
�MNa

V
(3.163)

cCa ¼
mCaCO3

MCaCO3

�MCa

V
V} (3.164)

cMg ¼
mMgCl2

MMgCl2
�MMg

V
(3.165)

cCl ¼
mNaCl

MNaCl
þ 2

mMgCl2

MMgCl2

� �
�MCl

V
(3.166)

cCO3 ¼
mCaCO3

MCaCO3

�MCO3

V
(3.167)

cH ¼ 10�pH (3.168)

cOH ¼ 10� 14�pHð Þ (3.169)

The ionic strength of the ion i is calculated using Eq. (3.170):

Ii ¼
1
2
� ci � z2

i (3.170)

INa ¼ 0:5 � cNa � 1ð Þ2 (3.171)

ICa ¼ 0:5 � cCa � 2ð Þ2 (3.172)

IMg ¼ 0:5 � cMg � 2ð Þ2 (3.173)

ICl ¼ 0:5 � cCa � �1ð Þ2 (3.174)

ICO3 ¼ 0:5 � cCO3 � �2ð Þ2 (3.175)

IH ¼ 0:5 � cH � 1ð Þ2 (3.176)

IOH ¼ 0:5 � cOH � �1ð Þ2 (3.177)
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The global effect of the ionic strengths is given by Eq. (3.178):

X
Hi � Ii ¼ HNa � INa þHCa � ICa þHMg � IMg þHCl � ICl þ . . .

þHCO3 � ICO3 þHH � IH þHOH � IOH

(3.178)

The dependence of the equilibrium concentration of oxygen with temperature in
distilled water is given by the empirical equation below, which is obtained from
the experimental data presented by Sevella [51]:

c�O2 ;0 ¼ 14:6� 0:3943 � Tr þ 0:007714 � T2
r � 0:0000646 � T3

r (3.179)

Due to the fact that salts are dissolved in the medium, the equilibrium concen-
tration of oxygen in liquid phase is obtained from the following Setchenov-type
equation:

c�O2
¼ c�O2 ;0 � 10�

P
Hi�Ii (3.180)

The mass transfer coefficient for oxygen, and the temperature function, is given
by the following empirical equation (Sevella, 1992):

klað Þ ¼ klað Þ0� 1:204ð ÞTr�20 (3.181)

The rate of oxygen consumption is:

rO2 ¼ �O2
� 1
YO2

� cX �
cO2

KO2 þ cO2

(3.182)

Expression of the maximum specific growth rate [Eq. (3.183)] involves the
resultant of the growth rate increasing with the temperature and the effect of the
heat denaturation:

�X ¼ A1 � e�
Ea1

R Trþ273ð Þ � A2 � e�
Ea2

R Trþ273ð Þ (3.183)

• Differential equations:
The balance for the total volume of the reaction medium is:

dV
dt
¼ Fi � Fe (3.184)

The mass balances for the biomass, product, substrate and dissolved oxygen are
expressed by Eqs. (3.185) to (3.188):

dcX

dt
¼ �X � cX �

cS

KS þ cS
� e�KP �cP � Fe

V
cX (3.185)

dcP

dt
¼ �P � cX �

cS

KS1 þ cS
� e�KP1�cP � Fe

V
cP (3.186)
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The first terms in Eqs. (3.185) and (3.186) represent the quantity of biomass and
product, respectively, produced in the fermentation reactions. The last terms
describe the amount of yeast and ethanol respectively, leaving the reactor.

dcS

dt
¼ 1

RSX
� �X � cX �

cS

KS þ cS
� e�KP �cP�

� 1
RSP
� �P � cX �

cS

KS1 þ cS
� e�KP1�cP þ Fi

V
cS;in �

Fe

V
cs

(3.187)

The first and second terms in Eq. (3.187) represent the amount of substrate
consumed by the biomass for growth and ethanol production, respectively. The
third term is the quantity of glucose entering the reactor with the fresh substrate
feed, while the last term is the quantity of glucose leaving the reactor.
The concentration of the dissolved oxygen in reaction medium is the resultant of
the quantity of oxygen entering in the reaction medium due to the mass transfer,
expressed by the first term in Eq. (3.188), and the amount consumed in the
fermentation reactions (last term):

dcO2

dt
¼ klað Þ � c�O2

� cO2


 �
� rO2 �

Fe

V
� cO2 (3.188)

The energy balances for the reactor and jacket are given by Eqs. (3.189) and
(3.190), respectively.

dTr

dt
¼ Fi

V
� Tin þ 273ð Þ � Fe

V
� Tr þ 273ð Þ þ rO2 � ˜Hr

32 � ær � Cheat;r
þ

þ
KT � AT � Tr � Tag

� �

V � ær � Cheat;r

(3.189)

dTag

dt
¼

Fag

Vj
� Tin;ag � Tag

� �
þ

KT � AT � Tr � Tag

� �

Vj � æag � Cheat;ag
(3.190)

The parameters of the model are presented in Table 3.5 [52].

Table 3.5 Parameters of the process model.

A1 = 9.5 � 108

A2 = 2.55 � 1033

AT = 1 m2

Cheat,ag = 4.18 J�g–1�K–1

Cheat,r = 4.18 J�g–1�K–1

Ea1 = 55 000 J mol–1

Ea2 = 220 000 J mol–1

HNa = –0.550
HCa = –0.303
HMg = –0.314
HH = –0.774

HCl = 0.844
HCO3

= 0.485
HHO = 0.941
(kla)0 = 38 h–1

KO2
= 8.86 mg L–1

KP = 0.139 g L–1

KP1 = 0.070 g L–1

KS = 1.030 g L–1

KS1 = 1.680 g L–1

KT = 3.6�105 J�h–1�m–2�K–1

RSP = 0.435
RSX = 0.607
V = 1000 L
Vj = 50 L
YO2

= 0.970 mg mg–1

˜Hr = 518 kJ mol–1 O2

�O2
= 0.5 h–1

�P = 1.790 h–1

æag = 1000 g L–1

ær = 1080 g L–1
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Figure 3.26 SIMULINK block diagram of the model.

Figure 3.27 Dynamic response of the system in the case of step
change in the input substrate concentration (40fi 60 g L–1).



The above-described model was used for studying the dynamic behavior of the
reactor in the case of different disturbances. The disturbances considered were:
step change in the inlet flow temperature and in the substrate concentration. The
first disturbance can occur due to the ambient temperature variation, while the
second can occur as a result of quality changes of the substrate flow.

The model was implemented as a MATLAB S-function. The SIMULNK block
diagram is represented in Figure 3.26.

The dynamic behavior of the system for the disturbances studied is shown in
Figures 3.27 and 3.28.

It can be observed that an important variation in the input concentration causes a
slight variation in the ethanol concentration, so that this disturbance will not be
considered as major.

According to the data in Figure 3.28, the effect of the change in the inlet
temperature is of much greater importance, with a step of only 2 �C causing
important variations in ethanol concentrations.

The presented model can serve as a valuable tool for testing a variety of control
methods. Conventional PID control, LMPC and artificial neural network (ANN) model-
based NMPC (AANMPC) control techniques are tested in the following section.
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Figure 3.28 Dynamic response of the system in the case of step
change in the temperature of input flow (25fi23 �C).



3.2.2
Linear Model Identification and LMPC of the Bioreactor

The golden rule in identification is to try simple things first. If a linear model is
capable of describing the dynamic behavior of the system, there is no need to
examine the use of nonlinear models. In order to determine how a linear model
describes the process, two such models were identified based on simulated data
obtained from the analytical model described in Section 3.2.1:
• The linear state space model, expressed by the equations below:

X kþ 1ð Þ ¼� � X kð Þ þ ˆ �U kð Þ
Y kð Þ ¼C � X kð Þ

(3.191)

where �, ˆ and C are discrete state space matrices for the corresponding
sampling time, X(k) is the state vector, Y(k) the output vector of the linear model,
and U(k) is the vector of the manipulated variables at moment k. With this model
the process nonlinearity is demonstrated by the simulation results presented in
Figure 3.29. The procedure of obtaining the plotted data in Figure 3.29 was as
follows. At the steady state operating point (where Fag = 18 L h–1 and Tr @ 30 ºC),
a sequence of step inputs (˜Fag) was given. The changes in output (˜Tr) after one
sampling period are depicted, and the difference between the nonlinear model
(represented by circles) and the linearized model (solid line) is clear.

• The Output-Error (OE) model, from the polynomial linear model category was
also identified using the simulated input-output data pairs:

y kð Þ ¼ �f1 � y k� 1ð Þ � e k� 1ð Þð Þ � f2 � y k� 2ð Þ � e k� 2ð Þð Þ � . . .
�fnf � y k� nfð Þ � e k� nfð Þð Þ þ . . .þ b1 � u k� nkð Þþ

b2 � u k� nk� 1ð Þ þ . . .þ bnb � u k� nk� nbþ 1ð Þ þ e kð Þ
(3.192)
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Figure 3.29 Process nonlinearity. The solid line indicates the
temperature changes for a linear approximation of the process.



where f1,f2,…, fnf, b1, b2,…,bnb, are the coefficients of the model. The structure of
the model is defined by giving the time delay nk, and the order of the poly-
nomials nf and nb, respectively. In order to assure a sufficient complexity of the
model, a structure with parameters nk = 1, nf = nb = 4, was identified. Figure
3.30 shows that the obtained linear model is unable to model the process
accurately; in spite of that, with feedback model/plant correction even the linear
model-based LMPC might be capable of controlling the process. However,
because the underlying system is nonlinear, one should expect that the nonlinear
model-based controller would give better control performances. Consequently,
the development of an accurate nonlinear model is justified.

Although the linear models do not describe very accurately the dynamic behavior of
the bioreactor, when the disturbance does not move the process far from the
operation point where the linear model was obtained, fairly good control perform-
ance can be expected.

The disturbance caused by the input temperature change was used to study the
performances of two different controllers. The reactor temperature was the con-
trolled variable, and the flow of cooling medium was the manipulated input. First,
an advanced “anti-windup” digital PID controller with position algorithm and
backward approximation was used. The tuning parameters were K = 110,
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Figure 3.30 Output error (OE) linear model prediction.



Ti = 60, and Td = 0. The very good results obtained with this controller are shown
in Figure 3.31 [53].

Despite these good results, an attempt was made to improve the performances by
implementing a more advanced control structure – the model predictive control.
The linear model was first represented by the step response matrix; the results
obtained with this LMPC algorithm are presented in Figure 3.32. The main tuning
parameters used for the LMPC controller were P = 5; M = 2; ˆ = [1]; ¸ = [0]. It can
be seen that an excellent control performance was achieved, with both the deviation
peak from the setpoint and the settling time being smaller in the case of LMPC
than with PID control. However, the simulation results showed that even the
advanced PID control gave fairly good results. This can be explained by the fact that
the studied disturbances do not push the process far from the operating point,
where the assumption of linear behavior is valid. A worse control performance
should be expected for a variable setpoint (which forces the process operate in a
large range of operating points) or measurement noise. In this case, a nonlinear
model based control technique might be necessary.
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Figure 3.31 Simulation results with PID control of the process.



3.2.3
Artificial Neural Network (ANN)-Based Dynamic Model and Control of the Bioreactor

3.2.3.1 Identification of the ANN Model of the Bioreactor
Chemical processes in general – and biochemical fermentation systems in partic-
ular – have strongly nonlinear features, as was demonstrated previously. In
addition, biochemical process models have many parameters that must be deter-
mined experimentally [54,55]. For these reasons, the linear model approach is on
the one hand inappropriate for such processes, yet on the other hand accurate
analytical model development may be very difficult to achieve, and its use in a
NMPC scheme requires much computational effort and time [56,57]. Conse-
quently, neural networks represent a valuable tool in the modeling and control
of biochemical process.

Here, the primary goal was to obtain a dynamic ANN model which describes the
variations of the reactor temperature as a function of the cooling agent flow. For
this, a random input signal was generated and applied to the system. The simu-
lated response of the system, together with the random input signal, was used to
train the ANN. Once the ANN model is identified, it can be used as an internal
model in an advanced nonlinear model predictive control algorithm. For this, it is

3 Case Studies128

Figure 3.32 Simulation results with Model Predictive Control
(MPC) of the process.



crucial to have a network with very good generalization properties. One way to
obtain a network with appropriate generalization properties is to choose a structure
with sufficient parameters; this ensures that it learns the training data and then
optimizes the topology of the network until the best generalization properties are
achieved.

Consequently, a feed-forward neural network was chosen, with the same nk, nf
and nb parameters as in the case of the linear OE model. Thus, in the input layer
the network has eight neurons, while there is one neuron in the output layer, with
linear transfer function. One hidden layer with 14 neurons with the hyperbolic
tangent sigmoid transfer function was used. The fully connected initial network is
presented in Figure 3.33, while the input-output data sequence used to train the
network is shown in Figure 3.34.

The network was trained using the Levenberg–Marquardt training algorithm.
Figures 3.35 and 3.36 illustrate that the network was able to learn the training data
with an exceptional accuracy.

In order to test the ANN capability of generalization, another random input
sequence was obtained, by simulation from the first principle model of the system.
The test data set is presented in Figure 3.37, while Figures 3.38 and 3.39 demon-
strate the very pure generalization performance of the ANN model. In this case,
very high prediction errors were obtained. By comparing the plots for training and
the test set, it is quite clear that the network is overfitting the data. It is concluded,
therefore, that the model structure selected contains too many neurons (weights).
Consequently, in order to improve the generalization performance of the ANN
model, it is necessary to remove the superfluous weights from the network.
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Figure 3.33 The initial structure of the artificial neural network
(ANN).
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Figure 3.34 The training data.

Figure 3.35 ANN prediction and prediction error for the training
data.
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Figure 3.36 Histogram of prediction errors for the training data.

Figure 3.37 Data set to test the ANN.
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Figure 3.38 ANN prediction and prediction error for the
testing data.

Figure 3.39 Histogram of prediction errors for the testing data.



3.2.3.2 Using Optimal Brain Surgeon to Determine Optimal Topology of the
ANN-Based Dynamic Model

3.2.3.2.1 Description of the Enhanced OBS Algorithm
One of the most important parameters of the ANN is the number of connections
among the neurons. As can be seen on the simulation results presented in Section
3.2.3.1, this parameter determines the learning and especially the generalization
performances of the ANN. Recently, many studies have been conducted to inves-
tigate improvements in network training by using different network structures,
transfer functions and learning algorithms [58–61], as well as by elucidating
definite methodologies to determine the network structures [62].

The so-called Optimal Brain Surgeon (OBS) is the most important strategy for
pruning neural networks. This algorithm determines the optimal network archi-
tecture by removing any superfluous weights from the network in order to avoid
overfitting of the data by the ANN. We implemented the OBS algorithm proposed
by Hansen and Pedersen [63], and modified it to take into account that it should not
be possible to have networks where a hidden unit has lost all the weights leading to
it, while there still are weights connecting it to the output layer, or vice-versa.

In this algorithm a saliency is defined as the estimated increase of the unregu-
larized error criterion, when a weight is eliminated. The saliency for weight j is
defined by:

�j ¼ ºjI
T
j H�1 Ł�ð Þ 1

N
QŁ� þ 1

2
º2

j IT
j H�1 Ł�ð ÞR Ł�ð ÞH�1 Ł�ð ÞIj (3.193)

where Ł* is a vector with all the weights and biases of the reduced network and Ij is
the jth unit vector. The Gauss–Newton Hessian of the regularized criterion is
calculated with Eq. (3.194):

H Ł�ð Þ ¼ R Ł�ð Þ þ 1
N

Q (3.194)

where R is the Hessian of the unregularized error criterion, and Q is the regula-
rization matrix. The Lagrange multiplier ºj is calculated from the following equa-
tion:

ºj ¼
Ł�j

H�1
j;j Ł�ð Þ (3.195)

The constrained minimum (the minimum when weight j is 0) is then found from:

�Ł ¼ Ł� � Ł ¼ �ºjH
�1 Ł�ð ÞIj (3.196)

Initially, the saliences are calculated and the weights pruned as described above.
However, when a situation occurs where a unit has only one weight leading to or one
weight leading from it, the saliency for removing the entire unit is calculated instead,
by setting all weights connected to the unit to zero. With the proposed enhanced
OBS algorithm the computational time necessary to obtain the optimal topology was
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reduced in some cases by 30%. The network can be retrained after each weight
elimination or after a certain percentage of the weights had been eliminated. The
error criterion used by the algorithm is calculated for the test data set.

This algorithm was implemented in MATLAB and successfully applied to the
above-obtained ANN model.

3.2.3.2.2 Simulation Results of Pruning the ANN Model with the OBS Algorithm
The fully connected feed-forward ANN, as used in our simulations, contains a total
number of 141 parameters (weights and biases). The OBS algorithm was used in
order to prune the network. After each weight elimination the network was
retrained for 50 iterations. Figure 3.40 presents the results obtained with the
OBS algorithm. In this figure, the error criteria for both the training data and
testing data, together with the final prediction error (FPE), are presented. The FPE
is estimated from the training set, and is very useful when a test set is not available.
The test error is the most reliable estimate of the generalization error; therefore,
the OBS algorithm selects the network with the smallest test error. The OBS
algorithm gave as the final network the one with 53 weights (a reduction of 88
weights, i.e., 62 %). This result can be confirmed by examining Figure 3.40, while
the architecture of the selected network is presented in Figure 3.41.

It can be seen that a considerable reduction in network structure was achieved,
with the number of the weights being reduced by 62 %, and three neurons from the
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Figure 3.40 Results of pruning the ANN with Optimal Brain
Surgeon (OBS).



hidden layer being completely eliminated. The performances on the testing data
(Figs. 3.42 and 3.43), obtained with the reduced ANN show great promise.

Further study of the results obtained with the OBS algorithm (see Fig. 3.40)
shows that the network with the second-best test error has a much simpler
architecture (16 weights). The test error is very close to that obtained by the
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Figure 3.41 The architecture of the optimal ANN (with 53
weights) obtained by the OBS algorithm.

Figure 3.42 Generalization performances of the reduced ANN
(with 53 weights).



ANN with 53 weights, but the topology is reduced additionally by 37 weights. The
structure of this ANN is presented in Figure 3.44. This network suffered consid-
erable simplification of its structure, with 125 weights being removed from a total
of 141 (a reduction of 88 %). Three neurons were eliminated from the input layer,
and seven from the hidden layer. This structure shows that, for accurate modeling
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Figure 3.43 Histogram of prediction errors for the testing data
(ANN with 53 weights).

Figure 3.44 The architecture of the ANN with 16 weights.



of the dynamic behavior of the system, there is no need to use either the output
measurements with one and three past steps, or the input value with three past
sampling times.

Despite the considerable reduction in network structure complexity, this simple
structure provides very good generalization properties (see Fig. 3.45) and facilitates
rapid data processing. Consequently, the pruned networks may be used in different
nonlinear model predictive or optimal control algorithms as the internal model
used for prediction.

3.2.3.3 ANN Model-Based Nonlinear Predictive Control (ANMPC) of the Bioreactor
Once the ANN model is identified and the structure with the best generalization
properties selected, it can be used in different NMPC algorithms. In NMPC, multi-
step-ahead prediction is usually needed to foresee the behavior of the process. For
this, it is possible to use the previously identified ANN model with one-step-ahead
prediction (in this case multi-step-ahead prediction can be obtained using the ANN
repeatedly) or another structure with more than one future output parameter in the
output layer. The latter has the advantage of faster computation of predicted values,
but in this case the prediction horizon is usually fixed when the network structure
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Figure 3.45 Generalization performances of the reduced ANN
(with 16 weights).



is chosen. For different prediction horizons, it will be necessary to train different
networks (for details, see Chapter 2, Section 2.3.5).

In this section we exemplify the implementation of ANMPC with a non-recursive
four step-ahead predictor ANN model. A net with two hidden layers with seven and five
neurons respectively, was trained. The network had six input neurons corresponding
to the current and past (with two sampling periods) values of the reactor temperature
(controlled variable) and flow of cooling agent (manipulated variable). The prediction
horizon of the network was equal four sampling periods – that is, it had four neurons
in the output layer. This network can be represented abstractly as follows:

Tr kþ 1ð Þ;Tr kþ 2ð Þ;Tr kþ 3ð Þ;Tr kþ 4ð Þ½ � ¼ fNN Fag kð Þ; . . .
�

Fag k� 1ð Þ;Fag k� 2ð Þ;Tr kð Þ;Tr k� 1ð Þ;Tr k� 2ð Þ
� (3.197)

The sigmoid transfer function was used in the hidden layers, as well as in the
output layer. The network was trained for 10 000 epochs with the back-propagation
learning algorithm, using the historical database of plant inputs and outputs
obtained from the analytical model of the process. After learning, the network
gave very good prediction and generalization performances.

The network, once defined and trained, was introduced in a model predictive
control scheme as the internal model used for prediction during the control
movement calculation. The neural network model-based predictive control
(ANMPC) structure is presented in Figure 3.46.

In each sampling period the current temperature measurement is obtained
(Tr(k)) and, considering that the past temperature measurements and control
actions are known, the next control action is determined by solving an optimization
problem. That is, the next control action is selected such that the predicted outcome
of the control action is optimum in the sense of minimizing the square of the
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Figure 3.46 Block diagram of ANMPC of the process.



deviation from the setpoint trajectory over a finite horizon (P). Consequently, the
optimization problem for this particular case can be formulated as follows:

min
Fag kð Þ

XP

i¼1

Tr kþ ið Þ � Tsp kþ ið Þ
� 	2

( )

(3.198)

where:

Tr kþ ið Þji¼1;P¼ fNN Fag kð Þ;Fag k� 1ð Þ; Fag k� 2ð Þ;Tr kð Þ;Tr k� 1ð Þ;Tr k� 2ð Þ
� �

(3.199)

With this control structure, an excellent control of the process was achieved. Here,
a control horizon P = 4 was used. For P > 4, the procedure for non-recursive d-step
ahead prediction described in Chapter 2 must be used. For comparison, the PID
and LMPC control of the process are also presented in Figure 3.47, where the
superiority of ANMPC can be clearly seen.

The robustness of the ANMPC structure was studied under conditions of noisy
temperature measurement. The amplitude of the white noise in the simulation
was 1.5 �C. In order to render the network capable of controlling the process in the
case of noisy temperature measurement, it was trained by including noisy data into
the training set. If I and D are the training input, respectively output, obtained
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Figure 3.47 Simulation results with ANMPC, LMPC and PID
control of the process.



from the analytical model of the process, the training set for training the net with
noise can be developed as follows:
– the input data: I� ¼ PPþ noise½ � (3.200)
– the corresponding target data: D� ¼ DD½ � (3.201)

When the net had been trained with these training data it was used in the above-
described ANMPC scheme. The results obtained in the case of noisy temperature
measurement are shown in Figure 3.48, with a fairly good control being achieved.
In this case, PID control gave worse results than ANMPC, while LMPC failed
totally for every filtering coefficient utilized.

In this example, as an alternative approach to using neural networks for process
control, the use of an inverse neural network model is considered. Here, the
outputs of the net correspond to the future values of the process inputs, while
the input layer of the net contains, in addition to past values of the process inputs
and outputs and the current process output measurement, also the future values of
controlled variables (process outputs). Due to its structure, the inverse neural
network eliminates the optimization algorithm from the control movement com-
putation. Using past values of controlled and manipulated variables as well as the
current measurement, the control movement can be obtained directly from the net
when the setpoint values are presented to the network as the future values of the
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Figure 3.48 ANMPC of the process with noisy temperature
measurement.



controlled variables. The block diagram of the inverse neural network model-based
predictive control (IANMPC) of the process is presented in Figure 3.49.

The network used in these simulations had two hidden layers (with seven and
five neurons, respectively), with 10 neurons in the input layer and four in the
output layer. It can be represented as:

Fag kð Þ;Fag kþ 1ð Þ;Fag kþ 2ð Þ;Fag kþ 3ð Þ
� 	

¼ finvNN Tr kþ 3ð Þ;Tr kþ 2ð Þ;Tr kþ 3ð Þð ;
Tr kþ 1ð Þ; . . . ;Tr kð Þ;Tr k� 1ð Þ;Tr k� 2ð Þ;

Tr k� 3ð Þ;Fag k� 1ð Þ;Fag k� 2ð Þ;Fag k� 3ð ÞÞ
(3.202)

The network was trained using an historical database obtained from the analytical
model. In the training phase, the future values of temperature (Tr(k+i)) are known.
When the network had been trained it was used for control when, at each sampling
time, for the future temperature inputs of the network the setpoint values were
presented:

Tr kþ 1ð Þ i¼1;3

��� ¼ Tsp kþ 1ð Þ i¼1;3

���

The data presented in Figure 3.50 show that a very good control performance was
achieved with this control structure.

3.2.4
Conclusions

This section has successfully demonstrated the ability of ANNs to model complex
nonlinear biochemical processes, such as alcoholic fermentation. The detailed
analytical model of the continuous fermentation bioreactor was presented. This
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model is more complex than those used generally to test different control systems;
therefore, it involves more nonlinear characteristics of the process. Consequently,
the presented model may be valuable when testing a variety of nonlinear control
methods. Using the data obtained from the analytical model, ANN-based models
were also developed.

An efficient new algorithm – the enhanced Optimal Brain Surgeon (OBS) – was
also presented as a pruning algorithm for the determination of optimal ANN
topology. With the OBS algorithm a reduction in the number of weights from
141 to 53 (–62 %) in the first step, and finally to 16 (–88%) was achieved.
Simulation results were presented to show that this very simple network structure
can perform a better generalization than the initial fully connected one. The
pruned networks have very good generalization properties [64], with the simple
structure facilitating rapid data processing. Consequently, the pruned networks
can be used in different nonlinear model predictive algorithms as the internal
model used for prediction.

Two ANN model-based NMPC schemes were presented and tested via simula-
tions, and the results compared with those obtained with linear MPC and PID
control [65,66]. The superiority of the ANMPC structure was demonstrated. The
main advantage of the ANMPC compared to the NMPC (which uses the analytical
model of the system) was that it needs minimal knowledge of the process – a
feature that might be crucial in the case of biochemical processes. The nonlinear
model used in the ANMPC can be obtained from experimental input-output data,
and it is much more simple than its analytical counterpart.
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Figure 3.50 Inverse-ANMPC of the process.



