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Preface

Many applications of acoustic signal processing, such as teleconferencing and
surveillance systems, require an estimate of several parameters present in the
observed acoustic scene. The most important parameters are the location of
the acoustic sources as well as the number of currently active sources. These
parameters have been traditionally estimated by means of classical array sig-
nal processing using microphone arrays. The term ’classical’ is used here to
classify algorithms that are derived from the microphone signals directly.

In contrast, the algorithms presented in this book are not solely based on
classical array signal processing but also on the principles of wave propagation
and wave scattering offered by the science of classical acoustics. Novel so-
called modal array signal processing algorithms can now be derived from the
fundamental solutions of the acoustic wave equation.

Algorithms for parameter estimation solely based on the paradigm of clas-
sical array signal processing, often suffer from the problem that they rely on a
narrowband assumption underlying the signal model, which limit their usabil-
ity when broadband signals, such as speech, are present in the wavefield under
observation. It will be shown that by additionally considering the paradigm of
classical acoustics, algorithms can be derived that are inherently broadband,
hence allowing for ubiquitous application.

Moreover, it will be shown that parameter estimation, based on these novel
methods, has the potential to unambiguously detect and localize multiple
simultaneously active wideband sources in the array’s full field-of-view.

In order to take advantage of the paradigms that can be found in the field
of acoustics, special array geometries are considered here, i.e. circular and
spherical geometries for the analysis of wave propagation in two and three
spatial dimensions, respectively.

A rigorous derivation of modal array signal processing algorithms for pa-
rameter estimation as well as performance evaluations by means of simulations
and measurements using an actual real-time capable implementation are dis-
cussed.
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Notations and Conventions

Conventions

The following conventions are used throughout this book.

Time-domain scalar quantities are denoted by lowercase characters, e.g.
a(t).

Frequency-domain scalar quantities are denoted by uppercase characters,
e.g. A(w).

Time-domain vector quantities are denoted by boldface lowercase charac-
ters, e.g. a(t).

Frequency-domain vector quantities are denoted by boldface uppercase
characters, e.g. A(w).

Time-domain matrix quantities are denoted by underlined, boldface low-
ercase characters, e.g. a(t).

Frequency-domain matrix quantities are denoted by underlined, boldface
uppercase characters, e.g. A(w).

All vectors are assumed to be column vectors.

The denotation 0(1)M means 0,1, ..., M, where M is an integer.

Mathematical operations

Ok Vector or matrix transposition

Conjugate complex of a vector or matrix
Hermitian operation, i.e. conjugate complex
transposed, of a vector or matrix

()b Matrix inverse

()7 Pseudo-inverse of a matrix

diag{-} Diagonal matrix where the entries are defined by
the argument (vector)

span{-} Space which is spanned by the columns of the
argument (matrix)

tr{-} Trace of a matrix, i.e. sum of elements on main
diagonal

rank{-} Rank of the argument (matrix)

® Hadamard product, i.e. element-wise multiplica-

tion of matrix elements
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All definitions of special functions are given in Appendix B.

In () Bessel function of order n with respect to argu-
ment x

H,(z) Hankel function of order n with respect to argu-
ment x

Yo (x) Neumann function of order n with respect to ar-
gument x

Jn(x) Spherical Bessel function of order n with respect
to argument x

hy () Spherical Hankel function of order n with respect
to argument x

Yn () Spherical Neumann function of order n with re-
spect to argument x

P, (x) Legendre Polynomial of order n with respect to
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1

Introduction

The term ’acoustic scene analysis’ (ASA) describes the task of extracting in-
formation contained in an acoustic wavefield, such as the waveform itself or
parameter describing the source of the wavefield. Since acoustic wavefields are
processes spread-out in space and time it follows quite naturally that ASA is
predominantly performed by evaluating the signals captured by a number of
spatially distinct microphones, i.e. microphone arrays. A standard and widely
applied vehicle for evaluating the microphone array signals is built upon classi-
cal array signal processing techniques [JD93, Tre02]. In this context, the term
‘classical’ is used to denote signal processing algorithms, to be introduced be-
low, that are applied directly to the individual microphones comprising the
array. In contrast, the algorithms to be derived in this book are applied to
signals that are obtained by transforming the microphone signals into a do-
main defined by the eigen-solutions of the acoustic wave equation in two- and
three spatial dimensions.

ASA, as considered in this book, can be grouped into three distinct classes.

1. Supervised ASA or waveform estimation. Here, ASA is concerned with
the extraction of the desired source signal from the observed wavefield
by means of beamforming and beamsteering techniques. Note that al-
though the signal processing steps necessary for the extraction of the
desired source involves an estimation of filter coefficients, the primary
task is to extract the signal itself. Therefore, the term ’waveform esti-
mation’ is chosen in this context. Beamforming is an attempt to add
the desired signal coherently at the output of the beamformer while
the noise is added incoherently. Beamforming methods include, delay-
and-sum beamforming [Dol46, Fla85, FJZES5], filter-and-sum beamform-
ing [DB88, VSd96, WKWO01], as well as beamforming using differential
[Elk04, TEOla] and superdirective arrays [CZK86, CZ0O87, BS01]. Both
signal-independent as well as signal-dependent implementations are used
in practice, see e.g. [Her05]. All of the above mentioned beamformers will
be discussed in Chapter 4. For performing the signal alignment, i.e. the
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beamsteering step, a prerequisite for this type of ASA is the knowledge
of the array’s geometry and the location of the desired acoustic source,
hence the term ’supervised’. Typical scenarios set for supervised ASA
are teleconferencing applications and front-ends to distant-talker speech
recognition systems. Note that supervised ASA techniques typically as-
sume a single desired source signal to be present in a wavefield.

2. Semi-supervised ASA or parameter estimation. In this context, ASA deals
with the number and location of possibly multiple simultaneously active
acoustic sources using microphone arrays. While the localization of a sin-
gle desired acoustic source has been the subject of research for the last
several decades — mainly by applying the notion of the time-difference-of-
arrival between microphone pairs [MS69, KC76, Ben00] — the problem of
estimating of the number and positions of multiple acoustic sources using
non-heuristic methods has not been under investigation only until very re-
cently [BAST05, TK05a, TK05b, TKO05¢]. The discussion and an attempt
to build a framework for this problem is the main focus of this book. A
typical application of semi-supervised ASA is acoustic surveillance. Pa-
rameter estimation also serves as a preprocessing step for the techniques
based on supervised ASA.

3. Unsupervised ASA or blind system identification / blind source separation.
This rather new and emerging area of research does, in principle, not
require any knowledge of the parameters present in the wavefield, nor does
it rely on the geometry of the microphone array. The desired information
is extracted by adaptively estimating the system comprising the acoustic
source(s) and the acoustic environment observed by the microphones. This
class of ASA is not treated further in this book. Blind system identification
and its application to parameter estimation, using classical array signal
processing techniques, is described in [BAKO05b, BAS™T05]. Blind source
separation and its application to waveform estimation by extracting the
desired acoustic signals from a mixture of signals is described in detail,
e.g., in [BAKO04, BAKO05a].

Note that the ASA considered here is not to be confused with auditory
scene analysis which is a technique for encoding Structured Audio bitstreams
from acoustic data, as described within the ISO/IEC 14496 MPEG-4 context
[MPE].

The work presented in this book is, in contrast to the algorithms as con-
sidered in the above mentioned references, not solely based on classical array
signal processing but also on the principles of wave propagation and wave
scattering offered by the science of classical acoustics. Algorithms for param-
eter estimation solely based on the pillar ’classical array signal processing’,
often suffer from the problem that they rely on a narrowband assumption
underlying the signal model, which limit their usability when broadband sig-
nals, such as speech, are present in the wavefield under observation. It will
be subsequently shown that by erecting a second pillar ’classical acoustics’,
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algorithms can be derived that are inherently broadband, hence allowing for
ubiquitous application. The possibility to formulate parameter estimation al-
gorithms that inherently allow for wideband source models is a previously
unknown result of the fusion between classical array signal processing and
methods of classical acoustics. This discovery is one of the main contributions
of this book.

Moreover, it will be shown that acoustic source localization, based on
these novel methods, has the potential to unambiguously localize multiple
simultaneously active wideband sources in the array’s full field-of-view.

In order to take advantage of the paradigms that can be found in the field
of acoustics, special array geometries are considered here, i.e. circular and
spherical geometries for wave propagation in two and three spatial dimensions,
respectively. The more generic scenario of three-dimensional wave propagation
can be cast into two-dimensional wave propagation problems whenever two-
dimensional wavefields provide reasonable models for propagating wavefields,
such as in closed rooms, where ceiling and floor reflections are sufficiently
attenuated. The main advantage offered by the reduction in dimensionality is
the significant decrease in array complexity.

The work presented in this book is organized as follows. The first two
chapters are concerned with several concepts of classical acoustics. Chapter 2
introduces the notion of acoustic wave propagation and wave scattering in
cylindrical and spherical coordinates, respectively. Subject of discussion are
infinite-length and finite-length cylindrical radiators and scatterers as well as
spherical radiators and scatterers. These physical foundations are required
for the introduction of wavefield decomposition utilizing circular and spher-
ical apertures, see Chapter 3. A natural way of analyzing a two- or three-
dimensional wavefield is to decompose it into an orthogonal set of eigenfunc-
tions corresponding to the acoustic wave equation in circular or spherical
coordinates. In subsequent chapters, it will be shown that the decomposed
components, the eigenbeams, can be used directly to yield novel array signal
processing algorithms, denoted as eigenbeam — or modal — array signal process-
ing. The decomposition, which is in essence equivalent to a Fourier analysis,
is performed by either circular or spherical apertures. Both continuous and,
more relevant in practice, sampled continuous apertures are considered. It will
be shown that the properties of acoustic scattering can be advantageously uti-
lized in the decomposition process. Note that the Fourier analysis of acoustic
wavefields is sometimes referred to as Fourier acoustics [Wil99].

Chapter 4 summarizes the main techniques, properties, and problems of
acoustic scene analysis using classical array signal processing. Following the
introduction of fundamental signal models and assumptions, various waveform
and parameter estimation techniques are presented. Parameter estimation fo-
cuses on two distinct signal processing tasks, the first one being the localiza-
tion of possibly multiple simultaneously active sources. The second task is the
estimation of the number of active sources in a wavefield.
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In Chapter 5, the fundamental techniques shown in Chapter 3 are com-
bined with the algorithms derived in Chapter 4 to yield novel algorithms for
ASA using modal array signal processing, most notably source localization of
multiple wideband acoustic sources as well as the estimation of the number
of active sources in a wavefield. Derivations and performance evaluations in
terms of simulations for the new waveform estimation techniques as well as
for the new parameter estimation methods are detailed.

Chapter 6 presents a practical and real-time capable system for performing
ASA tasks utilizing a circularly symmetric microphone array mounted into a
finite-length rigid cylindrical baffle. This system is used for evaluating the
waveform and parameter estimation algorithms outlined in Chapter 5 by con-
sidering measurements performed in real acoustic environments. Additional
results of the performance evaluations are reproduced in Appendix F. During
the course of the performance evaluation it will become clear that unprece-
dented potential lies in the paradigm of modal array signal processing applied
to compact systems in real acoustic environments.
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A coustic Wavetfields

This chapter is concerned with acoustic radiators and scatterers of cylindrical
and spherical shape which forms the basis for the discussion of wavefield de-
composition to be detailed in Chapter 3. Acoustic wavefields in cylindrical and
spherical coordinate systems are considered that travel through a fluid, most
notably air, and that interact with objects and structures resulting in scatter-
ing phenomena. In order to arrive at tractable mathematical descriptions of
problems related to acoustic radiation and scattering a few basic assumptions
are introduced here [JF93]:

1. All fluids and materials considered are assumed to obey linear equations.
This restriction limits the following discussions to small-signal distur-
bances of the transmitting medium.

2. The media the acoustic wavefields interact with are assumed to be homo-
geneous.

3. Steady-state conditions are assumed which means that initial transient
effects can be neglected.

4. For scattering problems, only local interactions between a wavefield prop-
agating in a homogeneous medium and bodies within this medium are
assumed.

It should be noted that all of the above assumptions are reasonably stan-
dard in many textbooks on linear acoustics, such as [MI68], [JF93], [Wil99],
and [Bla00]. This book further assumes lossless transport of acoustic energy,
thereby neglecting the effects of attenuation and dispersion the wave may be
affected by as it propagates through a medium.

This chapter is organized as follows. Section 2.1 lays the mathematical and
physical foundations by introducing Euler’s equation and the acoustic wave
equation in an arbitrary orthogonal coordinate system. Section 2.2 introduces
the notion of point sources and point sinks in two and three dimensions.
Section 2.3 considers acoustic wavefields in cylindrical coordinates. Cylindrical
coordinates are applicable to scenarios where the region under observation,
e.g. the radiator itself, is extended in one dimension and compact in the other
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two. An example is a vibrating cylindrical object where its radius is much
smaller than its length. Section 2.4 details acoustic wavefields in spherical
coordinates. Spherical coordinates are appropriate when the region of interest
is finite in all three dimensions, such as spherical radiators.

2.1 Mathematical Foundations

A periodic time-dependent driving force resulting in a harmonic particle dis-
placement of a field point Q(q1, g2, q3) is assumed that can be described in
an arbitrary orthogonal coordinate system (g1, ¢2,¢s). This means that the
field point @ can be interpreted in the Cartesian coordinate system, (x,y, 2),
as well as in all other orthogonal coordinate systems (¢1, g2, ¢3), for example
cylindrical (g, ¢, z) or spherical (r, 0, ¢), as [Arf85],

z = 2(q1, 92, G3), (2.1a)
y= y(qla q2, Q3)7 (21b)
z=z(q1, 42, q3)- (2.1¢)

For cylindrical coordinate systems,

T = pcos ¢, (2.2a)
y = osin @, (2.2b)
z =z, (2.2¢)
and,
x = rsind cos ¢, (2.3a)
y = rsinfsin ¢, (2.3b)
z =rcosb, (2.3c)

for spherical coordinate systems, cf. Fig. 2.2 and Fig. 2.1, respectively. Note
that the z-coordinate has been omitted in Fig. 2.2.

In the coordinate system of interest, the time-varying position of the dis-
placement vector, w(rq,t), representing the field point Q(q1, g2, g3) due to
the driving force can be written as [JF93],

w(ro,t) = [wi(rq)eq, +wa(rqleg, +ws(rqleg,] e, (2.4)

where e, , eq,, and ey, are the unit vectors in the directions of the respective
coordinate axis, and r¢ is the position vector associated with Q(q1, g2, ¢3) in
that coordinate system. The time variable is denoted as ¢, w is the temporal
radian frequency, and i2 = —1. In the following, only the first component of
the displacement, i.e.,

w(q1,q2,q3,t) £ wi(rg)e ™, (2.5)
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is taken into consideration in all further developments. This component cor-
responds to the radial, or normal, component of the displacement vector in
cylindrical and spherical coordinate systems. Since mainly longitudinal waves
are of interest in this book, only the normal component of the displacement
(radially oriented driving force) is considered.

Most analyses of acoustic wavefields are based on two fundamental equa-
tions, Euler’s equation of motion and the acoustic wave equation. Both equa-
tions are introduced in the following.

2.1.1 Euler’s Equation

Assuming linearity of the medium and negligible body forces such as gravity,
FEuler’s equation, also known as the momentum equation, can be written in
the time-domain as [Wil99],
62
_QOﬁw(QMQQaCI&t) = Vp(QhQQaCISat)» (26)

where gp is the fluid density and p(-) denotes the pressure. ! In general, the
gradient or Nabla operator, V, is defined as [Arf85],

1 0 1 0 1 0

— e, +——e, + ——e,.
a1 " asdge P azdqz

o\ y 2 9z \?
2 _ _ 7 R =
al_(aql) +(aql> +(an> =123 2.8)

The following discussions do not exploit the relationship between the particle
displacement and pressure but considers the relationship between particle
velocity,

2.7)

where,

0
£ aw((han,qBat)? (29)

and pressure p(qi1, g2, g3, t). Consequently, Eq. (2.6) can be written as,

w(qla q2, %775)

0 .
_QOEW(QLQ%QBJ) = VP(QI»QZaQ37t)~ (210)

Considering the steady-state assumption, the analysis of Euler’s equation can
be carried over to the frequency-domain by utilizing the temporal Fourier
transform, as defined in Section A.1. By applying the inverse temporal
Fourier transform, Eq. (A.2), to the particle velocity and calculating the time-
derivative one obtains,

oo

0 1 . ,
gu}(qhqg?qg,t) =3 / —iwW (q1,q2, g3, w) e~ " dw. (2.11)

—0o0

! Note the fundamentally different meanings of the symbols go and o.
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It therefore follows that,

0 . T
.7:t {aw((hanqu?t)} = _ZWW(QD(]Q’(]B’Q))’ (212)

where F{{(t)} = Z(w) denotes the temporal Fourier transform of the ar-
gument with respect to the time variable (subscript t). As a result, in the
frequency-domain Eq. (2.10) becomes,

1
W(Ql)qQa q37w) = iQoCkV

P(QlanaQ37w)7 (213)

where k = w/c is the wavenumber, ¢ is the speed of sound, and P(q1, ¢2, q3,w) =
Fi{p(ar, 42,43, 1)}

2.1.2 The Acoustic Wave Equation

The second important equation in acoustic wavefield decomposition is the
acoustic wave equation. Considering the above mentioned assumptions (1-4)
in the introductory paragraph of Chapter 2, the homogeneous acoustic wave
equation in the time-domain reads [Wil99],

1 9?2

(V2 - ——) p(a1,42,q3,t) = 0, (2.14)

c2 Ot?

where, in general, [Arf85],

2 1 0 asas 0 0 ajas 0 0 a1a9 0
Ve = — — |+ — — |+ = — -
arazas (01 \ a1 Ogq 0q2 \ az Oqo gz \ a3z Ogs3
(2.15)
V2 is also known as the Laplace operator. A detailed derivation of the acoustic
wave equation, in which Euler’s equation, Eq. (2.6) or Eq. (2.13), is of major
importance, can be found in [Bla00]. Here and throughout this work, steady-
state conditions are assumed and the explicit time dependence is dropped for
notational convenience. Transforming Eq. (2.14) into the frequency-domain
using the temporal Fourier transform one obtains the so-called homogeneous
Helmholtz equation [MF53],

VQP(QMqQa Q37w) + k2P(Q17Q27 Q37w) = 0. (216)

Specific solutions of the acoustic wave equation in cylindrical and spherical
coordinate systems are given in Sections 2.3 and 2.4, respectively.
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2.2 Point Sources and Plane-Waves

The homogeneous Helmholtz equation, Eq. (2.16), assumes a source-free
medium, i.e. the right-hand side of Eq. (2.16) is zero. In most acoustical prob-
lems there is a source, or a superposition of multiple sources, that generate
the wavefield under observation. Therefore, some non-zero term needs to be
added to the right-hand side of the homogeneous Helmholtz equation which
then becomes an inhomogeneous Helmholtz equation. An acoustic source is
defined as a region of space that is in contact with the medium, in which the
wavefield is to be evaluated, where new acoustic energy is generated. This en-
ergy is radiated outward, into the medium, with respect to the source [MI68].
Two models for acoustic sources are widely used, i.e. point sources and plane-
waves. Point sources can be regarded as infinitesimally small objects in two-
or three-dimensional space that radiate acoustic energy, which spreads cylin-
drically or spherically, respectively. If the point sources are located infinitely
far from the point(s) of observation, the cylindrically/spherically spreading
wave-front becomes planar, i.e. the points of identical phase travel on a plane.
These two models are studied in the following sections.

2.2.1 Point Sources in Three Dimensions

A point source/sink 2 with position vector g, cf. Fig. 2.1, is defined as the
solution of the inhomogeneous Helmholtz equation [MF53],

z
A
Yy
R
\\\ \;

LN TN

rl. oro_ o7 !
,\// ////

) -

0, o~

/ -7 \

///d) @Y

- T

Fig. 2.1. Point source/sink in three spatial dimensions

2 Note that the term sink in this context is merely used to describe that acoustic
energy is traveling toward a particular point in space, i.e. in the direction of 7.
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V3gi(rlro) + k2 gr(r|ro) = —0(r — o), (2.17)

where r is the point of observation and gy (r|rg) is called a Green’s function,
which also satisfies the homogeneous Helmholtz equation, Eq. (2.16), every-
where except for 7 = rg. The subscript k is used to stress the dependency of
the Green’s function on the wavenumber. §(r — ro) denotes a three dimen-
sional Dirac delta function, representing a point source located at ry. This
free-field Green’s function that represent point sources must also satisfy the
so-called Sommerfeld radiation condition [MF53],

. D-1 0 .
ol 7 (i) = dhalrlr) ) =0, (218)
where D = 2,3 denotes the dimension of the problem. Equation (2.18) pro-
vides a boundary condition at infinity and therefore ensures that sources ra-
diate sound waves instead of absorbing them. These waves are also called
outgoing, or outward traveling, waves. It is shown in [MF53] that a solution
of Eq. (2.17) that also satisfies Eq. (2.18) is given by,

cikllr—rol

gr(r|ro) = (2.19)

Ar||lr — 7ro|

Equation (2.19) is an expression for the free-field (i.e. boundary at infinity)
response of a point source located at r( evaluated at the observation point 7 in
three dimensions. Incoming, or inward traveling, waves also satisfy Eq. (2.17)
and can be written as,

e—tklr—7oll

gr(rlro) = (2.20)

Ar||r — ro”

More solutions of the inhomogeneous Helmholtz equation, Eq. (2.17),
can be formulated by considering any linear combination of Eq. (2.19) and
Eq. (2.20).

Note that Eq. (2.19) and Eq. (2.20) are expressions for point sources and
sinks in arbitrary orthogonal but separable coordinate systems.

For the special case of spherical coordinate systems, it is shown in [MF53]
that for 7o = ||ro|| > r = ||r||, a point source, cf. Eq. (2.19), positioned at
(ro, ¥, ) can be expanded into eigenfunctions in spherical coordinates at the
observation point (r, 0, ¢) as,

zkHr 70|

47TZijn kr)h(Y (kro) Z Y0, 0)Y, (9, 0)",  (2.21)

m=—n

llr = roll
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where * denotes the conjugate complex operator, and where j,,(+) is the spher-

ical Bessel function of order n, see Section B.2. h%l)(~) denotes the spherical
Hankel function of the first kind of order n and is defined as [AS72],

where y,(-) is the spherical Neumann function of order n, cf. Section B.2.
Y. (0,¢) denotes the so-called spherical harmonic of order n and degree m
satisfying n > |m|, and is defined as, cf. Section B.3,

Y79, ¢) & \/ (2”4: D) EZ - Z;: P (cos §) €™ (2.23)

where P (cos ) is the associated Legendre function of order n and degree m,
see Section B.3. Refer to Section 2.4 for an in-depth discussion of solutions
of the acoustic wave equation in spherical coordinates. For now it is sufficient
to note that by identifying the coefficients in Eq. (2.104) — the most general
solution of the homogeneous Helmholtz equation in spherical coordinates — it
can be easily seen that Eq. (2.21) satisfies the wave equation. Note also that
Egs. (2.19) and (2.20) are solutions of the inhomogeneous Helmholtz equation
under free-field conditions. Note that the term ’free-field’ means that there
are no other boundary conditions than implied by the Sommerfeld radiation
condition. Free-field propagation can generally not be assumed, e.g., when the
sources that generate a wavefield are positioned within an enclosure.
Analogously, an expansion of Eq. (2.20) for ro < r yields,

o—iklr—rol

I = 7ol

= dm(=i)k > jn(kr)BE) (ko) > Y(0,0) Y, (0, 0), (2.24)
n=0

m=—n

where,
hg)(') =Jn(-) —iyn(), (2.25)
is the n-th-order spherical Hankel function of the second kind, n being an

integer. If the medium is bounded by surfaces that introduce certain boundary
conditions, the most general solution of Eq. (2.17) is [MI68],

Gr(r|ro) = gr(r(ro) +&(r), (2.26)

where &(r) is a solution of the homogeneous Helmholtz equation V¢ + k2 ¢ =
0.
An interesting property of the Green’s function is the principle of reci-
procity [MF53], i.e.,
Gi(r|ro) = Gi(rolr). (2.27)

This principle means that the position of the source and receiver (point of
observation) are interchangeable.
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2.2.2 Plane-Waves in Three Dimensions

Plane-waves can be interpreted as point sources, cf. Eq. (2.21), where ro =
|l7o|] = oo. While the denominator of the left-hand side of Eq. (2.21) can then
be approximated by ||r — rg]|| & rg, the phase term of the exponential needs a
separate discussion since it is an oscillating function with respect to |7 —r¢|.
According to [CK98] it holds that,

lr — 7ol = \/II?‘II2 —2rTro + [|ro?, (2.28)
which can be approximated by,
7 = roll = [Iroll — X, (2.29)

where e,, denotes a unit vector in the direction of 7o and where ()T de-
notes transposition. Performing the farfield transition for the left-hand side of
Eq. (2.21), therefore yields,

ik”’l‘—'f‘o” i]fT() iICTO .
° ~ S emhenm = & ik (2.30)
| — 7ol To o

where k is the three-dimensional wavenumber vector and k = ||k||. Applying
the large argument limit of the spherical Hankel function, Eq. (B.43), for the
right-hand side of Eq. (2.21), it follows that,

ikro ikro
e T e
e kT — Arik

To k To

i( )" g () Z Ym0, 0) Y, (9, 0)",
n=0 m=—n

(2.31)
which can be written as,

etk 47rZ )" G () Z Y0, )Y, )" (2.32)

m=—n

Therefore, a plane-wave with unity amplitude due to a point source at infinity
can be expressed as,

Pty (kTr) = %', (2.33)

where the subscript denotes an outgoing plane-wave in three spatial dimen-
sions. Since the Green’s function, gx(r|rg), can be identified with a free-field
transfer function describing the channel between source and receiver in the
sense of system theory, Eq. (2.33) can be considered as a response, i.e. pres-
sure, observed at r due to a point source at infinity.

Applying the preceding discussion to sinks at infinity results in an analo-
gous expression for incoming plane-waves, i.e.,
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Py (K7r) = ™. (2.34)
The plane-wave expansion in analogy to Eq. (2.32) then yields,

R = a4 NG kr) Y YI0,6) Y0, 0)
n=0 m=—n

N N (2.35)
=dm Y i"ju(kr) > Y0, 0)Y(0, 0)".
n=0

m=—-n

Note that the conjugate complex operator can be applied to either spherical
harmonic. This statement applies also to Eq. (2.21) and Eq. (2.24). Again, it
can be easily seen that Egs. (2.32) and (2.35) are solutions of the wave equation
in spherical coordinates, see Eq. (2.104), evaluated at the observation point

(r,0,0).

2.2.3 Point Sources and Plane-Waves in Two Dimensions

Figure 2.2 illustrates a point source/sink in two spatial dimensions. Then, a
general solution of Eq. (2.17) can be expressed as [MF53],

i
ax(eles) = 7Hy"? (Fle — o). (2:36)

Fig. 2.2. Point source/sink in two spatial dimensions
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where the superscript (V) is used for outward traveling waves — resulting from
a point source — and the superscript ®) is used for inward traveling waves
— corresponding to a sink. For g9 = ||gy| > ¢ = |l@|| an expansion of this
solution can be written as [CK98],

o0

BV (kle—eol) = Y e, (ko) HY (koo), (2.37)
where, cf. Appendix B.1,
HM () = Ju() +iYa(), (2.38)

are the n-th order Hankel functions of the first and second kind, respectively.
Jn(+) and Y, () are the n-th order Bessel and Neumann functions, respectively.
The angle ¢ is the direction-of-propagation of the source with respect to the
origin.

As in the three-dimensional case, this result can be identified with the
solution of the homogeneous Helmholtz equation in cylindrical coordinates,
Eq. (2.54), with z = 0. Refer to Section 2.3 for an in-depth discussion of
solutions of the acoustic wave equation in cylindrical coordinates.

Following the same line of argumentation as in the previous section from
Eq. (2.28) to Eq. (2.30), and by inserting Eq. (B.24) into Eq. (2.37) it follows
that,

2 ; T . 2 ) . i )
i(koo—k" @) ,—im/4 _ ikoo ,—im/4 _Anin(¢p—p)
\/ - e e \/ v e e g (—i)"e Jn(ko),

- (2.40)
and, as a result for the plane-wave expansion,
ke _ D (=) Tnlko) emP7), (2.41)
n=—o0

Thus, in two dimensions, a plane-wave with unity amplitude due to a point
source at infinity can be approximated by,

Pout, (KT @) = e %", (2.42)

Equivalently, a plane-wave due to a sink at infinity can be approximated by,

T

Pin, (kT @) =™ @, (2.43)

and a plane-wave expansion of Eq. (2.43), in analogy to Eq. (2.41) that will
be used extensively in the following discussions can be written as [CK98],
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eikTg _ Z Zan(k’Q) e—in(qb—ga)
S (2.44)
= Z i T (ko) €O~

where in the last step Eq. (B.6) and (—1)"¢~" = i" has been used. See also
Section 3.1.1 for a derivation of this result.

2.3 Acoustic Wave Equation in Cylindrical Coordinates

This section examines wavefields in cylindrical coordinates. Both wavefields
produced by a cylindrically shaped object and modifications of wavefields due
to the presence of a cylindrical object in a wavefield are discussed. The results
obtained here will be of considerable importance in subsequent chapters.

Section 2.3.1 presents a general solution of the acoustic wave equation.
Section 2.3.2 quantifies the wavefield of an infinite-length and finite-length
cylindrical radiator. Scattering phenomena of infinite-length and finite-length
rigid cylinders are outlined in Section 2.3.3.

Although not further pursued in this book, the total wavefield due to
a so-called ’pressure-release’ cylinder is derived at the end of Section 2.1.2
for completeness of discussion. Pressure-release boundaries force the acoustic
pressure on its surface to vanish.

2.3.1 General Solution of the Acoustic Wave Equation in
Cylindrical Coordinates

The cylindrical coordinate system and the geometric model of a cylindrical
radiator or scatterer with radius R and length 2L are shown in Fig. 2.3. The
relation of the cylindrical coordinate system with respect to the Cartesian
coordinate system was given in Eq. (2.2). The field point Q(o, ¢, z), located
on the cylinder surface, is also depicted. Transferring the results from Sec-
tion 2.1 to the particular case of a cylindrical coordinate system gives for
Euler’s equation, Eq. (2.13),

. 1
W(Qv d)vsz) - ZQ()C]CVP(Q7 d)vzaw)a (245)
where with Egs. (2.7), (2.2), and (2.8),
0 10 0
Ve Ze 2%+ e, 2.46
ageg+ga¢e¢+aze ( )

Note again the fundamentally different meanings of the symbols p and gg.
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Fig. 2.3. Geometric model of a cylindrical radiator/scatterer

For the homogeneous Helmholtz equation, cf. Eq. (2.16), it follows that,
V?P(0,,2,w) + k*P(0, ¢, z,w) = 0, (2.47)
where, with Eq. (2.15) and Eq. (2.8),
0? 10 1 92 0?
97 000 P00
It can be shown that the general steady-state solution of the acoustic wave

equation, Eq. (2.14) or Eq. (2.16), in cylindrical coordinates in the frequency-
domain can be expressed as [Wil99],

v = (2.48)

o0

1 )
P(Q,¢,Z) = % Z 62n¢>
o (2.49)
x / [An(kz)eikzzH,(f)(kgg)+Bn(kz)eikzZH,(f)(ng)] dk,

where,
ko, = k% — k2, (2.50)

are the radial components of the wave-vector k. A comment on the form of
Eq. (2.49) is in order. Since e!"? is 27-periodic for any ¢, n must be an integer.
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Thus, a sum takes all contributions of the wavenumbers in ¢-direction into
account. Since no such restriction applies to e?*:* an integral is necessary to
sum up all contributions of the wavenumbers in z-direction, k.. Note that
in Eq. (2.49) the dependency of the pressure on w or, equivalently, on k has
been omitted. Whenever possible, this notational convenience will be adapted
throughout this section.

By defining the time-dependence to be e~™* rather than et™?* in the
time-domain formulation of the displacement vector, cf. Section 2.1, the Han-
kel function of the first kind represents outgoing cylindrical waves and the
Hankel function of the second kind needs to be considered for incoming cylin-
drical waves. This convention will be of importance in later developments.
By expressing the Hankel functions using Bessel and Neumann functions as
defined by Egs. (B.4) and (B.5), Eq. (2.49) can be written as,

oo

Plog,2) =5 > ¢
- (2.51)
[ |Cnth) 2 0500) + Dl Vs k)| .
where,
Cn(k,) = Ap(k.) + Bn(k,) (2.52)
Do(k2) = ifAn(k2) — Ba(k.)]. (2.53)

A, (k,) and B, (k,) in Eq. (2.49), and implicitly in Eq. (2.51) are specified
by the boundary conditions of the problem, i.e. the behavior of the acoustic
wavefield at a boundary between two media.

Figure 2.4 depicts the boundary value problem, where the annular disk
region specifies the area of validity of the homogeneous wave equation. All
sources denoted by S; are located within the cylindrical surface bounded by
Ry and all sources denoted by Sg are located outside the cylindrical surface
bounded by Rg. The resulting annular disk specifies the area of validity of the
homogeneous acoustic wave equation. This general scenario can be simplified
for many boundary value problems of interest.

Interior boundary value problems are considered when all sources are lo-
cated outside the cylindrical surface bounded by Rpg, i.e. all sources Sy are
absent. In this case, the area of validity includes the origin. Since all sys-
tems under consideration are physical systems and both Hankel functions in
Eq. (2.49), HT(LI’Z)(-), are infinite at the origin (see Section B.1), Eq. (2.51) is
used. Since the Neumann function, Y,,(-), is also infinite at the origin, it is
necessary that D, (k,0) = 0 and therefore Eq. (2.51) simplifies to,

o0

1 & ) )
Plo.g2) =5 3 €™ / Co(hs) <2 T, (ko) drz. (2.54)

— 0o
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Fig. 2.4. Boundary value problem. The annular disk region specifies the area of
validity of the homogeneous wave equation (after [Wil99])

Exterior boundary problems exist when the cylindrical surface completely
encloses all sources, cf. Sy in Fig. 2.4, and the sources Sg are absent. Now,
the solution of the homogeneous acoustic wave equation is determined by
Eq. (2.49), where B, (k,) = 0, since incoming waves cannot exist in this case.
Exterior boundary problems reduce the general solution of the wave equation
to,

1 = . ,
P(o,¢,2) = — Z e e*=2 HW (k,0) dk.

27rn

o0
¢ [ e
— 00

= - (2.55)
£ / A (k) e** Hy, (ko) dk..

n=—oo 0o
Since most of the following discussions will not involve Hankel functions of the
second kind, the superscript (V) will be omitted in further derivations, except
when indicated otherwise.

Note that it can be seen from Eq. (2.50) that the radial component of the
wavenumber, k,, can be both real (k > k,) or purely imaginary (k < k).
These two cases correspond to cylindrical wave radiation and the so-called
evanescent wave radiation [Wil99], respectively. Further explanation is given

in Section 2.3.2.
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2.3.2 The Cylindrical Radiator

This section examines infinite-length and finite-length cylindrical radiators
following the discussion presented in [JF93]. Since steady-state conditions
and a periodic time-dependent radially acting driving force resulting in a
harmonic particle displacement of the field point on the cylinder surface at
0=R, Q(R, ¢,2), see Fig. 2.3, are assumed, the resulting particle velocity is
spatially periodic. It is therefore assumed that the spatial periodicity of the
particle velocity is confined to the circumferential coordinate, ¢. Then, the
particle velocity can be expanded into a Fourier series in ¢ as,

W (o, ¢, 2) Z W f(2)e™?, (2.56)

n=—oo

where the z-dependence is accounted for by the term f(z), and W,, denotes the
Fourier coefficients. The pressure field for an infinite-length and finite-length
cylindrical radiator is derived in Section 2.3.2. In the case of an infinite-length
cylindrical radiator, the z-dependence is assumed to be periodic, whereas in
the case of a finite-length cylindrical radiator this assumption, in general,
cannot be made. This is due to the fact that the particle velocity distribution
on the cylinder surface is limited to the length of the cylinder.

The Cylindrical Radiator of Infinite Length

In this section, the special case of a periodic f(z) in z of Eq. (2.56) is examined.
Spatial periodicity in both ¢- and z-coordinates can be accounted for by a
double Fourier series as,

Q, (ba Z Z W 1k ,zeinqb) (257)

n=—oo0 m=—0oo

with Fourier coefficients W,y . Specifically, the continuous wavenumber, k.,
is thereby replaced by the discrete wavenumber k,,

The pressure of a cylindrical radiator of infinite length can be obtained by
applying the appropriate boundary condition. Because of the spatial period-
icity of the problem, the pressure, Eq. (2.55), becomes,

P(0,9,2) Z Z Ay (k) Hy (kpo)e ™ etim=, (2.58)

The spatial derivative with respect to the radial component on the cylinder
surface is,

0
a_QP(Q’ qbvz)‘Q:R

s s (2.59)

=k, Z Z An(km)H;L(k;gR)ein¢eikmz7

nN=—oo0 m=—0oo

VP(Q7 ¢,Z)|g:R =
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where the prime denotes the derivative with respect to the argument. Applying
Euler’s equation, Eq. (2.45), to Eq. (2.57) and Eq. (2.59) with k, = \/k2? — k2,
results in,

iQO ck Wmn

VK2 — k2 H, (\/k? — kZR)
Plugging this result into Eq. (2.58) finally yields the pressure field of an
infinite-length cylindrical radiator with spatially periodic configuration, i.e.,

- i s Wman( ]fg_kgn Q) ikmz ind
Pleos)=inck 3 2 Jopm o

n=—o0 m=—0oQ

(2.61)
(a) cylindrical wave (b) conical wave (c) evanescent wave

(k> km) (k > km) (k < km)

Fig. 2.5. Wave-fronts emitted by cylindrical radiators with spatially periodic par-
ticle velocity (after [JF93])

Two forms of wavefields can be deduced from Eq. (2.61), i.e. cylindri-
cally spreading wave-fronts (k > k,,) as well as evanescent waves (k < k)
[Wil99], where pressure decays exponentially with respect to distance o, see
Fig. 2.5. Cylindrical radially spreading wave-fronts can be further subdivided
into purely radial (k > k), Fig. 2.5(a), and conically (k > k,,), spread-
ing wave-fronts, Fig. 2.5(b), see [JF93]. Evanescent waves do not radiate any
power into the farfield since the associated pressure field decays exponentially
with growing distance from the radiator, Fig. 2.5(c). [Wil99] derives a condi-
tion for the presence of evanescent waves which is,

ko= 2o <n. (2.62)
A
The left-hand side of this inequality denotes the number of wavelengths which
fit around the circumference of the wavefront at radius ¢ [Wil99)].
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Pressure Field from an Omnidirectionally Radiating Line Source

Here, a special case of an infinite-length cylindrical radiator with finite radius,
i.e. a line source, is discussed. For simplicity, it is assumed that the surface
velocity is independent of z and ¢, i.e. the surface velocity is said to be omni-
directional. More complicated cases with surface velocity distributions other
than of omnidirectional nature are discussed in [JF93] and [Wil99]. In this
simple case, it follows that,

- o Woo, m=n=20
Won = {0, olse . (2.63)

Equation (2.61) then becomes with k, = k,

WooHo (ko)

P(o,9,2z) = P(0) = igoc HI ()

(2.64)

The transition to line sources can be performed by considering the limiting
case of small R. Applying Eq. (B.20) with n = 0 yields,

27

H)(kR) ~ —— 2.65
BR) ~ (2.65)
and therefore the pressure of a line source can be approximated by,
T .
Pr(o) 2 P(o,¢,2) = EgocW()ok/’RHo(kQ) ~ Hy(ko). (2.66)

Finally, an expression for the pressure of a line source in the farfield, ¢ —
oo, is given. A large argument approximation for the zeroth-order Hankel
function of the first kind is with Eq. (B.24),

2 .
Hy(ko) = || —— eilke=m/9) 2.67
o(ko) V ko ; (2.67)
and therefore,

k . : 1 . 1 .
Pt =\ et Lot Lo gy

Equation (2.68) is an expression for the outgoing wavefield generated by
an omnidirectionally radiating, i.e. pulsating, line source in cylindrical coordi-
nates. The factor 1/,/p is responsible for a 3 dB attenuation of the wavefield
when the point of observation is subsequently doubled in distance from the
source. This attenuation is typical for cylindrically spreading wavefields.

Figure 2.6 shows the position of a bandlimited impulse emitted by an
omnidirectionally radiating line source at several time instances, 0 < t; <
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Fig. 2.6. Propagation of a cylindrically spreading wave-front at several time in-
stances

ty < t3 < t4. These time instances are equivalent to the respective distance of
the wavefield with respect to the radiating line source. The attenuation factor,
1/,/0, is also shown as a dashed curve.

Note that Fig. 2.6 is valid only for a wave-front generated by a line source
in the farfield since two-dimensional wave propagation, in general, not only
results in an attenuation of the wave-front as it propagates but also in a mod-
ification of the shape of the wave. This can be understood by examining the
inverse temporal Fourier transform of i H, él) (w|lo—ol|/c)/4, the fundamental
solution of the acoustic wave equation in two dimensions, cf. Eq. (2.36), which
is [MF53],

fw{—Ho <w|g—go|/c>} _ .
1 s t>le—ooll/c
2/ — (e = 2ol /o)
(2.69)

As can be seen, this wave does not only have a sharp front but leaves a slowly
diminishing 'wake’ behind. In other words, Fig 2.6 only considers the wave-
front and not the 'wake’.

The Cylindrical Radiator of Finite Length

The z-dependent component in Eq. (2.56) for cylindrical radiators of finite
length is, in general, not spatially periodic. This means that k., needs to be
expressed in a continuous fashion, that is by a continuous distribution F'(k,).
Thus, the z-dependent part of the surface velocity, i.e. f(z) in Eq. (2.56), can
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be represented by an inverse spatial Fourier transform with respect to k. (see
Section A.1), i.e.,

. 1 & .. ¥ )
_ ing ik, z
W(Q> ¢7 Z) — o Z Wne / F(kz)e dkz7 (270)
n=-—oo %
where,
fe'e) L
F(k,) = / f(z) e k=2 gy = / f(z) e tk=2 dz, (2.71)
—o00 —L

due to the finite length of the cylindrical radiator.

The pressure of a cylindrical radiator of finite length can, as for the case
of infinite length, be derived by applying Euler’s equation, Eq. (2.45), to
Eq. (2.55) and Eq. (2.70) evaluated at ¢ = R. It follows that,

10ock Wn
VR —kZH, (\/k? = k2R)

Plugging this result into Eq. (2.55) finally yields,

P(o,¢,2) =

o0k <~ ing Ji Hy, (Vk* — k2 o) ik.z
= > Whe / N AN R)F(kz)e dk.,
oo

(2.73)
where F'(k,) is defined in Eq. (2.71).
Note that the boundary conditions introduced by the endcaps of the finite
cylindrical rigid baffle have been neglected.

2.3.3 The Cylindrical Scatterer

In this section, the wavefield is not generated by the cylindrical surface but by
a point source located sufficiently far from the cylinder. As a first approxima-
tion, an often quoted requirement for ’sufficiently far’ is, k||@ — @y|| > m. The
incoming wavefield interacting with the cylinder can therefore be regarded as
planar, see Section 2.2. The cylinder can be considered as an acoustic obstacle
that modifies the incoming wavefield by its boundary condition. More specif-
ically, the cylinder scatters the wavefield. Assume that a cylinder is placed
into a cylindrical wavefield as shown in Fig. 2.7. Furthermore, assume that the
wavefield is two-dimensional, making it independent of the z-coordinate. This
assumption yields a symmetric setup that greatly simplifies further deriva-
tions.

Two types of boundary conditions are considered in this section. First and
foremost, this book deals mainly with so-called rigid boundaries. A material
is considered acoustically rigid if its locally reacting acoustic impedance, Z, is
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Fig. 2.7. Geometric model considered for the scattering problem for z =0

much larger than the impedance of the transmitting medium. The frequency-
dependent acoustic impedance leads to a boundary condition describing a
surface and is defined as the ratio of the acoustic pressure, p or P, to the inward
normal component of the particle velocity, w or W. Assuming an airborne
wavefield generated at a large distance from the cylinder, the impedance of
the medium, i.e. air, is Zy, where [JF93],

Zo = 00, (2.74)

is called the characteristic acoustic impedance. A large acoustic impedance
of a rigid scatterer means that the scattering medium is acoustically much
’harder’ than the one in which the rigid scatterer is placed, i.e. its density
( or speed of sound) is much higher. It can be shown that, for kR > 1, the
pressure on the surface of the rigid scatterer where the plane-wave impinges,
ie. (0,¢) = (R,0) in Fig. 2.7, is twice its free-field value [JF93], cf. Fig. 2.8.
Many structurally 'hard’ materials placed in air can be considered rigid as a
first approximation.

Materials that satisfy Z < Z are considered acoustically soft, or 'pressure-
release’. This terminology is explained by the fact that the acoustic pressure
is zero at the pressure-release boundary. To a wave that is transmitted by a
source located underwater, the air surface, for instance the ocean surface or
bubbles in water, can be considered as acting as a pressure-release boundary.
Therefore, pressure-release boundaries are mainly dealt with in the under-
water literature. A more general discussion of scattering involving materials
that can neither be classified as strictly acoustically rigid nor strictly pressure-
release can be found in [And50].
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The Infinite-Length Cylinder as a Rigid Scatterer

Figure 2.7 shows the geometry of the scattering problem under consideration
where a point source, Sy, at (0,p,2) = (00,0,0) emits a wavefield that is
assumed to be planar at the surface of the rigid scatterer.

Because of the assumed symmetry of the problem — a plane-wave traveling
perpendicularly to the z-axis — the incident wavefield at point Q(g, ¢) resulting
in k = k, can be written as,

an(@y (ZS) = I:)inceikg COS¢~ (275)

See Section 3.1.1 for a detailed derivation of this relation. Without loss of
generality the amplitude of the plane-wave, ]%nc, is assumed to equal unity in
all of the subsequent discussions. The subscript ’inc’ here and in the following
denotes an incoming wave.

Since Eq. (2.75) is independent of z, it can be expanded in a Fourier series
[AST2] as,

oo

Pic(0,¢) = 0% = 3" i" ], (ko)e™?, (2.76)

n=—oo

which could have been obtained also by applying Eq. (2.44). Pin.(0, @) is the
sound pressure at Q(o, ¢) if the rigid scatterer were not present. As will be
shown below, this plane-wave by itself does not satisfy the boundary condi-
tions at ¢ = R. Therefore, an additional wavefield, caused by the presence
of the cylinder, must exist that satisfies the acoustic wave equation at that
boundary. This wavefield is called the scattered wavefield, Pscat(0,®), that
must consist of components traveling outward with respect to the scatterer.
These outward traveling waves are described by Hankel functions of the first
kind.