It appears that the development of the ANMPC is easier than that of the NMPC,
but that because the control movement calculation is iterative it is faster than in the
case of NMPC, which requires online integration of the complex analytical model.

The simulations presented also demonstrate how neural networks can be trained
and used for nonlinear model predictive control of the process when measure-
ments are affected by noise.

Additionally, in this chapter, the development and application of a predictive
control scheme based upon the inverse neural network model of the process was
also presented. The main advantage of this control structure is that it requires an
extremely simple mathematical apparatus for control movement calculation. As
this algorithm is no longer iterative, the required computational time is very short,
making it preferable for real-time applications.

3.2.5
Nomenclature

Aj the output of the jth layer of the network
AN the output of the neural network
A1;A2 pre-exponential factors in Arrhenius equation
AT heat transfer area (m2)
C discrete state space matrix used in linear models
Cheat;ag heat capacity of cooling agent (J�g–1 K–1)
Cheat;r heat capacity of mass of reaction (J�g–1 K–1)
cj concentration of ion j (j = Na, Ca, Mg, Cl, CO3, etc.)
cO2

oxygen concentration in the liquid phase (mg L–1)
c�O2

equilibrium concentration of oxygen in the liquid phase (mg L–1)
c�O2 ;0 equilibrium concentration of oxygen in distilled water (mg L–1 l)
cP product (ethanol) concentration (g L–1)
cS substrate (glucose) concentration (g L–1)
cS;in glucose concentration in the feed flow (g L–1)
cX biomass (yeast) concentration (g L–1)
D output data from the training set
E sum squared error of the network
Ea1;Ea2 apparent activation energy for the growth respectively denaturation

reaction
Fag flow of cooling agent (L h–1)
Fe outlet flow from the reactor (L h–1)
Fi flow of substrate entering the reactor (L h–1)
Fj transfer function of the jth layer of the net ()
h number of learning epoch
Hi specific ionic constant of ion i (i = Na, Ca, Mg, Cl, CO3, etc.)
I input data from the training set
Ii ionic strength of ion i (i = Na, Ca, Mg, Cl, CO3, etc.)
k discrete time
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klað Þ product of mass-transfer coefficient for oxygen and gas-phase specific area
(h–1)

klað Þ0 product of mass-transfer coefficient at 20 �C for O2 and gas-phase specific
area (h–1)

KO2 constant of oxygen consumption (g L–1)
KP constant of growth inhibition by ethanol (g L–1)
KP1 constant of fermentation inhibition by ethanol (g L–1)
KS constant in the substrate term for growth (g L–1)
KS1 constant in the substrate term for ethanol production (g L–1)
KT heat transfer coefficient (J h–1 m–2 K–1)
lr learning rate
m momentum parameter used in the learning algorithm (0.95)
mi quantity of inorganic salt i (i = NaCl, CaCO3, MgCl2) (g)
Mi molecular/atomic mass of salt/ion i (g mol–1)
N number of layers in the neural network (input layer is not counted)
P prediction horizon
Q number of sets of training input-output data
R universal gas constant (8.31 J mol–1 K–1)
rO2 rate of oxygen consumption (mg L–1 h–1)
RSP ratio of ethanol produced per glucose consumed for fermentation
RSX ratio of cell produced per glucose consumed for growth
Sj number of neurons in the jth layer
t time (h)
Tag temperature of cooling agent in the jacket (�C)
Tin temperature of the substrate flow entering to the reactor (�C)
Tin;ag temperature of cooling agent entering to the jacket (�C)
Tr temperature in the reactor (�C)
Tsp setpoint temperature (�C)
U vector of the manipulated variables in linear models
V volume of the mass of reaction (L)
Vj volume of the jacket (L)
n i; jð ÞðhÞ weighting factor from the ith input variable to the jth output variable in the

hth learning epoch
X state vector in linear models
Y output vector in linear models
YO2 yield factor for biomass on oxygen (mg mg–1), defined as the amount of

oxygen consumed per unit biomass produced
z ionic charge of ion i

Greek Symbols
�w i; jð ÞðhÞ variation of the weighting factor in the hth learning epoch
˜Hr reaction heat of fermentation (kJ mol–1 O2 consumed)
�;ˆ discrete state space matrices used in linear models
�O2

maximum specific oxygen consumption rate (h–1)
�P maximum specific fermentation rate (h–1)
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�X maximum specific growth rate (h–1)
æag density of cooling agent (g L–1)
ær density of the mass of reaction (g L–1)

3.3
Dynamic Modeling and Control of a High-Purity Distillation Column

3.3.1
Introduction

Distillation is a common, but energy-intensive, method of performing separations
in the petroleum, chemical, food, pulp and paper, and pharmaceutical industries.
In the chemical and petroleum industries alone, distillation is used to effect 95 % of
all separations. The thermal energy requirements of distillation are enormous.
Distillation processes are thermodynamically less than 10 % efficient and account
for approximately 8 % of the total energy use of the U. S. industrial sector. The U. S.
Department of Energy’s Office of Industrial Technologies (OIT) has targeted
improved distillation as one of its major goals for saving energy in the industrial
sector. One widely discussed way to save energy in distillation is to use an
appropriate advanced control system, which is able to incorporate optimization
algorithms in order to minimize to operation cost of the column.

It is well known that high-purity distillation columns are difficult to control due
to their strong nonlinear behavior and the high interacting nature of the compo-
sition control loops. Usually, distillation columns are operated within a wide range
of feed compositions and flow rates that make a control design even more difficult.
However, a tight control of both product compositions is necessary to guarantee the
smallest possible energy consumption, as well as high and uniform product
qualities.

Model Predictive Control (MPC) is an important technique used in the process
control industries [67,68]. MPC has been developed considerably during the past
few years, due mainly to its multivariable nature that permits control problems to
be addressed globally. MPC also permits plant constraints to be taken into account.
MPC algorithms rely on a process model and on-line solution of a usually con-
strained optimization problem that minimizes a certain objective over a future
horizon. For many applications, one of the major limitations of MPC techniques in
their original formulation derives from the use of a linear model of the process
inside the algorithm. Although linear model predictive control (LMPC) techniques
have been implemented successfully in a wide variety of nonlinear systems, the use
of these control strategies for certain nonlinear processes and operating conditions,
is subject to performance limitations. A direct extension of the LMPC methods
results when a nonlinear dynamic process model is used, rather than the linear
convolution model. During the past decade, much effort has been invested to extend
the model-based predictive approaches from linear systems to nonlinear ones. In
this regard, three major issues must be considered in the extension of LMPC to
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nonlinear systems, namely, the stability of the closed-loop system, the computa-
tional burden, and modeling issues. The impacts of these challenges on nonlinear
model predictive control (NMPC) implementation have been discussed widely in the
literature [69–74], and in chapters 1 and 2 of the book. Moreover, several applications
of NMPC to different distillation systems have been reported [75–78].

Since a constrained nonconvex nonlinear optimization problem must be solved
on-line, the major practical challenge associated with NMPC is the computational
complexity that increases significantly with the complexity of the models used in
the controller. Additionally, significant progress has been made in the field of
dynamic process optimization. Rapid on-line optimization algorithms have been
developed that exploit the specific structure of optimization problems arising in
NMPC, and real-time applications have been proven to be feasible for small-scale
processes. However, the global solution of the optimization cannot be guaranteed.
With respect to these obstacles in real-time implementation, it was pointed out that
the feasibility implies stability in the case of QIH-NMPC and the global solution of
the optimization problem can be relaxed [79].

Although the complexity of the first principle model used in NMPC represents
the main obstacle in real-time implementation of these control approaches, until
now there is no realistic feasibility study that discusses the computational burden
vis-�-vis the model complexity and modeling difficulties in an application realistic
scenario. In this chapter, it is shown that modern NMPC schemes in combination
with specialized dynamic optimization strategies can be feasible even for large-
scale process models. In particular, the control of a high-purity distillation column
for the separation of methanol and n-propanol is considered, and the real-world
implementation complexity and control performance are compared for models of
different order. Additionally, techniques based on genetic algorithms (GA) – which
makes solution of the optimization more robust – are presented. The implemen-
tation issues of artificial neural network (ANN)-based controllers for the simulated
system are also discussed. The advantages and disadvantages of ANN-based con-
trollers to the first principle model-based NMPC are highlighted, and a new
adaptive ANN-based control approach is introduced.

3.3.2
Dynamic Modeling of the Binary Distillation Column

The column considered in our simulations has N = 40 trays, and is used for the
separation of methanol and n-propanol (Figure 3.51).

The feed flow (F) enters into the column at tray 21, and is considered to be the
main source of disturbance through the feed flow composition (xF). The feed stream
separates the column into the rectifying and stripping sections. Products are
removed continuously at the bottom and top of the column with feed B, concen-
tration xB and feed D and concentration xD, respectively. The vapor phase is
condensed totally in the condenser and is partly fed back into the column on the
last tray with the reflux flow (LN+1). The bottom stream is introduced into the reboiler
where part of it is vaporized and reintroduced on the first tray with flow rate VD, and
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the remainder is removed as bottom product (B). In both, the condenser and
reboiler, a perfect level control is considered. The column is considered in LV
configuration – that is, LN+1 and V0 are considered as the control inputs.

In order to estimate the feasibility of NMPC for real-time process control with
regard to model complexity, different models have been developed and used in the
controller for comparison. In each model, the following general assumptions were
considered, in addition to which in each model some particular considerations are
additionally used:
• A1: two-phase system in thermal and mechanical equilibrium;
• A2: perfect mixing in vapor and liquid phases;
• A3: no heat of mixing;
• A4: no heat loss to the surroundings;
• A5: temperature dynamics of the column structure is neglected;
• A6: thermodynamic equilibrium of vapor and liquid phases;
• A7: constant liquid holdups (dnj

�
dt ¼ 0); and

• A8: vapor holdup is neglected (nV
j ¼ 0) nj ¼ nV

j þ nL
j � nL

j );

The modeling of distillation columns has been widely discussed in the literature,
and some excellent reviews have been published [80–83]. In this section, the five
models of different complexity are presented briefly. Models A, B, and C are
obtained from basic conservation laws and constitutive relations written for the
trays represented schematically in Figure 3.52.

Models D and E are derived from model C, using a specific model reduction
technique.
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Figure 3.51 Schematic representation of the distillation column.



3.3.2.1 Model A: 164th Order DAE Model
Model A is obtained by “rigorous” modeling of the distillation system.
Considering assumptions A1 to A8, a complex DAE model, involving 42 differ-
ential (xj; j ¼ 0;N þ 1 with x0=xB and xN+1=xD) and 122 algebraic states
(Lj;Vj;Tj; j ¼ 1;N, T0 = TB and TN+1 = TD) was derived. The equations describing
model A are as follows:
• Reboiler: (j = 0)

dxB

dt
¼ 1

nB
�B � xB � VB � yB þ L1 � x1ð Þ (3.203)

0 ¼ �VB þ L1 � B) B ¼ L1 � VB (3.204)

• Condenser: (j = N+1)

dxD

dt
¼ 1

nD
� VN � yN � D � xD � LNþ1 � xDð Þ (3.205)

0 ¼ VN � D� LNþ1 ) D ¼ VN � LNþ1 (3.206)

• Tray j: (j ¼ 1;N and j 6¼ M)

dxj

dt
¼ 1

nj
Vj�1 � yj�1 � Vj � yj þ Ljþ1 � xjþ1 � Lj � xj

� �
(3.207)

0 ¼ Vj�1 � Vj þ Ljþ1 � Lj (3.208)

0 ¼ Vj�1 � hV
j�1 � Vj � hV

j þ Ljþ1 � hL
jþ1 � Lj � hL

j � nj �
dxj

dt
� hL

1;j � hL
2;j


 �
(3.209)
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• Feed tray (j ¼ M)

dxM

dt
¼ 1

nM
VM�1 � yM�1 � VM � yM þ LMþ1 � xMþ1 � LM � xM þ F � xFð Þ (3.210)

0 ¼ VM�1 � VM þ LMþ1 � LM þ F (3.211)

0 ¼ VM�1 � hV
M�1 � VM � hV

M þ LMþ1 � hL
Mþ1 � LM � hL

M�

nM �
dxM

dt
� hL

1;M � hL
2;M


 �
þ F � hL

F þ 1� qFð Þ � F � hV
F

(3.212)

Remark: The energy balance used in the equations was derived as follows:
From the general equation:

dUj

dt
¼ Vj�1 � hV

j�1 � Vj � hV
j þ Ljþ1 � hL

jþ1 � Lj � hL
j with

Uj ¼ nL
j � hL

j þ nV
j|{z}

¼0;ðA8Þ

�hV
j ¼ nL

j � hL
j ¼ njhL

j one can write:

dnjhL
j

dt
¼ nj �

dhj

dt
þ hj �

dnj

dt|{z}
¼0;ðA7Þ

¼ nj �
dhj

dt
¼ nj �

dhL
j

dxj
� dxj

dt
¼

¼ nj �
d xj � hL

1;j þ 1� xj

� �
� hL

2;j


 �

dxj
� dxj

dt
¼ nj � hL

1;j � hL
2;j


 �
� dxj

dt

The thermodynamic equilibrium is modeled by Raoult’s law:

yj ¼
p1;j

pj
� xj (3.213)

The dependence of the vapor pressure on the temperature is described by An-
toine’s relationship:

pk;j ¼ exp Ak �
Bk

Ck þ Tj

� �
for k ¼ 1; 2 (3.214)

The total pressure at each tray is:

pj ¼ p1;j � xj þ p2;j � 1� xj

� �
(3.215)

Constant pressure drop between trays is considered:

pj ¼ pj�1 � ˜p (3.216)

The enthalpies of the liquid and vapor phases are computed as functions of
temperature, pressure and composition of each tray, using the following equations:

hL
j ¼ xj � hL

1;j þ 1� xj

� �
� hL

2;j (3.217)
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hV
j ¼ yj � hV

1;j þ 1� yj

� �
� hV

2;j (3.218)

hL
k;j ¼ ak � Tj þ bk � T2

j þ ck � T3
j for k ¼ 1; 2 (3.219)

hV
k;j ¼ hL

k;j þ ˜hv
k;j pj;Tj

� �
for k ¼ 1; 2 (3.220)

˜hv
k;j pj;Tj

� �
¼ R � Tck �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
Prk;j

Tr3
k;j

s

� 6:09648� 1:28862 � Trk;jþ
�

þ1:016 � Tr7
k;j þ �k � 15:6875� 13:4721 � Trk;j þ 2:615 � Tr7

k;j


 �� for k=1,2 (3.221)

Trk;j ¼
Tj

Tck
and Prk;j ¼

pj

Pck
(3.222)

These equations describe a complex 164th order DAE model with 42 differential
and 122 algebraic states. The control variables in this case are:

Lc = LN+1 and Vc=VB

3.3.2.2 Model B: 84th Order DAE Model
Model B denotes a model that, besides assumptions A1 to A8, considers constant
molar flows (Lj = const. and Vj = const., for all j ¼ 0;N). Thus, the energy balance is
not needed. From the total mass balance written for the feed tray one has:

0 ¼ VM�1 � VM þ LMþ1 � LM þ F ) LM ¼ LMþ1 þ F (3.223)

Thus, the differential equations of the model can be obtained from Eqs. (3.203) to
(3.207) and (3.213) by using the following notations:

Vj ¼ V ; for j ¼ 0;N

Lj ¼ L for j ¼ M þ 1;N þ 1
Lþ F for j ¼ 1;M

�
(3.224)

In order to obtain the composition of the vapor phase (yj) and the temperatures (Tj)
on each stage, the same system of algebraic equations, (3.213) to (3.216), is written
for every tray, condenser and reboiler. Thus, an 84th order DAE model with 42
differential (xj; j ¼ 0;N þ 1) and 42 algebraic states (Tj; j ¼ 1;N,T0 = TB and
TN+1 = TD) is derived with the control inputs: Lc = L and Vc=V.

3.3.2.3 Model C: 42nd Order ODE Model
Model C was derived from model B, by introducing additional simplifying assump-
tions. Besides the constant molar overflows and neglecting energy balances, con-
stant pressure and constant relative volatility are considered. Hence, model C is
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described by the same differential equations as model B. The composition of the
vapor phase is obtained under the assumption of constant relative volatility (Ær = -
const.), from the following equation:

yj ¼
Ær � xj

1þ Ær � 1ð Þ � xj
for j ¼ 0;N þ 1 (3.225)

These equations lead to a 42nd order ODE model with the same 42 differential
states (xj; j ¼ 0;N þ 1) and 2 control inputs (Lc = L and Vc=V) as in model B.
Although this is the simplest model from a modeling point of view, it can still
reproduce the essential dynamic behavior of the system.

3.3.2.4 Model D: 5th Order ODE Model
Model D uses the same assumptions as model C, and was derived from the latter by
using the so-called “nonlinear wave propagation” theory [84,85]. This theory is
based on the property of the concentration profiles in a distillation column having a
stable form (different for the stripping and rectifying sections), which moves along
the column when disturbances appear. The steady-state concentration profile can
be described by the following wave function:

x zð Þ ¼ �� þ
�þ � ��

1þ e�æ z�s��ð Þ (3.226)

The shape parameters æ and � are determined for each section, with a least-squares
fitting method, such that the concentration profile matches the values obtained
with the function. The parameters �� and �þ represent the asymptotic limits of
x(z), for z! �1, and can be determined from the system of equations written for
the boundary system (reboiler/feed tray for the stripping section and feed tray/
condenser for the rectifying section):

xzO ¼ �� þ
�þ � ��
1þ ezO

with; ezO ¼ e�æ zO�s��ð Þ

xzN ¼ �� þ
�þ � ��
1þ ezN

with; ezN ¼ e�æ zN�s��ð Þ

8
><

>:
(3.227)

with the solution:

�� ¼
xzN � 1þ ezNð Þ � xzO � 1þ ezOð Þ

ezN � ezO

(3.228)

�þ ¼
xzO � ezN � 1þ ezOð Þ � xzN � ezO� 1þ ezNð Þ

ezN � ezO

(3.229)

Variables xzO and xzN represent the boundary concentration values for each section
of the column as follows:
• Stripping section:

xzO ¼ xB for zO ¼ 0 (reboiler)
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xzN ¼ xM for zN ¼ M (feed tray)

• Rectifying section:

xzO ¼ xM for zO ¼ M (feed tray)

xzN ¼ xD for zN ¼ N þ 1 (condenser)

By using Eqs. (3.226), (3.228), and (3.229), the concentrations on every tray
(for each section) can be obtained easily as a function of z, s, xzO and xzN for
z ¼ zO þ 1; zN � 1.

The differential equation, which gives the position of the inflection point (s) of
the concentration profile, is obtained by a summation of the material balances over
all trays in one section:

XzN�1

z¼zOþ1

nz �
dx zð Þ

dt
¼ L� xzN � xzOþ1ð Þ � V � yzN�1 � yzOð Þ (3.230)

with

L ¼ L for rectifying section
Lþ F for stripping section

�
(3.231)

By substituting in Eq. (3.230) the following equation:

dx zð Þ
dt
¼ dx zð Þ

ds
� ds

dt
þ dx zð Þ

dxzO

� dxzO

dt
þ dx zð Þ

dxzN

� dxzN

dt
(3.232)

one can obtain a complicated expression which provides the differential equation
for s. The derivatives of x(z) with respect to s, xzO and xzN can be obtained from Eqs.
(3.226), (3.228), and (3.229).

The equations above finally lead to a 5th order ODE model with the boundary
concentrations (xB, xM and xD) and the turning points of the concentration profiles
for the two sections (ss for the stripping section and sr for the rectifying section) as
differential states. Concentrations xB, xM and xD are obtained from the same
equations as in the case of model C.

3.3.2.5 Model E: 5th Order DAE Model
One drawback of model D is the stiffness of the ODEs, caused by the parameters
with very fast and very slow dynamics. It can be easily shown that the three
concentrations (xB, xM and xD) have a much faster dynamic behavior than the
wave positions (ss and sr). Thus, another model can be derived from model D using
the quasi steady-state assumption for the three concentrations with fast dynamics
[86]. The resulting model E is a 5th order DAE model with three algebraic (xB, xM and
xD) and two differential (ss and sr) variables described by the same equations as model
D, but with the right-hand side of Eqs. (3.226), (3.228), and (3.229) set equal to zero.
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3.3.2.6 Comparison of the Models
For a better overview of the complexity of the five models, the numbers of differ-
ential and algebraic variables used in each model are summarized in Table 3.6. The
most important disturbance that can appear in the system is variation of the feed
composition. Therefore, the dynamic and steady-state behavior of the distillation
column, as described by the five different models, are studied for step changes in
the feed composition. Figure 3.53 shows the steady-state concentration profiles as
well as the variation of the liquid and vapor flows in the case of model A, compared
to the constant molar flows used in all other models, before and after a step +20%
in the feed composition in xF. One can observe that models C, D, and E have very
similar steady-state behaviors. This is explained by the identical modeling assump-
tions used for these models. Models A, B, and C describe the system quite differ-
ently due to the different levels of complexity and assumptions used. An interest-
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Figure 3.53 Steady-state profiles of the concentrations, liquid flows [L] and vapor
flows [V] for +20% step in xF.

Table 3.6 Overview of model complexity.

Model Order and type No. of differential states No. of algebraic states

A 164th DAE 42 122

B 64th DAE 42 42

C 42nd ODE 42 0

D 5th ODE 5 0

E 5th DAE 2 3



ing conclusion that can be drawn from Figure 3.53 is that, in the case of disturb-
ance in the feed concentration, constant liquid flow seems to be a valid assumption,
but not constant vapor flow. Figure 3.54 shows the results for a –20% step change
in xF. These figures confirm the conclusions drawn above.
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Figure 3.54 Steady-state profiles of the concentrations, liquid
flows [L] and vapor flows [V] for –20% step in xF.

Figure 3.55 SIMULINK block diagram used for simulation.



The models were implemented as MATLAB S-functions, and simulations were
carried out using the SIMULINK block diagram shown in Figure 3.55. The
dynamic response of the system (obtained with model C) for different step changes
in the feed flow rate and composition, respectively, is shown in Figures 3.56–3.60.
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Figure 3.56 Variation of liquid concentration on trays 14 and 28:
(a,b) in the case of step changes in the feed flow concentration by
€30%, €20%, €10 % and €5%; (c,d) in the case of step changes
in the feed flow rate by by €30%, €20%, €10% and €5%.
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Figure 3.57 Concentration profiles for +20% step in the feed
flow rate at t = 100 s.

Figure 3.58 Concentration profiles for –20% step in the feed
flow rate at t = 100 s.
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Figure 3.59 Concentration profiles for +30% step in the feed
flow composition at t = 100 s.

Figure 3.60 Concentration profiles for –30% step in the feed
flow composition at t = 100 s.



3.3.3
A Computational Efficient NMPC Approach for Real-Time Control of the
Distillation Column

3.3.3.1 NMPC with Guaranteed Stability of the Distillation Column
The objective of NMPC is to calculate a set of future control moves (control
horizon, Tc) by minimization of a cost function, such as the squared control error
on a moving finite horizon (prediction horizon, TP). The optimization problem is
solved on-line based on predictions obtained from a nonlinear model. Here, we
reformulate in a more general form the NMPC problem based on the first principle
models described in Section 3.3.2. The nonlinear model used for prediction will be
represented by a set of differential and algebraic equations (DAE):

�x tð Þ ¼ f x tð Þ; z tð Þ;u tð Þð Þ; x 0ð Þ ¼ x0 (3.233)
0 ¼ g x tð Þ; z tð Þ;u tð Þð Þ

with differential variables x tð Þ 2 Rn, algebraic variables z tð Þ 2 Rp and inputs
u tð Þ 2 Rm. The setpoints are the steady-state values xs; zs; usð Þ satisfying
0 ¼ f xs; zs;usð Þ and 0 ¼ g xs; zs;usð Þ. Because of safety considerations and physical
limitations, it is additionally often required that constraints of the form
h xs; zs;usð Þ � 0 need to be satisfied. Additionally, another important requirement
that the nonlinear model predictive controllers must meet is that they should
assure a stable closed-loop system. The implementation issues of two FPNMPC
schemes, which guarantee nominal stability, are discussed in this section.

The most widely suggested stability constraint is the terminal equality con-
straint, which forces the states to be zero (equal to their steady-state values) at
the end of the finite horizon. For a certain steady-state this condition is written:

_
x tþ TPð Þ � xs ¼ 0 (3.234)

Using the terminal equality constraint to guarantee stability is an intuitive ap-
proach; however, it increases significantly the on-line computation necessary to
solve the open-loop optimization problem and often causes feasibility problems.

The second NMPC approach to guarantee stability discussed here is the quasi-
infinite horizon nonlinear MPC, in which the prediction horizon is extended ap-
proximately to infinity by introducing a terminal penalty term in the objective
function. The difference between this approach and the one described above is
that, rather than using a terminal equality constraints, a terminal region is used
and the objective function has an additional term, the terminal penalty term. The key
problem in this approach is the choice of the form, and the off-line computation of
the terminal region and penalty term, which in general – because of the nonlinearity
of the system – is a difficult task. In the case of using a local linear feedback law and a
quadratic objective function, the terminal penalty term can be chosen to be quadratic.
In this case, the terminal penalty matrix Qp is the solution of a Lyapunov equation,
and the on-line control problem can be expressed as below for a DAE system:
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min
uð�Þ

Js
_
x �ð Þ;_uð�Þð Þf g (3.235)

with

Js
_
x �ð Þ;_uð�Þð Þ ¼def

ZtþTp

t

_
x �ð Þ � xsk k2

Qþ
_
u �ð Þ � usk2

R

��
�

d�þ Es
_
x tþ Tp

� �� �

(3.236)

ADDDDBDDDDC ADBDC

Lagrange term Mayer term

subject to:

�x ¼ f
_
x �ð Þ; z �ð Þ;_u �ð ÞÞ; _

x tð Þ ¼ x tð Þð (3.237)

0 ¼ g
_
x �ð Þ; z �ð Þ;_u �ð ÞÞ; � 2 t; tþ Tp

� 	�
(3.238)

h
_
x �ð Þ; z �ð Þ;_u �ð ÞÞ � 0; � 2 t; tþ Tp

� 	�
(3.239)

r
_
x tþ Tp

� �
Þ � 0

�
(3.240)

where xk k2
Q¼ xT �Q � x, with Q a positive-definite matrix, and the bar indicates

that the corresponding variables are used in the controller. In the cost function,
matrices Q and R weight the state and input deviation from their operating points.
The terminal penalty term is given by the following expression:

Es
_
xÞ ¼ x� xsk k2

Qp



(3.241)

The terminal penalty matrix Qp weights the terminal state deviation from the
steady-state values, and the terminal constraint restricts the predicted state at the
end of the prediction horizon to lie in an ellipsoid (	) around the setpoint:

r
_
xÞ ¼ Æ� Es

_
xÞðð (3.242)

Note that if the steady state of the system changes during the operation (for
example, due to step changes in the input parameters), the terminal region and
the terminal penalty matrix Qp, must be adjusted to the new steady-state values.

The procedure to obtain the terminal penalty matrix and the terminal region for
systems described by ODE (see Section 3.4) or DAE models as well as the setpoint
tracking technique are presented in the literature [70,87].

In order to obtain some algorithmic advantages in solving the optimization from
the control problem, model parameters p are introduced as variable. The method
presented next was first proposed and described by Diehl et al. [88]. According to
this approach, the NMPC problem [Eqs. (3.235) to (3.240)], is rewritten in a more
general form:

min
uð�Þ; x �ð Þ;p

Js
_
x �ð Þ;_z �ð Þ;_uð�Þ;_pÞgðf (3.243)
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with

Js ð
_
x �ð Þ;_z �ð Þ;_uð�Þ;_pÞ ¼def

ZtþTp

t

L
_
x �ð Þ;_z �ð Þ;_uð�Þ;_pÞd�þ Es

_
x tþ Tp

� �
;
_
pÞ

��
(3.244)

subject to:

�x ¼ f
_
x �ð Þ;_z �ð Þ;_u �ð Þ;_pÞð (3.245)

_
x tð Þ ¼ x tð Þ (3.246)

_
p ¼ p tð Þ (3.247)

0 ¼ g
_
x �ð Þ;_z �ð Þ;_u �ð Þ;_pÞ; � 2 t; tþ Tp

� 	�
(3.248)

h
_
x �ð Þ;_z �ð Þ;_u �ð Þ;_pÞ � 0; � 2 t; tþ Tp

� 	�
(3.249)

r
_
x tþ Tp

� �
;
_
pÞ � 0

�
(3.250)

3.3.3.2 Direct Multiple Shooting Approach for Efficient Optimization in Real-Time
NMPC

3.3.3.2.1 Parameterization of the Optimization Problem
Using direct multiple shooting, the open-loop optimization in problem in the
NMPC at each time t for the current system state x(t) can be solved in the following
way:
• First, the predicted control trajectory uð�Þ is discretized. In this case it is assumed

that the controls are piecewise constant on each of the N = Tp/� predicted
sampling intervals:

_
u �ð Þ ¼ _

ui for � 2 �i; �iþ1½ Þ; �i ¼ tþ i � � (3.251)

• Second, the DAE solution is decoupled on these intervals by considering the
initial values

_
sx

i and
_
sz

i of differential and algebraic states at the times �i as
additional optimization variables. The solution of such a decoupled initial value
problem is denoted by

_
xi �ð Þ;

_
zi �ð Þ; it obeys the following relaxed DAE formulation

on the interval �i; �iþ1½ Þ:

�xi �ð Þ ¼ f
_
xi �ð Þ;_zi �ð Þ;_ui;

_
pÞð (3.252)

0 ¼ g
_
xi �ð Þ;_zi �ð Þ;_ui;

_
pÞ � Æi �ð Þ � g _

sx
i ;

_
sz

i ;
_
ui;

_
pÞ

��
(3.253)

_
xi �ið Þ ¼

_
sx

i ;
_
zi �ð Þ ¼ _

sz
i (3.254)
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The subtrahend in Eq. (3.253) is deliberately introduced to allow an efficient DAE
solution for initial values and controls

_
sx

i,
_
sz

i,
_
ui that violate temporarily the

consistency conditions 0 ¼ g
_
sx

i ;
_
sz

i;
_
ui;

_
pÞ

�
, during the solution iterations [89–91].

Therefore, we require for the scalar damping factor Æ that Æi(ti) = 1. Note that the
trajectories xi(�) and zi(�) are functions of the initial values, controls and param-
eters:

_
sx

i,
_
sz

i,
_
ui,

_
p. The objective contribution of the Lagrange term on �i; �iþ1½ Þ is –

like the DAE solutions
_
xi �ið Þ,

_
zi �ð Þ – completely determined by

_
sx

i,
_
sz

i,
_
ui,

_
p:

Js;i
_
sx

i ;
_
sz

i ;
_
ui;

_
pÞ ¼

Z�iþ1

�i

_
x �ð Þ � xsk2

Q þ
_
u �ð Þ � usk2

R

��
�
� d�

���



0

@ (3.255)

3.3.3.2.2 The Structured Nonlinear Programming (NLP) Problem
The parametrization of problem of Eqs. (3.243) to (3.250) using multiple shooting
and a piecewise constant control representation leads to the following large, but
specially structured, NLP problem:

Solve: min
ui;si;p

PN�1

i¼0
Js;i

_
sx

i ;
_
sz

i;
_
ui;

_
pÞ þ Es

_
sx

N ;
_
pÞ

��
(3.256)

Subject to:
_
sx

0 ¼ x tð Þ; (3.257)

_
p ¼ p tð Þ (3.258)

_
sx

iþ1 ¼
_
xi �iþ1ð Þ; i ¼ 0; 1; . . . N � 1; (3.259)

0 ¼ g
_
sx

i ;
_
sz

i;
_
ui;

_
pÞ; i ¼ 0; 1; . . . N;

�
(3.260)

h
_
sx

i ;
_
sz

i;
_
ui;

_
pÞ � 0; i ¼ 0; 1; . . . N;

�
(3.261)

rs
_
sx

N ;
_
pÞ � 0:

�
(3.262)

This large structured NLP problem in the variables
_
sx

0;
_
sz

0;
_
u0; . . .Þ

�
is solved by a

specially tailored, partially reduced SQP algorithm [89,90,92,93].

3.3.3.2.3 SQP for Multiple Shooting
The sequential quadratic programming (SQP) method tailored to the multiple
shooting structure of the NLP problem presented above [Eqs. (3.256) to (3.262)],
can be expressed as follows:
• The NLP can be summarized as

min
w

F wð Þ subject to
G wð Þ ¼ 0
H wð Þ � 0

�
(3.263)
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where w contains all the multiple shooting state variables and also controls the
model parameters. The discretized dynamic model is included in the equality
constraints G(w) = 0.

Starting from an initial guess w0, an SQP method for the solution of Eq. (3.263)
iterates:

wkþ1 ¼ wk þ Æk � ˜wk; k ¼ 0; 1; . . . ; (3.264)

where Æk ˛[0, 1] is a relaxation factor, and the search direction ˜wk is the solution of
the quadratic programming (QP) subproblem:

min
˜w2	k

rF wk
� �T �˜w þ 1

2
� ˜wT � Ak � ˜w (3.265)

subject to:

G wk
� �

þrG wk
� �T �˜w ¼ 0

H wk
� �

þrH wk
� �T �˜w � 0

(3.266)

Ak denotes an approximation of the Hessian of the Lagrangian function l:

l w; º; �ð Þ ¼ F wð Þ � ºT �G wð Þ � �T �H wð Þ (3.267)

where º and � are the Lagrange multipliers.
Due to the choice of state and control parameterizations, the NLP problem and

the resulting QP problems have a particular structure: the Lagrangian function l is
partially separable – that is, it can be written in the form:

l w; º; �ð Þ ¼
XN

i¼0

li wi; ºi; �ið Þ (3.268)

where wi are the components of the variables w corresponding to the interval [ti,
ti+1]. This separation is possible if we simply interpret the parameters p as piece-
wise constant continuous controls. The Hessian of l, therefore has a block diagonal
structure with blocks r2

wi
li wi; º; �ð Þ. Similarly, the multiple shooting parameter-

ization introduces a characteristic block sparse structure of the Jacobian matrices
rG wð ÞT and rH wð ÞT . A number of specific algorithmic developments were
proposed by Diehl et al. [88], that exploit these specific features, leading to
significant enhancement of the performance and numerical stability of the direct
multiple shooting method. For example, the block diagonal structure of the
Hessian, may be exploited in three different ways:
• In the first approach, a numerical calculation of the exact Hessian that corre-

sponds to Newton’s method is performed. This version is recommended if
computation of the Hessian is cheap or if it can be computed and stored in
advance.
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• A second approach, that of partitioned high-rank updates (as introduced in Bock
and Plitt [94]), speeds up local convergence with negligible computational effort
for the Hessian approximation.

• A third approach for efficient Hessian approximation is the constrained Gauss–
Newton method. This approach is especially recommended in the special case of
a least squares type cost functions of the form F wð Þ ¼ 1=2 � C wð Þk k2

2. The matrix
rwCT � rwC is already available from the gradient computation and provides an
excellent approximation of the Hessian, if the residual C(w) of the cost function
is sufficiently small.

An important point for using the above methods in the real-time context is their
excellent local convergence behavior, which can be proven under certain assump-
tions. The aforementioned approaches were integrated in a state-of-the-art software
package, MUSCOD-II, developed by the Interdisciplinary Center for Scientific
Computing (IWR) at the University of Heidelberg, Germany. For a detailed
description of globalization strategies available in the latest version of direct multi-
ple shooting (MUSCOD-II), the reader is referred to [95]. However, some other
techniques (based on GAs), which significantly increase the chance to obtain global
optima, are presented later in this chapter.

In a real-time scenario the optimal control problems solved in the NMPC scheme
are different at each progressing time t. The difference among the problems, besides
time t, is in the initial values x(t), which we expect to deviate from the values
predicted by the model. We must also expect that some of the parameters p(t),
which are assumed to be constant in the model, are subject to disturbances. The time
between consecutive optimization problems must be short enough to guarantee a
sufficiently rapid reaction to disturbances. In real-time approaches it is usually
assumed that a sequence of neighboring optimization problems is solved. Assuming
that a solution of the optimization problem for values t, x(t), p(t) is available,
including function values, gradients and a Hessian approximation, but that at
time t the real values of the process are the deviated values x'(t), p'(t), the conventional
approach to obtain an updated value for the feedback control u(x'(t), p'(t), Tp) is: (i) to
start the SQP procedure as described above from the deviated values x'(t), p'(t) and to
use the old control values ui for an integration over the complete interval [t, t + Tp];
and then (ii) to iterate until a given convergence criterion is satisfied.

Another approach, suggested by [93,96], has the following particular features.
First, the solution iterations are started from the solution for the reference values
x(t), p(t) instead of the deviated values. This approach has significant computa-
tional advantages. In this algorithm, the first iteration is available in a negligible
fraction of the time of a whole SQP iteration. It can be shown that the error of this
first correction in the NLP variables compared to the solution of the full nonlinear
problem is only second order in the size of the disturbance.

Based on this observation, it is possible not to iterate the nonlinear solution
procedure to convergence, but rather to use the following scheme:
• Apply the result of the first correction of the controls immediately to the real

process during some process duration �.
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• During this period � first compute the full QP solution and, based on this iterate,
compute a new linear-quadratic model expansion for the next time step, and
solve the QP as far as possible to prepare the immediate feedback response for
the following step.

It must be mentioned here that this procedure is not equivalent to the multiple
shooting SQP method as described above: in each step or iteration a different
optimal control problem is treated, with different x(t), p(t) in the NMPC case, and
additionally different Tp for shrinking time intervals as in batch processes. In
contrast to SQP methods, the solution procedures must be modified; for example,
the quadratic programs must be solved without knowledge of the unknown values
x(t), p(t) generating a feedback law that includes state and control inequality
constraints. The time � required for model expansion and full QP solution depends
on the complexity of the model and the optimization problem, as well as on the
numerical solution algorithms involved and the available computer. If � is not
sufficiently small, parallelization may be a remedy.

3.3.3.3 Computational Complexity and Controller Performance
An application of the outlined NMPC schemes and direct multiple shooting
method to control the high-purity distillation column described previously is
provided in the next section. In particular, the computational and implementation
complexity, as well as the resulting controller performance, are compared for
different model sizes. First, the computational issues are considered for the
“nominal case”, after which a realistic application set-up is proposed and discussed
in detail. For all simulations it is assumed that the “real plant” is described by the
164th order model (model A). The 84th (model B), 42nd (model C) as well as the two
5th order DAE and ODE models (models D and E) are used for the controller
predictions. Note that when model A is used in the controller, there is no model/
plant mismatch. As usual in distillation control, xB and xD are not controlled
directly. Instead, an inferential control scheme that controls the deviations of the
concentrations on trays 14 and 28 from the setpoints is used. Since for the standard
operating conditions the turning point positions of the waves correspond approx-
imately to these trays, one can expect good control performance with respect to xB

and xD.
From Figure 3.61 it can be observed that even small changes in the inflow or feed

conditions lead to significant changes in the wave positions, and thus of the
concentrations on trays 14 and 28. However, the changes in the product concen-
trations xB and xD are in general quite small.
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3.3.3.3.1 Nominal Case
In this section the following assumptions are considered:
• That the full plant state is known. Since models A, B and C have the same

differential states, the state feedback from model A (used as the plant) can be
utilized directly when these models are employed in the NMPC controller. In the
case of model D, the boiler, condenser and feed tray concentrations, as well as the
positions of the wave inflection points, are needed. In order to obtain these five
states, a least squares fit of the form stable wave profile to the 42 concentrations
of model A is used.

• That the solution of the control problem is available immediately, which means
that there is no delay between the measurement and implementation of control
inputs.

• The feed concentration (considered the main source of disturbance) is measured.
The terminal penalty matrix and terminal region are adjusted automatically
during the calculations to the new steady state, which is an implicit function of
the feed concentration.

According to the control considerations described above, only the concentration
deviations from the setpoint on trays 14 and 28 are penalized in the cost-function
[Eq. (3.236)]; that is, Q is semidefinite and only the diagonal elements 14 and 28 are
nonzero and set to 1. The deviation of the control inputs from their steady-state
values are not penalized – that is, R = 0.

The simulation results are presented in Table 3.7 and in the following figures.
The chosen sampling time is � = 30 s, and all computations are carried out on a
Compaq Alpha XP1000 workstation. For all simulations a disturbance scenario
with the following step changes in the feed flow concentration (xF) is used: at
t = 110 s a step of –10%, at t = 510 s a step of +15%, and at t = 810 s a step of –5 %,
back to the original steady state.
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Figure 3.61 Concentration wave profile in the column.



Table 3.7 Statistics of the necessary CPU times for one
open-loop optimization problem for the QIH-NMPC approach
using MUSCOD-II (time in seconds, using a Compaq
Alpha XP1000 workstation) – Nominal case.

Model M = 5 (Tc = 150 s) M = 10 (Tc = 300 s) M = 20 (Tc = 600 s)

Full iteration 1 iteration Full iteration 1 iteration Full iteration 1 iteration

Max. Avge. Max. Avge. Max. Avge. Max. Avge. Max. Avge. Max. Avge.

A 22.19 3.91 2.01 0.85 40.35 4.27 3.89 1.41 60.92 6.31 7.71 2.97

B * * * * * * * * * * * *

C 0.93 0.45 0.24 0.20 2.06 0.82 0.51 0.37 6.89 2.00 1.30 0.92

D 0.34 0.11 0.07 0.05 2.48 0.26 0.14 0.09 4.79 0.55 0.34 0.24

E * * * * * * * * * * * *

* , simulations not performed.
, not feasible (i.e., maximum CPU time is greater than the sampling time).

The maximum and average CPU times necessary to solve one open-loop optimi-
zation problem for the QIH-NMPC scheme are shown in Table 3.7 for both the full
iteration (iteration until a KKT tolerance: 10–6) and the one-iteration approaches. It
can be observed that the proposed QIH strategy, using the appropriate tool for
optimization, is feasible for models C and D for all horizon lengths tried. In the
case of the most complex model A, feasibility was achieved for a control horizon of
M = 5. From the simulation results presented in the next few pages (Figs. 3.62–
3.64) it can be observed that there is no significant difference between the control
performances achieved with different control horizons. Additionally, the one-
iteration approach leads to a similar control performance to the full iteration
approach. In the figures, the quadratic objective function, Eq. (3.236), and the
terminal penalty term (Mayer term), Eq. (3.241), are also presented to evaluate the
feasibility of the optimization.

Due to the model plant mismatch, a slight steady-state offset can be observed for
all models, but model A (in this case there is no model/plant mismatch because
model A is also used as the plant). An interesting result can be seen in Figure 3.64
where, together with the results of the closed-loop controls, simulation results for
the direct open-loop control are presented. In this case the final control action, after
the control inputs have stabilized, and after rejecting the effects of the disturbance,
is applied directly at the moment when the disturbance appears. An extremely slow
response of the system can be observed for the direct open-loop control, whilst if
the same control action is obtained in closed-loop after a certain sequence of
command in only three to four sampling intervals, the system is stabilized very
rapidly.
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Figure 3.62 QIH-NMPC of the distillation column. Nominal case;
comparison for different models, M = 10.
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Figure 3.63 QIH-NMPC of the distillation column. Nominal case;
comparison for different control horizons for the 164th order model
and results with the one-iteration approach for M = 20.
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Figure 3.64 QIH-NMPC of the distillation column. Nominal case;
comparison for different control



In order to demonstrate the advantage of an efficient NMPC approach such as
QIH-NMPC, simulations with the zero terminal constraint NMPC scheme are
performed for comparison. Usually, a much longer control horizon is necessary to
allow feasibility of the zero terminal constraint. For the 5th order model (model D),
a control horizon of M = 20 (Tp = 600 s) is sufficient, and the maximum CPU time
increases to 6.8 s (average CPU time = 0.7 s). In the case of the 42nd order model
(model C), a control horizon of M = 50 (Tp = 1500 s) is necessary [97]. The max-
imum CPU time increases to 131.5 s (average CPU time = 21.0 s). However, the
optimization algorithm used shows excellent robustness, even in the case of rather
large disturbances. The differences in control performance between the QIH and
the zero terminal constraint NMPC are not significant.

3.3.3.3.2 Application Realistic Scenario
The challenge of a practitioner is to apply the theoretical results and to build an
implementable NMPC controller, which means that a number of additional practical
constraints must be confronted. The “ideal” controller setup described in the
previous section cannot be implemented in practice, because of limitations in
the availability of measurements and the computational time needed to elaborate
the control action. In the following section all those specific tasks which make
practical implementation of NMPC a challenging control problem are discussed,
and the implemented solution in the proposed control setup is presented.

3.3.3.3.3 Estimation of the Unmeasured State Variables
In NMPC, current values of the state variables of the model are required to
compute the predicted outputs. In practice, usually only a few (or even none) of
these variables can be measured, and in the absence of total state-feedback it is
necessary to implement a nonlinear observer to generate estimates of the unmeas-
ured state variables using measured parameters. Nonlinear observer-based NMPC
techniques are widely discussed in the literature [98–100].

In the application presented here, the Extended Kalman Filter (EKF) is used to
estimate unmeasured parameters [101]. The EKF is appropriate for NMPC because
it is able to accommodate to noise and modeling errors, it is computationally
feasible in real-time, and it is conceptually straightforward. With the EKF, which is
an extension to nonlinear systems of the linear Kalman filter, the basic idea is to
perform linearization at each sampling time to approximate the nonlinear process
as a time-varying system affine in the variables to be estimated. At each step of the
time and measurement updates, a linear covariance matrix and the estimated
states of the nonlinear system are updated, based on measurement functions. A
brief description of the EKF is presented below; a detailed derivation of the EKF
equations is available in the literature.

3.3.3.3.4 The Discrete EKF Algorithm
The discrete EKF addresses the general problem of trying to estimate the state
x 2 Rn of a discrete time-controlled process that is governed by the nonlinear
stochastic difference equation:
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x kþ 1ð Þ ¼ F x kð Þ; z kð Þ; u kð Þ;w kð Þð Þ (3.269)

with a measurement y 2 Rm that is

y kð Þ ¼ h x kð Þ; z kð Þ; v kð Þð Þ (3.270)

The EKF linearizes the estimate around the mean and covariance, the discrete EKF
equations being:

x̂� kþ 1ð Þ ¼ f x̂ kð Þ; ẑ kð Þ; u kð Þ; 0ð Þ (3.271)

P�kþ1 ¼ AkPkAT
k þWkAkWT

k (3.272)

Kk ¼ P�k HT
k HkP�k HT

k þ VkRkVT
k

� ��1
(3.273)

x̂ kð Þ ¼ x̂� kð Þ þ K y kð Þ � h x̂� kð Þ; ẑ� kð Þ; 0ð Þð Þ (3.274)

Pk ¼ I � KkHkð ÞP�k (3.275)

where:

A is the Jacobian matrix of partial derivatives of f(�) with respect to x, that is

A½i;j� ¼
@f½i� x̂ kð Þ; ẑ kð Þ; u kð Þ; 0ð Þ

@x½j�
(3.276)

W is the Jacobian matrix of partial derivatives of f(�) with respect to w,

W½i;j� ¼
@f½i� x̂ kð Þ; ẑ kð Þ; u kð Þ; 0ð Þ

@w½j�
(3.277)

H is the Jacobian matrix of partial derivatives of h(�) with respect to x,

H½i;j� ¼
@h½i� x̂ kð Þ; ẑ kð Þ; 0ð Þ

@x½j�
(3.278)

V is the Jacobian matrix of partial derivatives of h(�) with respect to v,

V½i;j� ¼
@h½i� x̂ kð Þ; ẑ kð Þ; 0ð Þ

@v½j�
(3.279)

Equations (3.271) and (3.272) are the time update equations, while Eqs. (3.273),
(3.274), and (3.275) are the measurement update equations. The first task during
the measurement update is to compute the Kalman gain, Kk. The next step is
actually to measure the process to obtain y(k), and then to generate an a posteriori
state estimate (x̂ kð Þ) by incorporating the measurement as in Eq. (3.274). The final
step is to obtain an a posteriori error covariance estimate via Eq. (3.275). After each
time and measurement update pair, the process is repeated with the previous a
posteriori estimates used to project or predict the new a priori estimates (x̂� kð Þ).
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The estimation is usually much faster than computation of the new control
movement. Consequently, the estimation can be performed in parallel with the
optimization but with a smaller sampling time, called the estimation sampling
time (�e). In this way, at the next control sampling instance (�c), when the
calculation of the new control movement begins, more recent information is
available. Consequently, a better prediction – and therefore better control perform-
ance – can be achieved. The schematic representation of the NMPC with state
observer is shown in Figure 3.65.

3.3.3.3.5 Estimation of the Disturbances
In the implemented NMPC approach, not only the states but also the unmeasu-
rable disturbances (feed flow F and feed composition xF), must be estimated. In
order to estimate the disturbance, it is assumed that these parameters have
unknown but constant values. Consequently, the disturbances can be considered
as additional state parameters satisfying the differential equations:
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Figure 3.65 Schematic representation of NMPC with the imple-
mented state estimation technique.



dF
dt
¼ 0

dxF

dt
¼ 0

(3.280)

3.3.3.3.6 Coping with Model/Plant Mismatch
In the practical implementation of NMPC, model/plant mismatch is a very
common problem. From the simulation results obtained in the nominal case, it
can be observed that in the case of model/plant mismatch the NMPC controller
exhibits steady-state offset. Although, in the example presented here the main
control objective – namely to keep the product concentration in a narrow high-
purity band – is still met even in the case of differences between the model and
plant, in a general NMPC implementation the model/plant mismatch must be
taken into consideration. One general approach is to correct the setpoint values
according to the deviations of the predictions from the measurements. In the
application here, the model/plant mismatch is considered through the disturbance
estimation, which leads to an implicit integral action of the controller. It has been
shown in the simulations that it is possible to have a very similar steady-state
concentration profile for all models for the same control inputs by allowing the two
disturbance inputs (F and xF) to have different values. Consequently, in the
estimators, these two variables undertake the effect of the model/plant mismatch.
In this way, an offset free control of the measured parameters is achieved.

3.3.3.3.7 Using Temperature Measurements instead of Concentration
Measurements

In the case of the distillation column the states needed in the NMPC controller are
concentrations for all stages (for models A, B and C) and wave positions (for
models D and E). None of these parameters can be measured directly in practice.
On the other hand, there is a unique relationship between the tray temperature and
concentration (with the usually valid assumption of thermodynamic equilibrium),
expressed by Eqs. (3.213) to (3.216). Thus, instead of controlling the concentra-
tions, the corresponding temperature control leads to similar control performance.
Consequently, only temperature measurements are considered, which can be
performed easily and at relatively low cost. Controlling the deviations of the
concentrations from their setpoints only on trays 14 and 28, leads to good control
performance with regard to product purity. Hence, in the simulations only temper-
ature measurements on trays 14 and 28 are considered, and all necessary param-
eters are estimated from these two measurements.

3.3.3.3.8 Delay Between the Computation and Implementation of the Control Inputs
In practice, the control inputs cannot be computed instantaneously. The effects of
computational delay in the implementation of a controller have been investigated
widely, and several model predictive control schemes taking into account this issue
have been proposed for linear systems [102,103]. It has been shown that stability for
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the closed-loop system can be guaranteed if the delay is less than a certain thresh-
old value. Here, the computational delay is taken into consideration by using a
delay of one sampling time. That is, in every sampling time the first control input
from the solution of the previous optimization problem is implemented, and
simultaneously the computation of the new control movement is started using
information up to the current sampling time. The solution of the new open-loop
optimization problem is implemented at the next sampling time.