Rigid boundaries result in the particle velocity having a zero component
in the direction of the surface normal, e,, i.e. [Wil99],

Wicat(97 ¢)|Q:R + Winc(g7 ¢)|Q:R = 07 (277)

where the subscript ’scat’ here and in the following denotes the scattered
wave. According to Eq. (2.45), it follows that,

_ OPuc(0,0)

iQOCkVi/inC(Q7 ¢)|Q:R - ag |Q:R' (278)

Keeping in mind the symmetry of the problem and evaluating Eq. (2.78)
with Eq. (2.76) one obtains with Eq. (2.77),

T 1 - n 7 m
WSC&t(R’d)):—iQ? Z i"J,(ER)e ?. (2.79)

n=—oo
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Since this velocity distribution on the cylindrical surface is independent of z,
it follows from Eq. (2.57) that,

. _ 1 n7 _
Wscatmn = 7;QOCZ Jn(kR)7 m 0 .
0, m 40

(2.80)

The scattered wavefield due to the rigid cylinder can be obtained by plug-
ging Eq. (2.80) into Eq. (2.61) to yield,

Pecat(0,0) = = Y z’”%em? (2.81)

n=—oo

Finally, one obtains for the total wavefield,

Ptot(gv ¢) = Pinc(97 (b) +Pscat(ga d)) = Z " |:Jn(kg) - %

n=—oo n

e?,nzb7

(2.82)
where the subscript 'tot” here and in the following denotes the resulting (total)
wavefield, i.e. the superposition of the incoming and scattered wave.

Figure 2.8 is a pictorial representation of Eq. (2.82), the total wavefield in
the proximity of an infinite-length rigid cylindrical scatterer with R = 0.04 m
due to a plane-wave incidence, in the time-domain. The area of the rigid scat-
terer is shown as a white disk since it is assumed that no wavefield is generated
inside the scatterer, which results from the fourth assumption stated in the
introductory paragraph in this chapter. The upper left snapshot depicts the
incoming bandlimited plane-wave according to the setup shown in Fig. 2.7 be-
fore hitting the scatterer. For generating the plots, the temporal sampling rate
was chosen to be 48 kHz, corresponding to a bandwidth of the plane-wave of
24 kHz. The upper right part of the figure shows a snapshot where the plane-
wave has just hit the scatterer. The cylindrically spreading reflected wave is
clearly visible. Also, it can be seen that the pressure on the cylinder surface
is higher than anywhere else which is due to the specular reflection off the
surface. The lower left sub-figure shows a snapshot where the incoming plane-
wave has just passed the cylinder. Visible are the reflected wave as well as the
effect of the acoustic shadow formed by the cylinder. Due to the presence of
the cylinder, the shape of the plane-wave has changed in the close proximity
of the cylinder, the gap being partly filled in by diffraction from the incident
plane-wave. As time proceeds further, diffraction continues to fill in the gap
in the plane-wave, thereby "healing’ the wave-front [Feu04]. This phenomenon
is indicated in the lower right sub-figure. It can also be seen that this diffrac-
tion phenomenon generates a circumferential wave that propagates along the
surface of the cylinder and that eventually breaks off. Figure 2.8 shows the
scattering effect for an impulsive plane-wave incidence, which corresponds to a
broadband signal. Scattering, however, is a frequency-dependent phenomenon
that exhibits peculiarities for certain ranges of frequencies compared to the
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Fig. 2.8. Total wavefield in the proximity of an infinite-length rigid cylindrical
scatterer due to an incident plane-wave

object’s radius [UDM66] and, therefore, behaves in a more complicated man-
ner than indicated in Fig. 2.8. The first frequency region satisfies kR < 1 and
is known as the Rayleigh region. Here, the scattered wave propagates in all
directions and no shadow behind the scatterer is formed. Only a few terms
in Eq. (2.82) are necessary to describe these waves. Frequently, n = 0,1 is
deemed to be sufficient [JF93]. The second case is the region of geometrical
optics, kR > 1. Put somewhat informally, some of the energy contained in
the scattered wave spreads out uniformly from the scatterer while some of
the energy interferes destructively behind the scatterer, forming an acoustic
shadow. In the transition region, where kR ~ 1, it is shown in [FD52] that
incident plane-waves are not only reflected in the geometrical optics sense, but
also enter the shadow region of the scatterer along the surface and continue
propagating along the surface with reduced phase velocity and decreasing am-
plitude. This decrease in velocity and amplitude is frequency-dependent. It is
said that the waves creep along the surface of the scatterer. These tangentially
radiating waves, caused by the zeros of the Hankel functions [HS69], result
therefore in evanescent waves that attenuate quickly. It follows from the na-
ture of creeping waves that the scatterer appears to be larger in diameter.
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This effect, further investigated in Section 3.1.1, can be seen in the lower left
image in Fig. 2.8 since the impulsive plane-wave contains frequencies in the
transition region.

A special solution of Eq. (2.82) will be very important in the remainder
of this work, i.e. the total wavefield on the surface of the rigid infinite-length
cylinder, o = R, which can be expressed as,

Pt (R, ¢) = nioo i" [Jn(kR) — % en?. (2.83)
By employing the Wronskian relationship [JF93],
Ju(kR)Y. (kR) — Y (kR)J. (kR) = %7 (2.84)
Eq. (2.83) can be compactly written as,
Piot(R, ¢) = ;:R ni % en?, (2.85)

Figure 2.9 depicts the normalized spatial response of the total wavefield
due to a single plane-wave impinging from ¢ = 0...27 at a point-like omnidi-
rectional receiver mounted at (r, ¢, z) = (R,0,0) into the infinite-length rigid
cylindrical baffle of Fig. 2.8. It can be seen that the spatial selectivity depends
on the direction of the impinging plane-wave, in the extreme case resulting in
the above discussed shadow zone corresponding to the minima in the spatial
response. This phenomenon does not occur when the point-like receiver is not
mounted into a rigid cylindrical baffle. The spatial selectivity is dependent on
kR as well, as a result of the presence of creeping waves [Wied7]. Note that
Fig 2.9(b) is merely an excerpt of Fig 2.9(a) covering a range of kR that will
be of importance in later chapters.

Figure 2.10 shows the pressure distribution in the time-domain along a
circular region in space, with R = 0.04 m, due to a bandlimited plane-wave
incident from ¢ = 0. As before, the temporal sampling rate was chosen to
be 48 kHz, corresponding to a bandwidth of the plane-wave of 24 kHz. Fig-
ure 2.10(a) depicts the case where no boundary conditions are imposed (case
1), while Fig. 2.10(b) depicts the case where a rigid boundary condition at
R = 0.04 m is assumed (case 2). Figure 2.10(b) shows how the pressure distri-
bution changes as the plane-wave travels along the rigid boundary, cf. Fig. 2.8.
It can be seen that the pressure at the angle of incidence, ¢ = 0, is higher
in case 2 than in case 1, as a result of the amplitude increase due to spec-
ular reflection. Also, the amplitude decreases as the wave travels along the
boundary in case 2. As expected, no amplitude decrease is observed in case 1.
Both aforementioned effects of creeping waves, the presence of circumferential
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Fig. 2.9. Spatial response of the total wavefield due to a single plane-wave im-
pinging from ¢ = 0...27 at a point-like receiver positioned at (r, ¢, z) = (R,0,0)
mounted in an infinite-length rigid cylindrical baffle

waves that eventually break off and the fact that the rigid boundary appears
to be larger in diameter, can be verified in this figure. The circumferential
waves correspond to the two 'lobes’ that originate from ¢ = 7 in Fig. 2.10(Db).
The larger diameter can be interpreted as the longer response time (in terms
of samples) the wave causes as it travels along the circular region in space.

The Finite-Length Cylinder as a Rigid Scatterer

It is again assumed that the wavefield impinges the finite-length rigid scat-
terer normally with respect to the cylindrical axis, cf. Fig. 2.7. Then, after
neglecting the boundary conditions at the endcaps and setting f(z) = 1 in
Eq. (2.71), the scattered field generated by a cylinder of finite length 2L can
be approximated by restricting the velocity distribution to the length of the
cylinder, i.e.,

o . .
: S Wee™ |zl < L

Wicat (R7 ¢7 Z) = n=—oo ; (286)
0, |z| > L
where it follows from Eq. (2.80) that,
. 1 ,
W, =——i"J,(kR). (2.87)

100C

The spatial Fourier transform of Eq. (2.86) yields,
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Fig. 2.10. Pressure distribution in the time-domain along a circular region in space,
with R = 0.04 m, due to a bandlimited plane-wave incident from ¢ =0

. o0

Wecat (R’ s kz) = f Wscat(Ra o, Z)e_ikzz dz

0 . . L ,k
Z Wnezn(b f e "= dz (288)

n=-—oo —L

S . .
> Wpe™® 2L sine(k, L),
—_———

n=-—oo

F(kz)

where in the last step Eq. (2.70) has been used and where sinc(k,L) =
sin(k,L)/(k.L). The scattered wavefield produced by a finite-length rigid
cylinder is therefore with Eq. (2.73), Eq. (2.87), and Eq. (2.88),

o

kL o i
Pscat(Qa ¢)7 Z) = _? Z Zan(kR)e e
o (2.89)
y H,(\/k? — k2 o) sinc(k. L) oih7 g

2 — k2H, (/K2 — k2 R)

One can easily show that the scattered wavefield due to the presence of an
infinite-length rigid cylinder, Eq. (2.81), is a special case of Eq. (2.89) by
realizing that in Eq. (2.88),

F(k,) = / ik gy 218 (kz), (2.90)

— 00

and by applying this result to Eq. (2.73).
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Finally, one obtains for the total pressure,

Ptot(Q, ¢) = an(@a (b) + Pscat(Qa 0, Z)7 (2.91)
and therefore,
Piot(0,0,2) = Z ian(kQ)em(b
n=-—oo
_ @ > kR ing / — k2 g)sinc(k, L) o=
T o \/k:2 k2H,(\/k2 — k2 R)
(2.92)

A special case that is of central importance in this book is the pressure on
the surface of a finite-length rigid cylinder in the zy-plane, i.e. z = 0, which
follows as,

Pot(R,¢) = Y i"Ju(kR)e™?
_ ﬁ Z inJ/ (kR)eind) Hy( V k2 — kg R)sinc(k.L) dk,.
g n=—o00 ! \/k2 - kgH’r,L(\/k2 - kg R)

(2.93)

The total wavefield in the proximity of a rigid cylindrical scatterer of finite
length due to a normally incident plane-wave qualitatively exhibits the same
behavior as the rigid cylindrical scatterer of infinite length in the xy-plane,
see Fig. 2.8. However, this statement is true only if the cylinder is 'sufficiently
long’, i.e. the boundary conditions that are associated with the endcaps of the
cylinder do not contribute significantly to the pressure in the zy-plane. It is
assumed throughout this work that this condition is fulfilled. More discussion
on ’'sufficiently long’ cylinders is provided in Section 3.1.1.

Note that Eq. (2.83) follows directly from Eq. (2.93) for infinitely long
cylindrical scatterers since [Wei03],

lim L sinc(k,L) = 6(k,). (2.94)

L—oo T

Infinite-Length Cylindrical Scatterer with Pressure-Release
Boundaries

Equation (2.77) describes the boundary conditions of materials that can
be considered acoustically rigid. A second class of materials are considered
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pressure-release [Wil99], i.e. they require the pressure to be zero on its sur-
face, i.e.,

Ptot(@a ¢)|0:R = Pscat(@a ¢)|Q:R + Pinc(Qa ¢)|Q:R =0. (2.95)

Now, consider the same setup as in Fig. 2.7 where the only difference is that
the boundary satisfies the pressure-release boundary condition, Eq. (2.95).
Therefore, it follows for the scattered wavefield, corresponding to Eq. (2.81),

scat :Qa Z A kR kQ) anb (296)

n=—oo

Introducing Eq. (2.76) into Eq. (2.95) yields,

> An(kR)H,(kR)e™ + Z W(kR)e™ =0, (2.97)
resulting in,
J In(kR)
A, (kR 2.98

Finally, the total wavefield due to an infinite-length cylinder satisfying the
pressure-release boundary condition can be written as,

Piot(0,9) = Z i [Jn(kg)—%m(kg) e, (2.99)

n=—oo

It follows immediately that Pyt (R, ¢) = 0, thus satisfying Eq. (2.95).

Figure 2.11 shows the total wavefield in the proximity of a pressure-release
cylindrical scatterer due to an incident plane-wave. The snapshots were chosen
such that a direct comparison with the rigid cylindrical boundary, presented in
Fig. 2.8, is possible. An important difference is the fact that no strong surface
waves are generated. However, it has been shown in [UDMGG} that surface
waves are expected exhibiting an amplitude that is much weaker than in the
case of a rigid scatterer. Therefore, these waves are not visible in the linearly
scaled plots in Fig. 2.11. Another difference with respect to rigid scatterers is
the fact that the reflected cylindrical wavefield experiences a phase change due
to the requirements of the boundary condition. Since the incoming wavefield
has a positive peak, the scattered one must have a negative peak in order to
cancel the total wavefield on the cylinder surface.

As stated before, conditions that require to model the scatterer as pressure-
release are mainly present in underwater acoustics and are not further pursued
in the following.
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Fig. 2.11. Total wavefield in the proximity of a pressure-release cylindrical scatterer
due to an incident plane-wave

2.4 Acoustic Wave Equation in Spherical Coordinates

This section examines wavefields in spherical coordinates. Both wavefields
produced by a spherically shaped object and modifications of wavefields due
to the presence of a spherical object in a wavefield are discussed. Section 2.4.1
presents a general solution of the homogeneous Helmholtz equation. Sec-
tion 2.4.2 detail the wavefield of a spherical radiator and scattering phenomena
of spherical objects are outlined in Section 2.4.3.

2.4.1 General Solution of the Acoustic Wave Equation in Spherical
Coordinates

The spherical coordinate system and the geometric model of a spherical radia-
tor/scatterer with radius R is shown in Fig. 2.12. The relation of the spherical
coordinate system with respect to the Cartesian coordinate system was given
in Eq. (2.3). The field point Q(r, 0, ¢), located on the spherical surface, is also
depicted. Transferring the results from Section 2.1 to the particular case of
spherical coordinate systems gives for Euler’s equation, Eq. (2.13),
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Fig. 2.12. Geometric model of a spherical radiator/scatterer

1

VP(r,0,¢,w), (2.100)

where with Eq. (2.7), Eq. (2.3), and Eq. (2.8),

o 10 19

= — — —é€y. 2.101
v ert €0 rsin08¢e¢ (2.101)

or r 90

For the acoustic wave equation in the frequency-domain, i.e. the homoge-
neous Helmholtz equation, cf. Eq. (2.16), it follows that,

V2P(r,0,¢,w) + k2P(r,0, ¢,w) = 0, (2.102)

with, cf. Eq. (2.15) and Eq. (2.8),

, 10/,0 1 a(. 0 1
A DA IS Ay (Y I S A R
Vi =ma ") T e\ ) T rranzs o (2109

Subsequently, steady-state conditions are assumed and the explicit time-
dependence is dropped for notational convenience in further developments.
The steady-state solution of the acoustic wave equation in spherical coordi-
nates can be shown to be [Wil99],
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P(r,0,0) = > [ApnhlD(kr) + Bunh (P (kr)] Y (0,6).  (2.104)
n=0m=-—n

By defining the time-dependence to be e~*?* rather than e*t*?! in the time-
domain formulation of the displacement vector, cf. Section 2.1, the spherical
Hankel function of the first kind corresponds to outgoing spherical waves while
the spherical Hankel function of the second kind corresponds to incoming
spherical waves with respect to the coordinate origin.

By expressing the spherical Hankel functions, h%l’Q)(lcr), with spheri-
cal Bessel, j,(kr), and spherical Neumann functions, y,(kr), according to

Eq. (2.22), Eq. (2.104) can be written as,

n

P(r,0,¢) = Z > [Coniin(kr) + Doy (kr)] Y, (60, 9), (2.105)

n=0m=—n

where,

D = i(Amn — Bmn)- (2.107)

The terms A,,, and B,,, are defined by the boundary values of the problem.

As in the cylindrical case, see Section 2.3.1, two important boundary value
problems can be identified, i.e. the interior and the exterior boundary value
problem. Following the same steps as presented for the discussion of Fig. 2.4 in
cylindrical coordinates the general solution of the homogeneous wave equation
in spherical coordinates for interior boundary value problems can be written
as,

P(r,0,¢) = Z Z Connn(kr)Y, (0, @), (2.108)

n=0m=—n

and for exterior boundary value problems,

S ST A (k)Y (6,0)

n=0m=—n

£35S A (k)Y (6.).

n=0m=-—n

P(r,0,9)

(2.109)

Since most of the following discussions will not involve spherical Hankel func-
tions of the second kind, the superscript (V) will be omitted in all further
derivations, until noted otherwise.

2.4.2 The Spherical Radiator

Following the discussions of Section 2.3.2, most surface velocity distribu-
tions on spherical boundaries can be represented by double series as, cf. Sec-
tion 2.2.2,
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W(0,6) =Y > WunV"(0,9). (2.110)
n=0m=—n
Applying this velocity distribution to exterior boundary value problems it can
be shown that with Eq. (2.100) and Eq. (2.109),

Z'QOCVan

RNACOR

(2.111)
and therefore for the pressure distribution due to a spherical radiator of radius
r = R, it follows that,

n

P(r,0,¢) —lgocz > Wm”h )Y,T(H,gi)). (2.112)

n=0m=—n

Note that Eq. (2.112) is valid only for » > R.

The pressure field of a general spherical source in the - and ¢-direction
is determined by the strength of the respective spherical harmonic, Y, (6, ¢),
in Eq. (2.112). The subscript n represents the number of nodal circles coaxial
with the § = 0 axis. A nodal circle is a region on the sphere which does not
move for a particular mode of vibration. The superscript m dictates the wave-
length in the ¢-direction and represents the number of nodal circles that are
great circles — defined as circles having the same radius as the spherical source
— intersecting the 6 = 0 axis [JF93]. Images of the spherical harmonics that
should clarify these statements are provided in Section 3.2. Configurations
with spherical symmetry, i.e. n = m = 0 are considered next.

Pressure Field from an Omnidirectionally Radiating Spherical Source

In the following, a special case of a spherical radiator of vanishing radius, i.e.
a point source, is discussed. First, it is assumed that the surface velocity is
independent of # and ¢. More complicated cases with surface velocity distri-
butions other than of omnidirectional nature are discussed in [JF93]. In this
simple case, the boundary condition on the spherical surface is,

% _ W()(), m=n=2~0
Winn = {07 else : (2.113)

Equation (2.112) then becomes,

Woo ho(kr)

P(r,0,¢) = iogc Ho (e R) Y30, ¢). (2.114)

Since Y (0, ¢) = 1/+/4m, see Tab. B.2, Eq. (2.114) can be simplified to yield,

i00cWoo ho(kr)

P00 == kR

~ h()(k"l“) (2.115)
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In the farfield, r — oo, from Eq. (B.43) it follows for the spherical Hankel
function of the first kind that,

ho(kr) ~ ;—Z etk (2.116)
r
and therefore,
p(r) ~ LVVOO} e ~ 1e““’“. (2.117)
kvdmhy(kR) T r

Equation (2.117) is an expression for the outgoing wavefield generated
by an omnidirectionally radiating, i.e. pulsating, spherical source in spherical
coordinates. The factor 1/r is responsible for an 6 dB attenuation of the
wavefield when the point of observation is subsequently doubled in distance
from the source. This is in contrast to the attenuation factor that occurs in
cylindrical wavefields, see Section 2.3.2. Note that Eq. (2.117) describes the
pressure field of a point source for small radius R, in accordance with the
point source solution of the inhomogeneous Helmholtz equation, Eq. (2.19).

Figure 2.13 shows the position of a bandlimited impulse emitted by an
omnidirectionally radiating spherical source at four time instances, 0 < t; <
to < t3 < tg. These time instances are equivalent to the respective distance
of the wavefield to the radiating source. The attenuation factor, 1/r, is also
shown as a dashed curve.

pressure
-—-=1/r

Amplitude

t1 to t3 t4

20 40 60
r/R

Fig. 2.13. Propagation of a spherically spreading wave-front at several time in-
stances
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The shape of the wave-fronts in Fig. 2.13 are, in contrast to the cylindrical
radiator, valid for a wave-front generated by a point source in the nearfield
as well as in the farfield since three-dimensional wave propagation only re-
sults in an attenuation of the wave-front as it propagates. This phenomenon
can be understood by considering the inverse temporal Fourier transform of
the fundamental solution of the acoustic wave equation in three dimensions,
Eq. (2.19) or Eq. (2.20), which is a time-shifted Dirac function.

2.4.3 The Spherical Scatterer

The model under consideration for the spherical scatterer can be visualized us-
ing Fig. 2.7 for the special case of normal plane-wave incidence. A plane-wave
coming from any direction (1, ¢) can be expanded into spherical harmonics
as,

Pine(r, 0, ¢) —471'22 Jn (k) Z Y0, )Y, (Y, )", (2.118)

see Eq. (2.35). For the total wavefield, the following relation applies,

PtOt(T 0, (b) IHC(T 0, (;5) + Pscat(r 0, ¢) (2119)

The Rigid Spherical Scatterer

As in the cylindrical case, a rigid boundary requires the normal component
of the particle velocity to vanish on the surface, i.e.,

Winc (7’7 97 ¢)|T:R + Wscat (Tv 97 ¢)"r:R =0. (2120)
Euler’s equation for the incoming wave on the boundary is,

OPinc(r,0
i00ckWine(r, 0, 0)|r—r = %pﬂ. (2.121)

Evaluating the right-hand side of Eq. (2.121) one obtains with Eq. (2.118),

OPine(r, 0, ¢

o |r= R—47Tklen kR) Z Y(0,0)Y, (0, 9)*.  (2.122)

m=—n

Therefore with Eq. (2.120) it follows that,

I/Vscat (T, 0, d’) |7’:R = 7Winc (T7 0, ¢) |T*R

i & v . (2.123)
=—— i" jn (kR) Z Y0, 0)".

Z'QOC n=0 m=—n
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Realizing that the scattered wavefield is equivalent to a wavefield produced
by a spherical radiator it follows with Eq. (2.110) that,

. 4T
sca =—i"—j,(k 2.124
Wat = "o L SRV (0, (2120
and with Eq. (2.112),
scat(T 9 ¢ _47TZZn]n Z Ym Ym(ﬁ (p) (2125)

m=—n

The total wavefield due to the presence of a rigid spherical scatterer is therefore
with Eq. (2.119),

Pios(r, 60, 6) —4772 []n (kr) — %} S V6, )Y (0, )"

m=—n
(2.126)
Due to the symmetry of the spherical scatterer the wavefield qualitatively
equals the one derived in Section 2.3.3 for the infinite-length cylindrical scat-
terer with normal plane-wave incidence. The total wavefield in the proximity
of a rigid spherical scatterer looks like the one shown in Fig. 2.8 and, thus, is
not reproduced here.
Again, this book is concerned with the total pressure on the spherical
surface, i.e.,

Purt,0,0) = 473 [inhr) - TR 57 5, 10,
n=0

m=—n

(2.127)

This result can be expressed in a condensed way using the Wronskian relation
[JF93],

jn(kR)h, (kR) — j. (kR)h,(kR) = (2.128)

(kR)>’
to finally yield,

Piot(R, 0, ¢) = (1317;2 Z h, Z Y0, 6)Y," (9, )" (2.129)
n=0 "

m=—n

The spatial response of the total wavefield due to a single plane-wave
impinging from ¢ = 0...27 and ¢ = /2 at a point-like receiver positioned
at (r,0,¢) = (R,7/2,0) in a rigid spherical baffle is qualitatively similar to
the result for infinite-length cylindrical baffles, see Fig. 2.9. Quantitatively,
the difference is that plane-waves impinging from the opposite side w.r.t. the
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point-like receiver result in a higher-amplitude total response. This is due to
the so-called bright spot exhibited by spherical scatterers [Wied7].

Note that all results presented in Section 2.3.3 can be qualitatively carried
over to the spherical case and are therefore not further extended in more detail
here.

The Pressure-Release Spherical Scatterer

As discussed in the cylindrical case, pressure-release boundaries require the
pressure to be zero on the spherical surface in order to satisfy the boundary
condition, i.e.,

Pscat (Ta 97 ¢)|T:R + Pinc(/r; 0; ¢)|T:R = 0 (2130)

By expressing the scattered wavefield using Eq. (2.109) and the incoming
wavefield using Eq. (2.118) it can be easily shown that it follows for the total
pressure due to the presence of a pressure-release spherical scatterer that,

Pl 0.9) =4 3= jaChr) ~ R0 ] 37 0.0

(2.131)
which, again, vanishes on the spherical surface, as expected. The total wave-
field close to the pressure-release spherical scatterer due to a plane-wave in-
cidence looks like the one shown in Fig. 2.11 and is therefore not reproduced
here.
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Wavefield Decomposition

This chapter deals with wavefield decomposition making extensive use of the
theoretical foundations of acoustic wavefields laid out in Chapter 2. Wave-
field decomposition (WFD), as treated in this book, is a technique that de-
composes a wavefield into spatially orthogonal eigen-solutions of the acoustic
wave equation in a coordinate system that best suits the geometry of the
aperture under consideration. Here, apertures are spatially distributed obser-
vation devices for analyzing the characteristics of the spatio-temporal nature
exhibited by wavefields. This aperture may be a continuous processor in three-
dimensional space. Alternatively, this continuous aperture may be sampled by
discrete points in space. The resulting processor is called an array.

Widely used apertures include linear, planar, circular, and spherical aper-
tures. For WFD methods, two apertures are of particular interest. The first
geometry of interest in this context is the circular aperture. It is shown in
Section 3.1 that circular apertures are particularly suitable for capturing and
describing two-dimensional wavefields, since circular apertures decompose the
wavefield into eigen-solutions of the acoustic wave equation in cylindrical co-
ordinates. As an alternative to conventional circular apertures, circular aper-
tures mounted into rigid cylindrical baffles are also investigated. It is shown
that this configuration has several advantages over conventional circular aper-
tures.

Section 3.2 details the wavefield decomposition capabilities offered by
spherical apertures and spherical apertures mounted into rigid spherical baf-
fles. It will be shown that spherical apertures decompose the wavefield into
eigen-solutions of the acoustic wave equation in spherical coordinates, thus
making this aperture attractive for capturing and describing wavefields in
three spatial dimensions.

Two other types of apertures are briefly discussed in Section 3.3, namely
linear apertures and cylindrical apertures, which, for reasons that will be-
come clear in subsequent sections, only play subordinate roles in wavefield
decomposition methods.
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It may be worthwhile noting here that an advantage of spherical apertures
over other geometries is its uniform spatial selectivity over the entire 47-space,
i.e. § and ¢. Note that circular apertures offer uniform spatial selectivity over
2m-space, i.e. ¢, only. Most other types of apertures do not offer uniform
spatial selectivity at all.

3.1 Wavefield Decomposition Using Circular Apertures
and Arrays

In this section, wavefields are analyzed by circular continuous apertures and
by sampled continuous apertures, i.e. circularly symmetric microphone ar-
rays. Circular apertures can be successfully deployed in situations where the
wavefield is invariant with respect to the z-axis, for examples in rooms where
reflections off the ceiling and floor are sufficiently attenuated. Both omnidi-
rectional and directional apertures are considered.

3.1.1 Continuous Circular Apertures

Figure 3.1 depicts the geometric model of a circular aperture of radius R.
This aperture is optionally mounted into a (rigid) cylindrical baffle of length
2L. The setup where the circular aperture is mounted into a rigid cylindrical
baffle will be referred to as baffled circular aperture. Otherwise the setup will
be called an unbaffled circular aperture.

According to Eq. (2.34) in the general case of three-dimensional wave
propagation, the pressure of a plane-wave impinging on the circular aperture
can be written as,

Pinc(kTr) = "7, (3.1)

where k is the wave-vector of the incoming plane-wave with k = ||k|| = 27 f /¢,
f denoting the frequency of the incoming plane-wave, and r is the position
of the observation point, Q4(r). The time-dependence is assumed to be e ~**
and is dropped in the following for notational convenience. For general three-
dimensional scenarios it holds in spherical coordinates that,

[sin cos ¢
k=kFk |sindsiny |, (3.2)
cos v

and,
[sin 6 cos ¢

r=r|sinfsing | . (3.3)
cosf

Combining Eq. (3.2) and Eq. (3.3), as required by Eq. (3.1), one obtains,

E”r = kr[sin @ sin 9 cos(¢ — ) + cos 6 cos ). (3.4)
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Fig. 3.1. Geometric model of a circular aperture mounted into a finite-length rigid
cylindrical baffle

The Unbaffled Circular Aperture

In the following, the properties of unbaffled circular apertures are examined.
As indicated in Fig. 3.1, only apertures that lie in the median plane, i.e.
0 = /2, are considered. The observation point, therefore, is no longer Qs (r)
but Q(0), since in the median plane it holds that g = . This restriction does
not compromise generality of the following discussions.

As a first step, the pressure on the circular aperture, ¢ = R, due to an
incoming plane-wave is required. This pressure follows from Eq. (3.1), using
Eq. (3.4), and can be written as,

P(kR, ¢) A ]Dinc(kTr) — eikRsinﬂcos(d)—gp). (35)
0=m/2, o=R

A quantity of considerable interest in this book is the total response of a circu-
lar aperture due to a plane-wave impinging from (9, ¢) emitted by a source Sy
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which is located in the farfield of the array in the sense of Appendix C. This
quantity can be obtained by applying a spatial Fourier series expansion to
the incident pressure of the, in general, weighted circular aperture, Eq. (3.5).
Physically, this means that all contributions of the plane-wave on the aper-
ture are weighted and integrated to yield the total response of the aperture.
It therefore follows with Eq. (A.6) that,

Fn(kRa 907 19)

2m
or [ wOROPER 0) o
0

. (3.6)

1 ) . )
% /w(kR,qf))eszsmﬁcos(qb—cp) e—'mqb d(bv
0

where w(kR, ¢) is a frequency-dependent aperture weighting function. This
weighting function can be chosen arbitrarily, although, in this section, it will
be chosen as w(kR, ¢) = 1. Different weighting functions will be considered
when directional apertures are discussed in Section 3.1.2.
By setting the weighting function to unity, Eq. (3.6) becomes with v £
d) - ¥
2m
Fn(kR, <)0719) _ %efingo / eikRsinﬁcos’y efin'y d’}/, (37)
0

which, by utilizing Eq. (B.2), simplifies to
Fo(kR,¢,9) =i "J_,(kRsind)e "%, (3.8)
Applying Eq. (B.6) yields,
Fo(kR, ,9) = i"J,(kRsin®) e~ "%, (3.9)

Physically, the procedure of applying a spatial Fourier series expansion with
respect to the polar coordinate to a circular aperture can be interpreted as
a decomposition of a plane-wave into so-called circular harmonics on a circle
with radius R. These circular harmonics are the Fourier coefficients of the
series, cf. Eq. (A.5),

eikTr — gikRsind cos (p—w) _ Z Fn(kR,go,ﬁ) eine
n=-—o00

(3.10)

e .
= Y i"Jn(kRsin®) ™),

n=—oo

This result is also known as the Jacobi-Anger expansion [CK98]. Note that
this expansion has been used in Eq. (2.76) with ¢ = 7/2. Equation (3.10)
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is therefore the expansion of a plane-wave propagating in the free-field of
an undisturbed medium on a circular aperture. It can be easily shown that
this plane-wave expansion satisfies the acoustic wave equation by considering
Eq. (2.54) and choosing C,,(k,) = 2mi" e~ "¥¢§(k,). In summary, restating
Eq. (3.9),

P (kR, 0, 9) = i"J (kRsind)e~ ", (3.11)

where J%n (kR, p, ) denotes the modal response of an unbaffled circular aper-
ture of mode n.

The angular dependence of this response can be found in the exponential
term while the frequency dependence is solely confined to the argument of
the Bessel function. Therefore, one can expect the individual circular har-
monics to be frequency independent along the angular axis. This observation
is of paramount importance for many subsequent developments and serves
as a foundation for the modal array signal processing methods presented in
Chapter 5.

Figure 3.2 shows the normalized frequency-dependent modal magnitude

response of the first four harmonics, 201log | }?‘n (kR,p,9)|,n =0(1)3, for § =
¥ =7/2 and ¢ = 0. Two properties of the response are of particular interest
here. First, for n > 0 all harmonics exhibit a highpass-like characteristic with
a slope of 6ndB/octave up to the normalized frequency kR ~ n. This in
turn means that a decomposed wavefield, at very small kR, only has the zero-
order (omni-directional) component of considerable strength. As kR increases,

Magnitude response in dB

BT e
10

2 1

100
kR

Fig. 3.2. Modal magnitude response, 20 log | }?‘n (kR, p, )|, for =9 = w/2 and
=0
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more and more harmonics are gaining in strength. Second, all harmonics show
periodic dips in the magnitude response which correspond to the zeros of
the respective Bessel functions J,(-). As a consequence, signals that carry
components in the vicinity of the zeros in the magnitude responses cannot be
completely identified in the vicinity of these frequencies.

Figure 3.3 shows the azimuth-dependent component of the circular har-
monics, e~ corresponding to Fig. 3.2. Le. |[Re{e™"¥}| = |cos(ny)| is
visualized. As can be seen, these harmonics correspond to multipoles, i.e.
monopole, dipole, quadrupole, etc. These multipoles are mutually orthonor-

mal, i.e.,
2m
1

2

. . ’ = 4
eI dip = {(1) Z L Z, . (3.12)

This property, again, will be of importance for subsequent developments.
For illustration purposes, the full three-dimensional angular response due
to a farfield source impinging from ¢ € [0...27] and ¢ = [0... ] is depicted
in Fig. 3.4 with normalized magnitude. The dependence on the elevation of
the source manifests itself in the argument of the n-th order Bessel function,
see Eq. (3.11). The dependence on the azimuth of the source, however, can
be found in the exponential term of Eq. (3.11). As a result, the angular re-
sponse of the circular harmonics can be rotated in the azimuthal direction
by introducing a phase offset in each harmonic. This rotation is not possible
with respect to elevation. Therefore, a circular aperture offers flexibility only

in the median plane, i.e.,
9 =m/2. (3.13)

Equation (3.13) is assumed to be valid throughout this book, unless noted
otherwise. As a result, only two-dimensional wavefields are considered in the
following. In practice, this requires all signals coming from the off-median
plane to be sufficiently attenuated, if unambiguous discrimination of plane-
wave incidence is desired.

The Jacobi-Anger expansion, Eq. (3.10), then becomes in two space di-
mensions,

oo
eik;Tg _ eichos(gb—ga) — Z ’Lan(kR) ein(g{)—ap)’ (314)

n=—oo

see also Eq. (2.44), and Eq. (3.11) finally simplifies to,
Fn (kR, ) = i"Jy(ER)e™. (3.15)

Equation (3.15) is an expression for the modal response of an unbaffled circular
aperture due to a plane-wave incidence from the aperture plane.

Multiple incoming plane-waves can be taken into account by a superposi-
tion of the respective individual harmonics, i.e.,
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Fig. 3.3. Azimuthal response, |cos(ny)|, with respect to ¢ in degrees for n =
0,1,2,3 and 6 =9 = 7/2

I
Frop= Y i"Jn(k,R)e™ "%, (3.16)

v=1

where [ is the number of incident plane-waves.

By comparing the circular harmonics of Eq. (3.15) with the general solu-
tion of the homogeneous acoustic wave equation for interior boundary prob-
lems in cylindrical coordinates, Eq. (2.54), it becomes clear that the general
boundary value problem is composed of the same individual harmonics as
obtained by a decomposition of the cylindrical wavefields with circular aper-
tures. These harmonics are therefore the eigen-solutions of the acoustic wave
equation in cylindrical coordinates.
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n=20 n=1

5 I

Fig. 3.4. 3-D angular response with respect to azimuth and elevation for n =
0,1,2,3

The Baffled Circular Aperture

By analyzing a two-dimensional wavefield using circular apertures one has to
consider dips in the magnitude responses of the decomposed harmonics, cf.
Fig. 3.2. Depending on the radius of the aperture these dips may show up in
the magnitude responses of the circular harmonics within the frequency range
of interest. This problem can be avoided by mounting the circular aperture
into a rigid cylindrical baffle, as in Fig. 3.1. Thereby, the scattering properties
of rigid cylindrical baffles, see Section 2.3.3, can be applied advantageously.
First, an infinite-length cylindrical baffle, i.e. L — o0, is considered. Then the
more practical case of a finite-length cylindrical baffle is investigated.

The Infinite-Length Rigid Cylinder

The decomposition of an unperturbed wavefield into circular harmonics by a
circular aperture is given by Eq. (3.10). In case of the presence of an infinite-
length rigid cylindrical object in the wavefield, not only the incoming wavefield
but the total wavefield, composed of the sum of the incoming and scattered
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wavefield, needs to be taken into account for this decomposition on the circular
aperture, cf. Section 2.3.3. An expansion of the wavefield along the radius of a
circular aperture mounted into a rigid cylindrical baffle is given in Eq. (2.83).
By comparing Eq. (3.10) with Eq. (2.83) and Eq. (3.15) for ¥ = 7/2 one
immediately obtains the circular harmonics decomposition for this setup as,

Fn (ER, @) = i" | Jo(ER) — In(FR) HA(KR)] _in, (3.17)

H,,(kR) ’

where }.Wn (kR, ) denotes the modal response of a baffled circular aperture
of mode n.

Figure 3.5 shows the magnitude response of the circular aperture mounted
into an infinite-length cylindrical baffle for n = 0(1)3. By comparing Fig. 3.5
with Fig. 3.2 one immediately recognizes a very desirable effect of the presence
of a rigid cylindrical baffle. The additional components introduced by the scat-
tered wavefield exactly cancel the zeros introduced by the Bessel functions.
Mathematically, this can be explained by the fact that the two terms inside
the brackets in Eq. (3.17) do not share any common zeros. This phenomenon
makes this configuration more useful for wavefields containing wideband sig-
nals and/or when large apertures are considered. Also visible in Fig. 3.5 is
that the slope of all harmonics is identically proportional to 1/ VER for ap-
proximately n > kR. This factor corresponds to the one that has been found
in Section 2.3.2 as the attenuation of cylindrically spreading wave-fronts with
respect to growing distance between source and receiver. It should be noted

Magnitude response in dB

450} n=3

102 10" 10° 10
ER

Fig. 3.5. Modal magnitude response, 20log | }.7‘” (kR,0)| for ¢ =0
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that this attenuation is also present, though not obvious, in Fig. 3.2. As can
be further deduced from Eq. (3.17), the cylindrical scatterer does not mod-
ify the azimuthal response of an unbaffled circular aperture, cf. Eq. (3.15).
Therefore, Fig. 3.3 and Fig. 3.4 apply here, too.

The Finite-Length Rigid Cylinder

For actual implementations it is impossible to mount circular apertures into
infinite-length cylindrical baffles. The length of the cylinder must be trun-
cated to a reasonable size. As a result, the observable circular harmonics will
exhibit magnitude responses that lie somewhat in between the ones that have
been obtained for unbaffled and baffled circular apertures. An expression for
a wavefield expanded on a circular aperture mounted into a rigid finite-length
cylindrical baffle has been derived in Eq. (2.93). Unfortunately, this solution
cannot be given in closed form. However, it will be shown by means of simu-
lations that the finite-length case can be approximated by the infinite-length
case for many practical cases. Figure 3.6 displays the effect of mounting circu-
lar apertures of radius R into rigid cylindrical baffles of length 2L for varying
values for L/R. The result is shown for n = 0(1)3. It is clear that L/R = 0
corresponds to the case of unbaffled circular apertures while L/ R = oo reflects
the circular aperture mounted into an infinite-length cylindrical baffle. Two
intermediate values for L/R are also shown. It can be seen that even a small
ratio of L/R = 0.1, i.e. a relatively short cylindrical scatterer, is sufficient to
effectively combat the zeros introduced by the respective Bessel functions. It
can also be seen that the curves corresponding to L/R = 1.4 and L/R = oo
already exhibit comparable properties. This means that for circular apertures
of small radius, say R < 0.1 m, practical rigid cylindrical baffles can be con-
structed that model an infinite-length rigid baffle with satisfactory accuracy.
Therefore, it seems reasonable to describe the circular harmonics decomposi-
tion of a circular aperture mounted into a finite-length rigid cylindrical baffle
by the closed-form solution given in Eq. (3.17) in the following.

Note that the boundary conditions introduced by the endcaps of the finite
cylindrical rigid baffle have been neglected in all developments. The results in
this section have to be modified as soon as the circular aperture is located in
the vicinity of the endcaps of the cylindrical baffle, since the endcap boundary
conditions cannot be neglected in this case.

Note also that the case L/R = 1.4 corresponds to the actual system that
has been realized for evaluating wavefield decomposition based array signal
processing algorithms, see Section 6.

Additional Properties of Baffled Circular Apertures
An additional very interesting property of rigid cylindrical baffles can be de-

duced from Fig. 3.6 by comparing the results for L/R = 0 and L/R = .
For small kR and n > 0 the magnitude response due to the presence of a
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Fig. 3.6. Modal magnitude response for ¢ = 0 of a circular aperture mounted into
a finite-length rigid baffle w.r.t. L/R

rigid baffle always seem to lie a few dB above the response of the unbaffled
circular aperture. This effect can be interpreted as a virtual increase of the
modal aperture due to the presence of the scatterer. This effect is examined
further in the following. Expressing the relative magnitude response between
the response of a circular aperture mounted into a rigid cylindrical baffle and
an unbaffled circular aperture from Eq. (3.17) and Eq. (3.15), respectively,
gives,

J,(kR)H, (kR)
AP(kR) £ Jn(kR) _ H’/‘(kR) = 2 3.18
(kR) = Jn(kR) - 7kRJ,(kR)H, (kR)’ (3.18)

where Eq. (2.84) and Eq. (B.4) have been used. Since the aperture increase is
only effective for small kR, it follows with Eq. (B.18) and Eq. (B.20) that,
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AP(kR) = €, (3.19)
where,
1,n=0
6"_{2,n>0 . (3.20)

It therefore follows from Eq. (3.19) that for all n > 0, the rigid scatterer
increases the response of the circular aperture by 20 -log;,(2)=6.02 dB. Since
all harmonics of order n > 0 exhibit a highpass characteristic with a slope
of 6n dB/octave it follows further from geometrical considerations in Fig. 3.6
that the effective modal (virtual) aperture increases by a factor of,

Rvirt
R

= Ven. (3.21)

Figure 3.7 shows the variability of this increase with respect to the mode n.
Maximum aperture increase can be obtained for mode n = 1. In this case, the
virtual modal aperture of a circular aperture mounted into a rigid cylindrical
baffle has doubled compared to the unbaffled circular aperture. Note that this
virtual modal aperture increase is frequency-independent while it was shown
in Section 2.3.3 that the virtual aperture increase due to creeping waves is
frequency-dependent. Note also that the virtual modal aperture increase has
been derived for the infinite-length rigid cylindrical scatterer. It can be seen
in Fig. 3.6 that the finite-length scatterer can only approximate these results
in the limit of long cylinders.

Rvirt /R

0 20 40 60 80 100

n

Fig. 3.7. Relative modal aperture increase due to an infinite-length rigid cylindrical
scatterer
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3.1.2 Directional Circular Apertures

In the previous sections, only circular apertures have been considered whose
infinitesimal segments, d¢, were modeled as being equally sensitive to wave-
fields impinging from all possible directions. I.e. they exhibit spatial charac-
teristics that can be considered as omni-directional. This section examines
infinitesimal segments that are more sensitive to specific directions of wave
incidence than others. Assuming this dependence, W (¢ — ¢), to be confined
to the azimuthal direction, the circular harmonics decomposed by a circular
aperture of radius R can be written as [RD82],

27
o 1 ) " .
T (KR, 0,0) = o~ / W (¢ — @) e~ i(né—kRsindcos(6=¢)) o, (3.22)
0

Of course, this expression can also be obtained directly by setting w(kR, ¢) =
W (¢ — ¢) in Eq. (3.6). Note that for generality, ¢ is allowed to adopt values
between 0 and 7 in this section. Since W (¢ — ) is periodic with period 2,
it can be expanded into a Fourier series as,

—p) = Z wyeé=e) (3.23)

l=—o0

with Fourier coefficients w;. Eq. (3.22) then becomes after changing summa-
tion and integration,

00 2m
y (kR,ng, Z l/ei[l(¢—<p)—n¢+kRsin19cos(¢—<p)] d(b (324)
0

=—00

Defining v £ ¢ — ¢ leads to,

27
(kR,(P, Z we zngp/ i[(I—n)y+kRsin ¥ cos v] d'}/, (325)

l_foo 0

which finally simplifies with Eq. (B.2) to

T (kR,0,0) =™ > wi' ™" J,_,(kRsin®)
s (3.26)
= e7in¥ Z wli"_lJn,l(kRsinﬁ).

l=—00

The following discussions detail two specific examples of directional aper-
tures, i.e. the circular dipole aperture and the circular cardioid aperture.
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Circular Dipole Aperture

The azimuthal dependence associated with continuous apertures having in-
finitesimal segments exhibiting dipole characteristics can be expressed as,

W(¢ — @) = cos(¢ — ). (3.27)

Note that this result assumes that the origin of the coordinate system lies on
an infinitesimal segment of the aperture. Identifying the corresponding Fourier
coefficients in Eq. (3.23) yields,

(12, 1=-1,1
w; = {0’ else 5 (328)

and give with Eq. (3.26),
o 1 .
Fnp (ER, p,0) = 5 ("t Ju—1(kRsing) + "' J, 11 (kRsindg)|e” "¢

= %[i"*lJn_l(kRsin 9) = " i1 (kR sing)] e (3:29)

= i"_lJ;l(kR sin)e "¢,

where in the last step the recurrence relation for Bessel functions, Eq. (B.15),
has been used.

It is often stated in the literature that apertures with dipole characteris-
tics measure the velocity component of a wavefield. This is correct only up
to a scaling factor as the following discussion shows. By applying Eq. (2.13)
to Eq. (3.11), the circular harmonics decomposition using a circular aper-
ture comprising radially oriented infinitesimal velocity segments, results with
Eq. (3.11) and Eq. (3.29) in,

1

ynv (kR7(p719> = igock VF, (kra(paﬂ)"r:R

o / .
= 2% -1 J,(kRsin9)e™""

(3.30)

_ 7
- ZO /nD (kRAD?ﬁ)?

where in the last step the definition of the free-field impedance, Eq. (2.74),
has been applied. Therefore, the decomposition of wavefields using apertures
having dipole characteristics is identical to a decomposition of a wavefield
using apertures whose segments measure the particle velocity up to a factor,
sin¥/Zy. Note that this simple relation is true only for plane-wave incidence.

Figure 3.8 shows the magnitude response of a decomposed wavefield using
a circular dipole aperture for ¢ = 0 and ¥ = 7/2. It can be seen that the
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Fig. 3.8. Modal magnitude response of the decomposed wavefield using circular
dipole aperture for ¢ = 0 and ¥ = 7/2

response differs significantly from the magnitude response of a decomposed
wavefield using a circular omnidirectional aperture shown in Fig. 3.2. First,
the first-order harmonic, i.e. the dipole, has a flat magnitude response for
kR < n. This can be explained by the fact that n = 1, i.e. the dipole compo-
nent, is the 'natural’ harmonic of the decomposed wavefield using a circular
dipole aperture, while n = 0 is the 'natural’ harmonic of the decomposed
wavefield using an omnidirectional aperture. Second, the dips in the magni-
tude response are now located according to the zeros of the first derivative
of the Bessel function. Also, the slope of the highpass-like response is now
6(n — 1) dB/octave up to kR ~ 1 for n > 1.

Note that the additional factor of —i = e~""/2 in Eq. (3.29) rotates the
harmonics compared to the ones obtained by omnidirectional apertures by
/2, see Fig. 3.3.

It can be concluded that a circular dipole aperture measures the normal
component of the particle velocity up to a scaling factor.

A circular dipole aperture mounted into a rigid cylindrical baffle yields no
output at all since the applicable boundary condition, Eq. (2.77), forces the
radial component of the particle velocity to vanish on the surface of the baffle.

Circular Cardioid Aperture

The azimuthal dependence associated with continuous apertures having in-
finitesimal segments exhibiting cardioid characteristics can be expressed as,
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W(p— ) = % {1 + cos(¢ — g@)] . (3.31)

Note that this result assumes that the origin of the coordinate system is
identical with an infinitesimal segment of the aperture. Identifying the corre-
sponding Fourier coeflicients in Eq. (3.23) in this case yields,

1/4,1=-1,1
wy =14 1/2,1=0 , (3.32)
0, else

and give with Eq. (3.26), and Eq. (B.15),

N

Fne (KR, 0, 09) = % [Jn(kRsinﬁ) - iJ;L(kRsinﬁ)} emin%, (3.33)
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Fig. 3.9. Modal magnitude response of the decomposed wavefield using circular
cardioid aperture for ¢ =0 and ¥ = 7/2

Figure 3.9 shows the magnitude response of a decomposed wavefield using
a circular cardioid aperture for ¢ = 0 and ¢ = 7/2. Again, the response differs
significantly from the magnitude response of the decomposed wavefield using a
circular omnidirectional aperture shown in Fig. 3.2. Here, both the zero-order
harmonic as well as the first-order harmonic exhibit a flat response up to kR ~
1. This behavior can be explained by realizing that both the omnidirectional
as well as the dipole component comprise the 'natural’ harmonics for a circular
cardioid aperture. It can also be seen that there are no dips in the magnitude
response at all. This results from the fact that there are no common zeros in
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the Bessel function and its derivative, cf. Eq. (3.33). The slope of the highpass-
like response is 6(n — 1) dB/octave up to kR ~ 1 for n > 1, as is exhibited by
circular dipole apertures.

It can be gleaned from Eq. (3.33) that a circular cardioid aperture mea-
sures, in equal parts, the normal component of the particle velocity and
the pressure of the incoming wavefield. Note that the additional factor of
—i = e~"/2 in Eq. (3.33) again rotates the harmonics compared to the ones
obtained by omnidirectional apertures. In this case, however, this rotation is
only applied to the term that describes the normal component of the particle
velocity since the factor (—i) only appears in the second term of Eq. (3.33).
There is no additional rotation of the component describing the pressure.

It is expected that mounting a circular cardioid aperture into a rigid cylin-
drical baffle will yield the same output as in Section 3.1.1 in the azimuthal
direction. This can be explained by the fact that due to the discussion pre-
sented for circular dipole apertures, the normal component of the particle
velocity vanishes on the surface of the baffle, thus only leaving the pressure
of the wavefield as a non-zero component of the decomposition process.

3.1.3 Circularly Symmetric Microphone Arrays

For real-world applications, the circular aperture needs to be sampled by
discrete points in space, i.e. microphones. In this section, it is assumed that
this sampling is performed by ideal omnidirectional microphones. It is further
assumed that one wishes to decompose an impinging wavefield into A + 1
circular harmonics, where N is the maximum order to be decomposed. For
all examples that have been previously used for illustration purposes, N' = 3.
Following the same reasoning as for the sampling theorem of one-dimensional
time signals [OS98], a minimum of,

M > 2N (3.34)

equidistant spaced microphones are necessary for this task [Tre02]. This re-
quirement can easily be verified by noting that when considering A + 1
harmonics, 2N + 1 Fourier coefficients of the truncated Fourier series, see
Eq. (3.10) where the symbol 00’ is to be replaced by 'N’, need to be identi-
fied by at least 2\ + 1 samples.

The highest order A that can be captured by a circular aperture depends
on the largest wavenumber, k& = kp.x, of the wavefield to be decomposed
and on the radius R of the aperture. Therefore, the argument of the Bessel
functions, k. R is an indication of the strength of the respective harmonic.
As a rule of thumb,

N =~ knax R, (3.35)

is often chosen as a first approximation [Tre02]. This choice is justified by
looking at Fig. B.1 in Appendix B where it can be seen that the value of a
particular Bessel function is small when the order n > 0 exceeds the argument.
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Plugging Eq. (3.35) into Eq. (3.34) results in a spacing along the arc of
the circular array that corresponds to less than half the smallest wavelength
in the wavefield, Anin, as,

darc < /\min/2' (336)

Note that for linear arrays a microphone spacing of Apin/2 is sufficient to avoid
spatial aliasing which are also denoted as grating-lobes in the array literature
[Tre02].

Assuming N to be the highest order of the wavefield to be decomposed and
Emax R to be the highest spatial frequency, the sampling function is [Tre02],

> 66— vér)

I =
- etaMeo
- q;oo (3.37)
<1+Z zqﬂf¢+z qu¢)
Tor\ &
where,
21 s
or = = (3.38)

2kmaxR kmaxR ’

is the sampling interval along the circle. Applying the sampling operation,
Eq. (3.37), to the circular harmonics obtained by continuous apertures,
Eq. (3.15), the circular harmonics of a sampled circular aperture is,

Fy (R, @) ~ " Ju(kR)e ™™ 4" %y (kR)e™? + Y~ " Jy (kR)e "%,

q=1 q=1

Fu(kR.) Fe(kR,p)

(3.39)
where ¢ = (Mg —n) and h = (Mgq + n). The superscript ’s’ denotes the
sampled circular harmonics while the superscript 'e’ denotes the component
due to aliasing.

Similarly, introducing Eq. (3.37) into Eq. (3.17), the circular harmonics
of a sampled continuous circular aperture mounted into an infinite-length
cylindrical baffle can be written as,

B (k) ~ i [ 1, (0) — 2O i
J’( R H, (’“R)}e
(k)

kR) Hp(
H, (kR)

+

NE

i {Jg(kR) - (3.40)
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q
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+

e - B ),

Q
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The first term in Eq. (3.39), and Eq. (3.40), is equivalent to the respec-
tive circular harmonic of the continuous circular aperture in Eq. (3.15) and
Eq. (3.17), respectively. The remaining terms are residuals due to the sam-
pling operation applied to the circular aperture. Sampling, therefore, results in
not only obtaining a harmonic of order n but also, inseparably superimposed,
harmonics of order g > n and h > n. In analogy to the error occurring due to
sampling of one-dimensional time signals, this distortion is denoted as modal
aliasing. However, there is one significant difference between one-dimensional
time signals and two- or three-dimensional space-time signals. Time signals
can be bandlimited in an effective way before performing any type of digital
signal processing. This can be done by applying lowpass filters of high orders.
Therefore, a strict rule can be provided of how aliasing can be avoided, i.e. the
Nyquist frequency. It is very difficult, if not impossible, to perform effective
band-limitation for space-time signals before applying digital signal process-
ing algorithms since high-order spatial lowpass filters do not seem to exist.
Hence, there is no strict rule guaranteeing an error-free sampling operation.
As a consequence, modal aliasing cannot be entirely avoided. However, by ju-
diciously choosing the number of microphones, M, and the maximum spatial
frequency, kmax R, these distortion modes can be made as small as desired. An

expression that quantifies the relative error due to sampling, En (kR), can be
given as the relation of the squared absolute value of the aliasing component
with respect to the total energy recorded by the circular microphone array,
i.e.,

R 2

F3 (KR, @)

o

En (kRv 90) =

- (3.41)

Fs (kR, )

A similar expression can be provided for the sampled circular aperture

mounted into a rigid cylindrical baffle, é:‘n (kR, ).

As an example, Fig. 3.10 displays the error due to modal aliasing by sam-
pling a continuous baffled aperture with M = 10 and M = 15 microphones
and kpaxR = 10. As can be seen the error is an increasing function with
respect to kR. A second property is the fact that modal aliasing increases
with the order of the circular harmonic. It can also be seen that the error
decreases significantly with decreasing sampling interval. As stated before,
there is no strict rule on how to determine M other than Eq. (3.34). A de-
sign procedure may include a maximum amount of error to be introduced due
to modal aliasing of, say, —50dB. In the example shown in Fig. 3.10, using
N = 3, the maximum spatial frequency that can be captured with this array
is kmaxR ~ 1.8 and kpaxR ~ 6 for M = 10 and M = 15, respectively, both
resulting in less than —50dB of error due to modal aliasing.

Asindicated in Fig. 3.3 and Fig. 3.4, circular harmonics can be regarded as
multipoles or beam patterns. The effect of sampling a baffled circular aperture
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Fig. 3.10. Error due to sampling of a baffled circular aperture utilizing M = 10
(left) and M = 15 microphones (right) for ¢ =0

with M = 10 on the resulting beam pattern is shown in Fig. 3.11. Circular
harmonics of order zero (left column) and of order three (right column) are
considered here. The first row shows the circular harmonic obtained by the
continuous baffled circular aperture. One can identify the respective azimuthal
response depicted in Fig. 3.3 by taking a horizontal slice through the figures in
the first row and by wrapping the result around the polar axis. The second row
depicts the circular harmonic obtained by the sampled circular aperture. In
this example, severe distortion of the modes are obvious for kR > 5. The third
row shows the error due to modal aliasing which is a monotonously increasing
function of frequency (kR) and which is also a function of the azimuthal angle,
¢. From Eq. (3.34) it follows that using M microphones a wavefield can be
decomposed into a limited number of harmonics only, i.e.,

(3.42)

N = M/2 -1, M even
(M =1)/2, M odd

After applying Eq. (3.35) it becomes clear that, assuming ten microphones
for sampling, the wavefield under observation should not contain spatial fre-
quencies above kR = 4. This means that one is faced with the task of how
to apply a spatial lowpass filter to an incoming wavefield before converting
the signals into the digital domain. Analog lowpass filter of low order could
be implemented by simply using microphones with greater diameter that ef-
fectively perform the filtering operation by averaging the pressure over its
surface [MEOQ2]. Analog lowpass filter of high order, however, are virtually im-
possible to realize. This makes efficient suppression of modal aliasing a very
challenging, if not impossible, task.

Sampling the same aperture with 15 microphones results in reduced modal
aliasing as shown in Fig. 3.12. In this example, severe distortion modes only
come into play from about kR =~ 7 for n = 3. Very similar results are ob-
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Fig. 3.11. Circular harmonics (n = 0, 3) obtained for the baffled circular aperture
(upper row), for the sampled baffled aperture (middle row), and the error due to
modal aliasing (lower row) where M = 10
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Fig. 3.12. Circular harmonics (n = 0, 3) obtained for the baffled circular aperture
(upper row), for the sampled baffled aperture (middle row), and the error due to
modal aliasing (lower row) where M = 15
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tained by considering sampled unbaffled circular apertures. Thus, they are
not repeated here. In summary, it can be stated somewhat trivially that an
increasing number of microphones decreases the amount of modal aliasing.

All derivations for dipole and cardioid microphones are straightforward
and do not provide any new insight. Therefore, their explicit expressions are
omitted, especially as they do not offer any practical potential when mounted
into rigid cylindrical baffles.

It should be noted that when an even number of microphones is used, one
can consider applying the notion of critical sampling, just as in the sampling
process of one-dimensional time signals [OS98]. Then, the sampling theorem
given by Eq. (3.34) becomes,

M > 2N. (3.43)

When critical sampling is considered, one has to ensure, though, that the
sampling operation does not sample the A-th order harmonic, whose real
part is equivalent to cos (M), at its zero crossings as this would, of course,
result in a zero output. This requirement can be met by ensuring that the
N-th order harmonic is not rotated by, (2v + 1)7/N, where v is an integer.
It is assumed in the following that, whenever critical sampling is considered,
this condition is satisfied.

It is further assumed that the effect of modal aliasing can be neglected
due to proper array design. Therefore, the eigenbeams obtained by continuous
circular apertures can be approximated by eigenbeams obtained by circular
microphone arrays with sufficient accuracy in all subsequent discussions.

3.1.4 Representation of a 2D Wavefield Using a Finite Number of
Harmonics

In Section 3.1.1 it was shown how a planar wavefield can be decomposed
into circular harmonics using unbaffled as well as baffled circular apertures.
Section 3.1.3 has shown that a wavefield of, in general, infinite dimensional
space, n € [—00. .. 00|, cannot be represented exactly by using a finite number
of microphones. This section examines the error that occurs when a wavefield
is represented by a finite number of circular harmonics N, decomposed by a
circular aperture. Le., the question arises on how much information is lost by
only decomposing a wavefield into A circular harmonics.
The wavefield truncation error can be quantified as,

o0 N
Etrunc (kR, SD) = Z Zan(kR)ezn((bitp) — Z Z”Bﬂ(kR)@”’(‘i’*@)
T n=N (3.44)
> "B (kR)e™ %),
[In|>N
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where, cf. Egs. (3.15) and (3.17),

In(kR), unbaffled aperture

Jn(kR) — %Hn(lﬂ%), baffled aperture

By (kR) 2 (3.45)

Parseval’s theorem states that for a 2m-periodic function f(«) Fourier series,
cf. Eq. (A.5),

fla)= > ane™, (3.46)

n=—oo

it follows that [Wei03],

oo

2
o [ @R da= Y Ja.f. (347
0

n=—oo

Therefore, one can obtain the mean square truncation error as,
2T

1 ,
Errunc(kR) £ 5 / 3" "B, (kR)em(#=#)

2 )
dp=2 > BI(kR), (3.48)
T 0 |TL‘>N

n=N+1

which can also be written, using a finite sum [DD94] as,

N
n=0

where the Kronecker symbol d,,9 = 1 for n = 0 and zero else. Figure 3.13 shows
the wavefield truncation error for N' = 0, 1, 2, 3, 10 utilizing an unbaffled con-
tinuous circular aperture. It can be seen that for low spatial frequencies, kR,
only a small number of circular harmonics are necessary to describe a wave-
field with satisfactory accuracy. For example, if a circular aperture decom-
poses an incoming wavefield which only contains wavenumbers correspond-
ing to kR = 1 into four circular harmonics, the mean square error is about
—50dB. The truncation error utilizing continuous circular apertures mounted
into rigid cylindrical baffles are qualitatively identical and their marginally
different numerical results do not warrant a separate discussion.

Of course, a practical realization utilizes microphones to sample the circu-
lar apertures and the error due to modal aliasing, as discussed in Section 3.1.3,
needs to be added to the error due to wavefield truncation.

3.1.5 Circular Apertures and Nearfield Sources

Although not explicitly detailed in Chapter 2, the notion and effects of
nearfield sources on circular apertures are introduced in this section since
the results are of some importance for real-world implementations.
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Fig. 3.13. Wavefield truncation error for N' = 0,1, 2,3, 10

A fundamental solution of the acoustic wave equation in two dimensions
was given in Section 2.2.3, cf. Eq. (2.36), and is repeated here for convenience,

11,2
ax(eley) = 7Hi"? (ke — o). (3.50)
where the superscript (V) is used for outward traveling waves, and the su-
perscript (?) is used for inward traveling waves. The geometric model is the
one considered in Fig. 3.1, where the source Sy is now located with respect

to the aperture such that plane-wave incidence can no longer be assumed.
Equation (3.50) with Eq. (3.3) and § = ¥ = /2 then becomes,

H (ke — oo])) = H (W@ + 08 — 2000 cos (¢ — <P)> . (351

which can be expanded to yield [GR65],

o0
H§WY (k\/QQ + 08 — 2000 cos (¢ — w)) = > Ju(ko)HS" (koo)e™ %),
n=-—oo
(3.52)
Note that this expansion is correct only for ||gy| > |le||- This relation is
assumed to be valid here since this book is concerned with interior bound-
ary problems only, see Section 2.3.1. Since the wavefield is impinging on the
aperture, the wave is traveling inward. Therefore, the Hankel function of the
second kind is used in the following. Note that,

HP (koo) = Hy M (koo) £ H(koo). (3.53)
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As in the farfield scenario, see Eq. (3.7), an important quantity of interest is
the total pressure on the aperture due to an impinging nearfield source. Here
it follows that,

27
1 > ) )
Fuaneb,0) = 5 [ Iu(BROH; (ko) P2 dg
0

n=—oo

(3.54)
= J(ER)H? (akR)e™ "%,

where a > 1 is a real constant relating oo and R. Defining n £ m results in the
modal decomposition of a wavefield due to a nearfield source on the unbaffled
circular aperture

Fu.... (kR,¢) = Jo(kR)H? (akR)e™"®. (3.55)

This result can be directly compared with the modal decomposition of a wave-
field due to a farfield source on the unbaffled circular aperture, Eq. (3.15).
It can be seen that the decomposed wavefields due to nearfield and farfield
sources result in identical azimuthal, i.e. angular, response. Deviations, how-
ever, are expected in the frequency response of the individual harmonics,
which will be considered when the focus is on baffled circular apertures. First,
it will be shown that Eq. (3.55) leads to Eq. (3.15) in the limit of large p. For
0 — 00, it holds that,

H(akR) =~ i"Hj(akR), (3.56)

where Eq. (B.25) has been used. Therefore,

Fa (KR, @) ~ i"J, (kR)HZ (akR)e™ ™ ~ i"J, (kR)e" ™ =F, (kR, ).
(3.57)
Since all operations introduced to describe rigid scatterers in Section 2.3.3
do not affect the term indicating a nearfield source, H/(akR), the modal
decomposition of a wavefield impinging on a baffled circular aperture can be
written as, cf. Eq. (3.17),

P (bR 0) = Hi(akFR) | (k) — 52050

n

H,(kR)| e~™?.  (3.58)

Again, the decomposed wavefields due to nearfield and farfield sources
result in identical azimuthal response. Figure 3.14 shows the change of the
modal magnitude response due to a nearfield source impinging on a baffled
circular aperture decomposed into several harmonics with respect to the factor
a. It can be seen that the higher the mode n the more sensitive the response
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Fig. 3.14. Modal magnitude response due to a nearfield source impinging on a
baffled circular aperture at ¢ =0

to nearfield sources becomes, more so for low frequencies than for high fre-
quencies. This strong dependency of the magnitude response on the distance
from the source to the aperture poses a serious problem to signal processing
algorithms that depend on a farfield assumption at low frequencies, see Chap-
ter 5. It can be also seen, however, that by restricting the frequency range to
be considered for further signal processing algorithms to, say kR > 0.1, the
problems related to the varying magnitude response with respect to a can be
minimized for many practical problems. It may be instructive at this point to
try out a few numbers. For example, the system introduced in Chapter 6 has
a radius of R = 0.04 m. This means that the curve for a = 37.5 in Fig. 3.14
corresponds to a distance from the source to the aperture of 1.5 m. This is
turn means that for frequencies f > 300 Hz, or kR > 0.22, the source posi-
tioned at 1.5 m (or further away) can be approximated by a farfield source
for n < 3 with satisfactory accuracy. This result will be used in Chapter 6.
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All results from the previous sections that consider plane-wave incidence
can be carried over to the scenario where plane-wave incidence cannot be
assumed in a straightforward manner. The results are qualitatively similar
and do not provide any new insights. Hence, their derivations will not be
presented here.

3.2 Wavefield Decomposition Using Spherical Apertures
and Arrays

In this section, wavefields are analyzed by continuous spherical apertures and
by sampled continuous spherical apertures, i.e. spherically symmetric micro-
phone arrays. As will be shown, sampling a continuous spherical aperture is
much more involved than the task of sampling a continuous circular aperture.
Both omnidirectional and directional apertures are considered.

3.2.1 Continuous Spherical Apertures

Figure 3.15 shows the geometric model of a spherical aperture of radius R. As
in the case of circular apertures, the spherical aperture is optionally mounted
into a spherical baffle. The difference between the cylindrical baffle from Sec-
tion 3.1 and the configuration examined in this section is that here the geom-
etry of the scatterer is identical with the geometry of the aperture, making
its visualization in Fig. 3.15 difficult. According to Eq. (2.34) in the general
case of three-dimensional wave propagation, the pressure of a plane-wave im-
pinging on the spherical aperture can be written as,

Puc(kTr) =*'7, (3.59)
where, see Section 3.1.1,

E”r = kr[sin @ sin v cos(¢ — ) + cos 6 cos ). (3.60)

The Unbaffled Spherical Aperture

In the following, the properties of unbaffled spherical apertures are considered.
As in Section 3.1.1, an expression for the pressure on the spherical aperture,
r = ||7|| = R, due to an incoming plane-wave is required. This expression can
be obtained by integrating the pressure field present on the spherical aper-
ture. Mathematically, this is done by applying an inverse spherical harmonics
transform, Eq. (A.8), to Eq. (3.59) with Eq. (3.60), i.e.,
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Fig. 3.15. Geometric model of a spherical aperture optionally mounted into a spher-
ical baffle
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a;n ik R cos 6 cos ¥ pm
e P (cos 6
-5 / 77 (cos )
27
% 6ikRsin95in19cos(¢*<p) e*im¢ dd) sin @ da,
0
(3.61)
where,
9 —m)!
g = |2tz mt (3.62)
47 (n+m)!

The bracketed term in Eq. (3.61) was already discussed in Section 3.1.1. There-
fore, Eq. (3.61) becomes,
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G™(kR, p,9) = /Ta™i™e "

></eikRCOSMOSGJm(kRSinﬂsinQ)P,T(COSG)sin@d@. (3.63)
0

A

Af
It is shown in [MF53] that,
= 2i""™P™ (cos 9)j, (kR). (3.64)
Therefore, Eq. (3.63) finally yields with Eq. (B.53),
G (KR, ¢,9) = VAmi" j, (kR)Y,™ (0, )" (3.65)

It can be seen that the wavefield is decomposed into a set of spherical har-
monics of order n and degree m, which are mutually orthonormal, as shown
in Section B.3. This orthonormality will be of importance in subsequent de-
velopments. By applying these coefficients to the forward spherical harmonics
transform, Eq. (A.7), one obtains the expansion for plane-waves in spherical
coordinates,

[e ] n
Rl = Puo(kR,0,0) = 4m > i"ju(kR) Y Y0, 0)Y," (0, 0)".
r=R n=0 m=—n

(3.66)
Note that this expression was already used in Section 2.2.1. In summary, an
incoming plane-wave can be decomposed into several spherical harmonics of
order n and degree m that, spatially, only depend on the direction-of-arrival
(9,¢). As in the case of wavefield decomposition using circular apertures,
the frequency-dependence is decoupled from the spatial dependence. In the
following, the decomposed wavefield due to an incoming plane-wave by an
unbaffled spherical aperture is written as,

G T (kR,9, ) = VATi"ju (kR)Y," (9, )" (3.67)

o

As before, the symbol () denotes an unbaffled aperture.

Figure 3.16 shows the frequency-dependent component of the decom-
posed wavefield by an unbaffled spherical aperture, for n = 0(1)3 and
¥ =7/2,¢0 =0, and n = m. Compared to Fig. 3.2, the frequency-dependent
component of the decomposed wavefield by an unbaffled circular aperture,
striking similarities are obvious. Again, for n > 0 all harmonics exhibit a
highpass-like characteristic with a slope of 6n dB/octave up to approximately
kR < n. Also, all harmonics have repetitive dips in their respective magni-
tude response, which correspond to the zeros in the spherical Bessel functions,
Jn(+), cf. Appendix B.2.
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Fig. 3.16. Modal magnitude response of an unbaffled spherical aperture for ¥ =
/2,0 =0,and n =m

Figure 3.17 depicts the three-dimensional directional component of the
spherical harmonics with respect to ¢ and ¢ for n = 0,1,2 and m = 0,1, 2.
This figure can, again, be compared to the respective plot for circular aper-
tures, Fig. 3.4. As can be seen the wavefield can be decomposed into more
components by using spherical apertures than by using circular apertures.
There are not only variations in azimuth but also in elevation. Furthermore,
it can be shown that the spherical harmonics can be rotated in both azimuth
and elevation. This gives spherical apertures the capability of being able to
decompose the wavefield in all three spatial dimensions.

The components comprising the decomposed wavefield are mutually or-
thogonal, i.e.,

2w

°m 2 mie [ Ar(=1)"j2(kR),n' =n, m' =m
// G o Gt sindddde = {07 clse . (3.68)
00

This very desirable property will be of importance in further developments.

The Baffled Spherical Aperture

As in the case of circular apertures, cf. Section 3.1.1, the dips in the magnitude
response of unbaffled apertures can be ’equalized’ by mounting the aperture
into a rigid baffle, thereby taking advantage of its scattering properties, see
Section 2.4.3. The expansion of the total pressure on the surface of a rigid
spherical scatterer with radius R due to a plane-wave incidence has been
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Fig. 3.17. Three-dimensional directional modal response with respect to ¢ and ¥
forn=0,1,2 and m =0,1,2

given in Eq. (2.127). The coefficients of this series expansion can be readily
identified with the desired modal components of the wavefield decomposition
with baffled spherical apertures as,

& ™(kR, 9, ) = VATi® | jn(kR) — YW, 0).  (3.69)

The modal magnitude response of a baffled spherical aperture for ¢ = 7/2
and ¢ = 0 is reproduced in Fig. 3.18. With reference to the unbaffled spherical
aperture, cf. Fig. 3.16, it can be seen that the additional components due to
the rigid spherical baffle, as in the cylindrical case, exactly cancel the zeros
introduced by the spherical Bessel functions, thus resulting in a smooth modal
magnitude response. Also visible is the highpass character with a slope of
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Fig. 3.18. Modal magnitude response of a baffled spherical aperture for ¥ =
7/2,p=0and n=m

6n dB/octave of the individual modal responses for n > 0 and kR < n.
For approximately kR > n the slope of all spherical harmonics is identically
1/(kR). This factor corresponds to the one that has been found in Section 2.4.2
for describing the attenuation of spherically propagating wave-fronts.

Another observation from Eq. (3.69) compared to Eq. (3.67) is that the
rigid spherical baffle does not have any influence on the directional response
of unbaffled spherical apertures. Therefore, the results shown Fig. 3.17 are not
modified by baffled spherical apertures.

Additional Properties of Baffled Spherical Apertures

As in the case of a cylindrical scatterer, see Section 2.3.3, for small kR and
n > 0 the magnitude response due to the presence of a rigid baffle always seem
to lie a few dB above the setup where no rigid baffle is used. This effect can,
again, be interpreted as an virtual increase of the modal aperture. Expressing
the relative magnitude response between the response of a spherical aperture
mounted into a rigid spherical baffle and an unbaffled spherical aperture from
Eq. (3.69) and Eq. (3.67), respectively, gives,

AP = o (R) ECOER AT

Since the aperture increase is only effective for small kR, it follows with
Eq. (B.38) and Eq. (B.41) that,

@t et
APRR)~ e Gn =1~ mr D@a) 0™ (3:71)
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It therefore follows from Eq. (3.71) that for all n > 0 the rigid scatterer
increases the response of the circular aperture by about 20 log f,, dB, differing
here from the cylindrical case, cf. Section 3.1.1. Since all harmonics of order
n > 0 exhibit a highpass characteristic with a slope of 6n dB/octave it follows
that the effective modal (virtual) aperture increases by a factor of,

Fviee, _ Y fn (3.72)
R

Figure 3.19 shows the variability of the increase of the virtual modal aperture

with respect to the mode n. Note that, interestingly, the maximum effective

virtual modal aperture increase is 1.5 for n = 1, compared to a maximum

increase by a factor of 2 for baffled circular apertures, see Fig. 3.7.
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n

Fig. 3.19. Relative modal aperture increase due to a rigid spherical scatterer

3.2.2 Directional Spherical Apertures

A directional unbaffled spherical aperture can be modeled by applying a di-
rectional weighting factor to the inverse spherical harmonics transform of a
plane-wave, i.e.,

2w

Gk, i.0) = = [ [Wi6.0.0.00% ¥ 0,0)" sinbibdo. (373
0 0

where W (0,9, ¢, p) describes the sensitivity of an infinitesimal point on the
aperture. In order to find an expression for the weighting term pointing into
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the (9, p)-direction, an expression for the unrotated weighting term, W (0, ¢),
needs to be derived. Any sensitivity pattern that is rotationally symmetric
with respect to the z-axis can be expressed as [ME02],

¢) = > w,Y,(0,0), (3.74)
p=0

with the appropriate coefficients defined as,

2

/ / W (6, $)Y2(6, 6)* sin 0d6ds. (3.75)

The rotation in azimuth and elevation of the pattern given by Eq. (3.74) is
considered next. Let v define the angle between two points on the unit sphere,
(0,¢) and (9, ), as

cosy = cosf cos ) + sin @ sin ¥ cos(¢ — ). (3.76)
Then, using Eq. (B.55), Eq. (3.74) can be written as,

Z wm/ P,(cos7y), (3.77)

and therefore, using the addition theorem for spherical harmonics Eq. (B.59),

W (0,9, ¢, ) = Z \/2p+12 0,)". (3.78)

p=0

Plugging this result and the plane-wave expansion, Eq. (3.66), into Eq. (3.73)
yields after a change of summation and integration,

q=—p
n 2w T
< 3 Ym,0)" / / Y (0, 6)Y9(0, )Y (0,6)° sin 0d0d.
m=-n 0 0

(3.79)

The evaluation of the integral for arbitrary p and q is very complicated. The
problem of integrating the product of three spherical harmonics occurs fre-
quently in quantum mechanics and their solutions make extensive use of so-
called Clebsch-Gordan coefficients [Ros57]. As with directional circular aper-
tures, see Section 3.1.2, two special cases of particular interest are considered
next in some detail. First, spherical apertures where each infinitesimal point
exhibits spatial dipole characteristics. Second, spatial cardioid characteristics
are considered.
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Spherical Dipole Aperture

The spatial dependence associated with dipole apertures in spherical coordi-
nates can be written as,

W (8,9, ¢, p) = sinfsin ¥ cos(¢ — ¢) + cos O cos Y. (3.80)

By comparing Eq. (3.80) with Eq. (3.78), it can be readily shown that the
expansion coefficients in Eq. (3.78) are then given by,

dr 1
w, = ERL A (3.81)

0, else

Applying the specific values for the spherical harmonics in p and ¢ given in
Tab. B.2 yields for Eq. (3.79),

G (kR Y, 0) = VT Y i"ju(kR) Y Y™, ¢)"
n=0 m=—n

2m ™
1 . o
X {ﬁsinﬁe“’ / / Y, (6, ¢)sin0 e Y, (0, ¢)* sinOdOde
0 0

2w

+cosﬂ//Ynm(9,¢) cos O Y, (6, ¢)* sinfdbde
00
2 7
+ %sinﬁe‘i‘”//Ynm(H,d)) Sin96i¢Yﬁ/(9,¢)* sin@deqﬁ}.
00
(3.82)

Utilizing recurrence relations for spherical harmonics, Eqgs. (B.61), and apply-
ing the orthonormality principle one obtains after cumbersome but straight-
forward calculations with n £ n/ and m £ m/,

p(kR. 0, p) = v/mi"!
sinde’® [a1jn—1(kR)Y," T (9, 0)* + asjni1 (kR)Y, (0, ¢)*]

G

33

X

_A'_._M

2c0s¥ [agjn—1(kR)Y," 1 (9,0)* — agjns1(ER)Y,L1 (0, 0)"]

—sinde™ ™ [asjn—1(kR)Y," 7 (0,0)" + agjns1(kR)Y," 7" (0, ¢)*] }
(3.83)

where,
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o — (mn—m+1)(n—m+2)
' 2n+1)(2n+3)

2n+3)

u _\/(n+m)(n+m—1)
2 2n—1)(2n+1)

(n—m)(n+m)

( (3.84)
(2n—1)2n+1)

a4 =

)

)

_ f(n—=m+1)

4= 2n+1)

" \/(n+m+1)n+m+2)
T )

(

(
(n+m+1)
(

(
2n+1)(2n+3)

. \/( —m)(n—m—1)
6 (2n—1)(2n+1) '

Note that the case n = m = 0 is not covered by Eq. (3.83), however, since
the spherical harmonics are not defined for negative orders. A solution in this
case can be found by letting n’ = 0 and m’ = 0 in Eq. (3.82) and by applying
Eq. (B.56) as well as Egs. (B.61), resulting in,

= ij1(kR).

G O (kR, 0, ) (3.85)

The decomposition of a plane-wave by spherical dipole apertures is mathemat-
ically of much higher intricacy than the decomposition by a circular dipole
aperture, see Section 3.1.2. However, all statements made in Section 3.1.2
remain qualitatively valid here, too, and are therefore not repeated here.

By applying Eqs. (B.61) to Eq. (3.83) it can be shown that for n,m # 0,

G ™o (KR, ) = /ain ! {jM(kR) LY (0, 0)" + baY o (0, )]
(3.86)

i (kR) Y0, 0)" + baYha (0, )" ]}

where b,,v = 1(1)4, are rather complicated expressions involving n and m.
This representation was chosen only to show that the components of the wave-
field decomposed by spherical dipole apertures are orthogonal. This statement
can be readily verified by multiplying Eq. (3.86) by G ng (kR,9,p)* and in-
tegrating over the unit sphere, here covering all angles (9, ¢).

Spherical Cardioid Aperture

The spatial dependence associated with cardioid apertures in spherical coor-
dinates can be expressed as,
1
W(6,9,0,p) = 5 {1 + sin @ sin cos(¢p — ¢) + cosf cos VI |. (3.87)

It can be readily shown that the expansion coefficients in Eq. (3.78) are then
given by,

1
5\/471',1) 0

w, = l 4_7r _q- (3.88)
2V 37
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From Eq. (3.87), Eq. (3.67), and Eq. (3.83) it follows immediately that the
components of the wavefield decomposed by a spherical cardioid aperture can
be written as,

o [e]

1 o
G ne(kR,9,0) = 5 |G (KR, 9, 9)+ G 1p (KR, 0, 0) | - (3.89)

Again, all statements made in Section 3.1.2, where the decomposition of wave-
fields by circular cardioid apertures are discussed, remain qualitatively valid
in this section and are not detailed here.

3.2.3 Spherical Microphone Arrays

For practical applications, it is necessary to sample the continuous aperture at
discrete microphone positions. However, sampling a function on a sphere is sig-
nificantly more difficult than sampling a function on a circle since true equidis-
tant spatial sampling is only possible for arrangements that are constructed
according to the so-called Platonic solids or regular polyhedrons [Wei03]. In
three dimensions, only five such geometries exist, i.e. tetrahedron, cube, oc-
tahedron, dodecahedron, and icosahedron. These consist of 4,6,8,12, and 20
faces, respectively. Therefore, if true equidistant sampling is to be applied,
one is restricted in choices of possible arrangements. Moreover, the maximum
number of sampling points is 20 by placing them in the center of the faces of
an icosahedron. An arrangement that provides a sampling scheme that is very
close to being uniform is the truncated icosahedron (soccer ball) which com-
prises 32 faces [EKMO3]. See Fig. 3.21(a) for the arrangement of this sampling
scheme on the unit sphere.

As will be shown in Chapter 5, most eigenbeam array processing algo-
rithms rely on the orthogonality property of the eigen-solutions of the acoustic
wave equation in circular/cylindrical and spherical coordinates. Based on this
requirement, it can be concluded that spherical sampling can be cast into the
problem of finding a discretization of the orthonormality relation for spherical
harmonics Eq. (B.56), i.e.,

M
S w00, 0 Y (O, b6)* = O S (3.90)
=1

where M denotes the total number of sampling points on the sphere and
wy, £ =1(1)M, is a possibly non-uniform weighting factor.

Therefore, spherical sampling can be performed by utilizing non-equi-
distantly positioned sampling points with non-uniform weighting. Research
has come up with a vast variety of different sampling schemes for a sphere
that do not provide equidistant coverage of the sphere but are optimum in
some other respect. References discussing various schemes of sampling on a
sphere include [SHS] and [FM96].
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In this book, two sampling structures are considered that have proven
useful for the application of wavefield decomposition, namely the so-called ¢-
design method and the ¢.q,-Gaussian method. The latter one is particularly
interesting because it allows for fast implementations and closed-form analysis
of the error due to modal aliasing.

The ¢equ-Gaussian Method for Spherical Sampling

First, it is noted that the expansion of a plane-wave on the surface of a sphere,
Eq. (3.66), is equivalent to a spherical harmonics transform as defined in
Eq. (A.7). Similarly, the wavefield decomposition of a plane-wave on the sur-
face of a sphere, Eq. (3.67), is equivalent to an inverse spherical harmonics
transform, Eq. (A.8). The task now is to find a discrete representation of
the inverse spherical harmonics transform of a three-dimensional signal on
the unit sphere. From Eq. (A.8) it follows that for a function f(cos6, ¢), the
inverse spherical harmonics transform can be written as,

2m

Frn = aZ //f(cos 0, $) P (cos )e™ ™ sin Odfd¢
m
00

7=
(3.91)

VT

where a!” is defined in Eq. (3.62). The term within the brackets can be readily
identified as the Fourier transform of an individual circle surrounding the unit
sphere at elevation #. This is the same situation as in the discussion for circular
apertures and the same arguments that are brought forward in Section 3.1.3
apply here as well. In particular, the analysis of the modal sampling error can
be readily carried over. Therefore, the horizontal sampling can be described
the same way as in Eq. (3.39), i.e. by identifying a term corresponding to a
continuous aperture and another term corresponding to modal aliasing. Hence,

by 2m
GZ /P,T(COSG) /f(cos@,¢)e_im¢d¢ sin 0d0,
T
0 0

fio = \/?a;”/P,:”(cos 0)[fm (cos0) + f5 (cos )] sin 0d6, (3.92)
0

where f¢ (cos ) is the additional component due to modal aliasing. The f2%,
are the resulting coefficients after applying a discrete Fourier transform along
a circle at elevation . After a change of variables, & £ cos#,

Fom = /" / (€ + 5O PI(€)de. (3.93)

This integral is also known as a Legendre transform [DJ94] of the term within
the brackets. The question now arises on how to discretize this integral with
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minimum error and the minimum number of evaluation points. An answer
to this question was already given by Gauss in 1814 [Gaul4] who discovered
that a polynomial f(§) of limited order 20 — 1 can be integrated ezactly by
O discrete evaluation points, i.e.,

1

O
/ FE)de =3 wif (&), (3.94)

“1 =1

where ; are the evaluation points with appropriate weighting w;. It is shown
in [DR84] that & corresponds to the I-th zero of Pp(&) and that the weights

are given by,
2

w; A I=1(1)0. (3.95)
This type of numerical integration is also known as the Gauss-Legendre
quadrature formula. Values for (w;, &) are tabulated in [AST2]. It can be read-
ily verified that the integrand of Eq. (3.93) is well-behaved and that it can
be represented by polynomials. These polynomials are, however, not order-
limited which makes the integration in Eq. (3.94) approximate,

1

O
[ €1 = > wfe) + ko, (3.96)

21 =1

where [AST72],

220—‘1-1(0!)4 dzO
(20 + 1)[(20)!]3 du2° (u) (

Ro = “l<u<l). (3.97)

Applying the principles of numerical integration of arbitrary functions,
f(cos b, @), on the unit sphere to the problem of decomposing a three-
dimensional sound field into spherical harmonics using spherical microphone
arrays yields with Eq. (3.91) and Eq. (3.63),

G o (kR, 9, @) = may / giFftcosvcosh {ime (kRsindsin §)e™m¢
0 (3.98)

+F m(ER, 9, 0, 9)} P (cos ) sin 0df,
where the bracketed expression is the DFT of the output of the individual

circular microphone arrays comprising M elements at elevation angle 6 and,
according to Eq. (3.39),

F m(ER, 0, 0,0) :Z iMI= Ty (KR sin 9 sin @) ' (Ma—m)e 599

+ = Matm) gy (ER sin 9 sin @) e~ M atm)e,

)
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A change of variables, & £ cos 6, yields,
1
G ™ (KR, 9, p) = /a™ / gihRE cos [imjm (kRsinmﬂ - 52) e ime
-1

+ F 5, (KR, 01— 52)] P €)d.
(3.100)

The output of a spherical microphone array using M equidistantly posi-
tioned microphones in azimuth and O microphones in elevation based on
Gequ-Gaussian sampling, cf. Fig. 3.21(b), is therefore with Eq. (3.96),

G ™ (kR, ¥, ¢) = Ro
O

+ Vmapy wetthecos? {im!]m (kRsmm /1 gf) e im?e
=1
+ an(kR,ﬂ7@a \/ 1 512>:|P77Ln(€l)

(3.101)

For large O, the first term in the sum of Eq. (3.101) approaches Eq. (3.63)
and is therefore a representation for the modal decomposition of a continuous
spherical aperture. The second term in the sum is then the additional com-
ponent due to modal aliasing. The term Ro can be neglected in the following
since the factor in Eq. (3.97) becomes very small quickly. For O = 1 the factor
is Ro = 1/3 and for O = 4, Rp ~ 2.9¢~". Additionally, the 20—th derivation
of f(u) is bounded by a number on the order of one.

With this assumption, an expression similar to Eq. (3.41) can readily be
determined from Eq. (3.101) and Eq. (3.67) as,

G (KR, Q)] _ | G (KR, )~ G I (KR, o)
G (kR 0, )| | G s (kR 9, 9)?

(kR Y, ) 2 |
|

(3.102)
It therefore follows that modal aliasing is dependent on both azimuth and
elevation for sampled continuous spherical apertures.

As in the case of sampling the circular aperture, it is impossible to derive
strict criteria regarding the control of modal aliasing. Instead, by supplying
a maximum amount of modal aliasing allowable for a given application one
needs to check each component of the decomposed wavefield utilizing M - O
microphones separately. As an example, Fig. 3.20 shows the relative modal
aliasing error, cf. Fig. 3.10, with respect to elevation and kR for n = m = 3
and ¢ = 0.
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Fig. 3.20. Modal aliasing error, & (kR, ¥, ), due to spherical sampling using
Pequ-Gaussian nodes for n =m =3 and ¢ =0

For certain applications, the distribution of sampling points on the sphere
as described in this section is of particular interest since it allows for a fast
implementation. The sampling in the horizontal direction can be performed
by applying individual FFTs. The sampling in elevation involves a Legendre
transform where fast implementations exist that make extensive use of the
recurrence relations of the Legendre functions, see [HRM96] or [Moh99].

Using this type of spatial sampling, one is able to predict the minimum
number of microphones required in order to decompose a wavefield into spher-
ical harmonics of maximum order A and maximum degree M = A/. Since
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the horizontal sampling is equidistant, Eq. (3.34), the condition for sampling
circular apertures, holds here as well, i.e. M > 2N + 1 microphones are nec-
essary in order to extract A circular harmonics. In elevation, it can be shown
[Moh99] that O > M + 1 positioned on Gaussian nodes are required. There-
fore, for example, a total number of at least 6, 15, and 28 microphones are
necessary to decompose the wavefield up to order 1, 2, and 3, respectively. Of
course, modal aliasing decreases if more than the minimum required number
of microphones are used.

The t-Design Method for Spherical Sampling

A potential disadvantage of placing microphones on a sphere according to the
@equ-Gaussian method for spherical sampling is the fact that the microphones
are more densely packed near the poles of the sphere. They are not evenly
distributed on the sphere’s surface. Furthermore there is no uniform weight-
ing of the sampling points. A discretization method that circumvents both
problems is referred to as a so-called t-design ! and is described in [HS96]. A
set of M points (T4,...,Tx) on the unit sphere forms a spherical t-design if,

2 7w

M
/ / f(cos @, p) cos 0dfdp = % ; f(Ty), (3.103)
00 =

holds for all polynomials f(cos#,¢) described on the unit sphere of degree
less than t. Only by numerical optimization methods it is possible to find a
set of points on the sphere for which Eq. (3.103) is satisfied up to a given
error. Solutions for M and t are tabulated in [HS96] and the coordinates
are distributed electronically at [SHS]. The ¢-design sampling scheme for 32
evaluation points on the unit sphere is visualized in Fig. 3.21(c).

The optimization procedure for obtaining the integration nodes does not
allow for direct closed-form error analysis expressions as presented earlier.As
a consequence, the modal aliasing introduced by sampling using the t-design
method can be obtained via simulations only. However, mathematical ex-
pressions can be derived by an indirect approach utilizing the discrete or-
thonormality criteria, Eq. (3.90), see [Raf05]. In the following, the discussion
is restricted to results obtained via simulations. Fig. 3.22 shows the result of
sampling the continuous spherical aperture at 32 points using three different
sampling schemes. All three schemes, employing 32 sampling points, are ap-
plied to the decomposition of a plane-wave of order n = 3 and degree m = 3.
The figures were created similarly as Fig. 3.20.

Unfortunately, it is impossible for sampling schemes based on the t-design
method to provide a general rule determining the minimum number of mi-
crophones required to extract all harmonics up to a given order. Hardin and

! Note that the continuous time variable and the symbol ¢ used for describing this
method are fundamentally different.
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(a) truncated (b) pequ-Gauss, (c) t-design
icosahedron M=8,0=4

Fig. 3.21. Schemes for sampling a continuous spherical aperture using 32 sensors

Sloan [HS96] have found criteria, either in closed-form or numerically, on how
many sampling points are required for numerically integrating a polynomial of
a given order on a sphere. This problem is equivalent to finding the minimum
number of microphones required for extracting harmonics on the spherical
aperture of all degrees corresponding to a given order. However, rules of gen-
eral validity are not given in [HS96]. Simulations have provided evidence that
at least 6, 12, 22, and 30 microphones are required in order be able to de-
compose a wavefield into all spherical harmonics up to order 1, 2, 3, and 4,
respectively.