3.3.3.3.9 Real-Time Feasibility of the Optimization Problem
The major challenge in the practical implementation of NMPC is to assure a real-
time feasibility of the solution of the nonlinear program. Because a nonlinear
model is being used, the NMPC calculation usually involves a non-convex non-
linear program, which must be solved on-line at each time step. Efficient and
reliable optimization approaches and tools are required in order to make the
NMPC a real-time implementable technique. In the widely accepted implementa-
tion of the optimization problem, iterations are made until a certain tolerance is
achieved (a KKT = 10–6 is often used). However, in the case of the non-convex
nonlinear program involved with the NMPC, no optimization technique has yet
been identified which can guarantee the finding of a global optimum. Conse-
quently, it cannot be assured that a certain tolerance will be always achieved in one
sampling time period, even if the optimization is usually feasible. In addition, in
order to preserve stability it is sufficient that at each time step there is a decrease in
the finite horizon cost function, without necessarily finding the global minimum.
Therefore, a suboptimal NMPC approach can be implemented by limiting the
maximum number of iterations for optimization to a number that guarantees real-
time feasibility. In this section it is shown that with the specific initial value
embedding technique, implemented in MUSCOD-II, an excellent control perform-
ance can be achieved by performing only one SQP iteration at each sampling time.
Thus, real-time feasibility is assured even for processes modeled by high-scale DAE
systems and for long control horizons.

3.3.3.3.10 Controller Tuning
In the NMPC formulation described above, the main tuning parameters are
derived from both the observer and the controller: these are the controller sampling
time (�c), the estimation sampling time (�e), the control horizon (Tc), the prediction
horizon (Tp), the weighting matrixes Q, R and Qp from the controller side, and the
weighting matrix and initial covariance matrix from the estimator side. The
estimator parameters were chosen such that good and comparable estimation
performance is achieved for all models. The same terminal penalty matrix Qp,
and weighting matrixes are used as in the nominal case (R = 0 and Q semidefinite
with only the diagonal elements 14 and 28 equal to 1 and the rest set to 0). A control
horizon Tc = Tp was considered in all simulations, and results for different values
are presented. The sampling time must be settled by a compromise between
controller performance and on-line computation. Results with a sampling time
of 30 s (�c = �e) are presented in Tables 3.7 and 3.8; however, it is clear that with the
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special one-iteration NMPC, a shorter sampling time can be used and hence the
control performance can be improved.

3.3.3.3.11 Simulation Results
In order to estimate the computational burden and compare to the nominal case,
similar simulations as in the nominal case were performed with the above-
described NMPC scheme. The results are presented in Table 3.8. Similar compu-
tation characteristics can be observed as in the nominal case.

Table 3.8 Statistics of the necessary CPU times for one
open-loop optimization problem for the QIH-NMPC approach
using MUSCOD-II (time in seconds, using a Compaq
Alpha XP1000 workstation) – with observer.

Model M = 5 (Tc = 150 s) M = 10 (Tc = 300 s) M = 20 (Tc = 600 s)

Full iteration 1 iteration Full iteration 1 iteration Full iteration 1 iteration

Max. Avge. Max. Avge. Max. Avge. Max. Avge. Max. Avge. Max. Avge.

A 9.77 2.77 1.57 0.87 38.46 5.89 3.92 2.17 71.56 13.49 6.05 3.35

B 4.64 0.66 0.68 0.46 19.03 1.41 1.53 0.94 44.68 9.98 2.34 1.97

C 1.12 0.32 0.34 0.23 3.74 1.16 0.75 0.59 8.49 3.53 1.80 1.25

D 0.62 0.14 0.09 0.08 0.96 0.27 0.23 0.14 2.73 0.71 0.47 0.37

E 0.14 0.05 0.06 0.03 0.29 0.10 0.11 0.07 0.87 0.30 0.28 0.20

Shaded area indicate that the process is not feasible (i.e., the maximum CPU time is greater than
the sampling time).

By examining the computational times shown in Tables 3.7 and 3.8, it is clear that a
shorter sampling time is feasible by using the one-iteration approach. In practical
terms, there is no difference between the control performance with the one-
iteration and full-iteration techniques. Furthermore, the use of a shorter estimation
horizon can additionally augment control performance, as described above. These
conclusions were observed for all five models, and are illustrated for model A in
Figure 3.68. The results obtained in the nominal case for model A are also
presented in Figure 3.69. Clearly, a better control performance can be observed
in the nominal case due to the “ideal” assumptions considered. A comparison
between the control performances achieved with the five models with the one-
iteration controller using a control sampling time of �c = 10 s and estimation
horizon �e = 2 s is shown in Figure 3.68. From this it can be observed that, if the
estimator is correctly tuned, then very similar control performances can be
achieved with all models, despite differences between them. The model differences
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are shown in Figure 3.67, where variation of the concentration profile for each
model is shown compared to the plant, for the disturbance scenario used. The
narrow bands indicate a good control performance, which maintains the concen-
tration within tight boundaries. When model A is used in the controller there is no
model/plant mismatch, and thus the bands approximately coincide. An important
overlap of the concentration profiles can also be observed for model B, which
means that this model provides a very good description of the real plant. The
intersection points between the concentration bands for the plant and the models
correspond to the measurement trays 14 and 28. By fixing these to positions of the
wave profiles (by a tight control), the end concentrations are maintained in a high-
purity boundary due to the stable form of the concentration profiles. The control
performances obtained are similar for the control horizons used in the simulation
(M = 5, 10, 20), but to demonstrate the performances of the optimization tool used
the results for the computational most expensive case (M = 20) are presented. A
similar control performance can be obtained independently of the model complex-
ity, though the computational complexity decreases significantly for lower-order
models. A relative comparison between computational complexity and modeling
difficulty is shown in Figure 3.66. Models D and E are seen to be computationally
very attractive, but the derivation of these reduced-order models is quite difficult.
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Figure 3.66 Comparison between modeling difficulty and com-
putational complexity for the models.



The use of very complicated deterministic models does not improve the control
performance significantly, and they are computationally expensive and difficult to
derive. When using the one-iteration approach, immediate feedback is practically
possible for models D and E, even for a number of future control movement
M = 20. For a shorter control horizon (M = 5), practical control implementation
without delay is possible for models B, C, D, and E. The best choice seems to be
model C, as this can be obtained with minimum modeling effort, and computa-
tional is not expensive. In fact, with model C immediate control feedback can be
obtained, even for M = 10.
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Figure 3.67 Concentration profiles for the plant and models
during the control.
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Figure 3.68 Control performances for the five models in the case
of one-iteration QIH-NMPC approach.



3.3 Dynamic Modeling and Control of a High-Purity Distillation Column 179

Figure 3.69 Comparison between controller performance for the
nominal and realistic setup for model A.



3.3.4
Using Genetic Algorithm in Robust Optimization for NMPC of the Distillation Column

3.3.4.1 Motivation
In the NMPC controller, a constrained nonconvex nonlinear optimization problem
must usually be solved on-line, as described previously. The major practical
challenge associated with NMPC is that of computational complexity, which
increases significantly with the complexity of the models used in the controller.
It was shown in Section 3.3.3 that, by using the special, rapid on-line optimization
algorithms which exploit the specific structure of optimization problems arising in
NMPC, real-time applications can be feasible even for large-scale processes. How-
ever, the global solution of the optimization cannot be guaranteed. Additionally,
despite the excellent performances of the specially tailored SQP optimization
algorithm-based NMPC scheme (described previously), major disturbances can
cause stability problems for the optimization algorithm. It is well-recognized that
in industrial control applications, control performance and the robustness of the
control scheme applied are of similar importance. Some methods for exploiting the
advantages of GAs in order to improve the robustness of the NMPC schemes are
presented in the following section.

3.3.4.2 GA-Based Robust Optimization for NMPC Schemes
A sequential approach was implemented in order to solve the on-line control
problem imposed by the NMPC algorithms. This method uses different algorithms
for the integration of differential equations and optimization. First, according to
the algorithm of optimization, a sequence of control movements is considered;
with this, the system of differential equations is numerically integrated to obtain
the trajectory of the controlled variables. The scope function is then computed. The
function of its value and the method of optimization yields a new sequence of
control movements, after which the algorithm is repeated until the optimal
sequence is obtained. Only the first value of the sequence is applied to the process.
Here, it is proposed that the GA be used in combination with the special SQP
algorithm presented previously in order to carry out optimization at each sampling
time. In this respect, two approaches are presented to allow the advantages of both
algorithms (GA and SQP) to be combined [104,105].

The first approach combines the two optimization methods into a single, more
robust technique, in which GA is used for preoptimization to find the neighbor-
hood of the global optima. Based on the best solution found after a certain number
of generations, the SQP technique completes the optimization.

As the GA operators are designed to maximize the fitness function, in the
preoptimization step the minimization problem described above must be trans-
formed into a maximization problem. This can be done, for example, by utilizing
the following transformation:

F ¼ 1
1þ Jð�Þ (3.281)
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The main idea of this approach is shown schematically in Figure 3.70. When this
combination is used to solve the optimization in the NMPC algorithm, a very good
robustness of the control scheme is achieved. However, due to preoptimization
with the GA, the major advantage of the special SQP algorithm based on using
information computed in the previous step, is lost.

The second approach (Fig. 3.71) uses SQP as the main optimization technique in
the NMPC algorithm, but the control problem is also solved in parallel with GA.
When a solution from the slower GA is available it is compared to that obtained
with the SQP algorithm, and the better result is implemented. The main advantage
of this approach is that it allows use of the previously described special SQP
technique, without losing any of its performance. Only when the solution from
the GA is implemented does the SQP need to be reinitialized. However, resetting
the SQP algorithm in certain situations has proved to be very useful both for the
control performance and especially for the robustness of the algorithm.
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Figure 3.70 Sequential GA-SQP optimization algorithm.

Figure 3.71 Parallel GA-SQP optimization algorithm.



For comparison, simulations were performed with the first principle model-
based NMPC algorithm, using the aforementioned two different approaches in
solving the on-line optimization problem. In addition, simulations with the clas-
sical algorithm, where the SQP is used only to solve the open-loop on-line
optimization from the controller, are performed for comparison.

The 42nd order ODE model was used in the controller, and proved to be the best
choice with regard to both computational complexity and modeling difficulty (see
Section 3.3.3).

In the simulations, the following discrete form of the objective function was
used:

J ¼
XP

i¼1

x14 kþ ið Þ � xss
14

x28 kþ ið Þ � xss
23

� �����

����

2

Q

þ
XM�1

j¼0

u kþ jþ 1ð Þ � u kþ jð Þ½ �k k2
R (3.282)

The results obtained with Q = I; R = 0; P = 5; M = 1; Tsamp = 30 s, for a disturbance
scenario with step changes in xF and in the set points are presented in Figure 3.72.

The parameters of the GA are selected based on the characteristics of GA to
quickly identify the neighborhood of the global optimum. The best values of fitness
function found by the GA for one optimization in the case of different control
horizon are presented in Figure 3.73. In all cases, and after only 20 generations, the
GA found a close-to-optimum value, but then converged slowly to the exact value of
the optimum. Consequently, in the sequential GA-SQP algorithm the GA was used
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Figure 3.72 Comparative performance of three NMPC ap-
proaches for the following disturbance scenario: –20% step
in xF at t = 90 s; +20% step in xF at t = 420 s; after that setpoint
changes: x14,sp = 0.2 at t = 840 s, x14,sp = 0.1 at t = 1500 s,
x28,sp = 0.75 at t = 1180 s, x28,sp = 0.9 at t = 1500 s.



initially only for 20 generations. The best solution found after 20 generations was
close enough to the global optimum so that the SQP algorithm starting from this
solution rapidly finds the exact value of the optimum, with minimal computational
effort. Similar conclusions can be drawn from Figure 3.74, where the computa-
tional burden (expressed as the number of floating point operation, “flops”) of the
sequential GA-SQP algorithm is compared to situations when only the GA or SQP
are used individually to solve optimization. Consequently, GA is seen to become
computationally more attractive when the dimension of the optimization problem
is increased, while the combined GA-SQP approach significantly reduces the
computational burden in all cases. A population with 50 individuals for every
optimization variable is used in all simulations.

The control performances obtained with the GA-based NMPC techniques are
similar in this case, with the results obtained using only the SQP algorithm to solve
the on-line control problem. Although the sequential GA-SQP-based NMPC im-
proved control performance only slightly, its main advantage was the improved
robustness of the on-line optimization (see Table 3.9) and the significant reduction
in computational time needed to solve the open-loop control problem.

Table 3.9 Comparison of the robustness of the three
optimization algorithms.

SQP Sequential GA-SQP Parallel GA-SQP

No. of optimization failures
in the case of 660 open-loop
optimization with 20 disturbances

9 2 0
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Figure 3.73 Evolution of the fitness function in one optimization
with GA for different M-values.



For the parallel combined GA-SQP algorithm, both the control performance and
computational burden are similar to those obtained with the SQP (the best results
obtained when the algorithm does not fail), because in this case the control action
implemented is usually that obtained from the SQP algorithm (which is faster).
However, the parallel-running GA can significantly increase the robustness of the
control structure, because whenever the main SQP fails, a close-to-optimum
control action is always available from the GA.

3.3.5
LMPC of the High-Purity Distillation Column

Simulations with linear model predictive control (LMPC) were also performed for
comparative purposes; the results obtained are shown in Figure 3.75.

The LMPC was seen to cope quite well with a similar disturbance scenario to that
used for the NMPC (–20 % step change in feed concentration at t = 420 s and +20%
step change at t = 6000 s). However, both NMPC strategies clearly outperformed
the LMPC in terms of both under/over-shooting and of the settling time. The best
performance for the LMPC was achieved using the following tuning parameters:
Tp = 2; Tm = 1; Q = I; R = 0. The same objective function was used as in the case of
the NMPC algorithms.

3.3.6
A Comparison Between First Principles and Neural Network Model-Based NMPC
of the Distillation Column

For most processes, the derivation of first principles models is an arduous,
expensive, and time-consuming task, though as an alternative a nonlinear black-
box model can be used. Their universal approximation property, together with their
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Figure 3.74 Comparison of the computational burden of the algo-
rithms for different M-values. FLOPS = floating point operations.
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Figure 3.75 Simulation results with the LMPC of the column for the feed
concentration disturbance: step –20% at t = 420 s, and +20% at t = 6000 s.



parsimony, makes ANN-based models attractive candidates for performing such a
task. Many applications for both white-box and ANN model-based NMPCs have
been reported in the literature, though as Henson remarked in his review [71], the
NMPC literature lacks comparative studies between fundamental and empirical
model-based techniques. Consequently, the main objective of this section is to
compare the advantages and disadvantages of the first principle and ANN model-
based NMPCs for a high-purity distillation column.

For all simulations it was assumed that the real plant was described by model A (a
164th order DAE). In the first principles model-based controller, models C and B
respectively, were used and the differential states and model parameters F and xF

estimated from the two measurements (on trays 14 and 28) using a variant of the EKF.
For the comparative study, direct and inverse ANN models of the distillation

column were derived in an input-output structure:

x̂14 kþ 1ð Þ; x̂28 kþ 1ð Þ½ � ¼

fANN x14 k� ið Þji¼0;2; x28 k� ið Þji¼0;2; L k� ið Þji¼0;2; V k� ið Þji¼0;2; W

 �

(3.283)

L̂ kð Þ; V̂ kð Þ
� 	

¼

f �1
ANN xsp

14 kþ 1ð Þ; x14 k� ið Þ
��
i¼0;2; x

sp
28 kþ 1ð Þ; x28 k� ið Þ

��
i¼0;2; L k� ið Þji¼1;2;V k� ið Þji¼1;2; Winv


 �

(3.284)

With these structures an adaptive model-based control scheme was implemented,
as shown schematically in Figure 3.76.

According to this algorithm, the off-line trained ANN model is used to initialize
the controller. Parallel with the control loop, a copy of the initial network is trained
on-line. When the prediction error is less then 2 %, the network from the control
loop is replaced with the one adapted to the new conditions. Thus, the on-line
training does not introduce any additional delay in the control movement compu-
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Figure 3.76 Schematic representation of the adaptive
ANN-based control scheme.



tation. In order to obtain an ANN model with good generalization properties, a
special training algorithm with Bayesian regularization is used [106]. The perform-
ances of the four controllers are compared for disturbance rejection and setpoint
tracking in Figures 3.77 and 3.78, respectively. In all simulations, a sampling time
of 30 s and prediction horizon equal to the control horizon (P = M) was considered.
All of the controllers had similar control performances except for the inverse ANN
model-based controller (invANNMPC). In the latter, there was a longer settling
time, because the on-line open-loop optimization was eliminated and thus a small
model/plant mismatch led to greater control errors. In addition, training the ANN
in the inverse structure is usually more difficult because the pure derivative
character of the inverted model can lead the process close to the limit of stability.

It must be emphasized that in this particular example the use of analytical models
led to slightly better control performance. However, for complex processes in which
first principle models can be derived only by applying broad simplifying assump-
tions, ANN models might be more accurate and lead to better control performance.

Subsequently, simulations for different control horizons (M) were performed in
order to compare the computational burden of the control schemes. The CPU
times needed to solve one open-loop optimization are presented in Table 3.10.
ANN-based control techniques are very attractive from a computational point of
view, due mainly to their simplicity, whereas first principles model-based NMPC
algorithms are computationally very expensive. For these control schemes, special
optimization tools must be used to reduce the computational time. The data listed
in Table 3.10 show that the use of a multiple shooting technique (see Section 3.3.3)
in MUSCOD leads to very good results being achieved.
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Figure 3.77 Performance of controllers (M = 5) for +30%
step change in xF at t = 100 s.



Table 3.10 CPU times per command (s), for different control
horizon (M) in the case of the different controllers and software.
Simulations were performed on a P-III/350 MHz computer.

MATLAB MUSCOD

M = 5 M = 10 M = 20 M = 5 M = 10 M = 20

Max. Avge. Max. Avge. Max. Avge. Max. Avge. Max. Avge. Max. Avge.

5th ODE 310.2 189.5 516.1 380.3 * * 1.4 0.3 2.9 0.6 5.9 1.5

42nd ODE 507.6 392.4 970.2 678.4 * * 2.4 0.7 8.0 2.5 18.3 7.6

ANN 28.6 19.3 61.2 39.1 187.9 116.1 * * * * * *

Inv. ANN 2.7 2.3 5.8 5.1 13.4 12.8 * * * * * *

*, not performed.

A comparison of the main advantages and disadvantages of the ANN model-based
control techniques and first principles model-based NMPC algorithms is provided
in Table 3.11.
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Figure 3.78 Performance of controllers (M = 5) for setpoint
changes.



Table 3.11 Comparison between ANN and first principle
model-based control techniques.

ANN model-based control First principle model-based control

A
dv

an
ta

ge
s

• General form; the same ANN
algorithm will work for many different
systems.

• Accurate nonlinear models with very
simple mathematical form, even for
complex processes.

• Can be trained to be relatively
insensitive to noise.

• Require little human expertise.
• Computationally very attractive.

• Globally valid.
• Allow understanding of the behavior

of the system.
• System theoretical results available for

controller tuning and stability.

D
is

ad
va

nt
ag

es

• Crucial to define the right topology.
• Require large amount of data to build

the model.
• Limited by the regions of data used to

build the model.
• Highly dependent on historical oper-

ations of the process.
• Very few theoretical results are avail-

able concerning controller tuning and
stability.

• Valid only for the particular systems,
for which they were developed.

• Require high-level human expertise
and long development time.

• For complex processes the necessary
simplifying assumptions might harm
the accuracy of the model.

• Computationally very expensive.
• State estimation is usually necessary,

making controller tuning difficult.

3.3.7
Conclusions

In this section, a practically implementable NMPC approach was studied for the
control of a distillation column, and the obstacles which must be overcome to make
the NMPC applicable were outlined. It should be noted that some of the practical
problems of NMPC (variable setpoint, implementation delay of the control action,
early stopping of the optimization) can be solved with appropriate approaches and
certain assumptions, without compromising the closed-loop stability guaranteed
by the appropriate NMPC technique. However, in the case of model/plant mis-
match and the use of observer, there are no general criteria to guarantee stability.
Real-time feasibility and controller performance were discussed with regard to
different model complexity. For this purpose, five different models have been
developed and used in a QIH-NMPC controller. It was shown that using an
appropriate optimization strategy (one SQP iteration with the special initial value
embedding) and tool (MUSCOD-II), real-time feasibility can be achieved even for
models with high complexity (164th order DAE) and control horizon with 20 future
control actions. However, the complexity of the model used in the controller must
be chosen based on a judicious compromise between modeling difficulty and
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controller performance on the one hand, and computational complexity on the
other hand. In the case of the example presented here, it was shown that similar
control performance could be obtained with models of different complexity. More-
over, if a well-tuned observer was implemented in an appropriate form, offset free
and similar control performance was achieved even in the case of fairly important
model/plant mismatch.

Additionally, two different NMPC approaches were proposed to improve the
robustness of the NMPC controller, in which the advantageous properties of GAs
in the successful solution of complex nonconvex nonlinear optimization problems
are exploited. The first approach used GA for preoptimization in solving the on-line
open-loop control problem. Starting from the best solution obtained, the SQP
continued the solving; this approach improved both the control performance and
the robustness of the NMPC. Additionally, the computational burden in this case
was reduced. The second approach used GA to solve the optimization problem in
parallel with the SQP, thereby improving the robustness of the NMPC, practically
eliminating the controller failures due to failure of the optimization, and confer-
ring on it great importance for practical NMPC implementations.

Finally, the first principles model-based control techniques were compared with
the ANN model-based controllers. For this, a special adaptive ANN-based control
structure was proposed and used with both the direct and inverse ANN models. By
using ANN model-based controllers, it could be shown that very similar control
performance can be achieved as in the case of white-box models, though the
computational time required to solve one open-loop optimization problem in the
controller was drastically reduced. The final conclusion drawn was that the use of
fundamental models in the NMPC controller represents an attractive choice
because they are globally valid and fewer process data are required for their
development. However, when real-time feasibility of the optimization problem
employed in the controller becomes an obstacle in practical implementation,
special nonlinear black-box models, such as ANN, may be used instead without
degrading the control performance, or specialized optimization techniques and/or
tools (multiple shooting, MUSCOD) must be used.

3.3.8
Nomenclature

ak coefficient from equation for the liquid enthalpy of compound k as a
function of temperature

Ak coefficient from Antoine equation for compound k
bk coefficient from equation for the liquid enthalpy of compound k as a

function of temperature
B liquid molar flow from the reboiler (bottom product)
Bk coefficient from Antoine equation for compound k
ck coefficient from equation for the liquid enthalpy of compound k as a

function of temperature
Ck coefficient from Antoine equation for compound k
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D liquid molar flow from the condenser (distillates)
Es terminal penalty term
F molar flow of feed
hL

j ,hV
j total enthalpy of liquid and vapor phase, respectively on tray j, j = M is the

feed tray
hL

k;j,h
V
k;j enthalpy of pure compound k in liquid and vapor phase, respectively on

tray j, j = M is the feed tray
Js objective function for the NMPC controller
Lj liquid molar flows from tray j, j = 1,…,N
LM liquid molar flows from feed tray
M feed tray number
N number of trays in the column
nB molar holdup in the reboiler
nD molar holdup in the condenser
nj molar holdup on tray j, j = 1,…,N
nM molar holdup of the feed tray
pc,k critical pressure of compound k
pj total pressure on tray j
pk,j vapor pressure of compound k on tray j
Q weight matrix
Qp terminal penalty matrix
R weight matrix
Tj temperature on tray j
Tc control horizon
Tc,k critical temperature of compound k
Tp prediction horizon
VB vapor molar flow from the reboiler
Vj vapor molar flows from tray j, j = 1,…,N
VM vapor molar flow from the feed tray
xB mole fraction of the more volatile compound in the liquid phase in the

reboiler
xD mole fraction of the more volatile compound in the liquid phase in the

condenser
xF mole fraction of the more volatile compound in the liquid phase in the

feed flow
xj mole fraction of the more volatile compound in the liquid phase on tray j,

j = 1,…,N
yB mole fraction of the more volatile compound in the vapor phase in the

reboiler
xz0 ,xzN boundary concentration values for each section of the column for the wave

model
yD mole fraction of the more volatile compound in the vapor phase in the

condenser
yj mole fraction of the more volatile compound in the vapor phase on tray j,

j = 1,…,N
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Greek Symbols

Ær relative volatility

�k coefficient from the enthalpy of vaporization for compound k
˜hv

k;j enthalpy of vaporization for compound k on tray j
˜p pressure drop on each tray

�+,�- asymptotic limits of the wave profiles
æ shape parameter for the wave function
� shape parameter for the wave function

3.4
Practical Implementation of NMPC for a Laboratory Azeotropic Distillation Column

3.4.1
Experimental Equipment

The experimental measures were obtained in an ILUDEST bubble cap tray column
(Fig. 3.79); a schematic representation of the equipment is shown in Figure 3.80.
This equipment has the following characteristics:
• 30 practical plates;
• operation volume 10 L;
• reboiler with quartz heating rod 2 kW;
• column head with solenoid controlled reflux-withdrawal divider and condenser

of 0.2 m2;
• distillate cooler (cooling agent – water);
• feed heating system with quartz heating rod, capacity 0.5 kW;
• product receivers 5 L capacity each, to store the feed mixture, respectively to

collect the bottom and head product;
• diaphragm pumps for feed and bottom product withdrawal;
• 39 sampling valves on every tray, for feed, bottom, distillate flows.

The data acquisition and control system provided with the system comprises the
following components:
• Sensors: 18 temperature sensors places on every second tray, feed, reboiler and

condenser; measurement of absolute pressure at top and differential pressure
between the top and bottom, level probes, flow sensors, etc.

• Actuators in the plant: solenoid valves, heating elements (described above) liquid
and vacuum pumps.

• Personal computer and accessories
• 19-inch “ILUDEST-MOS” unit as an interface between the distillation plant and

the PC.