3.2.4 Representation of a 3D Wavefield Using a Finite Number of
Harmonics

In analogy to the definitions given for circular apertures, see Section 3.1.4,
the wavefield truncation error can be quantified as,

Erunc(kR,Y,0) =4m Y i"bo(kR) > YM(0,0)Y(0,9)%,  (3.104)

n=N+1 m=-—n
where,
Jn(kR), , unbaffled aperture
bn(kR) £ Jjn(ER) — Jn(kEF) hn(kR), baffled aperture (3.105)

h, (kR)

Parseval’s theorem states that if a function f(6,¢) can be expanded into a
generalized Fourier series based on spherical harmonics as, Eq. (A.7),

F0,0)=VaxY > funYi(0,0) (3.106)

n=0m=—n



3.2 Wavefield Decomposition Using Spherical Apertures and Arrays 85

[dB] [dB]
2 -10 2— -10
4} -20 4 -20
0 30 = [ | I -30
6 6 —,
Tl -40 - -40
8 M |\ 50 8 wWhkadw _50
10 ¥ e, ™ | ¥ 10 .-"-'\-_. .
0 020406 0.8 0 020406038
9/ 3/
(a) truncated icosahedron sampling (b) pequ-Gaussian
[dB]
2 -10
4 -20
x
e -
6 30
-40
8 ~50
10

0 0204 06 0.8
I/m

(c) t-design sampling

Fig. 3.22. Error due to modal aliasing by sampling a continuous spherical aperture
at 32 points utilizing different sampling schemes where n =m =3 and ¢ =0

then it follows that [Wei03],

2t

= [ [0 swosao= S Ifanl? (3.107)
0 0

n=—oo m=—n

Therefore, one can obtain the squared truncation error as,
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1
gt?runc( ) é s
271' T 00 2
X / / A Y i"bu(kR) Z Y™ (6, ¢)Y, (9, 0)* | sin0dOde
00 n=N+1 m=-—n
= ) (@n+ 1) (kR),
n=N+1

(3.108)

where in the last step, the spherical harmonics sum rule, Eq. (B.60) was used.
Eq. (3.108) can also be written, using a finite sum [DD94], as

N
Eounc(kR) =1 =" (2n + 1)b2 (kR), (3.109)
n=0

Numerically, this result differs only slightly from the one obtained for two-
dimensional wavefields, cf. Eq. (3.49) and Fig. 3.13.

3.2.5 Spherical Apertures and Nearfield Sources

A fundamental solution of the acoustic wave equation in three dimensions was
given in Section 2.2.2, and is repeated here for convenience,

e:i:ikHrf'r'oH

gr(r|ro) = (3.110)

Ar||lr — ro|’
where the positive sign is used for outward traveling waves, and the nega-
tive sign is used for inward traveling waves. The geometric model is the one
considered in Fig. 3.15, where the source Sy is now located with respect to
the aperture such that plane-wave incidence can no longer be assumed. An
expansion of Eq. (3.110) has been given in Eq. (2.21) and Eq. (2.24). Since the
wavefield is impinging on the aperture, the wave is traveling inward. There-
fore, the expansion corresponding to the minus-sign in Eq. (3.110) has to be
used here. With the definition,

P (kro) = hy) (kro) £ by, (kro), (3.111)

it follows for the modal response of a spherical aperture with radius r = R
and a > 1,

2T

Ghear (KR, U, 0) = —V/4mik / / Z jn(kR)RY (akR)
(3.112)

X Z Y™ (0, 6)Y (0, 0) Y (0, ) sin 0dOde,

m=—n
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which finally simplifies to the modal decomposition of a spherical aperture
due to a nearfield source,

G™ (kR,9,¢) = —VAmikjn(kR)R: (akR)Y.™ (9, p)*. (3.113)

Mnear

As in the case of modal decomposition by a circular aperture due to a
nearfield source it can be easily shown that in the large-argument limit of the
spherical Hankel function, Eq. (3.113) approaches Eq. (3.67).

Since all operations introduced to describe rigid spherical scatterers, see
Section 2.4.3, do not affect the term indicating a nearfield source, b (akR), the
modal decomposition of a wavefield impinging on a baffled spherical aperture
can be written as, cf. Eq. (3.69),

jn(kR)
h. (kR)

n

G™ (KR, p) = —VArikh® (akR) | jn(kR) —

nnear

hn(kR)] Y (9, 0)"
(3.114)

Qualitatively, the consequences for nearfield plane-wave incidence on a
spherical aperture are comparable to the situation of nearfield plane-wave in-
cidence on a circular apertures, see Section 3.1.5, and, in particular, Fig. 3.14.

3.3 Wavefield Decomposition Using Other Types of
Apertures

Although this work mainly restricts wavefield decomposition methods to cir-
cular and spherical apertures, this section introduces two other geometries
that are, in principle, suitable for wavefield decomposition methods. First,
the focus will be on linear continuous apertures and linear microphone arrays.
Then, cylindrical apertures will be briefly considered.

3.3.1 Linear Apertures

Figure 3.23 shows a linear continuous aperture of length 2L coinciding with
the z-axis. A planar wave-front with wavenumber vector, k, impinges on the
aperture, arriving from (¢, ¢). At point Q(7) on the aperture, the plane-wave
is,

Poc(kTr) = '™, (3.115)
where, cf. Fig. 3.23, k is given by Eq. (3.2) and r = [0,0, 2]7.
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linear Qt-
aperture

e |/

Fig. 3.23. Geometric model of a linear aperture

Consequently, Eq. (3.115) becomes,
-Pinc(kyz) _ eikzcosﬂ — eikrzz, (3116)

where k, = kcosd. It can be seen that Eq. (3.116) is not a function of .
Therefore, a linear aperture cannot discriminate between wave-fronts coming
from different azimuthal directions, ¢. Moreover, linear apertures lack the
ability to discriminate between plane-waves impinging from 0 < 9 < 7 and
m < ¥ < 2m. Therefore, it is obvious that linear apertures provide only limited
support for three-dimensional wavefield decomposition methods.

Letting L — oo, the output of an infinite-length linear aperture due to an
impinging plane-wave can be written as,

oo

1 .
F(k:) = o / w(z)e*=* dz, (3.117)
s
— 00
where w(z) is an aperture weighting function. This equation can be regarded
as a spatial Fourier transform of this aperture weighting function, see Sec-
tion A.1. In the particular case of omnidirectional spatial selectivity character-
istics of an infinitesimal segment of the linear aperture, w(z) = 1, Eq. (3.117)
becomes,

Fk.) = 8(k.). (3.118)
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Therefore, the response of an uniformly weighted infinite linear aperture to
an incoming plane-wave corresponds to an impulse in the direction of the
plane-wave arrival.

Now, considering finite linear aperture results in,

L
Fk) = — / w(z)e™ dz, (3.119)
)

which simplifies for uniform weighting to,
F(k.) = sinc (kL) = jo(k.L), (3.120)

where sinc () £ sin¢/¢. One can immediately see that Eq. (3.118) follows
from Eq. (3.120) in the limit L — oc.

Two plane-wave expansions of Eq. (3.116) are [Wil99],

Rnc(kaz) _ eikz cos ¥

Z i"(2n + 1)j, (kz) Py (cos9)

n=0

= Z €nt" I (kz cos ).

n=0

(3.121)

In practice, continuous linear apertures are very difficult, if not impossible,
to realize. Hence, continuous apertures are usually sampled by discrete sensors.
Mathematically, this sampling can most easily be described by expressing the
aperture weighting function by a weighted impulse train evaluated at the
positions of each of the M sensors, 7, as,

M—1
w(z) = Z wed(z — 7} e), (3.122)
=0

where e, is the unit vector in z-direction. Substituting w(z) in Eq. (3.117)
results in,

R M-1
Flks) = o= > wid(z — 1] e.)e™ 7 d
(2)7277 wed(z —rpey)e z
=0

- (3.123)
M—-1
Z wzeikerez )
£=0

For a complex scalar wy, Eq. (3.123) can be interpreted as the standard
delay-and-sum beamformer [Tre(02], while for a frequency-dependent wy, the
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so-called filter-and-sum beamformer is obtained. There is a vast amount of
literature dedicated to determining wy in order to obtain the desired spatial
characteristics, for example constant directivity beamforming, or superdirec-
tive beamformer. See Section 4.3 and [BWO01] for an overview of these designs.
A simple technique that yields a spatial harmonic structure, much in the
same way as circular and spherical microphone arrays discussed in previous
sections, is the differential microphone array [Elk04]. The basic idea here is
to simulate the acoustic pressure differentials of order n on the axis of the
array by finite-difference approximations. One fundamental requirement that
limits generality here is that the microphones need to be closely-spaced. More
discussions on differential microphone arrays are deferred until Section 4.3.3.

3.3.2 Cylindrical Apertures

The geometry for continuous infinite-length cylindrical apertures can be taken
from Fig. 3.1 for . — oo, where now the cylindrical baffle is part of the
cylindrical aperture. By multiplying Eq. (3.66) with Y, (J, ¢) and integrating
over ¥ and ¢ gives,

2

1 T
//e’k TY (9, @) sind di dep. (3.124)
00

4

Y™ (0, 9)jn(kr) =

In cylindrical coordinates, o = rsinf and z = r cos§. Then,

eikTr _ eik[zcosﬂ-‘,—gsinﬁcos((15—4))], (3.125)

and therefore with Eq. (3.124) and Eq. (B.2),

1 I
P (cos0)jn(kr) = Eim*"/elkz cos? g (kosin9) P™ (cos 0) sin v d.
0
(3.126)
Expressing the spherical harmonics using modified Legendre functions, Eq.
(3.66) can be written as,

, oo n _ I
kT = 7;) i"(2n+1) m;n %e”n(d’_“”)PrT(cos )P (cos 0)jn (kr),

(3.127)
and therefore in cylindrical coordinates using Eq. (3.126) as,

ikTr _ p _1 - - m(n_m)' im(¢—p) pm
e*'T = Pk, 0,0, 2) = 2;<2n+1> > i€ Py (cos )

m=—n

X /eikz COS&,JWL(kQSiH ﬁl)P:ln(COS 19/) sin 19/ d’[9/

0
(3.128)
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This expression is the plane-wave expansion in cylindrical coordinates, cf.
Eq. (3.66) for the equivalent expression in spherical coordinates, and cf.
Eq. (3.10) for the equivalent expression in polar coordinates.

Performing the integration with respect to the z-coordinate on the bound-
ary of an infinite cylindrical aperture of radius ¢ = R, Eq. (3.128) becomes,

1

F(kR, 6,9,¢) = 1

ethzeos? 1 (kRsind’)P™ (cos ') sin®’ dz dv'.

(3.129)
Since it holds that,
/ etz cos? g — ors(kcos ), (3.130)
—oo

it follows that,

1 & !
F(kR,6,0,0) = 5 Y (20 +1 Z 27” o =) im(@=2) pm(cos )
n=0

m=—n
s

/6(kR cos V' /R)Jy (kR sin ') P (cos ¥') sin ' d)'.

’ (3.131)

Performing the substitution ¢t £ kR cos’/R yields,

F(kR,$,9,0) = 211;2 2n + 1) Z g (L= ! i ©) P (cos )
k
X /5 m(kR\/1— (tR/kR)?)P™(tR/kR)d
—k

(3.132)

Applying the sifting property of the Dirac delta function results in,

XY i I O B cos ), (KR)PO).
(3.133)
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Applying a spatial Fourier transform with respect to the ¢-coordinate
results in,

R & ~ o (n=m)
27
(kR)P(0) / 02 g
0
(3.134)
The last integral is simply,
27
/ =09 ddy = 278, (3.135)
0

where §;,, denotes the Kronecker symbol which is unity for m = [ and zero
for all other values. Consequently, Eq. (3.134) reduces to,

R _ 2n+1)(n—1)!
kR,9 —— ' J(kR)e "¢ —Pl ¥)PL(0).
Fi(kR,,¢) = 5= i' Ji(kR)e Z g En(eos)E0)

(3.136)
Expressing the associated Legendre functions by spherical harmonics, it finally
follows that,

27TR .1

Fl(kR7197 90) k?

il Ji(kR) ZYZ (0, 0)* Y (7 /2,0). (3.137)
n=0

Defining n £ [, and using the completeness relation of the spherical harmonics,
see Eq. (B.57), Eq. (3.137) can be further simplified to yield,

Fo(kR,9, ) ~ i"J,(kR) e §(k cos¥) = i"J, (kR) e~ - §(k,), (3.138)

where the relation §(cos?)/k = §(k cos¥) has been used.

This is an illustrative example of the pattern multiplication theorem which,
applied to the present problem, states that the angular modal response of an
infinite-length cylindrical aperture is equal to the product of the angular re-
sponse of a continuous circular aperture, Eq. (3.15), multiplied by the angular
response of a continuous infinite-length linear aperture, Eq. (3.118).

The pattern multiplication theorem enables the direct derivation of the
modal output of a finite-length cylindrical aperture which reads with Eq.
(3.120) and Eq. (3.138),
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Fo(kR,0, @) ~ i"Jn(kR) e~ - jo(k. L), (3.139)
where 2L is the length of the cylinder.

Although not examined any further, it is claimed here that cylindrical
apertures do not offer any advantages over spherical apertures in terms of
being able to decompose three-dimensional wavefields. Thus, cylindrical aper-
tures and arrays will not be part of further developments and investigations,
and detailed derivations corresponding to the ones performed for circular and
spherical apertures are omitted.



4

Acoustic Scene Analysis Using Classical Array
Signal Processing

In this chapter, the path of classical acoustics, illuminated by the previous
two chapters, is abandoned for introducing the concepts of the second pil-
lar necessary for understanding the fruitful combination of classical acoustics
with classical array signal processing to be presented in Chapter 5. Array
signal processing is the science of signal processing where more than one sen-
sor is used to obtain an additional dimension of freedom for the solution of
signal processing tasks. In most cases, this additional dimension is the spa-
tial dimension. Since this book deals with acoustic wavefields propagating in
air, the sensors utilized are microphones. However, most techniques developed
here are also applicable to array signal processing in the fields of radar (an-
tennas), sonar (hydrophones), and seismic imaging (accelerometers). Indeed,
most of the techniques presented in this chapter have been originally devel-
oped in the radar and sonar community. As a tribute to this development, the
more general term ’sensor’ is used in most of the following discussions.

Many illustrations and specific examples in this chapter are based on the
mathematically easily tractable linear sensor array since the fundamental con-
cepts are most easily understood using this popular array geometry. The ex-
tension to other array geometries such as circular and spherical arrays is, in
most cases, straightforward and therefore not treated separately.

In this book, acoustic scene analysis comprises two major tasks, namely
waveform estimation (WE) and parameter estimation (PE), see Chapter 1
for an introduction of this terminology. Section 4.1 explains these terms, as
used in this book, in more detail. Section 4.2 develops the signal models used
and states major assumptions. Section 4.3 studies WE by introducing the
concept of beamforming followed by commonly used performance measures
and examples for array designs applied to WE. Section 4.4 details PE methods
used for acoustic source localization and detection of the number of sources
present in the wavefield under observation.
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4.1 Overview

Figure 4.1 shows a general multiple-input, multiple-output (MIMO) system
for acoustic array signal processing. An array of M sensors is placed in an
enclosure at positions 7 ,,¢ = 1(1)M, possibly observing multipath propa-
gation '. The center of the array, denoted as ’o’, is assumed to be coinciding
with the center of gravity of the sensor array, cf. Appendix C. The wavefield
to be analyzed by array signal processing procedures comprises I, possibly
simultaneously active, desired sources, sp,(rp,,t),¢ = 1(1)I, and O interfer-
ing sources, sz, (rz,,t),v = 1(1)O. Each microphone signal is corrupted by
additive noise, ng(t), £ = 1(1)M, produced by the microphones themselves
and by the associated electronics.

e s N ni (t)
e v M N -
s, ('rDlyt): P \t D + $1(7'M17t) §D1<t)
Aty wzg t °D2(t) & WE
Y wa(ras,t) A 5D;(1)
5D, (1D, 1) o ns(t rray
¢ .2133(7“/\/13 5 t) Signal

sp;(rp;,t)°

. Processing
na(t)
57, (17, t)'% TM: M ¢ T (T My t)
4®7
s75(rzy,t)" —

Fig. 4.1. Array signal processing for acoustic scene analysis

As stated earlier, array signal processing tasks are, in this book, divided
into two major categories, namely waveform estimation and parameter esti-
mation.

Waveform estimation algorithms try to extract the desired signal(s) from
sensor array measurements that are corrupted by additional interferers, rever-
beration and additive noise, see Fig. 4.1. This task is usually performed by ap-
plying the paradigm of a spatial filter, or beamformer. Here, data-independent
beamformers, exhibiting time-invariant spatial characteristics are considered,
see Section 4.3.3. A second class of beamformers treated here are the data-
dependent beamformers whose spatial characteristics are determined continu-
ously from the statistics of the recorded data, see Section 4.3.4. These beam-
formers share the property that their specific geometry is an integral part
of the design procedure. A rather new and increasingly important class of
beamformer is the so-called blind beamformer, whose spatial characteristics
are solely based on the statistics of the recorded wavefield. Knowledge of

! Note that the calligraphic symbol M used as a subscript in this section should not
be confused with the maximum order of decomposition using spherical arrays.
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the particular array geometry is not required. This class of beamformers is
not treated in this book. The interested reader is referred to the literature,
e.g. [CA02, PS00, BAKO04] and references therein, for an in-depth treatment
of blind beamforming and the related paradigm of blind source separation
(BSS).

Parameter estimation as considered here deals with the extraction of ad-
ditional information carried by a wavefield and observed by an array of sen-
sors. The parameters that can be estimated include the position of the de-
sired sources as well as the number of desired sources in the wavefield under
observation, cf. Fig. 4.1. Here, only the directions-of-arrivals (DOAs) of the
desired sources, see Section 4.4.2 and Section 4.4.3, and the number of ac-
tive sources (NOS) in a wavefield, Section 4.4.4, are considered. The actual
three-dimensional position of the sources, 7p,, can be obtained by estimating
several DOAs using spatially distributed sensor arrays followed by application
of geometric considerations. For an in-depth treatment of three-dimensional
acoustic source localization, the interested reader is referred to the literature,
e.g. [Bra95, HuaO1].

4.2 Signal Models and Assumptions

In the previous chapters, only deterministic signals that can be described
exactly in space and time as functions of exp[i(k” r — wt)], were considered.
Now, the wavefield impinging on the aperture is, in general, considered as
a spatio-temporal random processes, or random field, with unknown second-
order statistics.

All signals and interferers that can be modeled as point sources are as-
sumed to be zero-mean temporally wide-sense stationary (WSS) Gaussian
random processes. Temporally WSS random processes have the property that
their second-order statistics, i.e. their mean and variance are independent of
the time variable and that their correlation only depends on the time differ-
ence of observation [Pap65].

All signals and interferers that cannot be modeled as point sources are
assumed to be zero-mean spatio-temporally WSS Gaussian processes. Spatio-
temporal WSS random wavefields only depend on the Euclidean distance
between two observation points along the aperture. Thus, spatio-temporally
WSS random fields are spatially homogeneous, or isotropic, temporally WSS
space-time processes [Her05]. Furthermore, they are considered to be statisti-
cally independent with respect to each other and with respect to all point-like
sources.

As a consequence, all early distinct reflections due to multipath propa-
gation of the desired signal(s) are modeled as point sources while the late
reverberation is modeled as isotropic noise. In Section 4.4.2, however, the ef-
fect of reverberation is modeled explicitly. There, the signal model differs from
the one presented here and its introduction is deferred until Section 4.4.2.
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As long as not explicitly stated otherwise, all signals present in Fig. 4.1
are assumed to be located in the farfield of the aperture in the sense of Ap-
pendix C.

4.2.1 Sensor-Related Assumptions

In the following, several basic sensor-related assumptions are stated.

AS—1 All sensors of the array exhibit identical characteristics in terms of
magnitude and phase response. They are therefore assumed to be perfectly
calibrated.

AS-2 The impulse response describing an individual sensor is assumed to be
a Dirac impulse, 6(), i.e. each sensor adds unity gain and zero phase to
the measurement.

AS—3 All sensors are assumed to be point-like, i.e. they do not alter in any
way the wavefield they are measuring.

AS—4 The sensor array is compact, i.e. its maximum dimension, or aperture, is
much smaller than the distance from the source(s) to the center-of-gravity
of the array. Hence, the farfield assumption holds, cf. Appendix C.

Many discussions in this chapter deal with uniformly-spaced linear sensor
arrays (ULAs). The geometric model for linear apertures has been used in
Section 3.3.1. The geometric model for an ULA with a single incident plane-
wave is depicted in Fig. 4.2. Note that only for an odd number of sensors M,

@ 5D, (rp, b)

T M,

Fig. 4.2. Geometric model of an ULA using M sensors
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there is a sensor coinciding with the phase center of the array, see Eq. (C.1).
Note also that the array is not able to discriminate signals whose DOAs only
differ in the ¢ coordinate.

A special and widely used array structure is the so-called standard ULA
[Tre02]. The term ’standard’ here corresponds to half-wavelength-spaced sen-
sors comprising the array.

4.2.2 Time-Domain Signal Model

It is assumed that all time-domain signals are real-valued. In many of the
subsequent developments, especially for the parameter estimation methods,
strong interfering sources are not modeled separately but are treated as ’de-
sired’ signals. Additional algorithms, which will not be treated in this book,
are then required to help separating desired sources from the undesired strong
interferers. This task could be performed, for instance, by blind source sep-
aration techniques, see e.g. [CA02, BAKO04], followed by signal classification
algorithms, see e.g. [DHS00].

Weak directional interferers are, for simplicity, modeled as part of the
noise signals, ny(t), £ = 1(1)M. Based on these preliminaries, the assumptions
listed in Section 4.2.1, and after dropping the explicit spatial dependence, the
time-domain signal model for an observation time interval ¢ € [0, T] is,

I
2o(t) =Y sio(t) +ne(t) = st — ek, ra, /) + nu(t), (4.1)

=1

where, due to the assumed plane-wave incidence, ea 7 m, /¢ denotes the delay
corresponding to each signal and sensor element with respect to an arbitrary
reference point. Here, this reference point is chosen to be the center-of-gravity
of the receiving array. eg, is the unit vector pointing to the direction of the
wavenumber vector associated with the ¢-th desired source and 74, is the
position vector of the ¢-th sensor, cf. Fig 3.23 and Fig. 4.2.

Note that the model, Eq. (4.1), does not take the attenuation of the plane-
wave signals due to wave propagation from sensor to sensor into account. This
is due to assumption AS-4. Employing vector notation, the signal received at
an array of M sensors can be denoted compactly as,

x(t) = [21(t), 22 (t), ..., zpr (1)]T. (4.2)

An important quantity used in many subsequent discussions is the spatio-
temporal correlation matrix which is defined as,

czlmlgT; leng’f; CIIIMET;
Caa(r) = Bla(t) - (t-m)} 2 | T )

—raxT

Capgay (T) Congas (T) + oo Cappan (T)
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where,
Corvy (T) = E{zy,, (O)20,(t — 7))}, 11,00 = 1(1)M. (4.4)

The spatio-temporal correlation matrix of the desired signals, ¢,,(7) and the
one of the noise signals, ¢,,,,(7), are defined similarly. In practice, this spatio-
temporal correlation matrix needs to be estimated from the output signals
of the sensor array. For wide-sense ergodic WSS random processes, the ex-
pectation operator, E{-}, can be replaced by a temporal averaging operation
which, for finite observation time interval T', can be approximated as,

T

C0m(T) %/w(t)wT(t —7)dt. (4.5)

0

4.2.3 Frequency-Domain Signal Model

A signal model that will be extensively used in the following sections is formu-
lated in the frequency-domain. The signal vector (t), cf. Eq. (4.2), is observed
during a time interval of T' seconds. The signal x(t) is assumed to be a zero-
mean bandpass process centered around the temporal-radian frequency w.
with bandwidth W. The so-called frequency-domain snapshot model [Tre02]
is obtained by applying a (short-time) Fourier transform to the observed signal
in the time-domain as [Dav70],

T/2
1 .
X (wp, k) = T / x(t + KT)e™“r! dt, (4.6)
—T/2

where w, = w. + pwa, p being an integer, and where wa £ 27 /T is the
resolution of the transform. The quantity w, can be interpreted as the center
frequency of a frequency bin with width wa. Note that when p = 0, then
a narrowband frequency-domain snapshot model is obtained. In addition to
(short-time) stationarity, it is assumed that the different frequency bins can
be regarded as asymptotically uncorrelated, see [SM93] and Assumption A-
2 below. Then, the short-time Fourier transform of the time-domain signal
model, Eq. (4.1), becomes for snapshot x and temporal-radian frequency w,,
[Tre02],

X(wy, k) =V (wy, O)S(wy, k) + N(wy, k), (4.7)
where,
X (wpy k) = [ X1 (wp, &), Xo(wp, £), oy Xt (wp, 6)]T (4.8a)
S(wﬂa H) = [Sl(w#a H)a SQ(WIH ’i)v ceey Sf(wﬂa H)]Ta (48b)
N(wu, k) = [Ni(wy, &), No(wp, K), - o, Ny (wps /ﬁ)}T, (4.8¢)

and where the uppercase letters correspond to the Fourier transform of the
respective lowercase letters. The matrix V (w,, ®) is commonly referred to
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as the array manifold matriz, which depends on the array geometry and the
DOAs of the desired sources, @ = [01,0s,...,0;]T, where O,, 1 = 1(1)I,
denotes the angle between the sources and the center-of-gravity of the sensor
array. The array manifold matrix is defined as,

V(@£ 0) 2 [V(0,01) | V(@ ©2) | ... | V(@ Or)].  (4.9)

The array manifold vector, V(w,,0,), is defined in Section 4.3.1 and given
by Eq. (4.23). The array manifold vector describes the transfer characteristics
from the source ¢ to the M sensors.

The formulation of the frequency-domain snapshot model is facilitated
by the following common assumptions concerning the noise and the desired
signals.

A-1 The columns of V (w,,, @) are linearly independent. This mild restriction
on the array geometry ensures that all sources are observable by the array.

A—2 The length of the observation interval T is long with respect to the corre-
lation times, i.e. the range of non-zero correlation, of the signals and noise.
Therefore, individual snapshots are assumed to be uncorrelated [SM93].
Furthermore, T is assumed to be much larger than the maximum propa-
gation time of the signal across the array. Therefore, it is assumed that the
frequency bins in Eq. (4.6) are uncorrelated [HN76]. This requirement can
also be stated by assuming a large time-bandwidth product. According to
[WW383], the requirement is TW > 2.

A-3 The noise is a spatially and temporally ergodic, zero-mean stochastic
process.

A—-4 The noise is uncorrelated from sensor to sensor and with respect to the
desired signals. Note that this assumption is idealized and will, in general,
not hold in diffuse noise fields.

A-5 The number of desired sources, I, does not exceed the number of sensors
of the array. This assumption is further discussed below.

As in the time-domain model, a correlation matrix will be of paramount
importance for many subsequent discussions. Here, the correlation matrix is a
spatio-spectral matrix which is a short-time estimate of the Fourier transform
of the spatio-temporal correlation matrix, Eq. (4.3). For each frequency w,
and snapshot k, the M x M spatio-spectral matrix of the sensor outputs can
then be written as,

gXX("‘)#a ‘%) = E{X(Wua H)XH(W#7 H)}

" (4.10)
= V(wu, ©)Sgg(wu, &)V (wy, O) + Sy (W K),

where the noise spectral matrix is assumed to be 8y (wp, £) = Fr{Cnn (7, K)}
= 02 I which complies with Assumptions A-3 and A-4. 02 denotes the vari-
ance of the noise. Note that Eq. (4.10) can be used for both narrowband as
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well as wideband signals, if, as is assumed here, the frequency bins w,, are mu-
tually uncorrelated, see Assumption A-2. For notational convenience, where
possible, the dependence on x will be dropped and w £ Wy

The spatio-spectral matrix of the source signals, Sgg(w) = Fr{cs(7)} is
diagonal — having the power spectral densities of the individual source signals
as entries of the main diagonal — only if the signals are spatially uncorrelated.
If the signals are spatially partly correlated, S gg(w) is non-diagonal but non-
singular. Fully correlated, i.e. fully coherent, signals result in a singular spatio-
spectral matrix Sgg(w) due to the presence of linearly dependent columns.

An estimate of the spatio-spectral correlation matrix, Eq. (4.10) can, as for
the spatio-temporal correlation matrix, be performed by a temporal averaging
process, i.e.,

K
Sxx(w,k) = Z (w, 6 — DNXF(w, k- A). (4.11)

A comment on assumption A-5 is in order. This assumption was first
quantified by Wax and Ziskind [WZ89] as the maximum number of sources
that can be unambiguously resolved by an array of sensors at infinitely high
signal-to-noise ratio at each sensor and infinitely long observation time as,

rank{Sgg(w)}
rank{Sgg(w)} +1’

(4.12)

under the assumption that the array manifold matrix is known and that the
columns of the array manifold matrix are linearly independent. This result
leads to the often quoted requirement that the number of sources need to be
less than the number of sensors.

4.3 Waveform Estimation

In this section, the notion of waveform estimation, and in particular space-time
filtering and beamforming, is introduced. Popular performance measures and
the paradigms of data-independent beamforming as well as data-dependent
beamforming are illustrated.

4.3.1 Space-Time Filtering and Beamforming

The concepts of space-time filtering and beamforming are discussed in this
section. For the most part, the line of argumentation follows [Tre02].

Here it is assumed that a single, possibly deterministic, signal — e.g.
sp, (rp,,t) from Fig. 4.1 — impinges on an M-element sensor array, as shown
in Fig. 4.3. It is assumed that neither interfering signals nor other additive
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Fig. 4.3. A spatio-temporal filter

noise signals are present. Let the output of the sensor £ be processed by a lin-
ear filter with impulse response wj(t),¢ = 1(1)M. % Then, assuming infinite
observation time, the output of the structure shown in Fig. 4.3 is given by a
superimposed convolution as,

M

y(t) =D wy(t) « z(t), (4.13)

{=1

where the symbol '+’ relating two signals denotes a convolution operation.
Using vector notation, this result can be written as,

y(t) = wH(t) * 2(t) (4.14)

where,
w(t) = [wi(t), wa(t), ..., wr(t)]", (4.15a)
x(t) = [21(8), 22(t), ..., e ()] . (4.15D)

Most actual implementations of the processor depicted in Fig. 4.3 require a
finite-length impulse response wy(t). This can be achieved, in a very general
way, by expanding the impulse response into a finite set of  basis functions,
Xq(t), ¢ = 1(1)Q, with the expansion coefficients for each sensor, wy , [SK92].
Then,

Q-1
we(t) =D weq Xq(t)- (4.16)
q=0

By selecting x4(t) = 0(t — gAt), where At is a delay usually related to the
sampling interval Ty in digital systems as At = Ty, the filter w;(t) becomes

2 Note that for real-valued coefficients, we(t), it is merely a notational convention
to use wy (t) instead of we(t) [vVB88, WAOL].
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an Q-tap finite-impulse response (FIR) filter. Other choices for x4(t) include
Laguerre functions and truncated sinusoids [Son67]. Here, however, the fo-
cus of attention is restricted to implementations of the filters yielding FIR
structures.

Transforming Eq. (4.14) into the frequency-domain yields,

Y(w) = WH(w) - X(w), (4.17)
where W (w) = Fi{w(t)} and X (w) = F{x(t)} are vectors of size M@ x 1.

It is now assumed that the wave-front across the sensor array can be
considered planar in the sense of Appendix C. In particular, it is again assumed
that the origin of the coordinate system coincides with the center of gravity
of the sensor array.

If the signal measured at the origin is denoted as x(t), then the signal
measured at an individual sensor is,

o(t,T) =[xt — 1), 2t —72), ..., x(t —1ar)]" . (4.18)
where 7 = [11,72,...,7:]7 and,
1
T = Eefwg, L=1(1)M, (4.19)

where e, 2 k/| k|| = ck/w.
It follows for the ¢-th component of Eq. (4.18) in the frequency-domain
that,
Xo(w) = Fi{zt — 7))} = X(w)e™™, (4.20)

where with Eq. (4.19),
wor T
WT = —epTM, =k rrm,. (4.21)
Therefore, Eq. (4.20) can be written as,
Xo(w) = X(w) - e e (4.22)

By defining the so-called array manifold vector, which represents the spatial
characteristics of a sensor array as,

. . . T
‘/(w7 @) A [esz'r-M1 , elkTTMQ, o eszrMM:| , (423)

where the dependency on w and © is implicitly given by the scalar product in
the exponential functions, © being the angle between k and 7,4, Eq. (4.18)
can finally be expressed in the frequency-domain as,

X(w,0)=V(w,0)- X(w). (4.24)
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In summary, the output of the spatio-temporal processor shown in Fig. 4.3
reads for plane-wave incidence with Eq. (4.17),

Y(w,0) = WH(Ww)V(w,0)X (w). (4.25)

Let 19 denote the processing delay due to the structure shown in Fig. 4.3,
a particular choice for the filters is,

we(t) = 8(t + ¢ — 10)/M, £ =1(1)M, (4.26)

which compensates for the propagation delays present in the different sensor
signals that are caused by the impinging plane-wave. In the time-domain, the
output of the space-time filter, cf. Eq. (4.14), is then y(t) = x(t — 79). There-
fore, by applying appropriate delays, the output of the space-time processor
can be steered toward the emitting source. For this reason, a space-time pro-
cessor is also known as a beamformer. The main objective of a beamformer
as defined by Eqs. (4.25) and (4.26) is to add the desired signal present in
each sensor output coherently, and to add the noise in each sensor output
incoherently. If the filters in Fig. 4.3 are chosen according to Eq. (4.26), in-
cluding a possible sensor-specific scalar weighting factor, the resulting struc-
ture is then called a delay-and-sum (DSB) beamformer. If FIR filters with
frequency-dependent magnitude characteristics are applied, the structure is
also known as a filter-and-sum (FSB) beamformer.

Beamformers are also classified into signal-independent, or fixed, beam-
formers utilizing time-invariant filters W (w). The other class of beamformers
adaptively control the filters according to the statistics of the recorded wave-
field, therefore yielding time-variant filters.

As can be deduced from Eq. (4.25), any beamformer design method has
two parameter sets for optimization, i.e. the sensor positions, r,, and the
filters, W (w). Specific examples are discussed in the following sections.

4.3.2 Performance Measures

This section introduces the main performance measures used for designing
sensor arrays applied to the problem of waveform estimation. Several per-
formance measures are introduced for general sensor array geometries. For
simplicity, specific examples are presented for the ULA, which is widely used
in practice. For ULAs, where ©® = 9, see Fig. 4.2. Most of the discussion
follows [Tre02].

Beampattern

An important quantity describing the performance of a beamformer is the
beampattern which quantifies the spatial selectivity of a beamformer with re-
spect to a plane-wave impinging from direction @ — (9, ). The beampattern
is defined from Eq. (4.25) as,
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B(waﬁa@) £ Y(w79)|X(w)=1' (427)

A graphical representation of the beampattern is obtained by varying the
DOA of the incoming plane-wave as 0 < ¢ < 7 and 0 < ¢ < 27 and then
plotting the squared magnitude of Eq. (4.27). The resulting graph represents
the so-called directivity pattern of an array.

For a linear array, B(w,d,¢) = B(w,?), since linear sensor arrays, as
depicted in Fig. 4.2, cannot discriminate in azimuthal direction. It was shown
in Section 3.3.1 that a plane-wave arriving at a linear aperture can be written
as,

T . .
e’Lk T _ ezkzz _ ezkzcosﬂ’ (428)

see also Fig. 4.2. Therefore, with ||k| = k = w/¢, the array manifold vector,
Eq. (4.23), for linear sensor arrays can be expressed as,

V(w, ,19) — {eiwzl COSﬁ/C’ ein2 cos 19/0, el eisz cos¥/c T ) (429)

The spatio-temporal frequency response, B(w, ), of a linear sensor array is
then,

M
B(w,d) =Y W/ (w)e= Ve = WH (w)V (w,9). (4.30)
(=1

For a ULA, z; = (¢ —1)-d, £ =1(1)M, where d is the sensor spacing.

In the following, the beampattern of a uniformly weighted ULA is derived.
The beamformer is steered to the direction of the desired source by letting
WH(w) =V (w,9,)/M in Eq. (4.30). Therefore,

M
1 ; ; ;
B(w,z?) _ M Z ezw(éfl)d(c% ’(97(305’195)/6' (431)
{=1

The geometric series in Eq. (4.31) can be written in closed-form as,

d
1 sin {M(;—(cosﬁ — (308195)} T
. —1)w
B(w,9) = ¢ et e (cos¥—cosds) (4.32)

M sin {w—d(cosﬁ — cos 193)]
2c

At this point, it is instructive to consider a specific example. Figure 4.4
depicts the directivity pattern of a uniformly weighted standard ULA, i.e.
d = A2, with M = 9. A plane-wave signal with a wavelength of A\ = 2d
impinges from ¥ = 7/2. The main-lobe of the beamformer, is steered toward
the impinging plane-wave, i.e. #; = 7/2. Visible are the main-lobe and sev-
eral side-lobes with decreasing amplitude for 0 < ¢ < 7. Also shown are
various performance parameters that are widely used for the description of
beamformers [Tre02], such as,
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Fig. 4.4. Directivity pattern of a uniformly weighted standard ULA with M =9
(adapted from [Her05])

e 3 dB beamwidth, also known as the half-power beamwidth, denoting the
region of the main-lobe where the main-lobe has not decreased by more
than 3 dB,

e relative side-lobe level, denoting the relative height of the first side-lobe
with respect to the main-lobe, and,

e peak-to-zero distance, denoting the region from the maximum of the main-
lobe to the first minimum. This quantity is also called the Rayleigh resolu-
tion limit since it represents the array’s ability to resolve two plane-waves
impinging from different directions.

All performance parameters are functions of M, w, and the sensor geometry.
Detailed mathematical derivations, along with various other less frequently
used performance parameters, can be found in [Tre02].

Figure 4.5(a) depicts a top-view representation of the directivity pattern
using the same parameters that were used for producing Fig. 4.4, now also
including the effects of varying frequency on the beamformer response. The
ordinate in Fig. 4.5 is scaled to show the microphone spacing with respect to
the wavelength of the impinging plane-wave, i.e., dy = d/\.

Figure 4.5(b) shows the result when the beamformer is steered to "look’ at
direction ¥4 = 7/6. A first obvious property of uniformly weighted ULAs is
the strong dependence of the main-lobe width on frequency. With decreasing
frequency, the main-lobe widens, thereby reducing spatial discrimination. The
reason for this is the fact that the beamformer is unable to exploit the phase
difference of the plane-wave as it travels across the array for very small values
of dA.
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Fig. 4.5. Directivity pattern of a uniformly weighted ULA with M = 9 for varying
frequency

Sampling a continuous aperture at discrete sensor positions, however, leads
to phase ambiguities above a certain frequency and so-called grating-lobes ap-
pear in the beamformer response. This phenomenon is also denoted as spatial
aliasing. The grating-lobes, which depend on the sensor spacing with respect
to the wavelength of the impinging wavefield, can be found in Fig. 4.5 as
the side-lobes that are just as high as the main-lobe. The properties of the
grating-lobes also depend on the look-direction of the beamformer, ¥,. It can
be shown [Tre02, Her05] that grating-lobes can be avoided if the normalized
sensor spacing is chosen as,

1
dy< ———— 4.33
A= T+ sind,, | (4.33)

Smax

where ¥, . denotes the maximum steering angle to be considered for a given
application. A beamformer that is steered to ¥, = 7/2 is called a broadside
array, and a beamformer that is steered to U5, = 0 is called an endfire array.
For example, d < \/2 if 0 < ¥4 < 7, corresponds to an ULA that does not
exhibit spatial aliasing for all wavelengths down to A\ and all look-directions.
These arrays are often used in applications involving speech signals. Another
property of uniformly weighted ULAs is the change of main-lobe shape when
the beamformer is steered to different look directions, as seen in Fig. 4.5.

It can be deduced from Eq. (4.32) that the beampattern of a uniformly
weighted ULA is periodic with period /¢, where ¢ = d(cos ¥ —cos¥s)/c. This
is the reason for the forward-backward ambiguity inherent in all beamformers
employing linear sensor arrays. This means that, for instance, a signal coming
from ¥ = 7/2 cannot be discriminated from a signal coming from 9 = 37/2.
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Directivity

A widely used performance measure for sensor arrays is the array directivity
factor. It is defined as [Elk04],

[B(w, 9, 0)?
f B(w,0,9)|?b(8, ¢) sin 0 dfdo
0

D(w, ¥, p) = , (4.34)

1
4m

oy

where B(w, 9, ) is given by Eq. (4.27). This quantity can be interpreted as
the relationship of the output power of a sensor array due to a plane-wave
impinging from (¢, ¢) with respect to the noise power. The quantity b(f, ¢)
symbolizes the distribution of the noise power and is normalized such that,

2

1 : _
o 0/ 0/ b(6, ¢) sin Bdfde = 1. (4.35)

This type of noise is also called isotropic noise. An isotropic noise field is con-
stituted by spatially uncorrelated plane-waves arriving with equal probability
from any spatial direction [Elk04]. According to this definition, an isotropic
noise field in two spatial dimensions is called a cylindrically isotropic noise
field while an isotropic noise field in three spatial dimensions is denoted as
spherically isotropic.

It can therefore be stated that Eq. (4.34) quantifies the array gain over
isotropic noise. A second quantity in this context is the directivity index, which
is simply defined by modifying Eq. (4.34) as

Dr(w, 9, ¢) = 10logyy D(w, 7, ). (4.36)

Specializing Eq. (4.34) to linear sensor arrays coinciding with the z-axis, cf.
Fig. 4.2 and Fig. 3.23, and assuming unit gain in the direction of the incoming
plane-wave as well as spherically isotropic noise — where b(6,¢) = 1 — results

—1

D(w) = %/\B(w,e)ﬁsmade /|WH ,0)|? sin 0do

(4.37)
In general, Eq. (4.37), needs to be evaluated numerically. However, for the spe-
cial case of ULAs, Eq. (4.37) can be further simplified. It can readily be verified
that for a uniformly weighted ULA, Eq. (4.37) becomes with Eq. (4.32),

-1

D(dy,9,) = M? j(sm[M”dk(ucows)})zdu , (4.38)

sin[rdy (u — cos ;)]
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where u £ cosf. It can further be shown that for a standard ULA, i.e. dy =
1/2, steered to broadside, i.e. 9 = w/2, Eq. (4.38) simplifies to D = M
[GR65], which is the well-known result that the directivity of a standard ULA
is equal to the number of sensors [Tre02]. For non-uniform weighting and
dy =1/2, Eq. (4.37) becomes [Tre02],

D(w) = (WH(w)W(w)) 2. (4.39)

12

o/ N\ =

Drin dB
»
~

dx

Fig. 4.6. Directivity index of a uniformly weighted ULA for M = 9, steered to
Y =7/2 and ¥s = /6

Continuing the example presented in Fig. 4.5, Fig. 4.6 shows the directivity
index of a uniformly ULA for M =9, steered to 9, = 7/2 and 95 = 7/6. Note
that the minima present in the curves representing the directivity index can
be associated with the grating-lobes from Fig. 4.5.

It can be shown [Tre02] that the uniformly weighted ULA with dy = 1/2
has the highest possible directivity for a given A. Any weighting applied to
the ULA will result in a decreased directivity.

Array Gain and White Noise Gain

The array gain, A(w), is defined as the improvement in the signal-to-inter-
ference-plus-noise ratio (SINR) by using a sensor array compared to a single
omnidirectional sensor. For WSS processes, SINRgensors 1S defined as the ratio
of the average output power at the sensors to the average power of noise-
plus-interference at the sensors, i.e. SINRgensors(w) = Sss(w)/Snn(w), where
Sy (w) is the spectral density due to both noise and interference.
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Omitting the spatial dependency for notational convenience, the SINR at
the array output is defined as the ratio of the output power of the array due
to the desired signal, i.e.,

Sy (@) lsigna = Sss (@)W (w)V (w)[%, (4.40)
to the output power of the array due to the noise-plus-interference signal, i.e.,

Sy (W)lnoise = W () Sy (W)W (w) = SNN(W)WH(W)SNN(W)WEw)v :

4.41

where 8y n () is normalized such that tr{Sxx(w)} = M [BS01]. Therefore,
the array gain can be written as,

SYY (W)|signal/SYY(w)|noise _ |WH(W)V<(“})|2

Alw) = SINR gensors () - WHW)Syn ()W (W)

(4.42)

For homogeneous noise fields, i.e. Syn(w) = Cyn(w), BEq. (4.42) can be
expressed as,

(W @)V (w)?
WH (W) LN (@)W (W)
where I' ;v (w) denotes the so-called coherence matrix of size M x M whose
individual entries are defined as [BS01],

Alw) =

(4.43)

SNy Ny, (W)

)&
\/SN,,lNll w)Sn,, N, (W)

I'n, N,

v1,vs = 1(1)M. (4.44)

For example, Eq. (4.44) becomes for spherically isotropic noise fields and equal
sensor spacing d [BS01],

) y,, () = sinclwd(vi — )/, (4.45)

where sinc{z} £ sin(z)/x and sinc{0} = 1. For cylindrically isotropic noise
fields and equal sensor spacing [Elk01],

)y, (@) = Jolwd(y —m)/c), (4.46)

1

The so-called white noise gain quantifies the ability of an array to suppress
spatially white noise — including sensor noise as well as sensor position, gain
and phase errors — and is defined as [BS01],

W @)V (W)

Ap(w) & AWw)|r=r = W ()W ()

(4.47)
For a uniformly weighted array, W (w) = V(w)/M, it follows that A,, =

which is the maximum achievable white noise gain for any sensor weighting
[Tre02].
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A specific example, illustrating the gain and white-noise-gain measures,
will be provided in Section 4.3.3, where superdirective arrays are discussed.

Sensitivity to Array Imperfections

The array sensitivity to deviations from ideal geometry and sensor character-
istics is an additional performance measure which is often, rather heuristically,
quantified as the inverse of the white noise gain. Deviations from ideal model
assumptions mainly include errors in the sensor location, magnitude and phase
deviations, as well as sensor self noise.

4.3.3 Data-Independent Waveform Estimation

In this section, some widely applied designs for data-independent beamform-
ing are illustrated. The simplest and most common beamformer for narrow-
band applications is the uniformly-spaced linear array (ULA). It is then shown
that for wideband applications, for instance high-quality distant speech acqui-
sition, constant-directivity beamforming (CDB), is a more appropriate choice.
Another class of beamformer are the so-called differential and superdirective
beamformer, which are introduced at the end of this section.

The ULA Beamformer

The ULA is, because of its simplicity, a widely used beamformer in practice.
The sensor spacing is usually chosen such that no grating-lobes appear in
the frequency range of interest. For data-independent operation, the weights
are often chosen as scalars, the uniformly weighted ULA being a special
case, see e.g. Eq. (4.31). The design objective here is to ensure good side-
lobe behavior while attaining good directivity. Two examples are shown in
Fig. 4.7 utilizing Hamming weighting (wy) and Chebyshev weighting with
30 dB of side-lobe attenuation (wcso), compared to the uniform weight-
ing (wq) for M = 9,dy = 1/2. Using Eq. (4.38) it can be shown that
D[['wl] = D[max =954 dB, D[[’wH} = 5.53 dB, and D[[’wcgo] = 6.32 dB.
Comparing these results with the respective directivity pattern in Fig. 4.7,
the trade-off between directivity index and narrow main-lobe in conjunction
with good side-lobe behavior becomes obvious.