Experiments were conducted to determine the steady-state and dynamic character-
istics of the column. An ethanol/water mixture was used in these experiments; this
mixture forms an azeotropic mixture leading to a much more difficult modeling

3 Case Studies192



Greek Symbols

Ær relative volatility

�k coefficient from the enthalpy of vaporization for compound k
˜hv

k;j enthalpy of vaporization for compound k on tray j
˜p pressure drop on each tray

�+,�- asymptotic limits of the wave profiles
æ shape parameter for the wave function
� shape parameter for the wave function

3.4
Practical Implementation of NMPC for a Laboratory Azeotropic Distillation Column

3.4.1
Experimental Equipment

The experimental measures were obtained in an ILUDEST bubble cap tray column
(Fig. 3.79); a schematic representation of the equipment is shown in Figure 3.80.
This equipment has the following characteristics:
• 30 practical plates;
• operation volume 10 L;
• reboiler with quartz heating rod 2 kW;
• column head with solenoid controlled reflux-withdrawal divider and condenser

of 0.2 m2;
• distillate cooler (cooling agent – water);
• feed heating system with quartz heating rod, capacity 0.5 kW;
• product receivers 5 L capacity each, to store the feed mixture, respectively to

collect the bottom and head product;
• diaphragm pumps for feed and bottom product withdrawal;
• 39 sampling valves on every tray, for feed, bottom, distillate flows.

The data acquisition and control system provided with the system comprises the
following components:
• Sensors: 18 temperature sensors places on every second tray, feed, reboiler and

condenser; measurement of absolute pressure at top and differential pressure
between the top and bottom, level probes, flow sensors, etc.

• Actuators in the plant: solenoid valves, heating elements (described above) liquid
and vacuum pumps.

• Personal computer and accessories
• 19-inch “ILUDEST-MOS” unit as an interface between the distillation plant and

the PC.

Experiments were conducted to determine the steady-state and dynamic character-
istics of the column. An ethanol/water mixture was used in these experiments; this
mixture forms an azeotropic mixture leading to a much more difficult modeling

3 Case Studies192

Agachi/Nagy/Cristea/Imre-Lucaci. Model Based Control
Copyright � 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-31545-4



problem than for ideal mixtures. These difficulties and the modeling differences
for this nonideal mixture is described in Section 3.4.3.

3.4.2
Description of the Developed Software Interface

The use of a computer-aided system is well suited to the control and regulation of
distillation and rectification plants. The wide range of measurement and control

3.4 Practical Implementation of NMPC for a Laboratory Azeotropic Distillation Column 193

Figure 3.79 Schematic diagram of the
ILUDEST distillation column.

Figure 3.80 The ILLUDEST distillation column
from the Process Control Laboratory at UBB
Cluj.



tasks, the need for flexibility, ease of operation and the display of operating
parameters means that using a computer with relevant software and peripherals
is an ideal solution.

Although the above-described hardware has a software interface, the limited
capabilities – together with a need to implement particular control schemes – made
the development of a new software interface compulsory. During this develop-
ment, the following issues were of particular attention:
• Actual communication with the distillation plant is accomplished through the

ILUDEST-MOS unit on the first level. In this way, a hierarchical control struc-
ture with tasks distributed on two levels was implemented. This is necessary to
ensure safe operation of the plant in case of computer failure. The PC is used as a
means of communication between the operator and the electronics, for higher
level controls, and for data storage.

• The most important criterion is: SAFETY OF THE OPERATION. For this,
besides the hierarchical control structure, additional safety functions were im-
plemented in the software.

• Simple operation through menu control.
• Flexible software architecture for easy future development.
• Implementation of some advanced model predictive control schemes.
• Possibility of remote access of the data via the Internet to develop a distillation

“telelaboratory”.

Communication between the PC and ILUDEST-MOS unit is established via the
serial port of the computer using the RS-232 protocol, and a command protocol.
The main window of the software with its main functions is presented in Figure
3.81.

The main window of the application provides a general view of the process.
Current values of parameters are displayed in the schematic representation of the
column. Here, the LEDs indicate correct operation of the column from a safety
functions viewpoint. The history of the acquired data is presented in a chart, and a
current temperature profile is also plotted. In this application, a remote commu-
nication kernel is also included which can be activated by the appropriate checkbox.
If the “Enable Remote Server” checkbox is activated, the application will act as a
server and allow remote access via the TCP/IP protocol from computers connected
to the Internet. An access control check is implemented; thus, only authorized
computers can establish data connection. The configuration window of the Data
server is shown in Figure 3.82. In this window, the IP addresses of individual
computers or Internet domains can be specified either to have access or deny to the
Data Server.

The Main window of the client application is illustrated in Figure 3.83. The
application provides remote control capabilities, which were tested successfully, for
remote DAQ between the Laboratory of Process Control at Faculty of Chemistry
and Chemical Engineering, from the “Babeş-Bolyai” University of Cluj, where the
laboratory equipment is located, and the Automatic Control Laboratory from ETH,
Z�rich.
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The application also provides a videoconference possibility. For this, from both
the Server and Client applications the videoconference button launches Microsoft’s
Netmeeting application.

In controlling the distillation unit, the first criterion to take into consideration
was safe operation of the system. For this, six safety functions were implemented in
the software. These can be activated and configured in the Safety function window,
which is opened from the System menu (Fig. 3.84). The column can be operated in
either automatic or manual mode. In manual mode, the safety functions are not
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Figure 3.81 The main window of the Distillation Manager Application.
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Figure 3.82 Configuration window for remote access.

Figure 3.83 Main window of the Remote Distillation Client.
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Figure 3.84 The Safety Functions window.

Figure 3.85 The Manual Mode window.



active, and process parameters may be set manually. The manual operation
window (Fig. 3.85) is opened from the System menu, and safety functions are
not active while this window is open.

The control loops of the distillation column can be configured via the Controller
parameters window (Fig. 3.86), launched from the System menu. Four control
loops were implemented in the system:

1. Sump level control: this is an on-off device – it indicates when the level has
reached a maximum, but not the actual level. If the level reaches maximum,
the sump pump is activated until the maximum level sensor is “off”.

2. The feed temperature is controlled by a PID controller implemented with
the classical discrete PID formula.

3. A control loop, which can control one of the column temperature (selected
by the user) via the reflux ratio. Because of the particular features of the
reflux system, implemented through a bipositional valve, the PID controller
for this loop has not yet been implemented.
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Figure 3.86 The configuration window of the controllers.



4. The second configurable control loop is for control of the second temper-
ature value from the column (selected by the user) via the sump heater.

When the PID control checkbox is selected for loops 3 and 4, respectively, or for the
second loop, the advanced button opens the window presented in Figure 3.87,
where some advanced properties of the PID controller can be set by the user.
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Figure 3.87 The Advanced Properties window for the
PID controllers.

Figure 3.88 The configuration window of the controllers.



If the “PID control” checkboxes for the two configurable control loops are not
checked, the advanced controllers can be activated for these parameters. In this case,
the primary PID parameters are disabled and the “Advanced” button opens the
“Advanced Controllers” window (Fig. 3.88). To date, two advanced controllers have
been implemented: ANN model-based control, and first principle model-based
control. One future objective of the project is the implementation of other advanced
controllers (fuzzy, adaptive, etc.), the software permitting future developments.

Because the implemented controllers are for MIMO systems, the user can select
the controller for either loop; the same control type will be selected automatically
for the other loop. For the ANN-based control the “Advanced” button opens the
ANN model selection window.

The advanced controllers are described in detail in the following sections. The
controllers are implemented in MATLAB, and the control problem is solved, using
the MATLAB GA toolbox developed by the author.

For this purpose, at every sampling time, the measurements are sent to MAT-
LAB using the Dynamic Data Exchange (DDE) possibility in Windows environ-
ment. Here, the controllers using these data solve the control problem and send the
obtained control actions back to the LabVIEW application; these are then sent to
the process.

3.4.3
First Principles Model-Based Control of the Azeotropic Distillation Column

3.4.3.1 Experimental Validation of the First Principles Model
In a nonazeotropic distillation column, the vapor becomes steadily richer in the
more volatile component as it passes through successive plates. In azeotropic
mixtures, this steady increase in concentration does not take place, owing to the
so-called “azeotropic points”. For the mixture of ethyl alcohol and water used in
these experiments, the concentration of the alcohol steadily increases until it
reaches 95.6 % by weight, when the composition of the vapor equals that of the
liquid, and no further enrichment occurs (Fig. 3.89).

Computation of the equilibrium concentration for the azeotropic distillation,
differs from that for ideal mixtures. Thus, model A described in Section 3.3.2.1 can
be used in this case after replacing the relationships for the vapor–liquid equili-
brium with the appropriate ones. Consequently, the general material and heat
balances, Eqs. (3.203) to (3.212) and the general equations for computation of the
enthalpies in the liquid and vapor phases, and pressure drops can also be used [Eqs.
(3.216) to (3.222)], clearly using the appropriate parameters for the pure compo-
nent of this mixture. In fact, the only equations which need to be modified from
model A, are Eqs. (3.213) to (3.215).

The vapor–liquid equilibrium for the ethanol/water mixture can be computed
with the following relationships:

ye
i ¼

xi � ªi � ps
i

p
i ¼ 1; 2; . . . ; n (3.285)
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where the liquid nonideality in terms of the activity coefficients ª can be calculated
using the Wilson equation given below:

ln ªið Þ ¼ � ln
Xn

j¼1

xj � ’ij

 !

þ 1�
Xn

k¼1

xk � ’kiPn
j¼1 xj � ’kj

i ¼ 1; 2; . . . ; n (3.286)

Here,jij is the interaction parameter between component i and component j given by:

’ij ¼
Vj

Vi
� exp �

ºij � ºii
� �

R � T

� �
(3.287)

where Vi is the molar volume of pure liquid component i and ºij is the interaction
energy between component i and j. R the gas constant.

Adding to these equations the Antoine vapor pressure equation:

log
ps

i

p

� �
¼ Ai �

Bi

T þ Ci
i ¼ 1; 2; . . . ; n (3.288)

Xn

i¼1

ye
i ¼ 1 (3.289)

the equilibrium concentration and temperature can be computed by solving a
system described by Eqs. (3.285) to (3.289) for each tray.

The parameters for the ethanol/water mixture are represented in Table 3.12.
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Figure 3.89 Vapor–liquid equilibrium curve for ethanol/
water system.



Table 3.12 System parameters for ethanol/water binary
azeotropic system.

Component Vi

Antoine constants Wilson constants

Ai Bi Ci ºi1 ºi2

Ethanol 58.68 5.2314 1592.864 – 46.816 1.0 288.9156

Water 18.07 5.1905 1730.630 – 39.574 962.0073 1.0

Because the control parameter in this case is not directly the vapor flow from the
reboiler, but the power of the sump heater (Qw), this is introduced in the model by
writing the energy balance for the reboiler:

0 ¼ �w �Qw � VB � hV
B þ L1 � hL

1 � B � hL
B � nB �

dxB

dt
� hL

1;B � hL
2;B


 �
(3.290)

From this equation, VB can be obtained as a function of Qw. Here, Åw is the reboiler
efficiency.

Additionally, in order to cope with the nonideality of the system, the Murphy tray
efficiencies are introduced. Two different efficiency parameters are used, one for
the rectification section (År) and one for the stripping section (Ås), computed with
the following equations:

�r ¼
Vj � yj � Vj�1 � yj�1

Vj � ye
j � Vj�1 � yj�1

; j ¼ aþ 1; . . . ;N (3.291)

�s ¼
Vj � yj � Vj�1 � yj�1

Vj � ye
j � Vj�1 � yj�1

; j ¼ 1; . . . ; a (3.292)

where a is the feed tray position, ye
j is the equilibrium molar fraction in the vapor

phase, obtained from system Eqs. (3.285) to (3.289), and yj is the “real” molar
fraction on tray j. Equations (3.291) and (3.292) are used to compute the real yj ,
which is then used in the balance equations in the model.

The model validation is performed in two steps. First, the model is fitted to
describe the steady-state behavior of the process. For this, the introduced efficiency
parameters, Åw, År and Ås, are used as fitting parameters and four steady-state
experiments were performed. The first two experiments were used to obtain the
fitting parameters via minimization of the quadratic error criterion expressed by
the difference between the measured (Tmkj) and modeled (Tkj) tray temperatures:

Jss ¼
XNex

k¼1

XNm

j¼1

Tmkj � Tkj

� �2
(3.293)
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where Nex represents the number of experiments, and Nm the number of temper-
ature measurement points in the experiments. Thus, the optimization problem
used to fit the model can be described by:

min
�w ;�r ;�s

Jssð Þ (3.294)

The results obtained by solving this optimization problem were as follows:
Åw = 0.875; År = 0.786; and Ås = 0.731.

The value of the performance criterion [Eq. (3.293)], for the data sets used to fit
and test the model, and the experimental conditions are presented in Table 3.13.

Table 3.13 Experimental data and model validation results for
the steady-state modeling.

Experiment F [L h–1] xF TF [�C] R [s/s] Qw [ %] Jss

Used to fit the
model

SS1 2 30.26 58.7 5/1 50 2.4

SS2 2 30.26 58.7 10/1 40

Testing data SS3 2 30.26 58.7 7/1 60 4.6

SS4 2 30.26 58.7 10/1 50 3.7

The tuned results obtained for the parameters of Åw, År and Ås obtained above are
illustrated in Figure 3.90 for experiment SS1, and in Figure 3.91 for the testing
experimental data SS3.

A fairly good steady-state modeling capability can be observed from Figures 3.90
and 3.91. In the second step, experiments to identify the dynamic behavior of the
system have been performed. The experimental scenario was as follows: from the
initial steady state, a step change between 40 % and 60 % at t = 0.2 h, of the sump
heater power was used. When the system had arrived close to the new steady state,
a backward step change of the sump heater power from 60 % to 40 % was applied at
t = 1.05 h. The experimental data were then divided in two parts. The first part
(experiment D1) was used to fit the model, and the second part (experiment D2) to
test to model.

The liquid holdups (in mL) in the reboiler (nB), on the trays (nj, j = 1, …, 30), and
condenser-tray (nD) were used to tune the model. In this case, the sum-squared
error of the temperature obtained from the model compared to the measurements
at different time instances was used as the performance criteria:

Jdyn ¼
XTf

k¼1

XNm

j¼1

Tmkj � Tkj

� �2
(3.295)
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Figure 3.90 Comparison between model and experiment for data
SS1 used to fit the model.

Figure 3.91 Comparison between model and experiment for data
SS3 (test data).



where Tf is final time of the experiment. Temperature values with a step of 1 min
were used in the optimization problem expressed below:

min
nB;nj ;nD

Jdyn

� �
(3.296)

The model parameters obtained are presented in Table 3.14. The results for
selected trays (reboiler, trays 3, 6, 19, and head) are presented in Figure 3.92.

Table 3.14 Experimental data and model validation results for
the dynamic model identification.

Exp. Qw R
[s/s]

F
[L h–1]

xF TF,
[�C]

Initial values used
in SS1-SS4 [mL]

Final values, after
optimization [mL]

Jdyn

nB nj nD nB nj nD

D1 40% fi 60% 5/1 2 27.5 56.4 2430 10 10 2106.4 8.1 13.7 168.9

D2 60% fi 40% 5/1 2 27.5 56.4 2430 10 10 2106.4 8.1 13.7 2117.4
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Figure 3.92 Comparison between experimental data and
dynamic model (+, experimental data; solid lines represent the
data obtained from the model).



It can be observed from this figure, that the model describes fairly well the dynamic
characteristics of the process. However, it should be emphasized that for an
appropriate dynamic model, many more experiments must be conducted in order
to determine the parameters and to validate the model. For example, a study of the
effects of feed composition and flow would be necessary. The more comprehensive
dynamic model identification represents one of our future research objectives.

3.4.3.2 First Principle Model-Based NMPC of the System
During the past few years, several research groups have approached the model
predictive control of a distillation column, either continuous or discontinuous. Thus,
Fileti, Cruz and Pereira (2000) analyzed and compared the performances of several
control strategies applied to batch distillation [107]. Later, Hapoglu, Koca and Alpbaz
or Karacan applied different techniques of MPC to control the overhead temperature
[108–110]. Diehl et al. [111] presented experimental results from the implementation
of the efficient NMPC approach described in Chapter 2. For the FPNMPC of the
distillation column, the control inputs considered in the present case study were the
sump heat power (Qw) and the reflux rate (R). The controlled parameters were the
temperatures on trays 3 and 25. The control algorithms described in Chapter 2,
Section 2.3.3, cannot be directly implemented to the above-described laboratory
distillation plant, due to the particular nature of the reflux valve, which is bi-
positional. When the valve is open, the entire liquid flow from the condenser is
extracted from the system as the distillate; however, when the valve is closed, the
liquid is reintroduced into the column as the reflux flow. Consequently, this device is
digital, and does not allow the implementation of any analogue value for the reflux
flow rate given by the algorithms described so far.

In this section, hybrid control architecture is suggested for the pilot distillation
plant. According to this control algorithm, one control input (Qw) is an analogue
input which can take any value in the interval of 0 to 100%. The second control
input, instead of an analogue value for R (which is not applicable in this system), is
developed as follows.

Within the sampling interval Ts, a smaller sampling interval �s is considered,
such that N�s = Ts, with N˛N. The digital control input will be a vector of the form:

u ¼ u1; u2; . . . ; uN½ � (3.297)

with

uj

��
j¼1;N¼

0 if the valve is closed ðrefluxÞ
1 if the valve is open ðdistillateÞ

�
(3.298)

The control value uj = 0 means that the reflux valve is closed for a period of �s

between moments j� 1ð Þ � �s � � < j � �s from the sampling period of Ts. The
schematic representation of the control inputs for the proposed hybrid system is
depicted in Figure 3.93. The optimization problem from the controller, that must
be solved on-line in each sampling period Ts is as follows:
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J Qw;uð Þ ¼
XP

k¼1

º1 � T3 kð Þ � T3;s kð Þ
� �

þ º2 � T25 kð Þ � T25;s kð Þ
� �� 	2

(3.299)

min
Qw2Rq ; ujjj¼1;N

2 0;1f g
J Qw;uð Þð Þ (3.300)

where º1,2 are weight coefficients, T3,s and T25,s are the setpoints for the temper-
atures on trays 3 and 25, respectively, and P is the prediction horizon, Rq is the
subdomain of real values from the interval [Qw,min, Qw,max], and uj

��
j¼1;N2 0; 1f g are

the binary values of the control inputs in the interval Ts.
The optimization problem described by Eqs. (3.299) and (3.300) represents a

special mixed real and integer optimization problem. The parameters to obtain
from the solution of this problem are formed from one real value Qw and N binary
integer values uj.

The solution of such optimization problems represents a major numeric chal-
lenge. The special structure of the problem can be exploited very well if a genetic
algorithm (GA) is used to solve the optimization. The feature to use binary repre-
sentation of optimization parameters to solve the optimization makes this an
alluring tool for the problem. Thus, for the GA we may consider only two parameters
to be obtained from the optimization. The first, is the real Qw value, which can be
coded on 16 bits to have the necessary precision in the real interval [0 100], from
which this control input may take values. The second optimization state, u, can be
considered as a binary value from the interval u 2 ½000 . . . 0|fflfflfflfflffl{zfflfflfflfflffl}

N

; . . . ; 111 . . . 1|fflfflfflfflffl{zfflfflfflfflffl}
N

�.

The obtained binary value for the Qw is decoded in the real representation to be
implemented in the process, while the binary u is interpreted in binary form. Every
bit from u corresponds to the appropriate reflux valve position (0 = closed; 1 = open).

3.4 Practical Implementation of NMPC for a Laboratory Azeotropic Distillation Column 207

Figure 3.93 The proposed hybrid structure of the control inputs.



The special control algorithm described above was implemented in the software
interface presented in Section 3.4.2. The validated model presented in Section 3.4.3
is used for prediction. At every sampling instance the temperature measurements
are taken from the 17 temperature sensors and all necessary states are estimated
via an EKF, as described in Section 3.3.3. The control inputs are obtained by solving
the optimization problem using GA. The measurements are obtained in LabVIEW,
after which values are sent via DDE to the MATLAB implementation of the
functions needed to solve the control problem. Although the software has been
implemented, control of the distillation has not yet been achieved due to the very
high computational complexity of the optimization problem. The very complex
first principal model means that the solution of one open-loop control problem on
a P-III/600 MHz computer takes more than 2 h in MATLAB. Thus, the real-time
implementation of the FPNMPC in the presented structure is not feasible. In order
to ensure real-time feasibility, either much faster software should be used or the
model complexity must be reduced.

3.4.4
ANN Model-Based Control of the Azeotropic Distillation Column

It was shown in Section 3.3.6 that if real-time feasibility is a problem for FPNMPC
techniques, then the ANN model-based NMPC might be a remedy. Additionally,
the modeling task is very arduous for the azeotropic distillation case, as some of the
phenomena are not known in detail. These features all suggest the development of
an ANN model to be used in the NMPC. For the implemented ANMPC, the hybrid
control algorithm with GA used to solve the optimization is used, as described in
Chapter 2. The only difference is that the model predictions are not obtained from
the first principles model; rather, an ANN model is used.

A sampling time of Ts = 30 s and a discretization interval for the digital control
input �s = 5 s were used. This means that there are six (6 � 5 s = 30 s) digital points
in the sampling interval Ts. The digital input u will thus be represented as a six-
digit binary number. For example, a control u = 100110 means that the reflux valve
is open for 5 s, after which it is closed for 10 s, opened again for 10 s, and finally
closed for 5 s.

The feed-forward network structured used to model the system is presented in
Figure 3.94. The current and two past values of the controlled outputs (T3 and T25)
and analogue control input (Qw), and the current value for the digital control input
u, were used. For every bit from u, an input neuron is used in the ANN model. Two
hidden layer with 13 and 7 neurons respectively were used, with the logsig transfer
functions. In the output layer, the purelin transfer function was used. An experi-
ment has been designed in which random values were used for the process inputs.
The obtained experimental sequence was divided into two parts. The first part was
used to train the network, and the second part to test the generalization properties
of the ANN model. The performance of the ANN model is presented in Figures
3.95 and 3.96 for the normalized training data, and in Figures 3.97 and 3.98 for the
normalized testing data.
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In these figures, the ANN prediction (A) is represented versus the training data
(T). The ideal case, when A = T is also presented. Additionally, a linear regression
equation of the form A = aT + b is computed. In this equation, the coefficients a
and b are qualitative measures of how good is the network prediction. When a = 1
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Figure 3.94 The ANN model structure for the hybrid control scheme.

Figure 3.95 ANN prediction for the training data for T3.



and b = 0, the ideal prediction is A = T. In our case, it can be observed that although
the a and b values are close to their ideal values and the correlation coefficient (R) is
also high, the prediction is not ideal. These results suggest uniformly distributed
errors, which most likely are due to measurement errors. Thus, one should expect
that the network would filter the noise and give fairly good prediction.
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Figure 3.96 ANN prediction for the training data for T25.

Figure 3.97 ANN prediction for the testing data for T3.



The ANN model-based NMPC was implemented in the software interface. The
optimization (with GA) and the control movement computation is performed in
MATLAB. By introducing the ANN model, presented above, a good control per-
formance is achieved. The ANNMPC was tested for setpoint tracking; for this, a
setpoint change was applied to the system for both controlled parameter (T3 and
T25) but at different moments. The results are shown in Figure 3.99.

The controller parameters º1 = º2 = 1, P = 20 (600 s), and M = 1 were used. The
successive-recursive prediction algorithm, described in Chapter 2 (Section 2.3.5.4)
is used to perform the P > 1 prediction.

The parameters of the GA used in the optimization are: 50 members in the
population; cross-over probability = 1; mutation probability = 0.03; limits for the
inputs Qw˛ [0 100], u˛[000000 111111]; codification bits = [16 6]; maximum num-
ber of generations = 100; With these parameters, an open-loop optimization was
solved in less then 20 s, which is less than the sampling time used, Ts = 30 s.
Consequently, the ANMPC controller in the above-described structure is feasible
for real-time implementation.

3.4.5
Conclusions

In this section the practical implementation of two nonlinear model-based pre-
dictive controller to a nonideal azeotropic distillation column was presented. First,
the 30-tray ILLUDEST pilot laboratory equipment was described, after which the
software interface developed by the present author was presented in detail. This
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Figure 3.98 ANN prediction for the testing data for T25.



interface joins the two most important characteristics of computer interfaces:
flexibility and safety operation. Additionally, the software provides the possibility
of remote experiments from computers connected to the Internet.
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Figure 3.99 ANMPC of the azeotropic distillation column.



For control of the system, a two-inputs–two-outputs control architecture was
considered. The control inputs were the sump heater power and reflux rate, respec-
tively, while the controlled outputs consisted of temperatures on trays 3 and 25,
respectively. The sump heater used was an analogue device, while the reflux rate was
set via a digital on/off reflux divider valve. This led to a mixed binary integer-real
structure. Because of these particular features of the equipment, the control of the
system is a challenging task. A novel hybrid control approach was proposed which,
in combination with GA, exploited the special structure of the control system.

Two models of the distillation column have been developed for use in the NMPC
control scheme. The first model was analytical in nature, and based on a detailed
first principle modeling approach. Experiments were performed to fit the model for
both the steady-state and dynamic behavior of the system. This model was used for
prediction in the proposed NMPC. It was shown that although the dynamic model
described the process dynamics fairly well, the first principle model-based NMPC
approach was not feasible for real-time implementation. The solution of one open-
loop control problem took about 2 h on a P-III/600 MHz computer. Consequently,
the use of faster software (i.e., MUSCOD) instead of MATLAB or the use of a faster
model for prediction is necessary. Here, the latter approach was adopted. In the
previous section, the advantages of ANN model-based control compared to the first-
principles model-based algorithms were emphasized. These consist of much faster
computation and lower modeling difficulties. These are especially true for the
azeotropic distillation where, because of the nonideal mixture, the process models
are even more complicated. Thus, the necessary computational burden is much
higher and the development of accurate models for these systems is an arduous task.

An ANN model adapted to the special structure of the mixed logical dynamic system
has been developed and used in the novel GA-hybrid control system. This algorithm
was implemented in the distillation system, achieving very good control performance.

3.5
Model Predictive Control of the Fluid Catalytic Cracking Unit

3.5.1
Introduction

For over 60 years, catalytic cracking has been one of the main processes in
petroleum refining, having passed through spectacular development [112]. The
fluid catalytic cracking unit (FCCU) has, during the past few decades, become the
“test bench” of many advanced control methods. Today, both academia and
industry are expressing great interest in the development of new control algo-
rithms and in their efficient industrial FCC implementation, as successful results
are usually of major economic benefit [113]. The catalytic cracking process is
complex both from the modeling and from the control points of view [114–117].

The dynamic mathematical model development implies some assumptions,
taking into account the specific aspects of the process. The complex nature of
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the feed oil assumes a lumped kinetic mechanism for the treatment of the cracking
process. Both reactor and regenerator mass and heat transfer are complex. An
adiabatic plug flow reactor model is usually used for the riser. Two zones fre-
quently describe the regenerator model: (i) a dense bed zone (with dense phase as a
CSTR model, but gaseous phase as a plug flow reactor model); and (ii) an entrained
catalyst zone (plug flow model) [118].

The control system design and implementation must solve an array of challeng-
ing tasks, the main problems being the multivariable character of the process,
presenting strong interactions, the nonlinear behavior leading to a need for non-
linear control, and a demand to operate the unit in the presence of material and
operating constraints. Additionally, the control system must cope with both long
and short time constants, as well as facing changing operating conditions, in the
presence of unmeasured disturbances [119]. As a consequence, Model Predictive
Control (MPC) has proved to be a good candidate for the advanced control of
FCCU, due to its multivariable structure, direct constraints handling, and econom-
ic optimization characteristics [120–125].

Based on these preliminary aspects, this section presents the development of a
mathematical model for a UOP (Universal Oil Products)-type FCCU and the
associated dynamic simulator. Different MPC schemes are investigated and tested
by dynamic simulation, revealing interesting aspects from the perspective of
industrial implementation.1)

3.5.2
Dynamic Model of the UOP FCCU

The FCCU, for which the mathematical model has been developed and the Model
Predictive Control study then performed, is presented in Figure 3.100.

The mathematical model developed for the UOP-type FCCU is based on the
mechanistic Amoco Model IV FCCU [118]. Compared with Amoco Model IV, the
new mathematical model describes a different FCCU type, both from operation
and construction points of view. The main model characteristics are related to the
following aspects:
• different geometric dimensions and relative position define the reactor and

regenerator, compared with the Model IV case;
• the reactor model uses a Weekman kinetic scheme [126] to describe the cracking

process;
• the regenerator of the UOP FCCU operates in partial combustion mode;
• catalyst circulation is described, including spent and catalyst valves on catalyst

circulation lines. These valves are used as main manipulated variables for FCCU
control.
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The FCCU dynamic model has been developed on the basis of reference con-
struction and operation data from an industrial unit. The described model is rather
complex, and has succeeded in capturing the major dynamic behavior of UOP-type
FCCU [127,128]. The model includes the main reactor-regenerator subsystems:
feed and preheat system, reactor, regenerator, air blower, wet gas compressor and
catalyst circulation lines.

The main aspects of the new model are outlined in the following sections.

3.5.2.1 Reactor Model
The development of a new mathematical model for the reactor necessitated a
thorough survey, selection and then synthesis, based on a large variety of models
presented in the literature. The three-lump model has been considered as adequate
for the global description of the phenomena that take place in the reactor. The
reactor is divided into two parts: the riser and the stripper. The riser model is built
on the following assumptions: ideal plug flow and very short transient time (the
residence time in the riser is very short compared to other time constants,
especially with the regenerator time constants [112,118,126,127]). It is modeled
by mass balance, describing the gasoline and coke + gases production based on
Weekman’s triangular kinetic model [126]. The mixed nonlinear differential and
algebraic system of equations also accounts for the amount of coke deposited on
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Figure 3.100 Schematic representation of a UOP-type fluid catalytic
cracking unit (FCCU).



the catalyst and for the cracking temperature dynamics [129]. The reactor is
illustrated in Figure 3.101.

A detailed description of the reactor model is presented in the following sections.

3.5.2.1.1 Mass Balance for the Riser
The mass balance for the feed is described by the equation:

dyf

dza
¼ �K1y2

f ½COR�� tc (3.301)

The mass balance for the gasoline is described by the equation:

dyg

dza
¼ ðÆ2 K1y2

f � K3ygÞ½COR�� tc (3.302)

where:

K1ðŁÞ ¼ kr1e
�Ef

RT0ð1þŁÞ (3.303)

K3ðŁÞ ¼ kr3e
�Eg

RT0ð1þŁÞ; Ł ¼ ðT � T0Þ=T (3.304)

� ¼ ç0eð�Æ tc ½COR�zaÞ (3.305)

ç0 ¼ 1�m �Crgc (3.306)
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The inlet temperature in the riser, T0, is determined by the heat balance equation [114]:

T0 ¼
FrgcCpcTreg þ Ff Cpf T2 � ˜ HevpFf

FrgcCpc þ Ff Cpfv
(3.307)

The term K1 yf
2[COR] represents the kinetics of the feed, and K3 yg[COR] the kinetics

of the gasoline; � is a function of catalyst deactivation due to coke deposition; ç0

the reduction of catalyst activity due to the coke resident on the catalyst after
regeneration; tc residence time in the riser; Æ2 = k1/k2 fraction of feed oil that cracks
to gasoline. This model develops the models presented by Lee and Groves [130],
Shah et al. [131], and Hovd and Skogestad [129]. The amount of coke produced is
described by the following correlation taken from Voorhies and Kurihara [132]:

Ccat ¼ Kc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tc

CN
rgc

e
�Ecf
RTr

s

(3.308)

The fraction of coke on the spent catalyst leaving the riser is:

Csc1 ¼ Crgc þ Ccat (3.309)

The constant values m* and N have been used to perform a good fit of the
mathematical model with operating data from the industrial unit.

3.5.2.1.2 Heat Balance for the Riser

dŁ

dza
¼

˜Hf Ff

T0ðFscCpc þ Ff Cpf þ º Ff CpdÞ
dyf

dza
(3.310)

The amount of gases produced by cracking is described by the equation:

Fwg ¼ ðF3þF4Þ½C1þC2ðTr �Tref Þ� (3.311)

Constants C1 and C2 have been fitted based on data from the industrial unit.
The stripper model is of CSTR type (mass and heat balance), evaluating the

temperature in the stripper and the fraction of coke on spent catalyst.

3.5.2.1.3 Mass and Heat Balance for the Stripper

dTs

dt
¼

Frgc

Wr
Tr � Tsð Þ (3.312)

dCsc

dt
¼ Frgc Crgc þ Ccat

� �
� Fsc � Csc � Csc

dWr

dt

� �
1

Wr
(3.313)

dWr

dt
¼ Frgc �Fsc (3.314)
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3.5.2.1.4 Pressure Balance for Riser Bottom Pressure Determination

Prb ¼ P4þ
æris hris

144
(3.315)

æris ¼
F3þF4þFrgc


ris
(3.316)


ris ¼
F3þF4

æv
þ Frgc

æpart
(3.317)

The amount of catalyst in the riser is determined by the equation

Wris ¼
Frgc Aris hris


ris
(3.318)

3.5.2.1.5 Momentum Balance for Reactor and Main Fractionator Pressure
Determination

dP5

dt
¼ 0:833ðFwg �FV11�FV12þFV13Þ (3.319)

FV12 ¼ k12 V12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P5�Patm
p

(3.320)

A constant pressure drop, ˜Pfrac, between reactor and main fractionator is consid-
ered; according to this, the reactor pressure is computed by the equation:

P4 ¼ P5þ˜ Pfrac (3.321)

3.5.2.2 Regenerator Model
The mathematical model for the regenerator presents a higher complexity due to the
importance of this system in determining the time constant for the entire FCCU.

The regenerator is considered to be divided in two zones: a dense bed zone, and a
zone of entrained catalyst (the disengaging zone) (Fig. 3.102).

The dense bed zone consists of two phases: a bubble phase of gaseous reactants
and products moving up the bed in plug flow, and a perfectly mixed dense phase
containing gases and solid catalyst [128].

Mass transfer occurs between the two phases, but at regenerator temperatures
the reaction rates are controlling, rather than mass transfer between the two
phases. Since the dense phase is considered to be perfectly mixed, the temperature
is assumed uniform in the bed and the gaseous phase in equilibrium with dense
phase. Catalyst is present in the zone above the dense bed due to entrainment. The
amount of catalyst decreases with the regenerator height. In the entrained catalyst
zone the CO combustion is dominant (the amount of catalyst is diminished),
having an important heat contribution. The operating conditions are correspond-
ing to CO partial combustion mode.
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The regenerator model consists of mass and heat balance equations for O2, CO,
CO2 and coke, and also of heat balance equations for the solid and gaseous phases.
These balance equations are correlated with equations describing entrained cata-
lyst (bed characteristics) in the zone above the dense bed, catalyst flow, and
pressure in the regenerator.

3.5.2.3 Model of the Catalyst Circulation Lines
For catalyst flow in the spent and regenerated catalyst circulation lines (pipe
network), there is assumed to be a steady-state behavior. The dynamics of the
lines are considered to be very fast compared to the time constants of other
subsystems of the FCCU.

Spent and regenerated catalyst circulation considers a single-phase flow, based
on force balance [133]. For the regenerated catalyst line the equation is:

144ðP6 � PrbÞ þ zbed � æc þ ðEtap � EoilÞæc � ˜ Psv;rgc�

� ˜ Pelb;rgc �
Frgc Lrgc Frgc

A2
rgc � æc

¼ 0
(3.322)

and for the spent catalyst line the force balance is given by:

144ðP4 � P6Þ þ ðEstr � EliftÞæc þ
Wr

Astr
� ˜ Psv;sc�

� ˜ Pelb;sc �
Fsc Lsc Fsc

A2
sc � æc

¼ 0
(3.323)

The pressure drop on the slide valves is described by the following equation:

˜ Psv ¼
50 Fcat

K � Asv � sv

� �2

� 144
æc

(3.324)
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Figure 3.102 Scheme of the FCCU
regenerator.



The pressure drop on other pipe restrictions are given by equations of the type:

˜ Pelb ¼
1
2

N�æcv
2 (3.325)

Results obtained by dynamic simulation present a good fit with industrial operat-
ing data, with simulated variables being situated in a range corresponding to
industrial unit behavior (Table 3.15). A comparison between industrial operating
data and dynamic simulation results has been carried out for a set of data (one-
month period), and has confirmed the main trends of the dynamic behavior both
on short and long time scales. Obtaining a better fit is still possible by increasing
the complexity of the model, and also often necessary as the properties of the raw
material are subject to change.

Table 3.15 Typical operating conditions and values obtained
with the simulator.

Process variable Unit of
measurement

Minimum
value

Maximum
value

Nominal
value

Value in the
simulator

Air flow rate entering
regenerator

Nm3 h–1 85 000 147 000 98 500 102 514

Air vent flow rate Nm3 h–1 0 5500 2500 2510

Regenerator
temperature

ºC 650 700 682 685.06

Cyclone temperature ºC 677 710 705 708.5

Reactor temperature ºC 490 525 515 516.99

Reactor pressure Bar 1.2 1.9 1.3 1.279

Regenerator pressure Bar 1.2 2.8 1.5 1.495

Coke on spent catalyst Mass
fraction

0.009 0.014 0.012 0.01165

Coke on regenerated
catalyst

Mass
fraction

0.002 0.0045 0.0035 0.00393

CO2 concentration in
flue gas

Volume
fraction

0.08 0.16 0.13 0.141

O2 concentration in
flue gas

Volume
fraction

0.001 0.008 0.0035 0.00288

CO concentration in
flue gas

Volume
fraction

0.03 0.08 0.05 0.042

Catalyst inventory in
the reactor

tons 30 60 50 55.7
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Dynamic simulations reveal the multivariable and nonlinear behavior of the
process presenting strong interactions. An inverse response has been noted,
denoting multiple paths with opposing effect transmission. Single-loop decentral-
ized control must face strong impediments for such challenging interacting
behavior.

The newly developed dynamic simulator offers the possibility of studying differ-
ent operating regimes induced both by design changes and by changing operation
strategies. It also proves to be a valuable tool for investigating the way that different
control strategies may be implemented, and their results predicted. Advanced
control systems, such as model predictive control algorithms, are based on math-
ematical models and rely on the dynamic simulator.

3.5.3
Model Predictive Control Results

3.5.3.1 Control Scheme Selection
Based on literature surveys and an analysis of the current industrial FCCU
operation, a set of process variables has been selected and considered to have
first-role importance in the efficient and safe operation of the unit [128,129,133–
137].

The controlled variables have been selected to provide, through control, a safe and
economic operation [119]. Control of reactor catalyst inventory (reactor level) Wr,
provides stabilization of catalyst circulation. It also sets up a buffer for diminishing
upsets in coke concentration deposited on the catalyst and for temperature change
progressing from the reactor toward the regenerator. The regenerator temperature,
Treg, must be maintained at a certain value in order to allow a stable removal of coke
from the catalyst. Exceeding the high temperature limit produces a permanent
catalyst deactivation; a reduction under a lower limit, leads to coke accumulation on
the regenerated catalyst. The reactor temperature, Tr, must be maintained at a
certain level to provide a desired maximum conversion of the feed oil. The stack gas
oxygen concentration, xO2sg, must be controlled in order to provide a desired coke
combustion, preventing both a thermal increase and an inefficient load of the
combustion air blower. Maintaining the cyclone temperature, Tcyc, under a max-
imum limit, provides safe thermal operation for the regenerator and for the
downstream units (piping and CO boiler).

The manipulated variables have been chosen from the set of independent varia-
bles possible to be changed from a practical point of view. The main manipulated
variables are the spent and regenerated catalyst flow rates that may be changed by
regenerated svrgc and spent svsc slide valve positions. The preheating furnace fuel
flow, F5, is an important manipulated variable with effective action on the thermal
balance of the entire unit. The stack gas flow rate from the regenerator, which is
changed by stack gas valve position V14, and the air vent flow rate, which is changed
by air vent valve position V7, are other two manipulated variables. The wet gas
suction flow rate, which is changed by suction valve position V11, is another
manipulated variable considered in the control schemes.
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The selected disturbances reflect the main upsets that might affect normal
operation of the unit: these include main fractionator pressure upset, feed oil
coking characteristics (coking rate) upset, and ambient temperature upset
[118,133]. The main fractionator pressure disturbance has been included in the
simulation by the term ˜Pfrac, representing the reactor-main fractionator pressure
drop. This disturbance reveals the effect of upsets in main fractionator operation,
acting on reactor-regenerator system. These main fractionator pressure upsets may
appear when: vapor flow is changed as a result of suction flow rate change of wet
gas compressor; internal liquid-vapor traffic of the main fractionator is changed
due to reboiler and condenser load upset; or by pressure changes induced from the
downstream gas recovery unit. An increasing step disturbance has been selected
(having +37% amplitude increase and applied at time t = 500 s). The coking
characteristic of the feed oil, coking rate KC, was included as a disturbance to study
the effect of changes in raw material properties. It was noted that this unmeasured
disturbance has a strong effect on the heat balance of the entire unit. A positive step
change has been selected for this disturbance (having +3.2% amplitude increase
and applied at time t = 500 s). The ambient temperature change is a continuous
disturbance affecting FCCU on a day-time basis. It consists of combustion air flow
rate changes, which introduces low-amplitude upsets into the unit. This disturb-
ance was included as a descending ramp, with negative slope (–16 ºC/8 h), applied
for 1 h between t = 300 s and t = 3900 s.

The MPC of the FCCU was designed in a two-level control structure, acting at the
top level of the hierarchic control system by cascading the low-level regulatory
control loops (usually flow-rate control loops).

A controllability study, based on Relative Gain Array (RGA), has been performed
in order to select both the most efficient manipulated variables for changing the
controlled variables, as well as determining the best MPC control scheme, among a
set of schemes of the same dimensions. The RGA is a measure of interaction
between controlled variables, each of the RGA elements denoting the ratio between
open-loop and closed-loop gain in decentralized control. This controllability in-
dicator, as a first filter for selecting the best control scheme, proved to be useful not
only for decentralized control but also for the multivariable approach [129,138].

Based on this approach, a set of control schemes has been investigated [125,138].
These have different numbers of controlled/manipulated variables: 3 · 3, 4 · 4,
5 · 5, 5 · 6 schemes, and are presented briefly in Table 3.16.
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Table 3.16 Tested control schemes.

Control scheme
(Name/dimension)

Controlled
variables

Manipulated variables MPC tuning parameters
Uwt and Ywt

S1:3 · 3 Wr Treg Tr svrgc svsc F5 Uwt = [120 120 0.8]
Ywt = [0.1 0.2 1]

S2:3 · 3 Wr Treg Tr svrgc svsc V14 Uwt = [120 120 480]
Ywt = [0.1 0.2 1]

S3:3 · 3 Wr Treg Tr svrgc svsc V7 Uwt = [120 120 600]
Ywt = [0.1 0.2 1]

S4:3 · 3 Wr Treg Tr svrgc svsc V7 Uwt = [75 75 300]
Ywt = [0.1 0.2 1]

S5:4 · 4 Wr Treg Tr xO2sg svrgc svsc V14 V7 Uwt = [30 30 120 120]
Ywt = [0.1 0.2 1 0.5]

S6:4 · 4 Wr Treg Tr xO2sg svrgc svsc F5 V7 Uwt = [150 150 1 600]
Ywt = [0.1 0.2 1 0.5]

S7:4 · 4 Wr Treg Tr xO2sg svrg , svsc V11 V7 Uwt = [150 150 300 600]
Ywt = [0.1 0.2 1 0.5]

S8:5 · 5 Wr Treg Tr xO2sg Tcyc svrgc svsc F5 V7 V11 Uwt = [150 150 1 600 300]
Ywt = [0.1 0.2 1 0.5 0.5]

S9:5 · 5 Wr Treg Tr xO2sg Tcyc svrgc svsc F5 V7 V11 Uwt = [30 30 0.2 120 60]
Ywt = [0.1 0.2 1 0.5 0.5]

S10:5 · 5 Wr Treg Tr xO2sg Tcyc svrgc svsc F5 V7 V14 Uwt = [150 150 1 600 600]
Ywt = [0.1 0.2 1 0.5 0.5]

S11:5 · 5 Wr Treg Tr xO2sg Tcyc svrgc svsc V11 V7 V14 Uwt = [150 150 300 600 600]
Ywt = [0.1 0.2 1 0.5 0.5]

S12:5 · 6 Wr Treg Tr xO2sg Tcyc svrgc svsc F5 V7 V11 V14 Uwt = [150 150 1 600 300 600]
Ywt = [0.1 0.2 1 0.5 0.5]

3.5.3.2 Different MPC Control Schemes Results
The set of MPC schemes presented in Table 3.16 has been tested in the presence of
the three typical described disturbances. Different values have been investigated for
the error diagonal weighting matrix Ywt, and also for the manipulated-variable
move diagonal weighting matrix Uwt, from the MPC quadratic optimization ob-
jective [139,140].

Following the results obtained by dynamic simulation, the most favorable MPC
control schemes, from each category, are: S1:3 · 3, S5:4 · 4, and S10:5 · 5. From
this large set of control schemes of MPC dynamic simulations of FCCU, the
representative S5:4 · 4 control scheme results are presented in Figures 3.103
and 3.104 [125,128].
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Figure 3.103 MPC simulation results (solid line) in the presence of
KC disturbance (step increase of coking rate), for S5:4 · 4 control
scheme; disturbed process without control (dashed line). (a) Re-
actor catalyst inventory; (b) Regenerator temperature; (c) Reactor
temperature; (d) Oxygen fraction.



3.5 Model Predictive Control of the Fluid Catalytic Cracking Unit 225

Figure 3.104 MPC simulation results (solid line) in the presence of ˜Pfrac

disturbance (step increase of reactor-main fractionator pressure drop),
for S5:4 · 4 control scheme; disturbed process without control (dashed line).
(a) Reactor catalyst inventory; (b) Regenerator temperature;
(c) Reactor temperature; (d) Oxygen fraction.



As can be noted, the S5:4 · 4 control scheme succeeds in counteracting the
disturbance effects, and presents small overshoot and short settling times. This
control scheme also demonstrates good setpoint following capacity.

The superior behavior of the S5:4 · 4 control scheme, as predicted by the
controllability analysis based on RGA values presented in Table 3.17, was con-
firmed by the dynamic simulation results.

Table 3.17 RGA for S5:4 · 4 control scheme.

svrgc svsc V14 V7

Wr 0.3634 1.3981 – 0.8004 0.0390

Treg 2.0118 – 0.6095 – 0.2298 – 0.1725

Tr 0.3946 0.3969 – 0.9546 1.1631

xO2sg – 1.7698 – 0.1855 2.9848 – 0.0296

Compared to S5:4 · 4, the S6:4 · 4 control scheme has inferior control perform-
ance, showing higher overshoot and longer response time (especially for the case of
KC disturbance). The S7:4 · 4 control scheme presented unsatisfactory control
performance (offset) for all controlled variables in the case of KC disturbance. In
the case of the other investigated disturbances, the control performances of
S6:4 · 4 and S7:4 · 4 control schemes were not essentially affected.

Compared to the S1:3 · 3 control scheme, the S5:4 · 4 scheme causes an unim-
portant increase in overshoot (for the case of KC performance), but a small decrease
in response time was noted. The ability to maintain the stack gas oxygen concen-
tration at a predefined value allows a more efficient FCCU operation due to better
use of air blower capacity and to safer operation by the control of the “afterburning”
phenomenon. Having an additional variable, compared to the 3 � 3 control
schemes, it may be concluded that the S5:4 · 4 scheme is preferable.

Compared to the lower dimension schemes presented before, the 5 � 5 control
schemes are characterized by the existence of a higher overshoot and a longer
response time, possibly coupled with small offset, though the control perform-
ances are not considerably affected.

The S12:5 · 6 MPC scheme did not reveal any improvements compared to the
S10:5 · 5 scheme. The advantage of using a control scheme with a higher number
of manipulated than controlled variables will become operative when constraints
on manipulated variables are imposed. The number of manipulated variable
surplus may serve as a supply for the case of operating conditions when one or
more of the manipulated variables become restricted.
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3.5.3.3 MPC Using a Model Scheduling Approach
The model used to compute manipulated variables is linear, and is obtained by the
linearization of the nonlinear model around the operating point [141,142]. The
results presented in the previous paragraph were obtained using such a unique
model. In order to eliminate errors caused by nonlinearities the authors proposed
and investigated the behavior of a control scheme using scheduled linearization.
The FCCU linearized model is updated periodically at time moment multiples of
3000 s, starting from t = 1500 s. The changing model case has an overall better
control performance, particularly for Wr controlled variable (which is affected by
the lowest value in the error-weighting matrix) (Fig. 3.105).

The scheduled linearization using a higher frequency of model update did not
reveal any significant improvement, for the cases of MPC control in the presence of
the investigated disturbances. This may be determined by keeping the operating
point relatively close to the setpoint values. As disturbance effects are more
important, the updating of the linearized model – at higher and possibly variable
frequency – may become necessary.

3.5.3.4 Constrained MPC
Among the most attractive MPC characteristics is the possibility of considering
constraints in a direct way. This attribute offers, while specifying FCCU operating
and material constraints, the best (in an optimal sense) solution for the control
problem. For the SISO case, the requiring of and conforming to constraints is
frequently not very difficult. However, for the MIMO case, where interactions are
present, the aim of obtaining a desired control performance is usually difficult. On
this basis, it is possible that the interest and success of the predictive control
algorithm model has been gained in a large number of reported industrial appli-
cations [143]. The case of MPC with constraints on manipulated variables has also
been investigated [125,128,144].

In order to test this ability, the following potential FCCU malfunction event was
simulated. One of the slide valves, the spent catalyst slide valve svsc, presents a
malfunction when it is unopenable above the upper limit specified by a svrgcsup

value of 0.4, and unclosable under the lower limit specified by a svrgcinf value of 0.3.
The position of the slide valve during nominal operation was given by svrgc = 0.35.
This accidental situation raises special problems for the operating personnel in an
industrial unit having a traditional (classical) control system. In the case of the
model predictive control system, it is sufficient to specify this constraint and to
keep the feedback control loops closed until the normal operation regime is
restored.

The simulation of MPC behavior for this special operating condition is presented
in Figure 3.106, but only for reactor catalyst inventory Wr, controlled variable; other
variables exhibit similar behavior with the unconstrained case. The coking rate
disturbance KC has been applied, and the MPC with adaptive model has been
simulated. The investigated control scheme is S12:5 · 6. Vector of constraint limits
imposed to the manipulated variables is given by ulim = [0 0.3 0 0 0 0 1 0.4 1.98 0.5
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1 0.8]. The first six values fix the minimum limits, and the last six the maximum
limits allowed for the manipulated variables (in the order they are specified in
Table 3.16).
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Figure 3.105 MPC comparative representation for: MPC adaptive
model case (dashed-dotted), MPC with unique linearized model
case (solid) and case of disturbed process without control (dashed);
S10:5 · 5 control scheme in the presence of KC disturbance.
(a) Reactor catalyst inventory; (b) Regenerator temperature;
(c) Reactor temperature; (d) Cyclone temperature; (e) Oxygen fraction.



As may be observed in Figure 3.106, the MPC control performance is not
substantially affected by the occurring constraint. Two of the manipulated variables
(svsc and V7) reached the lower limit values. These limitations do not seem to have
any negative impact on the controlled variables, due to the fact that the optimal
strategy succeeds in changing the other manipulated variables such that it provides
good control performance.

The possibility might also be observed of involving a greater number of manip-
ulated variables than controlled variables, and the potential use of this “excess” of
command for cases when constraints on manipulated variables are present.

Based on the results of the present study, it may be considered that this method
of MPC application both reveals and sustains the incentives of the MPC algorithm
from the perspective of its industrial implementation.