The specific values for the Hamming and the Chebyshev weighting as well
as a large number of other weighting functions can be found in [Tre02].

However, ULAs are not a good choice for applications where the desired
source(s) and/or the interfering source(s) span a wide frequency range, since
the directivity indeces for this class of beamformers are strongly frequency-
dependent, see Fig. 4.6. For applications requiring a large bandwidth of op-
eration with constant directivity using a minimum number of sensors, the
sensors cannot be spaced in an equidistant configuration. Furthermore, FIR
filters instead of scalar sensor weights help to reach the desired characteristics
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Fig. 4.7. Directivity pattern of a weighted ULA for M = 9,d\ = 1/2, including
uniform weighting (w1), Hamming weighting (w ), and Chebyshev weighting with
30 dB of side-lobe attenuation (wcs0)

as presented in the next section. As stated earlier, a beamformer employing
FIR filters are also denoted as a FSB.

The Constant-Directivity Beamformer

For certain applications, e.g. large bandwidth high-quality speech acquisi-
tion, it may be desirable that the spatial characteristics of the beamformer
for varying frequency are as invariant as possible [TSHT03]. For this pur-
pose, constant-directivity beamformer (CDB) may be employed advanta-
geously. Several approaches to this problem are available in the literature,
e.g. [DB88, GE93, Cho95, WKW95, VSd96]. The basic idea behind all CDB
algorithms, however, is to jointly optimize sensor positions and sensor weights
— implemented as FIR filters — such that the array aperture scales with fre-
quency. In other words, any impinging plane-wave of arbitrary wavelength
within the design frequency band ’sees’ a constant length of the array aper-
ture, leonst, relative to the wavelength A. As an example, Fig. 4.8 shows the
performance of a CDB design based on the algorithm presented in [VSd96].
Here, the sensor array is of length 1.72 m comprises 26 non-equally spaced
sensors and FIR filters of length 128. This particular design ensures an approx-
imately constant value of {/\ for f = 150...16000 Hz. The design procedure
starts with six equally spaced sensors in the center of the array, which define
leconst- All additional sensors are then placed in a logarithmically increasing
fashion. The filters are then optimized such that there are always six sensors
'visible’ for each frequency of the impinging plane-wave. As can be seen from
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Fig. 4.8. Directivity pattern and directivity index for a 24-element CDB of length
1.72 m. Note that the lower cut-off frequency of the design is 150 Hz

the directivity pattern, the main-lobe exhibits constant spatial characteris-
tics over the entire frequency range and the side-lobes are well suppressed
(by about 20 dB). Hence, the directivity index, shown on the right-hand side
of Fig. 4.8, offers fairly constant behavior. However, the directivity index is
significantly lower than one would expect from a standard ULA, which is
10log;((26) = 14.15 dB. The reason for this is the relatively wide main-lobe
of the CDB. The main-lobe width can be decreased by using more than six
sensors that define [.onst. This modification increases the total length of the
sensor array, which, in turn, extends the lowest usable frequency.

Differential and Superdirective Beamformer

The beamformers discussed so far have in common that weighted and delayed
sensor signals are added to yield the beamformer output. In the following,
differential [Elk04] and superdirective, e.g. [CZK86, BS01], beamformers are
introduced that combine the sensor outputs in a sign-alternating fashion. It
will be shown that this technique yields higher directivity than conventional
filter-and-sum beamformers.

Differential Beamformer

When the outputs of closely-spaced microphones are combined using sign-
alternating scalars, a so-called differential microphone array (DMA) is ob-
tained. Building upon a physical interpretation, DMAs are approximations
of acoustic pressure differentials. To derive the mathematics, consider a
unit-amplitude plane-wave impinging at a point on a linear aperture, see
Fig. 3.23. Omitting the time-dependence, the pressure according to Eq. (3.116)
is P(k,z,9) = e’*#°°5Y_ Taking the n-th spatial derivative with respect to z
yields,
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n

%P(kj,z,ﬁ) = (ik cos 9)" etk cos V), (4.48)
Two observations are of importance here. Firstly, the factor k™ in Eq. (4.48)
results in a 6n dB/octave highpass characteristic concerning the magnitude
response of the n-th spatial derivative. Secondly, the factor cos™ ¢ results
in a n-th order multipole concerning the spatial characteristics, yielding n
spatial nulls. Hence, these spatial derivatives are closely related to the circu-
lar /spherical harmonics derived in Chapter 3.

The paradigm of DMASs is to approximate the acoustic pressure differen-
tials by finite differences [Elk04]. For example, a first-order DMA comprising
two omnidirectional microphones positioned at zg + d/2 and zp — d/2 on the
z-axis in Fig. 3.23 can be expressed as,

AP(k,z,0)  P(k, 2+ d/2,9) — P(k, z — d/2,9)

Az d
9 1 ‘ (4.49)
= —sin <—kd cos 19> ethzocos v
d 2
For kd < 1, Eq. (4.49) can be approximated as,
AP(k,z,9 ; ,
% ~ ik cos ) eth0 o8V (4.50)

In [E1k04] it is shown that in order for the error introduced by this approxima-
tion to be less than 1 dB, the element spacing must be less than a quarter of
the wavelength. Note that the minimum spacing for DSBs or FSBs, such that
grating-lobes are avoided, is half of a wavelength. It is further shown in [Elk04]
that, by adhering to the quarter wavelength limit, the maximum directivity
in spherically isotropic and cylindrically isotropic noise is, respectively,

Da. = M2, (4.51)
D§ia.  =2M —1. (4.52)

This is also in contrast to DSBs, where the maximum directivity equals the
number of microphones for uniformly weighted ULAs.

However, if a frequency-independent magnitude response is desired at the
output of the DMA, the n-th order differential response has to be compensated
by an n-th order integrator, which significantly boosts uncorrelated noise at
low frequencies.

Returning to the first-order DMA, it can be observed that by applying a
delay 7 at the output of one of the microphones, any first-order directivity
pattern can be synthesized, e.g. dipole or cardioid [Elk04]. It can be easily
shown that the output of a steered first-order DMA is proportional to 7 +
dcos(¥9)/c, yielding a spatial null at 9y = cos™!(—cr/d). It can be further
shown that an n-th-order DMA has n spatial nulls that can be controlled
individually. This variability of the spatial nulls makes an n-th-order DMA a
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viable alternative when up to n strong directional interferers are present in
a wavefield. A first- and second-order design that takes a moving interferer
into account is presented in [TEO1b], where the spatial null is continuously
controlled by adaptively minimizing the array output.

It can be shown that M = n+1 omnidirectional microphones are necessary
to form an n-th order DMA [Elk04]. An extension of a generic DMA of order
up ton = 3 is shown in Fig. 4.9. Included are separate delays in each stage, i.e.
Ty, To, T3, for synthesizing any spatial directivity pattern up to and including
order n = 3. Assuming an equal microphone spacing of d, cumbersome but
straightforward calculations show that this generic third-order structure can
be re-cast into a FSB with sensor weights,

1
W) = W) Wa(e). ... W )] (15)
where,
‘ z | |
O 1 1 |
T | |
—iwT] i Y i
—-€ : 2 ; 1
TM2 1 ! _efiwff :
al Yi | Y3
| o0 .
_e—iw‘m ‘ 1 :
My 1 : : _efiwr
D : 76_2‘“”— 3
D _efiw‘m : :
’I‘M4 : :
first-order . second-order . third-order

Fig. 4.9. Differential beamformer of up to order n = 3 including delays, cast into
a FSB framework
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Wi(w) =1, (4.54a)
Wa(w) = — Y e ™, (4.54D)
V1:1
n—2 ) n—1—vy )
Wi(w) = Y e @ N emimn, (4.54c)
vo=0 vi=1
—iw Z Ty
Wy(w) = - 7t (4.54d)

The n-th-order DMA follows with n = 0(1)3 in Eq. (4.53). Note that the n-
th-order integrator has been included in Eq. (4.53) for obtaining a frequency-
independent magnitude response.

Superdirective Beamformer

A superdirective beamformer (SDB) aims at achieving a higher directivity
than the conventional delay-and-sum beamformer (DSB) does, i.e. Dpgp

M. It was stated above that differential arrays achieve Dgg/[ A, = M? by
combining the microphone signals in a sign-alternating fashion using scalars.
SDBs can be interpreted as a generalization of DM As by replacing the scalars,
which appear in the classical description of DSBs, by filters. SDBs are mostly
used in endfire configuration, meaning that the desired signal is assumed to
impinge from the prolongation of the array’s axis. A widely used type of
SDB is the so-called Minimum Variance Distortionless Response (MVDR)
beamformer. The design objective can be verbally stated as the minimization
of the output power of an array of sensors subject to a distortionless constraint
for the desired signal that is assumed to impinge from the look-direction, i.e.
¥ = ¥. More mathematically, this statement reads,

&/n(in) WH ()8 x x (W)W (w) subject to WH(w)V(w,9) =1.  (4.55)
By applying the Lagrange-multiplier method [Fro72] and keeping in mind
that only the noise power should be minimized, the solution of Eq. (4.55), the
MVDR beamformer, can be expressed as [CZO87],

Sun@Vw)
V(W) SN (@) V (w)

W(w) = (4.56)

Note that the spatial dependency has been dropped for notational con-
venience. By assuming a spherically or cylindrically isotropic noise field,
Eq. (4.56) can be written as,

N(@V (W)
LynW)V(w)

W(w) = — L2 f; , (4.57)

Vi
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where the entries of the coherence function are given by Eq. (4.45) and
Eq. (4.46), respectively.

In order to deal with the spatially white noise amplification problem dis-
cussed below, a small additional scalar € — the so-called white noise constraint
— can be added to the diagonal entries of the coherence matrix [GM55], yield-
ing,

VWL yN (W) + )7V (w)

Figure 4.10 shows the directivity pattern, gain and white noise gain for a
5-element SDB steered to endfire, designed according to Eq. (4.57) assuming
a spherically isotropic noise field. The scalar € is set to zero, corresponding
to an unconstrained (superdirective) operation. Additionally, the array gain
and the white noise gain for a uniformly-spaced 5-element DSB are shown for
comparison, where e = co. A few interesting properties of SDBs compared to
DSBs should be noted. At low frequencies, or/and small spacing, the array
gain of the SDB approaches 14 dB which corresponds to M?2, while the array
gain of the DSB approaches zero. Second, the WNG of the SDB approaches
minus infinity while the WNG of the DSB is about 7 dB, corresponding to M
as predicted in Section 4.3.2. A very small value for the WNG, or conversely
a very high sensitivity, basically results in an extremely high amplification of
uncorrelated white noise, making this particular design useless for practical
applications at low frequencies. A third observation is that, for this particular

(4.58)

40
% e=0
= - ——=
; 20 . . R € 01
= 7‘?\__\ € =00
U ‘f'—‘

o

I/x

Fig. 4.10. Directivity pattern, gain and white noise gain for a uniformly-spaced
5-element SDB steered to endfire. Here, ¢ = 0 corresponds to an unconstrained
(superdirective) operation, while ¢ = co corresponds to the DSB
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design, the SDB basically turns into a DSB for kd > 3 in terms of array gain
and white noise gain.

The effect of the white noise constraint is shown on the right-hand side of
Fig. 4.10. As can be seen, the array gain decreases toward the performance
of the DSB. However, the WNG increases significantly for small values of
kd, making the design less sensitive to random errors, like variations of the
positions, gain, and phase among the sensors. Here, the trade-off between
array gain and WNG becomes obvious. Specific values for € depend on the
application and its requirements. Hence, generic rules for its selection cannot
be given.

4.3.4 Data-Dependent Waveform Estimation

Data-dependent waveform estimation algorithms adaptively control a set of
filters according to the signal statistics derived from the sensor signals. A com-
monly used data-dependent beamformer is the so-called linearly-constrained
minimum power (LCMP) beamformer [Tre02]. The design objective is here
to minimize the beamformer output such that a set of linear constraints is
fulfilled. Linear constraints can be imposed on the direction-of-arrival of the
desired signal and/or known direction-of-arrival of strong interferers. These
constraints are called directional constraints. Further constraints are deriva-
tive constraints and eigenvector constraints which are used to make the beam-
former more robust against errors in the assumed direction-of-arrival of the
desired signal and the strong interferers [Tre02]. Mathematically, this design
objective can be written as,

Vr‘rl_l(in) WH ()8 x x (W)W (w) subject to WH(w)C(w) = G¥ (w), (4.59)

where C(w) is an M x C' constraint matrix, C' being the number of constraints
used. G(w) is a vector containing the values of the constraints, for instance,
unity for the look-direction of the beamformer toward the desired source and
zero for the direction of the strong interferer(s). Note that by introducing C
constraints, there are M — C' degrees of freedom remaining in each frequency-
bin for the optimization task. It was shown by Frost [Fro72] that it follows for
the optimum filter coefficients that,

S (£)C(w)
W opi(w) = XX
)= o ) S5 (@) C )

G(w), (4.60)

A so-called LCMV beamformer is obtained when replacing S x x by Sy in
Eq. (4.60) [Tre02].

As an example, Fig. 4.11 shows the directivity pattern of a 9-sensor LCMV
beamformer satisfying the distortionless constraint in the direction of the
incoming desired plane-wave. A second directional constraint in the direction
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Fig. 4.11. Directivity pattern of an 9-sensor LCMV satisfying two directional
constraints

of a strong interferer impinging from ¢ = 7/4 is imposed, where a deep null
is formed by the beamformer.

This data-dependent beamformer can be implemented efficiently by em-
ploying the structure of the so-called generalized side-lobe canceler (GSC)
[GJ82], as shown in Fig. 4.12, which transforms the constrained optimization
problem into an unconstrained one.

The general idea is to split the optimum filter coefficients into two orthog-
onal structures, i.e.,

Wopt(w) = Wy (w) — B(w)W 4 (w), (4.61)

where the quiescent filter coefficients, Wy(w), form a fixed beamformer
(FBF) that satisfies the constraint Wf (W)C(w) = G(w). On the other
hand, the blocking matriz (BM), B(w), in the orthogonal component satis-
fies C(w)” B(w) = 0. In other words, ideally, the FBF enhances the desired
source while the BM blocks the desired source, only allowing the noise sig-
nals to be passed through to the output of the BM. The interference canceler
(IC), composed of M = M — C adaptive filters, driven by the respective out-
put of the BM, then estimates the components correlated with the noise and
interferers contained in Yrpr(w), see Fig. 4.12, and subtracts them from the
output of the FBF, thereby further enhancing the desired signal extracted by
the FBF.

The unconstrained cost function for the design of the filters comprising
the IC can be written as, see Fig. 4.12,

“r}}lia)[wq(@ ~ B(w)Wo(w)]"Sx x (@)[W,(w) = Bw)Wa(w)], (4.62)
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Fig. 4.12. Structure of the GSC comprising M sensors, a fixed beamformer (FBF),
a blocking matrix (BM), and an interference canceler (IC)

which can be shown to result in [Tre02],

Wilope(w) = Wil (w)Sx x (w) B(w)[B (w)Sxx (w)B(w)] ™' (4.63)
Algorithms that estimate Eq. (4.63) adaptively and a plethora of subtleties re-
lated to a successful implementation of the GSC in real acoustic environments
are discussed in detail in [Her05].

4.4 Parameter Estimation

In this section, parameter estimation methods are introduced. In particular,
techniques that estimate the source(s) DOA are discussed. In the literature,
three fundamentally different paradigms of source localization seem to exist.
The first class of techniques, especially used in the localization of acoustic
sources, is the paradigm of time-difference-of-arrival (TDOA). Here, two or
more sensors are used to estimate the travel time of a plane-wave as it prop-
agates across an array of sensors. Combining the TDOA with the array ge-
ometry allows the determination of the source’s DOA by geometric methods.
The TDOA-based techniques are sketched in Section 4.4.2. A second class
of techniques are the subspace-based methods that have traditionally been
used for narrowband applications. The reasons for this will become clear in
the course of discussion presented in Section 4.4.3. A third class of techniques,
which is not discussed in this book, are based on the methodology of a steered
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beamformer. The idea is simply to steer a beam in three-dimensional space
and choose the direction with maximum response power as the DOA, see
e.g. [DSBO1] and references therein. First, however, a fundamental perfor-
mance measure for parameter estimation, the Cramér-Rao lower bound, is
introduced.

4.4.1 Performance Measure — The Cramér-Rao Lower Bound

The performance of parameter estimation algorithms is fundamentally bound
by the Cramér-Rao lower bound (CRLB) [Tre02]. Let the vector n contain all
parameters to be estimated from a set of data, e.g. the directions-of arrival of
multiple wave-fronts, their relative spectral densities as well as the noise spec-
tral densities. Also, let 7) denote the result of an estimator of the parameters
of interest. Then, the covariance of the estimation error, C(n), is given by,

C(n) 2 B{(7 —n)(h - n)"}. (4.64)

The CRLB provides a bound on the covariance matrix of any unbiased es-
timate of 7. The covariance of the estimation error, Eq. (4.64), is therefore
bounded by,

I€@)lr = |ICcrrsM)lr- (4.65)

This important equation means that no estimator can perform better than
the CRLB. An estimator is called efficient if it attains the CRLB for a long
observation interval and/or high SNR.

In the following, it is assumed that only the estimation of the signals’ DOA
is of interest, i.e. n = @ = [O1,0,,...,0/]T. The model considered is the
Gaussian model with unknown signal power spectral density, cf. Eq. (4.10). It
is further assumed that the noise is a WSS process with covariance o2 . Then,
as shown in [SLGO1], the CRLB is given by,

Corrp(@,w) =% {Re{ﬁss(w) Kl + V" (w,0)V (v, @)g%%u(wU :

(4.66)

where K is the number of statistically independent data snapshots and, omit-
ting the dependencies on @ and w where possible for better readability,

H-D"|1-v(V'V)"'v"|D, (4.67a)
ov. [aV(w,@l) ‘ OV (w, 03) ‘ ’ oV (w,0y)

D=—=
- 00 00, 00, 901

] . (4.67b)
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The symbol ® in Eq. (4.66) denotes the Hadamard product, i.e. an element-
wise multiplication of the matrix elements. In general, Eq. (4.66) leads to
highly intractable closed-form expressions for the CRLB. Even for the rather
simple case of two desired source signals, to be considered later for subspace-
based parameter estimation methods, a concise and meaningful closed-form
expression seems impossible to obtain. However, for the special case of a single
desired signal to be observed with a linear sensor array having sensors posi-
tioned at zp, £ = 1(1) M, cf. the geometric model shown in Fig. 4.2, significant
simplification of Eq. (4.66) becomes possible. After applying the additional
assumption of equal spectral densities at the sensors, i.e. Sgg(w) = 02(w), it
can be shown after a series of extensive, though straightforward mampulatlons
[MS69], that with © = 1,

1 (sin?(9) [o%(w) Mooy -1
Corep(V,w) = 2K{ c? 1—|—Mo'2 /02 Z Z (2, = 222) } '

1=12s=£;+
(4.68)
For a standard ULA, the double sum can be expressed by d?M?(M? —1)/12
[GR65], and therefore for a single frequency corresponding to A\ = 2d,

6(1+ M - SNR)

CerLp(® :
ores(0) = ey 2(9)M2(M2 — 1) - SNR?

(4.69)

where SNR £ 02 /52 . Specific examples involving the CRLB will be shown in
later sections, when the performance of subspace-based parameter estimation
methods is studied. Note that the CRLB depends on the DOA of the incoming
plane-wave. It can be seen that the performance of any standard ULA will
degrade as the source moves away from broadside, which is a well-known effect
that all linear arrays have in common.

A simple TDOA-estimation method for ULAs that could be used for de-
termining the performance of time-difference-of-arrival (TDOA) methods for
a single impinging plane-wave can also be derived [MS69, WW83, WWW84].
Let 7rpoa denote the TDOA to be estimated. Then, for M = 2,

o2(w)/o2]? !
G (@) = 5 {1 [—i-SZ(ag)(/w;U/}aa w2} . (4.70)

This CRLB, however, is not too meaningful for the TDOA estimation methods
presented in Section 4.4.2 since they are based on peak detection of discrete-
time functions. Therefore, it can be argued, that the estimate is either ab-
solutely correct, if the correct peak is identified (zero error), or completely
unusable, if the wrong peak is identified. This is in contrast to the DOA es-
timate, @, to be presented in Section 4.4.3, which is not limited to discrete
values. As a result, the CRLB based on the TDOA, Eq. (4.70), will not be
used any further.
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Limitations of the CRLB

The CRLB is used extensively for evaluating the performance of any unbi-
ased estimator. However, it must be kept in mind that the CRLB assumes
that the estimation error is small. It can therefore be only compared to local
variations of the estimate obtained by PE methods. Small estimation errors
can only be obtained when the SNR is high and/or the observation interval
T is sufficiently long. T' is considered to be sufficiently long if WT' > 2,
which means that the observation interval must be larger than the correlation
time — i.e. inverse bandwidth — of the signal and noise [WW83]. At low SNR
values and/or short observation times the probability of erroneous estimation
results cannot be neglected and the performance of any estimator will degrade
drastically compared to the CRLB. An overview of specific analyses regarding
ambiguous estimation results for TDOA-based algorithms and subspace-based
DOA algorithms will be given in Section 4.4.2 and Section 4.4.3, respectively.

However, detailed performance analysis of parameter estimation methods
is beyond the scope of this book. Here, a few selected examples are presented
in Section 4.4.2 and Section 4.4.3 to highlight some strengths and weaknesses
of the estimation algorithms to be described below.

4.4.2 TDOA-Based Algorithms

Here, two major contributions in the area of TDOA estimation are presented.
First, TDOA estimation based on the generalized cross-correlation (GCC)
is introduced [KC76]. Second, the adaptive eigenvalue decomposition (AED)
algorithm [Ben00] is outlined that, in contrast to the GCC method, does
not rely on the free-field plane-wave propagation model but explicitly models
multipath propagation by appropriate FIR filters.

Generalized Cross-Correlation-based Algorithms

It is assumed that a single desired plane-wave signal impinges on a sensor
array comprising two sensors. In particular, it is assumed that the attenuation
due to wave propagation can be neglected. The signal s(¢) and the noise
signals, n1 (t), n2(t), are assumed to be jointly WSS and mutually uncorrelated
processes. Then, the signal model, cf. Eq. (4.1), can be written as,

X1 (t)
2(t)

s(t) + na(t), (4.71)
s(t — Trpoa) + na(t). (4.72)

The generalized cross-correlation (GCC) method now estimates the TDOA,
TTDOA, by determining the value of 7 that maximizes the generalized cross-
correlation function given by the inverse Fourier transform of the weighted
cross power spectral density [KC76]. Assuming infinite observation time T,
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1

Cxyay (T) = %

/ A(w) Sz, zy (W)e ™ dw, (4.73)

where A(w) is a weighting function, cf. Tab. 4.1. Then, the estimate 7rpoa
can be obtained by,
TTDOA = arg mMax Cyz, 4, (7). (4.74)

Equation (4.74) therefore searches for the maximum peak in the cross-
correlation (CC) function. This search becomes increasingly more difficult
as the input signals decrease in bandwidth since the relative height of the
maximum peak in the classical CC function, where A(w) = 1, with respect
to the adjacent peaks is proportional to the signal’s bandwidth [WW83]. As
a remedy, high SNR values become necessary for detection as the bandwidth
decreases. Another possibility would be to apply the so-called PHAT (phase
transform) weighting function, see Tab. 4.1, which basically serves as a pre-
whitening filter as the following discussion shows. Let X;(w) and Xo(w) de-
note the Fourier transforms of Eq. (4.71) and Eq. (4.72), respectively. Then,
by virtue of the uncorrelatedness assumption of s(t) and n,(t),v = 1,2,

Sx, x,(w) = B{X1(w)X}(w)} = Sgg(w)e “rpoa, (4.75)

Plugging this result and the PHAT filter function into Eq. (4.73) and carrying
out the integration yields,

Caya,(T) = 0(T + TrDOA), (4.76)

therefore resulting in a single peak at the position of the TDOA.

A few of the commonly used weighting functions are summarized in
Tab. 4.1. Further discussions and comparisons can be found in [KC76].

One of the main disadvantages of the GCC-based TDOA estimation meth-
ods applied to real-world wavefields is that the signal model only takes the
direct propagation path into account. As a result, strong reflections (mul-
tipath) lead to additional peaks in the cross-correlation function which can
be just as high, or even higher, than the peak corresponding to the direct
propagation path [CBS96]. This effect cannot be prevented by any pre-filter,
Aw).

Algorithms based on the adaptive eigenvalue decomposition method (AED)
deal with this problem by specifically including the multipath environment
into the model, as shown in the following.

The Adaptive Eigenvalue Decomposition Algorithm

In contrast to the GCC signal model, the model underlying the AED algorithm
explicitly incorporates the impulse responses from the source s(t) to the first
and second microphone, i.e. ui(t) and us(t), respectively as,
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Table 4.1. Specific weighting functions for GCC methods (after [KC76])

A(w) Synonym
1 classical CC
1 ROTH filter
Sa1a (W)
1
SCOT filter
Soyay (w)smxz (w)
- PHAT filter
|Sﬂf1 D) (w)|

.’Iﬁl(t) = ul(t) *
l'g(t) = Ug(t) *

s(t) +na(t),
s(t) + na(t).

The TDOA is now ’coded’ into the two impulse responses as the difference
between the two peaks that represent the propagation due to the direct path.
The AED algorithm [Ben00] now aims at adaptively identifying the two im-
pulse responses, as indicated in Fig. 4.13. However, an adaptive algorithm is
only capable of identifying a finite set of parameters. Therefore, as in Sec-
tion 4.3.1, the impulse responses as well as the filters are expanded into a
set of basis functions, x4(t) = 6(t — ¢At), weighted by @, and @Q,, expansion
coefficients, respectively. In the noise-free case, it therefore follows that,

Qu—1
Ty Z Uy, q0(t — qAL) =
= u:":s(t),
Quw—1
it Z wa,40(t — qAt) =
= a:l(t)ng,
and
Qu—1
ya(t Z wi g 0(t — qAt) =

= ZEQ(t)T’UJl,

Qu—1

Z Uy, qS(t — gAL) (4.79)

Qu—1

Z wa,qz1(t — qA?)

prt (4.80)

Qu—

Z w1 qu(t - th)

= (4.81)



4.4 Parameter Estimation 127

s(t), s(t — At),...,s(t — (Qu — 1)A)]7T, (4.82)
t)axv(tht)v“'axu(ti(Qw - ]-)At)]Ta ( )
0), 1, (1), ..., uy (Qu — 1)]7, (4.84)

(4.85)

Note that u, is assumed to be time-varying if either the acoustic environment
cannot be approximated as a time-invariant system, and/or if the acoustic
source is moving. The task is now to identify the time-varying impulse re-
sponse u, by the adaptive filters w, .

ni (t)
z1(t) \ y1(2)
Uq (t) —— w2 (t)
s(t)
i na(t) (A) >
wlt) |- x2(t) wi(t) ye(t)

Fig. 4.13. Time-difference estimation in multipath environments using AED algo-
rithm

Returning to the AED in the noise-free case, it can be deduced from
Fig. 4.13 that,
e(t) = 2T (Hwy — 2T (t)w. (4.86)

The spatio-temporal correlation matrix for the two-sensor case reads,

T T
o= [EROR D BE0H) e
Dropping the explicit time dependence, it follows with,
w2 [wy —wy’, (4.88)
x 2 [z x)7, (4.89)
and Eq. (4.86) satisfying e(t) = 0, that,
CopW = 0. (4.90)

This result states that w is the eigenvector corresponding to the eigenvalue 0
of ¢,,,.- However, in the noisy case, the error e(t) in Eq. (4.86) will never be-
come zero exactly because of the additional noise components, n, (t),v = 1,2,
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and because of the fact that, in general, Q, # Q.. Therefore, the expan-
sion coefficients (FIR filter coefficients), w are estimated by minimizing the
squared value of the error signal, e = w”'x, see Fig. 4.13. Then,

w = min E{e?} = min{w” zz”w} = minw” ¢, w. (4.91)
w w w

The search can be performed adaptively by a stochastic gradient descent algo-
rithm, e.g. a least-mean squares (LMS) algorithm, which replaces the expected
value of the squared error by its instantaneous value [SK92], i.e.,

dw

= Ve (t) = —2re(t)a(t), (4.92)

where V., is the gradient with respect to w and & is an update constant. For
implementations, most systems replace the time derivative by a first-order
difference, i.e. the difference between the current value of w and the previous
one. The TDOA can then be obtained by evaluating the distance between the
largest peaks in the impulse responses, w, corresponding to the direct path
of propagation.

Another important parameter for the implementation is to choose the
filter length Q. of the adaptive filter. It is shown in [FK97, BAKO05b] that
if @y = Qu, u and w differ only by a constant but arbitrary scalar, i.e.
system identification becomes possible. However, in practice it is impossible
to estimate (), exactly. In case of Q,, > @, the impulse responses are related
through an arbitrary filter, which is undesirable. Finally, if Q,, < @, which
is often encountered in practice, the impulse response cannot be identified
completely. However, for the problem of TDOA estimation, where only the
difference of the peaks corresponding to the direct path of propagation in the
identified impulse response is of importance, this constraint does not pose a
serious restriction. A requirement for system identifiability in all three cases,
however, is that the transfer functions corresponding to impulse responses do
not share any common zeros [Ben00].

Performance of TDOA-Based Algorithms

A rigorous performance analysis may be obtained by comparing the estimates
of the TDOA-based algorithms with the CRLB, i.e. Eq. (4.70). However, due
to the fact that, for the evaluation process applied here, the estimated TDOAs
are integer multiples of the sampling frequency, this performance bound is not
applied here, cf. Section 4.4.1. Another reason for not using the CRLB is that
at low SNR, short observation intervals, and /or strong multipath propagation,
the estimates become ambiguous. This means that the probability for selecting
the wrong peaks increases drastically in these scenarios and, thus, the variance
of the estimation error increases well beyond the CRLB. This fact makes
the CRLB far too optimistic in most scenarios, i.e. impossible to achieve in
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realistic environments. Weiss and Weinstein [WW83] address this problem by
deriving a modified lower performance bound.

The performance measure used for the simulations presented here is the
probability of correct TDOA estimation applied to the estimate returned by
the GCC- and AED-based algorithms, i.e. the probability that the correct
peaks are detected. As mentioned above, the TDOA estimation algorithms
need to be implemented in the discrete time-domain for the purpose of per-
formance evaluations. Therefore, the peak positions are restricted to integer
multiples of the sampling interval. For taking into account rounding effects
due to the algorithm, an error margin of +1 sample in evaluating the peak
detection process was allowed. Multipath propagation was simulated by ap-
plying the widely used image method, see [AB79], with varying boundary
reflection coefficients, denoted as 3 € [0...1].

The following discussion considers a specific example for performance eval-
uation of the TDOA-based DOA estimation algorithms.

CC ROTH

SNR in dB
Lo
o o o
SNR in dB

—_
o

SNR in dB
SNR in dB

0.5
B

Fig. 4.14. Probability of correct TDOA estimation of GCC- and AED-based al-
gorithms (K = 4800, 300 trial runs)
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Figure 4.14 shows the probability of correct peak detection with respect to
varying reflection coefficients on the one hand and varying power of cylindri-
cally diffuse noise on the other hand. The two sensors, spaced 0.48 m apart,
were positioned in a virtual room of dimension 10 x 10 x 3 m. Spatially uncor-
related white noise of varying power was added to the sensors. The excitation
signal was noise with a speech-like envelope. Results are shown for the classi-
cal cross-correlation method (CC) as well as CC weighted by the ROTH and
the PHAT filters. Also shown is the performance of the AED algorithm. The
adaptive filter was implemented utilizing a frequency-domain LMS algorithm
[Hay02], where @, = 256 and x = 0.01. For high SNR and small values of
the wall reflection coefficients, reliable estimates of all algorithms can be ex-
pected. With increasing reflection coefficients, all algorithms begin to return
unreliable estimates, the AED yielding the best performance. This result is
expected since the classical CC methods do not explicitly model reverberation
such as the AED algorithm. Note the distinct threshold behavior, especially
of the AED algorithm, i.e. starting from a specific value for either the SNR
or the reflection coefficient, the algorithms abruptly start to return erroneous
estimates.

In this example, the performance of all GCC-based algorithms is very simi-
lar, while the AED algorithm clearly exhibits superior performance. Especially
at low SNR and high values for the reflection coefficient (3, the advantage of
the AED compared to the GCC-based methods becomes obvious here. This
result is in accordance with the findings that can be found in the literature,
e.g. [Ben00, Hua0l]. Note, however, that the performance for one specific
setup only is reproduced, chosen from a large number of different scenarios
considered. It should be mentioned that the amount of improvement that the
AED algorithm offers is not consistently large. In a few cases, even, GCC
based on the PHAT weighting function was found to be superior to AED.
To the best of the author’s knowledge, no exhaustive performance evaluation
and comparison of a number of different TDOA-based algorithms using a rep-
resentative numbers of realistic scenarios is available in the literature. This
evaluation could be subject to further research.

One of the major disadvantages of all TDOA-based algorithms is the fact
that, without any a-priori knowledge and without using any heuristically mo-
tivated techniques, only a single source can be active at any given point in
time and space. This also means that these algorithms are bound to fail when
there are strong directional interferers. The problem of estimating the DOA
of multiple simultaneously active sources is addressed by the subspace-based
estimation algorithms, which are presented in the next section.

4.4.3 Subspace-Based DOA Estimation Algorithms

A fundamentally different concept of DOA estimation is offered by the
methodology of subspaces. One of the major advantages is the capability of
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resolving multiple sources. Following the introduction of the fundamental con-
cepts of subspaces, two principal algorithms, namely the MUSIC and ESPRIT
algorithms as well as some of their important variants are derived.

Preliminaries

Let I plane-waves impinge on an array of M sensors. As before, the noise is
assumed to be a spatially white WSS process. The narrowband signal model
is given by Eq. (4.7) with w,, = w, repeated here for convenience,

X(w) =V(w,0)S(w) + N(w), (4.93)
where the array manifold matrix is,
Vw,O)=[V(w,01) | V(w,02) | ... | V(w,Or)]. (4.94)

Dropping the explicit dependencies on frequency and DOAs for better read-
ability, Eq. (4.10) becomes,

Sxx = ESSKH + 012,;1- (4.95)

It is further assumed that no two signals are spatially fully coherent and that
the columns of V are linearly independent. Then, the M x M spatio-spectral
correlation matrix Sy x is positive definite [Tre02].

As will be shown subsequently, it is beneficial to decompose S x x into its
eigenvalues (; and eigenvectors &,, £ = 1(1)M, as,

M

Sxx = ZC@&@? (4.96)

=1

Note that since correlation matrices are conjugate-symmetric (Hermitian), the
eigenvectors, &,, form an orthonormal set [JD82]. These eigenvectors are now
separated and grouped into so-called subspaces, the signal-plus-noise-subspace
— or signal subspace for short — and the noise subspace. The grouping for
positive definite matrices follows naturally from eigen-decomposition theory
[Tre02]. Let the eigenvalues be arranged in decreasing order. Then, it can be
shown that [Tre02],

Cl2C2Z"'2CI>§I+1:"':U3U- (497)

The signal subspace is defined as a matrix of size M x I that contains the
eigenvectors corresponding to the I largest eigenvalues, i.e.,

Us2 & & &) (4.98)

Similarly, the noise subspace is defined as a matrix of size M x (M —1I) that
contains the eigenvectors corresponding to the M — I smallest eigenvalues, i.e.,
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Uy 20 €l | En- (4.99)

Note that these subspaces are orthogonal and that the noise subspace
contains only components that belong to the noise component, while the signal
subspace contains both desired signal components and noise components.

By virtue of grouping the eigenvectors into signal and noise subspaces, the
spatio-spectral correlation can also be written as,

§XX = QsAsQé{ + QNANQ%a (4-100)

where Ag and A, are diagonal matrices containing the ordered eigenvalues
corresponding to I signal eigenvectors and M — I noise eigenvectors, respec-
tively.

A fundamental observation, that is exploited in all subspace-based tech-
niques, is that the eigenvectors that form the signal subspace are linear com-
binations of the array manifold vectors corresponding to the I signal sources.
In mathematical terms, this observation reads,

span{U ¢} = span{V }. (4.101)

Of course, real systems need to obtain estimates of the spatio-spectral
correlation matrix, S x x, for instance by virtue of Eq. (4.11). Then, Eq. (4.96)
becomes,

M
Sxx = Z&%géf . (4.102)

(=1

Correspondingly, one obtains only an estimate of the signal subspace QS and
of the noise subspace QN. Indeed, for finite observation time and/or low SNR,
QS # Ug and QN # U 5. The main task for all subspace-based estimation
algorithms is to retrieve the signal and noise subspaces from a finite set of
noisy measurements in order to extract the desired parameters.

Eigenvalues and eigenvectors can also be estimated directly from the data
matrix by a technique called the singular value decomposition (SVD) [GL89.
The advantage of this approach as opposed to estimating the eigenvalues and
eigenvectors from the spatio-spectral correlation matrix, Eq. (4.102), is the
fact that no squaring of the data vector, see e.g. Eq. (4.11), is necessary. This
squaring operation has the problem of potentially amplifying the errors, with
respect to the assumed signal model, contained in the estimated data matrix.

In the following subsections, it is assumed that the number of plane-waves
I is known a-priori. If this information is not available, the techniques outlined
in Section 4.4.4 may be applied.
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Spatially Fully Coherent Sources

The discussion presented in this section so far has assumed that no two sig-
nals are spatially fully coherent. Fully coherent signals yield a singular signal
correlation matrix, Sgg, i.e.,

rank{Sgg} < I. (4.103)

As a result, by decomposing the observed correlation matrix, Sy x, using
Egs. (4.96)—(4.100), results in the array’s inability to localize the fully coherent
sources [SWK85] since now,

span{U ¢} # span{V }. (4.104)

A conceptually simple pre-processing technique that is known to essentially
perform signal decorrelation is forward-backward spatial smoothing (FBSS) of
the observed spatio-spectral correlation matrix [Tre02]. Spatial smoothing is
applicable to arrays exhibiting a regular structure, such as uniform linear or
uniform planar arrays. The idea of spatial smoothing is to group the array into
L overlapping subarrays, as shown in Fig. 4.15, resulting in data vectors X,
I =1(1)L. Using these data vectors, an average of the subarray output covari-
ance matrices is determined. For each block of data, the estimated correlation
matrix, Eq. (4.11), is then replaced by [Tre02],

L K

A 1 = s -

Sxxrmss = g > ) X1 X[l + IX[, X[, L (4.105)
I=1v=1

where the M x M matrix I, the so-called exchange matrix, is defined as,

00...1
12 01 . (4.106)
10... 0

‘ 1st subarray ‘ L-th subarray
1 2 3 M-1 M
2nd subarray | L-1-st subarray |

Fig. 4.15. Subarrays defined for forward-backward spatial smoothing
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The first term in Eq. (4.105) is the component due to forward averaging and
the second term due to backward averaging. Pillai and Kwon [PK89] have
shown that for L > I/2, the spatio-temporal correlation matrix Sgg as ob-
served by this array described by S X X FBSSs 18 NOW non-singular, irrespective
of the correlation between the impinging sources

A disadvantage of this technique is, however, that FBSS effectively reduces
the array’s effective aperture [SWK85], thereby reducing resolution capacity,
which is the capability of resolving closely-spaced signals.

Source Localization Using MUSIC-Based Algorithms

MUSIC (Multiple SIgnal Classification) was introduced by Schmidt in [Sch81,
Sch86] as a method for multiple emitter location and signal parameter esti-
mation. There are many flavors of MUSIC available in the literature, e.g.
see [KV96] and references therein. The three most important ones, spectral
(classical) MUSIC, root-MUSIC, and unitary root-MUSIC are outlined below.

Spectral MUSIC

Using the background provided in the previous section, the main idea of
spectral MUSIC can be formulated rather simply. It searches for I vectors
from the array manifold matrix which most closely fit the signal subspace,
or, conversely, are 'most orthogonal’ to the noise subspace. Focusing on the
latter statement, the spectral MUSIC estimator computes a so-called pseudo-
spectrum, Q(@), by projecting the array manifold vector V' (©) onto the noise
subspace while varying O, i.e. [Tre02],

Q) =Vv"(®) ( S ge ) V(O) = VE@UUNV(O),  (4107)
1=1+1

where in the last step the relations in Eqgs. (4.96), Eq. (4.98), and Eq. (4.99)
have been used. The values corresponding to I minima in Q(@) can then be
associated with the desired ©,,: = 1(1)I.

Note that spectral MUSIC is applicable to all sensor array geometries
making it one of the most versatile subspace-based parameter estimation
methods. In particular, MUSIC applies also to two- and three-dimensional
array geometries. However, in order to obtain the MUSIC pseudo-spectrum,
the array’s manifold vector V(@) has to be known, either by means of an-
alytical expressions, or obtained via measurements. For a ULA, cf. Fig. 4.2,
O =9 =[01,92,...,9/]7T, and V() = exp(ikz cos ).

Figure 4.16 shows an example of a pseudo-spectrum of spectral MUSIC.
In this simulation, two spatially uncorrelated equi-power plane-waves impinge
from ¥7 = 0.27 and ¥ = 0.4, respectively with SNR=30 dB. The sensor
array used is an 10 element standard ULA, where, as usual, the term ’standard’
corresponds to half-wavelength element spacing. 300 trial runs were performed
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Fig. 4.16. Averaged pseudo spectrum of spectral MUSIC for two equi-power plane-
waves 1 = 0.27 and ¥2 = 0.47, SNR=30 dB, standard ULA, M = 10, K = 1000,
300 trials

with K = 1000. As can be seen, deep nulls are formed in the averaged pseudo-
spectrum corresponding to the directions of the impinging plane-waves.

Further performance evaluations of MUSIC and its variations comparing
them with ESPRIT-based algorithms and the CRLB are presented further
below.It is shown in [SN89] that spectral MUSIC is asymptotically efficient,
i.e. its performance for high SNR and large K approaches the CRLB.

Root-MUSIC
Root-MUSIC [Bar83] uses a polynomial representation of the MUSIC pseudo

spectrum, Eq. (4.107), applicable to arrays exhibiting an array manifold ma-
trix of Vandermonde structure, i.e.,

228 29
v=| . T | (4.108)
1 M-1 -1
> SN

An example for an array geometry that satisfies the Vandermonde structure
is the standard ULA, where z‘ £ exp [i(¢ — 1)7 cos¥,]. Note that the symbol
z here defines a complex number.

With V(2) = [1,2,..., 21T Eq. (4.107) becomes,

Qz) =V (1)U TNV (). (4.109)
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The DOAs can now be estimated by evaluating the I roots of Q(z) on the
unit circle, i.e.,

Q(z)|z:cxp (im cosﬂ)'_) Q(ﬁ) (4110)
By denoting these roots by z,, it follows that,

0, = cos arg(z,)/n], +=1(1)I. (4.111)

In practice, the estimated roots will not be located exactly on the unit circle,
i.e. 2, = |2, exp(im cos ¥). Hence, the I complex roots are selected that lie the
closest with respect to the unit circle.

Specific examples are presented at the end of this section.An in-depth per-
formance analysis of root-MUSIC can be found in [RH89]. There it is shown
that root-MUSIC is, like spectral MUSIC, asymptotically efficient, and has
the property of a slightly better performance than spectral MUSIC. An ex-
planation for this performance increase is that the radial errors in the zeros
corresponding to the pseudo-spectrum of spectral MUSIC, |2, |, manifest them-
selves in the radial component of the projection onto the unit circle [RH89).
As a result, radial errors negatively affect MUSIC’s pseudo spectrum, while
they do not affect the DOA estimate obtained by root-MUSIC. An additional
advantage over spectral MUSIC is the fact that a computationally complex
search does not need to be performed. The price that one has to pay is that
the universal applicability of MUSIC to all array geometries is lost.

Unitary Root-MUSIC

Yet another widely used flavor of MUSIC is the unitary root-MUSIC algo-
rithm. It corresponds to a particular implementation of root-MUSIC using
FBSS, thereby employing, in contrast to spectral MUSIC and root-MUSIC,
a real-valued eigen-decomposition [PGHO0]. The first step is to obtain a real-
valued estimate of the spatio-spectral correlation matrix with,

SXX,Re = QHSXX,FBssgv (4.112)

where @ can be any unitary, column conjugate-symmetric matrix of size M x
M. Note that any unitary matrix @ satisfies the relation,

Q"'Q=QQ" =1 (4.113)
In [PGHOO0] for M even and M odd, respectively,

I 0 I
1[I iI a2 L |00 5 or

Utilizing the definition of the FBSS version of the estimated spatio-spectral
correlation matrix, Eq. (4.105), it can be shown [Tre02] that Eq. (4.112) can
also be expressed as,
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SXX,Re = Re{QHSXXg}, (4.115)

Defining V(z) £ QH V(z) and performing a real-valued eigen-decom-
position of S S x x Re» followed by grouping of the eigenvectors into signal sub-

space US Re and noise subspace U U v Rre» respectively, Eq. (4.109) becomes,

Q(Z) = V (I/Z)QN,ReQN,ReV(Z) (4.116)

The task now is to find the I roots, 2,,¢ = 1(1)I, that lie the closest to the
unit circle. The corresponding DOAs, ¥, are related to 2, through Eq. (4.111).
The advantage of unitary root-MUSIC is that it exhibits the same perfor-
mance as FBSS root-MUSIC while offering a significant reduction in com-
putational complexity due to the real-valued eigen-decomposition. Specific
examples showing the performance of unitary root-MUSIC are presented at
the end of this section.

Source Localization Using ESPRIT-Based Algorithms

The standard ESPRIT (Estimation of Signal Parameters via Rotational In-
variance Techniques) algorithm was introduced by Roy and Kailath in [RK89].
In the following, classical ESPRIT and unitary-ESPRIT are discussed follow-
ing the derivations given in [Tre02].

ESPRIT

ESPRIT methods can only be applied to arrays that exhibit rotational invari-
ance. Rotational invariance means that the output of two identical sensors, or
identical groups of sensors, can be related to each other via a rotation matrix.
The algorithm described here is developed in the context of a ULA, as in
[Tre02].

In a first step of the algorithm, two identical subarrays comprising Mgy,
elements with relative inter-subarray sensor shift by ds.p, sensors are chosen.
Two examples for subarray grouping with M = 5 are shown in Fig. 4.17.