3.5.4
Conclusions

In this section, a new model and dynamic simulator for the FCCU aggregate
systems: reactor, regenerator, catalyst circulation lines, preheating system, air
blower and wet gas compressor, has been presented. The nonlinear, dynamic
and multivariable model has been fitted and subsequently verified with a set of
representative operating data originating from an industrial FCCU, showing its
complex behavior in response to typical disturbances. It was observed that the
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Figure 3.106 Controlled variable Wr for constrained MPC
(svscinf = 0.3, svscsup = 0.4), scheme S12:5 · 6 in the presence of
KC disturbance; unconstrained MPC (solid line), constrained
MPC (dashed-dotted line), disturbed process without control
(dashed line).



disturbance most difficult to reject proved to be the coking rate factor, KC, although
the disturbance considered with the greatest amplitude change was the reactor-
main fractionator pressure drop, ˜Pfrac.

Investigations have been performed by simulation to reveal incentives and
limitations for implementing MPC. The most favorable MPC control schemes,
for each investigated category, were: S1:3 · 3, S5:4 · 4, and S10:5 · 5. The latter
was the most profitable, due to the large number of controlled variables. It was of
interest to note that the S12:5 · 6 control scheme (which contained an extra-
manipulated variable), in its unconstrained form, does not bring additional quality
to MPC. However, when constraints on manipulated variables were present, this
approach provided real improvements due to a “surplus” of command that was able
to compensate for those manipulated variables limited by constraints. Compared
with the traditional decentralized PID control, MPC presents a better control
performance based on its multivariable feature, inherent prediction ability, and a
capacity to directly handle constraints using even larger numbers of manipulated
than controlled variables. A nonlinear MPC method has been proposed and
investigated to account for process nonlinearity based on periodic updating of
the linearized model used to control action computation. This nonlinear MPC
implementation may lead to potential improvements by the use of the dynamic
sensitivity analysis in order to obtain adequate MPC tuning.

In practice, MPC implementation is intended to be carried out in a two-layer
structure, namely the layer of decentralized PID loops stabilizing the main process
variables, and the MPC layer adjusting the setpoints of the underlying regulatory
loops.

The benefits of better control performance in FCCU operation consist generally
of maintaining the controlled variables very close to the constrained limits, where
the optimum operating conditions usually lie.

3.5.5
Nomenclature

Argc cross-sectional area of regenerated catalyst pipe (ft2)
Aris cross-sectional area of reactor riser (ft2)
Asc cross-sectional area of spent catalyst pipe (ft2)
Astr cross-sectional area of reactor stripper (ft2)
Asv cross-sectional area of regenerated/spent catalyst slide valve at completely

open position (in2)
[COR] catalyst/oil ratio
Ccat mass fraction of coke produces in the riser
Cpc heat capacity of catalyst (Btu lb–1 �F; J kg–1 ºK)
Cpd heat capacity of steam (Btu lb–1 �F; J kg–1 ºK)
Cpf heat capacity of the feed (Btu lb–1 �F; J kg–1 ºK)
Cpfv heat capacity of feed vapor (Btu lb–1 �F; J kg–1 ºK)
Crgc (crgc) coke fraction on regenerated catalyst (lb coke lb catalyst–1; kg coke kg

catalyst–1)
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Csc (csc) coke fraction on spent catalyst in the stripper (lb coke lb catalyst–1; kg
coke kg catalyst–1)

Csc1 coke fraction on spent catalyst at riser outlet (lb coke lb catalyst–1; kg
coke kg catalyst–1)

C1 wet gas production constant (mol lb–1 feed; mol kg–1 feed)
C2 wet gas production constant (mol lb–1 feed �F; mol kg–1 feed ºK)
Ecf activation energy for coke formation (Btu mol–1; KJ mol–1)
Ef activation energy for cracking the feed (Btu mol–1; KJ mol–1)
Eg activation energy for cracking gasoline (Btu mol–1; KJ mol–1)
Elift elevation of the pipe for spent catalyst, inlet in the regenerator (ft; m)
Eoil elevation of feed inlet in the riser (ft; m)
Estr elevation of the pipe for spent catalyst outlet from the reactor (ft; m)
Etap elevation of the pipe for regenerated catalyst, outlet from the regenerator

(ft; m)
Fcat flow rate of spent or regenerated catalyst (t min–1)
Ff total feed flow rate (lb s–1; kg s–1)
Frgc (frgc) regenerated catalyst flow rate (lb s–1; kg s–1)
Fsc (fsc) spent catalyst flow rate (lb s–1; kg s–1)
FV11 flow through wet gas compressor suction valve V11 (mol s–1; molg s–1)
FV12 flow through valve V12 (mol s–1; molg s–1)
FV13 flow through valve V13 (mol s–1; molg s–1)
Fwg wet gas production in the reactor (mol s–1; molg s–1)
Ft air flow rate into regenerator (Nm3 h–1)
F3 fresh feed flowrate (lb s–1; kg s–1)
F4 slurry recycle flowrate (lb s–1; kg s–1)
hris height of the riser (ft; m)
K flow coefficient for the slide valve (0.7)
Kc reaction rate constant for coke production (s–1)
kr1 reaction rate constant for the total rate of cracking of the feed oil (s–1)
kr3 reaction rate constant for the rate of cracking gasoline to light gases and

coke (s–1)
k12 wet gas V12 valve flow rating (mol s–1 psia1/2; kg s–1 (N m–2)1/2)
Lrgc length of regenerated catalyst pipe (ft; m)
Lsc length of spent catalyst pipe (ft; m)
m manipulated variable (input) horizon
m* factor for the dependence of the initial catalyst activity on Crgc

n model horizon
N exponent for the dependence of Ccat on Crgc

N* integer value representing a constant for pressure drop on catalyst pipes
p prediction horizon
Patm atmospheric pressure (psia; N m–2)
Prb pressure at the bottom of the riser (psia; N m–2)
P4 reactor pressure (psia; N m–2)
P5 main fractionator pressure (psia; N m–2)
P6 regenerator pressure (psia; N m–2)
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R universal gas constant (ft3 psia lb–1 mol �R; J mol–1 ºK)
sv spent/regenerated catalyst slide valve position (0–1)
svsc spent catalyst slide valve position (0–1)
svscinf spent catalyst slide valve lower limit constraint (0.3)
svscsup spent catalyst slide valve higher limit constraint (0.4)
svrgc regenerated catalyst slide valve position (0–1)
t time (s)
tc catalyst residence time in the riser (s)
T sampling time (s)
Tcyc regenerator stack gas temperature at cyclone ( �F; ºK)
Tr temperature of reactor riser outlet ( �F; ºK)
Tref base temperature for energy balance ( �F; ºK)
Treg temperature of regenerator bed ( �F; ºK)
Ts temperature of stripper outlet ( �F; ºK)
T0 temperature of the feed entering the riser after mixing with the catalyst

( �F; ºK)
T2 furnace outlet temperature of the feed ( �F; ºK)
ulim vector of constraints imposed to the manipulated variables ([0 0.3 0 0 0 0 1

0.4 1.98 0.5 1 0.8])
uwt (ˆu)diagonal weighting matrix for the manipulated variable move, in the

optimization index
v catalyst velocity in spent/regenerated pipe (ft s–1; m s–1)
vris volumetric flowrate in the riser (ft3 s–1; m3 s–1)
V14 position of the stack gas valve (0–1)
V7 position of the air vent valve (0–1)
V11 position of the wet gas compressor suction valve (0–1)
V12 position of the flare valve (0–1)
Wr inventory of catalyst in the reactor (stripper) (lb; kg)
Wris inventory of catalyst in the riser (lb; kg)
xO2,sg molar ratio of O2 to air in stack gas (mol O2/mol air)
xCO,sg molar ratio of CO to air in stack gas (mol CO/mol air)
xCO2,sg molar ratio of CO2 to air in stack gas (mol CO2/mol air)
yf mass fraction of feed oil
yg mass fraction of gasoline
ywt (ˆy) diagonal weighting matrix for the error, in the optimization index
za dimensionless distance along riser
zbed dense bed height (ft; m)

Greek Symbols
Æ catalyst deactivation constant (s–1)
˜Hevp heat of vaporizing the feed oil (Btu lb–1; KJ kg–1)
˜Hf heat of cracking (Btu lb–1; KJ kg–1)
˜Pelb,sc pressure drop on different elements of spent catalyst pipe (psia; N m–2)
˜Pelb,rg pressure drop on different elements of regenerated catalyst pipe (psia; N m–2)
˜Pfrac pressure drop across reactor main fractionator (psi; N m–2)
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˜Psv pressure drop on regenerated/spent catalyst slide valve (psi)
˜Psv, sc pressure drop on spent catalyst slide valve (psia; N m–2)
˜Psv, rgc pressure drop on regenerated catalyst slide valve (psia; N m–2)
ç0 initial catalyst activity at riser inlet
º ratio of mass flow rate of dispersion steam to mass flow rate of feed oil
æc density of catalyst in the dense phase (lb ft–3; kg m–3)
æpart settled density of catalyst (lb ft–3; kg m–3)
æris average density of material in the riser (lb ft–3; kg m–3)
æv vapor density at riser conditions (lb ft–3; kg m–3)
Ł dimensionless temperature in the riser

3.6
Model Predictive Control of the Drying Process of Electric Insulators

3.6.1
Introduction

The production of high-voltage electric insulators incorporates a two-stage batch-
drying process. During the first step, the moisture content of the drying product is
reduced from 18–20% to 0.4% in special gas-heated chambers. The second step is
carried out in high-temperature ovens, in order to achieve a lower moisture content.

The formed clay insulators are placed on a special support and transport frames,
and then introduced into the drying chamber. An electric motor-driven multiple
fan provides the air flow through the chamber. The air inlet flow rate can be
controlled by means of a butterfly valve. Gas and air flow rates are controlled
according to a special program, over a period of about 100 h, in order to obtain the
desired moisture content and to avoid the risk of unsafe stress in the drying
products [145,146]. First, an analytical dynamic model of the process is derived
for model predictive control (MPC) purposes, and second, a neural networks model
is trained for the same purpose [147–149].2)3)

3.6.2
Model Description

Mass and energy balance equations are used to describe the dynamic behavior of
the system [150,151]. The main studied outputs of the model are: moisture content
of the drying product X, outlet air temperature T0 , and air humidity x0 ; the input
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variables studied are: natural gas flow rate VF

	
and mass flow rate of fresh air mai

	
.

The chamber is divided into three sections, as shown in Figure 3.107. Section 1
represents the air volume within the drying chamber, and section 2 the direct
surroundings of the drying product. Section 3 represents the drying product itself.

The mass balance of steam within section 1 and section 2 is described by the
equations:

_mai � xf þ _ma � x � _ma þ _maið Þ � xo ¼ Va Ch � æa �
dx0

dt
(3.326)

_ma � xo � xð Þ �mS �
dX
dt
¼ d

dt
Va 2 � æa � xð Þ (3.327)

The last term of the equation can be neglected, which results in the differential
equation:

dX
dt
¼ xo � xð Þ � _ma

mS
(3.328)

By differentiating Eq. (3.328) and assuming that d2X/dt2 » 0, Eq. (3.326) becomes:

dx
dt
¼ 1

Va Ch � æa
� _mai � xf þ _ma � x � _ma þ _maið Þ � xo

� �
(3.329)

In Section 3, the behavior of the drying good is described with a normalized
diagram by [152,153]:

dX

dt
¼ � _mst

mS
� AS (3.330)
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Figure 3.107 Schematic diagram of the drying chamber.



The drying velocity for experimentally determined diagrams characterizes the
three periods of the drying process for hygroscopic material, and is normalized
according to the following equations [153]:

_
 �ð Þ ¼ _mst

_mstI
� ¼ X � Xequ

Xc � Xequ
(3.331)

It is assumed that Xc is constant, and does not depend on the drying conditions,
and that Xequ depends only on relative humidity of the air, and not on other
factors. It is also assumed that all diagrams of the drying velocity, for different
drying conditions, are geometrically similar. The equilibrium humidity Xequ in
dependence of the relative air humidity ’, for clay, was considered by a correla-
tion equation. The saturation humidity of the air, xsat, is dependent on the
temperature To. For low partial pressures of steam, _mstI was considered according
to equation:

_mstI ¼ k � xsat � xð Þ (3.332)

with the mass transfer coefficient k determined by experimental data.
Two energy balance equations, for the chamber and for the burner section, are

used to describe the outlet temperature change:

_mai � cpa � Ti � Toð Þ þ xf � hv þ cpst � Ti

� �
� xo � hv þ cpst � To

� �� �
þ

þms �
dX
dt
� hv þ cpst � To

� �
� CAAChðTo � TeÞ ¼

¼ Va Ch � æa � cpa þ xo � cpst

� �
� dTo

dt
þ cpst �

dxo

dt
� To

� �
(3.333)

_mai � cpa � Te þ xe � hV þ cpst � Te

� �� �
þ

þ cpF � Te þHF

� �
� MF � pF

R � Te þ 273ð Þ �
_VF ¼

¼ _mai � cpa � Ti þ xf � hV þ cpst � Ti

� �� �
(3.334)

A dynamic sensitivity analysis was carried out on this model, indicating the most
important parameters and manipulated variables [154]. According to this analysis,
these are: mass transfer coefficient k; heat transfer coefficient of chamber walls CA;
heating power of natural gas HF; mass of the drying product mS (clay without
humidity); environment temperature of the inlet air Te; environment humidity of
the inlet air xe; volume of the drying chamber VCh; surface of the drying chamber
ACh; surface of the drying product AS; critical humidity of clay XC; and the specific
heat of natural gas cpF [155]. The scaled dynamic sensitivity analysis of the output
variables with respect to the studied inputs indicated that the natural gas flow rate
was the most important manipulated variable (about 10-fold more so than the mass
flow rate of fresh air) [154]. The control system was designed accordingly.
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3.6.3
Model Predictive Control Results

The first MPC approach obeys the current control practice – that is, driving the
moisture content from the product by controlling the air temperature inside the
chamber. Usually, the desired decreasing profile of the drying product moisture
content is obtained by imposing an increasing ramp-constant profile on the air
temperature [145,153]. A comparison was made between traditional PID control
and MPC control of the air temperature. Both MPC [147,156] and PID (with anti-
windup) control algorithms were implemented in a MISO structure with two
manipulated variables: gas flow rate, and air flow rate. For PID, an air:natural
gas ratio flow rate control was used. First, the setpoint following capacity was tested
in the absence of any disturbances, after which performance testing was carried out
for three significant disturbances that typically occur in industrial practice: a 10 ºC
drop in inlet air temperature Te (from 16 ºC to 6 ºC); a 10% drop in the heating
power capacity of natural gas, HF; and a 20 % rise in inlet air moisture content, xe.
All three disturbances were introduced as steps at time t = 110 000 s. The simu-
lation results (for the case of the heating power disturbance) are presented in
Figure 3.108; this shows the response of the controlled variable over the entire time
interval, and a detailed representation of the period when the disturbance acts and
is eliminated.

The results revealed a very good behavior, particularly for MPC control. Although
both methods exhibited good control ability, the setpoint tracking performance
showed a zero-offset behavior for the MPC, whereas PID control proved to be less
accurate (mainly for the ramp sections of the setpoint function). The control in the
presence of the disturbance emphasizes the superior characteristics of the MPC,
with shorter response time and less overshoot compared to the PID control.
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Figure 3.108 PID (····) and MPC (—) control of the outlet air
temperature, for a given setpoint



Taking into account that the target variable – the moisture content of the product
– is not measured directly, an inferential state observer is proposed for its estima-
tion. The data provided in this way are used for direct MPC of the moisture content
of the drying product (Fig. 3.109).

The selection of a setpoint for moisture content is based on practical and
theoretical considerations related to the evolution of product drying rate. The
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Figure 3.109 Structure of the control system for direct moisture content control.

Figure 3.110 MPC of the inferred moisture content of the drying
product (—), for a given setpoint (– –) when the heating power
disturbance of the fuel, HF, occurs.



conditions stated by the above-mentioned considerations are best fulfilled by a
decreasing, seven-segment ramp function, which is actually used as setpoint.
Simulations were conducted using this control structure, and the results (distur-
bances applied at t = 20 000 s) are presented in Figures 3.110 and 3.111.

Again, the setpoint tracking performance was very good. Moreover, the offsets
introduced by the disturbances were rapidly eliminated by MPC, and with accept-
able deviations from the desired trajectory. The MPC controller was tuned accord-
ing to the dynamic sensitivity analysis, and based on the maximum allowed
variation of both the controlled and manipulated variables.

The applied model predictive algorithm had some special features that made it
more effective:
• it had an excess number of manipulated variables over controlled variables;
• in order to achieve the desired control performance, a constrained form of the

MPC algorithm was used; and
• the linear model used by the MPC controller is periodically updated to account

for the nonlinear behavior of the process [157,158].

3.6.4
Neural Networks-Based MPC

3.6.4.1 Neural Networks Design and Training
Building the artificial neural networks (ANN) model has been the first step in
performing the ANN-based Nonlinear MPC (NMPC). The ANN model of the dryer
has been developed to serve two goals:
• To provide information on the time evolution of target variables; this is inher-

ently needed for prediction in the NMPC algorithm.
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Figure 3.111 MPC of the inferred moisture content of the drying
product (—), for a given setpoint (– –) when the inlet air
temperature disturbance, Te, occurs.



• To infer the moisture content of the drying product, based on available measured
variables; this model is used later for the ANN observer-based NMPC.

The ANN-developed model has complementary properties of requiring reduced
computation effort, and supplying the algorithm with speed necessary for real-time
implementation [149,159].

The structure of the ANN consists of two layers of neurons having as ANN-
inputs the natural gas flow rate, the moisture content of the drying product, the
outlet air temperature, and the chamber air humidity (each considered with
values at the current sampling time, t). The last three variables are the state
variables of the process. The ANN-outputs are the same three state variables, but
considered at the next sampling time t+˜t. The trained ANN is designed to
predict the behavior of the state variables one step into the future. Applied
repeatedly, the dynamic ANN predicts the time evolution of the state variables
over a desired time horizon.

Since the drying of electric insulators is performed in batch-wise manner, the
process demonstrates in particular a lack of steady states. Hence, according to this
behavior, the training procedure of the ANN has been achieved on the basis of a
specially prepared set of training data that were chosen in accordance with
industrial control practice. The ANN architecture employed was multilayer feed-
forward in nature, with the backpropagation training algorithm used to compute
the network biases and weights. Two layers of neurons were considered; these had
the tan-sigmoid transfer function for the hidden layer, and the purelin transfer
function for the output layer. The quasi-Newton Levenberg–Marquardt algorithm
was used to train the ANN, and an early stopping method was applied to prevent
ANN overfitting and to improve generalization [160].

A good training performance was achieved, as indicated by the correlation
coefficients between the training data set (targets) and the ANN simulation data
set (ANN response) being close to 1.

After testing, the trained ANN was used to simulate the drying process, having
imposed different drying programs compared to those used for training. The
favorable fit was also preserved for testing subsets of data showing a good general-
ization property of the ANN. The prediction capability of the ANN was subse-
quently exploited for observer-based nonlinear model-based predictive control.

3.6.4.2 ANN-Based MPC Results
The NMPC structure obeys current control practice – that is, driving the moisture
from the product by controlling the air temperature inside the chamber. Usually,
the desired decreasing profile of moisture content is achieved by imposing an
increasing ramp-constant profile on the air temperature. The ANN-based Non-
linear Model Predictive Controller uses the previously trained ANN to perform its
prediction tasks. Step response models, simulated by the ANN, were used in either
a single-model approach or a multiple-models approach. The latter uses updated
models for each of the ramp-constant segments of the drying program.
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First, the setpoint following capacity was tested in the absence of any disturban-
ces. The results of a simulation for drying chamber air temperature control are
presented in Figure 3.112.

The results revealed a very good behavior, particularly for the NMPC case using
multiple models. The control performance showed a reduced overshoot and short
settling time, compared to that achieved with the simple PID control structure [148].

Subsequently, control performance testing was repeated in the presence of the
three significant disturbances that typically occur in industrial practice: a 10 ºC
drop in inlet air temperature, Te (from 16 ºC to 6 ºC); 10 % drop in the heating
power capacity of natural gas, HF; and a 20 % rise in inlet air moisture content, xe.

All three disturbances were introduced as steps at time t = 120 000 s. The results
of the ANN-based NMPC control, for the second (and most important) disturbance,
are shown in Figure 3.113.

The disturbance rejection aptitude of the ANN-based NMPC presents favorable
control performance results in terms of the setting time, overshoot and to the zero
offset, for all tested disturbances.

Taking into account that the target variable – the moisture content of the product
– is not available for direct measurement, a ANN-based state observer is proposed
for its estimation. The data provided by the ANN state observer is used for feedback
nonlinear model predictive control of the product moisture content.

The time-dependent setpoint selection for the moisture content is based on
practical and theoretical considerations related to the time evolution of the product
drying rate. The conditions stated by the above-mentioned considerations are best
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Figure 3.112 Setpoint (dotted line) following ability of the NN
based MPC for single (solid line) and multiple (dashed line)
model approach.



fulfilled by a seven-segment ramp function, which is actually used as setpoint.
Simulations were conducted using this control structure, and the results for two
10 % heating power disturbances, applied at both t = 3000 s and t = 1 250 000 s, are
presented in Figure 3.114.

The simulation results for this control structure show both good setpoint
following and disturbance rejection capability. Although a slight decrease in
control performance quality was noted, this change represented a reduced influ-
ence on overshoot, response time, and offset. The ability to directly control the
product moisture content may be highly beneficial.

The applied model predictive algorithm has certain special features that render it
more effective: it operates with constraints on manipulated variables and controlled
variables; in order to obtain the feasible control performance, a nonlinear form of
the MPC algorithm was used; and the NMPC controller was tuned with dynamic
sensitivity analysis and is based on the maximum allowed variation of both the
controlled and manipulated variables.

3.6.5
Conclusions

First, the proposed MPC for batch-drying electric insulators proved to be a good
strategy for controlling the drying process. Its high performance was due to the
direct control of product moisture content based on a first principle state observer,
to updating of the model of the process on which MPC relies, and to the optimal
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Figure 3.113 Disturbance rejection ability of the NN-based MPC
for the heating power capacity HF drop, single (solid line) and
multiple (dashed line) model approach.



manipulation of both the inlet air and gas flow rates. Results obtained simulating
MPC control revealed very good setpoint tracking performance as well as effective
disturbance rejection.

Second, the proposed ANN-based observer of product moisture content, coupled
with the ANN-based model used for NMPC, proved to be a better strategy for
controlling the drying of electric insulators. The results obtained when simulating
ANN-based NMPC again revealed good setpoint tracking performance, and effec-
tive disturbance rejection. This high performance was due to the direct control of
product moisture content relying on the ANN-based state observer, to the calcu-
lation speed provided by the ANN-based model used in the NMPC algorithm, and
to the optimal manipulation of both the inlet air and gas flow rates. The ANN-based
model offers the incentives of capturing the intrinsic behavior of the drying process
which otherwise was difficult to describe using first principle models.

The use of this method should be conducted with care with regard to the quality of
the training set data. An increased confidence in these data may be obtained by
expunging the outliers, filtering the data presenting errors (during the ANN simu-
lation steps), and repeating the ANN training procedure, both preceded by careful
analysis of the feasibility of the training data. In the industrial plant, this approach may
lead to increased energy efficiency, higher productivity, and better product quality.
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Figure 3.114 Setpoint (dashed line) following and disturbance
rejection ability for direct moisture content control using
NN-based state observer and NN NMPC (solid line).



3.6.6
Nomenclature

A area of the surface (m2)
CA heat transfer coefficient of chamber walls (W (m2 ºC)–1)
cp specific heat (J (g oC)–1)
hV heat of vaporization (latent heat) (J g–1)
H enthalpy flux (W)
k mass transfer coefficient (kg (s m2)–1)
m mass (as far as masses of air are concerned, mass of dry air) (kg)
_m mass flux (kg s–1)
_mst drying rate (kg (s m2)–1)

p pressure (bar)
R gas constant (J mol–1 K)
T temperature (oC)
V volume (m3)
X humidity of drying good – mass of water per mass of dry substance

(kg kg–1)
x humidity of air – mass of water per mass of dry air (kg kg–1)
� normalized humidity of drying product ( )
’ relative humidity of the air ’ ¼ x=xsat (%)
æ density (kg m–3)
_
 normalized drying rate _
 ¼ _mst= _mstI ( )

Indices
a air
c critical
Ch chamber
e environment
equ equilibrium
I in
f fresh
F fuel
o out
S sample
I, II, III number of drying period
sat saturation
st steam
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3.7
The MPC of Brine Electrolysis Processes

3.7.1

The Importance of Chlorine and Caustic Soda

Chlorine is essential to the world’s chemical industry, with more then 50 % of all
chemical processing depending on this element. Chlorine was discovered in 1774
by the Swedish chemist Carl Wilhelm Scheele. During the past century, industrial
users have identified vast numbers of ways to take advantage of chlorine’s useful
properties in processes and products. Chlorine is a key building block of modern
chemistry by being used in three principal ways: (i) directly (e.g., to disinfect water);
(ii) as a raw material for chlorine-containing products (e.g., plastics, pharmaceut-
icals, pesticides); and (iii) as an intermediate to manufacture nonchlorinated
products [161].

Chlorine is produced by passing an electric current through a brine solution
(common salt dissolved in water). Essential co-products are caustic soda (sodium
hydroxide) and hydrogen.

Caustic soda (sodium hydroxide) is an alkali, and is widely used in many
industries, including gold mining, food processing, textile production, soap and
other cleaning agent production, water treatment, and effluent control [162].

The annual worldwide production of caustic soda is about 45 million tons. It is
used to produce a broad range of inorganic chemicals, and also for general
manufacturing, mineral processing, and water treatment [163].

3.7.2
Industrially Applied Methods for Brine Electrolysis

Chlorine has been manufactured industrially for many years. During this time, the
industry’s firm commitment to the best safety, health and environmental practices
has ensured continuous improvement. There are three main processes for the
industrial manufacture of chlorine [162–164]:
• mercury cell process;
• diaphragm cell process; and
• ion-exchange membrane (IEM) cell process.

The main advantages and disadvantages of the industrially applied methods for
brine electrolysis are presented in Table 3.18.
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Table 3.18 Advantages and disadvantages of the three
chlor-alkali processes.

Process Advantages Disadvantages

Mercury
process

• Simple brine purification;
• high-purity chlorine and hydrogen;
• 50 wt % caustic direct from the cell.

• Use of toxic mercury;
• expensive cell operation;
• large floor space;
• costly environmental protection.

Diaphragm
process

• Use of well brine;
• low electrical energy consumption.

• Use of asbestos;
• high steam consumption for

caustic concentration in expensive
multistage evaporators;

• low-purity caustic;
• low chlorine quality.

Membrane
process

• Low energy consumption;
• high-purity caustic;
• insensitivity to cell load variation

and shutdowns;
• inexpensive cell operation.

• High-purity brine;
• high cost of membrane.

According to the data presented in Table 3.18, it can be concluded that the most
advantageous methods of industrial chlorine production are the mercury process
and the IEM process. Because these two processes are widely used, we present in
the following sections some aspects involved in the MPC of these procedures. In
particular, the development of mathematical models for the processes is presented.

3.7.3
Mathematical Model of the Mercury Cell

Mathematical modeling of electrochemical reactors is difficult due to:
• the complexity of phenomena;
• the diversity of reactor types;
• the reduced possibility of following the process in a run; and
• the absence in the literature of data related to the process.

Taking into account these aspects, few references were identified in the literature
relating to brine electrolysis modeling [165–168]. The study of the dynamic behav-
ior of mercury cell is important for a better understanding of the process, as well for
the development of an efficient control method. For this purpose, a dynamic model
of a De Nora cell from Oltchim Ramnicu-Valcea has been developed [169].

A schematic view of a mercury cell is provided in Figure 3.115.

3.7 The MPC of Brine Electrolysis Processes 245



The main equipment of the mercury cell process is the mercury cell itself. This is
rectangular in shape, with a width of 1.5–2 m and a length of 15–20 m. The bottom
of the cell has a slight slope of 1–3 degrees to the end of the cell in order to allow a
smooth flow of mercury on the cell bottom. The anode rods are made from
titanium activated with ruthenium oxide (RuO2) and titanium dioxide (TiO2). In
each cell there are 22 anode lines, each line with three grates of anode rods. The
anode lines are grouped into four anode frames that lie parallel to the cell bottom
and can be moved up and down by the control system. The depleted brine is
recirculated after a resaturation phase.

Chlorine is collected at the top of the mercury cell, while the formed Na(Hg)x

amalgam is guided to the decomposer, where it is washed with warm water in the
presence of graphite. Subsequently, sodium hydroxide solution of high purity and
hydrogen are obtained due to decomposition of the amalgam. The mercury
collected at the bottom of the decomposer is then pumped back to the electro-
chemical cell and the process is restarted.

The electrochemical process is conducted at high current densities (>10 KA m–2)
in order to achieve a high current efficiency for the process.

The main reactions in the mercury cell are as follows [164,166,169]:
• At the anode:

– Main reaction:
2NaCl fi 2Na+ +Cl2(g) + 2e—

– Secondary reactions (with impurities from brine):
4NaOH + 3Cl2 fi 3NaCl + NaClO3 + 2HCl + H2O
Na2CO3 + 2Cl2 +H2O fi 2HOCl + 2NaCl + CO2(g)

NaHCO3 + Cl2 fi HOCl + NaCl + CO2(g)

Na2SO3 +Cl2 +H2O fi Na2SO4 + 2HCl
– O2 discharge:

4OH— fi O2(g) + 2H2O + 4e—

• At the cathode:
– Main reaction:

2Na+ + 2e— fi 2Na
2Na + 2xHg fi 2Na(Hg)x
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Figure 3.115 Schematic diagram of the mercury cell.



3.7.3.1 Model Structure
Taking into account the actual structure of the De Nora mercury cell, the model
structure is provided by a series of continuously stirred tank reactors (CSTRs) (Fig.
3.116) [166,169]. Each pair of CSTRs corresponds to an anodic line, representing
the discrete unit of the model.

3.7.3.2 The Main Equations of the Mathematical Model
For each anodic line, the mathematical model includes equations for the conser-
vation of mass, energy and impulse, as well as the equation of voltage balance
which is specific to the electrochemical processes.

The mass balance equations for the anodic line j are [166,169]:
• Global mass balance:

Fj�1æj�1 � Fjæj � Fgaz;jægas;j �NNa;jMNa ¼

¼ d
dt

dz l hc;j � ham;j

� �
æj


 � (3.335)

• For Cl–:

Fj�1 cNaCl;j�1 þ cHCl;j�1
� �

� Fj cNaCl;j þ cHCl;j

� �
� 2NCl2;j ¼

¼ d
dt

cNaCl;jdz l hc;j � ham;j

� �� � (3.336)

• For H+:

Fj�1cHCl;j�1 � FjcHCl;j þNHCl;j ¼
d
dt

cHCl;jdz l hc;j � ham;j

� �� �
(3.337)
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Figure 3.116 Internal structure of the mathematical model for
the mercury cell.



• For amalgam:

Fam;j�1æam;j�1 � Fam;jæam;j þNNa;jMNa ¼
d
dt

dz l ham;jæam;j


 �
(3.338)

• For Na+ in amalgam:

Fam;j�1cNa;j � Fam;jcam;j þNNa ¼
d
dt

dz l hamcam;j

� �
(3.339)

The energy balance equations for the volume j are [166,169]:
• For the brine:

Fj�1cp;j�1æj�1Tj�1 � Fjcp;jæjTj þ IjEb;jk� ˜Ha;j NCl2 þNO2ð Þ�
�2KT ;l hc � ham;j

� �
dz Tj � Text

� �
� KT ;aml dz cHg Tj � Tam;j

� �
�

�QvapæH2OrH2O �
XCl2 ;H2H2O

i

niMicp;i ¼
d
dt

Tjl dz æjcp;j hc � hamð Þ

 � (3.340)

• For amalgam:

Fam;j�1cp;am;j�1æam;j�1Tam;j�1 � Fam;jcp;am;jæam;jTam;j þ IjEB;j 1� kð Þþ
þ˜Hc;jNNa;j þ KT ;aml dz cHg Tj � Tam;j

� �
�

�KT ;f 2ham;l þ l
� �

dz Tam;j � Text

� �
¼ d

dt
Tam;jl dz ham;jcp;am;j

� �
(3.341)

These equations are completed with the voltage balance equation [170]:

EB ¼ E þ �a � �c þ ˜�	 þ ˜�c (3.342)

where:

E ¼ �a � �c

The model includes equations for bubble development [171] and amalgam flow, as
well as for the physical properties of the fluids (gas, liquid: brine and amalgam)
presented in Table 3.19.

Within this structure, the mathematical model of De Nora cell includes 154
differential equations and more than 440 nonlinear algebraic equations.

The model was tested based on data provided from more than 100 experiments,
obtained in the mercury cell plants from Oltchim R�mnicu-V�lcea and Chimcom-
plex Borzeşti (both in Romania).
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Table 3.19 Equations of the mathematical model for the
mercury cell.

Description Equation Reference(s)

• Standard anodic potential for
the main anodic reaction

�0
Cl�=Cl2

¼ 1:47252þ 4:82271 � 10�4T � 2:90055 � 10�6T2 172

• Reversible anodic potential
�a ¼ �Cl�=Cl2 ¼ �0

Cl�=Cl2
þ RT

2F
ln pCl2 �

RT

F
ln aCl�

172

• Activity of Cl– aCl� ¼ cCl� 0:777þ 0:081 cCl� � 4ð Þ � 0:0014 T � 353ð Þð Þ 164

• Standard cathodic potential
for the main cathodic reaction

�0
Naþ=NaHg ¼ �1:71122� 5:57768 � 10�4T � 8:7953 � 10�7T2 164

• Reversible cathodic potential
�c ¼ �Naþ=NaHg ¼ �0

Naþ=NaHg þ
RT
F

ln aNaþ �
RT
F

ln aNaHg
164

• Anodic overpotential �Æ ¼ a þ b � log j where: a ¼ 1:3322 � 10�5T and

b ¼ 1:3212 � 10�4T

173,174

• Cathodic overpotential �c ¼ 0:25 � �a 164

• Voltage drop on the electrolyte ˜�	 ¼ I � Rel 175

• Electrical resistance of the
electrolyte

Rel ¼
A
d

ºHCl þ º
0

NaCl


 � 176

• Conductance of the brine
with bubbles

º
0

NaCl¼ºNaCl 1� fgas

� �3=2
177

• Voltage drop on contacts and
conductors

˜�c ¼ kc 0:033þ 1:1666 � 10�2i
� �

174

• Amalgam layer thickness
ham ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 Gam �am

l g æ2
am Æ

3

s
178

• Corrections for amalgam
thickness (based on experi-
mental data)

hm
am ¼ ham c1 þ c2 ec3cNa;j þ c4e�jc5 � 1

� �� �
166

• Electrode gap d ¼ dc � hm
am

• Gas fraction in the
interpolar gap

fgaz ¼ 1�
d�Gg

d

176,179,180

• Densities brine
æNaCl ¼ aþ b � cNaCl þ c � c2

NaCl

� �
� 103

amalgam
æam ¼ 13500� 51:111 � cNa � 2:9348ð Þ

166,168

• Amalgam viscosity �am ¼ 1:9 � 10�3exNa 0:975�3:54�10�3 Tam�273ð Þ½ � 166
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3.7.4
Mathematical Model of Ion-Exchange Membrane Cell

The mathematical model presented in this section is an original model based on
information obtained only from the literature. This model has been developed for a
Hoechst-Uhde BM cell, and also used by the IEM cell plant from Chimcomplex
Borzeşti [166,181–184].

This mathematical model is a dynamic model, developed for process control. The
IEM cell is illustrated in Figure 3.117.

In the IEM cell process, the anode and cathode are separated by a cation-
exchange membrane [161,164,185,186]. Only sodium ions and a little water mi-
grate through the membrane. As for the mercury process, the brine is dechlori-
nated and recirculated for resaturation with solid salt. The life of the expensive
membranes depends on the purity of the brine. Therefore, after initial purification
by precipitation-filtration, the brine is additionally purified by ion-exchange of
higher valent cations (Ca2+, Ba2+, and Mg2+) [187,188].

The caustic solution leaves the cell at a concentration of 30–40 wt.%, and must
be further concentrated. The chlorine content of the sodium hydroxide solution is
as low as that from the mercury process. The chlorine gas contains some oxygen,
and must be purified by liquefaction and evaporation. The consumption of electric
energy with the membrane cell process is the lowest of the three processes (ca.
25 % less than that for the mercury process). The amount of steam needed to
concentrate the caustic solution is relatively small. Moreover, there are no special
environmental problems, and the cells are easy to operate and relatively insensitive
to current density changes, allowing greater use of cheaper, off-peak electric power.

The main reactions are as follows [164,166,181]:
• Anode compartment:

– Main reaction:
2NaCl fi 2Na+ +Cl2(g) + 2e—
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Figure 3.117 Schematic diagram of the ion-exchange membrane
(IEM) cell.



– Secondary reactions (with impurities from brine):
4NaOH + 3Cl2 fi 3NaCl + NaClO3 + 2HCl + H2O
Na2CO3 + 2Cl2 +H2O fi 2HOCl + 2NaCl + CO2(g)

NaHCO3 + Cl2 fi HOCl + NaCl + CO2(g)

Na2SO3 +Cl2 +H2O fi Na2SO4 + 2HCl
– O2 discharge:

4OH— fi O2(g) + 2H2O + 4e—

• Cathode compartment:
– Main reaction:

2H2O + 2e— fi H2(g) + 2HO—

– Secondary reaction:
Na+ +HO— fi NaOH

3.7.4.1 Model Structure
The model which has been considered is formed by a series of CSTRs having the
structure shown in Figure 3.118 [166].

The basic element of the model is considered to be the pair of CSTRs situated on
the same level in the anode, or respectively cathode, compartment of the cell. The
pair of CSTRs includes one ideal reactor for anode, respectively cathode compart-
ment, at the opposite side of the membrane. For a pair of CSTRs, there is a streams
structure, as shown in Figures 3.119 and 3.120 [166].

3.7 The MPC of Brine Electrolysis Processes 251

Figure 3.118 Internal structure of the mathematical model.



3.7.4.2 The Main Equations of the Mathematical Model
For each CSTR, energy, mass, voltage balance equations, equations describing the
physical and electrical properties of the phases were considered. For an adequate
description of the process, and in order to limit the calculus complexity after
multiple simulations, the number of these CSTR pairs was limited to 10. This
provided good correspondence with the data acquired from the industrial process.

For each basic element of the model, mass, energy and voltage balance equations
were considered as well as equations for physical properties.

The mass balance equations are [166]:
• Global mass balance equation for the anodic compartment:

Fa;iæa;i þ Fga;iæga;i þNOH�MOH �NNaMNa �NH2OMH2O�

�Fa;eæa;e � Fga;eæga;e ¼
d
dt

Vaæa;a


 � (3.343)

– For Na+ in the anodic compartment:

Fa;i ca;i þ cNaClO3 ;i

� �
� Fa;e ca;e þ cNaClO3 ;e

� �
�NNa ¼

¼ d
dt

Va ca;e þ cNaClO3 ;e

� �� � (3.344)

– For Cl– in the anodic compartment:

Fa;ica;i � Fa;eca;e �
I
F

rCl2 þ
3
4

NOH ¼
d
dt

Vaca;e

� �
(3.345)
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Figure 3.119 Streams structure in the anode compartment.

Figure 3.120 Streams structure in the cathode compartment.



– For ClO�3 in the anodic compartment:

Fa;icClO�3 ;i
� Fa;ecClO�3 ;e

þ 1
4

NOH ¼
d
dt

Va 1� fga

� �
cClO�3 ;e


 �
(3.346)

– For HCl in the anodic compartment:

Fa;icHCl;i � Fa;ecHCl;e þ
1
2

NOH ¼
d
dt

Vað1� fgaÞcHCl;e

� �
(3.347)

• Global mass balance equation for the cathodic compartment:

Fc;iæc;i þNNaMNa þNH2OMH2O þ Fgc;iægc;i � Fc;eæc;e�

�NOHMOH � Fgc;eægc;e ¼
d
dt

Vcæam;c


 � (3.348)

– For Na+ in the cathodic compartment:

Fc;icNaOH;i þ NNa � Fc;ecNaOH;e ¼
d
dt

VccNaOH;e

� �
(3.349)

The energy balance equations are [166]:
• For the anodic compartment:

Fa;iæa;icpa;i Ta;i þ Fga;iæga;icpga;i Ta;i þ ÆT IEb � ˜Ha NCl2 þNO2ð Þ�
�2AKTac Ta;e � Tc;e

� �
� 2BKText Ta;e � Text

� �
� Fa;eæa;ecpa;e Ta;e�

�MH2O Fga;ecH2O;e � Fga;icH2O;i

� �
rH2O � Fga;eæga;ecpga;e Ta;e ¼

¼ d
dt

Vaæam;acpa;e Ta;e


 �

(3.350)

• For the cathodic compartment:

Fc;iæc;icpc;i Tc;i þ Fgc;iægc;icpgc;i Tc;i þ 1� ÆTð ÞIEb � ˜HcNH2�
�2AKTac Tc;e � Ta;e

� �
� 2BKText Tc;e � Text

� �
�

�Fc;eæc;ecpc;e Tc;e �MH2O Fgc;ecH2O;e � Fgc;icH2O;i

� �
rH2O�

�Fgc;eægc;ecpgc;e Tc;e ¼
d
dt

Vcæam;ccpc;e Tc;e


 �
(3.351)

The mathematical model also includes the voltage balance equation [175]:

EB ¼ E þ �a � �c þ ˜�	 þ ˜�m þ ˜�c (3.352)

where:

E ¼ �a � �c

Other equations of the mathematical model are presented in Table 3.20.
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Table 3.20 Equations of the mathematical model for the
ion-exchange membrane (IEM) cell.

Description Equation Reference(s)

• Anodic standard potential �0
Cl�=Cl2

¼ 1:47252þ 4:82271 � 10�4T � 2:90055 � 10�6T2 172

• Reversible potential of the
anodic process

�a ¼ �Cl�=Cl2 ¼ �0
Cl�=Cl2 þ

RT
2F

ln pCl2 �
RT
2F

ln aCl�
172

• Heat of reaction for the
anodic process

˜Ha ¼ 147234:94 � 103 þ 267:37 T2 175

• Reversible potential of the
cathodic process

�c ¼ �Hþ=H2
¼ �0:828� RT

2F
ln pH2 �

RT
F

ln aHO�
175

• Heat of reaction for the
cathodic process

˜Hc ¼ 93117:647 � 103 � 398:1922 T2 164,175

• Anodic overpotential �Æ ¼ a þ b � log j where: a ¼ 1:3322 � 10�5T and
b ¼ 1:3212 � 10�4T

173

• Cathodic overpotential �c ¼ a þ b � log j where: a ¼ 0:02 and b ¼ �0:11 164

• Electrical resistance of the
membrane

æmem ¼ 2:6125 � 10�4 � 1:75 � 10�6ðT � 273Þ 189

• Resistance and voltage drop
on the membrane

Rmem ¼
æmem

A
and ˜�	 ¼ I Rmem

190

• Voltage drop on contacts and
conductors

˜�c ¼ k� 0; 033þ 0; 0467
I

A Inom

� �
191

• Densities for the anodic compartment
æNaCl ¼ aþ b � cNaCl þ c � c2

NaCl

� �
� 103

for the cathodic compartment
æNaOH ¼ 1240� 0:665 T � 273þ 60ð Þ½ � þ cNaOH � 7:44

0:0366

168

• Transport numbers tNa ¼ �3; 4204 � 10�4c4
NaOH þ 1; 0531 � 10�2c3

NaOH�
�1; 1548 � 10�1c2

NaOH þ 5; 3891 � 10�1cNaOH

tH2O ¼ �1; 824 � 10�3c4
NaOH þ 6; 0262 � 10�2c3

NaOH�
�6; 8245 � 10�1c2

NaOH þ 2; 9137 cNaOH

189

This structure of the mathematical model includes 70 differential equations and
more than 160 nonlinear algebraic equations.
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3.7.5
Simulation of Brine Electrolysis

Solving the huge system of differential equations was possible only by using
numeric methods. MATLAB/SIMULINK software environment was used for
this task. It was possible to determine the inside profile of parameters such as:
concentration, temperature, flow, gas fraction, current (current distribution), volt-
age, pH, electrode coverage, etc., by simulation. A short selection of the simulation
results are presented in the following sections.

3.7.5.1 Simulation of the Mercury Cell Process
The simulation results presented in Figure 3.121 show the dynamics of the process
in the case of a step change of the feeding brine temperature [166].

The graphics presented an initial inverted response for the majority of the
system parameters. For example, the profile for the voltage dynamics we could
observed on frames I to IV. This phenomenon could generate severe control
problems especially for simpler control systems such as SISO.

3.7.5.2 Simulation of the Ion-Exchange Membrane Cell Process
In the steady state process simulation we obtain the parameters profile along the
height of the cell. The graphics in Figure 3.122 present the profile of the sodium
hydroxide concentration in the cathode compartment and the profile of the temper-
ature in the anode compartment.

In the case of dynamic simulation, modification of the parameters in time could
be calculated in the case of changes in input or state parameters of the cell.
The graphics presented in Figure 3.123 represent the dynamics of the cell voltage,
anode compartment temperature, brine concentration and hydroxide concentra-
tion at the exit of the cell in the case of feed brine temperature changing from 70 ºC
to 90 ºC.

Also observed in this case was the complexity of the process responses due to
complex interactions between the process from the anode and cathode compart-
ments.

3.7.6
Model Predictive Control of Brine Electrolysis

The most comprehensive and powerful model predictive control techniques are
based on the optimization of a quadratic objective function, which involves the
error between the set point and the predicted outputs. These techniques have been
used successfully in commercial process control applications involving MIMO
processes. They also can handle inequality constrains on the controlled and
manipulated variables.
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Figure 3.121 (a–f) Simulation results for the mercury cell
for a step change in the brine feeding temperature.
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Figure 3.122 Profiles of (a) NaOH concentration and
(b) temperature in the IEM cell obtained by simulation.
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Figure 3.123 (a–f) Dynamics of the IEM cell in the case of feed
brine temperature step change from 70 ºC to 90 ºC at t = 0 s.



3.7.6.1 MPC of Mercury Cell
The dynamic responses of the mercury cell (see above) were used to test two
different types of control technique: SISO (Single Input/Single Output) control
structures using PID controllers; and MIMO (Multiple Inputs/Multiple Outputs)
control structures based on Model Predictive Control.

For the SISO control structure as applied to a mercury cell, the following loops
were selected:
• Loop I

– controlled variable: voltage on frame 1
– manipulated variable: distance between anodic frame 1 and the bottom of the

cell
• Loop II

– controlled variable: voltage on frame 2
– manipulated variable: distance between anodic frame 2 and the bottom of the

cell
• Loop III

– controlled variable: voltage on frame 3
– manipulated variable: distance between anodic frame 3 and the bottom of the

cell
• Loop IV

– controlled variable: voltage on frame 4
– manipulated variable: distance between anodic frame 4 and the bottom of the

cell

Four PID controllers were used for the four loops. Controller tuning was made by
simulation using the Ziegler–Nichols method. Parameters for these controllers are
presented in Table 3.21.

Table 3.21 Controller parameters for mercury cell.

Controller Type KR TI [s]

1 PI 9 16

2 PI 12 16

3 PI 13 16

4 PI 13 16

In the case of MPC of the mercury cell when, using the same controlled variables
and manipulated variables, the optimal values for the internal parameters of the
controller were determined by simulation, as follows:
• model horizon T = 14 400 s;
• control horizon U = 3;
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Figure 3.124 (a–h) MPC versus PID for mercury cell. Considered
disturbance: modification of cell current load at t = 120 s.



• prediction horizon V = 8;
• weighting matrix for predicted errors W1 = [300 300 300 300];
• weighting matrix for control moves W2 = [1 1 1 1];
• sampling period ˜t = 1 s.

The controlled variables were subject to the following constraints:

ymin £ y £ ymax (3.353)

where:

ymin = ham + 0.003 (mm)

ymax = 4 ymin

ham = thickness of amalgam layer (mm), computed by the model.

For example, for a correct comparison of the performances of SISO and MIMO
control structures, a modification of cell load, from 300 KA to 310 KA, at t = 120 s
was simulated. The obtained results are presented in Figure 3.124.

It could not be observed from these graphics whether the MPC provided a more
effective control than the PI control.

3.7.6.2 MPC of IEM Cell
The dynamic responses of the membrane cell (see above) were used to test two
different types of control technique: SISO (Single Input/Single Output) control
structures using PID controllers; and MIMO (Multiple Inputs/Multiple Outputs)
control structures based on Model Predictive Control.

For the SISO control structure in the case of a membrane cell, the following
loops were selected:
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• Loop I
– controlled variable: brine concentration at cell outlet
– manipulated variable: brine inlet flow

• Loop II
– controlled variable: caustic soda concentration at cell outlet
– manipulated variable: caustic soda inlet flow

Two PID controllers were used for these two loops. Controller tuning was achieved
by simulation with the Ziegler–Nichols method. Parameters for these controllers
are presented in Table 3.22.

Table 3.22 Controller parameters for ion-exchange mercury cell.

Controller Type KR TI [s]

1 PI 15 4500

2 PI 30 5200

In the case of MPC of the membrane cell, when the same controlled variables and
manipulated variables were used, the optimal values for the internal parameters of
the controller were determined by simulation as follows:
• model horizon T = 14 400 s;
• control horizon U = 2;
• prediction horizon V = 10;
• weighting matrix for predicted errors W1 = [0.05 0.05];
• weighting matrix for control moves W2 = [1 1];
• sampling period ˜t = 1 s.

The controlled variables are subject to constrain presented by inequalities (3.353).
In this case:

ymin = 0;

ymax = 2 ynom

ynom nominal flow for brine/caustic soda, [m3 s–1].

For a correct comparison of the performances of SISO and MIMO control struc-
tures respectively in the case of a membrane cell, a modification of caustic soda
concentration at cell inlet, from 10 wt.% to 12 wt. %, at t = 120 s, was simulated.
The results are presented in Figure 3.125 [192,193].
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Figure 3.125 (a–d) MPC versus PID for IEM cell. Considered
disturbance: modification of caustic soda concentration at cell inlet
at t = 120 s.



3.7.7
Conclusions

In this section, results related to the modeling and control of industrial brine
electrolysis processes (using mercury cell and IEM cell) were presented. The
mathematical models for both processes were based on balance equations (mass,
energy and voltage balance equations – specific for electrochemical processes), and
also included equations presented in the literature or determined by measure-
ments in actual industrial plants.

The nonlinear, dynamic and multivariable models were fitted and then verified
with data measured in industrial plants (at R�mnicu-V�lcea and Borzeşti). Obser-
vations made from the simulations indicated that the processes showed a complex
behavior in response to typical disturbances.

Control of the processes was studied by considering two different approaches: (i)
SISO control using multiple PID controllers; and (ii) by MIMO control based on
MPC with 2 � 2 or 4 � 4 inputs/outputs. As was observed from the graphics
presented, the MPC outperformed the SISO control structures, assuring a better
control of the processes.

In conclusion, MPC is a control method that must be taken into consideration
also for the control of electrochemical processes.

3.7.8
Nomenclature

Symbols
a constant
A cross-sectional area of the membrane
B side area of the cell
c molar concentration
cp specific heat
dz length of the volume element
EB cell voltage
fg gas fraction in the liquid
F inlet volumic flow
F Faraday’s number
˜H enthalpy
i current density
I current intensity
KT thermal transfer coefficient
Kc contacts state coefficient
l cell width
m molal concentration
M molecular mass
N mole number
p pressure
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r current efficiency
R universal gas constant, electric resistivity
t time, temperature, transport number
T absolute temperature
V volume
x; y molar fraction
z number of electrons
Æ temperature coefficient
ÆT energy repartition coefficient
� reversible potential
˜� voltage drop
ª activity coefficient
� overpotential
¸ conductivity
æ density, resistivity

Subscripts
a anodic
am mixture
c cathodic
cond conductor
e exit
el electrolyte
ext external
g gas
i inlet
j index of the model element
l liquid
mem membrane
v vapor
0 initial, reference
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