The two subarrays yield two separate subarray manifold matrices, V'; and
V,. They can be determined by using selection matrices K“ and K b of size
Mgup x I [Tre02],

| subarray 1 | subarray 1
0,0000  0DOOD

<—>| subarray 2 subarray 2

Fig. 4.17. Choices for subarray grouping (left: dsy, = 1, Msub = 4; right: dsup = 2,
Msub = 3)



138 4 Acoustic Scene Analysis Using Classical Array Signal Processing

&, 0] (4.117)
(4.118)

where K, is a Mgy X Mgyp identity matrix and 0 is a Mgyp X dgyp zero-matrix.
Then,

V, =KV

)

V,=K'V

(4.119)
(4.120)

Now, the ESPRIT algorithm exploits the following invariance relation,

V,=V,2 (4.121)
where, _ ‘ _
D = diag{eZdS“bw1 Jeldsuv¥a o pidsubr }, (4.122)
and,
Y, & kdcosd,, 1=1(1)I. (4.123)

Note that @ is a diagonal matrix of the phase delays between the two sub-
arrays, i.e. the operator @ relates the output of subarray 1 to the output of
subarray 2. In the following derivation, only standard ULAs with kd = 7 are
considered, therefore, ¥, = 7w cos¥,.

The parameter 1,, or, equivalently, the DOAs, 1,, can therefore be found
by estimating @. It will now be shown that the subarray’s rotational invariance
translates into rotational invariance of its subspaces and, as a consequence,
that the particular structure of the array’s manifold matrix is irrelevant for
the estimation procedure offered by ESPRIT.

Since the columns of V span the signal subspace, Eq. (4.101), the following
relation holds,

where T' may be any non-singular matrix. Now, the signal subspaces of the
subarrays can be defined by,

Us, 2 K'Us=K'VT =V\T, (4.125)
Us, 2K'Us = K'VT = V,T =V, &T. (4.126)

It follows from Eq. (4.125) that,
V,=Ug T, (4.127)
and therefore with Eq. (4.126),
Ug, =Us T '&T. (4.128)

By defining,
AT ST, (4.129)
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it follows that,
U, =Ug ¥. (4.130)

This means that Ug and Ug, have equivalent range spaces with & being
the operator that maps U g, onto Ug, . By recognizing that the eigenvalues of
¥ are the diagonal elements of @, the unknown ¢, can be derived. In a real
system, however, Ug and Ug, are not available but only estimations thereof,

ie. US and US , respectively. Therefore, one obtains,
Us, =Ug @ (4.131)

There are two widely used solutions of this equations, namely the LS
(least-squares) and the TLS (total least-squares) estimators [GL89]. The LS
solutions can be written in terms of the following minimization problem,

QLS = arg mlgn{Hng - Q&ZHF}

- (4.132)
= arg mzin{tr{[gs2 —~Ug, o” [U Us1 vt}

where the subscript F' denotes the Frobenius norm and tr{-} denotes the trace
of the argument. The solution is known to be,

S ~ T A ~ H ~ 1 H A
zLS = Qsl : QSQ = [Qslgsl] Qsl ' QSQ’ (4133)

where T denotes the pseudo-inverse of a matrix [Tre02].

An estimate for the DOAs can then be simply obtained by calculating the
argument of the eigenvalues of 4 ¥, g, denoted as CL For a standard ULA, this
results in,

B, = cosarg((,)/(dsupm)], ¢ = 1(1)I. (4.134)
Note that for a ULA with arbitrary spacing, kd #

0, = cos arg((,)/(dsupkd)], = 1(1)I, (4.135)

yielding a frequency-dependent estimate. This result will be of importance
later.

The solution in Eq. (4.134) is known to be biased since the LS solution
assumes only the estimates of Qsl to contain measurement errors. Since it is
easy to argue that both Qsl and Qsz contain measurement errors, £, and
&,, it may be more appropriate to consider an TLS-based approach [GL89],
modifying Eq. (4.131) as

Us, + €& =Ug, +&,. (4.136)

Its solution is given by, R
Vips = —E,Eg, (4.137)
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where E,5 and E,, are matrices of size I x I and are defined implicitly by
the eigen-decomposition of the 21 x 21 matrix U,

~ H
7o |Ugsy 2 P _ | Eq1 Ey ) Eﬁ Ei
U= [Q; [Qs1 QSQ] ~ |E, E,, AQ EL ER | (4.138)

where Ay = diag{(1,Cay ..., Cor}, and (,,v = 1(2)2I denote the ordered

eigenvalues of the matrix U.

Analogously to the LS-based algorithm, the DOAs can then be obtained by
evaluating the argument of the eigenvalues of QT s+ An in-depth performance
analysis of TLS-ESPRIT can be found in [OVK91].

Unitary-ESPRIT

From a computational point of view, ESPRIT has one disadvantage which
is the necessity to perform three complex-valued eigen-decompositions. An
algorithm that results in purely real-valued eigen-decomposition is the so-
called unitary-ESPRIT algorithm [HN95]. Unitary-ESPRIT is applicable to
centro-symmetric arrays. Conjugate centro-symmetry can be mathematically
formulated in terms of the array manifold vector V (¢) as,

I, V()£ V™ (y), (4.139)

where I is given by Eq. (4.106) and here and in the following the subscripts
"M’ and M — 1’ indicate the dimension of the associated quadratic matrix.
Pre-multiplying a matrix with I,, results in swapping of its rows while post-
multiplication results in the columns of the matrix being swapped, in partic-
ular I,,1,, =1I,,.

It can be easily shown that the inner product between any two conjugate
centro-symmetric vectors is real. This means that any matrix whose rows
are individually conjugate centro-symmetric can be used to transform the
complex-valued manifold vector, V (1), into a real-valued one.

Now, using a unitary matrix QJ\H4, such as the one defined in Eq. (4.114),
a complex-valued centro-symmetric array manifold matrix V (¢) € CM*Z can
be transformed into a real-valued one, B(¢)) € RM*! by,

B(Y) = Qi V(¥). (4.140)

Since the transformed sensor-space array manifold is now real-valued, the
signal eigenvectors necessary to form an estimate of the real-valued signal
subspace Ug g, can be obtained by performing an eigen-decomposition of
the real-valued matrix given in Eq. (4.115), where @ has been replaced by
Q - Note that all complex-valued centro-Hermitian covariance matrices can
be thus transformed to become matrices having real entries only. Note also
an additional advantage of unitary-ESPRIT over the conventional ESPRIT
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algorithm which is due to the forward-backward averaging effect of this trans-
formation. This manipulation effectively results in signal decorrelation which
can be exploited advantageously in scenarios of spatially correlated and/or
fully coherent signals, as in the unitary root-MUSIC algorithm.

Using this mathematical background and considering the special case of
maximally overlapping subarrays (see Fig. 4.17) and a single impinging plane-
wave signal, i.e. dgyp = 1, Mgy, = M — 1, and I = 1, it can be easily veri-
fied using Eq. (4.139) and Eq. (4.140) that the ESPRIT invariance relation
Eq. (4.121) can be written as,

VKV () = K'V (), (4.141)

where the matrices K and K b that select the first and last M — 1 entries of
V (v), respectively, are,

10...00 010...0
01...00 X 001...0
K'=\| . .|, K=| ... 9. (4.142)
00...10 000...1
These selection matrices have the property that,
I, K'I,,=K" (4.143)
Now, utilizing unitarity of @, and Eq. (4.140), Eq. (4.141) becomes,
VK'Q, B(v) = K'Q, B(v). (4.144)

This invariance relationship can modified by a pre-multiplication with QJ\H47 L
to yield,
i) yH a _ b
eQ,, K QMB(w) =Q,, K QMB(’(/)). (4.145)

With Eq. (4.143) and iMQM = @), one obtains,

QﬁflgbgM = (Qﬁflgagj\/[)*7 (4146)

and therefore for the invariance relationship Eq. (4.145),

€% (G, —iGy)B() = ¢ '3 (G, +iG,) B(1), (4.147)

where,
G, 2 Re{Q K'Q }, (4.148a)
G, 2 Im{Q) K'Q }. (4.148b)

Rearranging terms and using,
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eia _ e—ia
t =, 4.149
ana (et 4 ei@) ( )

one finally arrives at,

fan (iﬁ)ng(w — G,B(W). (4.150)

When [ plane-wave signals are impinging on the array the now real-valued
array manifold matrix becomes V. = [B(¢1) | ... | B(¢r)] and therefore
the invariance relationship equivalent to Eq. (4.121) is now,

G,Vge =G Vg2, (4.151)

& = diag {tan (ﬁl) tan <¢2) ,tan (w1> } (4.152)

Following the same discussion as for the ESPRIT algorithm, though em-
ploying only real-valued matrix algebra, it holds that,

where,

Ugpre = VgT, (4.153)

and therefore,
Vie =UsrT " (4.154)

Plugging this equation into Eq. (4.151), it follows that,
G Ug ¥ = GyUg e, (4.155)

where,
U =T"'¢T. (4.156)

As before, the unknown parameters 1,,¢ = 1(1)I can be obtained by
computing the LS- or TLS-based solution for Eq. (4.155) and determining the
eigenvalues of this result.

The following list summarizes the steps required for estimating the DOAs
of I plane-waves using TLS unitary ESPRIT applied to a standard ULA with
maximally overlapping subarrays.

1. Estimate the spatio-spectral covariance matrix, S S x x, using Eq. (4.11).
2. Transform the complex spatlo—spectral covariance matrix into a real-
valued one by computing, §XX’R€ Q SXXQM, cf. Eq. (4.112).

3. Perform a real-valued eigen-decomposition of S x x Re and estimate the
resulting signal subspace, Q&Re, cf. Eq. (4.98).
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4. Replace Qsl and QS2 in Eq. (4.138) by ngs,Re and QQQSVRG, respec-
tively, cf. Egs. (4.148) and (4.155).

5. Compute a real-valued eigen-decomposition of the thus modified Matrix
in Eq. (4.138) to obtain a TLS solution of Eq. (4.137).

6. Denoting the eigenvalues of Eq. (4.137) by ¢,, ¢ = 1(1)I the DOAs are
given by, 9, = Qtan_l{éb}.

Performance of Subspace-Based DOA Estimation

In the following, the performance of subspace-based DOA estimation is exam-
ined. Instead of considering an in-depth performance evaluation, which would
by far exceed the scope of this book, only a few representative experiments by
means of simulations are presented. The simulations were designed such that
meaningful conclusions can be drawn regarding the capabilities of the various
algorithms.

The first set of experiments tries to evaluate the estimation error covari-
ance — C(9), cf. Eq. (4.69) — of subspace-based DOA estimation of a sin-
gle desired signal in spatially uncorrelated white noise. Figure 4.18 shows
the performance of unitary root-MUSIC (denoted as 'urMUSIC’) and uni-
tary ESPRIT (denoted as 'uESPRIT’) with respect to the CRLB for a single

urMUSIC

— — — uESPRIT

10log,(,{C(¥)} in dB

-100 : : :

=20 0 20 40
SNR in dB

Fig. 4.18. Estimation error covariance of unitary root-MUSIC and unitary ESPRIT

w.r.t. the CRLB for a single plane-wave (¥ = 27/9), standard ULA, M = 10,
K = 1000, 300 trial runs
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narrowband plane-wave impinging from ¢ = 27/9 on a standard ULA com-
prising M = 10 sensors. 300 trial runs were performed and K = 1000. Note
that all curves depend directly on the absolute angle. It can be seen that for
SNR>-15 dB, both estimators closely follow the CRLB. Both estimators have
been found to be efficient, for they asymptotically approach the CRLB in the
limits of infinite SNR and infinite K [PGHO00], [HN95]. However, the unitary
ESPRIT algorithm always has a slightly higher variance than the unitary
root-MUSIC algorithm. This fact is well known in the literature, e.g. [MZ94].
For SNR<-15 dB the variances of both estimators are almost identical and
well above the CRLB. The value for which the variance starts to deviate from
the CRLB is denoted as ’'threshold’. The reason for this is that the CRLB
evaluates only local variances, i.e. the CRLB assumes small estimation errors.
This assumption is violated in low SNR. scenarios.

Qualitatively, the situation will be similar if any of the simulation pa-
rameters is varied. In general, it can be stated, that performance will im-
prove proportionally with respect to M and K, which can be gleaned from
Eq. (4.69). The estimation variances of classical ESPRIT and root-MUSIC are
not included in Fig. 4.18 since in this example, for a single source, their per-
formance is almost identical with unitary ESPRIT and unitary root-MUSIC,
respectively.

Drastic deviations in performance become obvious in the case of two
fully coherent equi-power narrowband plane-waves impinging from 9 =
[7/6,27/9]T on the same array as considered before. The choice of the two
sources being fully coherent can also be interpreted as a single source experi-
encing multipath propagation with a strong first reflection. Note that desired
sources as well as strong reflections are modeled as individual sources.

Figure 4.19 quantifies the estimation error covariance of MUSIC-based and
ESPRIT-based algorithms with respect to the CRLB for the second source.
Immediately striking is the drastic difference in performance of root-MUSIC
and ESPRIT on the one hand and their unitary variants on the other hand,
resulting in the well-known inability of root-MUSIC and ESPRIT to handle
spatially correlated and fully coherent sources. The reason for this is that the
unitary version of the subspace algorithms perform FBSS which effectively
results in a decorrelation of the signals [Tre02]. As can be seen, the threshold
starts at higher SNR compared to Fig. 4.18. The peculiar characteristics of
the ESPRIT estimate is explained in the following. For SNR>10 dB, ESPRIT
finds two sources. For 0 dB<SNR<10 dB, both sources are still found. How-
ever, during some trial runs, the DOA estimates of the two signals swap, i.e.
the estimate for signal 1 becomes the estimate for signal 2 and vice versa. For
-10 dB<SNR<0 dB, one DOA is found that corresponds to a signal if it were
positioned between the actual sources in space. The other estimate still swaps
between the two true DOAs with some severe outliers. For SNR<-10 dB, the
estimate corresponding to the virtual source in between the two true DOAs
now has even less variance than before. The reason for this is that the second
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—+— tMUSIC
7 —¥—  urMUSIC
= 0 —B8— ESPRIT
= —<&—  uESPRIT
= -40 — CRLB
2
O
= -60
1o}
2
o
— =80
-100 - -
-20 0 20 40

SNR in dB

Fig. 4.19. Estimation error covariance of MUSIC-based and ESPRIT-based al-
gorithms w.r.t. the CRLB for two fully coherent plane-waves ( 9 = [7/6,27/9]7,
second source shown), standard ULA, M = 10, K = 1000, 300 trial runs

estimate now returns completely random values, and that the algorithm can
therefore ’concentrate’ on the other estimate.

The absence of an estimate for unitary ESPRIT where SNR<-10 dB is due
to an implementation detail realizing a reliability test described in [HN95].
This test verifies whether the eigenvalues obtained in step 6 of the TLS uni-
tary ESPRIT algorithm are all real, as anticipated due to purely real-valued
operations, and does not return an estimate if this test fails.

The performance for spatially uncorrelated and correlated but not fully
coherent sources is not explicitly shown here by examples. Qualitatively, it
can be stated, however, that the performance of all algorithms for spatially
uncorrelated sources are comparable and that all algorithms are asymptoti-
cally efficient, see [Tre02] and references therein. Introducing signal correlation
introduces performance degradation, especially for the non-unitary version of
the algorithms, where the worst-case scenario, i.e. fully coherent sources, is
shown in Fig. 4.19.

A question that has not been answered is concerned with the unambiguous
resolvability of two closely-spaced sources. This rather complex problem is
treated in [Tre02]. General answers can only be given through simulations due
to the dependency on many parameters, such as K, M, SNR, and the DOAs
themselves. In the particular case of Fig. 4.19, the two sources are separated
by AY = 7/18. By applying unitary versions of the subspace methods the two
sources can be resolved for an SNR of approximately SNR>-10 dB.

In summary, the unitary version of the subspace algorithms perform
much better than the algorithms not utilizing FBSS. The performance of the
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MUSIC-based estimators are comparable to the ESPRIT-based methods, the
latter ones having slightly higher variance. The unitary versions have the ad-
ditional advantage of requiring less computational power due to the utilization
of real-valued eigen-decompositions.

Note that all simulations were performed using a standard ULA. It can be
verified that the performance of subspace-based algorithms deteriorate if the
assumptions are not met. The three most important assumptions that most
traditional subspace-based algorithms rely on are,

e free-field wave propagation,
e calibrated sensors,
e asensor array that is designed for half-wavelength (narrowband) operation.

Therefore, a significant problem present in all but one subspace-based DOA
estimation algorithms is their inability to handle wideband signals, such as
speech. This can be verified, for instance, by examining Eq. (4.135), where the
DOA estimate is shown to be frequency-dependent as the wavelength of the
impinging plane-wave differs from 2d. In [HK88, DW92], this problem is ad-
dressed by introducing so-called focusing matrices that relate the correlation
matrices, corresponding to individual frequencies, to a reference frequency,
and then applying the standard narrowband algorithms.

A subspace-based algorithm that, to some extent, allows for the analysis of
wideband signals without the need for focusing matrices is classical MUSIC.
However, the restriction here is that wideband signals can only be analyzed in
the frequency-domain by applying the MUSIC algorithm to each frequency-bin
independently followed by an averaging process, see [WK85a] and references
therein. Note that this computationally very intensive procedure can neither
be applied to classical MUSIC in the time-domain nor to any of the MUSIC
derivations or ESPRIT algorithms.

A novel and fundamentally different approach that does not require fo-
cusing matrices and that relaxes the narrowband requirement, is derived in
detail in Chapter 5. There it is shown that eigenbeam processing applied to
circular and spherical sensor arrays yield inherently wideband subspace-based
algorithms for WE and PE tasks.

4.4.4 Detection of the Number of Active Sources

It has been tacitly assumed that the number of sources, i.e. the rank of the
signal correlation matrix, i.e,

I =rank{Sgs}, (4.157)

is known. In many applications, this knowledge is not available a-priori, and
must therefore be estimated from the sensor correlation matrix. It is assumed
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that the array manifold matrix is full rank and that the M — I noise eigen-
values cluster around o2, see Eq. (4.97). Historically, the first approach to
this problem focused on sequential hypotheses tests, whose task is to find the
likelihood ratio between the hypothesis that the (M — I') smallest eigenvalues
are equal and the hypothesis that the (M — I — 1) smallest eigenvalues are
equal. See [Tre02] for a review on hypotheses tests.

Anderson [And63] showed that if K >> M, a sufficient statistic is given by,

1 M s
M—. Z C”
v=1+1

RN
( 11 cy)

v=1+1

7 (4.158)

The resulting hypotheses tests have the problem that thresholds need to be
selected [Tre02]. Modifying Eq. (4.158) by a penalty function and finding
the minimum of the resulting function circumvents the problem of threshold
selection [WK85b]. Two popular penalty functions are due to Akaike [AkaT74]
and Schwartz [Sch78] yielding,

L1(1) & AIC(L) = L(1) + o(2M — 1), (4.159)
L5(t) £ MDL(:) = L(¢) + [t(2M — 1) +1]/2 - In K, (4.160)

respectively. The number of sources can then be estimated by,

I =argmin Ly 2(:), +=0(1)(M —1). (4.161)

It is shown in [WK85b] that the MDL estimator is asymptotically consis-
tent, i.e. I = I for K, SNR — oo, whereas the AIC estimator is asymptotically
inconsistent exhibiting I > I.

Figure 4.20 depicts an example for the probability of detection using AIC
and MDL for two incoherent plane-waves impinging from 9 = [7/6, 27 /9]
utilizing a ten-element standard ULA in spatially uncorrelated white noise.
This representative example shows that the MDL is not capable of detecting
two sources in all cases, even for very high values for the SNR. On the other
hand, the performance of AIC degrades smoothly for very low values of the
SNR compared to the MDL. Therefore, for high SNR the MDL approach
is to be preferred while for low SNR, the AIC yields better results. Penalty
functions that are able to address the problem of spatially correlated and fully
coherent sources by applying the notion of FBSS, are given in [XRK94].

Note, again, that this example is based on simulations utilizing a standard
ULA. For sensor geometries where the spacing does not conform to the re-
quirement of d = A/2, the performance degrades up to the extent where the
detection estimate becomes unusable. A solution to this problem will be given
in Chapter 5, by successfully employing the notion of eigenbeam processing.
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Fig. 4.20. Probability of detection using AIC and MDL for two incoherent plane-

waves (¥ = [7/6,2m/9], standard ULA, M = 10, K = 1000, 1000 trial runs)
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Acoustic Scene Analysis Using Modal Array
Signal Processing

In this chapter, the concepts of classical acoustics and wavefield decompo-
sition as derived in Chapters 2 and 3 on the one hand, and classical array
signal processing, as discussed in Chapter 4, on the other hand, are combined
to yield novel solutions for sensor array signal processing tasks. As before,
the signal processing tasks considered are beamforming, i.e. waveform esti-
mation (WE), and the localization of possibly multiple acoustic sources, i.e.
parameter estimation (PE). In addition, the problem of how to determine the
number of active sources in a wavefield is addressed. One of the central obser-
vations to be made here, which makes the combination of the two paradigms
possible, is that the individual circular or spherical harmonics resulting from
the wavefield decomposition step can be regarded as individual sensors in the
classical sensor array processing framework. In the following, the circular and
spherical harmonics are jointly denoted as eigenbeams, a concept first applied
to acoustic signal processing by Elko et al. in [EKMO03] and [MEO04].

Building upon the signal model and terminology introduced in the previ-
ous chapters, this chapter is organized as follows. Section 5.1 discusses WE
using eigenbeams and parallels the discussion presented in Section 4.3, while
Section 5.2 details the concept of PE using eigenbeams, thereby paralleling
the discussion of Section 4.4.

5.1 Waveform Estimation Using Eigenbeam Processing

This section introduces the notion of a beamformer that does not operate on
the sensor signals directly but on eigenbeams which are obtained by decom-
posing a two- or three-dimensional wavefield into orthogonal eigen-solutions of
the acoustic wave equation in circular/cylindrical and spherical coordinates,
respectively, utilizing circular and spherical apertures.

The synthesis of a beampattern performed by the so-called modal beam-
former, or eigenbeamformer (EBF), is detailed in Section 5.1.1 for both circu-
lar and spherical harmonics. In Section 5.1.2 optimum beampattern design
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utilizing eigenbeams is discussed, where the term ’optimum’ is related to
the notion of maximum directivity in isotropic noise fields. Finally, in Sec-
tion 5.1.3, an eigenbeam GSC (EB-GSC) structure is proposed that parallels
the discussion of Section 4.3.4.

5.1.1 The Modal Beamformer — Pattern Synthesis

In this section, it is shown how an arbitrary pattern of order A can be syn-
thesized by utilizing N'+ 1 eigenbeams based on either circular or spherical
harmonics.

Pattern Synthesis Using Circular Harmonics

Any square-integrable function on a circle can be expanded into a series of
circular harmonics, Gg, (). In particular, any desired beampattern, G4(kR, ¢),
with look direction — or rotation angle — s = 0...27, can be written as a
Fourier series, cf. Section A.2,

Ga(kR,$,05) = > Ga,(kR)e™97%), (5.1)

1 271‘ .
Gdn(kR):§ i Ga(kR, ¢, ps)e”m(@=¢s), (5.2)

Truncating the series to the A-th harmonic, any pattern of order up to and
including NV can be synthesized. Examples for pattern synthesis of beamform-
ers of order N’ = 1 were actually already given in Section 3.1.2 where dipole
and cardioid apertures were examined.

An example for the pattern synthesis of a higher-order pattern will be
given in the following where the pattern synthesis using spherical harmonics
is presented.

Pattern Synthesis Using Spherical Harmonics

The fundamental concept underlying pattern synthesis using spherical har-
monics is very similar to the pattern synthesis procedure shown in the previous
section for circular harmonics. Here, the spherical harmonics transform pair,
see Eq. (A.7) and Eq. (A.8) is used for pattern synthesis. A difference with re-
spect to pattern synthesis using circular harmonics is the fact that the spatial
beamformer response can now be specified on a sphere where two-dimensional
rotation in azimuth an elevation of the pattern becomes possible.

To make the mathematics more tractable, it is first assumed that the de-
sired pattern is rotationally symmetric about the z-axis [ME04], which results
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in m = 0 in the expressions for the spherical harmonics. Then the spherical
harmonics transform pair becomes for an unrotated desired beampattern,

o0

G4(kR,0) = Var i Ga, (ER)Y;? Z (kR)V2n + 1P, (cos ),
n=0

(5.3)

Ga, (kR) = %\/271 s 1/G(kR, )P, (cos 6) sin 0d6. (5.4)
0

Now, the rotation of the pattern toward (s, 5) is considered. The term cos 6
is hereby defined as the cosine angle between the look-direction (¢, ¢s) and
a point on the sphere (¢, ¢). Then, by making use of the spherical harmonics
addition theorem given by Eq. (B.59), the desired pattern can be obtained by,

Ga(9, 0,05, 0.) —4wzm Z Ga. Y (9, 0)Y ™0y, 05)", (5.5

2

V2n+1 .
Ga, = W //Gd (0, 9071957%05) (9, ¢)" sindddde,

(5.6)

where the dependence on kR has been dropped for notational convenience.
As was shown in the two-dimensional case, by truncating the series to the
N-th harmonic, n < N, any pattern of order up to and including A can be
synthesized.
At this point it is illustrative to work with a few numbers. Consider a
specific application requiring a third-order — N' = 3 — hypercardioid pattern,
which is defined as [Elk04],

H ey + (1 —e,)cosb, (5.7)

where g1 &~ 0.45,e2 ~ 0.15 and €3 ~ —1.35. Then, after evaluating Eq. (5.4),
the expansion coefficients for the unrotated pattern are obtained as Gg4, =~
0.0625, G4, ~ 0.1082, G4, ~ 0.1397, G4, ~ 0.1654, and G4, = 0, n > 3. Fig-
ure 5.1(a) shows a two-dimensional view of the polar pattern of the unrotated
synthesized hypercardioid using Eq. (5.3). The pattern can be easily rotated in
three-dimensional space by plugging the expansion coefficients into Eq. (5.5).
Figure 5.1(b) depicts the result of this procedure for (Js, ps) = (7/4, —7/4).

Note that synthesizing a hypercardioid pattern using circular harmonics
involves the same steps using Eq. (5.1) and Eq. (5.2). The only difference is
that the pattern can only be rotated in azimuth.
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(a) 2D representation; (b) 3D representation;
radial scale: 10dB/div. pattern steered to
(Vs;ps) = (w/4, =7 /4)

Fig. 5.1. Pattern synthesis of a third-order hypercardioid using spherical harmonics

5.1.2 Optimum Beampattern Design Using Eigenbeams

This section details a procedure on how to perform optimum beampattern
design, i.e. patterns exhibiting maximum directivity in isotropic noise fields,
utilizing the circular or spherical eigenbeams derived in Chapter 3.

Suppressing the dependence on frequency, the array directivity given in
Eq. (4.34) using vector notation can be written as,

W'Vpp(0)Vip(@)W 4 WSs5(09)W

D =
H
w (% I VEB(Q)Vg’B(e)dQ> w WiSwwW
2

;o (58

where ©, denotes the look direction which is assumed to coincide with the di-
rection of incidence of an impinging plane-wave. The integration is performed
either over the unit circle for circular eigenbeams, where v = 27, or over the
unit sphere for spherical eigenbeams, where v = 4.

One of the central statements in this chapter follows from the observation
that the array manifold vector, defined in Eq. (4.23) for classical array pro-
cessing, translates into a modal array manifold vector where the vector entries
are defined as,

[VEBln = Va,EB, (5.9)

where, for circular apertures,
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Vg = i"By(kR)e™ ™", n=-N1)N, (5.10)
Jn(kER) unbaffled aperture
By (kR) £ Ty (kR) (5.11)
n -2 "H, il ’
Jn(kR) H (hR) (kR) baffled aperture
and for spherical apertures,
Vg = VAT b, (kR)Y,) (9, 0)*, n=0(1)N, (5.12)
Jn(kR) unbaffled aperture
N 7
bn(kR) = Jn(ER) — ZZ((I;:Z)) hy (ER) baffled aperture (5.13)

Note that, again, only spherical eigenbeams of degree m = 0 are considered
here. The resulting pattern can be easily rotated by the techniques developed
in the previous section.

For continuous circular apertures, the integral in Eq. (5.8) can be evaluated
in closed-form to yield,

Sy = diag{|B_n %, [B_nt1% .-, | Bol?, - .., | By|?Y, (5.14)
and for continuous spherical apertures,
S = diag{|bol?, |b1]?, ..., [bar[*}, (5.15)

by virtue of the orthogonality of the exponential function and Legendre poly-
nomials, cf. Section B.3, respectively. This integral, however, needs to be eval-
uated numerically when sampled continuous apertures are considered.

The task of optimum beampattern design using eigenbeams is to maxi-
mize the directivity D, given by Eq. (5.8). However, as can be deduced from
the frequency-dependent characteristics of the eigenbeams, cf. Figs. 3.2 and
3.5 for circular apertures and Figs. 3.16 and 3.18 for spherical apertures, an
unconstrained optimization of the directivity, which tries to compensate for
these characteristics, would lead to an undesired high amplification of noise
components, especially at low frequencies. As was shown in Section 4.3.2, this
amplification can be quantified by the white noise gain as,

_ WSs(0)W

Ay
wiw

(5.16)
Therefore, a practical optimization procedure optimizes the directivity subject
to a white noise constraint [CZ0O87, MEO04]. Cox et al. have shown [CZO87]
that in order to solve this optimization problem, a weight vector W ., needs
to be found that minimizes,

H
<i+ei) :minW I(LIENN—'_EDW
W WHSes(0)W

min
w

R , (5.17)
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where the positive scalar € quantifies the amount of deviation from the op-
timum design. The optimum constrained filters have been shown to equal
[CZO8T7],

Wopt = [Snn + eIl ' Vigp(Os). (5.18)

Note the similarities between this result and the design procedure used for
designing superdirective arrays as outlined in Section 4.3.3. One significant
difference, however, is that the filter coefficients are applied to the individual
eigenbeams and not to the infinitesimal segments of a continuous aperture or
to the individual microphones.

As an example, Fig. 5.2 shows the result of this design procedure us-
ing continuous spherical eigenbeams, for both the unconstrained beampat-
tern, i.e. ¢ = 0, as well as for a constrained beampattern, here ¢ = 1073,
There are a number of interesting observations that can be made. First, the
directivity index for an unconstrained third-order optimum beamformer de-
sign is equivalent to the maximum directivity index that can be obtained
with a DMA/SDB in spherically isotropic noise, cf. Section 4.3.3. The only
difference is that the DMA/SDB is based on individual microphones, while
the EBF is based on individual eigenbeams. Therefore, in accordance with
Eq. (4.51), the maximum directivity index due to spherically isotropic noise

is, Dgfn)ax = 10log,o{N + 1}?. It is well known that the N-th order beam-
former, which yields the highest directivity, corresponds to an N-th order
hypercardioid [Elk04]. The second observation that can be made is the fact
that the WNG for a baffled aperture is higher than for an unbaffled aperture.
An explanation for this has been given in Section 3.2.1 where it was shown
that a baffled spherical aperture yields a virtual modal aperture increase, cf.
Fig. 3.19. A third observation is that the WNG of the unconstrained optimum
EBF is of similar shape as the modal magnitude response of order three, see
Fig. 3.16 and Fig. 3.18. The reason for this is that the optimization algorithm
tries to equalize the highpass characteristic of the third-order modal magni-
tude response which, hence, results in a higher sensitivity at low frequencies.

It is important to note that the WNG in Fig. 5.2 is related to the eigen-
beams and not to individual sensors. The resulting WNG for a sampled contin-
uous spherical aperture using M sampling points is 10log,o{M} higher than
the one shown in Fig. 5.2. Note also that the evaluation of Sgg and Sy
depend on the sampling scheme used, and need to be obtained numerically.
For the sake of brevity of the presentation, specific examples including vari-
ous sampling schemes showing the effects of spatial aliasing, such as the ones
presented in Section 3.2.3 are omitted here.

It is clear that the WNG obtained by an unconstrained design is not useful
in practice. The right-hand side of Fig. 5.2 exemplifies a design constraining
the WNG to a minimum value of -20 dB, corresponding to ¢ = 10~3. The
trade-off between WNG and directivity becomes obvious.

The optimum beampattern design using circular eigenbeams is almost
identical to the one illustrated for spherical eigenbeams. A significant dif-
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Fig. 5.2. Unconstrained (left column) and constrained (right column) optimum
beampattern design of order N’ = 3 w.r.t. D;, WNG and directivity pattern using
continuous spherical eigenbeams
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ference, however, is that the maximum directivity now corresponds to a
DMA /SDB in cylindrically isotropic noise, i.e. where,
o

max

=10logo{2(N + 1) — 1}, (5.19)

see [Elk04] and Eq. (4.52).

5.1.3 The Adaptive Modal Beamformer

In the previous sections, data-independent pattern synthesis methods using
eigenbeam processing were discussed. In this section, a simple system is pro-
posed that parallels the discussion of Section 4.3.4, where a GSC structure
is used to implement a data-dependent beamformer. Here, a modified GSC
structure, the EB-GSC, is proposed that employs modal beamformers (EBF's)
for both the FBF as well as for the BM, see Fig. 5.3 and cf. Fig. 4.12.

V) NFLU en ) | Yeoror() L)
q T
N+1 -
EB-FBF

2N +1 Yes-BM(w)

BEB (w) WaEB (w) YEB-IC (w)
N+1

EB-BM EB-IC

Fig. 5.3. Structure of the EB-GSC comprising 2N + 1 (circular), or A"+ 1 (spheri-
cal) eigenbeams, an eigenbeam fixed beamformer (EB-FBF), an eigenbeam blocking
matrix (EB-BM), and an eigenbeam interference canceler (EB-IC)

The main idea can be simply stated. Both the FBF and the BM are formed
by the eigenbeams, either circular or spherical, by using, for example, the pat-
tern synthesis methods discussed in the previous section. The resulting EB-
FBF is then steered such that its highest spatial selectivity is aiming at the
desired source. In contrast, the EB-BM is steered such that its lowest spatial
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selectivity is aiming at the desired source. Therefore, the EB-BM can be re-
garded as a null-beamformer. The EB-IC can then be adaptively determined
by appropriately modifying Eq. (4.63), the estimate of the IC used by the clas-
sical GSC structure. A potential advantage of the EB-GSC over the classical
GSC is its ability to handle multiple desired sources using the techniques to
be detailed in Section 5.2, where the localization of multiple simultaneously
active acoustic sources is discussed.

An in-depth performance analysis of the EB-GSC is beyond the scope of
this book and will not be discussed any further.

5.2 Parameter Estimation Using Eigenbeam Processing

This section details parameter estimation using eigenbeam processing. The
discussion parallels the discussion presented in Section 4.4. However, the al-
gorithms to be derived here are based on an inherent wideband formulation
by employing the paradigm of eigenbeam processing. This fact makes eigen-
beam processing a prime candidate for wideband processing, especially in the
realm of multiple wideband acoustic source localization. Section 5.2.1 intro-
duces the eigenbeam array manifold vectors the algorithms are based upon.
Section 5.2.2 presents an eigenbeam signal model as well as the notion of
a modal signal subspace. Section 5.2.3 discusses a CRLB that may, under
certain conditions, be used for the performance analysis of eigenbeam-based
DOA estimation algorithms. Section 5.2.4 derives ESPRIT-based algorithms
for single-source and multi-source DOA estimation, denoted as EB-ESPRIT
[TKO05a], using circular harmonics. Note that, although not further detailed,
an EB-MUSIC algorithm can be straightforwardly derived. Eigenbeam pro-
cessing using spherical harmonics is treated in Section 5.2.5. This chapter
concludes with a discussion that parallels Section 4.4.4, i.e. the estimation
of the number of active sources. Here, however, the estimation is not based
on information-theoretic criteria applied to sensor array correlation matri-
ces but on a re-synthesis of a plane-wave by superposition of the individual
circular /spherical harmonics [TK05c].

5.2.1 Eigenbeam Array Manifold Vectors

Eigenbeam array manifold vectors useful for designing optimum beampatterns
are given in Section 5.1.2, see Eq. (5.9). For several parameter estimation
problems these manifold vectors have to be modified slightly to deal with this
different signal processing task. For circular apertures, Eq. (5.10) is modified
as,

9 9

[VEB]n = Vn,EB; n = _N(l)N7 (520)
where,
Vg = — BB mine (5.21)

"B, (kR)
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Le. a filter is applied to each harmonic in order to yield a frequency-
independent modal response, e~"*?. Due to the zeros present in the modal
magnitude response corresponding to unbaffled apertures, see Fig. 3.2, it is
assumed here and in the following that, whenever a filter is applied to com-
pensate for the modal magnitude response, the considered frequency range
of operation does not include any zeros. Note, however, that due to WNG
restrictions the necessary compensation filter cannot be used at arbitrarily
low frequencies in practice, especially for eigenbeams of high order.

For spherical apertures, cf. Eq. (5.12), the order of each individual har-
monic is kept fixed to n = A, and the degree is varied as,

VEB('ﬂa 90) = [VA?AE[B(ﬁ7 90)7 V,/\?Z/\Efgl (19’ (P)7 B V/?/’,EB(qga (P), LR V./<>/,EB (197(90)]71)7
5.22
where with Eq. (5.13),

Vit pp(0, ) = VariN o (kR)Y7 (0, 0)*

. IN+1 N —m) . o (5:23)
Z\/EszN(kR)\/ pm EN.JFZE%!PN/(COS&)@ A

where m = —N(1)N.
The reason for expressing Y7 (¢, ¢) by the associated Legendre function,
P (cos¥), will become clear in Section 5.2.5.

5.2.2 Eigenbeam Signal Model and Modal Signal Subspaces

In this section, the frequency-domain signal model used for the further discus-
sion on eigenbeam processing is stated. Since the idea underlying the paradigm
of eigenbeam processing is that eigenbeams correspond to sensors, the signal
model given in Eq. (4.7) and Eq. (4.10) remains essentially unchanged. In
particular, the eigenbeam — or modal — spectral matrix is,

S%% =VppSssVin + SN, (5.24)

where S ﬁfj\, is the matrix containing the modal noise spectral densities. In the
following, two special cases for S ﬁ?\, are considered, i.e. spatially white noise,
and spatially isotropic noise, where SK5 is given by Eq. (5.14) and Eq. (5.15)
for cylindrically and spherically isotropic noise fields, respectively. Isotropic
noise is a reasonable model for ambient noise that cannot be classified as
directional. Note that the spatially white noise model, that can be applied
to many real-world noise fields, satisfy the 'whiteness’ property before the
decomposition process only. After the decomposition process, the white noise
model cannot be, in general, regarded as spatially white with respect to the
individual eigenbeams.
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The modal array manifold matrix, V gz, in Eq. (5.24) is either defined by
stacking the modal array manifold vector given by Eq. (5.9) or by the defini-
tions given in Section 5.2.1, see Eq. (5.28). Note that the matrix containing
the signal spectral densities, Sgg, is defined by both the desired sources as
well as by strong directional interferer.

The idea of decomposing the spatio-spectral matrix into its eigenvalues and
eigenvectors, as given in Section 4.4.3, is directly applied to eigenbeam-based
processing as,

L
S5 = Curptipptinn (5.25)
=1

where ¢, pp and &, pp are the ¢-th ordered eigenbeam eigenvalues and eigen-
beam eigenvectors, respectively and,

[ 2N +1 for Eq. (5.10) and Eq. (5.23)
L= {N+ 1 for Eq. (5.12) ‘ (5.26)
The modal signal subspace is then defined as,
Usep 2 €168 | &2,88 |- | €168 (5.27)

All statements and implications given in Section 4.4.3 remain qualitatively
valid and are not reproduced here.

5.2.3 Eigenbeam Processing and the CRLB

The CRLB for any array geometry in its most general form is given by
Eq. (4.66). The CRLB for eigenbeam-based parameter estimation using cir-
cular apertures can be derived from this equation by defining the modal array
manifold matrix utilizing Eq. (5.20) as,

Vieple) & Vies(e) | Ves(e2) | - | Ves(en)- (5.28)

In accordance with classical array signal processing, closed-form expressions
for the eigenbeam CRLB (EB-CRLB) are very difficult to obtain. Assuming
equal spectral densities for the signal components at each eigenbeam, an ex-
pression similar in nature to Eq. (4.69) for a single plane-wave impinging on
a circular aperture can be obtained after a several straightforward algebraic
manipulations, see Appendix D, as,

-1

SNR?(w) . (5.29)

14 (2N +1)SNR(w)

CEB-CRLB(W) =3 2KN(N+ 1)(2N + 1)2

where 'SNR’ denotes the signal-to-noise ratio at the eigenbeams. A few com-
ments on the validity of Eq. (5.29) are in order. This result assumes that the
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noise spectral density is constant over all eigenbeams. While this may be a
valid assumption considering wideband spatially white noise, it may be ques-
tionable for wideband isotropic noise, cf. Eq. (5.14) and Eq. (5.15). However,
for reasonably large values of kR the modal magnitude response of the eigen-
beams are almost identical for baffled apertures, see Fig. 3.5 and Fig. 3.18,
and the assumption becomes reasonable. Note that the magnitude response of
the eigenbeams can be 'forced’ to be identical by applying the filtering opera-
tion introduced in Eq. (5.21). The result expressed by Eq. (5.29) also assumes
that the signal spectral density is constant over all eigenbeams. It should be
noted that this assumption is, strictly speaking, only valid for ¢ = 1 ~ 0 for
unrotated eigenbeams.

It is important to note that one significant difference between Eq. (5.29)
and Eq. (4.69) is that the EB-CRLB does not depend on the DOA of the
incoming plane-wave, which is a result of the symmetry of circular apertures.

In analogy to Section 4.4.1, a compact closed-form expression for the EB-
CRLB dealing with multiple plane-wave signals does not seem to be available.
However, simulations can be performed by numerically evaluating Eq. (4.66)
applied to eigenbeams.

Note that Eq. (4.66) also applies to spherical apertures. Hereby, the array
manifold matrix has to be replaced by the eigenbeam array manifold matrix
given by Eq. (5.59). Since this matrix is a function of both azimuth and
elevation, two different EB-CRLB are obtained as a result of evaluating the
differentiation operation in Eq. (4.67) with respect to azimuth and elevation.
For the sake of brevity, explicit mathematical expression are omitted here.

5.2.4 Eigenbeam-Based DOA Estimation Using Circular Apertures

The developments in this section stem from the observations resulting from
Eq. (5.9) for circular apertures, that an eigenbeam array manifold vector
can be defined in a similar way as for an array of individual sensors. Hence,
many signal processing algorithms based on traditional sensor array processing
techniques can also be formulated by using the paradigm of eigenbeams.

As a representative example, this section derives a DOA estimation algo-
rithm based on the unitary ESPRIT algorithm, which has been outlined in
Section 4.4.3 for classical sensor arrays. By applying the ideas presented in
this section, any other variant of the subspace-based DOA estimation algo-
rithms, such as MUSIC or MODE (Method Of Direction Estimation)[SS90],
can be straightforwardly extended to eigenbeam-based DOA estimation.

Figure 5.4 summarizes the main steps required for making the transition
from sensor-space, i.e. classical array processing, to eigen-space, i.e. modal
array processing for A' = 2. The M = 5 sensors on the left-hand side of Fig. 5.4
are numbered from -2 to 2. By performing the transition, these individual
sensors are replaced by the respective circular harmonics. This means that the
microphone denoted as -2 is replaced by the circular harmonic of order n=-2,
and so on. Then, as in the traditional approach, two subarrays are chosen,
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subarray;
oy subarray, . ] on 2 -1 0 1 2
o000 — e mm an J.
T v L 4 4 T
-2 -1 0 1 2 mic d | ‘
; *"Sgt*’*ﬂ subarrays ‘ ‘
'subarray: A

Fig. 5.4. Transition from sensor-space to eigen-space for N' = 2, M = 5, and
dsub =1

here denoted as sub-modal arrays. As indicated in the figure, it is assumed
that the first element in the original sensor-space (eigen-space) array is the
first element in the first subarray (sub-modal array) and that the (dsup, + 1)th
element in the original array is the first element in the second subarray. Note
that dsup, therefore, does mot correspond to a physical shift in either array
configuration. The motivation for this transition can be justified by realizing
that the modal array manifold matrix V g5 in Eq. (5.24) is Vandermonde,
just like the array manifold matrix of a ULA, see Section 4.4.3.

ESPRIT-Based Algorithm for Single-Source Localization Tasks

In the following, an algorithm is presented that is able to estimate the DOA
of a single impinging plane-wave with unity amplitude. A slightly modified
algorithm is presented in the next section with which DOA estimation of
multiple impinging plane-waves becomes possible.

It can be straightforwardly verified that for eigenbeam-based DOA es-
timation, the invariance relation for unitary ESPRIT given by Eq. (4.141)
becomes,

e Y0, K*Vip(p) = K'Vis(p), (5.30)

where V gp(p) is the eigenbeam array manifold vector defined in Eq. (5.9),
and,

‘_/N—l VN—Q VO Vl VN } (5 31)

O, dlag{ I T U T
where Vi £ iV B '\ (kR). Note that it is assumed that, for unbaffled apertures,
Vi # 0. Here and in the following, a subscripted matrix, where the subscript
contains the symbol A, defines its dimension.

It can be readily verified that a few important properties of the special
structure of O,,, are,

Ly = _QQNiQ/\/_QQN; (5.32)
Oy = %QNQQ_j\lf%Q_/\/’a (5.33)
Oopr = L OopLo (5.34)
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The 2N x (2N +1) selection matrices K* and K in Eq. (5.30), that select
the 2N first and 20 last components of the eigenbeam array manifold vector,
are defined in Eq. (4.142).

By applying the unitarity of Q to the eigenbeam manifold vec-

FON+1
tor Vgp(¢) one obtains a real-valued eigenbeam manifold vector as, cf.

Eq. (4.140),
Brp(p) = QL. VEn(o). (5.35)

Therefore, Eq. (5.30) becomes,

e Y0, KQ Bri(p) = K'Q Bgp(p). (5.36)
2N +1 ZoN+1
Pre-multiplication with O, j\l/ 2 yields,
o —-1/2
YONK Q,, \Ben(p) = 05/°K'Q, .. Bup(p), (5.37)

which, by using Eq. (5.34) can be expressed as,

eTROYK Q, . Bun(p) = LyON I,y K"Q, . Brp(e).  (5.38)

This result can be further modified by utilizing i2N+1i2N+1 = Iy, and
Eq. (4.143) to arrive at,

_zv01/2 QQNHBEB(‘P):inéﬁKQLNHQgNHBEB(90)' (5.39)

Pre-multiplication of Eq. (5.39) with Q;IN and utilizing the fact that,

Q?NLN = ng\/’ (5.40)
12N+1Q2N+1 = Q;N_,’_lv (541)

yields,

_zSGQ 01/2 Q2N+1BEB( ) QzNolijQ Q;/\/JrlBEB((p)
(QzNO K°Q, )" Brs(p)-

(5.42)
Therefore, it follows in analogy to Eq. (4.150) that,
(p ~ - ~
tan (§)QlBEB(<P) = G,Bgg(p), (5.43)
where,
= 12 g
G, = Re{QQNO Q2N+1}’ (5.44)

G, = Im{QQNol/zKaQ2N+1} (5.45)
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In order to obtain an estimate for the plane-wave’s DOA, ¢, the same math-
ematical operations that have been performed following Eq. (4.150) can be
applied. Out of these operations, one very important intermediate step is re-
produced here. As shown in Section 4.4.3, the estimation of the DOA using
unitary ESPRIT involves an estimate of the eigenvectors of,

Hggiﬂ [(G\Us.es) (GoUses)]

[ (5.46)

(1>

QEB

USEBGIG USEB USEBGIGQUSEB
USEBG2G Us.ep USEBGQGQUSEB

)

where Ijs, gp denotes the estimated signal subspace which is, for a single
impinging plane-wave, the eigenvector corresponding to the largest eigenvalue
of the modal correlation matrix, see Eq. (5.24). From Eq. (5.44), Eq. (5.45) and
Eq. (5.31), it appears as if the estimates were frequency-dependent. However,
as proven in Appendix E, the eigenvectors of Eq. (5.46) do not change if the
frequency-dependent matrix Q;ﬁ is exchanged by an identity matrix, I,y .

This fact, that can be attributed to the special structure of Qéf\?, results in
a frequency-independent DOA estimate, which is in contrast to the classical
unitary ESPRIT algorithm.

The following list summarizes the steps required for estimating the DOAs
of a single plane-wave using TLS EB-ESPRIT applied to a circular aperture.

. EB
1. Estimate the modal-spectral covariance matrix, Sy x, cf. Eq. (5.24), in
analogy to Eq. (4.11).
2. Transform the complex modal-spectral covariance matrix into a real-

~EB ~EB
valued one by, Sx x . 2 QF SxxQ,,, cf. Eq. (4.112),
~EB
3. Perform a real-valued eigen-decomposition of Sy x r. and estimate the

resulting modal signal subspace, U&EB, cf. Eq. (5.27), which is a vector
when considering a single impinging plane-wave.

4. Compute a real-valued eigen-decomposition of the matrix given in
Eq. (5.46) to obtain a TLS solution of Eq. (4.137).

5. Denoting the eigenvalue of Eq. (4.137) corresponding to the impinging
plane-wave by ¢ the DOA is given by, ¢ = 2tan_1{f}.

Figure 5.5 — spanning two pages — shows the performance of the sin-
gle source localization algorithm, i.e. EB-ESPRIT. The desired source is
bandpass-filtered white noise where f = 300...3000 Hz. The array comprises
ten sensors sampling a continuous circular aperture of radius R = 0.04 m.
As a result, kR = 0.22...2.22. Both baffled and unbaffled apertures are con-
sidered. The wavefield is decomposed into seven circular harmonics, i.e up to
and including order N' = 3. For comparison, not only spatially uncorrelated
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Fig. 5.5. Performance of circular EB-ESPRIT w.r.t. the EB-CRLB for a single
plane-wave (¢ = 27/9), where f = 300...3000 Hz, R = 0.04, M = 10, N' = 3,
K = 1024, 300 independent trial runs ['o’: unbaffled aperture ’e’: baffled aperture]
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Fig. 5.5. (cont’d) Performance of circular EB-ESPRIT w.r.t. the EB-CRLB for
a single plane-wave (¢ = 27/9), where f = 300...3000 Hz, R = 0.04, M = 10,
N = 3, K = 1024, 300 independent trial runs ['o’: unbaffled aperture ’e’: baffled
aperture]
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white noise but also cylindrically isotropic (diffuse) noise fields at the sensors
are considered.

Since,
N . N
Z i" B (kR)e™"¥ = Z €nt" By (kR) cos ne, (5.47)
n=—N n=0

where €9 = 1 and €,, = 2 for n > 0, the EB-CRLB is compared to the CRLB
of a standard ULA comprising N + 1 sensors. The general characteristics of
the curves in Fig. 5.5(a) parallel the ones shown in Fig. 4.18. A noticeable
difference, however, is that the variance of the eigenbeam-based estimator is
slightly higher than the sensor-space-based estimators. This can be explained
by the fact that, especially at higher frequencies, modal aliasing, that was
shown to be present in Fig. 3.11, affects the estimate in a negative way. A
higher number of sensors used for the decomposition will lower the effect of
modal aliasing in this frequency range and, as a result, the variance of the
estimate. Furthermore, by increasing the maximum decomposition order N,
the effects due to series truncation will be reduced. An additional difference
between EB-ESPRIT with circular arrays and ESPRIT using standard ULAs
stems from the fact that the EB-ESPRIT algorithm allows for a full 27 field-
of-view, i.e. EB-ESPRIT does not suffer from the ambiguity problem present
in all algorithms employing linear sensor arrays.

As can be deduced from Fig. 5.5(a), a baffled circular sensor array exhibits
lower estimation variance than its unbaffled counterpart. For this particular
DOA of the wideband plane-wave, ¢ = 27/9, the EB-CRLB is lower than
the CRLB calculated for the same DOA and a standard ULA comprising
N + 1 sensors. Recall that the CRLB depends on the DOA, exhibiting best
performance for a plane-wave impinging perpendicularly w.r.t. the array’s
axis, while the EB-CRLB is independent of the DOA.

Figure 5.5(c) depicts the absolute value of the mean estimation error sim-
ulated for both spatially uncorrelated and diffuse noise, corresponding to
Fig. 5.5(a), i.e. a free-field scenario. It can be seen that the mean estima-
tion error does not differ significantly from the true DOA for an SNR>-5 dB
in all cases considered.

Figure 5.5(b) exemplifies the performance of a sampled circular aperture in
a simulated reverberant environment, making use of the image source method
[AB79] with a single varying wall, ceiling, and floor reflection coefficient, §.
Note that a circular array has no control over a wavefield that does not impinge
from the horizontal plane. The influence of ceiling and floor reflections are
therefore expected to be more dramatic than reflections off the walls. Although
not easily quantifiable, variations in ceiling and floor reflection characteristics
are not omitted here as they represent real acoustic environments. The room
dimensions were chosen arbitrarily as (W, D, H) = (6.5,6.5,3) m. Only the
estimator variance of EB-ESPRIT, Cgp(y) cf. Eq. (4.64), evaluated for a
cylindrically diffuse noise field where SNR=0,10,40 dB are shown since the
performance for spatially uncorrelated noise fields are almost identical. As
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can be seen, especially for low SNR, the baffled aperture provides superior
performance with respect to the unbaffled aperture. Figure 5.5(d) shows the
absolute value of the mean estimation error corresponding to Fig. 5.5(b). Here,
for small values of the reflection coefficient, the baffled circular array exhibits
a slight offset with respect to the DOA estimate compared to the unbaffled
circular array. It is believed that this offset is due to the existence of surface
waves due to the cylindrical baffle. However, for large values of the reflection
coefficient, the performance of the baffled circular array surpasses the one
exhibited by the unbaffled circular array.

Note that the special structure of Qéj/\? in Eq. (5.30), that leads to an
inherently frequency-invariant algorithm for source localization, is only rele-
vant to single-source scenarios. For multiple impinging sources, the algorithm
needs to be modified slightly, as shown in the following.

ESPRIT-Based Algorithm for Multiple-Source Localization Tasks

As opposed to the procedure shown above, the DOA estimate can also be
"forced’ to be frequency-independent by considering the modified entries of the
eigenbeam array manifold vector as given by Eq. (5.21). In practice, this result
can be obtained by applying an appropriate filter to each decomposed har-
monic. Then, the eigenbeam invariance relationship becomes, cf. Eq. (4.150),

tan (g)glvEB(@) = G,Vesly), (5.48)

where,
Re{QzN— Qonith (5.49)
é 2 m{QY K Qop i1 }- (5.50)

As can be seen, Eq. (5.48) is now frequency-invariant, since the eigen-
beam manifold vector V pp(p) as defined in Eq. (5.20) does not depend on
frequency. By defining an eigenbeam array manifold matrix for I impinging
plane-waves as,

Vs 2 [Vesler) | Ves(e) | ... | Ves(er)], (5.51)

all further steps for obtaining estimates of the source DOAs are identical to
the ones derived for the classical unitary-ESPRIT algorithm in Section 4.4.3,
and are, therefore, not reproduced here.

A different approach for localizing multiple plane-wave signals using eigen-
beams extracted by unbaffled circular sensor arrays is given in [MZ94], where
a property of the recurrence relationship of Bessel function is utilized, cf.
Eq. (B.14). However, the resulting algorithm is applicable to narrowband sig-
nals only and can therefore, in general, not be applied to acoustic signal
processing tasks.
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Fig. 5.6. Performance of circular EB-ESPRIT w.r.t. the EB-CRLB for two incident
plane-waves (¢ = [27/9,7/2]7, source one shown), where f = 1000...3000 Hz,
R =0.04, M = 10, N = 3, K = 1024, 300 independent trial runs ['o’: unbaffled

7.

aperture ’o’: baffled aperture]
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Fig. 5.6. (cont’d) Performance of circular EB-ESPRIT w.r.t. the EB-CRLB
for two incident plane-waves (¢ = [27/9,7/2]T, source one shown), where f =
1000...3000 Hz, R = 0.04, M = 10, N' = 3, K = 1024, 300 independent trial runs
['o’: unbaffled aperture ’o’: baffled aperture]
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Note that the algorithm for multiple plane-wave sources also applies to
single plane-wave incidence. However, using the algorithm presented above,
derived exclusively for single source scenarios, has advantages as will become
clear from the following example.

Figure 5.6 — again spanning two pages — parallels the performance evalu-
ation of EB-ESPRIT for a single impinging plane-wave as shown in Fig. 5.5.
Here, however, two plane-wave signals, ¢ = [27/9,7/2]7, impinge on the
same sampled circular aperture as utilized before. Only the results for the first
source, @1 = 27/9, are shown. The results for the second source, po = /2,
are almost identical and are therefore, omitted. Performance degradation com-
pared to the single-source scenario is obvious. This is in part due to the equal-
ization procedure implied by Eq. (5.21). In particular, the presence of spatially
uncorrelated white noise imposes the requirement of carefully calibrated sen-
sors. The additional amplification of spatially uncorrelated white noise is the
reason why the algorithm does not return any estimate in Fig. 5.6(a),(c) for
SNR<20 dB. The absence of an estimate is due to an implementation detail
realizing a reliability test described in [HN95]. This test verifies whether the
eigenvalues of the matrix in Eq. (5.46) are all real, as anticipated due to purely
real-valued operations, and does not return an estimate if this test fails.

Note that the eigenbeams and differential /superdirective sensor arrays
share similar properties, especially their sensitivity to spatially uncorrelated
noise which limits their usability at lower frequencies. Therefore, the lower
cut-off frequency is chosen to be higher than in the single-source case.

Note that the degradation in performance compared with the single-source
scenario is also due to the fact that, in general, the more signals are present,
the more information needs to be extracted from the estimated correlation
matrix. One can therefore conclude that, the more sources are present in a
wavefield, the longer the observation interval should be selected for reliable
estimates. Here, however, the observation interval was chosen to be as long as
in the single-source scenario for the sake of comparability.

At this point, it should be stressed that the results for varying wall reflec-
tion coefficients are valid for one specific source-receiver-room scenario only.
Due to space limitations, extensive simulations covering a wide range of dif-
ferent scenarios will not be presented. However, the example chosen here does
reflect the general trend that baffled circular arrays yield better results than
their unbaffled counterparts. More results using a system operating in a real
acoustic environment are reproduced in Chapter 6.

5.2.5 Eigenbeam Processing Using Spherical Apertures

Spherical apertures and sensor arrays employing eigenbeams for the localiza-
tion of multiple wideband sources need special considerations since the decom-
posed eigenbeams, cf. Section 3.2 and Section 5.1.2, depend on both the order
n and the degree m. Hence, an invariance relationship as exploited by ESPRIT
and EB-ESPRIT is not available. Therefore, a straightforward extension of the
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algorithm derived for circular sensor arrays is bound to fail. However, one can
derive an algorithm that is, conceptually, similar to EB-ESPRIT, by employ-
ing a well-known recurrence relation for associated Legendre functions [Arf85],
ie.,

2m cot 9P (cos V) = (m —n—1)(n+m)P" (cosd) — P (cos ). (5.52)

Note that this particular recurrence relation is based on a fixed order n of
the associated Legendre functions. The idea of using recurrence relations for
modal processing applied to circular apertures has been introduced in [MZ94].
The following discussion follows the path shown in [MZ94] and adapts it for
its application to spherical apertures.

Now, by applying the basic idea of ESPRIT to form subarrays, three eigen-
beam subarray vectors of length 2A/ — 1 are extracted from Eq. (5.22) as,

- (1 .
Vis(0,9) 2 AVDV pp(0,0), 1= —-1(1)1, (5.53)

where A(jl), A(O), and AM) extract the first, middle, and last 2\ —1 elements
from D,V gp(9, ), and where,

D, = diag{(-1)V,...,(-1)°1,..., 1V} (5.54)

By considering I plane-waves impinging on the spherical aperture, the
recurrence relation, Eq. (5.52) using Eq. (5.23), can be expressed as,

D\Viyy = D,V + DV iy, (5.55)
where,
> (1) > (1) = (1) > (1)
Vi =[Ves(Wi,01) | VEp(W2,02) | ... VEs(Wr, 01, 1=-1(1)1,
(5.56)
and,
@ = diag{u1,...,pur}, (5.57)
where, A
u, =tand, e = 1(1)1. (5.58)
Also,

D, = 2diag{(N — 1)/ay™ V... 1/a34,0,1/aks, ..., (N — 1) /a1,
D, =diag{(v - N —1)- N +v)/a '}, v=—-WN-1DD)WN-1),
D, = diag{1/a (N, ... 1/a%, —1/ak, 1/d3s,. .., 1/a},

where a}} is defined by Eq. (3.62) as the square-root term in Eq. (5.23) that
depends on n and m.
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Since the eigenbeam array manifold matrix,

Vip 2 [Ves(i,1) | Vep(W2,02) | .| V91, 01)]; (5.59)
is related to the signal subspace matrix U ¢ by a non-singular matrix T, cf.
Eq. (4.124), it follows that UY = AVU ¢, 1= —1(1)1.

As discussed earlier, the signal subspace matrix can be estimated by
extracting the I principal eigenvalues from the modal correlation matrix,
Eq. (5.24). This correlation matrix is estimated based on the decomposed
output (spherical eigenbeams) of the spherical aperture. Equation (5.55) can
then be expressed as,

T
D\UY - E [gH:| : (5.60)
where, -
E=[D,US" | DUY, (5.61)
v =T"oT. (5.62)

By solving Eq. (5.60) in a LS or TLS sense, an estimate for ¥ can be ob-
tained. Finally, by realizing that the complex eigenvalues of ¥ are the entries
of @, the azimuth of the impinging plane-waves, ¢,,¢ = 1(1)I, can be readily
identified by the phase value of these eigenvalues. Similarly, the direction-of-
arrival in elevation, ¥,,¢ = 1(1)I, simply correspond to the inverse tangent
of the magnitude of the eigenvalues, see Eq. (5.58). Several observations are
of interest. Firstly, as for EB-ESPRIT utilizing circular harmonics, the num-
ber of spherical harmonics to be extracted from the wavefield must satisfy
the relation A > I + 1. Secondly, the algorithm derived above can be identi-
fied as ESPRIT-like. Thirdly, source localization using eigenbeams obtained
by wavefield decomposition along the surface of a spherical aperture is in-
herently frequency-independent. This is a direct consequence of the fact that
the frequency-dependent terms in V., i.e. by(kR) — cf. Eq. (5.23) —, cancel in
Eq. (5.55).

Figure 5.7 and Fig. 5.8 — spanning multiple pages, respectively — exemplify
the performance for one specific sources-sensors-room scenario of the DOA
estimation algorithm using spherical arrays regarding azimuth and elevation,
respectively. The sampling scheme used to produce these results was the t-
design method, see Section 3.2.3, where M = 32. It can be seen that the
variance of the estimator for spatially uncorrelated noise fields is significantly
larger than the ideal estimator, i.e. the EB-CRLB for spherical apertures. This
can be explained by the fact that the process of sampling spherical apertures
introduces significant modal aliasing to the recorded spherical harmonics, cf.
e.g. Fig. 3.22, which is not covered by the ideal model. This rather large
amount of modal aliasing, at least compared to circular arrays, results in a
biased estimate, especially for wall reflection coefficients, 3, other than zero.
Note that the EB-CRLB is really only meaningful for unbiased estimators in
spatially uncorrelated white noise. Therefore, it can be deduced that while
the estimation algorithm does work in principle, algorithms that incorporate
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Fig. 5.7. Performance of spherical EB-ESPRIT w.r.t. the EB-CRLB in az-
imuth for two incident plane-waves (¢ = [r/6,7/2]T, source one shown), where
f =1000...3000 Hz, M = 32, N’ = 3, K = 1024, 300 independent trial runs [o:
unbaffled spherical array ’e’: baffled spherical array]
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Fig. 5.7. (cont’d) Performance of spherical EB-ESPRIT w.r.t. the EB-CRLB in
azimuth for two incident plane-waves (¢ = [r/6,7/2]7, source one shown), where
f =1000...3000 Hz, M = 32, N' = 3, K = 1024, 300 independent trial runs [0
unbaffled spherical array ’e’: baffled spherical array]
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Fig. 5.8. Performance of spherical EB-ESPRIT w.r.t. the EB-CRLB in elevation
for two incident plane-waves (9 = [r/9,57/18]7, source one shown), where f =
1000...3000 Hz, M = 32, N' = 3, K = 1024, 300 independent trial runs [0
unbaffled spherical array ’e’: baffled spherical array]
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Fig. 5.8. (cont’d) Performance of spherical EB-ESPRIT w.r.t. the EB-CRLB in
elevation for two incident plane-waves (9 = [r/9, 57/18]T, source one shown), where
f =1000...3000 Hz, M = 32, N' = 3, K = 1024, 300 independent trial runs [0
unbaffled spherical array ’e’: baffled spherical array]
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a reverberated signal model should be considered for future developments.
However, it is quite interesting that the estimation performance of the DOA in
elevation using baffled spherical arrays is satisfactory, even for wall reflection
coefficients considerably exceeding zero, cf. Figs. 5.8(b),(d). A satisfactory
explanation for this phenomenon remains to be found.

At a first glance, the run of the curves in Fig. 5.8(d) appears to be er-
roneous. However, one has to keep in mind that for increasing boundary re-
flection coefficients, the variance increases considerably, cf. Fig. 5.8(b). This
basically means that the estimates start to oscillate wildly around a value
which, for this particular setup, happen to approach the true DOA for large
values of (3.

Note that, by using the algorithm described in this section, a signal imping-
ing from ¥ = 7/2 cannot be localized because of the tan(?) term in Eq. (5.58).
This problem can be alleviated by rotating the individual spherical harmonics
in @ as described in Section 5.1.1.

5.2.6 Resolution Capacity and DOA Estimation of More than Two
Wideband Sources

The resolution capacity of EB-ESPRIT, i.e. the minimum spatial distance be-
tween two sources that can be resolved is, in principle, zero. This means that,
assuming a decomposition of the wavefield into an infinite number of harmon-
ics, assuming absence of modal aliasing and infinite SNR, two sources can be
spaced arbitrarily close together. However, as soon as the effects of wavefield
truncation, modal aliasing due to the finite number of sensors, finite SNR, and
finite observation intervals are present, the minimum spatial distance between
two sources becomes non-zero. Exact predictions on how close two acoustic
wideband sources can be positioned with respect to each other depend on too
many parameters to be reproduced here and have to be examined individually
for each scenario considered.

In this chapter, so far, the proof-of-concept concerning eigenbeam-based
PE methods has been given for a maximum of two wideband sources only.
It is well known that subspace-based PE methods require at least one more
sensor than sources in order to form signal and noise subspaces from the esti-
mated correlation matrices, see e.g. [MZ94] and cf. Eq. (4.12). Since the entire
concept of eigenbeam-based PE methods stems from the fact that individual
sensors are substituted by individual eigenbeams, it is clear that the require-
ment here is that a maximum of 2/ sources may be present if the wavefield
is decomposed up to order N, thereby yielding a total number of 2N + 1
eigenbeams, cf. Fig. 5.4. Qualitative examples for the performance of the EB-
ESPRIT algorithm with respect to more than two sources are presented in
Appendix F.
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5.2.7 Detection of the Number of Active Sources

In this section, a detection algorithm based on eigenbeam processing for the
number of active sources (NOS) present in a wavefield for both circular as
well as for spherical apertures, is discussed.

Detection Algorithm for Circular Apertures

The following discussion details a detection algorithm for circular apertures
which is based on the wavefield decomposition process outlined in Section 3.1.
Note that the decomposition of a wavefield into circular harmonics is per-
formed with respect to the aperture’s perimeter. It can therefore be observed
that after this transformation one obtains a single virtual receiver at the aper-
ture’s perimeter exhibiting multiple spatial selectivity characteristics, i.e. the
harmonics of order n, simultaneously. As outlined in Section 3.1, n = 0 cor-
responds to an omnidirectional spatial characteristic, n = 1 corresponds to a
dipole spatial characteristic, and so on.

First, the unbaffled circular aperture is considered. Then, some light is shed
on how to modify the algorithm when baffled circular apertures are employed.

When I plane-waves with unity amplitude impinge on the circular aper-
ture, Eq. (3.5) for ¥ = m/2 becomes,

kR ¢ <P ZelkRCOb(¢ ®.)

:Z Z i (kR)e™ @m0,

(=1 n=—o00

(5.63)

by virtue of the superposition principle. The symbol ¢ in Eq. (5.63) means
that the angular dependency is due to the DOAs of all I impinging plane-
waves, @ = [p1,¢2,-..,¢r]’. As a result, it follows for the circular harmonics
corresponding to multiple plane-waves that, cf. Eq. (3.15),

I
Fn (kR @) =Y i"Ju(kR)e™""%". (5.64)

=1

Up to this point, only continuous circular apertures have been considered. For
actual implementations, however, the aperture has to be sampled at discrete
sensor positions. In order to perform the sampling operation, Eq. (5.64) needs
to be discretized to yield, for multiple plane-waves, the sampled circular har-

monics, Jg‘i(kR, ). Building upon the discussion presented in Section 3.1.3,
it follows that,

F5(kR, ) =Fp (ER, 0) + Esamp(na, kR, ), (5.65)
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where Eamp(1q, kR, @) is an additional term due to modal aliasing which, in
essence, results in several modes of order n, > n leaking into mode n. This
error can be controlled, although not eliminated, by appropriately choosing
the number of microphones, M, the radius of the aperture, R, and the fre-
quency range of interest, kR = 2w fR/c, see Section 3.1.3. For simplicity, it is
assumed that Eamp(na, kR, @) is sufficiently small in the following.

It is shown in Section 3.1.3 that by considering a real system using M mi-
crophones, a wavefield can be decomposed into a limited number of harmonics

only, i.e.,
M2, M even
N = {(M —1)/2, Modd (5-66)

Note that critical sampling, cf. Section 3.1.3, is assumed here.

As a first step towards an algorithm that estimates the number of acoustic
wideband sources, a wavefield synthesis operation that superimposes these
limited number of circular harmonics is considered. This synthesis operation
can be seen as an order-limited inverse spatial Fourier series expansion with
respect to ¢ = ¢g, see Eq. (A.5), which gives with Eq. (5.64),

N
I"(kfi7 ¢0, QO) = Z Fn(kRv So)ein¢0 + gtrunc(kRa ¢0a 80)7 (567)
n=—N
where,
gtrunc(kRa ¢07 SO) = Z Fn(kRv Qo)ein(%? (568)

In|>N

is the error term due to the truncation of the infinite number of circular
harmonics.

For the sake of simplicity, the truncation error, Eyunc(kR, do, ), is as-
sumed to be sufficiently small in the frequency range of interest in the fol-
lowing. See Section 3.1.4 for more details on the wavefield truncation error.
Then, Eq. (5.67) with Eq. (5.63) and ¢ = 0 can be expressed as,

I

N
P(kR,0,p) =Y _eficser ~ N™ P (KR, ). (5.69)
=1 n=—N

Transformation of Eq. (5.69) into the time-domain gives the modal impulse
response,

I
p(t,7) = Z St —m,), (5.70)
=1

where the symbol 7 combines the delays of all I impinging plane-waves, 7 =
[Tla T2y« 7TI]T, and VV]Tlere7
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T, = R cosp,, t=1(1)L, (5.71)
c

is a delay caused by the (-th plane-wave.

A rule for the system detection problem for wave-fronts propagating in
free-field can now be derived by observing that the number of Dirac impulses
in Eq. (5.70) correspond to the number of sources in the impinging wavefield.

The next step involves an adaptive identification of the modal impulse
response, p(t, T), from a block of observed data. In order to transform this
task into a classical system identification problem [Hay02], a reference signal
is required. This signal should be independent of the direction of the incom-
ing plane-waves as well as of the number of sources. A suitable choice is to
utilize the zeroth-order circular harmonic for this purpose since it exhibits an
omnidirectional spatial characteristic. This signal can be found in Eq. (5.64)
for n = 0. For the purpose of system identification, the frequency-dependence
of the zeroth-order harmonic needs to be equalized. The modified reference
signal is therefore,

o

o A FO(kR)

FolkR) & 0TS =1 (5.72)

which in the time domain equals,

fot) =1-0(t). (5.73)

p(t,T) — hi(t) —l
S e(t)

e

\ i
fo(t) — ha(®) —T

\

Fig. 5.9. Equivalent system identification problem for white noise input signals

A schematic of the resulting system identification problem is shown in
Fig. 5.9, where the filter hq(t) is simply a delay that compensates for the
delay introduced by the adaptive filter ho(t), which should be identical to a
delayed version of p(t,T) after convergence.

In practice, the algorithm can be implemented by using any adaptive fil-
tering technique such as LMS-based or RLS-based algorithms [Hay02].

Figure 5.10 depicts the discretized modal impulse responses p(t = vT, ),
where v is an integer and T is the sampling interval, and fo(t = vT) for a
single band-limited plane-wave incident on a continuous aperture in free-field
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Fig. 5.10. Normalized modal impulse responses corresponding to a wavefield con-
taining a single plane-wave ¢, = 7/6 and p1 = 27/3

for two cases, p = ¢1 = /6 and ¢ = p; = 27/3, respectively. The parameters
are chosen as R = 0.04 m, N =5, f; = 1/T = 48 kHz, and ¢ = 340 m/s,
where f; denotes the sampling frequency. The sensor signals were bandlimited
t0 fmax = 7 kHz, which corresponds to kR = 5.2.

Also shown are two vertical lines that represent the maximum delays
|Tmax| = R/e, cf. Eq. (5.71), that need to be considered in this detection
scheme. This observation is of some importance since it is expected that mod-
erately reverberant environments only have a limited negative impact on the
estimation of the modal impulse response in this very narrow section of the
impulse response. That means that even though the signal model is based
on a free-field model, moderate reverberation should not seriously affect the
performance of the algorithm.

This claim is now illustrated by an example. The parameters, especially
the DOA, are the same as the ones that were used to produce Fig. 5.10 for
Y1 = ’/T/6

Here, however, the actual modal impulse response to be identified, ho(-),
is estimated by a frequency-domain algorithm controlling an 512-tap adaptive
FIR filter. The result is plotted in Fig. 5.11. Both an anechoic as well as a
reverberated environment, simulated by applying the image method [AB79],
where the reflection coefficients are chosen to be § = 0.8, are considered.
The effect of reverberation is twofold. First, additional peaks, indicated by
arrows in Fig. 5.11(a), can be observed to the far left and to the far right
with respect to the area of interest, denoted by the two vertical lines. These
peaks correspond to the individual reflections that appear in the identified
modal impulse response. Second, the peaks in the area of interest are now
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Fig. 5.11. Estimation of h2(+) in anechoic (anec.) and reverberated (reverb.) envi-
ronments

somewhat less prevalent, i.e. the power of the highest peak relative to the
second highest peak — which does not correspond to an impinging plane-wave,
cf. arrow in Fig. 5.11(b) — is reduced. This effect is depicted in Fig. 5.12, where
the relative power of first to second peak with increasing reverberation, i.e.
increasing wall reflection coefficient, is shown. As can be seen, for moderate
reflection coefficients, the power ratio is quite high which, therefore, enables
reliable source/no-source decision.

Next, two simultaneously impinging plane-waves are considered. The pa-
rameters chosen were the same ones that were used to produce Fig. 5.13, the
difference being that ¢ = [r/6,27/3]T, i.e. o1 = /6 and ¢y = 27/3, indi-
cating simultaneously arriving wave-fronts. Two distinct peaks in the modal
impulse response appear which correspond to the two sources. All results
obtained for a single impinging plane-wave can also be extended to the two-
source case. However, as can be deduced from the cosine term in Eq. (5.71),
the two sources cannot be located arbitrarily along the circle. For instance, a
plane-wave impinging from ¢ = 7/6 cannot be distinguished from a second
plane-wave impinging from ¢ = 57/6 since they cause an identical delay
in Eq. (5.71). This ambiguity problem can be alleviated by also performing
the wavefield synthesis operation in Eq. (5.67) with respect to ¢g # 0, e.g.
¢o = 7/2, and use both detection results for an overall estimate. A value of
¢o # 0 basically is equivalent to rotating the individual harmonics by ¢y,
thereby resolving the ambiguity problem.



5.2 Parameter Estimation Using Eigenbeam Processing 183

35

30F

251

201

151

10}

Power ratio of 1st and 2nd peak in dB

0 0.2 0.4 0.6 0.8 1
B

Fig. 5.12. Relative power of first to second peak with increasing reverberation

0 20 40 60
Offset in samples

Fig. 5.13. Normalized modal impulse responses corresponding to a wavefield con-
taining two plane-waves ¢ = [1/3, 27/3]"
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A few words on resolution capacity, i.e. the question on how close the plane-
waves can be located along the circle with respect to each other, are in order.
As can be seen in Fig. 5.10, Fig. 5.13, and Eq. (5.71), the maximum delay that
needs to be taken into consideration for the detection algorithm depends on
the radius of the aperture as well on the sampling frequency. In the example
shown above, where R = 0.04 m, ¢ = 340 m/s, and fs=48 kHz, the maximum
delay with respect to the peak corresponding to the omnidirectional term is
only about 46 samples. This, of course, limits the minimum distance between
the two plane-waves as the two peaks merge into one and can therefore not
be resolved if the sources are too closely spaced. For a real system it is very
difficult, if not impossible, to formulate criteria of general validity on the
minimum spacing between the two sources since its determination, i.e. the
accuracy of the identification of the modal impulse responses, depend on

the sampling frequency,
the frequency range of operation which is limited due to the effects of
wavefield truncation and aperture sampling,

e the position of the two sources due to the properties of the cosine function.

Note that even for an idealized system, i.e. infinite sampling frequency and fre-
quency range of operation, the resolution capacity is fundamentally bounded
by the properties of the cosine function.

Note that the method presented above cannot be directly applied to aper-
tures mounted into rigid baffles without modifications since re-synthesis of the
wavefield does not only yield a superposition of plane-waves, but also results
in components corresponding to the scattered waves. As a consequence, its
estimated modal impulse response does not yield unambiguous peaks corre-
sponding to the number of sources. A simple, yet effective method that solves
this problem will be presented in the following.

A wavefield due to a superposition of I plane-waves on a circular aperture
mounted into a rigid cylindrical baffle is, cf. Eq. (2.83),

! (kR H(kR)]

Applying the decomposition into circular harmonics, as described in Sec-
tion 3.1.1, yields,

I ,
n (KR, ) ; i | J, [ %} e~ e, (5.75)

n

A finite sum of these circular harmonics, does not yield an estimate for the
superposition of plane-waves at the center of the aperture. In contrast to
unbaffled circular apertures, the circular harmonics derived from baffled aper-
tures not only describe a wavefield containing plane-waves, but also an ad-
ditional wavefield corresponding to the scattered wave on the surface of the
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rigid cylinder. Therefore, the superimposed circular harmonics do not cor-
respond to individual peaks in the time-domain. Rather, additional peaks
occur due to the scattered wavefield. This fact turns the detection task into a
very difficult problem. One possibility to overcome this problem is to 'undo’
the wave scattering effect by a filtering operation. Note that the scattered
wavefield only appears in the frequency-dependent component of the circular
harmonics, whereas the angular-dependent component remains unaffected. By
defining the modified circular harmonics of a baffled circular aperture as,

. ~ Fu (KR, @)
Fn(kR, ) = J.,(kR)H, (kR)
H, (kR)

Jn(kR), (5.76)

and choosing,

. o (KR,
FolkR,p) = o (M, ) =1, (5.77)

the same algorithm as presented above for unbaffled circular apertures can
then be directly transferred to the baffled circular aperture scenario. All results
obtained for the unbaffled circular aperture, in essence, remain valid and are
therefore not reproduced here.

Note that the simulations presented in this section can be easily repeated
for more than two impinging sources. However, the radius of the circular
aperture as well as the sampling frequency and the bandwidth of operation
have to be chosen such that the desired number of peaks can be detected in
the significant part of the estimated modal impulse response ha(+), cf. Fig. 5.9.

More examples obtained with a baffled circular microphone array fed by
data recorded in real acoustic environments are presented in Chapter 6.

An estimate of the number of sources can in fact be obtained by sim-
ply considering two microphones along a circular aperture after applying the
AED algorithm, see [Ben00] and Section 4.4.2, for an estimate of the impulse
response “between” the two microphones. However, the main advantage of
the method described in this section is the fact that baffled apertures can
be rather easily included in the framework. In the sensor-space, the effect of
scattering depends on the direction-of-arrival of the impinging plane-waves,
cf. Fig. 2.9. Therefore, it is impossible to compensate for this effect by a digital
filtering operation. On the other hand, by applying the notion of eigenbeams,
the effect of scattering is independent of the plane-waves’ direction-of-arrival
and the frequency-dependence of each individual component can be rather
easily be compensated for, as shown above. In summary, only by using an
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eigenbeam-based method baffled apertures can be employed for the task of
source detection.

Further advantages include a higher SNR with respect to uncorrelated
white noise. It is well-known that an increase of the number of microphones by
a factor of two results in an SNR gain of 3 dB. Essentially, the omnidirectional
eigenbeam, n = 0, is obtained by summing the contribution of all individual
microphones. For example, by utilizing ten microphones for the wavefield de-
composition process, a gain of about 10 dB can be achieved compared to a
single omnidirectional microphone. Therefore, the more microphones are used
to sample the continuous circular aperture, the higher the resulting SNR of
the decomposed wavefield.

A third advantage, which is mainly of academic interest, is that the angle
by which the eigenbeams can be rotated (¢g) is continuous, while in the sensor-
space approach only discrete microphone pairs can be selected in order to solve
the ambiguity problem.

Detection Algorithm for Spherical Apertures

The following discussion transfers the system detection algorithm for circular
apertures to spherical apertures. In fact, the algorithm can be applied almost
directly, provided several details are taken into consideration.

First, of course, the algorithm is now based on the wavefield decomposition
process outlined in Section 3.2. Therefore, it follows for the superposition of
plane-waves on an unbaffled spherical aperture with Eq. (3.59), Eq. (3.60),
and Eq. (3.66) that,

I
.P(ICR,7 97 ¢, 19’ 90) —_ Z eikR[sianin 9, cos(dp—, )+cos 6 cos 9, ]

=1

I o~ n
=4md 3 (kR) DD YOOV (D),

t=1n=0 m=—-n

(5.78)

where the symbol 4 in Eq. (5.78) means that the angular dependency in ele-
vation is due to the DOAs of I impinging plane-waves, ¥ = [J1, 9, ...,97]7.
After performing the decomposition step, essentially a spherical harmonics
transform of Eq. (5.78), see Section 3.2.1, one obtains for the wavefield due
to I incoming plane-waves decomposed by an unbaffled spherical aperture,

]

I
G (kR 9, ) = Var > i"jn(kR)Y,"(V,,.)". (5.79)
=1

Now, applying the same ideas as presented for circular apertures, a re-
synthesis operation with respect to a reference point on the aperture, (6, ¢o),
is applied. This corresponds to a spherical harmonics transform with respect
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to this reference point. The result, after the sampling and wavefield truncation
operations is,

I N n
P(kR,00,60,9,¢) =47 > > i"jn(kR) > V™00, 60)Y," (0, 0.)"
=1 n=0 m=—n
+ gsamp(naa Mg, kR7 90; ¢07 197 SO) + gtrunc(kRv 907 ¢07 197 SO)
(5.80)

Again, for the sake of clarity, the error due to the truncation, Equnc(+), and
the error due to sampling, Eamp(+), are assumed to be sufficiently small in
the following. More details on these errors can be found in Section 3.2.4 and
Section 3.2.3, respectively. Then, Eq. (5.80) can be written as,
I
P(kR, 00’ ¢Oa 19’ 90) _ Z eikR[sin 0o sin ¥, cos(po—p,)+cos Og cos I, ]
=1
I N n

=1 n=0 m=—n

(5.81)

In the time-domain, Eq. (5.81) can be written as,

I
p(ta T) = Z 6(t - TL)? (582)
=1
where,
R . .
T = |sin Oo sind, cos(g — ¢,) + cos By cos 19L] , v=1(1)I1. (5.83)

As before, in order to formulate an adaptive algorithm, a reference signal
needs to be identified. This is, again, the omnidirectional component, which
is,

0 G Y(kR)

GIUKkR) = =2~ =1, 5.84
where G 9(kR) is given by Eq. (5.79) with n = m = 0. In the time-domain
Eq. (5.84) reads,

gd(t) =1T-6(t). (5.85)

As an example, Fig. 5.14 shows the modal impulse responses correspond-
ing to a wave field containing two plane-waves for 9 = [r/3,47/9]7 and
¢ = [r/6,21/3]T. The reference point on the aperture was chosen to be

(6o, po) = (7/2,0). Two distinct peaks corresponding to the two sources are
clearly visible, which facilitate the detection algorithm for spherical apertures.

It is not difficult to verify that expressions involving baffled spherical aper-
tures can be derived by appropriately modifying Eqs. (5.74)—(5.77). For the
sake of brevity, explicit mathematical expressions are omitted here.
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Fig. 5.14. Normalized modal impulse responses corresponding to a wavefield con-
taining two plane-waves where 9 = [7/3,47/9]" and ¢ = [7/6,27/3]"
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A Practical Acoustic Scene Analysis System

This chapter describes a practical real-time capable system designed to ver-
ify the claim developed throughout the previous chapters that acoustic scene
analysis tasks can be tackled by wavefield decomposition methods using mi-
crophone arrays. In this chapter and in Appendix F, it will be shown that a
circular microphone array mounted into a rigid cylindrical baffle is capable
of performing waveform estimation and parameter estimation in the sense of
Chapter 5 in real acoustic environments. The remainder of this chapter is or-
ganized as follows. Section 6.1 discusses hardware, software, and algorithmic
details utilized throughout the evaluation process. The measurements to be
presented in Section 6.2 were performed in a real room allowing for varying
degrees of reverberation.

6.1 System Details

This section presents a few details regarding the hardware and software used
during the evaluation process. Also, some details on the implementation of
the algorithms presented in Chapter 5 are given.

6.1.1 Hardware

As shown in Chapter 3, the two array design parameters, the radius of the
circle, R, and the number of microphones, M, are intimately related to each
other and to the desired frequency range of operation, kR = 2w fR/c. The
lower the lowest desired frequency is chosen, the larger the radius of the circle
has to be selected to be able to extract higher-order components of the wave-
field with significant strength, see e.g. Fig. 3.5. On the other hand, a large
radius requires a large number of microphones in order to decompose the
wavefield into components yielding as little modal aliasing as possible at the
highest desired frequency, see Section 3.1. However, a large number of micro-
phones may be prohibitive for applications requiring real-time operation. Note
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that for many applications, a small array diameter may be desirable and may
constitute a major advantage over traditional microphone array geometries,
most notably linear arrays.

The main focus of attention that motivated the work presented in this
book is scene analysis of an acoustic environment containing speech signals.
Traditionally, the frequency bandwidth of operation is selected to equal the
bandwidth that can be found in standard telephony, i.e. f = 300...3000 Hz.

In order to adhere to these requirements and to the desire to keep the array
as compact as possible, ten microphones were chosen to sample a continuous
aperture of R = 0.04 m. In fact, this particular setup has already been used
in previous chapters for the simulations.

Figure 6.1 shows the ten-sensor circular microphone array mounted into a
finite-length rigid cylindrical baffle. The baffle can be removed for the purpose
of comparing the results of a baffled to an unbaffled aperture. The omnidirec-

|<—8.0——>|

11.3

Fig. 6.1. Ten-sensor circular microphone array mounted into a rigid cylindrical
baffle (dimensioning in centimeters)
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tional quarter-inch electret microphone capsules are of type AKG 211270017,
which can be found in several commercially available AKG microphones
[AKG]. The microphones used exhibit omnidirectional spatial characteristics
since it is well known that omnidirectional microphones can be calibrated
more effectively than directional microphones, such as dipoles and cardioids.

The multi-channel microphone preamplifier and AD-converter used is a
non-commercial custom-made solution that also supplies the phantom power
required by the electret capsules in a single unit.

The digitized microphone signals are presented to an RME HDSP9652
Hammerfall multi-channel sound-card system [RME] built into a modern PC.

The sampling rate used throughout the evaluation procedure was fixed to
48 kHz.

6.1.2 Algorithm Implementation

For the most part, the algorithms presented in Chapter 5 can be implemented
directly in MATLAB [MAT] or C/C++ without any modifications. However,
there are a few subtleties that need to be considered for best performance.

First, as opposed to a continuous-time formulation of the algorithms pre-
sented above, any digital computer implementation requires a discrete-time
representation of the signals. In contrast to spatial sampling along curved
lines, sampling of continuous time-domain signals is well understood and the
effects of aliasing can be avoided almost completely by careful anti-aliasing
filter design, e.g. [Lam79]. In the following, therefore, it is assumed that the
discrete-time signals represent the continuous-time signals with sufficient ac-
curacy. The transition from continuous-time signals and systems to their re-
spective discrete-time counterparts is standard and can be found in any text-
book on digital signal processing, e.g. [OS75]. Further details are, therefore,
omitted here.

For an efficient implementation of EB-ESPRIT as described in Sec-
tion 5.2.4 using circular microphone arrays, and in order to be able to estimate
the modal correlation matrix given by Eq. (5.24), in a statistically significant
way, the discrete-time signals are evaluated in a block-based fashion. In ad-
dition, the modal array correlation matrix is estimated recursively for being
able to cope with non-stationary signals, such as speech.

The basis of all algorithms is the decomposition of a wavefield containing
plane-waves into a set of eigen-solutions corresponding to the acoustic wave
equation in circular or spherical coordinates. For circular apertures, the pro-
cedure that yields this result is given by Eq. (3.6), which corresponds to a
spatial Fourier series expansion along the perimeter of the circular aperture.
This spatial Fourier transform can be implemented efficiently by an FFT,
applied to each block of signals along the microphones.

As insinuated in previous chapters, a prerequisite for good performance are
microphones that are matched in magnitude and phase. FIR filters of order
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128, serving as calibration filters, were obtained by measuring the impulse-
responses of all ten microphones in a low-reverberation chamber and calculat-
ing filters that match each microphone to a reference sensor in magnitude and
phase using a least-squares optimization procedure. A more efficient method
of microphone calibration that does not require quasi-anechoic environments
is described in [EKMO03]. It has been found during the course of this inves-
tigation, however, that unless the microphones are operated in an adverse
environment, i.e. where significant temperature/humidity changes must be
expected, it is possible to keep the calibration filters fixed for at least a year
without significant degradation in performance.

Finally, several algorithms presented in Chapter 5 require filters that com-
pensate for the frequency-dependence of the eigenbeams, see e.g. Eq. (5.21).
For the purpose of system validation, this non-trivial filter design problem was
attacked by applying a standard least-squares optimization criterion which
optimizes filters corresponding to the inverse frequency-dependence of the
eigenbeams.

6.1.3 Software

The offline evaluation software is implemented in MATLAB while the real-
time code is implemented in C/C++ under Linux. Since the algorithms make
extensive use of matrix algebra and fast Fourier transforms, a large part of the
algorithmic implementation utilizes the Intel Integrated Performance Primi-
tives library [IPP] of version 4.0 for fast code execution. [PTVF02] provides
a library offering routines for eigen-decomposition of matrices that has also
been used in the real-time implementation of the algorithms.

The sound-card is accessed via the high-level JACK library [JAC] which
itself is based on the low-level ALSA sound architecture [ALS].

A custom-designed MATLAB-based impulse-response measurement sys-
tem was also used extensively during the evaluation process.

6.2 Evaluations

This section describes the measurements performed to validate the applicabil-
ity of eigenbeam processing to acoustic scene analysis in terms of beamforming
and source localization of possibly multiple acoustic sources.

6.2.1 Evaluation Setup

Figure 6.2 shows the setup utilized for evaluating the parameter estimation al-
gorithms developed in Section 5.2. The microphone array, as shown in Fig. 6.1,
was placed in a room with variable acoustics by means of retractable cur-
tains, see Fig. 6.2. In order to keep the number of possible acoustic scenarios
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tractable, only two extreme cases were considered, i.e. all curtains closed on
the one hand and all curtains open on the other hand. In the following, the
former scenario will be denoted as ACC (all curtains closed) and the latter one
as ACO (all curtains open). By keeping all curtains closed, an approximate
reverberation time was determined to be Tg9 acc ~ 200 ms L. By opening all
curtains, thereby exposing concrete walls and windows leading to hard reflec-

! The reverberation time Tgo is defined as the time required for the spatial average
of the sound energy to drop by 60 dB after the sound source has been switched

off [Pie89].
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tions, the reverberation time increases to Te9, aco ~ 400 ms. The floor was
covered by a thin carpet.

The microphone array was positioned in the center of a loudspeaker array
of radius 1.5 m. This loudspeaker array, comprising 48 dual-diaphragm ELAC
301 loudspeakers [ELA], is part of a laboratory setup comprising a wave-
field synthesis system (WFS) under investigation at the Chair of Multimedia
Communications and Signal Processing, University of Erlangen-Nuremberg,
Germany [SBR04, LMS]. Here, however, the loudspeakers were not jointly
operated in WFS-mode but were driven individually to simulate a large num-
ber of possible source positions covering the full 27 field-of-view offered by
the circular microphone array. Note that, for practical reasons, the coordi-
nate system indicated in Fig. 6.2 is a mirror image of the coordinate system
considered in the previous chapters.

For evaluation purposes, the impulse-responses of each individual loud-
speaker with respect to all ten microphones were measured for both ACC
and ACO using the MATLAB-based impulse-response measurement tool de-
scribed above. Unreverberated signals were then convolved with the respec-
tive impulse-responses and superimposed with cylindrically isotropic noise of
varying SNR, which can be generated by using the impulse-responses of all
48 loudspeakers with respect to all ten microphones.

A quantity that may be of interest when considering the effect of rever-
beration is the critical distance, d. 1. It is defined as the distance between
the source and a receiver where the direct sound level equals the reverberant
sound level, and is given by [Youb9, Pie89, Bal91],

/3In10 IV,.Qq
de = . R 6.1
»T60 I Teo ( )

where V,. denotes the volume of the room and @ is the source’s directional
factor. It is assumed that the loudspeakers can be modeled as omnidirection-
ally radiating sources. This assumption is reasonable for dynamic loudspeakers
mounted into closed cabinets when considering low to moderately high fre-
quencies, as is done here. Therefore, Q4 = 1 [Pie89], and it follows for this
particular setup with ¢ = 340 m/s,

1.32 m, for T, ~ 200 ms
dchGO ~ { 60,400 (62)

0.93 m, for TGO,ACO ~ 400 ms ’

which is in both cases smaller than the distance between the microphones
and the loudspeakers. In other words, the source is located far enough with
respect to the sensors such that the reverberation takes full effect.

The performance regarding waveform estimation techniques, see Sec-
tion 5.1, was evaluated using a slightly different setup than the one depicted
in Fig. 6.2. In order to exclude the effects of multipath propagation, the array
was placed into a low-reverberation chamber of size 2.5 mx2.7 m, yielding a
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reverberation time of about Tsp ~ 50 ms. The microphone array was attached
to a stepper motor that was controlled via MATLAB by the impulse-response
measurement software described above. With the help of the stepper motor,
impulse responses at a spatial resolution of 1° were recorded using a loud-
speaker emitting maximum-length sequences (MLS). These impulse-responses
were used to evaluate modal magnitude and spatial, i.e. multipole, responses.
They were also used for calibrating the individual microphones.

6.2.2 Waveform Estimation

Figure 6.3(b) shows the measured free-field modal magnitude response of the
baffled circular microphone array as depicted in Fig. 6.1. For reference, the
simulated modal magnitude response for this array configuration is depicted
in Fig 6.3(a). As can be seen, the measurements are in good agreement with
the simulations, especially for moderately large to large values of kR. Modal
aliasing can be identified in the simulations and in the measurements, for
instance, as the region where the modal magnitude response of the fifth-order
harmonic exceeds the lower-order modes for kR > 3.5. The difference between
the simulations and the measurements with respect to small values of kR can
be attributed to the fact that the microphones are not calibrated perfectly and
that, starting from about —60 dB, the system’s self-noise dominates over the
decomposed eigenbeams for n > 2 at low frequencies. The slight deviations
obvious in the zero-order mode throughout the frequency band are a result
from the presence of boundary conditions at the endcaps of the finite-length
cylinder that were not taken into account in Fig. 6.3(a). Note that Fig. 6.3(a)
shows simulations of a circular microphone array mounted into an infinite-
length cylindrical baffle. Since contributions from a farfield source impinging
from ¥ = 0, i.e. along the baffle’s axis, only show up in the omnidirectional
mode, components resulting from endcap boundary conditions only couple
into the zero-order mode with significant strength. Note that this phenomenon
may change in nature as the microphones are positioned closer to the endcaps
of the cylindrical baffle.

Figure 6.4(b) shows the measured modal magnitude response of an unbaf-
fled circular microphone array. The array, referred to as unbaffled here, is the
one depicted in Fig. 6.1 where the finite cylinders had been removed prior to
the measurements, leaving only the aluminum ring holding the microphones.
However, this setup cannot be truly called 'unbaffled’ since the aluminum ring
has a width of 1.2 cm and this thin ring itself is an object subject to scattering
phenomena. It has been shown in Section 3.1.1 that the effects of scattering
are present even when the ratio of the length of the scattering object with
respect to radius of the circular aperture is small. This effect is therefore also
represented in Fig. 6.4(b). Note that Fig. 6.4(a) depicts the modal magnitude
response of a truly unbaffled circular aperture, obtained via simulations.

In the following, only the baffled circular microphone array is considered
for all further evaluations.
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The simulated/measured spatial response with respect to a plane-wave
with varying DOA, ¢, of all circular harmonics — or eigenbeams — correspond-
ing to a circular array comprising ten microphones are shown in Fig. 6.5.

Clearly visible is the multipole structure of the harmonics, i.e. the zero-
order harmonic corresponds to an omni-directional spatial response, while the
first-order harmonic corresponds to a dipole spatial response, and so on. Even
the fine structure for large kR due to modal aliasing can still be demonstrated
with the practical implementation. In summary, comparison of the simulated
with the corresponding measured harmonics suggests satisfying agreement of
the theory and the performance obtained by the realized system.

As an example for optimum beamforming in the sense of Section 5.1.2,
Fig. 6.6 shows the unconstrained optimum beampattern design using mea-
sured eigenbeams of order up to and including N' = 3. Note that Fig. 6.6 can
be, in principle, compared to the lower left figure in Fig. 5.2 for 0 < ¢ < 7.
In order to keep the WNG higher than about -20 dB, the values for kR were
chosen not to be smaller than kR =~ 0.74 which corresponds to a frequency of
about f = 1000 Hz. The usable upper frequency bound is limited by modal
aliasing and is chosen to be kR = 2.2 which corresponds to a frequency of
f =3000 Hz.

6.2.3 Parameter Estimation

In this section, the parameter estimation methods, i.e. source localization and
estimation of the number of sources in a wavefield, as presented in Section 5.2,
are validated by real data obtained by the setup shown in Fig. 6.2. Here, for
consistency with Section 5.2 the excitation signal was chosen to be bandpass-
filtered white noise. Examples involving more realistic excitation signals, i.e.
speech, are presented in Appendix F.

Figure 6.7 exemplifies the performance of circular EB-ESPRIT for a single
plane-wave in two acoustic environments, i.e. all curtains open (ACO) and all
curtains closed (ACC), cf. Fig. 6.2. The source signal was emitted by loud-
speaker LS 7 which was determined to correspond to ¢ = 27/9 here. The
frequency range was chosen to be f = 300...3000 Hz. Applying the argu-
ments brought forward in Section 3.1.5, i.e. considering the distance from the
loudspeaker to the microphones and the frequency range, this source can be
considered planar at the microphone positions. The wavefield was decomposed
up to third order. Additionally, cylindrically diffuse noise, generated by all 48
loudspeakers, was added to each microphone covering an SNR range from
-20 dB to 40 dB.

Figure 6.7(a) shows the estimator variance while Figure 6.7(b) shows the
absolute value of the mean estimation error in both acoustic environments. It
can be concluded that reliable estimates in both environments can be obtained
for an SNR of down to about 3 dB. For even lower values of the SNR, the
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threshold effect that was discussed in Section 4.4.3 makes the estimate unreli-
able. As expected, however, the estimation performance does degrade to some
extend when the algorithm is evaluated in a more reverberated environment,
cf. curve ’ACO’ compared to curve ’ACC’ in Fig. 6.7. More results involv-
ing other source positions and scenarios using speech signals can be found in
Appendix F.

An example of a multiple-source scenario is given in Fig. 6.8, where the
performance of circular EB-ESPRIT for two incident plane-waves, in terms of
estimator variance and error mean, is considered. Here, loudspeakers LS 7 and
LS 14 were used to emit spatially uncorrelated band-limited white noise sig-
nals. Note that the frequency corresponding to the lower edge of the passband
of the bandpass filter was increased to keep the amplification of uncorrelated
white noise as introduced by the compensation filters low, cf. Eq. (5.21). The
introduction of the modified bandpass filter is the reason why the perfor-
mance of EB-ESPRIT for two sources appears to be better than the perfor-
mance of EB-ESPRIT for a single source, see Fig. 6.7. The bandpass filter
‘removes’ the reverberation adversely affecting the algorithm for f < 1000 Hz
in the single-source case, where no compensation filters are required, cf. Sec-
tion 5.2.4. Again, cylindrically isotropic noise was added to each microphone.
In Fig. 6.8, the result corresponding to source 1, ;1 = 27/9, is shown. The
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Fig. 6.8. Performance of circular EB-ESPRIT for two incident plane-waves
(¢ =~ [27/9,7/2]T, source one shown) in two acoustic environments, where f =
1000...3000 Hz, M =10, N' = 3, K = 1024, 200 trial runs
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respective results for source 2, @y = 7/2, are very similar and are, hence,
not reproduced here. As in the single-source scenario, it follows that reliable
estimates in both environments can be obtained for an SNR of down to about
3 dB. More results involving a wide variety of relative source positions are
given in Appendix F.

Finally, some results on the estimation of the number of active sources in
a real acoustic wavefield are given in Fig. 6.9. The number of sources was de-
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Fig. 6.9. Number of active noise signals in real acoustic environments using loud-
speakers LS 1 and LS 25, where fmax = 7 kHz, M = 10, N' = 5, data blocklength
is 8192 samples
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termined using the algorithm derived in Section 5.2.7 as follows. The impulse-
response ho(t) in Fig. 5.9 was estimated by applying a frequency-domain LMS
algorithm [Hay02]. The resulting impulse-response, represented by an 256-tap
adaptive filter, was then examined for peaks in the range defined by the ra-
dius of the circular aperture. In Fig. 6.9, the significant range is indicated by
two white horizontal lines, spanning 12 samples. All positions in the impulse-
response that correspond to a local maximum were marked and weighted by
the actual value of the peak. The image-plots represent the results for both
acoustic environments as well as for high and moderately low SNR scenarios.
Loudspeaker LS 1 was emitting a bandlimited white noise signal during data
blocks 1 through 23 of 8192 samples each. During data blocks 24 through 40,
LS 1 and LS 25 were playing bandlimited uncorrelated white noise sequences.
During the last 20 data blocks, only LS 25 was active.

It can be seen that strong peaks corresponding to the two signals are
detected. However, depending on the SNR and acoustic environment consid-
ered, additional spurious peaks lower in amplitude also appear during these
segments which do not correspond to any source. In addition, these peaks get
amplified due to the presence of noise. These peaks are present due to the
error introduced by the incomplete representation of a wavefield that can be
obtained by real systems, cf. Eq. (5.69), and the inherent properties of discrete
systems, i.e. the representation of bandlimited Dirac impulses by sinc-shaped
pulses. The additional peaks can, because of their lower amplitude relative
to the main peaks, be accounted for by appropriate post-processing. This
processing step may be based on appropriate threshold selection. Examples
involving speech signals are given in Appendix F.
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Summary and Conclusions

Modal array signal processing, as treated in this book, comprises waveform
estimation tasks, i.e. beamforming, as well as parameter estimation tasks, i.e.
source localization and the estimation of the number of active sources. Modal
array signal processing has important applications in the areas of teleconfer-
encing, surveillance, and seamless acoustic human-machine interfaces.

Waveform estimation is typically performed by applying the principles of
DSB or FSB. Thereby, the microphone signals are aligned, i.e. steered, toward
the desired acoustic source. Then, depending on the optimization procedure,
scalars or FIR filters are applied independently to each microphone signal, see
Section 4.3.

Acoustic source localization is often based on the evaluation of the TDOA
between microphone pairs. A fundamental disadvantage of TDOA-based tech-
niques, such as (weighted) GCC and AED, is the fact that the underlying
signal model only considers a single impinging wave-front, see Section 4.4.2.
A source localization technique that, in contrast to TDOA-based methods, is
able to handle multiple simultaneously active sources are the subspace-based
methods introduced in Section 4.4.3. However, a fundamental limitation of
the subspace-based techniques, such as MUSIC and ESPRIT, is that they are
formulated only for narrowband signals [Sch81, RK89].

All of the above mentioned techniques have in common that they do not
take advantage of the underlying physics of wave propagation and scattering
in two- or three-dimensional space.

The main motivation that ignited this work was the desire to establish links
between classical acoustics and classical array signal processing to arrive at
novel solutions for tasks associated with acoustic scene analysis, in particular
for dealing with multiple wideband acoustic sources.

Classical acoustics, as considered in this book, is the science of acoustic
wave propagation and wave scattering in two and three spatial dimensions, see
Chapter 2. Wavefields propagating in two spatial dimensions can be used as
reasonable models for propagating acoustic wavefields in closed rooms where
ceiling and floor reflections are sufficiently attenuated. It was shown that a
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natural way of analyzing a two-dimensional wavefield is to decompose it into
an orthogonal set of eigenfunctions of the acoustic wave equation in cylindrical
coordinates, i.e. the circular harmonics or circular eigenbeams, utilizing circu-
lar apertures and circular microphone arrays. Similarly, a three-dimensional
wavefield can be analyzed by its decomposition into an orthogonal set of
eigenfunctions of the acoustic wave equation in spherical coordinates, i.e. the
spherical harmonics or spherical eigenbeams, utilizing spherical apertures and
spherical microphone arrays, see Chapter 3.

One of the key observations and results of this work, which builds the
bridge between wavefield decomposition on the one hand and array signal
processing on the other hand, is the fact that a single microphone of an array
in the classical array signal processing sense, can be associated with a single
eigenbeam resulting from the decomposition process. Note that all micro-
phones comprising the circular or spherical array are used in the decomposi-
tion process to obtain the eigenbeams. Having established this link, parameter
estimation algorithms known from classical array signal processing, i.e. MU-
SIC and ESPRIT, have been formulated by using the notion of eigenbeams,
resulting in EB-MUSIC and EB-ESPRIT, see Chapter 5. A significant advan-
tage of this new paradigm is the fact that eigenbeam-based parameter esti-
mation methods are inherently frequency-independent. This previously undis-
covered observation allows the application of parameter estimation methods,
which are able to deal with multiple simultaneously active sources, for scenar-
ios requiring wideband acoustic signal processing, such as scenarios involving
speech signals.

It has been shown, see Chapter 6 and Appendix F, that the eigenbeam-
based algorithms derived in Chapter 5 can be applied to wavefields that can be
found in real-world acoustic environments. A real-time capable system com-
prising a ten-element circular microphone array mounted into a finite-length
rigid cylindrical baffle has been constructed for the purpose of extensive per-
formance evaluations. In order to demonstrate the frequency-independence of
the parameter estimation algorithms, both bandpass-filtered white noise sig-
nals as well as speech signals were used as excitation signals. Robust parameter
estimation results have been obtained for low- to moderately reverberated en-
vironments, with reverberation times up to Tgo = 400 ms. This reverberation
time can be expected in a typical office environment. The concept of eigen-
beams applied to compact (baffled) circular sensor arrays may therefore be
advantageously applied to applications aiming at teleconferencing or acoustic
surveillance scenarios.

In summary, the main contributions of this work can be stated as follows.

e A rigorous investigation of wavefield decomposition using circular and
spherical apertures/arrays has been conducted which finally led to the
notion of eigenbeams.
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e The novel concept of applying eigenbeams to the task of localizing mul-
tiple wideband acoustic sources has been described in some depth. As a
result of the investigations, an inherent wideband formulation of classi-
cal subspace-based source localization techniques, most notably ESPRIT,
has been found.

e The applicability of eigenbeams to the task of estimating the number of
active sources in a wavefield has been shown.

e Performance evaluations of a compact-size and real-time capable array
signal processing system based on the paradigm of eigenbeams have been
presented that prove its applicability to scenarios which can be found in
real acoustic environments.

In the presented initial system implementation, however, the performance
must be expected to deteriorate in highly reverberated environments since
the wavefield decomposition process, as detailed in Chapter 3, is based on
the free-field propagation model introduced in Chapter 2. Future work on
eigenbeam-based signal processing should address this problem by trying to
find a framework that also explicitly models reverberation.

An interesting extension to the wavefield decomposition process using baf-
fled circular apertures may be to stack individual circular arrays of several

conical baffle

Fig. 7.1. Geometric model of two circular apertures mounted into a rigid cone
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radii and mount them into a rigid cone [Kel05]. A possible geometry for two
circular apertures mounted into a rigid cone is sketched in Fig. 7.1. A poten-
tial advantage of this arrangement is an extension of the usable bandwidth of
the array, which is especially interesting at low frequencies.

Further work may also include,

e a performance evaluation of waveform estimation as well as parameter
estimation methods utilizing baffled spherical microphone arrays in real
acoustic environments,

e studies on whether other signal processing tasks often performed by mul-
tiple microphone configurations, such as (multichannel) acoustic echo can-
cellation [SK92, BBK03], (blind) source separation [BAK04, BAKO05a], and
noise reduction methods [EM84, Doc03] are applicable to the eigenbeam
framework,

e examination of the applicability of eigenbeam-based methods to the anal-
ysis of room acoustics, for example by identifying the first relevant reflec-
tions in a room.

e examination of the applicability of eigenbeam-based methods to the analy-
sis of the radiation behavior of vibrating bodies, for instance by considering
a technique called nearfield acoustic holography (NAH) [Wil99)].
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Signal Transforms

A.1 One- and Multi-dimensional Fourier Transforms

In this book, the temporal Fourier transform pair is defined as [JD93],

o0

Gw) = / g(t)e™tdt, (A1)

o0

1

2

g(t) = G(w) e ™! duw. (A.2)

The spatial Fourier transform pair in d spatial coordinates is defined as,

G(k) = / g(r)e™*"" dp, (A.3)
Rd

g(r) = (Q%W / Gk)e™ "™ dk, (A4)
Rd

Note the different sign in the temporal and spatial Fourier transforms which
is due to the notion of traveling waves [Wil99]. This convention is reasonably
standard in many textbooks dealing with acoustics and apertures [MF53,
JD93, Wil99).

A.2 Fourier Series
Assuming circular symmetry, the equivalent to the one-dimensional spatial

Fourier transform is the Fourier series. A function on the unit circle in polar
coordinates, g(¢), can be represented by a Fourier series as [Wil99],
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9@ = > gne™?, (A.5)

n=—oo

where, due to the completeness relation of the exponential function, the
Fourier coefficients, g,, are given by,

2m

1

0 =5 [o0)e 0 do, (A.6)
0

A.3 Spherical Harmonics Transform

Any function f(6,¢) that is square-integrable over the unit sphere, i.e. 0 <
0 <7 and 0 < ¢ < 27, can be expanded into a series of spherical harmonics
as [DJ94],

n=0m=—n

where, due to the completeness relation of the spherical harmonics, the coef-
ficients f,,,, are given by,

s

27
1 m * o

A spherical harmonics transform on the sphere is the equivalent of the Fourier
series of periodic functions.
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Special Functions

This section defines and shows properties of special functions frequently used
in this book. All results, unless noted otherwise, are adopted from [AS72] and
[Wil99].

B.1 Bessel Functions

Bessel functions of the first kind, J,,(z), Bessel functions of the second kind,

Y,.(z), and Bessel functions of the third kind, Hfll)(z), HT(L2)(Z) are all solutions
of Bessel’s differential equation,

0? 0
zQa—;} —|—za—i} + (22 = nHw =0. (B.1)
Y,.(z) is called a Neumann function, and H, T(Ll)(z), P (z) are denoted as Han-
kel functions of the first and second kind, respectively. All functions are of
order n € Z. The Bessel function (of the first kind) is implicitly defined as,

2T

/ e!(zcosotnd) g, (B.2)

0

Jn(z) =

2min

The Neumann function is defined as,

Jn(2) cos (nm) — J_n(z).

Yu(z) = sin (n)

(B.3)

Figure B.1 shows the Bessel functions of the first and second kind for n =
0,1,2,3. The Hankel functions of the first and second kind are defined as,

H,(L”(z) = Ju(2) + 1Y, (2), (B.4)

and
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Fig. B.1. Bessel functions of the first and second kind for n =0,1,2,3

HP) (2) = Ju(2) — i¥n(2), (B.5)

respectively. Further important relationships are,

Jon(2) = (=1)"Jn(2), (B.

an(z) = (_1)nYn(z)a (B
and,

H(lg(z) _ eimrHr(Ll)(Z)’

HE)(2) = e " HP(2)
Also,
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and,

HWV(=z) = e HW(2), (B.12)
H® (—2) = e ™ H?(2). (B.13)

The recurrence relations are,

Ko1(2) + Kna1(2) = %”Kn(z), (B.14)
Kno1(2) = Knsa(2) = 2K, (2), (B.15)
Kn1(2) — gKn(z) = K (2), (B.16)
K (2) + gKn(z) = K/ (2), (B.17)

where K, (z) denotes any of the above introduced Bessel functions or linear
combinations thereof. Small argument approximations, z < n, for the Bessel
and Neumann functions are, respectively,

()"

In(2) = , B.18
()~ (B.1)
—1)! /2\"
v~ - (2] (B.19)
T z
A small argument approximation for the derivative of the Hankel function is,
, c 2 n+1
HOD () o £ (2 B.20
@)~ (2) (5.20)
where,
1,n=0
E”_{2,n>0 : (B.21)

The asymptotic behavior of the Bessel functions for large arguments are,

In(z) = 71_22 cos (z —nm/2 —w/4), (B.22)
Yo (z) = 71'2z sin (z — nw/2 — 7 /4), (B.23)
H(2) m | 2 i/, (B.24)
HO)(2) ~ % eilz=nm/2-x /1), (B.25)
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B.2 Spherical Bessel Functions

Spherical Bessel functions of the first kind, j,(z), spherical Bessel functions
of the second kind, y,(z), and spherical Bessel functions of the third kind, i.e.
spherical Hankel functions, h%l)(z), hg)(z) are all solutions of the differential
equation,

22—+ 22— + [z —n(n+ )]w =0. (B.26)

yn(z) is denoted as a spherical Neumann function, and hg)(z)ﬁg)(z) are
spherical Hankel functions of the first and second kind, respectively. All func-
tions are of integer order, n.

The spherical Bessel functions are related to the Bessel functions by the
following equivalents,
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Fig. B.2. Spherical Bessel functions of the first and second kind for n =0,1,2,3
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2— Jnt1/2(2 (B.27)

|5 ﬁ

Yn(2) Yit1/2(2), (B.28)

HDE) = 3nle) + i) = | 3 Uniap () 4 Vaiap(2)l (B29)

In contrast to Bessel functions, spherical Bessel functions can be written in
terms of trigonometric functions as,

i) = o (24) (222), (B3
) =~ (LL)(222), (832

zdz z

w20 = (L) (50). (B39

Specifically for n = 0 on obtains,

jo(z) = SH;Z = sinc (z), (B.34)
+iz
Wi (z) = S—. B.
09 = (5.35)
Some recurrence relations are,
2n+1
1
K (2) = kn1(2) — 25 2k (2), (B.37)

where k,(z) denotes any of the above introduced spherical Bessel functions or
linear combinations thereof. Small argument approximations, z < n, for the
spherical Bessel, Neumann, and Hankel functions are, respectively,

Jn(2) ~ %, (B.38)
yn(2) = —%, (B.39)
and,
(2n — )N

AL (2) = Fi (B.40)

Zn+1
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A small argument approximation for the derivative of the spherical Hankel

function is,
(n+1)(2n— 1!

(1,2 ~
h, (b2 (2) ~ +i pEs) , (B.41)
where the double factorial is defined as,
n-(n—2)-----3-1,n >0 odd
pl=<n-(n—1)-----4-2,n>0even . (B.42)

1, n=-10
For large arguments an asymptotic expression for the spherical Hankel func-
tion of the first kind can be formulated as,
eiiz
A2 (2) ~ ()" —. (B.43)
z

n

B.3 Legendre Polynomials, Associated Legendre
Functions, and Spherical Harmonics

Legendre polynomials are defined as,

1 dr

Py (z)
where n € Z. An important property of Legendre polynomials is that they
are mutually orthogonal, i.e. they satisfy,

1

/ Po(2)Pon(2) d2

-1

2
=" Smns B.4
2n+16m (B.45)

where m € Z and §,,,, denotes the Kronecker symbol which is unity for m =n
and zero otherwise. The first few Legendre polynomials are,

Py(z) =1, (B.46)
Pi(z) = z, (B.4T)
Py(z) = (322 - 1)/2, (B.48)
P3(z) = (52° — 32)/2, (B.49)
which are often plotted as a function of # where z = cos 6.
Associated Legendre functions are defined as,
dm
PI(z) = (—1)™(1 - 22 2 p (2). (B.50)

dzm
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For each m, the associated Legendre functions form a complete set of orthog-
onal functions as,

n

/ P (2)P™(2) ds = —2 (7”72)'5" (B.51)

The associated Legendre functions are one of the angle functions as part of the
solution of the acoustic wave equation in spherical coordinates with z = cos 6.
Associated Legendre functions of negative degree are defined as,

———LPM(2). (B.52)

Table B.1. Associated Legendre functions for n = 0(1)2 and m = —2(1)2 where
z =cosd

P} (cos0) n=20 n=1 n=2
m=-2 0 0 (sin?9)/8
m=-1 0 (sin®)/2 (cosOsinf)/2
m=0 1 cos 6 (14 3cos20)/4
m=1 0 —sinf —3cosf sinf
m=2 0 0 3sin® @

Solutions of the acoustic wave equation in spherical coordinates involve sep-
arate solutions for the angles # and ¢. These solutions can be conveniently
combined by using the notation of spherical harmonics as,

Y0, ¢) & \/ (2714: 1) EZ J—r Z;: P (cos ) €. (B.53)
They satisfy,
Y, "™(0,¢) = (=1)"Y,"(0,9)", (B.54)

and,

YO0, ) = ,/2”4; L b (cost). (B.55)
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The spherical harmonics are mutually orthonormal, i.e.,

2

/ / Y (0, )Y (0, 6) sin0.ddd = S Sy (B.56)
0 0
Furthermore, they satisfy the following completeness relation,

i z”: Y,"(0,0)Y, (0, 0" )* = 8(p — ¢')d(cos @ — cosB'). (B.57)

n=0m=—n

The first few spherical harmonics are given in Tab. B.2.

Table B.2. Spherical harmonics for n = 0(1)2 and m = —2(1)2

Y (0, ¢) n=20 n=1 n=2
m=—-2 0 0 3e 2 i sin’ 6
967
s |3 3 5
_ —i¢p [ 2 o QD _—i¢p
m=—-1 0 e e sin 6 26 24 sin 26
1
m=0 = % cos %(3 cosf — 1)
3 3 5
— _ i [ 2 _ 2 i ;
m=1 0 e 3 sin 6 26 24 sin 26
m=2 0 0 3624, | 2 gin?g
967

Let (61, ¢1) and (02, ¢2) define two points on a sphere in a spherical coor-
dinate system, separated by an angle -, where,

cosy = cos b1 cos B + sin 0y sin b5 cos(¢d1 — Pa2). (B.58)

Then, an addition theorem for spherical harmonics can be formulated as
[Arf85],

4 - *
Py (cosy) = M1 m;nYﬁ(Ol,@)YTZ”(@z,qbz) ) (B.59)
In particular, for §; = 65 and ¢ = ¢o, it follows that,
- m 2n +1
Y. Ireo)f ==~ (B.60)
78

m=—n
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Recurrence relations for the spherical harmonics can be derived from a
plethora of recurrence relations for associated Legendre functions. A few im-
portant ones used in this book are [Arf85],

cos Y™ (0, ) = \/ (n _(; I BE;L”;; Dym (9,6) (B.61a)

(n=—m)(n+m) _,,
+ \/m Y, 1(0,9),

) n+m+1)(n+m-+2
ezd’sinGYnm(@,qS):—\/ ( tznilggznt?j ymiio,)  (B61b)

(n—m)n—m—1) ..,
+\/ @n_DEnsD et ?9)

(n—m+1)(n—m+2)

n D ts) e (00 (Bl

e sinfY,™(0, ) = \/

(6, 9)-

(n+m)n+m—-1) .
_\/ (2n —1)(2n+1) v
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Microphone Arrays and Nearfield /Farfield
Sources

Figure C.1 adumbrates a microphone array comprising M sensors placed into
a wavefield due to nearfield and farfield sources. The microphone positioned at
T A, 1S chosen to be located at the origin of an, in general, arbitrary orthogonal
coordinate system. For simplicity of presentation, a two-dimensional Cartesian
coordinate system is depicted in Fig. C.1. It is further assumed that the origin
of the coordinate system is also the phase center of the array, i.e.,

M
> ram, =0, (C.1)
=1

which can be considered the center of gravity of the array [JD93].

a S(’I’s)

(a) nearfield (b) farfield

Fig. C.1. Microphone array with respect to a nearfield/farfield source
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The microphone positioned at raq, is assumed to have the largest Eu-
clidean distance from the origin of the coordinate system. Further symbols
are defined as, d, = ||rp, ||,d = ||[rs — ||, and d = ||rg]|.

In the farfield, cf. Fig. C.1(b), it follows that,

dg = d — d, cos o, (C.2)

where the subscript 'ff’ represents farfield conditions.
If the source is located in the nearfield, cf. Fig. C.1(a), it follows that,

A% = d* 4 d? — 2dd, cos ¢, (C.3)

where the subscript 'nf’” represents nearfield conditions. Then,

. d, d,\?
dnf—d\/l —2E COS¢L+ <E> . (04)
A Taylor series expansion of Eq. (C.4) yields,
- 1[.d, 4\’
dnf = d{l + B [QE cos ¢, — <E> ]
1[.d, d\** AN
e (5) ] o (%) 1)

Evaluating Eq. (C.5) gives, after neglecting all terms d,/d of power greater
than 2,

(C.5)

~ 2 d2 9
~d_ . S % g
dpt ~ d—d, cos¢p, + 54 2d cos” ¢,

d2
=d—d, cos ¢, + == sin? ¢, . (C.6)
—_——

2d
———
die €

Here, €, denotes the approximate error made by assuming planar wavefield in-
cidence while the impinging wavefield should be considered spherically spread-
ing with respect to the microphone positioned at 7 4,. The maximum error
occurs when ¢, = 7/2 and it follows for a general aperture with maximum
linear dimension D = 2d, that,

D2

€lmas — 8 (C.7)

Equation (C.7) can be used to finding a distance from the aperture where
the maximum error is defined in terms of a phase error quantified as 1/x-th
of a wavelength. Therefore, it follows from Eq. (C.7) that,
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5 D?  kD?
4 = ——= —
d=dle,, .= /= 8§ T Kk > 0. (C.8)
K

In the antenna literature,  is often chosen as 16 [Sko70], therefore allowing
for a maximum phase error of 22.5°. For this special value, the region d < dis
also called the Fresnel region, and the region d > d is called Fraunhofer region
[Sko70].

By using Eq. (C.8), a transition from the nearfield to the farfield can thus
be specified given a maximum allowable error. The distance from the aperture
to the point where farfield conditions can be assumed with a given error can
also be written as a ratio of the distance of the source to the most distant
sensor of the aperture as,

d_ 5 up. (C.9)

dn 2 = — .
P=D " 16n

Figure C.2 shows dp for the examples of Kk = 16 and k = 36, which
correspond to a maximum phase error of 22.5° and 10°, respectively.
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,
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kD

Fig. C.2. Relative distance from the source to an aperture with maximum linear
dimension D
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Eigenbeam-CRLB for a Single Source

In this section, the EB-CRLB for a single source, Eq. (5.29), is derived. First,
it is noted that with Sgg(w) = 0%(w), SNR(w) £ 0%(w)/02,, the EB-CRLB
follows from Eq. (4.66) as,

Crp_cnip(@,w) :% {Re{ SNR(w) Kl + Egg(cp)ﬁEB(so)SNR(w)) -1

« (Vi (o Venle)NR0) )| @ﬂﬁB«o)}}l,

(D.1)
where with Eqgs. (4.67) and Eq. (5.28),
9 v H o 1 H
Hyp = Diy [l ~Vig(VepVigs) IKEB} Dgp, (D.2a)
D= i [O¥iton) | V) || 0¥rsten]
e dp1 D2 dpr

Note that, where possible, the dependencies on ¢ and w have been omitted
for better readability.
For a single source it follows with Eq. (5.21) that,

EEB(QO) = ‘V/EB((,Dl) £ VEB(QD) = [eiNW, 614('/\/_1)397 R e_w, RN e_iNc’O]T,

(D.3)
and, 5
Dy(p) = Dep(¢1) = De(p) = iMVes(e), (D.4)
where,
M = diag{N,(N —1),...,0,—1,...,—N}. (D.5)

It can readily be verified that,
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N
Vis(9)Ves(e) = Z n=2N+1, (D.6)
n=—N
N
Diy(9)Desl(p) = Y n’ = NWV+1)2N +1), (D.7)
n=—N
and,
Vip(¢)DEg(p) = 0. (D.8)

Then, by using these expressions and after omitting the angular dependency
for notational convenience, Eq. (D.2a) becomes,

o v H
VEsVigs

. H
H..=H :_'(MV ) I-
“2Ep T HEB = T {SAVED ( N +1

) iMV g
. H o 1

= VEBMVEB - m
)

N +1 \7 EBTEB

= %N(N+ 1)(2N +1).

(‘v/gBMVE@ 2 (D.9)

= DEyDgp +

With this result, the EB-CRLB, Eq. (D.1), for a single source can finally be

written as,

SNR?(w)
1+ (2N +1)SNR(w)

CEB-CRLB(W) =3 |:2KN(N+ 1)(2N+ 1)2
(D.10)
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Frequency-Independence of EB-ESPRIT for a
Single Source

In this section, a rigorous proof of the claim stated in Section 5.2.4 —i.e. that
the DOA estimation algorithm for a single impinging plane-wave is inherently
frequency-independent — is given.

The proof starts with a Lemma, reviewing a known property of skew-
symmetric matrices.

Lemma E.1 Let A € RMXM pe g real-valued skew-symmetric matriz, satis-
fying AT = — A, and B € RM*Y g real-valued vector, then the quadratic form
f vanishes, i.e. f 2 BTAB =0 e RM*1,

Proof. f = fT = (B"AB)T = B"TA"B=-BT"AB=—-f — f=0. O

In the following, the notation is taken directly from the text in Section 4.4.3
and Section 5.2.4. In particular, Us € RM*1 denotes the estimated signal
subspace, i.e. the eigenvector corresponding to the largest eigenvalue of the
modal correlation matrix. Here, subscripted square matrices containing the
symbol M’ define their dimension. Q}V/il is defined by Eq. (5.31), Q is an
unitary matrix defined by Eq. (4.114) of dimension M — 1 or M. K is a
selection matrix defined by Eq. (4.117), and I denotes the exchange matrix
given by Eq. (4.106). Furthermore,

G, 2Re(Q" 0V KQ, }LRe(Q" KQ }2 %(z Z"), (B.1)
G, 2 {Q 0} KQ,\} £ (@ | KQy}2 (2~ Z)(B2)
and,
1
RG{Q]W 1KQ]\/[} = _(Z +Z*)) (ES)

G, £ m{Q" KQ,} 2 i(z -z, (E4)
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where,
& ~H
Z= QMAKQM’ (E.5)
SA AH %
Z = QM—IKQM’ (E.6)
and,
K20y’ K. (B.7)

Theorem E.2 The eigenvectors of a matriz defined by Eq. (5.46),
AT
-2 |Ug
Q = ~T
Us
are identical to the eigenvectors of the matriz,

2 [UGTGUs UsGTG,U |

U X S e (E.9)
|UsGIG,Us UGG, |
Proof. A sufficient condition for this statement is that,
UuAUs UgAU
~. i
U-U=|_§5797822"5 =4I, »x€cR (E.10)
UsA3UsUgA,Ugs
where,
A ~T ~T A A T ~T ~
A1:Q1Q1—Q1Q1 A2:Q1Q2—Q1Q2
A ~T ~T A A T =T =
A3:Q2Q1_Q2Q1 A4:Q2Q2_Q2Q2~

Theorem E.3 A sufficient condition for the main diagonal entries in
Eq. (E.10) to be equal is A, = A,.
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Proof
1 ST x N P
A-A = [Z+2)(Z2+2)-(Z+2)(Z+2)
1 * % ~ ~ x ~ ~ %
+;le-2zyiz-2)-12-2)2-2)
—|2'z+2"z - 3'2-2"7]
1
T2 [(Qﬁ KQ,)" Q) KQ,)
H H H *
Q" KQ,)"Q" KQ,)
H 5 T(HH %
o (QM—IK—IM) (QM—IK—IV[)
- (@ . KQ,)" @y 1KQM)*]
L or o H H 7T T *
=9 [QMK Qy @y KQ, +Q, K Q, Q,  KQ,
—— ——
I, .21 I
T 7T * H H 5T T  Frp*
-Q,K Q, 9, KQ, -Q K QM—1QM—1KQM]
1 - ~ T - ~ - T ~ .
T2 [Qﬂ (K'IK - K 1K)Q,, + fo (K'IK - K M)QM]
= O’
since,
-~ T . _ T _
K I, \K=(0,,K) "1y 0,2, K=K"0," I, 0y K
=K'I, K (E.11)
where in the last step Eq. (5.32) has been used. O

Theorem E.4 A sufficient condition that the anti-diagonal entries in the
matriz defined by Eq. (E.10) are zero is that A, and As are skew-symmetric.

Proof.
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where intermediate steps were taken from the proof following Corollary E.3.
Similarly,

1 ~ ~ % ~ ~ %
A+ Al = [2-2)(2+2)-(2-2)(2+2)

1 #\T * 7 7*\T [ 7 _NE
tulerzye-zy -2z z-2)

1 T o
~|2'2-2"2-2"2+2"7]

(3
=Ag+A§=Q

O

This concludes the proof of Theorem E.2.
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A Practical Acoustic Scene Analysis System —
Further Results

In this appendix, further results on the evaluation of an acoustic scene analysis
system based on wavefield decomposition methods using a real microphone
array are presented. Several of the experiments involve speech as excitation
signals. The speech signals used are plotted in Fig. F.1. On the left-hand
side, a four-second segment of male speech, used for single-source scenarios,
is depicted. The right-hand side of Fig. F.1 depicts two speech signals used
for the evaluation of the NOS (number of sources) estimator.

Male speech

0 5 10
Time in s
Female speech

0.5 P T
0
-0.5 R
0 2 4 0 5 10

Time in s Time in s

Fig. F.1. Speech signals used for several of the system evaluation procedures

A result that is very interesting from the standpoint of both WE and PE
methods is the measured directivity pattern of an individual microphone set
into either the baffled or the unbaffled aperture, which is shown in Fig. F.2.
Note that the microphones used for the hardware setup are quarter-inch om-



232 F A Practical Acoustic Scene Analysis System — Further Results

[dB] [dB]
0.5
1
&~
<
1.5
2
0 1 2 1
p/m p/m
(a) Microphone set in unbaffled (b) Microphone set in baffled
aperture aperture

Fig. F.2. Directivity pattern of a single microphone for kR = 0.22...2.2

nidirectional AKG 211270017 electret capsules. While the microphone direc-
tivity pattern of the microphone set in an unbaffled aperture roughly ap-
proximates an omnidirectional pattern in the frequency range considered, see
Fig F.2(a), the microphone directivity pattern of the microphone set in a baf-
fled aperture exhibits, at high frequencies, more cardioid-like characteristics,
as predicted by the theory, cf. Fig 2.9 in Section 2.3.3.

The first set of experiments for PE evaluates the system’s DOA single-
source estimation performance for different source, that is loudspeaker, po-
sitions. Figure F.3 shows the measured DOA estimation performance of cir-
cular EB-ESPRIT using a white noise signal played back separately on all
48 loudspeakers with all curtains closed. Note that the estimates of the in-
dividual experiments, i.e. LS 1...LS 48 are plotted in one figure, for several
signal-to-noise ratios based on cylindrically isotropic noise. Note the consis-
tent performance for all 48 DOAs, therefore proving the system’s capability
to cover the array’s entire field-of-view, i.e. 27.

Figure F.4 shows the same scenario in the ACO acoustic environment.
Note that, putting the slight overall degradation due to stronger multipath
aside, consistent estimation performance for all 48 DOAs can be observed in
this environment, too.

For the evaluations represented by Fig. F.5 and Fig. F.6, the white noise
excitation signal was replaced by the speech signal shown on the left-hand
side in Fig. F.1. Figure F.5 depicts the ACC scenario while Fig. F.6 deals
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Fig. F.3. Measured DOA estimation performance of circular EB-ESPRIT using
noise signal played back separately on all 48 loudspeakers with all curtains closed,
where f = 300...3000 Hz, M = 10, N = 3, data block length is 1024 samples



234 F A Practical Acoustic Scene Analysis System — Further Results
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Fig. F.4. Measured DOA estimation performance of circular EB-ESPRIT using
noise signal played back separately on all 48 loudspeakers with all curtains opened,
where f = 300...3000 Hz, M = 10, N' = 3, data block length is 1024 samples
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Fig. F.5. Measured DOA estimation performance of circular EB-ESPRIT using
speech signal played back separately on all 48 loudspeakers with all curtains closed,
where f = 300...3000 Hz, M = 10, N' = 3, data block length is 4800 samples
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with the ACO scenario. Note that no speech activity detector has been used
in order to avoid errors produced by the speech activity detector itself. Instead,
the speech signal has been manually edited for speech pause removal and the
data block-length was increased. Again, several SNR scenarios were considered

10

10

E{p — ¢} in degrees
o

E{® — ¢} in degrees
o

-10 : : : : -10 : : : :
10 20 30 40 10 20 30 40
Data block # Data block #
(a) SNR=40 dB (b) SNR=20 dB

E{$ — ¢} in degrees
o
E{¢ — ¢} in degrees

-10 ‘ : : :
10 20 30 40
Data block # Data block #
(c) SNR=10 dB (d) SNR=3 dB

Fig. F.6. Measured DOA estimation performance of circular EB-ESPRIT using
speech signal played back separately on all 48 loudspeakers with all curtains opened,
where f = 300...3000 Hz, M = 10, N' = 3, data block length is 4800 samples
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by applying cylindrically diffuse noise to the sensor signals. Note that for
SNR=3 dB a threshold effect already obvious from Fig. 6.7 becomes apparent,
where DOA estimation suddenly becomes unreliable.

The second set of evaluations is concerned with the performance of mul-
tiple plane-waves, where one source is held fixed at one loudspeaker position,
LS 1, while the other source is successively played by all 48 loudspeakers.
Figures F.7 and F.8 present the results for both the ACC and ACO acoustic
environment, respectively. The excitation signals were uncorrelated bandpass-
filtered white noise signals. As can be seen, the estimation performance de-
pends to a large extent on the relative distance between the two loudspeaker
positions. For large values of the SNR, estimation becomes reliable as soon as
the angular distance between the two loudspeakers exceeds about /6, equiv-
alent to a spacing of at least five loudspeakers. Note the distinct difference
in estimation performance of the two sources as their spacing gets closer and
closer. Remember that EB-ESPRIT applied to two sources returns two esti-
mates at all times. As the two sources get too close, one estimate returns a
“virtual” source which sits right in between the two sources. This estimate
is actually quite accurate, as can be seen in Figs. F.7 and F.8. The other
estimate returned by EB-ESPRIT, however, is rather arbitrary, as is evident
from the figures.

The following set of evaluations deals with the estimation of the num-
bers of active signals in a real acoustic wavefield (ACC, ACO) containing the
speech signals as shown on the right-hand side of Fig. F.1. The speech signals
were played back using LS 1 and LS 25, respectively. Compared to the same
scenario using noise signals shown in Fig. 6.9, the performance is deteriorated.
However, provided moderate levels of SNR can be assumed, detection becomes
possible after appropriate post-processing that distinguishes the relevant from
the spurious peaks in the estimated impulse response.

As a last, and more qualitative, example of the localization capability,
Fig. F.10 depicts snapshots of the real-time DOA estimation using EB-
ESPRIT for I > 1. Figure F.10 basically displays a computer generated birds-
eye view of Fig. 6.2.

The background shows the loudspeaker array, operated in wavefield syn-
thesis (WFS) mode. Note that the difference here is that the sources are now
not simulated using individual loudspeakers but using several loudspeakers
simultaneously as dictated by the theory of WFS [BAV93, Vog93, STKRO04].
For example, the loudspeakers used for synthesizing source 2 in Fig F.10(a)
are indicated by filled loudspeaker symbols. This mode of operation has been
chosen because by utilizing the notion of WFS, the sources can be contin-
uously placed anywhere around the loudspeaker array. The graphical user
interface that facilitates a simple source placement by appropriately calcu-
lating the loudspeaker driving signals in real-time has been designed at the
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Fig. F.7. Measured DOA estimation performance of circular EB-ESPRIT using
two noise signals with all curtains closed, where f = 1000...3000 Hz, M = 10,
N = 3, data block length is 1024 samples



F A Practical Acoustic Scene Analysis System — Further Results 239

[dB] [dB]
i; }é 10 0
= = -10
o - 20
: : 20
(] [
2 2 30
3 7 -30
3 g
3 S 40 —40
-20 0 20 40 -20 0 20 40
SNR in dB SNR in dB
(a) Estimator variance for source 1 (b) Estimator variance for source 2
|deg] |deg]

g g

_g 10 ,g 10 15

2 g

- 20 - 20

¢ e 10

2. 30 2 30

3 <

3 3 5

5 40 S 40

-20 0 20 40 -20 0 20 40
SNR in dB SNR in dB
(c) Mean estimation error for (d) Mean estimation error for
source 1 source 2

Fig. F.8. Measured DOA estimation performance of circular EB-ESPRIT using
two noise signals with all curtains open, where f = 1000...3000 Hz, M = 10,
N = 3, data block length is 1024 samples
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Fig. F.9. Number of active speech signals in real acoustic environments using
loudspeakers LS 1 and LS 25, where fimax = 7 kHz, M = 10, N’ = 5, data blocklength
is 8192 samples

Chair of Multimedia Communications and Signal Processing, University of
Erlangen-Nuremberg, Germany [STR02, LMS].

The polar-plot in the foreground shows the result of the real-time imple-
mentation of the EB-ESPRIT algorithm. The microphone array is symbolized
here by a filled circle. Note that the proportions are not to scale. Although
not further investigated in previous sections for the sake of brevity, cases are
considered here where the number of sources exceeds two. As mentioned pre-
viously, by decomposing a wavefield into a total of 2A/ + 1 harmonics, the
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Fig. F.10. Snapshots of the real-time DOA estimation using EB-ESPRIT for I > 1,
where f = 1000...3000 Hz, M = 10, N' = 3, data block length is 1024 samples
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DOAs of 2N sources can be identified. This relationship can be verified by
noting that subspace-based localization methods require at least one degree
of freedom for the estimation of the noise subspace, see Section 4.4 and Sec-
tion 5.2.

It can be seen that the DOAs of all sources, here simulated by bandlimited
white noise sequences, are identified with sufficient accuracy for most applica-
tions. Note, however, that the number assigned to an individual source by the
WES system in Fig. F.10, i.e. the number next to the small circles, does not
necessarily correspond to the number assigned by the EB-ESPRIT system,
which appear in the upper left-hand corner of each sub-figure.

Note also that the loudspeaker array, as used here, produces aliasing in the
frequency range where the EB-ESPRIT algorithm operates in. See e.g. [Sta96]
for a discussion of aliasing produced by WFS. It is therefore expected that
the wavefront produced by the loudspeaker array in this frequency range does
not correspond exactly to the wavefront expected by the DOA estimation
algorithm. The fact that all sources can be identified by the EB-ESPRIT
algorithm anyway stresses the system’s robust estimation capabilities.
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waves
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